

Thinking
in

C#

Larry O’Brien
and

Bruce Eckel

Thinking
in

C#
Larry O’Brien

and
Bruce Eckel

Prentice Hall
Upper Saddle River, New Jersey 07458
www.phptr.com

Dedication
For Tina, who makes me happy — LOB

Overview
Preface: Computer Language 1

1: Those Who Can, Code 1

2: Introduction to Objects 19

3: Hello, Objects 49

4: Controlling Program Flow 87

5: Initialization and Cleanup 149

6: Hiding the Implementation 199

7: Reusing Classes 219

8: Interfaces and Implementation 261

9: Coupling and Cohesion 315

10: Collecting Your Objects 349

11: Error Handling with Exceptions 439

12: I/O in C# 473

13: Reflection and Attributes 511

14: Programming Windows Forms 547

15: GDI+ Overview 659

16: Multithreaded Programming 711

17: XML 773

18: Web Programming 824

A: C# for Visual Basic Programmers 879

B: C# for Java Programmers 883

C: Test-First Programming with NUnit 887

D: Programming the Pocket PC 895

E: C# programming guidelines 903

F: Resources 915

Concordance 917

Class, Method, Property Cross-Reference 921

Index 929

What’s Inside
Preface: Computer
Language 1

Prerequisites 2
Learning C# 3
Goals .. 4
Online documentation............. 5
Exercises 5
Source code.............................. 5
Coding standards..................... 7
C# and .NET versions..............8
Seminars and mentoring.........8
Errors8
Note on the cover design8
Acknowledgments 9

1: Those Who Can, Code 1
Software economics................. 3
C# and the Internet 4

Static sites 5
Dynamic sites 5
Peer-to-peer 5
Web services................................... 6

Security 7
Analysis, design, and Extreme
Programming........................... 7
Strategies for transition........... 9
Management obstacles 10

Return on investment 11
Summary.................................17

2: Introduction to Objects 19
The progress of abstraction ...19
An object has an interface 22
The hidden implementation.. 24
Reusing the implementation . 26

Inheritance: Reusing the
interface 27

Is-a vs. is-like-a relationships 31
Interchangeable objects with
polymorphism........................ 32

Abstract base classes and interfaces37
Object landscapes and lifetimes37

Collections and iterators38
The singly rooted hierarchy......... 40
Collection libraries and support for

easy collection use 41
The housekeeping dilemma: who

should clean up?...........................42
Exception handling: dealing
with errors 43
Multithreading....................... 44
Persistence............................. 45
Remote objects 46
Summary................................ 46

3: Hello, Objects
You manipulate objects with
references............................... 49
You must create all the objects50

Where storage lives50
Arrays in C#..................................52
Special case: value types...............52

You never need to destroy an
object...................................... 53

Scoping ...53
Scope of objects54

Creating new data types: class55
Fields, properties, and methods... 55

Methods, arguments, and
return values.......................... 58

The argument list59
Attributes and meta-behavior60

Delegates.................................61
Properties............................... 62
Creating new value types....... 63

Enumerations............................... 64
Structs .. 64

Building a C# program 65
Name visibility 67
Using other components.............. 69
The static keyword...................... 70

Putting it all together..............71
Compiling and running................ 73
Fine-tuning compilation...............75
The Common Language Runtime.75

Comments and embedded
documentation....................... 79

Documentation Comments..........80
Documentation example.............. 82

Coding style84
Summary................................ 85
Exercises 85

4: Controlling Program Flow 87
Using C#operators................. 87

Precedence 87
Assignment 88
Aliasing during method calls 89
Aliasing and object state 90
Aliasing and the ref keyword 92
Beyond aliasing with out............. 95
Mathematical operators............... 98
Unary minus and plus operators100
Auto increment and decrement. 100
Relational operators 101
Testing object equivalence......... 102
Logical operators 103
Short-circuiting.......................... 104
Bitwise operators105
Shift operators 106
Ternary if-else operator111
The comma operator................... 112

Common pitfalls when using

operators......................................113
Casting operators113
Literals ...114
Promotion....................................116
C# has sizeof116
C#’s preprocessor116
Precedence revisited................... 118
A compendium of operators....... 118

Execution control 130
true and false 130
if-else... 130
return ...131
Iteration...................................... 132
do-while.................................... 133
for... 133

foreach135
The comma operator 136
break and continue................. 136
The infamous goto..................... 138
switch .. 144

Summary.............................. 146
Exercises 146

5: Initialization and Cleanup
Guaranteed initialization with
the constructor..................... 149
Method overloading152

Distinguishing overloaded methods154
Overloading with primitives....... 155
Overloading on return values..... 159
Default constructors 159
The this keyword 160
Calling constructors from

constructors 164
The meaning of static................ 165

Cleanup: finalization and
garbage collection................ 166

What are destructors for?........... 167
Instead of a destructor, implement

IDisposable.Dispose() 168

Destructors, IDisposable, and the

using keyword............................173
How a garbage collector works...174

Member initialization...........176
Specifying initialization178
Constructor initialization............179

Array initialization............... 185
The params method modifier.. 189
Multidimensional arrays............ 190
What a difference a rectangle makes194

Summary...............................195
Exercises 196

6: Hiding the
Implementation 199

Organizing with namespaces200
Creating unique names 202
Using #define to change behavior204

C#’s access specifiers...........206
public: interface access206
internal 207
private: you can’t touch that!...208
protected.................................. 210

Interface and implementation211
Class access.......................... 213
Summary...............................215
Exercises217

7: Reusing Classes 219
Composition syntax220
Inheritance syntax 223

Initializing the base class 225
Combining composition and
inheritance...........................229

Guaranteeing proper cleanup.... 230
Choosing composition vs.
inheritance........................... 234
protected 235
Incremental development ... 236
Upcasting 237

Why “upcasting”?....................... 238

Explicit overloading only............239
The const and readonly
keywords251

Sealed classes..............................253
Emphasize virtual functions254

Initialization and class loading255
Initialization with inheritance....255

Summary.............................. 257
Exercises258

8: Interfaces and
Implementation

Upcasting revisited262
Forgetting the object type263

The twist 265
Method-call binding265
Producing the right behavior266
Extensibility................................270

Static methods cannot be
virtual................................... 274
Overriding vs. overloading .. 276
Operator overloading 278

Multiargument operator

overloading282
Explicit and implicit type

conversions.................................283
Operator overloading design

guidelines....................................285
Abstract classes and methods285
Constructors and
polymorphism......................289

Order of constructor calls.......... 290
Behavior of polymorphic methods

inside constructors292
Designing with inheritance .294

Pure inheritance vs. extension ...295
Downcasting and run-time type

identification298
Interfaces302

“Multiple inheritance” in C#305

Extending an interface with

inheritance309
Summary.............................. 310
Exercises 311

9: Coupling and Cohesion 315
Software as architecture vs.
software architecture............315
What is software architecture?317
Simulation architectures:
always taught, rarely used ... 318
Client/server and n-tier
architectures 318
Layered architectures 322
Problem-solving architectures323
Dispatching architectures.... 323
“Not really object-oriented” 324
Coupling............................... 324
Cohesion 329
Design is as design does 339
First, do no harm 339
Write boring code340
Make names meaningful340
Limit complexity.................. 341
Make stuff as private as
possible 343
Coupling, cohesion, and design
trends344
Summary.............................. 345
Exercises346

10: Collecting Your Objects 349
Arrays...................................349

Arrays are first-class objects.......351
The Array class 355
Array’s static methods.............. 355
Array element comparisons....... 358
What? No bubbles?360
Unsafe arrays 362
Get things right… 366
… then get them fast 368
Array summary 375

Introduction to data structures380
Queues and stacks 381
ArrayList384
BitArray386
Dictionaries.......................... 387

Hashtable 388
ListDictionary 391
SortedList 391
String specialists.........................392
One key, multiple values392
Customizing hashcode providers394

String specialists:
StringCollection and
StringDictionary396
Container disadvantage:
unknown type 397

Using CollectionBase to make

type-conscious collections..........399
IEnumerators................... 401
Custom indexers403
Custom enumerators & data
structures406
Sorting and searching Lists 413
From collections to arrays ... 414
Persistent data with ADO.NET421

Getting a handle on data with

DataSet422
Connecting to a database425
Fast reading with IDataReader428
CRUD with ADO.NET 430
Update and delete...................... 430
The object-relational impedance

mismatch434
Summary.............................. 435
Exercises436

11: Error Handling with
Exceptions

Basic exceptions................... 441
Exception arguments..................442

Catching an exception443

The try block.............................. 443
Exception handlers 443
Supertype matching................... 444
Exceptions have a helplink 444

Creating your own exceptions445
C#’s lack of checked exceptions451

Catching any exception.............. 452
Rethrowing an exception 453
Elevating the abstraction level... 453

Standard C# exceptions....... 455
Performing cleanup with
finally 456

What’s finally for? 457
Finally and using461
Pitfall: the lost exception 462

Constructors464
Exception matching.............468

Exception guidelines.................. 469
Summary..............................470
Exercises470

12: I/O in C# 473
File, Directory, and Path 473

A directory lister 473
Checking for and creating

directories 474
Isolated stores 476

Input and output 478
Types of Stream 479
Text and binary 479
Working with different sources .480
Fun with CryptoStreams........ 482
BinaryReader and

BinaryWriter 486
StreamReader and

StreamWriter491
Random access with Seek....494
Standard I/O........................ 495

Reading from standard input 496
Redirecting standard I/O........... 496
Debugging and Tracing.............. 497

Regular expressions499
Checking capitalization style......504

Summary..............................508
Exercises508

13: Reflection and Attributes
The need for RTTI 511

The Type object 514
Checking before a cast................ 517

RTTI syntax 523
Reflection: run-time class
information.......................... 525

Adding meta-information with

attributes 527
Attributes are just classes........... 527
Specifying an attribute’s targets.528
Attribute arguments529
The Global Assembly Cache532
Designing with attributes 537
Beyond objects with aspects.......543

Summary.............................. 543
Exercises 545

14: Programming Windows
Forms

Delegates..............................548
Designing With Delegates ... 550
Multicast delegates 552
Events 555

Recursive traps558
The genesis of Windows Forms561
Creating a Form 562
GUI architectures 563
Using the Visual Designer ... 563
Form-Event-Control............ 570
Presentation-Abstraction-
Control 573
Model-View-Controller 577
Layout582
Non-code resources 585

Creating satellite assemblies590

Constant resources591
What about the XP look?..... 593
Fancy buttons 596
Tooltips 599
Displaying and editing text..600
Linking text..........................604
Checkboxes and
RadioButtons606
List, Combo, and
CheckedListBoxes...........609
Multiplane displays with the
Splitter control615
TreeView and ListView... 616
ListView 618

Icon views................................... 618
Details view 618

Using the clipboard and drag
and drop...............................622

Clipboard.................................... 622
Drag and drop 624

Data-bound controls............634
Editing data from bound
controls639
Menus646
Standard dialogs650
Usage-centered design 653
Summary.............................. 654
Exercises 655

15: GDI+ Overview 659
Your canvas: the Graphics
Class 659
Understanding repaints....... 661
Control: paint thyself.........662
Scaling and transforms........ 665
Filling regions 672
Non-rectangular windows ... 677
Matrix transforms................ 678
Hit detection686
Fonts and text688
Printing690

Bitmaps................................692
Rich clients with interop698
COM Interop and the
WebBrowser control698
COM Interop challenges...... 701
Non-COM Interop 702
Summary.............................. 707
Exercises708

16: Multithreaded
Programming

Responsive user interfaces ... 711
.NET’s threading model........714

Running a thread........................ 716
Waiting for a thread to complete 717
Multiple threads in action 719
Threading for a responsive interface721
Interrupting a sleeping Thread 724

Thread.Join() waits for
another thread to end.......... 727
Sharing limited resources.... 729

Improperly accessing resources .730
Using Monitor to prevent

collisions 735
lock blocks – a shortcut for using

Monitor..................................... 741
Monitoring static value types748
The Monitor is not “stack-proof” 751
Cross-process synchronization with

Mutex .. 752
Deadlocks............................. 753
Not advised: Suspend() and
Resume() 760
Threads and collections....... 765
Summary.............................. 769
Exercises 770

17: XML
XML structure 774
XML as a stream.................. 775
XML as a tree........................777

Writing XML........................ 778
XML serialization 783
Deserializing XML 789

Can’t serialize cycles 789
Schemas 796
ADO and XML 798
XPath navigation 801

An XPath explorer...................... 807
Transforming a document... 815
Summary.............................. 821
Exercises822

18: Web Programming 824
Identifying a machine..........824
Sockets826

Whois for ZoneAlarm................. 826
Receiving incoming connections833
Serving multiple clients 837
Communicating with Microsoft

Messenger 841
Creating and receiving HTTP

requests 852
Asynchronous Web requests 858

From Web programming to
Web Services........................864

Insanely simple Web services 865
Maintaining state868
Web services vs. Web APIs868
Consuming Web services 872

Modifying XML returns874
Summary.............................. 876
Exercises 877

A: C# for Visual Basic
Programmers

B: C# for Java Programmers

C: Test-First Programming
with NUnit

D: Programming the Pocket
PC

E: C# programming
guidelines

Design903
Implementation................... 910

F: Resources
.NET Software.......................915
Non-.NET Books...................915

Concordance

Class, Method, Property
Cross-Reference

Index

 i

Preface: Computer
Language

C# is a language, and like all languages, therefore a way of
thinking. Languages channel us down particular avenues
of thought, make certain ideas as obvious as a grand
concourse and others as confusing and mysterious as a
back alley. Different computer languages facilitate
different things; there are computer languages that
facilitate graphics programming and others that are best
for text manipulation, many that excel in data
relationships, and several whose raison d’être is pure
performance. C# is a language for professional
programming. The ideas that it facilitates, the capabilities
that it makes easy, are those that lead to the rapid
development of robust, scalable programs that deliver
client value and are easily modifiable.

You can’t look at C# as just a list of keywords that must be memorized to get a
clean compile or as a conveyor belt for calling library functions. You must look at
it as an interlocking set of features that support the efficient creation of object-
oriented, high-quality programs. And to understand C# in this way, you must
understand both its strengths and its weaknesses, and how they relate to the best
practices that are known for developing software and the challenges that remain.
This book discusses programming as a profession, not as an academic discipline,
and the pragmatic use of C# and the .NET Framework SDK. Thus, the chapters
present their features based on what we the authors believe to be the core issues
of the subject and the way in which C# addresses those issues.

A chapter in Thinking in C# should take you to the point where you can take
charge of your own further education by whatever means you find most
constructive. For some topics, you may find the background provided by the book
sufficient and concern yourself only with fleshing out the details of the .NET

ii Thinking in C# www.ThinkingIn.NET

library classes and methods in the area. Hopefully, some topics will excite your
interest and you will seek out a deeper understanding of the underlying
principles.

Every chapter in this book is worthy of book-length discussion and Thinking in
C# necessarily glosses over many issues. Rather than hide these decisions in
academic rhetoric, this book tries to make explicit the subjective opinions of the
authors, Larry O’Brien and Bruce Eckel. Additionally, neither of us is in the
employ of Microsoft1 and both of us are fairly jaded when it comes to languages,
frameworks, and implementations. We do not hesitate to criticize design
decisions with which we disagree nor do we pause when it comes to crediting
Java as an important influence as both a marketing and technical influence on C#
and .NET. Both of us have been programming since the 1970s and writing and
teaching on these subjects since the ’80s, so our opinions may be judged
incorrect, but we come to those opinions by experience.

Prerequisites
This book assumes that you have some programming familiarity: you understand
that a program is a collection of statements, the idea of a
subroutine/function/macro, control statements such as “if” and looping
constructs such as “while,” etc. However, you might have learned this in many
places, such as programming with Microsoft Office’s Visual Basic for Applications
or working with a tool like Perl. As long as you’ve programmed to the point where
you feel comfortable with the basic ideas of programming, you’ll be able to work
through this book.

The book will be easiest for Visual Basic, Delphi, or Java programmers. Visual
Basic programmers will be familiar with many library names and several of the
programming models, Delphi programmers will recognize in C# the influence of
Anders Hejlsberg, and Java programmers will find the hardest thing about
moving to C# is getting used to a different naming convention. If you don’t have a
background in those languages, don’t count yourself out, although naturally it
means that you will be required to expend a little more effort.

This book does not assume that you’re familiar with object-oriented
programming (OOP) and the first half of the book can be seen as an extended
tutorial on object-oriented programming at least as much as a tutorial on C# per
se. No formal background in computer science is expected.

1 Larry has been paid to write technical white papers for Microsoft.

Preface: Computer Language iii

Although references will often be made to language features in other languages
such as C++ and Java, these are not intended to be insider comments, but instead
to help all programmers put C# in perspective with those languages. All good
programmers are polyglots and the greatest value proposition of the .NET
Framework is that it supports multiple languages.

Learning C#
Picasso is reputed to have said “Computers are worthless; they can only give you
answers.” The same could be said of books. No book can teach you C#
programming, because programming is a creative process. The only way to learn
any language is to use it in a variety of situations, to gradually internalize it as you
solve increasingly difficult problems with it. To learn C#, you must start
programming in C#.

This is not to say that the best way to learn C# is on the job. For one thing,
companies don’t typically allow programmers to work in a language in which they
have no experience. More significantly, your job is to deliver value to your
customers, not to learn the nuances of C# and the .NET Framework.

For many people, seminars are the best environment for rapid learning. There
are many reasons for this: the interactions with the teachers and fellow students,
the explicit dedication of several days to achieving specific educational goals, or
just being out of the office and away from email and meetings. One of the authors
(Bruce) has been teaching object-oriented programming in multiday seminars
since 1989. The structure of this book is highly influenced by those experiences.

As the chair of the C++ and Java tracks at the Software Development conference,
Bruce discovered that speakers tended to give the typical audience too many
topics at once. Sometimes this was because they were striving to present an
example that was “realistic” and therefore unfocused. Other times it stemmed
from a fear of underserving the more experienced in the audience. Over the years,
Bruce developed many presentations, iteratively developing a scope and sequence
for teaching object-oriented programming in a language-specific manner. This
curriculum has been the core of many products: books, CD-ROMs, and seminars
for a variety of languages including C++, Java, and, now, C#.

There are three notable characteristics of this curriculum:

♦ It has a broad scope, from fundamental topics such as “how does one
compile a program?” to professional challenges such as thread-safe
design

iv Thinking in C# www.MindView.net

♦ It is outcome-oriented: the goal is to give the learner the basic skills for
professional object-oriented development in the language

♦ It is dependent on the learner’s active engagement with the samples and
exercises

Although this book is influenced by the seminars and books that preceded it, it is
not just seminar notes. More than anything, the book is designed to serve the
solitary reader who is struggling with a new programming language.

Goals
Like its immediate predecessor Thinking in Java, this book is structured around
the process of teaching the language. In particular, the structure is based on the
way the language can be taught in seminars. Chapters in the book correspond to
what experience has taught is a good lesson during a seminar. The goal is to get
bite-sized pieces that can be taught in a reasonable amount of time, followed by
exercises that are feasible to accomplish in a classroom situation.

The goals of this book are to:

1. Present the material one simple step at a time so that you can easily
digest each concept before moving on.

2. Use examples that are as simple and short as possible. This generally
prevents “real world” problems, but it’s better to understand every detail
of an example rather than being impressed by the scope of the problem it
solves.

3. Carefully sequence the presentation of features so that you aren’t seeing
something that you haven’t been exposed to. Of course, this isn’t always
possible; in those situations, a brief introductory description is given.

4. Give a pragmatic understanding of the topic, rather than a
comprehensive reference. There is an information importance hierarchy,
and there are some facts that 95 percent of programmers will never need
to know and that just confuse people and add to their perception of the
complexity of the language. To take an example from C#, if you
memorize the operator precedence table on page 118, you can write
clever code. But if you need to think about it, it will also confuse the
reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear.

5. Keep each section focused enough so that the range of topics covered is
digestible. Not only does this keep the audience’s minds more active and

Preface: Computer Language v

involved during a hands-on seminar, but it gives the reader a chance to
tackle the book within the busy time constraints that we all struggle with.

6. Provide you with a solid foundation so that you can understand the
issues well enough to move on to more difficult coursework and books.

Online documentation
The .NET Framework SDK (a free download from Microsoft) comes with
documentation in Windows Help format. So the details of every namespace,
class, method, and property referenced in this book can be rapidly accessed
simply by working in the Index tab. These details are usually not discussed in the
examples in this book, unless the description is important to understanding the
particular example.

Exercises
Exercises are a critical step to internalizing a topic; one often believes that one
“gets” a subject only to be humbled doing a “simple exercise.” Most exercises are
designed to be easy enough that they can be finished in a reasonable amount of
time in a classroom situation while the instructor observes, making sure that all
the students are absorbing the material. Some exercises are more advanced to
prevent boredom for experienced students.

The first half of the book includes a series of exercises that are designed to be
tackled by iterative and incremental effort—the way that real software is
developed. The second half of the book includes open-ended challenges that
cannot be reduced to code in a matter of hours and code, but rather are intended
to challenge the learner’s synthesis and evaluation skills2.

Source code
All the source code for this book is available as copyrighted freeware, distributed
as a single package, by visiting the Web site www.ThinkingIn.Net. To make sure
that you get the most current version, this is the official site for distribution of the
code and the electronic version of the book. You can find mirrored versions of the
electronic book and the code on other sites (some of these sites are found at
www.ThinkingIn.Net), but you should check the official site to ensure that the

2 Professional educators should contact the authors for a curriculum including pre- and
post test evaluation criteria and sample solutions.

vi Thinking in C# www.ThinkingIn.NET

mirrored version is actually the most recent edition. You may distribute the code
in classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the code is
properly cited, and to prevent you from republishing the code in print media
without permission. (As long as the source is cited, using examples from the book
in most media is generally not a problem.)

In each source code file you will find a reference to the following copyright notice:

//:! :Copyright.txt
Copyright ©2002 Larry O'Brien
Source code file from the 1st edition of the book
"Thinking in C#." All rights reserved EXCEPT as
allowed by the following statements:
You can freely use this file
for your own work (personal or commercial),
including modifications and distribution in
executable form only. Permission is granted to use
this file in classroom situations, including its
use in presentation materials, as long as the book
"Thinking in C#" is cited as the source.
Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://www.ThinkingIn.Net
(and official mirror sites) where it is
freely available. You cannot remove this
copyright and notice. You cannot distribute
modified versions of the source code in this
package. You cannot use this file in printed
media without the express permission of the
author. Larry O’Brien makes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or implied
warranty of any kind, including any implied
warranty of merchantability, fitness for a
particular purpose or non-infringement. The entire
risk as to the quality and performance of the
software is with you. Larry O’Brien, Bruce Eckel, and the
publisher shall not be liable for any damages
suffered by you or any third party as a result of
using or distributing software. In no event will

Preface: Computer Language vii

Larry O’Brien, Bruce Eckel or the publisher be liable for
any lost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
punitive damages, however caused and regardless of
the theory of liability, arising out of the use of
or inability to use software, even if Larry O’Brien, Bruce
Eckel and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of all
necessary servicing, repair, or correction. If you
think you've found an error, please submit the
correction using the form you will find at
www.ThinkingIn.Net. (Please use the same
form for non-code errors found in the book.)
///:~

You may use the code in your projects and in the classroom (including your
presentation materials) as long as the copyright notice that appears in each
source file is retained.

Coding standards
In the text of this book, identifiers (function, variable, and class names) are set in
bold. Most keywords are also set in bold, except for those keywords that are used
so much that the bolding can become tedious, such as “class.” Important
technical terms (such as coupling) are set in italics the first time they are used.

The coding style used in this book is highly constrained by the medium. Pixels are
cheap; paper isn’t. The subject of source-code formatting is good for hours of hot
debate, so suffice it to say that the formatting used in this book is specific to the
goals of the book. Since C# is a free-form programming language, you and your
teammates can use whatever style you decide is best for you.

The programs in this book are files that are included by the word processor in the
text, directly from compiled files. Thus, the code files printed in the book should
all work without compiler errors. The errors that should cause compile-time error
messages are commented out with the comment //! so they can be easily
discovered and tested using automatic means. Errors discovered and reported to
the author will appear first in the distributed source code and later in updates of
the book (which will also appear on the Web site www.ThinkingIn.Net).

viii Thinking in C# www.MindView.net

C# and .NET versions
All of the code in this book compiles and runs with Microsoft’s .NET Framework
1.1.4322and Microsoft’s Visual C# .NET Compiler 7.10.2215.1, which were
released in the Fall of 2002.

Seminars and mentoring
Bruce Eckel’s company MindView provides a wide variety of learning
experiences, ranging from multiday in-house and public seminars to get-
togethers whose goal is to facilitate the “hallway conversations” that are so often
the place in which great leaps in understanding and innovation take place. Larry
O’Brien teaches seminars, but is more often engaged as a direct mentor and
active participant in programming projects. You can sign up for an occasional
announcement newsletter on upcoming C# and .NET learning experiences at
www.ThinkingIn.Net.

Errors
No matter how many tricks a writer uses to detect errors, some always creep in
and these often leap off the page for a fresh reader.

If you discover anything you believe to be an error, please send an email to
corrections@ThinkingIn.Net with a description of the error along with your
suggested correction. If necessary, include the original source file and note any
suggested modifications. Your help is appreciated.

Note on the cover design
The cover of Thinking in C# portrays a kelp bass (Paralabrax clathratus), a
vermilion rockfish (Sebastes miniatus), and a trio of kelp greenling
(Hexagrammos decagrammus), three species that might be encountered while
SCUBA diving in California’s kelp forests. Like programming, SCUBA diving is an
activity dependent on technology. Just as the real joy of SCUBA diving does not
reside in the technology but in the realm the technology opens, so too is it with
computer programming. Yes, you must become familiar with a technology and
some principles that may seem arcane at first, but eventually these things become
second nature and a world that cannot be appreciated by non-practitioners opens
up to you.

People who have splashed around with a mask, snorkeled off a sandy beach, and
watched Shark Week on The Discovery Channel have little or no concept of the
great privilege it is to enter a realm only recently available to humanity. People

Preface: Computer Language ix

who just use computers to send email, play videogames, and surf the Internet are
missing their opportunity to actively participate in the opening of a great
intellectual frontier.

Acknowledgments
(by Larry O’Brien)

First, I have to thank Bruce Eckel for entrusting me to work with the Thinking
In… structure. Without this proven framework, it would have been folly to
attempt a work of this scope on a brand-new programming language.

I’m going to exercise my first-time book author’s perquisite to reach back in time
to thank J.D. Hildebrand, Regina Ridley, and Don Pazour for hiring a blatantly
unqualified hacker with a penchant for Ultimate Frisbee and giving me the
greatest programming job in the world – Product Review Editor of Computer
Language magazine. For half a decade I had the ridiculous privilege of being able
to ask many of the brightest and most interesting people in the software
development industry to explain things in terms that I could understand. It
would be folly to try to begin to list the writers, readers, editors, speakers, and
students to whom I am indebted, but I have to thank P.J. Plauger and Michael
Abrash for demonstrating a level of readability and technical quality that is
inspiring to this day and Stan Kelly-Bootle for his trail-blazing work in
developing a programmer’s lifestyle worthy of emulation (e.g., at your 70th
birthday party there should be an equal mix of language designers, patrons of the
symphony, and soccer hooligans).

Alan Zeichick urged me to write a book on C#, a display of considerable faith
considering the number of times I have missed deadlines on 1,000-word articles
for him. Claudette Moore and Debbie McKenna of Moore Literary Agency were
tremendously helpful in representing me and Paul Petralia of Prentice Hall
always agreed that the quality of the book took precedence over schedule
pressure. Mark Welsh’s commitment to the book even after his internship ended
is something for future employers to note.

A draft of the book was made available on the Internet and was downloaded on
the order of 100,000 times. The integrated Backtalk system that allowed
paragraph-by-paragraph feedback from readers was developed by Bruce and
allowed far more people than can be listed to contribute to the book. The
contributions of Bob Desinger, Michel Lamsoul, and Edward Tanguay were
especially beneficial. Reg Charney and members of the Silicon Valley C/C++
User’s Group contributed greatly to the discussion of deterministic finalization, a

x Thinking in C# www.ThinkingIn.NET

subject also frequently visited on DevelopMentor’s excellent .NET and C#
discussion lists and the GotDotNet.com forums.

Eric Gunnerson of Microsoft’s C# team gave enormously valuable feedback,
particularly in areas speaking to the intent of the language designers; if the book
is unfair to C# or Microsoft or misstates reasoning, the fault lies solely in the
authors’ pig-headedness. It is an open secret that Microsoft’s public relations
firm of Waggener Edstrom is one of the keys to Microsoft’s success; Sue Schmitz’s
responsiveness during the writing of this book was stellar even by WaggEd’s high
standards.

C.J. Villa, Ben Rafter, and Ken Bannister pointedly ignored the times when I let
book issues interfere with my work. I too often bore my non-programming
friends with tales of technical drama, but Chris Brignetti and Sarah Winarske
have been especially stoic over the years. Dave Sieks has kept me laughing since
fifth grade, where he demonstrated prior art that should invalidate U.S. patent
number 6,368,227. Finally, I have to thank the crew of the diveboat FeBrina for
reminding me that technology is just a way to get to the good stuff.

 1

1: Those Who Can,
Code

Computer programming is tremendous fun. Like music, it
is a skill that derives from an unknown blend of innate
talent and constant practice. Like drawing, it can be
shaped to a variety of ends – commercial, artistic, and
pure entertainment. Programmers have a well-deserved
reputation for working long hours but are rarely credited
with being driven by creative fevers. Programmers talk
about software development on weekends, vacations, and
over meals not because they lack imagination, but because
their imagination reveals worlds that others cannot see.

Programming is also a skill that forms the basis of one of the few professions that
is consistently in high demand, pays fairly well, allows for flexibility in location
and working hours, and which prides itself on rewarding merit, not
circumstances of birth. Not every talented programmer is employed, women are
under-represented in management, and development teams are not color-blind
utopias. But on the whole, software development is a very good career choice.

Coding, the line-by-line development of precise instructions for the machine to
execute, is and will always be the core activity of software development. We can
say this with certainty because no matter what happens in terms of specification
languages, probabilistic inference, and computer intelligence, it will always be
painstaking work to remove the ambiguity from a statement of client value.
Ambiguity itself is enormously valuable to humans (“That’s beautiful!” “You can’t
miss the turn-off,” “With liberty and justice for all”) and software development,
like crafting legal documents, is a task where the details are necessarily given a
prominence that is quite the opposite of how people prefer to communicate.

This is not to say that coding will always consist of writing highly structured lines
of text. The Uniform Modeling Language (UML), which specifies the syntax and
semantics of a number of diagrams appropriate to different software

2 Thinking in C# www.ThinkingIn.NET

development tasks, is expressive enough that one could code in it. But doing so is
hugely inefficient when compared to writing lines of text. On the other hand, a
single UML diagram can clarify in a moment structural and temporal
relationships that would take minutes or hours to comprehend with a text editor
or a debugger. It is a certainty that as software systems continue to grow in
complexity, no single representation will prove universally efficient. But the task
of removing ambiguity, task-by-task, step-by-step, will always be a time-
consuming, error-prone process whose efficiency is reliant on the talents of one
or more programmers.

There is more to professional software development than writing code. Computer
programs are among the most complex structures ever constructed by humanity
and the challenges of communicating desires and constraints, prioritizing effort,
managing risk, and above all, maintaining a working environment that attracts
the best people and brings forth their greatest efforts… well, software project
management takes a rare combination of skills, skills that are perhaps rarer than
the skills associated with coding. All good programmers discover this eventually
(almost always sooner rather than later) and the best programmers inevitably
develop strong opinions about the software development process and how it is
best done. They become team leads and architects, engineering managers and
CTOs, and as these elite programmers challenge themselves with these tasks,
they sometimes forget about or dismiss as trivial the challenges that arise
between the brackets of a function.

This book stops at the screen edge. That isn’t a judgment that issues of modeling
and process and teamwork aren’t as important as the task of coding; we the
authors know that these things are at least as important to the development of
successful products as coding. But so is marketing. The tasks that are discussed
in this book, the concerns of professional coding, are not often written about in a
language-specific manner.

