M corom included Bradley L. Jones

#I—.-
e
e

»

’eacﬁ Yourseli

the C# Language

I SAMS in 2 1 Days

Bradley L. Jones

ﬁﬁ\uursmf
the G#
Language

in 21 Days

8 ast 96th St., Indianapolis, Indiana, 46240 USA

Sams Teach Yourself the C# Language
in 21 Days
Copyright © 2004 by Bradley L. Jones

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32546-2

Library of Congress Catalog Card Number: 2003092624

Printed in the United States of America

First Printing: July 2003

06 05 04 03 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-428-3341
international @ pearsontechgroup.com

ASSOCIATE PUBLISHER
Michael Stephens

Executive EDITOR
Candace Hall

DEVELOPMENT EDITOR
Mark Renfrow

MANAGING EDITOR
Charlotte Clapp

PRrOJECT EDITOR
Matthew Purcell

Cory EDITOR
Krista Hansing

INDEXER
Mandie Frank

PROOFREADER
Paula Lowell

TecHNICAL EDITOR
Anand Narayanaswamy

TeAM COORDINATOR
Cindy Teeters

INTERIOR DESIGNER
Gary Adair
CoVER DESIGNER

Alan Clements

PAGE LAYouT
Michelle Mitchell

Contents at a Glance

Introduction

Week 1 Week at a Glance

DAy 1

Type & Run 1
2

3

4

Type & Run 2
5

6

7

Getting Started with C#

Understanding C# Programs
Manipulating Values in Your Programs

Controlling Your Program’s Flow

The Core of C# Programming: Classes
Packaging Functionality: Class Methods and Member Functions

Storing More Complex Stuff: Structures, Enumerators, and Arrays

Week 1 Week in Review

Week 2 Week at a Glance

DAy 8

9

Type & Run 3
10

11

12

13

14

Advanced Method Access

Handling Problems in Your Programs: Exceptions and Errors

Reusing Existing Code with Inheritance

Formatting and Retrieving Information

Tapping into OOP: Interfaces

Making Your Programs React with Delegates, Events, and Indexers

Making Operators Do Your Bidding: Overloading

Week 2 Week in Review

Week 3 Week at a Glance

DAy 15

16

17

Tvpe & Run 4
18

Using Existing Routines from the .NET Base Classes
Creating Windows Forms

Creating Windows Applications

Working with Databases: ADO.NET

37
41
83
117
145
153
179
211

245

269
271
303
347
357
395
429
449
473

499

519
521
553
591
631
643

19 Creating Remote Procedures (Web Services)
TypeE & Run 5

20 Creating Web Applications

21 A Day for Reflection and Attributes

Week 3 Week in Review

Appendices
AppenDix A C# Keywords
B Command-Line Compiler Flags for Microsoft’s Visual C# .NET
C Understanding Number Systems
D Installing and Using SharpDevelop

Index

On CD-ROM

Answers

661
677
687
705

733

721
723
735
741
745
751

Table

of Contents

Introduction 1
Week 1 At a Glance 5
CHAPTER 1 Getting Started with C# 7
WHRAL IS CH? oottt 7
Preparing to Programcccc........ .8
The Program-Development Cycleccocoviiiiiiiiiiniinininiiiiiicciciccce 9
Creating the Source Codeocoivireiririeiinieiiceenc e 9
Understanding the Execution of a C# Programcccccoeceveneenccincneene. 11
Compiling C# Source Code to Intermediate Languagecccecoeveernennnne. 13
Completing the Development CYClec.coccoeviririnineiinciiincieceeceeeenens 14
Creating Your First C# Programcccccveoininiinieniincineeeseccseeeeeeeenene 16
Entering and Compiling Hello.cs ... 17
Types of C# PrOZramscccoeoiviiieinieiniiieenieieenee ettt 21
Creating Your First Window Applicationcccccveeieveneinienniencinenecnecenene 21
WY CH? oottt 25
C# IS ObJeCt-Orientedc.coveuirueiiriiieiirieieieriee ettt 26
CH IS MOdUIArocoiiiiiiiiiiicc e 26
C# WIIL Be POPUIAT ..ottt 26
A High-Level View Of .INETccoiiiiiiiiieieieeeeeeeeteeeeee e 27
C# and Object-Oriented Programming (OOP)cccccceviinininiinciicicnccnne 28
Object-Oriented Concepts .
Objects and CLaSSEScc.ccvvueieuirueiriiieiereeieientee ettt ettt st
SUIMMATY .ottt saesbe b
QEA ettt
WOTKSROD ettt sttt
QUIZ oottt et ettt ettt et b e e e b e et eera e etaeeaeeeteebeebeenreenaas
EXEICISES vttt ettt ettt
Type & Run 1 Numbering Your Listings 37
The First Type & RUN ..oouoiiiiiiiiiiiie e 38
CHAPTER 2 Understanding C# Programs a1

Dissecting a C# Application ...

Starting With COMMENLScc.ccerviiriirieiriiieeriet ettt 43
Basic Parts of @ C# APPLiCAtioncccoeciruinieiniiiniinicircieenee e 48
Formatting with WRItESPACEcc.cevueiiuiniiiiniiiiiiciricecece e 48

The Heart of C#: KeyWOIrdscc.ccovueiiiniiiniiiiinieiniciecneeneceeseee e 49

Vi Sams Teach Yourself the C# Language in 21 Days

LItETalS ..cuviiiiiiiiieiieieict et 50
TAENLITIETS .eiiiniiiiccee et 50
Exploring the Structure of a C# Application

Understanding C# Expressions and Statementsccecevvevvererererienenenns
The EMpPty StatemeNtccceevierieriieiienieniiesieesieeieeie ettt et st
Analyzing LiSting 2.1 ..cccoioiiiniiiiiieiicre ettt st
Lines 1—4: COMMENLScceerverrerierierierieeiieieietertestesseeteeseeseeneesessessessessessessenns
Lines 5, 7, 13, 17, 21, and 23: Whitespace .. .51
Line 6—The using StatemMENtc.ccovieveiieirieeireeeeieeeereeeeree e ereeeeree e 51
Line 8—Class Declarationceceeceeierienienienieniesieiieeeeeteiessesee e sseseeseeens 51
Lines 9, 11, 26, and 27: Punctuation Charactersc.ccecevuerererererenenns 51
LiNe 10: MAIN () cooerieereeeeeee ettt eeee ettt er e et e et eaeeeaeeeenreeeneeereeeeaneas 52
Lines 14—16: DecClarationscceceeceeeerienienienieniesieeteeseeeetesessessesieseeseessenns 52
Line 20: The Assignment Statementcccccecevveeruerieeneereneeeneeeeneeenees 52
Lines 24-25: Calling FUNCtionsc.cccceecereeiminieiinenieeneenceeeneeeeieneenenee 52
Storing Information with Variables52
Storing Information in Variablesccccecvevniniineincneineneeecneeenene 52
Naming YOur VariabIesccccoecevereririeienieienieniesieeteeieeneetete e seesieseeseesseens 53
USING YOUT VATiabIES ...c.coeeieieieieieniisieeiteieteiete ettt ettt 55
Declaring @ Variablecccooeveverinieieieieieeesieeeet ettt

Assigning Values to Your Variables

Issues with Uninitialized Variables

Understanding Your Computer’s MEmOTYccccvereerenineneenenieeneenieneenenees 58
Introducing the C# Data TYPEScoeirieririnreirieirieetreteeee et 59
Numeric Variable TYPESc..cceeeeririeinieiiieenetrteeeneeteesee sttt 60
The Integral Data TYPEScccceirveirueiiriinieirieieeretrtcte ettt 62
Working with Floating-Point Valuescccccecevecninininccincnecncinceeee 69
Gaining Precision with Decimalcccoccovineiininiiniicencneececnne 70
Storing Boolean Valuescccoccvireieneninenieiniciecnccneceeeseeeeeeee e 70
Working Checked Versus Unchecked Codec..cccveevrenecencnincncincnenene. 71
Data Types Simpler Than .NETc..ccocoiiiininiiiniiencncecneeeeceees 72
Literals Versus Variablescccocoeoireiininieineninineeneeeneesieeeieseeesseneeenees 74
Working with Numeric Literalsc.ccccoecvernineininnineincnccnccecneeeee 74
Working with Boolean Literals (true and false) ..
Understanding String LiteralScccceceevierieriereninieieieieiesiesie e sieseeeeeene
Creating CONSLANESc.eeieierierierierieriesieereestetetestessessesseeseeseeseensensessessessessessessenns 76
A Peek at Reference TYPESccevereririeieieieieieeste sttt 76

QUIZ oottt ettt et et e et e e e bee e bb e e sbeeebeeetbeennbaeens 79

Contents vii
CHAPTER 3 Manipulating Values in Your Programs 83
Displaying Basic Informationcccceceeveeievieiininenenenencnteeeeeseneneseeeeneen 84
Displaying Additional Informationccccecevevininininiieiieienencnenenenee 85
Manipulating Variable Values with OPeratorsc..coccecevereeeenecnenenenenencenens 87

CHAPTER 4

Unary Operator Types
Binary Operator Types
Ternary Operator Types ...
Understanding Punctuators

Moving Values with the Assignment OPeratorc..ceceeveveeeeeereerenenenenennens 89
Working with Mathematical/Arithmetic Operatorsc..ceceeeeevuerenenenenencenens 90
Adding and SUDITACHNEcceevverierieriririieteieteeteeteereete ettt st 90
Doing Multiplicative Operationsc.ccoeeeerueruenrereeeneeeeiessenenesenenenenne 91
Working with the Compound Arithmetic Assignment Operators 93
Doing Unary Mathccccceoiiiininininineeicceeeeeeeteeeeteee et 93
Making Comparisons with Relational Operatorsc..cecceceeveevvenenenenencncenens 96
Using the if Statement
Conditional Logical Operators
Understanding Logical Bitwise Operatorsccccecceveeerievienieneneneneneneeeens 102
Understanding the Type OPeratorscccceceveevverrenerenereeieienreneneneseneeseens 102
Using the sizeof OPEIatorc..ccccecevirieernieienienienienteeteeieeeetereseesee e e sieeseene 102
Shortcutting with the Conditional Operatorc..cocceceeveeveerienenenrenenenennenn 102
Understanding Operator Precedenceccocevevereneninieienieneneneneneneenene 104
Changing Precedence Order
Converting Data TYPES ccuevuirerireriinineeteeetererer ettt
Understanding Operator Promotionccccceeeveneneninienienieneneneneneseeneene 107
Bonus Material: For Those Brave Enoughc..ccccocviiiiiiinininininnce 107
Storing Variables in MEMOTYcoceevieieviinenenenenenteeeteeeneeneeseeereeeeieeaee 108
Understanding the Shift Operatorsccccoceverererreeeeieneneneneneeeeeeeeen 109
Manipulating Bits with Logical Operatorsc..ccccecceveevveruerieneneneneneenenn 110
Flipping Bits with the Logical NOT Operatorc..cccccceeevverenenenerennnne 113
SUIMMATY .ottt b e bbb bbb eee 114

QUIZ ottt ettt et et e e e et e e e aa e e ar e e e reeennaeeeareas 115
EXEICISES ..veuvinvitiiiniieiieiietetesteete ettt ettt 115
Controlling Your Program’s Flow 117

Controlling Program Flow
Using Selection Statements

REVISTHNG 1 1.vetitietieiieieieetese ettt sttt ettt et eb e ene
Discovering the switch Statementcccoecvivieierierinenieicneneeneeneneenens 123

viii

Sams Teach Yourself the C# Language in 21 Days

TypPE & RuN 2

CHAPTER 5

Using [teration StatemMENLSceeeereereeriierieriieeientesieenieesieeseeesieeseesresaesarenne 128
Executing Code with the while Statementc.cceceeceevievienienieneneneneennn. 128
Working with the do Statementcccceveereevieriieriienienieneeneeeee e 132
Counting and More with the for Statementccocevveevieveenennennenniennen. 134
The foreach StAEMENLtcccceeririiiiiiieienieneeeeeeeee e
Revisiting break and continue ...

Reviewing gotocccceeveevveneeniceniennne.

Exploring Labeled Statements

NESUNZ FIOW ..ttt

SUMIMATY ©eontieiieiieeieeterte ettt sttt e bt et et e b st e satesatesaeenbaenaeenees

QEA ettt

WOTKSROD ettt st s
QUIZ ittt ettt et et e et e e bt e eabeeenbae e bt e enbeeenreas
EXEICISES ..uvvereniiuiteiietetetietetrt ettt sttt ettt ettt st ene e

Guess the Number! 145

The Guess TYPe & RUNcoiiiiiiiiniiieceeee et 146

The WinGuess Type & RUNcccoeviiiiiiiiiiiiiiincceeeeccseseseseeene 148

The Core of C# Programming: Classes 153

Digging into Object-Oriented Programmingccccoecevvieveinenneenensieniiennene 154
Encapsulationccccooiiiiiiiiiiinieeteeee et 154
INhEritancecccoiiiiiiiiiiiii e 155
POlymOrphiSImc..coviiiiiiiiiiiiieeeteee et 155
REUSE oottt sttt 156
ODbjects and CIASSES ...ceevververvireiriieiieieieiestesteste et eteeeeeetesaessessessessesseeneeneas 156

Defining a Class

DeClaring CLaSSESeeveeueeuieieierierierieeieeitetetetestesteste st eseeseentessebesaessessesseeseeneens 157
The Members of @ Classccoeeiviviiiiininiiiiiicccee 158

Working with Data Members, a.k.a. Fieldsc..cccocoeiniiininiininncnencnene 159
Accessing Data MEmDETScc.coucirieirinieinieiniecneeeenee et 159
UsSing Data MEMDETScc.evueviieiiriirieeieieieriesie ettt te et b s s eneens 161
Using Classes as Data Memberscccccceoevininininiiniiiiiciccnceceeee 163
Working with Nested Types

Using Static Variablescccocoviririreinineineeniceentee et

Inspecting the Application Class

Creating ProPertiesc.coccveriiinieiiniineenet ettt

A First Look at NamESPACESc.coveeveuerueriruinreiinieiiniiieienieeteieneeesaeeereseesesaeeenens 172

Nested NAMESPACES ...veeverieriiriieeiieniieniterieeie ettt sttt sbe e e 174

Contents

iX

CHAPTER 6

CHAPTER 7

SUMIMATY 1ottt sttt sb et et et st e eatesasesaeesbeenaeenees 175
QEA ettt bbbt bt a ettt b e b bt ene e enes 175
WOTKSROD ettt st 175
QUIZ oottt ettt et et ettt e et aa e ae e aeeebeeereebeebeebeenaaan 176
EXEICISES uveuvintitietieuieiieiiete ettt ettt ettt ettt sttt et s et e e et e b e et ebeeneeneenes 176

Packaging Functionality: Class Methods and Member Functions 179

Getting Started with Methodscoceeiiiiiiiiiinincecee e 180

USING MEthOAS ...cuviiiiiiiiiiciiceeee e 180

Understanding Program Flow with Methodc..cccoceiiiiiiiiininnncneeee 183

Exploring the Format of a Methodcccoceiiiininininiiiccccceee 183
The Method Header ..o 184
Returning Data from a Methodcccoeiiiininininiccccecee 184
Naming Methodsc..ceceeueee
Building the Method Body

Passing Values to Methodsc..coceveririiiriiieiieneneeieeeteeeese e
Working with Static Methodsc.cceceeiiverininininnieeeeeeeeeen 192
Access Attributes for Parameters ..o 192

Types of Class MEthOdscccveriririniiiiieicieeseeeeeeeeeee e 198
Property Accessor Methodscocoeeeieiiriinenenininieeeeeeeeee e 198
Constructorscccceeeevueeeenene.
Destructors/Finalizers

SUIMMATY ettt et b et ettt b e bbb ene

QLA et

WOTKSROD e
QUIZ ettt e et e et e e et e e et e e eaaeeeaaeas
EXETCISES ...uvuiiiiiiiiciiei et

Storing More Complex Stuff: Structures,

Enumerators, and Arrays 211

Working With StrUCIUIEScccuiriirieiieiieieeie ettt 212
Understanding the Difference Between Structures and Classes 212
Structure MEMDETScc.couiviiiiiriiiiiiiiciciceieeece e 213
NESUNZ SIUCIUIES .eeevviiniiiiieeieeiie ettt ettt sbeesbeeee e

Structure MethodSoooviieiiieiiiece e
Structure Constructors

Structure Destructors
Clarifying with ENUMETatorsc.cccvivieiirieiniinieinicieicneee e 220
Changing the Default Value of Enumeratorsccoccceveonencinenncnnencnn 223
Changing the Underlying Type of an Enumeratorc..cccocceevncnininnennn 225

Sams Teach Yourself the C# Language in 21 Days

Using Arrays to Store Dataccceeoieveiniiiiiiieiiecieseseesee et 228
CTEALING ATTAYS wuvveruieteetiettente et et et et e et eit e st e sttesteesbeesaee bt esbeenbeenbeenseennes 229
Working with Multidimensional ATTaysc..cccceeeieieiieiiinienineneeeeeee 234
Creating an Array Containing Different-Size Arraysccccceevevenccinicnnene 235
Checking Array Lengths and Bounds ..o 236
Using Arrays in Classes and Structures e 238
Using the foreach Statementcoceeviereeniienieeiieeienie et 239

SUMMATY .ottt 240
QELA ettt b bbbt a ettt be b heeae et nes 241
WOTKSROD ettt st 242
QUIZ ettt et e et e e e bt e e ab e e et e e eateenbeeenreas 242
EXEICISES vttt ettt 242
WEeek 1 Week In Review 245
The WRO1.¢S Programc..ccccoeviriniiiiiiieieieicnceeeeeeereeercseesee e 246
The XML DOCUMENTAIONveevvieiieeiieriiesiieieeieeie et eee st sete s eeeee e 255
The Code at 50,000 FEELeevuiriieieriieeiieieeeeece et 257
Dissecting the Main Methodccccocevieiiiiiinininiininiciciccceceeeeee 257
The GetMenuChoice MethOdccccevieriiriiiiiieiieie e 258
The Main Menu Options
The Point StIUCIUIEveeiieeerieee et eere e et e e eeeareee s
THE 13N CIASS .eeeuvieiieeiiieieeiie ettt ettt ettt e bt et e e enees
The Other CLaSSES ..c.vvevieiirieeieeieeie ettt ettt et seteseee st e saeenseeeeeneeas
WEeek 2 Week At a Glance 261

CHAPTER 8 Advanced Method Access

Overloading Methodsccoeoiririeiniiniiencicece e
Overloading FUNCHONScoeiiiiiiiiiiinicieceerce e
Overloading CONSIIUCIOLSc.evueuiriirieuerieiieienieieneeteieseeie ettt neene
Understanding Method SIignaturesccoeeeirieenienineneineieeneeeeenenens

Using a Variable Number of Parametersc..cccocoeevivieoiniineinenecneineenens
Using params with Multiple Data Types

Taking a More Detailed Look at params

Working with the Main Method and Command-Line Arguments 277
Understanding SCOPEc.ccveuirveuiriiiiuinieiiniiieieeeet ettt 279
Working with Local SCOPE ccueuiriiiiiiieiiriciiicreeeee e 279
Differentiating Class Variables from Local Variablescccccoeevnennnne 282
Moditying Class Scope with MOdIfierscccoceeeereriieneinciieeneireenens 282
Creating Classes With NO ObBJECESc..ceoveirieiriiniiiriciecreeeceeeee e 283

Using Private CONSIIUCLOLSccueuirueuiriirieiinieiniiieeenteteieneeie et seeaesaeneenens 284

CHAPTER 9

Contents Xi
Revisiting NaAMESPACES ...ccvveruiiriieiiieieeie ettt sttt ettt sre e s 286
Naming @ NaMESPACEcc.eevveeiirieriiiniieniienieeiteeie ettt 286
Declaring @ NameSPaACE ...cccveevverierieriieniieieeieeieeie ettt 286
using and NAMESPACES .eccveevverieriiirieiienitesiiesite st et et et eeeste et seneseesenene 288
SUMIMATY oottt sttt sb et e bttt sat e et st e saeesbeenaeenes 290
QEA et 291
WOTKSROD ettt et 291

QUIZ e 292
EXEICISES ...vviuiiiiiiiiiiiiiiciccc e 292
Handling Problems in Your Programs: Exceptions and Errors 295
Understanding the Concept of Handling Problemsccccceoevenncncnnnnns 296
Preventing Errors via Logical Codecccoeverereniniiieicicneneeceeeeee 296
What Causes Exceptions?

Exception HANAINGooueiviiiiiiiinininneeceest e
USINg try and CatCh ..ooociiiiiiiiieeeeeet e
Catching Exception Informationcccceceeenieneninicnicncncnenenesceceeeee 300
Using Multiple catches for a Single try ...c.ccvveveniriinineneneneeceeeee 302
Understanding the Order of Handling EXceptionsccccceceveveninineennene. 303

Adding Finality With finally ..c.ccccovmeeienmieeineeeeneeeseeeenesenseeseeseeneneees 304

CommoOn EXCEPLONSeoueeuiiiiiiiiniinienieeitet ettt 310

Defining Your Own EXception ClasSesccceovererereninieieienienienenieneseeneens 312

Throwing Your Own EXCEPHONS ...cc.eeueruiriiieiiiiniiniinieeieeieeeeteteseesie e 314
Rethrowing an EXCEPHONcceviririiiiiiicienienieieece e 317

Using checked Versus unchecked Statementscoceeeeeeeeierienienerenieneeeens 318
Formats for checked and uncheckedccccoiveiiciiiiniiniciecneeeeeenne 320

What IS DebUZZING? ..eviiiiiiiiieieiee e 320

Understanding the Types Of EITOrscccevieviiiininininieieieiecneneneseeeeene 321

FINAING EITOTS .ottt
Encountering Syntax Errors

Encountering Runtime Errors

Tracing Code with Code Walkthroughscccccovevenininieiieiicincncncneeeee 322

Working with Preprocessor DIr€CtiVescceverereninirieieienicneneneneeeenene 322
Preprocessing Declarationsceceeveeverierenenenenieieeeeeereeeeie e 323
Conditional Processing (#if, #elif, #else, #eNdif) ..ccccoccvvemerienenrenenennne 328
Reporting Errors and Warning in Your Code (#error, #warning) 328
Changing Line Numbers
A Brief Look at Regions

USING DEDUZZETS ..ttt

SUIMMATY oottt ettt ettt ettt b e bbb

Xii

Sams Teach Yourself the C# Language in 21 Days

TypPE & RuN 3

CHAPTER 10

CHAPTER 11

WOTKSROD ettt st 335
QUIZ i 335
EXEICISES ..uvviteniiiiieiietet ettt ettt sttt ettt sttt 336

Lines and Circles and Squares, “Oh My!” 339

Reusing Existing Code with Inheritance 349

Understanding the Basics of INheritancec..cccocevevvieiininecneneineinceene
Delving into Simple Inheritanceccoovivivinviiiiiiiiiniiineeceeee,
Inheritance in ACHONcccceviiiiiiiiiiiicieteeeee e
Using Base Methods in Inherited Methods ...

Exploring Polymorphism and Inherited Classesccccceeveviininininininienns 359

Working with Virtual Methodsc.ocoviiiiiiiiiiniiiiiicccs 362

Working with Abstract CLassescccoceeieviiiiiiiiniininiinieiciciecese e 365

SEAING CLASSES uveeuveriiiiieiiiestierte ettt sttt ettt ettt saeesbeesae e 368

The Ultimate Base Class: ODJECT ..covveieeeiiuiieeeeiiiie e et eeevee e eerveeeeeanes 370
A Look at the Object Class MethodScccc.ceevvviiiiieiiieeeeiiieeeeeeeeee e 370
Boxing and UnboXingc..cccceviviiiiiiiiiiiiiiniiicniicceeeeeeeeee e 371

Using the is and as Keywords with Classes—Class Conversions 373
Using the is Keyword
Using the as Keyword

Working with Arrays of Different Object TYPEScccecveieierierienierienereneeeeneane 376

SUMIMATY 1ottt sttt sb et e et et st eate st e saeesbeenaeenes 381

QELA s 382

WOTKSROD i 383
QUIZ ot 383
Exercises ...

Formatting Formatting and Retrieving Information 387

Understanding Console Input and OULPULcceveverinirieieiieicneneneneeeeene 388

Formatting Informationc..coccoeveririiieieieieeseeeeeeeee e 388
Formatting NUMDETScc.eviriririniiieicietenesiesi et 391
Formatting Date and Time Valuesccccocevereneninieriinieniceseeceeeeee 398
Displaying Values from Enumerationsc.cceceeeeeeieienieneneneneneeeenene 402

Working More Closely With StriNgscccceveeviiveninininieieieieeneresie e 403
String MeEthOdScoveeuiiiiiiiiiiie e 405
The Special String FOrmatter—=@ccoeveveneneneniniiicieenceceeeeeee 406
Building StrinZS ..ee.eeeeeieiiieieeeeeee e 407

Getting Information from the Consolec..cccvvvirerinieiieninineneneeeeeee 410
Using the Read Methodcoooiiiriiiiiiicieee e 410
Using the ReadLine Methodc.ccoceeiiiiiiiiiininininieeeeeeeee e 412

Using the Convert Classcccvererieieieieeesesi e 413
SUIMMATY oottt ettt sttt b ettt et b e bbb eae 417

Contents xiii
QELA s 417
WOTKSROD ettt st 418
QUIZ ottt ettt et e e b e e bt e e ab e e e b e e eateenaeeenaeas 418
EXEICISES ..vviniiiiiieiieiicet et 418
CHAPTER 12 Tapping into OOP: Interfaces 421
Interfaces: A First LOOKc.ccooiiiiiiiiiiiiiicicerccccecee e 422
Classes Versus INterfacescccccooiveiiiiiiiiiiincniiceceeeeeeceeeeeee 422
USING INTETTACES ...veuviiiiiiiieiicieter ettt 423
Why Use INterfaces?cocoveriririiieiiienierieseses e 423
Defining INterfacescccveieiiirininiriieeeee e 424
Defining an Interface with Method Membersc..ccceovevvevevenineneneennes 424
Specitying Properties in Interfacesccccoevvereriiiiiinicnininenineneeeee 428
Using Multiple Interfaces
Using Explicit Interface Members
Deriving New Interfaces from EXisting Onescc.coceeeeieieviencncnicneneneenens 435
Hiding Interface MEmDETSccccoeririiririiiiiiiiienceeecee e 435
SUIMMATY oottt b et ettt be s bbb
QLA ettt
WOTKSIOD et
Quiz
Exercises
CHAPTER 13 Making Your Programs React with Delegates, Events,

and Indexers

USING an INAEXET ..oouveiiiiiiiiiiieeiieteteee ettt st
Exploring Delegates

Creating Events
Understanding an Event’s Delegateccoooviviiiiiiiininininiiiiicnene 451
Deriving from the EventArgs Classcccoeovireineinieneincieeneceeeienens 451
Working with the Event Class Codecccovivininininiiiiiiiiciceceeeeee,
Creating Event HandIersccccooiiiiiiiiiiiieieeceeeeeceeeeee e
Associating Events and Event Handlers ...,
Pulling It Al TOZEhET ..c..ooiiiiiiieiieeeee e
Multiple Event Handlers (Multicasting)

QUIZ ettt st e b et e eane s

Xiv

Sams Teach Yourself the C# Language in 21 Days

CHAPTER 14 Making Operators Do Your Bidding: Overloading 465
Overloading Functions Revisitedcccccoevirininininnieiecccnceeeeeeee 466
OVerloading OPETators cccoeeererierieieieientertertest et ettt 466
Creating Overloaded OPEratorsccccoeeerererereeieienieneneneneereeeeeenees 470
Overloading the Basic Binary Mathematical Operatorsc.ccccceveevenenne. 471
Overloading the Basic Unary Mathematical Operatorsc..c.ccceeevevennenne. 474
Overloading the Relational and Logical Operators
Overloading the Logical Operatorscccceceeverereeieienieneneneneseneeeenees
Summarizing the Operators to Overloadc.coceveevievicnininenininenceeees
SUMMATY ettt ettt ettt b e eee
QELA et
WOTKSROD ettt
QUIZ ottt e e et e et e et e e e aeeeeaaeeeaaeas
EXETCISES ...uvuiiiiiicicieeteee e
WEeek 2 Week In Review 491
Week 3 Week At a Glance 505
A Caution 0N WEEK 3 ..ottt 506
CHAPTER 15 Using Existing Routines from the .NET Base Classes 507
Classes in the .NET Framework ..., 508
The Common Language SpecifiCationc..c.ccocevevveeieienieniencneneeeeeenenn 508
Namespace Organization Of TYPESc..ccccveririrerieieieiiieeneeeeeeeeeeenne 509
Using the ECMA Standardsccoeceeiiiieniinininininieieecceeeeee e 509
Checking Out the Framework Classesc.coceververvievieniencnenenineneeeenee 510
Working with @ TIMET ...coceeiiiiniiiiniiiietcccee e 510
Getting Directory and System Environment Informationc..cccoceeveeininenne 513
Working with Math ROULINES cc.oouiiiiiiiiiiiiiiiiicccccc e 516
Working with FIIEescooiiiiiiiiiicccccec e 519
Copying @ FIle .c.ooiiiiiiiiii e 520
Getting File Informationcocceeeevieiiiiininininineeicccccseeeeeeeeen 524
Working with Simple Data Filesccccooeviiiiiiininininiiiiiiiccicneeeeeee 526
Understanding StrEamScoeeerereeieienienienenenceeeteeeteteresre e 526
Understanding the Order for Reading Filesc..cccocooieviiiiininininnennn 526
Creating and Opening Filesccccoceviiiiiininiiniiniinicicicccseeeeeee 527
Working with Other File TYPescccccecevininininininieieicccceeeeeeene 535
SUMMATY vttt b et 535
QELA e
Workshop
Quiz

Contents

XV

CHAPTER 16

CHAPTER 17

Creating Windows Forms 539
Working with Windows and FOrmScccceceeviivinininininieicicccscneneseeee 540
Creating Windows FOImMSccccoiviiiiiiiiicicee e 540
Compiling OPLIONS ..couviiiiiriiniieiieiieieeeteese ettt 540
Analyzing Your First Windows Form Applicationcccecceveneneneneennene. 542
Understanding the Application.Run Methodccccoceeieiiiiiiininininie 543
Customizing a Formccccoceviiiiininnnncnne
Customizing the Caption Bar on a Form
SIZING @ FOTM c.eiiiiiiiiice e
Changing the Colors and Background of a Formc..cccocevinniiininnne. 550
Changing the Form’s Borderscccceoevenieniininiiniiciciccneneneececeeeen 554
Adding Controls t0 @ FOTM ..c..coeviririiiiiiiiiiiiieneneeeeeeeeese e 556
Working with Labels and Text Displayccccooevevenierininenenenieeeeeee 557
A Suggested Approach for Using Controlsc..cecceveevvevienienincncneneenne 561
Working with BULtONS ...c..ooviviiiiiiiiiiciccei e
Working with Text Boxes
Working with Other Controls
SUMMATY ettt ettt ettt b e b eee
QEA e
WOTKSIOD e s
QUIZ ettt et e e e et e et e e s e e e aeeeeaaeeeaneas
EXETCISES ...uvviiiiiiiiicicetcec e
Creating Windows Applications 577
Working with Radio BULtONSc.cc.ccveiriiiiiiiiiciicicccceeeecee e 578
Grouping Radio BULtONScccoeiriiniiiniiiiiiciceceecce e 578
Working With CONAINETSc.couevieuirieiiiiiieiinieiete ettt 582
Working With LiSt BOXES ...c.ccevieiriiiiinieiniieienictnieeentet et 586
Adding Items t0 the LIStc.ccviiiiinieiiiieincieicrcece e 587
Adding Menus to YOUr FOIMScceciviiininiiiniciniiecnicieicnee e 591
Creating a Basic Menu
Creating Multiple Menus
Using Checked MENUSccvuevieiirieiiniiieiinieinieeestee ettt
Creating a Pop-Up Menu
Displaying Pop-Up Dialog Boxes and FOrmscccccoeoiveneiininiicneincninnene 604
Working with the MessageBox Classcccoeevineienieineneincieeneceeeienens 604
Using Pre-existing Microsoft Windows Dialog BoXesc.cccccccvecincnienne 607
Popping Up Your Own Dialog Box
SUIMMATY .ottt
QEA ettt e
WOTKSROD ettt st
QUIZ oottt ettt ettt e et e e e e aa e ae e eae e beeebeenbeebeereenaaas

XVi

Sams Teach Yourself the C# Language in 21 Days

TyrPE & Run 4

CHAPTER 18

CHAPTER 19

TyrPE & Run 5

CHAPTER 20

Tic Tac Toe 617
The Tic Tac Toe COAEccoiuiiiiiiiiiiiiieice e 618
Working with Data and Databases 629
Understanding Key Database CONCEPLSccecevveiruinieerieirenieinieieereeeeieeenens 630
Understanding the Terminology
Introducing ADO.INET oiiiiiiiiiiiicneeeeenee ettt
Connecting to and Working with a Databasec..cccocevevinernincincneneneenn 632
Making the Connection to the Databaseccccccvevviieneincnneneinienienens 633
Executing @ Commandc.cococueirieininieenieineeene ettt 635
Retrieving Data with a DataReaderc.ccooineiniiiiniiiicncreene 635
Closing the Databaseccccceveiririeerieinienieeniceeereee et 637
Pulling It All TOZEhErccccoviiiiiniiiiiiccec e 637
Adding, Updating, and Deleting Datac.cccoecivinieiinieinieneinciecnecseeene 641
Other Database Concepts ...
SUMMATY .ottt s
QLA bbbttt
WOTKSROD ittt st
QUIZ oottt ettt ettt b e ettt e et ta e e ta e aeeeaeeebeeebeebeenbeenbeenaaas
EXEICISES uveuviutititietieiieiie ettt ettt ettt ettt sttt s ettt b e b bt ene e enee
Creating Remote Procedures: Web Services 647
Creating Web APPLICAtIONScc.coeriiriirieiieicicieneret e 648
Examining the Concept of @ COMPONENTcceevuiruinriririniieieieienenenereeeeaeene 648
WED SEIVICES ..ttt 648
Creating a Simple COMPONENt ...cc.eeuveuiiiiriirieniinirieeeeeetcee e 649
Creating @ Web SEIrVICEcccceviriririeiiieicieneneeeee et 652
Creating a Proxy
Calling a Web Service
SUMMATY oottt be b
QELA ettt
WOTKSROD it
QUIZ ottt et e et e et e e e e e aeeeeaaeeeaneas
EXETCISES ...uvuiiiiiiiiciciietce et
Quote of the Day Web Service 663
The Web Service Filecocouiiiiiiiiiiiiieieieeeeee e 663
The Proxy FIlEc.ccooiiiiiiiiiicieeecee et 666
USING the SEIVICEoouiieiiiiiiiiiieiieieieietee ettt 668
Creating Web Applications 673
Creating Regular Web Applicationsccccoeverererenenieieieieeneeeee e 674
Working with Web FOrmsccccoooviiiiiiiiiininccceeee 676
Creating a Basic ASP.NET Applicationc..cececeveeieicnicncnenenenenceeenee 676

Using ASPNET CONtrolS ..ooveviirerieiieicieienenienieetcei ettt 679

Contents Xvii

SUMIMATY 1ottt sttt sb et et et st e eatesasesaeesbeenaeenees 687
QEA s 688
WOTKSROD ettt st 688
QUIZ o 688
EXEICISES ..ouviiiiiiieiieiicetce e 689
CHAPTER 21 A Day for Reflection and Attributes 691
Reflecting on RefleCtionc..coceveririiiiieiiieieeseeeeeeeeese e 692
Understanding AUIIDULESc.ovvererieriririeieieietesteeteete et 697
What Are AtITDULES? ...coouiiiiiiiiiiceceeec e 698
USING ALIDULES ..ottt 698
Using Multiple ADULEScc.eeerireeieieierienieresceteee et 700
Using Attributes That Have Parametersc..coccocevvevivieiiinininincnceeee 700
Defining Your Own ADULEco.evueeiieiirienienienienieeieeieeeeeeeereeie e 701
Accessing the Associated Attribute Informationcccccceveveninenennennn 706
Pulling It All TOZEthErc.cocooiririiiiieiceee e 708
Single-Use Versus Multiuse AtribULEscoeverereeieierieneneneneneeeeeenen 711
Reflecting on the Future of CH#coooiiiiiiiiiiiieceeeeeeeee 712
GEINETICS ettt 712
What Are Iterators?ccooiiiiiiiiiiiiiicccee e 714
What Are Partial TYPES?coeviririiiiiiieierene et 714
What Are Anonymous MethodS?cccoevivinininininieeeeseeeeeeeee 715
SUIMMATY ettt b ettt et b e bbb eae 715
CoNnGratulationS! ..c.eoueeuieiieieiiereeeee et 716
QLA ettt 716
WOTKSROD ettt 717
QUIZ oottt et et e et e et e e e te e e raeeeaaeas 717
EXETCISES ...uuiiiiiiiieciiectee et 717
WEeek 3 Week In Review 719
Apply What You KNOWccocoiiiiiiiiiiiiiiicicceeeeeee e 719
Show What YOU KNOWcoiiiiiiiiiiiiiiiieceeeeee e 719
Appendices 721

APPENDIX A C# Keywords 723

xviii

Sams Teach Yourself the C# Language in 21 Days

checked
CLASS ittt e
[o7e] 1 13 SO P PR P PP O PP PPTPPOTN
continue
decimal
default
delegate
o N

[T =3 0

explicit

extern

interface
internal

PANAMS oeeiiieeteeeeee ettt et e et ettt ettt bbbt e e e et e et ettt bbbt e e et e e e et et bbbt bbb eesas
PAPTIAL ittt et e e e ea e e e eb e ta e ea s eaaeebeenans

APPENDIX B

Contents XiX
PPAVATE cooiiieeeeeiiieeeeetiee e ettt e eeet e e eeeae e e e e e ta e e e e eeaae e e eeraeeeeeaaaeeeenarreeeearreeeeas 730
PPOTECEERA uvrveeeieiiiieeeeitieee e ettt eeeete e e e eette e e eeetaeeeeeeaaaeeeeeareeeeeesseeeeennssseeeenarreeeens 730
public
readonly

= N
return
shyte
sealed ..

string
struct
switch

ulong

UNCRECKEA vttt ettt ettt ettt et et et et e e et eateseteeatesesesaeesate bt enbeenaeenees 733
UNSATE toteeteeteete ettt et e e e et et e s et e bt e bt e bt et e e bt e b e eabeeateseteeatesatesatesb e e bt e beeaeenes 733
USNOMT ettt ettt et ettt et et et et ee e et sat e eat et e e bt e beeaeenes 733

OULPUL ettt ettt b e bbbt ettt be b b ebeeaeeae
LT RS i - SRS
/target:<type> or /t:<type>
/define:<symbol list> or /d:
JAOCISTLLE> ittt

XX

Sams Teach Yourself the C# Language in 21 Days

AprPENDIX C

/addmodule:<file list>
RESOUICE ..ottt ettt ettt et e et st saaesan e
JWINB2reS:i<TILE> .iiiiiiiiiiiiiiiiiiiii e
JWIN321CONISTILE> iiiiiiiiiiiiiiiiiiii e

/resource:<resinfo> or /res:<resinfo>

/linkresource:<resinfo> Or /1inkres:<resinfo>eeeeniienn.. 737
COde GENETALION eeuiiiieiieiieieeieete ettt ettt ettt ettt s esaeesbe e b eaes 737
JABDUGLH| =1 evreeeeriiieeeeriteeeesiiteeeeeitteeeesbteeeesaraeeessntbaeesssssseeessssaeessssnsneesnnns 737
/debug: {FULL|PADONLY} weiieriiieriieeiieeeieeeieeeiee e teeeebeeeaeeesabeeebeeeeaeensseensseas 737
JOPEIMIZE[+] =1 OF /OLH| =] tererreeeeeiiieeeeniieeeesrireeesrirreeessireeeseerreeeesaneeeennns 737
/incremental[+| -1 OF /INCP[+] -] iorvierriieeiiieiieeeieeeeeerreeereeeareeseaeeeeaeas 737
Errors and Warningsccoceevierienieneenieiieeceteete sttt

/warnaserror[+]| -]

/warn:<n> or /w<n>
JNOWAPrN I <WArNING L1IST> wiiiiiiiiieeeeiiieeeeeiieeeeeeeitreeeeeereeeeeeetreeeeesaeeeeeeeasseesees 737
Programming Languageccccevevererieienienieieniesieeicettee ettt eeeneens 738
JCNECKEALH| =1 teeorieeiieeiie ettt eetee et e et e e et e et e e beeesbeeebeeessbeeesbeeensaeenssaennseas 738
/funsafe[+]-] ..
MISCEIIANEOUS ...ovvieiiieiieiieiieie ettt ettt et ettt et et e e saestesbesaeeseennns

/helpor /?
INOLOZO ettt
JNOCONTLIO ceettiiiiiiiiiiieeeeeeeeeeteettrutt i eeeeeeeeeeeeeeerssssssannaaaeeesaeaeeessssssssnnnnnnsaaesans
AQVANCEA ..ottt ettt ettt st s ae
/DASEAAArESS: <AUUNrESS> ouvtiuiiiieiieieeieeieete et site st et e st e bt e bt e sbeeteereeanens 738

/bugreport:<file>
JAeTe Yo [=Y o E- Yo [T £ OSSP UPUPPR PPN
JUTTBOUTPUL tevtitiiiiiiieeeeeeeee ettt e e e e e e e e e e e eeeaaaba e e e eeeaeeeeeesasssssnnnnnnaaaaaes
[MAINI<EYPE> OF [MISEYPE> iiiiieeeeiiieeieriieeeesiirreeessireeessssreeessnsreeessssnsseesnns 739
JTULLPATNS ittt ettt ettt e e e et e e e ett e e e etb e e eaaa e e aaaaaaes
/filealign:<n> ...

/nostdlib[+] -]

JLID:i<TIIE IIST> iiiiiiiiiiiiiiiiiiii e e 739
Understanding Number Systems 741
The Decimal NUMDBEr SYSLEIMc..ccevuereriiiiiiniinienienieeieeieeeeteese e 741
The BInary SYSIEIM .c..coeeieiiiieriiniinierercetetetetete sttt s 742

The Hexadecimal SYSLEIMcoevevuiriririeieieienienenteeteeieetetee et 742

Contents XXi

ArpPENDIX D Using SharpDevelop 745
Installing SharpDevelopccccceeerererinieieeee e 746
Running SharpDevelopccccoererererinieieieieenerieee et 746
Creating Applications from This BOOKccccocrinininininninininincnereneee 747
Index 751
On CD-ROM

Answers

About the Author

BRADLEY L. JONES (BradeTeachYourselfcSharp.com) is the site manager for a number of
high-profile developer sites—including CodeGuru.com, Developer.com, and
VBForums.com—and is an executive editor of Jupitermedia’s EarthWeb channel, which
is a part of Internet.com. Bradley has been working with C# longer than most developers
because he was invited to Microsoft before the official beta release. Bradley’s back-
ground includes experience developing in C, C++, PowerBuilder, SQL Server, and
numerous other tools and technologies. Additionally, he is an internationally best-selling
author who wrote the original 21 Days book: Sams Teach Yourself C in 21 Days. On
Developer.com and CodeGuru.com, you find a number of articles from Bradley on topics
ranging from .NET to mobile development to general developer topics.

Dedication

This book is dedicated to my wife, Melissa.

Acknowledgments

As I stated earlier, although I create the structure and write the words, I don’t create a
book like this on my own. Many people’s contributions helped to make this a much bet-
ter book.

First, however, let me thank my wife and family for being patient and understanding
while I set the normal flow of life aside in order to focus on writing this book.

I’d also like to give my personal thanks to Mattias Sjogren and Anand Narayanaswamy.
Mattias proved to be one of the best technical editors that I have had review one of my
books. His suggestions and corrections to the first edition of this book truly brought it to
a higher level of quality. Anand, a Microsoft MVP, stepped in to review the second edi-
tion. Although his suggestions caused more work for me, I believe the end result is an
even better book for you, the reader.

In addition to the offical technical editor, this book has been read by thousands of others.
I want to thank the readers who took the time to suggest changes, improvements, or clar-
ifications. I take this feedback seriously and work a lot of it into reprints and errata.

I’d also like to thank the editors at Sams Publishing for their effort in building this book.
This includes Candy Hall, Mark Renfrow, Krista Hansing, Matt Purcell, Brad Shannon,

Nancy Albright, and others also spent large amounts of time focused on making this the
best book possible. They deserve to be acknowledged as well.

On a different note, this book would have been impossible to do without the support of a
number of people at Microsoft. Over the last several years, I have gained help from too
many people to list all of them. A number of people on the C# team—such as Nick
Hodapp, Tony Goodhew, and Eric Gunnerson—helped provide information on C# in
addition to answering many of my questions.

Because this book provides the chance to publicly acknowledge people, I’d also like to
thank a number of other people at Microsoft for their help over the last several years—
either on this book or on many other projects. This includes Eric Ewing, Stacey Giard,
Brad Goldberg, Tony Goodhew, Rob Howard, Jeff Ressler, Scott Guthrie, Connie
Sullivan, Dee Dee Walsh, Dennis Bye, Bob Gaines, Robert Green, David Lazar, Greg
Leake, Lizzie Parker, Charles Sterling, Susan Warren, and lots of others.

I’d like to thank you, the reader. There are a number of books on C# that you could have
bought or could use. I appreciate your giving me the chance to teach you C#.

Finally, thanks goes to Bob, who still seems to always be blue.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an Executive Editor for Sams, I welcome your comments. You can e-mail or write me
directly to let me know what you did or didn’t like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. [will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Candace Hall, Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Introduction

Welcome to Sams Teach Yourself the C# Language in 21 Days. As you can guess from
the title of this book, I have written this book with the expectation that you will spend 21
days learning the C# programming language. The book is divided into 21 lessons that
can each be accomplished in a couple of hours or a single evening. If you dedicate 2 to 3
hours for 21 days, you should easily be able to work through this book. This doesn’t
have to be consecutive evenings, nor does it even have to be evenings.

Each lesson can be read in an hour or two. Some will take longer to read; some will take
less time. If you expect to learn C# by just reading, you will be greatly disappointed.
Instead, you should expect to spend half your time reading and the other half entering the
code from the daily lesson, doing the quizzes, and trying out the exercises. That might
sound like a lot, but you can do each lesson in an evening, if you try.

The quizzes and exercises are part of the 21-day series, designed to help you confirm
your understanding of that day’s material. After reading a day’s lesson, you should be
able to answer all the questions in the quiz. If you can’t, you may need to review parts of
that lesson.

The exercises present you with a chance to apply what you've learned. The exercises
generally focus on understanding code, identifying common code problems, and writing
code based on the day's lesson.

Answers to the quizzes and most of the exercises are provided on the CD-ROM,
"Answers”, which can be found on the CD-ROM included with the book. Try to come up
with the answers on your own before jumping to the CD-ROM.

You will notice several other features when reading this book. You'll find tips, notes, and
caution boxes throughout the book. Tips provide useful suggestions. Notes provide addi-
tional information that you might find interesting. Cautions alert you to a common prob-
lem or issue that you might encounter. A special element of this series of books is the
Q&A section at the end of each day. The Q&A section provides questions—along with
the answers—you might have while reading that day’s lesson. These questions might
involve peripheral topics to the lesson.

A second special element is provided simply for fun. Throughout this book, you will find
Type & Runs (T&Rs), which provide listings that you can enter, compile, and run. More
important, you can make changes with the code in these listings; you an experiment and
play. In most cases, you should find the T&Rs a bit more functional and fun than the
more standard listings used to teach specific topics.

Sams Teach Yourself the C# Language in 21 Days

Assumptions I've Made

I’ve made a few assumptions about you. I’ve assumed that you have a C# compiler and a
NET runtime environment. Although you can read this book without them, you will
have a harder time fully understanding what is being presented. To help ensure this
assumption, this book comes with a CD-ROM that includes a C# editor and a C# run-
time.

I’ve assumed that you are a beginning-level programmer. If you are not, you will still
gain a lot from this book; however, you might find that in some areas you will progress
slower than you’d like.

This book does not assume that you are using Microsoft Visual C# .NET or the
Microsoft Visual Studio .NET development environment. You can use Microsoft’s tools
or a number of other tools. You’ll learn more about this within the book. I don’t even
assume that you are using Microsoft Windows. After all, there are now C# compilers for
other platforms such as Linux and FreeBSD.

Web Site Support

No one is perfect—especially me. Combine this with a programming language that is rel-
atively new and that faces future changes. You can expect problems to crop up.

This book has been based on a previous edition, which has been read by thousands.
Editorial, technical, and development reviews of the book have been done. Even with all
the reviews, errors still happen. In case a problem did sneak through, errata for this
book can be found on a number of Web sites. The publisher’s Web site is located at

www . samspublishing.com/.

Additionally, I have created a site specifically for the support of this book:
www . TeachYourselfCSharp.com. I will post errata at this location.

Source Code

I believe that the best way to learn a programming language is to type the code and see it
run. I believe that the best way to learn a programming language is to type in the pro-
grams. I also understand, however, that my beliefs are not the same as everyone else’s.
For that reason, the source code for this book is provided on the included CD.

Introduction

3

This book is for learning. You can use the source code contained within it. You can adapt
it. You can extend it. You can give it to your mom. Learn from it. Use it. By purchasing
this book, you gain the right to use this code any way you see fit, with one exception:
You can’t repurpose this code for a C# tutorial.

CD-ROM

As already stated, this book includes a CD-ROM that contains the source code for this
book, as well as a number of tools and utilities. When you run the CD-ROM, you will
get information on its contents.

Getting Started

I applaud your efforts in reading this introduction; however, you’re most likely more
interested in learning about C#. “Week 1 at a Glance” gives you an overview of what you
can expect in your first week of learning the C# programming language. What better
time to get started than now?

WEEK 1

At a Glance

Welcome to Sams Teach Yourself the C# Language in 21
Days, Second Edition. If you are unsure what you need to
know to get the most out of this book, you should review the
Introduction. The Introduction also explains the elements
used within this book.

You are getting ready to start the first of three weeks of
lessons. These first lessons will help you gain a solid founda-
tion for writing C# programs. Regardless of what C# com-
piler you are using, as long as it follows the C# standards,
you should be able to learn and apply all of the information
learned in this first week.

Starting with Day 1, “Getting Started with C#,” you will be

entering C# programs. In addition to learning about C# and

some of the editors and tools available, you will learn how a
C# program is created and run.

On Day 2, “Understanding C# Programs,” you will learn how
C# fits into the Microsoft .NET Framework. You will also be
taught about the fundamental principles of an object-oriented
language, and you will learn how basic information is held
within a C# program.

Day 3, “Manipulating Values in Your Programs” and Day 4,
“Controlling Your Program’s Flow,” teach you the core pro-
gramming concepts required for C# programming. This
includes manipulating data and controlling your program
flow.

Days 5, “The Core of C# Programming: Classes,” and 6,
“Packaging Functionality: Class Methods and Member
Functions,” cover classes and class methods. Classes are a

| 6

Week 1

core concept to object-oriented programming and, therefore, a core concept to C# pro-
gramming.

The first week ends with coverage of a number of more complex ways for holding infor-
mation in a program on Day 7, “Storing More Complex Stuff: Structures, Enumerators,
and Arrays.” On this day, you will learn how to organize your program’s data in a num-
ber of ways.

By the end of the first week, you will have learned many of the foundational concepts
for C# programming. You’ll find that by the time you review this first week, you will
have the tools and knowledge to build basic C# programs on your own.

WEEK 1

DAY 1

Getting Started with C#

Welcome to Sams Teach Yourself C# in 21 Days! In today’s lesson, you begin
the process of becoming a proficient C# programmer. Today you...

e Learn why C# is a great programming language to use.

* Discover the steps in the program-development cycle.

* Understand how to write, compile, and run your first C# program.

* Explore error messages generated by the compiler and linker.

* Review the types of solutions that can be created with C#.

* Create your first console and Windows forms program.

¢ Learn about object-oriented concepts.

What Is C#?

It would be unusual if you bought this book without knowing what C# is.
However, it would not be unusual if you didn’t know a lot about the language.
Released to the public as a beta in June 2000 and officially released in the
spring of 2002, C#—pronounced “see sharp”—has not been around for very
long.

| 8

Day 1

C# is a language that was created by Microsoft and submitted to ECMA for standardiza-
tion. Its creators were a team of people at Microsoft that included the guidance of Anders
Hejlsberg. Interestingly, Hejlsberg is a Microsoft Distinguished Engineer who has cre-
ated other products and languages, including Borland Turbo C++ and Borland Delphi.
With C#, he and the team at Microsoft focused on using what was right about existing
languages and adding improvements to make something better.

Although C# was created by Microsoft, it is not limited to just Microsoft platforms. C#
compilers exist for FreeBSD, Linux, the Macintosh, and several of the Microsoft plat-
forms.

C# is a powerful and flexible programming language. Like all programming languages, it
can be used to create a variety of applications. The C# language does not place con-
straints on what you can do; therefore, your potential with it is limited only by your
imagination. C# has already been used for projects as diverse as dynamic Web sites,
development tools, and even compilers.

In the following section, you learn a process for creating and running a C# program. This
is followed by some additional background information on the C# language.

Preparing to Program

You should take certain steps when solving a problem. First, you must define the prob-
lem. If you don’t know what the problem is, you will never find the solution. After you
know what the problem is, you can devise a plan to fix it. When you have a plan, you
can usually implement it. After the plan is implemented, you must test the results to see
whether the problem actually has been solved. This same logic can be applied to many
other areas, including programming.

When creating a program in C# (or in any language), you should follow a similar
sequence of steps:

1. Determine the objective(s) of the program.

2. Determine the methods you want to use in writing the program.

3. Create the program to solve the problem.

4. Run the program to see the results.
An example of an objective (see Step 1) is to write a word processor or database pro-

gram. A much simpler objective is to display your name on the screen. If you don’t have
an objective, you won’t be able to write an effective program.

Getting Started with C#

The second step is to determine the method you want to use to write the program. Do
you need a computer program to solve the problem? What information must be tracked?
What formulas will be used? During this step, you should try to determine what you
need and in what order the solution should be implemented.

As an example, assume that someone asks you to write a program to determine the area
inside a circle. Step 1 is complete because you know your objective: Determine the area
inside a circle. Step 2 is to determine what you need to know to calculate the area. In this
example, assume that the user of the program will provide the radius of the circle.
Knowing this, you can apply the formula nir’ to obtain the answer. Now you have the
pieces you need, so you can continue to Steps 3 and 4, which are called the program-
development cycle.

The Program-Development Cycle

The program-development cycle has its own steps. In the first step, you use an editor to
create a file that contains your source code. In the second step, you compile the source
code to create an intermediate file called either an executable file or a library file. The
third step is to run the program to see whether it works as originally planned.

Creating the Source Code

Source code is a series of statements or commands used to instruct the computer
to perform your desired tasks. These statements and commands are a set of key-
words that have special meaning along with other text. As a whole, this text is readable
and understandable.

As mentioned, the first step in the program-development cycle is to enter source code
into an editor. For example, here is a snippet of C# source code:

System.Console.WriteLine("Hello, Mom!");

This single line of source code instructs the computer to display the message Hello, Mom!

on the screen. Even without knowing how to program, you could speculate that this line

of source code writes a line (WriteLine) to the system’s console window (System.Console).
It is also easy to understand that the line written will be Hello Mom!.

Using an Editor

An editor is a program that can be used to enter and save source code. A number
of editors can be used with C#. Some are made specifically for C#, and others
are not.

|10

Day 1

.

Microsoft has added C# capabilities to Microsoft Visual Studio .NET, which now
includes Microsoft Visual C# .NET. This is the most prominent editor available for C#
programming; however, you don’t need Visual Studio .NET or Visual C# .NET to create
C# programs.

Other editors also are available for C#. Like Visual Studio .NET, many of these enable
you to do all the steps of the development cycle without leaving the editor. Most of these
editors also provide features such as color-coding the text that you enter. This makes it
much easier to find possible mistakes. Many editors even give you information on what
you need to enter and by providing a robust help system.

If you don’t have a C# editor, don’t fret. Most computer systems include a program that
can be used as an editor. If you’re using Microsoft Windows, you can use either Notepad
or WordPad as your editor. If you’re using a Linux or UNIX system, you can use such
editors as ed, ex, edit, emacs, or Vvi.

The editor SharpDevelop is included on the CD with this book. For more on this editor,
see Appendix D, “Using SharpDevelop.”

Word processors can also be used to enter C# source code. Most word processors use
special codes to format their documents. Other programs can’t read these codes correctly.
Many word processors—such as WordPerfect, Microsoft Word, and WordPad—are capa-
ble of saving source files in a text-based form. When you want to save a word processor
file as a text file, select the Text option when saving.

Nﬂtﬂ To find alternative editors, check computer stores or computer mail-order
catalogs. Another place to look is in the ads in computer-programming mag-

azines. The following are a few editors that were available at the time this
book was written:

¢ SharpDevelop, by Mike Kriiger—SharpDevelop is a free editor for C#
and VB .NET projects on Microsoft’s .NET platform. It is an open-
source editor (GPL), so you can download both source code and exe-
cutables from www.icsharpcode.net. This editor includes a forms
designer, code completion, and more. A copy of this editor is included
on the CD with this book.

¢ CodeWright—CodeWright is an editor that provides special support
for ASP, XML, HTML, C#, Perl, Python, and more. A 30-day trial version
of this editor is available at www.premia.com. CodeWright is now asso-
ciated with Borland.

Getting Started with C#

11|

¢ Poorman IDE—Poorman provides a syntax-highlighted editor for both
C# and Visual Basic .NET. It also enables you to run the compiler and
capture the console output so that you don’t need to leave the
Poorman IDE. Poorman is located at www.geocities.com/duncanchen/
poormanide.htm.

e EditPlus—EditPlus is an Internet-ready text editor, HTML editor, and
programmer’s editor for Windows. Although it can serve as a good
replacement for Notepad, it also offers many powerful features for
Web page authors and programmers, including the color-coding of
code. It is located at www.editplus.com.

¢ JEdit—JEdit is an open-source editor for Java; however, it can be used
for C#. It includes the capability of color-coding the code. It is located
at http://jedit.sourceforge.net.

¢ Antechinus C#—This editor supports the C# programming language,
provides color-coded syntax, and allows you to compile and run appli-
cations from the integrated environment. Other features include easy
project generation, integration with .NET tools, unlimited undo/redo
capability, bookmarks and brace matching, and Intellisense. It is
located at www.c-point.com.

Naming Your Source Files

When you save a source file, you must give it a name. The name should describe what
the program does. Although you could give your source file any extension, .cs is recog-
nized as the appropriate extension to use for a C# program source file.

]’ip The name should describe what the program does. Some people suggest
that the name of your source file should be the same as the name of your
C# class.

Understanding the Execution of a C# Program

It is important to understand a little bit about how a C# program executes. C# programs
are different from programs that you can create with many other programming lan-
guages.

C# programs are created to run on the .NET Common Language Runtime (CLR). This
means that if you create a C# executable program and try to run it on a machine that
doesn’t have the CLR or a compatible runtime, the program won’t execute.

|12

Day 1

The benefit of creating programs for a runtime environment is portability. If you wanted
to create a program that could run on different platforms or operating systems with an
older language such as C or C++, you had to compile a different executable program for
each. For example, if you wrote a C application and you wanted to run it on a Linux
machine and a Windows machine, you would have to create two executable programs—
one on a Linux machine and one on a Windows machine. With C#, you create only one
executable program, and it runs on either machine.

If you want your program to execute as fast as possible, you want to create a true

executable. To become a true executable, a program must be translated from
source code to machine language (digital, or binary, instructions). A program called a
compiler performs this translation. The compiler takes your source code file as input and
produces a disk file containing the machine-language instructions that correspond to your
source-code statements. With programs such as C and C++, the compiler creates a file
that can be executed with no further effort.

With C#, you use a compiler that does not produce machine language. Instead, it pro-
duces an Intermediate Language (IL) file. This IL file can be copied to any machine with
a .NET CLR. Because this IL file isn’t directly executable by the computer, you need
something more to happen to translate or further compile the program for the computer.
The CLR or a compatible C# runtime does this final compile just as it is needed.

Compiling the program is one of the first things the CLR does with an IL file. In this
process, the CLR converts the code from the portable, IL code to a language (machine
language) that the computer can understand and run. The CLR actually compiles only the
parts of the program that are being used. This saves time. This final compile of a C# pro-
gram is called Just In Time (JIT) compiling, or jitting.

Because the runtime needs to compile the IL file, it takes a little more time to initially
run portions of a program than it does to run a fully compiled language such as C++.
After the first time a portion of the program is executed, the time difference disappears
because the fully compiled version is used from that point. In most cases, this initial time
delay is minor. You can also choose to JIT a C# program when you install it to a specific
platform.

Nlltﬂ At the time this book was written, the .NET CLR and a command-line C#
compiler were available for free from Microsoft as a part of the .NET

Framework. Check the Microsoft Web site (www.microsoft.com) for the latest
version of the .NET Framework.

