Programming Microsoft Windows with C#
Programming Microsoft Windows with C#
by Charles Petzold

Microsoft Press © 2002

For the great people from [OR] Forum

Enjoy

Programming Microsoft Windows with C#
Charles Petzold

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2002 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Petzold, Charles, 1953-
Programming Microsoft Windows with C# / Charles Petzold.
p. cm.
Includes index.
ISBN 0-7356-1370-2
1. C# (Computer program language) 2. Microsoft Windows (Computer file) I. Title.

QA76.73.C154 P48 2001
005.26'8--dc21
2001052178

123456789 QWT 765432
Distributed in Canada by Penguin Books Canada Limited.
A CIP catalogue record for this book is available from the British Library.
Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office or contact

Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

ClearType, Georgia, IntelliMouse, Microsoft, Microsoft Press, MS-DOS, MSDN, Natural, the .NET
logo, OpenType, Verdana, Visual Basic, Visual C#, Visual Studio, Webdings, Win32, Windows,
Windows NT, and Wingdings are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or
should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Sally Stickney
Technical Editor: Jean Ross

Body Part No. X08-22413
About The Author
Charles Petzold

Charles Petzold (www.charlespetzold.com) is a full-time freelance writer who has been programming
for Microsoft Windows since 1985 and writing about Windows programming for nearly as long. He
wrote the very first magazine article about Windows programming for the December 1986 issue of
Microsoft Systems Journal. His book Programming Windows (first published by Microsoft Press in
1988 and currently in its fifth edition) taught a generation of programmers how to write applications

for Windows. In May 1994, Petzold was one of only seven people (and the only writer) to be given a
Windows Pioneer Award from Windows Magazine and Microsoft Corporation for his contribution to
the success of Microsoft Windows. He is also the author of a unique introduction to the inner
workings of computers entitled Code: The Hidden Language of Computer Hardware and Software .
Petzold is currently researching a book on the historical origins of software.

The manuscript for this book was prepared and galleyed using Microsoft Word version 2000. Pages
were composed by Microsoft Press using Adobe PageMaker 6.52 for Windows, with text in
Garamond and display type in Helvetica Condensed. Composed pages were delivered to the printer
as electronic prepress files.

Cover Designer: Methodologie, Inc.

Interior Graphic Designer: James D. Kramer

Principal Compositor: Paula Gorelick

Interior Artist: Joel Panchot

Principal Copy Editor: Holly M. Viola

Indexer: Shane-Armstrong Information Systems

PROGRAMMING MICROSOFT WINDOWS WITH C#........2

WINDOWS PROGRAMMING: AN OVERVIEW.........c.cooeeeeeeeeeeeeeeeeeee e 14
USER REQUIREMENTS.......oooiiiiiiiteiee ettt sn s annas 15
SYSTEM REQUIREMENTS ...ttt 16
THE ORGANIZATION OF THIS BOOK ... 16
THE CD-ROM ...ttt 17
SUPPORT ...ttt enen s 17
SPECIAL THANKS ... 17
CHAPTER 1: CONSOLE THYSELF 19
OVERVIEW ...ttt n s enen s 19
THE CH VERSION. ...ttt ettt ettt 19
ANATOMY OF A PROGRAM. ...ttt 21
CH NAMESPACES ...ttt 22
CONSOLE /O ..t n s 23
CH DATA TYPES. ..o oo 25
EXPRESSIONS AND OPERATORS ..ottt 29
CONDITIONS AND ITERATIONS ...ttt 31
THE LEAP TO OBUECTS ... oot 34
PROGRAMMING INTHE KEY OF CH ... 38
STATIC METHODS ... st es e 40
EXCEPTION HANDLINGooiiieoeeeeeeeeeeeeeee et 41
THROWING EXCEPTIONS ...t 43
GETTING AND SETTING PROPERTIES ...ttt 44
CONSTRUGCTORS ...ttt ettt en e 47
INSTANCES AND INHERITANGCEooivieoeieeeeeeeeeeeeeeee e 51
A BIGGER PICTURE ..ottt an e 54
NAMING CONVENTIONS ...t 55
BEYOND THE CONSOLE.........ooeoeeeeeeeeeeeeeeeeee e 56
CHAPTER 2: HELLO, WINDOWS FORMS 57
OVERVIEW ... en s e sennanan s 57
THE MESSAGE BOX.......oooiiiiieeeeeeeeeee et 58
THE FORM ...t et 63
SHOWING THE FORM ...t e 64
IT'S AN APPLICATION AND WE WANT TO RUN IT ..o, 66
VARIATIONS ON A THEME ...ttt 68
FORM PROPERTIES ...ttt 68
EVENT-DRIVEN INPUTooiiiiiiieieeeeeeeeeeeeeeeeeeee et 70
HANDLING THE PAINT EVENT L....ooiiiiiiieeeeeeeeeeeee et 71
DISPLAYING TEXT ..ottt ettt 74
TRE FONL.........ooeooiieeeeeeee e et 74
TRE BIUSH ... et 75

TRE COOIAINGLE POINES ..o e et e e eeeee e 75

THE PAINT EVENT IS SPECIAL! ..o 78

MULTIPLE FORMS, MULTIPLE HANDLERScoooiiiiieeeeeeeeeeeeee et 78
INHERITING FORMS ...ttt 80
THE ONPAINT IMETHOD. ..ottt 82
DOES MAIN BELONG HERE? ...t 83
EVENTS AND "ON" IMETHODS ...ttt ettt 85
CHAPTER 3: ESSENTIAL STRUCTURES 89
OVERVIEW ...t ettt ettt er e 89
CLASSES AND STRUCTURES........otuieieeeeteeeeeeeeeeeeeeeeeee e 89
TWO-DIMENSIONAL COORDINATE POINTS ...t 90
ARRAYS OF POINTS ...ttt 92
THE SIZE STRUCTURE ..ottt 92
THE FLOAT VERSIONS ..ottt 93
A RECTANGLE IS APOINT AND A SIZE ... 95
RECTANGLE PROPERTIES AND METHODScoooiiieceeeeeeeeeeeeeeeee e, 96
A NICE-SIZED FORM.....c..ooomiooeeeeeeeeee et 98
THE FORM AND THE CLIENT ..ottt 99
POINT CONVERSIONS ...ttt ettt 102
THE COLOR STRUCTUREcoooiiiieeeeeeeeeeeeeeeeee et eee st 103
THE 141 COLOR NAMES.......ooeeeeeeeeeeeeeee ettt 104
PENS AND BRUSHES ...ttt 104
SYSTEM COLORS. ...ttt 106
THE KNOWN COLORS ...ttt 108
WHAT TO USE? ..o ettt 109
GETTING A FEEL FOR REPAINTS ...ttt 109
CENTERING HELLO WORLD ...t 112
MEASURING THE STRINGocouiiiiiiieieeeee et 115
TEXTINARECTANGLE ..ot 117
CHAPTER 4: AN EXERCISE IN TEXT OUTPUT ... 120
OVERVIEW ...ttt 120
SYSTEM INFORMATION ...ttt en e 120
SPACING LINES OF TEXT ...ttt 120
PROPERTY VALUES. ...ttt 121
FORMATTING INTO COLUMNSooeiieeeeeeeee et 123
EVERYTHING IS AN OBUECT ...ttt 125
LISTING THE SYSTEM INFORMATION.........cooviiiieieeeeeeeeeeeee e en e 130
WINDOWS FORMS AND SCROLL BARSooiiiiieeeeeeeeeeeeeeeeeeeeeeeeee s 132
SCROLLING A PANEL CONTROL ..ottt 132
THE HERITAGE OF SCROLLABLECONTROL ... 136
SCROLLING WITHOUT CONTROLS ..ottt 136
ACTUAL NUMBERS.......ceeet ettt 138
DONTBE APIG.......oooooeeeeeeeeeeeeeee e 141
REFLECTING ON THE FUTURE ...ttt 142

OVERVIEW ..ottt st 149

HOW TO GET A GRAPHICS OBUECT ..ot 149
PENS, BRIEFLY ...ttt e 150
STRAIGHT LINES ...t ettt 151
AN INTRODUCTION TO PRINTING ...ttt 152
PROPERTIES AND STATE ...ttt 157
ANTIFALIASING. ...ttt 158
MULTIPLE CONNECTED LINES ..ot 160
CURVES AND PARAMETRIC EQUATIONScoooiieeeeeeeeeeeeeeeeeeeeeeeeeee e 164
THE UBIQUITOUS RECTANGLE ...ttt 167
GENERALIZED POLYGONS ...ttt 169
EASIER ELLIPSES.......coeoeeeeeeeeeeeeeeeee ettt 170
ARCS AND PIES ... ettt 171
FILLING RECTANGLES, ELLIPSES, AND PIESc.coiiiiieeeeeeeeeeeeeeeeeeeeeeeeees 177
OFF BY ettt 178
POLYGONS AND THE FILLING MODEcocooiiiiieeeeeeeeeeeeeeeeee e 180
CHAPTER 6: TAPPING INTO THE KEYBOARD ... 184
OVERVIEW ...ttt et tee e 184
IGNORING THE KEYBOARD ...ttt 184
WHO'S GOT THE FOCUS? ...ttt 184
KEYS AND CHARACTERS........ooeeeeeeeeee ettt 185
KEYS DOWN AND KEYS UP ...t 186
THE KEYS ENUMERATION........ooooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 187
TESTING THE MODIFIER KEYS.....oooeeeee et 194
REALITY CHECK ..ot 195
A KEYBOARD INTERFACE FOR SYSINFO......cocooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 196
KEYPRESS FOR CHARACTERS ..ottt 197
CONTROL CHARACTERS ..ottt ennans 198
LOOKING AT THE KEYS ...ttt 199
INVOKING THE WINS32 AP L. .ot 203
HANDLING INPUT FROM FOREIGN KEYBOARDScocoiuiieiieeeeeeeeeeeeee e 205
INPUT FOCUS ...t 207
THE MISSING CARET ...ttt 208
ECHOING KEY CHARACTERS ...ttt 212
RIGHT-TO-LEFT PROBLEMScoooioiieeeeeeeeeeeeeeeeeeeeee et 216
CHAPTER 7: PAGES AND TRANSFORMS 218
OVERVIEW ...ttt n s 218
DEVICE INDEPENDENCE THROUGH TEXTc.oiiiiiiiieieeeeeeeeeeeeeeeee e 218
HOW MUCH IS THAT INREAL MONEY? ... 218
DOTS PER INCH ..ot 220
WHAT'S WITH THE PRINTER?.......oeeeeeeeeeeeee et 221
MANUAL CONVERSIONS ..ottt 222
PAGE UNITS AND PAGE SCALE ...ttt 225
PEN WIDTHS ...ttt 228

SAVING THE GRAPHICS STATE........oiiiiieieeietcee e 232

METRICAL DIMENSIONS ...t 233
ARBITRARY COORDINATES ...ttt ettt neaes 237
WHAT YOU CAN'T DO ... ettt 239
HELLO, WORLD TRANSFORM ...ttt ettt 240
THE BIG PICTURE ...ttt 244
LINEAR TRANSFORMS.......ooieieeeeeeeeeeeeee ettt 244
INTRODUCING MATRIXES ...ttt 246
THE MATRIX CLASS ...ttt 248
SHEAR AND SHEAR ALIKE ...ttt ettt 250
COMBINING TRANSFORMS........ooouieieeeeeeeeeeeeeeeee et 252
CHAPTER 8: TAMING THE MOUSE 254
OVERVIEW ...ttt 254
THE DARK SIDE OF THE MOUSE ...t 254
IGNORING THE MOUSE ... 255
SOME QUICK DEFINITIONS ..ottt 255
INFORMATION ABOUT THE IMOUSE ... 255
THE MOUSE WHEEL. ...ttt 256
THE FOUR BASIC MOUSE EVENTS ... 257
DOING THE WHEEL ...ttt 259
MOUSE MOVEMENT ...ttt eennans 262
TRACKING AND CAPTURING THE MOUSE...........coooiiieeeeeeeeeeeeeeeeeeeeeeeee e 264
ADVENTURES IN TRACKING........coouiuiieiieeeeceeeeeee ettt 267
GENERALIZING CODE WITH INTERFACES ..ottt 274
CLICKS AND DOUBLE=CLICKS ..ot 277
MOUSE-RELATED PROPERTIESoooieeeeeee ettt 278
ENTERING, LEAVING, HOVERINGcooviiieeeeeeeeeeeeeeeeeeeeee et 279
THE MOUSE CURSOR.........oouiieieeeeeeeeeeeeeee ettt v s 280
AN EXERCISE IN HIT-TESTING.......coiiieieeeeeeeeeeeeeeeeeeeeeee et 287
ADDING A KEYBOARD INTERFACE ...ttt 289
PUTTING THE CHILDREN TOWORKooiiiiiieeeeeeeee et 291
HIT-TESTING TEXT oot 296
SCRIBBLINGWITH THE MOUSE ..ot 297
CHAPTER 9: TEXT AND FONTS 303
OVERVIEW ...ttt ettt see s eeeenans 303
FONTS UNDER WINDOWS........ooooiieiieeeeeeeeeeeeeeeee e 303
TALKING TYPE ...t 303
FONT HEIGHTS AND LINE SPACING...........coooiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 305
DEFAULT FONTS ...ttt 306
VARIATION ON A FONT ..ot 306
CREATING FONTS BY INAME ...ttt 309
A POINT SIZE BY ANY OTHER NAMEooomiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e, 313
CLASH OF THE UNITS. ...ttt 317
FONT PROPERTIES AND METHODS ...ttt 319

NEW FONTS FROM FONTIFAMILY oottt ee e 324

UNDERSTANDING THE DESIGN METRICS..........coevieiiiieieieiieeeeeeees e 326

ARRAYS OF FONT FAMILIES ..ottt 329
FONT COLLECTIONS. ...ttt eennans 335
VARIATIONS ON DRAWSTRINGo.oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 336
ANTIFALIASED TEXT .ottt e 337
MEASURING THE STRING ...ttt ettt 339
THE STRINGFORMAT OPTIONS ...ttt 340
GRID FITTING AND TEXT FITTING ...ttt 341
HORIZONTAL AND VERTICAL ALIGNMENToouiiiiiieeeeeeeeeeee e 343
THE HOTKEY DISPLAY ...ttt 348
A CLIP AND A TRIM.....oiiiioeeeeeeeeeeeeeeeeeeeeeeee et 349
START A TAB. ..ottt ee e 356
CHAPTER 10: THE TIMER AND TIME 363
OVERVIEW ...ttt ettt 363
THE TIMER CLASS ...ttt 363
THE DATETIME STRUCTUREcooviiiieieeeeeeeeeeeeeeeeeeeeeee e eesanneas 366
LOCAL TIME AND UNIVERSAL TIME ...ttt 368
THE TICK COUNT ...ttt ettt 370
CALENDARS AROUND THE WORLDcoooiiieeeteeeeeeeeeeeeeeeeeee e 372
A READABLE RENDITION ...ttt ettt 374
A SIMPLE CULTURE=SPECIFIC CLOCK ...ttt 378
THE RETRO LOOK. ...ttt 383
AN ANALOG CLOCK ..ot 388
A LITTLE PUZZLE CALLED JEU DE TAQUIN.........coooeeeeeeeeeeeeeeeeeeeeeeeeeee e, 394
CHAPTER 11: IMAGES AND BITMAPS 401
OVERVIEW ...ttt et tee e eeeenans 401
BITMAP SUPPORT OVERVIEW..........coouoiieeeeeeeeeeeeee e 402
BITMAP FILE FORMATS ..ottt 402
LOADING AND DRAWING ...t 405
IMAGE INFORMATION.couimieieieeeeeeee et 409
RENDERING THE IMAGE..........ooeoieeeeeeeeeeeeeeeeeeeeeeeeee e 413
FITTING TOARECTANGLE ...t 415
ROTATE AND SHEAR ..ottt 420
DISPLAYING PART OF THE IMAGEcoovioeeeeeeceeeeeeeeeeeee e 421
DRAWING ON THE IMAGE ...ttt 426
MORE ON THE IMAGE CLASS ...t 430
THE BITMAP CLASS ...ttt 433
HELLO WORLD WITHA BITMAP ...t 435
THE SHADOW BITMAP ...ttt 437
BINARY RESOURGCES ...ttt 439
ANIMATION. ...ttt et ennaeen 443
THE IMAGE LIST ...ttt 449

CHAPTER 12: BUTTONS AND LABELS AND SCROLLS

(OH MY!) 456
OVERVIEW ...ttt 456
BUTTONS AND CLICKS ..ot 456
KEYBOARD AND IMIOUSE ...ttt 459
CONTROL ISSUES ...ttt 460
DEEPER INTO BUTTONS ...t 460
APPEARANCE AND ALIGNMENT ...ttt et 464
BUTTONS WITH BITIMAPS ...t 466
MULTIPLE HANDLERS OR ONE ... 469
DRAWING YOUR OWN BUTTONS ...ttt 469
DROPPING ANCHOR........ooeeeeeeeeeee ettt 474
DOCK AROUND THE CLOCK ...ttt 477
CHILDREN OF THE FORM ..ottt 480
Z-ORDER ...ttt et 482
THE CHECK BOX ...t 482
THE THREE-STATE ALTERNATIVE ...ttt 486
THE LABEL CONTROL ...t ee s en v 486
TAB STOPS AND TAB ORDERcoiiiiiieeeeeeeeeeeeeee e 489
IDENTIFYING THE CONTROLS. ..ottt 489
THE AUTO-SCALE OPTION ...ttt 492

How the Windows Forms Designer Uses Auto-Scale...............cccoovveviececienanrannnnn. 493
Creative AutoScaleBaseSize SEttiNGScccooveceeieceeceeeeeeeeeeeeeeeeee e 493
INSIAE AULO-SCAIE ..., 494
A HEXADECIMAL CALCULATOR ...ttt 496
RADIO BUTTONS AND GROUP BOXESoooiiieeeeeeeeeeeeeeeeeee et 501
SCROLL BARS ...t 504
THE TRACK BAR ALTERNATIVE ..ot 511

CHAPTER 13: BEZIERS AND OTHER SPLINES..... 516
OVERVIEW ...ttt ettt tee s eeeenans 516
THE BEZIER SPLINE IN PRACTICE ... 516
A MORE STYLISH CLOCK ...ttt 520
COLLINEAR BEZIERS ...ttt 523
CIRCLES AND ARCS WITH BEZIERS........o.ooioeeieeeeeeeeeeeeeeeeeeeeeeeeee e 525
BEZIER ART ...ttt 528
THE MATHEMATICAL DERIVATION ...t 529
THE CANONICAL SPLINE ..ottt 533
CANONICAL CURVE DERIVATIONoooiiiieeeeeeeeeeeeeeeee et 539

CHAPTER 14: MENUS 543
OVERVIEW ...ttt 543
MENUS AND MENU ITEMS ...ttt 543
MENU SHORTCUT KEYS ...t 545
YOUR FIRST IMENU.......oiieeeeeeeeeeeeeeeeeeeee et 547

UNCONVENTIONAL IMENUS ..ottt 550

MENUITEM PROPERTIES AND EVENTScoooiiiiiiciee e 552

CHECKING THE ITEMS ... 554
WORKING WITH CONTEXT MENUS ..o, 557
THE MENU ITEM COLLECTION ...ttt nnen 561
THE STANDARD MENU (A PROPOSAL) ..., 565
THE OWNER-DRAW OPTION ..ottt 570
CHAPTER 15: PATHS, REGIONS, AND CLIPPING........ 580
OVERVIEW ...ttt ettt tee e eeeenans 580
A PROBLEM AND ITS SOLUTIONcoouiiiiiiieeeeeeeeeeeeee e 580
THE PATH, MORE FORMALLY ...ttt 584
CREATING THE PATH ...ttt 586
RENDERING THE PATH ...t 589
PATH TRANSFORMS ..ottt 593
OTHER PATH MODIFICATIONS ...ttt 595
CLIPPING WITH PATHS ...t 602
CLIPPING BITIMAPS ...ttt 607
REGIONS AND CLIPPING ...ttt 610
CHAPTER 16: DIALOG BOXES 613
OVERVIEW ...ttt ettt 613
YOUR FIRST MODAL DIALOG BOX.......ooieiieeceeeeeeeeeeeeeeee e 613
MODAL DIALOG BOX TERMINATIONovviiiceceeeeeee oot 617
ACCEPT AND CANGCELoouiiieeeeeeeeeee et 619
SCREEN LOCATION ...ttt 621
THE ABOUT BOX ...ttt 623
DEFINING PROPERTIES INDIALOG BOXES........coooiiieeeeeeeeeeeeeeeeeeeeeeeeeee s 626
IMPLEMENTING AN APPLY BUTTON ...t 632
THE MODELESS DIALOG BOX......ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 635
THE COMMON DIALOG BOXES ..ottt 639
CHOOSING FONTS AND COLORS ...ttt 639
USING THE WINDOWS REGISTRY ..o 646
THE OPEN FILE DIALOG BOX......oiiioeeeeeeeeeeeeee e 650
THE SAVE FILE DIALOG BOX ..o 657
CHAPTER 17: BRUSHES AND PENS 660
OVERVIEW ...ttt 660
FILLING IN SOLID COLORS ...ttt 660
HATCH BRUSHESot 661
THE RENDERING ORIGIN ...ttt 669
TEXTURE BRUSHES ..ottt 672
LINEAR GRADIENT BRUSHES ...ttt 677
PATH GRADIENT BRUSHEScoooooieoeeeeeeeeeeeeeeeeeeeeee e 685
TILING THE BRUSH ...t 690
PENS CAN BE BRUSHES TOO ...t 699

A DASH OF STYLE ..ottt st 702

CAPS AND JOINS ..ottt

CHAPTER 18: EDIT, LIST, AND SPIN

OVERVIEW ...ttt
SINGLE-LINE TEXT BOXES ...t
MULTILINE TEXT BOXES.......ooeeeeeeeeeeeeeeeeeeeeeeeee et
CLONING NOTEPAD.......ooeeeeeeeeeeeeeeeee ettt
THE NOTEPAD CLONE WITH FILE 1/O ..o
NOTEPAD CLONE CONTINUED.........oooiiieeeeeeeeeeeeeee ettt
SPECIAL-PURPOSE TEXT BOXESooiiiioiiieeeeeeeeeeeeeeeeeeeee s
THE RICH TEXT BOX ...ttt
TOOLTIPS ..ottt et
THE LIST BOX ..ottt
LISTBOX + TEXT BOX = COMBO BOXcocoiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeere e
UP-DOWN CONTROLS ..ottt ettt n e

CHAPTER 19: FONT FUN

OVERVIEW ..ottt
GETTING STARTED ..ottt
BRUSHED TEXT ...t
FONT TRANSFORMS ..ottt ettt
TEXT AND PATHS ..ot

CHAPTER 20: TOOLBARS AND STATUS BARS.....

OVERVIEW ...ttt st
THE BASIC STATUS BAR ...t
THE STATUS BAR AND AUTO-SCROLL ..ot
STATUS BAR PANELS ..ottt
STATUSBARPANEL PROPERTIES........coiiieiiiiieiieieieieie et
IMENU HELP ..ot
THE BASIC TOOLBAR ...ttt
TOOLBAR VARIATIONS. ...ttt ettt
TOOLBAR EVENTS ...ttt
TOOLBAR STYLES ...ttt st

CHAPTER 21: PRINTING

OVERVIEW ...ttt
PRINTERS AND THEIR SETTINGS ...ttt
PAGE SETTINGS ...ttt
DEFINING A DOCUMENT ...ttt
HANDLING PRINTDOCUMENT EVENTS ...ttt
THE PAGE DIMENSIONS ...ttt
THE PRINT CONTROLLER ..ottt
USING THE STANDARD PRINT DIALOG BOX......coovviiiiceceeeeeeeeeeeeeeevee,
SETTING UP THE PAGE ...ttt

819

819
819
821
824
826
829
837
840
843
848

PRINT PREVIEW ...

CHAPTER 22: TREE VIEW AND LIST VIEW

OVERVIEW ...ttt s st
SPLITSVILLE ...ttt st
TREE VIEWS AND TREE NODESocoooiiiiiieiieieeee e
IMAGES IN TREE VIEWS......oooiiiiiiieieinetseiseecis st
TREE VIEW EVENTS ..ot
NODE NAVIGATION ...ttt
THE DIRECTORY TREE ...ttt
DISPLAYING IMAGES ..ottt
LISTVIEW BASICS ...
LIST VIEW EVENTS ...ttt

CHAPTER 23: METAFILES

OVERVIEW ...ttt s st
LOADING AND RENDERING EXISTING METAFILEScccccoviveieieieieieeeieieie e
METAFILE SIZES AND RENDERINGcocoooiiieiieicieieicie e
CONVERTING METAFILES TO BITMAPS........ooiiiiiiiieieiee s
CREATING NEW METAFILES........cooiiiiieiceeeeeeeee et
THE METAFILE BOUNDARY RECTANGLE.........ccoiiiieiriiieiieieeeee e
METAFILES AND THE PAGE TRANSFORM........cccoceiiiiiiiieiiieieieiesese s
THE METAFILE TYPE ...ttt
ENUMERATING THE METAFILE ..ottt

CHAPTER 24: CLIP, DRAG, AND DROP

OVERVIEW ...ttt ettt ettt eaeen
ITEMS AND FORMATS ..ot
THE TINY (BUT POWERFUL) CLIPBOARD CLASS........oooveveveieeeeeeeeeeeese s
GETTING OBJECTS FROM THE CLIPBOARD........cotuieeeeeeeteeeeeeeeeeeeeee e
CLIPBOARD DATA FORMATS ...ttt
CLIPBOARD VIEWERS ..ottt

SETTING MULTIPLE CLIPBOARD FORMATScoouiiiiieieeeieiee e,
DRAG AND DROP ..ottt

APPENDIX A: FILES AND STREAMS

OVERVIEW ...t eenas
THE MOST ESSENTIAL FILE /O CLASS ..o
FILESTREAM PROPERTIES AND METHODSoooiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e
THE PROBLEM WITH FILESTREAM. ...ttt
OTHER STREAM CLASSES.......ooeeeeeeeeeeeee ettt
READING AND WRITING TEXT ...ttt
BINARY FILE 1O ...t
THE ENVIRONMENT CLASS ...ttt
FILE AND PATH NAME PARSING.........ooiiieieeeeeeeeeeeeeeeeeeeeeeeee e
PARALLEL CLASSES ...ttt

FILE MANIPULATION AND INFORMATIONcoiuiiiiiiiieeeeeeeeeeeeeeeee e 1040
APPENDIX B: MATH CLASS 1043
NUMERIC TYPES ...t 1043
CHECKING INTEGER OVERFLOWcoooititeeeeeeeeee oottt e 1044
THE DECIMAL TYPE ...t 1045
FLOATING-POINT INFINITY AND NANS ..., 1047
THE MATH CLASS ...ttt 1048
FLOATING-POINT REMAINDERSoouiieieeieeeeeeeeeeeeeeeeeeeeeee e 1050
POWERS AND LOGARITHMS ...ttt 1051
TRIGONOMETRIC FUNCTIONS ...ttt 1052
APPENDIX C: STRING THEORY 1055
OVERVIEW ...ttt 1055
THE CHAR TYPE ..ottt 1056
STRING CONSTRUCTORS AND PROPERTIES........cooiieieeeieeeeeeeeeeeeeeeee e 1058
COPYING STRINGS ...ttt 1059
CONVERTING STRINGS. ...ttt et 1061
CONCATENATING STRINGS ...t 1061
COMPARING STRINGS ..ot 1062
SEARCHING THE STRINGoooiiiieeieeeeeeeeeeeeeee et 1065
TRIMMING AND PADDING ..ottt 1067
STRING MANIPULATION ...ttt 1068
FORMATTING STRINGS ...ttt et 1068
ARRAY SORTING AND SEARCHING.........cocouiiiiieieeeeeeeeeeeeeeeeeee e 1069

THE STRINGBUILDER CLASS ..ot 1071

Introduction

This book shows you how to write programs that run under Microsoft Windows. There are a number
of ways to write such programs. In this book, | use the new object-oriented programming language
C# (pronounced "C sharp") and a modern class library called Windows Forms. The Windows Forms
class library is part of the Microsoft .NET ("dot net") Framework unveiled in the summer of 2000 and
introduced about a year and a half later.

The Microsoft .NET Framework is an extensive collection of classes that provides programmers with
much of what they need to write Internet, Web, and Windows applications. Much of the media
coverage of .NET has focused on the Web programming. This book discusses the other part of
.NET. You use Windows Forms to write traditional stand-alone Windows applications (what are now
sometimes called client applications) or front ends for distributed applications.

Windows Forms provides almost everything you need to write full-fledged Windows applications. The
big omission is multimedia support. There's not even a Windows Forms function to beep the
computer's speaker! | was tempted to write my own multimedia classes but restrained myself under
the assumption (reasonable, | hope) that the next release of Windows Forms will include multimedia
support that is flexible, powerful, and easy to use.

The classes defined in the .NET Framework are language-neutral. Microsoft has released new
versions of C++ and Visual Basic that can use these classes, as well as the new programming
language C#. Other language vendors are adapting their own languages to use the .NET classes.
These new compilers (either optionally or by default) convert source code to an intermediate
language in an .exe file. At runtime, the intermediate language is compiled into appropriate
microprocessor machine code. Thus, the .NET Framework is potentially platform independent.

| chose to use C# for this book because C# and .NET were—in a very real sense—made for each
other. Because of the language-neutral aspect of the .NET Framework, you may be able to use this
book to learn how to write Windows Forms applications with other .NET languages.

Windows Programming: An Overview

Microsoft released the first version of Windows in the fall of 1985. Since then, Windows has been
progressively updated and enhanced, most dramatically in Windows NT (1993) and Windows 95
(1995), when Windows moved from a 16-bit to a 32-bit architecture.

When Windows was first released, there was really only one way to write Windows applications, and
that was by using the C programming language to access the Windows application programming
interface (API). Although it was also possible to access the Windows API using Microsoft Pascal, this
approach was rarely used.

Over the years, many other languages have been adapted for doing Windows programming,
including Visual Basic and C++. Both C++ and C# are object-oriented languages that support most
of the types, operators, expressions, and statements of the C programming language. For this
reason, C++ and C# (as well as Java) are sometimes called C-based languages, or languages of the
C family.

With the introduction of .NET, Microsoft currently offers three approaches to writing Windows
applications using a C-based language:

How to Write a Windows Application Using a C-Based Language (Microsoft-Centric View)

Year Language Interface

Introduced
‘ 1985 ‘ C ‘ Windows application programming interface (API)
‘ 1992 ‘ C++ ‘ Microsoft Foundation Class (MFC) Library

‘ 2001 ‘ C# or C++ ‘ Windows Forms (part of the .NET Framework)

It's not my job to tell you what language or interface you should use to write Windows applications.
That's a decision only you can make based on the particular programming job and the resources
available to you.

If you want to learn more about the Windows API, many people have found my book Programming
Windows (5th edition, Microsoft Press, 1998) to be valuable.

I never liked MFC. Ever since it was introduced, | thought it was poorly designed and barely object
oriented. Consequently, I've never written about MFC. But that's only a personal view. Many other
programmers have successfully used MFC, and it's currently one of the most popular approaches to
Windows programming. A good place to learn about MFC is the book Programming Windows with
MFC (2nd edition, Microsoft Press, 1999) by Jeff Prosise. For the more advanced Windows
programmer, | also want to recommend Programming Applications for Microsoft Windows (Microsoft
Press, 1999) by Jeffrey Richter.

From my view, Windows Forms is much better designed than MFC and much closer to what |
envision as an ideal object-oriented interface to Windows. Over the past 14 months that I've been
working on this book, it has become my preferred approach to Windows programming.

Programmatically speaking, both the MFC and Windows Forms interfaces work by making calls to
the Windows API. Architecturally, they can be said to sit on top of the API. These higher-level
interfaces are intended to make Windows programming easier. Generally, you can do specific tasks
in MFC or Windows Forms with fewer statements than when using the API.

While high-level interfaces such as MFC or Windows Forms often improve the programmer's
productivity, any interface that makes use of another interface is obviously less versatile than the
underlying interface. You can do many things using the Windows API that you can't do using the
Windows Forms classes.

Fortunately, with a little extra work, you can make calls to the Windows API from a Windows Forms
program. Only occasionally in this book did | come across an omission in the .NET Framework so
profound that | needed to make use of this facility. My overall philosophy has been to respect the
insulation that Windows Forms offers from the inner workings of Windows itself.

User Requirements

To use this book most profitably, you need to be able to compile and run C# programs. To compile
the programs, you need a C# compiler. To run these programs, you need the .NET runtime (called
the common language runtime, or CLR), which is a collection of dynamic-link libraries.

Both these items are included in Microsoft Visual C#, a modern integrated development
environment. Alternatively, you can purchase the more extensive and more expensive Microsoft
Visual Studio .NET, which will also let you program in C++ and Visual Basic in addition to C#.

If you prefer a more rugged approach, you can instead download the free .NET Framework software
development kit (SDK). The download includes a command-line C# compiler and the .NET runtime.
First go to http://msdn.microsoft.com/downloads. At the left, select Software Development Kits, and
then look for the .NET Framework. (Keep in mind that this Web site, as with all the Web sites
mentioned throughout this book, could change, move, or in some cases disappear completely, at any
time.)

I've written this book under the assumption that you at least know how to program in C. Being
familiar with C++ or Java is helpful but not necessary. Because C# is a new language, the first
chapter of this book provides a whirlwind introduction to C# and essential concepts of object-oriented
programming. Throughout the rest of the book, | often take time to discuss miscellaneous C#
concepts as they are encountered.

But this book doesn't provide a comprehensive tutorial for C#. If you want more background and skill
in working with the language, other books on C# are available, and many others will undoubtedly
become available as the language becomes more popular. The book Inside C# (Microsoft Press,
2001) by Tom Archer provides information on writing C# code and also on what's going on beneath
the surface. Microsoft Visual C# Step by Step (Microsoft Press, 2001) by John Sharp and Jon Jagger
takes a more tutorial approach.

| sometimes make reference to the Windows API in this book. Like | said previously, you can consult
my book Programming Windows to learn more about the API.

System Requirements

As | mentioned in the preceding section, to use this book effectively, you need to be able to compile

and run C# programs. System requirements are as follows:

8§ Microsoft .NET Framework SDK (minimum); Microsoft Visual C# or Microsoft Visual Studio
.NET (preferred)

§ Microsoft Windows NT 4.0, Windows 2000, or Windows XP.

To run your C# programs on other computers requires that the .NET runtime (also referred to as the
.NET Framework redistributable package) be installed on those machines. That package comes with
the .NET Framework SDK, Visual C#, and Visual Studio .NET. The redistributable package can be
installed on the versions of Windows already mentioned as well as Windows 98 and Windows
Millennium Edition (Me).

If you want to install the sample files from the companion CD to your hard drive, you'll need
approximately 2.1 MB of additional hard disk space. (Fully compiled, the samples use just over 20
MB.)

The Organization of This Book

When Windows 1.0 was first released, the entire APl was implemented in three dynamic link libraries
named KERNEL, USER, and GDI. Although the DLLs associated with Windows have become much
more voluminous, it is still useful to divide Windows function calls (or framework classes) into these
three categories: The kernel calls are those implemented in the architectural interior of the operating
system, and are generally concerned with tasking, memory management, and file I/0. The term user
refers to the user interface. These are functions to create windows, use menus and dialog boxes,
and display controls such as buttons and scroll bars. GDI is the Graphics Device Interface, that part
of Windows responsible for displaying graphical output (including text) on the screen and printer.

This book begins with four introductory chapters. Starting with Chapter 5 (which shows you how to
draw lines and curves) and continuing through Chapter 24 (on the Windows clipboard), the chapters
alternate between graphics topics (odd-numbered chapters) and user interface topics (even-
numbered chapters).

Normally a book like this wouldn't spend much time with non-Windows topics such as file I/O,
floating-point mathematics, and string manipulation. However, because the .NET Framework and C#
are so new, | found myself wishing | had a coherent guide through those classes. So | wrote such
guides myself. These are included as three appendices on files, math, and strings. You can consult
these appendices any time after reading Chapter 1.

I've tried to order the chapters—and the topics within the chapters—so that each topic builds on
succeeding topics with a minimal number of "forward references." I've written the book so that you
can read it straight through, much like you'd read the uncut version of The Stand or The Decline and
Fall of the Roman Empire.

Of course, it's good if a book as long as this one serves as a reference as well as a narrative. For
that reason, many of the important methods, properties, and enumerations used in Windows Forms
programming are listed in tables in the chapters in which they are discussed. A book of even this
size cannot hope to cover everything in Windows Forms, however. It is no substitute for the official
class documentation.

Windows Forms programs require little overhead, so this book includes plenty of code examples in
the form of complete programs. You are free to cut and paste pieces of code from these programs
into your own programs. (That's what these programs are for.) But don't distribute the code or
programs as is. That's what this book is for.

The C# compiler has a terrific feature that lets you write comments with XML tags. However, I've
chosen not to make use of this feature. The programs in this book tend to have few comments
anyway because the code is described in the text that surrounds the programs.

As you may know, Visual C# allows you to interactively design the appearance of your applications.
You position various controls (buttons, scroll bars, and so forth) on the surface of your window, and

Visual C# generates the code. While such techniques are very useful for quickly designing dialog
boxes and front-panel types of applications, | have ignored that feature of Visual C# in this book.

In this book, we're not going to let Visual C# generate code for us. In this book, we're going to learn
how to write our own code.

The CD-ROM

The companion CD-ROM contains all the sample programs in this book. You can load the solution
files (.sIn) or project files (.csproj) into Visual C# and recompile the programs.

Frankly, I've never had much use for CD-ROMs in books. When learning a new language, | prefer to
type in the source code myself—even if it's someone else's source code at first. | find | learn the
language faster that way. But that's just me.

If the CD-ROM is missing or damaged, don't send e-mail to me asking for a replacement.
Contractually, | can't send you a new one. Microsoft Press is the sole distributor of this book and the
CD-ROM. To get a replacement CD-ROM or other support information regarding this book, contact
Microsoft Press. (See the "Support" section that follows for contact information.)

Support

Every effort has been made to ensure the accuracy of this book and the contents of the companion
CD-ROM. Microsoft Press provides corrections for books through the World Wide Web at the
following address:

http://lwww.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a question
or issue that you may have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the companion CD-ROM, please
send them to Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press

Attn: Programming Microsoft Windows with C# Editor
One Microsoft Way

Redmond, WA 98052-6399

E-mail:

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses. For support
information regarding C#, Visual Studio, or the .NET Framework, please visit the Microsoft Product
Support Web site at

http://support.microsoft.com

Special Thanks

Writing is usually a very solitary job, but fortunately there are always several people who make the
work much easier.

| want to thank my agent Claudette Moore of the Moore Literary Agency for getting this project going
and handling all the messy legal stuff.

As usual, the folks at Microsoft Press were an absolute pleasure to work with and once again have
helped prevent me from embarrassing myself. If it were not for my project editor, Sally Stickney, and
my technical editor, Jean Ross, this book would be infested with gibberish and buggy code. While
editors may seem superhuman at times, they are regrettably not. Any bugs or incomprehensible
sentences that remain in the book are my fault and no one else's.

Let me not forget to cite Johannes Brahms for providing musical accompaniment while | worked, and
Anthony Trollope for escapist literature in the evenings.

My Sunday, Tuesday, and Thursday gatherings of friends continue to help and support me in ways
that are sometimes obvious, sometimes subtle, but always invaluable.

And most of all, | want to thank my fiancée, Deirdre, for providing a very different (non .NET)
framework for me in which to live, work, and love.

Charles Petzold
New York City
November, 2001

Chapter 1: Console Thyself

Overview

In that succinct and (perhaps consequently) much-beloved classic tutorial The C Programming
Language, authors Brian Kernighan and Dennis Ritchie begin by presenting what has come to be
known as the hello-world program: &

#include <stdio.h>

main ()

{

printf ("hello, world\n");

}

While such a program hardly exploits the power of today's computers, it's certainly useful on the
practical level because it gives the eager student programmer the opportunity to make sure that the
compiler and all its associated files are correctly installed. The hello-world program also reveals the
overhead necessary in a particular programming language: hello-world programs can be a single line
in some languages but quite scary in others. The hello-world program is also helpful to the author of
a programming book because it provides an initial focal point to begin the tutorial.

As all C programmers know, the entry point to a C program is a function named main, the printf
function displays formatted text, and stdio.h is a header file that includes definitions of printf and
other standard C library functions. The angle brackets, parentheses, and curly braces are used to
enclose information or to group collections of language statements.

The traditional hello-world program is designed to be run in a programming environment that
supports a quaint and old-fashioned type of text-only computer interface known as a command line,
or console. This type of interface originated on a machine called the teletypewriter, which was itself
based on an early word processing device known as the typewriter. As a user types on the
teletypewriter keyboard, the device prints the characters on a roll of paper and sends them to a
remote computer. The computer responds with characters of its own, which the teletypewriter
receives and also displays on the paper. In this input/output model, there's no concept of positioning
text on the page. That's why the printf function simply displays the text wherever the teletypewriter
print head (or the cursor of a video-based command line) happens to be at the time.

A command-line interface exists in Microsoft Windows in the form of an application window called
MS-DOS Prompt or Command Prompt. While the command-line interface has been largely
obsoleted by graphical interfaces, command-line programs are often simpler than programs written
for graphical environments, so they remain a good place to begin learning a new programming
language.

U Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd ed. (Englewood
Cliffs, NJ: Prentice Hall, 1988). The hello-world program in the first edition (1978) was the same but
without the #include statement.

The C# Version

In this book, I'll be using a programming language called C# (as in C-sharp, like the key of
Beethoven's Moonlight Sonata). Designed by Anders Hejlsberg at Microsoft, C# is a modern object-
oriented programming language that incorporates elements from C, C++, Java, Pascal, and even
BASIC. This chapter presents a whirlwind (but necessarily incomplete) tour of the language.

C# source code files have the filename extension .cs ("c sharp"). My first C# version of the hello-
world program is the file ConsoleHelloWorld.cs.

ConsoleHelloWorld.cs

class ConsoleHelloWorld

{
public static void Main()
{
System.Console.WriteLine ("Hello, world!");
1
1

You have a couple options in compiling this program, depending on how much money you want to
spend and how much modern programming convenience you wouldn't mind foregoing.

The cheapest approach is to download the .NET Framework Software Development Kit (SDK) from
http://msdn.microsoft.com. Installing the SDK also installs the dynamic-link libraries (DLLs) that
comprise the .NET runtime environment. The .NET technical documentation is available in a
Windows-based program. You also get a command-line C# compiler that you can use to compile the
programs shown in these pages.

You can use any text editor—from Microsoft Notepad on up—to write C# programs. The C# compiler
is named csc.exe. You compile ConsoleHelloWorld.cs on a command line like so:

csc consolehelloworld.cs

That's it. There's no link step involved. (As you'll see in the next chapter, compiling a Windows
Forms program rather than a console program requires some additional compiler arguments.) The
compiler produces a file named ConsoleHelloWorld.exe that you can run on the command line.

You can also create, compile, and run this program in Visual C# .NET, the latest version of
Microsoft's integrated development environment. Visual C# .NET is a must for professional C#
developers. For certain types of Windows Forms programs—those that treat the program's window
as a form that contains controls such as buttons, text-entry fields, and scroll bars—it's extremely
useful. However, it's not strictly necessary. I've found that one of the real pleasures of doing
Windows programming in C# with the Windows Forms library is that no separate files are involved.
Virtually everything goes in the C# source code file, and everything in that file can be entered with
your own fingers and brain.

The following paragraphs describe the steps | took to create the programs in this book using Visual
C# .NET. Every sample program in this book is a project, and each project has its own directory of
disk storage. In Visual C# .NET, projects are generally grouped into solutions; | created a solution for
every chapter in this book. Every solution is also a directory. Projects are subdirectories of the
solution directory.

To create a solution, select the menu item File | New | Blank Solution. In the New Project dialog box,
select a disk location for this solution and type in a name for the solution. This is how | created
solutions for each of the chapters in this book.

When you have a solution loaded in Visual C# .NET, you can create projects in that solution. Select
the menu item File | Add Project | New Project. (You can also right-click the solution name in
Solution Explorer and select Add | New Project from the context menu.) In the Add New Project
dialog box, select a project type of Visual C# Projects. You can choose from several templates. If
you want to avoid having Visual C# .NET generate code for you—I personally prefer writing my own
code—the template to choose is Empty Project. That's how | created the projects for this book.

Within a project, you can use the Project | Add New Item menu option to create new C# source code
files. (Again, you can also right-click the project name in Solution Explorer and select this item from
the context menu.) In the Add New Item dialog box, in the Categories list, choose Local Project
Items. In the Templates section, choose Code File. Again, if you use that template, Visual C# .NET
won't generate code for you.

Regardless of whether you create and compile ConsoleHelloWorld on the command line or in Visual
C# .NET, the .exe file will be small, about 3 KB or 4 KB, depending on whether the compiler puts
debugging information into it. The executable consists of statements in Microsoft Intermediate
Language (MSIL). MSIL has been submitted as a proposed standard to the European Computer

Manufacturer's Association (ECMA), where it is known as the Common Intermediate Language
(CIL). When you run the program, the .NET common language runtime compiles the intermediate
language to your computer's native machine code and links it with the appropriate .NET DLLs.
Currently, you're probably using an Intel-based machine, so the code that the runtime generates is
32-bit Intel x86 machine code.

You can look at MSIL by running the Intermediate Language Disassembler ildasm.exe:

ildasm consolehelloworld.exe

For documentation on the MSIL instruction set, download the file identified with the acronym "CIL"
from http://msdn.microsoft.com/net/ecma. Other files on that page may also be useful. You can even
write code directly in MSIL and assemble that code using the Intermediate Language Assembler
ilasm.exe.

Because programs written in C# are compiled to an intermediate language rather than directly to
machine code, the executables are platform independent. Sometime in the future, a .NET runtime
environment may be ported to non-Intel machines. If that happens, the executables you're creating
today will run on those machines. (Let me add "in theory" so as not to seem hopelessly naive.)

By using the .NET Framework and programming in C#, you're also creating managed code. This is
code that can be examined and analyzed by another program to determine the extent of the code's
actions. Managed code is a necessary prerequisite to exchanging binary executables over the
Internet.

Anatomy of a Program

Here's the ConsoleHelloWorld program again.
ConsoleHelloWorld.cs

class ConsoleHelloWorld

{
public static void Main()
{
System.Console.WriteLine ("Hello, world!");
1
!

As in C++ and Java (and in many implementations of C), a pair of forward slashes begin a single-line
comment. Everything to the right of the slashes doesn't contribute to the compilation of the program.
C# also supports multiline comments surrounded by the /* and */ character combinations. One
interesting feature of C# is that comments can contain statements in XML (Extensible Markup
Language) that can later be formatted and generate documentation of your code. This feature is
terrific and | urge you to learn all about it, but I've chosen not to use it in the sample programs in this
book.

The entry point to the C# hello-world program is the Main function tucked inside the first set of curly
brackets. Like C, C++, and Java, C# is case sensitive. Unlike those three languages, the entry point
to a C# program is a capitalized Main rather than a lowercase main. The empty parentheses indicate
that the Main function has no arguments; the void keyword indicates that it returns no value. You can
optionally define Main to accept an array of character strings as input and to return an integer value.
I'll discuss the public and static keywords later in this chapter. The public keyword isn't strictly
required here; the program will compile and run fine without it.

The Main function is inside a class definition. The class is the primary structural and organizational
element of object-oriented programming languages such as C#. Very simply, a class is a collection
of related code and data. I've given this class a name of ConsoleHelloWorld. In this book, I'll

generally (but not always) have one class per source code file. The name of the file will be the name
of the class but with a .cs filename extension. This naming convention isn't required in C#, but the
concept was introduced in Java and | like it. Thus, the file that contains the ConsoleHelloWorld class
definition is ConsoleHelloWorld.cs.

System.Console.WriteLine appears to be a function call, and indeed it is. It takes one argument,
which is a text string, and it displays the text string on the console, in a command-line window, on
your vintage teletypewriter, or wherever. If you compile and run this program, the program displays

Hello, world!
and terminates.

That long function name, System.Console.WriteLine, breaks down like so:

8 System is a namespace.

8§ Console is a class defined in that namespace.

8 WriteLine is a method defined in that class. A method is the same thing that is traditionally
called a function, a procedure, or a subroutine.

C# Namespaces

The namespace is a concept borrowed from C++ and helps ensure that all names used in a
particular program or project are unique. It can sometimes happen that programmers run out of
suitable global names in a large project or must use third-party class libraries that have name
conflicts. For example, you might be coding up a large project in C# and you purchase two helpful
class libraries in the form of DLLs from Bovary Enterprises and Karenina Software. Both these
libraries contain a class named SuperString that is implemented entirely differently in each DLL but is
useful to you in both versions. Fortunately, this duplication isn't a problem because both companies
have followed the C# namespace-naming guidelines. Bovary put the code for its SuperString class in
a namespace definition like so:

namespace BovaryEnterprises.VeryUsefulLibrary

{

class SuperString

}

And Karenina did something similar:
namespace KareninaSoftware.HandyDandyLibrary

{

class SuperString

}

In both cases, the company name is first, followed by a product name. In your programs that use
these libraries, you can refer to the particular SuperString class that you need using the fully qualified
name

BovaryEnterprises.VeryUsefullLibrary.SuperString

or

KareninaSoftware.HandyDandyLibrary.SuperString
Yes, it's a lot of typing, but it's a solution that definitely works.

This namespace feature would be fairly evil if there weren't also a way to reduce some of that typing.
That's the purpose of the using keyword. You specify a namespace once in the using statement, and
then you can avoid typing it to refer to classes in that namespace. Here's an alternative hello-world
program for C#.

ConsoleHelloWithUsing.cs

// ConsoleHelloWithUsing.cs © 2001 by Charles Petzold

using System;

class ConsoleHelloWithUsing

{

public static void Main()

{

Console.WriteLine ("Hello, world!");

}

For your project using the two different SuperString classes, the using keyword has an alias feature
that helps out:

using Emma = Bovary.VeryUsefulLibrary;

using Anna = Karenina.HandyDandyLibrary;

Now you can refer to the two classes as

Emma . SuperString

and

Anna.SuperString
Consult the C# language reference for more details on the using feature.

The .NET Framework defines more than 90 namespaces that begin with the word System and 5
namespaces that begin with the word Microsoft. The most important namespaces for this book are
System itself; System.Drawing, which contains many of the graphics-related classes; and
System.Windows.Forms.

Namespaces even allow you to give your own classes names already used in the .NET Framework.
The .NET Framework itself reuses some class names. For example, it contains three classes named
Timer. These are found in the namespaces System. Timers, System. Threading, and
System.Windows.Forms.

What happens to classes that are defined without using a namespace, such as the
ConsoleHelloWorld and ConsoleHelloWithUsing classes in my sample programs? Those class
names go into a global namespace. This isn't a problem for little self-contained programs like these.
However, whenever | define a class in this book that could be useful in someone else's program, I'l
put it in the namespace Petzold.ProgrammingWindowsWithCSharp.

Console I/O

Namespaces also play an important role in the organization of the .NET Framework documentation.
To find the documentation for the Console class, look in the System namespace. You'll see that
WriteLine isn't the only output method in the Console class. The Write method is very similar in that it
also displays output to the console. The difference is that WriteLine terminates its output with a
carriage return.

There are 18 different definitions of the Write method and 19 different definitions for the WriteLine
method, each one with different arguments. These multiple versions of the same method are known
as overloads. The compiler can usually figure out which overload a program wants to use by the
number and types of the arguments passed to the method.

Here's a program that illustrates three different ways to display the same output.

ConsoleAdder.cs

// ConsoleAdder.cs © 2001 by Charles Petzold

using System;

class ConsoleAdder

{

public static void Main()
int a = 1509;
int b = 744;
int ¢ = a + b;
Console.Write ("The sum of ");
Console.Write(a) ;
Console.Write (" and ") ;
Console.Write (b) ;
Console.Write (" equals ");

Console.WriteLine (c) ;

Console.WriteLine("The sum of " + a + " and " + b + " equals " +

Console.WriteLine ("The sum of {0} and {1} equals {2}", a, b, ¢);

}

This program displays the following output:

The sum of 1509 and 744 equals 2253
The sum of 1509 and 744 equals 2253
The sum of 1509 and 744 equals 2253

C programmers will be comforted to know that C# supports the familiar int data type and that it
doesn't require the := assignment operator of Algol and Pascal.

The first approach the program uses to display the line of output involves separate Write and
WriteLine methods, each of which has a single argument. Write and WriteLine can accept any type
of variable and will convert it to a string for display.

The second approach uses a technique that C programmers aren't accustomed to but that is familiar
to BASIC programmers: string concatenation using the plus sign. C# converts the variables to strings
and tacks all the strings together as a single argument to WriteLine. The third method involves a
formatting string that has three placeholders, indicated by {0}, {1}, and {2}, for the three other
arguments. These placeholders can include additional formatting information. For example, {0:C}
displays the number as a currency amount with (depending on the regional settings of the operating
system) a dollar sign, commas, two decimal places, and wrapped in a set of parentheses if negative.
The placeholder {0:X8} displays the number in hexadecimal, possibly padded with zeros to be eight
digits wide. The following table lists some examples of formatting specifications, each applied to the
integer 12345.

Various Formatting Specifications for the Integer 12345

‘ Format Type ‘ Format Code ‘ Result

‘ Currency ‘ C ‘ $12,345.00

‘ ‘ C1 ‘ $12,345.0

Various Formatting Specifications for the Integer 12345

‘ Format Type

‘ Format Code

‘ Result

‘ ‘ c7 ‘ $12,345.0000000
\ Decimal \ D \ 12345

‘ ‘ D1 ‘ 12345

‘ ‘ D7 ‘ 0012345

‘ Exponential ‘ E ‘ 1.234500E+004

\ \ E1 \ 1.2E+004

‘ ‘ E7 ‘ 1.2345000E+004
‘ Fixed point ‘ F ‘ 12345.00

\ \ F1 \ 12345.0

‘ ‘ F7 ‘ 12345.0000000

‘ General ‘ G ‘ 12345

‘ ‘ G1 ‘ 1E4

\ \ G7 \ 12345

‘ Number ‘ N ‘ 12,345.00

‘ ‘ N1 ‘ 12,345.0

‘ ‘ N7 ‘ 12,345.0000000
‘ Percent ‘ P ‘ 1,234,500.00

‘ ‘ P1 ‘ 1,234,500.0

‘ ‘ P7 ‘ 1,234,500.0000000
‘ Hexadecimal ‘ X ‘ 3039

‘ ‘ X1 ‘ 3039

‘ ‘ X7 ‘ 0003039

Even if you don't do much console output in your .NET programming, you'll probably still make use of
these formatting specifications in the String.Format method. Just as Console. Write and
Console.WriteLine are the .NET equivalents of printf, the String.Format method is the .NET

equivalent of sprintf.

C# Data Types

I've defined a couple of numbers with the int keyword and I've been using strings enclosed in double
quotation marks, so you know that C# supports at least two data types. C# actually supports eight
integral data types, which are listed here:

C# Integral Data Types

‘ Number of Bits

| Signed

| Unsigned

‘ 8 ‘ sbyte | byte
‘ 16 ‘ short | ushort
‘ 32 ‘ int | uint
‘ 64 ‘ long | ulong

C# also supports two floating-point data types, float and double, which implement the ANSI/IEEE Std
754-1985, the IEEE Standard for Binary Floating-Point Arithmetic. The following table shows the
number of bits used for the exponent and mantissa of float and double.

Number of Bits Used for Floating-Point Data Types in C#

‘ C# Type ‘ Exponent ‘ Mantissa ‘ Total Bits

‘ float ‘ 8 ‘ 24 ‘ 32
‘ double ‘ 11 ‘ 53 ‘ 64

In addition, C# supports a decimal data type that uses 128 bits of storage, breaking down into a 96-
bit mantissa and a decimal scaling factor between 0 and 28. The decimal data type offers about 28
decimal digits of precision. It's useful for storing and performing calculations on numbers with a fixed
number of decimal points, such as money and interest rates. | discuss the decimal data type (and
other aspects of working with numbers and mathematics in C#) in more detail in Appendix B.

If you write a literal number such as 3.14 in a C# program, the compiler will assume that it's a
double. To indicate that you want it to be interpreted as a float or a decimal instead, use a suffix of f
for float or m for decimal.

Here's a little program that displays the minimum and maximum values associated with each of the

11 numeric data types.

MinAndMax.cs

using System;
class MinAndMax

{

public static void Main()
{
Console.WriteLine ("sbyte: {0} to {1}", sbyte.MinvValue,
sbyte.MaxValue) ;
Console.WriteLine ("byte: {o} to {1}", byte.MinvValue,
byte.MaxValue) ;
Console.WriteLine ("short: {0} to {1}", short.Minvalue,
short .MaxValue) ;

Console.WriteLine ("ushort: {0} to {1}", ushort.Minvalue,

ushort .MaxValue) ;
Console.WriteLine ("int: {o} to {1}", int.MinValue,
int .MaxValue) ;
Console.WriteLine ("uint: {o} to {1}", uint.Minvalue,
uint.MaxValue) ;
Console.WriteLine ("long: {o} to {1}", long.MinvValue,
long.MaxValue) ;
Console.WriteLine ("ulong: {0} to {1}", ulong.Minvalue,
ulong.MaxValue) ;
Console.WriteLine ("float: {o} to {1}", float.Minvalue,
float.MaxValue) ;
Console.WriteLine ("double: {0} to {1}", double.MinvValue,

double.MaxValue) ;

Console.WriteLine ("decimal: {0} to {1}", decimal.MinvValue,

decimal.MaxValue) ;

}
}

As you'll notice, I've attached a period and the words MinValue and MaxValue onto each data type.
These two identifiers are structure fields, and what is going on here will become apparent toward the
end of this chapter. For now, let's simply appreciate the program's output:

sbyte: -128 to 127
byte: 0 to 255
short: -32768 to 32767

ushort: 0 to 65535

int: -2147483648 to 2147483647

uint: 0 to 4294967295

long: -9223372036854775808 to 9223372036854775807
ulong: 0 to 18446744073709551615

float: -3.402823E+38 to 3.402823E+38

double: -1.79769313486232E+308 to 1.79769313486232E+308

decimal: -79228162514264337593543950335 to 79228162514264337593543950335

C# also supports a bool data type that can take on two and only two values: true and false, which are
C# keywords. Any comparison operation (==, !=, <, >, <=, and >=) generates a bool result. You can
also define bool data types explicitly. Although you can cast between a bool and an integer (frue
being converted to 1 and false to 0), this cast must be explicit.

The char data type stores one character, and the string data type stores multiple characters. The
char data type is separate from the integer data types and shouldn't be confused or identified with
sbyte or byte. For one thing, a char is 16-bits wide (but that doesn't mean you should confuse it with
short or ushort either).

The char is 16-bits wide because C# encodes characters in Unicode rather than ASCII. Instead of
the 7 bits used to represent each character in strict ASCII, or the 8 bits per character that have
become common in extended ASCII character sets on computers, Unicode uses a full 16 bits for
character encoding. This allows Unicode to represent all the letters, ideographs, and other symbols
found in all the written languages of the world that are likely to be used in computer communication.
Unicode is an extension of ASCII character encoding in that the first 128 characters are defined as in
ASCII.

Date types don't need to be defined at the top of a method. As in C++, you can define data types
anywhere in the method as you need them.

You can define and initialize a string variable like so:
string str = "Hello, World!";
Once you've assigned a string to a string variable, the individual characters can't be changed. You

can, however, assign a whole new string to the string variable. Strings are not zero-terminated, but
you can obtain the number of characters in a string variable using the expression

str.Length

Length is a property of the string data type, a concept I'll cover later in this chapter. Appendix C
contains more information on working with strings in C#.

To define an array variable, use empty square brackets after the data type:

float [] arr;

The data type of the arr variable is an array of floats, but in reality arr is a pointer. In C# lingo, an
array is a reference type. So is a string. The other data types I've mentioned so far are value types.

When you initially define arr, its value is null. To allocate memory for the array, you must use the new
operator and specify how many elements the array has:

arr = new float[3];

It's actually more common to combine the two statements:
float[] arr = new float[3];

When you're defining an array, you can also initialize the elements:
float[] arr = new float[3] { 3.14f, 2.17f, 100 };

The number of initializers must be equal to the declared size of the array. If you're initializing the
array, you can leave out the size:

float[] arr = new float[] { 3.14f, 2.17f£, 100 };

You can even leave out the new operator:
float[] arr = { 3.14f, 2.17f, 100 };

Later on in your program, you can reassign the arr variable to a float array of another size:

arr = new float[5];
With this call, enough memory is allocated for five float values, each of which is initially equal to 0.