One reason that the concerns of coding (as opposed to the mere details of coding)
are rarely discussed in a language-specific way is that it is almost impossible to
assume anything about the background of a person choosing to program in C#.
C# has a lot of appeal to younger programmers, as it is the simplest (and
potentially free1) route to the full capabilities of the broadest range of computers,
while older programmers will find in C# the ideal opportunity to mitigate the risk
of obsolescence while maintaining (and, after the initial learning period,

1 All programs in this book can be written, compiled, and run with tools that are available
for no charge from Microsoft and others. See http://www.ThinkingIn.Net/tools.html

Chapter 1: Those Who Can, Code 3

increasing) productivity. Java programmers sick of the complexity of J2EE or
frustrated by the lack of OS integration will be thrilled by the productivity of the
.NET Framework while Visual Basic programmers have in C# the ideal
opportunity to move into the mainstream of languages derived from the C syntax.
C# could even be a good stepping stone towards Java for those programmers
who wish to maintain the widest possible base of expertise.

Since it’s impossible for us to assume anything about your background, we
instead assume several things about your skills and motivation. This book
constantly shifts the level of discourse from details to theory and back down to
details, a technique that is patently inappropriate for some learners. Rapid shifts
of abstraction levels are part and parcel of software development, however. Most
programmers can relate to the experience of a high-flying business meeting with
discussion of “synergy” and “new paradigms” and “money dripping from the
ceiling” being suddenly interrupted by a programmer who skeptically says “Now
wait a second…” and says something incomprehensible to non-programmers.
Then some other programmer says something equally incomprehensible in
response. This “speaking in binary” goes back and forth for a minute or so and
the skeptical programmer suddenly rocks back and declares to the
businesspeople: “Oh, you don’t even get how huge this is!”

This is not a book about shortcuts and getting by, it is a book about tackling hard
problems in a professional manner. In keeping with that, Thinking in C#
accelerates the pace of discussion throughout the book. An issue that earlier in
the book was the subject of pages and pages of discussion may be referred to off-
handedly or even go unremarked in later chapters. By the time you’re using C#
to develop Web Services professionally, you must be able to discuss object-
oriented design at the level in which it is presented in that chapter.

To understand why C# and .NET succeed at a programming level, though, it’s
important to understand how they succeed at the business level, which means
discussing the economics of software development.

Software economics
Ever since Alan Turing introduced the concept of a universal computer and then
John von Neumann the idea of a stored program, software developers have
struggled to balance the symbol-manipulating power of increasing levels of
abstraction with the physical constraints of speed, storage, and transmission-
channel capacity of the machine at hand. There are people still alive who can talk
about reading the output of the most sophisticated computer in existence by
holding a cardboard ruler up to an oscilloscope and judging the signal as either a

4 Thinking in C# www.MindView.net

one or a zero. As recently as the early 1980s, the coolest computers in widespread
circulation (the DEC PDP series) could be programmed by flipping switches on a
panel, directly manipulating chip-level signals. And until the 1990s, it was
inconceivable for a PC programmer to be unfamiliar with a wide range of
interrupt requests and the memory addresses of various facilities.

Between the mid-1960s, when the IBM 360 was released and Gordon Moore
formulated his famous law that transistor density in a given area would continue
to double every 18 months, the cost of a single processing instruction has
decreased by approximately 99.99%. This has totally inverted the economics of
programming. Where once it made sense for the programmer to work with a
mental model of the computer’s internal representation and to sacrifice
development time for execution efficiency, now it makes sense for the computer
to be given a model corresponding to the programmer’s internal representation
of the task, even if that representation is not ideally efficient.

Today, the quality of a programming language can be judged by how easily one
can express the widest variety of problems and solutions. By that standard,
object-oriented, imperative programming languages absolutely dominate the
world of software development. An imperative language is one in which a series
of commands is given to the computer: do this, then do that, then do this other
thing. The imperative may seem like the “natural” way to program computers in
that it corresponds to our mental model of how computers work, but as discussed
above, this is no longer a very good reason to embrace a programming language.
Think about how easy some problems are to solve with a spreadsheet, which can
be viewed as a form of non-imperative programming. However, imperative
programming is deeply ingrained in the mainstream zeitgeist and is unlikely to be
dethroned anytime soon.

C# and the Internet
Since the mid-’90s, the world of programming has been transformed. Prior to the
explosive growth of the Internet, most programs were written for either internal
consumption within an organization or were “shrink-wrapped” applications that
provided some type of generic service for a faceless customer. With the rise of the
Web, though, a vast amount of programming effort has shifted to directly
delivering value to the customer. Value on the Web takes many forms: lower
prices (although the days of below-wholesale costs and free giveaways seem to
have passed), convenience, access to greater inventory, customization,
collaboration, and timeliness are just some of the true values that can be derived
from Web-based services.

Chapter 1: Those Who Can, Code 5

Static sites
Even the simplest business site requires some programming to handle Web form
input. While these can often be handled by a scripting language such as Perl, Perl
doesn’t integrate into a Windows-based server as well as it does into UNIX (many
Perl scripts downloadable from the Web assume the availability of various UNIX
facilities such as sendmail). The .Net Frameworks IHttpHandler class allows
a straightforward and clean method of creating simple form-handlers while also
providing a path towards much more sophisticated systems with complex
designs.

Dynamic sites
ASP.NET is a complete system for creating pages whose contents dynamically
change over time and is ideal for eCommerce, customer-relations management,
and other types of highly dynamic Web sites. The idea of “active server pages”
which combine programming commands and HTML-based display commands
was originally perceived as a bridge between Web designers trained in graphic
arts and the more disciplined world of programming. Instead, server-page
programming evolved into a for-programmers technology that is now widely used
as the model for complete Web solutions.

Server-page programming, like Visual Basic’s form-based programming model,
facilitates the intertwining of display and business-logic concerns. This book
promotes the view that such intertwining is ill-advised for non-trivial solutions.
This doesn’t mean that ASP.NET and Visual Basic are poor languages; quite the
opposite, it means that their programming models are so flexible that doing great
work in them actually requires more understanding and discipline than is
required with C#.

Peer-to-peer
One of the last dot-com technology-hype-of-the-month phrases was peer-to-peer
(also known as P2P, which had the hype advantage of being the same acronym as
one of the last business-hype-of-the-month phrases path-to-profitability).
Ironically, P2P is the type of architecture that one would expect from the phrase
World Wide “Web.” In a P2P architecture, services are created in two steps: peer
resources are discovered by some form of centralized server (even if the server is
not under the legal control of the coordinating organization) and then the peers
are connected for resource sharing without further mediation.

C# and .NET have strong facilities for the creation of P2P systems, as such
systems require the creation of rich clients, sophisticated servers, and facilities
for creating robust resource-sharing systems. P2P is tainted by the prevalence of

6 Thinking in C# www.ThinkingIn.NET

file-sharing systems, but programs such as SETI@Home and Folding@Home
demonstrate the potential for grid computing, which can bring staggering
amounts of computation to bear on challenging problems.

Web services
The value that has been created from a foundation of HTML is astonishing. The
value that will be created from the far more flexible and expressive Extensible
Markup Language (XML) will out-strip everything that has gone before (maybe
not in terms of stock prices and company valuations, but in actual productivity
and efficiency, there is no question). Web Services deliver value by standard Web
protocols and XML-based data representation that does not concern itself with
how it is displayed (Web Services are headless).

Web Services are the raison d’être of Microsoft’s entire .NET strategy, which is
considerably broader than “just” the biggest update in programming APIs in a
decade. .NET is wrongly interpreted by many business writers as an attempt by
Microsoft to introduce itself as a central mediator in over-the-Web transactions.
The reality is simpler; Microsoft wants to own the operating systems on all Web-
connected devices, even as the type and number of such devices skyrocket. The
more that computers shift from performing primarily computational tasks
towards communication and control tasks, the more that Web Services have to
offer, and Microsoft has always understood that operating system dominance is
controlled by software development.

The .NET strategy is an across-the-board shift towards a post-desktop reality for
Microsoft and software development. The .NET Framework, which combines an
abstraction of the underlying hardware with comprehensive Application
Programming Interfaces (APIs), proposes to developers that “write once, run
anywhere” is an anachronistic view that promotes the concept of a component
running on a computer. The .NET strategy recognizes that rich clients (“rich
clients” meaning non-server applications that are responsible for computing
more than simply their display and input functions) operating on a variety of
devices, high-performance servers, and new applications running on the not-to-
be-abandoned desktop “legacy” machines are not separate markets at all, but
rather are components that all software applications will necessarily have to
address. Even if programmers begin with a browser-based client for their Web
Service (or, for that matter, even if programmers develop a Windows-based rich
client for a Java-based Web Service), part of the .NET strategy is to make it
unfailingly easy to extend the value on another device: a rich client on the
PocketPC or 3G phone or a high-performance database in a backend rack. Web
protocols will connect all these devices, but the value is in the information, which

Chapter 1: Those Who Can, Code 7

will flow via Web Services. If .NET is the most expedient way to develop Web
Services, Microsoft will inevitably gain marketshare across the whole spectrum of
devices.

Security
The quality of Microsoft’s programming is often judged unfairly. No operating
system but Windows is judged by what esoteric hardware configurations it
doesn’t run on and Microsoft Office may take up a disconcerting amount of disk
space to install, but it’s reliable and capable enough to monopolize the business
world. But where Microsoft has legitimately goofed up is in security. It’s bad
enough that Microsoft generally makes security an all-or-nothing decision
(“Enable macros, yes or no?” “Install this control (permanently), yes or no?”) but
the fact that they give you no data for that all-or-nothing decision (“Be sure that
you trust the sender!”) is unforgiveable. When you consider the number of files
that have been transferred on and off the average computer and the lack of
sophistication of many users, the only thing that’s surprising is how rare truly
devastating attacks have been.

The .NET Framework SDK includes a new security model based on fine-grained
permissions for such things as accessing the file system or the network and digital
signatures based on public-key cryptography and certificate chains. While
Microsoft’s stated goal of “trustworthy computing” goes beyond security and will
require significant modifications in both their operating systems and, perhaps
even more critically, directly in Microsoft Office and Outlook, the .NET
Framework SDK provides sophisticated components which one can imagine
giving rise to a much more secure computing environment.

Analysis, design, and Extreme
Programming
Only about a fourth of professional software is developed on time2. This is due to
many reasons, including a quirk in programmers’ psychology that can only be
described as “irrational over-confidence.” The most significant contributors to
time-and-cost overruns, though, are failures in the discovery and description of

2 This is a rough figure, but widely supported. Capers Jones, Barry Boehm, and Steve
McConnell are trustworthy names in the area of software project economics, which
otherwise is dominated by conjecture and anecdote.

8 Thinking in C# www.MindView.net

users’ needs and the negotiation of software features to answer those needs.
These processes are called, respectively, analysis and design3.

 Cost-and-time overruns are driven by a few underlying truths:

♦ Software project estimation is done haphazardly

♦ Communication is fraught with misunderstanding

♦ Needs change over time

♦ It is difficult to visualize and understand the interactions of complex
software systems

♦ People tend to advocate the things in which they’ve already invested

♦ Computers do what you say, not what you mean

On a practical basis, overruns occur because all sorts of assumptions about scope,
personnel, and system behavior get turned into some kind of rough plan that is
then converted into a formal commitment by wishful thinking, financial
imperatives, and a Machiavellian calculation to exploit the common wisdom that
“no one can predict software costs” to avoid responsibility down the line.

In a small program that is only a few thousand lines of code, these issues don’t
play a major role and the majority of the total effort is expended on software
construction (detailed design, coding, unit testing, and debugging). In larger
programs (and many corporations have codebases of several hundred thousand
or even millions of lines of code), the costs of analysis, design, and integrating the
new code into the old (expensive because of unexpected side-effects) have
traditionally outstripped the costs of construction.

Recently, the programming world has been shaken by a set of practices that
basically turn big projects into a series of small projects. These Extreme
Programming (XP4) practices emphasize very close collaboration and
dramatically reduced product lifecycles (both in the scope of features released
and the time between releases). XP’s most famous and controversial practice is
“pair programming,” in which two programmers literally share a monitor and
keyboard, reversing the stereotype of the lone programmer entranced with his or

3 It is often helpful to distinguish between high-level design that is likely to have meaning
to the user and low-level design that consists of the myriad technical decisions that are
made by the programmer but which would be incomprehensible to the user.

4 Not to be confused in any way with Windows XP.

Chapter 1: Those Who Can, Code 9

her singular work5. Where traditional software releases have been driven by 12-,
18-, and 24-month release cycles, XP advocates propose 2- and 4-week release
cycles.

C#, .NET, and Visual Studio .NET do not have any special support for either
Extreme Programming or more formal methodologies. Both authors’ experiences
make us strong advocates of XP or XP-like methods and as this book is
unabashedly subjective and pragmatic, we advocate XP practices such as unit
testing throughout. Appendix C, “Test-First Programming with NUnit,” describes
a popular unit-testing framework for .NET.

Strategies for transition
Here are some guidelines to consider when making the transition to .NET and
C#:

1. Training
The first step is some form of education. Remember the company’s investment in
code, and try not to throw everything into disarray for six to nine months while
everyone puzzles over how interfaces work. Pick a small group for indoctrination,
preferably one composed of people who are curious, work well together, and can
function as their own support network while they’re learning C# and .NET.

An alternative approach that is sometimes suggested is the education of all
company levels at once, including overview courses for strategic managers as well
as design and programming courses for project builders. This is especially good
for smaller companies making fundamental shifts in the way they do things, or at
the division level of larger companies. Because the cost is higher, however, some
may choose to start with project-level training, do a pilot project (possibly with
an outside mentor), and let the project team become the teachers for the rest of
the company.

2. Low-risk project
Try a low-risk, low-complexity project first and allow for mistakes. The failure
rate of first-time object-oriented programs is approximately 50%6. Once you’ve
gained some experience, you can either seed other projects from members of this

5 Unfortunately for XP, a lot of programmers embrace the stereotype and are not
interested or willing to share their keyboards.

6 Software Assessments, Benchmarks, and Best Practices, Capers Jones, 2000, Addison-
Wesley (ISBN: 0-201-48542-7).

10 Thinking in C# www.ThinkingIn.NET

first team or use the team members as a .NET technical support staff. This first
project may not work right the first time, so it should not be mission-critical for
the company. It should be simple, self-contained, and instructive; this means that
it should involve creating classes that will be meaningful to the other
programmers in the company when they get their turn to learn C# and .NET.

3. Model from success
Seek out examples of good object-oriented design before starting from scratch.
There’s a good probability that someone has solved your problem already, and if
they haven’t solved it exactly you can probably apply what you’ve learned about
abstraction to modify an existing design to fit your needs. This is the general
concept of design patterns, covered in Thinking in Patterns with Java,
downloadable at www.BruceEckel.com.

4. Use existing class libraries
The primary economic motivation for switching to OOP is the easy use of existing
code in the form of class libraries (in particular, the .NET Framework SDK
libraries, which are covered throughout this book). The shortest application
development cycle will result when you can create and use objects from off-the-
shelf libraries. However, some new programmers don’t understand this, are
unaware of existing class libraries, or, through fascination with the language,
desire to write classes that may already exist. Your success with OOP, .NET, and
C# will be optimized if you make an effort to seek out and reuse other people’s
code early in the transition process.

5. Don’t rewrite existing code in C#
It is almost always a mistake to rewrite existing, functional code. There are
incremental benefits, especially if the code is slated for reuse. But chances are you
aren’t going to see the dramatic increases in productivity that you hope for in
your first few projects unless that project is a new one. C# and .NET shine best
when taking a project from concept to reality. If you must integrate with existing
code, use COM Interop or PInvoke (both discussed in Chapter 15) or, if you need
even more control, write bridging code in Managed C++.

Management obstacles
If you’re a manager, your job is to acquire resources for your team, to overcome
barriers to your team’s success, and in general to try to provide the most
productive and enjoyable environment so your team is most likely to perform
those miracles that are always being asked of you. Moving to .NET has benefits in
all three of these categories, and it would be wonderful if it didn’t cost you

Chapter 1: Those Who Can, Code 11

anything as well. Although moving to .NET should ultimately provide a
significant return on investment, it isn’t free.

The most significant challenge when moving to any new language or API is the
inevitable drop in productivity while new lessons are learned and absorbed. C# is
no different. The everyday syntax of the C# language does not take a great deal of
time to understand; a programmer familiar with a procedural programming
language should be able to write simple mathematical routines by the end of a
day of study. The .NET Framework SDK contains hundreds of namespaces and
thousands of classes, but is well-structured and architected: this book should be
adequate to guide most programmers through the most common features of the
most important namespaces and give readers the knowledge required to rapidly
discover additional capabilities in these areas.

The mindset of object-oriented programming, on the other hand, usually takes
several months to “kick in,” even when the learner is regularly exposed to good
OOP code. This is not to say that the programmer cannot be productive before
this, but the benefits associated with OOP (ease of testing, reuse, and
maintenance) usually will not begin to accrue for several months at best. Worse,
if the programmer does not have an experienced OOP programmer as a mentor,
their OOP skills will often plateau very early, well before their potential is
reached. The real difficulty of this situation is that the new OOP programmer will
not know that they have fallen short of the mark they could have achieved.

Return on investment
C# and the .NET Framework have significant benefits, both direct and in the area
of risk management, that should provide a significant return on investment
within a year. However, as these are new technologies and because business
software productivity is an area of maddeningly little concrete research, ROI
calculations must be made on a company-by-company or even person-by-person
basis and necessarily involve significant assumptions.

The return you will get on your investment will be in the form of software
productivity: your team will be able to deliver more user value in a given period of
time. But no programming language, development tool, or methodology can
change a bad team into a good team. For all the fuss about everything else,
software productivity can be broken down into two factors: team productivity and
individual productivity.

Team productivity is always limited by communication and coordination
overhead. The amount of interdependence between team members working on a
single module is proportional to the square of the team size (the actual value is

12 Thinking in C# www.MindView.net

(N2-N) / 2). As Figure 1-1 illustrates, a team of 3 has just 3 avenues of
communication, a team of 4 has 6 such avenues, and a team of 8 has a whopping
28 channels of communication.

Figure 1-1 Communication paths increase faster than nodes

By the time you get beyond a small handful of programmers, this communication
overhead becomes such a burden that progress becomes deadlocked. Almost all
software project managers recognize this (or at least acknowledge it) and attempt
to divide the project tasks into mutually independent tasks, for instance, breaking
an 8-person team into two independent 4-person teams as shown in Figure 1-2.

Figure 1-2 A single point of communication to each sub-team

This is a nice idea, but is difficult to achieve in practice, because it requires that
each small group has a person talented enough to communicate and coordinate
all their group’s needs and mediate all incoming requests for information. More
commonly, the best that can be accomplished is that people with such talents end
up as “firewalls” for the group working on the most critical piece of functionality:

Error! Objects cannot be created from editing field codes.

Figure 1-3 "Gurus" often become supernodes within a large team

Chapter 1: Those Who Can, Code 13

But that is not a particularly scalable solution. In the real world, the incremental
benefit of adding programmers to a team diminishes rapidly even in the best-
managed organization.

Individual productivity, on the other hand, has two unusual characteristics:
individual programmer productivity varies by an order of magnitude, while
excellent programmers are significantly rarer than terrible programmers. The
very best programmers are more than twice as productive as average
programmers and ten times as productive as the worst professional programmers
(and because of the communication overhead of a team, this actually understates
the contribution of excellent programmers).

Figure 1-4 Great programmers are rarer than terrible ones

So the software management challenge is creating an efficient team of better-
than-median programmers. That sounds straight from Management Platitudes
101, but it actually leads to two of the three critical questions in your ROI
calculation:

♦ Is moving to C# going to contribute to team and individual productivity?

♦ Is moving to C# going to help attract and retain better-than-median
programmers?

The third critical question in ROI is:

♦ Does moving to C# open new markets or close existing ones?

Let’s take a look at each of those in turn:

14 Thinking in C# www.ThinkingIn.NET

Productivity comparable (but higher) than Visual
Basic or Java
Given identical libraries, it would be difficult at first glance to tell a C# program
from a Java one. The languages have highly similar syntaxes and C# and Java
solutions to a given problem are likely to have highly similar structures.

The two major Java language features missing from C# are inner classes and
checked exceptions. The primary use of Java’s inner classes is to handle events,
for which C# has delegate types; pragmatically, neither of these is a significant
contributor to overall productivity. Similarly, checked exceptions are a minor
burden to productivity, although some say they make a large contribution to
software quality (later, we’ll argue that checked exceptions do not make a great
contribution to quality).

The only other significant non-library facility in Java is the object model of
Enterprise JavaBeans. The four types of EJBs (stateless and stateful session
beans, entity beans, and message-driven beans) provide system-level support for
four needs common to enterprise systems: stateful and stateless synchronous
calls, persistence, and asynchronous message-handling. While .NET provides
support for all these needs, it does so in a more direct way than J2EE. J2EE
introduces significant steps for distinguishing between remote and home
interfaces, generating implementations, and locating, instantiating, and
“narrowing” remote interfaces. While some of these steps are done only once and
therefore have little long-term effect on productivity, generating EJB
implementations can very significantly slow the build process from seconds to
minutes, undercutting one of Java’s significant value propositions. As far as
enterprise development goes, C# has a significant advantage at the compiler
level.

In the broad spectrum of programming languages, though, the similarities
between C# and Java are far greater than their differences and their language-
level productivities are certainly very close. Of course, there’s far more to
productivity than language-level concerns, and Java and C# do not share
identical libraries. One can expect to see significant productivity differences
based on the scope and quality of libraries. Here, one must balance the broad
number of Java libraries available commercially and for free download on the
Internet with the slew of COM components available to C# programmers. One
can download a complete mailserver in Java or one can use COM Interop to
program Outlook; which has “higher productivity” is a function of the
programming task at hand. In general, though, C# appears to be poised to

Chapter 1: Those Who Can, Code 15

challenge Java in the marketplace as the most productive language for teams
building significant business applications.

One of us (Larry) has had significant experience participating and leading teams
of Java developers in corporate environments, developing software for both
internal and external consumption. It is Larry’s belief that C# and .NET provide
across-the-board productivity advantages over Java, especially when compared to
J2EE and J2ME.

The development of high-quality reusable components (components approaching
zero-defect level) is the most significant contributor to software productivity
other than individual talent, while the development of low-quality reusable
components is the most significant detractor from productivity (Jones, 2000).
C# does not, by itself, guarantee the creation of high-quality reusables, but it does
facilitate all of the key ingredients, which includes a heavy emphasis on the
software engineering principles of high cohesion and low coupling. The most
important quality, a fanatical devotion to defect detection and removal, is an
organizational challenge.

Visual Basic has traditionally been the highest productivity environment for the
rapid development of smaller Windows programs. Visual Basic facilitates the
creation of programs whose internal structure mirrors the graphical structure of
the program; the visual forms comprising the interface are associated with the
coding for program logic. Certainly it’s been possible to break away from this
structure, but a decade of experience with Visual Basic has proved that a great
deal of value can be delivered with a programming language that isn’t overly
concerned with emphasizing “computer science-y” topics but rather emphasizes
the shortest cycle between thought, code, and prototype.

As programs grow in size, the proportion of effort devoted to the user interface
tends to decrease and the previously mentioned issues of reuse, coupling, and
cohesion control productivity. Visual Basic’s productivity advantage compared to
fully object-oriented languages has disappeared in larger programs. Now, with
Visual Basic .NET’s full support for object-orientation, that’s no longer an issue.
Early reports of .NET uptake show VB.NET and C# “splitting the field” in terms
of adoption. While VB.NET will certainly be successful, it is more verbose than
the C-derived syntax of C#. Since the languages have similar capabilities
(sharing, as they do, the Common Language Infrastructure, and neither having
dramatic extensions to the object-oriented imperative programming model), a C#
programmer will likely be able produce equivalent functionality in fewer lines of
code than a Visual Basic .NET programmer. Since the rate of lines of code
produced is fairly constant across programming languages (although that rate

16 Thinking in C# www.MindView.net

varies greatly between individuals), C# should have higher productivity than
VB.NET.

Good, but not great, performance
C# code is compiled to a Common Intermediate Language (CIL) which is further
transformed into machine-code at load-time. This just-in-time compilation
model leads to code that runs without interpretation, but introduces two
inefficiencies: an expensive loading procedure and an inability of the
programmer to exploit processor knowledge. Neither of these is significant for
most programmers, although elite device-driver and game programmers will
likely stick with their C and C++ compilers. On the other hand, the just-in-time
model provides – at least in theory – an opportunity for the JIT to produce
processor-specific code that can run faster than general code. There are also
interesting opportunities for profile-guided optimization.

More significantly for performance, C# uses a managed heap and a managed
threading model that greatly reduce defects at the potential cost of some
performance (because the runtime must run code to solve the general problem,
while an elite C programmer would be able to develop a solution fine-tuned to the
specifics of the task at hand). The very significant reduction in tasks associated
with memory management contributes to C#’s productivity, while its
performance remains acceptable for the vast majority of applications.
Interestingly, C# has two characteristics (rectangular arrays and the ability to
turn off array range checking) that have the potential for significantly increasing
number-crunching speed, but casual benchmarking shows C# to remain very
comparable to Java for these types of calculations. At the time of writing,
rectangular arrays actually run slightly slower than jagged arrays, apparently
because jagged array optimizations have already been implemented in the just-
in-time compiler.

Low tool cost
It is possible to develop in C# with command-line tools that Microsoft makes
available for free (in fact, this book advocates that programmers learn C# using
these free tools in order to avoid confusing the language and its libraries from the
facilities of Microsoft’s Visual Studio .NET programming environment).
Microsoft’s Internet Information Server Webserver is bundled with their
professional operating systems. One can use Microsoft Access to learn database
programming with ADO.NET. A subscription to MSDN Universal, which provides
the entire gamut of Microsoft development tools and servers, costs less than
$3,000, which is approximately the fully-burdened cost of a programmer for one
week.

Chapter 1: Those Who Can, Code 17

The new new thing
Part of the psychology of programming is a desire to work with what is perceived
as “the latest technology.” The flip side of this coin is a fear of having one’s skills
become obsolescent, a reasonable fear in an industry that routinely undergoes
huge transformations in “essential skills” every 5-6 years and has a significant
prejudice against hiring older workers; David Packard’s warning that “to remain
static is to lose ground,” has been taken to heart by generations of computer
programmers. C# is the last best chance for procedural programmers to move to
object orientation, while .NET provides an infrastructure that is flexible enough
to embrace multiple programming paradigms as they emerge. So even if C# and
.NET were only “just” as good as alternative existing languages and platforms, the
best programmers are going to be attracted to opportunities to investigate these
new Microsoft technologies.

A challenge for .NET, though, is the large population of second-tier programmers
who may be convinced by politics or marketing not to give .NET a chance. To win
the hearts and minds of the programming community, Microsoft must forego
soundbite attacks and make the case that .NET is a tent big enough to hold closed
and open source, individual and team development, and pragmatic and
experimental programming techniques.

Access to new platforms
As discussed previously, the .NET strategy involves many more platforms beyond
the desktop PC. The .NET Framework SDK directly contains capabilities
appropriate for server development, while the .NET Compact Framework SDK
makes programming for handhelds and other devices similarly easy. DirectX 9
will contain .NET-programmable libraries, while the TabletPC’s unique features
can also be accessed by C#. In addition to Microsoft’s efforts to move .NET onto
new platforms, the Mono project (www.go-mono.com) has brought C# to Linux.

Summary
The people who should be programmers are those who would program whether it
was a profession or not. The fact is, though, that it is not just a profession, but
one that plays an increasingly important role in the economy. Being a
professional computer programmer involves understanding the economic role of
information, computers, programmers, and software development “in the large.”
Unfortunately, an understanding of software development economics is not
widespread in the business world and to be honest, neither is it widespread in the
programming world itself. So a lot of effort is wasted in wild goose chases, fads,
and exercises in posterior covering.

18 Thinking in C# www.ThinkingIn.NET

C# and the .NET Framework are the products of several underlying trends. The
cost of available processing power relative to the labor cost of programming has
been decreasing since the invention of computers. Into the 1970s, programmers
had to compete for access to every clock cycle. This gave birth to the classic
approaches to programming, both in terms of technology and, even more
significantly, in terms of programmer psychology. Even in those days labor issues
often drove project costs, but today, time and labor are by far the chief
determinants of what can and cannot be programmed.

In the 1990s, the increasing power and interconnectedness of the machines on
which software was developed and delivered combined to create significant
macroeconomic effects. Even though one of these effects was a speculative
bubble, other effects included real advances in the productivity across broad
sectors of the economy and the rise of a new channel for delivering business
value. The majority of business programming effort for the foreseeable future will
be involved with delivering value via the Internet.

Analysis and design have also shifted in response to these factors. Analysis, the
process of discovering the problem, and high-level design, the plan for solving the
problem, are significant challenges for larger software systems. But recently, the
tide of public opinion has held that the best way to solve these and other
challenges of large-scale development are best handled by tackling them as a
series of small projects, delivering value incrementally.

This fits with many studies of software productivity, which show that iterative
development, an emphasis on quality assurance, and attention to program
structure are important contributors to software success.

The C# programming language and the .NET Framework are ideally suited for
the new realities of software development, but moving to C#, especially for
programmers without a background in object orientation, is not without costs.
Basically, object orientation does not pay off immediately or even on the first
project. A new way of thinking about software and design needs to be internalized
by the programmers; a good software manager will recognize that a positive
return-on-investment requires an investment.

 19

 2: Introduction to
 Objects

This chapter is background and supplementary material.
Many people do not feel comfortable wading into object-
oriented programming without understanding the big
picture first.

Thus, there are many concepts that are introduced here to give you a solid
overview of OOP. However, many other people don’t get the big picture concepts
until they’ve seen some of the mechanics first; these people may become bogged
down and lost without some code to get their hands on. If you’re part of this latter
group and are eager to get to the specifics of the language, feel free to jump past
this chapter—skipping it at this point will not prevent you from writing programs
or learning the language. However, you will want to come back here eventually to
fill in your knowledge so you can understand why objects are important and how
to design with them.

We’ll go into great detail on the specifics of object-orientation in the first half of
this book, but this chapter will introduce you to the basic concepts of OOP,
including an overview of development methods. This chapter, and this book,
assume that you have had experience in a procedural programming language,
although not necessarily Visual Basic.

The progress
of abstraction
All programming languages provide abstractions. Since to a computer everything
but chip operations, register contents, and storage is an abstraction (even input
and output are “just” side-effects associated with reading or writing values into
particular locations), the ease with which abstractions are created and
manipulated is quite important! It can be argued that the complexity of the
problems you’re able to solve is directly related to the kind and quality of
abstraction. By “kind” we mean, “What is it that you are abstracting?” Assembly
language is a small abstraction of the underlying machine. The early imperative

20 Thinking in C# www.MindView.net

languages that followed (such as Fortran, BASIC, and C) were abstractions of
assembly language. These languages are big improvements over assembly
language, but their primary abstraction still requires you to think in terms of the
structure of the computer rather than the structure of the problem you are trying
to solve. The programmer must establish the association between the machine
model (in the “solution space,” which is the place where you’re modeling that
problem, such as a computer) and the model of the problem that is actually being
solved (in the “problem space,” which is the place where the problem exists). The
effort required to perform this mapping, and the fact that it is extrinsic to the
programming language, produces programs that are difficult to write and
expensive to maintain, and as a side effect created the entire “programming
methods” industry.

The alternative to modeling the machine is to model the problem you’re trying to
solve. Early languages such as LISP and APL chose particular views of the world
(“All problems are ultimately lists” or “All problems are algorithmic,”
respectively). PROLOG casts all problems as chains of true-or-false statements.
Languages have been created for constraint-based programming and for
programming exclusively by manipulating graphical symbols. Each of these
approaches is a good solution to the particular class of problem they’re designed
to solve, but when you step outside of that domain they become awkward.