Getting Started with C# 13 |

Additionally, limited versions of C# and the .NET Framework are available
for other platforms. This includes the mono version of .NET. The mono pro-
ject (www.go-mono.com) includes a compiler and a runtime that works for
.NET. Currently, the mono project targets Windows, Linux, and the
Macintosh.

Compiling C# Source Code to Intermediate Language

To create the IL file, you use the C# compiler. If you are using the Microsoft .NET
Framework SDK, you can apply the csc command, followed by the name of the source
file, to run the compiler. For example, to compile a source file called Radius.cs, you type
the following at the command line:

csc Radius.cs

If you are not using Microsoft’s .NET Framework, a different command may be neces-
sary. For example, the mono compiler is mcs. To compile for mono, you use the
following:

mcs Radius.cs

If you’re using a graphical development environment such as Microsoft Visual C# .NET,
compiling is even simpler. In most graphical environments, you can compile a program
by selecting the Compile icon or selecting the appropriate option from the menu. After
the code is compiled, selecting the Run icon or the appropriate option from the menus
executes the program.

N"tﬂ You should check your compiler’s manuals for specifics on compiling and
running a program.

After you compile, you have an IL file. If you look at a list of the files in the
directory or folder in which you compiled, you should find a new file that has the
same name as your source file, but with an .exe (rather than a .cs) extension. The file
with the .exe extension is your compiled program (called an assembly). This program is
ready to run on the CLR. The assembly file contains all the information that the CLR
needs to know to execute the program. According to .NET terminology, the code inside
the assembly file is called managed code.

New TERM

14 Day 1

Nl][l} Managed code refers to the code that can be executed under only the .NET
environment.

Figure 1.1 shows the progression from source code to executable.

FiGUure 1.1 OXOXOXO
The C# source code XOXOXOX
that vite is con- OXOXOX
at you write is con OXOXOX
verted to Intermediate XOXOXO
Language (IL) code by OXXO0O0X

the compiler. Assembly file

containing IL

N“tﬂ In general, two primary types of deliverables are created as C# programs—
executables and libraries. You can also use C# for other types of program-
ming, including scripting on ASP.NET pages. Although you will primarily

focus on executables in this book, you will also learn more about libraries
and ASP.NET pages.

Completing the Development Cycle

After your program becomes a compiled IL file, you can run it by entering its name at
the command-line prompt or just as you would run any other program. However, the pro-
gram requires that you have the .NET CLR. If you don’t have the CLR installed, you
will get an error when you run the program. Installing the Microsoft .NET Framework
allows you to run your programs like all other programs. If you use other frameworks,
you might have to do something different. For example, when you compile a program
using the mono compiler (mcs), you can then run the program by entering it after mono.
For example, to run the radius program mentioned earlier, you would type the following
at the command line:

mono Radius.exe

Getting Started with C# 15 |

If you run the program and receive different results than you thought you would, you
need to go back to the first step of the development process. You must identify what
caused the problem and correct it in the source code. When you make a change to the
source code, you need to recompile the program to create a corrected version of the
executable file. You keep following this cycle until you get the program to execute
exactly as you intended.

The Ci# Development Cycle

Use an editor to write your source code. C# source-code files are usually given the .cs
extension (for example, a_program.cs, database.cs, and so on).

Compile the program using a C# compiler. If the compiler doesn’t find any errors in the
program, it produces an assembly file with the extension .exe or .dll. For example,
Myprog.cs compiles to Myprog.exe by default. If the compiler finds errors, it reports
them. You must return to Step 1 to make corrections in your source code.

Execute the program on a machine with a C# runtime, such as the CLR. You should test to
determine whether your program functions properly. If not, start again with Step 1, and
make modifications and additions to your source code.

Figure 1.2 shows the program-development steps. For all but the simplest programs, you
might go through this sequence many times before finishing your program. Even the
most experienced programmers can’t sit down and write a complete, error-free program
in just one step. Because you’ll be running through the edit-compile-test cycle many
times, it’s important to become familiar with your tools: the editor, compiler, and runtime
environment.

|16

Day 1

FIGURE 1.2

The steps involved in
C# program develop-
ment.

Enter source

/ <) } Step 1

\ N

Compile

> Step 2

J

\
> Step 3

J

Creating Your First C# Program

You're probably eager to create your first program in C#. To help you become familiar
with your compiler, Listing 1.1 contains a quick program for you to work through. You
might not understand everything at this point, but you should still try to get a feel for the
process of writing, compiling, and running a real C# program.

This demonstration uses a program named Hello.cs, which does nothing more than dis-
play the words Hello, World! on the screen. This program is the traditional one used to
introduce people to programming. The source code for Hello.cs is in Listing 1.1. When
you type this listing, don’t include the line numbers on the left or the colons.

Getting Started with C# 17 |

LisTING 1.1 Hello.cs

1 class Hello

2: |

3 public static void Main()

4: {

5: System.Console.WriteLine("Hello, World!");
6 }

70}

Be sure that you have installed your compiler as specified in the installation instructions
provided with the software. If you have installed the .NET Framework SDK, then you
already have a C# compiler installed. It comes with a C# compiler.

When your compiler and editor are ready, follow the steps in the next section to enter,
compile, and execute Hello.cs.

Entering and Compiling Hello.cs

To enter and compile the Hello.cs program, follow these steps:

1. Start your editor.

2. Enter the Hello.cs source code shown in Listing 1.1. Don’t enter the line numbers
or colons; these are provided only for reference within this book. Press Enter at the
end of each line. Make sure that you enter the code using the same case. C# is case
sensitive, so if you change the capitalization, you will get errors.

[:ﬂ“ti““ In C and C++, main() is lowercase. In C#, Main() has a capital M. In C#, if you
type a lowercase m, you will get an error.

3. Save the source code. You should name the file Hello.cs.

4. Verify that Hello.cs has been saved by listing the files in the directory or folder.

5. Compile Hello.cs. If you are using the Microsoft C# command-line compiler, enter
the following:

csc Hello.cs

If you are using a mono command-line compiler, enter the following:

mcs Hello.cs

If you are using an Integrated Development Environment (IDE), select the appro-

priate icon, hot key, or menu option. You should get a message stating that there
were no errors or warnings.

|18

Day 1

If you are using Microsoft Visual Studio .NET, you can launch the command
prompt from Start, Program Files, Microsoft Visual Studio .NET, Visual Studio
.NET Tools, Visual Studio .NET Command Prompt. If you choose to use the
command line, | recommend that you use this prompt for compiling and
executing your C# programs because it has the correct path settings for the
C# compiler.

6. Check the compiler messages. If you receive no errors or warnings, everything

should be okay.

If you made an error typing the program, the compiler will catch it and display an
error message. For example, if you misspelled the word console as Consol, you
would see a message similar to the following:

Hello.cs(5,7): error CS0234: The type or namespace name 'Consol' does not
exist in the class or namespace 'System' (are you missing an assembly
reference?)

Go back to Step 2 if this or any other error message is displayed. Open the
Hello.cs file in your editor. Compare your file’s contents carefully with Listing 1.1,
make any necessary corrections, and continue with Step 3.

. Your first C# program should now be compiled and ready to run. If you display a

directory listing of all files named hello (with any extension), you should see the
following:

Hello.cs, the source code file you created with your editor
Hello.exe, the executable program created when you compiled hello.cs

. To execute, or run, Hello.exe, enter Hello at the command line. The message Hello,

world! is displayed onscreen.

Nﬂtﬂ If you are using Windows and you run the hello program by double-clicking
in Microsoft’s Windows Explorer, you might not see the results. This pro-

gram runs in a command prompt window. When you double-click in
Windows Explorer, the program opens a command prompt window, runs the
program, and—because the program is done—closes the window. This can
happen so fast that it doesn’t seem like anything happens. It is better to
open a command prompt window, change to the directory containing the
program, and then run the program from the command line.

Getting Started with C# 19 |

Nﬂtﬂ If you are not using the Microsoft .NET compiler and runtime, you might
have to run the program differently. For example, to run the program using
the mono runtime, you will need to enter the following on a command line:

mono Hello.exe

If you are using a different runtime, you will want to check its documenta-
tion for specific instructions for running a .NET program.

Congratulations! You have just entered, compiled, and run your first C# program.
Admittedly, Hello.cs is a simple program that doesn’t do anything overly useful, but it’s
a start. In fact, most of today’s expert programmers started learning in this same way—
by compiling a “hello world” program.

Understanding Compilation Errors

A compilation error occurs when the compiler finds something in the source code that it
can’t compile. A misspelling, a typographical error, or any of a dozen other things can
cause the compiler to choke. Fortunately, modern compilers don’t just choke; they tell
you what they’re choking on and where the problem is. This makes it easier to find and
correct errors in your source code.

This point can be illustrated by introducing a deliberate error into the Hello.cs program
that you entered earlier. If you worked through that example (and you should have), you
now have a copy of hello.cs on your disk. Using your editor, move the cursor to the end
of Line 5 and erase the terminating semicolon. Hello.cs should now look like Listing 1.2.

LisTING 1.2 Helloerr.cs—Hello.cs with an Error

1 class Hello

2: |

3 public static void Main()

4: {

5: System.Console.WriteLine("Hello, World!")
6 }

70}

Next, save the file. You’re now ready to compile it. Do so by entering the command for
your compiler. Remember, the command-line command is this:

csc Helloerr.cs

|20

Day 1

“I] If the compiler reports multiple errors and you can find only one, fix that

Because of the error you introduced, the compilation is not completed. Instead, the com-
piler displays a message similar to the following:

Helloerr.cs(5,48): error CS1002: ; expected
Looking at this line, you can see that it has three parts:

Helloerr.cs The name of the file where the error was found

(5,48): The line number and position where the error
was noticed: Line 5, position 48

error CS1002: ; expected A description of the error

This message is quite informative, telling you that when the compiler made it to the 48th
character of Line 5 of Helloerr.cs, the compiler expected to find a semicolon but didn’t.

Although the compiler is very clever about detecting and localizing errors, it’s no
Einstein. Using your knowledge of the C# language, you must interpret the compiler’s
messages and determine the actual location of any errors that are reported. They are often
found on the line reported by the compiler, but if not, they are almost always on the pre-
ceding line. You might have a bit of trouble finding errors at first, but you should soon
get better at it.

Before leaving this topic, take a look at another example of a compilation error. Load
Helloerr.cs into your editor again, and make the following changes:

1. Replace the semicolon at the end of Line 5.

2. Delete the double quotation mark just before the word Hello.

Save the file to disk, and compile the program again. This time, the compiler should dis-
play an error message similar to the following:

Helloerr.cs(5,46): error CS1010: Newline in constant

The error message finds the correct line for the error, locating it in Line 5. The error
messages found the error at location 46 on Line 5. This error message missed the point
that a quotation mark was missing from the code. In this case, the compiler took its best
guess at the problem. Although it was close to the area of the problem, it was not perfect.

error and recompile. You might find that your single correction is all that's
needed, and the program will compile without errors.

Getting Started with C#

Understanding Logic Errors

You might get one other type of error: logic errors. Logic errors are not errors that you
can blame on the code or the compiler; they are errors that can be blamed only on you. It
is possible to create a program with perfect C# code that still contains an error. For
example, suppose that you want to calculate the area of a circle by multiplying 2 multi-
plied by the value of pi, multiplied by the radius:

Area = 2mr

You can enter this formula into your program, compile, and execute. You will get an
answer. The C# program could be written syntactically correct; however, every time you
run this program, you will get a wrong answer. The logic is wrong. This formula will
never give you the area of a circle; it gives you its circumference. You should have used
the formula 7tr’.

No matter how good a compiler is, it will never be able to find logic errors. You have to
find these on your own by reviewing your code and by running your programs.

Types of C# Programs

Before continuing with another program, it is worth reviewing the types of applications
you can create with C#. You can build a number of types:

* Console applications—Console applications run from the command line.
Throughout this book, you will create console applications, which are primarily
character- or text-based and, therefore, remain relatively simple to understand.

* Window forms applications—You can also create Windows applications that take
advantage of the graphical user interface (GUI) provided by Microsoft Windows.

¢ Web Services—Web Services are routines that can be called across the Web.
* Web form/ASP.NET applications—ASP.NET applications are executed on a Web

server and generate dynamic Web pages.

In addition to these types of applications, C# can be used to do a lot of other things,
including create libraries, create controls, and more. As you progress through this book,
you will learn to create applications based on these four main types of applications.

Creating Your First Window Application

One of the most common types of application you will most likely create with C# is a
Windows form application. You might also see these applications referred to as WinForm

|22

Day 1

applications. These applications use the graphical-style windows like those that you see
in Microsoft Windows. Because a standardized library (from the .NET Framework) is
used, you can actually expect the Windows application to match your operating system’s
look and feel. In Listing 1.3, an extremely simple windows form is created. You’ll notice
that this application takes a little more code than the previous console application that
was created. However, you will also notice that the application’s output is much nicer.

If you are using the Microsoft .NET runtime, you will be able to do forms-based
(Windows) applications. If you are using a different runtime, you will need to check its
documentation to determine whether Window forms is currently supported. At the time
this book was written, the support for Window forms applications were fully available
only within the Microsoft Framework. The go-mono project was working to build the
routines for doing forms-based (Windows) applications. Other versions of the .NET
Framework are expected to support Windows forms as well as the other NET
Framework routines. This means that if your framework doesn’t support these routines
today, it will most likely support them in the future. More important, the routines follow
Microsoft’s structure, to make them portable.

NI]IE The routines for doing forms are a part of the .NET Framework rather than
a part of the C# language. However, the C# language can tap into these

routines.

LisTING 1.3 MyForm.cs: Hello Windows World!

1 using System;

2 using System.Windows.Forms;

3

4 namespace HelloWin

5: {

6 public class MyForm : Form

7 {

8: private TextBox txtEnter;

9: private Label 1lblDisplay;

10: private Button btnOk;

11:

12: public MyForm()

13: {

14: this.txtEnter = new TextBox();
15: this.lblDisplay = new Label();
16: this.btnOk = new Button();
17: this.Text = "My HelloWin App!";

Getting Started with C#

23|

LisTING 1.3 continued

19: /] txtEnter

20: this.txtEnter.Location = new System.Drawing.Point (16, 32);
21: this.txtEnter.Size = new System.Drawing.Size (264, 20);
22:

23: /] 1lblDisplay

24: this.lblDisplay.Location = new System.Drawing.Point (16, 72);
25: this.1lblDisplay.Size = new System.Drawing.Size (264, 128);
26:

27: /] btnOk

28: this.btnOk.Location = new System.Drawing.Point (88, 224);
29: this.btnOk.Text = "OK";

30: this.btnOk.Click +=

31: new System.EventHandler(this.btnOK_Click);
32: /] MyForm

33: this.Controls.AddRange(new Control[] {

34: this.txtEnter, this.lblDisplay, this.btnOk});
35: }

36:

37: static void Main ()

38: {

39: Application.Run(new MyForm());

40: }

41:

42: private void btnOK_Click(object sender, System.EventArgs e)
43:

44: 1blDisplay.Text = txtEnter.Text + "\n" + lblDisplay.Text;
45: }

46: }

47: }

Just as you did with the previous program, enter the code from Listing 1.3 into your edi-
tor. Remember that the line numbers and colons are for reference in the book; you do not
enter them when entering the listing. After you’ve entered the listing, you will compile it
as shown earlier. If you are compiling at the command line, you enter this:

csc /t:winexe MyForm.cs

Nﬂtﬂ You can actually leave out the /t:winexe, and this program will still compile
and run. By including /t:winexe on the command line, you tell the C# com-
piler to target this application as a Windows executable. Non-Microsoft com-
pilers use a similar command.

24 Day 1

If you are using an IDE you can select its button or menu option for compiling. If after
you compile you receive an error, compare what you entered to the listing in the book to
make sure you didn’t type something wrong. As discussed earlier, the error messages
should help you to identify where the problem is.

When you compile this listing without errors, you can run it in the same manner that you
run any other program. Even though this is a Windows application, you can run it from
the command line. You do this by simply entering the name of the program, MyForm.
Regardless of where you run this program from, the result is a Windows form displayed,
as shown in Figure 1.3.

OUTPUT oL/ My HelloWin App! =%

FIGURE 1.3

MyForm output.

oK

Enter text into the window dialog box and click the OK button. You can continue
to enter text and click the OK button; the text is displayed on the form. As you
enter additional text and click the OK button, you’ll see the previously entered text
scroll. Figure 1.4 shows the form after a few lines of text have been entered.

FIGURE 1.4 15 My HelloWin App! g@
MyForm application
after entering several [Thisic a third ine of tewt

lines of text.
Thiz iz a third ine of text

This is a second line of text entered by pressing OK
This is the first line of text!

Getting Started with C# 25 |

As you can see, much more code is needed to display a form than is needed to display a
simple message in a console window. Look through the code in Listing 1.3; however,
don’t expect to understand all of it right now. You’ll see there is code for creating a text
box (txtEnter), a button (btnok), and a label control (1b1pisplay). You’ll learn more about
this code when you learn about Windows forms.

Why C#?

Now that you’ve created your first applications in C#, it is time to step back and answer
a simple question: Why C#? Many people believed that there was no need for a new pro-
gramming language. Java, C++, Perl, Microsoft Visual Basic, and other existing lan-
guages were believed to offer all the functionality needed.

C# was created as an object-oriented programming (OOP) language. Other programming
languages include object-oriented features, but very few are fully object-oriented. As you
go through this book, you will learn all the details of what makes up an object-oriented
language.

C# is a language derived from C and C++, but it was created from the ground up.
Microsoft started with what worked in C and C++, and included new features that would
make these languages easier to use. Many of these features are very similar to what is
found in Java. Ultimately, Microsoft had a number of objectives when building the lan-
guage. These objectives included the creation of a simple, yet modern language that was
fully object-oriented.

Ea“ti““ The following contains a lot of technical terms. Don’t worry about under-
standing these; most of them don't matter to C# programmers. The ones

that do matter are explained later in this book.

Other reasons exist for using C#, beyond Microsoft’s reasons. C# removes some of the
complexities and pitfalls of languages such as Java and C++, including macros, multiple
inheritance, and virtual base classes. These are all areas that cause either confusion or
potential problems for C++ developers. If you are learning C# as your first language, rest
assured—these are topics that you won’t have to spend time learning. Statements, expres-
sions, operators, and other functions are taken directly from C and C++, but improve-
ments make the language simpler. Some of the improvements include eliminating
redundancies. Other areas of improvement include additional syntax changes. For
example, C++ uses a number of different operators when working with members of a

|26

Day 1

structure: ::, ., and ->. Knowing when to use each of these three operators can be very
confusing. In C#, these all have been replaced with a single symbol—the “dot” operator.
For newer programmers, changes like these make learning C# easier. You’ll learn more
about all of these features throughout this book.

C# is also a modern language. Features such as exception handling, garbage collection,
extensible data types, and code security are expected in a modern language; C# contains
all of these. If you are a new programmer, you might be asking what all these compli-
cated-sounding features are. Again, you don’t need to understand these now. By the end
of your 21 days, you will understand how all of them apply to your C# programming.

C# Is Object-Oriented

As mentioned earlier, C# is an object-oriented language. The keys to an object-
New TErRM

oriented language are encapsulation, inheritance, and polymorphism. C# sup-
ports all of these. Encapsulation is the placing of functionality into a single package.
Inheritance is a structured way of extending existing code and functionality into new
programs and packages. Polymorphismis the capability of adapting to what needs to be
done. Detailed explanations of each of these terms and a more detailed description of
object orientation are provided in Day 5’s lesson, “The Core of C# Programming:
Classes.” Additionally, because OOP is central to C#, these topics are covered in greater
detail throughout this book.

C# Is Modular

C# code can (and should) be written in chunks called classes, which contain rou-
NEw TERM

tines called member methods. These classes and methods can be reused in other
applications or programs. By passing pieces of information to the classes and methods,
you can create useful, reusable code.

Another term that is often associated with C# is component. C# can also be used

to create components. Components are programs that can be incorporated into
other programs. These may or may not include the C# code. Once created, a component
can be used as a building block for other more complex programs.

C# Will Be Popular

C# is a newer programming language, but its popularity is already growing. One of the
key reasons for this growth is Microsoft and the promises of .NET.

Microsoft wants C# to be popular. Although a company cannot make a product popular,
it can help. Not long ago, Microsoft suffered the abysmal failure of the Microsoft Bob
operating system. Although Microsoft wanted Bob to be popular, it failed.

Getting Started with C#

C# stands a better chance of success than Microsoft Bob. I don’t know whether people at
Microsoft actually used Bob in their daily jobs. C#, however, is being used by Microsoft.
Many of its products have already had portions rewritten in C#. By using it, Microsoft
helps validate the capabilities of C# to meet the needs of programmers.

Microsoft .NET is another reason why C# stands a chance to succeed. .NET is a change
in the way the creation and implementation of applications is done. Although virtually
any programming language can be used with .NET, C# is proving to be the language of
choice.

Starting with Microsoft Windows Server 2003, the .NET Framework will be included
with Microsoft’s operating systems. This means that there will be no need to install the
runtime on future versions of Windows. This will give Windows developers the capabil-
ity to use all of the functionality built into the .NET Framework, without needing to dis-
tribute it with their applications. This can result in smaller applications.

C# will also be popular for all the features mentioned earlier: simplicity, object-orienta-
tion, modularity, flexibility, and conciseness.

A High-Level View of .NET

C# is a language that was created to work with the .NET Framework. The .NET
Framework consists of a number of pieces, including a runtime, a set of predefined rou-
tines, and a defined set of ways to store the information. C# programs take advantage of
these features of the platform.

You have already learned about the runtime: the Common Language Runtime (CLR).
The CLR offers a buffer between your compiled C# program and the specific operating
system you are using to run your C# program.

The standard way of storing information is accomplished through the Common Type
System (CTS). This is a set of storage types that a number of different programs can use.
More specifically, all of the programming languages used with the .NET platform use
these common types. By using a common system to define ways of storing information,
it is possible for different programming languages to share this information. You’ll learn
more about the CTS and the common types in Day 2’s lesson, “Understanding C#
Programs.”

The other key piece to the .NET platform is the set of defined routines that you can use.
These routines are a part of the .NET Base Class library (BCL). Thousands of routines
have been created that you can use from your C# programs. These include routines such
as printing information to a console window, as you did in the “Hello World” application,

| 28 Day 1

or more complex routines for creating forms and controls. Routines also exist for doing
file handling, working with XML, doing multitasking, and much more. You'll see lots of
these routines used throughout this book.

Nlltﬂ Note that these routines are fully available in the Microsoft .NET
Framework. In .NET Frameworks for other platforms, the routines were not
completed at the time this book was written. For example, the go-mono
project was still in the process of creating many of these routines. Projects

such as go-mono are working to convert the routines so that they will work
identically to the routines in Microsoft's .NET Framework.

The routines in the BCL, the CTS, and many other features of the .NET platform apply
to other .NET languages in the same way they apply to C#. For example, the routines in
the BCL are the same routines that are used by languages such as Microsoft Visual Basic
.NET, Microsoft J# .NET, and JScript .NET.

Because of the shared features from the .NET Framework, you will find that after you
learn C#, it is very simple to learn to use other .NET programming languages. In fact,
you can create routines in C# that can be used by other .NET languages as well.

C# and Object-Oriented Programming (OOP)

You’ve covered a lot of material already today; however, one more foundational topic
needs to be covered before jumping deep into the C# programming language. This is
object-oriented programming (OOP).

As mentioned earlier, C# is considered an object-oriented language. To take full advan-
tage of C#, you should understand the concepts of object-oriented languages. The follow-
ing sections present an overview of objects and what makes a language object-oriented.
You will learn how these concepts are applied to C# as you work through the rest of this
book.

Object-Oriented Concepts

What makes a language object-oriented? The most obvious answer is that the language
uses objects. However, this doesn’t tell you much. As stated earlier, three concepts gener-
ally are associated with object-oriented languages:

Getting Started with C#

29|

* Encapsulation
* Polymorphism

¢ Inheritance

A fourth concept is expected as a result of using an object-oriented language: reuse.

Encapsulation

Encapsulation is the concept of making “packages” that contain everything you need.
With object-oriented programming, this means that you can create an object (or package)
such as a circle that does everything that you would want to do with a circle. This
includes keeping track of everything about the circle, such as the radius and the center
point. It also means knowing how to handle the functionality of a circle, such as calculat-
ing its radius and possibly knowing how to draw it.

By encapsulating a circle, you allow the user to be oblivious to how the circle works; the
user needs to know only how to interact with the circle. This provides a shield to the
inner workings of the circle. Why should users care how information about a circle is
stored internally? As long as they can get the circle to do what they want, they shouldn’t.

Polymorphism

Polymorphism is the capability of assuming many forms. This can be applied to two
areas of object-oriented programming (if not more). First, it means that you can call an
object or a routine in many different ways and still get the same result. Using a circle as
an example, you might want to call a circle object to get its area. You can do this by
using three points or by using a single point and the radius. Either way, you would
expect to get the same results. In a procedure language such as C, you need two routines
with two different names to address these two methods of getting the area. In C#, you
still have two routines; however, you can give them the same name. Any programs that
you or others write will simply call the circle routine and pass your information. The cir-
cle program automatically determines which of the two routines to use. Based on the
information passed, the correct routine is used. Users calling the routine don’t need to
worry about which routine to use; they just call the routine.

A more important use of polymorphism is the capability to work with something even
though you might not know exactly what it is. Your program can adapt. For example, you
could have a number of different shapes, such as triangles, squares, and circles. You
could write a program that used polymorphism that could work with shapes. Because tri-
angles, squares, and circles are all shapes, your program could adapt to working with

all three of these. Although this type of programming is more complex than basic

|30

Day 1

programming, the power that it provides you is worth the complexity. You’ll learn to pro-
gram polymorphism in this manner on Day 12, “Tapping into OOP: Interfaces.”

Inheritance

Inheritance is the most complicated of the object-oriented concepts. Having a circle is
nice, but what if a sphere would be nicer? A sphere is just a special kind of circle: It has
all the characteristics of a circle, with a third dimension added. You could say that a
sphere is a special kind of circle that takes on all the properties of a circle and then adds
a little more. By using the circle to create your sphere, your sphere can inherit all the
properties of the circle. The capability of inheriting these properties is a characteristic of
inheritance.

Reuse

One of the key reasons an object-oriented language is used is the concept of reuse. When
you create a class, you can reuse it to create lots of objects. By using inheritance and
some of the features described previously, you can create routines that can be used again
in a number of programs and in a number of ways. By encapsulating functionality, you
can create routines that have been tested and proven to work. This means that you won’t
have to test the details of how the functionality works—only that you are using it cor-
rectly. This makes reusing these routines quick and easy.

Objects and Classes

Now that you understand the concepts of an object-oriented language, it is

important to understand the difference between a class and an object. A class is a
definition for an item that will be created. The actual item that will be created is an
object. Simply put, classes are definitions used to create objects.

An analogy often used to describe classes is a cookie cutter. A cookie cutter defines a
cookie shape. It isn’t a cookie, and it isn’t edible. It is simply a construct that can be used
to create shaped cookies repeatedly. When you use the cookie cutter to create cookies,
you know that each cookie will look the same. You also know that you can use the
cookie cutter to create lots of cookies.

As with a cookie cutter, a class can be used to create lots of objects. For example, you
can have a circle class that can be used to create a number of circles. If you create a
drawing program to draw circles, you could have one circle class and lots of circle
objects. You could make each circle in the snowman an object; however, you would need
only one class to define all of them.

Getting Started with C# 31 |

You also can have a number of other classes, including a name class, a card class, an
application class, a point class, a circle class, an address class, a snowman class (that can
use the circle class), and more.

N“tﬂ Classes and objects are covered again in more detail throughout this book.
Today’s information gives you an overview of the object-oriented concepts
and introduces you to some of the terminology. If you don’t fully under-

stand the terminology at this time, don’t worry; you'll understand these con-
cepts by the end of your 21 days.

Summary

At the beginning of today’s lesson, you learned what C# has to offer, including its power,
its flexibility, and its object orientation. You also learned that C# is considered simple
and modern.

Today you explored the various steps involved in writing a C# program—the process
known as program development. You should have a clear grasp of the edit-compile-test
cycle before continuing.

Errors are an unavoidable part of program development. Your C# compiler detects errors
in your source code and displays an error message, giving both the nature and the loca-
tion of the error. Using this information, you can edit your source code to correct the
error. Remember, however, that the compiler can’t always accurately report the nature
and location of an error. Sometimes you need to use your knowledge of C# to track down
exactly what is causing a given error message.

You ended today’s lesson with an overview of several object-oriented concepts. You were
introduced to a number of technical concepts, including polymorphism, inheritance,
encapsulation, and reuse. You also learned the conceptual difference between a class and
an object. Because OOP is central to C#, you’ll learn more about these concepts through-
out this book.

A lot was covered in your first day of C#. Many of the concepts and technical terms will
be covered again as you progress through this book. Before moving on to Day 2, you
should make sure that you are comfortable with the steps of entering, compiling, and
running a C# program, as shown earlier. Don’t worry about understanding the actual C#
code at this time. That is the focus of the rest of this book!

|32

Day 1

Q&A

Q
A

Will a C# program run on any machine?

No. A C# program will run only on machines that have the Common Language
Runtime (CLR) installed. If you copy the executable program to a machine that
does not contain the CLR, you get an error. On versions of Microsoft Windows
without the CLR, you usually are told that a DLL file is missing.

If I want to give people a program that I wrote, which files do I need to give
them?

One of the nice things about C# is that it is a compiled language. This means that
after the source code is compiled, you have an executable program. If you want to
give the hello program to all your friends with computers, you can. You give them
the executable program, Hello.exe. They don’t need the source file, hello.cs, and
they don’t need to own a C# compiler. They do need to use a computer system that
has a .NET runtime, such as the Common Language Runtime (CLR) from
Microsoft.

After I create an executable file, do I need to keep the source file (.cs)?

If you get rid of the source file, you have no easy way to make changes to the pro-
gram in the future, so you should keep this file.

Most Integrated Development Environments create files in addition to the source
file (.cs) and the executable file. As long as you keep the source file (.cs), you can
almost always re-create the other files. If your program uses external resources,
such as images and forms, you also need to keep those files in case you need to
make changes and re-create the executable.

If my compiler came with an editor, do I have to use it?

Definitely not. You can use any editor, as long as it saves the source code in text
format. If the compiler came with an editor, you should try to use it. If you like a
different editor better, use it. I use an editor that I purchased separately, even
though all my compilers have their own editors. The editors that come with com-
pilers are getting better. Some of them automatically format your C# code. Others
color-code different parts of your source file, to make it easier to find errors.

Do I need a copy of Microsoft Visual Studio .NET or Microsoft Visual C#
.NET to do C# programming?

No. However, you do need a C# compiler and a copy of a .NET runtime. The
Microsoft NET Framework—which was free to download at the time this book
was written—contains a C# compiler as well as the runtime that you need to exe-

Getting Started with C# 33 |

(=}

cute your programs. You can also use different C# compilers and runtimes. For
example, you can download a C# compiler and runtime from www.go-mono.com. The
mono products will work with platforms such as Windows, Linux, and more.

One caution is that some of the available compilers and runtime might not fully
support all of the functionality of the Microsoft platform. If a C# compiler has
been released, it should fully support the C# language. The C# language is covered
in the first 14 days of this book. During the last week, a number of the NET
Framework classes are covered. Compilers and runtimes that are not complete
might not fully support everything in the last week. The Microsoft .NET
Framework supports everything presented in this book.

Can I ignore warning messages?

Some warning messages don’t affect how the program runs, and some do. If the
compiler gives you a warning message, it’s a signal that something isn’t right.
Most compilers let you set the warning level. By setting the warning level, you can
get only the most serious warnings, or you can get all the warnings, including the
most minute. Some compilers even offer various levels between. In your programs,
you should look at each warning and make a determination. It’s always best to try
to write all your programs with absolutely no warnings or errors. (With an error,
your compiler won’t create the executable file.)

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the day’s
lesson. Answers are provided on the CD.

Quiz

1.

2
3.
4

W

Give three reasons why C# is a great choice of programming language.

. What do IL and CLR stand for?

What are the steps in the program-development cycle?

. What command do you need to enter to compile a program called My_prog.cs with

your compiler?

What extension should you use for your C# source files?

6. Is Filename.txt a valid name for a C# source file?

|34

Day 1

If you execute a program that you have compiled and it doesn’t work as you
expected, what should you do?

8. What is machine language?

9. On what line did the following error most likely occur?
My_prog.cs(35,6): error CS1010: Newline in constant
10. Near what column did the following error most likely occur?
My_prog.cs(35,6): error CS1010: Newline in constant
11. What are the key OOP concepts?
Exercises
1. Use your text editor to look at the EXE file created by Listing 1.1. Does the EXE
file look like the source file? (Don’t save this file when you exit the editor.)
2. Enter the following program and compile it. (Don’t include the line numbers or

colons.) What does this program do?

1: // Variables.cs - Using variables and literals
: /] This program calculates some circle stuff.
R R R

2

3

4:

5: using System;
6-

7: class Variables
8

A
9: public static void Main()
10: {
11: //Declare variables
12:
13: int radius = 4;
14: const double PI = 3.14159;
15: double circum, area;
16:
17: //Do calculations
18:
19: area = PI * radius * radius;
20: circum = 2 * PI * radius;
21:
22: //Print the results
23:
24: Console.WritelLine("Radius = {0}, PI = {1}", radius, PI);
25: Console.WritelLine("The area is {@}", area);
26: Console.WriteLine("The circumference is {0}", circum);
27: }

Getting Started with C# 35 |

3. Enter and compile the following program. What does this program do?
class AClass

—_

2:

3: public static void Main()

4: {

5: int x,y;

6: for (x = 0; x < 10; x++, System.Console.Write("\n"))
7: for (y =0; y <10; y++)

8: System.Console.Write("X");

9: }

10: }

4. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1: class Hello

2: {

3: public static void Main()

4: {

5: System.Console.WriteLine(Keep Looking!);
6: System.Console.WriteLine(You'll find it!);
7: }

8: }

5. Make the following change to the program in Exercise 3. Recompile and rerun this
program. What does the program do now?

8: System.Console.Write("{0}", (char) 1);

TYPE & RUN 1

Numbering Your Listings

Throughout this book, you will find a number of Type & Run sections. These
sections present a listing that is a little longer than the listings within the daily
lessons. The purpose of these listings is to give you a program to type in and
run. The listings might contain elements not yet explained in the book.

These programs generally do something either fun or practical. For instance,
the program included here, named NumberIT, adds line numbers similar to
those included on the listings in this book. You can use this program to number
your listings as you work through the rest of this book.

I suggest that after you type in and run these programs, you take the time to
experiment with the code. Make changes, recompile, and then rerun the pro-
grams. See what happens. There won’t be explanations on how the code
works—only on what it does. Don’t fret, though. By the time you complete this
book, you should understand everything within these earlier listings. In the
meantime, you will have had the chance to enter and run some listings that are
a little more fun or practical.

|38

Type & Run 1

The First Type & Run

Enter and compile the following program. If you get any errors, make sure you entered
the program correctly.

The usage for this program is NumberlT filename.ext, where filename.ext is the source
filename along with the extension. Note that this program adds line numbers to the list-
ing. (Don’t let this program’s length worry you; you’re not expected to understand it yet.
It’s included here to help you compare printouts of your programs with the ones given in
the book.)

LisTING T&R 1.1 NumberlT.cs

1:
2:
3
4
5:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

using System;

using System.IO;

: //] <summary>

/// Class to number a listing. Assumes fewer than 1000 lines.

: [/ </summary>

: class NumberIT

{
/1] <summary>
//] The main entry point for the application.
/1] </summary>

public static void Main(string[] args)

{
/] check to see if a file name was included on the
// command line.
if (args.Length <=0)
{
Console.WriteLine("\nYou need to include a filename.");
}
else
{

/| declare objects for connecting to files...
StreamReader InFile = null;
StreamWriter OutFile = null;

try

{
// Open file name included on command line...
InFile = File.OpenText(args([Q]);
/| Create the output file...

Numbering Your Listings 39 |

LisTING T&R1.1 continued

36: OutFile = File.CreateText("outfile.txt");
37:

38: Console.Write("\nNumbering...");

39:

40: // Read first line of the file...

41: string line = InFile.ReadLine();

42: int ctr = 1;

43:

44: // loop through the file as long as not at the end...
45: while (line != null)

46: {

47: OutFile.WriteLine("{@}: {1}",

48: ctr.ToString().PadLeft(3,'0'), line);
49: Console.Write("..{0}..", ctr.ToString());
50: ctr++;

51: line = InFile.ReadLine();

52: }

53: }

54: catch (System.IO.FileNotFoundException)

55: {

56: Console.WriteLine ("Could not find the file {0}", args[0]);
57: }

58: catch (Exception e)

59: {

60: console.WriteLine("Error: {0}", e.Message);
61: }

62: finally

63: {

64: if(InFile != null)

65: {

66: /| Close the files

67: InFile.Close();

68: OutFile.Close();

69: Console.WriteLine("...Done.");

70: }

71: }

72: }

73: }

74: }

You will also find that the Type & Runs don’t contain line-by-line analysis like many of
the listings within the books. Instead, a few key concepts are highlighted.

Enter the previous listing and compile it. If you need to, refer to Day 1, “Getting Started
with C#,” for the steps to enter, compile, and run a listing. When you run this listing on
the command line as follows:

|40

Type & Run 1

NumberIT

you will get this message:

You need to include a filename.
OutpuTt

This listing takes a command-line parameter that is the name of the file that you want
numbered. For example, to number the NumberIT.cs listing, you would enter this:

NumberIT NumberIT.cs

When this program executes, it displays the following to the screen:

OuTPUT

Numbering..... 1....2....8....4....56....6....7....8....9....10....11....
13....14....15....16....17....18....19....20....21....22....23....
..25....26....27....28....29....30....31....32....33....34....35....
37....38....39....40....41....42....43....44....45....46....47....
..49....50....51....52....58....54....55....56..... Done.

2....

4..
6....
8

In addition to displaying this output, the listing creates an additional file named
outfile.txt. This file contains the numbered version of the listing that you passed as a
command-line parameter. If you want the output to be a different name, you can change

the name in Line 36.

AN =

The source code for this listing is available on the included CD. Any updates
to the code will be available at www.TeachYourselfCSharp.com.

WEEK 1

DAY 2

Understanding C#
Programs

In addition to understanding the basic composition of a program, you need to
understand the structure of creating a C# program. Today you...

* Learn about the parts of a C# application.

¢ Understand C# statements and expressions.

* Explore the basic storage types for C# programs.

* Learn what a variable is.

* Discover how to create variable names in C#.

» Use different types of numeric variables.

¢ Evaluate the differences and similarities between character and numeric
values.

¢ See how to declare and initialize variables.

| 42 Day 2

Dissecting a C# Application

The first part of today’s lesson focuses on a simple C# application. Using Listing 2.1,
you will gain an understanding of some of the key parts of a C# application.

LisTING 2.1 App.cs—Example C# Application

1: // App.cs - A sample C# application

2: // Don't worry about understanding everything in
3: // this listing. You'll learn all about it later!
L R R R R R EE
5:

6: using System;

7:

8: class App

9: {

10: public static void Main()

11: {

12: //Declare variables

13:

14: int radius = 4;

15: const double PI = 3.14159;

16: double area;

17:

18: //Do calculation

19:

20: area = PI * radius * radius;

21:

22: //Print the results

23:

24: Console.WritelLine("Radius = {0}, PI = {1}", radius, PI);
25: Console.WritelLine("The area is {@}", area);
26: }

27: }

You should enter this listing into your editor and then use your compiler to create the
program. You can save the program as App.cs. When compiling the program, you enter
the following at the command prompt:

csc App.cs

Alternatively, if you are using a visual editor, you should be able to select a compiler
from the menu options.

Understanding C# Programs 43 |

I:Ellltillll Remember, you don’t enter the line numbers or the colons when you are
entering the listing. The line numbers help in discussing the listing in the

lessons.

When you run the program, you get the following output:

Radius = 4, PI = 3.14159
Output The area is 50.26544
As you can see, the output from this listing is pretty straightforward. The value of a

radius and the value of p1 are displayed. The area of a circle based on these two values is
then displayed.

In the following sections, you learn about some of the different parts of this program.
Don’t worry about understanding everything. In the lessons presented on later days, you
will be revisiting this information in much greater detail. The purpose of the following
sections is to give you a first look.

Starting with Comments

The first four lines of Listing 2.1 are comments. Comments are used to enter information
in your program that can be ignored by the compiler. Why would you want to enter
information that the compiler will ignore? There are a number of reasons.

Comments are often used to provide descriptive information about your listing—for
example, identification information. Additionally, by entering comments, you can docu-
ment what a listing is expected to do. Even though you might be the only one who uses a
listing, it is still a good idea to put in information about what the program does and how
it does it. Although you know what the listing does now—because you just wrote it—
you might not be able to remember later what you were thinking. If you give your listing
to others, the comments will help them understand what the code was intended to do.
Comments can also be used to provide revision history of a listing.

The main thing to understand about comments is that they are for programmers using the
listing. The compiler actually ignores them. In C#, you can use three types of comments:
¢ One-line comments
e Multiline comments

¢ Documentation comments

|44 Day 2

“I] The compiler removes comments, so there is no penalty for having them in
your program listings. If in doubt, you should include a comment.

One-Line Comments
Listing 2.1 uses one-line—also called single-line—comments in Lines 1-4 and Lines 12,
18, and 22. One-line comments have the following format:

// comment text

The two slashes indicate that a comment is beginning. From that point to the end of the
current line, everything is treated as a comment.

A one-line comment does not have to start at the beginning of the line. You can actually
have C# code on the line before the comments; however, after the two forward slashes,
the rest of the line is a comment.

Multiline Comments

Listing 2.1 does not contain any multiline comments, but sometimes you want a com-
ment to go across multiple lines. In this case, you can either start each line with the dou-
ble forward slash (as in Lines 1-4 of the listing), or you can use multiline comments.

Multiline comments are created with a starting and ending token. To start a multiline
comment, you enter a forward slash followed by an asterisk:

/*

Everything after that token is a comment until you enter the ending token. The ending
token is an asterisk followed by a forward slash:

*/
The following is a comment:
/* this is a comment */

The following is also a comment:

/* this is

a comment that
is on

a number of
lines */

Understanding C# Programs 45 |

You can also enter this comment as the following:

/] this is

// a comment that
// is on

// a number of

// lines

The advantage of using multiline comments is that you can “comment out” a section of a
code listing by simply adding /* and */. The compiler ignores anything that appears
between the /* and the */ as a comment.

ﬂﬂlllillll You cannot nest multiline comments. This means that you cannot place one
multiline comment inside of another. For example, the following is an error:
/* Beginning of a comment...

/* with another comment nested */
*/

Documentation Comments

C# has a special type of comment that enables you to create external documentation
automatically.

These comments are identified with three slashes instead of the two used for single-line
comments. These comments also use Extensible Markup Language (XML)—style tags.
XML is a standard used to mark up data. Although any valid XML tag can be used, com-
mon tags used for C# include <c>, <code>, <example>, <exception>, <list>, <para>, <param>,

<paramref>, <permission>, <remarks>, <returns>, <see>, <seealso>, <summary>, and <value>.

These comments are placed in your code listings. Listing 2.2 shows an example of
these comments being used. You can compile this listing as you have earlier listings. See
Day 1, “Getting Started with C#,” if you need a refresher.

LisTING 2.2 Xmlapp.cs—Using XML Comments

// Xmlapp.cs - A sample C# application using XML
Il documentation
R R

/1] <summary>

/// This is a summary describing the class.</summary>

/1] <remarks>

//] This is a longer comment that can be used to describe

0N O~ WN =

| 46 Day 2

LISTING 2.2 continued

9: /// the class. </remarks>
10: class Xmlapp
11: {

12: /1] <summary>

13: /// The entry point for the application.

14: [/ </summary>

15: /1] <param name="args"> A list of command line arguments</param>
16: public static void Main(string[] args)

17: {

18: System.Console.WriteLine("An XML Documented Program");

19: }

20: }

When you compile and execute this listing, you get the following output:

An XML Documented Program
OuTtpuT

To get the XML documentation, you must compile this listing differently from what you
have seen before. To get the XML documentation, add the /doc parameter when you
compile at the command line. If you are compiling at the command line, you enter this:

csc /doc:xmlfile Xmlapp.cs
When you compile, you get the same output as before when you run the program. The
difference is that you also get a file called xmlfile that contains documentation in XML.

You can replace xmlfile with any name that you want to give your XML file. For Listing
2.2, the XML file is this:

<?xml version="1.0"?>

<doc>
<assembly>
<name>Xmlapp</name>
</assembly>
<members>
<member name="T:Xmlapp">
<summary>
This is a summary describing the class.</summary>
<remarks>

This is a longer comment that can be used to describe
the class. </remarks>
</member>
<member name="M:Xmlapp.Main(System.String[])">
<summary>
The entry point for the application.
</summary>

Understanding C# Programs 47 |

<param name="args"> A list of command line arguments</param>

</member>
</members>
</doc>
XML and XML files are beyond the scope of this book.
Note
Nl]lﬂ If you are compiling from within an Integrated Development Environment,
you need to check the documentation or help system to learn how to gener-
ate the XML documentation. Even if you are using such a tool, you can com-
pile your programs from the command line, if you want. If you are using
Microsoft Visual Studio .NET, you can set the project to generate the XML
documentation by doing the following:
1. Go to the Solution Explorer. See the documentation if you are unsure
of what the Solution Explorer is.
2. Right-click the project name and select the Properties page.
3. Click the Configuration Properties folder to select it.
4. Click the Build option to select it.
5. In the dialog box (shown in Figure 2.1), enter a filename for the XML
Documentation File property. In the dialog box in Figure 2.1, the
name MyXMLDocs was entered.
FIGURE 2.1 atTciatePrapartyPogs
stion: [= Patform: [a B
Setting the documenta- w_mim_m_tm‘ P — ol S
tion comments switch S ek i S
Dabusggng For . F
in Visual Studio .NET. e ;BI;.“::*.,::;‘:._?..T‘?";;:“"”* e
| wurwm:d — Waring vl 4

Trest Waeinge Aelivove Pl
B iitpasts

Cutpak Fagh

[
SRR R oo ooce
G ot Doty Indcruicn Trum

| Sphciad tha nesa oF Fila it which documantation commackt vl b
| processed. Path mest be reletive Lo the profect deedtory (dech.

[Cocel | ook | Hee |

| 48 Day 2

Basic Parts of a C# Application

A programming language is composed of a bunch of keywords that have special mean-
ings. A computer program is the formatting and use of these words in an organized
manner, along with a few additional words and symbols. The key parts of a C# language
include the following:

* Whitespace
e C# keywords
 Literals

¢ Identifiers

Formatting with Whitespace

Listing 2.1 has been formatted so that the code lines up and is relatively easy to

read. The blank spaces put into a listing are called whitespace. The basis of this

term is that, on white paper, you can’t see the spaces. Whitespace can consist of spaces,
tabs, linefeeds, and carriage returns.

The compiler almost always ignores whitespace. Because of this, you can add as many
spaces, tabs, and linefeeds as you want. For example, consider Line 14 from Listing 2.1:

int radius = 4;

This is a well-formatted line with a single space between items. This line could have had
additional spaces:

int radius = 4 ;

This line with extra spaces executes the same way as the original. In fact, when the pro-
gram is run through the C# compiler, the extra whitespace is removed. You could also
format this code across multiple lines:

int

radius

4

Although this is not very readable, it still works.

The exception to the compiler ignoring whitespace has to do with the use of text within
quotation marks. When you use text within double quotes, whitespace is important
because the text is to be used exactly as presented. Text has been used within quotation
marks with the listings you have seen so far. In Listing 2.1, Lines 24-25 contain text

Understanding C# Programs

49|

within double quotes. This text is written exactly as it is presented between the quotation

marks.

Tip

The Heart of C#: Keywords

Because the compiler ignores whitespace, you should make liberal use of it
to help format your code and make it readable.

Keywords are the specific terms that have special meaning and, therefore, make up a lan-
guage. The C# language has a number of keywords, listed in Table 2.1.

TAaBLE 2.1 The C# Keywords
abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
while

Note

A few other words are used in C# programs: get, set, and value. Although
these reserved words are not keywords, they should be treated as though

they are.

In future versions of C#, partial, yield, and where might also become key-

words.

|50

Day 2

Nnte Appendix A, "C# Keywords,” contains short definitions for each of the C#
keywords.

These keywords have a specific meaning when you program in C#. You will learn the
meaning of these as you work through this book. Because all these words have a special
meaning, they are reserved; you should not use them for your own use. If you compare
the words in Table 2.1 to Listing 2.1 or any of the other listings in this book, you will see
that much of the listing is composed of keywords.

Literals

- Literals are straightforward hard-coded values. They are literally what they are!
New Term

For example, the numbers 4 and 3.14159 are both literals. Additionally, the text
within double quotes is literal text. Later today, you will learn more details on literals
and their use.

Identifiers

In addition to C# keywords and literals, other words are used within C# pro-
New Term

grams. These words are considered identifiers. Listing 2.1 contains a number of
identifiers, including System in Line 6; sample in Line 8; radius in Line 14; PI in line 15;
area in Line 16; and PI, radius, and area in Line 22.

Exploring the Structure of a C# Application

Words and phrases are used to make sentences, and sentences are used to make para-
graphs. In the same way, whitespace, keywords, literals, and identifiers are combined to
make expressions and statements. These, in turn, are combined to make a program.

Understanding C# Expressions and Statements

Expressions are like phrases: They are snippets of code made up of keywords.

For example, the following are simple expressions:
PI = 3.14159

PI * radius * radius

Statements are like sentences; they complete a single thought. A statement generally ends
with a punctuation character—a semicolon (;). In Listing 2.1, Lines 14-16 are examples
of statements.

Understanding C# Programs 51 |

The Empty Statement

One general statement deserves special mention: the empty statement. As you learned
previously, statements generally end with a semicolon. You can actually put a semicolon
on a line by itself. This is a statement that does nothing. Because there are no expres-
sions to execute, the statement is considered an empty statement. You’ll learn on Day 4,
“Controlling Your Program’s Flow,” when you need to use an empty statement.

Analyzing Listing 2.1
It is worth taking a closer look at Listing 2.1 now that you’ve learned of some of
the many concepts. The following sections review each line of Listing 2.1.

Lines 1-4: Comments

As you already learned, Lines 1-4 contain comments that the compiler ignores. These
are for you and anyone who reviews the source code.

Lines 5, 7, 13, 17, 21, and 23: Whitespace

Line 5 is blank. You learned that a blank line is simply whitespace that the compiler
ignores. This line is included to make the listing easier to read. Lines 7, 13, 17, 21, and
23 are also blank. You can remove these lines from your source file, and there will be no
difference in how your program runs.

Line 6—The using Statement

Line 6 is a statement that contains the keyword using and a literal system. As with most
statements, this ends with a semicolon. The using keyword is used to condense the
amount of typing you need to do in your listing. Generally, the using keyword is used
with namespaces. Namespaces and details on the using keyword are covered in some
detail on Day 5, “The Core of C# Programming: Classes.”

Line 8—Class Declaration

C# is an object-oriented programming (OOP) language. Object-oriented languages use
classes to declare objects. This program defines a class called App. Although classes are
used throughout this entire book, the coding details concerning classes start on Day 5.

Lines 9, 11, 26, and 27: Punctuation Characters

Line 9 contains an opening bracket that is paired with a closing bracket in Line 27. Line
11 has an opening bracket that is paired with the closing one in Line 26. These sets of

| 52 Day 2

brackets contain and organize blocks of code. As you learn about different commands
over the next four days, you will see how these brackets are used.

Line 10: Main()

The computer needs to know where to start executing a program. C# programs
start executing with the main() function, as in Line 10. A function is a grouping
of code that can be executed by calling the function’s name. You’ll learn the details about
functions on Day 6, “Packaging Functionality: Class Methods and Member Functions.”
The main() function is special because it is used as a starting point.

Lines 14-16: Declarations

Lines 14-16 contain statements used to create identifiers that will store information.
These identifiers are used later to do calculations. Line 14 declares an identifier to store
the value of a radius. The literal 4 is assigned to this identifier. Line 15 creates an identi-
fier to store the value of PI. This identifier, p1, is filled with the literal value of 3.14159.
Line 16 declares an identifier that is not given any value. You’ll learn more about creat-
ing and using these identifiers, called variables, later today.

Line 20: The Assignment Statement

Line 20 contains a simple statement that multiplies the identifier 1 by the radius twice.
The result of this expression is then assigned to the identifier area. You’ll learn more
about creating expressions and doing operations in tomorrow’s lesson.

Lines 24-25: Calling Functions

Lines 24-25 are the most complex expressions in this listing. These two lines call a pre-
defined routine that prints information to the console (screen). You learned about these
routines yesterday, and you’ll see them used throughout this entire book.

Storing Information with Variables

When you start writing programs, you will quickly find that you need to keep track of
different types of information. This might be tracking your clients’ names, the amounts
of money in your bank accounts, or the ages of your favorite movie stars. To keep track
of this information, your computer programs need a way to store the values.

Storing Information in Variables

A variable is a named data storage location in your computer’s memory. By using a vari-
able’s name in your program, you are, in effect, referring to the information stored there.

Understanding C# Programs

53|

For example, you could create a variable called my_variable that holds a number. You
would be able to store different numbers in the my_variable variable.

You could also create variables to store information other than a simple number. You
could create a variable called BankAccount to store a bank account number, a variable
called email to store an email address, or a variable called address to store a person’s
mailing address. Regardless of what type of information will be stored, a variable is used
to obtain its value.

Naming Your Variables

To use variables in your C# programs, you must know how to create variable names. In
C#, variable names must adhere to the following rules:

* The name can contain letters, digits, and the underscore character (_).

* The first character of the name must be a letter. The underscore is also a legal first
character, but its use is not recommended at the beginning of a name. An under-
score is often used with special commands. Additionally, it is sometimes hard to
read.

* Case matters (that is, upper- and lowercase letters). C# is case sensitive; thus, the
names count and Count refer to two different variables.

» C# keywords can’t be used as variable names. Recall that a keyword is a word that
is part of the C# language. (A complete list of the C# keywords can be found in
Appendix A.)

The following list contains some examples of valid and invalid C# variable names:

Variable Name Legality

Percent Legal

y2x5__w7h3 Legal

yearly cost Legal

_2010_tax Legal, but not advised
checking#account Illegal; contains the illegal character #
double Illegal; is a C keyword

9byte Illegal; first character is a digit

|54

Day 2

Because C# is case-sensitive, the names percent, PERCENT, and Percent are considered
three different variables. C# programmers commonly use only lowercase letters in vari-
able names, although this isn’t required; often programmers use mixed case as well.
Using all-uppercase letters is usually reserved for the names of constants (which are cov-
ered later today).

Variables can have any name that fits the rules listed previously. For example, a program
that calculates the area of a circle could store the value of the radius in a variable named
radius. The variable name helps make its usage clear. You could also have created a vari-
able named x or even billy gates; it doesn’t matter. Such a variable name, however,
wouldn’t be nearly as clear to someone else looking at the source code. Although it
might take a little more time to type descriptive variable names, the improvements in
program clarity make it worthwhile.

Many naming conventions are used for variable names created from multiple words.
Consider the variable name circle_radius. Using an underscore to separate words in a
variable name makes it easy to interpret. Another style is called Pascal notation. Instead
of using spaces, the first letter of each word is capitalized. Instead of circle_radius, the
variable would be named circleradius. Yet another notation that is growing in popularity
is camel notation. Camel notation is like Pascal notation, except that the first letter of the
variable name is also lowercase. A special form of camel notation is called Hungarian
notation. With Hungarian notation, you also include information in the name of the vari-
able—such as whether it is numeric, has a decimal value, or is text—that helps to iden-
tify the type of information being stored. The underscore is used in this book because it’s
easier for most people to read. You should decide which style you want to adopt.

o

Nﬂtﬂ C# supports a Unicode character set, which means that letters from any lan-
guage can be stored and used. You can also use any Unicode character to

Do use variable names that are descrip- Don’t name your variables with all capi-
tive. tal letters unnecessarily.

Do adopt and stick with a style for nam-

ing your variables.

name your variables.

Understanding C# Programs 55 |

Using Your Variables

Before you can use a variable in a C# program, you must declare it. A variable declara-
tion tells the compiler the name of the variable and the type of information that the vari-
able will be used to store. If your program attempts to use a variable that hasn’t been
declared, the compiler generates an error message.

Declaring a variable also enables the computer to set aside memory for the variable. By
identifying the specific type of information that will be stored in a variable, you can gain
the best performance and avoid wasting memory.

Declaring a Variable

A variable declaration has the following form:
typename varname;

typename specifies the variable type. In the following sections, you will learn about the
types of variables that are available in C#. varname is the name of the variable. To declare
a variable that can hold a standard numeric integer, you use the following line of code:

int my_number;

The name of the variable declared is my_number. The data type of the variable is int. As
you will learn in the following section, the type int is used to declare integer variables,
which is perfect for this example.

You can also declare multiple variables of the same type on one line by separating the
variable names with commas. This enables you to be more concise in your listings.
Consider the following line:

int count, number, start;

This line declares three variables: count, number, and start. Each of these variables is type
int, which is for integers.

Nl]tﬂ Although declaring multiple variables on the same line can be more concise,
| don’t recommend that you always do this. Sometimes it is easier to read
and follow your code by using multiple declarations. There will be no
noticeable performance loss by doing separate declarations.

|56

Day 2

Assigning Values to Your Variables

Now that you know how to declare a variable, it is important to learn how to store val-
ues. After all, the purpose of a variable is to store information.

The format for storing information in a variable is as follows:
varname = value;

You have already seen that varname is the name of the variable. value is the value that
will be stored in the variable. For example, to store the number 5 in the variable,
my_variable, you enter the following:

my_variable = 5;

You can assign a value to a variable any time after it has been declared. You can even do
this at the same time you declare a variable:

int my_variable = 5;

A variable’s value can also be changed. To change the value, you simply reassign a new
value:

my_variable = 1010;

Listing 2.3 illustrates assigning values to a couple of variables. It also shows that you can
overwrite a value.

LisTING 2.3 var_values.cs—Assigning Values to a Variable

01: // var_values.cs - A listing to assign and print the value

02: // of variables

(N R R R T TR
04:

05: using System;

06:

07: class var_values

08: {

09: public static void Main()

10: {

11: /] declare first_var

12: int first_var;

13:

14: /| declare and assign a value to second_var
15: int second_var = 200;

16:

17: /] assign an initial value to first_var...
18: first_var = 5;

19:

Understanding C# Programs 57 |

LisTING 2.3 continued

20: // print values of variables...

21: Console.WriteLine("\nfirst_var contains the value {0}", first_var);
22: Console.WritelLine("second_var contains the value {0}", second_var);
23:

24: /] assign a new value to the variables...

25: first_var = 1010;

26: second_var = 2020;

27:

28: // print new values...

29: Console.WritelLine("\nfirst_var contains the value {0}", first_var);
30: Console.WritelLine("second_var contains the value {0}", second_var);
31: }

32: }

first_var contains the value 5

O IULUN ccond var contains the value 200

second_var contains the value 2020

Enter this listing into your editor, compile it, and execute it. If you need a
refresher on how to do this, refer to Day 1. The first three lines of this listing are
comments. Lines 11, 14, 17, 20, 24, and 28 also contain comments. Remember that com-
ments provide information; the compiler ignores them. Line 5 includes the system
namespace that you need to do things such as write information. Line 7 declares the class
that will be your program (var_values). Line 9 declares the entry point for your program,
the mMain() function. Remember, main() must be capitalized or you’ll get an error.

ANALYSIS

first_var contains the value 1010

Line 12 declares the variable first_var of type integer (int). After this line has executed,
the computer knows that a variable called first_var exists and enables you to use it.
Note, however, that this variable does not yet contain a value. In Line 15, a second vari-
able called second_var is declared and also assigned the value of 2¢e. In Line 18, the
value of 5 is assigned to first_var. Because first_var was declared earlier, you don’t
need to include the int keyword again.

Lines 21-22 print the values of first_var and second_var. In Lines 25-26, new values are
assigned to the two variables. Lines 29-30 then reprint the values stored in the variables.
You can see when the new values print that the old values of 5 and 200 are gone.

-) You must declare a variable before you can use it.
Gaution

|58

Day 2

N“tﬂ In other languages, such as C and C++, this listing would compile. The value
printed for the uninitialized first_var in these other languages would be

Issues with Uninitialized Variables

You will get an error if you don’t assign a value to a variable before it is used. You can
see this by modifying Listing 2.3. Add the following line of code after Line 12:

Console.WriteLine("\nfirst_var contains the value {0}", first var);

You can see that in Line 12, first_var is declared; however, it is not assigned any value.
What value would you expect first_var to have when the preceding line tries to print it
to the console? Because first_var hasn’t been assigned a value, you have no way of
knowing what the value will be. In fact, when you try to recompile the listing, you get an
error:
var_values2.cs(13,63): error CS0165: Use of unassigned local variable

'first_var'
It is best to always assign a value to a variable when you declare it. You should do this
even if the value is temporary.

garbage. C# prevents this type of error from occurring.