You might ask, "What happens to the original block of memory that was allocated for the three float
values?" There is no delete operator in C#. Because the original block of memory is no longer
referenced by anything in the program, it becomes eligible for garbage collection. At some point, the
common language runtime will free up the memory originally allocated for the array.

As with strings, you can determine the number of elements in an array by using the expression

arr.Length;
C# also lets you create multidimensional arrays and jagged arrays, which are arrays of arrays.

Unless you need to interface with non-C# code, using pointers in a C# program is rarely necessary.
By default, parameters to methods are always passed by value, which means that the method can
freely modify any parameter and it won't be changed in the calling method. To change this behavior,
you can use the ref ("reference") or out keywords. For example, here's how you can define a method
that modifies a variable passed as an argument:

void AddFive (ref int 1)
{
i+ 5;

}

Here's one that sets a parameter variable:

void SetToFive (out int i)

i =5;

In the first example, i must be set before the call to AddFive, and then the value can be changed in
the AddFive method. In the second example, i doesn't have to be set to anything before the method
call.

The enumeration plays an important role in C# and the .NET Framework. Many constants throughout
the .NET Framework are defined as enumerations. Here's one example from the System./O
namespace:

public enum FileAccess

{

Read = 1,
Write,
ReadWrite

}

Enumerations are always integral data types, and the int data type by default. If you don't specify an
explicit value (as is done for Read in this case), the first member is set to the value 0. Subsequent
members are set to consecutive values.

You use FileAccess in conjunction with several file 1/0 classes. (Appendix A discusses file I/0 in
detail.) You must indicate both the enumeration name and the member name separated by a period,
as here:

file.Open(FileMode.CreateNew, FileAccess.ReadWrite)

FileMode is another enumeration in the System./O class. If you were to switch around these two
enumerations in the Open method, the compiler would report an error. This use of enumerations
helps the programmer avoid errors involving constants.

2 See The Unicode Consortium, The Unicode Standard Version 3.0 (Reading, Mass.: Addison-
Wesley, 2000) and http.://www.unicode.org for additional information.

Expressions and Operators

One important reference for C programmers is the table that lists the order of evaluation of all the C
operations. (It used to be possible to get this table on a T-shirt—printed upside down, naturally, for
easy reference.) The equivalent C# table, shown here, is just a little different in the first two lines. It
includes a few more operators and excludes the comma operator.

Order of Evaluation in C#

‘ Operator Type ‘ Operators ‘ Associativity
‘ Primary () 0 f() . x++ y++ new typeof ‘ Left to right
sizeof checked unchecked
‘ Unary ‘ +— | ~ ++x —x (type) ‘ Left to right
‘ Multiplicative *1% ‘ Left to right
‘ Additive ‘ +— ‘ Left to right
‘ Shift ‘ << >> ‘ Left to right
‘ Relational ‘ <><=>=jsas ‘ Left to right
‘ Equality ‘ === ‘ Left to right
‘ Logical AND ‘ & ‘ Left to right
‘ Logical XOR ‘ A ‘ Left to right
‘ Logical OR ‘ | ‘ Left to right
‘ Conditional AND ‘ && ‘ Left to right
‘ Conditional OR ‘ [l ‘ Left to right
‘ Conditional ‘ ?: ‘ Right to left
‘ Assignment = +=-=%=[= Y%= <<=>>= |= &= ‘ Right to left
A=

| want to discuss the two AND and OR operators in some detail because they can provoke some
confusion—at least they did when | first encountered them.

Notice that the &, #, and | operators are termed logical AND, XOR, and OR; in C, these are called the
bitwise operators. In C#, the logical AND, XOR, and OR operators are defined for both integral data
types and bool. For integral data types, they function as bitwise operators, the same as in C. For
example, the expression

0x03 | 0x05

evaluates as 0x07. For bool data types or expressions, they evaluate to bool values. The result of
the logical AND operation is true only if both operands are frue. The result of the logical XOR is frue
only if one operand is true and the other is false. The result of the logical OR is true if either of the
operands is true.

In C, the && and || operators are known as logical operators. In C#, they're termed conditional AND
and OR, and they are defined only for bool data types.

C programmers are accustomed to using the && and || operators in statements like this:
if (a !'= 0 && b >= 5)

C programmers also know that if the first expression evaluates as false (that is, if a equals 0), then
the second expression isn't evaluated. It's important to know this because the second expression
could involve an assignment or a function call. Similarly, when you use the || operator, the second
expression isn't evaluated if the first expression is true.

In C#, you use the && and || operators in the same way you use them in C. These operators are
called the conditional AND and OR because the second operand is evaluated only if necessary.

In C#, you can also use the & and | operators in the same way as && and ||, as in this example:
if (a != 0 & b >= 5)

When you use the & and | operators in this way in C#, both expressions are evaluated regardless of
the outcome of the first expression.

The second of the two if statements is also legal in C, and it works the same way as in C#. However,
most C programmers would probably write such a statement only in error. That statement simply
looks wrong to me, and it sets off a bell in my head because I've trained myself to treat the & as the
bitwise AND and && as the logical AND. But in C, the result of a relational or logical expression is an
int that has a value of 1 if the expression is frue and 0 otherwise. That's why the bitwise AND
operation works here.

A C programmer might make the original statement involving the && operator a little more concise by
writing it like so:

if (a && b >= 5)

This works fine in C because C treats any nonzero expression as being frue. In C#, however, this
statement is illegal because the && operator is defined only for bool data types.

Where the C programmer gets into big trouble is using the bitwise AND operator in the shortened
form of the expression:

if (a & b >= 5)

If b equals 7, then the expression on the right is evaluated as the value 1. If ais equal to 1 or 3 or
any odd number, then the bitwise AND operation yields 1 and the total expression evaluates as ftrue.
If ais 0 or 2 or any even number, then the bitwise AND operation yields 0 and the total expression
evaluates as false. Probably none of these results are what the programmer intended, and this is
precisely why the C programmer has such a violent reaction to seeing bitwise AND and OR
operators in logical expressions. (In C#, this statement is illegal because integers and bool values
can't be mixed in the logical AND, XOR, and OR statements.)

C# is much stricter than C with regard to casting. If you need to convert from one data type to
another beyond what C# allows, the Convert class (defined in the System namespace) provides
many methods that probably do what you want. If you need to interface with existing code, the
Marshal class (defined in the System.Runtime.InteropServices namespace) contains a method
named Copy that lets you transfer between C# arrays and memory areas referenced by pointers.

Conditions and Iterations

C# supports many of the conditional, iteration, and flow control statements used in C. In this section,
I'll discuss statements built around the if, else, do, while, switch, case, default, for, foreach, in, break,
continue, and goto keywords.

The if and else construction looks the same as in C:
if (a == 5)

{

}

else if (a < 5)

In C#, however, the expression in parentheses must resolve to a bool data type. This restriction
helps the programmer avoid a common pitfall in C of mistakenly using an assignment as the test
expression when a comparison is intended:

if (a = 5)
This statement produces a compilation error in C#, and you'll be thankful that it does.

Of course, no compiler can offer full protection against programmer sleepiness. In one early C#
program | wrote, | defined a bool variable named trigger, but instead of writing the statement

if (trigger)

| wanted to be a little more explicit and probably intended to type this:

if (trigger == true)

Unfortunately, | typed this instead:

if (trigger = true)
This is a perfectly valid statement in C# but obviously didn't do what | wanted.

C# also supports the do and while statements. You can test a conditional at the top of a block:
while (a < 5)

{

}

or at the bottom of a block:
do

{

}

while (a < 5);

The expression must resolve to a bool here as well. In the second example, the block is executed at
least once regardless of the value of a.

The switch and case construction in C# has a restriction not present in C. In C, you can do this:

switch (a)

{
case 3:
b = 17;
// Fall through isn't allowed in C#.
case 4:
c = 3;
break;
default:
b = 2;
c = 4;
break;
}

In the case where a is equal to 3, one statement is executed and then execution falls through to the
case where a is equal to 4. That may be what you intended, or you may have forgotten to type in a
break statement. To help you avoid bugs like that, the C# compiler will report an error. C# allows a
case to fall through to the next case only when the case contains no statements. This is allowed in
C#:

switch (a)

{
case 3:
case 4:
b =17;
c = 3;
break;
default:
b = 2;
c = 4;
break;
}

If you need something more complex than this, you can use the goto (described later in this section).

One cool feature of C# is that you can use a string variable in the switch statement and compare it to
literal strings in the case statements:

switch (strCity)

{

case "Boston":

break;

case "New York":

break;

case "San Francisco":

break;

default:

break;

}

Of course, this is exactly the type of thing that causes performance-obsessed C and C++
programmers to cringe. All those string comparisons simply cannot be very efficient. In fact, because
of a technique known as string interning (which involves a table of all unique strings used in a
program), it's a lot faster than you might think.

The for loop looks the same in C# as in C and C++:
for (i = 0; i < 100; i += 3)

{

}

As in C++, it's very common for C# programmers to define the iteration variable right in the for
statement:

for (float £ = 0; £ < 10.05f; £ += 0.1f)

{

}

A handy addition is the foreach statement, which C# picked up from Visual Basic. Suppose arris an
array of float values. If you wanted to display all the elements of this array in a single line separated
by spaces, you would normally do it like so:

for (int i = 0; i < arr.Length; i++)

Console.Write("{0} ", arr[i]);

The foreach statement, which also involves the in keyword, simplifies the operation:
foreach (float f in arr)

Console.Write("{0} ", £);

The foreach identifier (named f here) must be assigned a data type in the foreach statement; within
the statement or block of statements following foreach, that identifier is read only. As a result, you
can't use foreach to initialize the elements of an array:

int[] arr = new int[100];

foreach (int i in arr) // Can't do it!

i = 55;

What's interesting about the foreach statement is that it isn't restricted to arrays. It can be used with
any class that implements the IEnumerable interface defined in the System.Collections namespace.
Over a hundred classes in the .NET Framework implement /Enumerable. (I'll discuss interfaces
briefly later in this chapter and more in Chapter 8.)

The break statement normally used with the switch and case construction will also cause execution
flow to jump out of any while, do, for, or foreach loop. The continue statement jumps to the end of
any while, do, for, or foreach block; execution flow continues with the next iteration (if any).

And then there's the goto:

goto MyLabel;

MyLabel :

The goto is useful for getting out of deeply nested blocks and for writing amusingly obscure code. C#
also supports a goto in the switch and case construction to branch to another case:

switch (a)

{
case 1:
b = 2;
goto case 3;
case 2:
c = 7;
goto default;
case 3:
c =5;
break;
default:
b = 2;
break;
}

You don't need the final break at the end of a case if the goto is there instead. This feature
compensates for not being able to fall through to the next case.

The Leap to Objects

In most traditional procedural languages, such as Pascal, Fortran, BASIC, PL/I, C, and COBOL, the
world is divided into code and data. Basically, you write code to crunch data.

Throughout the history of programming, programmers have often strived to organize code and data,
particularly in longer programs. Related functions might be grouped together in the same source
code file, for example. This file might have variables that are used by those isolated functions and
nowhere else in the program. And, of course, a formal means to consolidate related data, at least, is
common in traditional languages in the form of the structure.

Let's suppose you're writing an application and you see that you're going to need to work with dates
and, in particular, to calculate day-of-year values. February 2 has a day-of-year value of 33, for
example. December 31 has a day-of-year value of 366 in leap years and 365 otherwise. You would
probably see the wisdom of referring to the date as a single entity. In C, for example, you can group
related data in a structure with three fields:

struct Date
int year;
int month;

int day;

}i
You can then define a variable of type Date like so:

struct Date today;

You refer to the individual fields by using a period between the structure variable name and the field
name:

2001;

today.year
today.month = 8;

today.day = 29;

But otherwise you can use the variable name (in this case, foday) to refer to the data as a group. In
C, you can also define a structure variable and initialize it in one shot:

struct Date birthdate = { 1953, 2, 2 } ;

To write your day-of-year function, you might begin by writing a little function that determines
whether a particular year is a leap year:

int IsLeapYear (int year)

{

return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));

}

The DayOfYear function makes use of that function:
int DayOfYear (struct Date date)

{
static int MonthDays[12] = { o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };
return MonthDays [date.month - 1] + date.day +
((date.month > 2) && IsLeapYear (date.year)) ;
1

Notice that the function refers to the fields of the input structure using the period and the field name.

Here's a complete working C version of the Date structure and related functions.
CDate.c

#include <stdio.h>

struct Date

int year;
int month;
int day;
int IsLeapYear (int year)

return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));

}

int DayOfYear (struct Date date)

static int MonthDays[12] = { o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };
return MonthDays [date.month - 1] + date.day +
((date.month > 2) && IsLeapYear (date.year)) ;

int main(void)

struct Date mydate;

mydate.month = 8;

mydate.day = 29;

mydate.year = 2001;

printf ("Day of year = %$i\n", DayOfYear (mydate)) ;

return 0;

I've structured the program with main down at the bottom to avoid forward declarations.

That's how it's done in C because the C structure can contain only data types. Code and data are
separate and distinct. However, the IsLeapYear and DayOfMonth functions are closely related to the
Date structure because the functions are defined only for the Date structure variables. For that
reason, it makes sense to consolidate those functions within the Date structure itself. Moving the
functions into the structure turns a C program into a C++ program. The C++ version of this program
looks like the code on the following page.

CppDateStruct.cpp

#include <stdio.h>
struct Date
int year;
int month;
int day;

int IsLeapYear ()

return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==

int DayOfYear ()

static int MonthDays[12] = { 0o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

return MonthDays [month - 1] + day + ((month > 2) &&
IsLeapYear()) ;

}

}i

int main(void)

{
Date mydate;
mydate.month = 8;
mydate.day = 29;
mydate.year = 2001;
printf ("Day of year = %i\n", mydate.DayOfYear());
return 0;

}

Notice that the total code bulk is smaller. The IsLeapYear and DayOfYear functions no longer have
any arguments. They can reference the structure fields directly because they're all part of the same
structure. These functions now earn the right to be called methods.

Notice also that the struct keyword has been removed in the declaration of the mydate variable in
main. It now appears as if Date is a normal data type and mydate is a variable of that type. In object-
oriented programming jargon, the mydate variable can now be called an object of type Date, or an
instance of Date. Date is sometimes said (by those who have privately practiced saying the word out
loud) to be instantiated.

And most important, notice that the DayOfYear method can be called simply by referring to it in the
same way you refer to the data fields of the structure: with a period separating the object name and
the method name. The more subtle change is a shift of focus: Previously we were asking a function
named DayOfYear to crunch some data in the form of a Date structure. Now we're asking the Date
structure—which represents a real date on the calendar—to calculate its DayOfYear.

We're now doing object-oriented programming, or at least one aspect of it. We're consolidating code
and data into a single unit.

However, in most object-oriented languages, the single unit that combines code and data isn't called
a struct. It's called a class. Changing that struct to a class in C++ requires the addition of just one
line of code, the keyword public at the top of what is now the definition of the Date class.

CppDateClass.cpp

#include <stdio.h>

class Date

{

public:

int year;
int month;

int day;

int IsLeapYear ()

{
return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
}
int DayOfYear ()
{

static int MonthDays[12] = { 0o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

return MonthDays [month - 1] + day + ((month > 2) &&
IsLeapYear()) ;

}

}i

int main(void)

{
Date mydate;
mydate.month = 8;
mydate.day = 29;
mydate.year = 2001;
printf ("Day of year = %$i\n", mydate.DayOfYear()) ;
return 0;

}

In both C++ and C#, a class is very similar to a struct. In both languages, the class isn't exactly the
same as the struct, and the class and the struct are different in different ways in the two languages.
I'll discuss the C# difference toward the end of this chapter and more in Chapter 3. In C++, all the
fields and methods in a struct are public by default; that is, they can be accessed from outside the
structure. The fields and methods need to be public because | reference them in main. In a C++
class, all the fields and methods are private by default, and the public keyword is necessary to make
them pubilic.

I've done this example in C++ rather than C# because C++ was designed to be compatible with C
and thus provides a rather smoother transition from the world of C. Now it's time to do it in C#.

Programming in the Key of C#

The C# version of this program really doesn't look all that much different from the C++ version.

CsDateClass.cs

using System;

class CsDateClass

{

public static void Main()

{

Date mydate = new Date() ;

mydate.month = 8;
mydate.day = 29;
mydate.year = 2001;

Console.WriteLine ("Day of year = {0}", mydate.DayOfYear()) ;

}

class Date

{
public int year;
public int month;

public int day;

public static bool IsLeapYear (int year)

{

o o

return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==

public int DayOfYear ()

int [] MonthDays = new int[] { 0o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

return MonthDays [month - 1] + day +
(month > 2 && IsLeapYear(year) ? 1 : 0);

}

One thing I've done, however, is to put the Main method (enclosed in its own class) up at the top of
the program and the Date class down at the bottom. | can do this because C# doesn't require
forward declarations.

In the C++ version, | defined the Date object like so:

Date mydate;

C# requires a construction like this:

Date mydate = new Date() ;

As when defining an array, the new keyword performs a memory allocation for the new object of type
Date. (I'll discuss the use of parentheses following Date later in this chapter.)

Another change that the C# version requires is the use of the keyword public in front of every field
and method in the class that is referenced outside the class. The public keyword is called an access

modifier because it indicates how the fields and methods can be accessed. The other two common
alternatives are private and protected, which I'll discuss later in this chapter.

Notice that the IsLeapYear method returns a bool. In the DayOfYear method, | use the conditional
operator (?:) to generate a value of 1 to add to the day of year for leap years. | could also have cast
the bool expression into an int.

Let's get the hang of the jargon: Date is a class. The Date class has five members. The three data
members year, month, and day are called fields. The two code members are called methods. The
variable mydate is an object of type Date. It's also referred to as an instance of the Date class.

Static Methods

I've made another change in converting the C++ version of the program to C#: | added the static
modifier to the definition of /sLeapYear and included a year argument to the method. This wasn't a
necessary change: if you remove the static keyword and the argument to IsLeapYear, the program
will work the same.

But the static modifier is so important in C# and the .NET Framework that | didn't want to delay
discussing it another second.

Throughout this chapter, I've been displaying text on the console by specifying the WriteLine method
in the Console class:

Console.WriteLine(...);

However, when calling the DayOfYear method, you specify not the class (which is Date) but mydate,
which is an object of type Date:

mydate.DayOfYear () ;

You see the difference? In the first case, the class Console is specified; in the second case, the
object mydate is specified.

That's the static difference. The WriteLine method is defined as static in the Console class, like so:

public static void WritelLine (string value)

A static method pertains to the class itself rather than to an object of that class. To call a method
defined as static, you must preface it with the name of the class. To call a method not defined as
static, you must preface it with the name of an object—an instance of the class in which that method
is defined.

This distinction also applies to data members in a class. Any data member defined as static has the
same value for all instances of the class. From outside the class definition, the data member must be
accessed using the class name rather than an object of that class. Those MinValue and MaxValue
fields | used earlier in the MinAndMax program were static fields.

What is the implication of defining IsLeapYear as static? First, you can't call IsLeapYear prefaced
with an instance of Date:

mydate.IsLeapYear (1997) // Won't work!

You must call IsLeapYear prefaced with the class name:
Date.IsLeapYear (1997)

Within the class definition (as in the DayOfYear method), you don't need to preface IsLeapYear at
all. The other implication is that IsLeapYear must have an argument, which is the year that you're
testing. The advantage of defining IsLeapYear as static is that you don't have to create an instance
of Date in order to use it. Similarly, you don't need to create an instance of the Console class to use
the static methods defined in that class. (Actually, you can't create an instance of Console, and even
if you could, you couldn't use it for anything because Console has no nonstatic methods.)

A static method can't call any nonstatic method in the class or use any nonstatic field. That's
because nonstatic fields are different for different instances of the class and nonstatic methods
return different values for different instances of the class. Whenever you look up something in the
.NET Framework reference, you should be alert to see whether or not it's defined as static. It's an

extremely important distinction. Likewise, I'll try to be very careful in this book in indicating when
something is defined as static.

Fields can also be defined as static, in which case they're shared among all instances of the class. A
static field is a good choice for an array that must be initialized with constant values, such as the
MonthDays array in the CsDateClass program. As shown in that program, the array is reinitialized
whenever the DayOfYear method is called.

Exception Handling

Different operating systems, different graphical environments, different libraries, and different
function calls all report errors in different ways. Some return Boolean values, some return error
codes, some return NULL values, some beep, and some crash the system.

In C# and the .NET Framework, an attempt has been made to uniformly use a technique known as
structured exception handling for reporting all errors.

To explore this subject, let's begin by setting the month field of the Date object in the CsDateClass
program to 13:

mydate.month = 13;

Now recompile and run the program. If a dialog box comes up about selecting a debugger, click No.
You'll then get a message on the command line that says this:

Unhandled Exception: System.IndexOutOfRangeException: Index was outside
the

bounds of the array.
at Date.DayOfYear ()
at CsDateClass.Main ()

If you've compiled with debug options on, you'll get more explicit information that indicates actual line
numbers in the source code. In either case, however, the program will have been prematurely
terminated.

Notice that the message is accurate: the index to the MonthDays array was truly out of range. In C, a
problem like this might result in some other kind of error, such as a stack overflow. C# checks
whether an array index is valid before indexing the array. The program responds to an anomalous
index by a simple process that's called throwing (or raising) an exception.

It's possible—and in fact very desirable—for programs themselves to know when exceptions are
occurring and to deal with them constructively. When a program checks for exceptions, it is said to
catch the exception. To catch an exception, you enclose statements that may generate an exception
in a try block and statements that respond to the exception in a catch block. For example, you can try
putting the following code in the CsDateClass program with the bad date:

try

{

Console.WriteLine ("Day of year = {0}", mydate.DayOfYear()) ;

}

catch (Exception exc)

{

Console.WriteLine (exc) ;

}

Exception is a class defined in the System namespace, and exc is an object of type Exception that
the program is defining. This object receives information about the exception. In this example, I've
chosen simply to pass exc as an argument to Console.WriteLine, which then displays the same
block of text describing the error | showed you earlier. The difference, however, is that the program
isn't prematurely terminated and could have handled the error in a different way, perhaps even a
graceful way.

A single line of code can cause several types of exceptions. For that reason, you can define different
catch blocks:

try

{

}

catch (NullReferenceException exc)

{

}

catch (ArgumentOutOfRangeException exc)

{

}

catch (Exception exc)

{

}

Notice that the most generalized exception is at the end.

You can also include a finally block:
try

{

}

catch (Exception exc)

{

}

finally

{

}

Regardless of whether or not an exception occurs, the code in the finally block is executed following
the code in the catch block (if an exception occurred) or the code in the try block (if there was no
exception). You can put cleanup code in the finally block.

You might ask, Why do | need the finally block? Why can't | simply put my cleanup code after the
catch block? That's certainly possible. However, you could end your try or catch blocks with goto
statements. In that case, the code in the finally block would be executed anyway, before the goto
occurred.

It's also possible to leave out the catch block:
try

{

}

finally

}

In this case, you'd get the dialog box about a debugger and a printed version of the exception (the
same as displaying it with Console.WriteLine), and then the code in the finally clause would be
executed and the program would proceed normally.

Throwing Exceptions

What still bothers me in this particular case is that we really haven't gotten to the root of the problem.
The DayOfYear method is throwing an exception because the index to the MonthDays array is out of
bounds. But the real problem occurs earlier in the program, with this statement that | told you to put
in the program:

mydate.month = 13;

Once this statement is executed, you're dealing with a Date object that contains an invalid date.
That's the real problem. It just so happens that DayOfYear was the first method that had a bad
reaction to this problem. But suppose you put the following statement in the program:

mydate.day = 47;

The DayOfYear method goes right ahead and calculates a result despite the fact that it's dealing with
a bogus date.

Is there a way for the class to protect itself against the fields being set to invalid values by a program
using the class? The easy way is by marking the fields as private rather than public:

private int year;
private int month;

private int day;

The private modifier makes the three fields accessible only from methods inside the Date class
definition. In fact, in C#, the private attribute is the default, so you only need to remove the public
attribute to make this change:

int year;
int month;
int day;

Of course, this change creates its own problem: How is a program that uses the Date class
supposed to set the values of the year, month, and day?

One solution that might occur to you is to define methods in the Date class specifically for setting
these three fields and also for getting the values once they're set. For example, here are two simple
methods for setting and getting the private month field:

public void SetMonth (int month)

{
this.month = month;
1
public int GetMonth ()
{
return month;
!

Notice that both these methods are defined as public. Notice also that I've given the name of the
argument variable in SetMonth the same name as the field! If you do this, the field name needs to be
prefaced with the word this and a dot. Inside a class, the keyword this refers to the instance of the
class that's calling the method. The this keyword is invalid in static methods.

Here's a version of SetMonth that checks for proper month values:
public void SetMonth (int month)
{
if (month >= 1 && month <= 12)
this.month = month;
else

throw new ArgumentOutOfRangeException ("Month") ;

}

And there's the syntax for throwing an exception. I've chosen ArgumentOutOfRangeException
because that one most closely identifies the problem. The new keyword creates a new object of type
ArgumentOutOfRangeException. That object is what the catch block gets as a parameter. The
argument to ArgumentOutOfRangeException is a text string that identifies the parameter causing the
problem. This text string is included along with the other information about the error if you choose to
display it.

C# has a better alternative to Get and Setf methods. Whenever you're on the verge of writing
methods that begin with the words Get or Set—indeed, whenever you're on the verge of writing any
method that returns information about an object and that doesn't require an argument—you should
think of a C# feature known as the property.

Getting and Setting Properties

As you've seen, C# classes can contain data members that are called fields and code members that
are called methods. C# classes can also contain other code members, called properties, that are
extremely important in the .NET Framework.

Properties seem to blur the distinction between code and data. To a program using the class,
properties look like data fields, and they can often be treated like data fields. Within a class,
however, a property is definitely code. In many cases, a public property provides other classes
access to a private field in the class. The property has the advantage over a field of being able to
perform validity checks.

Some C# programmers (like myself) give private fields names that begin with lowercase letters and
public properties names that begin with uppercase letters. Here's a simple definition of a Month
property that provides access to the private month field:

public int Month

{

set

month = value;

return month;

}

A program using a class with such a property refers to the property in the same way as it might refer
to a field:

mydate.Month = 7;

or

Console.WriteLine (mydate.Month) ;

or

mydate.Month += 2;

The final example increases the Month property by 2. See how much cleaner this syntax is than an
equivalent statement using those SetMonth and GetMonth methods we toyed with earlier:

mydate.SetMonth (mydate.GetMonth() + 2); // Good riddance!

Let's examine the property definition in detail: The public keyword indicates that this property is
accessible from outside the class. The int data type indicates that the property is a 32-bit integer.
The property itself is named Month.

Within the body of the property are two accessors, named set and get. You don't have to include
both. Many properties have only public get accessors, in which case the set accessor is either not
defined at all or defined as private. Such properties are known as read-only properties. It's also
possible to have a property with a set accessor and no get accessor, but these are much rarer.

Within the definition of the set accessor, the special word value refers to the value that property is
being set to by a statement such as this:

mydate.Month = 7;

A get accessor always contains a return statement to return a value to the program using the
property.

Here's a program that defines Year, Month, and Day properties and implements validity checking in
the set accessors.

CsDateProperties.cs

using System;

class CsDateProperties

{

public static void Main()

{

Date mydate = new Date() ;

try

{
mydate.Month = 8;
mydate.Day = 29;
mydate.Year = 2001;

Console.WriteLine ("Day of year = {0}", mydate.DayOfYear) ;

}

catch (Exception exc)

{

Console.WriteLine (exc) ;

}

class Date

{

// Fields
int year;
int month;
int day;
static int[] MonthDays = new int[] { 0o, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

// Properties

public int Year

{

set
if (value < 1600)
throw new ArgumentOutOfRangeException("Year") ;
else
year = value;
get

return year;

}

public int Month

{

set

if (value < 1 || value > 12)
throw new ArgumentOutOfRangeException ("Month") ;
else

month = value;

get

return month;

}

public int Day

{

set

if (value < 1 || value > 31)
throw new ArgumentOutOfRangeException ("Day") ;
else

day = value;

get

{
return day;
}
1
public int DayOfYear
{
get
{
return MonthDays [month - 1] + day +
(month > 2 && IsLeapYear (year) ? 1
0);
}
1
// Method
public static bool IsLeapYear (int year)
{
return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==
0));
1
1

I've left in the try and catch code so that you can experiment with invalid dates. Notice that I've also
set a minimum of 1600 on the Year property. The IsLeapYear method doesn't make much sense for
dates earlier than that. One problem that still remains is that the individual properties don't test for
consistency. You can set a date of February 31, for example. Such consistency checking would
impose restrictions on the order in which the properties were set, so I'm going to let that go.

I've also changed DayOfYear from a method to a read-only property, just because the value seemed
to me more like a property of a date rather than a method. Sometimes it's hard to determine whether
something should be a method or a property. The only obvious rule is, If it has an argument, it's gotta
be a method.

Constructors

Back in the C version of the program, | mentioned briefly that you can initialize the fields of a
structure when you define a structure variable:

struct Date birthdate = { 1953, 2, 2 } ;

| didn't really pursue this throughout the various versions, however. It's possible to initialize a C++
class or struct in such a way, but such an initialization is dependent on the number of fields in a
struct or class and the ordering of those fields, and it's probably not a good idea. In C#, it's not
allowed. But it certainly would be nice to do something like this in C#.

Another issue: The previous version of the C# program implements validity checking in all the set
accessors of its properties. However, there's still a situation in which the class has an invalid date,
and that's when the object is first created:

Date mydate = new Date() ;
You can solve both these problem with something called a constructor. A constructor is a method in

the class that is run when an object of that class is created. If you look at the expression following
the word new in

Date mydate = new Date() ;

you'll see what seems to be a method call with no arguments. That's exactly what it is! It's a call to
the default constructor of Date. Every class has a default constructor that exists whether or not you

explicitly define it. But if you explicitly define a default constructor in the Date class, you can make
sure that the Date object always has a valid date.

It's also possible to define constructors that have one or more arguments. In the Date class, you
might want to define a constructor with three arguments that initializes a Date object with a particular
date. Such a constructor would allow you to create a Date object like so:

Date birthdate = new Date (1953, 2, 2);

In the class, the constructor looks a lot like a method except that it has the same name as the class
in which it is defined and it has no return type. If you put a return type on a constructor or if you
define any other method without a return type, you'll get an error from the compiler. This is good
because it lets you know whether you've typed the class name wrong when defining the constructor.

Here's a simple approach to a constructor that includes date arguments:

public Date (int year, int month, int day)

{
this.year = year;
this.month = month;
this.day = day;

}

But it doesn't use all the error checking we've implemented in the properties. A better approach is for
the constructor to set the properties rather than the fields:

public Date (int year, int month, int day)

{
Year = year;
Month = month;
Day = day;

}

In fact, you can do more than this. You can actually perform consistency checks among the three
values in the constructor.

What about the default constructor? It's common for classes to define a default constructor that sets
the object to a value of 0, or something more or less equivalent to a 0 value. For the Date class, that
probably means the date January 1, 1600 because that's the earliest date allowed. Here's the new
version of the program.

CsDateConstructors.cs

using System;

class CsDateConstructors

{
public static void Main()
{
try
{

Date mydate = new Date (2001, 8, 29);

Console.WriteLine ("Day of year = " + mydate.DayOfYear) ;

}

catch (Exception exc)

{

Console.WriteLine (exc) ;

}

class Date

{
// Fields
int year;
int month;
int day;
static int[] MonthDays = new int[] { 0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };
//
Constructors
public Date ()
{
Year = 1600;
Month = 1;
Day = 1;
}
public Date(int year, int month, int day)
{
if ((month == 2 && IsLeapYear (year) && day > 29) ||
(month == 2 && !IsLeapYear (year) && day > 28) ||
((month == || month == ||
month == 9 || month == 11) && day > 30))

throw new ArgumentOutOfRangeException("Day") ;

else

{
Year = year;
Month = month;
Day = day;

}

// Properties
public int Year

{

set

if (value < 1600)

throw new ArgumentOutOfRangeException("Year") ;
else

year = value;

get

return year;

}

public int Month

{

set
if (value < 1 || value > 12)
throw new ArgumentOutOfRangeException ("Month") ;
else
month = value;
get

return month;

}

public int Day

{

set
{
if (value < 1 || value > 31)
throw new ArgumentOutOfRangeException ("Day") ;
else
day = value;
}
get

return day;

}

public int DayOfYear

{

get

{

return MonthDays [month - 1] + day +
(month > 2 && IsLeapYear (year) ? 1

// Method

public static bool IsLeapYear (int year)

{

return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 ==

Instances and Inheritance

There may come a time when you're using a class and you think, "This class is pretty good, but it'd
be even better if it did ..." something or other. If you have the source code to the class, you could
simply edit it, put the new method in, recompile, and go. But you may not have the source code. You
may have access only to a compiled version of the class implemented in a DLL.

Or maybe there's something the class does that you'd like it to do a little differently. But you're using
the class as is in other applications, and it's fine there. It just needs this change for your new
application, and you'd prefer not to mess around with the source code for the original version.

That's why object-oriented languages like C# implement a feature known as inheritance. You can
define a new class based on an existing class. It's said that you inherit from an existing class, or
subclass an existing class. The new class need contain only the new stuff. All classes in C# and the
.NET Framework inherit from a class named Object or from a class inherited from Object. It's also
said that all classes ultimately derive from Object.

Let's create a new class named DatePlus that inherits from Date. DatePlus is going to have a new
property named DaysSince1600. And because it implements such a property, DatePlus can
calculate the difference in days between two dates.

Here's the program that defines the DatePlus class.

CsDateInheritance.cs

using System;

class CsDateInheritance

{
public static void Main()
{
DatePlus birth = new DatePlus (1953, 2, 2);
DatePlus today = new DatePlus (2001, 8, 29);
Console.WriteLine ("Birthday = {0}", birth);
Console.WriteLine ("Today = " + today) ;
Console.WriteLine ("Days since birthday = {0}", today - birth);
1
1
class DatePlus: Date
{

public DatePlus() {}

public DatePlus (int year, int month, int day): base(year, month, day)

{3

public int DaysSincel600

{
get
{
return 365 * (Year - 1600) +
(Year - 1597) / 4 -
(Year - 1601) / 100 +
(Year - 1601) / 400 + DayOfYear;
}
}
public override string ToString/()
{
Strlng[] str = { "Ja.n", "Feb", "Mar", "Apr", "May", llJunlll
n Julll , IIAugll , "Sep" , "OCt" , IINOVII , IIDeCH } ,.
return String.Format ("{0} {1} {2}", Day, str([Month - 1], Year);
}
public static int operator - (DatePlus datel, DatePlus date2)
{
return datel.DaysSincel600 - date2.DaysSincel600;
}

}

When you compile this program, you must compile it along with the CsDateConstructors.cs file,
which is the most recent file that implements the Date class. Because you now have two classes that
have a Main method, you must tell the compiler which class contains the Main method you want to
use as the program's entry point.

If you're compiling on the command line, you need to use

csc CsDateConstructors.cs CsDatelnheritance.cs /main:CsDatelInheritance

Watch out for uppercase and lowercase here. You can type the filename arguments in whatever
case you want, but the /main argument refers to a class, and the case must match the class name
exactly as defined in the file. If you're using Visual C# .NET, you need to add CsDateConstructors.cs
to the CsDatelnheritance project. To do this, choose Add Existing Item from the Project menu. When
you select CsDateConstructors.cs in the Add Existing ltem dialog box, click the arrow next to the
Open button and select Link File. Selecting this option avoids having to make a copy of the
CsDateConstructors.cs file and also avoids problems that occur when you change one version of the
file but not the other.

Notice the first line of the DatePlus definition:

class DatePlus: Date

That means DatePlus inherits from Date. DatePlus doesn't need to do anything special in its
constructors. For that reason, it defines the default constructor with an empty body:

public DatePlus() {}
Whenever you create an instance of a class, all the default constructors of all the objects that the

class derives from are called, starting with the default constructor for Object and ending with the
default constructor for the class you're creating an object of.

The same isn't true of nondefault constructors. The constructor with three arguments doesn't need to
do anything special in DatePlus, but you need to include it and you need to explicitly call the

constructor in the base class, which is the class that DatePlus inherits from, namely Date. Here's the
syntax:

public DatePlus(int year, int month, int day): base(year, month, day) {}
Again, the constructor does nothing special in DatePlus, so the body is empty.

The DatePlus class implements two other neat features besides the DaysSince 1600 property. First,
DatePlus defines the minus operator (-) for objects of this class. This is called overloading the
operator. The minus operator is normally defined only for numbers, but here we're saying you can
use it for dates as well. The body of this operator overload is fairly simple: it just subtracts one
DaysSince 1600 property from another.

So if you define two DatePlus objects as
DatePlus birth = new DatePlus (1953, 2, 2);
DatePlus today = new DatePlus (2001, 8, 29);

you can find the difference in days simply by using the expression
today - birth

Notice that | didn't implement an override of the plus operator in this class. It wouldn't make sense to
add two dates together. However, | could have implemented the addition of a date and an integer to
yield a new date. But | would also need some code to convert a new day-since-1600 value back to a
date. Implementing comparison operators (<, >, <=, and >=) would be fairly easy, though.

I mentioned earlier that all classes ultimately derive from Object. The Object class implements a
method named ToString that's intended to convert an object into a human-readable text string.
We've actually already made use of ToString. Whenever you concatenate a numeric variable with a
text string, the ToString method of the variable is automatically called. Whenever you pass an object
to Console.WriteLine, the ToString method of the object is called.

However, the default behavior of the ToString method in Object is to return the name of the class, for
example, the text string "DatePlus". But that's OK, because any class that derives from Object (and
that means any class defined in C#) can override the ToString method in Object by providing its own.
The DatePlus class implements its own ToString method and uses the static method String.Format
to format the date into a text string. You can then pass a DatePlus object to Console.WriteLine and
get a formatted date. The output of the CsDatelnheritance program looks like this:

Birthday = 2 Feb 1953
Today = 29 Aug 2001
Days since birthday = 17740

We're now ready to look at access modifiers in more detail. If you define a field, property, or method
as private, it is visible and accessible only from within the class. If you define a field, property, or
method as public, it is visible and accessible from other classes. If you define a field, property, or
method as protected, it is visible and accessible only from within the class and in any class that
inherits from the class.

The ToString method in the Object class is defined with the modifier virtual. A method defined as
virtual is intended to be overridden by classes that derive from the class. A method that overrides the
virtual method uses the override modifier to indicate that it wants to replace a method with its own
version. The override modifier is required so that you won't make the mistake of accidentally
overriding a virtual method when you didn't intend to.

A class can also override a method that isn't defined as virtual. In that case, the new method must
include the modifier new.

Besides ToString, the Object class also defines several other methods, including GetType. GetType
returns an object of type Type, a class defined in the System namespace. The Type class allows you
to obtain information about the object, including its methods, properties, and fields. The C# typeof
operator also returns an object of type Type. The difference is that GetType is applied to an object
while typeof is applied to a class. In the Main method in CsDatalnheritance, the expression

today.GetType () == typeof (DatePlus)

would return true.

A Bigger Picture

The documentation of the class libraries in the .NET Framework is organized by namespace. Each
namespace is a logical grouping of classes (and such) and is implemented in a particular DLL.

Within each namespace you'll see five types of items. These are the only five types of items that can

be defined on the external level in C#:

§ A class, which we've already encountered.

8 A struct is very similar to a class.

8 An interface is similar to a class or struct but defines only method names rather than bodies.
(Chapter 8 has an example of an interface.)

8 An enumeration is a list of constants with predefined integer values.

8 A delegate is a prototype of a method call.

The class and the struct are ostensibly very similar in C#. A class, however, is a reference type,
which means that the object is really a pointer into an allocated block of memory. A struct is a value
type, more like a regular numeric variable. I'll discuss the difference in more detail in Chapter 3. I'll
talk about the delegate in the next chapter; it's most commonly used in conjunction with events.

Some classes in the .NET Framework contain static methods and properties that you'll call by
specifying the class name and the method (or property) name. Some classes in the .NET Framework
you'll instantiate in your Windows Forms applications. And some classes in the .NET Framework
you'll inherit in your applications.

Within a class or a struct you'll find the following members:
8§ Fields, which are objects of specific types
Constructors, which are executed when an object is created
Properties, which are blocks of code with set and get accessors
Methods, which are functions that accept arguments and return values
Operators, which implement standard operators such as + and — defined for the object, or
casts
8 Indexers, which allow the object to be referenced like an array
§ Events, which I'll discuss in the next chapter
8 Other embedded classes, structures, interfaces, enumerations, or delegates

§
§
§
§

Early in this discussion of C#, | covered numeric types and string types supported by the language.
All the basic types in C# are implemented as classes or structures in the System namespace. The int
data type, for example, is an alias for the Int16 structure. Rather than define an int as

int a = 55;

you can use
System.Intlé a = 55;

These two statements are functionally identical, which is why you sometimes see strings in C#

defined like so:

string str = "Hello, world!";

And sometimes with a capitalized String data type:

String str = "Hello, world!";

The appearance of uppercase and lowercase types in these two statements doesn't mean that C# is
sometimes case insensitive. The capitalized String refers to the String class in the System
namespace. If you don't have a using statement for the System namespace, you'd need to use

System.String str = "Hello, world!";
if you want to use String rather than string.

Here's a table showing how the C# types correspond to classes and structures in the System
namespace:

C# Data Types Aliases

‘ Signed

‘ Unsigned

‘ -NET Type ‘ C# Alias ‘ -NET Type ‘ C# Alias
‘ System.Object ‘ object ‘ System.Enum | enum

‘ System. String ‘ string ‘ System.Char | char

‘ System.SByte ‘ shyte ‘ System.Byte | byte

‘ System.Int16 ‘ short ‘ System.UInt16 | ushort

‘ System.Int32 ‘ int ‘ System.UInt32 | uint

‘ System.Int64 ‘ long ‘ System.UInt64 | ulong

‘ System.Single ‘ float ‘ System.Double | double

‘ System.Decimal ‘ decimal ‘ System.Boolean |bool

Because basic types are classes and structures, they can have fields, methods, and properties. This
is how the Length property can return the number of characters in a string object and how the
numeric data types can have fields named MinValue and MaxValue. Arrays support properties and
methods implemented in the System.Array class.

Naming Conventions

Throughout the remainder of this book, I'll use naming conventions that are based somewhat on the
.NET Framework and somewhat on a system called Hungarian notation, named in honor of
legendary Microsoft programmer Charles Simonyi.

For class names, property names, and event names that | define, I'll use Pascal casing. This system
is a mixture of uppercase and lowercase beginning with a capital and possibly containing embedded
capitals.

For fields, variables, and objects | define, I'll use camel casing. The first letter is lowercase but the
name may include uppercase letters. (The uppercase letters are the camel's humps.)

For variables of the standard types, I'll use a lowercase prefix on the variable name that indicates the
type of the variable. Here are the prefixes | use in this book:

‘ Date Type | Prefix

‘ bool ‘ b

‘ byte ‘ by

‘ short ‘ s

‘ int i, X, y, ¢X, cy
‘ long ‘ /

‘ float ‘ f

‘ char ‘ ch

‘ string ‘ str

‘ object ‘ obj

The x and y prefixes indicate coordinate points. The cx and cy prefixes indicate widths and heights.
(The ¢ stands for count.)

For objects created from classes, I'll use a lowercase version of the class name as a prefix,
sometimes abbreviated. For example, an object of type Point may be called ptOrigin. Sometimes the
program will create only one object of a particular class, so the object can be the same as the class
name but in lowercase. For example, an object of type Form will be named form. An object of type
PaintEventArgs will be named pea.

Any array variable will be prefixed with an a before any other prefix.
Beyond the Console

In fall 1985, Microsoft released the first version of Windows. At the same time, Microsoft also
released the Windows Software Development Kit (SDK), which showed programmers how to write
Windows applications in C.

The original hello-world program in the Windows 1.0 SDK was a bit of a scandal. HELLO.C was
about 150 lines long, and the HELLO.RC resource script had another 20 or so more lines. Granted,
the program created a menu and displayed a simple dialog box, but even so, leaving out those
amenities still left about 70 lines of code. Veteran C programmers often curled up in horror or
laughter when first encountering the Windows hello-world program.

In a sense, the whole history of new programming languages and class libraries for Windows has
involved the struggle to reduce the Windows hello-world program down to something small, sleek,
and elegant.

Let's see how Windows Forms fares in this respect.

Chapter 2: Hello, Windows Forms

Overview

The programs shown in the previous chapter were not, of course, Windows programs. Those
programs didn't create their own windows, didn't draw any graphics, and knew nothing about the
mouse. All the user input and output came through a class named Console. It's time to move on. For
the remainder of this book, the Console class won't be entirely forgotten, but it will be relegated to
relatively mundane chores such as logging and primitive debugging.

Which raises the question: What exactly is the difference between a console application and a
Windows application? Interestingly enough, the distinction isn't quite as clear-cut as it used to be. A
single application can have elements of both. It can start out as a console application and then
become a Windows application, and go back to being a console application again. A Windows
application can also display console output with impunity. A console application can display a
Windows message box to report a problem and then resume console output when the user
dismisses that message box.

To the C# compiler, the difference between a console application and a Windows application is a
compiler switch named target (which can be abbreviated f). To create a console application, use the
switch

/target :exe

That's the default if you specify no target switch. To create a Windows executable, use

/target :winexe

The target switch can also indicate a library or a module. In Microsoft Visual Studio .NET, you use
the project Property Pages dialog box. In the General Common Properties section, set the Output
Type to either Console Application or Windows Application.

This compiler switch doesn't do anything very profound. It really only sets a flag in the executable file
that indicates how the program is to be loaded and run. If an executable is flagged as a Console
Application and is started from Windows, the Windows operating system creates a Command
Prompt window that launches the program and displays any console output from the program. If the
console application is started from within the Command Prompt window, the MS-DOS prompt
doesn't return until the program terminates. If the executable is flagged as a Windows Application, no
Command Prompt window is created. Any console output from the program goes into the bit bucket.
If you start such a program from the Command Prompt window, the MS-DOS prompt appears again
right after the program is launched. The point is this: nothing bad happens if you compile a Windows
Forms application as a console application!

One thing to keep in mind is that the Command Prompt window behaves differently depending on
whether you're running in release mode or debug mode. If you're in release mode, you'll see the
standard "Press any key to continue" message in the console when a program ends. At that point,
you'll still be able to see any output sent to the console and you can then dismiss the console
window when you're done viewing the output. If you're in debug mode and you start the program
from Windows, the console window will disappear without warning as soon as the program ends.
You'll need to view any output to the console before shutting down the program.

All the Visual Studio .NET project files that accompany the programs from this book specify that the
programs are console applications. That's why when you execute these programs, a Command
Prompt window comes up first. That console is to your advantage: if you ever need to see what's
going on inside one of these programs, you can simply stick Console. Write or Console.WriteLine
statements anywhere in any program in this book. (Although as | mentioned, you won't have an
opportunity to view these statements if you run in debug mode and end the program. In such cases,
you'll also want to be sure not to put the Write or WriteLine statements in the code to display after
the program window has shut down.) There are very few mysteries in life that can't be cleared up
with a couple Console.WriteLine statements. (There's also a Debug class in the System.Diagnostics
namespace that provides alternatives to using the Console class for this purpose.)

Of course, | wouldn't send a Windows program compiled as a console application out into the
nondeveloper marketplace. Users might get upset seeing a Command Prompt window popping up

(unless they are familiar with UNIX and UNIX-like environments). But it's only a compiler switch, and
that can be changed at any time.

The real difference between a console application and a Windows application is the way in which the
program gets user input. A console application gets keyboard input through the Console.Read or
Console.ReadLine methods; a Windows Forms application gets keyboard (and other) input through
events, a subject we'll be studying for much of this book.

| created the projects for this chapter in Visual Studio .NET in much the same way | created the
projects in Chapter 1. | specified that the project was a Visual C# Project but that it was an Empty
Project. When | created a program in the project, | used the Add New Item menu option and
specified a Local Project Item and a Code File. This process dissuades Visual Studio .NET from
generating code for you. In this book, you and | will be writing our own code.

However, the C# compiler needs access to some additional DLLs that are part of the .NET Common
Language Runtime (CLR) environment. If you're running the C# compiler on the command line, you
need to include the reference (abbreviated r) compiler switch:

/r:System.dll, System.Windows.Forms.dll, System.Drawing.dll

You'll also need to specify these three files in Visual Studio .NET. In Solution Explorer, right-click on
the References item underneath the project name and select Add Reference from the context menu.
(You can also select the Add Reference item from the Project menu.) Select these three items from

the list in the dialog box that you're presented with:

8§ System.dll

§ System.Drawing.dll

§ System.Windows.Forms.dll

If you have multiple projects grouped in a Visual Studio .NET solution (as the projects for this book
are organized), you need to specify these files only for the first project. You can then select these
three files in Solution Explorer as they are listed in the References section of one project and drag
them to the References section of each subsequent project.

The Message Box

At the beginning of the chapter, | mentioned message boxes. Let's take a look at a short but
authentic Windows Forms program that displays our favorite two words of deathless prose.

MessageBoxHelloWorld.cs

T TR
// MessageBoxHelloWorld.cs © 2001 by Charles Petzold
f] == m
class MessageBoxHelloWorld
{
public static void Main()
{
System.Windows .Forms.MessageBox.Show ("Hello, world!");
1
1

This program is quite similar to the original ConsoleHelloWorld program in Chapter 1. It has a class
(MessageBoxHelloWorld), a method in that class named Main that's the entry point to the program,
and a single executable statement that's really not too much longer than the console equivalent. That
long function name breaks down like so:

8 System.Windows.Forms is a namespace.

8 MessageBox is a class in that namespace.

8 Show is a static method in the MessageBox class.

Because Show is a static method, it must be prefaced with the class name and not an object created
from that class, just like the WriteLine method of the Console class. Here's what the output of this
program looks like:

Hello, world!

When you press the OK button, the message box goes away, the Show method returns, and the
program terminates.

System.Windows.Forms is a gigantic namespace that contains around 200 classes and 100
enumerations as well as about 41 delegates, 7 interfaces, and 4 structures. Together with System
and System.Drawing, it is the most important namespace in this book. Customarily, you'll put the
statement

using System.Windows.Forms;

at the top of your Windows Forms programs; you can then refer to the static Show method of
MessageBox simply as:

MessageBox.Show ("Hello, world!");

You've probably seen plenty of message boxes when you've worked with Windows. Message boxes
always contain a brief message to the user and let the user respond by clicking a button, sometimes
one of two or three buttons. Optionally, the message can be adorned with an icon and a descriptive
caption. Programmers can also use message boxes for debugging purposes because they offer a
quick way to display text information and temporarily suspend the program.

MessageBox is derived from Object and thus inherits a few methods implemented by Object. The
only method MessageBox itself implements is Show. It's a static method and exists in 12 different
versions. Here are 6 of them:

MessaieBox Show Methods (selection)

DialogResult Show(string strText)

DialogResult Show(string strText, string strCaption)

DialogResult Show(string strText, string strCaption,
MessageBoxButtons mbb)

DialogResult Show(string strText, string strCaption,
MessageBoxButtons mbb, MessageBoxIcon mbi)

DialogResult Show(string strText, string strCaption,
MessageBoxButtons mbb, MessageBoxIcon mbi,
MessageBoxDefaultButton mbdb)

DialogResult Show(string strText, string strCaption,
MessageBoxButtons mbb, MessageBoxIcon mbi,

MessageBoxDefaultButton mbdb, MessageBoxOptions mbi)

The other six overloaded Show methods are used in connection with Win32 code. The text you
specify in the message box caption is typically the name of the application. Here's an alternative
MessageBox.Show call for our first Windows Forms program:

MessageBox.Show ("Hello, world!", "MessageBoxHelloWorld") ;

When you don't use the second argument, no text appears in the caption bar.

You can choose one of the following enumeration values to indicate the buttons that appear on the
message box:

MessageBoxButtons Enumeration

‘ Member ‘ Value

‘ OK | 0
‘ OKCancel | 1
‘ AbortRetrylgnore | 2
‘ YesNoCancel | 3
‘ YesNo | 4
‘ RetryCancel | 5

For example, to display OK and Cancel buttons, call
MessageBox.Show ("Hello, world!", "MessageBoxHelloWorld",

MessageBoxButtons.OKCancel) ;

If you use one of the versions of MessageBox.Show without this argument, only the OK button is
displayed. The AbortRetrylgnore buttons are based on an infamous message that MS-DOS used to
display when you tried to access a device (usually a floppy disk) that couldn't respond for some
reason. These buttons should probably be avoided in a graphical environment unless you're
deliberately trying to be anachronistically humorous.

You can also include one of the values from the MessageBoxI/con enumeration to display an icon in
the message box:

MessageBoxIicon Enumeration

‘ Member ‘ Value

‘ None ‘ 0x00
‘ Hand ‘ 0x10
‘ Stop ‘ 0x10
‘ Error ‘ 0x10
‘ Question ‘ 0x20
‘ Exclamation ‘ 0x30
‘ Warning ‘ 0x30
‘ Asterisk ‘ 0x40
‘ Information ‘ 0x40

However, you can see by the values that there are really only four unique message box icons. Here's
an example:

MessageBox.Show ("Hello, world!", "MessageBoxHelloWorld",

MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation) ;

If you've specified a MessageBoxButtons value that displays two or three buttons, you can use the
MessageBoxDefaultButton enumeration to indicate which button is to be the default:

MessageBoxDefaultButton Enumeration

‘ Member | Value

| Button1 | 0x000

MessageBoxDefaultButton Enumeration

‘ Member | Value

‘ Button2 | 0x100
‘ Button3 | 0x200

For example, calling
MessageBox.Show ("Hello, world!", "MessageBoxHelloWorld",
MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation,

MessageBoxDefaultButton.Button2) ;

makes the second button—the button labeled "Cancel"—the default button. That's the button that will
be highlighted when the message box first appears and that will respond to keyboard input, such as
a press of the space bar.

One other enumeration used by the Show method of the MessageBox class is MessageBoxOptions:
MessageBoxOptions Enumeration

‘ Member | Value

‘ DefaultDesktopOnly | 0x020000
‘ RightAlign | 0x080000
‘ RtIReading | 0x100000
‘ ServiceNotification | 0x200000

These options are rarely used, however.

If you're displaying more than one button in the message box, you probably want to know which
button the user presses to make the message box go away. That's indicated as the return value from
MessageBox.Show, which is one of the following enumeration values:

DialogResult Enumeration

‘ Member ‘ Value

‘ None ‘ 0
| oK E
‘ Cancel ‘ 2
‘ Abort ‘ 3
‘ Retry ‘ 4
‘ Ignore ‘ 5
‘ Yes ‘ 6
‘ No ‘ 7

Here's how you customarily use the return value from MessageBox.Show:

DialogResult dr = MessageBox.Show("Do you want to create a new file?",
"WonderWord",
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) ;

if (dr == DialogResult.Yes)

{

// "Yes" processing

}

else if (dr == DialogResult.No)

{

// "No" processing

// "Cancel" processing

}

Or you might want to use a switch and case construction, perhaps like so:

switch (MessageBox.Show ("Do you want to create a new file?",
"WonderWord",
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question)

{

case DialogResult.Yes:

// "Yes" processing

break;

case DialogResult.No:
// "No" processing

break;

case DialogResult.Cancel:
// "Cancel" processing

break;

}

Message boxes are sometimes handy for quick exploratory purposes. For example, suppose you
want to display the name of the directory that Windows identifies with the alias "My Documents."
That information is available from the Environment class in the System namespace. You use the
static GetFolderPath method with a single argument—a member of the Environment.SpecialFolder
enumeration. The two names separated by a period indicate that SpecialFolder is an enumeration
defined within the Environment class.

MyDocumentsFolder.cs

using System;

using System.Windows.Forms;

class MyDocumentsFolder

{

public static void Main()

{

MessageBox . Show (

Environment .GetFolderPath (Environment.SpecialFolder.Personal),

"My Documents Folder") ;

}

The message box looks like this on my system:

x|

ChDocuments and Sattngs'Administratoniy Documents

The Form

Of course, message boxes do not a Windows program make. To begin construction of a full-fledged
Windows application, you need to create something that in Windows programming is traditionally
called a window and in the .NET Framework is called a form. A Windows Forms program generally
creates a form as its main application window. Applications also use forms for dialog boxes.

A form used as a main application window generally consists of a caption bar (sometimes also called
a title bar) with the name of the application, a menu bar underneath that caption bar, and an area
inside called the client area. A sizing border or (alternatively) a thin border that prevents the form
from being resized can surround the whole form. Until Chapter 14, however, none of our forms will
have menus.

In the pages ahead, we're going to explore several nonstandard and unconventional approaches to
creating a form and getting it up on the screen before settling into the most common and approved
method. In this way, | hope that you'll get a deeper understanding of what's going on.

Our first effort is what | believe to be the shortest program that actually creates a form. It's called
NewForm.cs.

NewForm.cs

class NewForm

{

public static void Main()

{

new System.Windows.Forms.Form() ;

}

The only way this program could be shorter is if | used a shorter class name, got rid of the comments
and the extraneous white space, and deleted the public access modifier (which isn't strictly needed).

Form is a class in the System.Windows.Forms namespace. The NewForm program uses the new
operator to create a new instance of the Form class. By now, you know that | could have made the
program a bit longer by including a using directive,

using System.Windows.Forms;

at the top of the program, in which case the sole statement in Main would be

new Form() ;

Or | could have defined an object of type Form like so:

Form formOfMine;

and then assigned the result of the new operator to that object:

formOfMine = new Form() ;

Or | could have done both jobs in one line:

Form formOfMine = new Form() ;

The Form class derives from ContainerControl, but it actually has a long pedigree beginning with the
Object class that everything else in the .NET Framework derives from:

MarshalByRefObject

SerollableConirol

ContainerControl

The word control is used to refer collectively to user interface objects such as buttons, scroll bars,
and edit fields; the Control class implements much of the base support needed for such objects, in
particular, keyboard and mouse input, and visuals. The ScrollableControl class adds automatic
scrolling support to the control (as we'll explore in Chapter 4), and the ContainerControl class allows
a control to work like a dialog box as a parent to other controls; that is, other controls appear on the
surface of the container control.

Although the NewForm program certainly creates a form, it has a bit of a problem. The constructor

for the Form class stops short of actually displaying the form that it has created. The form is created,
but it isn't made visible. As the program terminates, that form is destroyed.

Showing the Form

The next version of the program, called ShowForm, corrects that deficiency.

ShowForm.cs

using System.Windows.Forms;

class ShowForm

{
public static void Main()
{
Form form = new Form() ;
form.Show () ;
1
1

This version of the program includes a using statement that reduces the amount of typing we need to
do. Otherwise, both appearances of the uppercase Form would have to be prefaced with

System.Windows.Forms. The lowercase form refers to an instance of the Form class created in this
program. You can use whatever name you want. (However, if you're programming in a case-
insensitive language like Visual Basic, you can't use form because the compiler will confuse the
name with the Form class; you'll need to choose a different name for the instance of Form.)

Show is one of two methods that Form inherits from Control that affect the visibility of the form (or the
control):

Control Methods (selection)

‘ Method ‘ Description

‘ void Show () ‘ Makes a control visible
‘ void Hide () ‘ Makes a control invisible

An alternative to
form.Show () ;

is

form.Visible = true;

Show is a method. Visible looks like a field but in fact it's a property:
Control Properties (selection)

‘ Type ‘ Property ‘ Accessibility

‘ bool ‘ Visible ‘ get/set

ShowForm makes the form visible all right, but you really have to pay attention to see it! Just about
as soon as the form comes up, it disappears on you. If your machine is much faster than mine, you
might not see it at all.

This behavior implies a possible answer to the question | posed about the difference between a
console application and a Windows application: When a command-line program terminates, it leaves
behind its output on the console. When a Windows application terminates, it cleans up after itself by
destroying the window and any output that's displayed.

Could we slow down the program a bit so that we can get a good look at it? Well, are you familiar
with the concept of sleep? If you dig into the System. Threading namespace, you'll find a class
named Thread and a static method of that class named Sleep, which suspends a program (more
accurately, a thread of a program) for a specified period of time in milliseconds.

Here's a program that calls Sleep twice (with arguments indicating 2.5 seconds each) and lets you
get a better look at the form.