The object-oriented approach goes a step further by providing tools for the
programmer to represent elements in the problem space. This representation is
general enough that the programmer is not constrained to any particular type of
problem. We refer to the elements in the problem space and their representations
in the solution space as “objects.” (Of course, you will also need other objects that
don’t have problem-space analogs.) The idea is that the program is allowed to
adapt itself to the lingo of the problem by adding new types of objects, so when
you read the code describing the solution, you’re reading words that also express
the problem. This is a more flexible and powerful language abstraction than what
we’ve had before. Thus, OOP allows you to describe the problem in terms of the
problem, rather than in terms of the computer where the solution will run.
There’s still a connection back to the computer, though. Each object looks quite a
bit like a little computer; it has a state, and it has operations that you can ask it to
perform. However, this doesn’t seem like such a bad analogy to objects in the real
world—they all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful
object-oriented language and one of the languages upon which C# is based. These
characteristics represent a pure approach to object-oriented programming:

Chapter 2: Introduction to Objects 21

1. Everything is an object. Think of an object as a fancy variable; it
stores data, but you can “make requests” to that object, asking it to
perform operations on itself. In theory, you can take any conceptual
component in the problem you’re trying to solve (dogs, buildings,
services, etc.) and represent it as an object in your program.

2. A program is a bunch of objects telling each other what
to do by sending messages. To make a request of an object, you
“send a message” to that object. More concretely, you can think of a
message as a request to call a function that belongs to a particular object.

3. Each object has its own memory made up of other
objects. Put another way, you create a new kind of object by making a
package containing existing objects. Thus, you can build complexity in a
program while hiding it behind the simplicity of objects.

4. Every object has a type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous with “type.” The most
important distinguishing characteristic of a class is “What messages can
you send to it?”

5. All objects of a particular type can receive the same
messages. This is actually a loaded statement, as you will see later.
Because an object of type “circle” is also an object of type “shape,” a circle
is guaranteed to accept shape messages. This means you can write code
that talks to shapes and automatically handle anything that fits the
description of a shape. This substitutability is one of the most powerful
concepts in OOP.

Booch offers an even more succinct description of an object:

An object has state, behavior and identity

This means that an object can have internal data (which gives it state), methods
(to produce behavior), and each object can be uniquely distinguished from every
other object – to put this in a concrete sense, each object has a unique address in
memory1.

1 This is actually a bit restrictive, since objects can conceivably exist in different machines
and address spaces, and they can also be stored on disk. In these cases, the identity of the
object must be determined by something other than memory address, for instance, a
Uniform Resource Indicator (URI).

22 Thinking in C# www.ThinkingIn.NET

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of type; he
spoke of “the class of fishes and the class of birds.” The idea that all objects, while
being unique, are also part of a class of objects that have characteristics and
behaviors in common was used directly in the first object-oriented language,
Simula-67, with its fundamental keyword class that introduces a new type into a
program.

Simula, as its name implies, was created for developing simulations such as the
classic “bank teller problem.” In this, you have a bunch of tellers, customers,
accounts, transactions, and units of money—a lot of “objects.” Objects that are
identical except for their state during a program’s execution are grouped together
into “classes of objects” and that’s where the keyword class came from. Creating
abstract data types (classes) is a fundamental concept in object-oriented
programming. Abstract data types work almost exactly like built-in types: You
can create variables of a type (called objects or instances in object-oriented
parlance) and manipulate those variables (called sending messages or requests;
you send a message and the object figures out what to do with it). The members
(elements) of each class share some commonality: every account has a balance,
every teller can accept a deposit, etc. At the same time, each member has its own
state, each account has a different balance, each teller has a name. Thus, the
tellers, customers, accounts, transactions, etc., can each be represented with a
unique entity in the computer program. This entity is the object, and each object
belongs to a particular class that defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new
data types, virtually all object-oriented programming languages use the “class”
keyword. C# has some data types that are not classes, but in general, when you
see the word “type” think “class” and vice versa2.

Since a class describes a set of objects that have identical characteristics (data
elements) and behaviors (functionality), a class is really a data type because a
floating point number, for example, also has a set of characteristics and
behaviors. The difference is that a programmer defines a class to fit a problem
rather than being forced to use an existing data type that was designed to
represent a unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming system

2 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

Chapter 2: Introduction to Objects 23

welcomes the new classes and gives them all the care and type-checking that it
gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether or
not you agree that any program is a simulation of the system you’re designing,
the use of OOP techniques can easily reduce a large set of problems to a simple
solution.

Once a class is established, you can make as many objects of that class as you like,
and then manipulate those objects as if they are the elements that exist in the
problem you are trying to solve. Indeed, one of the challenges of object-oriented
programming is to create a one-to-one mapping between the elements in the
problem space and objects in the solution space.

But how do you get an object to do useful work for you? There must be a way to
make a request of the object so that it will do something, such as complete a
transaction, draw something on the screen, or turn on a switch. And each object
can satisfy only certain requests. The requests you can make of an object are
defined by its interface, and the type is what determines the interface. A simple
example might be a representation of a light bulb:

Figure 2-1 An object has an interface

Light lt = new Light();
lt.On();

The interface establishes what requests you can make for a particular object.
However, there must be code somewhere to satisfy that request. This, along with
the hidden data, comprises the implementation. From a procedural
programming standpoint, it’s not that complicated. A type has a function
associated with each possible request, and when you make a particular request to
an object, that function is called. This process is usually summarized by saying

Light

 On()
 Off()
 Brighten()
 Dim()

Type Name

Interface

24 Thinking in C# www.MindView.net

that you “send a message” (make a request) to an object, and the object figures
out what to do with that message (it executes code).

Here, the name of the type/class is Light, the name of this particular Light
object is lt, and the requests that you can make of a Light object are to turn it on,
turn it off, make it brighter, or make it dimmer. You create a Light object by
defining a “reference” (lt) for that object and calling new to request a new object
of that type. To send a message to the object, you state the name of the object and
connect it to the message request with a period (dot). From the standpoint of the
user of a predefined class, that’s pretty much all there is to programming with
objects.

The diagram shown above follows the format of the Unified Modeling Language
(UML). Each class is represented by a box, with the type name in the top portion
of the box, any data members that you care to describe in the middle portion of
the box, and the member functions (the functions that belong to this object,
which receive any messages you send to that object) in the bottom portion of the
box. Often, only the name of the class and the public member functions are
shown in UML design diagrams, and so the middle portion is not shown. If you’re
interested only in the class name, then the bottom portion doesn’t need to be
shown, either.

This book will gradually present more and more UML diagrams of different
types, introducing them as appropriate for specific needs. As was mentioned
earlier, the UML is a language at least as complicated as C# itself, but Thinking
in UML would be a very different book from this one3. The diagrams in this book
do not always comply with the letter of the UML specification and are drawn with
the sole goal of clarifying the main text.

The hidden implementation
It is helpful to break up the playing field into class creators (those who create
new data types) and client programmers (the class consumers who use the data
types in their applications). The goal of the client programmer is to collect a
toolbox full of classes to use for rapid application development. The goal of the
class creator is to build a class that exposes only what’s necessary to the client
programmer and keeps everything else hidden. Why? Because if it’s hidden, the
client programmer can’t use it, which means that the class creator can change the
hidden portion at will without worrying about the impact on anyone else. The

3 Thinking in UML doesn’t exist!

Chapter 2: Introduction to Objects 25

hidden portion usually represents the tender insides of an object that could easily
be corrupted by a careless or uninformed client programmer, so hiding the
implementation reduces program bugs. The concept of implementation hiding
cannot be overemphasized.

In any relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship with the
client programmer, who is also a programmer, but one who is putting together an
application by using your library, possibly to build a bigger library.

If all the members of a class are available to everyone, then the client
programmer can do anything with that class and there’s no way to enforce rules.
Even though you might really prefer that the client programmer not directly
manipulate some of the members of your class, without access control there’s no
way to prevent it. Everything’s naked to the world.

So the first reason for access control is to keep client programmers’ hands off
portions they shouldn’t touch—parts that are necessary for the internal
machinery of the data type but not part of the interface that users need in order
to solve their particular problems. This is actually a service to users because they
can easily see what’s important to them and what they can ignore.

The second reason for access control is to allow the library designer to change the
internal workings of the class without worrying about how it will affect the client
programmer. For example, you might implement a particular class in a simple
fashion to ease development, and then later discover that you need to rewrite it in
order to make it run faster. If the interface and implementation are clearly
separated and protected, you can accomplish this easily.

C# uses five explicit keywords to set the boundaries in a class: public, private,
protected, internal, and protected internal. Their use and meaning are
quite straightforward. These access specifiers determine who can use the
definitions that follow. public means the following definitions are available to
everyone. The private keyword, on the other hand, means that no one can access
those definitions except you, the creator of the type, inside member functions of
that type. private is a brick wall between you and the client programmer. If
someone tries to access a private member, they’ll get a compile-time error.
protected acts like private, with the exception that an inheriting class has
access to protected members, but not private members. Inheritance will be
introduced shortly. internal is often called “friendly”–the definition can be
accessed by other classes in the same assembly (a DLL or EXE file used to
distribute .NET classes) as if it were public, but is not accessible to classes in
different assemblies. protected internal allows access by classes within the

26 Thinking in C# www.ThinkingIn.NET

same assembly (as with internal) or by inheriting classes (as with protected)
even if the inheriting classes are not within the same assembly.

C#’s default access, which comes into play if you don’t use one of the
aforementioned specifiers, is internal for classes and private for class
members.

Reusing the implementation
Once a class has been created and tested, it should (ideally) represent a useful
unit of code. It turns out that this reusability is not nearly so easy to achieve as
many would hope; it takes experience and insight to produce a good design. But
once you have such a design, it begs to be reused. Code reuse is one of the
greatest advantages that object-oriented programming languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but
you can also place an object of that class inside a new class. We call this “creating
a member object.” Your new class can be made up of any number and type of
other objects, in any combination that you need to achieve the functionality
desired in your new class. Because you are composing a new class from existing
classes, this concept is called composition (or more generally, aggregation).
Composition is often referred to as a “has-a” relationship, as in “a car has an
engine.”

Car Engine

Figure 2-2: A Car has an Engine

(The above UML diagram indicates composition with the filled diamond, which
states the Engine is contained within the car. We will typically use a simpler
form: just a line, without the diamond, to indicate an association.4)

Composition comes with a great deal of flexibility. The member objects of your
new class are usually private, making them inaccessible to the client
programmers who are using the class. This allows you to change those members
without disturbing existing client code. You can also change the member objects
at run-time, to dynamically change the behavior of your program. Inheritance,

4 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you’re using aggregation or composition.

Chapter 2: Introduction to Objects 27

which is described next, does not have this flexibility since the compiler must
place compile-time restrictions on classes created with inheritance.

Because inheritance is so important in object-oriented programming it is often
highly emphasized, and the new programmer can get the idea that inheritance
should be used everywhere. This can result in awkward and overly complicated
designs. Instead, you should first look to composition when creating new classes,
since it is simpler and more flexible. If you take this approach, your designs will
be cleaner. Once you’ve had some experience, it will be reasonably obvious when
you need inheritance.

Inheritance:
Reusing the interface
By itself, the idea of an object is a convenient tool. It allows you to package data
and functionality together by concept, so you can represent an appropriate
problem-space idea rather than being forced to use the idioms of the underlying
machine. These concepts are expressed as fundamental units in the programming
language by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and then be
forced to create a brand new one that might have similar functionality. It’s nicer if
we can take the existing class, clone it, and then make additions and
modifications to the clone. This is effectively what you get with inheritance, with
the exception that if the original class (called the base or super or parent class) is
changed, the modified “clone” (called the derived or inherited or sub or child
class) also reflects those changes.

Base

Derived

Figure 2-3: Derived is a type of Base

(The arrow in the above UML diagram points from the derived class to the base
class. As you will see, there can be more than one derived class.)

28 Thinking in C# www.MindView.net

A type does more than describe the constraints on a set of objects; it also has a
relationship with other types. Two types can have characteristics and behaviors in
common, but one type may contain more characteristics than another and may
also handle more messages (or handle them differently). Inheritance expresses
this similarity between types using the concept of base types and derived types. A
base type contains all of the characteristics and behaviors that are shared among
the types derived from it. You create a base type to represent the core of your
ideas about some objects in your system. From the base type, you derive other
types to express the different ways that this core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The base type is
“trash,” and each piece of trash has a weight, a value, and so on, and can be
shredded, melted, or decomposed. From this, more specific types of trash are
derived that may have additional characteristics (a bottle has a color) or
behaviors (an aluminum can may be crushed, a steel can is magnetic). In
addition, some behaviors may be different (the value of paper depends on its type
and condition). Using inheritance, you can build a type hierarchy that expresses
the problem you’re trying to solve in terms of its types.

A second example is the classic “shape” example, perhaps used in a computer-
aided design system or game simulation. The base type is “shape,” and each
shape has a size, a color, a position, and so on. Each shape can be drawn, erased,
moved, colored, etc. From this, specific types of shapes are derived (inherited):
circle, square, triangle, and so on, each of which may have additional
characteristics and behaviors. Certain shapes can be flipped, for example. Some
behaviors may be different, such as when you want to calculate the area of a
shape. The type hierarchy embodies both the similarities and differences between
the shapes.

Chapter 2: Introduction to Objects 29

Figure 2-4: All subtypes share the same behavior names

Casting the solution in the same terms as the problem is tremendously beneficial
because you don’t need a lot of intermediate models to get from a description of
the problem to a description of the solution. With objects, the type hierarchy is
the primary model, so you go directly from the description of the system in the
real world to the description of the system in code. Indeed, one of the difficulties
people have with object-oriented design is that it’s too simple to get from the
beginning to the end. A mind trained to look for complex solutions is often
stumped by this simplicity at first.

When you inherit from an existing type, you create a new type. This new type
contains not only all the members of the existing type (although the private ones
are hidden away and inaccessible), but more important, it duplicates the interface
of the base class. That is, all the messages you can send to objects of the base
class you can also send to objects of the derived class. Since we know the type of a
class by the messages we can send to it, this means that the derived class is the
same type as the base class. In the previous example, “a circle is a shape.” This
type equivalence via inheritance is one of the fundamental gateways in
understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be
some implementation to go along with that interface. That is, there must be some
code to execute when an object receives a particular message. If you simply
inherit a class and don’t do anything else, the methods from the base-class

Shape

Color

Draw()

Erase()

Move()

Circle Square Triangle

30 Thinking in C# www.ThinkingIn.NET

interface come right along into the derived class. That means objects of the
derived class have not only the same type, they also have the same behavior,
which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the original base
class. The first is quite straightforward: You simply add brand new functions to
the derived class. These new functions are not part of the base class interface.
This means that the base class simply didn’t do as much as you wanted it to, so
you added more functions. This simple and primitive use for inheritance is, at
times, the perfect solution to your problem. However, you should look closely for
the possibility that your base class might also need these additional functions.
This process of discovery and iteration of your design happens regularly in
object-oriented programming.

Shape

Color

Draw()
Erase()
Move()

Circle Square Triangle

FlipVertical()
FlipHorizontal()

Figure 2-5: Derived classes may extend the base interface

Although inheritance may sometimes imply that you are going to add new
functions to the interface, that’s not necessarily true. The second and more
important way to differentiate your new class is to change the behavior of an
existing base-class function. This is referred to as overriding that function.

Chapter 2: Introduction to Objects 31

Shape

Color

Draw()
Erase()
Move()

Circle

Draw()
Erase()

Square

Draw()
Erase()

Triangle

Draw()
Erase()

Figure 2-6: The name of the behavior is constant, the behavior itself may vary

To override a function, you simply create a new definition for the function in the
derived class. You’re saying, “I’m using the same interface function here, but I
want it to do something different for my new type.”

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should inheritance
override only base-class functions (and not add new member functions that
aren’t in the base class)? This would mean that the derived type is exactly the
same type as the base class since it has exactly the same interface. As a result, you
can exactly substitute an object of the derived class for an object of the base class.
This can be thought of as pure substitution, and it’s often referred to as the
substitution principle. In a sense, this is the ideal way to treat inheritance. We
often refer to the relationship between the base class and derived classes in this
case as an is-a relationship, because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a relationship about the
classes and have it make sense.

There are times when you must add new interface elements to a derived type,
thus extending the interface and creating a new type. The new type can still be
substituted for the base type, but the substitution isn’t perfect because your new
functions are not accessible from the base type. This can be described as an is-
like-a relationship; the new type has the interface of the old type but it also
contains other functions, so you can’t really say it’s exactly the same. For
example, consider an air conditioner. Suppose your house is wired with all the
controls for cooling; that is, it has an interface that allows you to control cooling.

32 Thinking in C# www.MindView.net

Imagine that the air conditioner breaks down and you replace it with a heat
pump, which can both heat and cool. The heat pump is-like-an air conditioner,
but it can do more. Because the control system of your house is designed only to
control cooling, it is restricted to communication with the cooling part of the new
object. The interface of the new object has been extended, and the existing system
doesn’t know about anything except the original interface.

Air Conditioner

Cool()
Heat Pump

Cool()
Heat()

Thermostat

LowerTemperature()

Cooling System

Cool()

Controls

Figure 2-7: HeatPump is like a CoolingSystem, but is this the best solution?

Of course, once you see this design it becomes clear that the base class “cooling
system” is not general enough, and should be renamed to “temperature control
system” so that it can also include heating—at which point the substitution
principle will work. However, the diagram above is an example of what can
happen in design and in the real world.

When you see the substitution principle it’s easy to feel like this approach (pure
substitution) is the only way to do things, and in fact it is nice if your design
works out that way. But you’ll find that there are times when it’s equally clear that
you must add new functions to the interface of a derived class. With inspection
both cases should be reasonably obvious.

Interchangeable objects
with polymorphism
When dealing with type hierarchies, you often want to treat an object not as the
specific type that it is, but instead as its base type. This allows you to write code
that doesn’t depend on specific types. In the shape example, functions
manipulate generic shapes without respect to whether they’re circles, squares,
triangles, or some shape that hasn’t even been defined yet. All shapes can be
drawn, erased, and moved, so these functions simply send a message to a shape
object; they don’t worry about how the object copes with the message.

Chapter 2: Introduction to Objects 33

Such code is unaffected by the addition of new types, and adding new types is the
most common way to extend an object-oriented program to handle new
situations. For example, you can derive a new subtype of shape called pentagon
without modifying the functions that deal only with generic shapes. This ability to
extend a program easily by deriving new subtypes is important because it greatly
improves designs while reducing the cost of software maintenance.

There’s a problem, however, with attempting to treat derived-type objects as their
generic base types (circles as shapes, bicycles as vehicles, cormorants as birds,
etc.). If a function is going to tell a generic shape to draw itself, or a generic
vehicle to steer, or a generic bird to move, the compiler cannot know at compile-
time precisely what piece of code will be executed. That’s the whole point—when
the message is sent, the programmer doesn’t want to know what piece of code will
be executed; the draw function can be applied equally to a circle, a square, or a
triangle, and the object will execute the proper code depending on its specific
type. If you don’t have to know what piece of code will be executed, then when
you add a new subtype, the code it executes can be different without requiring
changes to the function call. Therefore, the compiler cannot know precisely what
piece of code is executed, so what does it do? For example, in the following
diagram the BirdController object just works with generic Bird objects, and
does not know what exact type they are. This is convenient from
BirdController’s perspective because it doesn’t have to write special code to
determine the exact type of Bird it’s working with, or that Bird’s behavior. So
how does it happen that, when Move() is called while ignoring the specific type
of Bird, the right behavior will occur (a Goose runs, flies, or swims, and a
Penguin runs or swims)?

Goose

Move()

Penguin

Move()

BirdController

Relocate()

Bird

Move()

What happens when
Move() is called?

Figure 2-8: Late binding is the primary twist in OOP

The answer is the primary twist in object-oriented programming: the language
does not make a function call in the traditional sense. The function call generated
by a non-OOP language causes what is called early binding, a term you may not
have heard before because you’ve never thought about it any other way. It means

34 Thinking in C# www.ThinkingIn.NET

the compiler generates a call to a specific function name, and the linker resolves
this call to the absolute address of the code to be executed. In OOP, the program
cannot determine the address of the code until run-time, so some other scheme is
necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding.
When you send a message to an object, the code being called isn’t determined
until run-time. The compiler does ensure that the function exists and performs
type checking on the arguments and return value (languages such as Visual Basic
in which this isn’t true are said to have weak typing or latent typing), but it
doesn’t know the exact code to execute.

To perform late binding, C# uses a special bit of code in lieu of the absolute call.
This code calculates the address of the function body, using information stored in
the object (this process is covered in great detail in Chapter 7). Thus, each object
can behave differently according to the contents of that special bit of code. When
you send a message to an object, the object actually does figure out what to do
with that message.

In C#, you can choose whether a language method call is early- or late-bound. By
default, they are early-bound. To take advantage of polymorphism, methods must
be defined in the base class using the virtual keyword and implemented in
inheriting classes with the override keyword.

Consider the shape example. The family of classes (all based on the same uniform
interface) was diagrammed earlier in this chapter. To demonstrate
polymorphism, we want to write a single piece of code that ignores the specific
details of type and talks only to the base class. That code is decoupled from type-
specific information, and thus is simpler to write and easier to understand. And,
if a new type—a Hexagon, for example—is added through inheritance, the code
you write will work just as well for the new type of Shape as it did on the existing
types. Thus, the program is extensible.

If you write a method in C# (as you will soon learn how to do):

void DoStuff(Shape s) {
 s.Erase();
 // ...
 s.Draw();
}

Chapter 2: Introduction to Objects 35

This function speaks to any Shape, so it is independent of the specific type of
object that it’s drawing and erasing. If in some other part of the program we use
the DoStuff() function:

Circle c = new Circle();
Triangle t = new Triangle();
Line l = new Line();
DoStuff(c);
DoStuff(t);
DoStuff(l);

The calls to DoStuff() automatically work correctly, regardless of the exact type
of the object.

This is actually a pretty amazing trick. Consider the line:

DoStuff(c);

What’s happening here is that a Circle is being passed into a function that’s
expecting a Shape. Since a Circle is a Shape it can be treated as one by
DoStuff(). That is, any message that DoStuff() can send to a Shape, a Circle
can accept. So it is a completely safe and logical thing to do.

We call this process of treating a derived type as though it were its base type
upcasting. The name cast is used in the sense of casting into a mold and the up
comes from the way the inheritance diagram is typically arranged, with the base
type at the top and the derived classes fanning out downward. Thus, casting to a
base type is moving up the inheritance diagram: “upcasting.”

36 Thinking in C# www.MindView.net

Shape

Circle Square Triangle

Figure 2-9: A subtype can be upcast to its base type(s)

An object-oriented program contains some upcasting somewhere, because that’s
how you decouple yourself from knowing about the exact type you’re working
with. Look at the code in DoStuff():

 s.Erase();
 // ...
 s.Draw();

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a Square, do that,
etc.” If you write that kind of code, which checks for all the possible types that a
Shape can actually be, it’s messy and you need to change it every time you add a
new kind of Shape. Here, you just say “You’re a shape, I know you can Erase()
and Draw() yourself, do it, and take care of the details correctly.”

What’s impressive about the code in DoStuff() is that, somehow, the right thing
happens. Calling Draw() for Circle causes different code to be executed than
when calling Draw() for a Square or a Line, but when the Draw() message is
sent to an anonymous Shape, the correct behavior occurs based on the actual
type of the Shape. This is amazing because, as mentioned earlier, when the C#
compiler is compiling the code for DoStuff(), it cannot know exactly what types
it is dealing with. So ordinarily, you’d expect it to end up calling the version of
Erase() and Draw() for the base class Shape, and not for the specific Circle,
Square, or Line. And yet the right thing happens because of polymorphism. The
compiler and run-time system handle the details; all you need to know is that it
happens, and more important how to design with it. When you send a message to
an object, the object will do the right thing, even when upcasting is involved.

Chapter 2: Introduction to Objects 37

Abstract base classes
and interfaces
Often in a design, you want the base class to present only an interface for its
derived classes. That is, you don’t want anyone to actually create an object of the
base class, only to upcast to it so that its interface can be used. This is
accomplished by making that class abstract using the abstract keyword. If
anyone tries to make an object of an abstract class, the compiler prevents them.
This is a tool to enforce a particular design.

You can also use the abstract keyword to describe a method that hasn’t been
implemented yet—as a stub indicating “here is an interface function for all types
inherited from this class, but at this point I don’t have any implementation for it.”
An abstract method may be created only inside an abstract class. When the
class is inherited, that method must be implemented, or the inheriting class
becomes abstract as well. Creating an abstract method allows you to put a
method in an interface without being forced to provide a possibly meaningless
body of code for that method.

The interface keyword takes the concept of an abstract class one step further
by preventing any function definitions at all. The interface is a very handy and
commonly used tool, as it provides the perfect separation of interface and
implementation. In addition, you can combine many interfaces together, if you
wish, whereas inheriting from multiple regular classes or abstract classes is not
possible.

Object landscapes and lifetimes
Technically, OOP is just about abstract data typing, inheritance, and
polymorphism, but other issues can be at least as important. The remainder of
this section will cover these issues.

One of the most important factors is the way objects are created and destroyed.
Where is the data for an object and how is the lifetime of the object controlled?
There are different philosophies at work here. C++ takes the approach that
control of efficiency is the most important issue, so it gives the programmer a
choice. For maximum run-time speed, the storage and lifetime can be determined
while the program is being written, by placing the objects on the stack (these are
sometimes called automatic or scoped variables) or in the static storage area.
This places a priority on the speed of storage allocation and release, and control
of these can be very valuable in some situations. However, you sacrifice flexibility
because you must know the exact quantity, lifetime, and type of objects while
you're writing the program. If you are trying to solve a more general problem

38 Thinking in C# www.ThinkingIn.NET

such as computer-aided design, warehouse management, or air-traffic control,
this is too restrictive.

The second approach is to create objects dynamically in a pool of memory called
the heap. In this approach, you don't know until run-time how many objects you
need, what their lifetime is, or what their exact type is. Those are determined at
the spur of the moment while the program is running. If you need a new object,
you simply make it on the heap at the point that you need it. Because the storage
is managed dynamically, at run-time, the amount of time required to allocate
storage on the heap is significantly longer than the time to create storage on the
stack. (Creating storage on the stack is often a single assembly instruction to
move the stack pointer down, and another to move it back up.) The dynamic
approach makes the generally logical assumption that objects tend to be
complicated, so the extra overhead of finding storage and releasing that storage
will not have an important impact on the creation of an object. In addition, the
greater flexibility is essential to solve the general programming problem.

C# uses the second approach exclusively, except for value types, which will be
discussed shortly. Every time you want to create an object, you use the new
keyword to build a dynamic instance of that object. With languages that allow
objects to be created on the stack, the compiler determines how long the object
lasts and can automatically destroy it. However, if you create it on the heap the
compiler has no knowledge of its lifetime. In a language like C++, you must
determine programmatically when to destroy the object, which can lead to
memory leaks if you don’t do it correctly (and this is a common problem in C++
programs). The .NET runtime provides a feature called a garbage collector that
automatically discovers when an object is no longer in use and destroys it. A
garbage collector is much more convenient because it reduces the number of
issues that you must track and the code you must write. More important, the
garbage collector provides a much higher level of insurance against the insidious
problem of memory leaks (which has brought many a C++ project to its knees).

The rest of this section looks at additional factors concerning object lifetimes and
landscapes.

Collections and iterators
If you don’t know how many objects you’re going to need to solve a particular
problem, or how long they will last, you also don’t know how to store those
objects. How can you know how much space to create for those objects? You
can’t, since that information isn’t known until run-time.

Chapter 2: Introduction to Objects 39

The solution to most problems in object-oriented design seems flippant: you
create another type of object. The new type of object that solves this particular
problem holds references to other objects. Of course, you can do the same thing
with an array, which is available in most languages. But there’s more. This new
object, generally called a container (also called a collection), will expand itself
whenever necessary to accommodate everything you place inside it. So you don’t
need to know how many objects you’re going to hold in a container. Just create a
container object and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the
package. In C++, it’s part of the Standard C++ Library and is sometimes called
the Standard Template Library (STL). Object Pascal has containers in its Visual
Component Library (VCL). Smalltalk has a very complete set of containers. Like
Java, C# also has containers in its standard library. In some libraries, a generic
container is considered good enough for all needs, and in others (C#, for
example) the library has different types of containers for different needs: a vector
(called an ArrayList in C#), queues, hashtables, trees, stacks, etc.

All containers have some way to put things in and get things out; there are
usually functions to add elements to a container, and others to fetch those
elements back out. But fetching elements can be more problematic, because a
single-selection function is restrictive. What if you want to manipulate or
compare a set of elements in the container instead of just accessing a single
element?

The solution is an enumerator, which is an object whose job is to select the
elements within a container and present them to the user of the iterator. As a
class, it also provides a level of abstraction. This abstraction can be used to
separate the details of the container from the code that’s accessing that container.
The container, via the enumerator, is abstracted to be simply a sequence. The
enumerator allows you to traverse that sequence without worrying about the
underlying structure—that is, whether it’s an ArrayList, a Hashtable, a Stack,
or something else. This gives you the flexibility to easily change the underlying
data structure without disturbing the code in your program.

From a design standpoint, all you really want is a sequence that can be
manipulated to solve your problem. If a single type of sequence satisfied all of
your needs, there’d be no reason to have different kinds. There are two reasons
that you need a choice of containers. First, containers provide different types of
interfaces and external behavior. A stack has a different interface and behavior
than that of a queue, which is different from that of a dictionary or a list. One of
these might provide a more flexible solution to your problem than the other.

40 Thinking in C# www.MindView.net

Second, different containers have different efficiencies for certain operations. But
in the end, remember that a container is only a storage cabinet to put objects in.
If that cabinet solves all of your needs, it doesn’t really matter how it is
implemented (a basic concept with most types of objects).

The singly rooted hierarchy
One of the issues in OOP that has become especially prominent since the
introduction of C++ is whether all classes should ultimately be inherited from a
single base class. In C# (as with virtually all other OOP languages) the answer is
“yes” and the name of this ultimate base class is simply object. It turns out that
the benefits of the singly rooted hierarchy are many.

All objects in a singly rooted hierarchy have an interface in common, so they are
all ultimately the same type. The alternative (provided by C++) is that you don’t
know that everything is the same fundamental type. From a backward-
compatibility standpoint this fits the model of C better and can be thought of as
less restrictive, but when you want to do full-on object-oriented programming
you must then build your own hierarchy to provide the same convenience that’s
built into other OOP languages. And in any new class library you acquire, some
other incompatible interface will be used. It requires effort (and possibly multiple
inheritance) to work the new interface into your design. Is the extra “flexibility”
of C++ worth it? If you need it—if you have a large investment in C—it’s quite
valuable. If you’re starting from scratch, other alternatives such as C# can often
be more productive.

All objects in a singly rooted hierarchy (such as C# provides) can be guaranteed
to have certain functionality. You know you can perform certain basic operations
on every object in your system. A singly rooted hierarchy, along with creating all
objects on the heap, greatly simplifies argument passing (one of the more
complex topics in C++).

A singly rooted hierarchy makes it much easier to implement a garbage collector
(which is conveniently built into C#). The necessary support can be installed in
the base class, and the garbage collector can thus send the appropriate messages
to every object in the system. Without a singly rooted hierarchy and a system to
manipulate an object via a reference, it is difficult to implement a garbage
collector.

Since C# guarantees that run-time type information is available in all objects,
you’ll never end up with an object whose type you cannot determine. This is
especially important with system level operations, such as exception handling,
and to allow greater flexibility in programming.

Chapter 2: Introduction to Objects 41

Collection libraries and support for easy
collection use
Because a container is a tool that you’ll use frequently, it makes sense to have a
library of containers that are built in a reusable fashion, so you can take one off
the shelf and plug it into your program. .NET provides such a library, which
should satisfy most needs.

Downcasting vs. templates/generics
To make these containers reusable, they hold the one universal type in .NET that
was previously mentioned: object. The singly rooted hierarchy means that
everything is an object, so a container that holds objects can hold anything.
This makes containers easy to reuse.

To use such a container, you simply add object references to it, and later ask for
them back. But, since the container holds only objects, when you add your object
reference into the container it is upcast to object, thus losing its identity. When
you fetch it back, you get an object reference, and not a reference to the type that
you put in. So how do you turn it back into something that has the useful
interface of the object that you put into the container?

Here, the cast is used again, but this time you’re not casting up the inheritance
hierarchy to a more general type, you cast down the hierarchy to a more specific
type. This manner of casting is called downcasting. With upcasting, you know,
for example, that a Circle is a type of Shape so it’s safe to upcast, but you don’t
know that an object is necessarily a Circle or a Shape so it’s hardly safe to
downcast unless you know that’s what you’re dealing with.