Understanding Your Computer’s Memory

Variables are stored in your computer’s memory. If you already know how a computer’s
memory operates, you can skip this section. If you’re not sure, read on. This information
is helpful to understanding how programs store information.

What is your computer’s memory (RAM) used for? It has several uses, but only data
storage need concern you as a programmer. Data is the information with which your C#
program works. Whether your program is maintaining a contact list, monitoring the stock
market, keeping a budget, or tracking the price of snickerdoodles, the information
(names, stock prices, expense amounts, or prices) is kept within variables in your com-
puter’s memory when it is being used by your running program.

A computer uses random access memory (RAM) to store information while it is operat-
ing. RAM is located in integrated circuits, or chips, inside your computer. RAM is
volatile, which means that it is erased and replaced with new information as often as
needed. Being volatile also means that RAM “remembers” only while the computer is
turned on and loses its information when you turn the computer off.

Understanding C# Programs

A byte is the fundamental unit of computer data storage. Each computer has a certain
amount of RAM installed. The amount of RAM in a system is usually specified in
megabytes (MB), such as 64MB, 128MB, 256MB, or more. IMB of memory is 1,024
kilobytes (KB). 1KB of memory consists of 1,024 bytes. Thus, a system with 8MB of
memory actually has 8 x 1,024KB, or 8,192KB of RAM. This is 8,192KB x 1,024 bytes,
for a total of 8,388,608 bytes of RAM. Table 2.2 provides you with an idea of how many
bytes it takes to store certain kinds of data.

TABLE 2.2 Minimum Memory Space Generally Required to Store Data

Data Bytes Required
The letter x 2

The number 500 2

The number 241.105 4

The phrase “Teach Yourself C#” 34

One typewritten page Approximately 4,000

The RAM in your computer is organized sequentially, with one byte following another.
Each byte of memory has a unique address by which it is identified—an address that also
distinguishes it from all other bytes in memory. Addresses are assigned to memory loca-
tions in order, starting at 0 and increasing to the system limit. For now, you don’t need to
worry about addresses; it’s all handled automatically.

Now that you understand a little about the nuts and bolts of memory storage, you can get
back to C# programming and how C# uses memory to store information efficiently.

Introducing the C# Data Types

You know how to declare, initialize, and change the values of variables; it is important
that you know the data types that you can use. You learned earlier that you have to
declare the data type when you declare a variable. You’ve seen that the int keyword
declares variables that can hold integers. An integer is simply a whole number that does-
n’t contain a fractional or decimal portion. The variables that you’ve declared to this
point hold only integers. What if you want to store other types of data, such as decimals
or characters?

|60

Day 2

Numeric Variable Types

C# provides several different types of numeric variables. You need different types of vari-
ables because different numeric values have varying memory storage requirements and
differ in the ease with which certain mathematical operations can be performed on them.
Small integers (for example, 1, 199, and -8) require less memory to store, and your com-
puter can perform mathematical operations (addition, multiplication, and so on) with
such numbers very quickly. In contrast, large integers and values with decimal points
require more storage space and more time for mathematical operations. By using the
appropriate variable types, you ensure that your program runs as efficiently as possible.

The following sections break the different numeric data types into four categories:

* Integral
* Floating point
* Decimal
* Boolean
The amount of memory used to store a variable is based on its data type. Listing 2.4 is a

program that contains code beyond what you know right now; however, it provides you
with the amount of information needed to store some of the different C# data types.

You must include extra information for the compiler when you compile this listing. This
extra information is referred to as a ”’flag” to the compiler and can be included on the
command line. Specifically, you need to add the /unsafe flag, as shown:

csc /unsafe sizes.cs

If you are using an Integrated Development Environment, you need to set the unsafe
option as instructed by its documentation.

Nﬂtﬂ If you are using Microsoft Visual Studio .NET, you can set the unsafe flag in
the same dialog box where you set the XML documentation filename.

LisTING 2.4 Sizes.cs—Memory Requirements for Data Types

/| Sizes.cs--Program to tell the size of the C# variable types

1
2
3:
4: using System;
5:
6

class Sizes

Understanding C# Programs 61 |

LisTING 2.4 continued

7:

8: unsafe public static void Main()

9: {

10: Console.WriteLine("\nA byte is {0} byte(s)", sizeof(byte));

11: Console.WriteLine("A sbyte is {0} byte(s)", sizeof(shyte));

12: console.WriteLine("A char is {0} byte(s)", sizeof(char));

13: Cconsole.WriteLine("\nA short is {0} byte(s)", sizeof(short));

14: Console.WriteLine("An ushort is {0} byte(s)", sizeof(ushort));

15: console.WriteLine("\nAn int is {0} byte(s)", sizeof(int));

16: console.WriteLine("An uint is {0} byte(s)", sizeof(uint));

17: Console.WriteLine("\nA long is {0} byte(s)", sizeof(long));

18: Cconsole.WriteLine("An ulong is {0} byte(s)", sizeof(ulong));

19: console.WriteLine("\nA float is {0} byte(s)", sizeof(float));

20: Console.WriteLine("A double is {0} byte(s)", sizeof(double));

21: console.WriteLine("\nA decimal is {0} byte(s)", sizeof(decimal
-));

22: Console.WriteLine("\nA boolean is {0} byte(s)", sizeof(bool));

23: }

24: }

[: t' The C# keyword sizeof can be used, but you should generally avoid it. The

dution , . .) :
sizeof keyword sometimes accesses memory directly to find out the size.

Accessing memory directly should be avoided in pure C# programs.

You might get an error when compiling this program, saying that unsafe
code can appear only if you compile with /unsafe. If you get this error, you
need to add the /unsafe flag to the command-line compile:

csc /unsafe sizes.cs

If you are using an IDE, you need to set the /unsafe flag in the IDE settings.

A byte is 1 byte(s)
OUTPUT [N S

A char is 2 byte(s)

A short is 2 byte(s)
An ushort 1is 2 byte(s)

An int is 4 byte(s)
An uint is 4 byte(s)

A long is 8 byte(s)
An ulong is 8 byte(s)

A float is 4 byte(s)
A double is 8 byte(s)

|62

Day 2

A decimal is 16 byte(s)

A boolean 1is 1 byte (s)

Although h t1 d all the data t t, it is valuable t t thi
ough you haven’t learned all the data types yet, it 18 valuable to present this

listing here. As you go through the following sections, refer to this listing and its
output.

This listing uses a C# keyword called sizeof. The sizeof keyword tells you the size of a
variable. In this listing, sizeof is used to show the size of the different data types. For
example, to determine the size of an int, you can use this:

sizeof(int)

If you had declared a variable called x, you could determine its size—which would actu-
ally be the size of its data type—by using the following code:

sizeof(x)

Looking at the output of Listing 2.4, you see that you have been given the number of
bytes that are required to store each of the C# data types. For an int, you need 4 bytes of
storage. For a short, you need 2. The amount of memory used determines how big or
small a number that is stored can be. You’ll learn more about this in the following sec-
tions.

The sizeof keyword is not one that you will use very often; however, it is useful for illus-
trating the points in today’s lesson. The sizeof keyword taps into memory to determine
the size of the variable or data type. With C#, you avoid tapping directly into memory. In
Line 8, the extra keyword unsafe is added. If you don’t include the unsafe keyword, you
get an error when you compile this program. For now, understand that unsafe is added
because the sizeof keyword has the potential to work directly with memory.

The Integral Data Types

Until this point, you have been using one of the integral data types, int. Integral data
types store integers. Recall that an integer is basically any numeric value that does not
include a decimal or a fractional value. The numbers 1, 1,000, 56,000,000,000,000,

and -534 are integral values.

C# provides nine integral data types, including the following:

* Integers (int and uint)
e Shorts (short and ushort)

* Longs (1ong and ulong)

Understanding C# Programs 63 |

* Bytes (byte and sbyte)

¢ Characters (char)

Integers

As you saw in Listing 2.4, an integer is stored in 4 bytes of memory. This includes both
the int and uint data types. This data type cannot store just any number; it can store any
signed whole number that can be represented in 4 bytes or 32 bits—any number between
-2,147,483,648 and 2,147,483,647.

A variable of type int is signed, which means that it can be positive or negative.
Technically, 4 bytes can hold a number as big as 4,294,967,295; however, when you take
away one of the 32 bits to keep track of positive or negative, you can go only to
2,147,483,647. You can, however, also go to -2,147,483,648.

Nllll} As you learned earlier, information is stored in units called bytes. A byte is
actually composed of 8 bits. A bit is the most basic unit of storage in a com-
puter. A bit can have one of two values—0 or 1. Using bits and the binary

math system, you can store numbers in multiple bits. In Appendix C,
“Understanding Number Systems,” you can learn the details of binary math.

If you want to use a type int to go higher, you can make it unsigned. An unsigned num-
ber can be only positive. The benefit should be obvious. The uint data type declares an
unsigned integer. The result is that a uint can store a value from o to 4,294,967,295.

What happens if you try to store a number that is too big? What about storing a number
with a decimal point into an int or a uint? What happens if you try to store a negative
number into a uint? Listing 2.5 answers all three questions.

LisTING 2.5 int_conv.cs—Doing Bad Things

/] int_conv.cs
// storing bad values. Program generates errors and won't compile.

using System;

class int_conv

{

public static void Main()
{

- 0 WO NOU B~ WN =

—_

int valt, val2; // declare two integers

| 64 Day 2
LisTING 2.5 continued
12: uint pos_val; /] declare an unsigned int
13:
14: vall = 1.5;
15: val2 = 9876543210;
16: pos_val = -123;
17:
18: Console.WritelLine("vali is {0}", vali);
19: Console.WriteLine("val2 is {0}", val2);
20: Console.WritelLine("pos_val is {@}", pos_val);
21: }
22: }

o

ANALYSIS

int_conv.cs(14,15): error CS0029: Cannot implicitly convert type
Output = 'double' to 'int'

int_conv.cs(15,15): error CS0029: Cannot implicitly convert type
='long' to 'int'

int_conv.cs(16,18): error CS0031: Constant value '-123' cannot be
=converted to a 'uint’

l:ﬂ[]ti[]l] This program gives compiler errors.

This program will not compile. As you can see, the compiler catches all three
problems that were questioned. Line 14 tries to put a number with a decimal
point into an integer. Line 15 tries to put a number that is too big into an integer.
Remember, the highest number that can go into an int is 2,147,483,647. Finally, Line 16
tries to put a negative number into an unsigned integer (uint). As the output shows, the
compiler catches each of these errors and prevents the program from being created.

Shorts

The int and uint data types used 4 bytes of memory for each variable declared.
Sometimes you don’t need to store numbers that are that big. For example, you don’t
need big numbers to keep track of the day of the week (numbers 1-7), to store a person’s
age, or to track the temperature to bake a cake.

When you want to store a whole number and you want to save some memory, you can
use short and ushort. A short, like an int, stores a whole number. Unlike an int, it is

only 2 bytes instead of 4. In the output from Listing 2.4, you see that sizeof returned 2
bytes for both short and ushort. If you are storing both positive and negative numbers,
you’ll want to use short. If you are storing only positive numbers and you want to use

Understanding C# Programs 65 |

the extra room, you’ll want to use ushort. The values that can be stored in a short are
from -32,768 to 32,767. If you use a ushort, you can store whole numbers from o to
65,535.

Longs

If int and uint are not big enough for what you want to store, you can use the 1ong data
type. As with short and int, there is also an unsigned version of the 1ong data type called
ulong. In the output from Listing 2.4, you can see that long and ulong each use 8 bytes of
memory. This gives them the capability of storing very large numbers. A long can store
numbers from -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807. A ulong can
store a number from o to 18,446,744,073,709,551,615.

Bytes

As you have seen, you can store whole numbers in data types that take 2, 4, or 8 bytes of
memory. When your needs are very small, you can also store a whole number in a single
byte. To keep things simple, the data type that uses a single byte of memory for storage
is called a byte. As with the previous integers, there is both a signed version, sbyte, and
an unsigned version, byte. An sbyte can store a number from -128 to 127. An unsigned
byte can store a number from o to 25s.

[:ﬂllli[lll Unlike the other data types, it is byte and sbyte instead of byte and ubyte;
there is no such thing as a ubyte.

Characters

In addition to numbers, you will often want to store characters. Characters are letters,
such as A, B, or ¢, or even extended characters such as the smiley face. Additional charac-
ters that you might want to store are $, %, or *. You might even want to store foreign char-
acters.

A computer does not recognize characters; it can recognize only numbers. To get around
this, all characters are stored as numbers. To make sure that everyone uses the same val-
ues, a standard was created called Unicode. Within Unicode, each character and symbol
is represented by a single whole number. This is why the character data type is consid-
ered an integral type.

To know that numbers should be used as characters, you use the data type char. A char is
a number stored in 2 bytes of memory that is interpreted as a character. Listing 2.6 pre-
sents a program that uses char values.

|66 Day 2

LisTING 2.6 Chars.cs—Working with Characters

1: // Chars.cs

// A listing to print out a number of characters and their numbers
e

2

3

4:

5: using System;
6 .

7: class Chars
8

A
9: public static void Main()
10: {
11: int ctr;
12: char ch;
13:
14: Console.WriteLine("\nNumber Value\n");
15:
16: for(ctr = 63; ctr <= 94; ctr = ctr + 1)
17: {
18: ch = (char) ctr;
19: Console.WritelLine("{0@} is {1}", ctr, ch);
20: }
21: }
22: }
Number Value
63 is ?
64 is @
65 is A
66 is B
67 is C
68 is D
69 is E
70 is F
71 is G
72 is H
73 is I
74 is J
75 is K
76 is L
77 is M
78 is N
79 is O
80 is P
81 is Q
82 is R
83 is S
84 is T

Understanding C# Programs 67 |

85 is
86 is
87 is
88 is
89 is
90 is
91 is
92 is
93 is
94 is

> —— N <X X =< C

This listing displays a range of numeric values and their character equivalents.
Line 11 declares an integer called ctr. This variable is used to cycle through a
number of integers. Line 12 declares a character variable called ch. Line 14 prints head-
ings for the information that will be displayed.

Line 16 contains something new. For now, don’t worry about fully understanding this
line of code. On Day 4, you will learn all the glorious details. For now, know that this
line sets the value of ctr to 63. It then runs Lines 18—19 before adding 1 to the value of
ctr. It keeps doing this until ctr is no longer less than or equal to 94. The end result is
that Lines 1819 are run using the ctr with the value of 63, then 64, then 65, and on and
on until ctr is 94.

Line 18 sets the value of ctr (first 63) and places it into the character variable ch.
Because ctr is an integer, you have to tell the computer to convert the integer to a char-
acter, which the (char) statement does. You’ll learn more about this later.

Line 19 prints the values stored in ctr and ch. As you can see, the integer ctr prints as a
number. The value of ch, however, does not print as a number; it prints as a character. As
you can see from the output of this listing, the character A is represented by the value 65.
The value of 66 is the same as the character .

Character Literals

How can you assign a character to a char variable? You place the character between
single quotes. For example, to assign the letter a to the variable my_char, you use the fol-
lowing:

my_char = 'a';

In addition to assigning regular characters, you will most likely want to use several
extended characters. You have actually been using one extended character in a number of
your listings. The \n that you’ve been using in your listings is an extended character that
prints a newline character. Table 2.3 contains some of the most common characters you
might want to use. Listing 2.7 shows some of these special characters in action.

|68 Day 2

TABLE 2.3 Extended Characters

Characters Meaning

\b Backspace

\n Newline

\t Horizontal tab

\\ Backslash

\! Single quote

\" Double quote

mi;\ The extended characters in Table 2.3 are often called e.sca;.)e characters

because the slash “escapes” from the regular text and indicates that the fol-
lowing character is special (or extended).

LisTING 2.7 chars_table.cs—The Special Characters

1: // chars_table.cs

R R R R
3:

4: using System;

5:

6: class chars_table

7: |

8: public static void Main()

9: {

10: char ch1 = 'Z';

11: char ch2 = 'x';

12:

13: Console.WriteLine("This is the first line of text");

14: console.WriteLine("\n\n\nSkipped three lines");

15: Console.WritelLine("one\ttwo\tthree <-tabbed");

16: Console.WriteLine(" A quote: \' \ndouble quote: \"");
17: Console.WriteLine("\n ch1 = {0} ch2 = {1}", ch1, ch2);
18: }

19: 1}

This is the first line of text
OuTpPUT

Skipped three lines
one two three <-tabbed
A quote: '

Understanding C# Programs

double quote: "
chi =72 c¢ch2 = x

This listing illustrates two concepts. First, in Lines 10-11, you see how a charac-

ter can be assigned to a variable of type char. It is as simple as including the
character in single quotes. In Lines 13—17, you see how to use the extended characters.
There is nothing special about Line 13. Line 14 prints three newlines followed by some
text. Line 15 prints one, two, and three, separated by tabs. Line 16 displays a single quote
and a double quote. Notice that there are two double quotes in a row at the end of this
line. Finally, line 17 prints the values of ch1 and ch2.

Working with Floating-Point Values

Not all numbers are whole numbers. When you need to use numbers that have decimals,
you must use different data types. As with storing whole numbers, you can use different
data types, depending on the size of the numbers you are using and the amount of mem-
ory you want to use. The two primary types are float and double.

float

A float is a data type for storing numbers with decimal places. For example, in calculat-
ing the circumference or area of a circle, you often end up with a result that is not a
whole number. Any time you need to store a number such as 1.23 or 3.1459, you need a
nonintegral data type.

The float data type stores numbers in 4 bytes of memory. As such, it can store a number
. -45 38
from approximately 1.5 X 10 to 3.4 x 10 .

Nﬂtﬂ 10" is equivalent to 10 x 10, 37 times. The result is 1 folloz/sved by 38 zeros, or
100,000,000,000,000,000,000,000,000,000,000,000,000. 10 " is 10+10, 44
times. The result is 44 zeros between a decimal point and a 1, or
.001.

[‘:a““““ A float can retain only about seven digits of precision, which means that it
is not uncommon for a float to be off by a fraction. For example, subtract-
ing 9.90 from 10.00 might result in a number different from .10; it might

result in a number closer to .099999999. Generally, such rounding errors are
not noticeable.

| 70 Day 2

double

Variables of type double are stored in 8 bytes of memory. This means that they can be
much bigger than a float. A double can generally be from 5.0 x 10" to 1.7x10™. The
precision of a double is generally from 15 to 16 digits.

Nlltﬂ C# supports the 4-byte precision (32 bits) and 8-byte precision (64 bits) of
the IEEE 754 format, so certain mathematical functions return specific val-
ues. If you divide a number by 0, the result is infinity (either positive or neg-

ative). If you divide 0 by 0, you get a Not-a-Number value. Finally, 0 can be
both positive and negative. For more on this, check your C# documentation.

Gaining Precision with Decimal

C# provides another data type that can be used to store special decimal numbers: the
decimal data type. This data type was created for storing numbers with greater precision.
When you store numbers in a float or a double, you can get rounding errors. For exam-
ple, storing the result of subtracting 9.90 from 10.00 in a double could result in the string
0.099999999999999645 instead of .10. If this math is done with decimal values, the .10 is

stored.
“l] If you are calculating monetary values or doing financial calculations in
which precision is important, you should use a decimal instead of a float or
a double.

A decimal number uses 16 bytes to store numbers. Unlike the other data types, there is no
. . . -28
unsigned version of decimal. A decimal variable can store a number from 1.0 X 10 to
. 28
approximately 7.9 x 10 . It can do this while maintaining precision to 28 places.

Storing Boolean Values

The last of the simple data types is the Boolean. Sometimes you need to know whether
something is on or off, true or false, or yes or no. Boolean numbers are generally set to
one of two values: o or 1.

C# has a Boolean data type called a bool. As you can see in Listing 2.4, a bool is stored
in 1 byte of memory. The value of a bool is either true or false, which are C# keywords.
This means that you can actually store true and false in a data type of bool.

Understanding C# Programs 71 |

[‘: t' Yes, no, on, and off are not keywords in C#. This means that you cannot set
duton :
a Boolean variable to these values. Instead, you must use true or false.

Working Checked Versus Unchecked Code

Earlier in today’s lesson, you learned that if you put a number that is too big into a vari-

able, an error is produced. Sometimes you do not want an error produced. In those cases,
you can have the compiler avoid checking the code. This is done with the unchecked key-
word, as illustrated in Listing 2.8.

LisTING 2.8 Unchecked.cs—Marking Code as Unchecked

1: // Unchecked.cs

N
3:

4: using System;

5:

6: class Unchecked

7: |

8: public static void Main()

9: {

10: int vall = 2147483647,

11: int val2;

12:

13: unchecked

14: {

15: val2 = valtl + 1;

16: }

17:

18: Console.WriteLine("valil is {@}", vall);
19: console.WriteLine("val2 is {0}", val2);
20: }
21: }

vall is 2147483647
val2 is -2147483648
This listing uses unchecked in Line 13. The brackets in Line 14 and 16 enclose
the area to be unchecked. When you compile this listing, you do not get any
errors. When you run the listing, you get what might seem like a weird result. The num-
ber 2,147,483,647 is the largest number that a signed int variable can hold. As you see in
Line 10, this maximum value has been assigned to var1. In Line 15, the unchecked line, 1
is added to what is already the largest value var1 can hold. Because this line is

|72

Day 2

unchecked, the program continues to operate. The result is that the value stored in var1
rolls to the most negative number.

This operation is similar to the way an odometer works in a car. When the mileage gets
to the maximum, such as 999,999, adding 1 more mile (or kilometer) sets the odometer
to 000,000. It isn’t a new car with no miles; it is simply a car that no longer has a valid
value on its odometer. Rather than rolling to 0, a variable rolls to the lowest value it can
store. In this listing, that value is -2, 147,483, 648.

Change Line 13 to the following, and recompile and run the listing:
13: checked

The program compiled, but will it run? Executing the program causes an error. If you are
asked to run your debugger, you’ll want to say no. The error that you get will be similar
to the following:

Exception occurred: System.OverflowException: An exception of type

System.OverflowException was thrown.
at Unchecked.Main()

On later days, you’ll see how to deal with this error in your program. For now, you
should keep in mind that if you believe there is a chance of putting an invalid value into
a variable, you should force checking to occur. You should not use the unchecked keyword
as a means of simply avoiding an error.

Data Types Simpler Than .NET

The C# data types covered so far are considered simple data types. The simple data types
are sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, bool, and decimal
In yesterday’s lesson, you learned that C# programs execute on the Common Language
Runtime (CLR). Each of these data types corresponds directly to a data type that the
CLR uses. Each of these types is considered simple because there is a direct relationship
with the types available in the CLR and, thus, in the .NET Framework. Table 2.4 presents
the .NET equivalent of the C# data types.

TAaBLE 2.4 C# and .NET Data Types

C# Data Type .NET Data Type
sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16

int System.Int32

Understanding C# Programs 73 |

TABLE 2.4 continued

C# Data Type .NET Data Type
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

If you want to declare an integer using the .NET equivalent declaration—even though
there is no good reason to do so—you use the following:

System.Int32 my_variable = 5;

As you can see, System.Int32 is much more complicated than simply using int. Listing
2.9 shows the use of the .NET data types.

LISTING 2.9 net_vars.cs—Using the .NET Data Types

1: // net_vars

2: // Using a .NET data declaration

K
4:

5: using System;

6:

7: class net_vars

8: {

9: public static void Main()

10: {

11: System.Int32 my_variable = 4;

12: System.Double PI = 3.1459;

13:

14: Console.WritelLine("\nmy_variable is {@}", my_variable);
15: Console.WritelLine("\nPI is {0}", PI);
16: }

17: }

my_variable is 4
Output

PI is 3. 1459

|74 Day 2

ANALYSIS Lines 11-12 declare an int and a double. Lines 1415 print these values. This
listing operates like those you’ve seen earlier, except that it uses the .NET data

types.

In your C# programs, you should use the simple data types rather than the .NET types.
All the functionality of the .NET types is available to you in the simpler commands that
C# provides. However, you should understand that the simple C# data types translate to
.NET equivalents. You’ll find that all other programming languages that work with the
Microsoft .NET types also have data types that translate to these .NET types.

Nﬂtﬂ The Common Type System (CTS) is a set of rules that data types within the
CLR must adhere to. The simple data types within C# adhere to these rules,
as do the .NET data types. If a language follows the CTS in creating its data

types, the data created and stored should be compatible with other pro-
gramming languages that also follow the CTS.

Literals Versus Variables

Often you will want to type a number or value into your source code. A literal value
stands on its own within the source code. For example, in the following lines of code, the
number 10 and the value "Bob is a fish" are literal values.

int x = 10;
myStringValue = "Bob is a fish";

Working with Numeric Literals

In many of the examples, you have used numeric literals. By default, a numeric literal is
either an integer or a double. It is an int if it is a whole number, and it is a double if it is a
floating-point number. For example, consider the following:

nbr = 100;

By default, the numeric literal 100 is considered to be of type int, regardless of what data
type the nbr variable is. Now consider the following:

nbr = 99.9;

In this example, 99.9 is also a numeric literal; however, it is of type double by default.
Again, this is regardless of the data type that nor is. This is true even though 99.9 could
be stored in a type float. In the following line of code, is 100. an int or a double?

X = 100.;

Understanding C# Programs 75 |

This is a tough one. If you guessed int, you are wrong. Because there is a decimal
included with the 100, it iS a double.

Understanding the Integer Literal Defaults

When you use an integer value, it is actually put into an int, uint, long, Or ulong, depend-
ing on its size. If it will fit in an int or a uint, it will be. If not, it will be put into a long
or a ulong. If you want to specify the data type of the literal, you can use a suffix on the
literal. For example, to use the number 10 as a literal 1ong value (signed or unsigned),
you write it like the following:

10L;

You can make an unsigned value by using a u or a u. If you want an unsigned literal 1ong
value, you can combine the two suffixes: ul.

Nﬂtﬂ The Microsoft C# compiler gives you a warning if you use a lowercase / to
declare a long value literal. The compiler provides this warning to make you

aware that it is easy to mistake a lowercase / with the number 1.

Understanding Floating-Point Literal Defaults

As stated earlier, by default, a decimal value literal is a double. To declare a literal that is
of type float, you include f or F after the number. For example, to assign the number 4.4
to a float variable, my_float, you use the following:

my float = 4.4f;

To declare a literal of type decimal, you use a suffix of m or m. For example, the following
line declares my_decimal to be equal to the decimal number 1.32.

my_decimal = 1.32m;

Working with Boolean Literals (true and false)

We have already covered Boolean literals. The values true and false are literal. They
also happen to be keywords.

Understanding String Literals

When you put characters together, they make words, phrases, and sentences. In program-
ming parlance, a group of characters is called a string. A string can be identified because
it is contained within a set of double quotes. For example, the Console.WriteLine routine

|76

Day 2

uses a string. A string literal is any set of characters between double quotes. The follow-
ing are examples of strings:

"Hello, World!"
"1234567890"

Because the numbers are between quotation marks, the last example is treated as a string
literal rather than as a numeric literal.

N[llﬂ You can use any of the special characters from Table 2.3 inside a string.

Creating Constants

In addition to using literals, sometimes you want to put a value in a variable and freeze
it. For example, if you declare a variable called P1 and you set it to 3.14159, you want it
to stay 3.14159. There is no reason to ever change it. Additionally, you want to prevent
people from changing it.

To declare a variable to hold a constant value, you use the const keyword. For example,
to declare P1 as stated, you use the following:

const float PI = 3.1459;

You can use PI in a program; however, you will never be able to change its value. The
const keyword freezes its contents. You can use the const keyword on any variable of any
data type.

“[l To help make it easy to identify constants, you can enter their names in all
capital letters.

A Peek at Reference Types

To this point, you have seen a number of different data types. C# offers two primary
ways of storing information: by value (byval) and by reference (byref). The basic data
types that you have learned about store information by value.

When a variable stores information by value, the variable contains the actual information.
For example, when you store 123 in an integer variable called x, the value of x is 123. The
variable x actually contains the value 123.

Understanding C# Programs 77 |

value.

FIGURE 2.2 /‘\
By reference versus by % ¢

Storing information by reference is a little more complicated. If a variable stores by ref-
erence rather than storing the information in itself, it stores the location of the informa-
tion. In other words, it stores a reference to the information. For example, if x is a “by
reference” variable, it contains information on where the value 123 is located; it does not
store the value 123. Figure 2.2 illustrates the difference.

L {
% / 123 % } Memory
/ / / /

- -

X_byref X_byval

The data types used by C# that store by reference are listed here:

¢ Classes
* Strings
* Interfaces
e Arrays
* Delegates

Each of these data types is covered in detail throughout the rest of this book.

Summary

Today’s lesson was the longest in the book. It builds some of the foundation that will be
used to teach you C#. Today you started by learning about some of the basic parts of a
C# application. You learned that comments help make your programs easier to under-
stand.

In addition, you learned about the basic parts of a C# application, including whitespace,
C# keywords, literals, and identifiers. Looking at an application, you saw how these parts
are combined to create a complete listing. This included seeing a special identifier used
as a starting point in an application: Main().

After you examined a listing, you dug into storing basic information in a C# application
using variables. You learned how the computer stores information. You focused on the
data types that store data by value, including int, uint, long, ulong, bool, char, short,
ushort, float, double, decimal, byte, and ubyte. In addition to learning about the data
types, you learned how to name and create variables. You also learned the basics of

| 78 Day 2

setting values in these variables, including the use of literals. Table 2.5 lists the data
types and information about them.

TABLE 2.5 C# Data Types

C# Data NET Data Size Low High

Type Type in Bytes Value Value

sbyte System.Sbyte 1 -128 127

byte System.Byte 1 0 255

short System.Int16 2 -32,768 32,767

ushort System.UInt16 2 0 65,535

int system.Int32 4 -2,147,483,648 2,147,483,647

uint System.UInt32 4 0 4,294,967,295

long System.Int64 8 -9,223,372,036, 9,223,372,036,854,775,807
854,775,808

ulong System.UInte4 8 0 18,446,744,073,709,551,615

char System.Char 2 0 65,535

float System.Single 4 1.5x10 " 3.4x10"

double System.Double 8 5.0x10 " 1.7x1010™

bool System.Boolean 1 false (0) true (1)

decimal System.Decimal 16 1.0x10" approx. 7.9x10”

Q&A

Q Why shouldn’t all numbers be declared as the larger data types instead of the
smaller data types?

A Although it might seem logical to use the larger data types, this would not be effi-
cient. You should not use any more system resources (memory) than you need.

=)

What happens if you assign a negative number to an unsigned variable?

A The compiler returns an error saying that you can’t assign a negative number to an
unsigned variable if you do this with a literal. If you do a calculation that causes an
unsigned variable to go below o, you get erroneous data. On later days, you will
learn how to check for these erroneous values.

Q A decimal value is more precise than a float or a double value. What happens
with rounding when you convert from these different data types?

Understanding C# Programs

79|

A When converting from a float, double, or decimal to one of the whole-number vari-

able types, the value is rounded. If a number is too big to fit into the variable, an
€ITor OCCurs.

When a double is converted to a float that is too big or too small, the value is rep-
resented as infinity or e, respectively.

When a value is converted from a float or a double to a decimal, the value is
rounded. This rounding occurs after 28 decimal places and occurs only if neces-
sary. If the value being converted is too small to be represented as a decimal, the
new value is set to e. If the value is too large to store in the decimal, an error
occurs.

For conversions from decimal to float or double, the value is rounded to the nearest
value that the float or double can hold. Remember, a decimal has better precision
than a float or a double. This precision is lost in the conversion.

What other languages adhere to the Common Type System (CTS) in the
Common Language Runtime (CLR)?

Microsoft Visual Basic .NET (Version 7) and Microsoft Visual C++ .NET (Version
7) both support the CTS. Additionally, versions of a number of other languages are
ported to the CTS. These include Python, COBOL, Perl, Java, and more. Check out
the Microsoft Web site for additional languages.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Quiz

1.

What three types of comments can you use in a C# program and how is each of the
three types of comments entered into a C# program?

What impact does whitespace have on a C# program?

3. Which of the following are C# keywords?

field, cast, as, object, throw, baseball, catch, football, fumble, basketball
What is a literal?

5. What by value data types are available in C#?

What is the difference between a signed variable and an unsigned variable?

|80

Day 2

7. What is the smallest data type that you can use to store the number 55?

8. What is the biggest number that a type short variable can hold?

9. What numeric value is the character B?

10. Name three of the reference data types.

11. Which floating-point data type has the best precision?

12. What .NET data type is equivalent to the C# int data type?

Exercises

1. Enter, compile, and run the following program. What does it do?

1:

9:
10:
11:
12:
13:
14:
15:

0N O WN

// Ex0201.cs - Exercise 1 for Day 2

e
class Ex0201
{
public static void Main()
{
int ctr;
for(ctr = 1; ctr <= 10; ctr++)
{
System.Console.Write("{0:D3} ", ctr);
}
}
I3

2. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?

—_

—_

S ©Wo~NOOOU~WN

// Bugbust.cs

e
class Bugbust
{
public static void Main()
{
System.Console.WriteLine("\nA fun number is {1}", 123);
}
}

3. Change the range of values in Listing 2.6 to print the lowercase letters.

4. Write the line of code that declares a variable named xyz of type float, and assign
the value of 123.456 to it.

Understanding C# Programs 81 |

5. Which of the following variable names are valid?
a. X
b. pI
C. 12months
d. sizeof
€. nine

6. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1: //BugBuster

using System;

2
3
4.
5: class BugBuster
6
7
8

{
public static void Main()

: {
9: double my_double;
10: decimal my_decimal;
11:
12: my_double = 3.14;
13: my_decimal = 3.14;
14:
15: Console.WriteLine("\nMy Double: {0}", my_double);
16: Console.WriteLine("\nMy Decimal: {@}", my_decimal);
17:
18: }
19: }

7. On Your Own: Write a program that declares two variables of each data type and
assigns the values 10 and 1.879 to each variable.

WEEK 1

DAY 3

Manipulating Values in
Your Programs

Now that you know how to store information in variables, you’ll want to do
something with that information. Most likely, you’ll want to manipulate it by
making changes to it. For example, you might want to use the radius of a circle
to find the area of the circle. Today you...

Learn two ways of displaying basic information.

Discover the types and categories of operators available in C#.
Manipulate information using the different operators.

Change program flow using the if command.

Understand which operators have precedence over others.
Investigate variable and value conversions.

Explore bitwise operations—if you’re brave enough.

| 84 Day 3

Displaying Basic Information

Before you learn how to manipulate values stored in variables, it is worth taking a few
minutes to learn how to display basic information. You can use two routines to display
information. When you understand these routines, you will be able to display basic infor-
mation to the console.

The two routines that you will use throughout this book to display basic information are
as follows:

® System.Console.WriteLine()

® System.Console.Write()
Both print information to the screen in the same manner, with only one small difference.

The writeLine() routine writes information and then goes to a new line. The
write()routine does not go to a new line when information is written.

The information that you will display on the screen is written between the parentheses. If
you are printing text, you include the text between the parentheses and within double
quotes. For example, the following prints the text Hello World:

System.Console.WriteLine("Hello World");
This prints Hello World on the screen. The following examples illustrate other text being
printed:

System.Console.WriteLine("This is a line of text");
System.Console.WriteLine("This is a second line of text");

If you execute these consecutively, you see the following displayed:

This is a line of text
This is a second line of text

Now consider the following two lines. If these execute consecutively, what do you see
printed?

System.Console.WriteLine("Hello ");
System.Console.WriteLine("World!");

If you guessed that these would print
Hello World!

you are not correct! Instead, the following is printed:

Hello
World!

Manipulating Values in Your Programs 85 |

Notice that each word is on a separate line. If you execute the two lines using the write()
routine instead, you get the results you want:

Hello World!

As you can see, the difference between the two routines is that writeLine() automatically
goes to a new line after the text is displayed, whereas write() does not.

Displaying Additional Information

In addition to printing text between quotation marks, you can pass values to be printed
within the text. Consider the following example:

int nbr = 456;
System.Console.WriteLine("The following is a number: {0}", nbr);

This prints the following line:
The following is a number: 456

As you can see, the {0} gets replaced with the value that follows the quoted text. In this
case, the value is that of a variable, nbr, which equals 456. The format is as shown here:

System.Console.WriteLine("Text", value);

Text is almost any text that you want to display. The {e} is a placeholder for a value. The
brackets indicate that this is a placeholder. The o is an indicator for using the first item
following the quotation marks. A comma separates the text from the value to be placed in
the placeholder.

You can have more than one placeholder in a printout. Each placeholder is given the next
sequential number:

System.Console.Write("Value 1 is {0} and value 2 is {1}", 123, "Brad");
This prints the following line:
Value 1 is 123 and value 2 is Brad

Listing 3.1 presents System.Console.Write and System.Console.WriteLine in action.

LisTING 3.1 Display.cs—Using WriteLine() and write()

: // Display.cs - printing with WriteLine and Write

1
2

3:

4: class Display
5: {

6

public static void Main()

86 Day 3

LisTiING 3.1 continued

7: {

8:

9: int iNbr = 321;

10: double dNbr = 123.45;

11:

12: System.Console.WriteLine("First WritelLine Line");

13: System.Console.WriteLine("Second WriteLine Line");

14:

15: System.Console.Write("First Write Line");

16: System.Console.Write("Second Write Line");

17:

18: // Passing literal parameters

19: System.Console.WriteLine("\nWriteLine: Parameter = {@}", 123);
20: System.Console.Write("Write: Parameter = {0}", 456);

21:

22: // Passing variables

23: System.Console.WriteLine("\nWritelLine: valil = {0} val2 = {1}",
24: iNbr, dNbr);

25: System.Console.Write("Write: vall = {0} val2 = {1}", iNbr, dNbr);
26: }

27: }

Remember that to compile this listing from the command line, you enter the following:
csc Display.cs

If you are using an integrated development tool, you can select the Compile option.

First WritelLine Line

Second WriteLine Line
First Write LineSecond Write Line
WriteLine: Parameter = 123
Write: Parameter = 456
WriteLine: vall = 321 val2 = 123.45
Write: vall = 321 val2 = 123.45

This listing defines two variables that will be printed later in the listing. Line 9
ANALYSIS . . oo
declares an integer and assigns the value 321 to it. Line 10 defines a double and
assigns the value 123.45.

Lines 12—13 print two pieces of text using System.Console.WriteLine(). You can see from
the output that each of these prints on a separate line. Lines 15—-16 show the
System.Console.Write() routine. These two lines print on the same line. There is no return
linefeed after printing. Lines 19-20 show each of these routines with the use of a para-
meter. Lines 23 and 25 also show these routines printing multiple values from variables.

You will learn more about using these routines throughout this book.

Manipulating Values in Your Programs 87 |

- The first placeholder is numbered 0, not 1.
Gaution

Manipulating Variable Values with Operators

Now that you understand how to display the values of variables, it is time to focus on
manipulating the values in the variables. Operators are used to manipulate information.
You have used a number of operators in the programming examples up to this point.
Operators are used for addition, multiplication, comparison, and more.

Operators can be broken into a number of categories:

* The basic assignment operator

* Mathematical/arithmetic operators

» Relational operators

* The conditional operator

* Other operators (type, size)
Each of these categories and the operators within them are covered in detail in the fol-
lowing sections. In addition to these categories, it is important to understand the structure
of operator statements. Three types of operator structures exist:

e Unary

* Binary

e Ternary

Unary Operator Types

Unary operators are operators that impact a single variable. For example, to have a nega-
tive 1, you type this:

-1
If you have a variable called x, you change the value to a negative by using this line:
-X

The negative requires only one variable, so it is unary. The format of a unary variable is
one of the following, depending on the specific operator:

[operator][variable]

|88

Day 3

or

[variable][operator]

Binary Operator Types

Whereas unary operator types use only one variable, binary operator types work with two
variables. For example, the addition operator is used to add two values. The format of the
binary operator types is as follows:

[variablel][operator][variable2]

Examples of binary operations in action are shown here:
5+ 4

3 -2

100.4 - 92348.67

You will find that most of the operators fall into the binary operator type.

Ternary Operator Types

Ternary operators are the most complex operator type to work with. As the name implies,
this type of operator works on three variables. C# has only one true ternary operator, the

conditional operator. You will learn about it later today. For now, know that ternary oper-
ators work with three variables.

Understanding Punctuators

Before jumping into the different categories and specific operators within C#, it is impor-
tant to understand about punctuators. Punctuators are a special form of operator that
helps you format your code, do multiple operations at once, and simply signal informa-
tion to the compiler. The punctuators that you need to know about are listed here:

* Semicolon—The primary use of the semicolon is to end each C# statement. A
semicolon is also used with a couple of the C# statements that control program
flow. You will learn about the use of the semicolon with the control statements on
Day 4, “Controlling Your Program’s Flow.”

e Comma—The comma is used to stack multiple commands on the same line. You
saw the comma in use on Day 2, “Understanding C# Programs,” in a number of the
examples. The most common time to use the comma is when declaring multiple
variables of the same type:

int vari, var2, var3;

Manipulating Values in Your Programs 89 |

* Parentheses, ()—Parentheses are used in multiple places. You will see later in
today’s lesson that you can use parentheses to force the order in which your code
will execute. Additionally, parentheses are used with functions.

* Braces, {}—Braces are used to group pieces of code. You have seen braces used to
encompass classes in many of the examples. You also should have noticed that
braces are always used in pairs.

Punctuators work the same way punctuation within a sentence works. For example, you
end a sentence with a period or another form of punctuation. In C#, you end a “line” of
code with a semicolon or other punctuator. The word line is in quotation marks because a
line of code might actually take up multiple lines in a source listing. As you learned on
Day 2, whitespace and new lines are ignored.

Nﬂtﬂ You can also use braces within the routines that you create to block off
code. The code put between two braces, along with the braces, is called a
block.

Moving Values with the Assignment
Operator

It is now time to learn about the specific operators available in C#. The first operator that
you need to know about is the basic assignment operator, which is an equals sign (=).
You’ve seen this operator already in a number of the examples in earlier lessons.

The basic assignment operator is used to assign values. For example, to assign the value
142 to the variable x, you type this:

X = 142;

This compiler places the value that is on the right side of the assignment operator in the
variable on the left side. Consider the following:

X =y = 123;

This might look a little weird; however, it is legal C# code. The value on the right of the
equals sign is evaluated. In this case, the far right is 123, which is placed in the variable

y. Then the value of y is placed in the variable x. The end result is that both x and y
equal 123.

|90

Day 3

ﬂﬂlllil]ll You cannot do operations on the left side of an assignment operator. For
example, you can’t do this:

1T+x=y;
Nor can you put literals or constants on the left side of an assignment
operator.

Working with Mathematical/Arithmetic
Operators

Among the most commonly used operators are the mathematical operators. All the basic
math functions are available within C#, including addition, subtraction, multiplication,
division, and modulus (remaindering). Additionally, compound operators make doing
some of these operations more concise.

Adding and Subtracting

For addition and subtraction, you use the additive operators. As you should expect, for
addition, the plus operator (+) is used. For subtraction, the minus (-) operator is used.
The general format of using these variables is as follows:

Newval = Valuel + Value2;
NewvVal2 = Valuel - Value2;

In the first statement, value2 is being added to valuet and the result is placed in Newval.
When this command is done, valuet and value2 remain unchanged. Any pre-existing val-
ues in Newval are overwritten with the result.

For the subtraction statement, value2 is subtracted from valuet and the result is placed in
Newval2. Again, valuetl and value2 remain unchanged, and the value in Newval2 is over-
written with the result.

valuet and value2 can be any of the value data types, constants, or literals. You should
note that Newval must be a variable; however, it can be the same variable as valuet or
value2. For example, the following is legal as long as variablet is a variable:

Variable1l = Variableil - Variable2;

In this example, the value in variable2 is subtracted from the value in variablei. The
result is placed into variablet, thus overwriting the previous value that variablei held.
The following example is also valid:

Manipulating Values in Your Programs 91 |

Variablel = Variablel - Variableil;

In this example, the value of variable1 is subtracted from the value of variablet. Because
these values are the same, the result is e. This o value is then placed into variable1, over-
writing any previous value.

If you want to double a value, you enter the following:
Variableil = Variablel + Variablet;
variablei is added to itself, and the result is placed back into variablet. The end result is

that you double the value in variablet.

Doing Multiplicative Operations

An easier way to double the value of a variable is to multiply it by two. Three multiplica-
tive operators commonly are used in C#:

* For multiplication, the multiplier (or times) operator, which is an asterisk (*)

» For division, the divisor operator, which is a forward slash (/)

* For obtaining remainders, the remaindering (also called modulus) operator, which
is the percentage sign (%)

Multiplication and division are done in the same manner as addition and subtraction. To
multiply two values, you use the following format:

NewvVal = Valuel * Value2;

For example, to double the value in val1 and place it back into itself (as seen with the
last addition example), you can enter the following:

Vali = valtl * 2;

This is the same as this line:

vall = 2 * valt;

Again, division is done the same way:
NewVal = Valuel / Value2;

This example divides valuet by value2 and places the result in Newval. To divide 2 by 3,
you write the following:

answer = 2 / 3;

Sometimes when doing division, you want only the remainder. For example, I know that
3 will go into 4 one time; however, I also would like to know that I have 1 remaining.

|92

Day 3

You can get this remainder using the remaindering (also called modulus) operator, which
is the percentage sign (%). For example, to get the remainder of 4 divided by 3, you enter
this:

Val = 4 % 3;
The result is that val is 1.

Consider another example that is near and dear to my heart. You have three pies that can
be cut into six pieces. If 13 people each want a piece of pie, how many pieces of pie are
left over for you?

To solve this, take a look at Listing 3.2.

LiSTING 3.2 Pie.cs—Number of Pieces of Pie for Me

1: // Pie.cs - Using the modulus operators

N N R R LR EE R R R

3: class Pie

4: {

5: public static void Main()

6: {

7: int PiecesForMe = 0;

8: int PiecesOfPie = 0;

9:

10: PiecesOfPie = 3 * 6;

11:

12: PiecesForMe = PiecesOfPie % 13;

13:

14: System.Console.WriteLine("Pieces Of Pie = {0}", PiecesOfPie);
15: System.Console.WriteLine("Pieces For Me = {0}", PiecesForMe);
16: }

17: }

Pieces Of Pie = 18
Output Pieces For Me 5

Listing 3.2 presents the use of the multiplication and modulus operators. Line 10

illustrates the multiplication operator, which is used to determine how many
pieces of pie there are. In this case, there are six pieces in three pies (so, 6 X 3). Line 12
then uses the modulus operator to determine how many pieces are left for you. As you
can see from the information printed in Lines 14—15, there are 18 pieces of pie, and 5
will be left for you.

Manipulating Values in Your Programs 93 |

Working with the Compound Arithmetic Assignment
Operators

You’ve learned about the basic assignment operator; however, there are also other assign-
ment operators—the compound assignment operators (see Table 3.1).

TaBLE 3.1 Compound Arithmetic Assignment Operators

Operator Description Noncompound Equivalent
+= X += 4 X =X+ 4
-= X -= 4 X =X - 4
*= X *= 4 X =x * 4
/= X /= 4 X =X/ 4
%= X %= 4 X =X % 4

The compound operators provide a concise method for performing a math operation and
assigning it to a value. For example, if you want to increase a value by 5, you use the fol-
lowing:

X = X + 5;
Or, you can use the compound operator:
X += 5;

As you can see, the compound operator is much more concise.

'I'il] Although the compound operators are more concise, they are not always
the easiest to understand in code. If you use the compound operators, make
sure that what you are doing is clear, or remember to comment your code.

Doing Unary Math

All the arithmetic operators that you have seen so far have been binary. Each has
required two values to operate. A number of unary operators also work with just one
value or variable. The unary arithmetic operators include the increment operator (++) and
the decrement operator (--).

These operators add 1 to the value or subtract 1 from the value of a variable. The follow-
ing example adds 1 to x:

+4X

|94

Day 3

It is the same as saying this:

X =X+ 1;

Additionally, the following subtracts 1 from x:
-oX;

It is the same as saying this:

X =X -1;

“I] The increment and decrement operators are handy when you need to step
through a lot of values one by one.

The increment and decrement operators have a unique feature that causes problems for a
lot of newer programmers. Assume that the value of mynbr is 10. Look at the following
line of code:

NewNbr = ++myNbr;

After this statement executes, what will the values of myNor and newNbr be? You should be
able to guess that the value of mynbr will be 11 after it executes. The value of newnbr will

also be 11. Now consider the following line of code; again consider the value of myNbr to
start at 10.

newNbr = myNbr++;

After this statement executes, what will the values of myNbr and newnbr be? If you said
that they would both be 11 again, you are wrong! After this line of code executes, myNbr
will be 11; however, newNbr will be 10. Confused?

It is simple: The increment operator can operate as a pre-increment operator or a post-
increment operator. If it operates as a pre-increment operator, the value is incremented
before everything else. If it operates as a post-increment operator, it happens after every-
thing else. How do you know whether it is pre- or post-? Easy. If it is before the variable,
++myNbr, it is pre-. If it is after the variable, myNbr++, it is post-. The same is true of the
decrement operator. Listing 3.3 illustrates the pre- and post- operations of the increment
and decrement operators.

Manipulating Values in Your Programs 95 |

LisTING 3.3 Prepost.cs—Using the Increment and Decrement Unary Operators

1: // Prepost.cs - Using pre- versus post-increment operators
P R TR
3:
4: class Prepost
5: {
6: public static void Main()
7: {
8: int Vall = 0;
9: int Val2 = 0;
10:
11: System.Console.WriteLine("vall = {0} Val2 = {1}", Vall, Val2);
12:
13: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
14: ++Vall, Val2++);
15:
16: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
17: ++Vall, Val2++);
18:
19: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
20: ++Vall, Val2++);
21: }
22: }
Valt = @ Val2 =0
O IULIN V211 (Pre) = 1 val2 = (Post) 0
Vali (Pre) = 2 Val2 = (Post) 1
(Pre) = 3 Val2 = (Post) 2

Vali

ANALYSIS

It is important to understand what is happening in Listing 3.3. In Lines 8-9, two

variables are again being initialized to e. These values are printed in Line 11. As
you can see from the output, the result is that val1 and val2 equal e. Line 13, which con-
tinues to Line 14, prints the values of these two variables again. The values printed,
though, are ++val1 and val2++. As you can see, the pre-increment operator is being used
on valt, and the post-increment operator is being used on val2. The results can be seen in
the output. Vall is incremented by 1 and then printed. val2 is printed and then incre-
mented by 1. Lines 16 and 19 repeat these same operations two more times.

Do Don'T
Do use the compound operators to make Don't confuse the post-increment and

your math routines concise.

pre-increment operators. Remember that
the pre-increment adds before the vari-
able, and the post-increment adds after
it.

96 Day 3

Making Comparisons with Relational
Operators

Questions are a part of life. In addition to asking questions, it is often important to com-
pare things. In programming, you compare values and then execute code based on the
answer. The relational operators are used to compare two values. The relational opera-
tors are listed in Table 3.2.

TaBLE 3.2 Relational Operators

Operator Description

> Greater than

< Less than

== Equal to

1= Not equal to

>= Greater than or equal to
<= Less than or equal to

When making comparisons with relational operators, you get one of two results: true or
false. Consider the following comparisons made with the relational operators:

5 < 10 5 is less than 10, so this is true.

5> 10 5 is not greater than 1e, so this is false.
5 == 10 5 does not equal 1o, so this is false.

5 1= 10 5 does not equal 10, so this is true.

As you can see, each of these results is either true or false. Knowing that you can check
the relationship of values should be great for programming. The question is, how do you
use these relations?

Using the if Statement

The value of relational operators is that they can be used to make decisions to change the
flow of the execution of your program. The if keyword can be used with the relational
operators to change the program flow.

The if keyword is used to compare two values. The standard format of the if command
is as follows:

if(valil [operator] val2)
statement(s);

Manipulating Values in Your Programs 97 |

operator is one of the relational operators; val1 and val2 are variables, constants, or liter-
als; and statement(s) is a single statement or a block containing multiple statements.
Remember that a block is one or more statements between brackets.

If the comparison of valt to val2 is true, the statements are executed. If the comparison
of vali to val2 is false, the statements are skipped. Figure 3.1 illustrates how the if com-
mand works.

FIGURE 3.1

The if command.

true
Statement(s)

false

Applying this to an example helps make this clear. Listing 3.4 presents simple usage of
the if command.

LisTING 3.4 iftest.cs—Using the if Command

1: // iftest.cs- The if statement
e

3:

4: class iftest

5: {

6: public static void Main()

7: {

8: int vall = 1;

9: int Val2 = 0;

10:

11: System.Console.WriteLine("Getting ready to do the if...");
12:

13: if (valt == Val2)

14: {

15: System.Console.WriteLine("If condition was true");
16: }

17: System.Console.WriteLine("Done with the if statement");
18: }

19: }

Getting ready to do the if...
OJVIl Done with the if statement

98 Day 3

This listing uses the if statement in Line 13 to compare two values to see
NALYSIS whether they are equal. If they are, it prints Line 15. If not, it skips Line 15.
Because the values assigned to vali and val2 in Lines 8-9 are not equal, the if condition
fails and Line 15 is not printed.

Change Line 13 to this:

if (vall != val2)

Rerun the listing. This time, because val1 does not equal val2, the if condition evaluates
to true. The following is the output:

Getting ready to do the if...
If condition was true
Done with the if statement

l}a“tin“ There is no semicolon at the end of the first line of the if command. For
example, the following is incorrect:
if(val != val);

/] Statements to do when the if evaluates to true (which will
// never happen)

}

val should always equal val, so val != val will be false and the line //
Statements to do when the if evaluates to true... should never exe-
cute. Because there is a semicolon at the end of the first line, the if state-
ment is ended. This means that the next statement after the if statement is
executed—the line //Statements to do when the if evaluates to

true. ... This line always executes, regardless of whether the if evaluates to
true or, as in this case, to false. Don’t make the mistake of including a
semicolon at the end of the first line of an if statement.

Conditional Logical Operators

The world is rarely a simple place. In many cases, you will want to do more than one
comparison to determine whether a block of code should be executed. For example, you
might want to execute some code if a person is a female and at least 21 years old. To do
this, you execute an if statement within another if statement. The following pseudocode
illustrates this:

if(sex == female)

{
if(age >= 21)
{

Manipulating Values in Your Programs 99 |

// The person is a female that is 21 years old or older.

}
There is an easier way to accomplish this—by using a conditional logical operator.

The conditional logical operators enable you to do multiple comparisons with relational
operators. The two conditional logical operators that you will use are the AND operator
(&&) and the OR operator (] |).

The Conditional AND Operator

Sometimes you want to verify that a number of conditions are all met. The previous
example was one such case. The logical AND operator (&&) enables you to verify that all
conditions are met. You can rewrite the previous example as follows:

If(sex == female && age >= 21)
{

}

/1 This person is a female that is 21 years old or older.

You can actually place more than two relationships within a single if statement.
Regardless of the number of comparisons, the comparisons on each side of the AND (&8&)
must be true. For example:

if(x <58y < 10 && z > 10)

{
/] statements

}

The statements line is reached only if all three conditions are met. If any of the three
conditions in the if statements is false, the statements are skipped.

The Conditional OR Operator

Also sometimes, you do not want all the conditions to be true: Instead, you need only
one of a number of conditions to be true. For example, you want might want to execute
some code if the day of week is Saturday or Sunday. In these cases, you use the logical
OR operator (] |). The following illustrates this with pseudocode:

if(day equals sunday OR day equals saturday)
{

}

// do statements

In this example, the statements are executed if the day equals either sunday or saturday.
Only one of these conditions needs to be true for the statements to be executed. List-
ing 3.5 presents both the logical AND and OR in action.

|100

Day 3

LisTiNnG 3.5 and.cs—Using the Logical AND and OR

{
{

0N O WN =

N
[&)]
-

// and.cs- Using the conditional AND and OR

class andclass

public static void Main()

int day = 1;
char sex = 'f';

System.Console.WriteLine("Starting tests... (day:{0}, sex:{1})",

day, sex);
if (day >= 1 && day <=7) //day from 1 to 7?
{ System.Console.WriteLine("Day is from 1 to 7");
J}.f (sex == 'm" || sex == 'f') [/ Male or female?
{ System.Console.WriteLine("Sex is male or female.");
}

System.Console.WriteLine("Done with the checks.");

Starting tests... (day:1, sex:f)
OutpuT Day is from 1 to 7

Sex is male or female.
Done with the checks.

This listing illustrates both the && and || operators. In Line 14, you can see the
ANALYSIS . . .
AND operator (&) in action. For this if statement to evaluate to true, the day
must be greater than or equal to 1 as well as less than or equal to 7. If the day is 1, 2, 3, 4,
5, 6, or 7, the if condition evaluates to true and Line 16 prints. Any other number results
in the if statement evaluating to false, and thus Line 16 will be skipped.

Line 18 shows the OR (||) operator in action. Here, if the value in sex is equal to the
character 'm' or the character 'f', line 20 is printed; otherwise, Line 20 is skipped.

Be careful with the if condition in Line 18. This checks for the characters
'm' and 'f'. Notice these are lowercase values, which are not the same as
the uppercase values. If you set sex equal to 'F' or 'M' in Line 9, the if
statement in line 18 would still fail.

Manipulating Values in Your Programs 101 |

Change the values in Lines 8-9, and rerun the listing. You’ll see that you get different
output results based on the values you select. For example, change Lines 8-9 to the fol-

lowing:
8: int day = 9;
9: char sex = 'x';

Here are the results of rerunning the program:
Starting tests... (day:9, sex:Xx)
(01NN Done with the checks.
Other times you will want to use the AND (&&) and OR (] |) commands together. For
example, you might want to execute code if a person is 21 and is either a male or a
female. This can be accomplished by using the AND and OR statements together. You
must be careful when doing this, though. An AND operator expects the values on both
sides of it to be true. An OR statement expects one of the values to be true. For the previ-
ous example, you might be tempted to enter the following (note that this is pseudocode):
if(age >= 21 AND gender == male OR gender == FEMALE)
/] statement
This will not accomplish what you want. If the person is 21 or older and is a female, the
statement will not execute. The AND portion will result in being false. To overcome this
problem, you can force how the statements are evaluated using the parenthesis punctua-
tor. To accomplish the desired results, you would change the previous example to this:

if(age >= 21 AND (gender == male OR gender == female))
/| statement

The execution always starts with the innermost parenthesis. In this case, the statement
(gender == male OR gender == female) is evaluated first. Because this uses OR, this por-
tion of the statement will evaluate to true if either side is true. If this is true, the AND
will compare the age value to see whether the age is greater than or equal to 21. If this
proves to be true as well, the statement will execute.

“I] Use parentheses to make sure that you get code to execute in the order you
want.
Do DoN’'T

math and relational operations easier to (=) with the relational equals operator

Do use parentheses to make complex ‘ Don’t confuse the assignment operator
understand. (==).

|102

Day 3

Understanding Logical Bitwise Operators

You might want to use three other logical operators: the logical bitwise operators.
Although the use of bitwise operations is beyond the scope of this book, I’ve included a
section near the end of today’s lesson called “For Those Brave Enough.” This section
explains bitwise operations, the three logical bitwise operators, and the bitwise shift
operators.

The bitwise operators obtain their name from the fact that they operate on bits. A bit is a
single storage location that stores either an on or an off value (equated to o or 1). In the
section at the end of today’s lesson, you will learn how the bitwise operators can be used
to manipulate these bits.

Understanding the Type Operators

As you begin working with classes and interfaces later in this book, you will need the
type operators. Without understanding interfaces and classes, it is hard to fully under-
stand these operators. For now, be aware that you will need a number of operators later:
* typeof
° is

® as

Using the sizeof Operator

You saw the sizeof operator in action on Day 2. This operator is used to determine the
size of a value in memory.

I': t' Because the sizeof operator manipulates memory directly, avoid its use, if
dution possible

Shortcutting with the Conditional Operator

C# has one ternary operator: the conditional operator. The conditional operator has the
following format:

Condition ? if _true_statement : if false statement;

As you can see, there are three parts to this operation, with two symbols used to separate
them. The first part of the command is a condition. This is just like the conditions that

Manipulating Values in Your Programs 103 |

you created earlier for the if statement. This can be any condition that results in either
true Or false.

After the condition is a question mark, which separates the condition from the first of
two statements. The first of the two statements executes if the condition is true. The sec-
ond statement is separated from the first with a colon and is executed if the condition is
false. Listing 3.6 presents the conditional operator in action.

The conditional operator is used to create concise code. If you have a simple if state-
ment that evaluates to doing a simple true and simple false statement, then the condi-
tional operator can be used. In my opinion, you should avoid the use of the conditional
operator. Because it is just a shortcut version of an if statement, just stick with using the
if statement. Most people reviewing your code will find the if statement easier to read
and understand.