ShowFormAndSleep.cs

using System.Threading;

using System.Windows.Forms;

class ShowFormAndSleep

{

public static void Main()

{

Form form = new Form() ;

form.Show () ;

Thread.Sleep(2500) ;

form.Text = "My First Form";

Thread.Sleep(2500) ;

}

As a bonus, this version of the program also sets the Text property:
Control Properties (selection)

‘ Type ‘ Property ‘ Accessibility

‘ string ‘ Text ‘ get/set

Text is a very important property. For button controls, the Text property indicates the text that the
button displays; for edit fields, it's the actual text in the field. For forms, it's the text that appears in
the form's caption bar. When you run this program, you first see the form with a blank caption bar for
2.5 seconds; then the caption bar text appears, and 2.5 seconds later, the form goes away.

This is progress of a sort, but I'm afraid that the Sleep method isn't the proper way to get a form to
stay up on the screen.

It's an Application and We Want to Run It

The magic method we need is called Run, and it's part of the Application class in the
System.Windows.Forms namespace. Like the Console and MessageBox classes, the Application
class can't be instantiated; all its members are defined as static. This program creates a form, sets
the form's Text and Visible properties, and then calls Application.Run.

RunFormBadly.cs

using System.Windows.Forms;

class RunFormBadly

{
public static void Main()
{
Form form = new Form() ;
form.Text = "Not a Good Idea...";
form.Visible = true;
Application.Run() ;
}
}

Ostensibly, this program is a success. The form it displays looks like this:

"™ Not a Good Idea.. _ O] x|

You can grab the caption bar with the mouse and move the form around the screen. You can grab
the sizing borders and resize the form. You can click the minimize or maximize buttons, you can
invoke the system menu (called the control box in Windows Forms) by clicking the icon at the upper
left of the window, and you can click the close box in the upper right corner to close the window.

But this program has a very serious flaw that may now become apparent: When you close the form,
the Application.Run method never returns and the program remains running even though the form
isn't visible. This problem is most obvious if you're compiling the program as a console application:
after you close the program, you don't get the familiar "Press any key to continue" text in the
Command Prompt window. To terminate the program, you can press Ctrl+C. If you're not compiling
the program as a console application, you need to invoke Windows Task Manager, click the
Processes tab, find the RunFormBadly application, and manually terminate it. (That's another good
reason for compiling as a console application: you can terminate a problem program with Ctrl+C.)

Here's a better way to call Application.Run. You pass the Form object as an argument to the method.

RunFormBetter.cs

using System.Windows.Forms;

class RunFormBetter

{
public static void Main()
{
Form form = new Form() ;
form.Text = "My Very Own Form";
Application.Run (form) ;
}
}

Notice that this version of the program doesn't include a call to Show, and it doesn't set the Visible
property either. The form is automatically made visible by the Application.Run method. Moreover,

when you close the form that you've passed to the method, Application.Run returns control back to
Main and the program can then properly terminate.

Programmers with experience in the Win32 API might figure out that Application.Run causes the
program to enter a message loop and that the form passed to the Run method is equipped with code
to post a quit message to the message loop when the form is closed. It is Application.Run that really
turns an application into a Windows application.

Variations on a Theme

Let's try creating two forms to get a better feel for this process.

TwoForms.cs

using System.Windows.Forms;

class TwoForms

{

public static void Main()
Form forml = new Form() ;

Form form2 = new Form() ;

forml.Text = "Form passed to Run()";
form2.Text = "Second form";

form2.Show () ;
Application.Run(forml) ;

MessageBox.Show ("Application.Run() has returned " +
"control back to Main. Bye, bye!",

"TwoForms") ;

}

This program creates two forms, named form1 and form2, and gives them two different caption texts
so that you can tell them apart. The Show method is called for form2, and form1 is passed to
Application.Run. A message box indicates when Application.Run returns control back to Main.

You may want to run TwoForms a couple times to see what happens. If you close form2 first, form1
is unaffected. The only way you can get Application.Run to return and the program to display its
message box is to also close form1. If you close form1 first, however, both forms disappear from the
screen, Application.Run returns control to Main, and the message box is displayed.

So that's something else that Application.Run does: when you close the form passed as an
argument to Application.Run, the method closes all the other forms created by the program. If you
don't pass a Form object to Application.Run (as RunFormBadly demonstrated), the program needs
to explicitly call the Application.Exit method to force Application.Run to return. But where can the
program call Application.Exit if it's off somewhere in the Application.Run call? We'll see shortly how a
program can set events that return control to a program and potentially give it the opportunity to call
Application.Exit if it needs to.

Form Properties

Like many other classes, the Form class defines a number of properties, and Form also inherits
additional properties from its ancestors, particularly Control. Two such properties that I've already
described are Text and Visible. Here's a program that sets a smattering of sample properties to
illustrate some of the flexibility you have in creating and displaying a form.

FormProperties.cs

using System.Drawing;

using System.Windows.Forms;

class FormProperties

{

public static void Main()

{

Form form = new Form() ;

form.Text = "Form Properties";
form.BackColor = Color.BlanchedAlmond;
form.Width *= 2;

form.Height /= 2;

form.FormBorderStyle = FormBorderStyle.FixedSingle;

form.MaximizeBox = false;
form.Cursor = Cursors.Hand;
form.StartPosition = FormStartPosition.CenterScreen;

Application.Run (form) ;

}

BackColor is the property that determines the background color of the form. As you'll see in the next
chapter, Color is a structure defined in the System.Drawing namespace (notice the using statement)
that contains 141 properties that are actually color names. These names are listed on the inside
back cover of this book.

The Width and Height properties determine the initial dimensions of the form. The two statements
that change these properties perform both get and set operations, effectively doubling the width of
the window and halving its height from the default values.

FormBorderStyle is an enumeration that defines not just the appearance and functionality of the
form's border but other aspects of the form as well. Here are the possible values:

FormBorderStyle Enumeration

‘ Member ‘ Value ‘ Comments

‘ None | 0 ‘ No border, no caption bar
‘ FixedSingle | 1 ‘ Same as FixedDialog

‘ Fixed3D | 2 ‘ Chiseled look

‘ FixedDialog | 3 ‘ Preferred for dialog boxes

FormBorderStyle Enumeration

‘ Member ‘ Value ‘ Comments

‘ Sizable | 4 ‘ Default
‘ FixedToolWindow | 5 ‘ Smaller caption bar, no control box
‘ Sizable ToolWindow | 6 ‘ Same as FixedToolWindow but with sizing border

The default FormBorderStyle.Sizable style results in a form that has a caption bar with a control box
on the left, followed by the caption bar text; and a minimize box, a maximize box, and a close box at
the right. A tool window has a shorter caption bar, no control box, no minimize box, and no maximize
box.

The FormBorderStyle.FixedSingle style I've used in this program prevents the user from resizing the

form. In addition, I've set the MaximizeBox property to false, so the maximize box is disabled, as
shown here:

=10x|

The Cursor property indicates what the mouse cursor looks like when it's moved to the client area of
the form. The StartPosition property indicates where the form is initially displayed; the
FormStartPosition enumeration value CenterScreen directs the form to appear in the center of the
screen rather than in a default position determined by Windows.

As you look at the FormProperties program, you might start to be puzzled about how Windows
Forms programs are structured. It seems like you need to call Application.Run to get the form to
interact with the user, but Application.Run doesn't return until the form is closed.

In short, there doesn't seem to be any place to put your code!
Event-Driven Input

Many console programs don't interact with a user at all. A typical console application obtains all the
information it needs from command-line arguments, does its stuff, and then terminates. If a console
program needs to interact with a user, it gets input from the keyboard. In the .NET Framework, a
console program reads keyboard input by calling the Read or ReadLine methods of the Console
class. After the program pauses to get keyboard input, it then continues on its way.

Programs written for graphical environments, however, have a different input model. One reason for
this is the existence of multiple input devices. Programs get interactive input not only from the
keyboard but also from the mouse. In addition, programs can create controls—such as buttons,
menus, and scroll bars—that also interact with the user on behalf of the main program.

In theory, | suppose, a programming environment that supported multiple input devices could handle
everything using the technique of serial polling. In serial polling, the program checks for input from
the keyboard, and if there is none, checks the mouse; if there's none there, it checks for input from
the menu, and the menu checks for input from the keyboard and the mouse, and so forth. (Prior to
the advent of Windows, character-mode PC programs that used mouse input had to do serial

polling.)

It turns out, however, that a better input model for multiple input devices is the event-driven model.
As implemented in Windows Forms, each type of input is associated with a different method in a
class. When a particular input event occurs (such as a key on the keyboard being pressed, the
mouse being moved, or an item being selected from the program's menu), the appropriate method is
called, seemingly from outside the program.

At first, this input model sounds chaotic. As the user is typing away and moving the mouse, pressing
buttons, scrolling scroll bars, and picking menu selections, the program must get bombarded with

method calls coming from all different directions. Yet in practice, it's much more orderly than it
sounds because all the methods exist in the same execution thread. Events never interrupt a
program's execution. Only when one method finishes processing its event is another method called
with another event.

Indeed, after a Windows Forms program performs initialization on its form, everything that the
program does—every little piece of code it executes—is in response to an event. For much of the
time, the program is sitting dormant, somewhere deep inside the Application.Run call, waiting for an
event to happen. Indeed, it's often helpful to think of your Windows Forms programs as state
machines whose state is determined entirely by changes initiated by events.

Events are so important that they are woven into the very fabric of the .NET Framework and C#.
Events are members of classes along with constructors, fields, methods, and properties. When a
program defines a method to process an event, the method is called an event handler. The
arguments of the handler match a function prototype definition called a delegate. We'll see how this
all works shortly.

As you'll discover in Chapter 6, there are three different types of keyboard events. One type of event
tells you when a key is pressed and another when the key is released. A third keyboard event tells
you when a character code has been generated by a particular combination of keystrokes.

In Chapter 8, I'll introduce the seven types of mouse events, indicating when the mouse has moved
and what buttons have been clicked or double-clicked.

In Chapter 10, you'll see that there's also a timer event. This event periodically notifies your form
when a preset length of time has elapsed. Clock programs use timer events to update the time every
second.

In Chapter 12, when we start creating controls (such as buttons and text boxes and list boxes) and
putting them on the surface of forms, you'll find out that these controls communicate information
back to the form with events. Events indicate when the button has been clicked or the text in the text
box has changed.

In Chapter 14, you'll discover that menus also communicate information to a form using events.
There's an event to indicate when a drop-down menu is about to be displayed, an event to indicate
when a menu item is selected, and an event to indicate when a menu item is clicked.

But one of the oddest events—perhaps the most unlikely candidate for eventhood—is also one of the
most important. This event, known as the Paint event, tells your program when you need to display
output on your window.

Nothing reveals the enormous difference between command-line programs and graphical programs
more than the Paint event. A command-line program displays output whenever it feels like it. A
Windows Forms program can display output whenever it wants to as well, but doing so isn't quite
adequate. What the Paint event is really doing is informing a program when part or all of the form's
client area is invalid and must be redrawn.

How does a client area become invalid? When a form is first created, the entire client area is invalid
because the program hasn't yet drawn anything. The first Paint event that a program receives tells it
to draw something on the client area.

When you move windows around the screen so that they overlap, Windows doesn't save the
appearance of a client area that is covered by another window. When that client area is later
uncovered, the program must restore its appearance. For that reason, it gets another Paint event.
When you restore a program that's been minimized, you get another Paint event.

A Windows program must be able to entirely repaint its client area at any time. It must retain—or
keep quickly accessible—all the information it needs to do this. Structuring your programs to respond
properly to Paint events may sound quite restrictive, but you'll get the hang of it.

Handling the Paint Event

The subject of events is best approached with examples. In practical terms, handling a Paint event in
your program first involves taking a look at PaintEventHandler. PaintEventHandler is a delegate that

is defined in the System.Windows.Forms namespace with a single statement that (in C# syntax)
looks like this:

public delegate void PaintEventHandler (object objSender, PaintEventArgs
pea) ;

If this statement looks like a function prototype to you, you're not too far from the mark. The second
argument indicates a class named PaintEventArgs—also defined in the System.Windows.Forms
namespace—that I'll discuss shortly.

To handle Paint events in one of the programs shown earlier in this chapter, you must define a static
method in your class that has the same arguments and return type as the PaintEventHandler
delegate:

static void MyPaintHandler (object objSender, PaintEventArgs pea)

{

}

You then attach this event handler to the Paint event of the Form class with some very special
syntax that looks like this:

form.Paint += new PaintEventHandler (MyPaintHandler) ;

Paint is an event defined in the Control class and is part of the Form class by virtue of inheritance.
The only two operations you can perform on the Paint event are the assignment operators += and
—=. The += operator installs an event handler by attaching a method to an event. The general syntax
is

object.event += new delegate (method)

You detach a method from an event by using the same general syntax but with the —= operator:

object.event -= new delegate (method)

Detaching a method from an event is rarely necessary, however. Generally, you'll install an event
handler and never uninstall it.

The two arguments to the Paint event handler are an object I've called objSender and a
PaintEventArgs class I've abbreviated as pea. The first argument refers to the object that this Paint
event applies to, in this case, the object form. The object is called a "sender" because the event
originates from that object.

The PaintEventArgs class is defined in the System.Windows.Forms namespace, and it has two
properties, named Graphics and ClipRectangle, which are both read-only:

PaintEventArgs Properties

‘ Type | Property ‘ Accessibility ‘ Description

‘ Graphics | Graphics ‘ get ‘ All-important graphics output object
‘ Rectangle | ClipRectangle ‘ get ‘ Invalid rectangle

The Graphics property contains an instantiation of the Graphics class, which is defined in the
System.Drawing namespace. Graphics is an extremely important class in the Windows Forms
library, ranking right up there with Form. This is the class you use to draw graphics and text on your
form. The System.Drawing namespace implements a graphics programming system known as GDI+,
which is an enhanced version of the Windows Graphics Device Interface. I'll discuss the
ClipRectangle property in Chapter 4.

In a vast majority of the programs in this book, you'll see

Graphics grfx = pea.Graphics;

as the first line in the Paint event handler. You can name your Graphics object whatever you want.
Some programmers use the lowercase graphics, but this object shows up so much in graphics code
that some programmers use just the letter g! I've taken a compromise approach.

Before all this new stuff piles up too deeply, let's take a look at an actual program that implements a
Paint event handler.

PaintEvent.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PaintEvent

{

public static void Main()
Form form = new Form() ;
form.Text = "Paint Event";

form.Paint += new PaintEventHandler (MyPaintHandler) ;

Application.Run (form) ;

}

static void MyPaintHandler (object objSender, PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

grfx.Clear (Color.Chocolate) ;

}

After the form is created in Main, the method named MyPaintHandler is attached to the Paint event
of the form. In this handler, the program obtains a Graphics object from the PaintEventArgs class
and uses that to call the method Clear. Clear is a simple method—perhaps the simplest drawing
method—defined in the Graphics class:

Graphics Methods (selection)

‘ Method | Description

‘ void Clear (Color clr) | Paints entire client area with color

The argument is an object of type Color, which I'll discuss in much more detail in the next chapter.
As | mentioned in connection with the FormProperties program shown earlier in this chapter, the
easiest way to get a color is to specify one of the 141 color names implemented as static properties
in the Color structure.

To get an idea of the frequency with which the program gets Paint events, try inserting the statement

Console.WriteLine ("Paint Event");

in MyPaintHandler. A couple programs in the next chapter will also visually demonstrate the
frequency of Paint events.

From here on, all the Windows Forms programs in this book will have at least the following three
using statements at the top of the program:

using System;
using System.Drawing;

using System.Windows.Forms;
Generally, these are the minimum required for any nontrivial Windows Forms application.

You might see a connection between these three using statements and the three DLLs that you
need to specify as references when compiling the program. It's natural for a C or C++ programmer to
think of the using statements as equivalent to #include statements. They are not! They're a little
more closely related to the With statement in Visual Basic. They exist solely so that you don't have to
type fully qualified class names. Everything that header files normally provide in C and C++
programs (such as type declarations, function declarations, and class declarations) is provided
instead by the DLLs specified as references, the same DLLs that are linked with the running program
to implement these classes.

Displaying Text

The Graphics class has many methods to draw graphics figures such as lines, curves, rectangles,
ellipses, and bitmapped images. The Graphics method that displays text in a form is called
DrawString (not to be confused with the cord that may be holding up your pants).

DrawString comes in six overloaded versions, but the first three arguments are always the same. At
this point in our lives, the simplest version of DrawString is defined like so:

void DrawString(string str, Font font, Brush brush, float x, float y)

You might expect the arguments of DrawString to include the text string you want to display and the
coordinate position where it is to appear. You might not expect the method to also include the font
used to display the text and something called a Brush (which is used to color the text), but there they
are. The presence of these two arguments is part of what is implied when GDI+ is said to be a
stateless graphics programming system. Just about everything that the system needs to display
various graphics figures is included right in the method calls.

The downside is that the DrawString call is rather bulky with information. You might find yourself
reducing the second and third arguments to single letters or searching out other ways to make the
method call less lengthy.

The first argument to DrawString is the text string you want to display, for example,
grfx.DrawString ("Hello, world!", ...);

Let's take a look at the other arguments in detail.

The Font

The second argument to DrawString is the font used for drawing the text. This is an object of type
Font, a class defined in the System.Drawing namespace. I'll have much more to say about the Font
class in Chapter 9. Suffice it to say that a Windows Forms program has access to many fonts with
scalable sizes. For now, we'll use a default font. Very conveniently, every class derived from Control
inherits a property named Font that stores the default font for the control.

Control Properties (selection)

‘ Type ‘ Property | Accessibility ‘ Description

‘ Font ‘ Font | get/set ‘ Default font for the control

You might find it quite confusing at first to deal with a class and a property that are both named Font,
but | assure you, after some months, you'll find it somewhat less confusing.

When you install a Paint event handler for a form, you can obtain the object that the event applies to
by casting the first argument to the type of that object:

Form form = (Form)objSender;

This cast works because objSender is indeed an object of type Form. If objSender were not an
object of type Form (or a class descended from Form), this statement would raise an exception.
Thus, within the event handler, you can reference the default font for the form by using form.Font.
The DrawString call thus looks something like this:

grfx.DrawString(str, form.Font, ...);

If you have multiple DrawString calls, you might first want to define an object of type Font and assign
the form's default font to it:

Font font = form.Font;

That statement includes a lot of font! The first Font is the class defined in the System.Drawing
namespace. The lowercase font is an object of that class. The last Font is a property of the Form
class. The DrawString call then becomes

grfx.DrawString(str, font, ...);

To be more concise, you could name this Font object just f.

The Brush

The third argument to DrawString indicates the "color" of the font characters. | put "color" in quotation
marks because the argument is actually an object of type Brush, and brushes can be much more
than just color. Brushes can be gradients of color or fancy patterns or bitmapped images. Indeed,
brushes are so wonderfully varied and powerful that they get very nearly their own entire chapter.

But since that is Chapter 17 and this is Chapter 2, for now we'll have to be satisfied with very simple
brushes.

The simplest way to be colorfully versatile is with the Brushes class. Notice the plural Brushes and
not the singular Brush, which is also the name of a class. The Brushes class has 141 static read-only
properties with the same color names as implemented in the Color class and listed on the inside
back cover of this book. The Brushes properties return objects of type Brush. Because these are
static properties, they are referenced using the class name and property name, like the example
here:

grfx.DrawString(str, font, Brushes.PapayaWhip, ...);

You're probably thinking, "Sure it might be fun drawing text with lots of different colors and maybe
gradients and patterns and stuff like that, but let's be realistic: Probably 97.5 percent of the text I'll
want to display will be plain old black. With few exceptions, I'll probably just use Brushes.Black as
the third argument to DrawString." So, you can define an object of type Brush like so:

Brush brush = Brushes.Black;

and pass that object to 97.5 percent of your DrawString calls:
grfx.DrawString(str, font, brush, ...);

You could, of course, even name it b to do less typing.

But I'm afraid that using Brushes.Black in this way would be a mistake. You're making an implicit
assumption that the background of the form isn't also black. Could it be? Yes, and very easily. In
such a case, the text wouldn't be visible.

Regardless, for now I'll give you special dispensation to use Brushes.Black in calls to DrawString,
but only if you also set the BackColor property of the form to Color. White or something else that's
guaranteed to make the black text visible. I'll discuss better approaches to selecting colors in

Chapter 3.
The Coordinate Points

Finally, the last two arguments of DrawString indicate the horizontal (x) and vertical (y) coordinates
where the upper left corner of the text string is to appear.

If you come from a mathematics background—or if the trauma of high school mathematics has
forever left its scar on your brain—you may have envisioned a two-dimensional coordinate system
like so:

This is known as a Cartesian coordinate system, after French mathematician and philosopher René
Descartes (1596—-1650), who is credited with inventing analytical geometry, and to whom the field of
computer graphics is eternally indebted.! The origin—the point (0, 0)—is in the center. Values of x
increase to the right, and values of y increase going up.

However, this isn't exactly the coordinate system used in most graphical environments. A coordinate
system in which increasing values of y go up is at odds with the way in which most Western
languages are written. Also, early computer graphics involved programmers writing directly into video
display memory. Video memory buffers are arranged starting at the top of the screen because
computer monitors scan from the top down. And that's because television sets scan from the top
down, and that decision goes back some 60 years or so.

In the Windows Forms environment, as in most graphical environments ?, the default coordinate
system has an origin in the upper left corner and looks like this:

+X

+y

| say this is the default coordinate system because it's possible to change it to something else. Such
fun awaits us in Chapter 7.

When you draw on a form using the Graphics object that you obtain from the PaintEventArgs class
passed as an argument to your Paint event handler, all coordinates are relative to the upper left
corner of the client area of the form. All units are in pixels. Increasing values of x go to the right, and
increasing values of y go down.

Let me repeat: Coordinates are relative to the upper left corner of the client area. The client area is
the area inside a form that's not occupied by the form's caption bar or sizing border or any menu the
form might have. When you use the Graphics object from the PaintEventArgs class, you can't draw
outside the client area. This means you never have to worry about drawing something where you're
not supposed to.

The coordinate point passed to the DrawString method refers to the position of the upper left corner
of the first character of the text string. If you specify a coordinate of (0, 0), the text string is thus
displayed in the upper left corner of the client area.

So let's put it all together in a program called PaintHello.

PaintHello.cs

using System;

using System.Drawing;

using System.Windows.Forms;
class PaintHello

{

public static void Main()
Form form = new Form() ;

form.Text "Paint Hello";

form.BackColor = Color.White;

form.Paint += new PaintEventHandler (MyPaintHandler) ;

Application.Run (form) ;

}

static void MyPaintHandler (object objSender, PaintEventArgs pea)

{

Form form = (Form)objSender;

Graphics grfx = pea.Graphics;

grfx.DrawString("Hello, world!", form.Font, Brushes.Black, O,

And here we have our first—but, as you'll see, perhaps not quite the simplest—program that displays
text in a form. The text appears in the upper left corner of the client area:

RI=TEY

Hello, world!

M A facsimile and English translation of Descartes' 1637 work on analytical geometry is available as
The Geometry of René Descartes (New York: Dover, 1954).

2 An exception is the OS/2 Presentation Manager, which was designed as a completely bottom-up
system. This was fine for graphics programming but didn't always work otherwise. Programmers had
to use bottom-up coordinates when specifying the location of controls in dialog boxes, for example,
which often entailed designing the dialog box from the bottom up. See Charles Petzold,
Programming the OS/2 Presentation Manager (Redmond, WA: Microsoft Press, 1989) or Charles
Petzold, OS/2 Presentation Manager Programming (Emeryville, CA: Ziff-Davis Press, 1994) for
details.

The Paint Event Is Special!

Watch out what you put in the Paint event handler. The method can be called quite frequently and
sometimes unexpectedly, and it works best when it can repaint the client area quickly without
interruption.

Earlier in this chapter, | suggested that you use message boxes for simple debugging. But don't put
a call to MessageBox.Show in the Paint event handler! The message box could cover up part of the
client area and result in another Paint event. And another and another and another.... Also, don't put
any Console.Read or Console.ReadLine calls in there or in any event handler. Console. Write or
Console.WriteLine calls are safe, however.

And don't do anything that accumulates. In one of my very early Windows Forms programs, | wrote a
Paint event handler that accessed the Font property, made a new font that was twice as big, and set
the Font property to that new font. Well, every time there was a new Paint event, the font got twice
as big as the time before. It was like Honey, | Blew Up the Font.

Doing all your drawing in the Paint event handler might sound a bit restrictive, and at times it is.
That's why Windows Forms implements a couple methods to make painting more flexible.

First, you can obtain a Graphics object outside a Paint event handler by calling the CreateGraphics
method implemented in Control and inherited by Form. Second, at times, you'll need to generate a
Paint event from some other event. The method that does this is Invalidate, which is implemented in
the Control class. I'll demonstrate how to do these things when covering keyboard, mouse, and timer
input in Chapters 6, 8, and 10.

Multiple Forms, Multiple Handlers

To get a better feel for the Paint event handler, let's look at a couple variations on the basic theme.
This program uses the same Paint event handler for two forms that it creates.

PaintTwoForms.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PaintTwoForms

{

static Form forml, form2;

public static void Main()

{

forml = new Form() ;

form2 = new Form() ;

forml.Text = "First Form";

forml.BackColor = Color.White;

forml.Paint += new PaintEventHandler (MyPaintHandler) ;

form2.Text = "Second Form";
form2.BackColor = Color.White;
form2.Paint += new PaintEventHandler (MyPaintHandler) ;

form2.Show () ;

Application.Run(forml) ;

}

static void MyPaintHandler (object objSender, PaintEventArgs pea)
{

Form form = (Form)objSender;

Graphics grfx = pea.Graphics;

string str;

if (form == forml)

str = "Hello from the first form";
else

str = "Hello from the second form";

grfx.DrawString(str, form.Font, Brushes.Black, 0, 0);

}

Notice that the Form objects are stored as fields so that they are accessible from both Main and the
Paint event handler. Each call to the Paint event handler applies to one of the two forms the program
created. The event handler can determine which form it applies to by comparing the objSender
argument (cast to a Form object) with the two Form objects stored as fields. If you don't mind a little
capitalization problem, you could replace the entire if and else construction with the single statement

str = "Hello from the " + form.Text;

Now let's try just the opposite. Let's create one form but attach two Paint event handlers to it.

TwoPaintHandlers.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class TwoPaintHandlers

{

public static void Main()
Form form = new Form() ;

form.Text "Two Paint Handlers";

form.BackColor = Color.White;

form.Paint += new PaintEventHandler (PaintHandlerl) ;

form.Paint += new PaintEventHandler (PaintHandler2) ;

Application.Run (form) ;

}

static void PaintHandlerl (object objSender, PaintEventArgs pea)
Form form = (Form)objSender;

Graphics grfx = pea.Graphics;

grfx.DrawString ("First Paint Event Handler", form.Font,
Brushes.Black, 0, 0);

}

static void PaintHandler2 (object objSender, PaintEventArgs pea)

{

Form form = (Form)objSender;

Graphics grfx = pea.Graphics;

grfx.DrawString ("Second Paint Event Handler", form.Font,

Brushes.Black, 0, 100);

}

This program highlights one of the interesting aspects of attaching handlers to events. If there is
more than one handler, all the handlers get called in sequence. Notice that the DrawString
coordinates are (0, 0) in the first handler and (0, 100) in the second handler. I'm making an
assumption that the default font isn't more than 100 pixels tall, but that seems fairly safe.

Two Paint Handlers - |I:I |i|

First Paint Event Handler

Second Paint Event Handler

Inheriting Forms

So far, you've seen how you can create a form, give it some properties (such as a text string to show
in its caption bar and a nondefault background color), and attach some event handlers. Just as you
attached a Paint event handler, you can attach handlers for the keyboard, mouse, menus, and so

forth.

But I'm afraid the truth is this: it's not usually done like that.

To exploit the full power of everything implemented in the Form class, you can't just create a form.
You must become a form. For just as Control begat ScrollableControl, and ScrollableControl begat
ContainerControl, and ContainerControl begat Form, then Form can now beget some truly amazing
form that only you can create.

You create such a form in your program by defining a class that inherits from Form. Let's take a look.

InheritTheForm.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class InheritTheForm: Form

public static void Main()
InheritTheForm form = new InheritTheForm() ;
form.Text = "Inherit the Form";
form.BackColor = Color.White;
Application.Run (form) ;

Let me draw your attention to the class statement:

class InheritTheForm: Form

The part of the statement that follows the class name, : Form, means that InheritTheForm is a
descendent of Form and inherits every method and property of Form.

This class still has a static Main method that is the entry point to the program. However, Main
creates a new instance of InheritTheForm rather than Form. Because InheritTheForm derives from
Form, of course it also has properties named Text and BackColor, which the program sets next. Just
as an object of type Form can be passed to Application.Run, any object of a type derived from Form
can also be passed to Application.Run.

The InheritTheForm program creates the form, performs initialization (which in this case just involves
setting the Text property), and then passes the form object to Application.Run. A more conventional
approach is to move form initialization to the class's constructor.

InheritWithConstructor.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class InheritWithConstructor: Form

public static void Main()

Application.Run(new InheritWithConstructor()) ;
public InheritWithConstructor ()

Text = "Inherit with Constructor";

BackColor = Color.White;

}

You'll recall that a constructor has no return type, and a default constructor has an empty argument
list.

Form has a pedigree starting at Object and encompassing five other classes. When an
InheritWithConstructor object is created in Main, first the default constructor for Object is called, then
the default constructor for the MarshalByRefObject class, and so forth on through the default
constructor for the Form class, and finally the default constructor for the InheritWithConstructor class.

Notice that | don't have to preface the Text and BackColor properties with an object name, an object
that | called form in previous programs in this chapter. These properties don't need anything in front
of them because they are properties of the InheritWithConstructor class. They are properties of
InheritWithConstructor because this class derives from Control and Form, in which these properties
and many others were originally defined.

If | wanted to preface these properties with anything, it would be the keyword this:

this.Text = "Inherit with Constructor";

this.BackColor = Color.White;

The this keyword indicates the current object.

The OnPaint Method

What advantages do you get by inheriting Form rather than just creating an instance of it? Although
most of the methods and properties implemented in Form are defined as public, some essential ones
are defined as protected. These protected methods and properties can be accessed only by a
descendent of Form. One such protected property is ResizeRedraw, which I'll be discussing in
Chapter 3.

One protected method inherited by Form by way of Control is named OnPaint. You don't want to call
this method, however; you want to override it, for if you do, you don't have to install a Paint event
handler. The OnPaint method has a single argument, which is an object of type PaintEventArgs. You
can use this argument to obtain a Graphics object just as in a Paint event handler.

And here's my final version of a Windows Forms hello-world program.

HelloWorld.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class HelloWorld: Form

{

public static void Main()

{

Application.Run(new HelloWorld()) ;

}

public HelloWorld ()

{
Text = "Hello World";
BackColor = Color.White;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

grfx.DrawString("Hello, Windows Forms!", Font,

Brushes.Black, 0, 0);

}

This is the official, certified, programmer-tested and mother-approved way to create a form in C#
using the Windows Forms class library. That's why this is the first program in this book to be called
simply HelloWorld. (In the next chapter, I'll show you a better way to specify the background and text
colors, however.) Again, notice in OnPaint that | don't have to preface Font with anything. The
OnPaint method doesn't need an objSender argument because the form that the OnPaint call
applies to is always this.

And here's what it looks like:

RI=TEY

Hello, Windows Formsl

Of course, there's always some smart aleck in the back row with a raised hand and the impudent
question, "Can you now center that text in the window?"

Yes, and in the next chapter, I'll show you three different ways to do it.
Does Main Belong Here?

When you look at a program like HelloWorld, you may find yourself wondering about Main. Main is a
method in the HelloWorld class, yet Main also creates an instance of the HelloWorld class. This may

seem odd. It may appear as if the program is pulling itself up by its bootstraps. How can Main
execute at all when an instance of the HelloWorld class hasn't been created yet?

The answer is that Main is defined as static. Static methods exist independently of any objects that
are instantiated from the class. Conceptually, the operating system loads the program into memory
and begins execution by making a call to

HelloWorld.Main() ;

It couldn't make this call unless Main were defined as static, and if you remove static from the
definition of Main, the compiler will complain that the program doesn't have an entry point.

Still, however, you may be more comfortable putting Main in a class by itself, like the C# programs in
Chapter 1. There's nothing wrong with that approach, and some programmers prefer it. This sample
program is named SeparateMain.cs and is functionally equivalent to the HelloWorld program.

SeparateMain.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SeparateMain

{
public static void Main()
{
Application.Run (new AnotherHelloWorld()) ;
1
1
class AnotherHelloWorld: Form
{
public AnotherHelloWorld()
{
Text = "Another Hello World";
BackColor = Color.White;
1
protected override void OnPaint (PaintEventArgs pea)
{
Graphics grfx = pea.Graphics;
grfx.DrawString("Hello, Windows Forms!", Font,
Brushes.Black, 0, 0);
1
1

I must admit that this program looks architecturally cleaner to me, and | briefly toyed with structuring
all the sample programs in this book like this. However, adding three lines to every program wasn't
appealing to me, and coming up with twice as many class names didn't make sense either. | was
also dissuaded when | began taking notice of all the static methods and properties in the .NET
classes that return instances of the class they belong to. Chocolate, for example, is a static property
of the Color class but returns an instance of Color.

Events and "On" Methods

As you've seen, when you create an instance of Control or any class derived from Control (such as
Form), you can install a Paint event handler by defining a static method with the same return types
and arguments as the PaintEventHandler delegate:

static void MyPaintHandler (object objSender, PaintEventArgs pea)

{

// Painting code

}

You then install this paint handler for a particular object (named form, for example) using the code

form.Paint += new PaintEventHandler (MyPaintHandler) ;

In a class derived from Control, however, you don't need to install a Paint event handler (even
though you can). You can simply override the protected OnPaint method:

protected override void OnPaint (PaintEventArgs pea)

{

// Painting code

}

You'll find that all events defined in Windows Forms are similar. Every event has a corresponding
protected method. The method has a name that consists of the word On followed by the event name.
For each event that we'll encounter, I'll show a little table like this:

Control Events (selection)

‘ Event | Method ‘ Delegate ‘ Argument

‘ Paint | OnPaint ‘ PaintEventHandler ‘ PaintEventArgs

The table indicates the name of the event, the corresponding method, the delegate involved in
installing an event handler, and the argument to the event handler and the method.

You might assume—as | did originally—that the OnPaint method is basically just a preinstalled Paint
event handler. But that's wrong. It's really implemented the other way around: the OnPaint method in
Control is actually responsible for calling all the installed Paint handlers.

Let's explore this concept a bit. First, just as the HelloWorld class shown earlier inherited from Form,
here's a class named InheritHelloWorld that inherits from HelloWorld.

InheritHelloWorld.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class InheritHelloWorld: HelloWorld

{

public new static void Main()

{

Application.Run(new InheritHelloWorld()) ;

}

public InheritHelloWorld()

Text = "Inherit " + Text;
}
protected override void OnPaint (PaintEventArgs pea)
{
Graphics grfx = pea.Graphics;
grfx.DrawString ("Hello from InheritHelloWorld!",
Font, Brushes.Black, 0, 100);
}

}

Let me take care of some housekeeping issues first. When | created the InheritHelloWorld project in
Visual Studio .NET, | created a new C# file named InheritHelloWorld.cs, as usual, but | also needed
to include HelloWorld.cs in the project. | did that by using the Add Existing ltem option and specifying
Link File in the drop-down menu next to the Open button. That avoids making a second copy of the
HelloWorld.cs file.

Notice that the Main method includes the new keyword, indicating that it is supposed to replace any
Main methods that may be in any parent classes (such as HelloWorld). You also have to tell Visual
Studio .NET which Main you want to be the entry point to the program. You do this with the project's
Properties dialog box. In the General Common Properties, specify the Startup Object as
InheritHelloWorld.

If you're running the command-line C# compiler, specify both source code files in the command line
and use the compiler switch

/Main:InheritHelloWorld
to indicate which class has the Main method you want as the entry point to the program.

As | mentioned earlier, when you create a new object based on a derived class using a default
constructor, all the ancestral default constructors are called starting with Object. Toward the end of
this process, the HelloWorld constructor gets called and responds by setting the Text property of the
form to "Hello World." Finally, the InheritHelloWorld constructor is executed and sets the Text
property like so:

Text = "Inherit " + Text;

That the caption bar of this program reads "Inherit Hello World" demonstrates that this sequence of
events is correct.

The OnPaint method in InheritHelloWorld overrides the OnPaint method in HelloWorld. When
InheritHelloWorld runs, it displays "Hello from InheritHelloWorld!" I've positioned the text at the
coordinate position (0, 100) so you can see that the OnPaint method in HelloWorld isn't also
executed. The OnPaint method in HelloWorld is overridden.

Now let's take a look at a program that does something a little different. This program doesn't define
a class that inherits HelloWorld, this one instantiates the HelloWorld class.

InstantiateHelloWorld.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class InstantiateHelloWorld

{

public static void Main()

{

Form form = new HelloWorld() ;
form.Text = "Instantiate " + form.Text;

form.Paint += new PaintEventHandler (MyPaintHandler) ;

Application.Run (form) ;

}

static void MyPaintHandler (object objSender, PaintEventArgs pea)

{

Form form = (Form)objSender;

Graphics grfx = pea.Graphics;

grfx.DrawString ("Hello from InstantiateHelloWorld!",
form.Font, Brushes.Black, 0, 100);

}

Take a close look at this code. First, notice that the InstantiateHelloWorld class doesn't inherit from
HelloWorld or Form or anything else (except the Object class, of course):

class InstantiateHelloWorld

Instead, it creates a new instance of the HelloWorld class and saves it in the variable form, just as
early programs in this chapter created instances of the Form class:

Form form = new HelloWorld() ;

This program can save the HelloWorld object in a variable of type Form because HelloWorld is
derived from Form. During the creation of the HelloWorld object, the HelloWorld constructor is called,
which gives the form a Text property of "Hello World." The next statement prepends the word
Instantiate to the Text property. The program then installs a Paint event handler for the form.

But what appears in InstantiateHelloWorld's client area is not the text "Hello from
InstantiateHelloWorld!" but instead the text "Hello, Windows Forms!" which is what the OnPaint
method in HelloWorld displays. What happened?

The OnPaint method in Control is responsible for calling the installed Paint event handlers. Because
the HelloWorld class overrides OnPaint, that job doesn't get done. That's why the .NET
documentation recommends that when you override one of the protected methods beginning with the
On prefix, you should call the On method in the base class like so:

base.OnPaint (pea)

Try inserting this statement at the top of HelloWorld's OnPaint method and rebuilding
InstantiateHelloWorld. Now the program works as you probably wanted it to. InstantiateHelloWorld
displays its text string ("Hello from InstantiateHelloWorld!") and also the "Hello, Windows Forms!"
text string.

The sequence of events in the revised version is this:

§ Whenever the client area becomes invalid, the OnPaint method is called. This is the OnPaint
method in the HelloWorld class, which overrides any OnPaint method in ancestral classes.

8 The OnPaint method in HelloWorld calls the OnPaint method in its base class. (Remember, I'm
talking about a revised version of HelloWorld that includes the base.OnPaint call.) That would
normally be the OnPaint method implemented in Form, but it's likely Form doesn't override the
OnPaint method and what really gets called is the OnPaint method back in Control.

8 The OnPaint method in Control calls all the installed Paint event handlers. The only one in this
process is the MyPaintHandler method in InstantiateHelloWorld. That method displays some
text at position (0, 100).

§ When all the installed Paint event handlers have been called, the OnPaint method in Control
returns back to the OnPaint method in HelloWorld.

§ The OnPaint method in HelloWorld displays some text at position (0, 0).

The Windows Forms documentation recommends that whenever you override an On method you
call the base class On method. However, in most cases, you need to do this only if you're defining a
class that you'll also be instantiating, and that the instantiated classes are also installing event
handlers for On methods you've overridden. This scenario doesn't happen very often. Still, at times,
you need to call the base class in overrides of On methods. As we'll see in the next chapter, one of
these is OnResize.

Chapter 3: Essential Structures

Overview

Computers were originally built to perform numeric calculations, and crunching numbers is still what
computers do best. Virtually all programming languages have mechanisms for storing numbers in
variables, performing arithmetical operations, looping through ranges of numbers, comparing
numbers, and displaying numbers in a readable form.

For many programming languages, the next step beyond numbers is text in the form of character
strings. Character strings chiefly exist to allow computer programs to communicate with human
users. Internal to the computer, of course, characters are represented by numbers, as is everything
else in the machine.

It is the central premise of object-oriented programming that data types beyond the standard
numbers and character strings be easy to define and easy to work with. We've already seen several
examples of that ease of use, including a class named Form, which hardly seems like either a
number or a character string.

In programming for graphical environments, four other data types appear quite frequently:
8 Two-dimensional coordinate points

8 Two-dimensional sizes in terms of width and height

8 Rectangles

§ Colors

These four data types are the focus of this chapter.
Classes and Structures

These four data types—actually seven because three of them are implemented in both integer and
floating-point forms—are defined in the System.Drawing namespace. Interestingly enough, these
seven data types are not implemented as classes. They are instead structures, and indeed, these
are seven of only eight structures defined in System.Drawing.

The structure data type (which is defined using the keyword struct) comes to C# by way of C and
C++. (Java doesn't have a structure data type.) In C++, classes and structures are very similar. In
C++ structures, all methods and fields are public by default, and in C++ classes, all methods and

fields are private by default. Of course, you can use the public, private, or protected keywords to

change the visibility of any method or field in a C++ class or structure.

In C#, classes and structures are also very similar, but the differences aren't the same as those in
C++. In C#, all methods and fields (as well as properties and events) are private by default in both
classes and structures. The difference lies in the fact that classes are reference types, and structures
are value types. Let's examine what this difference means. Consider the following expression:

new Form/()

This statement causes a memory block to be allocated in an area of general-purpose memory known
as the heap. This memory block must be large enough for an instance of the Form object, which
means that it must be for large enough for all of Form's instance (that is, nonstatic) fields. If you look
at the .NET documentation, that amount of space might not seem like much, but remember that
you're not seeing the private fields, and there are undoubtedly many of them.

The value returned from that new expression is essentially a pointer to the memory block located in
the heap. That memory pointer is what's saved in the variable form in a statement like this:

Form form = new Form() ;
That's what a reference type means: the object is a pointer to (references) a memory block.

Suppose you do something like this:
Form form2 = form;

form2.Text = "Form 2 Text";

Go ahead: insert these calls into the PaintEvent program from Chapter 2, right before the call to
Application.Run. What happens? The form that we're displaying—the form referenced by form—gets
the caption bar text "Form 2 Text." How can this be? It's because form is a pointer. The statement

Form form2 = form;

simply copies that pointer to form2. The statement does not create a new instance of the Form class.
The variables form and form2 are equal, which means they point to the same memory block and
therefore refer to the same object.

Now obviously, passing pointers around isn't something you want happening universally. Consider
the following sequence of statements:

int a = 5;
int b = a;

a = 10;

You wouldn't want this to mean that a and b were identical pointers that would always refer to the
same number, and that b was now equal to 10! That would be insane. And that's why numbers in C#
are value types. The variable name of any value type is not a pointer to a location in memory that
stores the number. The variable name represents the number itself.

If you check through the documentation of the System namespace, you'll find that most of the basic
types—Boolean, Byte, Char, Decimal, Double, Int16, Int32, Int64, SByte, Single, UInt16, UInt32,
Uint64—are defined as structures rather than classes. Structures inherit from ValueType, which
inherits from Object. You can think of value types as "lightweight objects," and indeed, you should
use struct only for types that are small and that might be frequently created and destroyed.

Two-Dimensional Coordinate Points

One data type that is prevalent enough in graphical environments and small enough to justify making
it a structure rather than a class is a coordinate point, represented in the .NET Framework by the
structure Point. In a two-dimensional coordinate system (such as the surface of a video display or a
sheet of printer paper), a point is signified by two numbers, generally the number pair (x, y), where x
is the horizontal coordinate and y is the vertical coordinate. In Chapter 2, | discussed how the
coordinates system in Windows Forms is defined, but the Point data type doesn't necessarily imply
any particular coordinate system. You can use Point in any two-dimensional coordinate system.

The Point structure has two read-write properties, named X and Y, which are defined as 32-bit
integers. X and Y can be negative. Even though Point is a struct rather than a class, you can't just
define a variable of type Point and then assign values to the two properties:

Point pt;
pt.X = 23; // Compiler error here!
pt.Y = 47;

You'll get a message from the compiler complaining about the "use of unassigned local variable."
You still need to use new to create an instance of a structure, just as with a class. The declaration

Point pt = new Point () ;

results in both the X and Y properties being initialized to 0. Then you can set the X and Y properties
to explicit values:

pt.X = 23;
pt.Y = 47;

Or you can use this declaration to initialize the values:
Point pt = new Point (34, 55);

Or, in a rare instance of bit packing in the .NET Framework, you can specify the two coordinates as
16-bit values stuck together in a 32-bit integer, as here:

Point pt = new Point (0x01000010) ;

This declaration results in the X property being set to 16 (0x0010) and the Y property to 256
(0x0100). | don't suggest you begin treating points as single 32-bit integers; this declaration is mostly
for the benefit of people who must continue to use Win32 API functions, which sometimes involve
packed coordinates.

The only time you can get away without using new is when you use a method, property, or field that
returns a Point. Actually, the Point structure has one such member itself. It's a static field named
Empty:

Point pt = Point.Empty;

Notice the use of the capitalized Point on the right to indicate the Point structure itself rather than an
instance of the Point structure. You need to reference the Point class because the Empty field is
static. This statement results in the X and Y properties being initialized to 0. Point also has a read-
only property named IsEmpty that returns true if both X and Y equal 0.

Here's a complete list of the Point properties:
Point Properties

‘ Type ‘ Property ‘ Accessibility

‘ int ‘ X ‘ get/set
‘ int ‘ Y ‘ get/set
‘ bool ‘ IsEmpty ‘ get

Point inherits the GetType method from Object, overrides the GetHashCode, ToString, and Equals
methods from Object by way of ValueType, and implements a method named Offset on its own.
Here's a complete list of the public instance (that is, nonstatic) methods of Point:

Point Instance Methods

Type GetType ()

int GetHashCode ()

string ToString()

bool Equals (Point point)
void Offset (int dx, int dy)

There are three static methods of Point that I'll discuss shortly.

The ToString method converts a Point object to a readable character string. For example, after the
statements

Point pt = new Point (5, 201);

string str = pt.ToString() ;

the str variable is set to the text string {X=5,Y=201}. The ToString method is called by Console.Write,
Console.WriteLine, and String.Format to convert objects to strings.

The Equals method tests whether one point is equal to another, as in the statement
if (ptl.Equals(pt2))

Equality is defined to mean that the X and Y properties of the two Point objects are both equal to
each other. More conveniently, in C#, you can also use the equals operator:

if (ptl == pt2)

The Equals method is provided for languages that don't support an equals operator. You can also
use the inequality operator with Point structures:

if (ptl != pt2)

The Offset method
pt.Offset (21, -12);

is basically the same as adding the two offsets to the properties:
pt.X += 21;

pt.Y += -12;

Arrays of Points

Arrays of Point structures are common in programming for graphical environments. For example, an
array of Point structures could represent a complex curve or the locations of buttons on a calculator.
To create an array of, say, 23 Point structures, you can use the following statement:

Point [] apt = new Point [23];

C# uses zero-based indexing for arrays, so the valid array elements are apt[0] through apt[22]. When
you allocate an array of structures, each of the elements is initialized to the point (0, 0).

It's possible to initialize the array elements when you create the array, but it requires a bit more
typing than when initializing an array of structures in C:
Point [] apt = new Point[3] { new Point (25, 50),

new Point (43, 32),

new Point (27, 8) };
You must have exactly as many initializers as the dimension of the array. Indeed, you don't need to
include the dimension:
Point [] apt = new Point [] { new Point (25, 50),

new Point (43, 32),

new Point (27, 8) };

And you can even leave out the first new expression:
Point[] apt = { new Point (25, 50),

new Point (43, 32),

new Point (27, 8) };
The Size Structure

The Size structure is very much like Point, but instead of the X and Y properties, it has Width and
Height properties:

Size Properties

‘ Type ‘ Property ‘ Accessibility

‘ int ‘ Width ‘ get/set
‘ int ‘ Height ‘ get/set
‘ bool ‘ IsEmpty ‘ get

You can create a new Size structure the same way you create a Point structure:

Size size = new Size (15, 20);

The Width and Height properties of the Size structure can be negative. (You'll start to see the
reasoning behind this when we delve into rectangles later in this chapter.)

The Point and Size structures are so similar that they can be constructed from each other. Here's a
complete list of the. Point constructors:

Point Constructors

Point ()

Point (int xyPacked)
Point (int x, int y)

Point (Size size)

And here's a complete list of the Size constructors:

Size Constructors

Size ()
Size (int width, int height)

Size (Point point)

You can also cast a Point object to a Size object and vice versa:
pt = (Point) size;

size = (Size) pt;

The Size structure overloads the addition and subtraction operators so you can add two sizes, as in

size3 = sizel + size2;

or subtract two sizes, as here:

size2 = size3 - sgizel;

What's going on here is what you'd expect: the Width and Height properties are being added or
subtracted individually. You can also use the compound assignment operators:

size2 += sizel;

size3 -= size2;

The Point structure also overloads addition and subtraction, but | didn't mention these operations
earlier because they also involve a Size structure. Under the assumption that it makes no sense to

add two points together, the only objects you can add to or subtract from Point objects are Size
objects.

pt2 = ptl + size;
pt3 = pt2 - size;
pt += size;
pt -= size;

The Float Versions

C# supports two floating-point data types, float and double. The double data type is rarely used in
Windows Forms or GDI+, but float shows up a lot. You may wonder why you need floating-point
coordinates when drawing in units of pixels, but you'll discover in Chapter 7 that you can use
coordinate systems based on units other than pixels.

The PointF structure is very much like the Point structure except that the X and Y properties are float
values rather than int. Similarly, the SizeF structure is very much like Size except that Width and
Height are float values. The PointF and SizeF structures support the addition, subtraction, equality,
and inequality operators just as Point and Size do.

Here's a mistake | make about once a week:
PointF ptf = new PointF();

ptf.X = 2.5; // Error!
ptf.Y = 3E-2; // Error!

The compiler assumes the values are double rather than float, and as the compiler will remind you,
"Literal of type double cannot be implicitly converted to type 'float'." One solution is to cast the values
to float like so:

ptf.X = (float)2.5;
ptf.Y = (float)3E-2;

But an easier method is to follow the literal with an f (for float):
ptf.X = 2.5f;
ptf.Y = 3E-2f;

Like Point, the PointF structure implements a constructor that lets you initialize it during creation:
PointF ptf = new PointF(2.5f, 3E-2f);

The PointF structure does not include an Offset method.

Integer values can be implicitly converted to float, so you can assign integers to the floating-point
fields:

PointF ptf = new PointF (127, 42);

You can cast a Point to a PointF:
ptf = (PointF)pt;

However, you can't cast a PointF to a Point:
pt = (Point)ptf; // Error!

Instead, to convert a PointF to a Point, you must use one of the static methods provided for that
purpose by the Point structure:

Point Static Methods
Point Round (PointF ptf)

Point Truncate (PointF ptf)
Point Ceiling (PointF ptf)

For example,

pt = Point.Round(ptf) ;
Round must be preceded by the structure name because it's a static method.

The Round method rounds the X and Y properties to the nearest integer, and to the nearest positive
integer for fractional parts of 0.5. The Truncate method essentially strips the fractional part and
rounds toward 0. For example, coordinates of 0.9 and —0.9 both become 0. The Ceiling method
rounds toward the next highest integer, that is, 0.9 becomes 1 and —0.9 becomes 0.

Similarly, you can cast a Size to a SizeF, but you should use the following methods to convert a
SizeF to a Size:

Size Static Methods
Size Round(SizeF sizef)

Size Truncate (SizeF sizef)

Size Ceiling(SizeF sizef)

The SizeF structure also includes the following two instance methods, the only instance methods
that SizeF doesn't inherit or override:

SizeF Instance Methods

PointF ToPointF ()

Size ToSize ()

The ToSize method is equivalent to the Truncate method.

Oddly enough, while you can cast between Point and Size, from Point to PointF, from Size to SizeF,
and from SizeF to PointfF, you can't cast from PointF to SizeF. However, PointF provides a
constructor that takes a SizeF argument. Here, for comparison purposes, is a complete list of the
constructors for the four structures:

Constructor Comparisons

‘ Point | PointF ‘ Size ‘ SizeF

0 0 0 0

(%) (%) (e, cy) (e, cy)
| (size) | | (poin) | (point)
‘ (xyPacked) | ‘ ‘ (sizef)

A Rectangle Is a Point and a Size

The Rectangle structure defines a rectangle as a combination of a Point and a Size. The idea here is
that the Point refers to the location of the upper left corner of the rectangle and the Size is the width
and height of this rectangle—which is not to say that the width and height must be non-negative. The
Rectangle structure itself imposes no such restriction. However, as we'll explore in Chapters 4 and 5,
the Rectangle structure is used in some drawing functions, and those functions require non-negative
widths and heights. The Rectangle structure has two constructors:

Rectanile Constructors

Rectangle (Point pt, Size size)

Rectangle (int x, int y, int width, int height)

Veteran Windows programmers: Watch out for that last constructor, and in other places where you
specify a rectangle using four numbers: the second two numbers are not the coordinates of the
bottom right corner of the rectangle!

There's also a RectangleF structure with the following constructors:

RectangleF Constructors

RectangleF (PointF ptf, SizeF sizef)
RectangleF (float x, float y, float width, float height)

As you can see, the constructors for Rectangle and RectangleF are identical except for the data
types.

In fact, the entire implementations of the Rectangle and RectangleF structures are so similar that
you'll swear a template was somehow involved. Aside from the data types, the only difference is that

the RectangleF structure defines a cast from a Rectangle to a RectangleF, while the Rectangle
structure defines three static (and by now familiar) methods that let you convert from a RectangleF to
a Rectangle:

Rectanile Static Methods (selection)

Rectangle Round (RectangleF rectf)
Rectangle Truncate (RectangleF rectf)

Rectangle Ceiling(RectangleF rectf)

So from here on, I'll refer to the Rectangle structure only, but everything | say applies to RectangleF
as well. The data types associated with RectangleF are, of course, float, PointF, and SizeF rather
than int, Point, and Size.

Rectangle Properties and Methods

The Rectangle structure defines a host of properties that give you information in whatever way you
want:

Rectangle Properties

‘ Type ‘ Property ‘ Accessibility

‘ Point ‘ Location ‘ get/set
‘ Size ‘ Size ‘ get/set
‘ int ‘ X ‘ get/set
‘ int ‘ Y ‘ get/set
‘ int ‘ Width ‘ get/set
‘ int ‘ Height ‘ get/set
‘ int ‘ Left ‘ get
‘ int ‘ Top ‘ get
‘ int ‘ Right ‘ get
‘ int ‘ Bottom ‘ get
‘ bool ‘ IsEmpty ‘ get

The Left property returns the same value as X; the Top property returns the same value as Y. The
Right property returns the sum of X and Width; and the Bottom property returns the sum of Y and

Height, even if Width and Height are negative. In other words, Left can be greater than Right, and
Bottom can be greater than Top.

The only operators overloaded by Rectangle are equality (==) and inequality (!=). Rectangle also
implements an Equals method. Although addition and subtraction are not allowed on Rectangle
structures, several methods do allow you to manipulate Rectangle structures in various ways or to
create new Rectangle structures from existing ones.

For Windows programmers accustomed to thinking in terms of upper left and lower right, there's a
static method that creates a Rectangle from those two coordinates:

Rectanile Methods iselectioni

static Rectangle FromLTRB (int xLeft, int yTop, int xRight, int yBottom)

Because this is a static method, the method name must be prefaced with the structure name. The
method returns a newly created Rectangle object. The call

rect = Rectangle.FromLTRB (x1, yl, x2, y2);

is equivalent to
rect = new Rectangle(xl, yl, x2 - x1, y2 - vy1);

The Offset and Inflate methods manipulate a Rectangle structure and compensate for the lack of
addition and subtraction operators:

Rectanile Methods (selection)

void Offset (int x, int y)
void Offset (Point)

void Inflate (int x, int y)
void Inflate(Size size)

static Rectangle Inflate (Rectangle rect, int x, int y)

The Offset method shifts a rectangle to another location. The method call
rect.Offset (23, -46);

is equivalent to
rect.X += 23;
rect.Y += -46;

or

rect.Location += new Size (23, -46);

An overloaded version of Offset takes a Point argument (which should probably be a Size):
rect.Offset (pt) ;

That call is equivalent to
rect.X += pt.X;
rect.Y += pt.Y;

or

rect.Location += (Size)pt;

The Inflate method affects both the location and size of the Rectangle:
rect.Inflate(x, y);

is equivalent to

rect.X -= X;

rect.Y -=vy;

rect.Width += 2 * x;

rect.Height += 2 * y;

Thus, the rectangle gets larger (or smaller, if the arguments are negative) in all directions. The center

of the rectangle remains the same. An overload to Inflate uses a Size object to provide the two
values. A static version creates a new inflated Rectangle object from an existing Rectangle object.

The following methods perform unions and intersections of pairs of Rectangle objects:

Rectangle Methods (selection)

static Rectangle Union(Rectangle rectl, Rectangle rect2)
static Rectangle Intersect (Rectangle rectl, Rectangle rect2)

void Intersect (Rectangle rect)

The Intersect method has an overload that isn't static. You use it like this:

rectl.Intersect (rect2) ;

This expression is equivalent to

rectl = Rectangle.Intersect (rectl, rect2);
The remaining methods unique to Rectangle return bool values:

Rectangle Methods (selection)

bool Contains (Point)
bool Contains(int x, int y)
bool Contains (Rectangle rect)

bool IntersectsWith(Rectangle rect)

Finally, both Rectangle and RectangleF override ToString in a useful manner, returning a string that
looks something like this:

{X=12,Y=5,Width=30,Height=10}
A Nice-Sized Form

How large is your form? This is not a personal question! When a program creates a form, the form
has a specific size and occupies a specific location on the screen. The size and location are not
fixed, however: If the form has a sizing border, the user can drag that border to make the form a
different size. If the form has a caption bar, the user can move the form to another location on the
screen. It might be helpful for a program to know how large its form is. Knowing exactly where the
form is located on the screen is less useful but not totally irrelevant.

The Form class has no fewer than 13 properties—most of them inherited from the Control class—
that reveal this information. With just a couple exceptions, these properties are also writable and
allow a program to change the size and location of its form. We saw an example of such changes in
the FormProperties program in Chapter 2.

Here are nine properties (all of which Form inherits from Control) that indicate the size of the form
and its location on the screen:

Control Properties (selection)

‘ Type | Property | Accessibility ‘ Comments

‘ Point | Location ‘ get/set ‘ Relative to screen

‘ Size | Size ‘ get/set ‘ Size of full form

‘ Rectangle | Bounds ‘ get/set ‘ Equals Rectangle(Location, Size)
‘ int | Width ‘ get/set ‘ Equals Size.Width

‘ int | Height ‘ get/set ‘ Equals Size.Height

‘ int | Left ‘ get/set ‘ Equals Location. X

‘ int | Top ‘ get/set ‘ Equals Location.Y

Control Properties (selection)

‘ Type | Property | Accessibility ‘ Comments

‘ int | Right ‘ get ‘ Equals Location.X + Size.Width
‘ int | Bottom ‘ get ‘ Equals Location.Y + Size.Height

Basically, what we're dealing with here can be reduced to four numbers: the x and y coordinates of
the upper left corner of the form relative to the upper left corner of the video display, and the height
and width of the form. | suspect that the only reason Right and Bottom are read-only is because it's
not clear what should happen when you set them. Do you want to move the form or make it a
different size?

Although you can set Width and Height to any values you want, the system imposes some limits.
The lower limits are values sufficient to display enough of the caption bar to read some of the text.
The upper limits prevent the form from being larger than if it were maximized to the size of the
screen.

Don't do this, however:
Size.Width *= 2;

That's setting a property of a property. For reasons beyond the comprehension of people who don't
write compilers, it's not allowed.

Two additional size-related and location-related properties are defined in the Form class:
Form Properties (selection)

‘ Type ‘ Property ‘ Accessibility

‘ Point ‘ DesktopLocation ‘ get/set
‘ Rectangle ‘ DesktopBounds ‘ get/set

These are similar to the Location and Bounds properties but take the Windows taskbar into account.
The desktop is that part of the screen not occupied by the taskbar. If the taskbar is positioned at the
left, DesktopLocation.X will be less than Location.X; if the taskbar is at the top, DesktopLocation.Y
will be less than Location.Y. DesktopBounds is based on DesktopLocation and the normal Size
property, which isn't affected by the position of the taskbar.