It’s not completely dangerous, however, because if you downcast to the wrong
thing you’ll get a run-time error called an exception, which will be described
shortly. When you fetch object references from a container, though, you must
have some way to remember exactly what they are so you can perform a proper
downcast.

Downcasting and the run-time checks require extra time for the running
program, and extra effort from the programmer. Wouldn’t it make sense to
somehow create the container so that it knows the types that it holds, eliminating
the need for the downcast and a possible mistake? The solution is parameterized
types, which are classes that the compiler can automatically customize to work
with particular types. For example, with a parameterized container, the compiler
could customize that container so that it would accept only Shapes and fetch only
Shapes.

42 Thinking in C# www.ThinkingIn.NET

Parameterized types are an important part of C++, partly because C++ has no
singly rooted hierarchy. In C++, the keyword that implements parameterized
types is “template.” .NET currently has no parameterized types since it is possible
for it to get by—however awkwardly—using the singly rooted hierarchy. However,
there is no doubt that parameterized types will be implemented in a future
version of the .NET Framework.

The housekeeping dilemma:
who should clean up?
Each object requires resources in order to exist, most notably memory. When an
object is no longer needed it must be cleaned up so that these resources are
released for reuse. In simple programming situations the question of how an
object is cleaned up doesn’t seem too challenging: you create the object, use it for
as long as it’s needed, and then it should be destroyed. It’s not hard, however, to
encounter situations that are more complex.

Suppose, for example, you are designing a system to manage air traffic for an
airport. (The same model might also work for managing crates in a warehouse, or
a video rental system, or a kennel for boarding pets.) At first it seems simple:
make a container to hold airplanes, then create a new airplane and place it in the
container for each airplane that enters the air-traffic-control zone. For cleanup,
simply delete the appropriate airplane object when a plane leaves the zone.

But perhaps you have some other system to record data about the planes,
possibly data that doesn’t require such immediate attention as the main
controller function. Maybe it’s a record of the flight plans of all the small planes
that leave the airport. So you have a second container of small planes, and
whenever you create a plane object you also put it in this second container if it’s a
small plane. Then some background process performs operations on the objects
in this container during idle moments.

Now the problem is more difficult: how can you possibly know when to destroy
the objects? When you’re done with the object, some other part of the system
might not be. This same problem can arise in a number of other situations, and in
programming systems (such as C++) in which you must explicitly delete an object
when you’re done with it this can become quite complex.

With C#, the garbage collector is designed to take care of the problem of releasing
the memory (although this doesn’t include other aspects of cleaning up an
object). When the garbage collector runs (which can happen at any time), it can
tell which objects are no longer in use, and it automatically releases the memory
for that object. This (combined with the fact that all objects are inherited from

Chapter 2: Introduction to Objects 43

the single root class object and that you can create objects only one way, on the
heap) makes the process of programming in C# much simpler than programming
in C++. You have far fewer decisions to make and hurdles to overcome.

Garbage collectors vs. efficiency and flexibility
If all this is such a good idea, why didn’t they do the same thing in C++? Well of
course there’s a price you pay for all this programming convenience, and that
price is run-time overhead. As mentioned before, in C++ you can create objects
on the stack, and in this case they’re automatically cleaned up (but you don’t have
the flexibility of creating as many as you want at run-time). Creating objects on
the stack is the most efficient way to allocate storage for objects and to free that
storage. Creating objects on the heap can be much more expensive. Always
inheriting from a base class and making all function calls polymorphic also exacts
a small toll. But the garbage collector is a particular problem because you never
quite know when it’s going to start up or how long it will take. This means that
there’s an inconsistency in the rate of execution of a C# program, so you can’t use
it in certain situations, such as when the rate of execution of a program is
uniformly critical. (These are generally called real-time programs, although not
all real-time programming problems are this stringent.)

The designers of the C++ language, trying to woo C programmers (and most
successfully, at that), did not want to add any features to the language that would
impact the speed or the use of C++ in any situation where programmers might
otherwise choose C. This goal was realized, but at the price of greater complexity
when programming in C++. C# is much simpler to use than C++, but the trade-
off is in efficiency and sometimes applicability. For a significant portion of
programming problems, however, C# is the superior choice.

Exception handling:
dealing with errors
Since programming languages were created, error handling has been one of the
most difficult issues. Because it’s so hard to design a good error handling scheme,
many languages simply ignore the issue, passing the problem on to library
designers who come up with halfway measures that can work in many situations
but can easily be circumvented, generally by just ignoring them. A major problem
with most error handling schemes is that they rely on programmer vigilance in
following an agreed-upon convention that is not enforced by the language. If the
programmer is not vigilant—often the case if they are in a hurry—these schemes
can easily be forgotten.

44 Thinking in C# www.MindView.net

Exception handling wires error handling directly into the programming language
and sometimes even the operating system. An exception is an object that is
“thrown” from the site of the error and can be “caught” by an appropriate
exception handler designed to handle that particular type of error. It’s as if
exception handling is a different, parallel path of execution that can be taken
when things go wrong. And because it uses a separate execution path, it doesn’t
need to interfere with your normally executing code. This makes that code
simpler to write since you aren’t constantly forced to check for errors. In
addition, a thrown exception is unlike an error value that’s returned from a
function or a flag that’s set by a function in order to indicate an error condition—
these can be ignored. An exception cannot be ignored, so it’s guaranteed to be
dealt with at some point. Finally, exceptions provide a way to reliably recover
from a bad situation. Instead of just exiting you are often able to set things right
and restore the execution of a program, which produces much more robust
programs.

It’s worth noting that exception handling isn’t an object-oriented feature,
although in object-oriented languages the exception is normally represented with
an object. Exception handling existed before object-oriented languages.

Multithreading
A fundamental concept in computer programming is the idea of handling more
than one task at a time. Many programming problems require that the program
be able to stop what it’s doing, deal with some other problem, and then return to
the main process. The solution has been approached in many ways. Initially,
programmers with low-level knowledge of the machine wrote interrupt service
routines and the suspension of the main process was initiated through a
hardware interrupt. Although this worked well, it was difficult and nonportable,
so it made moving a program to a new type of machine slow and expensive.

Sometimes interrupts are necessary for handling time-critical tasks, but there’s a
large class of problems in which you’re simply trying to partition the problem
into separately running pieces so that the whole program can be more responsive,
or often just simpler to create and understand. Within a program, these
separately running pieces are called threads, and the general concept is called
multithreading. A common example of multithreading is the user interface. By
using threads, a user can press a button and get a quick response rather than
being forced to wait until the program finishes its current task.

Ordinarily, threads are just a way to allocate the time of a single processor. But if
the operating system supports multiple processors, each thread can be assigned

Chapter 2: Introduction to Objects 45

to a different processor and they can truly run in parallel. One of the convenient
features of multithreading at the language level is that the programmer doesn’t
need to worry about whether there are many processors or just one. The program
is logically divided into threads and if the machine has more than one processor
and can allocate the hardware as a “processor pool,” then the program runs faster
without any special adjustments.

All this makes threading sound pretty simple. There is a catch: shared resources.
If you have more than one thread running that’s expecting to access the same
resource you have a problem. For example, two processes can’t simultaneously
send information to a printer. To solve the problem, resources that can be shared,
such as the printer, must be locked while they are being used. So a thread locks a
resource, completes its task, and then releases the lock so that someone else can
use the resource.

C#’s threading is built into the language, which makes a complicated subject
much simpler. The threading is supported on an object level, so one thread of
execution is represented by one object. C# also provides limited resource locking.
It can lock the memory of any object (which is, after all, one kind of shared
resource) so that only one thread can use it at a time. This is accomplished with
the lock keyword. Other types of resources must be locked explicitly by the
programmer, typically by creating an object to represent the lock that all threads
must check before accessing that resource.

Persistence
When you create an object, it exists as long as you need it, but it ceases to exist
when the program terminates. While this makes sense at first, there are
situations where it would be incredibly useful if an object could be created during
one program run and then be transported across program and computer
boundaries or be brought back into its fully-formed existence the next time the
program is run. One way of doing this is to create a database table whose columns
correspond to the fields of the object and write code that maps an object’s state to
a single record in the database. Another way is to use XML to represent the
persistent state of the object. C# has two serialization schemes; one based on a
binary representation of the object and the other that uses XML. The XML
scheme, while a little more work to implement than the binary one, can mediate
between objects and XML documents, which in turn can be stored in files,
transmitted over the Internet, or can themselves be mapped into database files.

46 Thinking in C# www.ThinkingIn.NET

Remote objects
While databases and serialization are fine for persisting data, an increasing
number of programs are written to cooperate with other programs by the use of
remote procedure calls (RPC). Where persistence allows you to store and retrieve
the state of your objects, RPC adds behavior. As Booch defined it above, an object
has state, behavior, and identity, so a distributed object-oriented system needs
those three things as well. .NET supports two types of distributed object-oriented
programming:

♦ .NET Remoting is an efficient “native” architecture in which objects have
identity inside application domains that may or may not be on the local
machine.

♦ Web Services uses an XML-based RPC mechanism that uses familiar
Universal Resource Identifiers (URIs) to define identity. Essentially,
when a remote method call is made with SOAP as the format and HTTP
as the medium, you’ve got a Web Service.While the XML-RPC is not as
efficient on a call-by-call basis as binary .NET Remoting, Web Services
are not confined to the .NET platform and are therefore the subject of a
broader range of development efforts.

Obviously, the coordination of multiple machines and the transfer of critical data
over the vast, unpredictable, and uncontrollable Internet is no small task. The
triumph of .NET is that each of the capabilities mentioned (object-orientation,
threading, collections, and so forth) are coordinated to facilitate just this type of
development. Although Web Services are not confined to the .NET platform, the
.NET Framework provides such significant productivity advantages to this
cutting-edge development challenge that its success is a foregone conclusion.

Summary
Computers have no common sense. Every detail that is necessary to describe and
solve a problem must be made explicit by programmers. But to reason about
problems, humans need to put aside the details and concentrate on the abstract
“big picture.” The history of computer programming can be seen as a process of
discovering better ways to organize details while keeping the abstract big picture
in focus.

One route of discovery focused on data abstraction as the key to tackling large
problems. Database programming languages are based on discovering the
common and unique elements of data in the problem and use the transformation
of input data into output data as the leading principle that will give them a
bearing on a problem and its possible solution. Another line of attack focused on

Chapter 2: Introduction to Objects 47

behavior as the major challenge. Structured programming uses behavior as the
primary structural element and emphasizes the discovery of common functions.

Object-oriented programming takes the stand that both data and behavior are
equally important. Logically related data and behavior are grouped together in
program elements called types. All instances of a given type have the same
behavior, but may have different data. Integers are a type that can be added and
subtracted, strings are a type that can be appended to other strings, and dogs are
a type that barks at strangers. 47 and 23 are two instances of the integer type, “E
pluribus unum” and “With Liberty and Justice for All” are two instances of the
string type, and Lassie and Rin Tin Tin are two instances of the dog type.

The most common form of type is the class. An instance of a particular class is
called an object. Object-oriented programming consists of defining the behavior
of classes and creating objects and filling them with data. Naturally, this data will
be instances of particular types, and the data in these instances will themselves
be instances of yet other types, and so on. So an object-oriented program consists
of a web of inter-related objects.This sounds confusing, but it turns out to be a
very natural way to talk about problems and their solutions.

Classes can be related by a special “is-a” relationship called inheritance. A class
that inherits from another class starts with all the characteristics of the ancestor
class and can add data or change behavior. Since a dog is a type of mammal and
all mammals have warm blood, the Dog class could descend from Mammal.
The data and behavior relating to warm-bloodedness would be in the Mammal
class, the data and behavior relating to barking at strangers in the Dog class.
Once this was done, programmers and domain experts developing a veterinary
application could talk about a problem and solution relating to body temperature
by speaking of the different characteristics of Mammals and Reptiles, rather
than focusing exclusively on either a data characteristic (the blood temperature)
or a behavioral characteristics (panting versus basking).

The programmer of a class can choose whether its methods (the functions that
specify behavior) may or must be overridden by descendant classes. This aids the
ability of programmers and domain experts to isolate and discuss the different
abstractions in a problem. One can speak of, say, the overall procedure for an
online checkout without going into the details of credit-card versus corporate-
account payments. Conversely, one can implement a credit-card authorization or
a corporate-account debit safe in the knowledge that they can only be accessed
according to a defined interface.

The collection classes and database model of .NET make it easier to structure the
web of inter-related objects that make up an OOP solution. Similarly, the

48 Thinking in C# www.MindView.net

underlying framework takes care of managing memory and low-level threading
issues, which are notoriously prone to disasters resulting from missed details.
These facilities do cost some amount of performance compared to what can be
done by a skilled programmer “coding to the metal,” but this inherent penalty is
lower than most people think. Poor performance is most often the result of
inefficient design, and C# and object-orientation facilitate efficient design.

Over the years, the “typical” programming project has changed from a specialized
calculation for a tolerant scientist to an information management task for a busy
professional. The challenge to today’s programmers is not often the efficient
expression of a sophisticated mathematical model, but is more often the rapid
delivery of business value to clients in a world where the definition of value is
itself subject to rapid change. Perhaps the single greatest benefit of object-
orientation is that it facilitates communication between programmers and clients
by providing a framework in which the domain experts’ natural way of speaking
can lead to program structure.

 49

3: Hello, Objects
Although it is based on C++, C# is more of a “pure”
object-oriented language.

Both C++ and C# are hybrid languages, but in C# the designers felt that the
hybridization was not as important as it was in C++. A hybrid language allows
multiple programming styles; the reason C++ is hybrid is to support backward
compatibility with the C language. Because C++ is a superset of the C language, it
includes many of that language’s undesirable features, which can make some
aspects of C++ overly complicated.

The C# language assumes that you want to do only object-oriented programming.
This means that before you can begin you must shift your mindset into an object-
oriented world (unless it’s already there). The benefit of this initial effort is the
ability to program in a language that is simpler to learn and to use than many
other OOP languages. In this chapter we’ll see the basic components of a C#
program and we’ll learn that everything in C# is an object, even a C# program.

You manipulate objects
with references
Each programming language has its own means of manipulating data. Sometimes
the programmer must be constantly aware of what type of manipulation is going
on. Are you manipulating the object directly, or are you dealing with some kind of
indirect representation (a pointer in C or C++) that must be treated with a special
syntax?

All this is simplified in C#. You treat everything as an object, so there is a single
consistent syntax that you use everywhere. Although you treat everything as an
object, the identifier you manipulate is either a variable representing the value
itself or a “reference” to an object. You might imagine the latter as a television
(the object) with your remote control (the reference). As long as you’re holding
this reference, you have a connection to the television, but when someone says
“change the channel” or “lower the volume,” what you’re manipulating is the
reference, which in turn modifies the object. If you want to move around the

50 Thinking in C# www.ThinkingIn.NET

room and still control the television, you take the remote/reference with you, not
the television.

Also, the remote control can stand on its own, with no television. That is, just
because you have a reference doesn’t mean there’s necessarily an object
connected to it. So if you want to hold a television, you create a Television
reference:

Television t;

But here you’ve created only the reference, not an object. If you decided to send a
message to t at this point, you’ll get an error because t isn’t actually attached to
anything (there’s no television).

You must create
all the objects
When you create a reference, you want to connect it with a new object. You do so,
in general, with the new keyword. new says, “Make me a new one of these
objects.” So you can say:

Remote myRemote = new Remote(lastChannelWatched);

Not only does this mean “Make me a new Remote,” but it also gives information
about how to make the Remote by supplying some initial context.

Of course, you would have had to have programmed a Remote type for this code
to work. In fact, that’s the fundamental activity in C# programming: creating new
types that represent the problem and solution to the task at hand. Learning how
to do that, and gaining a familiarity with the plethora of preexisting classes in the
.NET Framework Library is what you’ll be learning about in the rest of this book.

Where storage lives
It’s useful to visualize some aspects of how things are laid out while the program
is running, in particular how memory is arranged. There are six different places
to store data:

1. Registers. This is the fastest storage because it exists in a place different
from that of other storage: inside the processor. However, the number of
registers is severely limited, so registers are allocated by the JIT compiler
according to its needs. You don’t have direct control, nor do you see any
evidence in your programs that registers even exist.

Chapter 2: Hello, Objects 51

2. The stack. This lives in the general RAM (random-access memory) area,
but has direct support from the processor via its stack pointer. The stack
pointer is moved down to create new memory and moved up to release
that memory. This is an extremely fast and efficient way to allocate
storage, second only to registers. The C# just-in-time compiler must
know, while it is creating the program, the exact size and lifetime of all
the data that is stored on the stack, because it must generate the code to
move the stack pointer up and down. This constraint places limits on the
flexibility of your programs, so while some C# storage exists on the
stack—in particular, value types (explained shortly) and references to
objects —C# objects themselves are not placed on the stack.

3. The heap. This is a general-purpose pool of memory (also in the RAM
area) where all C# objects live. The nice thing about the heap is that,
unlike the stack, the compiler doesn’t need to know how much storage it
needs to allocate from the heap or how long that storage must stay on the
heap. Thus, there’s a great deal of flexibility in using storage on the heap.
Whenever you need to create an object, you simply write the code to
create it using new, and the storage is allocated on the heap when that
code is executed. Of course there’s a price you pay for this flexibility: it
takes more time to allocate heap storage than it does to allocate stack
storage.

4. Static storage. “Static” is used here in the sense of “in a fixed location”
(although it’s also in RAM). Static storage contains data that is available
for the entire time a program is running. You can use the static keyword
to specify that a particular element of an object is static, but C# objects
themselves are never placed in static storage.

5. Constant storage. Constant values are often placed directly in the
program code, which is safe since they can never change. Sometimes
constants are cordoned off by themselves so that they can be optionally
placed in read-only memory (ROM).

6. Non-RAM storage. If data lives completely outside a program it can
exist while the program is not running, outside the control of the
program. The two primary examples of this are serialized objects, in
which objects are turned into streams of bytes, generally to be sent to
another process or machine, and persistent objects, in which the objects
are placed on disk so they will hold their state even when the program is
terminated. The trick with these types of storage is turning the objects
into something that can exist on the other medium, can be resurrected

52 Thinking in C# www.MindView.net

into a regular RAM-based object when necessary, and which still
provides for correct behavior when a new version of the object is
released. .NET Remoting provides for serialization in a number of ways
and which makes huge strides towards addressing the problem of
versioning. Future versions of .NET might provide even more complete
solutions for persistence, such as support for database-style queries on
stored objects.

Arrays in C#
Virtually all programming languages support arrays. Using arrays in C and C++ is
perilous because those arrays are only blocks of memory. If a program accesses
the array outside of its memory block or uses the memory before initialization
(common programming errors) there will be unpredictable results.

One of the primary goals of C# is safety, so many of the problems that plague
programmers in C and C++ are not repeated in C#. A C# array is guaranteed to
be initialized and cannot be accessed outside of its range. The range checking
comes at the price of having a small amount of memory overhead on each array
as well as verifying the index at run-time, but the assumption is that the safety
and increased productivity is worth the expense.

When you create an array of objects, you are really creating an array of
references, and each of those references is automatically initialized to a special
value with its own keyword: null. When C# sees null, it recognizes that the
reference in question isn’t pointing to an object. You must assign an object to
each reference before you use it, and if you try to use a reference that’s still null,
the problem will be reported at run-time. Thus, typical array errors are prevented
in C#.

You can also create an array of value types (which will be described next). Again,
the compiler guarantees initialization because it zeroes the memory for that
array.

Arrays will be covered in detail in later chapters.

Special case: value types
Unlike “pure” object-oriented languages such as Smalltalk, C# does not insist
that every variable must be an object. While the performance of most systems is
not determined by a single factor, the allocation of many small objects can be
notoriously costly. A story goes that in the early 1990s, a manager decreed that
his programming team switch to Smalltalk to gain the benefits of object-
orientation; an obstinate C programmer immediately ported the application’s

Chapter 2: Hello, Objects 53

core matrix-manipulating algorithm to Smalltalk. The manager was pleased with
this surprisingly cooperative behavior, as the programmer made sure that
everyone knew that he was integrating the new Smalltalk code that very
afternoon and running it through the stress test before making it the first
Smalltalk code to be integrated into the production code. Twenty-four hours
later, when the matrix manipulation had not completed, the manager realized
that he’d been had, and never spoke of Smalltalk again.

When Java became popular, many people predicted similar performance
problems. However, Java has “primitive” types for integers and characters and so
forth and many people have found that this has been sufficient to make Java
appropriate for almost all performance-oriented tasks. C# goes a step beyond;
not only are values (rather than classes) used for basic numeric types, developers
can create new value types in the form of enumerations (enums) and structures
(structs).

Value types can be transparently converted to and from object references via a
process known as “boxing.” This is a nice advantage of C# over Java, where
turning a primitive type into an object reference requires an explicit method call.
Boxing is described in more detail on Page 65.

You never need to
destroy an object
In most programming languages, the concept of the lifetime of a variable
occupies a significant portion of the programming effort. How long does the
variable last? If you are supposed to destroy it, when should you? Confusion over
variable lifetimes can lead to a lot of bugs, and this section shows how C# greatly
simplifies the issue by doing all the cleanup work for you.

Scoping
Most procedural languages have the concept of scope. This determines both the
visibility and lifetime of the names defined within that scope. In C, C++, and C#,
scope is determined by the placement of curly braces {}. So for example:

{
 int x = 12;
 /* only x available */
 {
 int q = 96;
 /* both x & q available */

54 Thinking in C# www.ThinkingIn.NET

 }
 /* only x available */
 /* q “out of scope” */
}

A variable defined within a scope is available only to the end of that scope.

Indentation makes C# code easier to read. Since C# is a free-form language, the
extra spaces, tabs, and carriage returns do not affect the resulting program.

Note that you cannot do the following, even though it is legal in C and C++:

{
 int x = 12;
 {
 int x = 96; /* illegal */
 }
}

The compiler will announce that the variable x has already been defined. Thus
the C and C++ ability to “hide” a variable in a larger scope is not allowed because
the C# designers thought that it led to confusing programs.

Scope of objects
C# objects do not have the same lifetimes as value types such as structs. When
you create a C# object using new, it hangs around past the end of the scope. Thus
if you use:

{
 Television t = new Television();
} /* end of scope */

the reference t vanishes at the end of the scope. However, the Television object
that t was pointing to is still occupying memory. In this bit of code, there is no
way to access the object because the only reference to it is out of scope. In later
chapters you’ll see how the reference to the object can be passed around and
duplicated during the course of a program.

It turns out that because objects created with new stay around for as long as you
want them, a whole slew of C++ programming problems simply vanish in C#. The
hardest problems seem to occur in C++ because you don’t get any help from the
language in making sure that the objects are available when they’re needed. And
more important, in C++ you must make sure that you destroy the objects when
you’re done with them.

Chapter 2: Hello, Objects 55

That brings up an interesting question. If C# leaves the objects lying around,
what keeps them from filling up memory and halting your program? This is
exactly the kind of problem that would occur in C++. Here is where a bit of magic
happens. The .NET runtime has a garbage collector, which looks at all the
objects that were created with new and figures out which ones are not being
referenced anymore. Then it releases the memory for those objects, so the
memory can be used for new objects. This means that you never need to worry
about reclaiming memory yourself. You simply create objects, and when you no
longer need them they will go away by themselves. This eliminates a certain class
of programming problem: the so-called “memory leak,” in which a programmer
forgets to release memory.

Creating new
data types: class
If everything is an object, what determines how a particular class of object looks
and behaves? Put another way, what establishes the type of an object? You might
expect there to be a keyword called “type,” and that certainly would have made
sense. Historically, however, most object-oriented languages have used the
keyword class to mean “I’m about to tell you what a new type of object looks
like.” The class keyword (which is so common that it will not be emboldened
throughout this book) is followed by the name of the new type. For example:

class ATypeName { /* class body goes here */ }

This introduces a new type, so you can now create an object of this type using
new:

ATypeName a = new ATypeName();

In ATypeName, the class body consists only of a comment (the stars and
slashes and what is inside, which will be discussed later in this chapter), so there
is not too much that you can do with it. In fact, you cannot tell it to do much of
anything (that is, you cannot send it any interesting messages) until you define
some methods for it.

Fields, properties, and methods
When you define a class, you can put three types of elements in your class: data
members (sometimes called fields), member functions (typically called methods),
and properties. A data member is an object of any type that you can communicate
with via its reference. It can also be a value type (which isn’t a reference). If it is a
reference to an object, you must initialize that reference to connect it to an actual

56 Thinking in C# www.MindView.net

object (using new, as seen earlier) in a special function called a constructor
(described fully in Chapter 4). If it is a primitive type you can initialize it directly
at the point of definition in the class. (As you’ll see later, references can also be
initialized at the point of definition.)

Each object keeps its own storage for its data members; the data members are not
shared among objects. Here is an example of a class with some data members:

public class DataOnly {
 public int i;
 public float f;
 public bool b;
 private string s;
}

This class doesn’t do anything, but you can create an object:

DataOnly d = new DataOnly();

Both the classname and the fields except s are preceded by the word public. This
means that they are visible to all other objects. You can assign values to data
members that are visible, but you must first know how to refer to a member of an
object. This is accomplished by stating the name of the object reference, followed
by a period (dot), followed by the name of the member inside the object:

objectReference.member

For example:

d.i = 47;
d.f = 1.1;
d.b = false;

However, the string s field is marked private and is therefore not visible to any
other object (later, we’ll discuss other access modifiers that are intermediate
between public and private). If you tried to write:

d.s = "asdf";

you would get a compile error. Data hiding seems inconvenient at first, but is so
helpful in a program of any size that the default visibility of fields is private.

It is also possible that your object might contain other objects that contain data
you’d like to modify. For this, you just keep “connecting the dots.” For example:

myPlane.leftTank.capacity = 100;

Chapter 2: Hello, Objects 57

The DataOnly class cannot do much of anything except hold data, because it has
no member functions (methods). To understand how those work, you must first
understand arguments and return values, which will be described shortly.

Default values for value types
When a value type is a member of a class, it is guaranteed to get a default value if
you do not initialize it:

Value type Size in bits Default
bool 4 false

char 8 ‘\u0000’ (null)

byte, sbyte 8 (byte)0

short, ushort 8 (short)0

int, uint 32 0

long, ulong 64 0L

float 8 0.0f

double 64 0.0d

decimal 96 0

string 160 minimum ‘’ (empty)

object
64 minimum
overhead null

Note carefully that the default values are what C# guarantees when the variable is
used as a member of a class. This ensures that member variables of primitive
types will always be initialized (something C++ doesn’t do), reducing a source of
bugs. However, this initial value may not be correct or even legal for the program
you are writing. It’s best to always explicitly initialize your variables.

This guarantee doesn’t apply to “local” variables—those that are not fields of a
class. Thus, if within a function definition you have:

int x;

you must have an appropriate value to x before you use it. If you forget, C#
definitely improves on C++: you get a compile-time error telling you the variable
might not have been initialized. (Many C++ compilers will warn you about
uninitialized variables, but in C# these are errors.)

The previous table contains some rows with multiple entries, e.g., short and
ushort. These are signed and unsigned versions of the type. An unsigned version

58 Thinking in C# www.ThinkingIn.NET

of an integral type can take any value between 0 and 2bitsize–1 while a signed
version can take any value between -2bitsize–1 to 2bitsize–1–1.

Methods, arguments,
and return values
Up until now, the term function has been used to describe a named subroutine.
The term that is more commonly used in C# is method, as in “a way to do
something.” If you want, you can continue thinking in terms of functions. It’s
really only a syntactic difference, but from now on “method” will be used in this
book rather than “function.”

Methods in C# determine the messages an object can receive. In this section you
will learn how simple it is to define a method.

The fundamental parts of a method are the name, the arguments, the return type,
and the body. Here is the basic form:

returnType MethodName(/* Argument list */) {
 /* Method body */
}

The return type is the type of the value that pops out of the method after you call
it. The argument list gives the types and names for the information you want to
pass into the method. The method name and argument list together uniquely
identify the method.

Methods in C# can be created only as part of a class. A method can be called only
for an object,1 and that object must be able to perform that method call. If you try
to call the wrong method for an object, you’ll get an error message at compile
time. You call a method for an object by naming the object followed by a period
(dot), followed by the name of the method and its argument list, like this:
objectName.MethodName(arg1, arg2, arg3). For example, suppose you
have a method F() that takes no arguments and returns a value of type int.
Then, if you have an object called a for which F() can be called, you can say this:

int x = a.F();

The type of the return value must be compatible with the type of x.

1 static methods, which you’ll learn about soon, can be called for the class, without an
object.

Chapter 2: Hello, Objects 59

This act of calling a method is commonly referred to as sending a message to an
object. In the above example, the message is F() and the object is a. Object-
oriented programming is often summarized as simply “sending messages to
objects.”

The argument list
The method argument list specifies what information you pass into the method.
As you might guess, this information—like everything else in C#—takes the form
of objects. So, what you must specify in the argument list are the types of the
objects to pass in and the name to use for each one. As in any situation in C#
where you seem to be handing objects around, you are actually passing
references. The type of the reference must be correct, however. If the argument is
supposed to be a string, what you pass in must be a string.

Consider a method that takes a string as its argument. Here is the definition,
which must be placed within a class definition for it to be compiled:

int Storage(string s) {
 return s.Length * 2;
}

This method tells you how many bytes are required to hold the information in a
particular string. (Each char in a string is 16 bits, or two bytes, long, to
support Unicode characters2.)The argument is of type string and is called s.
Once s is passed into the method, you can treat it just like any other object. (You
can send messages to it.) Here, the Length property is used, which is one of the
properties of strings; it returns the number of characters in a string.

You can also see the use of the return keyword, which does two things. First, it
means “leave the method, I’m done.” Second, if the method produces a value, that
value is placed right after the return statement. In this case, the return value is
produced by evaluating the expression s.Length * 2.

You can return any type you want, but if you don’t want to return anything at all,
you do so by indicating that the method returns void. Here are some examples:

boolean Flag() { return true; }

2 The bit-size and interpretation of chars can actually be manipulated by a class called
Encoding and this statement refers to the default “Unicode Transformation Format, 16-
bit encoding form” or UTF-16. Other encodings are UTF-8 and ASCII, which use 8 bits to
define a character.

60 Thinking in C# www.MindView.net

float NaturalLogBase() { return 2.718f; }
void Nothing() { return; }
void Nothing2() {}

When the return type is void, then the return keyword is used only to exit the
method, and is therefore unnecessary when you reach the end of the method. You
can return from a method at any point, but if you’ve given a non-void return type
then the compiler will force you (with error messages) to return the appropriate
type of value regardless of where you return.

At this point, it can look like a program is just a bunch of objects with methods
that take other objects as arguments and send messages to those other objects.
That is indeed much of what goes on, but in the following chapter you’ll learn
how to do the detailed low-level work by making decisions within a method. For
this chapter, sending messages will suffice.

Attributes
and meta-behavior
The most intriguing low-level feature of the .NET Runtime is the attribute, which
allows you to specify arbitrary meta-information to be associated with code
elements such as classes, types, and methods. Attributes are specified in C# using
square brackets just before the code element. Adding an attribute to a code
element doesn’t change the behavior of the code element; rather, programs can
be written which say “For all the code elements that have this attribute, do this
behavior.” The most immediately powerful demonstration of this is the
[WebMethod] attribute which within Visual Studio .NET is all that is necessary
to trigger the exposure of that method as a Web Service.

Attributes can be used to simply tag a code element, as with [WebMethod], or
they can contain parameters that contain additional information. For instance,
this example shows an XMLElement attribute that specifies that, when
serialized to an XML document, the FlightSegment[] array should be created
as a series of individual FlightSegment elements:

[XmlElement(
 ElementName = "FlightSegment")]
 public FlightSegment[] flights;

Attributes will be explained in Chapter 13 and XML serialization will be covered
in Chapter 17.

Chapter 2: Hello, Objects 61

Delegates
In addition to classes and value types, C# has an object-oriented type that
specifies a method signature. A method’s signature consists of its argument list
and its return type. A delegate is a type that allows any method whose signature
is identical to that specified in the delegate definition to be used as an “instance”
of that delegate. In this way, a method can be used as if it were a variable –
instantiated, assigned to, passed around in reference form, etc. C++
programmers will naturally think of delegates as being quite analogous to
function pointers.