LisTING 3.6 cond.cs—The Conditional Operator in Action

1: // cond.cs - The conditional operator

L e T
3:

4: class cond

5: {

6: public static void Main()

7: {

8: int vall = 1;

9: int Val2 = 0;

10: int result;

11:

12: result = (vall == Val2) ? 1 : 0;

13:

14: System.Console.WriteLine("The result is {0}", result);
15: }

16: }

The result is 0
OurtpPuT

This listing is very simple. In Line 12, the conditional operator is executed and
ANALYSIS ;
the result is placed in the variable result. Line 14 then prints this value. In this
case, the conditional operator checks to see whether the value in val1 is equal to the
value in val2. Because 1 is not equal to e, the false result of the conditional is set. Modify
Line 8 so that val2 is set equal to 1, and then rerun this listing. You will see that because
1 is equal to 1, the result will be 1 instead of e.

104 Day 3

ﬂﬂlllil]ll The conditional operator provides a shortcut for implementing an if state-
ment. Although it is more concise, it is not always the easiest to understand.
When using the conditional operator, you should verify that you are not
making your code harder to understand.

Understanding Operator Precedence

Rarely are these operators used one at a time. Often multiple operators are used in a sin-
gle statement. When this happens, a lot of issues seem to arise. Consider the following:

Answer = 4 * 5 +6 [/ 2 - 1;

What is the value of Answer? If you said 12, you are wrong. If you said 44, you are also
wrong. The answer is 22.

Different types of operators are executed in a set order, called operator prece-
NEw TERM . .
dence. The word precedence is used because some operators have a higher level

of precedence than others. In the example, multiplication and division have a higher level
of precedence than addition and subtraction. This means that 4 is multiplied by 5, and 6 is
divided by 2 before any addition occurs.

Table 3.3 lists all the operators. The operators at each level of the table are at the same
level of precedence. In almost all cases, there is no impact on the results. For example,
5 x4 /10 is the same whether 5 is multiplied by 4 first or 4 is divided by 1e.

TaBLE 3.3 Operator Precedence

Level Operator Types Operators

1 Primary operators () . [1 x++ x-- newtypeof sizeof
checked unchecked

2 Unary + - L = HHX =X
3 Multiplicative * %

4 Additive +

5 Shift << >>

6 Relational < > <= >= is

7 Equality = |=

8 Logical AND &

9 Logical XOR "

10 Logical OR

Manipulating Values in Your Programs

105|

TaBLe 3.3 continued
Level Operator Types Operators
11 Conditional AND &&
12 Conditional OR |
13 Conditional ?:
14 Assignment = %= [= %= 4= .= <<= >>= &= ‘= |=

Changing Precedence Order

You learned how to change the order of precedence by using parentheses punctuators
earlier in today’s lessons. Because parentheses have a higher level of precedence than the
operators, what is enclosed in them is evaluated before operators outside of them. Using
the earlier example, you can force the addition and subtraction to occur first by using
parentheses:

Answer =4 * (5+6)/ (2-1);

Now what will answer be? Because the parentheses are evaluated first, the compiler first
resolves the code to this:

Answer = 4 * 11 / 1;

The final result is 44. You can also have parentheses within parentheses. For example, the
code could be written as follows:

Answer =4 * ((5+6)/ (2-1));
The compiler would resolve this as follows:
Answer = 4 * (11 / 1);

Then it would resolve it as this:

Answer = 4 * 11;

Finally, it would resolve it as the Answer of 44. In this case, the parentheses didn’t cause a
difference in the final answer; however, sometimes they do.

Converting Data Types

When you move a value from one variable type to another, a conversion must occur.
Additionally, if you want to perform an operation on two different data types, a conver-
sion might also need to occur. Two types of conversions can occur: implicit and explicit.

|106

Day 3

Implicit conversions happen automatically without error. You’ve read about many

of these within today’s lesson. What happens when an implicit conversion is not
available? For example, what if you want to put the value stored in a variable of type
long into a variable of type int?

Explicit conversions are conversions of data that are forced. For the value data

types that you learned about today, the easiest way to do an explicit conversion is
with a cast. A cast is the forcing of a data value to another data type. The format of a
cast is shown here:

ToVariable = (datatype) FromVariable;

datatype is the data type that you want the Fromvariable converted to. Using the example
of converting a long variable to an int, you enter the following statement:
int IntVariable = 0;

long LongVariable = 1234;
IntvVariable = (int) LongVariable;

In doing casts, you take responsibility for making sure that the variable can hold the
value being converted. If the receiving variable cannot store the received value, trunca-
tion or other changes can occur. A number of times, you will need to do explicit conver-
sions. Table 3.4 contains a list of those times.

Nlllﬂ Explicit conversions as a group also encompass all the implicit conversions. It
is possible to use a cast even if an implicit conversion is available.

TaBLE 3.4 Required Explicit Conversions

From Type To Type(s)

shyte byte, ushort, uint, ulong, or char

byte sbyte or char

short sbyte, byte, ushort, uint, ulong, or char

ushort sbyte, byte, short, or char

int sbyte, byte, short, ushort, uint, ulong, or char
uint sbyte, byte, short, ushort, int, or char

long sbyte, byte, short, ushort, int, uint, ulong, or char
ulong sbyte, byte, short, ushort, int, uint, long, or char
char sbyte, byte, or short

float sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal

Manipulating Values in Your Programs 107 |

TaBLE 3.4 continued

From Type To Type(s)
double sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal
decimal sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double

Understanding Operator Promotion

Implicit conversions are also associated with operator promotion, which is the
automatic conversion of an operator from one type to another. When you do
basic arithmetic operations on two variables, they are converted to the same type before
doing the math. For example, if you add a byte variable to an int variable, the byte vari-
able is promoted to an integer before it is added.

A numeric variable smaller than an int is promoted to an int. The order of promotion
after an int is as follows:

int

uint

long

ulong

float

double

decimal

N[llﬂ The following section contains advanced material that is not critical to know
at this time. You can cover this material now, or you can to skip to the end

of today’s lesson and come back to this material later.

Bonus Material: For Those Brave Enough

For those brave enough, the following sections explain using the bitwise operators. This
includes using the shift operators and the logical bitwise operators. Bitwise operators are
a more advanced topic, so most beginning-level books skip over them. One reason they
are advanced is that before understanding how these operators work, you need to under-
stand how variables are truly stored.

|108

Day 3

'I'ip It is valuable to understand the bitwise operators and how memory works;
however, it is not critical to your understanding C#. If you feel brave, con-

tinue forward. If not, feel free to jump to the Summary and Workshop at

the end of today’s lessons. You can always come back and read this later.

Storing Variables in Memory

To understand the bitwise operators, you must first understand bits. In yesterday’s lesson
on data types, you learned that the different data types take different numbers of bits to
store. For example, a char data type takes 2 bytes. An integer takes 4 bytes. You also
learned that maximum and minimum values can be stored in these different data types.

Recall that a byte is 8 bits of memory; 2 bytes is 16 bits of memory—2 x 8. Therefore, 4
bytes is 32 bits of memory. The key to all of this is to understand what a bit is.

A bit is simply a single storage unit of memory that can be either turned on or turned off
just like a light bulb. If you are storing information on a magnetic medium, a bit can be
stored as either a positive charge or a negative charge. If you are working with something
such as a CD-ROM, the bit can be stored as a bump or as an indent. In all these cases,
one value is equated to @ and the other is equated to 1.

If a bit can store only a 0 or a 1, you are obviously very limited in what can be stored. To
be able to store larger values, you use bits in groups. For example, if you use 2 bits, you
can actually store four numbers, 0o, 01, 10, and 11. If you use 3 bits, you can store eight
numbers, 000, 001, 010, 011, 100, 101, 110, and 111. If you use 4 bits, you can store 16
numbers. In fact x bits can store 2 numbers, so a byte (8 bits), can store 28, or 256 num-
bers. Two bytes can store 216, or 65536 values.

Translating from these 1s and os is simply a matter of using the binary number system.
Appendix C, “Understanding Number Systems,” explains how you can work with the
binary number system in detail. For now, understand that the binary system is simply a
number system.

You use the decimal number system to count. Whereas the decimal system uses 10 num-
bers (e to 9), the binary system uses 2 numbers. When counting in the decimal system,
you use 1s, 10s, 100s, 1,000s, and so forth. For example, the number 13 is one 10 and
three 1s. The number 25 is two 1es and five 1s.

The binary system works the same way, except that there are only two numbers, 0 and 1.
Instead of 1es and 1ees, you have 1s, 2s, 4s, 8s, and so on. In fact, each group is based on

Manipulating Values in Your Programs 109 |

taking 2 to the power of a number. The first group is 2 to the power of o, the second is 2
to the power of 1, the third is 2 to the power of 3, and so on. Figure 3.2 illustrates this.

FIGURE 3.2 108 102 101 100 Decimal
Binary versus decimal ... Thousands Hundreds Tens Ones

24 23 22 21 20 Bi
. Sixteens Eights Fours Twos Ones inary

Presenting numbers in the binary system works the same way it does in the decimal sys-
tem. The first position on the right is 1s, the second position from the right is 2s, the third
is 4s, and so on. Consider the following number:

1101

To convert this binary number to decimal, you can multiply each value in the number
times by positional value. For example, the value in the right column (1s) is 1. The 2s
column contains a o, the 4s column contains a 1, and the 8s column contains a 1. The
result is this:

I1+(0x2)+(1x4)+(1x8)

The final decimal result is this:

1+0+4+8

This is 13. So, 1101 in binary is equivalent to 13 in decimal. This same process can be
applied to convert any binary number to decimal. As numbers get larger, you need more
bit positions. To keep things simpler, memory is actually separated into 8-bit units—
bytes.

Understanding the Shift Operators

C# has two shift operators that can be used to manipulate bits. These operators do
exactly what their names imply—they shift the bits. The shift operators can shift the bits
to the right using the >> operator or to the left using the << operator. These operators
shift the bits within a variable by a specified number of positions. The format is as fol-
lows:

New_value = Value [shift-operator] number-of-positions;

value is a literal or a variable, shift-operator is either the right (>>) or the left (<<) shift
operator, and number-of-positions is how many positions you want to shift the bits. For

|110

Day 3

example, if you have the number 13 stored in a byte, you know that its binary representa-
tion is as follows:

00001101

If you use the shift operator on this, you change the value. Consider the following:
00001101 >> 2

This shifts the bits in this number to the right two positions. The result is this:

00000011

This binary value is equivalent to the value of 3. In summary, 13 >> 2 equals 3. Consider
another example:

00001101 << 8

This example shifts the bit values to the left eight positions. Because this is a single-byte
value, the resulting number is o.

Manipulating Bits with Logical Operators

In addition to being able to shift bits, you can combine the bits of two numbers. Three
bitwise logical operators can be used, as shown in Table 3.5.

TaBLE 3.5 Logical Bitwise Operators

Operator Description

| Logical OR bitwise operator
& Logical AND bitwise operator
" Logical XOR bitwise operator

Each of these operators is used to combine the bits of two binary values. Each has a dif-
ferent result.
The Logical OR Bitwise Operator
When combining two values with the logical OR bitwise operator (|), you get the follow-
ing results:

e If both bits are o, the result is o.

e If either or both bits are 1, the result is 1.

Manipulating Values in Your Programs

111|

Combining 2 byte values results in the following:

Value 1: 00001111
Value 2: 11001100

Result: 11001111

The Logical AND Bitwise Operator

When combining two values with the logical AND bitwise operator (&), you get the fol-
lowing result:

¢ If both bits are 1, the result is 1.

o If either bit is o, the result is o.
Combining 2 byte values results in the following:

Value 1: 00001111
Value 2: 11001100

Result: 00001100

The Logical XOR Operator

When combining two values with the logical XOR bitwise operator (*), you get the fol-
lowing result:

¢ If both bits are the same, the result is o.

e If 1 bit is o and the other is 1, the result is 1.
Combining 2 byte values results in the following:

Value 1: 00001111
Value 2: 11001100

Result: 11000011

Listing 3.7 illustrates some of the bitwise operators.

112 Day 3

LisTING 3.7 bitwise.cs—The Bitwise Operators

1: // bitwise.cs - Using the bitwise operators

N N R R R TP R
3:

4: class bitwise

5: {

6: public static void Main()

7: {

8: int valOne = 1;

9: int ValZero = 0;

10: int NewVal;

11:

12: // Bitwise XOR Operator

13:

14: NewVal = ValZero ~ ValZero;

15: System.Console.WriteLine("\nThe XOR Operator: \n @ "~ 0 = {0}",
16: Newval);

17: NewVal = ValZero ~ ValOne;

18: System.Console.WriteLine(" © ~ 1 = {0}", NewvVal);
19:
20: NewvVal = ValOne ~ ValZero;
21: System.Console.WriteLine(" 1 ~ @ = {0}", NewvVal);
22:
23: NewVal = ValOne ~ ValOne;
24: System.Console.WriteLine(" 1 ~ 1 = {0}", NewvVal);
25:
26: // Bitwise AND Operator
27:
28: NewVal = ValZero & ValZero;
29: System.Console.WriteLine("\nThe AND Operator: \n 0 & 0 = {0}",

=NewVal);

30:
31: NewVal = ValZero & ValOne;
32: System.Console.WriteLine(" © & 1 = {0}", NewvVal);
33:
34: NewVal = ValOne & ValZero;
35: System.Console.WriteLine(" 1 & @ = {0}", NewvVal);
36:
37: NewVal = ValOne & ValOne;
38: System.Console.WriteLine(" 1 & 1 = {0}", NewvVal);
39:
40: // Bitwise OR Operator
41:
42: NewvVal = ValZero | ValZero;
43: System.Console.WriteLine("\nThe OR Operator: \n 0 | 0 = {0}",
44: NewvVal);
45: Newval = ValZero | ValOne;
46: System.Console.WriteLine(" @ | 1 = {0}", Newval);

47:

Manipulating Values in Your Programs 113 |

LisTING 3.7 continued

48: Newval = ValOne | ValZero;
49: System.Console.WriteLine(" 1 | @ = {0}", NewVal);
50:
51: Newval = ValOne | ValOne;
52: System.Console.WriteLine(" 1 | 1 = {@0}", NewVal);
53: }
54: }
The XOR Operator:
OutpuTt 0~0=0
0~ 1=1
1°0=1
171=0
The AND Operator:
0&0=0
0&1=0
1&0=20
1&1 =1
The OR Operator:
0] 0=20
0]1=A1
1]10=1
1] 1=1

Listing 3.7 summarizes the logical bitwise operators. Lines 8-9 define two vari-
ANALYSIS . .
ables and assign the values 1 and o to them. These two variables are then used
repeatedly with the bitwise operators. A bitwise operation is done, and the result is writ-
ten to the console. You should review the output and see that the results are exactly as
described in the earlier sections.

Flipping Bits with the Logical NOT Operator
One other bitwise operator is often used. The logical NOT operator (-) is used to flip the
bits of a value. Unlike the logical bitwise operator mentioned in the previous sections,
the NOT operator is unary—it works with only one value. The results are as follows:

o If the bit’s value is 1, the result is o.

¢ If the bit’s value is o, the result is 1.

Using this on an unsigned byte that contains the value of 1 (e0000001) would result in the
number 254 (11111110).

|114

Day 3

Summary

Today’s lesson presents a lot of information regarding operators and their use. You
learned about the types of operators, including arithmetic, multiplicative, relational, logi-
cal, and conditional. You also learned the order in which operators are evaluated (opera-
tor precedence). When working with values, you learned that there are both implicit and
explicit conversions. Explicit conversions are ones that you make happen. Implicit con-
versions occur automatically. Finally, today’s lesson ended with a section on bitwise
operations and the bitwise operators, for those who were brave enough.

Q&A

Q How important is it to understand operators and operator precedence?

A You will use the operators in almost every application you create. Operator prece-

dence is critical to understand. As you saw in today’s lesson, if you don’t under-
stand operator precedence, you might end up with results that are different from
what you expect.

Today’s lesson covered the binary number system briefly. Is it important to
understand this number system? Also, what other number systems are impor-
tant?

Although it is not critical to understand binary, it is important. With computers
today, information is stored in a binary format. Whether it is a positive versus neg-
ative charge, a bump versus an impression, or some other representation, all data is
ultimately stored in binary. Knowing how the binary system works will make it
easier for you to understand these actual storage values.

In addition to binary, many computer programmers work with octal and hexadeci-
mal. Octal is a base-8 number system, and hexadecimal is a base-16 number sys-
tem. Appendix C, “Understanding Number Systems,” covers these systems in more
detail.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Manipulating Values in Your Programs 115 |

Quiz

The following quiz questions will help verify your understanding of today’s lessons.
What character is used for multiplication?

What is the result of 10 % 37

What is the result of 10 + 3 » 2?

What are the conditional operators?

What C# keyword can be used to change the flow of a program?

What is the difference between a unary operator and a binary operator?

Nk w D=

What is the difference between an explicit data type conversion and an implicit
conversion?

*®

Is it possible to convert from a long to an integer?
9. What are the possible results of a conditional operation?
10. What do the shift operators do?

Exercises
Please note that answers will not be provided for all exercises. The exercises will help
you apply what you have learned in today’s lessons.
1. What is the result of the following operation?
2+6 *3+5-2*4
2. What is the result of the following operation?
4 * (8-3*2)* (0+1) /2
3. Write a program that checks to see whether a variable is greater than 5. If the
value is greater than 65, print the statement "The value is greater than 65!".
4. Write a program that checks to see whether a character contains the value of t or T.
5. Write the line of code to convert a long called myLong to a short called MyShort.

6. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages? What is the error?
1: class exercise

{

public static void Main()

{

int value = 1;

if (value > 100);
{

0N O WN

|116

Day 3

9: System.Console.WriteLine("Number is greater than 100");
10: }

11: }

12: }

. Write the line of code to convert an integer, Intval, to a short, Shortval.
8. Write the line of code to convert a decimal, pecval, to a long, Longval.

. Write the line of code to convert an integer, ch, to a character, charval.

WEEK 1

DAY 4

Controlling Your
Program’s Flow

You’ve learned a lot in the previous three days. This includes knowing how to
store information, knowing how to do operations, and even knowing how to
avoid executing certain commands by using the if statement. You have even
learned a little about controlling the flow of a program using the if statement;
however, often you need to be able to control the flow of a program even more.
Today you...

* See the other commands to use for program flow control.

* Explore how to do even more with the if command.

e Learn to switch among multiple options.

* Investigate how to repeat a block of statements multiple times.

* Discover how to abruptly stop the repeating of code.

1118 Day 4

Controlling Program Flow

By controlling the flow of a program, you can create functionality that results in some-
thing useful. As you continue to program, you will want to change the flow of your pro-
grams in a number of additional ways. You will want to repeat a piece of code, skip a
piece of code altogether, or switch among different pieces of code. Regardless of how
you want to change the flow of a program, C# has an option for doing it. Most of the
changes of flow can be categorized into two types:

¢ Selection statements

e Iterative statements

Using Selection Statements

Selection statements enable you to execute specific blocks of code based on the results of
a condition. The if statement that you learned about previously is a selection statement,
as is the switch statement.

Revisiting if
You’ve learned about the if statement; however, it is worth revisiting. Consider the fol-
lowing example:

if(gender == 'm' || gender == 'f')

{ System.Console.WriteLine("The gender is valid");

11c(gender != 'm' && gender != 'f')

{ System.Console.WriteLine("The gender value, {0} is not valid", gender);
}

This example uses a character variable called gender. The first if statement checks to see
whether gender is equal to an 'm' or an 'f'. This uses the OR operator (||) that you
learned about in yesterday’s lesson. A second if statement prints an error message when
the gender is not equal to 'm' or 'f'. This second if statement is an example of making
sure that the variable has a valid value. If there is a value other than 'm' and 'f', an error
message is displayed.

If you are looking at these two statements and think that something is just not quite opti-
mal, you are correct. Like many other languages, C# offers another keyword that can be
used with the if statement: the else statement. The else statement is used specifically
with the if statement. The format of the if...else statement is shown here:

Controlling Your Program’s Flow 119 |

if (condition)

// If condition is true, do these lines

}
else
{
// If condition is false, do these lines
}

/| code after if... statement

The else statement gives you the capability to have code that executes when the if state-
ment’s condition fails. You should also note that either the block of code after the if or
the block of code after the else executes—but not both. After either of these blocks of
code is done executing, the program jumps to the first line after the if...else condition.

Listing 4.1 presents the gender code from earlier. This time, the code has been modified
to use the if...else command. As you can see in the listing, this version is much more
efficient and easier to follow than the one presented earlier.

LisTING 4.1 ifelse.cs—Using the if...else Command

1: // ifelse.cs - Using the if...else statement
R R
3:

4: class ifelse

5: {

6: public static void Main()

7: {

8: char gender = 'x';

9:

10: if(gender == 'm' || gender == 'f')

11: {

12: System.Console.WriteLine("The gender is valid");

13: }

14: else

15: {

16: System.Console.WriteLine("The gender value, {0}, is not valid",
17: gender);

18: }

19: System.Console.WriteLine("The if statement is now over!");
20: }
21: }

The gender value, x, is not valid
Output The if statement is now over!

120 Day 4

This listing declares a simple variable called gender of type char in Line 8. This
variable is set to a value of 'x* when it is declared. The if statement starts in
Line 10, which checks to see whether gender is either 'm' or 'f'. If it is, a message is
printed in Line 12 saying that gender is valid. If gender is not 'm' or 'f', the if condition
fails and control is passed to the else statement in Line 14. In this case, gender is equal to
'x', so the else command is executed. A message is printed stating that the gender value
is invalid. Control is then passed to the first line after the if...else statement— Line 19.

Modify Line 8 to set the value of gender to either 'm' or 'f'. Recompile and rerun the
program. This time the output will be as follows:

The gender is valid
Output The if statement is now over!

[‘: t' What would you expect to happen if you set the value of gender to a capi-
dution) 2
tal M or F? Remember, C# is case sensitive.

>

Nesting and Stacking if Statements

Nesting is simply the inclusion of one statement within another. Almost all C#
NEew TERM -
flow commands can be nested within each other.

To nest an if statement, you place a second if statement within the first. You can nest
within the if section or the else section. Using the gender example, you could do the fol-
lowing to make the statement a little more effective (the nested statement appears in

bold):
if(gender == 'm')
{
// it is a male
I3
else
{
if (gender == 'f')
{
// it is a female
}
else
//neither a male or a female
}

Controlling Your Program’s Flow 121 |

A complete if...else statement is nested within the else section of the original if state-
ment. This code operates just as you expect. If gender is not equal to 'm', the flow goes to
the first else statement. Within this else statement is another if statement that starts from
its beginning. This second if statement checks to see whether the gender is equal to 'f'.
If not, the flow goes to the else statement of the nested if . At that point, you know that
gender is neither 'm' nor 'f', and you can add appropriate coding logic.

Although nesting makes some functionality easier, you can also stack if statements. In
the example of checking gender, stacking is actually a much better solution.

Stacking if Statements

Stacking if statements combines the else with another if. The easiest way to understand
stacking is to see the gender example one more time, stacked (see Listing 4.2).

LisTING 4.2 Stacked.cs—Stacking an if Statement

1: // Stacked.cs - Using the if...else statement
R R R
3:

4: class Stacked

5: {

6: static void Main()

7: {

8: char gender = 'x';

9:

10: if(gender == 'm')

11: {

12: System.Console.WriteLine("The gender is male");

13: }

14: else if (gender == 'f')

15: {

16: System.Console.WriteLine("The gender is female");

17: }

18: else

19: {
20: System.Console.WriteLine("The gender value, {0}, is not valid",
21: gender);
22: }
23: System.Console.WriteLine("The if statement is now over!");
24: }
25: }

The gender value, x, is not valid
Ol 1o it statement is now over!

122 Day 4

The code presented in this example is very close to the code presented in the pre-
vious example. The primary difference is in Line 14. The else statement is
immediately followed by an if. There are no braces or a block. The format for stacking
is as follows:
if (condition 1)

{
}

else if (condition 2)

// do something about condition 1

// do something about condition 2

}
else if (condition 3)
{

// do something about condition 3
}
else if (condition x)
{

// do something about condition x

else
{

// All previous conditions failed
}

This is relatively easy to follow. With the gender example, you had only two conditions.
There are times when you might have more than two. For example, you could create a
computer program that checks the roll of a die. You could then do something different
depending on what the roll is. Each stacked condition could check for a different number
(from 1 to 6), with the final else statement presenting an error because there can be only
six numbers. The code for this would be as follows:

if (roll ==)
// roll is 1
else if (roll == 2)
/] roll is 2
else if (roll == 3)
// roll is 3
else if (roll == 4)
// roll is 4
else if (roll == 5)
// roll is 5
else if (roll == 6)
// roll is 6
else
// it isn't a number from 1 to 6

Controlling Your Program’s Flow 123 |

This code is relatively easy to follow because it’s easy to see that each of the six possible
numbers is checked against the roll. If the roll is not one of the six, the final else state-
ment can take care of any error logic or reset logic.

N t As you can see in the die code, no braces are used around the if

ote : : . :
statements. If you are using only a single statement within the if or the

else, you don’t need the braces. You include them only when you have

more than one statement.

Discovering the switch Statement

C# provides a much easier way to modify program flow based on multiple values stored
in a variable: the switch statement. The format of the switch statement is as follows:

switch (value)
{
case result_f
/] do stuff for result_1
break;
case result_2 :
/] do stuff for result_2
break;

case result_n :
// do stuff for result_x
break;

default:
/] do stuff for default case
break;

}

You can see by the format of the switch statement that there is no condition. Instead, a
value is used. This value can be the result of an expression, or it can be a variable. This
value is then compared to each of the values in each of the case statements until a match
is found. If a match is not found, the flow goes to the default case. If there is not a
default case, flow goes to the first statement following the switch statement.

When a match is found, the code within the matching case statement is executed. When
the flow reaches another case statement, the switch statement ends. Only one case state-
ment is executed at most. Flow then continues, with the first command following the
switch statement. Listing 4.3 shows the switch statement in action, using the earlier
example of a roll of a six-sided die.

|124

Day 4

LisTING 4.3

roll.cs—Using the switch Statement with the Roll of a Die

is

is

is

is

is

is

is

1");

2");

8");

4");

5");

6");

not 1 through 6");

1: // roll.cs- Using the switch statement.

N e R S R
3:

4: class roll

5: {

6: public static void Main()

7: {

8: int roll = 0;

9:
10: /] The next two lines set the roll to a random number from 1 to 6
11: System.Random rnd = new System.Random();
12: roll = (int) rnd.Next(1,7);
13:
14: System.Console.WriteLine("Starting the switch... ");
15:
16: switch (roll)
17: {
18: case 1:
19: System.Console.WriteLine("Roll
20: break;
21: case 2:
22: System.Console.WriteLine("Roll
23: break;
24: case 3:
25: System.Console.WriteLine("Roll
26: break;
27: case 4:
28: System.Console.WriteLine("Roll
29: break;
30: case 5:
31: System.Console.WriteLine("Roll
32: break;
33: case 6:
34: System.Console.WriteLine("Roll
35: break;
36: default:
37: System.Console.WriteLine("Roll
38: break;
39: }
40: System.Console.WriteLine("The switch statement is now over!");
41: }
42: }

Starting the switch...
Roll is 1

The switch statement is now over!

Controlling Your Program'’s Flow 125 |

This listing is a little longer than a lot of the previous listings; however, it is also
more functional. The first thing to focus on is Lines 16-39. These lines contain
the switch statement that is the center of this discussion. The switch statement uses the
value stored in the roll. Depending on the value, one of the cases is selected. If the num-
ber is something other than 1—6, the default statement starting in Line 39 is executed. If
any of the numbers is rolled (1—6), the appropriate case statement is executed.

ANALYSIS

Nﬂtﬂ Your answer for the roll in the output might be a number other than 1.

You should note that at the end of each section of code for each case statement, there is a
break command, which is required at the end of each set of code. This signals the end of
the statements within a case. If you don’t include the break command, you get a compiler
error.

To make this listing more interesting, Lines 11-12 were added. Line 11 might look unfa-
miliar; it creates a variable called rnd, which is an object that holds a random number. In
tomorrow’s lesson, you revisit this line of code and learn the details of what it is doing.
For now, simply know that it is setting up a variable for a random number.

Line 12 is also a line that will become more familiar over the next few days. The com-
mand (int) rnd.Next(1,7) provides a random number from 1 to 6.

'I'iI] You can use Lines 11-12 to generate random numbers for any range by sim-

ply changing the values from 1 and 7 to the range you want numbers
between. The first number is the lowest number that will be returned. The
second number is one higher than the highest number that will be returned.
For example, if you wanted a random number from 90 to 100, you could
change Line 12 to this:

Roll = (int) rnd.Next(90, 101);

Executing a Single Solution for Multiple Cases

Sometimes you want to execute the same piece of code for multiple values. For example,
if you want to switch based on the roll of a six-sided die, but you want to do something
based only on odd or even numbers, you could group multiple case statements. The
switch statement is this:

1126 Day 4

switch (roll)

{
case 1:
case 3:
case 5:
System.Console.WriteLine("Roll is odd");
break;
case 2:
case 4:
case 6:
System.Console.WriteLine("Roll is even");
break;
default:
System.Console.WriteLine("Roll is not 1 through 6");
break;
}

The same code is executed if the roll is 1, 3, or 5. Additionally, the same code is executed
if the roll is 2, 4, or 6.

[‘: t' In other languages, such as C++, you can have code execute from multiple
aution . .

case statements by leaving out the break command. This causes the code to
drop through to the next case statement. In C#, this is not valid. Code can-
not drop through from one case to another. This means that if you are

going to group case statements, you cannot place any code between them.
You can place one only after the last case statement in each group.

Executing More Than One case Statement

You might want to execute more than one case statement within a switch statement. To
do this in C#, you can use the goto command. The goto command can be used within the
switch statement to go to either a case statement or the default command. The following
code snippet shows the switch statement from the previous section executed with goto
statements instead of simply dropping through:

switch (roll)

{

case 1:
goto case 5;
break;

case 2:
goto case 6;
break;

case 3:

goto case 5;
break;

Controlling Your Program'’s Flow 127 |

case 4:
goto case 6;
break;
case 5:
System.Console.WriteLine("Roll is odd");
break;
case 6:
System.Console.WriteLine("Roll is even");
break;
default:
System.Console.WriteLine("Roll is not 1 through 6");
break;

}

Although this example illustrates using the goto, it is much easier to use the previous
example of grouping multiple case statements. You will find times, however, when the
goto provides the solution you need.

Understanding the Governing Types for switch Statements

A switch statement has only certain types that can be used. The data type—or the “gov-
erning type” for a switch statement—is the type that the switch statement’s expression
resolves to. If this governing type is sbyte, byte, short, ushort, int, uint, long, ulong, char,
or a text string, this type is the governing type. Another type, called an enum, is also valid
as a governing type. You will learn about enum types on Day 7, “Storing More Complex
Stuff: Structures, Enumerators, and Arrays.”

If the data type of the expression is something other than these types, the type must have
a single implicit conversion that converts it to a type of sbyte, byte, short, ushort, int,
uint, long, ulong, or a string. If no conversion is available, or if there is more than one,
you get an error when you compile your program.

Nﬂtﬂ If you don’t remember what implicit conversions are, review Day 3,
“Manipulating Values in Your Programs.”

o

Do use a switch statement when you are Don’t accidentally put a semicolon after
checking for multiple different values in the condition of a switch or if state-
the same variable. ment:

if (condition);

1128 Day 4

Using Iteration Statements

In addition to changing the flow through selection statements, you might want to repeat a
piece of code multiple times. When you want to repeat code, C# provides a number of
iteration statements. Iteration statements can execute a block of code zero or more times.
Each execution of the code is a single iteration.

The iteration statements in C# are listed here:
* while
® do
* for

* foreach

Executing Code with the while Statement

The while command is used to repeat a block of code as long as a condition is true. The
format of the while statement is as follows

while (condition)

{
}

This format is also presented in Figure 4.1.

Statement(s)

FIGURE 4.1

The while command.

- true
Condition
?

Statement(s)

As you can see from the figure, a while statement uses a conditional statement. If this
conditional statement evaluates to true, the statement(s) are executed. If the condition
evaluates to false, the statements are not executed and program flow goes to the next
command following the while statement. Listing 4.4 presents a while statement that
enables you to print the average of 10 random numbers from 1 to 10.

Controlling Your Program’s Flow 129 |

LisTING 4.4 average.cs—Using the while Command

1: // average.cs Using the while statement.
2: // print the average of 10 random numbers that are from 1 to 10.
K B e R
4:
5: class average
6: {
7: public static void Main()
8: {
9: int ttl = @; // variable to store the running total
10: int nbr = @; // variable for individual numbers
11: int ctr = 0; // counter
12:
13: System.Random rnd = new System.Random(); // random number
14:
15: while (ctr < 10)
16: {
17: //Get random number
18: nbr = (int) rnd.Next(1,11);
19:
20: System.Console.WriteLine("Number {0} is {1}", (ctr + 1), nbr);
21:
22: ttl += nbr; //add nbr to total
23: ctr++; //increment counter
24: }
25:
26: System.Console.WriteLine("\nThe total of the {@} numbers is {1}",
27: ctr, ttl);
28: System.Console.WriteLine("\nThe average of the numbers is {0}",
29: ttl/ctr);
30: }
31: }
Nl]lﬂ The numbers in your output will differ from those shown here. Because ran-

dom numbers are assigned, each time you run the program, the numbers
will be different.

Number 1 is 2
Number 2 is 5
Number 3 is 4
Number 4 is 1
Number 5 is 1
Number 6 is 5
Number 7 is 2
Number 8 is 5

|130

Day 4

Number 9 is 10
Number 10 is 2

The total of the 10 numbers is 37

The average of the numbers is 3

This listing uses the code for random numbers that you saw earlier in today’s les-
ANALYSIS

son. Instead of a random number from 1 to 6, this code picks numbers from 1 to
10. You see this in Line 18, where the value of 10 is multiplied against the next random
number. Line 13 initialized the random variable before it was used in this manner.

The while statement starts in Line 15. The condition for this while statement is a simple
check to see whether a counter is less than 10. Because the counter was initialized to @ in
Line 11, this condition evaluates to true, so the statements within the while are executed.
This while statement simply gets a random number from 1 to 10 in Line 18 and adds it to
the total counter, ttl1 in Line 22. Line 23 then increments the counter variable, ctr. After
this increment, the end of the while is reached in Line 24. The flow of the program is
automatically put back to the while condition in Line 15. This condition is re-evaluated to
see whether it is still true. If it is true, the statements are executed again. This continues
to happen until the while condition fails. For this program, the failure occurs when ctr
becomes 10. At that point, the flow goes to Line 25, which immediately follows the while
statement.

The code after the while statement prints the total and the average of the 10 random num-
bers that were found. The program then ends.

l:a“tiﬂn For a while statement to eventually end, you must make sure that you
change something in the statement(s) that will impact the condition. If your

condition can never be false, your while statement could end up in an infi-
nite loop. There is one alternative to creating a false condition: the break
statement. This is covered in the next section.

Breaking Out of or Continuing a while Statement

It is possible to end a while statement before the condition is set to false. It is also possi-
ble to end an iteration of a while statement before getting to the end of the statements.

To break out of a while and thus end it early, you use the break command. A break imme-
diately takes control of the first command after the while.

Controlling Your Program’s Flow 131 |

You can also cause a while statement to jump immediately to the next iteration. This is
done by using the continue statement. The continue statement causes the program’s flow
to go to the condition statement of the while. Listing 4.5 illustrates both the continue and
the break statements within a while.

LisTING 4.5 even.cs—Using break and continue

1: // even.cs- Using the while with the break and continue commands.
R
3:
4: class even
5: {
6: public static void Main()
7: {
8: int ctr = 0;
9:
10: while (true)
11: {
12: ctr+t;
13:
14: if (ctr > 10)
15: {
16: break;
17: }
18: else if ((ctr % 2) ==)
19: {
20: continue;
21: }
22: else
23: {
24: System.Console.WriteLine("...{0}...", ctr);
25: }
26: }
27: System.Console.WriteLine("Done!");
28: }
29: }
2.,
...6..
.8
100
Done!

A This listing prints even numbers and skips odd numbers. When the value of the
counter is greater than 10, the while statement ends with a break statement.

|132

Day 4

This listing declares and sets a counter variable, ctr, to 0 in Line 8. A while statement is
then started in Line 10. Because a break is used to end the loop, the condition in Line 10
is simply set to true. This, in effect, creates an infinite loop. Because this is an infinite
loop, a break statement is needed to end the while statement’s iterations. The first thing
done in the while statement is that ctr is incremented in Line 12. Line 14 then checks to
see whether ctr is greater than 10. If ctr is greater than 10, Line 16 executes a break
statement, which ends the while and sends the program flow to Line 27.

If ctr is less than 10, the else statement in Line 18 is executed. This else statement is
stacked with an if statement that checks to see whether the current number is odd. This
is done using the modulus operator. If the counter is even, by using the modulus operator
with 2, you get a result of o. If it is odd, you get a result of 1. When an odd number is
found, the continue statement is called in Line 20. This sends control back to the top of
the while statement, where the condition is checked again. Because the condition is
always true (literally), the while statement’s statements are executed again. This starts
with the increment of the counter in Line 12 again, followed by the checks.

If the number is not odd, the else statement in Line 22 will execute. This final else state-
ment contains a single call to writeLine, which prints the counter’s value.

Working with the do Statement

If a while statement’s condition is false on the initial check, the while statement will
never execute. Sometimes, however, you want statements to execute at least once. For
these times, the do statement might be a better solution.

The format of the do statement is shown here:

Do

{
Statement(s)

} while (condition);
This format is also presented in Figure 4.2.

As you can see from the figure, a do statement first executes its statements. Then a while
statement is presented with a condition. This while statement and condition operate the
same as the while that you explored earlier in Listing 4.4. If the condition evaluates to
true, program flow returns to the statements. If the condition evaluates to false, the flow
goes to the next line after the do...while. Listing 4.6 presents a do command in action.

N t Because of the use of the while with the do statement, a do statement is
ote .
often referred to as a do. ..while statement.

Controlling Your Program’s Flow 133 |

FIGURE 4.2

The do command.

<
<

Y

Statement(s)

true

Condition
?

LISTING 4.6 do_it.cs—The do Command in Action

1: // do_it.cs Using the do statement.

2: // Get random numbers (from 1 to 10) until a 5 is reached.

K R
4:

5: class do_it

6: {

7: public static void Main()

8: {

9: int ttl = @; // variable to store the running total

10: int nbr = @; // variable for individual numbers

11: int ctr = @; // counter

12:

13: System.Random rnd = new System.Random(); // random number
14:

15: do

16: {

17: //Get random number

18: nbr = (int) rnd.Next(1, 11);

19:
20: ctr++; //number of numbers counted
21: ttl += nbr; //add nbr to total of numbers
22:
23: System.Console.WriteLine("Number {0} is {1}", ctr, nbr);
24:

25: } while (nbr !=5);

26:

27: System.Console.WriteLine("\n{@} numbers were read", ctr);
28: System.Console.WriteLine("The total of the numbers is {0}", ttl);
29: System.Console.WriteLine("The average of the numbers is {0}",
30: ttl/ctr);

31 }

|134

Day 4

Number 1 is 1
O \ynber 2 is 6

Number 3 is 5

3 numbers were read
The total of the numbers is 12
The average of the numbers is 4

As with the previous listings that used random numbers, your output will most
ANALYSIS P & y P

likely be different from what is displayed. You will have a list of numbers, end-
ing with s.

For this program, you want to do something at least once—get a random number. You
want to then keep doing this until you have a condition met—you get a 5. This is a
great scenario for the do statement. This listing is very similar to an earlier listing. In
Lines 9-11, you set up a number of variables to keep track of totals and counts. In
Line 13, you again set up a variable to get random numbers.

Line 15 is the start of your do statement. The body of the do (Lines 16-24) is executed.
First, the next random number is obtained. Again, this is a number from 1 to 10 that is
assigned to the variable nbr. Line 20 keeps track of how many numbers have been
obtained by adding 1 to ctr each time a number is read. Line 21 then adds the value of
the number read to the total. Remember, the code

ttl += nbr

is the same as this code:

ttl = ttl + nbr

Line 23 prints the obtained number to the screen with the count of which number it is.

Line 25 is the conditional portion of the do statement. In this case, the condition is that
nbr is not equal to 5. As long as the number obtained, nbr, is not equal to 5, the body of
the do statement continues to execute. When a 5 is received, the loop ends. In the output
of your program, you will find that there is always only one 5, and it is always the last
number.

Lines 27-29 print statistical information regarding the numbers you found.

Counting and More with the for Statement

Although the do...while and while statements give you all the functionality you really
need to control iterations of code, they are not the only commands available. Before
looking at the for statement, check out the code in the following snippet:

Controlling Your Program’s Flow 135 |

ctr = 1;
while (ctr < 10)
{
//do some stuff
ctr++;

}

In this snippet of code, you can see that a counter is used to loop through a while state-
ment. The flow of this code is this:
1. Set a counter to the value of 1.
Check to see whether the counter is less than 1e.
If the counter is not less than 10 (the condition fails), go to the end.
3. Do some stuff.
4. Add 1 to the counter.
5. Go to Step 2.
These steps are a very common use of iteration. Because this is a common use, you

are provided with the for statement, which consolidates the steps into a much simpler
format:

for (initializer; condition; incrementor)

{
}

You should review the format presented here for the for statement, which contains three
parts within parentheses: the initializer, the condition, and the incrementor. Each of
these three parts is separated by a semicolon. If one of these expressions is to be left out,
you still need to include the semicolon separators.

Statement(s);

The initializer is executed when the for statement begins. It is executed only once at
the beginning and then never again.

After executing the initializer, the condition statement is evaluated. Just like the condi-
tion in the while statement, this must evaluate to either true or false. If this evaluates to
true, the statement(s) is executed.

After the statement or statement block executes, program flow is returned to the for
statement where the incrementor is evaluated. This incrementor can actually be any valid
C# expression; however, it is generally used to increment a counter.

After the incrementor is executed, the condition is again evaluated. As long as the condi -
tion remains true, the statements will be executed, followed by the incrementor. This
continues until the condition evaluates to false. Figure 4.3 illustrates the flow of the for
statement.

1136 Day 4

FIGURE 4.3
The for statement.
Initializer
< Incrementor
v A

- true
Condition
?

Statement(s)

Before jumping into a listing, consider the while statement that was presented at the
beginning of this section:

for (ctr = 1; ctr < 10; ctr++)

{
//do some stuff

}

This for statement is much simpler than the code used earlier with the while statement.
The steps that this for statement executes are as follows:

1. Set a counter to the value of 1.

2. Check to see whether the counter is less than 1e.

If the counter is not less than 10 (condition fails), go to the end of the for state-
ment.

3. Do some stuff.

4. Add 1 to the counter.

5. Go to Step 2.
These are the same steps that were followed with the while statement snippet earlier. The
difference is that the for statement is much more concise and easier to follow. Listing 4.7

presents a more robust use of the for statement. In fact, this is the same program that you
saw in sample code earlier, only now it is much more concise.

Controlling Your Program’s Flow 137 |

LisTING 4.7 foravg.cs—Using the for Statement

1: // foravg.cs Using the for statement.
2: // print the average of 10 random numbers that are from 1 to 10.
K B e e
4:
5: class average
6: {
7: public static void Main()
8: {
9: int ttl = @; // variable to store the running total
10: int nbr = @; // variable for individual numbers
11: int ctr = 0; // counter
12:
13: System.Random rnd = new System.Random(); // random number
14:
15: for (ctr = 1; ctr <= 10; ctr++)
16: {
17: //Get random number
18: nbr = (int) rnd.Next(1, 11);
19:
20: System.Console.WriteLine("Number {0} is {1}", (ctr), nbr);
21:
22: ttl += nbr; //add nbr to total
23: }
24:
25: System.Console.WriteLine("\nThe total of the 10 numbers is {0}",
26: ttl);
27: System.Console.WriteLine("\nThe average of the numbers is {0}",
28: tt1/10);
29: }
30: }
Number 1 is 10
Number 2 is 3
Number 3 is 6
Number 4 is 5
Number 5 is 7
Number 6 is 8
Number 7 is 7
Number 8 is 1
Number 9 is 4
Number 10 is 3

The total of the 10 numbers is 54

The average of the numbers is 5

1138 Day 4

Much of this listing is identical to what you saw earlier in today’s lessons. You
NALYSIS should note the difference, however. In Line 15, you see the use of the for state-
ment. The counter is initialized to 1, which makes it easier to display the value in the
writeLine routine in Line 20. The condition statement in the for statement is adjusted
appropriately as well.

What happens when the program flow reaches the for statement? Simply put, the counter
is set to 1. It is then verified against the condition. In this case, the counter is less than or
equal to 10, so the body of the for statement is executed. When the body in Lines 16-23
is done executing, control goes back to the incrementor of the for statement in Line 15.
In this for statement’s incrementor, the counter is incremented by 1. The condition is
then checked again and, if true, the body of the for statement executes again. This con-
tinues until the condition fails. For this program, this happens when the counter is set

to 11.

Understanding the for Statement Expressions

You can do a lot with the initializer, condition, and incrementor. You can actually put any
expressions within these areas. You can even put in more than one expression.

If you use more than one expression within one of the segments of the for statement, you
need to separate them. The separator control is used to do this. The separator control is
the comma. As an example, the following for statement initializes two variables and
increments both:
for (x =1,y =1; x +y <100; x++, y++)

// Do something...
In addition to being able to do multiple expressions, you also are not restricted to using
each of the parts of a for statement as described. The following example actually does all
of the work in the for statement’s control structure. The body of the for statement is an
empty statement—a semicolon:
for (x = 0; ++x <= 10; System.Console.WriteLine("{0}", x))

)

This simple line of code actually does quite a lot. If you enter this into a program, it
prints the numbers 1 to 10. You're asked to turn this into a complete listing in one of
today’s exercises at the end of the lesson.

I}a“ti““ You should be careful about how much you do within the for statement’s
control structures. You want to make sure that you don't make your code

too complicated to follow.

Controlling Your Program'’s Flow

The foreach Statement

The foreach statement iterates in a way similar to the for statement. However, the foreach
statement has a special purpose: It can loop through collections such as arrays. The
foreach statement, collections, and arrays are covered on Day 7.

Revisiting break and continue

The break and continue commands were presented earlier with the while statement.
Additionally, you saw the use of the break command with the switch statement. These
two commands can also be used with the other program-flow statements.

In the do...while statement, break and continue operate exactly like the while statement.
The continue command loops to the conditional statement. The break command sends the
program flow to the statement following the do. . .while.

With the for statement, the continue statement sends control to the incrementor statement.
The condition is then checked and, if true, the for statement continues to loop. The break
statement sends the program flow to the statement following the for statement.

The break command exits the current routine. The continue command starts the next iter-
ation.

Reviewing goto

The goto statement is fraught with controversy, regardless of the programming language
you use. Because the goto statement can unconditionally change program flow, it is very
powerful. With power comes responsibility. Many developers avoid the goto statement
because it is easy to create code that is hard to follow.

The goto statement can be used in three ways. As you saw earlier, the switch statement is
home to two of the uses of goto: goto case and goto default. You saw these in action ear-
lier in the discussion on the switch statement.

The third goto statement takes the following format:
goto label;

With this form of the goto statement, you are sending the control of the program to a
label statement.

| 140 Day 4

Exploring Labeled Statements

A label statement is simply a command that marks a location. The format of a label is as
follows:

label name:

Notice that this is followed by a colon, not a semicolon. Listing 4.8 presents the goto
statement being used with labels.

LisTING 4.8 score.cs—Using the goto Statement with a Label

/] score.cs Using the goto and label statements.

// Disclaimer: This program shows the use of goto and label

/1 This is not a good use; however, it illustrates
/1l the functionality of these keywords.

class score

0N OB WD =
~
—~
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

{
9: public static void Main()
10: {
11: int score = 0;
12: int ctr = 0;
13:
14: System.Random rnd = new System.Random();
15:
16: Start:
17:
18: ctr++;
19:
20: if (ctr > 10)
21: goto EndThis;
22: else
23: score = (int) rnd.Next(60, 101);
24:
25: System.Console.WriteLine("{@} - You received a score of {1}",
26: ctr, score);
27:
28: goto Start;
29:
30: EndThis:
31:
32: System.Console.WriteLine("Done with scores!");
33: }

34: }

Controlling Your Program'’s Flow 141 |

1 - You received a score of 83
2 - You received a score of 99
3 - You received a score of 72
4 - You received a score of 67
5 - You received a score of 80
6 - You received a score of 98
7 - You received a score of 64
8 - You received a score of 91
9 - You received a score of 79

10 - You received a score of 76
Done with scores!

The purpose of this listing is relatively simple; it prints 10 scores that are
ANALYSIS . . -
obtained by getting 10 random numbers from 60 to 10e. This use of random num-

bers is similar to what you’ve seen before, except for one small change. In Line 23,
instead of starting at 1 for the number to be obtained, you start at 6. Additionally,
because the numbers that you want are from 60 to 100, the upper limit is set to 101. By
using 101 as the second number, you get a number less than 101.

The focus of this listing is Lines 16, 21, 28, and 30. In Line 16, you see a label called
start. Because this is a label, the program flow skips past this line and goes to Line 18,
where a counter is incremented. In Line 20, the condition within an if statement is
checked. If the counter is greater than 10, a goto statement in Line 21 is executed, which
sends program flow to the EndThis label in Line 30. Because the counter is not greater
than 10, program flow goes to the else statement in Line 22. The else statement gets the
random score in Line 23 that was already covered. Line 25 prints the score obtained.
Program flow then hits Line 28, which sends the flow unconditionally to the start label.
Because the start label is in Line 16, program flow goes back to Line 16.

This listing does a similar iteration to what can be done with the while, do, or for state-
ments. In many cases, you will find that there are programming alternatives to using
goto. If there is a different option, use it first.

“I] Avoid using goto whenever possible. It can lead to what is referred to as
spaghetti code, which is code that winds all over the place and is, therefore,

hard to follow from one end to the next.

Nesting Flow

All of the program-flow commands from today can be nested. When nesting program-
flow commands, make sure that the commands are ended appropriately. You can create a
logic error and sometimes a syntax error if you don’t nest properly.

|142

Day 4

o

Do comment your code to make clearer Don’t use a goto statement unless it is
what the program and program flow are absolutely necessary.
doing.

You learned a lot in today’s lesson, and you’ll use this knowledge in virtually every C#
application you create.

In today’s lesson, you once again covered some of the constructs that are part of the
basic C# language. You first expanded on your knowledge of the if statement by learning
about the else statement. You then learned about another selection statement, the switch
statement. Selection statements were followed by a discussion of iterative program flow-
control statements. This included use of the while, do, and for statements. You learned
that there is another command, foreach, that you will learn about on Day 7. In addition to
learning how to use these commands, you discovered that they can be nested within each
other. Finally, you learned about the goto statement and how it can be used with case,
default, or labels.

Q&A

Q Are there other types of control statements?
A Yes—throw, try, catch, and finally. You will learn about these in future lessons.
Q Can you use a text string with a switch statement?

A Yes. A string is a “governing type” for switch statements. This means that you can
use a variable that holds a string in the switch and then use string values in the case
statements. Remember, a string is simply text in quotation marks. In one of the
exercises, you create a switch statement that works with strings.

Q Why is goto considered so bad?

A The goto statement has gotten a bad rap. If used cautiously and in a structured,
organized manner, the goto statement can help solve a number of programming
problems. goto case and goto default are prime examples of good uses of goto.
goto has a bad rap because the goto statement is often not used cleanly; program-
mers use it to get from one piece of code to another quickly and in an unstructured
manner. In an object-oriented programming language, the more structure you can
keep in your programs, the better—and more maintainable—they will be.

Controlling Your Program’s Flow 143 |

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Quiz
1. What commands are provided by C# for repeating lines of code multiple times?
2. What is the fewest number of times that the statements in a while will execute?
3. What is the fewest number of times that the statements in a do will execute?
4. Consider the following for statement:

for ((x = 1; x == 1; x++)

What is the conditional statement?

In the for statement in Question 4, what is the incrementor statement?

What statement is used to end a case expression in a select statement?

What punctuation character is used with a label?

What punctuation is used to separate multiple expressions in a for statement?

R S R

What is nesting?

10. What command is used to jump to the next iteration of a loop?

Exercises

1. Write an if statement that checks to see whether a variable called file-type is s, m,
or j. Print the following message based on the file-type:

S The filer is single
m The filer is married filing at the single rate
j The filer is married filing at the joint rate

2. Is the following if statement valid? If so, what is the value of x after this code exe-

cutes?
int x = 2;
int y = 3;

if (x==2) if (y>3) x=5; else x=9;

3. Write a while loop that counts from 99 to 1.

4. Rewrite the while loop in Exercise 3 as a for loop.

|144

Day 4

5. Bug Buster: Is the following listing correct? If so, what does it do? If not, what is

wrong with the listing (Ex04-05.cs)?
// Ex0405.cs. Exercise 5 for Day 4

R
class score
{
public static void Main()
{
int score = 99;
if (score == 100);
{
System.Console.WriteLine("You got a perfect score!");
}
else
System.Console.WriteLine("Bummer, you were not perfect!");
}
}

. Create a for loop that prints the numbers 1 to 10 all within the initializer, condition,

and incrementor sections of the for. The body of the for should be an empty state-
ment.

. Write the code for a switch statement that switches on the variable name. If the

name is Robert, print a message that says Hi Bob. If the name is Richard, print a
message that says Hi Rich. If the name is Barbara, print a message that says Hi
Barb. If the name is Kalee, print a message that says You Go Girl!. On any other
name, print a message that says Hi x, where x is the person’s name.

. Write a program to roll a six-sided die 100 times. Print the number of times each

of the sides of the die was rolled.

TYPE & RUN 2

Guess the Number!

This is the second Type & Run. Remember, you’ll find a number of Type &
Run sections throughout this book. These sections present a listing that is a lit-
tle longer than the listings within the daily lessons. The purpose of these list-
ings is to give you a program to type in and run. The listings might contain
elements not yet explained in the book.

Two listings are provided in this Type & Run. The first does something a little
more fun and a little less practical. The second does the same thing; however, it
is done within a windows form.

Today’s program is a number-guessing game. It enables you to enter a number
from 0 to 10,000. You then are told whether the number is higher or lower. You
should try to guess the number in as few tries as possible.

I suggest that you type in and run these programs. You can also copy them from
the book’s CD or download them. Regardless of how you start, take the time to
experiment and play with the code. Make changes, recompile, and then rerun
the programs. See what happens.

|146

Type & Run 2

As with all of the Type & Runs, there isn’t an explanation on how the code works. Don’t
fret, though. By the time you complete this book, you should understand everything
within these listings. In the meantime, you will have had the chance to enter and run
some listings that are a little more fun or practical.

The Guess Type & Run

Enter and compile the following program. If you get any errors, make sure you entered
the program correctly.

LisTING T&R 2.1 Guess.cs

1: // Guess.cs - Pick a Number
R
3:

4: using System;

5: using System.Drawing;

6: using System.Text;

7:

8: public class Guess

9: {

12: private static int getRandomNumber(int nbr)

13: {

14: if (nbr >0)

15: {

16: Random Rnd = new Random();

17: return (Rnd.Next(@, nbr));

18: }

19: else

20: {

21: return 0;

22: }

23: }

24:

25: private static void WriteStats(string Guess, int nbr, string err)
26: {

27: Console.WriteLine("\n==============================")
28: Console.WriteLine("Current Guess: {0}", Guess);

29: Console.WriteLine("Number of Guesses: {0}", nbr);
30: if (err !="")

31: Console.WriteLine(err);

32: Console.WriteLine("Enter a number from 1 to 10000");
33: Console.WritelLine("==============================")
34:

35: return;

Guess the Number! 147|

LisTING T&R 2.1 continued

36: }

37:

38:

39: public static void Main(string[] args)

40: {

41: int WinningNumber = Guess.getRandomNumber(10000);
42: int Guesses = 0;

43: string Curr = "";

44: int val = 0;

45: string errMsg;

46:

47: bool cont = true;

48:

49: WriteStats(Curr, Guesses, (string) "");

50:

51:

52: while(cont == true)

53: {

54:

55: Console.Write("\nEnter Guess: ");

56: Curr = Console.ReadLine();

57:

58: try // try, catch, and finally are covered on Day 9
59: {

60: val = Convert.ToInt32(Curr);

61:

62: // If a number was not entered, an exception will be
63: // throw. Program flow will go to catch statement below
64:

65: Guesses += 1; // Add one to Guesses

66:

67: if(val <@ || val > 10000)

68: {

69: // bad value entered

70: errMsg = "Number is out of range...Try again.";
71: WriteStats(Curr, Guesses, errMsg);

72: }

73: else

74: {

75: if (val < WinningNumber)

76: {

77: errMsg = "You guessed low... Try again.";
78: WriteStats(Curr, Guesses, errMsg);

79: }

80: else

81: if (val > WinningNumber)

82: {

83: errMsg = "You guessed high... Try again.";
84: WriteStats(Curr, Guesses, errMsg);

85: }

| 148 Type & Run 2

LisTING T&R 2.1 continued

86: else

87: {

88: Console.WriteLine("\n\nCurrent Guess: {0}\n", val);
89: console.WriteLine("Number of Guesses: {@0}\n", Guesses);
90: Console.WriteLine("You guessed correctly!!");

91: cont = false;

92: }

93: }

94: }

95: // Catch format errors....

96: catch(FormatException)

97: {

98: errMsg = "Please enter a valid number...";

99: WriteStats(Curr, Guesses, errMsg);

100: }

101: }

102: }

103: }

Enter the previous listing and compile it. If you need to, refer to Day 1, “Getting Started
with C#,” for the steps to enter, compile, and run a listing. When this program executes,
it displays the following to the screen:

Number of Guesses: 0
Enter a number from 1 to 10000

Enter Guess:

You can enter a number between 0 and 10,000. You’ll then be told that the number is
either too high or too low. When you guess the number correctly, you’re told so.

The WinGuess Type & Run

You may have been surprised to realize that you already have seen nearly everything pre-
sented in the Guess.cs listing. This Type & Run includes a second listing that contains a
number of things that you have not seen. This is a program similar to the previous Guess
program; the big difference is that this new listing uses a windows form.

You should note that support for windows forms comes from the .NET Framework
classes rather than from the C# language. If you are using Microsoft’s .NET Framework

Guess the Number!

and compiler, this listing will be fully supported. If you are using a different compiler
and .NET runtime, classes in this listing may not be supported. For example, at the time
this book was written, the go-mono project had not completed development of the .NET
forms classes. This means that if you are using the mono compiler and runtime, you may

not be able to compile and run this listing—yet.

LisTING T&R 2.2 WinGuess.cs

0O ~NO O~ WN =

// WinGuess.cs -

Pick a Number

using System;

using System.Windows.Forms;
using System.Drawing;

using System.Text;

public class WinGuess :
HR

private Label
private Button
private Label
private TextBox txtEntry;
private int
private int

Form

1blTagl;
btnGuess;
1blInfo;

WinningNumber
Guesses = 0;

public WinGuess()

InitializeComponent();

0;

private void InitializeComponent()

// Get a random number from zero to 10000...
WinningNumber = getRandomNumber(10000);

// Put title into window title bar

this.Text = "WinGuess";

// Center form on screen

this.StartPosition = FormStartPosition.CenterScreen;

// Set form style

this.FormBorderStyle = FormBorderStyle.Fixed3D;

1b1lTag1l = new Label();

/] Create label

1blTagl.Text = "Enter A Number:";
1blTag1.Location = new Point(50, 20);

this.Controls.Add(1blTag1);

// Add label to form

| 150 Type & Run 2
Listing T&R 2.2 continued
41:
42: 1blInfo = new Label(); /] Create label
43: 1blInfo.Text = "Enter a number between @ and 10000.";
44: lblInfo.Location = new Point(50, 80);
45: 1blInfo.Width = 200;
46: 1blInfo.Height = 40;
47: this.Controls.Add(1lblInfo); // Add label to form
48:
49: txtEntry = new TextBox(); /] Create text box
50: txtEntry.Location = new Point(150, 18);
51: this.Controls.Add(txtEntry); // Add to form
52:
53:
54: btnGuess = new Button(); /| Create a button
55: btnGuess.Text = "Try Number";
56: btnGuess.BackColor = Color.LightGray;
57: /1 following centers button and puts it near bottom
58: btnGuess.Location = new Point(((this.Width/2)
59: (btnGuess.Width / 2)),
60: (this.Height - 75));
61: this.Controls.Add(btnGuess); // Add button to form
62:
63: // Add a click event handler using the default event handler
64: btnGuess.Click += new System.EventHandler(this.btnGuess_Click);
65: }
66:
67: private int getRandomNumber(int nbr)
68: {
69: if (nbr >0)
70: {
71: Random Rnd = new Random();
72: return (Rnd.Next(@, nbr));
73: }
74: else
75: {
76: return 0;
77: }
78: }
79:
80: protected void btnGuess_Click(object sender, System.EventArgs e)
81: {
82: int val = 0;
83: StringBuilder tmpString = new StringBuilder();
84: tmpString.Append("Current Guess: ");
85: tmpString.Append(txtEntry.Text);
86: tmpString.Append("\n");
87:
88: try // try, catch, and finally are covered on Day 9
89: {

Guess the Number! 151 |

LisTING T&R 2.2 continued

90: val = int.Parse(txtEntry.Text);

91:

92: // If a number was not entered, an exception will be
93: // throw. Program flow will go to catch statement below
94:

95: tmpString.Append("Guesses: ");

96:

97: Guesses += 1; /] Add one to Guesses

98:

99: tmpString.Append(Guesses.ToString());

100: tmpString.Append("\n");

101:

102: if(val < @ || val > 10000)

103:

104: /] bad value entered

105: tmpString.Append("Number is out of range...Try again.\n");
106: tmpString.Append("Enter a number from @ to 10000");
107: }

108: else

109: {

110: if (val < WinningNumber)

111: {

112: tmpString.Append("You guessed low... Try again.\n");
113: tmpString.Append("Enter a number from @ to 10000");
114: }

115: else

116: if (val > WinningNumber)

117: {

118: tmpString.Append("You guessed high... Try again.\n");
119: tmpString.Append("Enter a number from @ to 10000");
120: }

121: else

122: {

123: tmpString.Append("You guessed correctly!!");

124: }

125: }

126: }

127: /1 Catch format errors....