The Form and the Client

The dimensions I've been presenting refer to the entire form, including the border and the caption
bar. In most cases, an application is primarily interested in the size of the form's client area. The
client area is the internal area of the form upon which the application is free to draw during the form's
Paint event or otherwise decorate with controls. The client area excludes the form's caption bar and
any border the form may have. If the form includes a menu bar beneath its caption bar (I'll discuss
how to add menu bars in Chapter 14), the client area also excludes the area occupied by that menu
bar. If the form displays scroll bars at the right and bottom of the window (I'll show you how to do this
in Chapter 4), the client area also excludes these scroll bars.

The Form class has just two properties (also first implemented in Control) that pertain to the size of
the client area:

Control Properties (selection)

‘ Type ‘ Property | Accessibility

‘ Size ‘ ClientSize | get/set
‘ Rectangle ‘ ClientRectangle | get

The ClientSize property indicates the pixel width and height of the client area. The ClientRectangle
property supplies no additional information because the X and Y properties of ClientRectangle are
always 0! ClientRectangle is sometimes useful in methods that require Rectangle arguments. The
last two programs in this chapter illustrate how Rectangle can be used for this purpose.

Again, avoid setting a property of a property. This assignment won't work:
// Won't work!

ClientSize.Width += 100;

Do this instead:

ClientSize = new Size(ClientSize.Width + 100,

Or do this:

ClientSize += new Size (100, 0);

ClientSize.Height) ;

The following program displays all thirteen of the size and location properties in its client area.

FormSize.cs

using System;

using System.Drawing;

using System.Windows.Forms;

class FormSize: Form

Application.Run(new FormSize()) ;

void OnMove (EventArgs ea)

protected override void OnResize (EventArgs ea)

{
public static void Main()
{
1
public FormSize ()
{
Text = "Form Size";
BackColor = Color.White;
1
protected override
{
Invalidate () ;
1
{
Invalidate() ;
1

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx =

string str =

pea.Graphics;

"Location:
"Size: "
"Bounds: "
"Width: "
"Height:
"Left: "

"TOp .o

Location
Size
Bounds
Width
Height
Left

Top

ll\nll
"\1'1"
ll\nll
n \nn
n\nu
n \nll

n\nu

"Right: " + Right + "\n" 4+

"Bottom: " + Bottom + "\n\n" +
"DesktopLocation: " + DesktopLocation + "\n" +
"DesktopBounds: " + DesktopBounds + "\n\n" +
"ClientSize: " + ClientSize + "\n" +
"ClientRectangle: " + ClientRectangle;

grfx.DrawString(str, Font, Brushes.Black, 0, 0);

}

This innocently intended program introduces a couple things we haven't seen before. First, notice
that I'm overriding the OnMove and OnResize methods. As the On prefixes indicate, these methods
are associated with events:

Control Events (selection)

‘ Event | Method | Delegate | Argument

‘ Move | OnMove | EventHandler | EventArgs
‘ Resize | OnResize | EventHandler | EventArgs

These methods are called when the form is moved or resized. In real-life programming, the OnMove
method is almost never overridden. Programs usually don't care where they are located on the
screen. Overriding the OnResize method is quite common, however. We'll see many examples of
OnResize used in the chapters ahead.

In response to both these events, I'm calling the simplest of the six overloads of the Invalidate
method:

Control Invalidate Methods

void Invalidate() ;

void Invalidate (Rectangle rectInvalid) ;

void Invalidate (bool bIncludeChildren) ;

void Invalidate (Rectangle rectInvalid, bool bIncludeChildren) ;
void Invalidate (Region rgnInvalid) ;

void Invalidate (Region rgnInvalid, bool bIncludeChildren) ;

What this method does is invalidate the entire client area, or a rectangular or nonrectangular subset
of it, with or without invalidating any child controls that may be located on it. Invalidating the client
area informs Windows that what's on there is no longer valid. Eventually, your form will receive a call
to OnPaint so that you have an opportunity to repaint the client area. Calling Invalidate is the
standard way in which a program forces a repaint.

The OnPaint call doesn't occur right away. Whatever event the form is currently processing (in this
case, the Resize or Move event) must be completed first, and even then, if other events are pending
(such as keyboard or mouse input), the OnPaint call must wait. If you want to update your client area
immediately, follow the Invalidate call with a call to the Control object's Update method:

Control Methods (selection)

void Update () ;

This will cause an immediate call to OnPaint; after OnPaint returns, Update will return.

Something else the FormSize program demonstrates is string concatenation with Point, Size, and
Rectangle objects. When you put a property or another object in a string as we did in this program,
the object's ToString method is invoked.

I've also taken advantage of the fact that the DrawString method recognizes ASCII line feed
characters and correctly spaces successive lines of text. As it is, the output is a bit sloppy:

™ Form Size i (=] 3|
Laocation: {#=176. =184}

Size: {dvidth=155, Height=300)

Beoumide: =1 T6. 1§14 Wdthe 356 Height= 300}

Widkh 155

Batom: 484

Desktoploceson: {176 =184}
DesktopBounds: {176 =154 Width= 156 Haight= 100}

ChentSize. {Width=148, Haight=Z567}
ChentReciangha: {=0"v=0\Width=348 Heighl=267}

We'll learn how to put text into nice neat columns in the next chapter.

There is a 14th property of the Form object inherited from Control that is related to the size of the
client area:

Control Properties (selection)

‘ Type ‘ Property ‘ Accessibility

‘ Rectangle ‘ DisplayRectangle ‘ get

By default, this property is the same as ClientRectangle and doesn't change unless you start putting
controls on the client area.

Point Conversions

As you saw in a couple programs in Chapter 2, when you draw graphics on your form, you're using a
coordinate system that is relative to the upper left corner of the client area. These coordinates are
referred to as client area coordinates. Earlier, when | discussed the location of the form relative to
the screen, | implicitly introduced another coordinate system. This coordinate system is relative to
the upper left corner of the screen, and such coordinates are called screen coordinates. Often
desktop coordinates are the same as screen coordinates, but not if the Windows taskbar is on the
top or left edge of the screen. Finally, form coordinates are relative to the upper left corner of the
form, which is usually the corner of the form's sizing border.

The Location property refers to a point in screen coordinates that is equivalent to the point (0, 0) in
form coordinates. Thus, this property allows an application to convert between points in these two
coordinate systems. Symbolically,

Xscreen = Xform + LOcation. X
Yscreen = Yiorm T Location.Y

Similarly, the form's DesktopLocation property allows a program to convert between desktop
coordinates and form coordinates:

Xdesktop = Xiorm + DesktopLocation. X
Ydesktop = Yiorm + DesktopLocation.Y

With some simple algebraic manipulation, you can also convert between desktop coordinates and
screen coordinates:

Xdesktop = Xscreen + DesktopLocation.X — Location. X
Ydesktop = Yscreen + DesktopLocation.Y — Location.Y

There aren't any similar properties of Form that allow an application to convert between client area
coordinates and any of the other three coordinate systems. It's possible, by using the CaptionHeight
property of the Systeminformation class, to obtain the height of the standard caption bar and then to
obtain the width of the sizing border by comparing ClientSize with the form's total Size (less the
caption bar height), but that's more work than you should have to do.

Fortunately, the Form class contains two methods that convert points directly between screen
coordinates and client area coordinates:

Form Methods (selection)

Method Description

Point PointToClient (Point Converts screen coordinates to client
ptScreen)

Point PointToScreen (Point Converts client coordinates to screen
ptClient)

The Point passed as an argument to these methods remains unchanged; the methods return a Point
containing the converted points. For example, the call

Point pt = PointToScreen (Point.Empty) ;
returns the location of the upper left corner of the client area in screen coordinates.

The Form class also supports two additional conversion methods that work with Rectangle objects
rather than Point objects:

Form Methods (selection)

Method Description

Rectangle RectangleToClient (Rectangle Converts screen coordinates to
rectScreen) client

Rectangle RectangleToScreen (Rectangle Converts client coordinates to
rectClient) screen

These methods don't provide any additional information than PointToClient and PointToScreen
because the Size property of the Rectangle object remains unaffected by the conversion.

The Color Structure

The human eye perceives electromagnetic radiation in the range of about 430 to 750 terahertz,
corresponding to wavelengths between 700 and 400 nanometers. Electromagnetic radiation in this
range is known as visible light. If the light isn't very strong, the 120 million rods in the retina of the
human eye respond to the light's intensity. Stronger light affects the 7 million cones, which come in
three different types, each of which responds to a different range of wavelengths. The varying
degrees of excitation of these cones is the phenomena we call color, and the three ranges of
wavelengths correspond to our concepts of red, green, and blue.

Because very little data is required to specify a color, color is a good candidate for a structure rather
than a class and, indeed, Color is another important structure in the System.Drawing namespace.

Color in Windows Forms is based on an ARGB (alpha-red-green-blue) model. Colors themselves are
generally defined by single-byte values of red, green, and blue. The alpha channel determines the
transparency of the color. Alpha values range from 0 for transparent to OxFF for opaque.

The Color structure has only a default constructor, which you can use like so:

Color color = new Color();

You almost surely won't be using code like this, however, because it would create an empty color
(transparent black) and there's no way to change the properties of that color. Instead, you'll be
obtaining color objects by using one of the static methods or properties defined in Color for that
purpose.

The static properties in Color are quite valuable, for there are no fewer than 141 of them.

The 141 Color Names

The Color structure has 140 static read-only properties that are actual names of colors ranging (in
alphabetical order) from AliceBlue™ to YellowGreen. Only a couple of the names (Magenta and
Fuchsia, for example) represent identical colors; most of them are unique colors. The Color class
also has a 141st property, named Transparent, that represents a transparent color. The following
table shows some of the 141 properties in the Color class. | haven't included all the properties
because such a listing would have run to four pages.

Color Properties

‘ Type ‘ Property ‘ Accessibility

‘ Color ‘AliceBlue ‘ get
‘ Color ‘AntiqueWhite ‘ get
| E |

‘ Color ‘ Yellow ‘ get
‘ Color ‘ YellowGreen ‘ get
‘ Color ‘ Transparent ‘ get

You can find a complete list of the 140 standard (and sometimes whimsically named) colors on the
inside back cover of this book.

Where did these colors come from? They originated in the X Window System, X11R3 (version 11,
revision 3), which is a graphical user interface developed at MIT for UNIX. More recently, these
colors were considered for inclusion in the Cascading Style Sheets (CSS) standard from the World
Wide Web Consortium (W3C), but they were removed before the specification was finalized.
Nevertheless, these 140 colors have become a de facto standard in HTML, being supported by
recent versions of both Microsoft Internet Explorer and Netscape Navigator.

Whenever you need a Color object, you can just use Color.Red (or whatever color you want) and it'll
work. I've already done this in some of the programs, when setting the BackColor property of a form
and as an argument to the Clear method of the Graphics class.

To create a color based on the red, green, blue, and alpha components, you can use the following
Color.FromArgb static methods, each of which returns a Color object:

Color.FromArib Static Methods

Color Color.FromArgb (int r, int g, int b)

(
Color Color.FromArgb (int a, int r, int g, int b)
Color Color.FromArgb (int a, Color color)

(

Color Color.FromArgb (int argbPacked)

I'll use the first of these methods in the RandomClear program later in this chapter.

I AliceBlue gets its name from Alice Roosevelt (1884—1980), who was a spirited teenager when her
father became president in 1901 and whose favorite color was immortalized in fashion and song.
See www.theodoreroosevelt.orgllife/familytree/AliceLongworth.htm and
www.theodoreroosevelt.orgllife/aliceblue.htm for more details.

Pens and Brushes

Color objects by themselves aren't used much in Windows Forms. You've seen how you can set the
BackColor property to a Color object. There's also a ForeColor property you can set likewise. The
Clear method in the Graphics class also takes a Color argument, but that's an exception.

Most of the other Graphics drawing methods don't involve Color arguments. When you draw lines or
curves (which you'll start doing in Chapter 5), you use an object of type Pen, and when you draw
filled areas and text, you specify an object of type Brush. Of course, pens and brushes themselves
are specified using color, but other characteristics are often involved as well.

You create a pen using one of the four constructors of the Pen class. The simplest of these
constructors creates a Pen object based on a Color object:

Pen pen = new Pen(clr);

If you want to create a pen based on one of the predefined colors, you don't need to do this:

Pen pen = new Pen(Color.RosyBrown) ;

It's better to use the Pens class instead. (Notice the plural on the class name.) Pens consists solely
of 141 static read-only properties, each of which returns an object of type Pen. Aside from the return
type, these properties are identical to the 141 Color properties.

Pens Static Properties

‘ Type ‘ Property ‘ Accessibility

‘ Pen ‘ AliceBlue ‘ get
‘ Pen ‘ AntiqueWhite ‘ get
| E |

‘ Pen ‘ Yellow ‘ get
‘ Pen ‘ YellowGreen ‘ get
‘ Pen ‘ Transparent ‘ get

You'll learn more about the Pen class in Chapter 5, and we'll really dig into the details of it in Chapter
17.

When you draw text or filled areas, you specify a Brush object. The Brush class itself is abstract,
which means you can't create an instance of it. Brush is instead the parent class for five other
classes: SolidBrush, HatchBrush, TextureBrush, LinearGradientBrush, and PathGradientBrush. We'll
go over brushes in depth in Chapter 17. For now, be aware that you can create a brush of a solid
color like so:

Brush brush = new SolidBrush (clr) ;
You can assign the result to an object of type Brush because SolidBrush is inherited from Brush.

As with the Pen class, using one of the static Color properties in SolidBrush is unnecessary because
the Brushes class (notice the plural again) consists solely of—that's right!—141 static read-only
properties that return objects of type Brush.

Brushes Static Properties

‘ Type ‘ Property ‘ Accessibility

‘ Brush ‘ AliceBlue ‘ get
‘ Brush ‘ AntiqueWhite ‘ get
| I |

‘ Brush ‘ Yellow ‘ get
‘ Brush ‘ YellowGreen ‘ get
‘ Brush ‘ Transparent ‘ get

This is the class we used in Chapter 2 to provide a black brush (Brushes.Black) for the DrawString
method. | mentioned at the time that you should use Brushes.Black for text only when you're assured

that the background of your form isn't also black. One way to do this is to set the form's background
color explicitly:

BackColor = Color.White;
System Colors

The reason Brushes.Black isn't a good idea for text is that it's possible for a Windows user to invoke
the Display Properties dialog box (either from Control Panel or by right-clicking the desktop), select
the Appearance tab, and choose a color scheme, such as High Contrast Black, in which the
background color of windows and controls is black. People with poor eyesight or color blindness
often use such high-contrast color schemes, and you're definitely not helping them if you display
your text in black as well!

Welcome to the world of system colors, which are probably more correctly called user-preference
colors. Using the Display Properties dialog box, users can select their own color schemes. Windows
itself maintains 29 user-settable colors that it employs to color different components of the user
interface. Twenty-six of these colors are exposed in the Windows Forms framework.

You can obtain these color values from the SystemColors class, which consists solely of 26 read-
only properties, each of which returns a Color object:

SystemColors Static Properties

‘ Type ‘ Property ‘ Accessibility | Comment

‘ Color ‘ ActiveBorder ‘ get | Border of active window

‘ Color ‘ActiveCaption ‘ get | Caption bar of active window

‘ Color ‘ ActiveCaptionText ‘ get | Caption bar text of active window

‘ Color ‘ AppWorkspace ‘ get ‘ Workspace background in a
multiple-document interface (MDI)

‘ Color ‘ Control ‘ get | Background color of controls

‘ Color ‘ ControlDark ‘ get | Shadows of 3D controls

‘ Color ‘ ControlDarkDark ‘ get | Dark shadows of 3D controls

‘ Color ‘ ControlLight ‘ get | Highlights of 3D controls

‘ Color ‘ ControlLightLight ‘ get | Light highlights of 3D controls

‘ Color ‘ ControlText ‘ get | Text color of controls

‘ Color ‘ Desktop ‘ get | Windows desktop

‘ Color ‘ GrayText ‘ get | Disabled text

‘ Color ‘ Highlight ‘ get | Highlighted text background

‘ Color ‘ HighlightText ‘ get | Highlighted text

‘ Color ‘ HotTrack ‘ get | Hot track

‘ Color ‘ InactiveBorder ‘ get | Border of inactive windows

‘ Color ‘ InactiveCaption ‘ get | Caption bar of inactive windows

‘ Color InactiveCaption Text ‘ get Caption bar text of inactive
windows

‘ Color ‘ Info ‘ get | ToolTip background

‘ Color ‘ InfoText ‘ get | ToolTip text

‘ Color ‘ Menu ‘ get | Menu background

‘ Color ‘ MenuText ‘ get | Menu text

‘ Color ‘ ScrollBar ‘ get | Scroll bar background

SystemColors Static Properties

‘ Type ‘ Property ‘ Accessibility | Comment

‘ Color ‘ Window ‘ get | Window background
‘ Color ‘ WindowFrame ‘ get | Thin window frame
‘ Color ‘ WindowText ‘ get | Window text

You could create a Pen or a Brush from one of these colors like so:
Pen pen = new Pen(SystemColor.ControlText) ;

Brush brush = new SolidBrush (SystemColor.ControlText) ;

It's usually not necessary to do this, however, because the System.Drawing namespace also
includes a SystemPens class and a SystemBrushes class. SystemPens has 15 static read-only
properties that return objects of type Pen:

SystemPens Properties

‘ Type | Property ‘ Accessibility

‘ Pen ‘ ActiveCaptionText ‘ get
‘ Pen ‘ Control ‘ get
‘ Pen ‘ ControlDark ‘ get
‘ Pen ‘ ControlDarkDark ‘ get
‘ Pen ‘ ControlLight ‘ get
‘ Pen ‘ ControlLightLight ‘ get
‘ Pen ‘ Control Text ‘ get
‘ Pen ‘ GrayText ‘ get
‘ Pen ‘ Highlight ‘ get
‘ Pen ‘ HighlightText ‘ get
‘ Pen ‘ InactiveCaptionText ‘ get
‘ Pen ‘ InfoText ‘ get
‘ Pen ‘ MenuText ‘ get
‘ Pen ‘ WindowFrame ‘ get
‘ Pen ‘ WindowText ‘ get

The SystemBrushes class contains 21 static read-only properties that return objects of type Brush:
SystemBrushes Properties

‘ Type ‘ Property ‘ Accessibility

‘ Brush ‘ ActiveBorder ‘ get
‘ Brush ‘ ActiveCaption ‘ get
‘ Brush ‘ ActiveCaptionText ‘ get
‘ Brush ‘ AppWorkspace ‘ get
‘ Brush ‘ Control ‘ get
‘ Brush ‘ ControlDark ‘ get

‘ Brush ‘ ControlDarkDark ‘ get

SystemBrushes Properties

‘ Type ‘ Property ‘ Accessibility

‘ Brush ‘ ControlLight ‘ get
‘ Brush ‘ ControlLightLight ‘ get
‘ Brush ‘ ControlText ‘ get
‘ Brush ‘ Desktop ‘ get
‘ Brush ‘ Highlight ‘ get
‘ Brush ‘ HighlightText ‘ get
‘ Brush ‘ HotTrack ‘ get
‘ Brush ‘ InactiveBorder ‘ get
‘ Brush ‘ Inactive Caption ‘ get
‘ Brush ‘ Info ‘ get
‘ Brush ‘ Menu ‘ get
‘ Brush ‘ ScrollBar ‘ get
‘ Brush ‘ Window ‘ get
‘ Brush ‘ WindowText ‘ get

Strangely enough, not all the system colors that pertain to text are included in the SystemBrushes
class. However, if you need a Pen or Brush that's not included in the SystemPens or SystemBrushes
class, you can always create it using one of the SystemColors properties as an argument to one of
the following static methods:

Pen pen = SystemPens.FromSystemColor (SystemColor.ActiveBorder) ;

Brush brush = SystemBrushes.FromSystemColor (SystemColor.MenuText) ;

The Known Colors

The final big color list is the KnownColor enumeration that encompasses all the color names and all
the system colors:

KnownColor Enumeration

‘ Field ‘ Value ‘ Field | Value

‘ActiveBorder ‘ 1 ‘ Inactive Caption | 17
‘ ActiveCaption ‘ 2 ‘ Inactive CaptionText | 18
‘ ActiveCaptionText ‘ 3 ‘ Info | 19
‘ AppWorkspace ‘ 4 ‘ InfoText | 20
‘ Control ‘ 5 ‘ Menu | 21
‘ ControlDark ‘ 6 ‘ MenuText | 22
‘ ControlDarkDark ‘ 7 ‘ ScrollBar | 23
‘ ControlLight ‘ 8 ‘ Window | 24
‘ ControlLightLight ‘ 9 ‘ WindowFrame | 25
‘ ControlText ‘ 10 ‘ WindowText | 26

‘ Desktop ‘ 11 ‘ Transparent | 27

KnownColor Enumeration

‘ Field ‘ Value ‘ Field | Value

‘ GrayText ‘ 12 ‘AliceBlue | 28

‘ Highlight ‘ 13 ‘ AntiqueWhite | 29

‘ HighlightText ‘ 14 ‘ : |

‘ HotTrack ‘ 15 ‘ Yellow | 166
‘ InactiveBorder ‘ 16 ‘ YellowGreen | 167

Although KnownColor is the third largest enumeration in the entire .NET Framework, it's not used for
very much. The Color class has a static method that lets you create a color based on a KnownColor
value, but if that's something you need, it probably makes more sense to use one of the static Color
or SystemColors properties.

What to Use?

Somewhere in the constructor for the Control class, the following code is probably executed:
BackColor = SystemColors.Control;

ForeColor = SystemColors.ControlText;

What the Control and ControlText system colors are is entirely up to the user. Normally they're gray
and black, respectively.

When a button control (for example) draws itself, it uses the BackColor property to color its
background and the ForeColor property to display the button text. A Form object uses the BackColor
property to erase the background of the client area but doesn't itself use the ForeColor property.
That property is made available for applications inheriting or instantiating Form.

So, the question is, What brush should you be using to draw text? | think I've pretty well established
that it's not Brushes.Black. A much better choice would be SystemBrushes.ControlText.

However, I'm not so sure that's optimum either. Consider this question: Why are the BackColor and
ForeColor properties of Form set to the system colors used for controls? The answer is, because the
Windows Forms developers have assumed that you'll be covering a form with controls or using a
form for a dialog box.

If you're not putting controls on a form, though, and if you want your form to look like a regular old
Windows program, you should be putting the following two statements in the constructor for your
form:

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

In that case, the DrawString calls in your OnPaint code should use SystemBrushes.WindowText to
be consistent.

But why write OnPaint code that's dependent on the way you set BackColor and ForeColor in the
constructor? To write ideally generalized code, the brush you should use in your DrawString calls is

new SolidBrush (ForeColor)

And that's the brush I'll be using for the remainder of this book whenever | want to display text in the
user-preferred color.

Until | start creating controls on the surface of my forms, I'll also be setting the BackColor and
ForeColor properties to SystemColors.Window and SystemColors.WindowText whenever | know [I'll
be drawing something that depends on those colors.

Getting a Feel for Repaints

As you've seen, the background of a form is automatically colored by the property BackColor. You've
also seen another way to recolor the background of a form: by using the Clear method of the
Graphics class. Clear has one argument, which is a Color object:

Graphics Methods (selection)

void Clear (Color color)

The RandomClear program randomly calculates a new color whenever its OnPaint method is called
and uses the Clear method to display the new color.

RandomClear.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class RandomClear: Form

{

public static void Main()

{

Application.Run (new RandomClear()) ;

}

public RandomClear ()

{

Text = "Random Clear";

}

protected override void OnPaint (PaintEventArgs pea)

{
Graphics grfx = pea.Graphics;

Random rand = new Random() ;

grfx.Clear (Color.FromArgb (rand.Next (256) ,
rand.Next (256) ,
rand.Next (256))) ;

}

Run this program, and experiment with resizing the form. Think about what you're seeing: as you
make the form larger, the newly uncovered strips on the right and bottom get a different color. Every
new color you see represents a new call to OnPaint. Even though the Clear method is seemingly
clearing the entire client area, however, it's actually restricted to the region that's newly invalid.
(You'll notice that if you make the form smaller, the color doesn't change because there is no area of
the client that hasn't remained valid.)

This behavior isn't always desirable. It could be that you're writing a program in which you want the
entire client area to be invalidated whenever the size of the client area changes. | showed one way
to do that in the FormSize program earlier in this chapter: override the OnResize method and put in
an Invalidate call.

Another solution is to set the ResizeRedraw property to true in the form's constructor:

ResizeRedraw = true;

The ResizeRedraw property causes the entire client area to be invalidated whenever its size
changes. The following program demonstrates the difference.

RandomClearResizeRedraw.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class RandomClearResizeRedraw: Form

{

public static void Main()

{

Application.Run (new RandomClearResizeRedraw()) ;

}

public RandomClearResizeRedraw ()
Text = "Random Clear with Resize Redraw";
ResizeRedraw = true;

}

protected override void OnPaint (PaintEventArgs pea)
Graphics grfx = pea.Graphics;

Random rand = new Random() ;

grfx.Clear (Color.FromArgb (rand.Next (256) ,
rand.Next (256) ,
rand.Next (256))) ;

}

I'm a little hesitant about recommending that you put this ResizeRedraw assignment in every
Windows Forms program you write, or even every sizable control. It probably shows up more in this
book than in real life because | like to write programs that change their contents based on the size of
the client area.

But keep this advice in mind: Whenever something on your form isn't being updated correctly, you
should think about whether setting the ResizeRedraw property makes sense. And if you've already
set ResizeRedraw, well, the problem is something else.

Before we leave this program, here's a little exercise. Put the following do-nothing OnResize override
in RandomClearResizeRedraw:

protected override void OnResize (EventArgs ea)

{
}

What you'll find is that the program now behaves exactly like RandomClear. Obviously, the
OnResize method implemented in Control (which Form inherits) is responsible for invalidating the
control depending on the style. OnResize probably contains some code that looks like this:

if (ResizeRedraw)

Invalidate () ;

For this reason and others, whenever you override the OnResize method, you should make a call to
the OnResize method implemented in the base class:

protected override void OnResize (EventArgs ea)

{

base.OnResize (ea) ;

// Do what the program needs.

}
Centering Hello World

Who was that kid in the back of the classroom who asked about centering text in a program's client
area? We are now, at long last, ready to do it. Does such a program require setting the
ResizeRedraw property? Yes, it certainly does, because what constitutes the center of the client
area depends on the overall size of the client area.

One approach that might occur to you is to change the coordinate point in the DrawString function.
Instead of using

grfx.DrawString ("Hello, world!", Font, brush, 0, 0);

you would use
grfx.DrawString ("Hello, world!", Font, brush,
ClientSize.Width / 2, ClientSize.Height / 2);

That's a good start, but it's not quite right. Remember that the coordinate point passed to Drawstring
specifies the position of the upper left corner of the text string, so that's what will be positioned in the
center of the client area. The text won't be in the center of the client area but will instead be situated

in the upper left corner of the bottom right quadrant of the client area.

It's possible to alter this default behavior by using one of the overloaded versions of DrawString—a
version that includes another argument along with the text string, font, brush, and starting position.
The additional argument is an object of type StringFormat, the purpose of which is to specify in more
detail how you want the text to be displayed.

An extensive discussion of StringFormat awaits us in Chapter 9. For now, let's just focus on the
most-used facility of StringFormat, which is to change the default text alignment—the rule that says
that the coordinate point passed to DrawString refers to the position where the upper left corner of
the text is to be displayed.

To change the default text alignment, you must first create an object of type StringFormat:

StringFormat strfmt = new StringFormat () ;

You can then set two properties of this object to specify the desired text alignment:
StringFormat Properties (selection)

‘ Type ‘ Property ‘ Accessibility | Description
‘ StringAlignment ‘Alignment ‘ get/set ‘ Horizontal alignment
‘ StringAlignment ‘ LineAlignment ‘ get/set ‘ Vertical alignment

Both these properties are of type StringAlignment, which is an enumeration consisting of three oddly
named members:

StringAlignment Enumeration

‘ Member ‘ Value ‘ Description

‘ Near ‘ 0 ‘ Usually left or top

‘ Center ‘ 1 ‘ Always the center

‘ Far ‘ 2 ‘ Usually right or bottom

Well, OK, so only two of the members are oddly named. Windows Forms has the ability to display
text right-to-left, as is normal in some languages, or vertically, also normal in some languages. Near
and Far are intended to be orientation-neutral, meaning "nearest to the beginning of the text" or
"farthest from the beginning of the text."

If you know you'll be displaying left-to-right horizontally oriented text, you can think of
StringAlignment.Near as meaning left and StringAlignment.Far as right when used with the
Alignment property, and StringAlignment.Near as top and StringAlignment.Far as bottom when used
with the LineAlignment property. Here's a program that uses all four combinations of these settings
to display text strings in the four corners of the client area.

FourCorners.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class FourCorners: Form

{

public static void Main()

{

Application.Run(new FourCorners()) ;

}

public FourCorners ()
Text = "Four Corners Text Alignment";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ResizeRedraw = true;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

Brush brush = new SolidBrush (ForeColor) ;
StringFormat strfmt = new StringFormat () ;
strfmt.Alignment = StringAlignment .Near;

strfmt.LineAlignment = StringAlignment.Near;

grfx.DrawString ("Upper left corner", Font, brush, 0, 0, strfmt);

strfmt.Alignment StringAlignment.Far;

strfmt.LineAlignment = StringAlignment.Near;
grfx.DrawString ("Upper right corner", Font, brush,

ClientSize.Width, 0, strfmt);

strfmt.Alignment = StringAlignment .Near;
strfmt.LineAlignment = StringAlignment.Far;
grfx.DrawString ("Lower left corner", Font, brush,

0, ClientSize.Height, strfmt);

strfmt.Alignment = StringAlignment.Far;
strfmt.LineAlignment = StringAlignment.Far;
grfx.DrawString ("Lower right corner", Font, brush,

ClientSize.Width, ClientSize.Height, strfmt);

}

The coordinate points passed to the four DrawString calls refer to the four corners of the client area.
Here's what it looks like:

ﬂg Four Corners Text Alig 2 = |£|
Upper left cormer Upper ight comer
Lower left corner Lower nght comer

If StringFormat were not used, however, only the first DrawString call would result in visible text. The
text displayed by the other three calls would be positioned completely outside the client area.

If you set the Alignment property of your StringFormat object to StringAlignment.Center, the text
string will be positioned so that the horizontal center corresponds with the x coordinate passed to
DrawString. If you set the LineAlignment property to StringAlignment.Center, the y coordinate
passed to DrawString indicates where the vertical center of the text string is positioned.

Here's how to use both effects to center text in the client area.

HelloCenteredAlignment.cs

using System;

using System.Drawing;

using System.Windows.Forms;

class HelloCenteredAlignment:

{

public static void Main()

{

Form

Application.Run(new HelloCenteredAlignment ()) ;

}

public HelloCenteredAlignment ()

{
Text = "Hello Centered
BackColor =
ForeColor =
ResizeRedraw = true;

}

Using String Alignment";

SystemColors.Window;

SystemColors.WindowText ;

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx

StringFormat strfmt

strfmt.Alignment

strfmt.LineAlignment

grfx.DrawString ("Hello,
SolidBrush (ForeColor) ,

ClientSize.Width / 2,

strfmt)

}

And here it is:

M Helo Centered Using St

Helia, warld!

=10l x|

pea.Graphics;

new StringFormat () ;

StringAlignment.Center;

StringAlignment.Center;

world!", Font, new

ClientSize.Height / 2,

7

I'm going to warn you about something that sounds pretty stupid, but I'm speaking from experience
here. Often when | add a StringFormat definition to some existing code, | remember to do everything
except include the object as the last argument to DrawString. Because DrawString doesn't require

StringFormat, the program compiles just fine

but the StringFormat doesn't seem to make any

difference. You really need to include it in the DrawString call for it to work right!

Measuring the String

Another approach to centering text—a much more generalized approach to text positioning—doesn't
require the StringFormat class but instead involves a method of the Graphics class, named
MeasureString. MeasureString comes in seven versions, the simplest of which you call something
like this:

SizeF sizefText = grfx.MeasureString(str, font);

MeasureString returns a SizeF structure that indicates the width and height of the string in units of
pixels (or, as you'll discover in Chapter 7, whatever units you prefer). MeasureString is easily the
second most important method for displaying text—not as essential as DrawString, but right up there
nonetheless. I'll have more to say about MeasureString in Chapter 9.

Imagine a displayed text string. Now imagine a rectangle drawn around that string. The SizeF
structure returned from MeasureString is the width and height of that rectangle. For a particular font,
regardless of the character string, the Height property of the SizeF structure is always the same.
(Actually, the Height property is usually independent of the character string. If the string has
embedded line feed characters, the Height property represents the height of multiple lines of text and
hence will be an integral multiple of the Height value for a single line of text.)

The Width property of the SizeF structure depends on the characters that comprise the string. For all
but fixed-pitch fonts, the width of the text string "i" is less than the width of "W", and MeasureString
reflects that difference.

We'll be using MeasureString a lot in this book. For now, to center some text in the client area, you
can subtract those Width and Height properties of the SizeF structure returned from MeasureString
from the width and height of the client area. The two differences represent the total horizontal and
vertical margin around the text. Divide each value by 2, and that's where to position the upper left
corner of the string. Here's the complete code.

HelloCenteredMeasured.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class HelloCenteredMeasured: Form

public static void Main()
Application.Run(new HelloCenteredMeasured()) ;
public HelloCenteredMeasured ()
Text = "Hello Centered Using MeasureString";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ResizeRedraw = true;
protected override void OnPaint (PaintEventArgs pea)
Graphics grfx = pea.Graphics;
string str = "Hello, world!";

SizeF sizefText = grfx.MeasureString(str, Font) ;

grfx.DrawString(str, Font, new SolidBrush (ForeColor),
(ClientSize.Width - sizefText.Width) / 2,
(ClientSize.Height - sizefText.Height) / 2);

}
Text in a Rectangle

We've already looked at two versions of the DrawString method. There are six in total:

Graﬁhics Class DrawStrini Methods

void DrawString(string str, Font font, Brush brush, PointF ptf)

void DrawString(string str, Font font, Brush brush, float x, float y)

void DrawString(string str, Font font, Brush brush, RectangleF rectf)

void DrawString(string str, Font font, Brush brush, PointF ptf,
StringFormat sf)

void DrawString(string str, Font font, Brush brush, float x, float vy,
StringFormat sf)

void DrawString(string str, Font font, Brush brush, RectangleF rectf,

StringFormat sf)

As you can see, the first three arguments are always the same. The only differences are whether
you specify coordinates using a PointF structure, two float values, or a RectangleF and whether you
include a StringFormat argument.

Whether you use a PointF structure or two float values is a matter of personal preference. The two
methods have identical functionality. Use whichever is currently convenient in your program.

But the RectangleF version is a little different. The DrawString method confines the text to the
rectangle, and the optional StringFormat argument governs how the text is positioned within the
rectangle. For example, if ClientRectangle is passed to the DrawString function and the Alignment
and LineAlignment properties of StringFormat are both set to StringAlignment.Center, the text is
centered within the client area, as the following program demonstrates.

HelloCenteredRectangle.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class HelloCenteredRectangle: Form

{

public static void Main()

{

Application.Run(new HelloCenteredRectangle()) ;

}

public HelloCenteredRectangle ()

Text = "Hello Centered Using Rectangle";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ResizeRedraw = true;

}

protected override void OnPaint (PaintEventArgs pea)

{
Graphics grfx = pea.Graphics;

StringFormat strfmt = new StringFormat () ;

strfmt.Alignment StringAlignment.Center;

strfmt.LineAlignment = StringAlignment.Center;

grfx.DrawString("Hello, world!", Font, new
SolidBrush (ForeColor) ,

ClientRectangle, strfmt) ;

}

The option to specify a rectangle rather than a single coordinate point for positioning text may set
you to wondering. Do you suppose DrawString might be able to wrap text within the rectangle?

There's only one way to find out. Let's replace that little text string we've been using with something
more substantial—the first paragraph of Mark Twain's The Adventures of Huckleberry Finn comes to
mind as a reasonable example—and see what happens.

HuckleberryFinn.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class HuckleberryFinn: Form

{

public static void Main()

{

Application.Run(new HuckleberryFinn()) ;

}

public HuckleberryFinn ()
Text = "\"The Adventures of Huckleberry Finn\"";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ResizeRedraw = true;

}

protected override void OnPaint (PaintEventArgs pea)

pea.Graphics.DrawString(
"You don't know about me, without you " +
"have read a book by the name of \"The " +

"Adventures of Tom Sawyer,\" but that " +

"ain't no matter. That book was made by " +
"Mr. Mark Twain, and he told the truth, " +
"mainly. There was things which he " +
"stretched, but mainly he told the truth. " +
"That is nothing. I never seen anybody " +
"but lied, one time or another, without " +

"it was Aunt Polly, or the widow, or " +

"maybe Mary. Aunt Polly\x2014Tom's Aunt " +
"Polly, she is\x20l4and Mary, and the Widow " +
"Douglas, 1is all told about in that book" +
"\x2014which is mostly a true book; with " +
"some stretchers, as I said before.",

Font, new SolidBrush (ForeColor), ClientRectangle);

}

Notice the "\x2014" characters in the text string. That's the Unicode character code for an em dash,
which is the long dash that's often used—perhaps overused by some writers—to separate clauses in
a sentence. The DrawString call in this program doesn't need a StringFormat argument because
we're only interested in displaying the text normally.

And sure enough, DrawString nicely formats the text to fit within the client area:

[The Adventures of Ty i (=] |
“Vou don't know shout ma, without you hewe read & book by
the name of "The Adverteres of Tom Seweeor® bul thet sinY
no mater, That book was mada by b Mask Teain, and he
Tk this euth, msinky Thite was thinigs which ke sinatched
byt evsin by b S0k the inuth That iz m'j"'\:'\g | nerved ceen
aryboch b lied. one ime or another, without & was Al
Pally, ar the widdw, a1 maybe Many. Aurt Pally-Tom's Aum
Pally. she 15 -and kary, and the Widow Douglas, 15 all 1cld
about in $het book-winch 15 masthy & true book, with some
siretchars. as | soed bedore

What DrawString doesn't do (and we can hardly expect it to) is give us a couple scroll bars if the
client area isn't big enough.

But that's OK. We'll find out how to do scroll bars in the next chapter.

Chapter 4: An Exercise in Text Output

Overview

The client area of a form is sometimes referred to as the program's presentation area. Here is where
you present to the user your program's look and feel, its personality and idiosyncrasies, its virtues
and character flaws. The appearance of a program's client area is, of course, highly dependent on
what the program does. Some programs—particularly those that serve as front ends for distributed
applications—may consist entirely of child window controls such as buttons and edit fields. Others
may do all their own drawing, keyboard input, and mouse processing within the client area. And
some programs—Iike the ones in this chapter—may simply display information.

Yet the simple display of information often requires some user interaction. This chapter discusses
not only the techniques of formatting text into nice neat columns but also the ways of enabling and
using those wonderful user-input devices known as scroll bars.

System Information

When | encounter a new operating system or a development environment like Windows Forms, |
often write programs that explore the system itself. Writing programs that do nothing but display
information (like the FormSize program in Chapter 3) gives me an opportunity to find out about the
system while learning to code for it at the same time.

The Systeminformation class in the System.Windows.Forms namespace contains (at last count) 60
static read-only properties that reveal certain aspects of the particular computer on which your
application is running and certain metrics the system uses to display items on the desktop and in
your program. Systeminformation tells you the number of buttons on the user's mouse, the size of
icons on the desktop, and the height of the form's caption bar. It also indicates whether the computer
is connected to a network and the name of the user's domain. This information is returned in a
variety of data types—int, bool, string, Size, Rectangle—and a couple enumerations.

My mission in this chapter is to create a program that displays this information in a manner that is
convenient to peruse. Because you'll probably consult this program fairly often, doing a good job will
be worth the extra effort.

Spacing Lines of Text

As you saw in Chapter 3, DrawString properly spaces multiple lines of text that are separated by line
feed characters, and it also wraps text in a rectangle. What's usually more convenient in a program
that displays multiple lines of text in columns, however, is to call DrawString for each line of each
column separately. That means specifying a coordinate point in DrawString that indicates exactly
where each text string goes.

In Chapter 3, | introduced the MeasureString method of the Graphics class. That method gives us a
height of a character string. Although you can use this height for spacing successive lines of text, it's
not quite suitable for that purpose. For performing line spacing that's consistent with the word-
wrapping facility of DrawString, you should use a value that's a little different than the height returned
from MeasureString. This subject is a bit confusing because the properties and methods that provide
you with proper line-spacing values have names that seem to refer to the height of the font
characters! The most generalized method for obtaining a line-spacing value is this GetHeight method
of the Font class:

float cySpace = font.GetHeight (grfx) ;

| use a variable name prefix of cy to mean a count in the y direction, that is, a height. In this
statement, font is an object of type Font and grfx is an object of type Graphics. | refer to this as the
most generalized method because the Graphics argument allows it to be used for both the video
display and the printer. The method also takes into account any transforms that are in effect.
(Transforms allow you to draw in units other than pixels, as I'll explain in Chapter 7.) Notice that the
return value is a float. With some fonts, the value returned from GetHeight is the same as the height
associated with MeasureString. For most fonts, however, GetHeight is somewhat smaller.

Another version of the GetHeight method gives you a line-spacing value that is suitable only for the
video display and not the printer. You should use this method only when you're drawing on the video
display and when no transforms are in effect:

float cySpace = font.GetHeight () ;

If you round that float value up to the next highest integer, you'll obtain the same value that's
returned from the Height property of the Font class:

int cySpace = font.Height;

If you're drawing on the video display in units of pixels (which is the default), the Height property of
Font is probably the best choice.

When you use the GetHeight method or Height property with the default font associated with the
form, you can just specify the form's Font property as the Font object:

float cySpace = Font.GetHeight () ;

int cySpace = Font.Height;

Notice the uppercase Font in these statements to refer to the Font property. The Form class includes
a protected read/write property named FontHeight (inherited from Control) that returns an int value

consistent with the Font.Height property. Although in theory you can set this property, doing so
doesn't result in the form's default font changing size.

Property Values

Here's a first—and woefully incomplete—stab at writing a program to display SystemInformation
properties.

SysInfoFirstTry.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoFirstTry: Form

{

public static void Main()

{

Application.Run(new SysInfoFirstTry()) ;

}

public SysInfoFirstTry ()
Text = "System Information: First Try";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

}

protected override void OnPaint (PaintEventArgs pea)
Graphics grfx = pea.Graphics;
Brush brush = new SolidBrush (ForeColor) ;

int Y = 0;

grfx.DrawString ("ArrangeDirection: " +
SystemInformation.ArrangeDirection,

Font, brush, 0, vy);

grfx.DrawString ("ArrangeStartingPosition: " +
SystemInformation.ArrangeStartingPosition,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("BootMode: " +
SystemInformation.BootMode,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("Border3DSize: " +
SystemInformation.Border3DSize,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("BorderSize: " +
SystemInformation.BorderSize,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("CaptionButtonSize: " +
SystemInformation.CaptionButtonSize,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("CaptionHeight: " +
SystemInformation.CaptionHeight,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("ComputerName: " +
SystemInformation.ComputerName,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("CursorSize: " +
SystemInformation.CursorSize,

Font, brush, 0, y += Font.Height) ;

grfx.DrawString ("DbcsEnabled: " +
SystemInformation.DbcsEnabled,

Font, brush, 0, y += Font.Height) ;

}

Well, | gave up after 10 items, not because | got tired of typing, but because | realized that this
wasn't the best approach and that I'd probably need to retype the items in some other, more
generalized format. As far as it goes, though, it's not bad for a first try:

™ system Information: it —|o] x|

ArrangeDirection: Right
ArrangeStatingFosition: Hide
BootMode: Marmal

BorderiDSize: Pwidth=2, Height=2}
BorderSize: Ptidth=1. Height=1}
CaptionButtonZize: {#Width=23. Height=23}
CaptionHeight: 24

ComputerMame: CHARLESFETZOLD
CursarSize: {Width=32. Height=32}
DbcsEnabled: False

Let's take a look at how this program works.

Each line of output is a single call to DrawString. The first argument is the text name of the property
concatenated with the property value. The Systeminformation property is automatically converted
into a string for the concatenation. What happens behind the scenes is a call to the ToString method
implemented by the property's return value. In particular, notice that those properties returning Size
values get nicely formatted to indicate the Width and Height values. The proper line spacing is
handled within the DrawString call. Each DrawString call after the first has a y coordinate value of

y += Font.Height

thus placing it one line lower in the client area.
Formatting into Columns

Other than its incompleteness, | think the most glaring problem with SysInfoFirstTry is the formatting.
The output of a program like this would be easier to read if the property values were formatted into a
second column. So let's tackle that problem before continuing onward.

Of the 10 properties that SysinfoFirstTry displays, the widest property name seems to be
ArrangeStartingPosition. Before displaying any information, this program calls MeasureString with
that string (plus a space so that the two columns won't touch).

SysInfoColumns.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoColumns: Form

{
public static void Main()
{
Application.Run(new SysInfoColumns()) ;
}

public SysInfoColumns ()

{

}

Text

= "System Information: Columns";

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

Brush brush = new SolidBrush (ForeColor) ;

SizeF sizef;

float cxCol, y = 0;

int cySpace;

sizef = grfx.MeasureString ("ArrangeStartingPosition ", Font) ;
cxCol = gizef .Width;

cySpace = Font.Height;

grfx.
grfx.

y +=

grfx.
grfx.

grfx.
grfx.

grfx.

grfx

grfx.
grfx.

grfx.
grfx.

DrawString ("ArrangeDirection", Font, brush, 0, v);

DrawString (SystemInformation.ArrangeDirection.ToString(),
Font, brush, cxCol, vy);

cySpace;

DrawString ("ArrangeStartingPosition", Font, brush, 0, vy);
DrawString (
SystemInformation.ArrangeStartingPosition.ToString(),
Font, brush, cxCol, Vy);

cySpace;

DrawString ("BootMode", Font, brush, 0, y);

DrawString (SystemInformation.BootMode.ToString(),
Font, brush, cxCol, vy);

cySpace;

DrawString ("Border3DSize", Font, brush, 0, y);

.DrawString (SystemInformation.Border3DSize.ToString(),

Font, brush, cxCol, y);
cySpace;

DrawString ("BorderSize", Font, brush, 0, vy);

DrawString (SystemInformation.BorderSize.ToString(),
Font, brush, cxCol, vy);

cySpace;

DrawString ("CaptionButtonSize", Font, brush, 0, vy);
DrawString (SystemInformation.CaptionButtonSize.ToString(),

Font, brush, cxCol, y);

Yy += cySpace;

grfx.DrawString ("CaptionHeight", Font, brush, 0, y);

grfx.DrawString (SystemInformation.CaptionHeight.ToString(),
Font, brush, cxCol, vy);

Yy += cySpace;

grfx.DrawString ("ComputerName", Font, brush, 0, y);

grfx.DrawString (SystemInformation.ComputerName,
Font, brush, cxCol, vy);

Yy += cySpace;

grfx.DrawString ("CursorSize", Font, brush, 0, vy);

grfx.DrawString (SystemInformation.CursorSize.ToString(),
Font, brush, cxCol, vy);

Yy += cySpace;

grfx.DrawString ("DbcsEnabled", Font, brush, 0, vy);
grfx.DrawString (SystemInformation.DbcsEnabled.ToString(),
Font, brush, cxCol, vy);

}

The program saves the width of the string in the variable cxCol and uses that to position the second
column. The program also saves the Height property of the form's Font object in a variable named
cySpace and uses that to space successive lines of text. The coordinate positions passed to the
DrawString method are float values.

Now each line of output requires two calls to DrawString, the first displaying the property name and

the second displaying the property value. All but one of these property values now require explicit
ToString calls to convert the values to strings. Here's what it looks like:

EESvstem Information: Coll = @] il

ArrangeDirection Right
ArrangestartingPosition Hide

Boothode Normal

Border3DSize {wWidth=2, Height=2}
BorderSize {width=1. Height=1}
CaptionButton Size {wWidth=23. Height=23}
CaptionHeight 24

ComputerMame CHARLESPETZ0LD
CursorSize {wWidth=32. Height=32}
DbesEnabled Falze

Everything Is an Object

In a program like SysInfoColumns, the code that displays the lines of text should probably be in a for
loop. The actual information should probably be stored in an array of some sort, and perhaps
isolated from the actual text-output code so that it could be used in other programs. In a C or C++
program, for example, you might put the information in an array of structures in a header file.
However, there are no header files in C#. Instead, remember the magic rule for C#: Everything is an
object—or at least a class with static methods and properties.

Here's one possible implementation of a class that contains the text strings we want to display and
provides some information about them.

SysInfoStrings.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoStrings

{
public static string[] Labels
{
get
{

return new stringl]

{
"ArrangeDirection",
"ArrangeStartingPosition",
"BootMode",
"Border3DSize",
"BorderSize",
"CaptionButtonSize",
"CaptionHeight",
"ComputerName",
"CursorSize",
"DbcsEnabled",
"DebugOs™",
"DoubleClickSize",
"DoubleClickTime",
"DragFullWindows",
"DragSize",
"FixedFrameBorderSize",
"FrameBorderSize",
"HighContrast",
"HorizontalScrollBarArrowWidth",
"HorizontalScrollBarHeight",
"HorizontalScrollBarThumbWwidth",
"IconSize",

"IconSpacingSize",

"KanjiWindowHeight",
"MaxWindowTrackSize",
"MenuButtonSize",
"MenuCheckSize",

"MenuFont",

"MenuHeight",
"MidEastEnabled",
"MinimizedWindowSize",
"MinimizedWindowSpacingSize",
"MinimumWindowSize",
"MinWindowTrackSize",
"MonitorCount",
"MonitorsSameDisplayFormat",
"MouseButtons",
"MouseButtonsSwapped",
"MousePresent",
"MouseWheelPresent",
"MouseWheelScrollLines",
"NativeMouseWheelSupport",
"Network",

"PenWindows",
"PrimaryMonitorMaximizedWindowSize",
"PrimaryMonitorSize",
"RightAlignedMenus",

"Secure",

"ShowSounds",

"SmallIconSize",
"ToolWindowCaptionButtonSize",
"ToolWindowCaptionHeight",
"UserDomainName" ,
"UserInteractive",

"UserName",
"VerticalScrollBarArrowHeight",
"VerticalScrollBarThumbHeight",
"VerticalScrollBarWidth",
"VirtualScreen",

"WorkingArea",

}

public static stringl[] Values

{

get

{

return new stringl]

{

SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.

SystemInformation.

ArrangeDirection.ToString() ,
ArrangeStartingPosition.ToString(),
BootMode.ToString() ,
Border3DSize.ToString(),
BorderSize.ToString(),
CaptionButtonSize.ToString(),
CaptionHeight.ToString(),
ComputerName,
CursorSize.ToString(),
DbcsEnabled.ToString(),
DebugOS.ToString (),
DoubleClickSize.ToString(),
DoubleClickTime.ToString(),
DragFullWindows.ToString(),
DragSize.ToString(),
FixedFrameBorderSize.ToString(),
FrameBorderSize.ToString(),

HighContrast.ToString(),

HorizontalScrollBarArrowWidth.ToString(),

HorizontalScrollBarHeight.ToString(),

HorizontalScrollBarThumbWidth.ToString(),

IconSize.ToString(),
IconSpacingSize.ToString(),
KanjiWindowHeight .ToString(),
MaxWindowTrackSize.ToString (),
MenuButtonSize.ToString(),
MenuCheckSize.ToString(),
MenuFont.ToString(),
MenuHeight.ToString() ,
MidEastEnabled.ToString(),
MinimizedWindowSize.ToString(),
MinimizedWindowSpacingSize.ToString(),
MinimumWindowSize.ToString(),
MinWindowTrackSize.ToString (),
MonitorCount.ToString (),
MonitorsSameDisplayFormat.ToString(),
MouseButtons.ToString (),
MouseButtonsSwapped.ToString() ,
MousePresent.ToString (),
MouseWheelPresent.ToString(),
MouseWheelScrollLines.ToString(),
NativeMouseWheelSupport.ToString(),
Network.ToString (),

PenWindows.ToString() ,

SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.
SystemInformation.

SystemInformation.

SystemInformation.PrimaryMonitorMaximizedWindowSize.ToString(),

PrimaryMonitorSize.ToString(),
RightAlignedMenus.ToString() ,
Secure.ToString(),

ShowSounds .ToString (),
SmallIconSize.ToString(),
ToolWindowCaptionButtonSize.ToString(),
ToolWindowCaptionHeight .ToString(),
UserDomainName,
UserInteractive.ToString(),

UserName,
VerticalScrollBarArrowHeight.ToString(),
VerticalScrollBarThumbHeight .ToString(),
VerticalScrollBarWidth.ToString(),
VirtualScreen.ToString(),

WorkingArea.ToString (),

}i

}

public static int Count

{

get

{

return Labels.Length;

}

public static float MaxLabelWidth (Graphics grfx, Font font)
{
return MaxWidth (Labels, grfx, font);
}
public static float MaxValueWidth (Graphics grfx, Font font)

{

return MaxWidth (Values, grfx, font);

}

static float MaxWidth(stringl[]

{

astr, Graphics grfx, Font font)

float fMax = 0;

foreach (string str in astr)

fMax = Math.Max(fMax, grfx.MeasureString(str, font) .Width);

return fMax;

This class has three read-only static properties. The first, Labels, returns an array of strings that are
the names of the Systeminformation properties.

The second property is named Values, and it also returns an array of character strings, each one
corresponding to an element of the Labels array. However, in reality, the Values array consists of a
series of expressions involving Systeminformation properties, each of which evaluates to a string.
Each expression is evaluated at the time the property is obtained. You'll recognize the use of the
ToString method to convert each item to a string.

The third property returns the number of items in the Labels array, which should (unless | messed
up) also be the number of items in the Values array.

In addition, SysinfoStrings has two public methods: MaxLabelWidth and MaxValueWidth. These two
methods require arguments of a Graphics object and a Font object and simply return the largest
width reported by MeasureString for the two arrays. They both rely on a private method named
MaxWidth. That method makes use of the static Math.Max method to obtain the maximum of two
values. (The Math class in the System namespace is a collection of static methods that implement
various mathematics functions. Appendix B is devoted to the Math class and other aspects of
working with numbers.)

Listing the System Information

| created the SysInfoStrings.cs file in a project named SysInfoList, which also includes the
SyslInfolList.cs file shown here. This program displays the system information items provided by the
SysinfoStrings class.

SysInfoList.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfolist: Form

{

readonly float cxCol;

readonly int cySpace;

public static void Main()

{

Application.Run(new SysInfolist()) ;

}

public SysInfolList ()

{

Text = "System Information: List";

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

Graphics grfx = CreateGraphics();

SizeF sizef = grfx.MeasureString(" ", Font);

cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth (grfx, Font) ;

grfx.Dispose() ;

cySpace = Font.Height;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;
Brush brush = new SolidBrush (ForeColor) ;
int iCount = SysInfoStrings.Count;

string[] astrLabels = SysInfoStrings.Labels;

string[] astrValues = SysInfoStrings.Values;

for (int 1 = 0; 1 < iCount; i++)
grfx.DrawString (astrLabels[i], Font, brush,
0, 1 * cySpace);
grfx.DrawString (astrValues[i], Font, brush,

cxCol, i * cySpace);

}

This program attempts to be somewhat efficient by calculating the cxCol and cySpace values only
once during the form's constructor, saving them as fields that the OnPaint method uses later.
However, this calculation requires a call to MeasureString, and MeasureString requires a Graphics
object. How do we get such an object outside of a Paint event or an OnPaint method call?

The Control class implements (and the Form class inherits) a CreateGraphics method that lets you
obtain a Graphics object at any time:

Control Methods (selection)

Graphics CreateGraphics ()

You can use this Graphics object to obtain information—as the SysInfoList program does—or to
draw on the program'’s client area. (However, don't bother drawing during the constructor because
the form isn't even displayed at that time.)

You must dispose of a Graphics object obtained from CreateGraphics before returning control from
the constructor or the event in which it is created. You do this by calling the Dispose method:

Graphics Methods (selection)

void Dispose ()

After SysinfoList obtains a Graphics object from CreateGraphics, it calls MeasureString to obtain the
width of a single space character. It adds this width to the MaxLabelWidth value returned from the
SysinfoStrings class and saves that result as cxCol. A simple for loop displays the pair of strings
during the OnPaint method.

And we're definitely making progress:

I8 system Information: List P] |
AsmangeDirection aght
ArangeStatingFasition
Baoaothade
BorderIDSize
BorderSize
CaphignButior

Sire

{Width=32, Height=3Z)

DbcsEnablad Faleg

DebugOs Falsg
DoubleClickSize {Widthsd, Hasght=4)
DoubleClhickTime

DragFulliirdaws False

DragSize {Widte=d, Heaght=4)
FredFrameBordesSic e {¥idth=3, Heaght=3)
FrameBordeSize {Width=d Height=4)
HighCaontrast False

However, depending on certain settings you've made regarding your video display resolution (an
issue I'll discuss in Chapter 9), you may or may not be able to resize the form to be large enough to
view all 60 values. If you can't, you'll find this program very frustrating to use. There's no way to bring
the later values into view.

And even if there were only 20 or 25 values, you might still face a problem. Perhaps the worst
mistake you can make in Windows programming is to assume that a certain amount of text is visible
on a particular user's machine. Users—particularly those whose eyesight isn't too good—can set
large font sizes and thus reduce the amount of text that is visible on the screen. Your Windows
programs should be usable at just about any screen resolution and font size.

We need to display more text than can fit on the screen, but that's nothing a scroll bar can't fix.
Windows Forms and Scroll Bars

Scroll bars are an important part of any graphical environment. For the user, they are easy to use
and provide excellent visual feedback. You can use scroll bars whenever you need to display
anything—text, graphics, a spreadsheet, database records, pictures, Web pages—that requires
more space than is available in the program's client area.

Scroll bars are oriented either vertically, for up-and-down movement, or horizontally, for back-and-
forth movement. Clicking the arrows at either end of a scroll bar causes the document to scroll by a
small amount—generally a line of text for a vertical scroll bar. Clicking the area between the arrows
causes the document to scroll by a larger amount. A scroll box (also sometimes called the scroll bar
thumb) travels the length of the scroll bar to indicate the approximate location of the material shown
in the client area in relation to the entire content. You can drag the scroll box with the mouse to move
to a particular location within the content. A relatively recent innovation in scroll bars makes the size
of the scroll box variable to indicate the relative proportion of the content currently displayed in the
client area.

You can add scroll bars to a form in one of two ways. In the first approach, you create controls of
type VScrollBar and HScrollBar and position them anywhere in the client area. These scroll bar
controls have settable properties that affect the appearance and functionality of the scroll bars. A
form is notified when the user manipulates a scroll bar control through events. I'll be putting scroll bar
controls to work in Chapter 12.

The second approach to adding scroll bars to a form is easier than creating scroll bar controls. This
approach, often called the auto-scroll approach, is the one I'll be demonstrating in this chapter.

The auto-scroll facility is primarily intended for programs that put controls (such as buttons and text
boxes) on the form's client area. The program enables auto-scroll by setting the AutoScroll property
of the form to true. If the client area is too small to allow all the controls to be visible at once, scroll
bars appear (as if by magic) that allow the user to bring the other controls into view.

It's also possible to enable auto-scroll without using any controls. I'll show you both approaches, and
you can decide which you like best.

Scrolling a Panel Control

The .NET Framework has lots of interesting controls, ranging from buttons, list boxes, and text boxes
to calendars, tree views, and data grids. The panel control, however, is not one of these interesting
controls. It has no visual appearance to speak of and not much of a user interface. Panels are

generally used for architectural purposes to group other controls against a background. Panels are
also useful when you need a control but don't want it to do very much.

What I've done in the following SysinfoPanel program is to create a panel control that is the size of
the information | want to display—that is, a panel control large enough to display all 60 lines of
system-information text. | put that control on the client area of the form and let auto-scrolling do the
rest.