In this example, a delegate named BluffingStrategy is defined:

delegate void BluffingStrategy(PokerHand x);

public class BlackBart{
 public void SnarlAngrily(PokerHand y){ … }
 public int AnotherMethod(PokerHand z){ … }
}
public class SweetPete{
 public void YetAnother(){ … }
 public static void SmilePleasantly(PokerHand z){ … }
}

The method BlackBart.SnarlAngrily() could be used to instantiate the
BluffingStrategy delegate, as could the method
SweetPete.SmilePleasantly(). Both of these methods do not return anything
(they return void) and take a PokerHand as their one-and-only parameter—the
exact method signature specified by the BluffingStrategy delegate.

Neither BlackBart.AnotherMethod() nor SweetPete.YetAnother() can
be used as BluffingStrategys, as these methods have different signatures than
BluffingStrategy. BlackBart.AnotherMethod() returns an int and
SweetPete.YetAnother() does not take a PokerHand argument.

Instantiating a reference to a delegate is just like making a reference to a class:

BluffingStrategy bs =
 new BluffingStrategy(SweetPete.SmilePleasantly);

The left-hand size contains a declaration of a variable bs of type delegate
BluffingStrategy. The right-hand side specifies a method; it does not actually
call the method SweetPete.SmilePleasantly().

62 Thinking in C# www.ThinkingIn.NET

To actually call the delegate, you put parentheses (with parameters, if
appropriate) after the variable:

bs(); //equivalent to: SweetPete.SmilePleasantly()

Delegates are a major element in programming Windows Forms, but they
represent a major design feature in C# and are useful in many situations.

Properties
Fields should, essentially, never be available directly to the outside world.
Mistakes are often made when a field is assigned to; the field is supposed to store
a distance in metric not English units, strings are supposed to be all lowercase,
etc. However, such mistakes are often not found until the field is used at a much
later time (like, say, when preparing to enter Mars orbit). While such logical
mistakes cannot be discovered by any automatic means, discovering them can be
made easier by only allowing fields to be accessed via methods (which, in turn,
can provide additional sanity checks and logging traces).

C# allows you to give your classes the appearance of having fields directly
exposed but in fact hiding them behind method invocations. These Property
fields come in two varieties: read-only fields that cannot be assigned to, and the
more common read-and-write fields. Additionally, properties allow you to use a
different type internally to store the data from the type you expose. For instance,
you might wish to expose a field as an easy-to-use bool, but store it internally
within an efficient BitArray class (discussed in Chapter 9).

Properties are specified by declaring the type and name of the Property, followed
by a bracketed code block that defines a get code block (for retrieving the value)
and a set code block. Read-only properties define only a get code block (it is
legal, but not obviously useful, to create a write-only property by defining just
set). The get code block acts as if it were a method defined as taking no
arguments and returning the type defined in the Property declaration; the set
code block acts as if it were a method returning void that takes an argument
named value of the specified type. Here’s an example of a read-write property
called PropertyName of type MyType.

//MyClass.cs
//Demonstrates a property
class MyClass {
 MyType myInternalReference;

 //Begin property definition

Chapter 2: Hello, Objects 63

 public MyType PropertyName{
 get {
 //logic
 return myInternalReference;
 }

 set{
 //logic
 myInternalReference = value;
 }
 }
 //End of property definition
}//(Not intended to compile – MyType does not exist)

To use a Property, you access the name of the property directly:

myClassInstance.MyProperty = someValue; //Calls "set"
MyType t = myClassInstance.MyProperty; //Calls "get"

One of the most common rhetorical questions asked by Java advocates is “What’s
the point of properties when all you have to do is have a naming convention such
as Java’s getPropertyName() and setPropertyName()? It’s needless
complexity.” The C# compiler in fact does create just such methods in order to
implement properties (the methods are called get_PropertyName() and
set_PropertyName()). This is a theme of C# — direct language support for
features that are implemented, not directly in Microsoft Intermediate Language
(MSIL – the “machine code” of the .NET runtime), but via code generation. Such
“syntactic sugar” could be removed from the C# language without actually
changing the set of problems that can be solved by the language; they “just” make
certain tasks easier. Properties make the code a little easier to read and make
reflection-based meta-programming (discussed in Chapter 13) a little easier. Not
every language is designed with ease-of-use as a major design goal and some
language designers feel that syntactic sugar ends up confusing programmers. For
a major language intended to be used by the broadest possible audience, C#’s
language design is appropriate; if you want something boiled down to pure
functionality, there’s talk of LISP being ported to .NET.

Creating new value types
In addition to creating new classes, you can create new value types. One nice
feature that C# enjoys is the ability to automatically box value types. Boxing is the
process by which a value type is transformed into a reference type and vice versa.
Value types can be automatically transformed into references by boxing and a

64 Thinking in C# www.MindView.net

boxed reference can be transformed back into a value, but reference types cannot
be automatically transformed into value types.

Enumerations
An enumeration is a set of related values: Up-Down, North-South-East-West,
Penny-Nickel-Dime-Quarter, etc. An enumeration is defined using the enum
keyword and a code block in which the various values are defined. Here’s a
simple example:

enum UpOrDown{ Up, Down }

Once defined, an enumeration value can be used by specifying the enumeration
type, a dot, and then the specific name desired:

UpOrDown coinFlip = UpOrDown.Up;

The names within an enumeration are actually numeric values. By default, they
are integers, whose value begins at zero. You can modify both the type of storage
used for these values and the values associated with a particular name. Here’s an
example, where a short is used to hold different coin values:

enum Coin: short{
 Penny = 1, Nickel = 5, Dime = 10, Quarter = 25
}

Then, the names can be cast to their implementing value type:

short change = (short) (Coin.Penny + Coin.Quarter);

This will result in the value of change being 26.

It is also possible to do bitwise operations on enumerations that are given
compatible:

enum Flavor{
 Vanilla = 1, Chocolate = 2, Strawberry = 4, Coffee = 8
}
...etc...
Flavor conePref = Flavor.Vanilla | Flavor.Coffee;

Structs
A struct (short for “structure”) is very similar to a class in that it can contain
fields, properties, and methods. However, structs are value types and are created
on the stack (see page 50); you cannot inherit from a struct or have your struct

Chapter 2: Hello, Objects 65

inherit from any class (although a struct can implement an interface), and
structs have limited constructor and destructor semantics.

Typically, structs are used to aggregate a relatively small amount of logically
related fields. For instance, the Framework SDK contains a Point structure that
has X and Y properties. Structures are declared in the same way as classes. This
example shows what might be the start of a struct for imaginary numbers:

struct ImaginaryNumber{
 double real;
 public double Real{
 get { return real; }
 set { real = value; }
 }

 double i;
 public double I{
 get { return i; }
 set { i = value; }
 }
}

Boxing and Unboxing
The existence of both reference types (classes) and value types (structs, enums,
and primitive types) is one of those things that object-oriented academics love to
sniff about, saying that the distinction is too much for the poor minds that are
entering the field of computer programming. Nonsense. As discussed previously,
the key distinction between the two types is where they are stored in memory:
value types are created on the stack while classes are created on the heap and are
referred to by one or more stack-based references (see Page 50).

To revisit the metaphor from that section, a class is like a television (the object
created on the heap) that can have one or more remote controls (the stack-based
references), while a value-type is like a thought: when you give it to someone,
you are giving them a copy, not the original. This difference has two major
consequences: aliasing (which will be visited in depth in Chapter 4) and the lack
of an object reference. As was discussed on Page 49, you manipulate objects with
a reference: since value types do not have such a reference, you must somehow
create one before doing anything with a value type that is more sophisticated
than basic math. One of C#’s notable advantages over Java is that C# makes this
process transparent.

66 Thinking in C# www.ThinkingIn.NET

The processes called boxing and unboxing wrap and unwrap a value type in an
object. Thus, the int primitive type can be boxed into an object of the class
Int32, a bool is boxed into a Boolean, etc. Boxing and unboxing happen
transparently between a variable declared as the value type and its equivalent
class type. Thus, you can write code like the following:

bool valueType1 = true;
Boolean referenceType1 = b; //Boxing
bool valueType2 = referenceType1; //Unboxing

The utility of boxing and unboxing will become more apparent in Chapter 10’s
discussion of collection classes and data structures, but there is one value type for
which the benefits of boxing and unboxing become apparent immediately: the
string.

Strings and formatting
Strings are probably the most manipulated type of data in computer programs.
Sure, numbers are added and subtracted, but strings are unusual in that their
structure is of so much interest: we search for substrings, change the case of
letters, construct new strings from old strings, and so forth. Since there are so
many operations that one wishes to do on strings, it is obvious that they must be
implemented as classes. Strings are incredibly common and are often at the heart
of the innermost loops of programs, so they must be as efficient as possible, so it
is equally obvious that they must be implemented as stack-based value types.
Boxing and unboxing allow these conflicting requirements to coexist: strings are
value types, while the String class provides a plethora of powerful methods.

The single-most used method in the String class must be the Format method,
which allows you to specify that certain patterns in a string be replaced by other
string variables, in a certain order, and formatted in a certain way. For instance,
in this snippet:

string w = "world";
string s = String.Format("Hello, {0}", w);
The value of s would be “Hello, world”, as the value of the variable w is
substituted for the pattern {0}. Such substitutions can be strung out
indefinitely:

string h = "hello";
string w = "world";
string hw = "how";
string r = "are";

Chapter 2: Hello, Objects 67

string u = "you";
string q = "?";
string s = String.Format("{0} {1}, {2} {3} {4}{5}"
 , h, w, hw, r, u, q);
gives s the value of “hello world, how are you?”. This variable substitution pattern
will be used often in this book, particularly in the Console.WriteLine()
method that is used to write strings to the console.

Additionally, .NET provides for powerful formatting of numbers, dates, and
times. This formatting is locale-specific, so on a computer set to use United States
conventions, currency would be formatted with a ‘$’ character, while on a
machine configured for Europe, the ‘€’ would be used (as powerful a library as it
is, it only formats the string, it cannot do the actual conversion calculation
between dollars and euros!). A complete breakdown of the string formatting
patterns is beyond the scope of this book, but in addition to the simple variable
substitution pattern shown above, there are two number-formatting patterns that
are very helpful:

double doubleValue = 123.456;
Double doubleObject = doubleValue; //Boxed
string s = doubleObject.ToString("####.#"); //Unboxed
string s2 = doubleObject.ToString("0000.0"); //Unboxed

Again, this example relies on boxing and unboxing to transparently convert, first,
the doubleValue value type into the doubleObject object of the Double class.
Then, the ToString() method, which supports string formatting patterns,
creates two String objects which are unboxed into string value types. The value
of s is “123.5” and the value of s2 is “0123.5”. In both cases, the digits of the
boxed Double object (that has the value 123.456) are substituted for the ‘#’ and
‘0’ characters in the formatting pattern. The ‘#’ pattern does not output the non-
significant 0 in the thousands place, while the ‘0’ pattern does. Both patterns,
with only one character after the decimal point, output a rounded value for the
number.

Building a C# program
There are several other issues you must understand before seeing your first C#
program.

Name visibility
A problem in any programming language is the control of names. If you use a
name in one module of the program, and another programmer uses the same

68 Thinking in C# www.MindView.net

name in another module, how do you distinguish one name from another and
prevent the two names from “clashing?” In C this is a particular problem because
a program is often an unmanageable sea of names. C++ classes (on which C#
classes are based) nest functions within classes so they cannot clash with function
names nested within other classes. However, C++ still allowed global data and
global functions, and the class names themselves could conflict, so clashing was
still possible. To solve this problem, C++ introduced namespaces using
additional keywords.

In C#, the namespace keyword is followed by a code block (that is, a pair of
curly brackets with some amount of code within them). Unlike Java, there is no
relationship between the namespace and class names and directory and file
structure. Organizationally, it often makes sense to gather all the files associated
with a single namespace into a single directory and to have a one-to-one
relationship between class names and files, but this is strictly a matter of
preference. Throughout this book, our example code will often combine multiple
classes in a single compilation unit (that is, a single file) and we will typically not
use namespaces, but in professional development, you should avoid such space-
saving choices.

Namespaces can, and should, be nested. By convention, the outermost
namespace is the name of your organization, the next the name of the project or
system as a whole, and the innermost the name of the specific grouping of
interest. Here’s an example:

namespace ThinkingIn {
 namespace CSharp {
 namespace Chap2 {
 //class and other type declarations go here
 }
 }
}

Since namespaces are publicly viewable, they should start with a capital letter
and then use “camelcase” capitalization (for instance, ThinkingIn).

Namespaces are navigated using dot syntax: ThinkingIn.CSharp.Chap2 may
even be declared in this manner:

namespace ThinkingIn.CSharp.Chap2{ … }

Chapter 2: Hello, Objects 69

Using other components
Whenever you want to use a predefined class in your program, the compiler must
know how to locate it. The first place the compiler looks is the current program
file, or assembly. If the assembly was compiled from multiple source code files,
and the class you want to use was defined in one of them, you simply use the
class.

What about a class that exists in some other assembly? You might think that
there ought to just be a place where all the assemblies that are used by all the
programs on the computer are stored and the compiler can look in that place
when it needs to find a class. But this leads to two problems. The first has to do
with names; imagine that you want to use a class of a particular name, but more
than one assembly uses that name (for instance, probably a lot of programs
define a class called User). Or worse, imagine that you’re writing a program, and
as you’re building it you add a new class to your library that conflicts with the
name of an existing class.

To solve this problem, you must eliminate all potential ambiguities. This is
accomplished by telling the C# compiler exactly what classes you want using the
using keyword. using tells the compiler to recognize the names in a particular
namespace, which is just a higher-level organization of names. The .NET
Framework SDK has more than 100 namespaces, such as System.Xml and
System.Windows.Forms and Microsoft.Csharp. By adhering to some
simple naming conventions, it is highly unlikely that name clashes will occur and,
if they do, there are simple ways to remove the ambiguity between namespaces.

Java and C++ programmers should understand that namespaces and using are
different than import or #include. Namespaces and using are strictly about
naming concerns at compile-time, while Java’s import statement relates also to
finding the classes at run-time, while C++’s #include moves the referenced text
into the local file.

The second problem with relying on classes stored in a different assembly is the
threat that the user might inadvertently replace the version your class needs with
another version of the assembly with the same name but with different behavior.
This was the root cause of the Windows problem known as “DLL Hell.” Installing
or updating one program would change the version of some widely-used shared
library.

To solve this problem, when you compile an assembly that depends on another,
you can embed into the dependent assembly a reference to the strong name of
the other assembly. This name is created using public-key cryptography and,

70 Thinking in C# www.ThinkingIn.NET

along with infrastructure support for a Global Assembly Cache that allows for
assemblies to have the same name but different versions, gives .NET an excellent
basis for overcoming versioning and trust problems. An example of strong
naming and the use of the GAC begins on Page 532.

The static keyword
Ordinarily, when you create a class you are describing how objects of that class
look and how they will behave. You don’t actually get anything until you create an
object of that class with new, and at that point data storage is created and
methods become available.

But there are two situations in which this approach is not sufficient. One is if you
want to have only one piece of storage for a particular piece of data, regardless of
how many objects are created, or even if no objects are created. The other is if you
need a method that isn’t associated with any particular object of this class. That
is, you need a method that you can call even if no objects are created. You can
achieve both of these effects with the static keyword. When you say something is
static, it means that data or method is not tied to any particular object instance
of that class. So even if you’ve never created an object of that class you can call a
static method or access a piece of static data. With ordinary, non-static data
and methods you must create an object and use that object to access the data or
method, since non-static data and methods must know the particular object they
are working with. Of course, since static methods don’t need any objects to be
created before they are used, they cannot directly access non-static members or
methods by simply calling those other members without referring to a named
object (since non-static members and methods must be tied to a particular
object).

Some object-oriented languages use the terms class data and class methods,
meaning that the data and methods exist for any and all objects of the class.

To make a data member or method static, you simply place the keyword before
the definition. For example, the following produces a static data member and
initializes it:

class StaticTest {
 public static int i = 47;
}

Now even if you make two StaticTest objects, there will still be only one piece of
storage for StaticTest.i. Both objects will share the same i. Consider:

StaticTest st1 = new StaticTest();

Chapter 2: Hello, Objects 71

StaticTest st2 = new StaticTest();

At this point, both st1 and st2 have access to the same ‘47’ value of StaticTest.i
since they refer to the same piece of memory.

To reference a static variable, you use the dot-syntax, but instead of having an
object reference on the left side, you use the class name.

StaticTest.i++;

The ++ operator increments the variable. At this point, both st1 and st2 would
see StaticTest.i as having the value 48.

Similar logic applies to static methods. You refer to a static method using
ClassName.Method(). You define a static method in a similar way:

class StaticFun {
 public static void Incr() { StaticTest.i++; }
}

You can see that the StaticFun method Incr() increments the static data i.

While static, when applied to a data member, definitely changes the way the data
is created (one for each class vs. the non-static one for each object), when
applied to a method it’s not so dramatic. An important use of static for methods
is to allow you to call that method without creating an object. This is essential, as
we will see, in defining the Main() method that is the entry point for running an
application.

Like any method, a static method can create or use named objects of its type, so
a static method is often used as a “shepherd” for a flock of instances of its own
type.

Putting it all together
Let’s write a program. It starts by printing a string, and then the date, using the
DateTime class from the .NET Framework SDK. Note that an additional style of
comment is introduced here: the ‘//’, which is a comment until the end of the
line:

//:c03:HelloDate.cs
using System;

namespace ThinkingIn.CSharp.Chap03{
 public class HelloDate {

72 Thinking in C# www.MindView.net

 public static void Main() {
 Console.WriteLine("Hello, it's: ");
 Console.WriteLine(DateTime.Now);
 }
 }
}///:~

At the beginning of each program file, you place using statements to bring in the
namespaces of any classes you’ll need for the code in that file.

If you are working with the downloaded .NET Framework SDK, there is a
Microsoft Help file that can be accessed with ms-
help://ms.netframeworksdk, if using Visual Studio .NET, there is an
integrated help system. If you navigate to ms-
help://MS.NETFrameworkSDK/cpref/html/frlrfSystem.htm, you’ll see
the contents of the System namespace. One of them is the Console class. If you
open this subject and then click on Console.Members, you’ll see a list of public
properties and methods. In the case of the Console class, all of them are marked
with an “S” indicating that they are static.

One of the static methods of Console is WriteLine(). Since it’s a static
method, you don’t need to create an object to use it. Thus, if you’ve specified
using System; you can write Console.WriteLine("Something") whenever
you want to print something to the console. Alternately, in any C# program, you
can specify the fully qualified name
System.Console.WriteLine("Something") even if you have not written
using System.

Every program must have what’s called an entry point, a method which starts up
things. In C#, the entry point is always a static method called Main(). Main()
can be written in several different ways:

static void Main(){ … }
static void Main(string[] args){ … }
static int Main(){ … }
static int Main(string[] args){ … }

If you wish to pass in parameters from the command-line to your program, you
should use one of the forms that takes an array of command-line arguments.
args[0] will be the first argument after the name of the executable.

Traditionally, programs return zero if they ran successfully and some other
integer as an error code if they failed. C#’s exceptions are infinitely superior for
communicating such problems, but if you are writing a program that you wish to

Chapter 2: Hello, Objects 73

program with batch files (which pay attention to the return value of a program),
you may wish to use the version of Main() that returns an integer.

The line that prints the date illustrates the behind-the-scenes complexity of even
a simple object-oriented call:

Console.WriteLine(DateTime.Now);

Consider the argument: if you browse the documentation to the DateTime
structure, you’ll discover that it has a static property Now of type DateTime. As
this property is read, the .NET Runtime reads the system clock, creates a new
DateTime value to store the time, and returns it. As soon as that property get
finishes, the DateTime struct is passed to the static method WriteLine() of
the Console class. If you use the helpfile to go to that method’s definition, you’ll
see many different overloaded versions of WriteLine(), one which takes a
bool, one which takes a char, etc. You won’t find one that takes a DateTime,
though.

Since there is no overloaded version that takes the exact type of the DateTime
argument, the runtime looks for ancestors of the argument type. All structs are
defined as descending from type ValueType, which in turn descends from type
object. There is not a version of WriteLine() that takes a ValueType for an
argument, but there is one that takes an object. It is this method that is called,
passing in the DateTime structure.

Back in the documentation for WriteLine(), it says it calls the ToString()
method of the object passed in as its argument. If you browse to
Object.ToString(), though, you’ll see that the default representation is just the
fully qualified name of the object. But when run, this program doesn’t print out
“System.DateTime,” it prints out the time value itself. This is because the
implementers of the DateTime class overrode the default implementation of
ToString() and the call within WriteLine() is resolved polymorphically by
the DateTime implementation, which returns a culture-specific string
representation of its value to be printed to the Console.

If some of that doesn’t make sense, don’t worry – almost every aspect of object-
orientation is at work within this seemingly trivial example.

Compiling and running
To compile and run this program, and all the other programs in this book, you
must first have a command-line C# compiler. We strongly urge you to refrain
from using Microsoft Visual Studio .NET’s GUI-activated compiler for compiling
the sample programs in this book. The less that is between raw text code and the

74 Thinking in C# www.ThinkingIn.NET

running program, the more clear the learning experience. Visual Studio .NET
introduces additional files to structure and manage projects, but these are not
necessary for the small sample programs used in this book. Visual Studio .NET
has some great tools that ease certain tasks, like connecting to databases and
developing Windows Forms, but these tools should be used to relieve drudgery,
not as a substitute for knowledge. The one big exception to this is the
“IntelliSense” feature of the Visual Studio .NET editor, which pops up
information on objects and parameters faster than you could possibly search
through the .NET documentation.

A command-line C# compiler is included in Microsoft’s .NET Framework SDK,
which is available for free download at msdn.microsoft.com/downloads/ in the
“Software Development Kits” section. A command-line compiler is also included
within Microsoft Visual Studio .NET. The command-line compiler is csc.exe.
Once you’ve installed the SDK, you should be able to run csc from a command-
line prompt.

In addition to the command-line compiler, you should have a decent text editor.
Some people seem satisfied with Windows Notepad, but most programmers
prefer either the text editor within Visual Studio.NET (just use File/Open… and
Save… to work directly with text files) or a third-party programmer’s editor. All
the code samples in this book were written with Visual SlickEdit from MicroEdge
(another favorite is Computer Solution Inc.’s $35 shareware UltraEdit).

Once the Framework SDK is installed, download and unpack the source code for
this book (you can find it at www.ThinkingIn.net). This will create a subdirectory
for each chapter in the book. Move to the subdirectory c03 and type:

csc HelloDate.cs

You should see a message that specifies the versions of the C# compiler and .NET
Framework that are being used (the book was finished with C# Compiler version
7.10.2215.1 and .NET Framework version 1.1.4322). There should be no warnings
or errors; if there are, it’s an indication that something went wrong with the SDK
installation and you need to investigate those problems.

On the other hand, if you just get your command prompt back, you can type:

HelloDate

and you’ll get the message and the date as output.

This is the process you can use to compile and run each of the programs in this
book. A source file, sometimes called a compilation unit, is compiled by csc into

Chapter 2: Hello, Objects 75

a .NET assembly. If the compilation unit has a Main(), the assembly will default
to have an extension of .exe and can be run from the command-line just as any
other program.

Fine-tuning compilation
An assembly may be generated from more than one compilation unit. This is
done by simply putting the names of the additional compilation units on the
command-line (csc FirstClass.cs SecondClass.cs etc.). You can modify the
name of the assembly with the /out: argument. If more than one class has a
Main() defined, you can specify which one is intended to be the entry point of
the assembly with the /main: argument.

Not every assembly needs to be a stand-alone executable. Such assemblies should
be given the /target:library argument and will be compiled into an assembly
with a .DLL extension.

By default, assemblies “know of” the standard library reference mscorlib.dll,
which contains the majority of the .NET Framework SDK classes. If a program
uses a class in a namespace not within the mscorlib.dll assembly, the
/reference: argument should be used to point to the assembly.

The Common Language Runtime
You do not need to know this. But we bet you’re curious.

The .NET Framework has several layers of abstraction, from very high-level
libraries such as Windows Forms and the SOAP Web Services support, to the core
libraries of the SDK:

Common Language Runtime

Base Framework Classes
(mscorlib.dll)

ADO.NET and XML Classes

Windows
Forms

Web Forms
Web

Services

A
bs

tr
ac

ti
on

Figure 3-1: The layered architecture of the .NET Framework

Everything in this diagram except the Common Language Runtime (CLR) is
stored on the computer in Common Intermediate Language (CIL, sometimes

76 Thinking in C# www.MindView.net

referred to as Microsoft Intermediate Language, or MSIL, or sometimes just as
IL), a very simple “machine code” for an abstract computer.

The C# compiler, like all .NET language compilers, transforms human-readable
source code into CIL, not the actual opcodes of any particular CPU. An assembly
consists of CIL, metadata describing the assembly, and optional resources. We’ll
discuss metadata in detail in Chapter 13 while resources will be discussed in
Chapter 14.

The role of the Common Language Runtime can be boiled down to “mediate
between the world of CIL and the world of the actual platform.” This requires
several components:

Memory Management
Including

Garbage Collection

Execution Support

CIL Compiler

Common Type System

Security

C
I
L

Class
Loader

M
A
C
H
I
N
E

C
O
D
E

Figure 3-2: “Below” the level of CIL, all .NET languages are similar

Different CPUs and languages have traditionally represented strings in different
ways and numeric types using values of different bit-lengths. The value
proposition of .NET is “Any language, one platform” (in contrast with Java’s
value proposition of “Any platform, one language.”) In order to assure that all
languages can interoperate seamlessly .NET provides a uniform definition of

Chapter 2: Hello, Objects 77

several basic types in the Common Type System. Once “below” this level, the
human-readable language in which a module was originally written is irrelevant.

The next three listings show the transformation of a simple method from C# to
CIL to Pentium machine code.

class Simple{
 public static void Main(){
 int sum = 0;
 for(int i = 0; i < 5; i++){
 sum += i;
 }
 Console.WriteLine(sum);
 }
}

becomes in CIL:

.method public hidebysig static void Main() cil managed{
 .entrypoint
 // Code size 25 (0x19)
 .maxstack 2
 .locals init (int32 V_0,
 int32 V_1)
 IL_0000: ldc.i4.0
 IL_0001: stloc.0
 IL_0002: ldc.i4.0
 IL_0003: stloc.1
 IL_0004: br.s IL_000e
 IL_0006: ldloc.0
 IL_0007: ldloc.1
 IL_0008: add
 IL_0009: stloc.0
 IL_000a: ldloc.1
 IL_000b: ldc.i4.1
 IL_000c: add
 IL_000d: stloc.1
 IL_000e: ldloc.1
 IL_000f: ldc.i4.5
 IL_0010: blt.s IL_0006
 IL_0012: ldloc.0
 IL_0013: call
 void [mscorlib]Console::WriteLine(int32)

78 Thinking in C# www.ThinkingIn.NET

 IL_0018: ret
} // end of method Simple::Main

that becomes in Pentium assembly language:

00000000 push ebp
00000001 mov ebp,esp
00000003 sub esp,8
00000006 push edi
00000007 push esi
00000008 xor esi,esi
0000000a xor edi,edi
0000000c xor esi,esi
; for(int i = 0; i < 5; i++){
0000000e xor edi,edi
00000010 nop
00000011 jmp 00000016
; sum += i;
00000013 add esi,edi
; for(int i = 0; i < 5; i++){
00000015 inc edi
00000016 cmp edi,5
00000019 jl 00000013
; Console.WriteLine(sum);
0000001b mov ecx,esi
0000001d call dword ptr ds:[042125C8h]
; }
00000023 nop
00000024 pop esi
00000025 pop edi
00000026 mov esp,ebp
00000028 pop ebp
00000029 ret

Security restrictions are implemented at this level in order to make it extremely
difficult to bypass. To seamlessly bypass security would require replacing the
CLR with a hacked CLR, not impossible to conceive, but hopefully beyond the
range of script kiddies and requiring an administration-level compromise from
which to start. The security model of .NET consists of checks that occur at both
the moment the class is loaded into memory and at the moment that possibly-
restricted operations are requested.

Chapter 2: Hello, Objects 79

Although CIL is not representative of any real machine code, it is not interpreted.
After the CIL of a class is loaded into memory, as methods in the class are
executed, a Just-In-Time compiler (JIT) transforms it from CIL into machine
language appropriate to the native CPU. One interesting benefit of this is that it’s
conceivable that different JIT compilers might become available for different
CPUs within a general family (thus, we might eventually have an Itanium JIT, a
Pentium JIT, an Athlon JIT, etc.).

The CLR contains a subsystem responsible for memory management inside what
is called “managed code.” In addition to garbage collection (the process of
recycling memory), the CLR memory manager defragments memory and
decreases the span of reference of in-memory references (both of which are
beneficial side effects of the garbage collection architecture).

Finally, all programs require some basic execution support at the level of thread
scheduling, code execution, and other system services. Once again, at this low
level, all of this support can be shared by any .NET application, no matter what
the originating programming language.

The Common Language Runtime, the base framework classes within mscorlib.dll,
and the C# language were submitted by Microsoft to the European Computer
Manufacturers Association (ECMA) were ratified as standards in late 2001; in
late 2002, a subcommittee of the International Organization for Standardization
cleared the way for similar ratification by ISO. The Mono Project (www.go-
mono.com) is an effort to create an Open Source implementation of these
standards that includes Linux support.

Comments and embedded
documentation
There are two types of comments in C#. The first is the traditional C-style
comment that was inherited by C++. These comments begin with a /* and
continue, possibly across many lines, until a */. Note that many programmers
will begin each line of a continued comment with a *, so you’ll often see:

/* This is a comment
* that continues
* across lines
*/

Remember, however, that everything inside the /* and */ is ignored, so there’s no
difference in saying:

80 Thinking in C# www.MindView.net

/* This is a comment that
continues across lines */

The second form of comment also comes from C++. It is the single-line comment,
which starts at a // and continues until the end of the line. This type of comment
is convenient and commonly used because it’s easy. You don’t need to hunt on the
keyboard to find / and then * (instead, you just press the same key twice), and
you don’t need to close the comment. So you will often see:

// this is a one-line comment

Documentation Comments
One of the thoughtful parts of the C# language is that the designers didn’t
consider writing code to be the only important activity—they also thought about
documenting it. Possibly the biggest problem with documenting code has been
maintaining that documentation. If the documentation and the code are separate,
it becomes a hassle to change the documentation every time you change the code.
The solution seems simple: link the code to the documentation. The easiest way
to do this is to put everything in the same file. To complete the picture, however,
you need a special comment syntax to mark special documentation, and a tool to
extract those comments and put them in a useful form. This is what C# has done.

Comments that begin with /// can be extracted from source files by running csc
/doc:OutputFile.XML. Inside the comments you can place any valid XML tags
including some tags with predefined meanings discussed next. The resulting
XML file is interpreted in certain ways inside of Visual Studio .NET or can be
styled with XSLT to produce a Web page or printable documentation. If you don’t
understand XML, don’t worry about it; you’ll become much more familiar with it
in Chapter 14!

If you run

csc /doc:HelloDate.xml HelloDate.cs

The resulting XML will be:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>HelloDate</name>
 </assembly>
 <members>
 </members>
</doc>

Chapter 2: Hello, Objects 81

The XML consists of a “doc” element, which is for the assembly named
“HelloDate” and which doesn’t have any documentation comments.

Tag Suggested Use
<summary>
</summary>

A brief overview of the code element

<remarks>
</remarks>

This is used for a more comprehensive discussion of the
element’s intended behavior.

<param
name="name">
</param>

One of these tags should be written for each argument to a
method; the value of the name attribute specifies which
argument. The description should include any preconditions
associated with the argument. Preconditions are what the
method requires of its arguments so that the method can
function correctly. For instance, a precondition of a square
root function might be that the input integer be positive.

<returns>
</returns>

Methods that return anything other than void should have
one of these tags. The contents of the tag should describe
what about the return value can be guaranteed. Can it be
null? Does it always fall within a certain range? Is it always in
a certain state? etc.

<exception
cref="type">
</exception>

Every exception that is explicitly raised within the method’s
body should be documented in a tag such as this (the type of
the exception should be the value of the cref attribute). To
the extent possible, the circumstances which give rise to the
exception being thrown should be detailed. Because of C#’s
exception model (discussed in Chapter 11), special attention
should be paid to making sure that these comments are
consistently and uniformly written and maintained.