128: catch(FormatException)

129: {

130: tmpString.Append("Please enter a valid number...\n");
131: tmpString.Append("Enter a number from @ to 10000");
132: }

133: finally

134: {

135: this.1lblInfo.Text = tmpString.ToString();

136: this.txtEntry.Text = "";

137:

| 152 Type & Run 2

LisTING T&R 2.2 continued

138: // Next line will put winning number in window title
139: /] this.Text = WinningNumber.ToString();
140: }
141: }
142:
143: public static void Main(string[] args)
144: {
145: Application.Run(new WinGuess());
146: }
147: }
OUTPUT oL WinGuess
Enter & Nurmber:
Ficure TR2.1
T&R output. Cuert Guees: S100

uesses: 1
You guessed high... Try again

As you can see in Figure TR2.1, this new listing has the same functionality as the previ-
ous listing. The difference is that this listing creates a windows form.

Nl]lﬂ The source code for this listing is available on the included CD. Any updates
to the code will be available at www.TeachYourselfCSharp.com.

WEEK 1

DAY 5

The Core of C#
Programming: Classes

As you learned on Day 1, “Getting Started with C#,” classes are critical to an
object-oriented language, including C#. Whether you’ve realized it or not, you
have seen classes used in every example included in the book so far. Because
classes are central to C#, today’s lesson and tomorrow’s are among the two
most important in this book. Today you...

* Revisit the concepts involved in object-oriented programming.

* Learn how to declare a class.

e Learn how to define a class.

* Discover class members.

* Create your own data members.

» Implement properties in your classes.

» Take your first serious look at namespaces.

154 Day 5

Digging into Object-Oriented Programming
On Day 1, you learned that C# is considered an object-oriented language. You also
learned that to take full advantage of C#, you should understand the concepts of object-
oriented languages. In the next few sections, you briefly revisit the concepts you learned
about in Day 1. You will then begin to see how these concepts are applied to actual C#
programs.

Recall from Day 1 the key characteristics that make up an object-oriented language:

* Encapsulation
* Polymorphism
* Inheritance

* Reuse

Encapsulation

Encapsulation is the concept of making classes (or “packages”) that contain everything
you need. In object-oriented programming, this means that you can create a class that
stores all the variables that you need and all the routines to commonly manipulate this
data. You can create a Circle class that stores information on a circle. This could include
storing the location of the circle’s center and its radius, plus storing routines commonly
used with a circle. These routines could include getting the circle’s area, getting its cir-
cumference, changing its center point, changing its radius, and much more.

By encapsulating a circle, you allow the user to be oblivious to how the circle works.
You need to know only how to interact with the circle. This provides a shield to the inner
workings of the circle, which means that the variables within the class could be changed
and it would be invisible to the user. For example, instead of storing the radius of the cir-
cle, you could store the diameter. If you have encapsulated the functionality and the data,
making this change impacts only your class. Any programs that use your class should not
need to change. In today’s and tomorrow’s lessons, you see programs that work directly
with a circle class.

N t Encapsulation is often referred to as “black boxing,” which refers to hiding
oie T i . R

the functionality or the inner workings of a process. For a circle, if you send
in the radius, you can get the area. You don't care how it happens, as long
as you know that you are getting back the correct answer.

The Core of C# Programming: Classes 155 |

Inheritance

In many object-oriented programming books, an animal analogy is used to illustrate
inheritance. The analogy starts with the concept of an animal as a living being.

Now consider reptiles, which are everything that an animal is; plus, they are cold-
blooded. A reptile contains all of the features of an animal, but it also adds its own
unique features. Now consider a snake. A snake is a reptile that is long and skinny and
that has no legs. It has all the characteristics of a reptile, but it also has its own unique
characteristics. A snake can be said to inherit the characteristics of a reptile. A reptile can
be said to inherit the characteristics of an animal.

A second example of inheritance can be shown with a circle. A class can be created
called shape. All shapes have a number of sides and an area. A circle can be created by
inheriting from shape. It would still have the number of sides and the area that a shape
provides. Additionally, it could have a center point. A triangle could also be created by
inheriting from shape. The triangle would add its own unique characteristics to those that
it gets from shape.

On Day 10, “Reusing Existing Code with Inheritance,” you will see how this same con-
cept is applied to classes and programming.

Polymorphism

Polymorphism is having the capability to assume many forms, which means that the pro-
grams can work with what you send them. For example, you could have a routine that
gives the area of a shape. Because the area of a triangle is calculated differently than that
of other shapes, the routine to calculate the area would need to adapt based on what is
sent. Regardless of whether a triangle, a circle, or another shape is sent, the routine
would be capable of treating them all as shapes and, thus, calculating the area. You will
learn how to program polymorphism on Day 10.

Overloading is another concept that is often related to polymorphism. For example, you
have used the writeLine() routine in several of the previous days. You have seen that you
can create a parameter field using {0}. What values does this field print? As you have
seen, it can print a variable regardless of its type, or it can print another string. The
writeLine() routine takes care of how it gets printed. The routine is polymorphic, in that
it adapts to most of the types that you can send it.

Using a circle as an example, you might want to call a circle object to get its area. You
can do this by using three points or by using a single point and the radius. Either way,

|156

Day 5

you expect to get the same results. This polymorphic feature is done by using overload-
ing. You’ll learn more about overloading in tomorrow’s lesson, “Packaging Functionality:
Class Methods and Member Functions.”

Reuse

When you create a class, you can reuse it to create lots of objects. By using inheritance
and some of the features described previously, you can create routines that can be used
repeatedly in many programs and in many ways. By encapsulating functionality, you can
create routines that have been tested and are proven to work. You won’t have to test the
details of how the functionality works—only that you are using it correctly. This makes
reusing these routines quick and easy.

Objects and Classes

On Day 1, an example of a cookie cutter and cookies illustrated classes and objects. Now
you are done with cookies and snakes—it is time to jump into some code.

N t You will learn about classes by starting with extremely simple examples and
ote L
then building on them over the next several days.

Defining a Class

To keep things simple, a keyword called class is used to define classes. The basic struc-
ture of a class follows this format:

class identifier

{
class-body ;

}

identifier is the name given to the class, and class-body is the code that makes up the
class.

The name of a class is like any other variable name that can be declared. You want to
give a class a meaningful name, something that describes what the class does.

The .NET Framework has a large number of built-in classes. You have actually been
using one since the beginning of this book: the console class. The console class contains
several data members and routines. You’ve already used many of these routines, includ-
ing write and writeLine. The class name—the identifier—of this class is Console. The
body of the console class contains the code for the write and writeLine routines. By the
end of tomorrow’s lesson, you will be able to create and name your own classes that
have their own routines.

The Core of C# Programming: Classes 157 |

Declaring Classes

After a class is defined, you use it to create objects. A class is just a definition used to
create objects. A class by itself does not have the capability to hold information or actu-
ally perform routines. Instead, a class is used to declare objects. The object can then be
used to hold the data and perform the routines as defined by the class.

N t The declaration of an object is commonly referred to as instantiation. Said
ole ; S
differently, an object is an instance of a class.

The format of declaring an object from a class is as follows:
class_name object _identifier = new class_name();

class_name is the name of the class, and object_identifier is the name of the object
being declared. For example, if you have a class called Point, you can create an object
called startingPoint with the following line of code:

point startingPoint = new Point();

The name of the class is Point, and the name of the object declared is startingPoint.
Because startingPoint is an object, it can contain data and routines if they were defined
within the Point class.

In looking at this declarative line of code, you might wonder what the other items are.
Most important, a keyword is being used that you have not yet seen: new.

As its name implies, the new keyword is used to create new items. In this case, it creates
a new point. Because Point is a class, an object is created. The new keyword indicates that
a new instance is to be created. In this case, the new instance is a Point object.

When declaring an object with a class, you also have to provide parentheses to the class
name on the right of the assignment. This enables the class to be constructed into a new
object.

[‘: t' If you don't add the construction code new class_name, you will have
duuon) , o

declared a class, but the compiler won't have constructed its internal struc-
ture. You need to make sure that you assign the new class_name code to the

declared object name to make sure everything is constructed. You will learn
more about this initial construction in tomorrow’s lesson.

|158

Day 5

Look at the statement again:

point startingPoint = new Point();

The following breaks down what is happening:
point startingPoint

The point class is used to declare an object called startingPoint. This piece of the state-
ment is like what you have seen with other data types, such as integers and decimals.

startingPoint =

As with variables, you assign the result of the right side of the assignment operator (the
equals sign) to the variable on the left. In this case, the variable happens to be an
object—which you now know is an object of type Point called startingPoint.

new Point()

This part of the statement does the actual construction of the pPoint object. The name of
the class with parentheses is a signal to construct—create—an object of the class type—
in this case, Point. The new keyword says to reserve some room in memory for this new
object. Remember, a class is only a definition: It doesn’t store anything. The object
needs to store information, so it needs memory reserved. The new keyword reserves the
memory.

Like all statements, this declaration is ended with a semicolon, which signals that the
statement is done.

The Members of a Class

Now that you know the overall structure for creating an object with a class, it is time to
look at what can be held in a class. Two primary types of items can be contained within
the body of a class: data members and function members.

Data members include variables and constants. These include variables of any of the
types that you learned about on Day 2, “Understanding C# Programs,” and any of the
more advanced types that you will learn about later. These data members can even be
other classes.

The other type of element that is part of a class’s body is function members. Function
members are routines that perform an action. These actions can be as simple as setting a
value to something more complex, such as writing a line of text using a variable number
of values—as you have seen with write and writeLine. Write and WriteLine are member
functions of the console class. In tomorrow’s lesson, you will learn how to create and use
member functions of your own. For now, it is time to visit data members.

The Core of C# Programming: Classes 159 |

Working with Data Members, a.k.a. Fields

Another name for a variable is a field. As stated previously, data members within
a class are variables that are members of a class. In the point class referenced
earlier, you expect a data member to store the x and y coordinates of the point. These
coordinates could be any of a number of data types; however, if these were integers, you
would define the Point class as such:
class Point

{

int x;

int y;
}
That’s it. This is effectively the code for a very simple point class. You should include
one other item for now: an access modifier called public. A variable is accessible only
within the block where you declare it, unless you indicate otherwise. In this case, the
block is the definition of the Point class. Without adding the word public, you cannot
access x or y outside the point class.

N t Remember, a block is a section of code between two braces ({}). The body
ote)
of a class is a block of code.

The change made to the Point class is relatively simple. With the public accessor added,
the class becomes this:

class Point

{ public int x;

public int vy;
}
Although the Point class contains two integers, you can actually use any data type within
this class. For example, you can create a FullName class that contains three strings that
store the first, middle, and last names. You can create an Address class that contains a
name class and additional strings to hold the different address pieces. You can create a
customer class that contains a 1ong value for a customer number, an address class, a deci-
mal account balance, a Boolean value for active or inactive, and more.

Accessing Data Members

When you have data members declared, you want to get to their values. As you learned,
the public accessor enables you to get to the data members from outside the class.

|160

Day 5

You cannot simply access data members from outside the class by their name. For exam-
ple, if you have a program that declares a startingPoint from the Point class, it would
seem as if you should be able to get the point by using x and y—the names that are in the
point class. What happens if you declare both a startingPoint and an endingPoint in the
same program? If you use x, which point is being accessed?

To access a data member, you use both the name of the object and the data member. The
member operator, which is a period, separates these. To access the startingPoint’s coor-
dinates, you therefore use this

startingPoint.x

and this:

startingPoint.y

For the ending point, you use this
endingPoint.x

and this:

endingPoint.y

At this time, you have the foundation to try out a program. Listing 5.1 presents the Point
class. This class is used to declare two objects, starting and ending.

LisTING 5.1 PointApp.cs—Declaring a Class with Data Members

1: // PointApp.cs- A class with two data members
A R R
3:

4: class Point

5: {

6: public int x;

7: public int y;

8: }

9:

10: class pointApp

11:

12: public static void Main()

13: {

14: Point starting = new Point();

15: Point ending = new Point();

16:

17: starting.x = 1;

18: starting.y = 4;

19: ending.x = 10;

20: ending.y = 11;

The Core of C# Programming: Classes 161 |

LisTING 5.1 continued

21:

22: System.Console.WritelLine("Point 1: ({0},{1})",

23: starting.x, starting.y);
24: System.Console.WriteLine("Point 2: ({0},{1})",
25: ending.x, ending.y);
26: }

27: }

Point 1: (1,4)
(O 1V point 2: (10,11)
A simple class called Point is declared in Lines 4—8. This class follows the struc-
ture that was presented earlier. In Line 4, the class keyword is being used, fol-
lowed by the name of the class, Point. Lines 5-8 contain the braces that enclose the body

of the class. Within the body of this class, two integers are declared, x and y. These are
each declared as public so that you can use them outside of the class.

Line 10 contains the start of the main portion of your application. It is interesting to note
that the main portion of your application is also a class. In this case, the class containing
your application is called pointApp. You will learn more about this later.

Line 12 contains the main routine that you should now be very familiar with. In

Lines 14-15, two objects are created using the point class, following the same format
that was described earlier. In Lines 17-20, values are set for each of the data members of
the Point objects. In Line 17, the value 1 is assigned to the x data member of the starting
class. The member operator, the period, separates the member name from the object
name. Lines 18-20 follow the same format.

Line 22 contains a writeLine routine, which you have also seen before. This one is
unique because you print the values stored within the starting point object. The values
are stored in starting.x and starting.y, not just x and y. Line 24 prints the values for the
ending point.

Using Data Members

Listing 5.1 showed you how to assign a value to a data member, as well as how to get its
value. What if you want to do something more complex than a simple assignment or a
simple display?

The data members of a class are like any other variable type. You can use them in opera-
tions, control statements, or anywhere that a regular variable can be accessed. Listing 5.2
expands on the use of the point class. In this example, the calculation is performed to
determine the length of a line between two points. If you’ve forgotten your basic alge-
braic equation for this, Figure 5.1 illustrates the calculation to be performed.

162 Day 5

FIGURE 5.1 Starting (x4,)
c
Calculating line length Yo=Y
from two points. b Ending (Xy, Yy)
| S
Xp = X4
a
c2=a?+b?

or

c=\(x, _X1)2 + (Y _y1)2

LisTING 5.2 LineApp.cs—Working with Data Members

1: // LineApp.cs- Calculate the length of a line.
N N R R LR R
3:
4: class Point
5: {
6: public int x;
7: public int y;
8: }
9:
10: class lineApp
11:
12: public static void Main()
13: {
14: Point starting = new Point();
15: Point ending = new Point();
16: double Line;
17:
18: starting.x = 1;
19: starting.y = 4;
20: ending.x = 10;
21: ending.y = 11;
22:
23: Line = System.Math.Sqrt((ending.x - starting.x)*
= (ending.x - starting.x) +
24: (ending.y - starting.y)*
= (ending.y - starting.y));
25:
26: System.Console.WritelLine("Point 1: ({0},{1})",
27: starting.x, starting.y);
28: System.Console.WriteLine("Point 2: ({0},{1})",
29: ending.x, ending.y);
30: System.Console.WritelLine(
31: "Length of line from Point 1 to Point 2: {0}",
32: Line);
33: }

34: }

The Core of C# Programming: Classes 163 |

Point 1: (1,4)
OINGUR roint 2: (10,11)

Length of line from Point 1 to Point 2: 11.4017542509914

This listing is very similar to Listing 5.1. The biggest difference is the addition
of a data member and some calculations that determine the length of a line. In

Line 16, you see that the new data member is declared of type double and is called line.
This variable will be used to hold the result of the length of the line between the two
declared points.

Lines 23-24 are actually a single statement that looks more complex than it is. Other
than the System.mMath.Sqrt part, you should be able to follow what the line is doing. sqrt
is a routine within the System.Math object that calculates the square root of a value. If you
compare this formula to the information presented in Figure 5.1, you will see that it is a
match. The end result is the length of the line. The important thing to note is that the data
members are being used within this calculation in the same manner that any other vari-
able would be used. The only difference is the naming scheme.

Using Classes as Data Members

It was stated earlier that you can nest one class within another. A class is another type of
data. As such, an object declared with a class type—which is just an advanced variable
type—can be used in the same places as any other variable. Listing 5.3 presents an
example of a line class. This class is composed of two points, starting and ending.

LisTING 5.3 line2.cs—Nested Classes

1: // 1line2.cs- A class with two data members

N N R R R E R
3:

4: class Point

5: {

6: public int x;

7: public int y;

8: }

9:

10: class Line
11: {

12: public Point starting = new Point();
13: public Point ending = new Point();
14: public double len;

15: }

16:

17: class lineApp

18:

19: public static void Main()

164 Day 5

LISTING 5.3 continued

20: {

21: Line myLine = new Line();

22:

23: myLine.starting.x = 1;

24: myLine.starting.y = 4;

25: myLine.ending.x = 10;

26: myLine.ending.y = 11;

27: myLine.len = System.Math.Sqrt(

28: (myLine.ending.x - myLine.starting.x) *

29: (myLine.ending.x - myLine.starting.x) +
30: (myLine.ending.y - myLine.starting.y)*

31: (myLine.ending.y - mylLine.starting.y));
32:

33: System.Console.WriteLine("Point 1: ({0},{1})",
34: myLine.starting.x, myLine.starting.y);
35: System.Console.WriteLine("Point 2: ({0},{1})",
36: myLine.ending.x, myLine.ending.y);
37: System.Console.WriteLine("Line Length: {0}",
38: myLine.len);

39: }

40: }

Point 1: (1,4)
O INUR roint 2: (10,11)

Line Length: 11.4017542509914

ANALYSIS Listing 5.3 is very similar to the previous listings. The point class that you are
coming to know and love is defined in Lines 4-8. There is nothing different

about this from what you have seen before. In Lines 10-15, however, you see a second
class being defined. This class, called line, is composed of three variables. The first two
in Lines 12—13 are of type point, which is a class. These two variables are called
starting and ending. When an object is declared using the Line class, the Line class, in
turn, creates two Point objects. The third data member declared in Line 14 is a double
that will be used to store the length of the line.

Continuing with the listing, you see in Line 21 that a new object is created using the Line
class. This new Line object is given the name myLine. Line 21 follows the same format
that you saw earlier for creating an object from a class.

Lines 23-31 access the data members of the Line class and assign them values. It is
beginning to look a little more complex; however, looks can be deceiving. If you break
this down, you will see that it is relatively straightforward. In Line 23, you assign the
constant value 1 to the variable myLine.starting.x. In other words, you are assigning
the value 1 to the x member of the starting member of myLine. Going from the other

The Core of C# Programming: Classes 165 |

direction, you can say that you are assigning the value 1 to the myLine line object’s start-
ing member’s x member. It is like a tree. Figure 5.2 illustrates the Line class’s members.

The rest of this listing follows the same structure. Lines 27-31 might look complicated;
however, this is the same formula that was used earlier to calculate the length of a line.
The result, however, is placed into the 1en data member of the myLine object.

FIGURE 5.2 int
. . Nt x
The myLine object’s point starting inty

data members.
. . int x
point ending {
inty

Working with Nested Types

On Day 2, you learned about the different standard data types that can be used. As you
saw in Listing 5.3, an object created with a class can be used in the same places as any
other variable created with a data type.

myLine

When used by themselves, classes really do nothing—they are only a description. For
example, in Listing 5.3, the Point class in Lines 4-8 is only a description; nothing is
declared and no memory is used. This description defines a type. In this case, the type is
the class, or, specifically, a Point.

It is possible to nest a type within another class. If Point will be used only within the
context of a line, it can be defined within the Line class. This enables Point objects to be
used in the Line class.

The code for the nested Point type is as follows:

class Line
{

public class Point

{
public int x;
public int y;
}

public Point starting = new Point();
public Point ending = new Point();
}

One additional change was made. The point class had to be declared as public as well. If
you don’t declare the type as public, you get an error. The reason for the error should

|166

Day 5

make sense if you think about it. How can the parts of a Point object be public if the
point itself isn’t public?

Using Static Variables

Sometimes you want a bunch of objects declared with the same class to share a value.
For example, you might want to declare a number of line objects that all share the same
originating point. If one Line object changes the originating point, you want all lines to
change it.

To share a single data value across all the objects declared by a single class, you add the

static modifier. Listing 5.4 revisits the Line class. This time, the same starting point is
used for all objects declared with the Line class.

LisTING 5.4 StatLine.cs—Using the static Modifier with Data Members

ONOO O~ WD =

// StatLine.cs- A class with two data members

A
class Point
{
public int x;
public int y;
}
class Line
{
static public Point origin= new Point();
public Point ending = new Point();
}

class lineApp
{
public static void Main()
{
Line linel = new Line();
Line 1line2 = new Line();

// set line origin
Line.origin.x = 1;
Line.origin.y = 2;

// set linel's ending values
linetl.ending.x = 3;
linei.ending.y = 4;

The Core of C# Programming: Classes 167 |

LisTING 5.4 continued

32: // set line2's ending values

33: line2.ending.x = 7;

34: line2.ending.y = 8;

35:

36: // print the values...

37: System.Console.WriteLine("Line 1 start: ({0},{1})",

38: Line.origin.x, Line.origin.y);
39: System.Console.WriteLine("line 1 end: ({0},{1})",

40: linet1.ending.x, linel.ending.y);
41: System.Console.WriteLine("Line 2 start: ({0},{1})",

42: line.origin.x, line.origin.y);
43: System.Console.WriteLine("line 2 end: ({0},{1})\n",

44: line2.ending.x, line2.ending.y);
45:

46: /1 change value of line2's starting point

47: Line.origin.x = 939;

48: Line.origin.y = 747;

49:

50: // and the values again...

51:

52: System.Console.WriteLine("Line 1 start: ({0},{1})",

53: Line.origin.x, Line.origin.y);
54: System.Console.WriteLine("line 1 end: ({0},{1})",

55: linet1.ending.x, linel.ending.y);
56: System.Console.WriteLine("Line 2 start: ({0},{1})",

57: line.origin.x, line.origin.y);
58: System.Console.WriteLine("line 2 end: ({o},{1})",

59: line2.ending.x, line2.ending.y);
60: }

61: }

Line 1 start: (1,2)

line 1 end: (3,4)
(1,2)

(7,8)

1
1

Line 2 start:
2

line 2 end:
Line 1 start: (939,747)
line 1 end: (3,4)
Line 2 start: (939,747)
line 2 end: (7,8)
[:ﬂ“tiﬂ“ If you try to access a static data member with an object name, such as linef,

you will get an error. You must use the class name to access a static data
member.

168 Day 5

Listing 5.4 is not much different from what you have seen already. The biggest
NALYSIS difference is in Line 12, where the origin point is declared as static in addition
to being public. The static keyword makes a big difference in this Line class. Instead of
each object that is created from the Line class containing an origin point, only one origin
point is shared by all instances of Line.

Line 18 is the beginning of the main routine. Lines 20-21 declare two Line objects, called
linet and line2. Lines 28-29 set the ending point of linet, and Lines 33-34 set the end-
ing point of 1ine2. Going back to Lines 24-25, you see something different from what
you have seen before. Instead of setting the origin point of 1inet or line2, these lines set
the point for the class name, Line. This is important. If you try to set the origin on linet
or line2, you will get a compiler error. In other words, the following line of code is an
error:

linet.origin.x = 1;

Because the origin object is declared static, it is shared across all objects of type Line.
Because neither 1ine1 nor 1ine2 owns this value, these cannot be used directly to set the
value. You must use the class name instead. Remember, a variable declared static in a
class is owned by the class, not the individual objects that are instantiated.

Lines 37—44 print the origin point and the ending point for linet1 and line2. Again, notice
that the class name is used to print the origin values, not the object name. Lines 47-48
change the origin, and the final part of the program prints the values again.

N t A common use of a static data member is as a counter. Each time an object
ote o . .
does something, it can increment the counter for all the objects.

Inspecting the Application Class

If you haven’t already noticed, a class being used in all your applications has not been
fully discussed. In Line 16 of Listing 5.4, you see the following code:

class lineApp

You will notice a similar class line in every application that you have entered in this
book. C# is an object-oriented language. This means that everything is an object—even
your application. To create an object, you need a class to define it. Listing 5.4’s applica-
tion is lineApp. When you execute the program, the lineApp class is instantiated and cre-
ates a lineApp object, which just happens to be your program.

The Core of C# Programming: Classes 169 |

Like what you have learned already, your application class declares data members. In
Listing 5.4, the lineApp class’s data members are two classes: 1ine1 and line2. There is
additional functionality in this class as well. In tomorrow’s lesson, you will learn that this
additional functionality can be included in your classes as well.

Creating Properties

Earlier, it was stated that one of the benefits of an object-oriented program is the capabil-
ity to control the internal representation and access to data. In the examples used so far
in today’s lesson, everything has been public, so access has been freely given to any code
that wants to access the data members.

In an object-oriented program, you want to have more control over who can and can’t get
to data. In general, you won’t want code to access data members directly. If you allow
code to directly access these data members, you might lock yourself into being unable to
change the data types of the values.

C# provides a concept called properties to enable you to create object-oriented fields
within your classes. Properties use the reserved words get and set to get the values from
your variables and set the values in your variables. Listing 5.5 illustrates the use of get
and set with the point class that you used earlier.

LisTING 5.5 prop.cs—Using Properties

1: // PropApp.cs- Using Properties
A e e TR
3:

4: class Point

5: {

6: int my_X; // my_X is private
7: int my_Y; // my_Y is private
8:

9: public int x

10: {

11: get

12: {

13: return my_X;

14: }

15: set

16: {

17: my_X = value;

18: }

19: }

20: public int y

21: {

1170 Day 5

LisTING 5.5 continued

22: get

23: {

24: return my_Y;

25: }

26: set

27: {

28: my_Y = value;

29: }

30: }

31: }

32:

33: class PropApp

34: {

35: public static void Main()

36: {

37: Point starting = new Point();

38: Point ending = new Point();

39:

40: starting.x = 1;

41: starting.y = 4;

42: ending.x = 10;

43: ending.y = 11;

44:

45: System.Console.WriteLine("Point 1: ({0},{1})",
46: starting.x, starting.y);
47: System.Console.WritelLine("Point 2: ({0},{1})",
48: ending.x, ending.y);
49: }

50: }

Point 1: (1,4)
Point 2: (10,11)
Listing 5.5 creates properties for both the x and y coordinates of the point class.
The Point class is defined in Lines 4-31. Everything on these lines is a part of
the Point class’s definition. In Lines 6-7, you see that two data members are created,
my_x and my_y. Because these are not declared as public, they cannot be accessed outside

the class; they are considered private variables. You will learn more about keeping things
private on Day 7, “Storing More Complex Stuff: Structures, Enumerators, and Arrays.”

Lines 9-19 and Lines 20-30 operate exactly the same, except that the first set of lines
uses the my_x variable and the second set uses the my_v variable. These sets of lines create
the property capabilities for the my_x and my_y variables.

The Core of C# Programming: Classes 171 |

Line 9 looks like just another declaration of a data member. In fact, it is. In this line, you
declare a public integer variable called x. Note that there is no semicolon at the end of
this line; therefore, the declaration of the member variable is not complete. Instead, it
also includes what is in the following code block in Lines 10—19. Within this block of
code you have two commands. Line 11 begins a get statement, which is called whenever
a program tries to get the value of the data member being declared—in this case, x. For
example, if you assign the value of x to a different variable, you get the value of x and set
it into the new variable. In this case, getting the value of x is the code that occurs in the
block (Lines 12—14) following the get statement. When getting the value of x, you are
actually getting the value of my_x, as you can see in Line 13.

The set statement in Line 15 is called whenever you are setting a value in the x variable.
For example, setting x equal to 10 places the value of 10 in x.

When a program gets the value of x, the get property in Line 11 is called. This executes
the code within the get, which is Line 13. Line 13 returns the value of my_X, which is the
private variable in the Point class.

When a program places a value in x, the set property in Line 15 is called. This executes
the code within the set, which is Line 17. Line 17 sets something called value into the
private variable, my_x, in the Point class. value is the value being placed in x. (It is great
when a name actually describes the contents.) For example, value is 10 in the following
statement:

x = 10;

This statement places the value of 10 in x. The set property within x places this value in
my_X.

Looking at the main application in Lines 33-50, you should see that x is used as it was
before. There is absolutely no difference in how you use the point class. The difference
is that the Point class can be changed to store my_x and my_y differently, without impact-
ing the program.

Although the code in Lines 9-30 is relatively simple, it doesn’t have to be. You can do
any coding and any manipulation that you want within the get and set. You don’t even
have to write to another data member.

|172

Day 5

Bo

N“tﬂ Day 15, “Using Existing Routines from the .NET Base Classes,” focuses specifi-
cally on using a number of key .NET base classes.

Do make sure that you understand data Don’t forget to mark data members as
members and the class information pre- public if you want to access them from
sented in today’s lesson before going to outside your class.

Day 6, “Packaging Functionality: Class
Methods and Member Functions.”
Do use property accessors to access your

class’s data members in programs that
you create.

A First Look at Namespaces

As you begin to learn about classes, it is important to know that a large number of
classes are available that do a wide variety of functions. The .NET Framework provides a
substantial number of base classes that you can use. You can also obtain third-party
classes that you can use.

As you continue through this book, you will be exposed to a number of key classes.
You’ve actually used a couple of base classes already. As mentioned earlier, Console is a
base class. You also learned that console has member routines, write and WriteLine. For
example, the following writes my name to the console:

System.Console.WriteLine("Bradley L. Jones");

You now know that "Bradley L. Jones" is a literal. You know that writeLine is a routine
that is a part of the console class. You even know that console is an object declared from
a class. This leaves System.

Because of the number of classes, it is important that they be organized. Classes can be
grouped into namespaces. A namespace is a named grouping of classes. The Console
class is a part of the system namespace.

System.Console.WriteLine is a fully qualified name. With a fully qualified name, you
point directly to where the code is located. C# provides a shortcut method for using
classes and methods that doesn’t require you to always include the full namespace name.
This is accomplished with the using keyword.

The Core of C# Programming: Classes 173 |

The using keyword enables you to include a namespace in your program. When the
namespace is included, the program knows to search the namespace for routines and
classes that might be used. The format for including a namespace is as follows:

using namespace_name

namespace_name is the name of the namespace or the name of a nested namespace. For
example, to include the system namespace, you include the following line of code near
the top of your listing:

using System;

If you include this line of code, you do not need to include the system section when call-
ing classes or routines within the namespace. Listing 5.6 calls the using statement to
include the system namespace.

LisTING 5.6 NameApp.cs—Using using and Namespaces

1: // NameApp.cs- Namespaces and the using keyword

R
3:

4: using System;

5:

6: class name

7 A

8: public string first;

9: public string last;

10: }

11:

12: class NameApp

13: {

14: public static void Main()

15: {

16: // Create a name object

17: name you = new name();

18:

19: Console.Write("Enter your first name and press enter: ");
20: you.first = Console.ReadlLine();
21: System.Console.Write("\n{@}, enter your last name and press enter: ",
22: you.first);

23: you.last = System.Console.ReadlLine();

24:

25: Console.WriteLine("\nData has been entered..... ")

26: System.Console.WriteLine("You claim to be {0} {1}",

27: you.first, you.last);

28: }

1174 Day 5

Enter your first name and press enter: Bradley
OurtpuT

Bradley, enter your last name and press enter: Jones

Data has been entered.....
You claim to be Bradley Jones

Nﬂtﬂ The bold text in the output is text that | entered. You can enter any text in
its place. | suggest using your own name rather than mine!

Line 4 of Listing 5.6 is the focal point of this program. The using keyword
includes the System namespace; when you use functions from the console class,
you don’t have to fully qualify their names. You see this in Lines 19, 20, and 25. By
including the using keyword, you are not precluded from continuing to use fully quali-
fied names, as Lines 21, 23, and 26 show. However, there is no need to fully qualify
names because the namespace was included.

e

ANALYSIS

This program uses a second routine from the Console class, called ReadLine. As you can
see by running this program, the ReadLine routine reads what is entered by users up to
the time they press Enter. This routine returns what the user enters. In this case, the text
entered by the user is assigned with the assignment operator to one of the data members
in the name class.

Nested Namespaces

Multiple namespaces can be stored together and also are stored in a namespace. If a
namespace contains other namespaces, you can add them to the qualified name, or you
can include the subnamespace qualified in a using statement. For example, the system
namespace contains several other namespaces, including ones called brawing, bata, and
windows.Forms. When using classes from these namespaces, you can either qualify these
names or include them with using statements. To include a using statement for the pata
namespace within the System namespace, you enter the following:

using System.Data;

Nﬂtﬂ A namespace can also be used to allow the same class name to be used in
multiple places. For example, | could create a class called person. You could
also create a class called person. To keep these two classes from clashing,

they could be placed into different namespaces. You'll learn how to do this
on Day 8, “Advanced Method Access.”

The Core of C# Programming: Classes

175|

Summary

Today’s and tomorrow’s lessons are among two of the most important lessons in this
book. Classes are the heart of object-oriented programming languages and, therefore, are
the heart of C#. In today’s lesson, you revisited the concepts of encapsulation, polymor-
phism, inheritance, and reuse. You then learned how to define the basic structure of a
class and how to create data members within your class. You learned one of the first
ways to encapsulate your program when you learned how to create properties using the
set and get accessors. The last part of today’s lesson introduced you to namespaces and
the using statement. Tomorrow you will build on this by learning how to add more func-
tionality to your classes.

Q&A

Q Would you ever use a class with just data members?

A Generally, you would not use a class with just data members. The value of a class
and of object-oriented programming is the capability to encapsulate both function-
ality and data into a single package. You learned about only data today. In tomor-
row’s lesson, you learn how to add the functionality.

(=}

A Absolutely not! Although many of the data members were declared as public in
today’s lesson, sometimes you don’t want people to get to your data. One reason is
to allow the capability to change the way the data is stored.

Q It was mentioned that there are a bunch of existing classes. How can I find out

about these?

A Microsoft has provided a bunch of classes called the .NET base classes, and also
has provided documentation on what each of these classes can do. The classes are
organized by namespace. At the time this book was written, the only way to get
any information on them was through online help. Microsoft included a complete
references section for the base classes. You will learn more about the base classes
on Day 19, “Creating Remote Procedures (Web Services).”

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Should all data members always be declared public so people can get to them?

1176 Day 5

Quiz
1. What are the four characteristics of an object-oriented program?

2. What two key things can be stored in a class?

3. What is the difference between a data member declared as public and one that
hasn’t been declared as public?

4. What does adding the keyword static do to a data member?

5. What is the name of the application class in Listing 5.2?

6. What commands are used to implement properties?

7. When is value used?

8. Is console a class, a data member, a namespace, a routine, or a type?

9. Is system a class, a data member, a namespace, a routine, or a type?

10. What keyword is used to include a namespace in a listing?

Exercises
1. Create a class to hold the center of a circle and its radius.
2. Add properties to the circle class created in Exercise 1.

3. Create a class that stores an integer called mynumber. Create properties for this num-
ber. When the number is stored, multiply it by 100. Whenever it is retrieved, divide
it by 100.

4. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?

1:// A bug buster program
2:// Is something wrong? Or not?

K L R
4: using System;

5: using System.Console;

6:

7: class name

8: {

9: public string first;

10: }

11:

12: class NameApp

13: |

14: public static void Main()
15: {

16: /] Create a name object
17: name you = new name();
18:

19: Write("Enter your first name and press enter: ");

The Core of C# Programming: Classes 177 |

20: you.first = ReadlLine();

21: Write("\nHello {0}!", you.first);
22: }

23: }

. Write a class called die that will hold the number of sides of a die, sides, and the
current value of a roll, value.

Use the class in Exercise 5 in a program that declares two dice objects. Set values
into the side data members. Set random values into the stored roll values. (See
Listing 5.3 for help with this program.)

WEEK 1

DAY 6

Packaging Functionality:
Class Methods and
Member Functions

Yesterday you learned that a class has several parts. The most important thing
you learned, though, is that a class has the capability of defining objects used
for storing data and routines. Also, in yesterday’s lesson you learned how data
is stored. Today you learn about creating, storing, and using routines within
your classes. These routines give your objects the power to do what you want.
Although storing data can be important, manipulation of the information brings
life to your programs. Today you...

¢ Build methods of your own.
¢ Pass information to your routines with parameters.
* Re-evaluate the concepts of “by value” and “by reference.”

* Understand the concepts of calling methods.

180 Day 6

¢ Discover the truth about constructors.

* Learn to finalize or destruct your classes.

Getting Started with Methods

On previous days, you learned how to store data and how to manipulate this data. You
also learned how to manipulate your program’s flow. Now you will learn to package this
functionality into routines that you can reuse. Additionally, you will learn to associate
these routines with the data members of a class.

Routines in C# are called functions or methods. There is no real distinction between
these two terms, so you can use them interchangeably.

all refer to the same thing.

A method is a named piece of independent code that is placed in a reusable for-
mat. A method can operate without interference from other parts of an applica-

NEw TerRM

Nl]tﬂ Most Java, C++ and C# developers refer to routines as methods. Some pro-
grammers refer to them as functions. Regardless of what you call them, they

tion. If created correctly, it should perform a specific task that is indicated by its name.

As you will learn in today’s lesson, methods can return a value. Additionally, methods
can have information passed to them.

Using Methods

You have already used a number of methods in this book. write, writeLine, and ReadLine
are all methods that you’ve used that are associated with a console object. Additionally,
you have used the main method in every program you have created. Listing 6.1 presents
the circle class that you have seen before. This time, the routines for calculating the area
and circumference have been added to the class as methods.

LisTING 6.1 CircleApp.cs—A Class with Member Methods

// CircleApp.cs - A simple circle class with methods

class Circle

{
public int x;
public int vy;

NOoO O~ O =

Packaging Functionality: Class Methods and Member Functions 181 |

LisTING 6.1 continued

8: public double radius;

9:

10: public double getArea()

11: {

12: double theArea;

13: theArea = 3.14159 * radius * radius;

14: return theArea;

15: }

16:

17: public double circumference()

18: {

19: double theCirc;

20: theCirc = 2 * 3.14159 * radius;

21: return theCirc;

22: }

23: }

24:

25: class CircleApp

26: {

27: public static void Main()

28: {

29: Circle first = new Circle();

30: Circle second = new Circle();

31:

32: double area;

33: double circ;

34: first.x = 10;

35: first.y = 14;

36: first.radius = 3;

37:

38: second.x = 10;

39: second.y = 11;

40: second.radius = 4;

41:

42: System.Console.WriteLine("Circle 1: Center = ({0},{1})",
43: first.x, first.y);

44: System.Console.WriteLine(" Radius = {0}", first.radius);
45: System.Console.WriteLine(" Area = {0}", first.getArea());
46: System.Console.WriteLine(" Circum = {0}",

47: first.circumference());

48: area = second.getArea();

49: circ = second.circumference();

50:

51: System.Console.WriteLine("\nCircle 2: Center = ({0},{1})",
52: second.x, second.y);

53: System.Console.WriteLine(" Radius = {0}", second.radius);
54: System.Console.WriteLine(" Area = {0}", area);
55: System.Console.WriteLine(" Circum = {0@}", circ);
56: }

57: }

|182

Day 6

Circle 1: Center = (10,14)
OutpuT Radius = 3

Area = 28.27431
Circum = 18.84954

Circle 2: Center = (10,11)

Radius = 4
Area = 50.26544
Circum = 25.13272

Most of the code in Listing 6.1 should look familiar. The parts that might not

seem familiar will be by the end of today’s lesson.

Jumping into the listing, you see that Line 4 starts the class definition for the circle. In
Lines 6-8, the same three data members that were declared in previous examples are
declared. This includes an x and a y value to store the center point of the circle, and the
variable radius to store the radius. The class continues after the declaration of the data
members.

In Lines 10-15, you see the first definition of a member method. The details of how this
method works are covered in the following sections. For now, you can see that the name
of this method is getArea. Lines 12—14 are the code within this method; this code calcu-
lates the area and returns it to the calling program. Lines 12—13 should look familiar.
You’ll learn more about Line 14 later today. Lines 17-22 are a second method called
circumference, which calculates the value of the circumference and returns it to the call-
ing program.

Line 25 is the beginning of the application class for this listing. Line 27 contains the main
method that is the starting point of the application. This routine creates two circle

objects (Lines 29-30) and then assigns values to the data members (Lines 34—40). In
Lines 42-43, the data members are printed for the first circle. In Lines 4546, you see
the console.WriteLine method that you’'ve seen before; the difference is the value that you
pass to be printed. In Line 45, you pass first.area(). This is a call to the first class’s
getArea member method, which was defined in Lines 10—15. The result of calling this
method is then printed as the parameter in the writeLine call.

Line 48 is a little more straightforward. It calls getarea for the second class and assigns
the result to the area variable. Line 49 calls the circumference method and assigns its
value to circ. These two variables are then printed in Lines 51-55 along with the other
members of the second class.

'I'iI] You know that getArea in the listing is a member method rather than a data
member because the name is followed by parentheses when it is called.
You'll learn more about this later.

Packaging Functionality: Class Methods and Member Functions 183|

If you haven’t already, you should execute this listing and see what happens. The next
few sections detail how to define your own methods and explain the way a method
works. Additionally, you will learn how to send and receive values from a method.

Understanding Program Flow with Methods

As you were told earlier, a method is an independent piece of code that is packaged and
named so that you can call it from your programs. When a method is called, program
flow goes to the method, executes its code, and then returns to the calling routine. Fig-
ure 6.1 presents the order of flow for Listing 6.1. You can also see that a method can call
another method with the same flow expectations.

FIGURE 6.1

The program flow of
the circle application
in Listing 6.1.

Exploring the Format of a Method

Start

Circumference

¢99¢

Main

Circle

2907 $97¢

End

Area

It is important to understand the format of a method. Listing 6.1 has hinted at the format
and the procedure for calling a method. The basic format of a method is as follows:

Method_header

Method_body

|184

Day 6

The Method Header

The method header is the entry point to a method that defines several things about the
method:

* The access that programs have to the method

e The return data type of the method

* Any values that are being sent to the method

¢ The name of the method
In Line 10 of Listing 6.1, you see the header for the getArea method:
public double getArea()

This method is declared as public, which means that it can be accessed by programs out-
side this class. Additionally, you see that the method has a return type of double. The
method can return one double value to the calling program. The method’s name is
getArea. Finally, because the parentheses are empty, no values are sent to this getArea
method. Instead, it uses values that are data members within the same class. In a few
moments, you will send information to the method.

I':a“ti“n The method header does not end with a semicolon. If you place a semicolon
at the end of the method header, you get an error.

Returning Data from a Method

A method has the capability to be declared using a return data type. This data type is
indicated in the method’s header. You can use any valid data type as the return data type
for a method.

From within a method’s body, a value of this data type must be returned to the program
that called the method. To return a value from a method, you use the return keyword.
The return keyword is followed by a value or variable of the same type specified in the
header. For example, the area method in Listing 6.1 was declared with a return type of
double. In Line 14 of the listing, the return keyword is used to return a variable of type
double. The value of the double is returned to the calling program

What if a method does not need to return a value? What data type is used then? If a
method does not return a value, you use the void keyword with the method. void indi-
cates that no value is to be returned.

Packaging Functionality: Class Methods and Member Functions 185|

Naming Methods

It is important to name your methods appropriately. Several theories exist on naming
methods; you need to decide what is best for you or your organization. One general rule
is consistent: Always give your methods a meaningful name. If your method calculates
and returns the area, the name getArea makes sense, as would names such as
CalculateArea and CalcArea. Names such as routinet or myRoutine make less sense.

One popular guideline for naming methods is to always use a verb/noun combination.
Because a method performs some action, you can always use this type of combination.
Using this guideline, a name such as area is considered a less useful name; however, the
names CalculateArea Or CalcArea are excellent choices.

Building the Method Body

The method body contains the code that will be executed when the method is called. This
code starts with an opening brace and ends with a closing brace. The code in between
can be any of the programming you’ve already seen. In general, however, the code modi-
fies only the data members of the class that it is a part of or data that has been passed
into the method.

If the method header indicates that the method has a return type, the method needs to
return a value of that type. As stated earlier, you return a value by using the return key-
word. The return keyword is followed by the value to be returned. Reviewing the
getArea() method in Listing 6.1, you see that the method body is in Lines 11-15. The
area of the circle is calculated and placed into a double field called theArea. In Line 14,
this value is returned from the method using the return statement.

I:ﬂlltillll The data type of the variable returned from a method must match the data
type within the header of the method.

Using Methods

To use a method, you call it. A method is called the same way a data member is called:
You enter the object name followed by a period and then the method name. The differ-
ence between calling a method and calling data members is that you must also include
parentheses and any parameters that are needed. In Listing 6.1, the theArea method is
called for the first object with the following code:

first.area()

|186

Day 6

As with a variable, if the method has a return type, it is returned to the spot where the
method is called. For example, the getArea method returns the area of a circle as a double
value. In Line 45 of Listing 6.1, this value is returned as the parameter to another
method, Console.WriteLine. In Line 48, the return value from the second object’s area
method is assigned to another variable called area.

Using Data Members from a Method

The getArea method in Listing 6.1 uses the radius data member without identifying the
class or object name. The code for the method is as follows:

public double getArea()

{
double theArea;
theArea = 3.14159 * radius * radius;
return theArea;

}

Previously, you had to include the name of the object when you used a data member. No
object name is included on this use of radius. How can the routine get away with omit-
ting the object name? The answer is simple if you think it through.

When the getArea method is called, it is called using a specific object. If you call getArea
with the circlet object, you are calling the copy of the method within the circlet object:

circlel.getArea()

The routine knows that you called with circlet, so all the regular data members and
other methods within circlet are available. You don’t need to use the object name
because you are within the member method for that specific object.

You also see that additional variables can be declared within a class’s member method.
These variables are valid only for the time the method is operating. These variables are
said to be local to the method. In the case of the getArea method, a double variable called
theArea is created and used. When the method exits, the value stored in theArea—as well
as theArea—gOE€s away.

Listing 6.2 illustrates the use of a local variable and the program flow.

LisTING 6.2 LocalsApp.cs—Using Local Versus Class Variables

/] localsApp.cs - Local variables

1
2
3:
4: using System;
5:
6

class loco

Packaging Functionality: Class Methods and Member Functions 187|

LISTING 6.2 continued

7 A

8: public int x;

9:

10: public void count_x()

11: {

12: int x;

13:

14: Console.WriteLine("In count_x method. Printing X values...");
15: for (x = 0; x <= 10; x++)

16: {

17: Console.Write("{@} - ", X);

18: }

19: Console.WriteLine("\nAt the end of count_x method. x = {0}", X);
20: }

21: }

22:

23: class LocalsApp

24: {

25: public static void Main()

26: {

27: loco Locals = new loco();

28:

29: int x = 999;

30: Locals.x = 555;

31:

32: Console.WriteLine("\nIn Main(), x = {0}", X);
33: Console.WriteLine("Locals.x = {0}", Locals.x);
34: Console.WriteLine("Calling Method");

35: Locals.count_x();

36: Console.WriteLine("\nBack From Method");

37: Console.WriteLine("Locals.x = {0}", Locals.x);
38: Console.WriteLine("In Main(), x = {0}", Xx);
39: }

40: }

In Main(), x = 999

Locals.x = 555
Calling Method
In count_x method. Printing X values...
o-1-2-83-4-5-6-7-8-9-10 -
At the end of count_x method. x = 11

Back From Method
Locals.x = 555
In Main(), x = 999

Listing 6.2 does not contain good names for its variables; however, this listing
ANALYSIS | ;
illustrates a couple of key points that you should understand.

|188

Day 6

Several variables called x are declared in this listing. This includes a public int x
declared in Line 8 as a part of the 1oco class. A local integer variable x also is declared in
Line 12 as part of the count_x method. Finally, a third integer variable called x is declared
in Line 29 as part of the Mmain method. Although all three of these variables have the same
name, they are three totally different variables.

The first of these variables, the one in the loco class, is easiest to recognize. It is part of a
class. As you’ve seen already, to use this variable outside the class, you use an object
name. This is done in Line 30 of the listing, where an object declared with the name
Locals is used to set a value its x data member to 555. The main routine’s x value was set
to the value of 999 in Line 29. You can see in Lines 32-33 that these two variables con-
tain their own values and are easy to differentiate from each other.

In Line 35, the main method calls the count_x method of the Locals object. You can see
the count_x method in the 1oco class. First, in Lines 10-21, a variable called x is declared
(Line 12). This value overshadows any previous declarations of x, including the declara-
tion of x in the class. In the rest of the method, this local variable x is used to loop and
print numbers. When the loop is done, the value of x is printed one last time before the
method ends.

With the end of the method, control is returned to the main method, where the x variables
are printed again. You can see from the output that the Locals data member x was not
touched. Additionally, the x variable that was a local within main retained its value of 999.
Each of the variables operated independently.

What happens if you want to work with the class data member x in the count_x method?
You learned earlier that within a class’s method, you can call a data member without
using the object name. In fact, you can’t use the object name because it can vary. How,
then, can you use the data member x within a method if there is a local variable with the
same name—in this case, called x? Listing 6.3 is the previous locals listing, with a slight
change.

LisTING 6.3 LocalsApp2.cs—Calling a Data Member Within a Method

/| LocalsApp2.cs - Local variables

using System;

class loco

{
public int x;

© oo ~NO O WN =

Packaging Functionality: Class Methods and Member Functions 189|

LISTING 6.3 continued

10: public void count_x()

11: {

12: int x;

13:

14: Console.WriteLine("In count_x method. Printing X values...");
15: for (x = 0; x <= 10; x++)

16: {

17: Console.Write("{@} - ", X);

18: }

19:

20: Console.WriteLine("\nDone looping. x = {0}", X);
21: Console.WriteLine("The data member x's value: {0}", this.x);
22: Console.WritelLine("At the end of count_x method.");
23: }

24: }

25:

26: class LocalsApp

27: |

28: public static void Main()

29: {

30: loco Locals = new loco();

31:

32: int x = 999;

33: Locals.x = 555;

34:

35: Console.WriteLine("\nIn Main(), x = {0}", X);

36: Console.WriteLine("Locals.x = {0}", Locals.x);

37: Console.WriteLine("Calling Method");

38: Locals.count_x();

39: Console.WriteLine("\nBack From Method");

40: Console.WriteLine("Locals.x = {0}", Locals.x);

41: Console.WriteLine("In Main(), x = {0}", Xx);

42: }

43: }

In Main(), x = 999
Locals.x = 555
Calling Method
In count_x method. Printing X values...
o-1-2-3-4-5-6-7-8-9-10 -
Done looping. x = 11
The data member x's value: 555
At the end of count_x method.

Back From Method
Locals.x = 555
In Main(), x = 999

190 Day 6

Line 21 is the unique part of this listing—a value called this.x is printed. The
ANALYSIS . . .
keyword this always refers to the current object being used. In this case, this

refers to the Locals object on which the method was called. Because it refers to the cur-
rent object, this.x refers to the object’s x data member—not the local data member. So,
to access a data member from a method within the same class, you use the keyword this.

How can the class method access the value of x in the calling program—the local x vari-
able declared in Main on Line 32 of Listing 6.3? It can’t unless it is passed in as a para-
meter.

Passing Values to Methods

You now know how to access a method. You also know how to declare local variables
within the method and how to use data members within the same class. What if you want
to use a value, or multiple values, from another class or another method? For example,
suppose that you want a method that multiplies two numbers and returns the result. You
know how to return a single result, but how can you get the two numbers into the
method?

To receive values, the header must have been defined with parameters. The format of a
method header with parameters is as follows:

Modifiers ReturnType Name (Parameters)

The parameters are passed within the parentheses of the method. Parameters are optional,
so if no parameters are sent, the parentheses are empty—just as you’ve seen in the previ-
ous examples.

The basic format for each parameter that is used is as follows:
[Attribute] Type Name

Type is the data type of the value being passed, and nvame is the name of the variable being
passed. Optionally, you can have an attribute, which is covered later in today’s lessons.
First, Listing 6.4 presents a simple program that multiplies two numbers and returns the
result.

LisTING 6.4 Mult.cs—Passing Values

: // MultiApp.cs - Passing values

1
2
3:
4: using Systenm;
5:

Packaging Functionality: Class Methods and Member Functions 191 |

LISTING 6.4 continued

6: class Multiply

7: {

8: static public long multi(long nbri, long nbr2)

9: {

10: return (nbri * nbr2);

11: }

12: }

13: public class MultiApp

14: {

15: public static void Main()

16: {

17: long x = 1234;

18: long y = 5678;

19: long a = 6789;

20: long b = 9876;

21:

22: long result;

23:

24: result = Multiply.multi(x, y);

25: Console.WritelLine("x * y : {0} * {1} = {2}", x, y, result);
26:

27: result = Multiply.multi(a, b);

28: Console.WriteLine("a * b : {@} * {1} = {2}", a, b, result);
29:

30: result = Multiply.multi(555L, 1000L);

31: Console.WritelLine("With Long values passed, result is {0}", result);
32: }

33: }

X *y : 1234 * 5678 = 7006652
OuTruT IFEEE 6789 * 9876 = 67048164
With Long values passed, the result was 555000

Listing 6.4 illustrates the point of passing two values; it also illustrates a couple
of other items. First, take a look at the method definition in Lines 8—11. This
method, called multi, has two parameters. These are each 1ong data types and have been
given the names nbr1 and nbr2. These two names are local variables that can be used in
this method. In Line 10, the two variables are multiplied, and the resulting value is
returned to the caller. In the method header in Line 8, the mu1ti method is declared as a
long, SO it can return a single long value.

In Lines 24, 27, and 30, you see the multi method called three different times, each with
different values. You can pass data variables, as in Lines 24 or 27. You can also pass lit-

eral values, as in Line 28. When the mu1ti method is called, the values passed are sent to
the method and are referenced with the variable names in the method header. So, for

1192 Day 6

Line 24, x and y are passed to nbr1 and nbr2. In Line 27, a and b are passed to nbr1 and
nbr2. In Line 30, the values 555 and 1000 are passed to nbr1 and nbr2. These values are
then used by the method.

It is important to note that the number of values sent to the method must match the num-
ber of parameters that were defined. In the case of the multi method, you must pass two
values. If you don’t, you get an error.

N"tﬂ There are no default parameters in C#, unlike in some other programming
languages.

Working with Static Methods

You learned earlier that the static modifier caused a data member to be associated with
a class instead of a specific object of a class. In Listing 6.4, a static method was used.
Just as with data members, methods can be associated with the class by using the static
modifier. The multiply class in Listing 6.4 has a static method called mu1ti. Just like with
static data members, this method can be called using the class name instead of an object
name.

In general, you will not declare your methods as static. If the multi method had not been
static, you would have needed to declare a Multiply object to use it. Again, this is just
like working with data members.

Access Attributes for Parameters

In the previous example, you passed the values to the method. The method had copies of
what was originally passed. These copies were used and then thrown out when the
method finished. This passing of values is known as passing by value. Passing by value
to a method is only one means of interacting with the method and its parameters. There
are three types of access attributes for parameters:

¢ Value

e Reference

* Out
N[ltﬂ A method is defined with parameters. When you call a method, the values
that you pass to the method are called arguments. The attributes listed pre-

viously are defined with the parameters of a method. As you will see, they
impact how the arguments are treated.

Packaging Functionality: Class Methods and Member Functions 193|

Using Value Access on Parameters

As already stated, value access on a parameter refers to when a copy is made of the data
being sent to the method. The method then uses a copy of the data being sent. The origi-
nal values sent to the method are not impacted.

Using Reference Access on Parameters

Sometimes you will want to modify the data stored in the original variable being sent to
a method. In this case, you can pass a reference to the variable instead of the variable’s
value. A reference is a variable that has access to the original variable. If you change the
reference, you change the original variable’s value as well.

In more technical terms, a reference variable points to a location in memory where the
data is stored. Consider Figure 6.2. The variable number is stored in memory. A reference
can be created that points to where number is stored. When the reference is changed, it
changes the value in the memory, thus also changing the value of the number.

FIGURE 6.2 /_\

Reference variables { (V]

/ % % Value % }Memory
7

1r 77

versus value variables.

NS

ref_var
L /
% Value % } Memory
/ 7

val_var

Because a reference variable can point to different places, it is not tied to a specific loca-
tion in memory like a regular variable is. The reference points to the original variable’s
location. Any changes to the parameter variable’s value also cause a change in the origi-
nal variable. Each time a method that has a by reference parameter is called, the parame-
ter points to the new variable that is being sent to the routine.

When declaring a parameter, its attribute defaults to the attribute type of the data type.
For the basic data types, this is by value. To cause a basic data type, such as an integer,
to be passed by reference, you add the ref keyword to the method header before the data
type. Listing 6.5 illustrates using the ref keyword and shows the difference between
using reference and value parameters. Listing 6.5 calls the method squareByval and

1194 Day 6

passes a double. This double is being passed by value. It is followed by calling a method
called squareByRef, in which a double is passed by reference. The difference between
these two methods can be seen in the output that results.

Nﬂtﬂ As you learned in Day 2, “Understanding C# Programs,” the basic data types
are attributed as value types by default. This means that when you create a
variable, it is given a specific location in memory where it can store its value.
Data types such as classes are reference types by default. This means that

the class name contains the address where the data within the class will be
located rather than the data itself.

LisTING 6.5 RefVars.cs—Calling a Method by Value Versus by Reference

1: // RefVars.cs - reference vs by value variables.
N
3:

4: using System;

5:

6: class nbr

7: {

8: public double squareByVal(double x)

9: {

10: X =X * X;

11: return Xx;

12: }

13:

14: public double squareByRef(ref double x)

15: {

16: X =X * X;

17: return Xx;

18: }

19: }
20:
21: class RefVars
22: {
23: public static void Main()
24: {
25: nbr doit = new nbr();
26:
27: double nbri1 = 3;
28: double retval = 0;
29:
30: // Calling method with a by value parameter:
31: Console.WriteLine("Before square -> nbri1 = {0}, retval = {1}",
32: nbri, retvVal);

Packaging Functionality: Class Methods and Member Functions 195|

LISTING 6.5 continued

34: retvVal = doit.squareByVal(nbri);

35:

36: Console.WriteLine("After square -> nbri = {0}, retval = {1}",
37: nbri, retval);

38:

39: Console.WriteLine("\n--------- \n");

40:

41: // Calling method with a by reference parameter:

42: retval = 0; // reset return value to zero

43:

44: Console.WriteLine("Before square -> nbri = {0}, retval = {1}",
45: nbr1, retval);

46:

47: retvVal = doit.squareByRef(ref nbri);

48:

49: Console.WriteLine("After square -> nbri = {0}, retval = {1}",
50: nbri, retval) ;

51: }

52: }

Before square -> nbr1 = 3, retval = 0
Output After square -> nbr1 = 3, retval = 9

Before square -> nbr1 = 3, retvVal = 0
After square -> nbr1 = 9, retvVal = 9

The output from these two listings tells the story of what is going on. In the
ANALYSIS . .
squareByval method (Lines 8—12), references are not used. As a result, the vari-

able that is passed into the square method, var1, is not changed. It remains as the value of
3 both before and after the method is called. In the squareByRef method (Lines 14-18), a
reference is passed. As you can see from the output of this listing, the variable passed to
the square method is modified.

In the method header for the squareByref method, the parameter is declared with the ref
keyword added (see Line 14). A double is normally a value data type, so to pass it to the
method as a reference, you need to add the ref keyword before the variable being passed
in. You see this in Line 47.

[:a“ti““ If you try to call the squareByRef method without passing a reference vari-
able—or using the ref keyword with a value data type—you will get an
error when you compile. In the case of the squareByRef method, you get an
error saying that a double cannot be converted to a ref double.

1196 Day 6

Using out Access to Parameters

The return type enables you to send back a single variable from a method; however,
sometimes you will want more than one value to be returned. Although reference vari-
ables could be used to do this, C# has also added a special attribute type specifically for
returning data from a method.

You can add parameters to your method header specifically for returning values by
adding the out keyword. This keyword signifies that a value is being returned out of the
method but is not coming in. When you call a method that has an out parameter, you
must be sure to include a variable to hold the value being returned. Listing 6.6 illustrates
the use of the out attribute.