SysInfoPanel.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoPanel: Form
{
readonly float cxCol;

readonly int cySpace;

public static void Main()

{

Application.Run(new SysInfoPanel());

}

public SysInfoPanel ()
Text = "System Information: Panel";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

AutoScroll = true;

Graphics grfx = CreateGraphics() ;
SizeF sizef = grfx.MeasureString(" ", Font);
cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth (grfx,
Font) ;
cySpace = Font.Height;
// Create a panel.
Panel panel = new Panel () ;
panel.Parent = this;
panel.Paint += new PaintEventHandler (PanelOnPaint) ;
panel.Location = Point.Empty;
panel.Size = new Size(
(int) Math.Ceiling(cxCol +
SysInfoStrings.MaxValueWidth (grfx,
Font)),

(int) Math.Ceiling(cySpace * SysInfoStrings.Count)) ;

grfx.Dispose() ;

void PanelOnPaint (object obj, PaintEventArgs pea)

Graphics grfx = pea.Graphics;
Brush brush = new SolidBrush (ForeColor) ;
int iCount = SysInfoStrings.Count;

string[] astrLabels = SysInfoStrings.Labels;

string[] astrValues = SysInfoStrings.Values;

for (int 1 = 0; i < iCount; i++)
grfx.DrawString (astrLabels[i], Font, brush,
0, 1 * cySpace);
grfx.DrawString (astrValues[i], Font, brush,

cxCol, i * cySpace) ;

}

This program also requires the SysInfoStrings.cs file. A good way to share files among projects in
Visual C# .NET is to use the Add Existing Item menu item. (You'll find this entry on the Project menu;
you can also select it by right-clicking the project name in Solution Explorer and selecting Add.) You
select the existing file you need in the project, and instead of pressing the Open button, you click the
arrow next to Open and select Link File. Doing this avoids making a copy of the file and also
prevents problems that result when you change one copy but not the other.

Let's look at the SysinfoPanel constructor. To enable the auto-scroll facility, you must set the
AutoScroll property of the form to true. That's the easy part. Next the program calculates ¢xCol and
cySpace exactly as SyslInfoList did. But before disposing of the Graphics object, the program
proceeds to create the panel

Panel panel = new Panel () ;

I've given this panel the name panel. | want this panel to be located on the surface of the form's
client area. The surface on which a control is located is called the control's parent. All controls must
have a parent. The statement

panel.Parent = this;

assigns the program's form to be the parent of the panel. The keyword this is used in a method or
property to refer to the current instance of the object; here, this refers to the particular Form object
that | created. It's the same as the value passed to Application.Run in Main.

| want to be able to draw on this panel. To do that, | assign an event handler to the panel's Paint
event:
panel.Paint += new PaintEventHandler (PanelOnPaint) ;

| used similar code in Chapter 2 when | installed Paint event handlers for forms that were instantiated
from Form rather than inherited from it. The PanelOnPaint method is in the SysinfoPanel class.

The panel must have a location relative to its parent. The Location property of the Panel class
indicates where the upper left corner of the panel will be positioned. In this program, | want the
panel's upper left corner to be at the point (0, 0) in the client area, which | set with this statement:

panel.Location = Point.Empty;

This statement isn't strictly needed because the location of controls is at point (0, 0) by default.

For this program to work correctly, the panel's size must be set to the dimensions of the output you
want to display:

panel.Size = new Size(
(int) Math.Ceiling(cxCol + SysInfoStrings.MaxValueWidth (grfx, Font)),
(int) Math.Ceiling(cySpace * SysInfoStrings.Count)) ;

The cxCol variable has already been set to the width of the first column plus a space. The call to the
MaxValueWidth method of SysinfoStrings retrieves the maximum width of the Systeminformation
property values. The height of the panel is set equal to the line-spacing value times the number of
lines. | use Math.Ceiling to round each value up to the next highest integer. (An alternative is to
make a SizeF object based on the floating-point width and height, and then use the static
Size.Ceiling method to convert it to a Size object.)

And that's that. The PanelOnPaint method displays the information on the surface of the panel using
exactly the same code as the OnPaint method in the SysinfoList class.

But in this program, whenever the panel is wider than the client area, a horizontal scroll bar will
automatically appear. If the panel is higher than the height of the client area, a vertical scroll bar will
appear at the right of the client area. This happens dynamically: as you change the size of the client
area, the scroll bars will disappear and reappear as needed. The scroll boxes are also dynamically
sized to reflect the proportion of the content that is visible. For example, the height of the vertical
scroll box is based on the ratio of the client area height to the height of the panel:

B 5 ystem Information: Pane =0 =]
AmangeDiection Fight -
ArmangeStatingPasition Hide —
Bootiiode MNaomal

E {¥¥idth=2. Haight=2}

E 7 {W¥idth=1. Haight=1} =l
CaptionButionSize {Wvicth=2d, Hpughes23)

Cap! Haught 4

Compulesiame CHARLESPETIOLD
CuarSizre {ovidth=32, Heaghae3Z}
DbeciE lad Falga

DebugC False

DoublaClektire {vidth=4. Heughi=-4}
DoubleChakTime s00

DiragFullindows False

DiragSize {W¥idth=4. Heught=4}
FuadFramaBorderSize fWvidih=1, Hewghi=3} st
1 | b e

Because controls generally adopt the background colors of their parents and because panels are
such bland controls to begin with, it's hard to see that there's really another control here. To give
yourself a better idea of what's going on in this program, you may want to explicitly give the panel a
different background color:

panel.BackColor = Color.Honeydew;

When you then make the client area of the program larger than the panel—in which case, the scroll
bars disappear—you can see the honeydew panel against the (probably white) background of the
form. Another way to see the panel is to set the AutoScrollMargin property of the form in the
constructor:

AutoScrollMargin = new Size(10, 10);

You'll see a 10-pixel area on the right side of the panel when you scroll all the way to the right and on
the bottom of the panel when you scroll all the way down. That's the background of the form's client
area.

I mentioned earlier that a more general-purpose approach to scrolling involves the use of scroll bar
controls. Scroll bars created as controls have properties named Minimum and Maximum that define
the numeric values associated with the extreme positions of the scroll box and thus the range of
values that the scroll bar can assume. When using the auto-scroll facility, however, you don't have
access to these settings. The range is implied by the difference between the width and height of the
client area less the width and height of the area occupied by the controls (or in our case, the single
Panel control) plus the AutoScrollMargin less the width and height of the client area.

Scroll bars created as controls generate an event named Scroll when the user manipulates the scroll
bar. There is no such event associated with auto-scroll—at least not that an application has access
to.

Although the SysInfoPanel program isn't responding directly to Scroll events, it's definitely
responding to Paint events from the panel. When a program paints on a control, it's really painting
only on the visible area of the control. Every time the user scrolls, the panel generates a Paint event
because some previously unseen area has been pulled into view.

The Heritage of ScrollableControl

What's going on behind the scenes? As | explained in Chapter 2, among the many classes that Form
descends from is the ScrollableControl class, and that's where auto-scroll is implemented. We've
already encountered two of the following six properties of ScrollableControl that are also inherited by
Form.

ScrollableControl Properties (selection)

‘ Type ‘ Property | Accessibility ‘ Description

‘ bool ‘ AutoScroll | get/set ‘ Enables auto-scroll

bool HScroll get/set Indicates the existence of horizontal
scroll

‘ bool ‘ VScroll | get/set ‘ Indicates the existence of vertical scroll

Size AutoScrollMargin get/set Sets the margin around right and bottom
of controls

‘ Size ‘ AutoScrollMinSize | get/set ‘ Defines the minimum scrolling area

‘ Point ‘AutoScrollPosition | get/set ‘ Indicates the scroll bar position

You can determine whether a particular scroll bar is currently visible by using the HScroll and VScroll
properties. (Supposedly, you can also use these properties to hide a scroll bar that would normally
be visible, but that facility doesn't seem to work very well.) I'll be discussing AutoScrolIMinSize in
more detail shortly.

AutoScrollPosition provides the current scrolling position in negative coordinates. In the
SysInfoPanel program, the value of AutoScrollPosition is the same as the value of the panel's
Location property. However, there's an inconsistency in the get and set accessors of
AutoScrollPosition. When you read the property, the coordinates are always less than or equal to 0.
When you set AutoScrollPosition, however, the coordinates must be positive. I'll have an example of
this anomaly in the SysinfoKeyboard program in Chapter 6 when | add a keyboard interface to the
program.

The ScrollableControl class obviously has access to the normal properties and events of the scroll
bars; the class is hiding these items from you in order to provide a higher-level interface. As you
manipulate the scroll bar in the SysinfoPanel program, code implemented in ScrollableControl is
obviously changing the Location property of the panel control to negative values. (It's easy to confirm
this change by adding an event handler for the panel's Move event.) Negative Location values mean
that the upper left corner of the panel is being positioned above and to the left of the upper left
corner of the client area. That's why the contents of the panel seem to move around within the form.

We'll explore auto-scroll more in later chapters as we begin creating more controls. Now let's see if
we can persuade auto-scroll to work without creating any child controls at all.

Scrolling Without Controls

The key to enabling auto-scroll without creating child controls is to set the AutoScrolIMinSize
property to something other than the default (0, 0). Normally, the scrolling area is based on the
locations and sizes of controls on the client area. However, AutoScrollMinSize sets a minimum
scrolling area regardless of the presence of any controls. Of course, you must also set the AutoScroll
property to frue.

Typically, you set AutoScrollMinSize to the dimensions necessary to display all the program's output.
In the system-information programs, AutoScrolIMinSize should be set to a size sufficient to

encompass the full width and height of all 60 lines of information. That's the same size as the panel
in the SyslInfoPanel program.

The SysInfoScroll program is virtually identical in functionality to SysinfoPanel but enables auto-
scroll without any child controls.
SysInfoScroll.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoScroll: Form
{
readonly float cxCol;

readonly int cySpace;

public static void Main()

{

Application.Run(new SysInfoScroll()) ;

}

public SysInfoScroll ()

{
Text = "System Information: Scroll";
BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

Graphics grfx = CreateGraphics();
SizeF sizef = grfx.MeasureString(" ", Font);

cxCol = sizef.Width + SysInfoStrings.MaxLabelWidth (grfx,

Font) ;

cySpace = Font.Height;

// Set auto-scroll properties.

AutoScroll = true;
AutoScrollMinSize = new Size(
(int) Math.Ceiling(cxCol +

SysInfoStrings.MaxValueWidth (grfx,
Font)),

(int) Math.Ceiling(cySpace * SysInfoStrings.Count)) ;

grfx.Dispose() ;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

Brush brush = new SolidBrush (ForeColor) ;
int iCount = SysInfoStrings.Count;
string[] astrLabels = SysInfoStrings.Labels;

string[] astrValues = SysInfoStrings.Values;

Point pt = AutoScrollPosition;
for (int 1 = 0; 1 < iCount; i++)

grfx.DrawString (astrLabels[i], Font, brush,
pt.X, pt.Y + i * cySpace);

grfx.DrawString (astrValues[i], Font, brush,

pt.X + cxCol, pt.Y + i * cySpace);

}

SyslInfoPanel put a panel control on its client area. In a program such as SysInfoScroll, you might
wonder whether the scroll bars are also located on top of the client area. They are not! The client
area is actually made smaller to accommodate the scroll bars. Sometimes the width of the client area
is just a little larger than AutoScrolIMinSize.Width. If a vertical scroll bar is required, however, the
width of the client area must be narrowed by the width of the scroll bar; that change could then make
the client area width smaller than AutoScrollMinSize.Width and thus also require a horizontal scroll
bar.

By setting AutoScrollMinSize, you are not defining something akin to a virtual drawing area.
Regardless of how large you make AutoScroliIMinSize, when you handle the OnPaint method, you're
still drawing within the confines of the physical client area. Indeed, that client area is probably even
smaller than usual because of the presence of the scroll bars.

In SysInfoPanel, any manipulation of the scroll bars resulted in the uncovering of previously unseen
areas of the panel control and thus generated a Paint event. That program did all its drawing on a
panel control that was large enough for all the program's output. Scrolling relocated the panel
relative to the program's client area. But the coordinates of the output on the panel remained the
same. For example, the second column of the third row of text output was always at the location
(cxCol, 2 * cySpace).

SyslInfoScroll responds to changes in the scroll bars by overriding the form's OnPaint method.
However, this program is drawing directly on its client area and not on some control that's being
shifted around. The client area isn't large enough for the program's output, and the Graphics object
obtained during the OnPaint method knows nothing about auto-scroll.

What this means is that the OnPaint method of the SysInfoScroll program (or any program that
implements auto-scroll and draws directly on its client area) must adjust the coordinates of any
drawing function it calls based on the AutoScrollPosition property. As you can see, the OnPaint
method in this program gets AutoScrollPosition, saves it in a Point variable named pt, and adds the
values to the coordinates in the DrawString calls. Keep in mind that the coordinates returned by
AutoScrollPosition are negative. If you've scrolled down 30 pixels (for example), the first DrawString
call for the first line of text uses the coordinates (0, —30), which is above the client area and not
visible.

This method of repainting the client area may start to sound inefficient: The program is drawing 60
lines of text every time it needs to repaint, yet usually only a small fraction of those calls result in
something being painted on the client area. I'll take on the efficiency issue later in this chapter.

Actual Numbers

Let's pause for a moment and try to get a better feel for what's going on by looking at actual
numbers. Just keep in mind that some of these numbers are based on my system settings and may
not be exactly the same numbers you're seeing. (In particular, my video display settings include
Large Fonts. This setting affects some of the items I'll be discussing.)

Suppose your program needs a client area of 400 pixels wide by 1600 pixels high. Here's how you
set AutoScroll and AutoScrolIMinSize in the form's constructor:

AutoScroll = true;

AutoScrollMinSize = new Size (400, 1600) ;

My experience is that forms are created with a default size of 300 by 300 pixels. How large is the
client area in that case? Well, we now have two programs that let you scroll through the
Systeminformation properties, so you can figure out how large the client area is. | see a
Systeminformation. CaptionHeight value of 24. That's the height of the caption bar. The width of the
normal sizing border is stored in Systeminformation.FrameBorderSize. I'm seeing 4 pixels for that,
and remember that's 4 pixels on all four sides. So you can calculate the client area width as 300
minus two 4's, or 292. The height of the client area should be 300 minus two 4's minus 24, or 268. (If
you don't trust my math skills, you can verify these values by using the form's ClientSize property.)

Because the client area height of 268 is less than 1600, the program needs a vertical scroll bar. I'm
seeing a value of Systeminformation.VerticalScrollBarWidth of 20 pixels. Thus, the client area width
is reduced to 292 minus 20, or 272 pixels.

That width of 272 is less than 400, so the program needs a horizontal scroll bar as well. The value of
Systeminformation.HorizontalScrollBarHeight is also 20 pixels, thus reducing the height of the client
area to 268 minus 20, or 248 pixels.

The vertical scroll bar is probably set to have a range of values from 0 through 1352, which is the
required height of 1600 minus the actual height of 248. The horizontal scroll bar is probably set to
have a range of values from 0 through 128 (which is 400 minus 272).

The code implemented in ScrollableControl responds to the user clicking the scroll bar or dragging
the scroll box by performing two actions: changing the value of AutoScrollPosition and scrolling the
contents of the client area. AutoScrollPosition is initially set to (0, 0). As the user moves the
horizontal scroll bar, the X property varies between 0 and —128 and the Y property varies from 0
through —1352.

The scrolling of the client area requires the system to copy the contents from one location on the
client area to another. The Win32 API includes functions named ScrollWindow, ScrollWindowEx, and
ScrolIDC that let programs scroll their client areas. Although these functions are not exposed in the
Windows Forms class library, it's obvious that ScrollableControl is using one of them.

When code implemented in the ScrollableControl class scrolls the client area, it can scroll only
what's currently displayed on the screen. Scrolling generally "uncovers" a rectangle in the client
area, making that portion of the client invalid. This invalidation generates a call to the OnPaint

method.

So when you're scrolling the SysinfoPanel or SysinfoScroll program, the OnPaint method really
needs to refresh only a small rectangular subset of the client area. It hardly seems rational that these
programs process the OnPaint call by obtaining and displaying every single line of information.

Let's take care of that problem in two steps.

LISPA ch4 Keeping it green

Don't Be a Pig

Users have a name for a program that isn't as fast as it could be. They say, "This program is a real
pig." It's not nice, but it's a fact of life.

I've already made the system-information program somewhat more efficient by calling the methods
in SysinfoStrings only when the program begins execution and when any of the Systeminformation
items change. The program no longer makes three calls to SysInfoStrings every time it gets a call to
OnPaint.

However, OnPaint is still displaying all 60 lines—and calling DrawString 120 times—every time any
part of the client window is invalidated. On most people's machines, not all 60 lines will even be
visible. Moreover, as | mentioned earlier, vertical scrolling usually uncovers only a line or two of text;
in those cases, OnPaint really needs to redraw only a line or two.

To some extent, Windows itself provides some built-in efficiency. The Graphics object you obtain
during the OnPaint method can paint only on the invalid region of the client area. Something called a
clipping region, which encompasses only the invalid region and doesn't let you draw outside it, is
involved. You saw an example of repainting only the invalid region in the RandomClear program in
Chapter 3. The fact remains, however, that you're still making 120 DrawString calls, and you're still
requiring Windows to check whether a particular DrawString call will or will not fall within the clipping
region.

Fortunately, the ClipRectangle property of the PaintEventArgs class is there to help. The
ClipRectangle property is the smallest rectangle in client area coordinates that encompasses the
invalid region. (As the RandomClear program demonstrated, the invalid region need not be
rectangular.) For personal experimentation, you might insert the line

Console.Writeline (pea.ClipRectangle) ;

in an OnPaint method and play with scrolling and partially covering and then uncovering the form
with other programs.

The SysInfoEfficient program inherits from SysIinfoUpdate and overrides the OnPaint method in that
class with a more efficient version. A couple of fairly simple calculations based on the
AutoScrollPosition property of the form and the ClipRectangle property of PaintEventArgs derive line
index values named iFirst and iLast that are then used in the for loop to display the minimum number
of lines of text required to update the client area.

SysInfoEfficient.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoEfficient: SysInfoUpdate

{

public new static void Main()

{

Application.Run(new SysInfoEfficient());

}

public SysInfoEfficient ()

{

Text = "System Information: Efficient";

protected override void OnPaint (PaintEventArgs pea)
{

Graphics grfx = pea.Graphics;

Brush brush = new SolidBrush (ForeColor) ;

Point pt AutoScrollPosition;

int iFirst = (int) ((pea.ClipRectangle.Top - pt.Y) / cySpace);
int iLast = (int) ((pea.ClipRectangle.Bottom - pt.Y) / cySpace) ;

iLast = Math.Min(iCount - 1, iLast);

for (int i1 = iFirst; 1 <= iLast; i++)

grfx.DrawString (astrLabels[i], Font, brush,

pt.X, pt.Y + i * cySpace);

grfx.DrawString (astrValues[i], Font, brush,

pt.X + cxCol, pt.Y + 1 * cySpace);

}

Just prior to the for loop, the statement involving Math.Min prevents iLast from exceeding the number
of items to be displayed. This limit can be exceeded only if the window is taller than the size
necessary to display all the items.

Reflecting on the Future

While the .NET Framework might appear to be the epitome of perfection today, there's still a
possibility, however slim, that in some distant year a misguided Microsoft developer might feel
compelled to add one or two additional properties to the Systeminformation class. In that case, my
SysinfoStrings class would have to be updated to include those additional properties, and all the
various programs in this chapter would also have to be recompiled to include the new version.

Might it be possible, however, to write a program that automatically includes all current
Systeminformation properties implemented in the class, even those that didn't exist when the
program was written?

Yes, it is possible, and to understand how to do it, let's think about where the SystemInformation
code actually exists. According to the documentation for the class, it's in the file
System.Windows.Forms.dll. When one of the programs in this chapter is run, the operating system
links it with System.Windows.Forms.dll so that the program can make calls to the SystemInformation
class.

But the DLL isn't just a bunch of code. It exists with binary metadata that describes in detail the
classes implemented in the file and all the fields, properties, methods, and events in these classes.
In fact, the C# compiler uses this information to compile programs (that's why you need to set the
Reference files), and the reference documentation of the .NET Framework is derived from this
metadata.

So it makes sense that a program might be able to access this metadata at runtime, find out about
the .NET classes dynamically, and even execute some methods and properties in them. This
process is called reflection, and it's a concept borrowed from Java. Reflection would normally be
considered an advanced topic, but it's just so perfect for this application that | can't resist.

The first step is to rewrite the SysinfoStrings class so that it uses reflection to obtain the property
names and the actual properties.

SysInfoReflectionStrings.cs

using Microsoft.Win32;

using System;

using System.Drawing;

using System.Reflection;

using System.Windows.Forms;

class SysInfoReflectionStrings

static
static
static

static

static

{

// Fields
bool bvalidInfo = false;
int iCount;
string[] astrLabels;
string[] astrValues;

// Constructor

SysInfoReflectionStrings ()

SystemEvents.UserPreferenceChanged +=

new

UserPreferenceChangedEventHandler (UserPreferenceChanged) ;

SystemEvents.DisplaySettingsChanged +=

public

{

new EventHandler (DisplaySettingsChanged) ;

// Properties
static string[] Labels

get

{

}

public

{

GetSysInfol() ;

return astrLabels;

static string[] Values

get

{

GetSysInfo() ;

return astrValues;

public static int Count

{

get

{

GetSysInfol() ;

return iCount;

// Event
handlers

static void UserPreferenceChanged (object obj,

UserPreferenceChangedEventArgs ea)

bvalidInfo = false;

}

static void DisplaySettingsChanged (object obj, EventArgs ea)

{

bvalidInfo = false;

// Methods
static void GetSysInfo()

{
if (bvalidInfo)
return;

// Get property information for SystemInformation class.

Type type = typeof (SystemInformation) ;
PropertyInfo[] apropinfo = type.GetProperties() ;

// Count the number of static readable properties.
iCount = 0;

foreach (PropertyInfo pi in apropinfo)

{

if (pi.CanRead && pi.GetGetMethod () .IsStatic)

iCount++;

// Allocate string arrays.

astrLabels = new string[iCount];

astrValues = new string[iCount];

// Loop through the property information classes again.

iCount = 0;

foreach (PropertyInfo pi in apropinfo)

{

if (pi.CanRead && pi.GetGetMethod () .IsStatic)

{

// Get the property names and values.

astrLabels[iCount] = pi.Name;

astrValues [iCount] = pi.GetValue (type,
null) .ToString () ;

iCount++;

}

Array.Sort (astrLabels, astrValues) ;

bvalidInfo = true;

}

public static float MaxLabelWidth (Graphics grfx, Font font)

{

return MaxWidth (Labels, grfx, font);

}

public static float MaxValueWidth (Graphics grfx, Font font)

{

return MaxWidth (Values, grfx, font);

}

static float MaxWidth(string[] astr, Graphics grfx, Font font)

{

float fMax = 0;

GetSysInfol() ;

foreach (string str in astr)

fMax = Math.Max(fMax, grfx.MeasureString(str, font) .Width);

return fMax;

}

The GetSysInfo method in this class does the bulk of the work. It obtains the property names and
their values when they are first required and whenever they change. The C# typeof operator obtains
the type of the Systeminformation class, which is saved in a variable of type Type. One method of
Type is GetProperties, which returns an array of Propertyinfo objects. Each object in this array is a
property of Systeminformation. A foreach loop counts up all the properties that are both static and
readable. (I know that all the properties of Systeminformation are static and readable today, but I'm
trying to make the program generalized.)

The program then allocates arrays for the properties and their values, and loops through the
Propertyinfo array again. The Name property of the Propertyinfo object is the name of the property;
in this case, the Name property returns strings such as HighContrast and IconSize. The GetValue
method obtains each property's value. The static Sort method of the Array class sorts both the name
and value arrays based on the text of the property names.

The program that makes use of SysinfoReflectionStrings is functionally the same as the combination
of SysinfoUpdate and SyslInfoEfficient.

SysInfoReflection.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoReflection: Form

{
protected int iCount;
protected string[] astrLabels;
protected string[] astrValues;
protected float cxCol;
protected int cySpace;

public static void Main()

{

Application.Run(new SysInfoReflection());

}

public SysInfoReflection()
Text = "System Information: Reflection";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

AutoScroll = true;

SystemEvents.UserPreferenceChanged +=

new
UserPreferenceChangedEventHandler (UserPreferenceChanged) ;

SystemEvents.DisplaySettingsChanged +=
new EventHandler (DisplaySettingsChanged) ;

UpdateAllInfo() ;

}

void UserPreferenceChanged (object obj,

UserPreferenceChangedEventArgs ea)

UpdateAllInfo() ;

Invalidate() ;

}

void DisplaySettingsChanged (object obj, EventArgs ea)

{

void

Font) ;

Font)),

}

UpdateAllInfo()

Invalidate() ;

UpdateAllInfo()

7

iCount = SysInfoReflectionStrings.Count;

astrLabels = SysInfoReflectionStrings.Labels;

astrValues = SysInfoReflectionStrings.Values;

Graphics grfx
SizeF sizef

cxCol

CreateGraphics () ;

grfx.MeasureString (" ", Font) ;

sizef.Width +

SysInfoReflectionStrings.MaxLabelWidth (grfx,

cySpace = Font.Height;

AutoScrollMinSize

= new Size(

(int) Math.Ceiling(cxCol +

SysInfoReflectionStrings.MaxValueWidth (grfx,

(int) Math.Ceiling(cySpace * iCount)) ;

grfx.Dispose() ;

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx

pea.Graphics;

Brush brush = new SolidBrush (ForeColor) ;

Point pt = AutoScrollPosition;

int iFirst = (int) ((pea.ClipRectangle.Top - pt.Y) / cySpace);
int iLast = (int) ((pea.ClipRectangle.Bottom - pt.Y) / cySpace) ;

iLast = Math.Min(iCount - 1, iLast);

for (int i1 = iFirst; i <= iLast; i++)

{

grfx.DrawString (astrLabels[i],

grfx.DrawString (astrValues[i],

Font, brush,

pt.X, pt.Y + i * cySpace);

pt.X + cxCol,

Font, brush,

pt.Y + 1 * cySpace);

And this is my absolutely final version of a Systeminformation display program (until Chapter 6, that
is, when | add a keyboard interface to it).

Chapter 5: Lines, Curves, and Area Fills

Overview

According to Euclid, "A line is breadthless Iength."m It's the "breadthless" part that makes this
statement interesting. It certainly indicates the high degree of abstract thought that characterizes
ancient Greek mathematics. It also proves conclusively that the ancient Greeks knew nothing about
computer graphics. They would have realized that pixels do indeed have breadth, a fact that
contributes to one of the annoying problems often associated with computer graphics: the off-by-1-
pixel error, a problem we'll be attuned to in this chapter.

The world of computer graphics is roughly divided into two areas:

8 Vector graphics, which is the practical application of analytic geometry and involves drawing
lines, curves, and filled areas

8 Raster graphics, which involves bitmaps and real-world images

Then there's text, which occupies a plane of its own in the computer graphics world. In recent years,
however, with the ascendance of outline fonts, text is often treated as part of vector graphics.

This chapter introduces vector graphics as implemented in Microsoft Windows Forms and GDI+. All
the drawing functions discussed in this chapter are methods of the Graphics class and begin with the
prefix Draw or Fill. The Draw methods draw lines and curves; the Fill methods fill areas (the outlines
of which, of course, are defined by lines and curves). The first argument to all the Draw methods
covered in this chapter is a Pen object; the first argument to all the Fill methods is a Brush.

W' Sir Thomas L. Heath, ed., The Thirteen Books of Euclid's Elements (New York: Dover, 1956), 1:
153.

How to Get a Graphics Object

Most of the drawing functions are methods of the Graphics class. (There are additional drawing
functions in the ControlPaint class, but these are somewhat specialized.) To draw, you need an
object of type Graphics. But the Graphics constructor isn't public. You cannot simply create a
Graphics object like so:

Graphics grfx = new Graphics(); // Won't work!

The Graphics class is also sealed, which means you can't derive your own class from Graphics:
class MyGraphics: Graphics // Won't work!

You must obtain the Graphics object in some other way. Here's a complete list of ways that you can

do this, beginning with the most common:

8 When you override the OnPaint method or install a Paint event handler in any class derived
from Control (such as Form), a Graphics object is delivered to you as a property of the
PaintEventArgs class.

8 To paint on a control or a form at times other than during the OnPaint method or the Paint
event, you can call the CreateGraphics method of the control. Classes sometimes call
CreateGraphics in their constructors to obtain information and perform initialization. (Some of
the programs in Chapter 4 did this.) Although classes can't draw during the constructor, they
can do so during other events. It's common for a control or a form to draw something during
keyboard, mouse, or timer events, as I'll demonstrate in Chapters 6, 8, and 10. It's important for
a program to use the Graphics object only during the event that obtains it (that is, the Graphics
object shouldn't be stored in a field in the class). The program should also call the Dispose
method of the Graphics object when it's finished using it.

8 When printing, you install a PrintPage event handler and get an object of type
PrintPageEventArgs, which contains a Graphics object suitable for the printer. I'll demonstrate
how to do this shortly.

8 Some controls—most commonly menus, list boxes, combo boxes, and status bars—have a
feature called owner draw that allows a program to dynamically draw items on the control. The
Measureltem and Drawltem events deliver objects of type MeasureltemEventArgs and
DrawltemEventArgs, which have Graphics objects the event handler can use.

§ Todraw on a bitmap or a metafile (techniques I'll demonstrate in Chapters 11 and 23), you
need to obtain a special Graphics object by calling the static method Graphics.FromImage.

8 If you need to obtain information from the Graphics object associated with a printer without
actually printing, you can use the CreateMeasurementGraphics method of the PrinterSettings
class.

8 If you're interfacing with Win32 code, you can use the static methods Graphics.FromHwnd and
Graphics.FromHdc to obtain a Graphics object.

Pens, Briefly

When you draw a line by hand on paper, you use a pencil, a crayon, a fountain pen, a ballpoint pen,
a felt-tip marker, or whatever. The type of instrument you choose at least determines the line's color
and width. These qualities and others are subsumed under the Pen class, and whenever you draw a
line, you specify a Pen object.

I'm not going to get into a comprehensive exploration of pens at this time, however. The problem is
that pens can be created from brushes, so a complete discussion of pens is dependent on that topic.
And brushes can be created from bitmapped images and graphics paths, and those are more
advanced graphics programming topics. We'll examine pens and brushes thoroughly in Chapter 17.

As | explained in Chapter 3, you can create a pen of a particular color like so:

Pen pen = new Pen(color) ;

where color is an object of type Color. You can also take advantage of the Pens class, which
contains 141 static read-only properties that return Pen objects. Pens.HotPink is thus an acceptable
first argument to line-drawing methods (although appropriate only when used in moderation). A
complete list of these color names is available on the inside back cover of this book.

The SystemPens class contains 15 static read-only properties that also return Pen objects based on
the system colors. But if you want to create a pen that you know will be visible against the
background color the user has chosen, base it on the current ForeColor property:

Pen pen = new Pen (ForeColor) ;

There's one more aspect of pens | want to mention here, and that's the pen's width. The width is a
read/write property:

Pen Properties (selection)

‘ Type ‘ Property \ Accessibility

‘ float ‘ Width ‘ get/set

There's also a Pen constructor that includes the pen width, so here's a table listing the two Pen
constructors I've mentioned so far:

Pen Constructors (selection)

Pen (Color color)

Pen (Color color, float fwWidth)

(Just so you won't think I'm holding back information, there are only two other Pen constructors,
which look the same as these two except that a Brush object is the first argument.) When you use
the first constructor, the pen is created with a width of 1. Pen objects available from the Pens and
SystemPens class also have a width of 1. For the time being, you can think of that as 1 pixel wide.
However, you'll discover in Chapter 7 that this width is actually in world coordinates and affected by
various transforms.

It's possible to create a pen that is always 1 pixel wide regardless of any transforms that may be in
effect. Use a width of 0 in the constructor:

Pen pen = new Pen(color, 0);

Or set the Width property to 0:
pen.Width = 0;

Straight Lines

To draw a single straight line, you use the DrawLine method of the Graphics class. There are four
overloaded versions of DrawLine, but they all involve the same information: the coordinates where
the line begins and ends, and the pen used to draw the line:

Graphics DrawLine Methods

void DrawLine (Pen pen, int x1, int y1l, int x2, int y2)
void DrawLine (Pen pen, float x1, float yl, float x2, float y2)
void DrawLine (Pen pen, Point pointl, Point point2)
(

void DrawLine (Pen pen, PointF pointl, PointF point2)

You can specify the coordinates either as four int or float values, or as two Point or PointF structures.
DrawLine draws a line from the first point up to and including the second point. (This is a little
different from Win32 GDI, which draws up to but not including the second point.) For example,
grfx.Drawline (pen, 0, 0, 5, 5);

colors 6 pixels black—the pixels at coordinate points (0,0), (1,1), (2,2), (3,3), (4,4), and (5, 5). The
order of the two points doesn't matter, so the call

grfx.DrawLine (pen, 5, 5, 0, 0);

produces identical results. The call
grfx.DrawLine (pen, 2, 2, 3, 3);

draws 2 pixels, at points (2, 2) and (3, 3). However,
grfx.DrawLine (pen, 3, 3, 3, 3);

draws nothing.

As you know, you can determine the width and height of your client area by using the ClientSize
property of Form. The number of pixels horizontally is ClientSize.Width; the pixels can be numbered
from O through ClientSize.Width — 1. Similarly, the vertical pixels can be numbered from 0 through
ClientSize.Height — 1.

The XMarksTheSpot program draws an X in the client area.
XMarksTheSpot.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class XMarksTheSpot: Form

{
public static void Main()
{
Application.Run (new XMarksTheSpot ()) ;
1

public XMarksTheSpot ()

Text = "X Marks The Spot";

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;
ResizeRedraw = true;
protected override void OnPaint (PaintEventArgs pea)
Graphics grfx = pea.Graphics;
Pen pen = new Pen(ForeColor) ;
grfx.DrawLine (pen, 0, O,
ClientSize.Width - 1, ClientSize.Height - 1);
grfx.DrawLine (pen, 0, ClientSize.Height - 1,
ClientSize.Width - 1, 0);

}

The first DrawLine call draws a line from the upper left pixel to the lower right pixel of the client area.
The second DrawLine call begins the line at the lower left pixel, which is the point (0,
ClientSize.Height — 1), and goes to the upper right pixel at (ClientSize.Width — 1, 0).

An Introduction to Printing

Many of the graphics demonstration programs in this chapter and subsequent chapters will be similar
to XMarksTheSpot. They won't necessarily be as lame as XMarksTheSpot (although some will,
unfortunately), but they'll do nothing more than demonstrate basic graphics programming techniques
by displaying static images in their client areas.

It might be helpful even at this early stage to print these images on your printer as well, if only to
have the option of proudly displaying them on your refrigerator door. More important, printing
graphics gives you an opportunity to discover firsthand the extent to which a graphics programming
system is device independent as you're learning the system.

Printing is a topic customarily banished to the end of programming books if not ignored entirely,
mostly because printing is often terribly complicated. I've devoted Chapter 21 to printing to cover all
the various facilities and options that are available. But for our immediate purposes—turning out a
single page on the user's default printer using default settings—printing from a Windows Forms
application is quite easy.

Indeed, the only reason | hesitated at all in introducing printing so early was the user-interface
problem—how the program would allow the user to initiate printing. As you know, most programs
that print include a Print option on the File menu. It's a little too early in the book for menus, a subject
covered exhaustively in Chapter 14. | also considered implementing a simple keyboard interface,
perhaps using the Print Screen (sometimes labeled PrtScn) key or Ctrl+P. Finally | decided on
overriding the OnClick method.

OnClick is implemented in the Control class and inherited by every class descended from Control,
including Form. The OnClick method is called whenever the user clicks the client area of the form
with any mouse button. And that's all I'm going to say about the mouse until Chapter 8!

To print to the default printer, you first need to create an object of type PrintDocument, a class
defined in the System.Drawing.Printing namespace:

PrintDocument prndoc = new PrintDocument () ;

We'll spend more time with this class in Chapter 21. For now, I'll mention only one property, one
event, and one method in the class.

You set the DocumentName property of the PrintDocument object to a text string. This is the text that
identifies the job in the printer dialog box as the graphics output is being spooled out to the printer:

prndoc.DocumentName = "My print job";

A program that works with documents generally uses the name of the document for this text string. In
this chapter, I'll use the program's caption bar text.

You need to create a method in your class that will perform the graphics output calls. This method is
defined in accordance with the PrintPageEventHandler delegate. You can name this method
PrintDocumentOnPrintPage, as in this example:

void PrintDocumentOnPrintPage (object obj, PrintPageEventArgs ppea)

{

}

Attach this handler to the PrintPage event of the PrintDocument object like so:

prndoc.PrintPage += new PrintPageEventHandler (PrintDocumentOnPrintPage) ;

This is the same way that Paint event handlers were installed in some of the programs in Chapter 2
and in the SysInfoPanel program of Chapter 4.

To begin printing, the last thing you'll do with the PrintDocument object is call its Print method:

prndoc.Print () ;

This Print method doesn't return immediately. Instead, a small message box is briefly displayed that
contains the document name you specified and that gives the user the option of canceling the print
job.

The Print method also causes your PrintPage event handler (which we've called
PrintDocumentOnPrintPage) to be called. The object parameter to PrintDocumentOnPrintPage is the
PrintDocument object created earlier. The PrintPageEventArgs parameter has properties that supply
you with information about the printer. The most important of these properties, however, is named
Graphics and is similar to the same-named property in PaintEventArgs, except that this property
supplies you with a Graphics object for the printer page rather than for the client area of the form.

So the PrintDocumentOnPrintPage method often looks something like this:

void PrintDocumentOnPrintPage (object obj, PrintPageEventArgs ppea)

{

Graphics grfx = ppea.Graphics;

}

You use that Graphics object to call methods that display graphics on the printer page.

If you were printing multiple pages, you'd set the HasMorePages property of PrintPageEventArgs to
true, but because we're printing only one page, we leave the property at its default false setting and
return from PrintDocumentOnPrintPage.

After PrintDocumentOnPrintPage returns with the HasMorePages property of the
PrintPageEventArgs object set to false, the original call to the Print method of the PrintDocument
object also returns. The program is finished with the print job. Sending the graphics output to the
printer is somebody else's problem. Dealing with paper jams, empty ink cartridges, toner smudges,
and bad cables is also somebody else's problem.

You might have more than one printer attached to your machine. The approach to printing that I've
shown here uses your default printer. The Printers dialog box that you invoke from Control Panel or
from the Settings submenu on your Start menu contains an item on its File menu to set the default
printer.

As you know, a form's ClientSize property gives you the pixel dimensions of your form's client area,
and that's sufficient for intelligently drawing within the client area. A similar property for the printer
page is somewhat problematic.

A printer page is defined by three different areas. First, there's the entire size of the page. That
information is provided by the PageBounds property of the PrintPageEventArgs class. It's a
Rectangle structure where the X and Y properties are 0 and the Width and Height properties provide
the default paper dimensions in units of 0.01 inch. For example, for 8'2-by-11-inch paper, the Width
and Height properties of PageBounds are equal to 850 and 1100. If the default printer settings
indicate landscape rather than portrait, the Width and Height properties are set equal to 1100 and
850, respectively.

Second, the printable area of the page is usually very nearly the whole page except a margin where
the print head (or whatever) can't reach. This margin may be different for the top and bottom of the
page, and for the left and right. The VisibleClipBounds property of the Graphics class is a
RectangleF structure that provides the size of the page's printable area. The X and Y properties of
this structure are set to 0. The Width and Height properties indicate the dimensions of the printable
area of the page in the same units that you'll be using for drawing to the printer.

The third area of the page takes into account 1-inch margins on all four edges of the page. Those
represent bounds within which the user prefers to print. This information is returned in a Rectangle
structure from the MarginBounds property of the PrintPageEventArgs object.

We'll explore these issues more in Chapter 21. For now, using the VisibleClipBounds property of the
Graphics class is probably your best bet. The Graphics object you obtain from the
PrintPageEventArgs object is consistent with this property—that is, the point (0, 0) references the
upper left corner of the printable area of the page.

Of course, everything | so carefully emphasized about using a visible color on the video display is
wrong for the printer. For a printer, the best color to use is Color.Black. The best pen is Pens.Black,
and the best brush is Brushes.Black. That will take care of everybody except those strange people
who insist on loading up their printers with black paper.

Here's a program that displays "Click to print" in its client area and prints when it gets a button click.

HelloPrinter.cs

using System;
using System.Drawing;
using System.Drawing.Printing;

using System.Windows.Forms;

class HelloPrinter: Form

{

public static void Main()

{

Application.Run(new HelloPrinter());

}

public HelloPrinter ()

{

Text = "Hello Printer!";
BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

protected override void OnPaint (PaintEventArgs pea)
{
Graphics grfx = pea.Graphics;

StringFormat strfmt = new StringFormat () ;

strfmt.Alignment = strfmt.LineAlignment =
StringAlignment.Center;

grfx.DrawString ("Click to print", Font, new
SolidBrush (ForeColor) ,

ClientRectangle, strfmt) ;

}

protected override void OnClick (EventArgs ea)

{

PrintDocument prndoc = new PrintDocument () ;

prndoc.DocumentName = Text;
prndoc.PrintPage +=
new PrintPageEventHandler (PrintDocumentOnPrintPage) ;

prndoc.Print () ;

void PrintDocumentOnPrintPage (object obj, PrintPageEventArgs ppea)

Graphics grfx = ppea.Graphics;

grfx.DrawString (Text, Font, Brushes.Black, 0, 0);

SizeF sizef = grfx.MeasureString(Text, Font) ;

grfx.DrawLine (Pens.Black, sizef.ToPointF(),

grfx.VisibleClipBounds.Size.ToPointF ()) ;

}
}

Notice that I've used the Text property of the form for both the print document name and as the text
string argument to DrawString and MeasureString in the PrintDocumentOnPrintPage method. The
program displays the text "Hello Printer!" in the upper left corner of the printable area of the page and
then draws a line that extends from the bottom right corner of the text string to the bottom right
corner of the printable area of the page. This example should be enough to assure you that
VisibleClipBounds is indeed providing information consistent with the Graphics origin.

I'm detecting some scoffing among my readers. That's because | blithely used the form's Font
property in the DrawString and MeasureString calls without considering that the printer has a
resolution of 300, 600, 720, 1200, 1440, or perhaps even 2400 or 2880 dots per inch. The font
accessible through the form's Font property was selected by the system to be appropriate for the
video display, which probably has a resolution more like 100 dots per inch. The resultant text on the
printer should therefore look quite puny.

Well go ahead: try it. The text is printed using a respectable 8-point font. Notice also that the
diagonal line the program draws is obviously more than 1 pixel in width. One-pixel-wide lines on

today's high-resolution printers are barely visible. Windows Forms instead draws a nice solid line.
Why that is so must remain a mystery for now, although a pleasant one. The answer will become
apparent in Chapters 7 and 9.

Let's now write a program that displays the same output in both the form's client area and the printer
page. | don't mean for you to copy and paste code from the OnPaint method to the
PrintDocumentOnPrintPage method; let's demonstrate that we know something about programming
by putting the graphics output code in a separate method named DoPage that is called by both
OnPaint and PrintDocumentOnPrintPage. Here's a variation of XMarksTheSpot that does just that.

PrintableForm.cs

using System;
using System.Drawing;
using System.Drawing.Printing;

using System.Windows.Forms;

class PrintableForm: Form

{

public static void Main()

{

Application.Run(new PrintableForm()) ;

}

public PrintableForm()
Text = "Printable Form";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ResizeRedraw = true;

}

protected override void OnPaint (PaintEventArgs pea)
DoPage (pea.Graphics, ForeColor,
ClientSize.Width, ClientSize.Height) ;

}

protected override void OnClick (EventArgs ea)

{

PrintDocument prndoc = new PrintDocument () ;

prndoc.DocumentName = Text;
prndoc.PrintPage +=

new PrintPageEventHandler (PrintDocumentOnPrintPage) ;
prndoc.Print () ;

}

void PrintDocumentOnPrintPage (object obj, PrintPageEventArgs ppea)

{

Graphics grfx = ppea.Graphics;

SizeF sizef = grfx.VisibleClipBounds.Size;

DoPage (grfx, Color.Black, (int)sizef.Width, (int)sizef.Height);

protected virtual void DoPage (Graphics grfx, Color clr, int cx, int
cy)
Pen pen = new Pen(clr);
grfx.DrawLine (pen, O, 0, cx - 1, cy - 1);
grfx.DrawLine (pen, cx - 1, 0, O, cy - 1);

The DoPage method at the end of the listing outputs the graphics. The arguments are a Graphics
object, a suitable color for the device, and the width and height of the output area. DoPage is called
from two other methods: the OnPaint method and the PrintDocumentOnPrintPage method. In
OnPaint, the last three DoPage arguments are set to ForeColor and the width and height of the
form's client area. In PrintDocumentOnPrintPage, these arguments are Color.Black and the width
and height of VisibleClipBounds.

I've given the last two arguments to DoPage names of cx and cy. The ¢ stands for count and
because x and y commonly refer to coordinates, cx and cy can be interpreted as referring to a
"count" of the coordinate points, or the width and height.

Interestingly enough, when you have a Graphics object for your client area, the VisibleClipBounds
property is equal to the width and height of the client area. | could have dispensed with the cx and cy
arguments to DoPage and just used VisibleClipBounds inside DoPage for both the screen and the
printer. However, | like having the width and height values already available in convenient variables,
particularly considering what I've done here. Notice that I've made the DoPage method protected
and virtual, and hence overridable. If you want to write a program that displays only a single screen
of graphics, you can derive from PrintableForm rather than Form and have printing facilities built into
your program.

And that's exactly what I'll do in virtually all the sample programs in this chapter and in many
programs in subsequent graphics-oriented chapters.

Properties and State

Some graphics programming environments include the concept of a current position, which is a
coordinate point retained by the environment that is used as a starting point in drawing functions.
Generally, the graphics system defines one function to set the current position and another function
to draw a line from the current position to a specified point. The drawing function also sets the
current position to the new point.

GDI+ has no concept of a current position. This may come as a bit of a shock to veteran Windows
programmers because drawing a line in Windows GDI requires two function calls, each of which
specifies a single coordinate: MoveTo to set the current position to the specified point and LineTo to
draw the line up to (but not including) that point.

GDI+ is also different from Windows GDI in that the DrawLine and DrawString calls include
arguments specifying the font, the brush, and the pen. If GDI+ were more like Windows GDI, the
font, the brush, and the pen would be properties of the Graphics object. You'll recall that
StringFormat specifies certain details about the display of text. StringFormat is also an argument to
DrawString rather than a property of the Graphics object.

For these reasons, the architects of GDI+ have termed it a stateless graphics programming
environment. It's not entirely stateless, however. If it were, the Graphics class would have no
read/write properties at all! As is, Graphics has 12 read/write properties as well as 6 read-only
properties.

| count four settable properties of Graphics that have a profound impact on the appearance of

graphics figures:

8 PageScale and PageUnit determine the units you draw in. By default, you draw on the screen
in units of pixels. I'll go over these properties in detail in Chapter 7.

8 The Transform property is an object of type Matrix that defines a matrix transform for all
graphics output. The transform translates, scales, shears, or rotates coordinate points. I'll cover
the matrix transform in Chapter 7.

8 Clip is a clipping region. When you set a clipping region, any drawing functions you call will be
limited to output in that region. I'll discuss clipping in Chapter 15.

Anti-Aliasing

Besides those four properties of the Graphics class that affect output very profoundly, other
properties affect the output in more subtle ways. Two of these properties are SmoothingMode and
PixelOffsetMode.

Graphics Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ SmoothingMode | SmoothingMode ‘ get/set ‘ Anti-aliasing of lines
‘ PixelOffsetMode | PixelOffsetMode ‘ get/set ‘ Enhanced anti-aliasing

These properties enable a graphics rendering technique known as anti-aliasing. The term alias in
this context comes from sampling theory. Anti-aliasing is an attempt to reduce the sharp jaggies of
displayed graphics by using shades of color.

Here's a program that draws a small line; I've also included statements to let you set the

SmoothingMode and PixelOffsetMode properties.

AntiAlias.cs

using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

class AntiAlias: Form

public static void Main()

Application.Run(new AntiAlias());
public AntiAlias()

Text = "Anti-Alias Demo";

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;
protected override void OnPaint (PaintEventArgs pea)

Graphics grfx = pea.Graphics;

Pen pen new Pen (ForeColor) ;

grfx.SmoothingMode = SmoothingMode.None;
grfx.PixelOffsetMode = PixelOffsetMode.Default;

grfx.DrawLine (pen, 2, 2, 18, 10);

}

You can try various combinations of these properties, recompile and run the program, capture its
screen image, and blow it up in some graphics or paint program to see the difference. Or you can sit
back and let me do it.

By default, the line is rendered like so:

I've included in this figure a little section of the form outside the client area on the left and top so you
can clearly see that the line begins at pixel position (2, 2).

The SmoothingMode enumeration is defined in the namespace System.Drawing.Drawing2D:
SmoothingMode Enumeration

‘ Member ‘ Value ‘ Comments

‘ Default ‘ 0 ‘ No anti-aliasing

‘ HighSpeed ‘ 1 ‘ No anti-aliasing

‘ HighQuality ‘ 2 ‘ Anti-aliasing enabled
‘ None ‘ 3 ‘ No anti-aliasing

‘ AntiAlias ‘ 4 ‘ Anti-aliasing enabled
‘ Invalid -1 ‘ Raises exception

There are really only three choices here: Do you want anti-aliasing? Do you not want it? Or would
you rather raise an exception? The default is None.

When you enable anti-aliasing by setting the SmoothingMode property to
SmoothingMode.HighQuality or SmoothingMode.AntiAlias, the line is rendered like so:

It looks like a mess close up, but from a distance it's supposed to look smoother. (Not everyone
agrees: some people find that anti-aliasing makes things look "fuzzy.")

The idea here is that the line begins in the center of pixel (2, 2) and ends in the center of pixel (18,
10). The line is 1 pixel wide. When a graphics system uses anti-aliasing, the extent to which the
theoretical line intersects a pixel determines how black the pixel is colored.

If you enable anti-aliasing, you can enhance it a bit by using the PixelOffsetMode property. You set
the property to one of the PixelOffsetMode enumeration values, also (like SmoothingMode) defined
in System.Drawing.Drawing2D:

PixelOffsetMode Enumeration

‘ Member ‘ Value ‘ Description

‘ Default ‘ 0 ‘ Pixel offset not set
‘ HighSpeed ‘ 1 ‘ Pixel offset not set
‘ HighQuality ‘ 2 ‘ Half-pixel offset set
‘ None ‘ 3 ‘ Pixel offset not set
‘ Half ‘ 4 ‘ Half-pixel offset set
‘ Invalid ‘ -1 ‘ Raises exception

Again, you really have only three choices, and one of them is worthless. If you set the
PixelOffsetMode property to Half or HighQuality, the line is rendered like this:

Setting the pixel offset is more in accordance with an analytical geometry approach. The coordinates
of the line are decreased by half a pixel. The line is assumed to begin 2 pixels from the corner, which
is actually on the crack between the pixels.

Multiple Connected Lines

I mentioned earlier the concept of a current position used in some graphics programming
environments, and you may have thought such a thing odd because it implied that two function calls
were needed to draw a single line. Where the current position helps, however, is in drawing a series
of connected lines. Each additional call requires only one coordinate point. GDI+ isn't so economical.
Here, for example, are four DrawLine calls required to draw a box around the perimeter of the
program's client area:

grfx.DrawLine (pen, O, 0, cx - 1, 0);
grfx.DrawLine (pen, cx - 1, 0, cx - 1, cy - 1);
grfx.DrawLine (pen, cx - 1, cy - 1, 0, cy - 1);
grfx.DrawLine (pen, 0, cy - 1, 0, 0);

Notice that the end point in each call must be repeated as the start point in the next call.

For this reason—and a couple other reasons that I'll discuss shortly—the Graphics class includes a
method to draw multiple connected lines, commonly called a polyline. The DrawLines (notice the
plural) method comes in two versions:

Graphics DrawLines Methods

void DrawLines (Pen pen, Point[] apt)

void DrawLines (Pen pen, PointF[] aptf)

You need an array of either integer Point coordinates or floating-point PointF coordinates.

Here's the DrawLines code to outline the client area.

BoxingTheClient.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class BoxingTheClient: PrintableForm

{
public new static void Main()
{
Application.Run(new BoxingTheClient ()) ;
}
public BoxingTheClient ()
{
Text = "Boxing the Client";
}
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
Point [] apt = {new Point (0, 0),
new Point(ecx - 1, 0),
new Point(cx - 1, cy - 1),
new Point (0, cy - 1),
new Point (0, 0)};
grfx.DrawLines (new Pen(clr), apt);
}
}

Notice that the class is derived from PrintableForm, so you can print it as well.

You can define the array of Point structures right in the DrawLines method. Here's a program that
does that. It's the solution to a kids' puzzle that involves drawing a particular design that resembles a
house without lifting the pen or pencil from the paper.

DrawHouse.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class DrawHouse: PrintableForm

{

public new static void Main()

{

Application.Run(new DrawHouse ()) ;

}

public DrawHouse ()

{

Text = "Draw a House in One Line";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

grfx.DrawLines (new Pen(clr),

new Point[]

{

new Point (cx / 4, 3 * ¢cy / 4), // Lower left
new Point (cx / 4, cy / 2),

new Point (cx /2, cy / 4), // Peak

new Point (3 * cx / 4, cy / 2),

new Point(3 * ¢cx / 4, 3 * ¢y / 4), // Lower right
new Point (cx / 4, cy / 2),

new Point (3 * cx / 4, cy / 2),

new Point (cx / 4, 3 * cy / 4), // Lower left
new Point(3 * ¢cx / 4, 3 * ¢y / 4) // Lower right

}

But the purpose of DrawLines isn't to solve kids' puzzles. In Chapter 17, you'll discover how you can
create pens that are composed of patterns of dots and dashes, and how when you create thick pens,
you can define the appearance of the ends of lines (whether they are rounded or square or whatnot)
and the appearance of two lines that are joined together. These are called line ends and joins. In
order for ends and joins to work correctly, GDI+ needs to know whether two lines that share a
coordinate point are separate or connected. Using DrawLines rather than DrawLine is how you
provide this information.

Another reason to use DrawLines is performance. This performance improvement is neither
apparent nor important in the programs shown so far, but we haven't quite begun to exercise
DrawLines. You see, the real purpose of DrawLines is not to draw straight lines. The real purpose is
to draw curves. The trick is to make the individual lines very short and to use plenty of them. Any
curve that you can define mathematically you can draw using DrawLines.

Don't hesitate to use hundreds or even thousands of Point or PointF structures in a single DrawLines
call. That's what the function is for. Even a million Point or PointF structures passed to DrawLines
doesn't take more than a second or two to render.

How many points do you need for a particular curve? Probably not a million. The curve will be
smoothest if the number of points at least equals the number of pixels. You can often roughly
approximate this number.

Here's some code that draws one cycle of a sine curve the size of the client area.

SineCurve.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SineCurve: PrintableForm

{

public new static void Main()

{

Application.Run(new SineCurve()) ;

}

public SineCurve ()

{

Text = "Sine Curve";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

PointF[] aptf = new PointF [cx];

for (int 1 = 0; 1 < cx; 1i++)
{
aptf[i] . X = i;
aptf[i].Y = cy / 2 * (1 -(float)
Math.Sin(i * 2 * Math.PI / (cx - 1)));

}

grfx.DrawLines (new Pen(clr), aptf);

}

This is the first program in this book to use a trigonometric method in the Math class, a very
important class defined in the System namespace. | cover the Math class in more detail in Appendix
B. The arguments to the trigonometric methods are in terms of radians rather than degrees. The
Math class also includes two convenient const fields named P/ and E that you can use with these
methods. No longer will you need something like this at the top of your programs:

#define PI 3.14159 // Good riddance!

One note, however: most of the Math methods return double values; these must be explicitly cast to
float before being used in PointF and similar structures.

It might be helpful to analyze in detail the assignment statement for the Y property of the PointF
array: the argument to the Math.Sin function is in radians. One complete cycle (360°) is 2x radians.
Thus, the argument ranges from 0 (when iis 0) to 2n (when i is ClientSize.Width — 1). The value of

the Math.Sin method ranges between —1 and +1. Normally, that value must be scaled by half the
client area height to range from negative ClientSize.Height / 2 to positive ClientSize.Height / 2 and
then subtracted from half the client area height to make the height range from 0 to ClientSize.Height.
But I've used more efficient code by adding 1 to the negative result of the Sin method so that it
ranges from 0 to 2 and then multiplying by half the client area height. Here's what the result looks

like:
_la/x]

Curves and Parametric Equations

Coding a sine curve is relatively straightforward because values of y are obtained by a simple
function of x. In general, however, coding curves isn't quite that simple. For example, the equation of
the unit circle (that is, a circle with a radius of 1 unit) centered at the origin (0, 0) is generally given as

X+y=1
More generalized, a circle of radius r can be expressed as
R+ =r

However, if you attempt to represent this equation in the form where y is a function of x, you have

y = + 4 i 2

There are several problems with this thing. The first is that y has two values for every value of x. The
second is that there are invalid values of x; x must range between —r and +r. A third, more practical,
problem involves drawing a circle based on this equation. The resolution is lopsided: When x is
around 0, changes in x produce relatively small changes in y. When x approaches r or —r, changes in
x produce much greater changes in y.

A more generalized approach to drawing curves uses parametric equations. In parametric equations,
both the x and y coordinates of every point are calculated from functions based on a third variable,
often called t. Intuitively, you can think of t as time or some other abstract index necessary to define
the entire curve. In graphics programming in Windows Forms, you can think of t as ranging from 0 to
one less than the number of PointF structures in your array.

The parametric equations that define a unit circle are

x(f) = cos(t)
y(t) = sin(f)

For t ranging from O degrees to 2n degrees, these equations define a circle around the point (0, 0)
with a radius of 1.

The ellipse is defined similarly:

x(f) = RX cos(t)
y(t) = RY sin({)

The two axes of the ellipse are parallel to the horizontal and vertical axes. The horizontal ellipse axis
is 2 x RX in length; the vertical ellipse axis is 2 x RY. The ellipse is still centered around (0, 0). To
center it around the point (CX, CY), the formulas are

x(f) = CX + RX cos(t)
y(t) = CY + RY sin(t)

And here's a program to draw an ellipse that encompasses the full display area.
PolyEllipse.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PolyEllipse: PrintableForm

{
public new static void Main()
{
Application.Run(new PolyEllipse()) ;
1
public PolyEllipse()
{
Text = "Ellipse with DrawLines";
1
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
int iNum = 2 * (cx + c¢y);
PointF[] aptf = new PointF [iNum] ;
for (int 1 = 0; 1 < iNum; i++)
{
double dAng = i * 2 * Math.PI / (iNum - 1);
aptf[i].X = (ex - 1) / 2f * (1 + (float)Math.Cos(dAng)) ;
aptf[i].Y = (cy - 1) / 2f * (1 + (float)Math.Sin(dAng)) ;
}
grfx.DrawLines (new Pen(clr), aptf);
1

Because the center of the ellipse is half the width and height of the display area, and the width and
height of the ellipse are equal to the width and height of the display area, | was able to simplify the
formulas a bit. | approximated the number of points in the array as the number of points that would
be sufficient for a rectangle drawn around the display area.

H® Ellipse with DrawLines - 0] x|

You may have looked ahead in this chapter and discovered that the Graphics class includes a
DrawEllipse method and wondered why we had to do one "manually." Well, that was just an exercise
to prepare us for the next program, which draws something that certainly is not implemented by a
simple method in Graphics.

Spiral.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class Spiral: PrintableForm

{

public new static void Main()

{
Application.Run(new Spiral());
1
public Spiral ()
{
Text = "Spiral";
1
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
const int iNumRevs = 20;
int iNumPoints = iNumRevs * 2 * (cx + cy);

new PointF [iNumPoints];

PointF[] aptf

float fAngle, fScale;

for (int i1 = 0; i < iNumPoints; i++)

{

fAngle = (float) (i * 2 * Math.PI /(iNumPoints / iNumRevs)) ;
fScale = 1 - (float)i / iNumPoints;

aptf[i].X = (float) (cx / 2 * (1 + fScale *
Math.Cos (fAngle))) ;

aptf[i].Y = (float)(cy / 2 * (1 + fScale *
Math.Sin (fAngle))) ;

}

grfx.DrawLines (new Pen(clr), aptf);

}

And here's what it looks like:

-1ax|

.