<permission
cref="type">
</permission>

This tag describes the security permissions that are required
for the type. The cref attribute is optional, but if it exists, it
should refer to a PermissionSet associated with the type.

<example>
 <c></c>
 <code></code>

The <example> tag should contain a description of a sample
use of the code element. The <c> tag is intended to specify an
inline code element while the <code> tag is intended for

82 Thinking in C# www.ThinkingIn.NET

</example> multiline snippets.

<see cref="other">
</see>
<seealso
cref="other">
</seealso>

These tags are intended for cross references to other code
elements or other documentation fragments. The <see> tag
is intended for inline cross-references, while the <seealso>
tag is intended to be broken out into a separate “See Also”
section.

<value>
</value>

Every externally visible property within a class should be
documented with this tag.

<paramref
name="arg"/>

This empty tag is used when commenting a method to
indicate that the value of the name attribute is actually the
name of one of the method’s arguments.

<list
 type=
 [bullet | number |
table]>
<listheader>
<term></term>
<description>
</description>
</listheader>
<item>
<term></term>
<description>
</description>
</item>
</list>

Intended to provide a hint to the XML styler on how to
generate documentation.

<para></para>
Intended to specify separate paragraphs within a description
or other lengthy text block

Documentation example
Here’s the HelloDate C# program, this time with documentation comments
added:

//:c03:HelloDate2.cs
using System;

namespace ThinkingIn.CSharp.Chap03{

Chapter 2: Hello, Objects 83

 ///<summary>Shows doc comments</summary>
 ///<remarks>The documentation comments within C#
 ///are remarkably useful, both within the Visual
 ///Studio environment and as the basis for more
 ///significant printed documentation</remarks>
 public class HelloDate2 {

 ///<summary>Entry point</summary>
 ///<remarks>Prints greeting to
 /// <paramref name="args[0]"/>, gets a
 /// <see cref="System.DateTime">DateTime</see>
 /// and subsequently prints it</remarks>
 ///<param name="args">Command-line should have a
 ///single name. All other args will be ignored
 ///</param>
 public static void Main(string[] args) {
 Console.WriteLine("Hello, {0} it's: ", args[0]);
 Console.WriteLine(DateTime.Now);
 }
 }
}///:~

When csc extracts the data, it is in this form:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>HelloDate</name>
 </assembly>
 <members>
 <member
 name="T:ThinkingIn.CSharp.Chap03.HelloDate2">
 <summary>Shows doc comments</summary>
 <remarks>The documentation comments within C#
 are remarkably useful, both within the Visual
 Studio environment and as the basis for more
 significant printed documentation</remarks>
 </member>
 <member
name="M:ThinkingIn.CSharp.Chap03.HelloDate2.Main(System.Str
ing[])">
 <summary>Entry point</summary>

84 Thinking in C# www.MindView.net

 <remarks>Prints greeting to
 <paramref name="args[0]"/>, gets a
 <see cref="T:System.DateTime">DateTime</see>
 and subsequently prints it</remarks>
 <param name="args">Command-line should have a
 single name. All other args will be ignored
 </param>
 </member>
 </members>
</doc>

The first line of the HelloDate2.cs file uses a convention that will be used
throughout the book. Every compilable sample begins with a comment followed
by a ‘:’ the chapter number, another colon, and the name of the file that the
example should be saved to. The last line also finishes with a comment, and this
one indicates the end of the source code listing, which allows it to be
automatically extracted from the text of this book and checked with a compiler.
This convention supports a tool which can automatically extract and compile
code directly from the “source” Word document.

Coding style
The unofficial standard in C# is to capitalize the first letter of all publicly visible
code elements except for parameters. If the element name consists of several
words, they are run together (that is, you don’t use underscores to separate the
names), and the first letter of each embedded word is capitalized, such as:

class AllTheColorsOfTheRainbow { // ...

This same style is also used for the parts of the class which are intended to be
referred to by others (method names and properties). For internal parts fields
(member variables) and object reference names, the accepted style is just as it is
for classes except that the first letter of the identifier is lowercase. For example:

class AllTheColorsOfTheRainbow {
 int anIntegerRepresentingColors;
 public void ChangeTheHueOfTheColor(int newHue) {
 // ...
 }
 // ...
}

Of course, you should remember that the user must also type all these long
names, so be merciful. Names, whitespace, and the amount of commenting in a

Chapter 2: Hello, Objects 85

listing are an area where book authors must follow the dictates of paper cost and
tight margins, so please forgive those situations when the listings in this book
don’t always follow our own guidelines for clarity.

Summary
In this chapter you have seen enough of C# programming to understand how to
write a simple program, and you have gotten an overview of the language and
some of its basic ideas. However, the examples so far have all been of the form
“do this, then do that, then do something else.” What if you want the program to
make choices, such as “if the result of doing this is red, do that; if not, then do
something else”? The support in C# for this fundamental programming activity
will be covered in the next chapter.

Exercises
1. Following the HelloDate.cs example in this chapter, create a “hello,

world” program that simply prints out that statement. You need only a
single method in your class (the “Main” one that gets executed when the
program starts). Remember to make it static. Compile the program with
csc and run it from the command-line.

2. Find the code fragments involving ATypeName and turn them into a
program that compiles and runs.

3. Turn the DataOnly code fragments into a program that compiles and
runs.

4. Modify Exercise 3 so that the values of the data in DataOnly are
assigned to and printed in Main().

5. Write a program that includes and calls the Storage() method defined
as a code fragment in this chapter.

6. Turn the sample code that defines the BluffingStrategy delegate and
use the method SweetPete.SmilePleasantly() to instantiate the
delegate into a program that compiles and runs.

7. Create a program that defines a Coin enumeration as described in the
text and adds up a variety of coin types.

8. Write a program that performs multiplication using the
ImaginaryNumber struct defined in the text.

86 Thinking in C# www.ThinkingIn.NET

9. Turn the StaticFun code fragments into a working program.

10. Write a program that prints three arguments taken from the command
line. To do this, you’ll need to index into the command-line array of
strings, using the static void Main(string[] args) form for your
entry point.

11. Turn the AllTheColorsOfTheRainbow example into a program that
compiles and runs.

12. Find the code for the second version of HelloDate.cs, which is the
simple comment documentation example. Execute csc /doc on the file
and view the results with your XML-aware Web browser.

13. Add an HTML list of items to the documentation in Exercise 12.

14. Take the program in Exercise 1 and add comment documentation to it.
Extract this comment documentation and view it with your Web browser.

15. You have been approached by an android manufacturer to develop the
control system for a robotic servant. Describe a party in object-oriented
terms. Use abstractions such as Food so that you can encompass the
entire range of data and behavior between drawing up the invitation list
to cleaning up the house afterward.

16. Take the Food abstraction from Exercise 15 and describe it more fully in
terms of classes and types. Use inheritance in at least two places.
Constrain your model to the data and behaviors appropriate to the
robotic butler.

17. Choose one of the classes developed in Exercise 16 that requires some
complex behavior (perhaps an item that needs baking or the purchase of
exotic ingredients). List the classes that would be required to collaborate
to accomplish the complex behavior. For instance, if the behavior was
lighting candles on a cake, the classes might include Candle, Cake, and
Match.

 87

4: Controlling
Program Flow

Like a sentient creature, a program must manipulate its
world and make choices during execution.

In C# you manipulate objects and data using operators, and you make choices
with execution control statements. The statements used will be familiar to
programmers with Java, C++, or C backgrounds, but there are a few that may
seem unusual to programmers coming from Visual Basic backgrounds.

Using C#operators
An operator takes one or more arguments and produces a new value. The
arguments are in a different form than ordinary method calls, but the effect is the
same. You should be reasonably comfortable with the general concept of
operators from your previous programming experience. Addition (+), subtraction
and unary minus (-), multiplication (*), division (/), and assignment (=) all work
much the same in any programming language.

All operators produce a value from their operands. In addition, an operator can
change the value of an operand. This is called a side effect. The most common use
for operators that modify their operands is to generate the side effect, but you
should keep in mind that the value produced is available for your use just as in
operators without side effects.

Operators work with all primitives and many objects. When you program your
own objects, you will be able to extend them to support whichever primitives
make sense (you’ll find yourself creating ‘+’ operations far more often than ‘/’
operations!) The operators ‘=’, ‘==’ and ‘!=’, work for all objects and are a point
of confusion for objects that we’ll deal with in #reference#.

Precedence
Operator precedence defines how an expression evaluates when several operators
are present. C# has specific rules that determine the order of evaluation. The
easiest one to remember is that multiplication and division happen before

88 Thinking in C# www.MindView.net

addition and subtraction. Programmers often forget the other precedence rules,
so you should use parentheses to make the order of evaluation explicit. For
example:

a = x + y - 2/2 + z;

has a very different meaning from the same statement with a particular grouping
of parentheses:

a = x + (y - 2)/(2 + z);

Assignment
Assignment is performed with the operator =. It means “take the value of the
right-hand side (often called the rvalue) and copy it into the left-hand side (often
called the lvalue). An rvalue is any constant, variable or expression that can
produce a value, but an lvalue must be a distinct, named variable. (That is, there
must be a physical space to store a value.) For instance, you can assign a constant
value to a variable (A = 4;), but you cannot assign anything to constant value—it
cannot be an lvalue. (You can’t say 4 = A;.)

Assignment of primitives is quite straightforward. Since the primitive holds the
actual value and not a reference to an object, when you assign primitives you
copy the contents from one place to another. For example, if you say A = B for
primitives, then the contents of B are copied into A. If you then go on to modify
A, B is naturally unaffected by this modification. As a programmer, this is what
you’ve come to expect for most situations.

When you assign objects, however, things change. Whenever you manipulate an
object, what you’re manipulating is the reference, so when you assign “from one
object to another” you’re actually copying a reference from one place to another.
This means that if you say C = D for objects, you end up with both C and D
pointing to the object that, originally, only D pointed to. The following example
will demonstrate this.

Here’s the example:

//:c03:Assignment.cs
using System;

class Number {
 public int i;
}

public class Assignment {

Chapter 4: Controlling Program Flow 89

 public static void Main(){
 Number n1 = new Number();
 Number n2 = new Number();
 n1.i = 9;
 n2.i = 47;
 Console.WriteLine(
 "1: n1.i: " + n1.i + ", n2.i: " + n2.i);
 n1 = n2;
 Console.WriteLine(
 "2: n1.i: " + n1.i + ", n2.i: " + n2.i);
 n1.i = 27;
 Console.WriteLine(
 "3: n1.i: " + n1.i + ", n2.i: " + n2.i);
 }
}///:~

}

The Number class is simple, and two instances of it (n1 and n2) are created
within Main(). The i value within each Number is given a different value, and
then n2 is assigned to n1, and n1 is changed. In many programming languages
you would expect n1 and n2 to be independent at all times, but because you’ve
assigned a reference here’s the output you’ll see:

1: n1.i: 9, n2.i: 47
2: n1.i: 47, n2.i: 47
3: n1.i: 27, n2.i: 27

Changing the n1 object appears to change the n2 object as well! This is because
both n1 and n2 contain the same reference, which is pointing to the same object.
(The original reference that was in n1 that pointed to the object holding a value of
9 was overwritten during the assignment and effectively lost; its object will be
cleaned up by the garbage collector.)

This phenomenon is called aliasing and it’s a fundamental way that C# works
with objects. But what if you don’t want aliasing to occur in this case? You could
forego the assignment and say:

n1.i = n2.i;

This retains the two separate objects instead of tossing one and tying n1 and n2
to the same object, but you’ll soon realize that manipulating the fields within
objects is messy and goes against good object-oriented design principles.

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

90 Thinking in C# www.ThinkingIn.NET

//:c04:PassObject.cs
using System;
class Letter {
 public char c;
}

public class PassObject {
 static void f(Letter y){
 y.c = 'z';
 }

 public static void Main(){
 Letter x = new Letter();
 x.c = 'a';
 Console.WriteLine("1: x.c: " + x.c);
 f(x);
 Console.WriteLine("2: x.c: " + x.c);
 }
}///:~

In many programming languages, the method F() would appear to be making a
copy of its argument Letter y inside the scope of the method. But once again a
reference is being passed so the line

y.c = 'z';

is actually changing the object outside of F(). The output shows this:

1: x.c: a
2: x.c: z

Aliasing and object state
Methods actually receive copies of their arguments, but since a copy of a
reference points to the same thing as the original, aliasing occurs. In this
example, Viewer objects fight over control of a television set. Although each
viewer receives a copy of the reference to the Television, when they change the
state of the Television, everyone has to live with the results:

//:c04:ChannelBattle.cs
//Shows aliasing in method calls
using System;

class Television {

Chapter 4: Controlling Program Flow 91

 int channel = 2;
 internal int Channel{
 get { return channel;}
 set {
 Console.WriteLine("Everyone sees {0}", value);
 channel = value;
 }
 }
}

class Viewer {
 static Random rand = new Random();
 int preferredChannel = rand.Next(13);

 static int counter = 0;
 int viewerId = counter++;

 void ChangeChannel(Television tv){
 Console.WriteLine(
 "Viewer {0} doesn't like {1}, switch to {2}",
 viewerId, tv.Channel, preferredChannel);
 tv.Channel = preferredChannel;
 }

 public static void Main(){
 Viewer v0 = new Viewer();
 Viewer v1 = new Viewer();
 Viewer v2 = new Viewer();
 Television tv = new Television();
 v0.ChangeChannel(tv);
 v1.ChangeChannel(tv);
 v2.ChangeChannel(tv);
 }
}///:~

The Television object has a property called Channel. The int channel
represents the Television object’s state. Everyone watching that particular
Television watches the same channel; all references to a particular object are
dependent on that object’s state.

A Viewer object has an int value that is the preferredChannel. A particular
viewer’s preferredChosen is determined randomly by a Random object that

92 Thinking in C# www.MindView.net

is static and therefore shared by all Viewers (as described in Chapter 2).
Similarly, there is a static int counter that is shared by all Viewers and an int
viewerId that is particular to an individual. As static variables, rand and
counter can be said to contribute to the class’s shared state, while
preferredChannel and viewerId determine the Viewer’s object’s state (more
accurately called the object state or instance state to distinguish it from the
class’s shared state).

The Viewer.Main() method creates 3 Viewer objects. Before the first Viewer
is created, the Viewer class state is initialized, setting the counter variable to
zero. Every time a Viewer is created, it sets its viewerId variable to the value of
the counter and increments the counter; the object state of each Viewer reads
from and then modifies the class state of the Viewer type.

After the Viewers have been created, we create a single Television object,
which when it’s created is tuned to Channel 2. A reference to that Television
object is handed to each of the Viewers in turn by way of a call to
Viewer.ChangeChannel(). Although each viewer receives a copy of the
reference to the Television, the copy always points to the same Television.
Everyone ends up watching the same channel as the state of the Television is
manipulated.

One of the cardinal rules of object-oriented programming is to distribute state
among objects. It is possible to imagine storing the current channel being
watched as a static variable in the Viewer class or for the Television to keep a
list of Viewers and their preferred channels. But when programming (and
especially when changing a program you haven’t seen in a while) often the
hardest thing is knowing the precise state that your class is in when a particular
line is executed. Generally, it’s easier to modify classes that don’t have complex
state transitions.

Aliasing and the ref keyword
Since object-oriented programming is mostly concerned with objects, and objects
are always manipulated by references, the fact that methods are passed copies of
their arguments doesn’t matter: a copy of a reference refers to the same thing as
the original reference. However, with C#’s value types, such as primitive number
types, structs, and enums, it matters a lot. This program is almost identical to
the previous example, but this time we have an Mp3Player defined not as a
class, but as a struct.

//:c04:Mp3Player.cs
//Demonstrates value types dont alias

Chapter 4: Controlling Program Flow 93

using System;

struct Mp3Player {
 int volume;
 internal int Volume{
 get { return volume;}
 set {
 volume = value;
 Console.WriteLine(
 "Volume set to {0} ", volume);
 }
 }
}

class Viewer {
 static Random rand = new Random();
 int preferredVolume = rand.Next(10);

 static int counter = 0;
 int viewerId = counter++;

 void ChangeVolume(Mp3Player p){
 Console.WriteLine(
 "Viewer {0} doesn't like {1}, switch to {2}",
 viewerId, p.Volume, preferredVolume);
 p.Volume = preferredVolume;
 }

 public static void Main(){
 Viewer v0 = new Viewer();
 Viewer v1 = new Viewer();
 Viewer v2 = new Viewer();
 Mp3Player p = new Mp3Player();
 v0.ChangeVolume(p);
 v1.ChangeVolume(p);
 v2.ChangeVolume(p);
 }
}///:~

Mp3Player is a value type, so when Viewer.ChangeVolume() receives a
copy (as is normally the case with arguments), the state of the copy is
manipulated, not the state of the original Mp3Player. Every Viewer receives a

94 Thinking in C# www.ThinkingIn.NET

copy of the Mp3Player’s original state, with the volume at zero. The output of
the program is:

Viewer 0 doesn't like 0, switch to 6
Volume set to 6
Viewer 1 doesn't like 0, switch to 0
Volume set to 0
Viewer 2 doesn't like 0, switch to 5
Volume set to 5

C#’s ref keyword passes, not a copy of the argument, but a reference to the
argument. If the argument is itself a reference (as when the variable is
referencing an object), the reference to the reference still ends up manipulating
the same object. But when the argument is a value type, it makes a lot of
difference. To use the ref keyword, you must add it to both the argument list
inside the method you are creating as well as use it as a prefix during the call.
Here’s the above example, with ref added:

//:c04:Mp3Player2.cs
//Demonstrates value types dont alias
using System;

struct Mp3Player {
 int volume;
 internal int Volume{
 get { return volume;}
 set {
 volume = value;
 Console.WriteLine(
 "Volume set to {0} ", volume);
 }
 }
}

class Viewer {
 static Random rand = new Random();
 int preferredVolume = rand.Next(10);

 static int counter = 0;
 int viewerId = counter++;

 void ChangeVolume(ref Mp3Player p){

Chapter 4: Controlling Program Flow 95

 Console.WriteLine(
 "Viewer {0} doesn't like {1}, switch to {2}",
 viewerId, p.Volume, preferredVolume);
 p.Volume = preferredVolume;
 }

 public static void Main(){
 Viewer v0 = new Viewer();
 Viewer v1 = new Viewer();
 Viewer v2 = new Viewer();
 Mp3Player p = new Mp3Player();
 v0.ChangeVolume(ref p);
 v1.ChangeVolume(ref p);
 v2.ChangeVolume(ref p);
 }
}///:~

The changes are in the lines:

void ChangeVolume(ref Mp3Player p){ … }
…
v0.ChangeVolume(ref p);

Now when run, each Viewer receives a reference to the original Mp3Player,
whose state changes from call to call:

Viewer 0 doesn't like 0, switch to 1
Volume set to 1
Viewer 1 doesn't like 1, switch to 7
Volume set to 7
Viewer 2 doesn't like 7, switch to 4
Volume set to 4

Beyond aliasing with out
Usually, when you calling a method that will manipulate the state of objects, you
have references to preexisting objects and you rely on aliasing. If you need to
create a new object inside a method, the preferred way of returning a reference to
it for use in the outside world is to return it as the method’s return value:

Sandwich MakeASandwich(Bread slice1, Bread slice2,
 Meat chosenMeat, Lettuce lettuce){
 Sandwich s = new Sandwich();
 s.TopSlice = slice1;

96 Thinking in C# www.MindView.net

 s.BottomSlice = slice2;
 …etc…
 return s;
}

However, if you need a method that returns more than one object (which is rare,
since a method should do one thing), and you can’t initialize the objects before
the call, you can use C#’s out keyword. Usually, C#’s compiler will not allow you
to use references that you have declared but not initialized. The out keyword,
though, tells the compiler that the initialization of those variables is the
responsibility of the called method.

To use out, you put it in the argument list of the method and prefix the reference
in the actual call.

//:c04:BreadDissector.cs
using System;

class Bread {
}
class Meat {
}
class Lettuce {
}

class Sandwich {
 internal Sandwich(){
 topSlice = new Bread();
 bottomSlice = new Bread();
 meat = new Meat();
 lettuce = new Lettuce();
 }

 Bread topSlice, bottomSlice;
 internal Bread TopSlice{
 get { return topSlice;}
 }
 internal Bread BottomSlice{
 get { return bottomSlice;}
 }

 Meat meat;

Chapter 4: Controlling Program Flow 97

 internal Meat Meat{
 get { return meat;}
 }
 Lettuce lettuce;
 internal Lettuce Lettuce{
 get { return lettuce;}
 }
}

class Dissector {
 void Split(
 Sandwich s, out Bread s1, out Bread s2,
 out Meat m, out Lettuce l){
 s1 = s.TopSlice;
 s2 = s.BottomSlice;
 m = s.Meat;
 l = s.Lettuce;
 }

 public static void Main(){
 Sandwich s = new Sandwich();
 Bread b1, b2;
 Meat m;
 Lettuce l;
 Dissector d = new Dissector();
 d.Split(s, out b1, out b2, out m, out l);
 Console.WriteLine(
 "{0} {1} {2} {3}", b1, b2, m, l, b2);
 }
}///:~

The Sandwich class constructs its constituent components (two pieces of
Bread, some Meat, and some Lettuce) during the Sandwich() constructor
call. Each of these components is available in a property field of the Sandwich
and that’s normally how you’d get them, one at a time. However, the
Dissector.Split() method might be more convenient in some circumstances.
Although the Dissector.Split() method itself accesses the components one by
one, all of the arguments marked with out are initialized within
Dissector.Split(). The Dissector.Main() declares and initializes a
Sandwich but just declares references to the components. If
Dissector.Main() did not call Dissector.Split(), the compiler would not

98 Thinking in C# www.ThinkingIn.NET

allow the last line of Dissector.Main(), saying that the variables b1, b2, m,
and l were not initialized. The line

d.Split(s, out b1, out b2, out m, out l);

tells the compiler to delegate the initialization responsibility to
Dissector.Split(). Since Dissector.Split() fulfills the initialization
responsibility, the method runs fine, “returning” four objects.

Mathematical operators
The basic mathematical operators are the same as the ones available in most
programming languages: addition (+), subtraction (-), division (/), multiplication
(*) and modulus (%, which produces the remainder from integer division).
Integer division truncates, rather than rounds, the result.

C# also uses a shorthand notation to perform an operation and an assignment at
the same time. This is denoted by an operator followed by an equal sign, and is
consistent with all the operators in the language (whenever it makes sense). For
example, to add 4 to the variable x and assign the result to x, use: x += 4.

This example shows the use of the mathematical operators:

//:c04:MathOps.cs
using System;

public class MathOps {
 ///Prints a string and an int:
 static void PInt(String s, int i){
 Console.WriteLine(s + " = " + i);
 }

 //Shorthand to print a string and a float
 static void PDouble(String s, double f){
 Console.WriteLine(s + " = " + f);
 }

 public static void Main(){
 //Create a random number generator,
 //seeds with current time by default
 Random rand = new Random();
 int i, j, k;
 //get a positive random number less than
 //the specified maximum

Chapter 4: Controlling Program Flow 99

 j = rand.Next(100);
 k = rand.Next(100);
 PInt("j",j); PInt("k",k);
 i = j + k; PInt("j + k", i);
 i = j - k; PInt("j - k", i);
 i = k / j; PInt("k / j", i);
 i = k * j; PInt("k * j", i);
 //Limits i to a positive number less than j
 i = k % j; PInt("k % j", i);
 j %= k; PInt("j %= k", j);
 //Floating-point number tests:
 double u, v, w;
 v = rand.NextDouble();
 w= rand.NextDouble();
 PDouble("v", v); PDouble("w",w);
 u = v + w; PDouble("v + w", u);
 u = v - w; PDouble("v - w", u);
 u = v * w; PDouble("v * w", u);
 u = v / w; PDouble("v / w", u);
 //the following also works for
 //char, byte, short, int, long,
 //and float
 u += v; PDouble("u += v", u);
 u -= v; PDouble("u -= v", u);
 u *= v; PDouble("u *= v", u);
 u /= v; PDouble("u /= v", u);
 }
}///:~

The first thing you will see are some shorthand methods for printing: the Prt()
method prints a String, the PInt() prints a String followed by an int and the
PDouble() prints a String followed by a double. Of course, they all ultimately
end up using Console.WriteLine(), but these methods are slightly more
space-efficient for the cramped margin of a book.

To generate numbers, the program first creates a Random object. Because no
arguments are passed during creation, C# uses the current time as a seed for the
random number generator. The program generates a number of different types of
random numbers with the Random object simply by calling the methods: Next
() and NextDouble() (you can also call NextLong() or Next(int)).

100 Thinking in C# www.MindView.net

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as binary minus
and plus. The compiler figures out which use is intended by the way you write the
expression. For instance, the statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is clearer to say:

x = a * (-b);

The unary minus produces the negative of the value. Unary plus provides
symmetry with unary minus, although it doesn’t have any effect.

Auto increment and decrement
C#, like C, is full of shortcuts. Shortcuts can make code much easier to type, and
either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often
referred to as the auto-increment and auto-decrement operators). The decrement
operator is -- and means “decrease by one unit.” The increment operator is ++
and means “increase by one unit.” If a is an int, for example, the expression ++a
is equivalent to (a = a + 1). Increment and decrement operators produce the
value of the variable as a result.

There are two versions of each type of operator, often called the prefix and postfix
versions. Pre-increment means the ++ operator appears before the variable or
expression, and post-increment means the ++ operator appears after the variable
or expression. Similarly, pre-decrement means the -- operator appears before the
variable or expression, and post-decrement means the -- operator appears after
the variable or expression. For pre-increment and pre-decrement, (i.e., ++a or
--a), the operation is performed and the value is produced. For post-increment
and post-decrement (i.e. a++ or a--), the value is produced, then the operation is
performed. As an example:

//:c04:AutoInc.cs
using System;

public class AutoInc {
 public static void Main(){

Chapter 4: Controlling Program Flow 101

 int i = 1;
 prt("i: " + i);
 prt("++i: " + ++i); //Pre-increment
 prt("i++: " + i++); //Post-increment
 prt("i: " + i);
 prt("--i: " + --i); //Pre-increment
 prt("i--: " + i--); //Post-increment
 prt("i: " + i);
 }

 static void prt(String s){
 Console.WriteLine(s);
 }
}///:~

The output for this program is:

i : 1
++i : 2
i++ : 2
i : 3
--i : 2
i-- : 2
i : 1

You can see that for the prefix form you get the value after the operation has been
performed, but with the postfix form you get the value before the operation is
performed. These are the only operators (other than those involving assignment)
that have side effects. (That is, they change the operand rather than using just its
value.)

The increment operator is one explanation for the name C++, implying “one step
beyond C.” As for C#, the explanation seems to be in music, where the #
symbolizes “sharp” – a half-step “up1.”

Relational operators
Relational operators generate a boolean result. They evaluate the relationship
between the values of the operands. A relational expression produces true if the
relationship is true, and false if the relationship is untrue. The relational

1 Michael Lamsoul has wittily suggested that the # in C# may also be a geometric pun on
the ++ in C++, that the sharp looks like a square of + operators.

102 Thinking in C# www.ThinkingIn.NET

operators are less than (<), greater than (>), less than or equal to (<=), greater
than or equal to (>=), equivalent (==) and not equivalent (!=). Equivalence and
nonequivalence work with all built-in data types, but the other comparisons
won’t work with type bool.

Testing object equivalence
The relational operators == and != also work with all objects, but their meaning
often confuses the first-time C# programmer. Here’s an example:

//:c04:EqualsOperator.cs
using System;
class MyInt {
 Int32 i;
 public MyInt(int j){
 i = j;
 }
}
//Demonstrates handle inequivalence.
public class EqualsOperator {
 public static void Main(){
 MyInt m1 = new MyInt(47);
 MyInt m2 = new MyInt(47);
 Console.WriteLine("m1 == m2: "
 + (m1 == m2));
 }
}///:~

The expression System.Console.WriteLine(m1 == m2) will print the result
of the bool comparison within it. Surely the output should be true, since both
MyInt objects have the same value. But while the contents of the objects are the
same, the references are not the same and the operators == and != compare
object references. So the output is actually false. Naturally, this surprises people
at first.

What if you want to compare the actual contents of an object for equivalence? For
objects in a well-designed class library (such as the .NET framework), you just
use the equivalence operator == that has been specially overridden in many
classes to get the desired behavior. Unfortunately, you won’t learn about
overriding until Chapter 7, but being aware of the way ‘==’ behaves might save
you some grief in the meantime.

Chapter 4: Controlling Program Flow 103

Logical operators
Each of the logical operators AND (&&), OR (||) and NOT (!) produces a bool
value of true or false based on the logical relationship of its arguments. This
example uses the relational and logical operators:

//:c04:Bool.cs
using System;
// Relational and logical operators.
public class Bool {
 public static void Main() {
 Random rand = new Random();
 int i = rand.Next(100);
 int j = rand.Next(100);
 Prt("i = " + i);
 Prt("j = " + j);
 Prt("i > j is " + (i > j));
 Prt("i < j is " + (i < j));
 Prt("i >= j is " + (i >= j));
 Prt("i <= j is " + (i <= j));
 Prt("i == j is " + (i == j));
 Prt("i != j is " + (i != j));

 // Treating an int as a boolean is
 // not legal C#
 //! Prt("i && j is " + (i && j));
 //! Prt("i || j is " + (i || j));
 //! Prt("!i is " + !i);

 Prt("(i < 10) && (j < 10) is "
 + ((i < 10) && (j < 10)));
 Prt("(i < 10) || (j < 10) is "
 + ((i < 10) || (j < 10)));
 }
 static void Prt(String s) {
 Console.WriteLine(s);
 }
}///:~

You can apply AND, OR, or NOT to bool values only. You can’t use a non-bool
as if it were a bool in a logical expression as you can in some other languages.
You can see the failed attempts at doing this commented out with a //! comment

104 Thinking in C# www.MindView.net

marker. The subsequent expressions, however, produce bool values using
relational comparisons, then use logical operations on the results.

One output listing looked like this:

i = 85
j = 4
i > j is true
i < j is false
i >= j is true
i <= j is false
i == j is false
i != j is true
(i < 10) && (j < 10) is false
(i < 10) || (j < 10) is true

Note that a bool value is automatically converted to an appropriate text form if
it’s appended to a string.

You can replace the definition for int in the above program with any other
primitive data type except bool. Be aware, however, that the comparison of
floating-point numbers is very strict. A number that is the tiniest fraction
different from another number is still “not equal.” A number that is the tiniest bit
above zero is still nonzero.

Short-circuiting
When dealing with logical operators you run into a phenomenon called “short
circuiting.” This means that the expression will be evaluated only until the truth
or falsehood of the entire expression can be unambiguously determined. As a
result, all the parts of a logical expression might not be evaluated. Here’s an
example that demonstrates short-circuiting:

//:c04:ShortCircuit.cs
// Demonstrates short-circuiting behavior.
// with logical operators.
using System;

public class ShortCircuit {
 static bool Test1(int val) {
 Console.WriteLine("Test1(" + val + ")");
 Console.WriteLine("result: " + (val < 1));
 return val < 1;
 }

Chapter 4: Controlling Program Flow 105

 static bool Test2(int val) {
 Console.WriteLine("Test2(" + val + ")");
 Console.WriteLine("result: " + (val < 2));
 return val < 2;
 }
 static bool Test3(int val) {
 Console.WriteLine("Test3(" + val + ")");
 Console.WriteLine("result: " + (val < 3));
 return val < 3;
 }
 public static void Main() {
 if (Test1(0) && Test2(2) && Test3(2))
 Console.WriteLine("expression is true");
 else
 Console.WriteLine("expression is false");
 }
} ///:~

Each test performs a comparison against the argument and returns true or false.
It also prints information to show you that it’s being called. The tests are used in
the expression:

if(test1(0) && test2(2) && test3(2))

You might naturally think that all three tests would be executed, but the output
shows otherwise:

Ttest1(0)
result: true
Ttest2(2)
result: false
expression is false

The first test produced a true result, so the expression evaluation continues.
However, the second test produced a false result. Since this means that the
whole expression must be false, why continue evaluating the rest of the
expression? It could be expensive. The reason for short-circuiting, in fact, is
precisely that; you can get a potential performance increase if all the parts of a
logical expression do not need to be evaluated.