LisTING 6.6 Outter.cs—Using the out Attribute

1: // Outter.cs - Using output variables
e

3:

4: using System;

5:

6: class nbr

7: |

8: public void math_routines(double x,

9: out double half,

10: out double squared,

11: out double cubed)

12: {

13: half = x / 2;

14: squared = x * x;

15: cubed = x * x * x;

16: }

17: '}

18:

19: class Outter
20: {
21: public static void Main()
22: {
23: nbr doit = new nbr();
24:
25: double nbr = 600;
26: double Half_nbr, Squared_nbr Cubed_nbr;

27:

28: doit.math_routines(nbr, out Half_nbr,

29: out Squared_nbr, out Cubed_nbr);
30: Console.WriteLine("After method -> nbr = {0}", nbr);
31: Console.WriteLine(" Half nbr = {0}", Half_nbr);
32: Console.WriteLine(" Squared_nbr = {0}", Squared_nbr);
33: Console.WriteLine(" Cubed_nbr = {0}", Cubed_nbr);
34: }

Packaging Functionality: Class Methods and Member Functions 197|

After method -> nbr = 600
Half_nbr = 300
Squared_nbr = 360000
Cubed_nbr = 216000000

Two key pieces of code are in Listing 6.6. First is the method header in
ANALYSIS s . .

Lines 8-11. Remember, you can use whitespace to make your code easier to
read. This method header has been formatted so that each argument is on a different line.
Notice that the first argument, x, is a regular double variable. The remaining three argu-
ments have been declared with the out attribute. This means that no value is being passed
into the method. Rather, these three arguments are containers for values to be passed out
of the method.

Nlltﬂ If one of the variables passed to the method already contains a value, it is
overwritten.

The second line of code to review is Line 28, the call to the math_routines method. The
variables being passed must also be attributed with the out keyword when calling the
method. If you leave off the out keyword when calling the method, you get an error.

Overall, the code in this listing is relatively straightforward. The math_routines method
within the nbr class does three math calculations on a number. In Lines 30-33, the values
are reprinted after having been filled within the math_routines method.

If you don’t place a value in an output parameter, you get an error. It’s important to
know that you must assign a value to all output parameters within a method. For exam-
ple, comment out Line 14 in Listing 6.6:

14: // squared = x * X;

This removes the assignment to the square output variable. When you recompile this list-
ing, you get the following error:

outter2.cs(8,17): error CS0177: The out parameter 'squared' must be assigned to
before control leaves the current method

As you can see, if an output parameter is defined, it must be filled.

N“tﬂ A variable that is being used as an out variable does not have to be initial-
ized before the method is called.

|198

Day 6

o

Do use class and method names that are Don‘t confuse by value variables with

clear and descriptive. reference variables. Remember, passing a
variable by value creates a copy. Passing
by reference enables you to manipulate
the original variable’s value.

Types of Class Methods

You have learned the basics of using methods, but you should be aware of a few special
types of methods as well:

* Property accessor methods

» Constructors

¢ Destructors/finalizers

Property Accessor Methods

You’ve already worked with property accessor methods—set and get. These methods
enable you to keep data members private.

Constructors

When an object is first created, often you will want some setup to occur. A special type
of method is used specifically for this initial setup—or construction—of objects. This
method is called a constructor. Two types of constructors exist: instance constructors,
used when each instance or object is created, and static constructors, called before any
objects are created for a class.

Instance Constructors

An instance constructor is a method that is automatically called whenever an object is
instantiated. This constructor can contain any type of code that a normal method can
contain. A constructor is generally used to do initial setup for an object and can include
functionality, such as initializing variables.

The format of a constructor is as follows:

modifiers classname()

{
}

// Constructor body

Packaging Functionality: Class Methods and Member Functions 199|

This is a method that is defined using the class name that is to contain the constructor.
Modifiers are the same modifiers that you can add to other methods. Generally, you use
only public. You don’t include any return data type.

It is important to note that every class has a default constructor that is called, even if you
don’t create one. By creating a constructor, you gain the capability to control some of the
setup.

The constructor class is automatically called whenever you create an object. Listing 6.7
illustrates using a constructor.

LisTING 6.7 Constr.cs—Using a Constructor

1: // Constr.cs - constructors

A e e TR
3:

4: using System;

5:

6: public class myClass

7: |

8: static public int sctr = 0;

9: public int ctr = 0;

10:

11: public void routine()

12: {

13: Console.WriteLine("In the routine - ctr = {0} / sctr = {1}\n",
14: ctr, sctr);

15: }

16:

17: public myClass()

18: {

19: ctr++;
20: sctr++;
21: Cconsole.WriteLine("In Constructor- ctr = {0} / sctr = {1}\n",
22: ctr, sctr);
23: }
24: }
25:
26: class TestApp
27: |
28: public static void Main()
29: {
30: Console.WriteLine("Start of Main method...");
31:
32: Console.WriteLine("Creating first object...");
33: myClass first = new myClass();
34: Console.WritelLine("Creating second object...");

35: myClass second = new myClass();

200 Day 6

LiSTING 6.7 continued

36:

37: Console.WriteLine("Calling first routine...");
38: first.routine();

39:

40: Console.WriteLine("Creating third object...");
41: myClass third = new myClass();

42: Console.WriteLine("Calling third routine...");
43: third.routine();

44:

45: Console.WriteLine("Calling second routine...");
46: second.routine();

47:

48: Console.WriteLine("End of Main method");

49: }

50: }

Start of Main method...
Output Creating first object...

In Constructor- ctr = 1 / sctr =

I
—_

Creating second object...
In Constructor- ctr = 1 / sctr

1}
N

Calling first routine...
In the routine - ctr =1 / sctr = 2

Creating third object...
In Constructor- ctr = 1 / sctr = 3

Calling third routine...

In the routine - ctr =1 / sctr = 3
Calling second routine...
In the routine - ctr =1 / sctr = 3

End of Main method

Listing 6.7 illustrates the use of a very simple constructor in Lines 17-23. This
listing also helps to again illustrate the use of a static class data member versus
a regular data member. In Lines 6-24, a class is defined called myclass. This class con-
tains two data members that can be used as counters. The first data member is declared
as static and is given the name sctr. The second data member is not static, so its name
is ctr (without the s) .

Packaging Functionality: Class Methods and Member Functions 201 |

Nﬂtﬂ Remember, a class creates one copy of a static data member that is shared
across all objects. For regular data members, each class has its own copy.

The test class contains two routines. The first is a method called routine, which prints a
line of text with the current value of the two counters. The second routine has the same
name as the class, myClass. Because of this, you automatically know that it is a construc-
tor. This method is called each time an object is created. In this constructor, a couple of
things are going on. First, each of the two counters is incremented by 1. For the ctr vari-
able, this is the first time it is incremented because it is a new copy of the variable for
this specific object. For sctr, the number might be something else. Because the sctr data
member is static, it retains its value across all objects for the given class. The result is
that for each copy of the class, sctr is incremented by 1. Finally, in Line 21, the con-
structor prints a message that displays the value stored in ctr and the value stored in

sctr.

The application class for this program starts in Line 26. This class prints messages and
instantiates test objects—nothing more. If you follow the messages that are printed in the
output, you will see that they match the listing. The one interesting thing to note is that
when you call the routine method for the second object in Line 46, the sctr is 3, not 2.
Because sctr is shared across all objects, by the time you print this message, you have
called the constructor three times.

You should note one final item about the constructor within your listing. Look at
Line 33:

33: myClass first = new myClass();

This is the line that creates your object. Although the constructor is called automatically,
notice the myclass call in this line.

Nﬂtﬂ Tomorrow you will learn how to pass parameters to a constructor.

Static Constructors

As with data members and methods, you can also create static constructors. A construc-
tor declared with the static modifier is called before the first object is created. It is
called only once and then is never used again. Listing 6.8 is a modified version of
Listing 6.7. In this listing, a static constructor has been added to the test class.

202 Day 6

Notice that this constructor has the same name as the other constructor. Because the sta-
tic constructor includes the name static, the compiler can differentiate it from the regu-
lar constructor.

LisTING 6.8 StatCon.cs—Using a static Constructor

1: // StatCon.cs - static constructors

N N R TR R
3:

4: using System;

5:

6: public class test

7: |

8: static public int sctr;

9: public int ctr;

10:

11: public void routine()

12: {

13: Console.WriteLine("In the routine - ctr = {0} / sctr = {1}\n",
14: ctr, sctr);

15: }

16:

17: static test()

18: {

19: sctr = 100;
20: Console.WriteLine("In Static Constructor - sctr = {0}\n", sctr);
21: }
22:
23: public test()
24: {
25: ctr++;
26: sctr++;
27: Console.WriteLine("In Constructor- ctr = {0} / sctr = {1}\n",
28: ctr, sctr);
29: }
30: }
31:
32: class StatCon
33: {
34: public static void Main()
35: {
36: Console.WriteLine("Start of Main method...");
37:
38: Console.WritelLine("Creating first object...");
39: test first = new test();
40: Console.WritelLine("Creating second object...");
41: test second = new test();
42:

43: Console.WriteLine("Calling first routine...");

Packaging Functionality: Class Methods and Member Functions 203|

LISTING 6.8 continued

44: first.routine();

45:

46: Console.WriteLine("Creating third object...");
47: test third = new test();

48: Console.WriteLine("Calling third routine...");
49: third.routine();

50:

51: Console.WritelLine("Calling second routine...");
52: second.routine();

53:

54: Console.WriteLine("End of Main method");

55: }

56: }

Start of Main method...
Ourtput Creating first object...

In Static Constructor - sctr = 100
In Constructor- ctr =1 / sctr = 101

Creating second object...
In Constructor- ctr =1 / sctr

102

Calling first routine...
In the routine - ctr =1 / sctr = 102

Creating third object...
In Constructor- ctr =1 / sctr = 103

Calling third routine...
In the routine - ctr = 1 / sctr

103

Calling second routine...
In the routine - ctr =1 / sctr = 103

End of Main method

There is one key difference in the output of this listing from that of Listing 6.7.
ANALYSIS oo . . .

The third line printed in the output came from the static constructor. This
printed the simple line In Static Constructor.... This constructor (in Lines 17-21) ini-
tializes the static data member, sctr, to 100 and then prints its message. The rest of the
program operates exactly as it did for Listing 7.8. The output differs a little because the
sctr variable now starts at 100 rather than at o.

204 Day 6

Destructors/Finalizers

You can perform some operations when an object is destroyed. These are accomplished
in the destructor.

A destructor is automatically executed at some point after the program is finished using
an object. Does “at some point after”” sound vague? This is intentional. This destruction
can happen from the point at which the object of a class is no longer used up to the point
just before the program ends. In fact, it is possible that the program can end without call-
ing the destructor, which means that it would never be called. You don’t have any real
control over when the destructor will execute; therefore, the value of a destructor is lim-
ited.

[: t' In languages such as C++, a destructor can be called and the programmer
dution - - ;
can control when it will perform. This is not the case in C#.

NIJIB From the technical side of things, a destructor is generally called by the C#

runtime after an object of a class is no longer in use. The C# runtime nor-
mally calls destructors just before checking to see whether any available
memory can be freed or released (a concept called garbage collection). If
the C# runtime does not do any of this memory checking between the time
the object is no longer used and the time the program ends, the destructor
will never happen. It is possible to force garbage collection to happen; how-
ever, it makes more sense to just limit your use of destructors.

Using a Destructor

A C# destructor is defined by using a tilde (-) followed by the class name and empty
parentheses. For example, the destructor for an xyz class is as follows
~xyz()

{
// Destructor body

}

There are no modifiers or other keywords to be added to a destructor. Listing 6.9 pre-
sents a simpler version of Listing 6.7 with a destructor added.

Packaging Functionality: Class Methods and Member Functions

205 |

LISTING 6.9 DestrApp.cs—Using a Destructor

0N O~ WN =

// DestrApp.cs - constructors

using System;

public class test

{
static public int sctr = 0;
public int ctr = 0;
public void routine()
{
console.WriteLine("In the routine - ctr = {0} / sctr = {1}",
ctr, sctr);
}
public test()
{
ctr++;
sctr+t;
Console.WriteLine("In Constructor");
}
~test()
{
Console.WriteLine("In Destructor");
}
}

class DestrApp
{

public static void Main()
{

Console.WriteLine("Start of Main method");

test first = new test();
test second = new test();

first.routine();

test third = new test();
third.routine();

second.routine(); /] calling second routine last

Console.WriteLine("End of Main method");

| 206 Day 6
Start of Main method
(OIN ilM 1h Constructor
In Constructor
In the routine - ctr =1 / sctr = 2

In Constructor

In the routine - ctr =1 / sctr = 3
In the routine - ctr =1 / sctr
End of Main method

In Destructor

In Destructor

In Destructor

n
w

The destructor in Lines 24 to 27 is called in the output after the final destruction
ANALYSIS

of each of the objects. In this case, it happened after the Main() method ended;
however, there is a chance that this destruction could have never happened.

Nl]lﬂ It is worth repeating: Destructors are not guaranteed to happen. You might
find that they don't execute when you run Listing 6.9.

Destructors and Finalization

Destructors are often called finalizers because of something that happens internally. A
destructor is related to a method called Finalize. The compiler converts your constructor
into the correct code for this finalization.

Summary

Today’s lessons covered only a few topics; however, these topics are critical to your
capability to program in C# and to program an object-oriented language. Yesterday you
learned to add data members to your own classes. Today you learned how to add func-
tionality in the form of methods to your classes. You learned that methods, functions, and
routines are different terms that ultimately refer to the same thing.

After learning the basics of methods, you reviewed the difference between by value and
by reference. You learned how to pass information as arguments to the parameters speci-
fied in a method’s header. You learned that, by using keywords, such as ref and out, you
can change the way the method treats the data passed.

Finally, you learned about a few special types of methods, including constructors and
destructors.

Packaging Functionality: Class Methods and Member Functions 207|

In Day 7, “Storing More Complex Stuff: Structures, Enumerators, and Arrays,” you
expand on what you’ve learned about methods today. You will explore overloading, dele-
gates, and a number of other more advanced features of methods.

Q&A

Q What is the difference between a parameter and an argument?

A A parameter is a definition of what will be sent to a method. A parameter occurs
with the definition of a method in the method head. An argument is a value that is
passed to a method. You pass arguments to a method. The method matches the
arguments to the parameters that were set in the method definition.

(=}

Can you create a method outside a class?

A Although in other languages you can create methods that are outside a class, in C#
you cannot. C# is object-oriented, so all code must be within the framework of a
class.

Q Do methods and classes in C# operate the same way that they do for other
languages, such as C++ and Java?

A For the most part, methods and classes operate similarly. However, differences
exist between each language. It is beyond the scope of today’s lesson to detail this
here. As an example of a difference, C# does not allow defaulted parameters within
a method. In languages such as C++, you can have a variable within a method
default to a specified value if the calling method doesn’t supply it. This is not the
case with C#. Other differences exist as well.

Q If I’m not supposed to count on destructors, how can I do cleanup code?

A Tt is recommended that you create your own methods to do cleanup code and that
you explicitly call these when you know that you are done with an object. For
example, if you have a class that creates a file object, you will want to close the
file when you are done with it. Because a destructor might not be called, or might
not get called for a very long time, you should create your own closing method.
You really don’t want to leave the file sitting open longer than you need to.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

| 208

Day 6

Quiz

1.

A

What are the two key parts of a method?

What is the difference between a function and a method?
How many values can be returned from a method?

What keyword returns a value from a method?

What data types can be returned from a method?

What is the format of accessing a member method of a class? For example, if an
object called myobject is instantiated from a class called myclass, which contains a
method called mymethod, which of the following are correct for accessing the
method?

a. myClass.myMethod
b. myobject.myMethod
C. myMethod

d. myClass.myObject.myMethod

. What is the difference between passing a variable by reference and passing a vari-

able by value?

8. When is a constructor called?

9.
10.

What is the syntax for a destructor that has no parameters?

When is a destructor called?

Exercises

1.

Write the method header for a public method called xyz. This method will take no
arguments and return no values.

Write the method header for a method called mymethod. This method will take three
arguments as its parameters. The first will be a double passed by value, called
myval. The second will be an output variable called myoutput, and the third will be
an integer passed by reference called myreference. The method will be publicly
accessible and will return a byte value.

. Using the circle class that you saw in Listing 6.1, add a constructor that defaults

the center point to (5, 5) and the radius to 1. Use this class in a program that prints
with both the defaulted values and prints after you have set values. Instead of print-
ing the circle information from the main() method, create a method to print the cir-
cle information.

Packaging Functionality: Class Methods and Member Functions

209 |

. Bug Buster: The following code snippet has a problem. Which lines generate error
messages?

public void myMethod()
{

System.Console.WriteLine("I'm a little teapot short and stout");
System.Console.WriteLine("Down came the rain and washed the spider
w-out");

return 0;

}

. Using the dice class that you saw on previous days, create a new program. In this
program, create a dice class that has three data members. These should be the num-
ber of sides of the dice, the value of the dice, and a static data member that con-
tains the random number class (defined as rnd in previous examples). Declare a
member method for this class called ro11() that returns the next random value of
the die.

WEEK 1

DAY 7

Storing More Complex
Stuff: Structures,
Enumerators, and Arrays

You’ve learned about the basic data types and about classes. C# offers several
other ways of storing information in your programs. In today’s lesson, you
learn about several of these alternative storage methods, including structures,
enumerators, and arrays. More specifically, today you...

Learn how to store values in structures.
Discover how structures are similar to and different from classes.

Understand what an enumerator is and how it can be used to make your
programs easier to understand.

See how to declare and use arrays to hold lots of values of the same data
type.
Work with the foreach keyword to manipulate arrays.

212 Day 7

Working with Structures

Structures are a data type provided by C#. Like classes, structures can contain both data
and method definitions. Also like a class, a structure can contain constructors, constants,
fields, methods, properties, indexers, operators, and nested types.

Understanding the Difference Between Structures and
Classes

Although a lot of similarities exist between classes and structures, there is one primary
difference and a few minor differences. The primary difference between a structure and a
class is centered on how a structure is stored and accessed. A structure is a value data
type, and a class is a reference data type.

Although the difference between value and reference data types was covered before, it is
worth covering several more times to ensure that you fully understand the difference. A
value data type stores the actual values at the location identified by the data type’s name.
A reference data type actually stores a location that points to where the information is
stored. Figure 7.1 is a repeat of the figure you saw on Day 6, “Packaging Functionality:
Class Methods and Member Functions.” This figure illustrates the difference between
value and reference data type storage.

FIGURE 7.1 /’\

Storage by reference { ¢ {

/ 5 3 Value 3 }Memory
7 7

/

versus by value.

NSNS

ref_var

NSNS

{
Value 3 } Memory
7

val_var

As you can see from Figure 7.1, a reference variable is actually more complicated to
store than a value variable. However, the compiler takes care of this complexity for you.
Although there are benefits to storing information by reference, this results in extra over-
head in memory. If you are storing small amounts of information, the extra overhead can
actually outweigh the amount of information being stored.

Storing More Complex Stuff: Structures, Enumerators, and Arrays 213 |

A structure is stored by value. The overhead of reference is not included, so it is pre-
ferred when dealing with small amounts of data or small data values.

When dealing with large amounts of data, a reference type such as a class is a better stor-
age method. This is especially true when passing the data to a method. A reference vari-
able passes only the reference, not the entire data value. A value variable such as a
structure is copied and passed to the method. Such copying can cause fat, slower pro-
grams if the structures are large.

“I] If you need to decide between a class and a structure, and if the total size of
the data members being stored is 16 bytes or less, use a structure. If it is
greater than 16 bytes, consider how you will use the data.

Structure Members

Declaring members in a structure is identical to declaring data members in a class. The
following is a structure for storing a point:

struct Point

{ public int x;

public int y;
}
This is similar to the class you saw on previous days. The only real difference is that the
struct keyword is used instead of the class keyword. You can also use this in a listing as
you would use a class. Listing 7.1 uses this Point structure.

LisTING 7.1 PointApp.cs—Using a Point Structure

1: // PointApp.cs- A structure with two data members
I R
3:

4: struct Point

5: {

6: public int x;

7: public int vy;

8: }

9:

10: class PointApp

11:

12: public static void Main()

13: {

14: Point starting = new Point();

|214

Day 7

LisTING 7.1 continued

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26: }
27:

Ead

Point ending = new Point();

starting.
starting.
ending.x
ending.y

:1;
:4,
10;
11,

< X

System.Console.WriteLine("Point 1: ({0},{1})",
starting.x, starting.y);

System.Console.WritelLine("Point 2: ({0},{1})",
ending.x, ending.y);

Point 1: (1,4)
(01NNl Point 2: (10,11)
The primary difference between using the point structure and using a class is the
ANALYSIS . .
struct keyword when defining the class (Line 4). In fact, you could replace the
struct keyword with the class keyword, and the listing would still work. As stated ear-
lier, the biggest difference between using a structure and using a class is how they are

stored in memory. Figure 7.2 illustrates how a starting pPoint object from a class could be
placed in memory, versus how an instance of the starting Point structure could be stored.

FIGURE 7.2

Storing a starting

Point structure and a

class in memory.

Jr Starting object from class

/
T T T T T T T T T T
reference to data members
I Y Iy L1
/ 7
g }
7

NS

i ! L /

5 3 L L

})) L | | L 1 |
ﬂt Starting.x ﬂt Starting.y

Starting. Starting.
Jr ar|ngx4r arting.y)

% } Memory

7
1; Starting instance from structure

Memory

NS

Storing More Complex Stuff: Structures, Enumerators, and Arrays 215 |

You can also see that members of a structure are accessed in the same manner in which
members of a class are accessed. This is by using the name of the structure instance, fol-
lowed by the member operator (a period), followed by the name of the data member.
For example, Line 17 accesses the x data member of the starting instance of the Point
structure.

Declaring an instance from a structure can be simpler. Declaring instances from struc-
tures does not require you to use the new keyword, which means that Lines 14—15 could
be replaced with the following:

14: Point starting;
15: Point ending;

Make this change and recompile Listing 8.1. You will see that the listing still compiles
and works. If you replace the struct keyword with the class keyword in this modified
version of the listing, the result is an error when you compile:

PointApp.cs(17,7): error CS0165: Use of unassigned local variable 'starting’
PointApp.cs(19,7): error CS0165: Use of unassigned local variable 'ending'

Nesting Structures

Like classes, structures can contain any other data type, which includes other structures.
Listing 7.2 illustrates a Line structure that contains two Point structures.

LISTING 7.2 LineApp.cs—A Line Structure

1: // line.cs- A line structure which contains point structures.
R R R
3:

4: struct Point

5: {

6: public int x;

7: public int y;

8: }

9:

10: struct Line

11: {

12: public Point starting;

13: public Point ending;

14: }

15:

16: class LineApp

17: {

18: public static void Main()

19: {
20: Line myLine;

1216 Day 7

LisTING 7.2 continued

22: myLine.starting.x = 1;

23: myLine.starting.y = 4;

24: myLine.ending.x = 10;

25: myLine.ending.y = 11;

26:

27: System.Console.WriteLine("Point 1: ({0},{1})",

28: myLine.starting.x, myLine.starting.y);
29: System.Console.WriteLine("Point 2: ({0},{1})",

30: myLine.ending.x, myLine.ending.y);
31: }

32: }

Point 1: (1,4)
O point 2 (10,11)
The Line structure is set up similarly to the way the Line class was set up on a
ANALYSIS . L . o . .
previous day. The big difference is that when a line is instantiated, memory is

allocated and directly stored.

In this listing, the Point structure is declared in Lines 4—8. In Lines 10-14, a Line struc-
ture is declared. Lines 12—-13 contain Point structures that are publicly accessible. Each
of these has its own x and y point values.

Lines 22-25 set the individual values in the Line structure. To access a value within a
nested structure, you follow through the structure hierarchy. Member operators (periods)
separate each step in the structure’s hierarchy. In the case of Line 22, you are accessing
the x data member of the starting point structure in the myLine line structure. Figure 7.3
illustrates the line hierarchy.

FIGURE 7.3
. X
. startin
The hierarchy of the 9 {y

line structure.
ending X
y

Structure Methods

Like classes, structures can also contain methods and properties. Methods and properties
are declared exactly the same as classes. This includes using the modifiers and attributes
used with classes. You can overload these methods, pass values, and return values.
Listing 7.3 presents the Line class with a length method.

myLine

Storing More Complex Stuff: Structures, Enumerators, and Arrays 217 |

LisTING 7.3 LineApp2.cs—Adding Methods to Structures

1: // LineApp2.cs- Adding methods to a structure.

R

3:

4: struct Point

5: {

6: public int x;

7: public int vy;

8: 1}

9:

10: struct Line

11: {

12: public Point starting;

13: public Point ending;

14:

15: public double length()

16: {

17: double len = 0;

18: len = System.Math.Sqrt((ending.x - starting.x)*
= (ending.x - starting.x) +

19: (ending.y - starting.y)*
= (ending.y - starting.y));

20: return len;

21: }

22: }

23:

24: class LineApp

25: {

26: public static void Main()

27: {

28: Line myLine;

29:

30: myLine.starting.x = 1;

31: myLine.starting.y = 4;

32: myLine.ending.x = 10;

33: myLine.ending.y = 11;

34:

35: System.Console.WriteLine("Point 1: ({0},{1})",

36: myLine.starting.x, myLine.starting.y);

37: System.Console.WriteLine("Point 2: ({0@},{1})",

38: myLine.ending.x, myLine.ending.y);

39: System.Console.WriteLine("Length of line Point 1 to Point 2: {0}",

40: myLine.length());

41: }

42: '}

Point 1: (1,4)
OUTPUT P ST TN

Length of from Point 1 to Point 2: 11.4017542509914

1218 Day 7

SRS Listing 7.3 adds the same length method you have seen in listings on previous
days. This method is declared in Lines 15-21 within the Line structure. As was

done previously, this structure uses the data members of the Line class to calculate the
length of the line. This value is placed in the 1en variable and returned from the method
in Line 20 as a double value.

The 1ength method is used in the 1ineApp class. Its value is output using the
Console.WriteLine method in Lines 39-40.

Although the Line class has only a single method, you could have created a number of
methods and properties for the Line structure. You could also have overloaded these
methods.

Structure Constructors

In addition to having regular methods, structures can have constructors. Unlike classes, if
you decide to declare a constructor, you must include declarations with parameters. You
cannot declare a constructor for a structure that has no parameters. Listing 7.4 includes
the point structure with a constructor added.

LISTING 7.4 PointApp2.cs—A point Class with a Constructor

1: // point2.cs- A structure with two data members
A R R
3:

4: struct Point

5: {

6: public int x;

7: public int y;

8:

9: public Point(int x, int y)

10: {

11: this.x = x;

12: this.y = vy;

13: }

14: [/ public Point() // parameterless constructors not allowed!
15: /) {

16: // this.x = 0;

17: /] this.y = 0;

18: // }

19: }
20:
21: class PointApp
22: {
23: public static void Main()
24: {
25: Point point1 = new Point();

Storing More Complex Stuff: Structures, Enumerators, and Arrays 219 |

LisTING 7.4 continued

26: Point point2 = new Point(8, 8);

27:

28: point1.x = 1;

29: point1.y = 4;

30:

31: System.Console.WriteLine("Point 1: ({0},{1})",
32: point1.x, pointl.y);
33: System.Console.WriteLine("Point 2: ({0},{1})",
34: point2.x, point2.y);
35: }

36: }

Point 1: (1,4)
O INLUR Foint 2: (8,8)
A difference between structures and classes is that a structure cannot declare a
ANALYSIS . .
constructor with no parameters. In Listing 7.4, you can see that such a construc-
tor has been included in Lines 14—18; however, it has been excluded with comments. If
you remove the single-line comments on these lines and compile, you get the following
error:

PointApp2.cs(14,12): error CS0568: Structs cannot contain explicit parameterless
constructors

Constructors with parameters can be declared. Lines 9—13 declare a constructor that can
initialize the point values. The x and y values of the class are set with the x and y values
passed into the constructor. To differ the passed-in x and y values from the structure
instance x and y variables, the this keyword is used in Lines 11-12.

Line 25 illustrates a normal instantiation using the point structure. You could also have
instantiated point1 by just entering this without the new operator and empty constructor
call:

Point pointi;
Line 26 illustrates using the constructor that you created with parameters.

A constructor in a structure has an obligation: It must initialize all the data members of
the structure. When the default (parameterless) constructor of a structure is called, it
automatically initializes each data member with its default value. Generally, the data
members are initialized to es. If your constructor is called instead of this default con-
structor, you take on the obligation of initializing all the data members.

| 220

Day 7

l: t' Although you can avoid the new operator when using the default construc-
dauuon o . o) .
tor, you cannot avoid it when instantiating an instance of a structure with

parameters. Replacing Line 26 of Listing 7.4 with the following line gives
you an error:

Point point2(8,8);

Structure Destructors

Whereas classes can have destructors, structures cannot. Recall that destructors are not to
be relied upon in classes even though they are available for you to use. With structures,
you cannot declare a destructor—if you try to add one, the compiler gives you an error.

Clarifying with Enumerators

Another type that can be used in C# is enumerators. Enumerators enable you to create
variables that contain a limited number of values. For example, there are only seven days
in a week. Instead of referring to the days of a week as 1, 2, 3, and so on, it would be
much clearer to refer to them as Day.Monday, Day.Tuesday, Day.Wednesday, and so on. You
could also have a toggle that could be either on or off. Instead of using values such as o
and 1, you could use values such as Toggle.on and Toggle.Off.

An enumerator enables you to create these values. Enumerators are declared with the
enum keyword. The format of creating an enumerator is as follows:

modifiers enum enumName

{
enumMembert,
enumMember2,
enumMemberN
}

modifiers is either the new keyword or the access modifiers (public and private, which
you are familiar with, or protected and internal, which you will learn about on later
days). enumName is a name for the enumerator that is any valid identifier name.
enumMember1, enumMember2 to enumMemberN are the members of the enumeration that contain
the descriptive values.

The following declares a toggle enumerator with public access:

public enum toggle

{
On,

Storing More Complex Stuff: Structures, Enumerators, and Arrays 221 |

off
}

The enum keyword is used, followed by the name of the enumerator, toggle. This enumer-
ation has two values, on and off, which are separated by a comma. To use the toggle
enum, you declare a variable of type toggle. For example, the following declares a
myToggle variable:

toggle myToggle;

This variable, myToggle, can contain two valid values—on or off. To use these values, you
use the name of the enum and the name of the value, separated by the member operator (a
period). For example, myToggle can be set to toggle.On Or toggle.0ff. Using a switch
statement, you can check for these different values. Listing 7.5 illustrates the creation of
an enumerator to store a number of color values.

NlllB By default, when an enumerator variable is initially declared, it is set to the
value of 0.

LisTING 7.5 Colors.cs—Using an Enumeration

1: // Color.cs- Using an enumeration

2: // Note: Entering a nonnumeric number when running this
3: // program will cause an exception to be thrown.
L e R R
5:

6: using System;

7:

8: class Colors

9: {

10: enum Color

11: {

12: red,

13: white,

14: blue

15: }

16:

17: public static void Main()

18: {

19: string buffer;
20: Color myColor;
21:
22: Console.Write(

="Enter a value for a color: @ = Red, 1 = White, 2 = Blue): ");
23: buffer = Console.ReadLine();

| 222

Day 7

LISTING 7.5 continued
24:
25: myColor = (Color) Convert.ToInt32(buffer);
26:
27: switch(myColor)
28: {
29: case Color.red:
30: System.Console.WriteLine("\nSwitched to Red...");
31: break;
32: case Color.white:
33: System.Console.WriteLine("\nSwitched to White...");
34: break;
35: case Color.blue:
36: System.Console.WriteLine("\nSwitched to Blue...");
37: break;
38: default:
39: System.Console.WriteLine("\nSwitched to default...");
40: break;
41: }
42:
43: System.Console.WriteLine("\nColor is {0} ({1})",
44: myColor, (int) myColor);
44:
45: '}

OuTPUT

OuTPUT

ANALYSIS

Enter a value for a color: 0 = Red, 1

Enter a value for a color: @ = Red, 1 = White, 2 = Blue): 1
Switched to White...

Color is white (1)

White, 2 = Blue): 5

Switched to default...
Color is 5 (5)

This listing was executed twice for this output. The first time, the value of 1 was
entered and recognized as being equivalent to white. In the second execution, the

value of 5 was entered, which does not equate to any colors.

Looking closer at the listing, you can see that the color enumerator was declared in
Lines 10-15. This enumerator contains three members: red, white, and blue. When this
enumerator is created, the value of o is automatically assigned to the first member (red),
1 is assigned to the second (white), and 2 is assigned to the third (blue). By default, all
enumerators start with o as the first member and are then incremented by one for each
additional member.

Storing More Complex Stuff: Structures, Enumerators, and Arrays

223 |

In Line 20, the enumerator is used to create a variable called mycolor that can store a
value from the color enumerator. This variable is assigned a value in Line 25. The value
that is assigned is worthy of some clarification. In Line 22, a prompt is displayed to the
screen. In Line 23, the rReadLine method of the console class is used to get a value entered
by the user. Because the user can enter any value, the program is open to errors. Line 25
assumes that the value entered by the user can be converted to a standard integer. A
method called ToInt32 in the Convert class is used to convert the buffer that contains the
value entered by the user. This is cast to a color type and placed in the myColor variable.
If a value other than a number is entered, you get an exception error from the runtime,
and the program ends. On Day 9, “Handling Problems in Your Programs: Exceptions and
Errors,” you will learn one way to handle this type of error gracefully so that a runtime
error isn’t displayed and your program can continue to operate.

Line 27 contains a switch statement that switches based on the value in myColor. In

Lines 29-35, the case statements in the switch don’t contain literal numbers; they contain
the values of the enumerators. The value in the myColor enumerator will actually match
against the enumerator word values. This switch really serves no purpose other than to
show you how to switch based on different values of an enumerator.

Line 43 is worth looking at closely. Two values are printed in this line. The first is the
value of mycolor. You might have expected the numeric value that was assigned to the
variable to be printed; however, it isn’t. Instead, the actual enumerator member name is
printed. For the value of 1 in myColor, the value white is printed—not 1. If you want the
numeric value, you must explicitly force the number to print. This is done in Line 43
using a cast.

Changing the Default Value of Enumerators

The default value set to an enumerator variable is 0. Even though this is the default value
assigned to an enumerator variable, an enumerator does not have to have a member that
is equal to o. Earlier, you learned that the values of the members in an enumerator defini-
tion start at @ and are incremented by one. You can actually change these default values.
For example, you will often want to start with the value of 1 rather than e.

You have two options for creating an enumerator with values that start at 1. First, you can
put a filler value in the first position of the enumerator. This is an easy option if you want
the values to start at 1; however, if you want the values of the enumerator to be larger
numbers, this can be a bad option.

The second option is to explicitly set the value of your enumerator members. You can set
these with literal values, the value of other enumerator members, or calculated values.

224 Day 7

Listing 7.6 doesn’t do anything complex for setting the values of an enumerator. Instead,
it starts the first value at 1 rather than o.

LisTING 7.6 Bday.cs—Setting the Numeric Value of Enumerator Members

1: // Bday.cs- Using an enumeration, setting default values
N N R R LR R
3:

4: using System;

5:

6: public class Bday

7: A

8: enum Month

9: {

10: January = 1,

11: February = 2,

12: March = 3,

13 April = 4,

14 May = 5,

15 June = 6,

16 July = 7,

17: August = 8,

18: September = 9,

19: October = 10,
20: November = 11,
21: December = 12
22: }
23:
24: struct birthday
25: {
26: public Month bmonth;
27: public int bday;
28: public int byear;
29: }
30:
31: public static void Main()
32: {
33: birthday MyBirthday;
34:
35: MyBirthday.bmonth = Month.August;
36: MyBirthday.bday = 11;
37: MyBirthday.byear = 1981; // This is a lie...
38:
39: System.Console.WriteLine("My birthday is {0} {1}, {2}",
40: MyBirthday.bmonth, MyBirthday.bday, MyBirthday.byear);
41: }

Storing More Complex Stuff: Structures, Enumerators, and Arrays 225|

My birthday is August 11, 1981
OuTPUT ’

ANALYSIS This listing creates an enumerator type called month. This enumerator type con-
tains the 12 months of the year. Rather than using the default values, which

would be from e to 11, this definition forces the values to be the more expected numbers
of 1 to 12. Because the values would be incremented based on the previous value, it is not
necessary to explicitly set February to 2 or any of the additional values; it is done here for
clarity. You could just as easily have set these values to other numbers. You could even
have set them to formulas. For example, June could have been set to this:

May + 1
Because May is considered equal to 5, this would set June to 6.

The Month enumerator type is used in Line 35 to declare a public data member within a
structure. This data member, called bmonth, is declared as a public Month type. In Line 33,
the structure, called birthday, is used to declare a variable called myBirthday. The data
members of this structure instance are then assigned values in Lines 26-28. The bmonth
variable is assigned the value of Month.August. You could also have done the following to
cast August to the MyBirthday.bmonth variable; however, the program would not have been
as clear:

MyBirthday.bmonth = (Month) 8;

In Line 39, you again see that the value stored in MyBirthday.bmonth is August rather than
a number.

Changing the Underlying Type of an Enumerator

In the examples so far, the underlying data type of the enumerators has been of type int.
Enumerators can actually contain values of type byte, sbyte, int, uint, short, ushort, long,
and ulong. If you don’t specify the type, the default is type int. If you know that you
need to have larger or smaller values stored in an enum, you can change the default under-
lying type to something else.

To change the default type, you use the following format:
modifiers enum enumName : typeName { member(s) }

This is the same definition as before, with the addition of a colon and the typename,
which is any of the types mentioned previously. If you change the type, you must make
sure that any assigned values are of that type.

Listing 7.7 illustrates a new listing using the color enumerator shown earlier. This time,
because the values are small, the enumerator is set to use bytes, to save a little memory.

226 Day 7

LisTING 7.7 Colors2—Displaying Random Byte Numbers

1: // Colors2.cs- Using enumerations

N e R S R
3:

4: using System;

5:

6: class Colors2

7: |

8: enum Color : byte

9: {

10: red,

11: white,

12: blue

13: }

14:

15: public static void Main()

16: {

17: Color myColor;

18: byte roll;

19:
20: System.Random rnd = new System.Random();
21:
22: for (int ctr = 0; ctr < 10; ctr++)
23: {
24: roll = (byte) (rnd.Next(@,3)); // random nbr from @ to 2
25: myColor = (Color) roll;
26:
27: System.Console.WriteLine("Color is {0} ({1} of type {2})",
28: myColor, (byte) myColor, myColor.GetTypeCode());
29: }
30: }
31: }

Color is white (1 of type Byte)
Color is white (1 of type Byte)
Color is red (@ of type Byte)
Color is white (1 of type Byte)
Color is blue (2 of type Byte)
Color is red (@ of type Byte)
Color is red (@ of type Byte)
Color is red (0 of type Byte)
Color is blue (2 of type Byte)
Color is red (@ of type Byte)

Nﬂtﬂ Your output will vary from this because of the random generator.

Storing More Complex Stuff: Structures, Enumerators, and Arrays 227 |

This listing does more than just declare an enumerator using a byte; you’ll see
ANALYSIS [; . . L
this in a minute. First, look at Line 8. You can see that, this time, the color enu-

merator type is created using bytes instead of type int values. You know this because of
the inclusion of the colon and the byte keyword. This means that color.red will be a
byte value of o, Color.white will be a byte value of 1, and color.blue will be a byte
value of 2.

In the main method, this listing’s functionality is different from the earlier listing. This
listing uses the random logic that you have seen already. In Line 24, you can see that a
random number from o to 2 is created and explicitly cast as a byte value into the roll vari-
able. The ro11 variable was declared as a byte in Line 18. This ro11 variable is then
explicitly cast to a color type in Line 25 and is stored in the myColor variable.

Nﬂtﬂ The Rnd.Next method returns a value that is equal to or greater than the
first parameter, and less than the second parameter. In this example, it

returns a value that is @ or larger, yet less than 3.

Line 27 starts out similarly to what you have seen already. The writeLine method is used
to print the value of the mycolor variable (which results in either red, white, or blue). This
is followed by printing the numeric value using the explicit cast to byte. The third value
being printed, however, is something new.

Enumerators are objects. Because of this, some built-in methods can be used on enumer-
ators. The one that you will find most useful is the GetTypeCode method, which returns the
type of the variable stored. For mycolor, the return type is Byte, which is displayed in the
output. If you add this parameter to one of the previous two listings, you will find that it
prints Int32. Because the type is being determined at runtime, you get a NET
Framework data type instead of the C# data type.

'I'ip To determine other methods of enumerators, check out the .NET Framework
documentation. Look up the Enum class.

o

Do use commas—not semicolons—to sep- Don’t place filler values as enumerator
arate enumerator members. members.

228 Day 7

Using Arrays to Store Data

You’ve learned that you can store different types of related information together in
classes and structure. Sometimes you will want to store a bunch of information that is the
same data type. For example, a bank might keep track of monthly balances, or a teacher
might want to keep track of the scores from a number of tests.

If you need to keep track of a number of items that are of the same data type, the best
solution is to use an array. If you want to keep track of balances for each of the 12
months, without arrays you could create 12 variables to track these numbers:

decimal Jan_balance;
decimal Feb_balance;
decimal Mar_balance;
decimal Apr_balance;
decimal May_balance;
decimal Jun_balance;
decimal Jul_balance;
decimal Aug_balance;
decimal Sep_balance;
decimal Oct_balance;
decimal Nov_balance;
decimal Dec_balance;

To use these variables, you must determine which month it is and then switch among the
correct variables. This requires several lines of code and could include a large switch
statement, such as the following:

switch (month)
{
case 1: // do January stuff
Jan_balance += new_amount;
break;
case 2: // do February stuff
Feb_balance += new_amount;
break;

This is obviously not the complete switch statement; however, it is enough to see that a
lot of code needs to be written to determine and switch among the 12 monthly balances.

Nlltﬂ Although you could use an enumerator to make the switch statement more
readable, this would still result in a lot of code to track and use the individ-

ual values.

Storing More Complex Stuff: Structures, Enumerators, and Arrays 229 |

Using an array, you can create much more efficient code. In this example, you could cre-
ate an array of decimals to keep track of the monthly balances.

Creating Arrays

An array is a single data variable that can store multiple pieces of data that are each of
the same data type. Each of these elements is stored sequentially in the computer’s mem-
ory, thus making it easy to manipulate them and navigate among them.

N[ltﬂ Because you declare one piece of data—or variable—after the other in a
code listing does not mean that they will be stored together in memory. In
fact, variables can be stored in totally different parts of memory, even
though they are declared together. An array is a single variable with multi-

ple elements. Because of this, an array stores its values one after the other
in memory.

To declare an array, you use the square brackets after the data type when you declare the
variable. The basic format of an array declaration is as shown here:

datatype[] name;

datatype is the type for the information you will store. The square brackets indicate that
you are declaring an array, and the name is the name of the array variable. The following
definition sets up an array variable called balances that can hold decimal values:

decimal[] balances;

This declaration creates the variable and prepares it to be capable of holding decimal val-
ues; however, it doesn’t actually set aside the area to hold the variables. To do that, you
need to do the same thing you do to create other objects, which is to initialize the vari-
able using the new keyword. When you instantiate the array, you must indicate how many
values will be stored. One way to indicate this number is to include the number of ele-
ments in square brackets when you do the initialization:

balances = new decimal[12];

You also can do this initialization at the same time that you define the variable:
decimal[] balances = new decimal[12];

As you can see, the format for initializing is as follows:

new datatype[nbr_of _elements]

230 Day 7

datatype is the same data type of the array, and nbr_of _elements is a numeric value that
indicates the number of items to be stored in the array. In the case of the balances vari-
able, you can see that 12 decimal values can be stored.

After you’ve declared and initialized an array, you can begin to use it. Each item
in an array is called an element. Each element within the array can be accessed
by using an index. An index is a number that identifies the offset—and, thus, the
element—within the array.

The first element of an array is identified with an index of @ because the first element is
at the beginning of the array, and, therefore, there is no offset. The second element is
indexed as 1 because it is offset by one element. The final index is at an offset that is one
less than the size of the array. For example, the balances array declares 12 elements. The
last element of the array will have an index of 11.

To access a specific element within an array, you use the array name followed by the
appropriate index within square brackets. To assign the value of 1297.50 to the first ele-
ment of the balances array, you do the following (note that the m after the number indi-
cates that it is a decimal):

balances[0] = 1297.50m;

To assign a decimal value to the third element of the balances array, you do the
following:

balances[2] = 1000m;

The index of 2 is used to get to the third element. Listing 7.8 illustrates using the bal-
ances array; Figure 7.4 illustrates the concept of elements and indexes. This figure uses a
simpler array of three characters, which are declared as follows:

char[] initials = new char[3];

FIGURE 7.4 initials
An array in memory Jr initials [2]

. , ,
and its indexes. T T T T T T
5 5 Memory
| | | | | | | | |
7/ A ﬂt 7
initials [1]

initials [0]

char [] initials = new char [3];

Storing More Complex Stuff: Structures, Enumerators, and Arrays 231 |

[: t' It is a very common mistake to forget that array indexes start at 0, not 1. In
dution . . ; :
some languages, such as Visual Basic, you can start with an index of 1; how-

ever, most languages, including C#, start with an index of o.

LisTING 7.8 Balances.cs—Using Arrays

1: // Balances.cs - Using a basic array
L e R
3:
4: using System;
5:
6: public class Balances
7: |
8: public static void Main()
9: {
10: decimal[] balances = new decimal[12];
11:
12: decimal ttl = Om;
13: System.Random rnd = new System.Random();
14:
15: // Put random values from @ to 100000 into balances array
16:
17: for (int indx = @; indx < 12; indx++)
18: {
19: balances[indx] = (decimal) (rnd.NextDouble() * 10000);
20: }
21:
22: //values are initialized in balances
23:
24: for(int indx = @; indx < 12; indx++)
25: {
26: Console.WritelLine("Balance {0}: {1}", indx, balances[indx]);
27: ttl += balances[indx];
28: }
29:
30: Console.WriteLine(" ")
31: Console.WriteLine("Total of Balances = {0}", ttl);
32: Console.WriteLine("Average Balance = {0}", (ttl/12));
33: }
34: }
Balance 0: 2276.50146106095
alance 1: 4055.2955 4794
OutpuT [y 1: 4055.2955698479
Balance 2: 6192.0053633824
Balance 3: 2651.45477496621
Balance 4: 5885.39904257534

| 232

Day 7

Balance 5: 2200.59107160223
Balance 6: 664.596651058922
Balance 7: 1079.63573237864
Balance 8: 2359.02580076783

Balance 9: 9690.85962031542
Balance 10: 934.673115114995
Balance 11: 7248.27192595614

Total of Balances = 45238.310129027017
Average Balance = 3771.54250645135085

- Listing 7.8 illustrates the use of a basic array called balances. In Line 10, bal-
ANALYSIS

ances is declared as an array of decimal values. It is instantiated as a decimal
array containing 12 elements. This listing creates a Random object called rnd (Line 13),
which—as you’ve already seen—is used to create random numbers to store in the array.
This assignment of random numbers occurs in Lines 17-20. Using an index counter,
indx, this for loop goes from o to 11. This counter is then used as the index of the array
in Line 19. The NextDouble method of the Random class returns a number between ¢ and 1.
To get a number between o and 10,000, the returned number is simply multiplied
by 10,000.

After the values have been assigned, Lines 24-28 loop through the array a second time.
Technically, this loop is redundant; however, you generally wouldn’t get your values
elsewhere than assigning random numbers. In this second for loop, each of the balance
items is written to the console (Line 26). In Line 27, each balance array elements is
added to a total called tt1. Lines 31-32 provide some summary information regarding
the random balances. Line 31 prints the total of the balances. Line 32 prints the average
of each.

The balances array is much simpler than the code would have been if you had had to
use 12 different variables. When you use the indexes with the array name, such as bal-
ance[2], it is like using a regular variable of the same data type.

Initializing Array Elements

You can initialize the values of the individual array elements at the same time that you
declare and initialize the array. You can do this by declaring the values after the array
declaration. The values are enclosed in a block and are separated by a comma. To initial-
ize the values of the balances array, you do the following

decimal[] balances = new decimal[12] {1000.00m, 2000.00m, 3000.00m, 4000.00m,
5000m, 6000m, @m, Om, 9m, Om, Om, 12000m};

This declaration creates the balances array and preassigns values into it. The first value
of 1000.00 is placed into the first element, balances[o]. The second value, 2000. 0o, is

Storing More Complex Stuff: Structures, Enumerators, and Arrays 233 |

placed into the second element, balances[1]. The rest of the values are placed in the same
manner.

It is interesting to note that if you initialize the values in this manner, you do not have to
include the array size in the brackets. The following statement is equivalent to the previ-
ous statement:

decimal[] balances = new decimal[] {1000.00m, 2000.00m, 3000.00m, 4000.00m,
5000m, 6000m, @m, Om, 9m, Om, Om, 12000m};

The compiler automatically defines this array as 12 elements because that is the number
of items being initialized. Listing 7.9 creates and initializes a character array.

N[IIE You are not required to initialize all the values if you include the number of
elements in your declaration. The following line of code is valid; the result-
ing array will have 12 elements, with the first 2 elements being initialized
to 111:

decimal[] balances = new decimal[12] {111m, 111m};

However, if you don’t include the number of elements, you can’t add more
later. In the following declaration, the balances array can hold only two ele-
ments; it cannot hold more than two.

decimal[] balances = new decimal[] {111m, 111m};

LISTING 7.9 Fname.cs—Using Arrays

1: // Fname.cs - Initializing an array

N b R e R LR R
3:

4: using System;

5:

6: public class Fname

7: A

8: public static void Main()

9: {

10: char[] name = new char[] {'B','r','a','d",'1",'e',"'y"', (char) 0 };
11

12: Console.WriteLine("Display content of name array...");

13:

14: int ctr = 0;

15: while (name[ctr] != 0)

16: {

17: Console.Write("{0@}", name[ctr]);

18: ctr++;

1234 Day 7

LISTING 7.9 continued

20: Console.WriteLine("\n...Done.");
21: }
22:

-

Display content of name array...
OuTPUT [EEIETIY
...Done.

Listing 7.9 creates, initializes, and instantiates an array of characters called name
in Line 10. The name array is instantiated to hold eight elements. You know it can
hold eight elements, even though this is not specifically stated, because eight items were
placed into the array when it was declared.

This listing does something that you have not seen in previous listings. It puts a weird
value (a character value of 0) in the last element of the array. This weird value is used to
signal the end of the array. In Lines 1419, a counter called ctr is created for use as an
index. The ctr is used to loop through the elements of the array until a character value
of o is found. Then the while statement evaluates to false and the loop ends. This pre-
vents you from going past the end of the array, which would result in an error.

Working with Multidimensional Arrays

A multidimensional array is an array of arrays. You can even have an array of arrays of
arrays. The number of levels can quickly add up. This starts getting complicated, so [
recommend that you don’t store more than three levels (or three dimensions) of arrays.

An array of arrays is often referred to as a two-dimensional array because it can be repre-
sented in two dimensions. To declare a two-dimensional array, you expand on what you
do with a regular (or one-dimensional) array:

byte[,] scores = new byte[15,30];

A comma is added to the first part of the declaration, and two numbers separated by a
command are used in the second part. This declaration creates a two-dimensional array
that has 15 elements, each containing an array of 30 elements. In total, the scores array
holds 450 values of the data type byte.

To declare a simple multidimensional array that stores a few characters, you enter the
following:

char[,] letters = new char[2,3]; // without initializing values

Storing More Complex Stuff: Structures, Enumerators, and Arrays

235|

This declaration creates a two-dimensional array called 1etters, which contains two
elements that are each arrays that have three character elements. You can initialize the
elements within the letters array at declaration time:
char[,] letters = new char[,] { {'a','b','c'},

XY Z2)
Or, you can initialize each element individually. To access the elements of a multi-
dimensional array, you again use the indexes. The first element of the letters array is
letters[0,0]. Remember, the indexes start at offset o, not 1. letters[0,1] is the second
element, which contains the letter 'b'. The letter 'x' is letter[1,0] because it is in the
second array (offset 1) and is the first element (offset o). To initialize the letters array out-
side the declaration, you could do the following:

letters[0,0] = 'a';
letters[0,1] = 'b';

letters[0,2] = 'c';
letters[1,0] = 'X';
letters[1,1] = 'Y';
letters[1,2] = 'Z";

Creating an Array Containing Different-Size Arrays

In the previous section, an assumption was made that in a two-dimensional array, all the
subarrays are the same size. This would make the arrays rectangular. What happens if
you want to store arrays that are not the same size? Consider the following:
char[][] myname = new char[3][];
myname[@] = new char[] { 'B', 'r', 'a', 'd', '1', 'e', 'y'};
myname[1] = new char[] { 'L', '." };
myname[2] new char[] { 'd', '0', 'n', 'e', 's' };

The myname array is an array of arrays. It contains three character arrays that are each a
different length. Because they are different lengths, you work with their elements differ-
ently from the rectangular arrays that you saw before. Figure 7.5 illustrates the myname
array.

Instead of addressing each element by using index values separated by commas, you
instead separate the elements into their own square brackets. For example, the following
line of code uses the writeLine method to print the array elements that would be my ini-
tials:

System.Console.WriteLine("{0}{1}{2}", myname[0Q][@], myname[1][@], myname[2][0]);

It would be wrong to address these as myname[@,0], myname[1,0], and myname[2,0]. In fact,
you’ll get an error if you try to access the elements this way.

| 236

Day 7

FIGURE 7.5 myname

An array of different-
size arrays.

Y

| | | | | | |
myname [0] —»| B r a d | e y

| | | | | | |

| |
myname [1] —3»] L

| |

| | | | |
myname 2] —»| J o n e s

| | | | |

A
ﬂt myname [z] [z]

— myname [z] [0]

N t A multidimensional array that contains subarrays of the same size is referred
ote L , ;
to as rectangular. A multidimensional array that has variable-size subarrays

stored is referred to as “jagged.” In Figure 7.5, you can see where this term
comes from.

What happens if you want to declare the myname array without initializing it, as was done
previously? You know there are three parts to the name, so the first dimension is 3; how-
ever, what should the second dimension be? Because of the variable sizes, you must
make multiple instantiations to set up the full array. First, you declare the outside array
that will hold the arrays:

char[][] myname = new char[3][];

This declares the myname variable as an array with three elements, each holding a charac-
ter array. After you’ve done this declaration, you must initialize each of the individual
arrays that will be stored in myname[]. Figure 7.5 illustrates the myname array with the fol-
lowing declarations:

myname[0Q] new char[7]; // first array of seven elements
myname[1] = new char[2]; // second array of two elements
myname[2] = new char[5]; // third array of five elements

Checking Array Lengths and Bounds

Before presenting Listing 7.10 to illustrate the myname jagged, multidimensional array,
one other item is worth covering: Every array knows its length. The length of an array is
stored in a member called Length. Like all types in C#, arrays are objects. To get the
length of an array, use the Length data member. Remember that Length is available on any

Storing More Complex Stuff: Structures, Enumerators, and Arrays

237 |

object. The length of a one-dimensional array called balance can be obtained from
balance.Length.

In a multidimensional array, you still use Length, or you can use a method of the array
called GetLength() to get the length of a subarray. You pass the index number of the sub-
array to identify which length to return. Listing 7.10 illustrates the use of the Length
member along with a jagged array.

LisTING 7.10 Names.cs—Using a Jagged Two-Dimensional Array

1: // Names.cs - Using a two-dimensional array

L e
3

4: using System;

5:

6: public class Names

7

8 public static void Main()

9: {

10: char[][] name = new char[3][];

11:

12: name[@] = new char[7] {'B', 'r', 'a', 'd', '1', 'e', 'y'};
13: name[1] = new char[2] {'L', '.'};

14: name[2] = new char[5] {'J', '0o', 'n', 'e', 's'};

15:

16: Console.WriteLine("Display the sizes of the arrays...\n");
17:

18: Console.WriteLine("Length of name array {0}", name.Length);
19:
20: for(int ctr = @; ctr < name.Length; ctr++)
21: console.WriteLine("Length of name[{0}] is {1}",
22: ctr, name[ctr].Length);
P N e L
24:
25: Console.WriteLine("\nDisplaying the content of the name array...");
26:
27: for(int ctr = 0; ctr < name.Length; ctr++)
28: {
29: Console.Write("\n"); // new line
30: for(int ctr2 = 0; ctr2 < name[ctr].Length; ctr2++)
31: {
32: Cconsole.Write("{@}", name[ctr][ctr2]);
33: }
34: }
35: Console.WriteLine("\n...Done displaying");
36: }

37: }

| 238

Day 7

Display the sizes of the arrays...
Ourtput

Length of name array 3
Length of name[0Q] is 7
Length of name[1] is 2
Length of name[2] is 5

Displaying the content of the name array...

Bradley

L.

Jones

...Done displaying

- Let’s look at this listing in parts. The first part comprises Lines 10-14. In Line
ANALYSIS

10, a two-dimensional array called name is declared that contains three arrays of
characters of possibly different lengths. In Lines 12—14, each of these arrays is instanti-
ated. Although the size of the arrays is included in the square brackets, because the
arrays are being initialized, you do not have to include the numbers. It is good practice to
include the numbers, however, to be explicit in what you want.

The second part of this listing illustrates the Length member of the arrays. In Line 18, the
length of the name array is printed. You might have expected this to print 14; however, it
prints 3. The Length member actually prints the number of elements. Three elements are
in the name array, and these three elements are each arrays.

In Line 20, the Length member of the name array—which you now know is 3 in this exam-
ple—is used as the upper limit for looping through each of the arrays. Using an index
counter, the length method of each of the subarrays is printed. You can see that these val-
ues match what was declared.

The third part of this listing comprises Lines 27-34. This portion of the listing displays
the values stored in the individual names. This code has been set up to be dynamic by
checking the Length member for each of the subarrays rather than hard-coding any val-
ues. If you change the code in Lines 12—14, the rest of this listing still works.

Using Arrays in Classes and Structures

An array is just another type that can be used to create variables. Arrays can be placed
and created anywhere other data types can be used. This means that arrays can be used in
structures, classes, and other data types.

Storing More Complex Stuff: Structures, Enumerators, and Arrays 239 |

Nﬂtﬂ Although basic data types are used in today’s lesson, you can actually create
arrays of any of the data elements. You can create arrays using classes, struc-

tures, or any other data type.

Using the foreach Statement

It’s time to address the keyword foreach, as promised on Day 4, “Controlling Your
Program’s Flow.” The foreach keyword can be used to simplify working with arrays,
especially when you want to loop through an entire array. Additionally, instead of using
the array name with a subscript, you can use a simple variable to work with the array.
The downside of the foreach statement is that the simple variable that you get to use is
read-only—you can’t do assignments to it. The format of the foreach command is shown
here:

foreach(datatype varname in arrayName)

{
}

datatype is the data type for your array. varname is a variable name that can be used to
identify the individual element of the array. arrayname is the name of the array that
foreach is looping through. Listing 7.11 illustrates using foreach to loop through a name
array.

statements;

LisTING 7.11 ForEach1.cs—Using foreach with an Array

1: // ForkEachl.cs - Initializing an array

L e e
3:

4: using System;

5:

6: public class ForEachi

7:

8: public static void Main()

9: {
10: char[] name = new char[] {'B','r','a','d"','1l','e','y'};
11:
12: Console.WritelLine("Display content of name array...");
13:
14: foreach(char x in name)
15: {
16: Console.Write("{0}", X);
17: }

| 240 Day 7
ListiNnG 7.11 continued
19: Console.WriteLine("\n...Done.");
20: }
21: '}

Display content of name array...
(01Uj Vil Bradley
...Done.

This listing is shorter than the earlier listing. The big focus is in Line 14, which
ANALYSIS
uses the foreach keyword to loop through the name array. It loops through each
element of the name array and then ends. As it loops, it refers to the individual elements
as x. In the code in the statements of the foreach, you don’t have to use array[index_ctr];
instead, you use x.

“I] As a reminder, your variable names should be descriptive. The name x was
used here to keep things simple. A better variable name would have been
something like Letter.

Summary

Today’s lesson covered three key advanced data types: the structure, the enumeration,
and the array. You learned that structures operate similarly to classes, with the big differ-
ence being that structures are a value type and classes are a reference type. You learned
that enumerations—declared with the enum keyword—are useful for making your code
more readable. Enumerations enable you to create data types that take a range of values
that you can control. Additionally, you can give these values more usable names.

In the final lesson today, you learned how to create arrays. You also learned that arrays
can have multiple dimensions. On arrays with more than one dimension, you can set the
subarrays to have the same size of array (a rectangular array), or you can assign arrays of
different sizes (a jagged array).

Today’s lesson concluded by covering the foreach keyword. You learned how this key-
word makes working with arrays much easier.

Storing More Complex Stuff: Structures, Enumerators, and Arrays

241 |

Q&A

Q Are there other differences between structures and classes that were not men-

tioned in today’s lesson?

A Yes, there are a few other differences that were not mentioned in today’s lesson.