The Ubiquitous Rectangle

Rectangles aren't found in nature very much, but they are certainly the most common form of objects
designed and built by humans. Rectangles are everywhere. The page you're reading right now is a
rectangle, these paragraphs are formatted into rectangles, the screenshot just before this section is a
rectangle, the desk you're sitting at or the bed you're lying on is likely a rectangle, and the window
you're gazing out of when | get a bit tedious is probably also a rectangle.

Certainly you can draw a rectangle using DrawLine or DrawLines (we've done it already when
outlining the client area), but a simpler approach is the DrawRectangle method. In each of the three
versions of DrawRectangle, a rectangle is defined by a point that specifies the upper left corner of
the rectangle plus a width and a height. That's the same way the Rectangle structure is defined, and
indeed, one of the methods uses that structure:

Graphics DrawRectangle Methods

void DrawRectangle (Pen pen, int x, int y, int cx, int cy)

void DrawRectangle (Pen pen, float x, float y, float cx, float cy)

void DrawRectangle (Pen pen, Rectangle rect)

Oddly enough, there's no DrawRectangle method that uses a RectangleF structure. Perhaps a
programmer forgot to mark it with a public modifier. Perhaps we'll see one in a later release.

The width and height of the rectangle must be greater than 0. Negative widths and heights won't
raise exceptions, but nothing will be drawn.

When drawing rectangles, off-by-1 errors are common because the sides of the rectangles
themselves are a pixel wide (at least). Does the width and height of the rectangle encompass the
width of the sides, just one side, or neither side?

With default pen properties (an issue I'll talk about more in Chapter 17), a height and width of 3 in the
dimensions passed to DrawRectangle results in this figure (blown up in size, of course):

The upper left corner of the figure is the pixel (x, y). A width and height of 2 draws a 3-by-3-pixel
rectangle with a single-pixel interior, as shown here:

A width and height of 1 causes a 2-by-2-pixel block to be drawn. You might be tempted to put the
form's ClientRectangle property right in the DrawRectangle call

grfx.DrawRectangle (pen, ClientRectangle); // Avoid this!
to outline the outer visible edge of the client rectangle. It won't work! The right and bottom sides of

the rectangle won't be visible. Next is a program that properly displays a complete rectangle on both
the client area and the printer. I've made it red to be more visible on the screen.

OutlineClientRectangle.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class OutlineClientRectangle: PrintableForm

{

public new static void Main()

{

Application.Run(new OutlineClientRectangle()) ;

}

public OutlineClientRectangle ()

{

Text = "Client Rectangle";

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

grfx.DrawRectangle (Pens.Red, 0, 0, cx - 1, cy - 1);

}

Try specifying only cx and cy, without subtracting 1, as the last two arguments of DrawRectangle.
You'll note that the right and bottom edges of the rectangle won't be visible on the client area, which
is the same problem as if you use the ClientRectangle property in the call to DrawRectangle.

The Graphics class also includes two methods for drawing multiple rectangles:

Graphics DrawRectangles Methods

void DrawRectangles (Pen pen, Rectangle[] arect)

void DrawRectangles (Pen pen, RectangleF[] arectf)

These methods are much less useful than DrawLines. However, if you have a RectangleF structure
named rectf (for example) and you want to draw a single rectangle based on that structure, and you
then remember that no DrawRectangle overload is available for that structure, you can use
DrawRectangles to do it:

grfx.DrawRectangles (pen, new RectangleF[] { rectf });

Generalized Polygons

Mathematically, polygons are closed figures of three or more sides, such as triangles, quadrilaterals,
pentagons, hexagons, heptagons, octagons, nonagons, decagons, undecagons, dodecagons, and
so forth. Here are two Graphics methods that draw polygons:

Graphics DrawPolygon Methods

void DrawPolygon (Pen pen, Point[] point)

void DrawPolygon (Pen pen, PointF[] point)

The DrawPolygon method is very similar in functionality to DrawLines, except that the figure is
automatically closed by a line that connects the last point to the first point. For example, consider the
following array of Point structures:

Point[] apt = {new Point (0, 0), new Point (50, 100), new Point (100, 0)};

The call

grfx.DrawLines (pen, apt);

draws two lines that look like a V, and

grfx.DrawPolygon (pen, apt);
draws a triangle.

In some cases, you could simulate a DrawPolygon call with a call to DrawLines and DrawLine:
DrawLines (pen, apt);
DrawLine (pen, apt[apt.Length-1], apt[0]);

However, if you were dealing with wide lines with ends and joins, you wouldn't get exactly the same
effect as with DrawPolygon.

Easier Ellipses

We already know how to draw an ellipse using DrawLines, but here's an easier approach that takes
the same arguments as DrawRectangle:

Graphics DrawEllipse Methods

void DrawEllipse (Pen pen, int x, int y, int cx, int cy)
void DrawEllipse (Pen pen, float, x, float y, float cx, float cy)
void DrawEllipse (Pen pen, Rectangle rect)

void DrawEllipse (Pen pen, RectangleF rectf)

The DrawEllipse methods are consistent with the DrawRectangle methods. For example, here's the
ellipse drawn with a width and height of 3:

A width and height of 1 result in a solid 2-pixel-square figure.

What this means is that, as with DrawRectangle, to fit an ellipse in an area that is cx pixels wide and
cy pixels high, you need to reduce the width and height by 1.

ClientEllipse.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class ClientEllipse: PrintableForm

{
public new static void Main()
{
Application.Run(new ClientEllipse());
1
public ClientEllipse()
{
Text = "Client Ellipse";
1
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
grfx.DrawEllipse (new Pen(clr), 0, 0, cx - 1, cy - 1);
1

——

If the last two arguments of DrawEllipse are set to cx and cy, the right and bottom edges will be
chopped off slightly.

Arcs and Pies

An arc—at least as far as Windows Forms is concerned—is a segment of an ellipse. To define an

arc, you need to specify the same information as you need for an ellipse, plus you need to specify

where the arc begins and where it ends. For that reason, each of the four versions of the DrawArc
method require the same arguments as DrawEllipse plus two more arguments:

Graphics DrawArc Methods

void DrawArc (Pen pen, int x, int y, int cx, int cy,
int iAngleStart, int iAngleSweep)

void DrawArc (Pen pen, float x, float y, float cx, float cy,
float fAngleStart, float fAngleSweep)

void DrawArc (Pen pen, Rectangle rect,
float fAngleStart, float fAngleSweep)

void DrawArc (Pen pen, RectangleF rectf,

float fAngleStart, float fAngleSweep)

These additional two arguments are angles that indicate the beginning of the arc and the length of
the arc. The angles—which can be positive or negative—are measured clockwise in degrees
beginning at the horizontal axis to the right of the ellipse's center (that is, the position of 3:00 on a
clock):

Negariu-e angles

Positive angles

Here's a program that draws an ellipse with a dashed circumference. The dashes are 10 degrees of
arc; the gaps between the dashes are 5 degrees of arc.

DashedEllipse.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class DashedEllipse: PrintableForm

{

public new static void Main()

{

Application.Run (new DashedEllipse()) ;

}

public DashedEllipse ()

{
Text = "Dashed Ellipse Using DrawArc";
}
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
Pen pen = new Pen(clr);
Rectangle rect = new Rectangle(0, 0, cx - 1, cy - 1);
for (int iAngle = 0; iAngle < 360; iAngle += 15)
grfx.DrawArc (pen, rect, iAngle, 10);
}
}

The dashed ellipse looks like this:

/
\\x o
e T .—"“f

—_—

The Win32 API includes a function named RoundRect that draws a rectangle with rounded corners.
The function takes four arguments that specify the upper left and lower right coordinates of the
rectangle, plus two more arguments that specify the width and height of an ellipse that is used for
curving the corners.

The Graphics class doesn't include a RoundRect method, but we can certainly attempt to simulate
one.

RoundRect.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class RoundRect: PrintableForm

{

public new static void Main()

{

Application.Run (new RoundRect ()) ;

}

public RoundRect ()

{

Text = "Rounded Rectangle";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

RoundedRectangle (grfx, Pens.Red,
new Rectangle(0, 0, cx - 1, cy - 1),
new Size(cx / 5, cy / 5));

void RoundedRectangle (Graphics grfx, Pen pen, Rectangle rect, Size
size)

grfx.DrawLine (pen, rect.Left + size.Width / 2, rect.Top,
rect.Right - size.Width / 2, rect.Top);

grfx.DrawArc (pen, rect.Right - size.Width, rect.Top,
size.Width, size.Height, 270, 90);

grfx.DrawLine (pen, rect.Right, rect.Top + size.Height / 2,
rect.Right, rect.Bottom - size.Height / 2);

grfx.DrawArc (pen, rect.Right - size.Width,
rect.Bottom - size.Height,

size.Width, size.Height, 0, 90);

grfx.DrawLine (pen, rect.Right - size.Width / 2, rect.Bottom,
rect.Left + size.Width / 2, rect.Bottom);

grfx.DrawArc (pen, rect.Left, rect.Bottom - size.Height,

size.Width, size.Height, 90, 90);

grfx.DrawLine (pen, rect.Left, rect.Bottom - size.Height / 2,

rect.Left, rect.Top + size.Height / 2);

grfx.DrawArc (pen, rect.Left, rect.Top,

size.Width, size.Height, 180, 90);

The RoundedRectangle method I've written has a Rectangle argument that indicates the location
and the size of the rectangle and a Size argument for the width and the height of an ellipse used to
round the corners. | wrote the method to be consistent with the dimensions of the rectangle drawn by
DrawRectangle—that is, when the width and height are set equal to 1 less than the width and height
of the client area, the entire figure is visible. The method alternates DrawLine and DrawArc calls
starting with the line at the top of the figure and continuing around clockwise.

™ rounded Rectangle - 0] x|

e W

| hesitate to recommend this as a general rounded rectangle drawing function, however. The
individual lines and arcs are drawn with individual calls to DrawLine and DrawArc, which means that
each of the eight pieces of the figure is drawn with line ends rather than line joins. The correct way to
combine straight lines and curves into a single figure is with a graphics path. I'll show you how in
Chapter 15.

The DrawPie methods have the same arguments as DrawArc, but these methods also draw lines
from the ends of the arc to the center of the ellipse, creating an enclosed area:

Graphics DrawPie Methods

void DrawPie (Pen pen, int x, int y, int cx, int cy,
int iAngleStart, int iAngleSweep)

void DrawPie (Pen pen, float x, float y, float cx, float cy,
float fAngleStart, float fAngleSweep)

void DrawPie (Pen pen, Rectangle rect,
float fAngleStart, float fAngleSweep)

void DrawPie (Pen pen, RectangleF rectf,

float fAngleStart, float fAngleSweep)

The pie chart is, of course, a venerable fixture in business graphics. The problem is, if you really
need to code up a pie chart, you probably want to adorn it with 3-D effects and such, which means
that DrawPie provides less convenience than you might think. Regardless, here's a program that
draws a pie chart based on an array of values (stored as a field) that | made up for this purpose.

PieChart.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PieChart: PrintableForm

{

int[] aivalues = { 50, 100, 25, 150, 100, 75 };

public new static void Main()

{

Application.Run(new PieChart());

}

public PieChart ()

{

Text = "Pie Chart";

protected override void DoPage (Graphics grfx, Color clr, int cx,

cy)
Rectangle rect = new Rectangle (50, 50, 200, 200);
Pen pen = new Pen(clr);
int iTotal = 0;
float fAngle = 0, fSweep;

foreach (int iValue in aiValues)

iTotal += iValue;

foreach (int iValue in aiValues)

{
fSweep = 360f * ivalue / iTotal;
DrawPieSlice (grfx, pen, rect, fAngle, fSweep);
fAngle += fSweep;

}

}

protected virtual void DrawPieSlice (Graphics grfx, Pen pen,

Rectangle rect,

float fAngle, float fSweep)

grfx.DrawPie (pen, rect, fAngle, fSweep) ;

}

int

Notice the Rectangle definition in the DoPage method. This is the only program in this chapter that
uses absolute coordinates and sizes, the reason being that elliptical pie charts aren't very attractive.
The DoPage method totals the array of values and then calculates a sweep angle for each slice by

dividing the value by the total and multiplying by 360 degrees. Here's the result:

@ Pie Chart = | | |£|

I'm sorry, but | just can't let you think that this is the best pie chart | can come up with! Fortunately, |
was prescient enough to isolate the call to DrawPie in a virtual function in PieChart. That makes it
easy to override this method in a BetterPieChart program.

BetterPieChart.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class BetterPieChart: PieChart

{

public new static void Main()

{

Application.Run (new BetterPieChart()) ;

}

public BetterPieChart ()

{

Text = "Better " + Text;
protected override void DrawPieSlice (Graphics grfx, Pen pen,
Rectangle rect,

float fAngle, float fSweep)

float fSlice = (float) (2 * Math.PI * (fAngle + fSweep / 2) /
360) ;

rect.Offset ((int) (rect.Width / 10 * Math.Cos(fSlice)),
(int) (rect.Height / 10 * Math.Sin(fSlice)));

base.DrawPieSlice (grfx, pen, rect, fAngle, fSweep) ;

}

The fSlice variable is the angle of the center of the slice converted to radians. | use that to calculate x
and y offset values that are applied to the rectangle that defines the size and location of the pie
slices. The result is that each slice is moved away from the center for an "exploded" view:

ol

This doesn't exhaust the collection of line-drawing methods in the Graphics class. You can draw
curves more complex than elliptical arcs by using the DrawBezier, DrawBeziers, DrawCurve, and
DrawClosedCurve methods that you'll find out about in Chapter 11. You can assemble a collection of
lines and curves into a graphics path and render that path using the DrawPath method. We'll get to
that topic in Chapter 15.

Filling Rectangles, Ellipses, and Pies

Several of the Graphics methods discussed so far have defined enclosed areas, even though these
methods have only drawn the outline of the area with the specified pen and not filled the interior of
the area. For those methods prefixed with Draw that define enclosed areas, there are also methods
beginning with Fill that fill the interiors. The first argument to these methods is the Brush used to fill
the area.

Here are the four versions of the FillRectangle method:

Graphics FillRectangle Methods

void FillRectangle (Brush brush, int x, int y, int cx, int cy)

void FillRectangle (Brush brush, float x, float y, float cx, float cy)

(

(
void FillRectangle (Brush brush, Rectangle rect)
void FillRectangle (Brush brush, RectangleF rectf)

The width and height of the resultant figure is equal to the width and height specified in the method
arguments. For example, if the width and height are equal to 3, the FillRectangle call draws a 3-pixel-

square block with the upper left corner at pixel (x, y). If you want to draw and fill a particular
rectangle, call FillRectangle first so the fill doesn't overwrite any of the lines.

The Graphics class also includes two Fill[Rectangles methods:

Graphics FiIIRectaniIes Methods

void FillRectangles (Brush brush, Rectangle[] arect)

void FillRectangles (Brush brush, RectangleF[] arect)

These FillRectangles methods produce the same results as multiple calls to FillRectangle.
There are four FillEllipse methods, and they have the same arguments as DrawEllipse:

Graphics FillEllipse Methods

void FillEllipse (Brush brush, int x, int y, int cx, int cy)
void FillEllipse (Brush brush, float x, float y, float cx, float cy)
void FillEllipse (Brush brush, Rectangle rect)

void FillEllipse (Brush brush, RectangleF rectf)

FillEllipse behaves a little differently from all the methods covered so far. For example, suppose you
specify a location of (0, 0) and a height and width of 20 for the ellipse. As you know, DrawEllipse
draws a figure that encompasses pixels 0 through 20 both horizontally and vertically for an effective
width and height of 21 pixels.

For the most part, the area colored by FillEllipse encompasses pixels 1 through 19 both horizontally
and vertically, for an effective width of 19 pixels. | say "for the most part" because there always
seems to be 1 pixel at the left that occupies pixel position 0! There's also some overlap between the
ellipse drawn by DrawEllipse and the area filled by FillEllipse. If you need to draw an ellipse that is
both filled and outlined, call FillEllipse before calling DrawEllipse.

There are also three FillPie methods:

Graphics FillPie Methods

void FillPie (Brush brush, int x, int y, int cx, int cy,
int iAngle, int iSweep)

void FillPie (Brush brush, float x, float y, float cx, float cy,
float fAngle, float fSweep)

void FillPie (Brush brush, Rectangle rect,

float fAngle, float fSweep)

Off by 1

Now that we've examined all the rectangle and ellipse methods, it's time to compare them with the
purpose of avoiding off-by-1 errors. The following program draws 4 x 4 rectangles and ellipses using
the six methods DrawRectangle, DrawRectangles, DrawEllipse, FillRectangle, FillRectangles, and
FillEllipse.

FourByFours.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class FourByFours: PrintableForm

{

public new static void Main()

{

Application.Run (new FourByFours()) ;

}

public FourByFours ()

{

Text = "Four by Fours";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

Pen pen

new Pen(clr) ;

Brush brush = new SolidBrush(clr) ;

grfx.DrawRectangle (pen, new Rectangle(2, 2, 4, 4));
grfx.DrawRectangles (pen, new Rectangle[]

{new Rectangle (8, 2, 4, 4)});
grfx.DrawEllipse (pen, new Rectangle(14, 2, 4, 4));

grfx.FillRectangle (brush, new Rectangle(2, 8, 4, 4));
grfx.FillRectangles (brush, new Rectanglel[]

{new Rectangle (8, 8, 4, 4)});
grfx.FillEllipse (brush, new Rectangle (14, 8, 4, 4));

}

Here's what the output looks like blown up to analyzable size:

As you can see, the DrawRectangle, DrawRectangles, and DrawEllipse methods are all consistent in
rendering figures that are an extra pixel wider and higher than the size would imply. With the

exception of a little nub on the left, the FillEllipse method draws a figure that is a pixel narrower and
shorter than the 4 x 4 figures drawn by FillRectangle and FillRectangles.

Polygons and the Filling Mode

Finally (at least for this chapter), we have the FillPolygon method. What makes the polygon different
from other filled areas is that the lines that define the polygon can cross and overlap. This adds a
layer of complexity because the interiors of the polygon can be filled in two distinct ways. There are
four FillPolygon methods:

Graphics FillPolygon Methods

void FillPolygon (Brush brush, Point[] apt)
void FillPolygon (Brush brush, PointF[] apt)
void FillPolygon (Brush brush, Point[] apt, FillMode fm)
void FillPolygon (Brush brush, PointF[] apt, FillMode fm)

These are similar to the DrawPolygon methods except that an optional argument is included.
FillMode is an enumeration defined in the namespace System.Drawing.Drawing2D with just two
possible values:

FillMode Enumeration

‘ Member ‘ Value ‘ Comments

‘ Alternate ‘ 0 ‘ Default; alternates filled and unfilled areas
‘ Winding ‘ 1 ‘ Most interior areas filled

The fill mode makes a difference only when the lines that define the polygon overlap. The fill mode
determines which of the enclosed areas are filled and which are not. If you don't specify a fill mode in
the FillPolygon method, FillMode.Alternate is the default. In this case, an enclosed area is filled only
if there are an odd number of boundaries between the enclosed area and infinity.

The classical example is the five-point star. The interior pentagon is filled when the winding fill mode

is used but not when the alternate fill mode is used.

FillModesClassical.cs

using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

class FillModesClassical: PrintableForm

{
public new static void Main()
{
Application.Run(new FillModesClassical ()) ;
1

public FillModesClassical ()

{

Text = "Alternate and Winding Fill Modes (The Classical

Example)";
ClientSize = new Size(2 * ClientSize.Height, ClientSize.Height) ;
1
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
Brush brush = new SolidBrush(clr) ;
Point [] apt = new Point[5];
for (int i = 0; 1 < apt.Length; i++)
{
double dAngle = (i * 0.8 - 0.5) * Math.PI;
apt[i] = new Point (

(int) (ecx *(0.25 + 0.24 * Math.Cos (dAngle))),

(int) (cy *(0.50 + 0.48 *
Math.Sin (dAngle)))) ;

}

grfx.FillPolygon (brush, apt, FillMode.Alternate) ;

for (int i = 0; 1 < apt.Length; i++)

apt [1i] .X += cx / 2;

grfx.FillPolygon (brush, apt, FillMode.Winding) ;

}

The first for loop defines the five points of the star displayed in the left half of the client area. That
polygon is filled with the alternate fill mode. The second for loop shifts the points to the right side of
the client area where the polygon is filled with the winding fill mode.

B piternate and Winding Fill Modes (The Classicel Example

In most cases, the winding fill mode causes all enclosed areas to be filled. But it's not quite that
simple, and there are exceptions. To determine whether an enclosed area is filled in winding mode,
imagine a line drawn from a point in that area to infinity. If the imaginary line crosses an odd number
of boundary lines, the area is filled, just as in alternate mode. If the imaginary line crosses an even
number of boundary lines, the area can be either filled or not filled. The area is filled if the number of
boundary lines going in one direction (relative to the imaginary line) is not equal to the number of
boundary lines going in the other direction.

With a little effort, it's possible to devise a figure that leaves an interior unfilled with winding mode.
FillModesOddity.cs

using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

class FillModesOddity: PrintableForm

{
public new static void Main()
{
Application.Run(new FillModesOddity()) ;
1
public FillModesOddity ()
{
Text = "Alternate and Winding Fill Modes (An Oddity)";
ClientSize = new Size(2 * ClientSize.Height, ClientSize.Height) ;
1
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
Brush brush = new SolidBrush(clr) ;
PointF[] aptf = { new PointF(0.1f, 0.7f), new PointF(0.5f,
0.7f),
new PointF(0.5f, 0.1f), new PointF(0.9f,
0.1f),
new PointF(0.9f, 0.5f), new PointF(0.3f,
0.5f),
new PointF(0.3f, 0.9f), new PointF(0.7f,
0.9f),
new PointF(0.7f, 0.3f), new PointF(0.1f,
0.3f) };

for (int i = 0; 1 < aptf.Length; i++)

{
aptf[i] .X *= cx / 2;
aptf[i] .Y *= cy;

}

grfx.FillPolygon (brush, aptf, FillMode.Alternate) ;

for (int i = 0; 1 < aptf.Length; i++)
aptfl[i] .X += cx / 2;

grfx.FillPolygon (brush, aptf, FillMode.Winding) ;

Here's the result:

B piternate and Winding Fill Modes (An Cddity) =0l x]

o

I'll discuss three more Fill methods in subsequent chapters: FillClosedCurve in Chapter 13, and
FillRegion and FillPath in Chapter 15.

Chapter 6: Tapping into the Keyboard

Overview

Despite the sophisticated, visually oriented point-and-click user interface of today's graphical
environments—including the mouse, controls, menus, and dialog boxes—the keyboard remains the
primary source of input in most applications. The keyboard also has the most ancient ancestry of any
component of the personal computer, dating from 1874 with the first Remington typewriter. Through
a few decades of evolution, computer keyboards have expanded beyond the typewriter to include
function keys, cursor positioning keys, and (usually) a separate numeric keypad.

In most computers, the keyboard and the mouse are the sole sources of user input. While much
research continues with voice and handwriting recognition for entering alphanumeric data into the
computer, those input methods don't—and never will—offer the precision of the keyboard. (Of
course, I'm assuming that computers will never be better than humans at decoding bad handwriting
or strong accents.)

Ignoring the Keyboard

Although the keyboard is an important source of user input in most applications, you certainly don't
need to write code that acts on each and every keyboard event your application receives. Microsoft
Windows and the Windows Forms class libraries handle many keyboard functions themselves.

Applications can usually ignore keystrokes involved in menu selection, for example. Programs don't
need to monitor those keystrokes because the menu itself handles all the keyboard activity
associated with menu selection and tells your program—through an event—when a menu item has
been selected.

Windows Forms programs often define keyboard accelerators to invoke common menu items. These
accelerators usually involve the Ctrl key in combination with a letter or function key (for example,
Ctrl+S to save a file). Again, your application doesn't have to worry about translating these
keystrokes into menu commands. The menu itself does that.

Dialog boxes also have a keyboard interface, but programs usually don't need to monitor the
keyboard when a dialog box is active. Your program is notified through events of the effects of any
keystrokes in the dialog box. If you put controls on the surface of your form, you don't need to worry
about navigation keys, such as Tab or the cursor-movement keys (other than to ensure at design
time that the tab order is logical); all user navigation through the controls is handled for you. You can
also use controls such as TextBox and RichTextBox to process keyboard input. These controls
deliver a resultant text string to your program when the user has finished entering the input.

Despite all this help, there remain many applications in which you need to process keyboard input
directly. Certainly if you're going to be writing your own controls, you need to know something about
the keyboard.

Who's Got the Focus?

The keyboard is a shared resource in Windows. All applications get input from the same keyboard,
yet any particular keystroke must have only a single destination. For Windows Forms programs, this
destination must be an object of type Control (the class that implements keyboard handling) or a
descendent of Control, such as Form.

The object that receives a particular keyboard event is the object that has the input focus. The
concept of input focus is closely related to the concept of the active form. The active form is usually
easy to identify. It is often the topmost form on the desktop. If the active form has a caption bar, the
caption bar is highlighted. If the active form has a dialog box frame instead, the frame is highlighted.
If the active form is currently minimized, its entry in the taskbar is shown as a depressed button.

The active form is available from the only static property implemented by Form:
Form Static Property

‘ Type | Property | Accessibility

‘ Form | ActiveForm | get

However, this property returns a non- null object only if the currently active form is part of your
application. It can't obtain objects created by other applications!

A form can attempt to make itself the active form by calling the following method:

Form Methods (selection)

void Activate()

Usually, if the form is not topmost on the desktop, this call will cause Windows to flash the form's
entry in the taskbar, requiring the user to bring the form topmost and make it the active form. In
addition, the Form class implements two events related to the active form:

Form Events (selection)

‘ Event ‘ Method ‘ Delegate | Argument

‘ Activated ‘ OnActivated ‘ EventHandler ‘ EventArgs
‘ Deactivate ‘ OnDeactivate ‘ EventHandler ‘EventArgs

I'm mentioning these properties, methods, and events now because you probably won't be using
them much. It isn't often necessary for a program to get involved with the activation of its forms.

Input focus is another matter. If the active form has child controls—that is, controls on the surface of
its client area, like the Panel control in Chapter 4—the object with the input focus must be either one
of these controls or the form itself. Controls indicate they have input focus in different ways. A button
displays a dotted line around the text; a text box displays a flashing caret. I'll discuss issues related
to input focus later in this chapter; they will surface again in subsequent chapters as well.

Keys and Characters

A keyboard always generates numeric codes of some sort. But you can think of a keyboard in two
different ways:

8 As a collection of distinct physical keys

8 As a means of generating character codes

When you treat the keyboard as a collection of keys, any code generated by the keyboard must
identify the key and indicate whether the key is being pressed or released. When you treat the
keyboard as a character input device, the code generated by a particular keystroke identifies a
unique character in a character set. Traditionally, this character set has been ASCII, but in the
Windows Forms environment the character set is Unicode.

Many of the keys on today's computer keyboards aren't associated with character codes. Neither the
function keys nor the cursor-movement keys generate character codes. Programs that use keyboard
input in any nontrivial manner usually must deal with the keyboard as both a collection of keys and a
character generator.

You can think of the keyboard as divided into four general groups of keys:

8 Toggle keys Caps Lock, Num Lock, Scroll Lock, and possibly the Insert key. Pressing the key
is intended to turn on the state of the key; pressing it again turns the state off. The Caps Lock,
Num Lock, and Scroll Lock keys have systemwide states. (That is, when programs are running
concurrently on the same computer, Caps Lock can't be simultaneously on for one program and
off for another.) Keyboards often have lights that indicate the toggle state of these keys.

§ Shift keys The Shift, Ctrl, and Alt keys. When depressed, the shift keys affect the
interpretation of other keys. The shift keys are called modifier keys in the Windows Forms class
library.

§ Noncharacter keys The function keys, the cursor movement keys, Pause, Delete, and
possibly the Insert key. These keys aren't associated with characters but instead often direct a
program to carry out a particular action.

8§ Character keys The letter, number, and symbol keys, the spacebar, the Tab key, Backspace,
Esc, and Enter. (The Tab, Backspace, Esc, and Enter keys can also be treated as noncharacter
keys.)

Often a single physical key can generate different character codes depending on the state of the
toggle and shift keys. For example, the A key generates a lowercase a or an uppercase A depending
on the Caps Lock and Shift keys. Sometimes two different physical keys (such as the two Enter keys
on most personal computer keyboards) can generate the same character code.

A Windows Forms program receives keyboard input in the form of events. I'll describe first how to
treat the keyboard as a collection of keys and then how to treat it as a generator of character codes.

Keys Down and Keys Up

Much of the keyboard functionality is implemented in the Control class, which supports the following
two events and methods that let you deal with key-down and key-up events:

Control Events (selection)

‘ Event ‘ Method ‘ Delegate ‘ Argument

‘ KeyDown ‘ OnKeyDown ‘ KeyEventHandler ‘ KeyEventArgs
‘ KeyUp ‘ OnKeyUp ‘ KeyEventHandler ‘ KeyEventArgs

As usual, in any class derived from Control (such as Form), you can override the OnKeyDown and
OnKeyUp methods:

protected override void OnKeyDown (KeyEventArgs kea)

{

}

protected override void OnKeyUp (KeyEventArgs kea)

{

}

This is the customary way of handling key events in a class derived from Form.

You can also process key-down and key-up events in objects created from the Control class or one
of its descendents. You first need to define methods in accordance with the KeyEventHandler
delegate:

void MyKeyDownHandler (object objSender, KeyEventArgs kea)

{

}

void MyKeyUpHandler (object objSender, KeyEventArgs kea)

{

}

You then register the key event handlers:
cntl.KeyDown += new KeyEventHandler (MyKeyDownHandler) ;
cntl.KeyUp += new KeyEventHandler (MyKeyUpHandler) ;

Whichever way you do it, you get a KeyEventArgs object when a key is pressed or released. This
object has the following properties:

KeyEventArgs Properties

‘ Type ‘ Property ‘ Accessibility ‘ Comments

‘ Keys ‘ KeyCode ‘ get ‘ Identifies the key

KeyEventArgs Properties

‘ Type ‘ Property ‘ Accessibility ‘ Comments

‘ Keys ‘ Modifiers ‘ get ‘ Identifies shift states

‘ Keys ‘ KeyData ‘ get ‘ Combination of KeyCode and Modifiers

‘ bool ‘ Shift ‘ get ‘ Set to true if Shift key is pressed

‘ bool ‘ Control ‘ get ‘ Set to true if Ctrl key is pressed

‘ bool ‘ Alt ‘ get ‘ Set to true if Alt key is pressed

‘ bool ‘ Handled ‘ get/set ‘ Set by event handler (initially false)

‘ int ‘ KeyValue ‘ get ‘ Returns KeyData in the form of an integer

There's a whole lot of redundancy here. The only necessary properties are KeyData and Handled.
Everything else can be derived from KeyData. But the redundancy is convenient. You'll probably find
yourself using the KeyCode, Shift, Control, and Alt properties the most.

The first three properties in this table are all of the same type—a very important enumeration named
Keys. The KeyCode property tells you what key is being pressed; that's the most important
information. The Modifiers property indicates whether the Alt, Ctrl, or Shift keys are also pressed.
KeyData combines KeyCode and Modifiers; Shift, Control, and Alt duplicate the Modifiers information
in Booleans. Handled is a property sometimes set to true by controls to indicate that the control has
used a keyboard event and it shouldn't be passed to the control's parent. KeyValue returns the same
information as KeyData but as an integer rather than as a Keys enumeration.

The Keys Enumeration

Three of the properties of KeyEventArgs are of type Keys. Keys is a large enumeration—the second
largest enumeration in the entire .NET Framework. It includes keys that certainly aren't on my
keyboard and probably aren't on yours either. (Veteran Windows programmers might notice that
these enumeration values are the same as the virtual key codes defined in the Windows header
files.)

Let's tackle the Keys enumeration in logical groups. First, Keys has 26 members that identify the
letter keys regardless of the shift state:

Keys Enumeration (letters)

‘ Member ‘ Value ‘ Member ‘ Value

A 65 N 78
B |66 o 79
c 67 P 80
D 68 Q 81
‘E ‘69 ‘R \82
F 70 's 83
‘G ‘71 ‘T ‘84
‘H ‘72 ‘U ‘85
‘/ ‘73 ‘V ‘86
K 74 ‘W 87
‘K ‘75 ‘X ‘88
‘L ‘76 ‘Y ‘89

‘M ‘77 ‘Z \90

Notice that the enumeration values are the same as the ASCII codes (which are the same as the
Unicode codes) for the uppercase letters. (These keys also generate character codes that are
dependent on the Ctrl, Shift, and Caps Lock states.)

Just so we don't get too far adrift here, let's look at some code that makes use of one of the Keys

values.

ExitOnX.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class ExitOnX: Form

{

public static void Main()

{

Application.Run (new ExitOnX()) ;

}

public ExitOnX()
Text = "Exit on X";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

}

protected override void OnKeyDown (KeyEventArgs kea)

{

if (kea.KeyCode == Keys.X)
Close () ;

}

This program closes itself when you press the X key. You can have any combination of Shift, Ctrl, or

Alt keys pressed when you press the X. Because you know the relationship between the
enumeration values and Unicode, the if statement could be replaced by

if (kea.KeyCode == (Keys) (int) 'X")

The next set of Keys values refers to the horizontal row of number keys located above the letter keys

regardless of shift state:
Keys Enumeration (number keys)

‘ Member ‘ Value
\ DO \ 48
D1 49
‘ D2 ‘ 50
‘ D3 ‘ 51

‘D4 \52

Keys Enumeration (number keys)

‘ Member ‘ Value

D5 53
D6 54
D7 55
D8 56
DY 57

Again, notice the relationship to the ASCII codes for the numbers. These keys also generate
character codes that depend on the shift state.

The Keys enumeration has values for 24 function keys:
Keys Enumeration (function keys)

‘ Member ‘ Value ‘ Member | Value

F1 112 F13 124
P2 113 | F14 125
'F3 114 \F15 126
| F4 115 'F16 127
'Fs 116 \F17 128
' F6 117 'F18 129
F7 118 ' F19 130
'F8 119 | F20 131
' Fo 120 | Fo1 132
'F10 121 | F22 133
| F11 122 | F23 134
\F12 \123 \F24 |135

| know: | don't have 24 function keys on my keyboard either, and | think | prefer it that way.

The original IBM PC keyboard introduced a numeric keypad. The following keys of the numeric
keypad generate the same codes regardless of the Num Lock state:

Keys Enumeration (keypad operators)

‘ Member ‘ Value ‘ Description

‘ Multiply ‘ 106 ‘ Numeric keypad *
‘ Add ‘ 107 ‘ Numeric keypad +
‘ Subtract ‘ 109 ‘ Numeric keypad —
‘ Divide ‘ 111 ‘ Numeric keypad /

The other keys of the numeric keypad generate different codes depending on the state of the Num
Lock key. Here are the numeric keypad codes when Num Lock is toggled on. I've arranged this table
somewhat like the numeric keypad itself:

Keys Enumeration (keypad numbers)

Member Value Member Value Member Value

Keys Enumeration (keypad numbers)

‘ Member ‘ Value | Member ‘ Value ‘ Member | Value

‘ NumPad7 ‘ 103 ‘ NumPad8 ‘ 104 ‘ NumPad9 | 105
‘ NumPad4 ‘ 100 ‘ NumPad5 ‘ 101 ‘ NumPad6 | 106
‘ NumPad1 ‘ 97 ‘ NumPad2 ‘ 98 ‘ NumPad3 | 99

‘ NumPad0 ‘ 96 ‘ ‘ ‘ Decimal | 110

These keys also generate character codes for the 10 digits and the decimal separator character. For
keyboard layouts in some countries, the decimal separator character is a period. In others, it's a
comma. Regardless, the KeyCode value is Keys.Decimal. The following enumeration value doesn't
seem to be used:

Keys Enumeration (keypad, unused)

‘ Member | Value

‘ Separator | 108

Here are the codes generated when Num Lock is toggled off:
Keys Enumeration (keypad cursor movement)

‘ Member ‘ Value | Member ‘ Value ‘ Member ‘ Value

‘ Home ‘ 36 | Up ‘ 38 ‘ PageUp or Prior ‘ 33
‘ Left ‘ 37 | Clear ‘ 12 ‘ Right ‘ 39
‘ End ‘ 35 | Down ‘ 40 ‘ PageDown or Next ‘ 34
‘ Insert ‘ 45 | ‘ ‘ Delete ‘ 46

Notice that Keys.Prior and Keys.Next duplicate the values for Keys.PageUp and Keys.PageDown.
With the exception of Clear, many keyboards duplicate these keys as a separate set of 10 cursor-
movement keys that generate the same codes.

I've isolated the following six keys because they also generate character codes and because the
Keys enumeration values are the same as the character codes they generate:

Keys Enumeration (ASCII control keys)

‘ Member ‘ Value

‘ Back ‘ 8
‘ Tab ‘ 9
‘ LineFeed ‘ 10
‘ Enter Return ‘ 13
‘ Escape ‘ 27
‘ Space ‘ 32

Back is the Backspace key. If present, the numeric keypad provides a second Enter (or Return) key
that generates the same code as the normal Enter (or Return) key regardless of the Num Lock state.

The following table shows Keys enumeration values for the Shift key, Ctrl key, and Alt key (here
called the Menu key because it usually initiates menu selection). Most keyboards these days have
pairs of Shift, Ctrl, and Alt keys on the bottom of the keyboard, and the table seems to imply that the
left and right versions of these keys generate different codes:

Keys Enumeration (shift keys)

‘ Member | Value ‘ Member ‘ Value ‘ Member | Value

‘ ShiftKey | 16 ‘ LShiftKey ‘ 160 ‘ RShiftKey ‘ 161

‘ ControlKey | 17 ‘ LControlKey ‘ 162 ‘ RControlKey ‘ 163
‘ Menu | 18 ‘ LMenu ‘ 164 ‘ RMenu ‘ 165

In reality, however, the enumeration members prefaced with L and R don't appear in any
KeyEventArgs object I've ever seen.

These are keys found on the Microsoft Natural Keyboard and clones of that keyboard:
Keys Enumeration (Microsoft keys)

‘ Member ‘ Value ‘ Description

‘ LWin ‘ 91 ‘ Windows flag logo at left
‘ RWin ‘ 92 ‘ Windows flag logo at right
‘ Apps ‘ 93 ‘ Application menu icon

In this case, the left and right keys do generate different codes.

This table is a collection of some miscellaneous keys and combinations:
Keys Enumeration (miscellaneous)

‘ Member ‘ Value ‘ Description

‘ Cancel ‘ 3 ‘ Pause/Break key when Ctrl is pressed

‘ Pause ‘ 19 ‘ Pause/Break key when Ctrl isn't pressed
‘ Capital CapsLock ‘ 20 ‘ Caps Lock key

‘ Snapshot ‘ 44 ‘ Print Scrn key

PrintScreen

‘ NumLock ‘ 144 ‘ Num Lock key

‘ Scroll ‘ 145 ‘ Scroll Lock key

Five of the Keys enumeration values actually refer to mouse buttons:
Keys Enumeration (mouse buttons)

‘ Member | Value

‘ LButton | 1
‘ RButton | 2
‘ MButton | 4
‘ XButton1 | 5
‘ XButton2 | 6

You won't see these members in the KeyDown and KeyUp events. And then there's this group of
oddballs:

Keys Enumeration (special keys)

‘ Member ‘ Value

‘ Select ‘ 41

‘ Print ‘ 42

Keys Enumeration (special keys)

‘ Member

‘ Value

‘ Execute ‘ 43
‘ Help ‘ 47
‘ ProcessKey ‘ 229
‘ Attn ‘ 246
‘ Crsel ‘ 247
‘ Exsel ‘ 248
‘ EraseEof ‘ 249
‘ Play ‘ 250
‘ Zoom ‘ 251
‘ NoName ‘ 252
‘ Pat ‘ 253
‘ OemClear ‘ 254

If | ever sat down at a keyboard with all these keys, | wouldn't know what to do with them.

The following 12 Keys values apply only to Windows 2000 and later. These keys also generate

character codes:

Keys Enumeration (symbols)

‘ Member

‘ Value

‘ OemSemicolon ‘ 186
‘ Oemplus ‘ 187
‘ Oemcomma ‘ 188
‘ OemMinus ‘ 189
‘ OemPeriod ‘ 190
‘ OemQuestion ‘ 191
‘ Oemtilde ‘ 192
‘ OemOpenBrackets ‘ 219
‘ OemPipe ‘ 220
‘ OemCloseBrackets ‘ 221
‘ OemQuotes ‘ 222
‘ Oem8 ‘ 223
‘ OemBackslash ‘ 226

For example, the OemSemicolon key code is generated when the user presses and releases the key
displaying the semicolon and colon.

These key codes are generated for special browser-enabled and media player—enabled keyboards
(such as the Microsoft Natural Keyboard Pro or Microsoft Internet Keyboard Pro) in Windows 2000

and later:

Keys Enumeration (browsers and players)

‘ Member

‘ Value

‘ BrowserBack ‘ 166
‘ BrowserForward ‘ 167
‘ BrowserRefresh ‘ 168
‘ BrowserStop ‘ 169
‘ BrowserSearch ‘ 170
‘ BrowserFavorites ‘ 171
‘ BrowserHome ‘ 172
‘ VolumeMute ‘ 173
‘ VolumeDown ‘ 174
‘ VolumeUp ‘ 175
‘ MediaNextTrack ‘ 176
‘ MediaPreviousTrack ‘ 177
‘ MediaStop ‘ 178
‘ MediaPlayPause ‘ 179
‘ LaunchMail ‘ 180
‘ SelectMedia ‘ 181
‘ LaunchApplication1 ‘ 182
‘ LaunchApplication2 ‘ 183

These key codes can obviously be ignored by many applications.

The following key codes are generated in connection with the Input Method Editor (IME), which is
used to enter ideographs in Chinese, Japanese, and Korean:

Keys Enumeration (IME)

‘ Member

| Value

‘ HanguelMode ‘ 21
HangulMode KanaMode

‘ JunjaMode | 23
‘ FinalMode | 24
‘ KanjiMode HanjaMode | 25
‘ IMEConvert | 28
‘ IMENonconvert | 29
‘ IMEAceept | 30
‘ IMEModeChange | 31

Applications are generally only interested in the Unicode character codes that result from the use of

the IME.

All the Keys members listed so far have been key codes; that is, they refer to particular keys that are
pressed or released. The KeyCode property of the KeyEventArgs object delivered with the KeyDown
or KeyUp event will be set to one of the preceding codes.

The Keys enumeration also includes these modifier codes:

Keys Enumeration (modifier keys)

‘ Member ‘ Value

‘ None ‘ 0x00000000
‘ Shift ‘ 0x00010000
‘ Control ‘ 0x00020000
‘ Alt ‘ 0x00040000

Notice that these are bit values. These modifier codes indicate if the Shift, Ctrl, or Alt keys were
already pressed when the key-down or key-up event took place. You'll recall in a previous table that |
showed key codes for ShiftKey, ControlKey, and Menu. Those key codes indicate the actual Shift,
Ctrl, or Alt key being pressed or released.

Three of the read-only properties in KeyEventArgs—KeyCode, Modifiers, and KeyData—are all of

type Keys. Each key pressed or released generates one event:

8§ The KeyCode property indicates the key being pressed or released. These keys can include
the Shift (indicated by Keys. ShiftKey), Ctrl (Keys.ControlKey), or Alt key (Keys.Menu).

8 The Modifiers property indicates the state of the Shift, Ctrl, and Alt keys during the key press or
release. Modifiers can be any combination of Keys. Shift, Keys.Control, or Keys.Alt. Or if no
modifier key is pressed, Modifiers is Keys.None, which is defined simply as 0.

8 The KeyData property is a combination of KeyCode and Modifiers.

For example, let's assume you press the Shift key and then D, and then release D and release Shift.
This table shows the four events and the KeyEventArgs properties associated with these key
actions:

KeyEventArgs Properties and Associated Key Actions

‘ ‘ ‘ Properties

‘ Action ‘ Event ‘ KeyCode | Modifiers ‘ KeyData
‘ Press Shift ‘ KeyDown ‘ Keys.ShiftKey Keys. Shift ‘ Keys.Shift |

Keys. ShiftKey
‘ Press D ‘ KeyDown ‘ Keys.D | Keys.Shift ‘ Keys.Shift | Keys.D
‘ Release D ‘ KeyUp ‘ Keys.D | Keys.Shift ‘ Keys.Shift | Keys.D
‘ Release Shift ‘ KeyUp ‘ Keys. ShiftKey | Keys.None ‘ Keys. ShiftKey

If you're working with the KeyData property, the Keys enumeration also defines two masks to
differentiate the key codes and the modifiers:

Keys Enumeration (KeyData bit masks)

‘ Member ‘ Value ‘ Comment

‘ KeyCode ‘ 0x0000FFFF ‘ Bit mask for key codes
‘ Modifiers ‘ 0xFFFF0000 ‘ Bit mask for modifier keys

Notice that these enumeration members have the same names as the corresponding properties of
the KeyEventArgs class. If the KeyEventArgs object is named kea, the expression

kea.KeyData & Keys.KeyCode

is the same as kea.KeyCode and the expression

key.KeyData & Keys.Modifiers

is the same as kea.Modifiers.

Testing the Modifier Keys

It's not necessary to be handling a KeyDown or KeyUp event to determine whether the Shift, Ctrl, or
Alt key is pressed. You can also obtain the current state of the three modifier keys using the static
Control.ModifierKeys property:

Static Control Properties (selection)

‘ Type | Property ‘ Accessibility ‘ Description

‘ Keys | ModifierKeys ‘ get | State of the Shift, Alt, and Ctrl keys

Suppose you needed to do something different depending on whether the Shift or Ctrl key—or
both—were pressed, but not if the Alt key were pressed. You would first call the static ModifierKeys
property:

Keys keysMod = Control.ModifierKeys;

You then test the possible combinations you're interested in with code that looks like this:
if (keysMod == (Keys.Shift | Keys.Control))

{

// Shift and Ctrl keys are pressed.

}

else if (keysMod == Keys.Shift)

{

// Shift key is pressed.

}

else if (keysMod == Keys.Control)

{

// Ctrl key is pressed.

}

You might need to use ModifierKeys when you're not processing a KeyDown or KeyUp event,
perhaps when you're processing a mouse event. We've all seen programs that interpret mouse clicks
and mouse movement differently when the Shift or Ctrl key is pressed. This is the kind of situation in
which the ModifierKeys property is useful. An example is the CanonicalSpline program in Chapter
13.

Unfortunately, there is no way to test the state of the toggle keys Caps Lock, Num Lock, and Scroll
Lock.

Reality Check

Although a Windows Forms program certainly gets a lot of information about keystrokes, most
programs can ignore most of them. If you process the KeyDown event, for example, you usually
don't have to bother with the KeyUp event.

Windows Forms programs often ignore events involving keystrokes that also generate characters.
(I'll get to the keyboard character event shortly.) You might have concluded that you can get all the
keyboard information you need from the KeyDown and KeyUp events to generate your own
character codes.

This is a bad idea. For example, suppose your event handler gets a KeyEventArgs object with a
KeyCode property of Keys.D3 and a Modifiers property of Keys.Shift. You know what that is, right?
It's the pound sign (#), which has an ASCII and Unicode encoding of 0x0023. Well, maybe. In the
United Kingdom, the upper-shift 3 key generates another type of pound sign, which has a character
encoding of 0x00A3 and looks like this: £.

A more serious problem involves the Caps Lock key. As | mentioned earlier, there is no facility in
Windows Forms to test the state of Caps Lock. You can tell when Caps Lock is being pressed and
released, but Caps Lock could already be toggled on when your program begins executing.

The KeyDown event is most useful for the cursor-movement keys, the function keys, Insert, and
Delete. However, the function keys often appear as menu accelerators. Because menu accelerator
keys are translated into menu command events automatically, you don't have to process the
keystrokes themselves. Function keys, too, often duplicate the functionality of menu items. And when
programs define function keys that don't duplicate menu items—when function keys are used in
combination with Shift and Ctrl with the crazy abandon of old MS-DOS programs such as
WordPerfect and Microsoft Word—then those programs aren't being very user friendly.

So it comes down to this: most of the time you'll process KeyDown events only for cursor-movement
keys, Insert, and Delete. When you use those keys, you can check the shift state with the Modifiers
property of the KeyEventArgs object. Programs often use the Shift key in combination with the cursor
keys to extend a selection in (for example) a word processing document. The Ctrl key is often used
to alter the meaning of the cursor keys. For example, Ctrl in combination with the right arrow key
might mean to move the cursor one word to the right rather than one character.

A Keyboard Interface for Sysinfo

| assume you recall the various programs from Chapter 4 that displayed system information. The last
one was SyslnfoReflection, and it had progressed a great deal from the earliest tentative code. But it
still had one little problem: it had no keyboard interface.

The time has come to add one, and here's another example in which inheritance really pays off. This

class derives from the SysinfoReflection class and adds an override of the OnKeyDown method.
SysInfoKeyboard.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SysInfoKeyboard: SysInfoReflection

{

public new static void Main()

{

Application.Run(new SysInfoKeyboard()) ;

}

public SysInfoKeyboard/()

{

Text = "System Information: Keyboard";

}

protected override void OnKeyDown (KeyEventArgs kea)

{

Point pt = AutoScrollPosition;

pt.X = -pt.X;
pt.Y = -pt.Y;

switch (kea.KeyCode)
{
case Keys.Right:

if ((kea.Modifiers & Keys.Control) Keys.Control)

pt.X += ClientSize.Width;
else
pt.X += Font.Height;

break;

case Keys.Left:

if ((kea.Modifiers & Keys.Control) == Keys.Control)
pt.X -= ClientSize.Width;
else
pt.X -= Font.Height;
break;
case Keys.Down: pt.Y += Font.Height; break;
case Keys.Up: pt.Y -= Font.Height; break;

case Keys.PageDown:
pt.Y += Font.Height * (ClientSize.Height / Font.Height) ;
break;

case Keys.PageUp:

pt.Y -= Font.Height * (ClientSize.Height / Font.Height) ;
break;

case Keys.Home: pt = Point.Empty; break;

case Keys.End: pt.Y = 1000000; break;

}

AutoScrollPosition = pt;

}

As | said in Chapter 4, the read/write AutoScrollPosition property is implemented in ScrollableControl
(of which Form is a descendent) as part of the support for auto-scroll. AutoScrollPosition is a Point
structure that indicates the positions of the two scroll bars.

When you get the AutoScrollPosition value, the coordinates are negative, indicating the location of
the virtual client area relative to the upper left corner of the physical client area. When you set
AutoScrollPosition, however, the coordinates must be positive. That's the reason for the two lines of
code:

pt.X = -pt.X;
pt.Y = -pt.Y;

Otherwise, the coordinates are simply adjusted based on the particular cursor key. For the left and
right arrow keys, | shift the client area by the width of the client area if the Ctrl key is pressed and by
the height of a Font character if not. I've made the effects of other cursor keys independent of any
modifier keys. The Home key returns the display back to the origin; the End key goes to the bottom
of the list but doesn't change the horizontal position.

KeyPress for Characters

Many keys on the keyboard generate character codes. To get those codes, you install an event
handler for KeyPress or (if possible) override the OnKeyPress method:

Control Events (selection)

‘ Event ‘ Method ‘ Delegate ‘ Argument

‘ KeyPress ‘ OnKeyPress ‘ KeyPressEventHandler ‘ KeyPressEventArgs

The KeyPressEventArgs class has just two properties:
KeyPressEventArgs Properties

‘ Type | Property ‘ Accessibility ‘ Comments

‘ char | KeyChar ‘ get ‘ Unicode character code
‘ bool | Handled ‘ get/set ‘ Set by event handler (initially false)

The char data type is, of course, a 16-bit Unicode character.

Refer to the table presented earlier (page 226) that showed the events corresponding to pressing the
Shift key and the D key. Right in the middle of this process—between the pair of KeyDown events
and the pair of KeyUp events—you'll get a KeyPress event with a KeyChar property of 0x0044,
which is the uppercase D. (Well, probably. If Caps Lock is toggled on, you'll get 0x0064, a lowercase
d.)

Of course, I'm assuming that you have an American English keyboard layout installed. If you have a
Greek keyboard layout installed, you'll get 0x0394, which corresponds to . If you have a Russian
keyboard layout installed, you'll get a code of 0x0412, which corresponds to A. I'll explain how to
install foreign keyboard layouts later in this chapter.

Control Characters

With the Ctrl key down, you can generate control characters that are reported through the KeyPress
event. You get character codes 0x0001 through 0x001A by using the Ctrl key in combination with A
through Z regardless of the Shift key status. Here are some other control characters you can
generate from the keyboard.

Keyboard-Generated Control Characters

‘ Key ‘ Control Character

‘ Shift+Ctrl @ ‘ 0x0000
‘ Backspace ‘ 0x0008
‘ Tab ‘ 0x0009
‘ Ctrl+Enter ‘ 0x000A
‘ Enter ‘ 0x000D
‘ Esc 0x001B
Ctrl [

‘ Ctrl\ ‘ 0x001C
‘ Ctrl] ‘ 0x001D
‘ Shift+Ctrl A ‘ 0x001E
‘ Shift+Ctrl _ ‘ 0x001F
‘ Ctrl+Backspace ‘ 0x007F

Programs often use Shift in combination with Tab to tab backward. There's no special code for that;
it's something you'll have to handle on your own.

A bit of overlap occurs between the Keys enumeration codes you get with the KeyDown and KeyUp
events and the character codes you get with the KeyPress event. Which should you use to process
the Tab key, Enter, Backspace, or Esc?

I've gone back and forth on this issue for the past 15 years, but these days | prefer treating these
keys as Unicode control characters rather than keystrokes. The only good reason | can come up
with, however, is that some old-time users may type Ctrl+H for Backspace or Ctrl+| for Tab, and you
want to make sure those key combinations work correctly. You get that functionality by processing
Backspace and Tab in the KeyPress event handler.

Looking at the Keys

You may be wondering where | got all the information I've been telling you about what you'll see in
the keyboard events since it certainly isn't in the Windows Forms documentation. Well, most of what
| know about the keyboard was revealed by the following program, which displays information about
keys as you type them and which keeps the last 25 keyboard events (KeyDown, KeyUp, and
KeyPress) stored in an array.

KeyExamine.cs

using System;
using System.Drawing;

using System.Windows.Forms;

public class KeyExamine: Form

{

public static void Main()

{

Application.Run (new KeyExamine()) ;
// Enum and struct definitions for storage of key events

enum EventType
None,
KeyDown,
KeyUp,
KeyPress

}

struct KeyEvent

{
public EventType evttype;

public EventArgs evtargs;

// Storage of key events

const int iNumLines = 25;
int iNumvalid = 0;
int iInsertIndex = 0;
KeyEvent [] akeyevt = new KeyEvent [iNumLines];

// Text positioning

int xEvent, xChar, xCode, xMods, xData,

xShift, xCtrl, xAlt, xRight;

public KeyExamine ()

Text = "Key Examine";

BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;
xXEvent = 0;

xChar = xEvent + 5 * Font.Height;
xCode = xChar + 5 * Font.Height;
xMods = xCode + 8 * Font.Height;
xData = xMods + 8 * Font.Height;
xShift = xData + 8 * Font.Height;
xCtrl = xShift + 5 * Font.Height;
xAlt = xCtrl + 5 * Font.Height;
xRight = xAlt + 5 * Font.Height;

ClientSize = new Size(xRight, Font.Height * (iNumLines + 1)) ;
FormBorderStyle = FormBorderStyle.Fixed3D;
MaximizeBox = false;

}

protected override void OnKeyDown (KeyEventArgs kea)

{

akeyevt [1InsertIndex] .evttype = EventType.KeyDown;

kea;

akeyevt [iInsertIndex] .evtargs
OnkKey () ;

}

protected override void OnKeyUp (KeyEventArgs kea)

{

akeyevt [1InsertIndex] .evttype = EventType.KeyUp;

akeyevt [iInsertIndex] .evtargs kea;

OnkKey () ;

}

protected override void OnKeyPress (KeyPressEventArgs kpea)
akeyevt [iInsertIndex] .evttype = EventType.KeyPress;
akeyevt [i1InsertIndex] .evtargs = kpea;
OnKey () ;

void OnKey ()

{

if (iNumValid < iNumLines)

Graphics grfx = CreateGraphics() ;
DisplayKeyInfo (grfx, iInsertIndex, iInsertIndex);

grfx.Dispose() ;

else

ScrollLines () ;
iInsertIndex = (iInsertIndex + 1) % iNumLines;

iNumvValid = Math.Min (iNumValid + 1, iNumLines) ;

}

protected virtual void ScrollLines()

{

Rectangle rect = new Rectangle (0, Font.Height,
ClientSize.Width,
ClientSize.Height - Font.Height) ;

// I wish I could scroll here!

Invalidate (rect) ;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

BoldUnderline (grfx, "Event", xEvent, 0);
BoldUnderline (grfx, "KeyChar", xChar, 0);
BoldUnderline (grfx, "KeyCode", xCode, 0);
BoldUnderline (grfx, "Modifiers", xMods, 0);
BoldUnderline (grfx, "KeyData", xData, 0) ;
BoldUnderline (grfx, "Shift", xShift, 0);
BoldUnderline (grfx, "Control", xCtrl, 0);
BoldUnderline (grfx, "Alt", xAlt, 0);

if (iNumvValid < iNumLines)

for (int i = 0; i < iNumValid; i++)

DisplayKeyInfo(grfx, i, 1i);

else

for (int i = 0; i < iNumLines; i++)

DisplayKeyInfo (grfx, i, (iInsertIndex + i) %
iNumLines) ;

}
}

void BoldUnderline (Graphics grfx, string str, int x, int y)

{

// Draw the text bold.

Brush brush = new SolidBrush (ForeColor) ;
grfx.DrawString(str, Font, brush, x, vy);
grfx.DrawString(str, Font, brush, x + 1, y);

// Underline the text.

SizeF sizef = grfx.MeasureString(str, Font);
grfx.DrawLine (new Pen (ForeColor), x, y + sizef.Height,

x + sizef.Width, y +
sizef.Height) ;

}
void DisplayKeyInfo (Graphics grfx, int y, int i)
{

Brush br = new SolidBrush (ForeColor) ;

y = (1 + y) * Font.Height; // Convert y to pixel coordinate.

grfx.DrawString (akeyevt [i] .evttype.ToString() ,

Font, brush, xEvent, vy);

if (akeyevt [i] .evttype == EventType.KeyPress)
{
KeyPressEventArgs kpea =

(KeyPressEventArgs) akeyevt[i].evtargs;

string str = String.Format ("\x202D{0} (0x{1:X4})",

kpea.KeyChar, (int)
kpea.KeyChar) ;

grfx.DrawString(str, Font, br, xChar, y);

else
KeyEventArgs kea = (KeyEventArgs) akeyevt[i] .evtargs;
string str = String.Format ("{0} ({1})",

kea.KeyCode, (int) kea.KeyCode) ;
grfx.DrawString (str, Font, br, xCode, Vy);

grfx.DrawString (kea.Modifiers.ToString(), Font, br, xMods,
y) i

grfx.DrawString (kea.KeyData.ToString (), Font, br, xData,
y) i

grfx.DrawString (kea.Shift.ToString(), Font, br, xShift, vy);

grfx.DrawString (kea.Control.ToString (), Font, br, xCtrl,
y)i

grfx.DrawString (kea.Alt.ToString(), Font, br, xAlt, vy);

}

This is a fairly large program for this book. Early in the class is the definition of a private enumeration
(named EventType) and a structure (named KeyEvent) used for storing the KeyEventArgs and
KeyPressEventArgs information associated with each keystroke. The program then creates an array
of 25 of these structures. The integer fields beginning with the prefix x are used for positioning the
information into columns.

As each KeyDown, KeyUp, and KeyPress event comes through, the event information is stored in
the array and also displayed on the client area by the method named DisplayKeyinfo, which is the
largest method in the KeyExamine class. The OnPaint method also makes use of the DisplayKeylnfo
method and displays column headers bolded and underlined. I'll present a much better way of
getting a bold underlined font in Chapter 9; this program simply draws the text twice, the second time
offset from the first by a pixel, and then uses DrawLine to draw a line underneath the text. Here's the
program after typing "Hello!":

=1c]x
ey Einia £ e &R
her - Fome

"
nm maAm AT

s o6 aa®"

=3
i
E
a
L1
Ef ¥32 33 Tk

One problem with this program is that when it gets down to the bottom of the client area, it wants to
scroll everything up. If | were writing Win32 code, I'd use the ScrollWindow call for doing that.
However, nothing like that function is available in Windows Forms. So instead of scrolling, the
program simply invalidates that part of the client area below the headings, forcing the OnPaint
method to repaint all the lines. It doesn't really work very well and | feel awful doing it, but probably
not as bad as the person at Microsoft who forgot to implement ScrollWindow in Windows Forms!