Bitwise operators
There are only 10 types of people in this world: those that understand binary and
those that don’t. C#’s bitwise operators are for those that do. You use the bitwise

106 Thinking in C# www.ThinkingIn.NET

operators to manipulate individual bits in an integral primitive data type. Bitwise
operators perform boolean algebra on the corresponding bits in the two
arguments to produce the result.

The bitwise operators come from C’s low-level orientation; you were often
manipulating hardware directly and had to set the bits in hardware registers.
Although most application and Web Service developers will not be using the
bitwise operators much, developers for PocketPCs, set-top boxes, and the XBox
often need every bit-twiddling advantage they can get.

The bitwise AND operator (&) produces a one in the output bit if both input bits
are one; otherwise it produces a zero. The bitwise OR operator (|) produces a one
in the output bit if either input bit is a one and produces a zero only if both input
bits are zero. The bitwise EXCLUSIVE OR, or XOR (^), produces a one in the
output bit if one or the other input bit is a one, but not both. The bitwise NOT (~,
also called the ones complement operator) is a unary operator; it takes only one
argument. (All other bitwise operators are binary operators.) Bitwise NOT
produces the opposite of the input bit—a one if the input bit is zero, a zero if the
input bit is one.

The bitwise operators and logical operators use the same characters, so it is
helpful to have a mnemonic device to help you remember the meanings: since
bits are “small,” there is only one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and
assignment: &=, |= and ^= are all legitimate. (Since ~ is a unary operator it
cannot be combined with the = sign.)

The bool type is treated as a one-bit value so it is somewhat different. You can
perform a bitwise AND, OR and XOR, but you can’t perform a bitwise NOT
(presumably to prevent confusion with the logical NOT). For bools the bitwise
operators have the same effect as the logical operators except that they do not
short circuit. Also, bitwise operations on bools include an XOR logical operator
that is not included under the list of “logical” operators. You’re prevented from
using bools in shift expressions, described next.

Shift operators
The shift operators also manipulate bits. They can be used solely with primitive,
integral types. The left-shift operator (<<) produces the operand to the left of the
operator shifted to the left by the number of bits specified after the operator
(inserting zeroes at the lower-order bits). The signed right-shift operator (>>)
produces the operand to the left of the operator shifted to the right by the number

Chapter 4: Controlling Program Flow 107

of bits specified after the operator. The signed right shift >> uses sign extension:
if the value is positive, zeroes are inserted at the higher-order bits; if the value is
negative, ones are inserted at the higher-order bits. (C# does not have unsigned
shifts, but thas unsigned datatypes for such situations.)

If you shift a char, byte, or short, it will be promoted to int before the shift
takes place, and the result will be an int. Only the five low-order bits of the right-
hand side will be used. This prevents you from shifting more than the number of
bits in an int. If you’re operating on a long, you’ll get a long result. Only the six
low-order bits of the right-hand side will be used so you can’t shift more than the
number of bits in a long.

Shifts can be combined with the equal sign (<<= or >>=). The lvalue is replaced
by the lvalue shifted by the rvalue.

Here’s an example that demonstrates the use of all the operators involving bits:

//:c04:BitManipulation.cs
using System;

public class BitManipulation {
 public static void Main() {
 Random rand = new Random();
 int i = rand.Next();
 int j = rand.Next();
 PBinInt("-1", -1);
 PBinInt("+1", +1);
 int maxpos = Int32.MaxValue;
 PBinInt("maxpos", maxpos);
 int maxneg = Int32.MinValue;
 PBinInt("maxneg", maxneg);
 PBinInt("i", i);
 PBinInt("~i", ~i);
 PBinInt("-i", -i);
 PBinInt("j", j);
 PBinInt("i & j", i & j);
 PBinInt("i | j", i | j);
 PBinInt("i ^ j", i ^ j);
 PBinInt("i << 5", i << 5);
 PBinInt("i >> 5", i >> 5);
 PBinInt("(~i) >> 5", (~i) >> 5);
 long l_high_bits = rand.Next();

108 Thinking in C# www.MindView.net

 l_high_bits <<= 32;
 long l = l_high_bits + rand.Next();
 long m_high_bits = rand.Next();
 m_high_bits <<=32;
 long m = m_high_bits + rand.Next();
 PBinLong("-1L", -1L);
 PBinLong("+1L", +1L);
 long ll = Int64.MaxValue;
 PBinLong("maxpos", ll);
 long lln = Int64.MinValue;
 PBinLong("maxneg", lln);
 PBinLong("l_high_bits", l_high_bits);
 PBinLong("l", l);
 PBinLong("~l", ~l);
 PBinLong("-l", -l);
 PBinLong("m_high_bits", m_high_bits);
 PBinLong("m", m);
 PBinLong("l & m", l & m);
 PBinLong("l | m", l | m);
 PBinLong("l ^ m", l ^ m);
 PBinLong("l << 5", l << 5);
 PBinLong("l >> 5", l >> 5);
 PBinLong("(~l) >> 5", (~l) >> 5);
 }
 static void PBinInt(String s, int i) {
 Console.WriteLine(
 s + ", int: " + i + ", binary: ");
 Console.Write(" ");
 for (int j = 31; j >=0; j--)
 if (((1 << j) & i) != 0)
 Console.Write("1");
 else
 Console.Write("0");
 Console.WriteLine();
 }

 static void PBinLong(String s, long l) {
 Console.WriteLine(
 s + ", long: " + l + ", binary: ");
 Console.Write(" ");
 for (int i = 63; i >=0; i--)

Chapter 4: Controlling Program Flow 109

 if (((1L << i) & l) != 0)
 Console.Write("1");
 else
 Console.Write("0");
 Console.WriteLine();
 }
}///:~

The two methods at the end, PBinInt() and PBinLong() take an int or a
long, respectively, and print it out in binary format along with a descriptive
string. You can ignore the implementation of these for now.

You’ll note the use of Console.Write() instead of Console.WriteLine(). The
Write() method does not emit a new line, so it allows you to output a line in
pieces.

As well as demonstrating the effect of all the bitwise operators for int and long,
this example also shows the minimum, maximum, +1 and -1 values for int and
long so you can see what they look like. Note that the high bit represents the
sign: 0 means positive and 1 means negative. The output looks like this:

-1, int: -1, binary:
 11111111111111111111111111111111
+1, int: 1, binary:
 00000000000000000000000000000001
maxpos, int: 2147483647, binary:
 01111111111111111111111111111111
maxneg, int: -2147483648, binary:
 10000000000000000000000000000000
i, int: 1177419330, binary:
 01000110001011011111111001000010
~i, int: -1177419331, binary:
 10111001110100100000000110111101
-i, int: -1177419330, binary:
 10111001110100100000000110111110
j, int: 886693932, binary:
 00110100110110011110000000101100
i & j, int: 67756032, binary:
 00000100000010011110000000000000
i | j, int: 1996357230, binary:
 01110110111111011111111001101110
i ^ j, int: 1928601198, binary:
 01110010111101000001111001101110

110 Thinking in C# www.ThinkingIn.NET

i << 5, int: -977287104, binary:
 11000101101111111100100001000000
i >> 5, int: 36794354, binary:
 00000010001100010110111111110010
(~i) >> 5, int: -36794355, binary:
 11111101110011101001000000001101
-1L, long: -1, binary:

111
11111
+1L, long: 1, binary:

000
00001
maxpos, long: 9223372036854775807, binary:

011
11111
maxneg, long: -9223372036854775808, binary:

100
00000
l_high_bits, long: 4654972597212020736, binary:

01000000100110011100100011101010000000000000000000000000000
00000
l, long: 4654972598829014295, binary:

01000000100110011100100011101010011000000110000101011101000
10111
~l, long: -4654972598829014296, binary:

10111111011001100011011100010101100111111001111010100010111
01000
-l, long: -4654972598829014295, binary:

10111111011001100011011100010101100111111001111010100010111
01001
m_high_bits, long: 468354230734815232, binary:

Chapter 4: Controlling Program Flow 111

00000110011111111110110110110001000000000000000000000000000
00000
m, long: 468354231158705547, binary:

00000110011111111110110110110001000110010100010000001101100
01011
l & m, long: 7257463942286595, binary:

00000000000110011100100010100000000000000100000000001101000
00011
l | m, long: 5116069366045433247, binary:

01000110111111111110110111111011011110010110010101011101100
11111
l ^ m, long: 5108811902103146652, binary:

01000110111001100010010101011011011110010010010101010000100
11100
l << 5, long: 1385170572852044512, binary:

00010011001110010001110101001100000011000010101110100010111
00000
l >> 5, long: 145467893713406696, binary:

00000010000001001100111001000111010100110000001100001010111
01000
(~l) >> 5, long: -145467893713406697, binary:

11111101111110110011000110111000101011001111110011110101000
10111

The binary representation of the numbers is referred to as signed two’s
complement.

Ternary if-else operator
This operator is unusual because it has three operands. It is truly an operator
because it produces a value, unlike the ordinary if-else statement that you’ll see in
the next section of this chapter. The expression is of the form:

boolean-exp ? value0 : value1

112 Thinking in C# www.MindView.net

If boolean-exp evaluates to true, value0 is evaluated and its result becomes the
value produced by the operator. If boolean-exp is false, value1 is evaluated and
its result becomes the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but the
ternary operator is much terser. Although C (where this operator originated)
prides itself on being a terse language, and the ternary operator might have been
introduced partly for efficiency, you should be somewhat wary of using it on an
everyday basis—it’s easy to produce unreadable code.

The conditional operator can be used for its side effects or for the value it
produces, but in general you want the value since that’s what makes the operator
distinct from the if-else. Here’s an example:

static int Ternary(int i) {
 return i < 10 ? i * 100 : i * 10;
}

You can see that this code is more compact than what you’d need to write without
the ternary operator:

static int Alternative(int i) {
 if (i < 10)
 return i * 100;
 else
 return i * 10;
}

The second form is easier to understand, and doesn’t require a lot more typing.
So be sure to ponder your reasons when choosing the ternary operator – it’s
generally only warranted when you’re setting a variable to one of two
straightforward values:

int ternaryResult = i < 10 ? i * 100 : i * 10;

The comma operator
The comma is used in C and C++ not only as a separator in function argument
lists, but also as an operator for sequential evaluation. The sole place that the
comma operator is used in C# is in for loops, which will be described later in this
chapter.

Chapter 4: Controlling Program Flow 113

Common pitfalls when
using operators
One of the pitfalls when using operators is trying to get away without parentheses
when you are even the least bit uncertain about how an expression will evaluate.
This is still true in C#.

An extremely common error in C and C++ looks like this:

while(x = y) {
 //
}

The programmer was trying to test for equivalence (==) rather than do an
assignment. In C and C++ the result of this assignment will always be true if y is
nonzero, and you’ll probably get an infinite loop. In C#, the result of this
expression is not a bool, and the compiler expects a bool and won’t convert
from an int, so it will conveniently give you a compile-time error and catch the
problem before you ever try to run the program. So the pitfall never happens in
C#. (The only time you won’t get a compile-time error is when x and y are bool,
in which case x = y is a legal expression, and in the above case, probably an
error.)

A similar problem in C and C++ is using bitwise AND and OR instead of the
logical versions. Bitwise AND and OR use one of the characters (& or |) while
logical AND and OR use two (&& and ||). Just as with = and ==, it’s easy to type
just one character instead of two. In C#, the compiler again prevents this because
it won’t let you cavalierly use one type where it doesn’t belong.

Casting operators
The word cast is used in the sense of “casting into a mold.” C# will automatically
change one type of data into another when appropriate. For instance, if you
assign an integral value to a floating-point variable, the compiler will
automatically convert the int to a float. Casting allows you to make this type
conversion explicit, or to force it when it wouldn’t normally happen.

To perform a cast, put the desired data type (including all modifiers) inside
parentheses to the left of any value. Here’s an example:

void Casts() {
 int i = 200;
 long aLongVar = (long)i;
 long anotherLongVar = (long)200;

114 Thinking in C# www.ThinkingIn.NET

}

As you can see, it’s possible to perform a cast on a numeric value as well as on a
variable. In both casts shown here, however, the cast is superfluous, since the
compiler will automatically promote an int value to a long when necessary.
However, you are allowed to use superfluous casts to make a point or to make
your code more clear. In other situations, a cast may be essential just to get the
code to compile.

In C and C++, casting can cause some headaches. In C#, casting is safe, with the
exception that when you perform a so-called narrowing conversion (that is,
when you go from a data type that can hold more information to one that doesn’t
hold as much) you run the risk of losing information. Here the compiler forces
you to do a cast, in effect saying “this can be a dangerous thing to do—if you want
me to do it anyway you must make the cast explicit.” With a widening conversion
an explicit cast is not needed because the new type will more than hold the
information from the old type so that no information is ever lost.

C# allows you to define casts between any logically exchangeable objects and
comes with prewritten casts for the numeric value types. To convert one to the
other there must be special methods. (You’ll find out later in this book that
objects can be cast within a family of types without the need to write special
casting code; an Oak can be cast to a Tree and vice-versa, but not to a foreign
type such as a Rock unless you write an explicit Tree-to-Rock conversion.)

Literals
Ordinarily when you insert a literal value into a program the compiler knows
exactly what type to make it. Sometimes, however, the type is ambiguous. When
this happens you must guide the compiler by adding some extra information in
the form of characters associated with the literal value. The following code shows
these characters:

//:c04:Literals.cs
using System;

public class Literals {
 //!char c = 0xffff; // max char hex value
 byte b = 0x7f; // max byte hex value
 short s = 0x7fff; // max short hex value
 int i1 = 0x2f; // Hexadecimal (lowercase)
 int i2 = 0X2F; // Hexadecimal (uppercase)
 // Hex also works with long.

Chapter 4: Controlling Program Flow 115

 long n1 = 200L; // long suffix
 long n2 = 200l; // long suffix - generates warning
 long n3 = 200;
 //! long l6(200); // not allowed
 float f1 = 1;
 float f2 = 1F; // float suffix
 float f3 = 1f; // float suffix
 float f4 = 1e-45f; // 10 to the power
 float f5 = 1e+9f; // float suffix
 double d1 = 1d; // double suffix
 double d2 = 1D; // double suffix
 double d3 = 47e47d; // 10 to the power
}///:~ (Non-executable code snippet)

Hexadecimal (base 16), which works with all the integral data types, is denoted by
a leading 0x or 0X followed by 0—9 and a—f either in upper or lowercase. If you
try to initialize a variable with a value bigger than it can hold (regardless of the
numerical form of the value), the compiler will give you an error message. Notice
in the above code the maximum possible hexadecimal values for char, byte, and
short. If you exceed these, the compiler will automatically make the value an int
and tell you that you need a narrowing cast for the assignment. You’ll know
you’ve stepped over the line.

A trailing character after a literal value establishes its type. Upper or lowercase L
means long, upper or lowercase F means float and upper or lowercase D means
double.

Exponents use a notation that some find rather dismaying: 1.39 e-47f. In science
and engineering, ‘e’ refers to the base of natural logarithms, approximately 2.718.
(A more precise double value is available in C# as Math.E.) This is used in
exponentiation expressions such as 1.39 x e-47, which means 1.39 x 2.718-47.
However, when FORTRAN was invented they decided that e would naturally
mean “ten to the power,” which is an odd decision because FORTRAN was
designed for science and engineering and one would think its designers would be
sensitive about introducing such an ambiguity. At any rate, this custom was
followed in C, C++ and now C#. So if you’re used to thinking in terms of e as the
base of natural logarithms, you must do a mental translation when you see an
expression such as 1.39 e-47f in C#; it means 1.39 x 10-47.

Note that you don’t need to use the trailing character when the compiler can
figure out the appropriate type. With

long n3 = 200;

116 Thinking in C# www.MindView.net

there’s no ambiguity, so an L after the 200 would be superfluous. However, with

float f4 = 1e-47f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the
trailing f it will give you an error telling you that you must use a cast to convert
double to float.

Promotion
You’ll discover that if you perform any mathematical or bitwise operations on
primitive data types that are smaller than an int (that is, char, byte, or short),
those values will be promoted to int before performing the operations, and the
resulting value will be of type int. So if you want to assign back into the smaller
type, you must use a cast. (And, since you’re assigning back into a smaller type,
you might be losing information.) In general, the largest data type in an
expression is the one that determines the size of the result of that expression; if
you multiply a float and a double, the result will be double; if you add an int
and a long, the result will be long.

C# has sizeof
The sizeof() operator satisfies a specific need: it tells you the number of bytes
allocated for data items. The most compelling need for sizeof() in C and C++ is
portability. Different data types might be different sizes on different machines, so
the programmer must find out how big those types are when performing
operations that are sensitive to size. For example, one computer might store
integers in 32 bits, whereas another might store integers as 16 bits. Programs
could store larger values in integers on the first machine. As you might imagine,
portability is a huge headache for C and C++ programmers. In C#, this most
common use of sizeof() is not relevant, but it can come into play when interfacing
with external data structures or when you’re manipulating blocks of raw data and
you’re willing to forego convenience and safety for every last bit of speed (say, if
you’re writing a routine for processing video data). The sizeof() operator is only
usable inside unsafe code (see page 368).

C#’s preprocessor
C#’s preprocessing directives should be used with caution. Preprocessing is, as
the name implies, something that happens before the human-readable code is
transformed into the Common Intermediate Language that is the .NET
equivalent of machine code. C# does not actually have a separate preprocessing
step that runs prior to compilation but the form and use of these statements is
intended to be familiar to C and C++ programmers.

Chapter 4: Controlling Program Flow 117

While there’s no harm in the #region directives, which are simply outlining
clues to the Visual Studio .NET IDE, the other directives support conditional
compilation, which allows a single codebase to generate multiple binary outputs.
Preprocessing directives such as #if, #else, #elif, and #endif modify the code
that is seen by the compiler. The variables that control which #if…#else block
will be compiled may be modified on the compiler command-line, and therein
lies the challenge. You essentially are defining different programs; at best, each
preprocessor variant must be tested separately, at worst, incorrect behavior arises
in some variants, a needed change is made only in one variant, etc.

The most common use of conditional compilation is to remove debugging
behavior from a shipping product; this is done by defining a symbol on the
compilation command-line, and using the #if, #endif, #else, and #elif
directives to create conditional logic depending on the existence or absence of
one or more such symbols. Here’s a simple example:

//:c04:CondComp.cs
//Demonstrates conditional compilation

class CondComp{
 public static void Main(){
#if DEBUG
 Console.WriteLine("Debug behavior");
#endif
 }
}///:~

If CondComp is compiled with the command-line csc /define:Debug
CondComp.cs it will print the line; if with a straight csc CondComp.cs, it
won’t. While this seems like a reasonable idea, in practice it often leads to
situations where a change is made in one conditional branch and not in another,
and the preprocessor leaves no trace in the code of the compilation options; in
general, it’s a better idea to use a readonly bool for such things. A reasonable
compromise is to use the preprocessor directives to set the values of variables
that are used to change runtime behavior:

//:c04:MarkedCondComp.cs
//Demonstrates conditional compilation
using System;

class CondComp {
 static readonly bool DEBUG =
#if DEBUG

118 Thinking in C# www.ThinkingIn.NET

 true;
#else
 false;
#endif

 public static void Main(){
 if (DEBUG)
 Console.WriteLine("Debug behavior");
 }
}///:~

In MarkedCondComp, if a problem arose, a debugger or logging facility would
be able to read the value of the DEBUG bool, thus allowing the maintenance
programmers to determine the compilation commands that lead to the
troublesome behavior. The trivial disadvantages of this model are the slight
penalty of a runtime comparison and the increase in the assembly’s size due to
the presence of the debugging code.

Precedence revisited
Operator precedence is difficult to remember, but here is a helpful mnemonic :
“Ulcer Addicts Really Like C# A Lot.”

Mnemonic Operator type Operators

Ulcer Unary + - ++--

Addicts
Arithmetic (and
shift)

* / % + - << >>

Really Relational > < >= <= == !=

Like Logical (and bitwise) && || & | ^

C# Conditional (ternary) A > B ? X : Y

A Lot Assignment
= (and compound
assignment like *=)

Of course, with the shift and bitwise operators distributed around the table it is
not a perfect mnemonic, but for non-bit operations it works.

A compendium of operators
The following example shows which primitive data types can be used with
particular operators. Basically, it is the same example repeated over and over, but

Chapter 4: Controlling Program Flow 119

using different primitive data types. The file will compile without error because
the lines that would cause errors are commented out with a //!.

//:c04:AllOps.cs
namespace c03{
 using System;
// Tests all the operators on all the
// primitive data types to show which
// ones are accepted by the C# compiler.

 public class AllOps {
 // To accept the results of a boolean test:
 void F(bool b) {}
 void BoolTest(bool x, bool y) {
 // Arithmetic operators:
 //! x = x * y;
 //! x = x / y;
 //! x = x % y;
 //! x = x + y;
 //! x = x - y;
 //! x++;
 //! x--;
 //! x = +y;
 //! x = -y;
 // Relational and logical:
 //! F(x > y);
 //! F(x >= y);
 //! F(x < y);
 //! F(x <= y);
 F(x == y);
 F(x != y);
 F(!y);
 x = x && y;
 x = x || y;
 // Bitwise operators:
 //! x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;

120 Thinking in C# www.MindView.net

 //! x = x >>> 1;
 // Compound assignment:
 //! x += y;
 //! x -= y;
 //! x *= y;
 //! x /= y;
 //! x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! char c = (char)x;
 //! byte B = (byte)x;
 //! short s = (short)x;
 //! int i = (int)x;
 //! long l = (long)x;
 //! float f = (float)x;
 //! double d = (double)x;
 }
 void CharTest(char x, char y) {
 // Arithmetic operators:
 x = (char)(x * y);
 x = (char)(x / y);
 x = (char)(x % y);
 x = (char)(x + y);
 x = (char)(x - y);
 x++;
 x--;
 x = (char)+y;
 x = (char)-y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);

Chapter 4: Controlling Program Flow 121

 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 x= (char)~y;
 x = (char)(x & y);
 x = (char)(x | y);
 x = (char)(x ^ y);
 x = (char)(x << 1);
 x = (char)(x >> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! bool b = (bool)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void ByteTest(byte x, byte y) {
 // Arithmetic operators:
 x = (byte)(x* y);
 x = (byte)(x / y);
 x = (byte)(x % y);
 x = (byte)(x + y);
 x = (byte)(x - y);
 x++;
 x--;
 x = (byte)+ y;
 x = (byte)- y;
 // Relational and logical:

122 Thinking in C# www.ThinkingIn.NET

 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 x = (byte)~y;
 x = (byte)(x & y);
 x = (byte)(x | y);
 x = (byte)(x ^ y);
 x = (byte)(x << 1);
 x = (byte)(x >> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void ShortTest(short x, short y) {
 // Arithmetic operators:
 x = (short)(x * y);
 x = (short)(x / y);
 x = (short)(x % y);

Chapter 4: Controlling Program Flow 123

 x = (short)(x + y);
 x = (short)(x - y);
 x++;
 x--;
 x = (short)+y;
 x = (short)-y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 x = (short)~y;
 x = (short)(x & y);
 x = (short)(x | y);
 x = (short)(x ^ y);
 x = (short)(x << 1);
 x = (short)(x >> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 byte B = (byte)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;

124 Thinking in C# www.MindView.net

 double d = (double)x;
 }
 void IntTest(int x, int y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x &= y;
 x ^= y;
 x |= y;

Chapter 4: Controlling Program Flow 125

 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void LongTest(long x, long y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;

126 Thinking in C# www.ThinkingIn.NET

 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 float f = (float)x;
 double d = (double)x;
 }
 void FloatTest(float x, float y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);
 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;

Chapter 4: Controlling Program Flow 127

 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 double d = (double)x;
 }
 void DoubleTest(double x, double y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 F(x > y);
 F(x >= y);
 F(x < y);
 F(x <= y);

128 Thinking in C# www.MindView.net

 F(x == y);
 F(x != y);
 //! F(!x);
 //! F(x && y);
 //! F(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;
 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! bool b = (bool)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 }
 }
}///:~ (non-executable code snippet)

Note that bool is quite limited. You can assign to it the values true and false,
and you can test it for truth or falsehood, but you cannot add booleans or perform
any other type of operation on them.

Chapter 4: Controlling Program Flow 129

In char, byte, and short you can see the effect of promotion with the arithmetic
operators. Each arithmetic operation on any of those types results in an int
result, which must be explicitly cast back to the original type (a narrowing
conversion that might lose information) to assign back to that type. With int
values, however, you do not need to cast, because everything is already an int.
Don’t be lulled into thinking everything is safe, though. If you multiply two ints
that are big enough, you’ll overflow the result. The following example
demonstrates this:

//:c04:OverFlow.cs
using System;
public class Overflow {
 public static void Main() {
 int big = 0x7fffffff; // max int value
 Console.WriteLine("big = " + big);
 int bigger = big * 4;
 Console.WriteLine("bigger = " + bigger);
 bigger = checked(big * 4);
 //! Console.WriteLine("never reached");
 }
}///:~

The output of this is:

big = 2147483647
bigger = -4

Unhandled Exception: System.OverflowException: Exception of
type System.OverflowException was thrown.
 at Overflow.Main()

If a potentially overflowing mathematical operation is not wrapped in the
checked() keyword, you will get no errors or warnings from the compiler, and
no exceptions at run-time. (Exceptions have all of Chapter 11 devoted to them.)

Compound assignments do not require casts for char, byte, or short, even
though they are performing promotions that have the same results as the direct
arithmetic operations. On the other hand, the lack of the cast certainly simplifies
the code.

You can see that, with the exception of bool, any primitive type can be cast to any
other primitive type. Again, you must be aware of the effect of a narrowing
conversion when casting to a smaller type, otherwise you might unknowingly lose
information during the cast.

130 Thinking in C# www.ThinkingIn.NET

Execution control
C# uses all of C’s execution control statements, so if you’ve programmed with C
or C++ then most of what you see will be familiar. Most procedural programming
languages have some kind of control statements, and there is often overlap
among languages. In C#, the keywords include if-else, while, do-while, for,
foreach, and a selection statement called switch. C# jumping keywords are
break, continue, goto (yes, goto), and return.

true and false
All conditional statements use the truth or falsehood of a conditional expression
to determine the execution path. An example of a conditional expression is A ==
B. This uses the conditional operator == to see if the value of A is equivalent to
the value of B. The expression returns true or false. Any of the relational
operators you’ve seen earlier in this chapter can be used to produce a conditional
statement. Note that C# doesn’t allow you to use a number as a bool, even
though it’s allowed in C and C++ (where truth is nonzero and falsehood is zero)
and in Visual Basic (where truth is zero and falsehood non-zero). If you want to
use a non-bool in a bool test, such as if(a), you must first convert it to a bool
value using a conditional expression, such as if(a != 0).

if-else
The if-else statement is probably the most basic way to control program flow.
The else is optional, so you can use if in two forms:

if(Boolean-expression)
 statement

or

if(Boolean-expression)
 statement
else
 statement

The conditional must produce a bool result. The statement means either a
simple statement terminated by a semicolon or a compound statement, which is a
group of simple statements enclosed in braces. Any time the word “statement” is
used, it always implies that the statement can be simple or compound.

As an example of if-else, here is a test() method that will tell you whether a
guess is above, below, or equivalent to a target number:

Chapter 4: Controlling Program Flow 131

//:c04:IfElse.cs
using System;

public class IfElse {
 static int Test(int testval, int target) {
 int result = 0;
 if (testval > target)
 result = +1;
 else if (testval < target)
 result = -1;
 else
 result = 0; // Match
 return result;
 }
 public static void Main() {
 Console.WriteLine(Test(10, 5));
 Console.WriteLine(Test(5, 10));
 Console.WriteLine(Test(5, 5));
 }
}///:~

It is conventional to indent the body of a control flow statement so the reader
might easily determine where it begins and ends.

return
The return keyword has two purposes: it specifies what value a method will
return (if it doesn’t have a void return value) and it causes that value to be
returned immediately. The test() method above can be rewritten to take
advantage of this:

//:c04:IfElse2.cs
using System;

public class IfElse2 {
 static int Test(int testval, int target) {
 if (testval > target)
 return 1;
 else if (testval < target)
 return -1;
 else
 return 0; // Match
 }

132 Thinking in C# www.MindView.net

 public static void Main() {
 Console.WriteLine(Test(10, 5));
 Console.WriteLine(Test(5, 10));
 Console.WriteLine(Test(5, 5));
 }
}///:~

Although this code has two else’s, they are actually unnecessary, because the
method will not continue after executing a return. It is good programming
practice to have as few exit points as possible in a method; a reader should be
able to see at a glance the “shape” of a method without having to think “Oh!
Unless something happens in this conditional, in which case it never gets to this
other area.” After rewriting the method so that there’s only one exit point, we can
add extra functionality to the method and know that it will always be called:

//:c04:IfElse3.cs
using System;

public class IfElse3 {
 static int Test(int testval, int target) {
 int result = 0; //Match
 if (testval > target)
 result = 1;
 else if (testval < target)
 result = -1;
 Console.WriteLine("All paths pass here");
 return result;
 }
 public static void Main() {
 Console.WriteLine(Test(10, 5));
 Console.WriteLine(Test(5, 10));
 Console.WriteLine(Test(5, 5));
 }
} ///:~

Iteration
while, do-while, and for control looping and are sometimes classified as
iteration statements. A statement repeats until the controlling Boolean-
expression evaluates to false. The form for a while loop is

while(Boolean-expression)
 statement

Chapter 4: Controlling Program Flow 133

The Boolean-expression is evaluated once at the beginning of the loop and again
before each further iteration of the statement.

Here’s a simple example that generates random numbers until a particular
condition is met:

//:c04:WhileTest.cs
using System;
// Demonstrates the while loop.
public class WhileTest {
 public static void Main() {
 Random rand = new Random();
 double r = 0;
 while (r < 0.99d) {
 r = rand.NextDouble();
 Console.WriteLine(r);
 }
 }
}///:~

This uses the static method NextDouble() in the Random class, which
generates a double value between 0 and 1. (It includes 0, but not 1.) The
conditional expression for the while says “keep doing this loop until the number
is 0.99 or greater.” Each time you run this program you’ll get a different-sized list
of numbers.

do-while
The form for do-while is

do
 statement
while(Boolean-expression);

The sole difference between while and do-while is that the statement of the do-
while always executes at least once, even if the expression evaluates to false the
first time. In a while, if the conditional is false the first time the statement never
executes. In practice, do-while is less common than while.

for
A for loop performs initialization before the first iteration. Then it performs
conditional testing and, at the end of each iteration, some form of “stepping.” The
form of the for loop is:

134 Thinking in C# www.ThinkingIn.NET

for(initialization; Boolean-expression; step)
 statement

Any of the expressions initialization, Boolean-expression or step can be empty.
The expression is tested before each iteration, and as soon as it evaluates to false
execution will continue at the line following the for statement. At the end of each
loop, the step executes.

for loops are usually used for “counting” tasks:

//:c04:ListCharacters.cs
using System;
// Demonstrates "for" loop by listing
// all the ASCII characters.
public class ListCharacters {
 public static void Main() {
 for (char c = (char) 0; c < (char) 128; c++)
 if (c != 26) // ANSI Clear screen
 Console.WriteLine("value: " + (int)c +
 " character: " + c);
 }
}///:~

Note that the variable c is defined at the point where it is used, inside the control
expression of the for loop, rather than at the beginning of the block denoted by
the open curly brace. The scope of c is the expression controlled by the for.

Traditional procedural languages like C require that all variables be defined at the
beginning of a block so when the compiler creates a block it can allocate space for
those variables. In C#, you can spread your variable declarations throughout the
block, defining them at the point that you need them. This allows a more natural
coding style and makes code easier to understand.

You can define multiple variables within a for statement, but they must be of the
same type:

for(int i = 0, j = 1;
 i < 10 && j != 11;
 i++, j++)
 /* body of for loop */;

The int definition in the for statement covers both i and j. The ability to define
variables in the control expression is limited to the for loop. You cannot use this
approach with any of the other selection or iteration statements.