=)

You now know that structures are stored by value and that classes are stored by ref-
erences. You also learned that a structure can’t have a parameterless constructor. A
structure is also not allowed to have a destructor. In addition to these differences, a
structure is also different in that it is implicitly sealed. This concept will be
explained when you learn about inheritance.

I’ve heard that enumerators can be used with bit fields. How is this done?

A This is a more advanced topic that isn’t covered in this book. You can use an enu-

=)

merator to store the values of a bit. This can be done by using byte members and
setting each of the members of the enumerator to one of the positions of the bits in
the byte. The enumerator could be this:

enum Bits : byte

{
first = 1,
second = 2,
third = 4,
fourth = 8,
fifth = 16,
sixth = 32,
seventh = 64,
eighth = 128

}

You could then use bitwise operators to do bitwise math using these predefined
values.

Is an enumerator a value type or a reference type?

A When a variable is declared as an enumerator, it is a value type. The value is actu-

ally stored in the enumerator variable.

Q How many dimensions can you store in an array?

A You can store more dimensions than you should. If you declare an array that is

more than three dimensions, one of two things happens: Either you waste a lot of
memory because you are using rectangular arrays, or your code gets much more
complicated. In almost all cases, you can find simpler ways to work with your
information that don’t require arrays of more than three dimensions.

| 242

Day 7

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Quiz

1.

Nk v

What is the difference between a value data type and a reference data type? Which
is a structure?

What are the differences between a structure and a class?

How are structure constructors different from class constructors? (Or are they?)
What keyword is used to define an enumeration?

What data types can be stored in an enumerator?

What is the index value of the first element in an array?

What happens if you access an element of an array with an index larger than the
number of elements in the array?

How many elements are in the array declared as myArray[4,3,2]? If this is a charac-
ter array, how much memory will be used?

. How can you tell the size of an array?
10.

True or false (if false, tell what is wrong): The format of the foreach contains the
same structure as the for statement.

Exercises

1.

Modity the point and 1ine structures used in Listing 7.3 to include properties for
the data members.

. On Your Own: Modify the line structure to include a static data value that con-

tains the longest line ever stored. This value should be checked and updated when-
ever the length method is called.

. Bug Buster: The following code snippet has a problem. Can you fix it? (Assume

that myArray is an array of decimal values.)
foreach(decimal Element in myArray)

{
System.Console.WriteLine("Element value is: {0}", Element);
Element *= Element;
System.Console.WriteLine("Element squared is: {0}", Element);

Storing More Complex Stuff: Structures, Enumerators, and Arrays 243 |

4. Write a program for a teacher. The program should have an array that can hold the
test scores for 30 students. The program can randomly assign grades from 1 to 10e.
Determine the average score for the class.

5. Modify the listing that you create in Exercise 4 to keep track of scores for 15 tests
used throughout a semester. It should keep track of these tests for the 30 students.
Print the average score for each of the 15 tests, and print each student’s average
score.

6. Modify the listing in Exercise 5 to keep track of the same scores for five years. Do
this with a three-dimensional array.

WEEK 1

Week in Review

Congratulations! You have finished your first week of learn-
ing C#. During this week, you built the foundation for all of
the C# applications you will build. You learned how to store
basic data, control the flow of the program, repeat pieces

of code, and create classes that can store both data and
methods—and you’ve learned a lot more.

Most of the listings and programs you have seen focus on
only a single concept. The following code pulls together into
a single listing the things you learned this past week. As you
can see, when you pull it all together, the listing gets a bit
longer.

When you execute this listing, you are presented with a menu
on the console from which you can make a selection. This
selection is then used to create a class and execute some
code.

Nﬂtﬂ This listing doesn’t use anything that you
haven't learned already. Over the next two

weeks, you will learn ways to improve this list-
ing. Such improvements will include better
ways of performing some of the functionality,
other ways to retrieve and convert data from
the users, and much more. During Week 3,
you'll even learn how to do menuing and such
using windows forms.

| 246 Week 1
The WRO01.cs Program
Enter, compile, and execute the WRO1.cs listing. XML comments have been added to the
listing. This means that you can produce XML documentation by including the /doc
compiler switch that you learned about on Day 2, “Understanding C# Programs.”
Nﬂtﬂ Although | believe the best way to learn is by typing a listing and making
mistakes, the source code for the listings in this book are available on the
CD as well as at www.TeachYourselfCSharp.com.
Listing WR1.1 WRO1App.cs—Week 1 in Review
CH 2 1: // File: WR@1App.cs
2: // Desc: Week One In Review
3: // This program presents a menu and lets the user select a
4: /] choice from a menu. Based on this choice, the program then
5: // executes a set of code that either manipulates a shape or
6: // exits the program.
A R
8:
CH b6 9: using System;
10:
T B
CH 2 12: /// <summary>
CH 2 13: /// This is a point structure. It is for storing and
14: /// working with an (x,y) value.
15: //] </summary>
CH7 16: struct point
17: {
CH3 18: public int x;
19: public int y;
20:
21: // A constructor that sets the x and y values
CH7?7 22: public point(int x, int y)
23: {
CH?7 24: this.x = x;
25: this.y = vy;
26: }
27: }
28:
201 e
CH2 30: /// <summary>
31: /// This class encapsulates line functionality
CH 2 32: //]/ <see>point</see>
33: /// </summary>
CH5 34: class line

Week in Review

247 |

CH5

CH5

CH5
CHb5

CH5

CH4
CH5

CH5

CH5
CH5

CHG6

CH 2
CH2
CH 2

CH3
CH3

CH3
CH 6

ListinG WR1.1 continued

35: {
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74
75:
76:
77:
78:
79:
80:
81:
82:

private point lineStart;
private point lineEnd;

public point start
{
get { return lineStart; }
set
{
if (value.x < 0)
lineStart.x =
else
lineStart.x
if (value.y <
lineStart.y
else
lineStart.y = value.y;

o 1

}
}
public point end
{
get { return lineEnd; }
set
{
if (value.x < 0)
lineEnd.x = 0;
else
lineEnd.x
if (value.y
lineEnd.y
else
lineEnd.

x
I

value.x;
0)
0;

n A1

value.y;

<
I

}

public double length()
{

int x_diff;

int y_diff;

double length;

x_diff = end.x - start.x;
y_diff = end.y - start.y;

length = (double) Math.Sqrt((x_diff * x_diff) + (y_diff * y diff));

return (length);

| 248 Week 1

ListinG WR1.1 continued

CH 6 83: public void DisplayInfo()
84: {
85: Console.WriteLine("\n\n-------mmmmmmmmnnnn ")
86: Console.WriteLine(" Line stats:");
87: Console.WriteLine("-------------------------- ")
88: Console.WriteLine(" Length: {0:f3}", length());
89: Console.WriteLine(" Start Point: ({@},{1})", start.x, start.y);
90: Console.WritelLine(" End Point: ({0},{1})", end.x, end.y);
91: Console.WriteLine("----------------cuummmm-n- \n");
92: }
93:
CH6 94: public line()
95: {
Cu7 96: lineStart = new point();
CH5S 97: lineEnd = new point();
98: }
99: }
100:
RT3 B e
CH 2 102: /// <summary>
103: /// This class encapsulates square functionality
CH 2 104: /// <see>line</see>
105: /// </summary>
Cu5 106: class square
107: {
CH5 108: private line squareHeight;
CH S 109: private line squareWidth;
110:
CH5 111 public line height
112: {
CH5 113: get { return squareHeight; }
CH5 114: set
115: {
CH5 116: squareHeight.start = value.start;
CH5 117: squareHeight.end = value.end;
118: }
119: }
CH5 120: public line width
121: {
CH5 122: get { return squareWidth; }
Cu5 123: set
124 {
CH 5 125: squareWidth.start = value.start;
126: squareWidth.end = value.end;
127: }
128: }
129:
CH 6 130: public double area()

131: {

Week in Review 249 |

CH 2
CH3
CH 6
CHG6
CH2
CH 6
CH b6

CH b6

CHG6

CH5
CH5

CH7

CH2
CH2

CH 2

Listing WR1.1

continued

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:

}

double total;

total = (width.length() * height.length());
return (total);

public double border()

{

}

double total;

total = ((2 * width.length()) + (2 * (height.length())));
return (total);

public void DisplayInfo()

{

}

Console.WriteLine("\n\n-----------------mo-n--- ")
Console.WriteLine(" Square stats:");
Console.WriteLine("-------------mmmmmmmannnn ")
Console.WriteLine(" Area: {0:f3}", area());
Console.WriteLine(" Border: {0:f3}", border());

Console.WriteLine(" WIDTH Points: ({0},{1}) to ({2},{3})",
width.start.x, width.start.y, width.end.x, width.end.y)
Console.WriteLine(" Length: {0:f3}", width.length())
Console.WritelLine(" HEIGHT Points: ({@},{1}) to ({2},{3})"
height.start.x, height.start.y, height.end.x, height.end.y);
Console.WriteLine(" Length: {0:f3}", height.length());

H)
)
)

Console.WriteLine("-------------------------- \n");

public square()

{

/] <summary>
/1] This class encapsulates circle functionality
//] <see>line</see>

squareHeight = new line();
squareWidth = new line();

point tmpPoint = new point(0,0);

width.start = tmpPoint;
width.end = tmpPoint;
height.start = tmpPoint;
height.end = tmpPoint;

| 250 Week 1

ListinG WR1.1 continued

181: /// </summary>

CH 5 182: class circle
183: {
CH5 184: private point circleCenter;
CH5 185: private long circleRadius;
186:
CH5 187: public point center
188: {
CH S 189: get { return circleCenter; }
Cu5 190: set
191: {
192: circleCenter.x = value.x;
193: circleCenter.y = value.y;
194: }
195: }
CH 5 196: public long radius
197: {
CH 5 198: get { return circleRadius; }
CH5 199: set { circleRadius = value; }
200: }
201:
CHG6 202: public double area()
203: {
CH 2 204: double total;
205:
CH3 206: total = 3.14159 * radius * radius;
CH b6 207: return (total);
208: }
209:
CHG6 210: public double circumference()
211: {
CH 2 212: double total;
213:
CH3 214: total = 2 * 3.14159 * radius;
CH b6 215: return (total);
216: }
217:
CH 6 218: public void DisplayInfo()
219: {
220: Console.WriteLine("\n\N------mvmmmmmmmnammnana ")
221: Console.WritelLine(" Circle stats:");
222: Console.WriteLine("----------------cuummmm--- ");
223: Console.WriteLine(" Area: {0:f3}", area());
224: Console.WriteLine(" Circumference: {0:f3}", circumference());
225: Console.WriteLine(" Center Points: ({0},{1})", center.x, center.y);
226: Console.WriteLine(" Radius: {0:f3}", radius);
227: Console.WriteLine("-----------------mvommnn-- \n");
228: }

229:

Week in Review

251 |

CH 6
CH b6
CH?7

CH5

CH 2
CH 2
CH2
CH 2

CH 2
CH4
CHG6
Ci4
CH4
CH4
CH4
Ci4
CH4
CH4d

CH4
CH4

CH4
CH4
Ci4
Ci4

CH 6

CH4

Listing WR1.1 continued

230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254
255:
256:
257:
258:
259:
260:
261:
262:
263:

264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274
275:
276:
277:

}

public circle()

{
circleCenter = new point();
center = new point(0,0);
radius = 0;

}

class WRO1App

{

//] <summary>

/// Main() routine that starts the application
/1] </summary>

public static void Main()

{
int menuChoice = 99;

do
{

menuChoice = GetMenuChoice();

switch(menuChoice)
{
case 0: break;
case 1: WorkWithLine();
break;
case 2: WorkWithCircle();
break;
case 3: WorkWithSquare();
break;
case 4: WorkWithTriangle();
break;
default: Console.WriteLine("\n\nError... Invalid menu
woption.");
break;

if (menuChoice !=0)

Console.Write("\nPress <ENTER> to continue...");
Console.ReadlLine();

}

} while (menuChoice != 0);

}

/1] <summary>
/// Displays a menu of choices.

| 252 Week 1

LisTinG WR1.1 continued

CH 2 278: /1] </summary>
CHG6 279: static void DisplayMenu()
280: {
281: Console.WriteLine("\n Menu");
282: Cconsole.WritelLine("===========================\n") ;
283: Console.WriteLine(" A - Working with Lines");
284: Console.WriteLine(" B - Working with Circles");
285: Console.WritelLine(" C - Working with Squares");
286: Console.WriteLine(" D - Working with Triangles");
287: Console.WriteLine(" Q@ - Quit\n");
288: Console.WritelLine("===========================\n");
289: }
290:
CH 2 291: /1] <summary>
CH 2 292: /1] Gets a choice from the user and verifies that it is valid.
CH 2 293: /// Returns a numeric value to indicate which selection was made.
CH 2 204: /1] </summary>
CH b6 295: static int GetMenuChoice()
296: {
CH 2 297: int option = 0;
CH2 208: bool cont = true;
CH2 299: string buf;
300:
CH4 301: while(cont == true)
302: {
CHG6 303: DisplayMenu();
304: Console.Write(" Enter Choice: ");
CH b6 305: buf = Console.ReadLine()
306:
Ci4 307: switch(buf)
308: {
CH4 309: case "a":
CH4 310: case "A": option = 1
CH2 311: cont = false;
CH4 312: break;
CH4 313: case "b":
CH4 314: case "B": option = 2;
CH 2 315: cont = false;
CH4d 316: break;
CH4 317: case "c":
Ch4 318: case "C": option = 3;
319: cont = false;
CH4 320: break;
321: case "d":
322: case "D": option = 4;
323: cont = false;
CH4 324; break;
325: case "q":

326: case "Q": option = 0;

Week in Review

253 |

CH4
CH4d

CHG6

CH2
CH 2
CH 2
CH 6
CH5

CH7
CH5

CH5
CH5
CH5

CH b6

CHG6
CH5
CH 2
CH7?7
CH5

CH b

CHG6
CH 6
CH7?7

Listing WR1.1

continued

327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:

}

cont = false;
break;
default:

Console.WriteLine("\n\n--> {0} is not valid <--\n\n",

break;
}
}

return option;

/1] <summary>

//] Method to perform code for Working with Line.

[/ </summary>
static void WorkWithLine()

{

}

line myLine = new line();

point tmpPoint = new point(0,0);

myLine.start = tmpPoint;

tmpPoint.x = 3;
tmpPoint.y = 3;
myLine.end = tmpPoint;

myLine.DisplayInfo();

[/] <summary>

/1] Method to perform code for Working with Circles.

/1] </summary>
static void WorkWithCircle()

{

}

circle myCircle = new circle();

myCircle.center = new point(1,1);

myCircle.radius = 10;

myCircle.DisplayInfo()

/1] <summary>

//] Method to perform code for Working with Squares.

[/ </summary>
static void WorkWithSquare()

{

square mySquare = new

mySquare.width.start
mySquare.width.end

H)

square();

new point(1,0
new point(10,

);
0)

)

buf);

| 254 Week 1

LisTinG WR1.1 continued

376: mySquare.height.start = new point(0,2);
377: mySquare.height.end = new point(0,8);
378:
CHG6 379: mySquare.DisplayInfo()
380: }
381:
382: [/ <summary>
383: /1] Method to perform code for Working with Triangles.
384: //] </summary>
CHG6 385: static void WorkWithTriangle()
386: {
387: Console.WriteLine("\n\nDo Triangle Stuff...\n\n");
388: // This section left for you to do
389: }
390: }
CH2 8910 e End of Listing ------------------oco---

When you execute this program, you are presented with the following:

M
OuTPUT enu

- Working with Lines

- Working with Circles

- Working with Squares

- Working with Triangles
- Quit

OO0 wW>

Enter Choice:

If you enter something other than the letters in the menu, you get the following message:

Menu
OuTPUT

- Working with Lines

- Working with Circles

- Working with Squares

- Working with Triangles
- Quit

O U0 wW>

Enter Choice: ¢

--> g is not valid <--

Week in Review 255 |

The menu is then represented. Selecting one of the valid choices produces output like the
following (this is the output for entering a choice of c):

Enter Choice: ¢
OutpuTt

Area: 54.000

Border: 30.000

WIDTH Points: (1,0) to (10,0)
Length: 9.000

HEIGHT Points: (0,2) to (0,8)
Length: 6.000

Press <ENTER> to continue...

The XML Documentation

As stated earlier, you can produce XML documentation from this listing. The following
is the content of the XML file that can be created by using the /doc compiler option.
Remember to include the filename for the documentation. Using the Microsoft com-
mand-line compiler, you would enter the following to place the XML documentation in a
file named myfile.xml:

csc /doc:myfile.xml WRO1.cs

N“tﬂ The /doc flag works with the Microsoft compiler. If you are using an IDE or a
different compiler, you will need to check the documentation or Help for

the specific command for the compiler option

<?xml version="1.0"?>
<doc>
<assembly>
<name>WRQ@1</name>
</assembly>
<members>
<member name="T:point">
<summary>
This is a point structure. It is for storing and
working with an (x,y) value.
</summary>
</member>

| 256 Week 1

<member name="T:line">
<summary>
This class encapsulates line functionality
<see>point</see>
</summary>

</member>

<member name="T:square">
<summary>
This class encapsulates square functionality
<see>line</see>
</summary>

</member>

<member name="T:circle">
<summary>
This class encapsulates circle functionality
<see>line</see>
</summary>

</member>

<member name="M:WRQ1App.Main">
<summary>
Main() routine that starts the application
</summary>

</member>

<member name="M:WRQ1App.DisplayMenu">
<summary>
Displays a menu of choices.
</summary>

</member>

<member name="M:WRQ1App.GetMenuChoice">
<summary>
Gets a choice from the user and verifies that it is valid.
Returns a numeric value to indicate which selection was made.
</summary>

</member>

<member name="M:WRQ1App.WorkWithLine">
<summary>
Method to perform code for Working with Line.
</summary>

</member>

<member name="M:WRQ1App.WorkWithCircle">
<summary>
Method to perform code for Working with Circles.
</summary>

</member>

<member name="M:WRQ1App.WorkWithSquare">
<summary>
Method to perform code for Working with Squares.
</summary>

</member>

<member name="M:WRQ1App.WorkWithTriangle">

Week in Review 257 |

<summary>
Method to perform code for Working with Triangles.
</summary>
</member>
</members>
</doc>

The Code at 50,000 Feet

Now that you’ve seen some of the output and the XML documentation that can
ANALYSIS o
be created, it’s time to look at some of the code.

At a 50,000-foot view, there are a few things to notice about this listing. First, Line 9
includes the one namespace in this listing, system. As you learned on Day 5, “The Core
of C# Programming: Classes,” this means that you don’t have to type System when using
items from the system namespace. This includes items such as the console methods. You
should also notice that one structure and four classes are declared:

* point structure in Lines 16-27
e 1line class in Lines 34-99
e square class in Lines 106-174

e circle class in Lines 182-237
e WRe1App class in Lines 239-390

The 1ine, square, and circle classes are all similar. The point structure is used to help
organize the other classes.

Dissecting the main Method

Looking closer at the listing, you see that the program flow actually starts in Line 244,
where the main method is declared within the wre1 class. This method uses a do. . .while
statement to continue processing a menu until the appropriate selection is made. The
menu is displayed by calling another method, GetMenuChoice. Depending on the value
returned from this function, one of a number of different routines is executed. A switch
statement in Lines 252-265 is used to direct program flow to the correct statements.

In Lines 267-271, an if statement is used to check the value of the menu choice. If
menuChoice is @, the user chose to exit the program. If it is any other value, information is
displayed on the screen. To pause the program before redisplaying the menu, Lines
269-270 were added. Line 269 provides a message to the user saying to press the Enter
key to continue. Line 270 uses the console.ReadLine method to wait for the Enter key to
be pressed. If the user entered any text before pressing the key, this listing ignores it.
When the user continues, the while statement’s condition is checked. If menuChoice is o,

| 258

Week 1

the while ends, as does the method and, thus the program. If menuchoice is not @, the do
statement loops, causing the menu to be redisplayed and the process to continue.

Looking in the switch statement, you see that each of the first four cases executes a
method that is presented later in the wre1 class. If the menuchoice is not a value from 1
to 4, the default statement in the switch (Line 263) is executed, thus printing an error.

The GetMenuChoice Method

Stepping back, Line 250 calls GetMenuchoice. This method is in Lines 295 to 335; it dis-
plays the menu and gets the choice from the user. In Line 303, another method is called
to do the actual display of the menu. After displaying the menu, Line 305 uses the
Console.ReadLine method to get the choice from the user and place it in the string vari-
able, buf.

A switch statement then converts this choice to a numeric value that is passed back to the
calling method. This conversion is not absolutely necessary. This method has the purpose
of getting the menu choice. You’ll notice that there are two correct selections for each
menu option. This switch statement converts each of these to a single correct option. You
could have done this in a number of different ways. Additionally, you could have chosen
to return the character value rather than a numeric value. The lesson to learn here is that
the functionality for obtaining a menu choice can be placed in its own method. By doing
0, you can get the selection any way you want, as long as you return a consistent set of
final selection values. You could swap this method with another that returns a value

from o to 4, and the rest of your code would work exactly the same.

The Main Menu Options

Each of the four main menu options calls a method. Lines 340-352 contain the
workwithLine method. This method declares an object, sets the initial values, and finally
calls a method in the declared object that displays the information about the object. The
WorkwithSquare and WorkwithCircle methods work the same way. The workwithTriangle
was not filled coded. Instead, it was left for you to fill.

The point Structure

The point structure is defined in Lines 16—27. The point structure contains two data
members, x and y.

In Line 22, a constructor for the point structure is defined. This constructor accepts two
values as parameters. In Lines 24-25, these values are set to the x and y data members.
You might notice that the parameters in Line 22 are also named x and y. To differentiate

Week in Review 259 |

these from the structure’s x and y data members, the this keyword is used. The this key-
word refers to the current structure’s x and y values instead of the parameters.

With a structure, you cannot create a default constructor that has no parameters. Because
a structure is a value type, it is initially constructed when you declare it.

The 1ine Class

The 1ine class is declared in Lines 34-99. In Lines 3637, the data members are
declared. In this case, the data members are point structures that have been declared
as private. To access these data members, you must use the properties declared in
Lines 39-68. By using properties as accessors in this class, you hide the internal struc-
ture of how you are storing the line information. This provides you with flexibility in
case you later decide to change the internal storage structure.

The constructor for the 1ine class is in Lines 94-98, which instantiate the two point
structures for this class. The default values are set to new points.

The 1ine class also contains other methods that can be called. The coding in these meth-
ods is straightforward.

The Other Classes

The rest of the classes in this program are similar to the 1ine class. You can review their
code on your own.

N t You should understand the code in this listing. If you don’t understand a
[1]1H .) .)
certain area, you should go back and review the appropriate day's lesson.

On future days, you will learn how to improve upon this listing.

WEEK 2

At a Glance

You have completed your first week and have only two to go.
In this second week, you learn most of the remaining core
topics to the C# programming language—not all of them, but
most of them. By the end of this week, you will have the
tools to build basic C# applications from scratch.

On Day 8, “Advanced Method Access,” you will expand on
what you learned on Days 6 and 7. You will learn how to
overload methods and how to use a variable number of para-
meters on a method. You will also learn about scope, which
will enable you to limit access to your data and other type
members. You’ll discover the static keyword, and you will
learn how to create a class that cannot be used to create an
object.

Creating programs that don’t blow up on the user is impor-
tant. On Day 9,”Handling Problems in Your Programs:
Exceptions and Errors,” you will learn how to deal with prob-
lems when your programs are running. First, you will learn
how about exception handling. Exception handling is a struc-
tured approach to catching and stopping problems before they
cause your programs to go boom. You follow this by learning
ways to find unexpected problems.

One of the key object-oriented features is inheritance. On
Day 10, “Reusing Existing Code with Inheritance,” you will
discover how to use inheritance with the classes you’ve cre-
ated (or with someone else’s classes). On this day, you will
learn several new keywords, including sealed, is, and as.

Day 11, “Formatting and Retrieving Information,” steps back
from the super- techie stuff and gives you a reprieve. On this

| 262

Week 2

day, you will focus on presenting information and retrieving information to and from the
console. You will learn how to format the data so that it is much more usable. This chap-
ter contains a number of tables that you will want to refer to.

Day 12, “Tapping into OOP: Interfaces,” deals with another core topic for understanding
the power of C#. This chapter expands on what you know about classes and structures as
well as inheritance. On this day, you will learn how to combine multiple features into a
single new class using interfaces.

Day 13, “Making Your Programs React with Delegates, Events, and Indexers,” focuses
on exactly what its title states—indexers, delegates, and events. You will learn how to use
index notation with a class’s data. You also will learn about delegates and events, which
enable you to dynamically execute methods as well as do event programming. Events are
key to your programming Windows-type applications.

The week ends with a day focusing on an interesting topic: Day 14, “Making Operators
Do Your Bidding: Overloading.” On this day, you are presented with a topic that many
people believe to be complex but that is relatively easy to implement in C#. You’ve
already learned how to overload methods. On Day 14, you’ll learn how to overload oper-
ators.

By the end of this second week, you will have learned most of the core concepts for C#
programming. You’ll find that by the time you have completed this second week, you
will understand most of the core concepts of most C# programs.

WEEK 2

DAY 8

Advanced Method Access

You have learned quite a bit in the past seven days. Today you continue build-
ing on this foundation of knowledge by working further with class methods. In
Days 5, “The Core of C# Programming: Classes,” and 6, “Packaging
Functionality: Class Methods and Member Functions,” you learned to encapsu-
late functionality and data into a class. In today’s lesson, one of the key things
you will learn is how to make your class more flexible. Today you...

* Discover how to overload methods.

* Determine a method’s signatures.

e Learn how to pass a variable number of parameters to a method.
* Revisit scope.

* Learn to create your own namespaces.

Overloading Methods

One of the key features of an object-oriented programming language is poly-
morphism. As you have previously learned, polymorphism is the capability of
reaching a result even if different options are provided. One form of polymor-
phism is overloading. Previously, an example of a circle was provided.

| 264

Day 8

In C#, the easiest place to see overloading in action is with methods. It is possible to cre-
ate a class that can react to a number of different values and still reach the same conclu-
sion. Consider Figure 8.1. In this figure, the black box illustrates your method for
calculating the area of a circle.

FIGURE 8.1

A black box that calcu-
lates the area of a
circle.

Method 1

Calculate
Center circle
radius
area

Method 2

Center
edge point

Method 3

Note that one of three possible solutions can be sent to this circle, and it still provides the
appropriate answer. The first option sends just the radius of a circle. The second option
sends the center point of the circle and the length of the radius. The third option sends
the center point and a point on the circle. All three requests to the circle’s area method
return the area.

If you wrote a program to have the same functionality as this black box, you might be
tempted to create three separate methods. You could call these calcArea,
CalcAreaWithPoints, and CalcAreaWithRadius, or any of a thousand other unique names. If
you were programming in a non—object-oriented language such as C, you would have to
create multiple functions. In an object-oriented language, there is an easier answer:
method overloading.

Overloading Functions

Method overloading is the process of creating multiple methods with the same
name. Each of these methods is unique in some way so that the compiler can tell
the difference. Listing 8.1 presents a Circle class that has its Area method overloaded so
that each of the calls illustrated in Figure 8.1 will work.

Advanced Method Access 265 |

LisTING 8.1 Circle.cs— Method Overloading

1: // Circle.cs - Overloading the area method

R

3:

4: using System;

5:

6: public class Circle

7 A

8: public int x;

9: public int vy;

10: public double radius;

11: private const float PI = 3.14159F;

12:

13: public double Area() // Uses values from data members

14: {

15: return Area(radius);

16: }

17:

18: public double Area(double rad)

19: {

20: double theArea;

21: theArea = PI * rad * rad;

22: console.WriteLine(" The area for radius ({@0}) is {1}", rad,
=theArea);

23: return theArea;

24: }

25:

26: public double Area(int x1, int y1, double rad)

27: {

28: return Area(rad);

29: }

30:

31: public double Area(int x1, int y1, int x2, int y2)

32: {

33: int x_diff;

34: int y_diff;

35: double rad;

36:

37: x_diff = x2 - x1;

38: y_diff = y2 - y1;

39:

40: rad = (double) Math.Sqrt((x_diff * x_diff) + (y_diff * y_diff));

41:

42: return Area(rad);

43: }

44:

45: public Circle()

46: {

47: X = 0;

| 266

Day 8

LisTiNG 8.1 continued

48: y = 0;

49: radius = 0.0;

50:

51: }

52:

53: class CircleApp

54: {

55: public static void Main()

56: {

57: Circle myCircle = new Circle();

58:

59: Console.WritelLine("Passing nothing...") ;

60: myCircle.Area();

61:

62: Console.WritelLine("\nPassing a radius of 3...");

63: myCircle.Area(3);

64:

65: Console.WriteLine("\nPassing a center of (2, 4) and a radius of
=»3...");

66: myCircle.Area(2, 4, 3);

67:

68: Console.WriteLine("\nPassing center of (2, 3) and a point of (4,
=»5)...");

69: myCircle.Area(2, 3, , 5);

70: }

71 }

OuTPUT

ANALYSIS

Passing nothing...

The area for radius (@) is 0

Passing a radius of 3...

The area for radius (3) is 28.2743110656738

Passing a center of (2, 4) and a radius of 3...

The area for radius (3) is 28.2743110656738

Passing center of (2, 3) and a point of (4, 5)...

The area for radius (2.82842712474619) is 25.1327209472656

The first things you should look at in this listing are Lines 60, 63, 66, and 69.
These lines all call the Area method of the mycircle object. Each of these calls,

however, uses a different number of arguments. The program still compiles and works.

This is done using method overloading. If you look at the circle class, you can see that
four Area methods are defined. They differ based on the number of parameters being
passed. In Lines 13-16, an Area method is defined that doesn’t receive any arguments but
that still returns a double. This method’s body calls the Area method that contains one
parameter. It passes the radius stored in the class radius data member.

Advanced Method Access 267 |

In Lines 18-24, the second Area method is defined. In this definition, a double value is
passed into the method. This value is assumed to be the radius. In Line 21, the area is
calculated using the passed-in radius value. Line 22 prints the radius and the calculated
area to the screen. The method ends by passing the area back to the calling routine.

'I'ip Instead of using a literal value for PI throughout this listing, a constant vari-

able was declared in Line 11. This enables you to change the value of PI in
one location instead of potentially hard-coding it throughout your applica-
tion. Maintenance will be much easier in the future.

In Lines 26-29, you see the third defined Area method. This definition of the Area method
is a little silly because only the radius is needed to calculate the area. Instead of repeating
functionality in multiple places, this method passes its radius value, rad, to the Area
method that requires only the radius. The area value is then passed back from each of the
methods to the previous caller.

Lines 31-43 present the most complicated Area method. This method receives the center
point of a circle and a point on the circle itself. The radius is the line that goes between
these two points (Figure 8.2 illustrates this). Line 40 calculates the length of this line
based on the two point values. After the length is obtained, it is passed to the Area
method that requires only the radius where the rest of the work is done.

FIGURE 8.2 (X2, ¥o)

The center point and a
point on the circle.

Although each of these methods calls another of the Area methods, this does not have to
be the case. Each of these might do its coding completely independently of the others.
Their individual code is up to you. It is important to know that you can create multiple
methods with the same name that can perform operations based on different sets of
values.

| 268

Day 8

Just because you can code completely different functionality in methods
with the same name, it doesn’t mean that you should. Because the methods
are named the same, the end results of each should be similar.

Overloading Constructors

In addition to overloading regular methods, you can overload constructors. An over-
loaded constructor enables you to pass values to an object at the same time it is created.
Listing 8.2 illustrates a circle class that has had the constructor overloaded. This circle

class is different from the one in Listing 8.1.

ListinG 8.2 Circle1.cs—Overloading the Constructor

0N O WN =

11

Circletl.cs - A simple circle class with overloaded constructors

using System;

public class Circle

{

public int x;

public int y;

public int radius;

private const float PI = 3.14159F;

public double area()

{
double theArea;
theArea = PI * radius * radius;
return theArea;

}

public double circumference()
{
double Circ;
Circ = 2 * PI * radius;
return Circ;

}
public Circle()
{
X = 0;
y = 0;
radius = 0;
}

Advanced Method Access 269 |

LisTING 8.2 continued

34: public Circle(int r)

35: {

36: X = 0;

37: y =0,

38: radius = r;

39: }

40:

41: public Circle (int new_x, int new_y)

42: {

43: X = new_x;

44: y = new_y;

45: radius = 0;

46: }

47:

48: public Circle (int new_x, int new_y, int r)
49: {

50: X = new_x;

51: y = new_y;

52: radius = r;

53: }

54:

55: public void print_circle_info()

56: {

57: Console.WriteLine("Circle: Center = ({0},{1})", X, Vy);
58: Console.WriteLine(" Radius = {0}", radius);
59: Console.WriteLine(" Area = {0}", area());
60: Console.WriteLine(" Circum = {0@}", circumference());
61: }

62: }

63:

64: class CircleApp

65: {

66: public static void Main()

67: {

68: Circle first = new Circle();

69: Circle second = new Circle(4);

70: Circle third = new Circle(3,4);

71: Circle fourth = new Circle(1, 2, 5);

72:

73: Console.WriteLine("\nFirst Circle:");

74: first.print_circle_info();

75:

76: Console.WriteLine("\nSecond Circle:");

77 second.print_circle_info();

78:

79: Console.WriteLine("\nThird Circle:");

80: third.print_circle_info();

81:

| 270

Day 8

LisTING 8.2 continued
82: Console.WriteLine("\nFourth Circle:");
83: fourth.print_circle_info();
84: }
85: }

OuTPUT

ANALYSIS

First Circle:
Circle: Center

Radius =

Area

Circum =

Second Circle:
Circle: Center

Radius =

Area

Circum =

Third Circle:
Circle: Center

Radius =

Area

Circum =

Fourth Circle:
Circle: Center

Radius =

Area
Circum

(0,0)
4

= 50.26544

25.13272

(1,2)
5

= 78.53975

31.41590001106262

The constructors in the circle class are the focus of this listing. There are a num-
ber of constructors, and each takes a different number of arguments. The first
constructor is defined in Lines 27-32. You have seen this constructor before—it takes no
parameters. Declared as public and using the class name, this constructor follows the
same format that you learned about on Day 6.

In Lines 34-39, you see the first of three additional circle constructors. This constructor
receives an integer that contains the radius. This value is applied to the class’s radius

field.

The code for the third circle constructor is presented in Lines 41-46. This constructor
differs from the others because it takes two integer values. These are the new values for
the x and y coordinates of the center point. In Lines 43-44, these values are set to the
object’s values.

Advanced Method Access

271 |

The fourth and final constructor for the circle class in this listing is in Lines 48-53. This
constructor takes three values. This includes the radius and the x and y coordinates for
the center point.

All of these methods are declared with the same name and in the same manner. The only
difference is that each takes different parameters.

In Lines 6871 of the circleApp class, you see these constructors in action. Line 68 cre-
ates a new circle object called first. This is declared and created in the same way
you’ve seen objects created before.

In Line 69, the second object is created differently. When this object is created, instead
of entering this

new Circle()

an argument has been added—a 4. To create the second object, a constructor is required
that can accept a single numeric value of 4. This matches the constructor that starts in
Line 34, which has the same format as the call in Line 69.

Based on the description of the creation of the second object, it should be easy to see that
the third and fourth objects call the constructors that are appropriate for them. The appro-
priate constructor is the one with parameters that match the call’s arguments.

Consider what happens if you created a circle object as follows:
Circle myCircle = new Circle(1, 2, 3, 4);

This results in an error because it would pass four values. None of the constructors in the
circle class accepts four values, so this declaration will not work.

Understanding Method Signatures

Methods can be overloaded because of the uniqueness of each method’s signature. As
you learned in the previous section, the number of parameters in the method can deter-
mine which method should be called. There are actually other ways in which overloaded
methods can differ from each other. Ultimately, these differences comprise a method’s
signature.

A method’s signature is composed of the number of parameters and their types. You saw
with the circle constructor that there were four signatures:

Circle()
Circle(int)
Circle(int, int)

Circle(int, int, int)

| 272

Day 8

The Area method in Listing 8.1 has four signatures:

double Area()

double Area(double)

double Area(int, int, double)

double Area(int, int, int, int)

The following are other methods that would be valid to overload:
MyFunc(int)

MyFunc(float)

MyFunc(ref int)

MyFunc(val int)

A number of items cannot be used as part of the signature. The return type cannot be
used because it does not have to be used when calling a method.

Additionally, you cannot have a signature that differs because one method has a data type
and another has an array of the same data type. For example, if you overload with the
following two signatures, you might get an error:

int myMethod(int)
int myMethod(int[])

You also cannot use the params keyword to make signatures different. Using params is
covered later today. The following two methods together cause an error:

void myMethod(string, float)
void myMethod(string, params float[])

You can overload a method as many times as you like, as long as each overloaded
method has a unique signature.

Using a Variable Number of Parameters

You’ve now learned how to create and use methods. You’ve learned how to pass informa-
tion to methods. You’ve learned that information can be passed in a number of ways.
This includes passing information by value or by reference, and passing variables that
can be used to return output. You’ve even learned to use the return keyword to pass a
value back from a method. All these require a structured use of the methods.

Advanced Method Access 273 |

What happens when you want to pass an unknown variable number of items to a
method? For example, suppose that you want to add a set of numbers, but you don’t
know how many numbers there will be. You could call a routine multiple times, or you
could set up a routine to take a variable number of parameters. Consider the
Console.writeLine and Console.Write methods. These methods both take a string and then
a variable number of different values and data types.

To accept an unknown number of parameters, you can use the params keyword. This key-
word can be used as the last value in a method’s parameters list. The params keyword is
used with an array data type.

Listing 8.3 presents the params keyword used with a method that takes a variable number
of integers. The method adds the integers and then returns a long value with the total.

ListiNG 8.3 Addem.cs—Using the params Keyword

1: // Addem.cs - Using a variable number of arguments
R R
3:

4: using System;

5:

6: public class AddEm

7: |

8: public static long Add(params int[] args)

9: {

10: int ctr = 0;

11: long Total = 0;

12:

13: for(ctr = 0; ctr < args.Length; ctr++)

14: {

15: Total += args[ctr];

16: }

17: return Total;

18: }

19: }
20:
21: class MyApp
22: {
23: public static void Main()
24: {
25: long Total = 0;
26:
27: Total = AddEm.Add(1);
28: Console.WriteLine("Total of (1) = {0}", Total);
29:
30: Total = AddEm.Add(1, 2);

31: Console.WriteLine("Total of (1, 2) = {@}", Total);

274 Day 8

LisTING 8.3 continued

32:
33: Total = AddEm.Add(1, 2, 3);
34: Console.WriteLine("Total of (1, 2, 3) = {0}", Total);
35:
36: Total = AddEm.Add(1, 2, 3, 4);
37: Console.WriteLine("Total of (1, 2, 3, 4) = {0}", Total);
38: }
39: }
Total of (1) =
Total of (1, 2) -
Total of (1, 2, 3)
Total of (1, 2, 3, 4) =10

- Your first reaction when looking at this listing should be to say, “Wait a

ANALYSIS I

minute—this could be done with a simple array of integers.” If you caught this,
you are absolutely right. This simple example could have been done without the params
keyword and you could have made it work. But... .

If you had declared this without the params keyword, you would not have gotten away
with what is in Lines 30, 33, and 36. Instead of being able to pass values to the method,
you would have needed to place each of these values into a single int array and then pass
that array. The params keyword enabled the compiler to take care of this for you.

If you take a closer look at this listing, you will see that it is not doing anything complex.
In Lines 6-19, the class Addem is created. This class has a single static function named
Add that receives a variable number of integers stored in an array named args. Because
the params keyword is used, you know that the integers can be passed individually rather
than as a single, filled array.

The Addem method is pretty straightforward. A for loop in Lines 12—16 loops through the
args array. Remember, this array was created from the integer values being passed into
the Addem method. Just as with other arrays, you can check standard properties and meth-
ods. This includes using args.Length to get the length of the array. The for loop loops
from o to the end of the args array and adds each of the numbers to a total called Total.
This total is then returned in Line 17 to the calling method.

The myApp class in Lines 21-39 uses the Addem method to add numbers. You can see that
the same method is called with various numbers of integers. You can continue to add
integers to the method call, and the method will still work.

Advanced Method Access 275 |

Nﬂtﬂ No AddEm objects were created. Because the Add method is static, it is called
using the class name AddEm. This means that the method can be used even

though no objects were created.

Using params with Multiple Data Types

The previous example used all integers within the variable parameter. Because all data
types are based on the same class type, an object, you can actually use the object data
type to get a variable number of different data types. Listing 8.4 presents a listing that is
impractical for everyday use, but it does a great job of illustrating that you can pass a
variable number of values that are of any data type. In essence, you can pass anything.

LisTING 8.4 Garbage.cs—Passing Different Data Types

1: // Garbage.cs - Using a variable number of arguments
2: // of different types

K R
4:

5: using System;

6:

7: public class Garbage

8: {

9: public static void Print(params object[] args)
10: {

11: int ctr = 0;

12:

13: for(ctr = 0; ctr < args.Length; ctr++)

14: {

15: Console.WritelLine("Argument {0} is: {1}", ctr, args[ctr]);
16: }

17: }

18: }

19:
20: class MyApp
21: |
22: public static void Main()
23: {

24: long ALong = 1234567890987654321L;

25: decimal ADec = 1234.56M;

26: byte Abyte = 42;

27: string AString = "Cole McCrary";

28:

29: Console.WriteLine("First call...");

30: Garbage.Print(1); // pass a simple integer

31:

| 276

Day 8

LisTING 8.4

continued

32:
33:
34:
35:
36:
37:
38:
39:
40:
41: }

Console.WriteLine("\nSecond call...");
Garbage.Print(); // pass nothing

Console.WriteLine("\nThird call...");
Garbage.Print(ALong, ADec, Abyte, AString); // Pass lots

Console.WriteLine("\nFourth call...");
K

Garbage.Print(AString, "is cool", ' N // more stuff

OuTpPUT

ANALYSIS

First call...
Argument @ is: 1

Second call...

Third call...

Argument @ is: 1234567890987654321
Argument 1 is: 1234.56

Argument 2 is: 42

Argument 3 is: Cole McCrary

Fourth call...

Argument @ is: Cole McCrary
Argument 1 is: 1is cool
Argument 2 is: !

This listing contains a method named print of the class Garbage in Lines 9-17.
The print method is declared to take a variable number of objects. Any data type

can be fitted into an object, so this enables the method to take any data type. The code
within the method should be easy to follow. If you look at the output, you will see that in
Line 30, the first call to the Garbage.Print method prints a single value, 1.

The second call in Line 32 did not pass any arguments. The Garbage.Print method is still
called; however, the logic in the method doesn’t print anything. The for statement ends
when it checks the args.Length value the first time.

The third and fourth calls to Garbage print various other values. By using a type of object,
any data types can be passed in either as variables or as literals.

Recall from the first week that a literal number that ends in an L is consid-
ered a long value. A literal number that ends in an M is considered a decimal.
(See Lines 24-25 of the listing.)

Advanced Method Access 277 |

Taking a More Detailed Look at params

It is worth reviewing what the params keyword causes to happen in a little more detailed
explanation. When values are passed to the method, first the compiler looks to see
whether there is a matching method. If a match is found, that method is called. If a
match is not found, the compiler checks to see whether there was a method with a params
argument. If so, that method is used. The compiler then places the values into an array
that is passed to the method. For example, using the last call to the Add method of AddEm
in Listing 8.3,

AddEm.Add(1, 2, 3, 4);

the compiler does the following behind the scenes:

int[] x = new int[4];
int[0] H
int[1]
int[2]
int[3]
AddEm.Add

~H ON =

3
>
;
5

X

)i

In Listing 8.4, instead of declaring an array of type int, an array of type object is created
and used.

- Don't forget that array members start at offset o, not 1.
Gaution

Working with the main Method and Command-Line
Arguments

You have already learned that the Mmain method is a special method because it is always

called first. The main method can also receive a variable number of parameters. However,
you don’t need to use the params keyword with main.

You don’t need the params keyword because the command-line parameters are automati-
cally packed into a string array. As you learned earlier, that is basically the same thing
the params keyword would do for you. Because the values are already packed into an
array, the params keyword becomes worthless.

When calling the main method, it is standard practice to use the following format if para-
meters are expected:

public static [int | void] Main(string[] args)

278 Day 8

Including either void or int is optional. Generally, your main method either is void or
returns an integer. The focus here is in the parameter list: a string array named args. The
name args can be changed to any other name; however, you will find that almost all C#
programmers use the variable args. Listing 8.5 illustrates the use of command-line para-
meters.

ListiNnG 8.5 CommandLine.cs—Using Command-Line Arguments

1: // CommandLine.cs - Checking for command-line arguments

L e R R
3:

4: using System;

5:

6: class CommandLine

7: |

8: public static void Main(string[] args)

9: {

10: int ctr=0;

11: if (args.Length <=0)

12: {

13: Console.WriteLine("No Command Line arguments were provided.");
14: return;

15: }

16: else

17: {

18: for(ctr = 0; ctr < args.Length; ctr++)

19: {
20: Console.WriteLine("Argument {0} is {1}", ctr+1, args[ctr]);
21: }
22: }
23: }
24: '}

The first output illustrates executing this listing with no arguments.

C:\code\Day08>CommandLine
(01N VIl \o Command Line arguments were provided.

The second output illustrates calling the program with command-line arguments.

C:\code\Day08>CommandLine xxx 123 456 789.012
Ourtput Argument 1 is xxx

Argument 2 is 123
Argument 3 is 456
Argument 4 is 789.012

Advanced Method Access 279 |

This listing is extremely short and to the point. The main function, which starts in
Line 8, receives command-line arguments. It has been declared with the string[]

args parameter, so it is set to capture any command-line arguments sent. In Line 11, the
Length data member of the args array is checked. If it is o, a message is printed saying
that no command-line arguments were provided. If the value is something other than o,
Lines 18-21 use a for loop to print each value. In Line 20, instead of printing arguments
starting with o, 1 is added to the counter. This is done so that the end user of the program
doesn’t have to wonder why the first argument is named o. After all, the end user might
not be a C# programmer.

o

Do understand method overloading. Don’t make things public if you don't
need to. Use properties to give public
access to private data members.

Do overload methods with the most
common ways you believe a method
could be used. Don‘t ignore command-line parameters
in your programs. You can code your
programs to accept command-line para-
meters and to return a value to the oper-
ating system.

Understanding Scope

Variables don’t last forever. It is important to understand how long a variable
exists before the runtime environment throws it out. This lifetime of a variable
and its accessibility are referred to as scope. Several levels of scope exist; the two most
common are local and global.

A variable with global scope is visible, and thus available, to an entire listing. A variable
that is available to a small area only is considered local to that area and, thus, has local
scope.

Working with Local Scope

The smallest level of scope is local to a block. A block can include a simple iterative
statement, or it can be much longer. Consider the value of x in Listing 8.6. What is the
value of x in Line 15? In Line 11?

280 Day 8

LisTING 8.6 Scope.cs—Local Variable out of Scope

1: // Scope.cs - Local scope with an error

2: [/ *** You will get a compile error ***

K e e
4.

5: using System;

6:

7: class Scope

8: {

9: public static void Main()
10: {
11: for(int x; x < 10; x++)
12: {
13: Console.WritelLine("x is {0}", x);
14: }
15: Console.WriteLine("Out of For Loop. x is {0}", x);
16: }
17: '}

Scope.cs(15,55): error CS@103: The name 'x' does not exist in the class
Output or namespace 'Scope’

Although you might think that x in Line 15 should have a value of 10, x actually
doesn’t have a value at that point. It doesn’t exist; therefore, using x is actually
an error. The variable is declared as part of the for statement in Line 11. As soon as the
for statement is complete, x goes out of scope. By being out of scope, it can no longer be
used. This generates an error.

Now consider Listing 8.7. This listing contains a declaration in a for statement such as
the one in Listing 8.6; however, it declares x a second time in a second for statement.
Will using x like this lead to an error?

LisTING 8.7 Scope2.cs—Declaring More Than One Local x

1: /] Scope2.cs - Local scope.

L e R R R T
3:

4: using System;

5:

6: class Scope2

7: |

8: public static void Main()

9: {

10: for(int x = 1; x < 5; x++)
11: {

Advanced Method Access 281 |

LisTING 8.7 continued

12: Console.WritelLine("x is {0}", X);
13: }
14:
15: // Second for statement trying to redeclare x...
16: for(int x = 1; x < 5; x++)
17: {
18: Console.WritelLine("x is {0}", X);
19: }
20: }
21: }
X is 1
x is 3
X is 4
x is 1
X is 2
X is 3
X is 4

- This listing works! Each of the x variables is local to its own block (the for
ANALYSIS
loops). Because of this, each x variable is totally independent of the other.

Now consider Listing 8.8 and its multiple use of x variables.

LisTING 8.8 Scope3.cs—Lots of x Variables

1: // Scope3.cs - Local scope.

2: [/ *** Error if lines are uncommented ***

K N R R
4:

5: using System;

6:

7: class Scope3

8: {

9: static int x = 987;

10:

11: public static void Main()

12: {

13: console.WriteLine("x is {0}", X);

14:

15: [/ for(int x = 1; x < 5; x++)

16: // {

170 // Console.WriteLine("x is {0}", x);
18: // }

19: console.WriteLine("x is {0}", Xx);

282 Day 8

X is 987
OUuTPUT NPy
Notice that Lines 15-18 are commented out in this listing. You should enter,
ANALYSIS . .) .. .
compile, and run this listing with the commented lines intact, as presented in the

listing. When you do, you get the output shown. The x variable in Lines 13 and 19 print
the static x variable contained in the class, as you would expect.

Lines 15-18 contain a local variable x that is declared and used only within the for loop.
Based on what you learned in the previous section, you might be tempted to believe that
if you uncomment this code and compile, everything will work. The for loop uses its
local x variable, and the rest of the method uses the class x variable. Wrong! In Line 17,
how would the compiler know that you did not mean to use the class’s x variable? It
wouldn’t. Uncomment Lines 15-18 and recompile the listing. You get the following
result:

Scoped.cs(15,17): error CS0136: A local variable named 'x' cannot be

(01Nl (cclared in this scope because it would give a different meaning to
'x', which is already used in a 'parent or current' scope to denote
something else

The compiler can’t tell which x variable to use. The local variable conflicts with the class
variable. There is a way around this problem.

Differentiating Class Variables from Local Variables

One way to differentiate class variables from a local variable is to always refer to the
class. You learned how to do this in an earlier lesson; however, it is worth reviewing. The
error provided in Listing 8.8 can be resolved in two ways: rename the local variable with
a different name, or refer to the class variable in Lines 14 and 19 more explicitly.

Depending on how you declared the variable, there are two ways to be more explicit on a
class variable’s name. If the class variable is a standard, non-static variable, you can use
the this keyword. For accessing a class data member, x, you use this.x.

If the data member is static, such as the one in Listing 8.8, you use the class name to
reference the variable instead of using the this keyword. For a review on the this key-
word and accessing static data variables, go back to Day 6.

Modifying Class Scope with Modifiers

Recall the two modifiers that can be used on methods and data members: private and
public. You learned about these during the last three days, and you will learn about oth-
ers later in this book.

Advanced Method Access 283 |

When the public modifier is used, a data member or member function can be accessed by
methods that are outside a class. You’ve seen a number of examples of this. When the
private modifier is used, the data member or method can be accessed only from within
the defining class. Data members and methods are private by default.

N"tﬂ If you don‘t declare private or public on a variable within a class, it is cre-
ated as private.

Also, some languages have the capability to declare variables outside any
method or class. Such variables have a different scope then those declared
within a function or class. C# cannot declare a variable outside a class.

Creating Classes with No Objects

It is possible to create a class and prevent it from creating an object. You might wonder
why you would ever want to do this and how a class can be used if you can’t create an
object to access it. In reality, you’ve used a number of classes already that you haven’t
created objects for. Consider the console class. You have used its writeLine and other
methods without declaring a console object. Additionally, classes such as the math class
enable you to use them without declaring objects.

How can you use a class without an object? You’ve learned that static methods and data
members are assigned to the class, not to the individual objects. If you declare a class
with all static data and methods, declaring an object is of no value. Listing 8.9 presents
the mymath class, which contains a number of methods for doing math operations.

LisTING 8.9 MyMathApp.cs—Math Methods

1: // MyMathApp.cs - Static members.

N N A R R LR
3:

4: using System;

5:

6: public class MyMath

7 A

8: public static long Add(params int[] args)
9: {

10: int ctr = 0;

11: long Answer = 0;

12:

13: for(ctr = 0; ctr < args.Length; ctr++)
14: {

15: Answer += args[ctr];

| 284

Day 8

LisTING 8.9 continued

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

}

return Answer;

}

public static long Subtract(int arg1l, int arg2)
{

long Answer = 0;

Answer = argl - arg2;

return Answer;

}
}
class MyMathApp
{
public static void Main()
{
long Result = 0;
Result = MyMath.Add(1, 2, 3);
Console.WriteLine("Add result is {0}", Result);
Result = MyMath.Subtract(5, 2);
Console.WriteLine("Subtract result is {0}", Result);
}
}

IAYUN subtract result is 3

Add result is 6

The mymath class in Lines 626 has two methods declared: subtract and Add.
ANALYSIS

Each of these methods subtracts or adds integers and returns the result. The logic

could be more complex; however, that will be left for you to add.

There is no reason to create a Mymath object. Nothing prevents you from creating it, but
it’s possible to prevent an object from being created.

Using Private Constructors

To prevent an object from being created, you create a private constructor by using the
private modifier on the constructor. As you learned earlier, a method with the private
keyword can be accessed only from within the class. When you add this modifier, you
can’t call the constructor from outside the class. Because calling the constructor occurs
when you create a class, adding the modifier effectively prevents the class from being
created. Listing 8.10 is the mymath class listing presented again with a private constructor.

Advanced Method Access 285 |

LisTiNnG 8.10 MyMathApp2.cs—nymath Class with a Private Constructor

1: // MyMathApp2.cs - Private constructor

R
3:

4: using System;

5:

6: public class MyMath

7 A

8: public static long Add(params int[] args)

9: {

10: int ctr = 0;

11: long Answer = 0;

12:

13: for(ctr = 0; ctr < args.Length; ctr++)

14: {

15: Answer += args[ctr];

16: }

17: return Answer;

18: }

19:
20: public static long Subtract(int argl, int arg2)
21: {
22: long Answer = 0;
23: Answer = argl - arg2;
24: return Answer;
25: }
26:
27: private MyMath()
28: {
29: // nothing to do here since this will never get called!
30: }
31: }
32:
33: class MyMathApp
34: {
35: public static void Main()
36: {
37: long Result = 0;
38:
39: // MyMath var = new MyMath();
40:
41: Result = MyMath.Add(1, 2, 3);
42: Console.WriteLine("Add result is {0}", Result);
43:
44: Result = MyMath.Subtract(5, 2);
45: Console.WriteLine("Subtract result is {0}", Result);
46: }

286 Day 8

Add result is 6
OV S htract result is 3

Lines 27-30 contain a constructor for this class. If you remove the comment
ANALYSIS . g .
from Line 39 and recompile this listing, you get the following error:

MyMathApp2.cs(39,20): error CS0122: 'MyMath.MyMath()' is inaccessible due
to its protection level

Creating an object is not possible. The private modifier stops you from creating an
object. This is not an issue, however, because you can access the public, static class
members anyway.

Revisiting Namespaces

Namespaces can be used to help organize your classes and other types. You’ve used a
number of namespaces that are provided by the framework. This includes the system
namespace that contains a number of system methods and classes, including the console
class that contains the reading and writing routines.

A namespace can contain other namespaces, classes, structures, enumerations, interfaces,
and delegates. You are familiar with namespaces, classes, structures, and enumerations.
You will learn about interfaces and delegates later in this book.

Naming a Namespace

Namespaces can contain any name that is valid for any other type of identifier. This
means that the name should be composed of the standard characters plus underscores.
Additionally, namespaces can include periods in their names. As with other identifiers,
you should use descriptive names for your namespaces.

Declaring a Namespace

To create a namespace, you use the keyword namespace followed by the name that identi-
fies it. You can then use braces to enclose the types that are contained within the name-
space. Listing 8.11 contains a listing that declares namespaces.

LisTiING 8.11 Routine.cs—Declaring a Namespace

// Routine.cs - Declaring namespaces

1
2
3:
4: using System;
5:
6

namespace Consts

Advanced Method Access 287 |

LisTING 8.11 continued

7:

8: public class PI

9: {

10: public static double value = 3.14159;

11: private PI() {} // private constructor
12:

13: public class three

14: {

15: public static int value = 3;

16: private three() {} // private constructor
17: }

18: }

19:

20: namespace MyMath

21:

22: public class Routine

23: {

24: public static long Add(params int[] args)
25: {

26: int ctr = 0;

27: long Answer = 0;

28:

29: for(ctr = 0; ctr < args.Length; ctr++)
30: {

31: Answer += args[ctr];

32: }

33: return Answer;

34: }

35:

36: public static long Subtract(int argl, int arg2)
37: {

38: long Answer = 0;

39: Answer = argl - arg2;

40: return Answer;

41: }

42: }

43: }

44:

45: class MyMathApp

46: {

47: public static void Main()

48: {

49: long Result = 0;

50:

51: Result = MyMath.Routine.Add(1, 2, 3);
52: Console.WriteLine("Add result is {0}", Result);
53:

54: Result = MyMath.Routine.Subtract(5, 2);
55: Console.WriteLine("Subtract result is {0}", Result);

56:

288 Day 8

LisTING 8.11 continued

57: Console.WriteLine("\nThe value of PI is {0@}", Consts.PI.value);

58: Console.WriteLine("The value of three is {0}", Consts.three.value);
59: }

60: }

Add result is 6
Ourtput Subtract result is 3

The value of three is 3

This listing is a modification of the mymath listing you saw earlier. Additionally,
some additional classes are declared, which is not practical. However, these help
illustrate the namespace concepts.

The value of PI is 3.14159

ANALYSIS

In Line 6, you see the first of two namespaces that are declared in this listing. The Consts
namespace contains two classes—pP1I and three—that are used in Lines 57-58. In these
lines, the namespace has to be declared, along with the class and data member name. If
you leave off consts when accessing these classes from a different namespace (such as in
Lines 57-58), you get an error:

Routinebad.cs(20,1): error CS1529: A using clause must precede all other
namespace elements

However, you can get around this error with the using keyword. You learn about this in
the next section.

N[llﬂ Every file provides a namespace even if you don't explicitly declare one.
Each file contains a global namespace. Anything in this global namespace is

available in any named namespace within the file.

using and Namespaces

The using keyword makes using namespaces easier. This keyword provides two func-
tions. First, using can be used to alias a namespace to a different name. Second, using
can be used to make it easier to access the types that are located in a namespace by
shortcutting the need to fully qualify names.

Advanced Method Access 289 |

Shortcutting Fully Qualified Namespace Names

You’ve already seen how the using keyword can be used to shortcut the need to include a
fully qualified name. By including the following line, you no longer have to include the
System namespace name when using the classes and types within the System namespace:

using System;

This enabled you to use Console.WriteLine without the System namespace name being
included. In Listing 8.11, you can add the following at Line 5:

using Consts;

This enables you to use PI.value and three.value without fully qualifying the Consts
namespace name.

ﬂﬂlltillll You must include using statements before other code elements. This means
that they are best included at the top of a listing. If you try to include them

later in a listing, you will get an error.

Aliasing with using
You can also alias a namespace with the using keyword. This enables you to give a

namespace—or even a class within a namespace—a different name. This alias can be any
valid identifier name. The format of an alias is as follows:

using aliasname = namespaceOrClassName;

Here, aliasname is the name that you want to use with the alias and namespaceOrclassName
is the qualified namespace or class name. For example, consider the following line:

using doit = System.Console;

If you include this line in your listing, you can use doit in all the places that you would
have used system.Console. To write a line to the console, you then type this:

doit.WriteLine("blah blah blah");

Listing 8.12 illustrates a Hello World program using aliasing of the System.Console class.

LisTING 8.12 AliasApp.cs—Aliasing with using

1 /1 AliasApp.cs

2

3:

4: using doit = System.Console;

290 Day 8

LiIsTING 8.12 continued

5:
6: class AliasApp
7-
8

{
public static void Main()
9: {
10: doit.WritelLine("Hello World!");
11: }
12: }

Hello World!
OuTPUT

This is a very straightforward listing. Line 4 creates a using alias called doit in
ANALYSIS L N .
the system.Console class. The doit alias is then used in Line 10 to print a mes-

sage.
Do DoN'T
Do understand scope. Don’t make data members public if they
Do use the using keyword to make it can be kept private.
easier to access members of namespaces. Don’t forget that data members are pri-
Do use namespaces to organize your vate by default.
classes.

Summary

In today’s lesson, you expanded on some of what you learned on previous days. You
learned how to overload a method so that it can work with different numbers and types
of parameters. You learned that this can be done by creating overloaded methods with
unique signatures. In addition to overloading normal methods, you learned how to over-
load a class’s constructor.