Invoking the Win32 API

So, what do you do if you really, really, really need to use a Win32 API function and it's simply not
available in the .NET Framework?

If necessary, you can resort to using Platform Invocation Services. PInvoke (as it's called) is a
generalized mechanism that allows you to call functions exported from DLLs. The ScrollWindow
function happens to be located on your machine in the dynamic-link library User32.dll, so that
certainly qualifies. The drawback is that a programmer who uses this facility is no longer writing
managed code, and certainly not platform-independent code.

The documentation for the Win32 API shows the following syntax for ScrollWindow:
BOOL ScrollWindow (HWND hWnd, int XAmount, int YAmount,
CONST RECT *1pRect, CONST RECT *1pClipRect) ;

In the C header files for Windows, BOOL is simply defined as an int data type, and the HWND (a
handle to a window) is defined as a pointer to void, but it's really just a 32-bit value.

Where are we going to get a window handle in Windows Forms? Well, the Control class has a
Handle property, which is documented as the control's HWND. The type of the Handle property is an
IntPtr structure, which is defined in the System namespace and indicates a pointer. You can easily
convert between the inf and IntPtr data types. So far, we have a fairly clean transition between C#
data types and the arguments and return type of the ScrollWindow call.

The tough part involves the last two arguments to ScrollWindow. These arguments are pointers to
Windows RECT structures. The RECT structure is defined in a Windows header file like so:

typedef struct tagRECT
{

LONG left;

LONG top;

LONG right;

LONG bottom;
} RECT;

The LONG data type is defined in a Windows header file as a long, but that's not a 64-bit C# long; it's
only a 32-bit C long, so it too is compatible with the C# int.

To call ScrollWindow from a C# program, you must define a struct that has the same fields in the
same order as the Windows RECT structure and preface it with the attribute

[StructLayout (LayoutKind.Sequential)]

StructLayout is a C# attribute based on the StructLayoutAttribute class defined in the
System.Runtime.InteropServices namespace. You must also declare ScrollWindow as an extern
function and preface it with the attribute

[Dl11Import ("user32.dll")]

You may have noticed that the KeyExamine class contains a method | called ScroliLines that is
responsible for scrolling the contents of the client area. The ScrollLines method in KeyExamine
simply invalidated that portion of the client area below the titles. Here's a class that inherits from
KeyExamine, defines a RECT structure, declares the ScrollWindow function, and overrides the
ScrollLines method in KeyExamine. This revised version of ScrollLines calls the Windows
ScrollWindow function.

KeyExamineWithScroll.cs

using System;
using System.Drawing;
using System.Runtime.InteropServices;

using System.Windows.Forms;

class KeyExamineWithScroll: KeyExamine

{

public new static void Main()

{

Application.Run (new KeyExamineWithScroll()) ;

}

public KeyExamineWithScroll ()

Text += " With Scroll";

// Define a Win32-like rectangle structure.

[StructLayout (LayoutKind.Sequential)]
public struct RECT

public int left;
public int top;
public int right;
public int bottom;

// Declare the ScrollWindow call.
[Dl11Import ("user32.d1ll")]
public static extern int ScrollWindow (IntPtr hwnd, int cx, int cy,
ref RECT rectScroll,
ref RECT rectClip) ;

// Override the method in KeyExamine.

protected override void ScrollLines()

{

RECT rect;

rect.left = 0;

rect.top = Font.Height;
rect.right = ClientSize.Width;

rect.bottom = ClientSize.Height;

ScrollWindow (Handle, 0, -Font.Height, ref rect, ref rect);

}

This version is much better: the program runs smoother and more efficiently when it doesn't have to
redraw all the lines of output.

Handling Input from Foreign Keyboards

It's always helpful to test your programs on any type of kﬁyboard that's not like the one on your
machine, and in particular, foreign language keyboards. T And running your program with Russian is
much easier than a trip to Moscow. You can install foreign-language keyboard layouts, which are
small files that let you use your existing keyboard to generate character codes from other languages.

The following instructions for installing foreign-language keyboard layouts pertain to the English
version of Windows 2000.

In Control Panel, run Regional Options. Select the General tab. Where it says Language Settings For
The System, probably only Western Europe And United States (the default) is checked. Check at
least Arabic, Cyrillic, Greek, and Hebrew, and click OK. You'll need to have your Windows 2000 CD-
ROM handy, and the system will want to reboot itself.

After you've rebooted, bring up Control Panel again and run Keyboard. Select the Input Locales tab.
In the Installed Input Locales section, click the Add button, and, one by one, add Input Locales of the
following if they're not already installed: Arabic (Egypt), English (United Kingdom), English (United
States), German (Germany), Greek, Hebrew, and Russian. This process will also install keyboard
layouts associated with these input locales.

If you've never added additional keyboard layouts and you left the Enable Indicator On Taskbar
option in the Keyboard Properties dialog box checked, you'll see a new icon in the tray section of

your taskbar: a box with the letters EN (meaning English). You can click on that icon and switch to an
alternative English keyboard or to an Arabic, a German, a Greek, a Hebrew, or a Russian one. This
change affects only the currently active application.

Now let's experiment a bit with KeyExamine or KeyExamineWithScroll. Run one of these programs
and switch to the English (United States) keyboard layout if it's not set for that already. Type an
upper-shift 3. You'll get a KeyChar code of 0x0023 and a # character. Switch to English (United
Kingdom) and type the same key combination. Now it's a code of 0OXO0A3 and a £ character.

Switch to the German (Germany) keyboard layout. Type a Y and a Z. Notice that both the KeyCode
and KeyChar codes indicate a Z when you type Y and a Y when you type Z. That's because these
two characters are switched around on the German keyboard.

While still running the German (Germany) keyboard layout, press the +/= key. The KeyCode is 221,
which corresponds to Keys.OemCloseBrackets. Now type the A key. The result is a lowercase a with
an acute accent: &, Unicode character 0xOOE1. The +/= key on the German keyboard is known as a
dead key. You follow a dead key with an appropriate character key and the result is an accented
character key. You can follow the +/= key with any uppercase or lowercase vowel: a, e, i, 0, u, or y
(which is actually produced by your Z key). The uppercase +/= followed by an uppercase or
lowercase vowel (a, e, i, 0, or u, but not a y in this case) results in that letter with a grave accent, for
example a.

If you type a consonant after a dead key, you'll get the accent by itself (an " or a ') followed by the
letter. To type one of these accents by itself, follow the dead key by the spacebar.

Similarly, on the German keyboard, pressing the ~/' key followed by a, e, i, 0, or u results in the letter
with a circumflex: &. (The shifted ~/' key isn't a dead key; it generates a ° character.) The umlaut in
German appears only on uppercase or lowercase 4, 6, or . You can generate these characters by
typing the "/' key, :/; key, or {/[key, respectively.

So far, all the KeyChar values that have accompanied the KeyPress events we've generated have
been in the 8-bit range. These are characters that are defined by one of two standards. The first
standard is known as ANSI X3.4-1986, "Coded Character Sets—7-Bit American National Standard
Code for Information Interchange (7-Bit ASCII)":

of-1|-2|-3|4|-5|6|-FT|B|-B|-A|-B|-C|-D|-E|-F
2 1 #15|%|& (Y]]+ !
FlOolr1|2|3|4|5|6)7|8]9 s l=]l=]=>]7
4. A|B|C|D|E|F|G|H]JI|[J]JK|L|M|N]O
|PIQ|R|S|TIU |V IWIX]Y|Z]I | B e I
- a|lble|d|je |]Jg]h]i|[j|lk|[!I]m]|n]o
lpla|r|s|tju|v w|x]|yl|lz]{]I]]]}

The second standard is the ASCII extension documented by ANSI/ISO 8859-1-1987, "American
National Standard for Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—
Part 1: Latin Alphabet No. 1" and commonly referred to as "Latin 1":

og|l-1|2|3|-4|-5|6|-F|-8|9|-A|B|-C|-D|-E]|-F
A ilelelo]* § @fl*]=]- ®
B- ES . pln . L RN NN
C- AlAlAlAIA|lE | @|E|E|EJE] T T]T]T
D- H (oo |O|x|@|U|jO|0|O|Y|PR|R
E-lala|a|a|a|la|le|c|a|é|&|B]i i i
F| & n|o LI I+ I+ + 4] u|u u u ¥]

These character sets are suitable only for languages that use the Latin alphabet. To accommodate
other alphabets of the world (as well as the ideographs of Chinese, Japanese, and Korean), the 16-
bit character encoding known as Unicode was developed. Windows Forms programs written in C#

generally don't need to do anything special to support Unicode. The char data type in C# is 16 bits
wide, for example.

If you switch to the Russian keyboard layout and type a few keys, you'll see Cyrillic letters. These
have character codes in the range from 0x0410 through 0x044F, which is defined in the Unicode
standard as the Basic Russian Alphabet. Similarly, you can switch to the Arabic, Greek, or Hebrew
keyboard layout and type letters in those alphabets.

If you've never explored this stuff before, you may be wondering how foreign-language alphabets
and keyboards worked before Unicode—when character codes were just 8 bits wide. Well, in short, it
was a mess.

If you'd like your program to be informed when the user changes the keyboard layout, you can install
event handlers for the InputLanguageChanging and InputLanguageChanged events or override the

OninputLanguageChanging and OnlinputLanguageChanged methods. In the following table, ellipses
are used to indicate the event name in the method, delegate, and event argument names:

Form Events (selection)

‘ Event | Method ‘ Delegate | Argument

‘ InputLanguageChanging ‘ On... ‘ ...EventHandler ‘ ...EventArgs
‘ InputLanguageChanged ‘ On... ‘ ...EventHandler ‘ ...EventArgs

You get the InputLanguageChanging event first. The InputLanguageChangingEventArgs object has
information about the language the user wants to switch to. If it's not OK with your program to make
this switch, set the Cancel property of the InputLanguageChangingEventArgs object to true;
otherwise, you'll soon receive an InputLanguageChanged event.

To pursue this subject further, take a look at the InputLanguage class in the System.Windows.Forms
namespace and the Culturelnfo class in the System.Globalization namespace.

m Diagrams of many foreign-language keyboards are in Nadine Kano's Developing International
Software for Windows 95 and Windows NT. This Microsoft Press book is out of print, but an
electronic version is available on the MSDN library Web site (http://msdn.microsoft.com/library, under
Development (General) and Internationalization).

Input Focus

Input focus is an important issue when you begin creating controls on the surface of your form. Input
focus determines which control gets keyboard input. In a dialog box, some keys (such as Tab and
the cursor-movement keys) shift input focus among the controls.

Form inherits three read-only properties that pertain to input focus:
Control Properties (selection)

‘ Type | Property | Accessibility

‘ bool | CanFocus | get
‘ bool | ContainsFocus | get
‘ bool | Focused | get

A control (or form) can't get the input focus if it is disabled or invisible. You can use the CanFocus
property to check this state. The ContainsFocus property returns true if the control (or form) or one of
its children has the input focus. Focused returns true if the control (or form) has the input focus.

A program can set the input focus to one of its controls by using the Focus method.

Control Methods (selection)

bool Focus ()

The return value indicates whether focus was successfully applied. It won't succeed if the control
isn't a child of the active form.

Finally, two events tell a control (or form) when it is getting input focus and when it is losing input
focus:

Control Events (selection)

‘ Event ‘ Method | Delegate | Argument

‘ GotFocus ‘ OnGotFocus | EventHandler |EventArgs
‘ LostFocus ‘ OnLostFocus | EventHandler |EventArgs

A control (or form) always eventually gets a LostFocus event to match every GotFocus event. I'll
have more to say about input focus when we begin creating controls in Chapter 12.

The Missing Caret

Controls or forms that accept keyboard input generally display something special when they have
input focus. A button control, for example, displays a dotted outline around its text. Controls or forms
that allow you to type text usually display a little underline, a vertical bar, or a box that shows you
where the next character you type will appear on the screen. You may know this indicator as a
cursor, but in Windows it's more properly known as a caret. The word cursor is reserved for the
bitmap picture representing the mouse position.

If you create a TextBox or a RichTextBox control (which I'll demonstrate in Chapter 18), the control is
responsible for creating and displaying the caret. In many cases, using these controls will serve your
program well. RichTextBox in particular is quite powerful and is built around the same Windows
control that Microsoft WordPad uses.

However, if these controls are not adequate for your purposes and you need to write your own text-
input code, you have a little problem. Of the several features missing from the Windows Forms class
libraries, perhaps none is more inexplicable than the caret.

I'm afraid it's time again to create some unmanaged code that digs into the Windows DLLs to do
what we need to do. My class named Caret is defined in my own personalized namespace in case
you want to use it in one of your own programs. It's based on the Windows caret API and begins by
declaring five external functions located in User32.dll.

Caret.cs

using System;
using System.Drawing;
using System.Runtime.InteropServices;

using System.Windows.Forms;

namespace Petzold.ProgrammingWindowsWithCSharp

{

class Caret
{
[DLLImport ("user32.dll")]
public static extern int CreateCaret (IntPtr hwnd, IntPtr hbm,
int cx, int cy);
[DLLImport ("user32.dll")]

public static extern int DestroyCaret () ;

[DLLImport ("user32.d1ll")]

public static extern int SetCaretPos (int x, int y);

[DLLImport ("user32.dll")]
public static extern int ShowCaret (IntPtr hwnd) ;

[DLLImport ("user32.dll")]
public static extern int HideCaret (IntPtr hwnd) ;

// Fields
Control ctrl;
Size size;
Point ptPos;
bool bvisible;
//
Constructors

// Don't allow default constructor.

private Caret ()

{
}

// Only allowable constructor has Control argument.

public Caret (Control ctrl)

{
this.ctrl = ctrl;
Position = Point.Empty;

Size

new Size(l, ctrl.Font.Height) ;

Control.GotFocus += new EventHandler (ControlOnGotFocus) ;

Control.LostFocus += new EventHandler (ControlOnLostFocus) ;

// If the control already has focus, create the caret.

if (ctrl.Focused)

ControlOnGotFocus (ctrl, new EventArgs()) ;

// Properties
public Control Control

{

get

{

return ctrl;

}

public Size Size

{

get

return size;

size = value;

}

public Point Position

{

get

{

return ptPos;

set

ptPos = value;

SetCaretPos (ptPos.X, ptPos.Y);

}

public bool Visibility

{

get

return bVisible;

set

if (bvisible = wvalue)
ShowCaret (Control .Handle) ;
else

HideCaret (Control.Handle) ;

public void Show()

{

Visibility = true;

}

public void Hide()

{

Visibility = false;

}

public void Dispose ()

{

// Methods

// If the control has focus, destroy the caret.

if (ctrl.Focused)

ControlOnLostFocus (ctrl, new EventArgs());

Control.GotFocus -= new EventHandler (ControlOnGotFocus) ;
Control.LostFocus -= new EventHandler (ControlOnLostFocus) ;
// Event

handlers

void ControlOnGotFocus (object obj, EventArgs ea)

CreateCaret (Control .Handle, IntPtr.Zero,
Size.Width, Size.Height) ;
SetCaretPos (Position.X, Position.Y);

Show () ;

void ControlOnLostFocus (object obj, EventArgs ea)

Hide () ;
DestroyCaret () ;

}

To create a caret for your form (or any other object derived from Control), use the constructor
Caret caret = new Caret (form) ;

The Caret class defines the default constructor as private, so you must include an argument in the
constructor. Caret provides four properties:

Caret Properties

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ Control ‘ Control ‘ get | Control object the caret is associated with
‘ Size ‘ Size ‘ get/set | Size of caret in pixels

‘ Point ‘ Position ‘ get/set | Position of caret relative to control origin

‘ bool ‘ Visibility ‘ get/set | Visibility of caret

In character mode environments, carets are often underlines or boxes. These shapes don't quite
work right for variable-width text, however; a vertical line is better. Generally, a program that uses the
Caret class in connection with the default font for the control will set the size like so:

caret.Size = new Size (2, Font.Height) ;

The Position property indicates the position of the caret relative to the upper left corner of the client
area.

You can use the Visibility property to hide and reshow the caret. You must hide the caret when you
draw on your form at any time other than during the Paint event! As an alternative to Visibility, you
can use the Hide and Show methods. The Dispose method is the only other public method Caret
supports:

Caret Methods

‘ Method ‘ Description

‘ void Hide() ‘ Hides the caret
‘ void Show () ‘ Shows the caret
‘ void Dispose () ‘ Disables the caret

Normally, you don't need to call Dispose. The only time Dispose is necessary is if you've been using
the caret to perform some keyboard input in your form or control and you no longer need to do so.

The Caret class is a good example of a class that must install event handlers for the form that it's
associated with. Caret installs event handlers for the GotFocus and LostFocus events; it creates the
caret when the form gets the focus and destroys the caret when the form loses the focus. This
approach is in accordance with recommended handling of the caret in Win32 programming. Dispose
simply uninstalls the event handlers so the caret isn't created anymore.

But keep this in mind: A form that uses this Caret class and that itself overrides its OnGotFocus and
OnLostFocus methods runs the risk of disabling the event handlers in Caret! If you need to override
these methods, be sure to call the method in the base class:

protected override void OnGotFocus (EventArgs ea)

{

base.OnGotFocus (ea) ;

}

protected override void OnLostFocus (EventArgs ea)

{

base.OnLostFocus (ea) ;

}

Those base class OnGotFocus and OnLostFocus methods call the installed event handlers such as
the ones in Caret.

Echoing Key Characters

Now let's look at a program that uses the Caret class to let you enter and edit text. This program
comes very close to the functionality of a TextBox control in single-line mode.

TypeAway.cs

using System;

using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;

using Petzold.ProgrammingWindowsWithCSharp;

class TypeAway: Form

{

public static void Main()

{

Application.Run(new TypeAway()) ;

protected Caret caret;
protected string strText = "";

protected int iInsert = 0;

public TypeAway ()
{
Text = "Type Away";
BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;
FontHeight = 24;

caret = new Caret (this);
caret.Size = new Size (2, Font.Height) ;
caret.Position = new Point (0, 0);

}

protected override void OnKeyPress (KeyPressEventArgs kpea)
{
caret.Hide () ;
Graphics grfx = CreateGraphics();
grfx.FillRectangle (new SolidBrush (BackColor),
new RectangleF (Point.Empty,
grfx.MeasureString (strText, Font,

Point.Empty,
StringFormat .GenericTypographic))) ;

switch (kpea.KeyChar)
{
case '\b':

if (iInsert > 0)

{

strText = strText.Substring(0, iInsert - 1)

strText.Substring(ilnsert) ;
iInsert -= 1;

}

break;

case '\r':
case '\n':

break;

default:
if (iInsert == strText.Length)
strText += kpea.KeyChar;

else
strText = strText.Substring(0, iInsert) +
kpea.KeyChar +
strText.Substring(iInsert) ;
iInsert++;

break;

}

grfx.TextRenderingHint = TextRenderingHint.AntiAlias;

grfx.DrawString (strText, Font, new SolidBrush (ForeColor),

0, 0, StringFormat.GenericTypographic) ;

grfx.Dispose() ;

PositionCaret () ;
caret.Show () ;

}

protected override void OnKeyDown (KeyEventArgs kea)

{

switch (kea.KeyData)
case Keys.Left:
if (iInsert > 0)
iInsert--;

break;

case Keys.Right:
if (iInsert < strText.Length)
iInsert++;

break;

case Keys.Home:
iInsert = 0;

break;

case Keys.End:
iInsert = strText.Length;

break;

case Keys.Delete:
if (iInsert < strText.Length)
iInsert++;
OnKeyPress (new KeyPressEventArgs('\b'));

}

break;

default:

return;

}

PositionCaret () ;

}

protected void PositionCaret ()

{

Graphics grfx = CreateGraphics();

string str = strText.Substring (0, iInsert);

StringFormat strfmt = StringFormat.GenericTypographic;
strfmt.FormatFlags |= StringFormatFlags.MeasureTrailingSpaces;

SizeF sizef = grfx.MeasureString(str, Font, Point.Empty,
strfmt) ;

caret.Position = new Point ((int)sizef.Width, 0);

grfx.Dispose() ;

}

protected override void OnPaint (PaintEventArgs pea)

Graphics grfx = pea.Graphics;
grfx.TextRenderingHint = TextRenderingHint.AntiAlias:
grfx.DrawString (strText, Font, new SolidBrush (ForeColor),

0, 0, StringFormat.GenericTypographic) ;

}

The TypeAway class creates an object of type Caret in its constructor and initializes the size and
position. The program needs only to hide and then reshow the caret when drawing on the form at
times other than the Paint event and to set the caret's position within the client area.

The string of characters that the user enters and edits is stored in the field named strText. The ilnsert
field is the insertion point in this string. For example, after you type three characters, ilnsert equals 3.
If you then press the left arrow, ilnsert equals 2. The PositionCaret method in TypeAway is
responsible for converting that character position to a pixel position that it uses to set the Position
property of the Caret object.

Let's take a look at how TypeAway handles the OnKeyPress method. In most cases, it may seem
that the program simply needs to display this new character on the form at the pixel position
corresponding to the current insertion point and to append this character to the strText field. Instead,
however, the program uses MeasureString and FillRectangle to entirely erase any text currently
displayed in the form! This behavior may sound a little extreme, but (as we'll see) it's necessary if the
insertion point isn't at the end of the string or if it's displaying text in some non-English languages.

The OnKeyPress method handles the Backspace key by removing a character from the string in
front of the insertion point. The method ignores carriage returns and line feeds, and handles all other
characters by inserting them into strText at the insertion point. The method then displays the entire
string and calls PositionCaret (which I'll describe shortly). Notice that the method hides the caret
while drawing on the form.

The OnKeyDown method handles a few cursor-movement keys by changing the insertion point and
handles the Delete key by simulating a Backspace key. The OnKeyDown method also calls
PositionCaret.

The PositionCaret method is responsible for converting the insertion point (ilnsert) into a pixel
location for the caret. It does this using MeasureString. Unfortunately, the default version of
MeasureString doesn't offer quite the precision required in applications like this. The most blatant

problem is that MeasureString normally excludes trailing blanks when calculating string lengths. To
correct this problem, the program uses a version of MeasureString with a StringFormat argument
and includes the enumeration value StringFormatFlags.MeasureTrailingSpaces in the FormatFlags
property of StringFormat. Before that change, the caret would move whenever | typed letters that
made up a word, but not when | typed a space after the word.

But that change isn't sufficient to make the caret line up nicely with displayed text. For reasons |
discuss in Chapter 9, in the section "Grid Fitting and Text Fitting," the MeasureString and DrawString
methods normally have built-in padding to compensate for problems related to the device-
independent rasterization of outline fonts. To override this default behavior, the program uses a
StringFormat object that it obtains from the static StringFormat.GenericTypographic property. As part
of this solution (covered in Chapter 9), the program also uses the Graphics property
TextRenderingHint to enable anti-aliasing of the text output.

Right-to-Left Problems

I mentioned earlier that the TypeAway program has almost the full functionality of a TextBox control
in single-line mode. One problem is that it doesn't have clipboard support. Another is that TypeAway
doesn't correctly display the caret when you type text that is written right to left, such as Arabic or
Hebrew.

Let's take a look: run TypeAway, and switch to the Hebrew keyboard layout. We're going to type the

Hebrew for "good morning," which is :'ﬂj ITP: commonly transliterated as boker tov. To
accomplish this little feat on an English keyboard, you first need to know how the characters of the
Hebrew alphabet correspond to the keys of the keyboard.

Hebrew Alphabet

‘ Unicode ‘ Letter ‘ Glyph ‘ Key ‘ Unicode ‘ Letter ‘ Glyph ‘ Key

‘ 0x05D0 | alef ‘ N ‘ t ‘ 0x05DE ‘ mem ‘ H ‘ n
0x05D1 bet | c 0x05DF final nun 'I i
0x05D2 gimel J d 0x05E0 nun J b
0x05D3 dalet T s 0x05E1 samekh 0 X

‘ 0x05D4 | he ‘ | ‘ v ‘ 0x05E2 ‘ ayin ‘ Y ‘ g
0x05D5 vav] u 0x05E3 final pe 1'1 :

‘ 0x05D6 | zayin ‘ T ‘ z ‘ 0x05E4 ‘ pe ‘) ‘ P
0x05D7 het I i 0x05E5 |finaltsadi | }”

‘ 0x05D8 | tet ‘] ‘ y ‘ 0X05E6 ‘ tsadi ‘ X ‘ m
0x05D9 yod " h 0x05E7 qof P e
0x05DA final kaf 'i I 0x05E8 resh A r

‘ 0x05DB | kaf ‘ 5 | ‘ f ‘ 0x05E9 ‘ shin ‘ 1174 ‘ a
0x05DC lamed 5 k Ox05EA tav n ,
0x05DD final O o

mem

I've taken the spellings of these letters from The Unicode Standard Version 3.0. You'll note that
some letter names include the word final. These letters are written differently when they fall at the
end of a word.

You also need to know that Hebrew is written from right to left. So to type the Hebrew phrase shown
above into TypeAway, you need to type the letters in this order: bet (the c key), qof (the e key), resh
(the r key), space, tet (the y key), vav (the u key), and bet (the c key). TypeAway stores the Unicode
characters in the character string in the order that you type them. That is correct. The DrawString
method displays these characters from right to left. That is also correct, and the DrawString method
must be given full credit and congratulations for recognizing and properly displaying text that reads
right to left.

And now you know why TypeAway has to completely erase the line of previously drawn text: new
text may not necessarily be appended at the end of the text string. When you're typing from the
Hebrew keyboard, new text must be displayed at the beginning of the text string rather than the end.
Typing in Arabic is even more critical: adjacent characters in Arabic are often joined to form different
glyphs. DrawString needs to draw the whole string, not just individual characters, to correctly handle
this situation.

Where TypeAway fails is in the caret positioning. When you're typing right-to-left text, the caret isn't
showing the insertion point. The solution to this problem isn't trivial, particularly when you're dealing
with a combination of left-to-right and right-to-left text in the same line. It appears that Windows
Forms doesn't make available sufficient tools to solve this problem, but if you're interested in seeing
how it's done using the Win32 API, check out the article "Supporting Multilanguage Text Layout and
Complex Scripts with Windows NT 5.0" from the November 1998 issue of Microsoft Systems
Journal.

Chapter 7: Pages and Transforms

Overview

A primary goal in any graphics programming environment is device independence. Programs should
be able to run without change on many different types of video display adapters regardless of the
resolution. Programs should also be able to print text and graphics on many different printers without
requiring a multitude of specialized printer drivers or completely separate drawing code.

In Chapter 5, | demonstrated that you can write graphics output code that draws to both the video
display and the printer. Yet so far, I've been drawing in units of pixels—at least on the video display;
the printer is something of a puzzle just yet—and pixels hardly seem device independent.

Device Independence Through Text

With some care, it's possible to use pixels in a device-independent manner. One way is to base
graphics output on the default size of the Font property associated with the form. This approach is
particularly useful if you're combining some simple graphics with text.

For example, suppose you were programming a simple database application using an index card
metaphor. Each record is displayed as a simulated 3-by-5-inch index card. How large are the index
cards in pixels? Think of a typewriter. A typewriter with a pica typeface types 6 lines to the inch, so
an index card fits 18 lines of type. You can thus make the height of the index card equal to 18 x
Font.Height pixels. You set the width to 5/3 times that number.

Making the width of the index card 5/3 times the height implies that the horizontal resolution of your
output device—the number of pixels corresponding to a given measurement such as an inch—is
equal to the vertical resolution. When a graphics output device has equal horizontal and vertical
resolution, it is sometimes said to have square pixels. The very early video displays used when
Windows was first released in 1985 did not have square pixels; it wasn't until the 1987 introduction of
the IBM Video Graphics Array (VGA) that square pixels started to become a standard for PC-
compatible video adapters.

Today, it's fairly safe to assume that the video display on which your Windows Forms program is
running has square pixels. | say "fairly safe" because Windows doesn't require square pixels, and it's
always possible that somebody may write a Windows device driver for some specialized display
adapter that doesn't have square pixels.

Printers these days often do not have square pixels. Often the resolution in one dimension is twice
the resolution in the other.

How Much Is That in Real Money?

Let's start exploring the relationship between pixels and real-world measurements. Suppose you
draw a box of 100 pixels width and height located 100 pixels from the upper left corner of the client
area (or printable area of the printer page).

HundredPixelsSquare.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class HundredPixelsSquare: PrintableForm

{

public new static void Main()

{

Application.Run(new HundredPixelsSquare()) ;

}

public HundredPixelsSquare ()

{

Text = "Hundred Pixels Square";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

grfx.FillRectangle (new SolidBrush(clr), 100, 100, 100, 100);

}

How large is that box on the screen? How large is it on the printer? Is it even square?

Certainly you have a vague idea of how large this box will be on the screen without actually running
the program, at least in terms of the relationship of the size of the box to the size of the screen. The
smallest video display size in common use today is 640 pixels horizontally by 480 pixels vertically (or
640 x 480). On such a display, the box would be roughly 1/6 the width of the screen and 1/5 the
height. But video displays these days can go up to 2048 x 1536 pixels or so, in which case the box is
much smaller in relationship to the entire screen.

It would be nice to know the resolution of the video display, perhaps in a common measurement like
dots per inch (dpi). However, while such a concept is very well defined for printers—it's usually
printed right on the box you take home from the computer store—it remains an elusive concept for
video displays. If you think about it, the actual dpi resolution of a video display is based on two
measurements: the physical size of the monitor (usually measured diagonally in inches) and the
corresponding pixel dimensions.

Confusingly enough, this latter measurement is often termed the resolution of the video display. In
the Systeminformation class, it's the item called PrimaryMonitorSize. If you invoke the Display
Properties dialog box—which you can run from Control Panel or by right-clicking on your desktop
and selecting Properties from the menu—and select the Settings tab, this pixel dimension is called
the screen area, and that's the term I'll use.

Video display adapters these days are capable of half a dozen (or so) different screen-area settings,
and video monitors come in several different sizes. Here's a little table that shows the approximate
video resolution in dots per inch for various combinations of monitor sizes and screen areas:

Actual Video Resolution (dots per inch)

‘ | Monitor Size (diagonally)

‘ Screen Area | 15 inches ‘ 17 inches ‘ 19 inches ‘ 21 inches

| 640 x 480 57 50 44 | 40

| 800 x 600 71 63 56 |50
1024 x 768 o1 80 71 64

| 1152 x 870 1 103/104 | 90/91 | 80/81 72173
| 1280 x 1024 1141122 100107 89195 | 80/85
| 1600 x 1200 143 125 111 1100

| 2048 x 1536 183 160 142 128

I'm assuming that the actual display area is an inch smaller than the rated diagonal size and that the
monitor has the standard aspect ratio of 4:3. For example, a 21-inch monitor has a diagonal display
area of 20 inches, implying (thank you, Pythagoras) dimensions of 16 inches horizontally and 12
inches vertically. For screen areas of 1152 x 870 and 1280 x 1024, the horizontal and vertical

dimensions are not in the ratio of 4:3 and hence the horizontal and vertical resolutions are unequal—
but they're close enough to assume they're equal.

So if you were running a 1600 x 1200 video mode on a 21-inch monitor, that 100-pixel square box
would be about 1-inch square. But it could be almost as small as 1/2 inch or larger than 2 inches. Of
course, few people use 21-inch monitors to run a 640 x 480 video mode, nor do they try to run 2048
x 1536 on 15-inch monitors. The more likely range of resolutions appears in the diagonal area of the
table from the upper left to the lower right.

Windows doesn't know the size of your monitor, so it can't tell you the actual resolution of your video
display. And even if it did know your monitor's size, what would it do when you connect a video
projector to your machine and create a screen some 6 feet wide? What should it do? Should
Windows assume a much lower resolution because the screen is larger? Almost assuredly, you don't
want that.

The most essential issue regarding the video display is readable text. The default font should be
large enough for you to read, obviously, but it shouldn't be much larger because you also want to fit
as much text on the screen as possible.

For this reason, Windows basically ignores screen area and monitor size and instead delegates the
selection of a video resolution to a very important person: You!

I've already mentioned the Display Properties dialog box. The Settings tab lets you change your
video display settings. (Note that this description of Display Properties is based on Windows 2000.
Other versions of Windows might differ slightly.) The Settings page also has a button labeled
Advanced. In a roundabout way, this button essentially lets you select a video resolution in dots per
inch for the video display. | say this is "roundabout" because you actually select a Windows system
font size that is comfortable for you to read. That system font is assumed to be 10 points in size.
(Fonts are measured in points, which in computer typography are 1/72 inch.) The pixel size of the
10-point font that you select implies a resolution of the video display in dots per inch.

For example, the default system font is called Small Fonts. The Small Fonts characters are 13 pixels
in height. If that font is assumed to be 10 points in size, then 13 pixels are equivalent to 10/72 inch,
and the display resolution (with a little rounding involved) is 96 dpi.

One common alternative to Small Fonts is Large Fonts, which are 16 pixels tall. If these 16 pixels are
equivalent to 10/72 inch, then the display resolution (again with a little rounding) is 120 dpi.

By the way, the Windows system font is not the default font that's accessible through the Font
property in a Windows Forms program. Windows Forms sets the default font to something a bit
smaller—about 8 points in size.

Large Fonts and Small Fonts are not the only choices. By selecting Other from the list box, you are
presented with a ruler that you can manually adjust to pick a really big font (implying a resolution of
480 dpi) or a really small font (about 19 dpi).

Here's a quick summary: You select a system font size that you find readable. Windows assumes
that this is a 10-point font. That implies a video display resolution in dots per inch.

Commonly, the system font you choose will have larger physical dimensions than the point size
implies. When people read print on paper, the distance between the eyes and the text is generally
about a foot, but a video display is often viewed from a distance of 2 feet or so.

M'veteran Windows programmers might be curious about where my numbers come from. I'm
quoting the TextMetric field tmHeight (which is 16 for Small Fonts and 20 for Large Fonts) less
tminternalLeading (which is 3 and 4, respectively). The tmHeight value is suitable for line spacing;
tmHeight less tminternalLeading indicates the point size converted to pixels (13 for Small Fonts and
16 for Large Fonts). Somewhat confusingly, the default font in Windows Forms has a Font.Height
property that reports similar values: 13 for Small Fonts and 15 for Large Fonts. But this is a line-
spacing value that is comparable with tmHeight. The Windows system font is 10 points; the default
Windows Forms font is about 8 points.

Dots Per Inch

The Graphics object has two properties that indicate the resolution of the graphics output device in
dots per inch:

Graphics Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description
‘ float ‘ DpiX ‘ get ‘ Horizontal resolution in dots per inch
‘ float ‘ DpiY ‘ get ‘ Vertical resolution in dots per inch

Here's a short program that displays these values without much fuss.
DotsPerInch.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class DotsPerInch: PrintableForm

{

public new static void Main()

{
Application.Run (new DotsPerInch()) ;
1
public DotsPerInch ()
{
Text = "Dots Per Inch";
1

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

grfx.DrawString (String.Format ("DpiX = {0}\nDpiY = {1}",
grfx.DpiX, grfx.DpiY),
Font, new SolidBrush(clr), 0, 0);

}

The values that this program reports in its client area are the same as the settings you've made in
the Display Properties dialog box: 96 dpi if you've selected Small Fonts, 120 dpi if you've selected
Large Fonts, and something else if you've selected a custom size.

If you click on the client area, the printed version will show the resolution of your printer, which is
probably something you already knew or could look up in the manual. Printers these days have
resolutions of 300, 600, 1200, or 2400 dpi, or 720, 1440, or 2880 dpi.

What's with the Printer?

Earlier in this chapter, | presented the HundredPixelsSquare program that displayed a box 100 pixels
square. | wondered how large the box was on the screen. The real answer is that the physical
dimensions of this box are irrelevant. Nobody expects a ruler held up to the screen to provide much
useful information. The important point is that rulers displayed on the screen should be consistent

with each other. In that sense, the horizontal and vertical screen dimensions of a 100-pixel square
box in inches are

100 / grfx.DpiX
100 / grfx.DpiY

That is, 1.04 inches if you've selected Small Fonts, 0.83 inch if you've selected Large Fonts, and
something else if you've selected a custom size.

And on the printer... Well, you may want to try this one yourself. On your printer, the
HundredPixelsSquare program draws a box that is precisely 1 inch square. Let's try something else.
This program attempts to draw an ellipse with a diameter of 1 inch based on the DpiX and DpiY
properties of the Graphics object.

TryOneInchEllipse.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class TryOneInchEllipse: PrintableForm

{
public new static void Main()
{
Application.Run(new TryOneInchEllipse()) ;
}
public TryOneInchEllipse()
{
Text = "Try One-Inch Ellipse";
}
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
grfx.DrawEllipse (new Pen(clr), 0, 0, grfx.DpiX, grfx.DpiY);
}
}

On the video display, the size of this ellipse looks about right. On my 600 dpi printer, however, the
ellipse is 6 inches in diameter.

For the video display, the coordinates you pass to the Graphics drawing functions are obviously in
units of pixels. For the printer, however, that is apparently not the case. For the printer, the
coordinates passed to the Graphics drawing functions are actually interpreted as units of 0.01 inch
regardless of the printer. We'll see how this works shortly. The nice part is that the resolution of the
video display is probably somewhere in the region of 100 dpi, and the printer is treated as if it were a
100-dpi device. This means that in a pinch you can use the same coordinates when displaying
graphics on the video display and the printer, and you'll get approximately the same results.

Manual Conversions

If you wanted to, you could use the DpiX and DpiY properties of the Graphics object to adjust the
coordinates that you pass to the drawing functions. For example, suppose you wanted to use
floating-point coordinates to draw in units of millimeters. You'd need a method that converts from
millimeters to pixels:

PointF MMConv (Graphics grfx, PointF pointf)

{

pointf.X *= grfx.DpiX / 25.4f;
pointf.Y *= grfx.DpiY / 25.4f;

return pointf;

The point you're passing to this method is your desired units of millimeters. Dividing that point by
25.4 converts it to inches. (That's an exact calculation, by the way.) Multiplying by the resolution in
dots per inch converts it to pixels.

Just so we're sure about this, let's draw a 10-centimeter ruler.

TenCentimeterRuler.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class TenCentimeterRuler: PrintableForm

{

public new static void Main()

{

Application.Run(new TenCentimeterRuler()) ;

}

public TenCentimeterRuler ()

{

Text = "Ten-Centimeter Ruler";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

Pen pen = new Pen(clr) ;

Brush brush = new SolidBrush(clr) ;
const int xOffset = 10;

const int yOffset = 10;

grfx.DrawPolygon (pen, new PointF/[]
{
MMConv (grfx, new PointF (xOffset, yOffset)),
MMConv (grfx, new PointF (xOffset + 100, yOffset)),
MMConv (grfx, new PointF (xOffset + 100, yOffset + 10)),
MMConv (grfx, new PointF (xOffset, yOffset + 10))

13N

StringFormat strfmt = new StringFormat () ;

strfmt.Alignment = StringAlignment.Center;

if (i % 10 == 0) // Centimeter markings

grfx.DrawLine (pen,
MMConv (grfx, new PointF (xOffset + i, yOffset)),
MMConv (grfx, new PointF (xOffset + i, yOffset +

5)));
grfx.DrawString((i/10) .ToString (), Font, brush,
MMConv (grfx, new PointF (xOffset + i, yOffset +
5)),
strfmt) ;
1
else if (i % 5 == 0) // Half-centimeter markings
{
grfx.DrawLine (pen,
MMConv (grfx, new PointF (xOffset + i, yOffset)),
MMConv (grfx, new PointF (xOffset + i, yOffset +
3)));
1
else // Millimeter markings
{
grfx.DrawLine (pen,
MMConv (grfx, new PointF (xOffset + i, yOffset)),
MMConv (grfx, new PointF(xOffset + i, yOffset +
2.5f)));

}

PointF MMConv (Graphics grfx, PointF pointf)

{
pointf.X *= grfx.DpiX / 25.4f;
pointf.Y *= grfx.DpiY / 25.4f;

return pointf;

}

Here's how the ruler looks on the screen:

J._ Ter-Centmeter Ruber ;lglil

This diagram also involves some text. How did | know the text was going to look right? Well, | know
that the Font property is about an 8-point font, so | know that the font characters should be about 3
millimeters tall, which is about the right size.

I've made the TenCentimerRuler class a descendent of PrintableForm to hammer home a point: this
technique will not work on the printer. My 600-dpi printer displays it six times too large.

Page Units and Page Scale

So that you can avoid writing methods such as MMConv, GDI+ includes a facility that performs
automatic scaling to dimensions of your choosing. Basically, the coordinates you pass to the
Graphics drawing functions are scaled by constants, just as in the MMConv method. But you don't
set these scaling factors directly. Instead, you set them indirectly using two properties of the
Graphics class named PageUnit and PageScale:

Graphics Properties (selection)

‘ Type ‘ Property ‘ Accessibility

‘ GraphicsUnit ‘ PageUnit ‘ get/set
‘ float ‘ PageScale ‘ get/set

You set the PageUnit property to a value in the GraphicsUnit enumeration:
GraphicsUnit Enumeration

‘ Member | Value ‘ Description

‘ World | 0 ‘ Can't be used with PageUnit

‘ Display ‘ 1 Same as Pixel for video displays; 1/100 inch for printers
(default for printers)

‘ Pixel | 2 ‘ Units of pixels (default for video display)

‘ Point | 3 ‘ Units of 1/72 inch

‘ Inch |4 ‘ Units of inches

‘ Document | 5 ‘ Units of 1/300 inch

‘ Millimeter | 6 ‘ Units of millimeters

If you say, for example, "l want to draw in units of hundredths of an inch," you then set these two
properties like so:

grfx.PageUnit = GraphicsUnit.Inch;

grfx.PageScale = 0.01f;

This is equivalent to saying, "When | specify a coordinate of 1, | want it to equal 0.01 inch." Following
these calls, this DrawLine method draws a 1-inch-long line:

grfx.DrawLine (pen, 0, 0, 100, O0);

That's an actual measurable inch on the printer and equal to grfx.DpiX pixels on the video display.
You'll get the same results with

grfx.PageUnit = GraphicsUnit.Document;

grfx.PageScale = 3;

or
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 0.254f;

or
grfx.PageUnit = GraphicsUnit.Point;
grfx.PageScale = 0.72f;

The default settings are GraphicsUnit.Pixel for the video display and GraphicsUnit.Display for the
printer, both with a PageScale of 1. Notice that the GraphicsUnit.Display value means something
different for the video display than for the printer. For the video display, it's the same as
GraphicsUnit.Pixel, but for the printer, GraphicsUnit.Display indicates units of 1/100 inch.

So if we want to get that TenCentimeterRuler program to work on the printer, we need to set
PageUnit to GraphicsUnit.Pixel and everything should be OK. Let's do that by defining a class that
inherits from TenCentimeterRuler. The new OnPage method here resets the PageUnit property and
then calls the base DoPage class.

PrintableTenCentimeterRuler.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PrintableTenCentimeterRuler: TenCentimeterRuler

{
public new static void Main()
{
Application.Run(new PrintableTenCentimeterRuler()) ;
}
public PrintableTenCentimeterRuler ()
{
Text = "Printable " + Text;
}
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
grfx.PageUnit = GraphicsUnit.Pixel;
base.DoPage (grfx, clr, cx, cy);
}
}

This program doesn't use the cx and cy arguments to DoPage. These dimensions—of the form's
client area and of the printable area of the printer page—are in units compatible with the default
PageUnit. In the general case, if you change PageUnit, you'll probably need to recalculate the size of
the output device in identical units. I'll discuss this problem shortly.

Even though we're now drawing to the printer in units of pixels, the font still looks good. The font
accessible from the Font property of the form is an 8-point font on the video display, and it's an 8-
point font on the printer as well. We'll see how this works in Chapter 9.

This program still has a problem, however, one involving the pen that the TenCentimeterRuler
version of DoPage defines:

Pen pen = new Pen(clr);

This pen gets a default width of 1. On the video display, that means a width of 1 pixel. On the printer,
that's normally a width of 1/100 inch. However, if you change PageUnit to GraphicsUnit.Pixel, the 1-
unit-wide pen is now interpreted as a width of 1 pixel. On some very high-resolution printers, the ruler
may be nearly invisible.

Rather than continuing to mess around with the original 10-centimeter-ruler program, let's take
advantage of the PageUnit and PageScale properties to eliminate the manual conversion.

TenCentimeterRulerAuto.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class TenCentimeterRulerAuto: PrintableForm

{

public new static void Main()

{

Application.Run(new TenCentimeterRulerAuto()) ;

}

public TenCentimeterRulerAuto ()

{

Text = "Ten-Centimeter Ruler (Auto)";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

Pen pen = new Pen(clr, 0.25f);
Brush brush = new SolidBrush(clr) ;
const int xOffset = 10;

const int yOffset = 10;

grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 1;
grfx.DrawRectangle (pen, xOffset, yOffset, 100, 10);

StringFormat strfmt = new StringFormat () ;

strfmt.Alignment = StringAlignment.Center;

for (int 1 = 1; i < 100; i++)

{

if (i % 10 == 0) // Centimeter markings

grfx.DrawLine (pen,
new PointF (xOffset + i, yOffset),
new PointF (xOffset + i, yOffset + 5));

grfx.DrawString((i/10) .ToString(), Font, brush,
new PointF (xOffset + i, yOffset + 5),
strfmt) ;

else if (i % 5 == 0) // Half-centimeter markings

grfx.DrawLine (pen,
new PointF (xOffset + i, yOffset),
new PointF (xOffset + i, yOffset + 3));

}
else // Millimeter markings
{
grfx.DrawLine (pen,
new PointF (xOffset + i, yOffset),
new PointF (xOffset + i, yOffset +
2.5f));
}
}
}
}

Besides eliminating the MMConv method, I've really made just a few changes. My MMConv method
worked only with PointF structures, so in the earlier ruler-drawing programs, | used DrawPolygon
rather than DrawRectangle to draw the outline of the ruler. Because GDI+ scales both coordinates
and sizes in the same way, | can use DrawRectangle here. Another change occurs toward the
beginning of the DoPage method, where the program creates a pen 0.25 unit wide:

Pen pen = new Pen(clr, 0.25f);

The program also sets up the Graphics object to draw in units of millimeters:
grfx.PageUnit = GraphicsUnit.Millimeter;
grfx.PageScale = 1;

You might wonder if it makes a difference whether you set the PageUnit and PageScale properties
before you create the pen or if you create a pen with a specific width before you set the PageUnit
and PageScale properties. It doesn't matter. Pens are device independent! They are not associated
with a particular Graphics object until the call to one of the line-drawing methods. Only at that time is
the pen width interpreted in units indicated by the current PageUnit and PageScale properties. In this
case, the pen is interpreted to be 0.25 millimeter or about 1/100 inch. You may want to try a smaller
value (such as 0.10 millimeter) to see the difference on the printer.

If you don't include a width in the pen constructor, the pen is created 1 unit wide, which in this case
means that the pen is 1 whole millimeter wide and the ruler divisions become one big blob. (Try it!)

Pen Widths

What's a proper pen width for the printer? You might take a cue from PostScript—the well-known
and highly respected page composition language many upscale printers use—and think of a normal
default pen width as 1 point, otherwise expressible as 1/72 inch, or about 1/3 millimeter. | personally
find a 1-point pen width to be a bit on the chunky side, but it's an easy rule to remember.

Here's a program that displays a bunch of pen widths in units of points.
PenWidths.cs

using System;

using System.Drawing;

using System.Windows.Forms;

class PenWidths: PrintableForm

{

public new static void Main()

{

Application.Run(new PenWidths()) ;

}

public PenWidths ()

{

Text = "Pen Widths";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int

cy)
{
Brush brush = new SolidBrush(clr) ;
float vy = 0;
grfx.PageUnit = GraphicsUnit.Point;
grfx.PageScale = 1;
for (float £ = 0; £ < 3.2; £ += 0.2f)
{
Pen pen = new Pen(clr, f);
string str = String.Format ("{0:F1} point wide pen: ", f);
SizeF sizef = grfx.MeasureString(str, Font) ;
grfx.DrawString(str, Font, brush, 0, y);
grfx.DrawlLine (pen, sizef.Width, y + sizef.Height / 2,
sizef.Width + 144, y + sizef.Height /
2);

y += sizef.Height;

}

Of course, although you can specify pen widths that are fractions of pixels, they can be rendered
only with whole pixel widths. On the video display, many of the pen widths created by this program
round to the same values:

0. D-paintwide pern
N2 pe0inilwn e par
0. 4-paintwide pan
1 Gpointwide pen
0. B-paintwide pen
1, (-paint-wida pan
1. 2-peiinbvn e pi
1. 4-paintvaidie pan
1 Gpointwite pen
1 B-paint-wida porn
2 Depeaintnie par
2. 2-paintvwnde pin
L dpointwide per
2 B-paintwide pen
2 B-paintwidg por
3 D-pninbvn e pi

One thing you don't have to worry about on the video display is the pen width rounding down to 0
and the pen disappearing. Pens are always drawn at least 1 pixel wide. Indeed, you can set the
width to 0 in the Pen constructor and always get 1-pixel-wide lines regardless of the PageUnit and
PageScale properties.

Although 0-width pens are fine for the video display, they should never be used on the printer. On
today's high-resolution laser printers, 1-pixel-wide lines are virtually invisible.

Here's a program for a ruler marked in inches that uses units of 1/64 inch and creates a pen 1/128
inch wide.

SixInchRuler.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class SixInchRuler: PrintableForm

{
public new static void Main()
{
Application.Run(new SixInchRuler());
}
public SixInchRuler ()
{
Text = "Six-Inch Ruler";
}
protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)
{
Brush brush = new SolidBrush(clr) ;
Pen pen = new Pen(clr, 0.5f);

const int xOffset = 16;

const int yOffset = 16;

grfx.PageUnit = GraphicsUnit.Inch;
grfx.PageScale = 1 / 64f;
grfx.DrawRectangle (pen, xOffset, yOffset, 6 * 64, 64);

StringFormat strfmt = new StringFormat () ;

strfmt.Alignment = StringAlignment.Center;

for (int 1 = 1; 1 < 6 * 16; i++)
int x = xOffset + 1 * 4;

int y = yOffset;

int dy;
if(i % 16 == 0) // One-inch marks
{
dy = 32;
grfx.DrawString((i / 16).ToString(), Font, brush,
x, y + dy, strfmt);
1
else if(i % 8 == 0) // Half-inch marks
dy = 24;
else 1if(i % 4 == 0) // Quarter-inch marks
dy = 20;
else 1if(i % 2 == 0) // Eighth-inch marks
dy = 16;
else // Sixteeenth-inch marks
dy = 12;

grfx.DrawlLine (pen, x, v, X, vy + dy);

}

The ruler looks like this:

T |||||||||| T || M
1 : 3 5

[Wabcchroer =gl
|||‘ ‘

You might have noticed that text seems unaffected by any PageUnit and PageScale values I've set.
That's because the font accessible through the form's Font property is about 8 points in size and
remains that same size. In Chapter 9, I'll show you how to create a font that is affected by the
PageUnit and PageScale properties.

Page Transforms

What you're effectively setting when you set the PageScale and PageUnit properties is known as the
page transform. This transform can be represented by a pair of simple formulas. Assume that the

coordinates you pass to the Graphics drawing methods are page coordinates. (This assumption isn't
quite true, as you'll see later in this chapter, but it is true if you're setting only the PageScale and
PageUnit properties.) You can represent a point in page units as (Xpage, Ypage)-

Pixel coordinates relative to the upper left corner of the client area (or the upper left corner of the
printable area of the page) are said to be in device coordinates, or (Xgevice, Ydevice).- The page
transform depends on the PageUnit, PageScale, DpiX, and DpiY properties.

Page Transform Formulas

PageUnit Value Translation Formulas

GraphicsUnit.Pixel Xgevice = Xoage X PageScale
Ydevice = Ypage X PageScale

GraphicsUnit.Display (video display) Xevice = Xpage X PageScale
Ydevice = Ypage X PageSca/e

GraphicsUnit.Display (printer) Xdevice = Xpage X PageScale x DpiX / 100
Ydevice = Ypage X PageScale X DpIY/ 100

GraphicsUnit.Inch Xdevice = Xpage X PageScale x DpiX
Ydevice = Ypage X PageScale x DpiY

GraphicsUnit.Millimeter Xdevice = Xpage X PageScale x DpiX | 25.4
Ydevice = Ypage X PageScale x DpiY | 25.4

GraphicsUnit.Point Xdevice = Xpage X PageScale x DpiX | 72
Ydevice = Ypage X PageScale X DpIY/ 72

GraphicsUnit.Document Xdevice = Xpage X PageScale x DpiX [300
Ydevice = Ypage X PageScale X DpIY/ 300

In general,

Xdevice = Xpage X PageScale x DpiX [(GraphicsUnit units per inch)
Ydevice = Ypage X PageScale x DpiY | (GraphicsUnit units per inch)

Watch out for integer arithmetic. You might try to set the page scale to 1/64 of an inch like so:
grfx.PageScale = 1 / 64;

However, C# will perform the integer division before automatically converting to float! Help out the
compiler by telling it what you want to happen:

grfx.PageScale = 1f / 64;

The page transform affects all the coordinates of all the drawing functions implemented in the
Graphics class that I've discussed so far. It also affects the information returned from MeasureString
and the version of the GetHeight method implemented in the Font class that takes a Graphics object
argument.

The page transform is a characteristic of the Graphics class. The page transform doesn't affect
anything that's not a member of the Graphics class or that (unlike GetHeight) doesn't have a
Graphics object argument. The page transform doesn't affect the information you get from
ClientSize, for example. ClientSize is always in units of pixels.

Saving the Graphics State

Setting the PageUnit and PageScale properties of the Graphics object profoundly affects the
subsequent display of graphics. You might want to set these properties—or other properties in the
Graphics class—to draw some graphics or obtain some information, and then revert back to the
original properties.

The Graphics class has two methods, named Save and Restore, that let you do just that: save the
properties of the Graphics object and later restore them. These two methods use the GraphicsState
class from the namespace System.Drawing.Drawing2D.

Graphics Methods (selection)

GraphicsState Save ()

void Restore (GraphicsState gs)

The GraphicsState class has nothing public of any interest. You really treat it as a black box. When
you call

GraphicsState gs = grfx.Save();

all the current read/write properties of the Graphics object are stored in the GraphicsState object.
You can then change those properties on the Graphics object. To restore the saved properties, use

grfx.Restore (gs) ;

Programmers with experience using Win32 are probably accustomed to thinking of the similar facility
(involving the functions SaveDC and RestoreDC) in terms of a last-in-first-out stack. The Windows
Forms implementation is more flexible. For example, you could begin OnPaint processing by defining
three different graphics states:

GraphicsState gsl = grfx.Save() ;

// Change some properties.

GraphicsState gs2 = grfx.Save() ;

// Change some properties.

GraphicsState gs3 = grfx.Save() ;

You could then arbitrarily and in any order make calls to the Restore method to use any one of these
three graphics states.

A similar facility is provided by the BeginContainer and EndContainer methods of the Graphics class.
These methods make use of the GraphicsContainer class in System.Drawing.Drawing2D.

Metrical Dimensions

The dimensions of a form's client area are available from the ClientSize property. These dimensions
are always in units of pixels. If you set a new page transform, you probably want the dimensions of
the client area not in units of pixels but in units corresponding to what you're now using in the
drawing methods.

There are at least two ways to get the client size in metrical dimensions. Probably the most
convenient way is the VisibleClipBounds property of the Graphics object. This property always
returns the dimensions of the client area in units consistent with the current settings of the PageUnit
and PageScale properties. Here's a program that uses this information to show the size of the client
area using all the possible units.

WhatSize.cs

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Windows.Forms;

class WhatSize: PrintableForm

{

cy)

}

public new static void Main()

{

}

Application.Run(new WhatSize()) ;

public WhatSize()

{

}

Text = "What Size?";

protected override void DoPage (Graphics grfx, Color clr, int cx, int

void

Brush brush new SolidBrush(clr) ;

int v 0;

DoIt (grfx, brush, ref y, GraphicsUnit.Pixel);

DoIt (grfx, brush, ref y, GraphicsUnit.Display);
DoIt (grfx, brush, ref y, GraphicsUnit.Document) ;
DoIt (grfx, brush, ref y, GraphicsUnit.Inch);

DoIt (grfx, brush, ref y, GraphicsUnit.Millimeter) ;
DoIt (grfx, brush, ref y, GraphicsUnit.Point) ;

DoIt (Graphics grfx, Brush brush, ref int y, GraphicsUnit gu)
GraphicsState gs = grfx.Save();

grfx.PageUnit = gu;

grfx.PageScale 1;

SizeF sizef = grfx.VisibleClipBounds.Size;

grfx.Restore(gs) ;

grfx.DrawString(gu+ ": " + sizef, Font, brush, 0, y);

y += (int) Math.Ceiling(Font.GetHeight (grfx)) ;

The Dolt method in WhatSize makes use of the Save and Restore facility so that the different
PageUnit settings don't interfere with the actual display of information when we call the DrawString
method and the GetHeight call. Here's a typical WhatSize display:

Ewhat size? =10 x|
Fixel: {idth=317. Height=135}

Display: {Width=317, Height=135}

Document. {Width=792.4998, Height=337.4989}
Inch: {idth=2 641666, Height=1.125}

Millimeter: {Width=67.09834, Height=28.575}
Faint. {wWidth=190.2, Height=80.99999}

Unfortunately, the printer is different. For the printer, VisibleClipBounds is designed to return values
in units of 1/100 inch regardless of the page transform. However, if the printer PageUnit is set for
pixels, VisibleClipBounds returns the printable area of the page in pixels.

An historical note: | wrote the first how-to-program-for-Windows magazine article for the December
1986 issue of Microsoft Systems Journal. The sample program in that article was called WSZ ("what
size"), and it displayed the size of the program's client area in pixels, inches, and millimeters.
WhatSize is a somewhat simplified—and considerably shorter—version of that program.

Another approach to determining the size of the display area involves using the TransformPoints
method implemented in the Graphics class:

Graphics TransformPoints Methods

void TransformPoints (CoordinateSpace csDst, CoordinateSpace csSrc,
Point [] apt)
void TransformPoints (CoordinateSpace csDst, CoordinateSpace csSrc,

PointF[] aptf)

The CoordinateSpace enumeration is defined in the System.Drawing.Drawing2D namespace:
CoordinateSpace Enumeration

‘ Member ‘ Value

‘ World ‘ 0
‘ Page ‘ 1
‘ Device ‘ 2

So far, we know of the coordinate space called Device (that's units of pixels relative to the upper left
corner of the client area) and the coordinate space called Page (units of inches, millimeters, points,
or such). If you have an array of Point or PointF structures in device units, you can convert those
values to page units by calling

grfx.TransformPoints (CoordinateSpace.Page, CoordinateSpace.Device, apt);
I'll talk about the coordinate space known as World shortly.

Here's another version of the WhatSize program that uses TransformPoints to calculate the size of
the client area.

WhatSizeTransform.cs

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Windows.Forms;

class WhatSizeTransform: PrintableForm

{

cy)

public new static void Main()

{

}

Application.Run(new WhatSizeTransform()) ;

public WhatSizeTransform()

{

}

Text = "What Size? With TransformPoints";

protected override void DoPage (Graphics grfx, Color clr, int cx,

void

Brush brush = new SolidBrush(clr) ;
int y = 0;

Point[] apt = { new Point(cx, cy) };

grfx.TransformPoints (CoordinateSpace.Device,

CoordinateSpace.Page, apt);
DoIt (grfx, brush, ref y, apt[0], GraphicsUnit.Pixel);
DoIt (grfx, brush, ref y, apt([0], GraphicsUnit.Display);

DoIt (grfx, brush, ref y, apt[0], GraphicsUnit.Document) ;

(

(
DoIt (grfx, brush, ref y, apt[0], GraphicsUnit.Inch);
DoIt (grfx, brush, ref y, apt[0], GraphicsUnit.Millimeter) ;
(

DoIt (grfx, brush, ref y, apt[0], GraphicsUnit.Point) ;

DoIt (Graphics grfx, Brush brush, ref int vy,
Point pt, GraphicsUnit gu)

GraphicsState gs = grfx.Save();

grfx.PageUnit = gu;
grfx.PageScale = 1;

PointF[] aptf = { pt };

grfx.TransformPoints (CoordinateSpace.Page,

CoordinateSpace.Device, aptf);

SizeF sizef = new SizeF(aptf[0]);

grfx.Restore (gs) ;

int

grfx.DrawString(gu + ": " + sizef, Font, brush, 0, vy);

y += (int) Math.Ceiling(Font.GetHeight (grfx)) ;

}

I've added an extra argument to the program's Dolt method: a Point structure containing the width
and height of the display area in pixels. For the video display, that's not much of a problem because
the cx and cy arguments to DoPage are already pixels. For the printer, however, they are not. For
that reason, the DoPage method adds cx and cy to a Point structure, makes a single-element Point
array, and passes that array to TransformPoints to convert the values to device units. Notice that for
this call to TransformPoints the destination coordinate space is CoordinateSpace.Device. Dolt then
uses TransformPoints to convert from device units to CoordinateSpace.Page.