You also learned more about the scope of class members. You learned that the private
keyword isolates a member to the class itself. You learned that the public modifier
enables the member to be accessed outside the class. You also learned that you can create
local variables that exist only within the life of a block of code. You learned that the this
keyword can be used to identify a data member that is part of a specific instance of a
class.

Advanced Method Access 291 |

In addition, you learned about namespaces. This includes learning how to create your
own namespaces. The using keyword was also addressed within the namespace discus-
sion. The using keyword enables you to avoid the need to include the fully qualified
name to a namespace’s members, and it also can be used to alias a namespace or class.

Q&A

Q Can you declare the main method as private?

A You can declare the main method as private; however, you would be unable to
access the main method. To run a program, you need a Main method that is publicly
accessible. If you can’t access the main method from outside the class, you can’t
run the program.

=)

What happens if you don’t declare the main method as public?

A Although it was stated that methods and data types default to private, the Main
method actually defaults to public. If you don’t include the public modifier (and
tools such as Visual Studio don’t include it), it will still be public. To be explicit, it
is best to always include the modifier.

Q Scope was briefly discussed in today’s lesson. What are the default values of
variables if they are not explicitly given a value?

A A number of variable types are not initially assigned a value. This includes
instance variables of an initially unassigned structure, output parameters, and local
variables. A number of variable types are initially assigned. This includes static
variables, instance variables of an object, instance variables of a structure variable
that is initially assigned, array elements, value variables used as parameters in a
method, and reference. Even though these are initially assigned, you should always
set a value initially into all the variables you use.

Q Why not keep things simple and declare everything public?

A One of the benefits of an object-oriented language is to have the capability to
encapsulate data and functions into a class that can be treated as a black box. By
keeping members private, you make it possible to change the internals without
impacting any programs that use the class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

292 Day 8

Quiz
1. Is overloading functions an example of encapsulation, inheritance, polymorphism,
or reuse?
2. How many times can a member function be overloaded?
3. Which of the following can be overloaded?
a. Data members
b. Member methods
c. Constructors
d. Destructors
4. What keyword is used to accept a variable number of parameters in a method?

5. What can you do to receive a variable number of parameters of different, and pos-
sibly unknown, data types?

6. To accept a variable number of parameters from the command line, what keyword
do you include?

7. What is the default scope for a member of a class?
8. What is the difference between the public and private modifiers?
9. How can you prevent a class from being instantiated into an object?

10. What are two uses of the using keyword?

Exercises
1. Write the line of code for a method header for a public function called abc that
takes a variable number of short values. This method returns a byte.
2. Write the line of code needed to accept command-line parameters.
3. If you have a class called aclass, what code can you include to prevent the class
from being instantiated into an object?

4. Bug Buster: Does the following program have a problem? Enter it in your editor
and compile it. If there is a problem, what is it?
using doit = System.Console.Writeline;

—_

2:

3: class MyApp

4: {

5: public static void Main()
6: {

7: doit("Hello World!");
8: }

9:

Advanced Method Access 293 |

5. Create a namespace that contains a class and another namespace. This second
namespace should also contain a class. Create an application class that uses both of
these classes.

6. Create a program that has a number of overloaded methods. The overloaded
method should have the following signatures. Are all these signatures legal?
(overload.cs)

public myFunc()
public myFunc(int)
public myFunc(float)
public myFunc(ref int)
public myFunc (ref float)

WEEK 2

DAY 9

Handling Problems in
Your Programs:
Exceptions and Errors

If everyone wrote perfect code, if all users entered the correct information the
first time, and if all computers disallowed errors, a large number of program-
mers today would be out of job. The reality is that computers, users, and pro-
grammers are not infallible. Because of this, you must write your programs to
expect the unexpected. You must write your programs to handle the one thing
that is different—the exception. When problems do occur in your programs,
you need to find the problems and remove them—a concept known as debug-
ging. Today you will cover a lot. More specifically, you will...

* Learn about the concept of exception handling.
* Discover the try and catch keywords.
* Implement finality with the finally keyword.

* Explore some common exceptions and their causes.

| 296

Day 9

* Understand how to pass an exception to a different routine.

* Define your own exceptions.

e Throw and rethrow exceptions.

* Learn what debugging is.

* Review the primary types of errors that your programs can have.
* Discover how to tell the compiler to ignore parts of your listings.
* Generate your own warnings and errors when compiling.

* Understand how to define symbols both in your code and when compiling.

Understanding the Concept of Handling
Problems

When you create a program, you need to consider all possible problems that could arise.
When creating programs that obtain information from a file, from a user, from a service,
or even from another part of your own program, you should always check to make sure
that what you received or what you are using is what you expect. Consider a program
that requires you to use a disk file. What happens when the file doesn’t exist? If you
don’t prepare your program for unexpected—or even expected—errors, it could crash.

You can choose not to worry about issues such as these; however, you might find that
people quit using your programs. Results of these types of errors can vary. When you
write a program, you need to decide which issues are severe enough to worry about and
which are not. A good programmer plans for the unusual or unwanted things that might
happen.

Preventing Errors via Logical Code

You will find that you can handle a lot of issues within your code with simple program-
ming logic. If simple programming logic can prevent an error, you should add it. For
example, you can check the length of a value, you can check for the presence of a com-
mand-line argument, or you can verify that a number is within a valid range. These types
of checks can easily be performed using the programming constructs you learned in the
first week.

Consider the following items. How would you handle these in your code?

* The user tries to open a file that doesn’t exist.

* Too many items are assigned to an array.

Handling Problems in Your Programs: Exceptions and Errors 297|

* The code within a program assigns a string to an integer variable.

* A routine tries to use a reference variable that contains a null (empty) value.

You can write code to avoid these problems, but what happens when you miss one?

What Causes Exceptions?

If you don’t programmatically catch problems, an exception can occur. An exception is
an uncaught programming error. This excludes logic errors, which are errors because of
results that occur, not because of a coding issue. When an uncaught error occurs, the run-
time can choke and an exception is thrown. Listing 9.1 contains an error that throws an
exception. Run this listing and see what happens when you access the nonexistent sixth
element of a five-element array.

LisTING 9.1 Error.cs—Causing an Exception

1: // Error.cs

2: |/ A program that throws an exception

3: [/=====================================s=======
4: using System;

5:

6: class Error

7: |

8: public static void Main()

9: {

10: int [] myArray = new int[5];

11:

12: for (int ctr = @; ctr < 10; ctr++)
13: {

14: myArray[ctr] = ctr;

15: }

16: }

17: '}

This listing compiles with no errors. It is not very practical because it doesn’t
NALYSIS create any real output or do anything of value. In Line 10, an array of five inte-
gers, named myArray, is created. In Lines 12—15, a for loop assigns the value of a counter
to each value in the array. The value of o is assigned to myArray[@], 1 is assigned to
myArray[1], and So on.

What happens when ctr becomes equal to 5? The conditional statement in Line 12
enables ctr to continue to be incremented as long as it is less than 1. When ctr reaches
5, however, there is a different problem. In Line 14, myArray[5] is not valid—the array’s
highest element is myArray[4]. The runtime knows that the array cannot have an index

| 298

Day 9

value of 5, so it throws an error to indicate that something unusual, or exceptional, hap-
pened. When you run this program, you might receive a window that gives you an excep-
tion error such as the one shown in Figure 9.1. Additionally, you will see a message
similar to the following displayed by the runtime:

Unhandled Exception: System.IndexOutOfRangeException: Index was outside the boun

ds of the array.
at Error.Main()

The text was actually generated from an underlying object that you are using in your
program—the array.

FlGURE 9.1 Just-In-Time [IE'IIIQSWIE.

An exception error AUSH IR = R iart hes occurred n
being displayed by the

runtime.

—Possble Debucgers
Navi Irstance of Mo LR Debuagar
Mew irstance of Miovo: weelapenent Environmens

™ Set the curertly selected debugger as the defaul,

Doy weank b debug wsing the selected debugger?

=l « |

The results of Listing 9.1 are not pretty and are not what you want your users to see. For
a program to be user-friendly, you need to be able to handle these exception errors in a
much friendlier manner. Additionally, this program abruptly stopped when the exception
occurred. You will also want to be able to maintain control of your programs if these
exceptions occur.

'I'il] Make a modification to Listing 9.1: Print the value of each array element
after it is assigned. This can be done by adding the following after Line 14:

Console.WriteLine("myArray[{0}] equals {1}", ctr, myArray[ctr]);
You will see that the listing stops before printing myArray[5] .

Exception Handling
- Exception handling refers to handling runtime errors such as the one created in
New Term

Listing 9.1. You can add code to your programs that catch the problems and

Handling Problems in Your Programs: Exceptions and Errors 299 |

provide cleaner results than pop-up boxes, terminated programs, and cryptic messages.
To do this, you use the try and catch keywords.

Using try and catch

The try and catch keywords are the key to exception handling. The try command enables
you to put a wrapper around a block of code that helps you route any problems (excep-
tions) that might occur.

The catch keyword enables you to catch the exceptions that the try command routes. By
using a catch, you get the chance to execute code and control what happens rather than
letting the program terminate. Listing 9.2 illustrates a basic use of the try and catch com-
mands.

LISTING 9.2 Trylt.cs—Using try-catch

1: // Trylt.cs

2: [/ A program that throws an exception

3: //

4: using System;

5:

6: class Trylt

7: |

8: public static void Main()

9: {

10: int [] myArray = new int[5];

11:

12: try

13: {

14: for (int ctr = 0; ctr < 10; ctr++) // Array only has 5 ele-

wmnents!

15: {

16: myArray[ctr] = ctr;

17: }

18: }

19:
20: catch
21: {
22: Console.WriteLine("The exception was caught!");
23: }
24:
25: Console.WriteLine("At end of class");
25: }
27: }

The exception was caught!
(O VIR At cnd of class

300 Day 9

This listing is similar to Listing 9.1, but it has basic exception handling added
using try and catch. In this version of the listing, the main code is wrapped in a
try statement, which starts in Line 12. It uses braces (Lines 13 and 18) to enclose a block
of code that is to be watched for exceptions. In this listing, the code that manipulates the
array is enclosed in the try statement.

Following the try statement is a catch statement that starts in Line 20 and includes the
statements between its braces (Lines 21 and 23). If an exception is found while executing
the code within the try statement, control immediately goes to the catch statement.
Instead of the results you saw in Listing 9.1, in which a cryptic message was displayed
and the program ended, in this listing the code within the catch statement’s block exe-
cutes. The program then continues to operate. In Listing 9.2, the catch statement prints a
message and the program flow then continues. Line 25, which contains a call to the
writeLine method, is still executed.

Catching Exception Information

In Listing 9.2, the catch statement catches any exception that might occur within the try
statement’s code. In addition to generically catching thrown exceptions, you can deter-
mine which exception was thrown by including a parameter on your catch. The format of
the catch is as follows:

catch(System.Exception e) {}

The catch statement can receive the exception as a parameter. In this example, the excep-
tion is a variable named e. You could call this something more descriptive, but for this
example, the name e works.

You can see that e is of type System.Exception, a fully qualified name meaning that the
Exception type is defined in the system namespace. If you include the system statement
with a using statement, you can shorten the catch call to this:

catch(Exception e) {}

The Exception type variable e contains descriptive information on the specific exception
that was caused. Listing 9.3 is a modified version of Listing 9.2, containing a catch state-
ment that receives any exceptions as a parameter. The changed lines are in boldface.

LisTING 9.3 Trylt2.cs—Catching Exception Information

1 /] TryIt2.cs

2 // A program that throws an exception

3: |/===
4: using System;

Handling Problems in Your Programs: Exceptions and Errors 301 |

LisTING 9.3 continued

5:
6: class TryIt2
7:
8

{
public static void Main()
9: {
10: int [] myArray = new int[5];
11:
12: try
13: {
14: for (int ctr = 0; ctr < 10; ctr++) // Array only has 5 ele-
wnents!
15: {
16: myArray[ctr] = ctr;
17: }
18: }
19:
20: catch(Exception e)
21: {
22: Console.WriteLine("The following exception was caught:\n{@0}", e);
23: }
24:
25: Console.WriteLine("At end of class");
26: }
27: }
The following exception was caught:
System.IndexOutOfRangeException: Index was outside the bounds of the
array.

at TryIt2.Main()

At end of class

Listing 9.3 doesn’t do much with the exception; however, you can gain a lot of
ANALYSIS | . . . S .
information from what it does. In Line 22, e is printed using the writeLine
method. This displays information on the exception. Looking at the output, you see that
the value of e indicates that the exception thrown was an IndexOutOfRangeException and
occurred in the mMain() method of the myappclass—which is your program’s class.

This listing catches all exceptions that occur within the try statement. The error printed
is based on the type of exception executed. You can actually add code to your program to
work with specific errors.

| 302

Day 9

N“tﬂ Once again, the exception was caught and the program continued to exe-
cute. Using a catch statement, you can prevent weird error messages from

being automatically displayed. Additionally, the program doesn’t terminate
at the moment the exception occurs.

Using Multiple catches for a Single try

The catch statement in Listing 9.2 is rather general. It can catch any exception that might
have occurred in the code within the try statement code. You can include a catch state-
ment that is more specific—in fact, you can write a catch statement for a specific excep-
tion. Listing 9.4 includes a catch statement that captures the exception you are already
familiar With—IndexOutOfRangeException.

LisTiING 9.4 Catchindex.cs—Catching a Specific Exception

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:

// CatchIndex.cs
// A program that throws an exception

using System;

class CatchIndex

{
public static void Main()
{
int [] myArray = new int[5];
try
{
for (int ctr = @; ctr < 10; ctr++) // Array only has 5 ele-
wments!
{
myArray[ctr] = ctr;
}
}
catch (IndexOutOfRangeException e)
{
Console.WritelLine(
="You were very goofy trying to use a bad array index!!", e);
}

catch (Exception e)

{
}

Console.WriteLine("Exception caught: {0}", e);

Handling Problems in Your Programs: Exceptions and Errors 303|

LISTING 9.4 continued

29:

30: Console.WriteLine("\nDone with the catch statements. Done with pro-
wgram.");

31: }

32: }

You were very goofy trying to use a bad array index!!
Ourtput

Done with the catch statements. Done with program.

This listing uses the same array and the same try command that you used in the
previous listings, but Lines 20-23 feature something new. Instead of having a
parameter for a general exception, the catch statement in Line 20 has a parameter for an
IndexOutOfRangeException type. Like the general Exception type, this is in the System
namespace. Just as its name implies, this exception type is specifically for indexes that
go out of range. This catch statement captures only this type of exception, though.

To be prepared for other exceptions that might occur, a second catch statement is
included in Lines 25-28. This catch includes the general Exception type parameter, so it
will catch any other exceptions that might occur. Replace Line 16 of Listing 9.4 with the
following:

16: myArray[ctr] = 100/ctr; /] division by zero....

When you recompile and run the program, you will get the following output:

Exception caught: System.DivideByZeroException: Attempted to divide by zero.
at CatchIndex2.Main()

Done with the catch statements. Done with program.

The new Line 16 causes a different error. The first time through the for loop in Line 14,
ctr is equal to o. Line 16 ends up dividing 100 by @ (ctr). Division by o is not legal
because it creates an infinite number, and thus an exception is thrown. This is not an
index out of range, so the catch statement in Line 20 is ignored because it doesn’t match
the 1ndexOutOfRangeException type. The catch in Line 25 can work with any exception and
thus is executed. Line 27 prints the statement "Exception Caught", followed by the excep-
tion description obtained with the variable e. As you can see by the output, the exception
thrown is a DivideByZeroException.

Understanding the Order of Handling Exceptions

In Listing 9.4, the order of the two catch statements is very important. You always
include the more specific exceptions first and the most general exception last. Starting
with the original Listing 9.4, if you change the order of the two catch statements:

304 Day 9

catch (Exception e)

{
Console.WritelLine("Exception caught: {0}", e);
}
catch (IndexOutOfRangeException e)
{
Console.WritelLine(
="You were very goofy trying to use a bad array index!!", e);
}

When you recompile, you get an error. Because the general catch(Exception e) catches
all the exceptions, no other catch statements are executed.

Adding Finality with finally
Sometimes you will want to execute a block of code regardless of whether the code in a

try statement succeeds or fails. C# provides the finally keyword to take care of this (see
Listing 9.5). The code in a finally block always executes.

LisTING 9.5 Final.cs—Using the finally Keyword

1: // Final.cs

2: // A program that throws an exception

3: [/==============================SSS==Ss=ss===ss==
4: using System;

5:

6: class Final

7: |

8: public static void Main()

9: {

10: int [] myArray = new int[5];

11:

12: try

13: {

14: for (int ctr = @; ctr < 10; ctr++) // Array only has 5 ele-

wments!

15: {

16: myArray[ctr] = ctr;

17: }

18: }

19:
20: // catch
21: /] {
22: /] Console.WritelLine("Exception caught");
23: /] }
24:

25: finally

Handling Problems in Your Programs: Exceptions and Errors 305 |

LISTING 9.5 continued

26: {

27: Console.WriteLine("Done with exception handling");
28: }

29:

30: Console.WriteLine("End of Program");

31: }

32:

Cad

= the bounds of the array.

.IndexOutOfRangeException was thrown.
at Final.Main()

Done with exception handling

Listing 9.5 1is the same listing you saw before. The key change to this listing is
in Lines 25-28: A finally clause has been added. In this listing, the finally

clause prints a message. It is important to note that even though the exception was not
caught by a catch clause (Lines 20-23 are commented out), the finally still executed
before the program terminated. The writeLine command in Line 30, however, doesn’t

Unhandled Exception: System.IndexOutOfRangeException: Index was outside
Output

execute.

Remove the comments from Lines 20-23 and rerun the program. This time, you receive
the following output:

Exception caught.
01NNl Done with exception handling
End of Program

The use of a catch does not preclude the finally code from happening. Now change
Line 14 to the following:

14: for (int ctr = 0; ctr < 5; ctr++)

Then recompile and run the program; you will get the following output:

Done with exception handling
(OINIIM End of Program

Notice that this change to Line 14 removed the problem that was causing the exception

to occur. This means that the listing ran without problems. As you can see from the out-
put, the finally block was still executed. The finally block will be executed regardless

of what else happens.

Now is a good time to show a more robust example that uses exception handling.
Listing 9.6 illustrates a more practical program.

306 Day 9

LisTING 9.6 ListFile.cs—Using Exception Handling

1: // ListFile.cs - program to print a listing to the console
N R R R R
3:

4: using System;

5: using System.IO;

6:

7: class ListFile

8: {

9: public static void Main(string[] args)

10: {

11: try

12: {

13:

14: int ctr=0;

15: if (args.Length <= 0)

16: {

17: Console.WriteLine("Format: ListFile filename");
18: return;

19: }
20: else
21: {
22: FileStream fstr = new FileStream(args[0], FileMode.Open);
23: try
24: {
25: StreamReader sReader = new StreamReader(fstr);
26: string line;
27: while ((line = sReader.ReadlLine()) != null)
28: {
29: ctr++;
30: Console.WriteLine("{@}: {1}", ctr, line);
31: }
32: }
33: catch(Exception e)
34: {
35: Console.WriteLine("Exception during read/write: {@}\n", e);
36: }
37: finally
38: {
39: fstr.Close();
40: }
41: }
42: }
43:
44: catch (System.IO.FileNotFoundException)
45: {
46: console.WriteLine ("ListFile could not find the file {0}", args[0]);
47: }

48: catch (Exception e)

Handling Problems in Your Programs: Exceptions and Errors 307 |

LISTING 9.6 continued

49: {

50: Console.WriteLine("Exception: {@}\n\n", e);
51: }

52: }

53: }

If you run this program, you get the output displayed. You need to include a file-
name as a parameter to the program. If you run this program with ListFile.cs as
the parameter, the output will be the listing with line numbers:

ANALYSIS

Format: ListFile filename
OutpuT

1: // ListFile.cs - program to print a listing to the console
oureur [P At

3:

4: using System;

5: using System.IO;

6:

7: class ListFile

8: {

9: public static void Main(string[] args)

10: {

11: try

12: {

13:

14: int ctr=0;

15: if (args.Length <=0)

16: {

17: Cconsole.WriteLine("Format: ListFile filename");
18: return;

19: }
20: else
21: {
22: FileStream fstr = new FileStream(args[0], FileMode.Open);
23: try
24: {
25: StreamReader sReader = new StreamReader(fstr);
26: string line;
27: while ((line = sReader.ReadlLine()) != null)
28: {
29: ctr++;
30: Console.WriteLine("{@}: {1}", ctr, line);
31: }
32: }
33: catch(Exception e)
34: {
35: Console.WritelLine("Exception during read/write:

={0}\n", e);

308 Day 9
36: }
37: finally
38: {
39: fstr.Close();
40: }
41: }
42: }
43:
44: catch (System.IO.FileNotFoundException)
45: {
46: Console.WriteLine ("ListFile could not find the file {0}",
=args[0]);
47: }
48: catch (Exception e)
49: {
50: console.WriteLine("Exception: {@}\n\n", e);
51: }
52: }
53: }

You can add different filenames and get the same results if the file exists. If you enter a
file that doesn’t exist, you get the following message (the filename xxx was used):

ListFile could not find the file xxx

Notice that the program isn’t presenting the user with cryptic exception messages from
the runtime. Instead, it is trying to provide useful information back to the user on what
happened. This is done with a combination of programming logic and exception han-
dling.

This listing incorporates everything you’ve been learning. In Lines 4-5, you see that not
only is the System namespace being used, but so is the 10 namespace within System. The
10 namespace contains routines for sending and receiving information (input/output).

In Line 7, you see the start of the main application class, ListFile. This class has a Main
routine, where program execution starts. In Line 9, the main method receives a string
array named args as a parameter. The values within args are obtained from the com-
mand-line arguments that you include when you run the program.

Line 11 starts the code that is the focus of today’s lesson. In this line, a try block is
declared. This try block encompasses the code from Line 11 to Line 42. You can see that
this try block has lots of code in it, including another try command. If any of the code
within this try block causes an exception to occur—and not be handled— the try state-
ment fails and control goes to its catch blocks. It is important to note that only unhandled
exceptions within this try block cause flow to go to this try’s catch statements.

Handling Problems in Your Programs: Exceptions and Errors

309 |

Two catch blocks are defined for this overriding try statement. The first, in Lines 4447,
catches a specific exception, FileNotFoundException. For clarity’s sake, the exception
name is fully qualified; however, you could have chosen to shorten this to just the excep-
tion type because System.10 was included in Line 5. The FileNotFoundException occurs
when you try to use a file that does not exist. In this case, if the file doesn’t exist, a sim-
ple message is printed in Line 46 that states the file couldn’t be found.

Although the FileNotFoundException is expected with this program, Lines 48-51 were
added in case an unexpected exception happens. This allows a graceful exit instead of
relying on the runtime.

Digging deeper into the code within the try statement, you get a better understanding of
what this program is doing. In Line 14, a simple counter variable, ctr, is created, which
is used to place line numbers on a listing.

Line 15 contains programming logic that checks to make sure that users include a file-
name when they run the program. If a filename is not included, you want to exit the pro-
gram. In Line 15, an if statement checks the value of the Length property of the args
string. If the length is less than or equal to @, no command-line parameters were entered.
The user should have entered at least one item as a command-line parameter. If no items
were entered, a descriptive message is presented to the reader and the object is ended
using the return statement.

If a command-line parameter is entered—args.Length is greater than e—the else state-
ment in Lines 20—41 is executed. In Line 22, a new object named fstr is created. This
object is of type FileStream, which has a constructor that takes two arguments. The first
is a filename. The filename that you are passing is the filename entered by the user and,
thus, is available in the first element of the args array. This is args[e]. The second para-
meter is an indicator of what to do. In this case, you are passing a value named
FileMode.Open, which indicates to the FileStream object that it should open a file so that
you can read its contents. The file that is opened is referenced using the FileStream object
that you are creating, fstr.

If Line 22 fails and throws an exception, it goes to the catch in Line 44. Line 44 contains
the catch for the closest try statement (without having gone past it).

Line 23 starts a new try block that has its own catch statement in Line 33. Line 25 cre-
ates a variable named t of type StreamReader. This variable is associated to the file that
you opened in Line 22 with the variable fstr. The file is treated as a stream of characters
flowing into your program. The t variable is used to read this stream of characters.

Line 26 contains a string variable named line, which is used to hold a group of charac-
ters that are being streamed into your program. In Line 27, you see how 1ine is used.

|310

Day 9

Line 27 does a lot, so it is worth dissecting. First, a line of characters is streamed into
your program using sReader. The StreamReader type has a method named ReadLine that
provides a line of characters. A line of characters is all the characters up until a newline
character is found. Because t was associated with fstr and fstr is associated with the
file the reader entered, the ReadLine method returns the next line of characters from the
user’s file. This line of characters is then assigned to the line string variable. After read-
ing this line of characters and placing it into the 1ine variable, the value is compared to
null. If the string returned was null, it was either the end of the file or a bad read. Either
way, there is no reason to continue processing the file after the nu11 value is encountered.

If the characters read and placed into line are not equal to null, the while statement
processes its block commands. In this case, the line counter, ctr, is incremented and the
line of text is printed. The printing includes the line number, a colon, and the text from
the file that is in the 1ine variable. This processing continues until a null is found.

If anything goes wrong in reading a line of the file, an exception most likely is thrown.
Lines 33-36 catch any exceptions that might occur and add additional descriptive text to
the exception message. This catch prevents the runtime from taking over. Additionally, it
helps you and your users by giving additional information on where the error occurred.

Lines 37—40 contain a finally that is also associated with the try in Line 23. This
finally does one thing: It closes the file that was opened in Line 22. Because Line 22
was successful—if it had not been successful, it would have tossed an exception and pro-
gram flow would have gone to Line 44’s catch statement—the file needs to be closed
before the program ends. Whether an exception occurs in Lines 24—-32 or not, the file
should still be closed before leaving the program. The finally clause makes sure that the
close method is called.

As you can see from this listing, try-catch-finally statements can be nested. Not only
that, but they also can be used to make your programs much more friendly for your
users.

N t A program very similar to ListFile was used to add the line numbers to the
ote R
listings in this book.

Common Exceptions

A number of exceptions are defined in the .NET Framework classes. You have seen a
couple already. Table 9.1 lists many of the common exception classes within the System
namespace.

Handling Problems in Your Programs: Exceptions and Errors

311|

TABLE 9.1

Common Exceptions in the system Namespace

Exception Name

Description

MemberAccessException

ArgumentException

ArgumentNullException

ArithmeticException

ArrayTypeMismatchException

DivideByZeroException

FormatException

IndexOutOfRangeException

InvalidCastException

MulticastNotSupportedException

NotFiniteNumberException

NotSupportedException

NullReferenceException

OutOfMemoryException

Access error.

A type member, such as a method, cannot be accessed.
Argument error.

A method’s argument is not valid.

Null argument.

A method was passed a null argument that cannot be
accepted.

Math error.

An exception caused because of a math operation. This is
more general than DivideByZeroException and
OverflowException.

Array type mismatch. This is thrown when you try to store
an incompatible type into an array.

Divide by zero.

Caused by an attempt to divide by zero.
Format is incorrect.

An argument has the wrong format.
Index is out of range.

Caused when an index is used that is less than @ or higher
than the top value of the array’s index.

Invalid cast. This is caused when an explicit conversion
fails.

Multicast not supported. This is caused when the combina-
tion of two non-null delegates fails. (Delegates are covered
on Day 13, “Making Your Programs React with Delegates,
Events, and Indexers.”)

Not a finite number. The number is not valid.

Method is not supported. This indicates that a method is
being called that is not implemented within the class.

Reference to null. This is caused when you refer to a refer-
ence object that is null.

Out of memory. This is caused when memory is not avail-
able for a new statement to allocate.

312 Day 9
TABLE 9.1 continued
Exception Name Description
OverflowException Overflow. This is caused by a math operation that assigns a

value that is too large (or too small) when the checked key-
word is used.

StackOverflowException Stack overflow. This is caused when too many commands
are on the stack.

TypelnitializationException Bad type initialization. This is caused when a static con-
structor has a problem.

NlltB Table 9.1 provides the name with the assumption that you've included a
using statement with the System namespace; otherwise, you need to fully

qualify these names using System.ExceptionName, where ExceptionName is
the name provided in the table.

Defining Your Own Exception Classes

In addition to the exceptions that have been defined in the framework, you can create
your own. In C#, it is preferred that you throw an exception instead of pass back a lot of
different error codes. Because of this, it is also important that your code always include
exception handling in case an exception is thrown. Although this adds more lines of code
to your programs, it can make them much more friendly to your users.

After you create your own exception, you will want to cause it to occur. To cause an
exception to occur, you throw the exception. To throw your own exception, you use the
throw keyword.

You can throw a predefined exception or your own exception. Predefined exceptions are
any that have been previously defined in any of the namespaces you are using. For exam-
ple, you can actually throw any of the exceptions that were listed in Table 9.1. To do this,
you use the throw keyword in the following format:

throw(exception);

If the exception doesn’t already exist, you also will need to include the new keyword to
create the exception. For example, Listing 9.7 throws a new DivideByZeroException
exception. Granted, this listing is pretty pointless; however, it does illustrate the throw
keyword in its most basic form.

Handling Problems in Your Programs: Exceptions and Errors 313 |

Nﬂtﬂ The use of parentheses with the throw keyword is optional. The following
two lines are the equivalent:

throw(exception);

throw exception;

LISTING 9.7 Zero.cs—Throwing an Exception

1: /| Zero.cs

2: // Throwing a predefined exception.

3: // This listing gives a runtime exception error!
4: [/

5: using System;

6:

7: class Zero

8: {

9: public static void Main()

10: {

11: Console.WriteLine("Before Exception...");
12: throw(new DivideByZeroException());

13: Console.WriteLine("After Exception...");
14: }

15: }

Before Exception...
Output

Unhandled Exception: System.DivideByZeroException: Attempted to divide
=bhy zero.

at Zero.Main()

This listing does nothing other than print messages and throw a
DivideByZeroException exception in Line 12. When this program executes, you
get a runtime error that indicates the exception was thrown. It’s simple but impractical.

ANALYSIS

When you compile this listing, you get a compiler warning:
Zero.cs(13,7): warning CS@162: Unreachable code detected

This is because Line 13 will never be executed: The throw command terminates the pro-
gram. Remember, a throw command leaves the current routine immediately. You can
remove Line 13 from the listing—because it would never execute anyway—to avoid the
compiler warning. It was added to this listing to emphasize what an exception does to
program flow.

1314 Day 9

Nlltﬂ 1You could replace the DivideByZeroException with any of the exceptions
listed in Table 9.1. The output would display the appropriate information.

Throwing Your Own Exceptions

Also possible—and more valuable—is being able to create and throw your own excep-
tions. To create your own exception, you must first declare it. Use the following format:

class ExceptionName : Exception {}

Here, ExceptionName is the name your exception will have. You can tell from this line of
code that your exception is a class type. The rest of this line tells you that your exception
is related to an existing class named Exception. You will learn more about this relation-
ship in tomorrow’s lessons on inheritance.

"p End your exception name with the word Exception. If you look at Table 9.1,
you will see that this tip follows suit with the predefined exceptions.

One line of code is all that it takes to create your own exception that can then be caught.
Listing 9.8 illustrates creating and throwing your own exception.

LisTING 9.8 MathApp.cs—Creating and Throwing Your Own Exception

1: // MathApp.cs

2: [/ Throwing your own error.

3: [[===
4: using System;

5:

6: class MyThreeException : Exception {}

7:

8: class MathApp

9: {
10: public static void Main()
11: {
12: int result;
13:
14: try
15: {
16: result = MyMath.AddEm(1, 2);
17: Console.WriteLine("Result of AddEm(1, 2) is {0}", result);
18:

19: result = MyMath.AddEm(3, 4);

Handling Problems in Your Programs: Exceptions and Errors 315 |

LiSTING 9.8 continued

20: Console.WriteLine("Result of AddEm(3, 4) is {0}", result);
21: }

22:

23: catch (MyThreeException)

24: {

25: Console.WriteLine("Ack! We don't like adding threes.");
26: }

27:

28: catch (Exception e)

29: {

30: Console.WritelLine("Exception caught: {0}", e);
31: }

32:

33: Console.WriteLine("\nAt end of program");

34: }

35: }

36:

37: class MyMath

38: {

39: static public int AddEm(int x, int y)

40: {

41: if(x == 3 || y == 3)

42: throw(new MyThreeException());

43:

44: return(x +y);

45: }

46: }

o Result of AddEm(1, 2) is 3
UTPUT Ack! We don't like adding threes.

This listing shows you how to create your own exception named
ANALYSIS

At end of program

MyThreeException. This exception is defined in Line 6 using the format you
learned earlier. This enables you to throw a basic exception.

Before jumping into mathapp, first look at the second class in Lines 37—46. This class
named MyMath contains only a simple static method named Addem. The AddEm method adds
two numbers and returns the result. In Line 41, an if condition checks to see whether
either of the values passed to Addem is equal to 3; if so, an exception is thrown. This is the
MyThreeException that you declared in Line 6.

In Lines 8-34, you have the Main routine for mathApp. This routine calls the Addem method.
These calls are done within a try statement, so if any exceptions are thrown, it is ready to
react. In Line 16, the first call to Addem occurs using the values 1 and 2. These values

|316

Day 9

don’t throw an exception, so program flow continues. Line 19 calls the Addem method
again. This time the first argument is a 3, which results in the Addem method throwing the
MyThreeException. Line 23 contains a catch statement that is looking for a
MyThreeException and thus catches and takes care of it.

If you don’t catch the exception, the runtime throws an exception message for you. If
you comment out Lines 23-26 of Listing 9.8, you get output similar to the following
when you compile and rerun the program:
Result of AddEm(1, 2) is 3
Exception caught: MyThreeException: Exception of type MyThreeException was
=thrown.

at MyMath.AddEm(Int32 x, Int32 y)

at MathApp.Main()
At end of program

This is the same type of message that any other exception receives. You can also pass a
parameter to the catch class that handles your exception. This parameter contains the
information for the general system message. For example, change Lines 23-26 to the fol-
lowing:

23: catch (MyThreeException e)

24: {

25: Console.WriteLine("Ack! We don't like adding threes. \n {0}" ,
=e);

26: }

You will see the following results (this assumes that you uncommented the lines as well):

Result of AddEm(1, 2) is 3

Ack! We don't like adding threes.

MyThreeException: An exception of type MyThreeException was thrown.
at MathApp.Main()

At end of program

Your new exception is as fully functioning as any of the existing exceptions.

“I] Listing 9.8 creates a basic exception. To be more complete, you should

include three constructors for your new exception. The details of these over-
loads will become clearer after tomorrow’s lesson on inheritance. For now,
you should know that you are being more complete by including the follow-
ing code, which contains three constructors:

class MyThreeException : Exception

{
public MyThreeException()

{

Handling Problems in Your Programs: Exceptions and Errors

317|

}

public MyThreeException(string e) : base (e)
{
}

public MyThreeException(string e, Exception inner)
base (e, inner)
{
}
}

You can replace the exception name of MyThreeException with your own
exception.

Rethrowing an Exception

It should come as no surprise that if you can throw your own exceptions, and if you can
throw system expressions, it is also possible to rethrow an existing exception. Why might
you want to do this? And when would you want to do this?

As you have seen, you can catch an exception and execute your own code in reaction. If
you do this in a class that was called by another class, you might want to let the caller
know there was a problem. Before letting the caller know, you might want to do some
processing of your own.

Consider an example based on an earlier program. You could create a class that opens a
file, counts the number of characters in the file, and returns this to a calling program. If

you get an error when you open the file to begin your count, an exception will be thrown.

You can catch this exception, set the count to o, and return to the calling program.
However, the calling program won’t know that there was a problem opening the file. It
will see only that the number of bytes returned was o.

A Dbetter action to take is to set the number of characters to o and then rethrow the error
for the calling program. This way, the calling program knows exactly what happened and
can react, if necessary.

To rethrow the error, you need to include a parameter in your catch statement. This para-
meter should be of the error type. The following code illustrates how the generic catch
statement could rethrow an exception that was caught:

catch (Exception e)
{

/1 My personal exception logic here

318 Day 9

throw (e); // e is the argument received by this catch
}
Nﬂtﬂ As you begin to build more detailed applications, you might want to look
deeper into exception handling. You have learned the most important fea-

tures of exception handling today, but you can do a lot more with them.
Such topics are beyond the scope of this book, however.

Using checked Versus unchecked Statements

Two additional C# keywords can make an impact on exceptions being thrown. These are
checked and unchecked. If the code is checked and a value is placed in a variable that is
too big or too small, an exception will occur. If the code is unchecked, the value placed
will be truncated to fit within the variable. Listing 9.9 illustrates these two keywords in
use.

LisTING 9.9 Checklt.cs—Using the checked Keyword

1: // CheckIt.cs

2: /]

3:

4: using System;

5:

6: class CheckIt

7: |

8: public static void Main()

9: {

10: int result;

11: const int topval = 2147483647;
12:

13: for(long ctr = topval - 5L; ctr < (topval+iQL); ctr++)
14:

15: checked

16: {

17: result = (int) ctr;

18: Console.WriteLine("{@} assigned from {1}", result, ctr);
19: }
20: }
21: }

Handling Problems in Your Programs: Exceptions and Errors 319|

You get the following error output; you also get an exception:
OurtpuT g & P ¥ g P
2147483642 assigned from 2147483642

2147483643 assigned from 2147483643
2147483644 assigned from 2147483644
2147483645 assigned from 2147483645
2147483646 assigned from 2147483646
2147483647 assigned from 2147483647

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow.
at CheckIt.Main()

In Line 11 of this listing, a variable named topval is created as a constant vari-
ANALYSIS . . .

able that contains the largest value that a regular integer variable can hold,
2147483647. The for loop in Line 13 loops to a value that is 10 higher than this top value.
This is being placed in a long variable, which is okay. In Line 17, however, the ctr value
is being explicitly placed into result, which is an integer. When you execute this listing,
you receive an error because the code in Lines 16—19 is checked. This code tries to assign
a value to result that is larger than the largest value it can hold.

Nﬂtﬂ If you remove the +10 from Line 13 of the listing and compile it, you will see
that the listing works. This is because there is nothing wrong. It is when you

try to go above the topval that the overflow error occurs.

You should now change this listing to use the unchecked keyword. Change Line 15 in the
listing to the following:

13: unchecked

Recompile and execute the listing. The listing will compile this time; however, the output
might be unexpected results. The output this time is as follows:

2147483642 assigned from 2147483642
2147483643 assigned from 2147483643
2147483644 assigned from 2147483644
2147483645 assigned from 2147483645
2147483646 assigned from 2147483646
2147483647 assigned from 2147483647
-2147483648 assigned from 2147483648
-2147483647 assigned from 2147483649
-2147483646 assigned from 2147483650
-2147483645 assigned from 2147483651
-2147483644 assigned from 2147483652
-2147483643 assigned from 2147483653

| 320

Day 9

-2147483642 assigned from 2147483654
-2147483641 assigned from 2147483655
-2147483640 assigned from 2147483656

You should notice that this time, an exception was not thrown because the code was
unchecked. The results, however, are not what you would want.

Formats for checked and unchecked

Within Listing 9.9, checked and unchecked were used as statements. The format of these
was as follows:

[un]checked { //statements }

You can also use these as operators. The format of using these keywords as operators is
shown here:

[un]checked (expression)

Here, the expression being checked, or unchecked, is between the parentheses.

[:a“tiu“ You should not assume that checked or unchecked is the default. checked is
generally defaulted; however, factors can change this. You can force check-

ing to occur by including /checked in your command-line compiler. If you are
using an integrated development tool, you should be able to select a
checked item on your compile options. You can force checking to be ignored
by using /checked- at the command line.

What Is Debugging?

When something goes unexpectedly wrong with the compilation or execution of a pro-
gram, it is up to you to determine what the problem is. In small programs such as those
used as examples in this book, it is usually relatively easy to look through the listing to
figure out what the problem is. In larger programs, finding the error can be much harder.

The process of looking for and removing an error is called debugging. An error

is often referred to as a bug in a program. One of the first computer problems
was caused by a bug—specifically, a moth. This bug was found in the computer and
removed. Although this error was caused by an actual bug, it has become common to
refer to all computer errors as bugs.

Handling Problems in Your Programs: Exceptions and Errors 321 |

N“tﬂ Knowing that this bug was a moth was a million-dollar question on Who
Wants to Be a Millionaire? It is good to know that such trivial facts can

sometimes become very valuable to know.

Understanding the Types of Errors

As you learned on one of the first days of this book, a number of different types
of errors exist. Most errors must be caught before you can run your program.

The compiler catches these problems and lets you know about them in the form of errors
and warnings. Other errors are harder to find. For example, you can write a program that
compiles with no errors but that doesn’t perform as you expect. These errors are called
logic errors. You can also cleanly compile a listing but run into errors when the end user
enters bad information, when data is received that your program does not expect, when
data is missing, or when any of a nearly infinite number of things is not quite right.

Finding Errors

You will find two standard types of errors: syntax errors and runtime errors.

Encountering Syntax Errors

Syntax errors are generally identified when you compile your listing. At compile time,
the compiler identifies these problems with errors and warnings. The compiler provides
the location of these errors with a description.

Encountering Runtime Errors

Runtime errors are caused by several issues. You’ve learned to prevent some of these
from crashing your programs by adding exception handling to your programs. For exam-
ple, if a program tries to open a file that doesn’t exist, an exception is thrown. By adding
exception handling, you can catch and handle runtime exception errors.

Other runtime errors can be caused by a user entering bad information. For example, if
you use an integer to capture a person’s age, the user could theoretically enter 30,000 or
some other invalid number. This won’t throw an exception or cause any other type of
error. However, it is still a problem for your program because it is bad data. This type of
issue is easily resolved with a little extra programming logic to check the value entered
by the user of the program.

| 322

Day 9

A number of runtime errors are harder to find. These are logic errors that are syntacti-
cally correct and that don’t cause the program to crash. Instead, they provide you with
erroneous results. These runtime errors, along with some of the more complex excep-
tions, might require you to employ more effort to find them than simply reading through
your listing’s code. These errors require serious debugging.

Some of the ways you can find these more complex errors include walking through your
code line by line. You can do this by hand or you can use an automated tool such as a
debugger. You can also use a few of the features provided within C# to find the errors.
This includes using directives or using a couple of built-in classes.

Tracing Code with Code Walkthroughs

A code walkthrough involves reading your code one line at a time. You start at

the first line of code that would execute and read each line as it would be
encountered. You can also read through each class definition to verify that the logic is
contained correctly within the class. This is a tedious, long process that, when done by
hand, can take a lot of time and is prone to errors. The positive side of doing these man-
ual code walkthroughs is that you should understand fully the code within your program.

NI]IB Many companies have code walkthroughs as a standard part of the develop-
ment process. Generally, these involve sitting down with one or more other

people on a project and reading through the code together. It is your job in
these walkthroughs to explain the code to the other participants. You might
think that there is little value to this; however, often you will find better
ways to complete the same task.

Working with Preprocessor Directives

C# provides a number of directives that can be used within your code. These directives
can determine how the compiler treats your code. If you have programmed in C or C++,
you might be familiar with directives such as these. In C#, however, there are fewer
directives. Table 9.2 presents the directives available in C#. The following sections cover
the more important of these.

Handling Problems in Your Programs: Exceptions and Errors 323 |

Nﬂtﬂ In C and C++, these directives are called preprocessor directives because,
before compiling the code, the compiler preprocesses the listing and evalu-
ates any preprocessor directives. The name preprocessor is still associated
with these directives; however, preprocessing isn‘t necessary for the compiler
to evaluate them.

TABLE 9.2 C# Directives

Directive Description

#define Defines a symbol.

#else Starts an else block.

#elif Combination of an else statement and an if statement.

#endregion Identifies the end of a region.

#endif Ends an #if statement.

#if Tests a value.

#error Sends a specified error message when compiled.

#line Specifies a line source code line number. It can also include a filename that will
appear in the output.

#region Identifies the start of a region. A region is a section of code that can be expanded
or collapsed in an IDE.

#undef Undefines a symbol.

#warning Sends a specified warning message when compiled.

Preprocessing Declarations

Directives are easy to identify: They start with a pound sign and are the first item on a
coding line. However, directives don’t end with a semicolon.

The first directives to be aware of are #define and #undef. These directives enable you to
define or undefine a symbol that can be used to determine what code is included in your
listings. By being able to exclude or include code in your listing, you can allow the same
code to be used in multiple ways.

One of the most common ways to use these directives is for debugging. When you are
creating a program, you often would like to have it generate extra information that you
won’t want displayed when in production. Instead of adding and removing this code all
the time, you can use defining directives and then define or undefine a value.

| 324

Day 9

The basic format of #define and #undef is
#define xxxx

and

#undef xxxx

Here, xxxx is the name of the symbol being defined or undefined. Listing 9.10 uses a list-
ing from earlier in the book. This listing displays the contents of a file provided on the
command line.

l: t' This listing does not include exception-handling code, so you can create
dution) , o ,
errors. For example, if you try to open a file that doesn’t exist, an exception

will be thrown.

LisTING 9.10 Reading.cs—Using the #define Directive

1: // Reading.cs - Read text from a file.
2: |/ Exception handling left out to keep listing short.
K e R
4:
5: #define DEBUG
6:
7: using System;
8: using System.IO;
9:
10: public class Reading
11 {
12: public static void Main(String[] args)
13: {
14: if(args.Length < 1)
15: {
16: Console.WriteLine("Must include file name.");
17: }
18: else
19: {
20:
21: #if DEBUG
22:
23: Console.WritelLine("==============DEBUG INFQ===============");
24: for (int x = 0; x < args.Length ; x++)
25: {
26: Console.WriteLine("Arg[{0@}] = {1}", X, args[x]);
27: }
28: Console.WritelLine("= ")

29:

Handling Problems in Your Programs: Exceptions and Errors 325 |

LisTING 9.10 continued

30: #endif

31:

32: string buffer;

33:

34: StreamReader myFile = File.OpenText(args[0]);
35:

36: while ((buffer = myFile.ReadLine()) != null)
37: {

38: #if DEBUG

39: Console.Write("{0:D3} - ", buffer.Length);

40: #endif

41: console.WriteLine(buffer);

42: }

43:

44: myFile.Close();

45: }

46: }

47: '}

041 - // Reading.cs - Read text from a file.
054 - // Exception handling left out to keep listing short.

3
000 -

013 - #define DEBUG

000 -

013 - using System;
016 - using System.IO;

000 -

023 - public class Reading

001 - {

041 - public static void Main(String[] args)

004 - {

027 - if(args.Length < 1)

007 - {

055 - Console.WritelLine("Must include file name.");
007 - }

010 - else

007 - {

000 -

009 - #if DEBUG

000 -

064 - Console.WritelLine("==============DEBUG INFQ===============");
043 - for (int x = 0; x < args.Length ; x++)

004 - {

054 - Cconsole.WriteLine("Arg[{0}] = {1}", x, args[x]);

004 -}

326 Day 9

065 - Console.WritelLine("==") |
000 -

006 - #endif

000 -

023 - string buffer;

000 -

054 - StreamReader myFile = File.OpenText(args[0]);
000 -

055 - while ((buffer = myFile.ReadLine()) != null)
010 -

010 - #if DEBUG

046 - Console.Write("{0:D3} - ", buffer.Length);

006 - #endif

039 - Console.WritelLine(buffer);

010 - }

000 -

024 - myFile.Close();

007 - }

004 - }

001 - }

This listing includes a number of directive commands within it. When DEBUG is
ANALYSIS e . » . -
defined, this listing provides additional output. beBuG is defined in Line 5, so
every time this is compiled, it produces the extra output. If you comment out Line 5 (or
remove it) and recompile, the extra information does not get displayed.

What is the extra information? In Line 21, you see another directive being used: the #if
directive. If the value after the #if is defined, this evaluates to true. If it isn’t defined, it
evaluates to false. Because pEBUG was defined in Line 5, the if code is included. If it had
not been, control would have jumped to the #endif statement in Line 30.

Lines 22-29 print the command-line parameters so that you can see what was entered.
Again, when released to production, the DEBUG statement will be left out and this informa-
tion won’t be displayed because it will be dropped out of the listing when compiled.

Line 38 contains a second #if check, again for beBuG. This time, a value is printed at the
beginning of each line. This value is the length of the line being printed. This length
information can be used for debugging purposes. Again, when the listing is released, by
undefining DEBUG, this information won’t be included.

As you can see, defining a value is relatively easy. One of the values of using directives
was to prevent the need to change code; yet, to change whether pesuG is defined, you
must change Line 5 in Listing 9.10. An alternative to this is to define a value when com-

piling.

Handling Problems in Your Programs: Exceptions and Errors 327 |

Defining Values on the Command Line

Remove Line 5 from Listing 9.10 and recompile. You will see that the extra debugging
information is left out. To define peeu without adding Line 5 back into the listing, you
can use the /define flag on the compile option. The format of this compile option is as
follows:

csc /define:DEBUG Reading.cs

Here, DEBUG is any value that you want defined in the listing and Reading.cs is your listing
name. If you compile Listing 9.10 using the /define switch, DEBUG is again defined with-
out the need to change your code. Leaving the /define off the command line stops the
debugging information from being displayed. The end result is that you can turn the
debugging information on and off without needing to change your code.

You can use /d as a shortcut for /define.

Tip

N“tﬂ If you are using an IDE, check its documentation regarding the defining of
directives. A dialog box should enable you to enter symbols to define.

Impact of the Position of #define and #undef

Although it has not been shown, you can also undefine values using #undef. From the
point where the #undef is encountered to the end of the program, the symbol in the #undef
command no longer is defined.

The #undef and the #define directives must occur before any real code in the listing. They
can appear after comments and other directives, but not after a declaration or other code
occurs.

H Neither #define nor #undef can appear in the middle of a listing.
Gaution i PP g

| 328

Day 9

Conditional Processing (#if, #elif, #else, #endif)

As you have already seen, you can use if logic with defined values. C# provides full if
logic by including #if, #elif, #else, and #endif. This gives you if, if...else, and
if...else if logic structures. Regardless of which format you use, you always end with
an #endif directive. You’ve seen #if used in Listing 9.10. A common use of the if logic
is to determine whether the listing being compiled is a development version or a release
version:

#if DEBUG

// do some debug stuff

#elif PRODUCTION

/] do final release stuff

#else

/| display an error regarding the compile
#endif

The listing can produce different results based on the defined values.

Preprocessing Expressions (!, ==, !=, &&, ||)

The if logic with directives can include several operators: !, ==, i=, &&, and | |. These
operate exactly as they do with a standard if statement. The ! checks for the not value.
The == operator checks for equality. The != checks for inequality. Using && checks to see
whether multiple conditions are all true. Using || checks to see whether either condition
is true.

A common check that can be added to your listings is the following:

#if DEBUG && PRODUCTION
//Produce an error and stop compiling

If both pesuG and propucTION are defined, there is most likely a problem. The next section
shows you how to indicate that there was a problem in the preprocessing.

Reporting Errors and Warning in Your Code
(#error, #warning)

Because the directives are a part of your compiling, it makes sense that you would want
them to be capable of indicating warnings and errors. If both bEBUG and PRODUCTION are
defined, there is most likely a serious problem and, thus, an error should occur. You can
cause such an error using the #error directive. If you want the listing to still compile—if
everything else was okay—you can simply produce a warning. You can produce this
warning by using the #warning directive. Listing 9.11 is a modified version of the reading
listing that uses some of these new directives.

Handling Problems in Your Programs: Exceptions and Errors

329 |

LisTING 9.11 Reading2.cs—Using #warning and #error

0N O~ WN =

// Reading2.cs - Read text from a file.
// Exception handling left out to keep listing short.
// Using the #error & #warning directives

#define DEBUG
#define BOOKCHECK

#if DEBUG

#warning Compiled listing in Debug Mode
#endif
#if BOOKCHECK

#warning Compiled listing with Book Check on
#endif
#if DEBUG && PRODUCTION

#error Compiled with both DEBUG and PRODUCTION!
#endif

using System;
using System.IO;

public class Reading2

{
public static void Main(String[] args)
{
if(args.Length < 1)
{
console.WriteLine("Must include file name.");
}
else
{
#if DEBUG
Console .Wr\iteLine("==============DEBUG INFQ===============") ;
for (int x = @0; x < args.Length ; x++)
{
Console.WriteLine("Arg[{0}] = {1}", X, args[x]);
}
Console.WriteLine(" ")
#endif

string buffer;
StreamReader myFile = File.OpenText(args[0]);

while ((buffer = myFile.ReadLine()) != null)

330 Day 9

LiISTING 9.11 continued

49: {

50:

51: #if BOOKCHECK

52:

53: if (buffer.Length > 72)

54: {

55: Console.WriteLine("*** Following line too wide to present in book
b***");

56: }

57: Console.Write("{0:D3} - ", buffer.Length);

58:

59: #endif

60: Console.WritelLine(buffer);

61: }

62:

63: myFile.Close();

64: }

65: }

66: }

When you compile this listing, you receive two warnings:
Output
Reading2.cs(10,12): warning CS1030: #warning: 'Compiled listing in

=Debug Mode'
Reading2.cs(13,12): warning CS1030: #warning: 'Compiled listing with
=Book Check

on'

If you define probucTION on the command line or within your IDE, you get the following
warnings plus an error:

Reading2.cs(10,12): warning CS1030: #warning: 'Compiled listing in Debug Mode'

Reading2.cs(13,12): warning CS1030: #warning: 'Compiled listing with Book Check
on'

Reading2.cs(16,10): error CS1029: #error: 'Compiled with both DEBUG and
PRODUCTION! '

This listing uses the #warning and #error directives in the first few lines of the
listing. Warnings are provided to let the person compiling the listing know what
modes are being used. In this case, there is a bEBUG mode and a BoOKCHECK mode. In

Line 15, a check is done to verify that the listing is not being compiled with both pesua
and ProbucTION defined.

ANALYSIS

N“tﬂ PRODUCTION is defined on the command line using /d:PRODUCTION when com-
piling.

Handling Problems in Your Programs: Exceptions and Errors 331 |

Most of this listing is straightforward. The addition of the BooKCHECK is for me, as the
author of this book. There is a limitation to the width of a line that can be displayed on a
page. This directive is used to include code in Lines 52—58 that check to see whether the
length of the code lines is okay. If a line is longer than 72 characters, a message is writ-
ten to the screen, followed by the line of code with its width included. If the line is not
too long, the line prints normally. By undefining BookcHeCk, I can have this logic
removed.

Changing Line Numbers

Another directive that is provided is the #1ine directive. This directive enables you to
change the number of the lines in your code. The impact of this can be seen when you
print error messages. Listing 9.12 presents a listing using the #1ine directive.

LisTING 9.12 Lines.cs—Using the #1ine Directive

1: // Lines.cs -

N
3:

4: using System;

5:

6: public class Lines

7 A

8: #line 100

9: public static void Main(String[] args)
10: {

11: #warning In Main...

12: Console.WriteLine("In Main....");
13: myMethod1 () ;

14: myMethod2();

15: #warning Done with main

16: Console.WriteLine("Done with Main");
17: }

18:

19: #line 200
20: static void myMethod1 ()
21: {
22: Console.WriteLine("In Method 1");
23: #warning In Method 1...

24: int x; // not used. Will give warning.
25: }

26:

27: #line 300

28: static void myMethod2()

29: {

30: Console.WriteLine("in Method 2");

31: #warning In Method 2...

332 Day 9

LisTING 9.12 continued

32: int y; // not used. Will give warning.
33: }
34: }

You will receive the following warnings when you compile this listing:

Lines.cs(102,16): warning CS1030: #warning: 'In Main...'

Lines.cs(106,16): warning CS1030: #warning: 'Done with main'

Lines.cs(203,16): warning CS1030: #warning: 'In Method 1...'

Lines.cs(303,16): warning CS1030: #warning: 'In Method 2...'
)

Lines.cs (204,11
=never used
Lines.cs(304,11): warning CS0168: The variable 'y
=never used

: warning CS0168: The variable 'x' is declared but

is declared but

The following is the output of the listing:

In Main....
In Method 1
in Method 2
Done with Main

This listing has no practical use; however, it illustrates the #1ine directive. Each
method is started with a different line number. The main listing starts at Line 100
and goes from there. mymMethod1 starts at Line 200 and is numbered from there. mymethod2
starts with Line 300. This enables you to tell which location in the listing has a problem
based on the line number.

You can see in the compiler output that the warnings are numbered based on the #1ine
values, not on the actual line numbers. Obviously, there are not 100 lines in this listing.
These directive line numbers are used in the #warning directives, as well as warnings and
errors produced by the compiler.

You also can return line numbers within a section of the listing back to their default
values:

#line default

This returns the line numbers to their default values from that point in the listing for-
ward.

'I'ip 1If you do ASP.NET development with C#, you will find line numbers useful;
otherwise, it is generally better to stick with the actual line numbers.

Handling Problems in Your Programs: Exceptions and Errors 333|

A Brief Look at Regions

The other directives that you saw in Table 9.2 were #region and #endregion. These direc-
tives are used to block in regions of a code listing. These regions are used by graphical
development environments, such as Visual Studio .NET, to open and collapse code.
#region indicates the beginning of a block. #endregion indicates the end of a block.

Using Debuggers

One of the primary purposes of a debugger is to automate the process of walking through
a program line by line. A debugger enables you to do exactly this—run a program one
line at a time. You can view the value of variables and other data members after each line
of a program lists. You can jump to different parts of the listing, and you can even skip
lines of code to prevent them from happening.

N“tﬂ It is beyond the scope of this book to cover the use of debuggers. IDEs such
as Visual Studio have built-in debuggers. Additionally, the Microsoft .NET

Framework ships with a command-line debugger called CORDBG.

Nﬂtﬂ The base class libraries include some classes that do tracing and debugging.
These classes use DEBUG and TRACE symbols to help display information on
what is happening in a listing. It is beyond the scope of this book to cover
these classes; however, you can check the class library reference for informa-

tion on the Systems.Diagnostics namespace, which includes classes named
Trace and Debug.

Summary

Today you learned about controlling errors and keeping them out of your programs.
Specifically, you learned about exception handling and preprocessor directives.

You learned that the try command is used to check for exceptions that occur. If an excep-
tion is thrown, you can use the catch statement to handle the error in a more controlled
fashion. You learned that you can have multiple catch statements, to customize what you
do for different exceptions, and that you can catch the type Exception, which will catch
any basic exception.

| 334

Day 9

You also learned that you can create a block of code that will be executed after excep-
tion-handling code (both try and catch) statements have executed. This block can be exe-
cuted regardless of whether an exception was thrown. This block is tagged with the
finally keyword.

In the later part of today’s lessons, you learned about using directives to indicate to the
compiler what should and should not happen while your listing is compiled. This
included learning how to include or exclude code by defining or undefining symbols. It
also included learning about the #if, #ifel, #else, and #endif statements, which can be
used to make decisions. You learned how to change the line numbers that are used by the
compiler to indicate errors. You also learned how to generate your own errors or warn-
ings when compiling, by using the #error and #warning directives.

Q&A

Q Using catch by itself seems to be the most powerful. Why shouldn’t I just use
catch with no parameters and do all my logic there?

A Although using catch by itself is the most powerful, it loses all the information
about the exception that was thrown. Because of this, it is better to use
catch(Exception e). This enables you to get to the exception information that was
thrown. If you chose not to use this information, you can then pass it on to any
other classes that might call yours. This gives those classes the option to do some-
thing with the information.

(=}

Are all exceptions treated equally?

A No. Actually two classes of exceptions exist: system exceptions and application
exceptions. Application exceptions will not terminate a program; system exceptions
will. For the most part, today’s lesson covered the more common exceptions, at the
system level. For more details on exceptions and the differences between these two
classes of exceptions, see the .NET Framework or C# documentation.

Q You said there was a lot more to learn about exception handling. Do I need to
learn it?

A Today’s lesson about exception handling will get you through the coding you will
do. By learning more about exception handling, you will be better able to manipu-
late errors and messages. Additionally, you can learn how to embed an exception
within an exception—and more. It is not critical to know these advanced concepts;
however, knowing them will make you a better, more expert C# programmer.

Handling Problems in Your Programs: Exceptions and Errors

335|

Q
A

Which is better, to define values in a listing or to define them on the compile
line?

If you define a value in a listing, you must remove it or undefine it in the listing.
By defining on the command line, you don’t have to mess with the code when
switching between defining and undefining values.

What happens if I undefine a symbol that was never defined?

Nothing. You also can undefine a symbol more than once without an error.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Quiz

1.
2.

What keyword(s) are used with exceptions?

Which of the following should be handled by exception handling and which should
be handled with regular code?

a. A value entered by a user is not between a given range.
b. A file cannot be read correctly.
c. An argument passed to a method contains an invalid value.

d. An argument passed to a method contains an invalid type.

3. What causes an exception?

e 3w

When do exceptions occur?
a. During coding
b. During the compile
c. During runtime
d. When requested by the end user
When does the finally block execute?
Does the order of catch statements matter? Why or why not?

What does the throw command do?

What is debugging?

Do preprocessing directives end with a semicolon?

| 336

Day 9

10. What are the directives for defining and undefining a symbol in your code listing?

11.

What flag is used to define a symbol on the command line?

Exercises

1.

What code could be used to check the following line to