Arbitrary Coordinates

Some of the graphics programs shown so far in this book have scaled their output to the size of the
client area or the printable area of the printer page. Programs in this chapter have drawn in specific
sizes in units of millimeters or inches.

Then there are times when you want to hard-code a bunch of coordinates and would prefer that you
could skip any explicit scaling of them. For example, you may want to code some graphics output
using a coordinate system of (say) 1000 units horizontally and 1000 units vertically. You want this
coordinate system to be as large as possible but still fit inside your client area or the printer page.
This program demonstrates how to do just that.

ArbitraryCoordinates.cs

[/ e

// ArbitraryCoordinates.cs © 2001 by Charles Petzold

[/ e

using System;

using System.Drawing;

using System.Windows.Forms;

class ArbitraryCoordinates: PrintableForm

{

public new static void Main()

{

Application.Run(new ArbitraryCoordinates()) ;

}

public ArbitraryCoordinates ()

{

Text = "Arbitrary Coordinates";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

grfx.PageUnit = GraphicsUnit.Pixel;

SizeF sizef = grfx.VisibleClipBounds.Size;

grfx.PageUnit = GraphicsUnit.Inch;

grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
sizef.Height / grfx.DpiY / 1000);

grfx.DrawEllipse (new Pen(clr), 0, 0, 990, 990);

}

The DoPage method first sets PageUnit to GraphicsUnit.Pixel for the sole purpose of obtaining the
VisibleClipBounds property indicating the size of the client area or printer page in units of pixels.
Next, DoPage sets PageUnit to inches:

grfx.PageUnit = GraphicsUnit.Inch;
Earlier | showed the following transform formulas that apply to a PageUnit of inches:

Xdevice = Xpage X PageScale x DpiX
Ydevice = Ypage X PageScale x DpiY

You want Xgage and Ypage to range from 0 through 1000 while Xgevice @Nd Yaevice Fange from 0 through
the Width and Height properties (respectively) from VisibleClipBounds. In other words,

Width = 1000 x PageScale x DpiX
Height = 1000 x PageScale x DpiY

However, these two equations would result in two different PageScale factors, and you can have
only one. You want the lesser of the two calculated values:
grfx.PageScale = Math.Min(sizef.wWidth / grfx.DpiX / 1000,

sizef.Height / grfx.DpiY / 1000);

The program then draws an ellipse with a width and height of 990 units. (Using 1000 or 999 for the
width and height sometimes causes one side of the figure to be truncated for large window sizes.)
The resultant figure is a circle that appears at the left of the client area when the client area is wide
and at the top when the client area is tall:

=lojx|| EREEET -lo|x|

You can also print the circle; it will be as large as the printable width of the page.

There's a subtle problem in this program, however. Try reducing the window size as far as it will go.
You'll notice that there's a limit in the width of the window, but you can decrease the height of the
window until the client area height is 0. At that point, you'll get an exception because the DoPage
method will be setting the PageScale to 0, an invalid value.

You can deal with this problem in a couple ways. Perhaps the most obvious is simply to abort the
DoPage method if the height of the client area is 0:
if (cy == 0)

return;

That's not a problem because it doesn't make sense to draw anything anyway.

Don't you find it a little peculiar that you're getting a call to the OnPaint method anyway given that
your client area is of 0 dimension? It wouldn't hurt to put a statement like this at the beginning of your
OnPaint method:

if (pea.ClipRectangle.IsEmpty)

return;

This statement is equivalent:
if (grfx.IsVisibleClipEmpty)

return;

A very specialized solution is to use the Math.Max method in the calculation of the PageScale
property to prevent values of 0:

grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
Math.Max (sizef.Height, 1) / grfx.DpiY / 1000);

Or, to demonstrate that you known something about exception handling in C#, you can put the
statement in a fry block:

try
{
grfx.PageScale = Math.Min(sizef.Width / grfx.DpiX / 1000,
sizef .Height / grfx.DpiY / 1000) ;

catch

return;

}

But a method that might not seem so obvious is to prevent the client area from shrinking down to a 0
height in the first place. The static property Systeminformation.MinimumWindowSize returns a size
whose height is simply the sum of the caption bar height and twice the sizing border height. The
width is considerably greater to give windows a minimum width that still allows part of the program's
caption bar to be visible.

You can set a form's MinimumSize property to keep the window above a certain dimension. Try
putting this in the constructor for ArbitraryCoordinates:

MinimumSize = SystemInformation.MinimumWindowSize + new Size (0, 1);

What You Can't Do

There are several things you can't do with the page transform. First, you can't set PageScale to
negative values; that is, you can't make x coordinates increase to the left (which few people want to
do anyway) or y coordinates increase going up the screen (which is something that's useful for the
mathematically inclined).

Second, you can't have different units in the horizontal and vertical directions. The PageScale and
PageUnit properties apply to both axes equally. A function like

grfx.DrawEllipse(pen, 0, 0, 100, 100);
will always draw a circle regardless of the page transform, with one exception: when you set a

PageUnit of GraphicsUnit.Pixel and your output device has different horizontal and vertical
resolution. This issue will rarely come up for the video display, but it's fairly common for printers.

And finally, you can't change the origin. The point (0, 0) in page coordinates always maps to the
upper left corner of the client area or printable area of the printer page.

Fortunately, there's another transform supported by GDI+ that lets you do all of these tasks and
more.

Hello, World Transform

The other transform supported by GDI+ is known as the world transform. It involves a traditional 3 x
3 matrix, but it's possible to skip the matrix and use some very handy methods instead. To begin,
let's look at this program that displays the first paragraph of Herman Melville's Moby-Dick.

MobyDick.cs

using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

class MobyDick: PrintableForm

{

public new static void Main()

{

Application.Run (new MobyDick()) ;

}

public MobyDick ()

{

Text = "Moby-Dick by Herman Melville";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

// Insert RotateTransform, ScaleTransform,

// TranslateTransform, and other calls here.

grfx.DrawString("Call me Ishmael. Some years ago\x20l4never " +
"mind how long precisely\x20l4having little " +
"or no money in my purse, and nothing " +
"particular to interest me on shore, I " +
"thought I would sail about a little and " +
"see the watery part of the world. It is " +
"a way I have of driving off the spleen, " +
"and regulating the circulation. Whenever " +
"I find myself growing grim about the " +
"mouth; whenever it is a damp, drizzly " +
"November in my soul; whenever I find " +
"myself involuntarily pausing before " +
"coffin warehouses, and bringing up the " +
"rear of every funeral I meet; and " +
"especially whenever my hypos get such an " +
"upper hand of me, that it requires a " +

"strong moral principle to prevent me " +

"from deliberately stepping into the " +
"street, and methodically knocking " +
"people's hats off\x201l4then, I account it " +
"high time to get to sea as soon as I " +
"can. This is my substitute for pistol " +
"and ball. With a philosophical flourish " +
"Cato throws himself upon his sword; I " +
"quietly take to the ship. There is " +
"nothing surprising in this. If they but " +
"knew it, almost all men in their degree, " +
"some time or other, cherish very nearly " +
"the same feelings towards the ocean with " +
"me.",

Font, new SolidBrush(clr),

new Rectangle(0, 0, cx, cy));

}

This is nothing you haven't seen before except that I've indicated where you can add a line or two of
code, recompile, and see what happens.

Here's the first one you can try:

grfx.RotateTransform(45) ;

Make sure you insert this call before the DrawString call. The effect is to rotate the text 45 degrees
clockwise:

Simple enough, no? Notice that the text is still within the rectangle specified in the DrawString call,
but that rectangle has been effectively rotated along with the text. You can also print it, but | must
warn you that it may take quite some time for the print spooler file to be created.

What's affected by RotateTransform? All the Graphics drawing functions covered so far.

The argument to RotateTransform is a float value, and it can be positive or negative. Try this:

grfx.RotateTransform(-45) ;

The text is rotated 45° counterclockwise. The angle can also be greater than 360° or less than —360°.
For our particular example, any value that doesn't resolve to an angle between —90° and 90° will
cause the text to be rotated right off the visible area of the window.

Successive calls to Rotate Transform are cumulative. The calls

grfx.RotateTransform(5) ;

grfx.RotateTransform(10) ;

grfx.RotateTransform(-20) ;
result in the text being rotated 5° counterclockwise.

Now try this:

grfx.ScaleTransform(1l, 3);

This function increases the coordinates and sizes of displayed graphics. The first argument affects
the horizontal coordinates and sizes, and the second argument affects the vertical. In the MobyDick
program, calling this function causes the width of the text to be the same but makes the font
characters three times taller. The call

grfx.ScaleTransform(3,1) ;

doesn't affect the height of the characters but makes them three times wider. The display rectangle
increases likewise, so the text has the same line breaks.You can also combine the two effects:

grfx.ScaleTransform(3, 3);

Again, these are float values, and they are compounded. Scaling both the horizontal and vertical
sizes by a factor of 3 can be accomplished by the following two calls:

grfx.ScaleTransform(3, 1);

grfx.ScaleTransform(1l, 3);

Or by
grfx.ScaleTransform((float)Math.Sqgrt (3), (float)Math.Sqgrt(3));
grfx.ScaleTransform((float)Math.Sqrt (3), (float)Math.Sqgrt(3));

But what you'll probably find most interesting is that blowing up the text doesn't make it all jaggy. It
looks as if you are using a different sized font rather than increasing the size of an existing font.

Can the scale values be negative? Yes, they can. However, if you try it right now, you won't see
anything. But | will shortly get to a point where we can use negative scale values and see the very
startling effect. The scale values can't be 0, or the function will throw an exception.

I've saved, well, the most boring for last. The Translate Transform call simply shifts coordinates along
the horizontal and vertical axis. For example, inserting the call

grfx.TranslateTransform (100, 50);

into the MobyDick program causes the text to begin 100 pixels to the right of and 50 pixels below the
origin of the client area. If you print this version, the text appears 1 inch to the right of and 1/2 inch
below the origin of the printable area of the page. Negative values of the first argument will move the
text off the left side of the client area; negative y values move the text off the top.

But shifting the text helps demonstrate other techniques. | want you to insert the call
grfx.TranslateTransform(cx / 2, cy / 2);

That will begin the text in the center of the client area or printer page. That's not very interesting by
itself, but now insert the following after the Translate Transform call:
grfx.ScaleTransform(-1, 1);

Now that is interesting, isn't it? What happens is that the text is reflected around the vertical axis,
appearing as a mirror image in the bottom left quadrant of the client area:

ﬂgrﬂnby—[ﬂck by He i = |EI |£|

+amos lssmdzl am 8D
vsr—daziosig pnol worl
w50 pridion bns sawg ym
Huowe | tripuodt | s1orz no
arlt 1o heq wiatsw arltssez
gz adt Ho privith 1o swsd
it [evanarhy’ noisluoio
wmanarlw ituom it tuods
arhwy Jluoz wirt i 1admssobd

Now replace that Scale Transform call with this one:

grfx.ScaleTransform(1l, -1);

Now the text is reflected around the horizontal axis and appears upside down. Again, you can
combine the two effects:

grfx.ScaleTransform(-1, -1);

Now you know why you couldn't use the ScaleTransform call by itself with negative arguments—the
text would be flipped off the visible surface of the client area. You need to move the text farther from
the left and top edge to see the effect.

OK, now let's try switching around the order of the Translate Transform and one of the
ScaleTransform calls:

grfx.ScaleTransform(-1, 1);

grfx.TranslateTransform(cx / 2, cy / 2);

Now you see nothing, and you probably figure that it's because the text has been somehow moved

off the surface of the client area. There are two ways to bring it back. One way is to change the first
argument of the Translate Transform call so that it's negative:

grfx.ScaleTransform(-1, 1);
grfx.TranslateTransform(-cx / 2, cy / 2);
Now it's back to being reflected around the vertical axis in the center of the client area. By the way,

I'm not expecting you to understand why this works yet. Indeed, at this point, confusion would not be
inappropriate.

To add to that confusion, here's another way to do it. Leave the first argument the way it was, but
use this overload of the Translate Transform method:
grfx.ScaleTransform(-1, 1);

grfx.TranslateTransform(cx / 2, cy / 2, MatrixOrder.Append) ;

Each of the three methods we've looked at so far— Rotate Transform, Scale Transform, and
Translate Transform—is overloaded to allow a final MatrixOrder argument, which is an enumeration

defined in the System.Drawing.Drawing2D namespace. (That's why I've conveniently included the
additional using statement at the top of the MobyDick program.)

Here are the formal definitions of the Graphics methods I've discussed in this section so far, plus
another:

Graphics Methods (selection)

void TranslateTransform(float dx, float dy)

void TranslateTransform(float dx, float dy, MatrixOrder mo)
void ScaleTransform(float sx, float sy)

void ScaleTransform(float sx, float sy, MatrixOrder mo)
void RotateTransform(float fAngle)

void RotateTransform(float fAngle, MatrixOrder mo)

void ResetTransform()

The ResetTransform call makes everything go back to normal. The MatrixOrder enumeration has
just two members:

MatrixOrder Enumeration

‘ Member ‘ Value ‘ Description

‘ Prepend ‘ 0 ‘ Default
‘ Append ‘ 1 ‘ Switches order of application

What these enumeration values do will become evident before the conclusion of the chapter.

The Big Picture

The coordinates you pass to the various drawing methods implemented in the Graphics class are
said to be world coordinates. World coordinates are first subjected to the world transform, which is
the thing we've been playing around with by calling Translate Transform, Scale Transform, and
RotateTransform. I'll formalize the world transform shortly.

The world transform converts world coordinates to page coordinates. The page transform—the
transform defined by the PageUnit and PageScale properties of the Graphics object—converts those
page coordinates to device coordinates, which are pixels relative to the upper left corner of the client
area or printable area of the printer page.

World N Paga 5 Davica
coordinates Warld coordinates F‘i:'l'f]]?: coordinales

transiorm trangiorm

For functions such as the Graphics method MeasureString or the Font method GetHeight, this
process is reversed. Device coordinates are converted to page coordinates, which are then
converted to world coordinates and returned by the method.

Linear Transforms

Let's look at the mathematical effect of calling the various transform methods. The simplest of these
methods seems to be

grfx.TranslateTransform(dx, dy);

where I'm symbolizing the arguments with dx and d,. (The d stands for delta, mathematically
meaning change.) The world transform that results from this method call is

Xpage = Xworld + dx
ypage = Yworld + dy

Easy enough. As you saw, the Translate Transform call resulted in all coordinates being offset.

Similarly, here's a call to ScaleTransform:

grfx.ScaleTransform(sy, SQ,
The s stands for scale. This world transform involves not an addition but a multiplication:

Xpage = Sx * Xworld
Ypage = Sy * Yworld

This scaling effect is very similar to the page transform.
When you call

grfx.RotateTransform(a) ;

with an angle of o, well, | won't make you guess. The resultant transform is obviously a bit more
complicated and looks like this:

Xpage = Xworld * COS(OL) + Yworld sin(oc)
Ypage = —Xworld sin(oc) + Yworld * COS(OC)

This little table of sines and cosines may help you verify that these formulas do indeed work:

Angle o Sine | Cosine
0 0 1

45 Vo Vo
90 1 0

135 o | 2
180 0 =4

225 2 | B
270 ~f 0

315 3z V3
360 0 1

By the way, if you're familiar with this stuff from experience with other graphics programming
environments, the two formulas for rotations might look slightly off. That's because GDI+ expresses
rotations clockwise. In more mathematically oriented environments, rotations are counterclockwise.
In that case, the sine term in the first formula is negative and the sine term in the second is positive.

We can generalize all three of these transforms into the two formulas

Xpage = Sx * Xworld * Ix * Yworld * dy
Ypage = Iy * Xworld * Sy * Yworld dy

where s,, s,, ry, Iy, dy, and d, are constants that define the particular transform. You've already been

introduced to the scaling factors s, and s,, and the translation factors d and d,. You've also seen
that certain specific combinations of s,, sy, rx, and r,—combinations defined by trigonometric

functions of particular angles—can result in rotation. The r, and r, factors also have a meaning in
themselves, and the graphical effect of these two constants will soon become apparent.

These two formulas taken together are known as the general linear transformation of the plane m
Although Xpage @and Ypage are functions of both Xyeiq and Yuwore, these formulas don't involve powers of
Xworld OF Yworla OF @nything like that. That the world transform is linear implies certain restrictions on
what you can do with the world transform.

8 The world transform will always transform a straight line into another straight line. Straight lines
will never become curved.

A pair of parallel lines will never be transformed into lines that are not parallel.

Two objects equal in size to each other will never be transformed into two objects unequal in
size.
8 Parallelograms (including rectangles) will always be transformed into other parallelograms;

ellipses will always be transformed into other ellipses.

w W

When you start off with a new, clean Graphics class on entry to a Paint or a PrintPage event, the
world transform in effect is called the identity transform: the s, and s, factors are set equal to 1; the
other factors are set to 0. The ResetTransform method restores the Graphics object to the identity
transform.

As you've seen, the effects of successive calls to TranslateTransform, Scale Transform, and
RotateTransform are accumulated. However, the resultant world transform differs depending on the
order that you call these methods. It's fairly easy to demonstrate why. This won't be pretty, so it's OK
if you cover your eyes during the scary parts.

First, let's assume we have one world transform that I'll call T;:

X’=Sx1'x+rx1'y+dx1
y=ry1'X+sy1'y+dy1

Rather than using subscripts indicating world coordinates and page coordinates, the world
coordinates are simply x and y, and the page coordinates are x’ and y’. Let's assume a second
transform called T, with different factors:

X =8 X+ho y+de
Y=rho X+Sp-y+dp

Applying T first to world coordinates and then T, to the result produces this transform:

X = S Sy’ X + S lat'y + Sy’ it ¥ N lyr' X + ' Syrry + hadyr + A2

}/ =l Sx1X + a2y + ryz'dx1 + Sy2'My1'X + Sy2'Sy1y + Sy2'dy1 + d}/z
Consolidating the terms, you arrive at this:

X = (Sx2'Sx1 + ha'ly1) - X+ (So'fxa + Na'Sy1) * Y + (St + Nordyq + dyo)
Y = (r2Sxt + Syarty1) - X+ (hyala + Sy2:Sy1) = Y + (2 dyt + Syo-dys + dyp)
If you apply T, first and then T3, you get something different:

X = 831°Sxa' X + Sxi'ha'y + Sx1*xa + Ml X + L Sy'y + Fxa-dyz + A
y= IS’ X + Iyrlygy + ry1'dx2 Sy X + Sy1'Syy Sy1'dy2 + dy1
Consolidating the terms, you obtain

X = (Sx17Sx2 + Fxa'ly2) * X+ (Sxrha + Ia'Sy2) = Y + (Sx1 Gz + Ix°dy2 + diy)
Y = (rSe + Syrrfya) - X+ (hyrhe + Sy17Sy2) - Y + (hy1dea + Syr-dyo + dyy)

And that, my friends, is why you get different results depending on whether you call ScaleTransform
or Translate Transform first.

@ gee Anthony J. Pettofrezzo, Matrices and Transformations (New York: Dover, 1978), Chapter 3,
and particularly section 3-7 for a rigorous mathematical treatment.

Introducing Matrixes

When something is very messy in mathematics (like the calculations | just demonstrated), the
solution usually doesn't involve removing something but introducing something new. Here it will be
very useful to introduce a matrix, particularly because the mathematics of matrix algebra are well
known (at least to mathematicians). You can represent a linear transform by a matrix; applying
multiple transforms is equivalent to multiplying the matrices.

A matrix is a rectangular array of numbers. Here's an array with three columns and two rows:

27 9 14
3 0 88

Arrays are usually symbolized by capital letters. When multiplying two matrices like so:
AxB=C

the number of columns in A must be the same as the number of rows in B. The number of rows in
the product C is equal to the number of rows in A. The number of columns in C is equal to the
number of columns in B. The number in the ith row and jth column in C is equal to the sum of the
products of the numbers in the ith row of A times the corresponding numbers in the jth column of BE
Matrix multiplication is not commutative. The product A x B does not necessarily equal the product B
x A.

If we weren't dealing with translation, we could represent the world coordinates (x, y) asa 1 x 2
matrix and the transformation matrix as a 2 x 2 matrix. You multiply these two matrices and express
the resultant page coordinates (x’, y’) as another 1 x 2 matrix:

Applying the multiplication rules to the matrices gives us the formulas

X=8SX"X+rx-y

y=ry x+sy-y

These formulas are not quite complete, however. The world transform also involves a translation

factor. To get the matrix multiplication to work right, the world coordinates and page coordinates
must be expanded to 1 x 3 matrices, and the transform is a 3 x 3 matrix:

5 K O
¥ ¥y 1|x|n s 0l=|& ¥ 1
d, d, 1

Here are the resultant formulas:

X =8 X+ y+dy
y=r-x+s,y+d,

The type of transform that can be represented by a matrix like this is often called a matrix transform.

The matrix transform that doesn't do anything has scaling factors of 1, and rand d have factors of 0:

1 0 0
0 1 0
B B 1

This is called the identity matrix.
B See Pettofrezzo, section 1-2 for examples.

The Matrix Class

The matrix transform is encapsulated in the Matrix class defined in the System.Drawing.Drawing2D
namespace. You can create a Matrix object using one of four constructors, two of which are shown
here:

Matrix Constructors (selection)

Matrix ()

Matrix(float sx, float ry, float rx, float sy, float dx, float dy)

The second constructor allows you to specify all six constants that define the matrix transform. The
scaling factors sx and sy must be nonzero! (If they're not, you'll get an exception error.)

The Graphics class has a read/write property named Transform that is a Matrix object:
Graphics Property (selection)

‘ Type ‘ Property ‘ Accessibility

‘ Matrix ‘ Transform ‘ get/set

Whenever you call the TranslateTransform, ScaleTransform, Rotate Transform, or ResetTransform
method, the Transform property is affected. You can also set the Transform property directly. The
call

grfx.Transform = new Matrix(1, 0, 0, 1, 0, 0);
has the same effect as ResetTransform.

The Matrix class has five properties, all of which are read-only:
Matrix Properties

‘ Type ‘ Property ‘ Accessibility | Description

‘ float[] ‘ Elements ‘ get | Six transformation constants
‘ float ‘ OffsetX ‘ get | Transform d, constant

‘ float ‘ OffsetY ‘ get | Transform d, constant

‘ bool ‘ Isldentity ‘ get | Diagonal of 1's

‘ bool ‘ Isinvertible ‘ get | Can be inverted

Let's now look at an example of compounded transforms. Suppose you first call

grfx.ScaleTransform(2, 2);

Your program could then examine the resultant matrix by calling

float[] afElements = grfx.Transform.Elements;

You'll see the values 2, 0, 0, 2, 0, 0, which can be represented as the following matrix:

2
[R
= O

0
0
Now you call

grfx.TranslateTransform (100, 100) ;

By itself, that would result in the matrix

] 0 0
0 1 0
100 100 1

However, the new transform is a composite of the two method calls. The matrix representing the
second call is multiplied by the existing Transform property, and the result is the new Transform
property:
| 0 0 } 0 0O) i 0
] | o1 . (0 2 0] = il L |
oo ol | 0o o 1 200 200 1

Now try making the ScaleTransform and Translate Transform calls in the opposite order:
grfx.TranslateTransform (100, 100) ;

grfx.ScaleTransform(2, 2);
Again, the resultant transform is calculated by multiplying the second matrix by the first matrix:

2 0 0] 1 2 0
0 2 0 () | Dl = {} 2 0
g 0 1 100 1000 1 1000 100 1

You can also obtain this transform by calling
grfx.ScaleTransform(2, 2);

grfx.TranslateTransform (100, 100, MatrixOrder.Append) ;

The MatrixOrder.Append argument indicates that the new transform is to be appended to the existing
transform. The default is MatrixOrder.Prepend.

The Graphics class has one more world transform method:

Graphics Methods (selection)

void MultiplyTransform(Matrix mat)

void MultiplyTransform(Matrix mat, MatrixOrder mo)

This method lets you multiply the existing transform matrix by a new one.

I'll discuss the Matrix class more in Chapter 15.
Shear and Shear Alike

Let's go back to the MobyDick program and insert the following statement:

grfx.Transform = new Matrix(1, 0, 0, 3, 0, 0);

This statement has the same effect as the call

grfx.ScaleTransform(l, 3);

What we haven't experimented with yet are the rx and ry factors used by themselves. Consider the
following call:

grfx.Transform = new Matrix(1, 0, 0.5f, 1, 0, 0);

This call results in the following transform matrix:

1 0 0
0.5 1 0
0 0 1
And these are the transform formulas:
X=x+05-y
Y=y

Notice that the x coordinate values are increased by the y value. When y equals 0 (the top of the
client area), no transform will occur. As y gets larger going down the client area, x is increased
likewise. The result is an effect called shear.

ﬂgrﬂobv—nick by Herman M ;[Elil

ol ol Snaed, TOmE eSS ann—Te el Tnd
O MDD, TSR oDy TRl O T TOEOTES
N TRATER | T TG, TR W wienesh e
L0 SN S TERATR A o S 2Tl w
e e wakery teiol e wohd Ws away
T oh ARG 0% e sTeRn and Tepdaing
Greieivnt, loenesiet Vind wiysel grosing
FCRATS TR e s B dang €
TR i TO Sendl wneEneer y Sndi e
AT, TS ke CoTn s
A BRNENG wn e teat of eveny Tane
A eherEiny wTETEET TI0 TROs
wnmen el gl e el renives s
e 0 preed e o delin
SAMATTAOG, W0 Tk Shaeed v et
WODEaTD, pentel s, tas oft—tne
WITE W TR0 S0 25 SO0 SRS
SATEER e Yor tosiolh Ay nElh,

Specifically, the effect here is called horizontal shear, or x-shear. Unfortunately, the word shear
starts with the same letter as scale, so to identify the shear factors in the transform formulas, I've
used the last letter of shear.

You can also set the vertical shear, or y-shear, factor like so:

grfx.Transform = new Matrix(l1, 0.5f£, 0, 1, 0, 0);

This matrix is

1 0.5 0

0 1 0

0 0 1
The transform formulas are
X =X
y=05-x+y

Notice that each line of text still begins at the left margin of the client area:

ﬂg Moby-Dick by Herman —|O |1|

Rotation is actually a combination of horizontal shear and vertical shear. However, some
combinations, like this one, won't work:

grfx.Transform = new Matrix(1, 1, 1, 1, 0, 0);
This defines the transform

X=x+y
y=x+y

This transform would cause an image to be compressed into a single line. It will generate an
exception before it does that. But this call works:

grfx.Transform = new Matrix(1, 1, -1, 1, 0, 0);

It results in the following display:

8 Moby-Dick by Herman _ O] x|

If you set the first four arguments to the square root of 1/2,
grfx.Transform = new Matrix(0.707f, 0.707f, -0.707f, 0.707f£, 0, 0);

you'll produce the same result as the call we started this whole exploration with:

grfx.RotateTransform(45) ;

Combining Transforms

In theory, you don't need the page transform at all. All the page transform does is scaling, and you
can certainly do that and a lot more with the world transform. It's often convenient to combine the two
transforms, however, particularly if you're interested in drawing figures of a particular size that are
then subjected to the world transform.

This program draws 36 one-inch squares that are rotated around the center of the display area.

RotatedRectangles.cs

using System;
using System.Drawing;
using System.Drawing.Drawing2D;

using System.Windows.Forms;

class RotatedRectangles: PrintableForm

{

public new static void Main()

{

Application.Run(new RotatedRectangles()) ;

}

public RotatedRectangles ()

{

Text = "Rotated Rectangles";

}

protected override void DoPage (Graphics grfx, Color clr, int cx, int
cy)

Pen pen = new Pen(clr) ;

grfx.PageUnit = GraphicsUnit.Pixel;
PointF[] aptf = { (PointF) grfx.VisibleClipBounds.Size };
grfx.PageUnit = GraphicsUnit.Inch;

grfx.PageScale = 0.01f;

grfx.TransformPoints (CoordinateSpace.Page,

CoordinateSpace.Device, aptf);
grfx.TranslateTransform(aptf[0].X / 2, aptf[0].Y / 2);

for (int 1 = 0; 1 < 36; 1i++)

grfx.DrawRectangle (pen, 0, 0, 100, 100);

grfx.RotateTransform(10) ;

}

The hard part here is calculating the arguments to the TranslateTransform call, which is necessary to
shift the world coordinate origin to the center of the display area. The OnPage method changes the
page unit to pixels in order to get the VisibleClipBounds property in units of pixels. OnPage then
switches to a page unit of 1/100 inch and transforms the display area width and height to page
coordinates. The TranslateTransform call uses these values halved.

The for loop is the easy part: It draws a rectangle 100 units wide and high positioned at the point (0,
0). The RotateTransform call then rotates 10° in preparation for the next iteration. And here's what it
looks like:

&
e
4

Knowing how to rotate objects around an origin will come in handy in the analog clock program in
Chapter 10.

Chapter 8: Taming the Mouse

Overview

United States patent number 3,541,541, filed June 21, 1967, describes an "X-Y Position Indicator for
a Display System."[” The inventor is listed as Douglas C. Engelbart of the Stanford Research
Institute (SRI). The word mouse is never mentioned in the original patent, of course, but it's obvious
that's what the patent describes.

Doug Engelbart (born 1925) founded the Augmentation Research Center at SRI to advance
computer hardware and software in pursuit of an ambitious goal: to create tools for the augmentation
of human intelligence. As Engelbart recollected in 1986, "We wanted to start experimenting with
screen selection. The idea of working and interacting very actively with the display meant that we
had to tell the computer what we were looking at, so we needed a screen selection device. There
was a lot of argument about light pens and tracking balls in those days, but none of those arguments
served our needs very directly. | wanted to find the best thing that would serve us in the context in
which we wanted to work—text and structured items and interactive commands.... | dug up some
notes of mine describing a possibility that turned into the very first mouse." [

By 1972, the mouse had found its way to the Xerox Palo Alto Research Center (PARC), where it
became part of the Alto, the machine that is commonly regarded as the first implementation of a
graphical user interface and the precursor to the personal computer. But it wasn't until the 1983
introduction of the ill-fated Apple Lisa and the more successful Macintosh a year later that the mouse
started to become a common accessory on every well-dressed computer.

While the keyboard is adequate for alphanumeric input and rudimentary cursor movement, the
mouse provides a more intimate connection between the user and objects on the screen. As an
extension of the user's fingers, the mouse can point, grab, and move. The mouse has also adapted
itself well to new types of applications: although games players and graphics artists were among the
first to experience the mouse, in more recent years, the mouse has proved invaluable in navigating
through hypertext-oriented mediums like the Web.

f'y.S. patents are available for viewing at http://www.uspto.gov/patft. You'll need a TIFF viewer for
E}atents issued prior to 1976.

Adele Goldberg, ed., A History of Personal Workstations (New York: ACM Press, 1988), 194—195.
This book is a collection of papers presented at the ACM (Association for Computing Machinery)
Conference on the History of Personal Workstations held January 9-10, 1986, in Palo Alto,
California. A more extensive discussion of the mouse can be found in Thierry Bardini's book,
Bootstrapping: Douglas Engelbart, Coevolution, and the Origins of the Personal Computer (Stanford,
CA: Stanford University Press, 2000).

The Dark Side of the Mouse

When Microsoft Windows was first released in 1985, the mouse was still a relatively rare appliance in
the IBM-compatible world. The early developers of Windows felt that users shouldn't be required to
buy a mouse in order to use the product. The mouse was made an optional accessory for Windows,
and keyboard alternatives to the mouse were provided in all the little programs that came with
Windows. (This is still the case: check out the help information in the Windows Calculator to see how
each button is industriously assigned a keyboard alternative.) Third-party software developers were
also encouraged to follow Microsoft's lead and provide keyboard interfaces in their own applications.

Although the mouse has become a nearly universal PC peripheral, part of the legacy of Windows
involves an openness to mouseless system configurations. When at all possible, | still like the idea of
providing keyboard equivalents for mouse actions. Touch typists in particular prefer keeping their
hands on the keyboard, and | suppose everyone has had the experience of "losing" a mouse on a
cluttered desk or having a mouse too clogged up with mouse gunk to work well. The keyboard
equivalents usually don't cost much in terms of thought or effort, and they can deliver more
functionality to users who prefer them.

There are a number of strong reasons why keyboard alternatives to the mouse must be considered
an essential part of any Windows application, most having to do with accessibility. For example, as
the average age of computer users increases, some people—myself included—have suffered from
painful and debilitating injuries to their hands, arms, and shoulders that are a direct result of
excessive mouse use. Sometimes these problems can even be traced to a single application. I've

made an extra effort in searching out keyboard alternatives in the applications | use, and it's
disheartening to find applications whose developers have seemingly given up on providing a well-
rounded user interface.

Ignoring the Mouse

Since Chapter 2, you've been writing and running programs that respond to mouse input. The
standard form includes a mouse interface that lets the user move the form around the screen by
dragging its caption bar, resize the form by dragging its sizing border, open the control box (also
known as the system menu) to select items, and trigger the minimize, maximize, and close buttons.
All this happens without any effort by you, the programmer. Obviously, Windows is handling that
mouse input itself.

As you learned in Chapter 4, it's not necessary for a Windows Forms program to worry about mouse
input when it implements a scroll bar. The scroll bar code itself handles the mouse input and
responds appropriately.

Beginning in Chapter 12, I'll start talking about the many predefined controls available in Windows
Forms. Later chapters will cover menus and dialog boxes. You'll discover that all these user interface
enhancements handle their own mouse input. Indeed, that's the primary purpose of controls: to
encapsulate a low-level interface to the keyboard and mouse, and to provide a higher-level interface
that you as a programmer can deal with.

This chapter involves those times when you need to directly handle mouse input within your client
area, which, of course, is something that not all applications need to do. Those programmers who
will adorn their client areas with predefined controls may never need to deal directly with mouse
input. However, if you ever want to write your own controls, having a solid foundation in mouse
handling is a necessity.

Some Quick Definitions

A mouse is a pointing device with one or more buttons. The mouse is the object that sits on your
desk. When you move the mouse, the Windows environment moves a small bitmap image called the
mouse cursor on the screen. (In some graphical environments—and even in some of the Windows
Forms documentation—the mouse cursor is referred to as a pointer.)

The mouse cursor has a hot spot that corresponds to a precise pixel location on the screen. For
example, the hot spot of the default arrow cursor is the tip of the arrow. This is what is meant by the
location of the mouse cursor. | hope you won't be too alarmed if I'm occasionally a little sloppy and
refer to the location or position of the mouse rather than the mouse cursor. Rest assured that the
mouse is still on your desk and not crawling up your screen.

Clicking the mouse is pressing and releasing a mouse button. Dragging the mouse is holding down
the mouse button and moving the mouse. Double-clicking is clicking the mouse button twice in
succession. For an action to qualify as a double-click, both clicks must occur within a set period of
time and with the mouse cursor in approximately the same location on the screen. If you ever need
to know these values (and it's unlikely you will), the Systeminformation class contains two static
read-only properties with this information:

Systeminformation Static Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ int ‘ DoubleClickTime ‘ get ‘ Time in milliseconds
‘ Size ‘ DoubleClickSize ‘ get ‘ Area in pixels

The user has control over these settings using the Mouse item in Control Panel.
Information About the Mouse

Can you run your computer without a mouse? Well, why don't you try? Shut down your computer,
unplug the mouse, restart, and see what happens. Windows 2000 doesn't seem to complain.
Ctrl+Esc (or the Windows key on some keyboards) brings up the Start menu, and you can navigate
through your programs, documents, or favorites list with the keyboard cursor-movement keys.

A Windows Forms program may want to determine whether a mouse is present and, if so, how many
buttons it has. Again, the Systeminformation class comes to the rescue:

Systeminformation Static Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ bool ‘ MousePresent ‘ get ‘ Indicates whether a mouse is installed

int ‘ MouseButtons get Indicates the number of buttons on the
mouse

‘ bool ‘ MouseButtonsSwapped ‘ get ‘ Indicates whether buttons are swapped

MousePresent returns true if a mouse is installed, and MouseButtons indicates the number of
buttons on the mouse. If a mouse is installed, the number of buttons could be reported as one, two,
three, four, or five, with two and three buttons probably being the most common on machines
currently running Windows.

The MouseButtonsSwapped property returns frue if the user has used the Mouse item on Control
Panel to swap the functionality of the left and right mouse buttons. This swapping is usually done by
left-handed users who put the mouse on the left side of the keyboard and want to use the forefinger
of the left hand to carry out the most common mouse operations.

You don't normally need to know about button swapping. However, if you want to write a computer-
based training program that includes an animation that shows mouse buttons being pressed, you
might want to delight the user by showing the mouse in the configuration that the user has selected.
(Of course, nothing prevents a user from moving the mouse to the left of the keyboard without
swapping the buttons—a technique I've used deliberately to lessen my mouse use—or swapping the
buttons and using the right hand.)

Regardless of any button swapping, the button called the left button is really the primary button. This
is the button that carries out the most common activities of selecting items, dragging icons, and
triggering actions.

The right mouse button has come to be used for invoking context menus. These are menus that
appear at the mouse cursor position and pertain to options that apply only to the area where the
mouse cursor is currently located. For example, in Internet Explorer, if the cursor is positioned over
an image and you press the right mouse button, you get several options, including one to save the
picture to a file. If the mouse isn't positioned over a picture but on some other part of the page, you
won't have an option to save the image, but you will have an option to print the page. I'll discuss how
you can create context menus in Chapter 14.

The Mouse Wheel

"Build a better mousetrap and the world will beat a fath to your door," my mother used to tell me,
unknowingly paraphrasing Ralph Waldo Emerson.®! Nowadays, it might make more sense to build a
better mouse.

The three-button mouse never achieved much popularity under Windows until Microsoft introduced
the IntelliMouse. While not exactly intelligent in the conventional sense, the IntelliMouse does include
an enhancement in the form of a little wheel between the two buttons. If you press on this wheel, it
functions as a third mouse button (referred to in programming interfaces as the middle button). But
you can also rotate the wheel with your finger, and wheel-aware programs can respond by scrolling
or zooming a document.

As gimmicky as this may sound, it turns out that the mouse wheel is habit-forming, particularly for
reading long documents or Web pages. The big advantage is that you don't need to keep the mouse
cursor positioned over the scroll bar; it can be anywhere within the document.

Once again, Systeminformation is the place to go for information about the mouse wheel:
Systeminformation Static Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ bool ‘ MouseWheelPresent ‘ get | Returns true if wheel is present

Systeminformation Static Properties (selection)

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ int ‘ MouseWheelScrollLines ‘ get | Number of lines to scroll per turn
‘ bool ‘ NativeMouseWheelSupport ‘ get | Not important to applications

The mouse wheel doesn't turn smoothly but instead has a definite notched, or clicked, feel. To
ensure that applications respond to the mouse wheel consistently, each notch (called a detent in the
.NET Framework documentation) is supposed to correspond to a certain number of text lines that the
application scrolls through the document. The MouseWheelScrollLines property indicates that
number of lines. For the Microsoft IntelliMouse, the property currently returns 3. However, future
super-duper mouse gizmos may have a finer notch, and in that case, MouseWheelScrollLines might
someday return 2 or 1.

If you think it might be interesting to add mouse wheel support to supplement the scroll bar in one of
the SysInfo programs we developed in Chapter 4, don't bother. The scroll bars created by the auto-
scroll facility respond to the mouse wheel automatically.

B or maybe not. The full quotation "If a man can write a better book, preach a better sermon, or
make a better mousetrap than his neighbor, though he builds his house in the woods the world will
make a beaten path to his door" is attributed to a lecture by Emerson but doesn't appear in his
writings. See Bartlett's Familiar Quotations, 16th ed. (Boston: Little, Brown, 1992), 430. It's also
widely acknowledged these days that this charming sentiment just ain't so. A good marketing
strategy is also necessary for the commercial success of mousetraps or any other consumer item.

The Four Basic Mouse Events

Mouse activity is communicated to a Windows Forms application in the form of events. The Control
class defines nine mouse events and nine corresponding protected methods; any class descended
from Control (including Form) also inherits these nine methods.

Although a detailed discussion of controls awaits us in Chapter 12, it's helpful to get an idea of how
the mouse works with controls. So for now, imagine a form or a dialog box covered with controls
such as buttons, text labels, text-entry fields, and so forth. These controls are considered children of
the form. Likewise, the form is known as the parent of the controls. We've already had contact with
this notion in the SysinfoPanel program in Chapter 4 when the Parent property of the Panel control
was assigned to the Form object.

Only one control receives any particular mouse event. A control receives mouse events only when it
is both enabled and visible, that is, when both the Enabled and Visible properties are set to frue.
Usually, mouse events are received only by the control directly underneath the mouse cursor.

If a child control is enabled and visible, and you pass the mouse cursor over the control, the child
control receives the mouse events rather than the parent. If the child control is either disabled or
invisible, the parent receives the mouse events. It's as if the child were transparent. If multiple
controls are stacked on the same physical point, the enabled and visible control highest in the Z-
order receives the mouse events, that is, visibly on top of all other overlapping controls. I'll explain
this concept in Chapter 12.

Any object derived or instantiated from Form receives mouse events only when the mouse is
positioned over the form's client area; the Form object does not receive mouse events when the
cursor is positioned over the form's border, caption bar, control box, minimize box, maximize box,
close box, menu, or scroll bars.

However, as you'll see, under some circumstances a control or form receives mouse events when
the mouse cursor is not positioned over the control. This feature is known as mouse capturing, and it
assists forms and controls in tracking mouse movement. I'll have much more to say on this subject
later in this chapter.

Here are the four basic mouse events:
Control Events (selection)

Event Method Delegate Argument

Control Events (selection)

‘ Event | Method ‘ Delegate | Argument

‘ MouseDown | OnMouseDown ‘ MouseEventHandler | MouseEventArgs
‘ MouseUp | OnMouseUp ‘ MouseEventHandler | MouseEventArgs
‘ MouseMove | OnMouseMove ‘ MouseEventHandler | MouseEventArgs
‘ MouseWheel | OnMouseWheel ‘ MouseEventHandler | MouseEventArgs

As the names imply, the MouseDown and MouseUp events indicate a button being pressed or
released. The MouseMove event signals mouse movement, and the MouseWheel event occurs
when the user rolls the mouse wheel.

These four events are the only events associated with objects of type MouseEventArgs. The
MouseEventArgs class has five read-only properties:

MouseEventArgs Properties

‘ Type ‘ Property ‘ Accessibility ‘ Description

‘ int ‘ X ‘ get ‘ The horizontal position of the mouse
‘ int ‘ Y ‘ get ‘ The vertical position of the mouse

‘ MouseButtons ‘ Button ‘ get ‘ The mouse button or buttons

‘ int ‘ Clicks ‘ get ‘ Returns 2 for a double-click

‘ int ‘ Delta ‘ get ‘ Mouse wheel movement

X and Y are integers that indicate the position of the mouse cursor hot spot in pixels relative to the
upper left corner of the client area. These two properties are valid for all four mouse events.

The Button property indicates the mouse button or buttons involved in the event. This property isn't
valid for MouseWheel events. The Button property is a MouseButtons enumeration value:

MouseButtons Enumeration

‘ Member | Value

| None | 0x00000000
| Left | 0x00100000
| Right | 0x00200000
| Middle | 0x00400000
| XButton | 0x00800000
| XButton2 | 0x01000000

In this enumeration, the word Left should be interpreted as the user's primary mouse button—the
button that invokes application menus and lets the user resize and move forms. The Right mouse
button is the button that invokes context menus. XButton1 and XButton2 refer to buttons in the
IntelliMouse Explorer, which has five buttons.

For MouseDown and MouseUp events, the Button property indicates the particular button being
pressed or released.

For MouseMove events, the Button property indicates which button or buttons are currently pressed.
Notice that the values are bit flags that can be combined. For example, if both the left and right
buttons are pressed, the Button property equals 0x00300000. If the MouseEventArgs object is
named mea, the following expression returns frue if the right mouse button and only the right mouse
button is pressed:

(mea.Button == MouseButtons.Right)

The following expression is frue if the right mouse button is pressed, regardless of the other mouse
buttons:

(mea.Button & MouseButtons.Right != 0)

The Clicks property is valid only for MouseDown events and is normally set to 1. The property is set
to 2 if the MouseDown event follows a previous MouseDown event quickly enough to qualify as a
double-click.

The Delta property is valid only for MouseWheel events. If you roll the wheel forward one click, the
Delta property will typically equal 120, and if you roll it back one click, the Delta property will typically
equal —120.

Doing the Wheel

Let's get the mouse wheel out of the way first so we can focus on more conventional aspects of
mouse use. In the previous paragraph, | mentioned the value 120. This is a rare instance of a
number essential to Windows Forms programming—or at least the processing of mouse wheel
events—that is not associated with a static property or an enumeration value. In the Win32 header
files, an identifier named WHEEL_DELTA is defined as 120; in Windows Forms programs that use
the mouse wheel, you'll have to hard-code this value or define your own const variable.

When you get a MouseWheel event, you calculate the number of text lines to scroll like so:

mea.Delta * SystemInformation.MouseWheelScrollLines / 120

Currently, this calculation yields either 3 or -3, but including the Systeminformation constant in the
calculation allows your program to adapt better to future mouse wheel devices that have finer wheel
gradations. Positive values indicate that the user is pushing the wheel forward; the program should
respond by scrolling toward the top of the document. Negative values mean that the user is pulling
the wheel back, and the program should scroll toward the bottom of the document.

The following program demonstrates the use of the mouse wheel by displaying (and scrolling) Edgar
Allan Poe's creepy poem "Annabel Lee."

PoePoem.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class PoePoem: Form

{

const string strAnnabellee =

"It was many and many a year ago,\n" +
" In a kingdom by the sea,\n" +
"That a maiden there lived whom you may know\n" +
n By the name of Annabel Lee;\x2014\n" +
"And this maiden she lived with no other thought\n" +
" Than to love and be loved by me.\n" +
"\n" +
"I was a child and she was a child\n" +
" In this kingdom by the sea,\n" +

"But we loved with a love that was more than love\x2014\n" +

" I and my Annabel Lee\x2014\n"

"With a love that the wingéd seraphs of Heaven\n"

" Coveted her and me.\n"

ll\nll

"And this was the reason that, long ago, \n"

" In this kingdom by the sea,\n"

"A wind blew out of a cloud, chilling\n"

" My beautiful Annabel Lee;\n"

"So that her highborn kinsmen came\n"

" And bore her away from me, \n"

"To shut her up in a sepulchre,\n"

" In this kingdom by the sea.\n"

ll\nll

"The angels, not half so happy in Heaven, \n"

" Went envying her and me\x2014\n"

"Yes! that was the reason (as all men know,\n"

" In this kingdom by the sea)\n"

"That the wind came out of the cloud by night,\n"

" Chilling and killing my Annabel Lee.\n"

ll\nll

"But our love it was stronger by far than the love\n"
" Of those who were older than we\x2014\n"

" Of many far wiser than we\x2014\n"

"And neither the angels in Heaven above\n"

" Nor the demons down under the sea\n"

"Can ever dissever my soul from the soul\n"

n Of the beautiful Annabel Lee:\x2014\n"

m\n"

"For the moon never beams, without bringing me dreams\n"
" Of the beautiful Annabel Lee;\n"

"And the stars never rise, but I feel the bright eyes\n"
n Of the beautiful Annabel Lee:\x2014\n"

"And so, all the night-tide, I lie down by the side\n"
"Of my darling\x2014my darling\x201l4my life and my bride,\n"
" In her sepulchre there by the sea\x2014\n"

" In her tomb by the sounding sea.\n"

ll\nll

" [May 1849]\n";
readonly int iTextLines = 0;
int iClientLines, iStartLine = 0;
float cyText;

public static void Main()

{

// See whether the program makes sense.

if (!SystemInformation.MouseWheelPresent)

{

MessageBox.Show ("Program needs a mouse with a mouse
wheel!",

"PoePoem", MessageBoxButtons.OK,
MessageBoxIcon.Error) ;

return;

// Otherwise go normally.

Application.Run (new PoePoem()) ;

}

public PoePoem()

{

Text = "\"Annabel Lee\" by Edgar Allan Poe";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

ResizeRedraw = true;

// Calculate the number of lines in the text.

int iIndex = 0;

while((iIndex = strAnnabellLee.IndexOf ('\n', iIndex)) != -1)
iTextLines++;
iIndex++;

// Obtain line-spacing value.

Graphics grfx = CreateGraphics();
cyText = Font.GetHeight (grfx) ;

grfx.Dispose() ;

OnResize (EventArgs.Empty) ;

}

protected override void OnResize (EventArgs ea)

base.OnResize (ea) ;

iClientLines = (int) (ClientSize.Height / cyText) ;

iStartLine = Math.Max (0,

Math.Min (iStartLine, iTextLines - iClientLines)) ;

}

protected override void OnMouseWheel (MouseEventArgs mea)
int iScroll =

mea.Delta * SystemInformation.MouseWheelScrollLines / 120;

iStartLine -= iScroll;
iStartLine = Math.Max(O0,
Math.Min(iStartLine, iTextLines - iClientLines)) ;

Invalidate () ;

}

protected override void OnPaint (PaintEventArgs pea)

Graphics grfx = pea.Graphics;
grfx.DrawString (strAnnabellee, Font, new SolidBrush (ForeColor),
0, -iStartLine * cyText) ;

}

Notice that the program checks whether a mouse wheel is installed and lets the user know if it can't
find one. I've put this check in Main, but that's not the only option in programs that shouldn't run
under certain conditions. You can alternatively override the OnLoad method of the Form class and
check at that time. The Load event occurs after the constructor code executes but before the form is
made visible on the screen. In that case, if the program determines that it shouldn't run, it can display
a message box and call Close to prevent the form from being displayed. Where you cannot abort the
display of a form is in the form's constructor. Neither Close nor the static Application.Exit method
works there.

The text of the poem includes embedded line feed characters and is stored in a string variable. The
program counts the number of lines during the form's constructor and saves the result in a field
named iTextLines. The constructor also obtains the text line spacing by calling the GetHeight method
of the form's Font property. The return value is stored in a field named cyText.

The remainder of the initialization occurs in the OnResize method. The constructor must first call
OnResize explicitly. Thereafter, OnResize is called whenever the user resizes the form. OnResize
uses cyText to calculate iClientLines, the number of lines that can fit in the client area.

The jStartLine variable is the line of text that should appear at the top of the client area. It is
initialized at zero. The OnMouseWheel method adjusts the value using the calculation | showed
earlier.

Sometimes programs that scroll text are written so that scrolling all the way to the bottom makes the
last line of text appear at the top of the client area. But it's not necessary to allow the user to scroll
quite that far. All that's required is for the last line of text to be visible at the bottom of the client area.
For this reason, both the OnMouseWheel and OnResize methods in PoePoem include a calculation
using the Math.Min and Math.Max methods. This calculation ensures that iStartLine is non-negative
and also that it's based on the amount of text that can fit in the client area. If you make the client
area tall enough to fit the entire text, the text won't scroll at all.

Mouse Movement

Let's next look at the MouseMove event. This program is called MouseWeb but it has nothing to do
with the World Wide Web; instead, it overrides the OnMouseMove method to draw a web that
connects the current mouse position with the corners and sides of the client area.

MouseWeb.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class MouseWeb: Form

{

Point ptMouse = Point.Empty;

public static void Main()

{

Application.Run (new MouseWeb()) ;

}

public MouseWeb ()
Text = "Mouse Web";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;

ResizeRedraw = true;

}

protected override void OnMouseMove (MouseEventArgs mea)

{

Graphics grfx = CreateGraphics();

DrawWeb (grfx, BackColor, ptMouse) ;
ptMouse = new Point (mea.X, mea.Y);

DrawWeb (grfx, ForeColor, ptMouse) ;

grfx.Dispose() ;

}

protected override void OnPaint (PaintEventArgs pea)

{

DrawWeb (pea.Graphics, ForeColor, ptMouse) ;

}

void DrawWeb (Graphics grfx, Color clr, Point pt)

{

int ¢cx = ClientSize.Width;
int cy = ClientSize.Height;

Pen pen = new Pen(clr);

grfx.DrawLine (pen, pt, new Point (0,
grfx.DrawLine (pen, pt, new Point (cx / 4,

grfx.DrawLine (pen, pt, new Point (cx / 2,

0));
0));
0));

grfx.DrawLine (pen, pt, new Point(3 * cx / 4, 0));

grfx.DrawLine (pen, pt, new Point (cx , 0));
grfx.DrawLine (pen, pt, new Point (cx , cy / 4));
grfx.DrawLine (pen, pt, new Point (cx , cy / 2));
grfx.DrawLine (pen, pt, new Point (cx , 3 *cy / 4));
grfx.DrawLine (pen, pt, new Point (cx , cy))

grfx.DrawLine (pen, pt, new Point(3 * cx / 4, cy))
grfx.DrawLine (pen, pt, new Point (cx / 2, cy)) ;
grfx.DrawLine (pen, pt, new Point (cx / 4, cy))
grfx.DrawLine (pen, pt, new Point (0, cy)) ;
grfx.DrawLine (pen, pt, new Point (0, cy / 4));
grfx.DrawLine (pen, pt, new Point (0, cy / 2));
grfx.DrawLine (pen, pt, new Point (0, 3 *cy / 4));

}

Move the mouse cursor within the client area, and the center of the web follows. A typical screen
looks like this:

RI=TEY

The program displays the web first during the OnPaint method using a Point structure stored as a
field and initialized to (0, 0). During the OnMouseMove method, the program erases the previous
figure by redrawing it using the background color. The program then redraws the web based on the
new mouse position using the foreground color.

Notice how the program stops responding to the mouse as soon as the mouse cursor leaves the
client area. Even if the mouse cursor is moved over the program's caption bar, the calls to
OnMouseMove stop.

Or do they? Try this: Move the mouse cursor to MouseWeb's client area. The center of the web
follows the mouse as usual. Now press one of the mouse buttons. With the button still pressed,
move the mouse cursor outside the client area. The center of the web continues to follow the cursor!
Release the mouse button. The program stops responding. This is a feature called mouse capture,
and it's an important part of the technique of tracking the mouse position.

Tracking and Capturing the Mouse

When a program needs to draw something or move something in response to mouse movement, it
uses a technique called mouse tracking. Most often, mouse tracking begins when a mouse button is

pressed and ends when the button is released. A program written for an environment not supporting
event handling would probably track the mouse by sitting in a while loop continuously monitoring the
mouse cursor position. A Windows Forms program, however, must track the mouse by responding to
events. This architecture forces the programmer to approach the exercise as if dealing with a state
machine.

Here's a fun little program that demonstrates some rudimentary mouse cursor tracking.
MouseConnect.cs

A e LR EEEEE TR

// MouseConnect.cs © 2001 by Charles Petzold

[/ e

using System;

using System.Drawing;

using System.Windows.Forms;

class MouseConnect: Form

{

const int iMaxPoints = 1000;

int iNumPoints = 0;

Point [] apoint new Point [iMaxPoints];

public static void Main()

{

Application.Run(new MouseConnect ()) ;

}

public MouseConnect ()
Text = "Mouse Connect: Press, drag quickly, release";
BackColor = SystemColors.Window;
ForeColor = SystemColors.WindowText;
ClientSize += ClientSize; // Double the client area.

}

protected override void OnMouseDown (MouseEventArgs mea)

{

if (mea.Button == MouseButtons.Left)
iNumPoints = 0;
Invalidate() ;

}

protected override void OnMouseMove (MouseEventArgs mea)
if (mea.Button == MouseButtons.Left)

apoint [iNumPoints++] = new Point (mea.X, mea.Y);

Graphics grfx = CreateGraphics() ;

grfx.DrawLine (new Pen (ForeColor), mea.X, mea.Y,

mea.X, mea.Y + 1);

grfx.Dispose() ;

}

protected override void OnMouseUp (MouseEventArgs mea)

{

if (mea.Button == MouseButtons.Left)

Invalidate () ;

}

protected override void OnPaint (PaintEventArgs pea)

{

Graphics grfx = pea.Graphics;

Pen pen = new Pen(ForeColor) ;
for (int 1 = 0 ; 1 < iNumPoints - 1; i++)
for (int j = 1 + 1; j < iNumPoints; j++)
grfx.DrawLine (pen, apoint[i], apoint[j]);

}

To use this program, you press the left mouse button anywhere in the client area, move the mouse
cursor quickly around, and then release the button. For every OnMouseMove call the program gets,
it stores the X and Y properties of the MouseEventArgs object and draws a tiny mark at that point.

When you release the button, the OnMouseUp method invalidates the client area. OnPaint responds
by connecting every point to every other point, sometimes creating a big blob and sometimes making
an interesting pattern:

_E.'-I-::-II\-!' Connescl: Press, drag quickly, release - Iu]!l

As you can see, as | whipped the mouse cursor around, | twice drifted outside the client area. The
program didn't seem to mind. It connected all the lines, even those with points outside the client
area. The lines are clipped to the client area, but all the points are still correctly stored. If you create

such an image and make the client area a bit taller, you'll see the bottom of the figure. You can even
release the mouse button outside of MouseConnect's client area and the program will work normally.

This is probably what you want to happen: the user is signaling a desire to work with MouseConnect
by pressing the mouse button within its client area, and this activity should end only when the user
releases the mouse button—regardless of where the mouse cursor is or has been.

Whenever you press any mouse button on a control or in a form's client area, the control or form
captures the mouse and forces each subsequent mouse event to be sent to itself. The capture ends
when the user releases the mouse button. Mouse capture capability is virtually a prerequisite for
tracking the mouse, and it is automatically provided for you. A bool property of the Control class
indicates when the mouse is captured:

Control properties (selection)

‘ Type ‘ Property | Accessibility

‘ bool ‘ Capture | get/set

Although this property is writable, you can't arbitrarily set it. In particular, you can't force a mouse
capture when a mouse button isn't pressed. However, you can cancel mouse capture at any time by
setting the property to false. (I'll do that later in this chapter.) The property is also useful for
informational purposes. The property is true during both the MouseDown event that begins mouse
capture and MouseMove events when the mouse is captured, and false during the MouseUp event
that releases mouse capture. The mouse isn't automatically captured on the second click of a
double-click.

Adventures in Tracking

Generally, it's fairly easy to write some mouse-tracking code that works 99.5 percent of the time.
This program is quite similar in structure to MouseConnect but it does something much more
conventional, which is letting you drag the mouse to draw a rectangle.

BlockOut.cs

using System;
using System.Drawing;

using System.Windows.Forms;

class BlockOut: Form

{
bool bBlocking, bValidBox;
Point ptBeg, ptEnd;

Rectangle rectBox;

public static void Main()

{

Application.Run(new BlockOut ()) ;

}

public BlockOut ()

{
Text = "Blockout Rectangle with Mouse";
BackColor = SystemColors.Window;

ForeColor = SystemColors.WindowText;

}

protected override void OnMouseDown (MouseEventArgs mea)

{

if (mea.Button == MouseButtons.Left)

{

ptBeg = ptEnd = new Point (mea.X, mea.Y);

Graphics grfx = CreateGraphics() ;
grfx.DrawRectangle (new Pen (ForeColor), Rect (ptBeg, ptEnd)) ;

grfx.Dispose() ;

bBlocking = true;

}

protected override void OnMouseMove (MouseEventArgs mea)
{
if (bBlocking)
{
Graphics grfx = CreateGraphics() ;
grfx.DrawRectangle (new Pen (BackColor), Rect (ptBeg, ptEnd)) ;
ptEnd = new Point(mea.X, mea.Y);
grfx.DrawRectangle (new Pen (ForeColor), Rect (ptBeg, ptEnd)) ;
grfx.Dispose() ;

Invalidate () ;

}

protected override void OnMouseUp (MouseEventArgs mea)

{

if (bBlocking && mea.Button == MouseButtons.Left)
Graphics grfx = CreateGraphics() ;
rectBox = Rect (ptBeg, new Point(mea.X, mea.Y));
grfx.DrawRectangle (new Pen (ForeColor), rectBox) ;

grfx.Dispose () ;

bBlocking = false;
bvalidBox = true;

Invalidat