Chapter 4: Controlling Program Flow 135

foreach
C# has a specialized iteration operator called foreach. Unlike the others,
foreach does not loop based on a boolean expression. Rather, it executes a block
of code on each element in an array or other collection. The form for foreach is:

foreach(type loopVariable in collection){
 statement
}

The foreach statement is a terse way to specify the most common type of loop
and does so without introducing potentially confusing index variables. Compare
the clarity of foreach and for in this example:

//:c04:ForEach.cs
using System;

class ForEach {
 public static void Main() {
 string[] months = {"January", "February",
 "March", "April"}; //etc
 string[] weeks = {"1st", "2nd", "3rd", "4th"};
 string[] days = {"Sunday", "Monday",
 "Tuesday", "Wednesday"}; //etc

 foreach(string month in months)
 foreach(string week in weeks)
 foreach(string day in days)
 Console.WriteLine("{0} {1} week {2}",
 month, week, day);
 for (int month = 0;
 month < months.Length;
 month++) {
 for (int week = 0;
 week < weeks.Length;
 week++) {
 for (int day = 0;
 day < days.Length;
 day++) {
 Console.WriteLine(
 "{0} {1} week {2}",
 months[month], weeks[week],days[day]);
 }

136 Thinking in C# www.MindView.net

 }
 }
 }
} ///:~

Another advantage of foreach is that it performs an implicit typecast on objects
stored in collections, saving a few more keystrokes when objects are stored not in
arrays, but in more complex data structures. We’ll cover this aspect of foreach in
Chapter 10.

The comma operator
Earlier in this chapter we stated that the comma operator (not the comma
separator, which is used to separate definitions and function arguments) has
only one use in C#: in the control expression of a for loop. In both the
initialization and step portions of the control expression you can have a number
of statements separated by commas, and those statements will be evaluated
sequentially. The previous bit of code uses this ability. Here’s another example:

//:c04:ListCharacters2.cs
using System;
public class CommaOperator {
 public static void Main() {
 for (int i = 1, j = i + 10; i < 5;
 i++, j = i * 2) {
 Console.WriteLine("i= " + i + " j= " + j);
 }
 }
}///:~

Here’s the output:

i= 1 j= 11
i= 2 j= 4
i= 3 j= 6
i= 4 j= 8

You can see that in both the initialization and step portions the statements are
evaluated in sequential order. Also, the initialization portion can have any
number of definitions of one type.

break and continue
Inside the body of any of the iteration statements you can also control the flow of
the loop by using break and continue. break quits the loop without executing

Chapter 4: Controlling Program Flow 137

the rest of the statements in the loop. continue stops the execution of the
current iteration and goes back to the beginning of the loop to begin the next
iteration.

This program shows examples of break and continue within for and while
loops:

//:c04:BreakAndContinue.cs
// Demonstrates break and continue keywords.
using System;

public class BreakAndContinue {
 public static void Main() {
 int i = 0;
 for (i = 0; i < 100; i++) {
 if (i == 74) break; // Out of for loop
 if (i % 9 != 0) continue; // Next iteration
 Console.WriteLine(i);
 }
 i = 0;
 // An "infinite loop":
 while (true) {
 i++;
 int j = i * 27;
 if (j == 1269) break; // Out of loop
 if (i % 10 != 0) continue; // Top of loop
 Console.WriteLine(i);
 }
 }
}///:~

In the for loop the value of i never gets to 100 because the break statement
breaks out of the loop when i is 74. Normally, you’d use a break like this only if
you didn’t know when the terminating condition was going to occur. The
continue statement causes execution to go back to the top of the iteration loop
(thus incrementing i) whenever i is not evenly divisible by 9. When it is, the value
is printed.

The second portion shows an “infinite loop” that would, in theory, continue
forever. However, inside the loop there is a break statement that will break out
of the loop. In addition, you’ll see that the continue moves back to the top of the
loop without completing the remainder. (Thus printing happens in the second
loop only when the value of i is divisible by 10.) The output is:

138 Thinking in C# www.ThinkingIn.NET

0
9
18
27
36
45
54
63
72
10
20
30
40

The value 0 is printed because 0 % 9 produces 0.

A second form of the infinite loop is for(;;). The compiler treats both
while(true) and for(;;) in the same way, so whichever one you use is a matter
of programming taste. (Often, people from C backgrounds think for(;;) is
clearer, although while(true) certainly seems more universal.)

The infamous goto
The goto keyword has been present in programming languages from the
beginning. Indeed, goto was the genesis of program control in assembly
language: “if condition A, then jump here, otherwise jump there.” If you read the
assembly code that is ultimately generated by virtually any compiler, you’ll see
that program control contains many jumps. However, a goto is a jump at the
source-code level, and that’s what brought it into disrepute. If a program will
always jump from one point to another, isn’t there some way to reorganize the
code so the flow of control is not so jumpy? goto fell into true disfavor with the
publication of the famous 1968 letter “Go To Statement Considered Harmful” by
Edsger Dijkstra (http://www.acm.org/classics/oct95/). Dijkstra (who passed
away shortly before this book went to press) argued that when you have a jump,
the context that created the program state becomes difficult to visualize. Since
then, goto-bashing has been a popular sport, with advocates of the cast-out
keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most fruitful. The
problem is not the use of goto, but the overuse of goto or, indeed, any statement
that makes it difficult to say “When this line is reached, the state of the system is
necessarily such-and-such.” The best way to write code that makes system state
easy to determine is to minimize cyclomatic complexity, which is a fancy way of

Chapter 4: Controlling Program Flow 139

saying “use as few selection and jump statements as possible.” Cyclomatic
complexity is the measure of the number of possible paths through a block of
code.

140 Thinking in C# www.MindView.net

class Cyclomatic{
 public void simple(){
 int x = 0;
 int y = x;
 int z = y + y;
 System.Console.WriteLine(z);
 }

 public int alsoSimple(int x){
 int y = x;
 return y + y;
 }

 public void oneLoop(int x){
 System.Console.WriteLine(“Begin”);

 for(int y = x; y < 10; y++){
 int z = x + y;
 System.Console.WriteLine(z);
 }
 System.Console.WriteLine("Done");
 }

 public void twoExits(){
 Random r = new Random();
 int x = r.Next();
 if(x % 2 == 0){
 System.Console.WriteLine("Even");
 return;
 }
 System.Console.WriteLine("Odd");
 }

 public void twoLoop(){
 int x = 1;
 for(int y = x; y < 10; y++){
 for(int z = x + y; z < 6; z++){
 System.Console.WriteLine(z);
 }
 }
 System.Console.WriteLine("Done");
 }

 public void spaghetti() {
 int i = 0;
 for(i = 0; i < 100; i++) {
 if(i == 74) break;
 if(i % 9 != 0) continue;
 System.Console.WriteLine(i);
 }
 i = 0;
 while(true) {
 i++;
 int j = i * 27;
 if(j == 1269) break;
 if(i % 10 != 0) continue;
 System.Console.WriteLine(i);
 }
 }
}

1

2
3

Chapter 4: Controlling Program Flow 141

In the figure on the previous page, the methods simple() and alsoSimple()
have a cyclomatic complexity of 1; there is only a single path through the code. It
does not matter how long the method is, whether the method creates objects, or
even if the method calls other, more complex, methods (if those methods have
high complexity, so be it; it doesn’t affect the complexity of the method at hand).
This simplicity is reflected in the control graph shown: a single line showing the
direction of execution towards the exit point.

The method oneLoop() is slightly more complex. No matter what its input
parameter, it will print out “Begin” and assign x to y at the very beginning of the
for loop. That’s the first edge on its control graph (to help align with the source
code, the figure shows a single “edge” as a straight length of code and a curving
jump). Then, it may continue into the loop, assign z and print it, increment y, and
loop; that’s the second edge. Finally, at some point, y will be equal to 10 and
control will jump to the end of the method. This is the third edge, as marked on
the figure. Method twoExits() also has a cyclomatic complexity of 3, although its
second edge doesn’t loop, but exits.

The next method, twoLoops(), hardly seems more complex than oneLoop(), but if
you look at its control graph, you can count five distinct edges. Finally, we see a
visual representation of what programmers call “spaghetti code.” With a
cyclomatic complexity of 12, spaghetti() is about as complex as a method should
ever be. Once a method has more than about six conditional and iteration
operators, it starts to become difficult to understand the ramifications of any
changes. In the 1950s, the psychologist George Miller published a paper that said
that “Seven plus or minus two” is the limit of our “span of absolute judgment.”
Trying to keep more than this number of things in our head at once is very error-
prone. Luckily, we have this thing called “writing” (or, in our case, coding C#)
which allows us to break the problem of “absolute judgment” into successive sub-
problems, which can then be treated as units for the purpose of making higher-
level judgments. Sounds like computer programming to me!

 (The paper points out that by increasing the dimension of visual variables, we
can achieve astonishing levels of discrimination as we do, say, when we recognize
a friend we’ve not seen in years while rushing through an airport. It’s interesting
to note that computer programming hardly leverages this capacity at all. You can
read the paper, which anticipates exactly the sort of thinking and choice-making
common to programming, at http://www.well.com/user/smalin/miller.html.)

In C#, goto can be used to jump within a method to a label. A label is an
identifier followed by a colon, like this:

label1:

142 Thinking in C# www.ThinkingIn.NET

Although it’s legal to place a label anywhere in a method, the only place where it’s
a good idea is right before an iteration statement. And the sole reason to put a
label before an iteration is if you’re going to nest another iteration or a switch
inside it. That’s because while break and continue interrupt only the loop that
contains them, goto can interrupt the loops up to where the label exists. Here is
an example of the use and abuse of goto:

//:c04:Goto.cs
// Using Goto
using System;

public class Goto {
 public static void Main() {
 int i = 0;
 Random rand = new Random();
 outer: //Label before iterator
 for (; true ;) { // infinite loop
 Console.WriteLine("Prior to inner loop");
 inner: // Another label
 for (; i < 10; i++) {
 Console.WriteLine("i = " + i);
 if (i == 7) {
 Console.WriteLine("goto outer");
 i++; // Otherwise i never
 // gets incremented.
 goto outer;
 }
 if (i == 8) {
 Console.WriteLine("goto inner");
 i++; //Otherwise i never
 //gets incremented
 goto inner;
 }
 double d = rand.NextDouble();
 if (i == 9 && d < 0.6) {
 Console.WriteLine("Legal but terrible");
 goto badIdea;
 }
 Console.WriteLine("Back in the loop");
 if (i == 9)
 goto bustOut;

Chapter 4: Controlling Program Flow 143

 }
 }
 bustOut:
 Console.WriteLine("Exit loop");
 if (rand.NextDouble() < 0.5) {
 goto spaghettiJump;
 }
 badIdea:
 Console.WriteLine("How did I get here?");
 goto outer;
 spaghettiJump:
 Console.WriteLine("Don't ever, ever do this.");
 }
} ///:~

Things start out appropriately enough, with the labeling of the two loops as
outer and inner. After counting to 7 and getting lulled into a false sense of
security, control jumps out of both loops, and re-enters following the outer label.
On the next loop, control jumps to the inner label. Then things get weird: if the
random number generator comes up with a value less than 0.6, control jumps
downwards, to the label marked badIdea, the method prints “How did I get
here?” and then jumps all the way back to the outer label. On the next run
through the inner loop, i is still equal to 9 but, eventually, the random number
generator will come up with a value that will skip the jump to badIdea and print
that we’re “back in the loop.” Then, instead of using the for statement’s
terminating condition, we decide that we’re going to jump to the bustOut label.
We do the programmatic equivalent of flipping a coin and either “fall through”
into the badIdea area (which, of course, jumps us back to outer) or jump to the
spaghettiJump label.

So why is this code considered so terrible? For one thing, it has a high cyclomatic
complexity – it’s just plain confusing. Also, note how much harder it is to
understand program flow when one can’t rely on brackets and indenting. And to
make things worse, let’s say you were debugging this code and you placed a
breakpoint at the line Console.WriteLine("How did I get
here?"). When the breakpoint is reached, there is no way, short of examining
the output, for you to determine whether you reached it from the jump from the
inner loop or from falling through from the immediately preceding lines (in this
case, the program’s output is sufficient to this cause, but in the real world of
complex systems, GUIs, and Web Services, it never is). As Dijkstra put it, “it
becomes terribly hard to find a meaningful set of coordinates in which to describe
the process progress.”

144 Thinking in C# www.MindView.net

By “coordinates” Dijkstra meant a way to know the path by which a system
arrived in its current state. It’s only with such a path in hand that one can debug,
since challenging defects only become apparent sometime after the mistake has
been made. (It is, of course, common to make mistakes immediately or just
before the problem becomes apparent, but such mistakes aren’t hard to root out
and correct.) Dijkstra went on to say that his criticism was not just about goto,
but that all language constructs “should satisfy the requirement that a
programmer independent coordinate system can be maintained to describe the
process in a helpful and manageable way.” We’ll revisit this concern when
speaking of the way that C# and the .NET framework handle exceptions (obeying
the requirement) and threading (which doesn’t).

switch
The switch is sometimes classified as a selection statement. The switch
statement selects from among pieces of code based on the value of an integral
expression. Its form is:

switch(integral-selector) {
 case integral-value1 : statement; break;
 case integral-value2 : statement; return;
 case integral-value3 : statement; continue;
 case integral-value4 : statement; throw exception;
 case integral-value5 : statement;
 goto external-label;
 case integral-value6 : //No statements
 case integral-value7 : statement;
 goto case integral-value;
 // ...
 default: statement; break;
}

Integral-selector is an expression that produces an integral value. The switch
compares the result of integral-selector to each integral-value. If it finds a
match, the corresponding statement (simple or compound) executes. If no match
occurs, the default statement executes.

You will notice in the above definition that each case ends with some kind of
jump statement. The first one shown, break, is by far the most commonly used.
Note that goto can be used in both the form discussed previously, which jumps
to an arbitrary label in the enclosing statement block, and in a new form, goto
case, which transfers control to the specified case block.

Chapter 4: Controlling Program Flow 145

Unlike Java and C++, each case block, including the default block, must end in a
jump statement. There is no “fall-through,” although if a selector contains no
statements at all, it may immediately precede another selector. In the definition,
this is seen at the selector for integral-value6, which will execute the statements
in integral-value7’s case block.

The switch statement is a clean way to implement multi-way selection (i.e.,
selecting from among a number of different execution paths), but it requires a
selector that evaluates to a predefined type such as int, char, or string, or to an
enumeration. For other types, you must use either a series of if statements, or
implement some kind of conversion to one of the supported types. More
generally, a well-designed object-oriented program will generally move a lot of
control switching away from explicit tests in code into polymorphism (which we’ll
get to in Chapter 8).

Here’s an example that creates letters randomly and determines whether they’re
vowels or consonants:

//:c04:VowelsAndConsonants.cs
//Demonstrates the switch statement.
using System;
public class VowelsAndConsonants {
 public static void Main() {
 Random rand = new Random();
 for (int i = 0; i < 100; i++) {
 char c = (char)(rand.Next('a','z' + 1));
 Console.WriteLine(c + ": ");
 switch (c) {
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':
 Console.WriteLine("vowel");
 break;
 case 'y':
 Console.WriteLine("Sometimes a vowel");
 break;
 default:
 Console.WriteLine("consonant");
 break;
 }

146 Thinking in C# www.ThinkingIn.NET

 }
 }
}///:~

Since chars can be implicitly promoted to ints, Random.Next(int lowerBound,
int upperBound) can be used to return values in the appropriate ASCII range.

Summary
This chapter concludes the study of fundamental features that appear in most
programming languages: calculation, operator precedence, type casting, and
selection and iteration. Now you’re ready to begin taking steps that move you
closer to the world of object-oriented programming. The next chapter will cover
the important issues of initialization and cleanup of objects, followed in the
subsequent chapter by the essential concept of implementation hiding.

Exercises
1. There are two expressions in the section labeled “precedence” early in

this chapter. Put these expressions into a program and demonstrate that
they produce different results.

2. Put the methods Ternary() and Alternative() into a working
program.

3. Write a program that prints values from one to 100.

4. Modify Exercise 3 so that the program exits by using the break keyword
at value 47. Try using return instead.

5. Write a function that takes two string arguments, and uses all the bool
comparisons to compare the two strings and print the results. In
Main(), call your function with some different string objects.

6. Write a program that generates 25 random int values. For each value, use
an if-else statement to classify it as greater than, less than or equal to a
second randomly-generated value.

7. Modify Exercise 6 so that your code is surrounded by an “infinite” while
loop. It will then run until you interrupt it from the keyboard (typically
by pressing Control-C).

Chapter 4: Controlling Program Flow 147

8. Write a program that uses two nested for loops and the modulus operator
(%) to detect and print prime numbers (integral numbers that are not
evenly divisible by any other numbers except for themselves and 1).

9. Modify the solution to Exercise 8 so that it uses a foreach statement to
test every integer between 2 and 10000 for primality.

10. Create a switch statement that prints a message for each case, and put
the switch inside a for loop that tries each case. Put a break after each
case and test it, then remove the breaks and see what happens.

11. Referring back to Exercises 15-17, write a program that “performs” the
complex behavior from exercise 1-17 by writing to the Console a
description of the behavior and the class doing it. Modify your previous
classes as necessary to accommodate the task.

12. On a large piece of paper or whiteboard, draw a box with the name of
each class used in exercise 11 (one will be Console). One class will
contain the Main() method that is the entry point to your program.
Place a coin on that class. Go through the program you wrote for Exercise
11 line-by-line, tracing the execution of your program by moving the coin
into the class that is responsible for that line. As you “visit” a class, write
the name of the method called or property accessed in the box. The coin
should “visit” every class that is collaborating to accomplish the task.

13. Repeat Exercises 1-17, 11, and 12 (describe a complex behavior,
implement it, and trace execution on a diagram). Choose a behavior that
uses at least two of the classes used in the first go-round. Are some
classes being burdened with all the work, while other classes turn out to
be unnecessary? If so, can you see a way to restructure the classes so that
the work is more evenly distributed? Are there any methods that are used
in both solutions that have several lines of code in common? If so,
eliminate this common code by refactoring it into a private method.
Confirm that the program you wrote for Exercise 11 continues to work!

 149

5: Initialization
and Cleanup

An object-oriented solution consists of a “web” of
connected objects describing the problem and a route to a
solution. Like database programming, object-oriented
programming involves the creation of a system structure
that, although necessarily a digital will-o’-wisp, seems
very tangible. As more and more systems have been built
over the years, it has turned out that two of the most
error-prone tasks are the initialization and cleanup of the
objects that make up the system structure.

Many C bugs occur when the programmer forgets to initialize a variable. This is
especially true with libraries when users don’t know how to initialize a library
component, or even that they must. Cleanup is a special problem because it’s easy
to forget about an element when you’re done with it, since it no longer concerns
you. Thus, the resources used by that element are retained and you can easily end
up running out of resources (most notably, memory).

C++ introduced the concept of a constructor and a destructor, special methods
automatically called when an object is created and destroyed. C# has these
facilities, and in addition has a garbage collector that automatically releases
memory resources when they’re no longer being used. This chapter examines the
issues of initialization and cleanup, and their support in C#.

Guaranteed initialization with the
onstructor
You can imagine creating a method called Initialize() for every class you write.
The name is a hint that it should be called before using the object. Unfortunately,
this means the user must remember to call the method. In C#, the class designer
can guarantee initialization of every object by providing a special method called a
constructor. If a class has a constructor, C# automatically calls that constructor

150 Thinking in C# www.ThinkingIn.NET

when an object is created, before users can even get their hands on it. So
initialization is guaranteed.

The next challenge is what to name this method. There are two issues. The first is
that any name you use could clash with a name you might like to use as a member
in the class. The second is that because the compiler is responsible for calling the
constructor, it must always know which method to call. The C++ solution seems
the easiest and most logical, so it’s also used in C#: the name of the constructor is
the same as the name of the class. It makes sense that such a method will be
called automatically on initialization.

Here’s a simple class with a constructor:

//:c05:SimpleConstructor.cs
using System;

// Demonstration of a simple constructor.
public class Rock {
 public Rock() { // This is the constructor
 Console.WriteLine("Creating Rock");
 }
}

public class SimpleConstructor {
 public static void Main() {
 for (int i = 0; i < 10; i++)
 new Rock();
 }
}///:~

Now, when an object is created:

new Rock();

storage is allocated and the constructor is called. It is guaranteed that the object
will be properly initialized before you can get your hands on it.

Note that the name of the constructor must match the name of the class exactly.

Like any method, the constructor can have arguments to allow you to specify how
an object is created. The above example can easily be changed so the constructor
takes an argument:

//:c05:SimpleConstructor2.cs

Chapter 5: Initialization & Cleanup 151

using System;

// Demonstration of a simple constructor.
public class Rock2 {
 public Rock2(int i) { // This is the constructor
 Console.WriteLine("Creating Rock number: " + i);
 }
}

public class SimpleConstructor {
 public static void Main() {
 for (int i = 0; i < 10; i++)
 new Rock2(i);
 }
}///:~

Constructor arguments provide you with a way to provide parameters for the
initialization of an object. For example, if the class Tree has a constructor that
takes a single integer argument denoting the height of the tree, you would create
a Tree object like this:

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let you create a
Tree object any other way.

Constructors eliminate a large class of problems and make the code easier to
read. In the preceding code fragment, for example, you don’t see an explicit call
to some initialize() method that is conceptually separate from definition. In
C#, definition and initialization are unified concepts—you can’t have one without
the other.

The constructor is an unusual type of method because it has no return value. This
is distinctly different from a void return value, in which the method is declared
explicity as returning nothing. With constructors you are not given a choice of
what you return; a constructor always returns an object of the constructor’s type.
If there was a declared return value, and if you could select your own, the
compiler would somehow need to know what to do with that return value.
Accidentally typing a return type such as void before declaring a constructor is a
common thing to do on a Monday morning, but the C# compiler won’t allow it,
telling you “member names cannot be the same as their enclosing type.”

152 Thinking in C# www.MindView.net

Method overloading
One of the important features in any programming language is the use of names.
When you create an object, you give a name to a region of storage. A method is a
name for an action. By using names to describe your system, you create a
program that is easier for people to understand and change. It’s a lot like writing
prose—the goal is to communicate with your readers.

You refer to all objects and methods by using names. Well-chosen names make it
easier for you and others to understand your code.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different
meanings—it’s overloaded. This is useful, especially when it comes to trivial
differences. You say “wash the shirt,” “wash the car,” and “wash the dog.” It
would be silly to be forced to say, “shirtWash the shirt,” “carWash the car,” and
“dogWash the dog” just so the listener doesn’t need to make any distinction about
the action performed. Most human languages are redundant, so even if you miss
a few words, you can still determine the meaning. We don’t need unique
identifiers—we can deduce meaning from context.

Most programming languages (C in particular) require you to have a unique
identifier for each function. So you could not have one function called print()
for printing integers and another called print() for printing floats—each
function requires a unique name.

In C# and other languages in the C++ family, another factor forces the
overloading of method names: the constructor. Because the constructor’s name is
predetermined by the name of the class, there can be only one constructor name.
But what if you want to create an object in more than one way? For example,
suppose you build a class that can initialize itself in a standard way or by reading
information from a file. You need two constructors, one that takes no arguments
(the default constructor, also called the no-arg constructor), and one that takes a
string as an argument, which is the name of the file from which to initialize the
object. Both are constructors, so they must have the same name—the name of the
class. Thus, method overloading is essential to allow the same method name to
be used with different argument types. And although method overloading is a
must for constructors, it’s a general convenience and can be used with any
method.

Here’s an example that shows both overloaded constructors and overloaded
ordinary methods:

Chapter 5: Initialization & Cleanup 153

//:c05:OverLoading.cs
// Demonstration of both constructor
// and ordinary method overloading.
using System;

class Tree {
 int height;
 public Tree() {
 Prt("Planting a seedling");
 height = 0;
 }
 public Tree(int i) {
 Prt("Creating new Tree that is "
 + i + " feet tall");
 height = i;
 }
 internal void Info() {
 Prt("Tree is " + height
 + " feet tall");
 }
 internal void Info(string s) {
 Prt(s + ": Tree is "
 + height + " feet tall");
 }
 static void Prt(string s) {
 Console.WriteLine(s);
 }
}

public class Overloading {
 public static void Main() {
 for (int i = 0; i < 5; i++) {
 Tree t = new Tree(i);
 t.Info();
 t.Info("overloaded method");
 }
 // Overloaded constructor:
 new Tree();
 }
} ///:~

154 Thinking in C# www.ThinkingIn.NET

A Tree object can be created either as a seedling, with no argument, or as a plant
grown in a nursery, with an existing height. To support this, there are two
constructors, one that takes no arguments and one that takes the existing height.

You might also want to call the info() method in more than one way: for
example, with a string argument if you have an extra message you want printed,
and without if you have nothing more to say. It would seem strange to give two
separate names to what is obviously the same concept. Fortunately, method
overloading allows you to use the same name for both.

Distinguishing overloaded methods
If the methods have the same name, how can C# know which method you mean?
There’s a simple rule: each overloaded method must take a unique list of
argument types.

If you think about this for a second, it makes sense: how else could a programmer
tell the difference between two methods that have the same name, other than by
the types of their arguments?

Even differences in the ordering of arguments are sufficient to distinguish two
methods although you don’t normally want to take this approach, as it produces
difficult-to-maintain code:

//:c05:OverLoadingOrder.cs
// Overloading based on the order of
// the arguments.
using System;

public class OverloadingOrder {
 static void Print(string s, int i) {
 Console.WriteLine(
 "string: " + s + ", int: " + i);
 }
 static void Print(int i, string s) {
 Console.WriteLine(
 "int: " + i + ", string: " + s);
 }
 public static void Main() {
 Print("string first", 11);
 Print(99, "Int first");
 }
} ///:~

Chapter 5: Initialization & Cleanup 155

The two Print() methods have identical arguments, but the order is different,
and that’s what makes them distinct.

Overloading with primitives
A primitive can be automatically promoted from a smaller type to a larger one
and this can be slightly confusing in combination with overloading. The following
example demonstrates what happens when a primitive is handed to an
overloaded method:

//:c05:PrimitiveOverloading.cs
// Promotion of primitives and overloading.
using System;

public class PrimitiveOverloading {
 // boolean can't be automatically converted
 static void Prt(string s) {
 Console.WriteLine(s);
 }

 void F1(char x) { Prt("F1(char)");}
 void F1(byte x) { Prt("F1(byte)");}
 void F1(short x) { Prt("F1(short)");}
 void F1(int x) { Prt("F1(int)");}
 void F1(long x) { Prt("F1(long)");}
 void F1(float x) { Prt("F1(float)");}
 void F1(double x) { Prt("F1(double)");}

 void F2(byte x) { Prt("F2(byte)");}
 void F2(short x) { Prt("F2(short)");}
 void F2(int x) { Prt("F2(int)");}
 void F2(long x) { Prt("F2(long)");}
 void F2(float x) { Prt("F2(float)");}
 void F2(double x) { Prt("F2(double)");}

 void F3(short x) { Prt("F3(short)");}
 void F3(int x) { Prt("F3(int)");}
 void F3(long x) { Prt("F3(long)");}
 void F3(float x) { Prt("F3(float)");}
 void F3(double x) { Prt("F3(double)");}

 void F4(int x) { Prt("F4(int)");}

156 Thinking in C# www.MindView.net

 void F4(long x) { Prt("F4(long)");}
 void F4(float x) { Prt("F4(float)");}
 void F4(double x) { Prt("F4(double)");}

 void F5(long x) { Prt("F5(long)");}
 void F5(float x) { Prt("F5(float)");}
 void F5(double x) { Prt("F5(double)");}

 void F6(float x) { Prt("F6(float)");}
 void F6(double x) { Prt("F6(double)");}

 void F7(double x) { Prt("F7(double)");}

 void TestConstVal() {
 Prt("Testing with 5");
 F1(5);F2(5);F3(5);F4(5);F5(5);F6(5);F7(5);
 }
 void TestChar() {
 char x = 'x';
 Prt("char argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 void TestByte() {
 byte x = 0;
 Prt("byte argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 void TestShort() {
 short x = 0;
 Prt("short argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 void TestInt() {
 int x = 0;
 Prt("int argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 void TestLong() {
 long x = 0;
 Prt("long argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);

Chapter 5: Initialization & Cleanup 157

 }
 void TestFloat() {
 float x = 0;
 Prt("Float argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 void TestDouble() {
 double x = 0;
 Prt("double argument:");
 F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
 }
 public static void Main() {
 PrimitiveOverloading p =
 new PrimitiveOverloading();
 p.TestConstVal();
 p.TestChar();
 p.TestByte();
 p.TestShort();
 p.TestInt();
 p.TestLong();
 p.TestFloat();
 p.TestDouble();
 }
} ///:~

If you view the output of this program, you’ll see that the constant value 5 is
treated as an int, so if an overloaded method is available that takes an int it is
used. In all other cases, if you have a data type that is smaller than the argument
in the method, that data type is promoted. char produces a slightly different
effect, since if it doesn’t find an exact char match, it is promoted to int.

What happens if your argument is bigger than the argument expected by the
overloaded method? A modification of the above program gives the answer:

//:c05:Demotion.cs
// Demotion of primitives and overloading.
using System;

public class Demotion {
 static void Prt(string s) {
 Console.WriteLine(s);
 }

158 Thinking in C# www.ThinkingIn.NET

 void F1(char x) { Prt("F1(char)");}
 void F1(byte x) { Prt("F1(byte)");}
 void F1(short x) { Prt("F1(short)");}
 void F1(int x) { Prt("F1(int)");}
 void F1(long x) { Prt("F1(long)");}
 void F1(float x) { Prt("F1(float)");}
 void F1(double x) { Prt("F1(double)");}

 void F2(char x) { Prt("F2(char)");}
 void F2(byte x) { Prt("F2(byte)");}
 void F2(short x) { Prt("F2(short)");}
 void F2(int x) { Prt("F2(int)");}
 void F2(long x) { Prt("F2(long)");}
 void F2(float x) { Prt("F2(float)");}

 void F3(char x) { Prt("F3(char)");}
 void F3(byte x) { Prt("F3(byte)");}
 void F3(short x) { Prt("F3(short)");}
 void F3(int x) { Prt("F3(int)");}
 void F3(long x) { Prt("F3(long)");}

 void F4(char x) { Prt("F4(char)");}
 void F4(byte x) { Prt("F4(byte)");}
 void F4(short x) { Prt("F4(short)");}
 void F4(int x) { Prt("F4(int)");}

 void F5(char x) { Prt("F5(char)");}
 void F5(byte x) { Prt("F5(byte)");}
 void F5(short x) { Prt("F5(short)");}

 void F6(char x) { Prt("F6(char)");}
 void F6(byte x) { Prt("F6(byte)");}

 void F7(char x) { Prt("F7(char)");}

 void TestDouble() {
 double x = 0;
 Prt("double argument:");
 F1(x);F2((float)x);F3((long)x);F4((int)x);
 F5((short)x);F6((byte)x);F7((char)x);

Chapter 5: Initialization & Cleanup 159

 }
 public static void Main() {
 Demotion p = new Demotion();
 p.TestDouble();
 }
} ///:~

Here, the methods take narrower primitive values. If your argument is wider then
you must cast to the necessary type using the type name in parentheses. If you
don’t do this, the compiler will issue an error message.

You should be aware that this is a narrowing conversion, which means you
might lose information during the cast. This is why the compiler forces you to do
it—to flag the narrowing conversion.

Overloading on return values
It is common to wonder “Why only class names and method argument lists? Why
not distinguish between methods based on their return values?” For example,
these two methods, which have the same name and arguments, are easily
distinguished from each other:

void f() {}
int f() {}

This works fine when the compiler can unequivocally determine the meaning
from the context, as in int x = f(). However, you can call a method and ignore
the return value; this is often referred to as calling a method for its side effect
since you don’t care about the return value but instead want the other effects of
the method call. So if you call the method this way:

f();

how can C# determine which f() should be called? And how could someone
reading the code see it? Because of this sort of problem, you cannot use return
value types to distinguish overloaded methods.

Default constructors
As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor) is
one without arguments, used to create a “vanilla object.” If you create a class that
has no constructors, the compiler will automatically create a default constructor
for you. For example:

//:c05:DefaultConstructor.cs
class Bird {

160 Thinking in C# www.MindView.net

 int i;
}

public class DefaultConstructor {
 public static void Main() {
 Bird nc = new Bird(); // default!
 }
}///:~

The line

new Bird();

creates a new object and calls the default constructor, even though one was not
explicitly defined. Without it we would have no method to call to build our object.
However, if you define any constructors (with or without arguments), the
compiler will not synthesize one for you:

class Bush {
 Bush(int i) {}
 Bush(double d) {}
}

Now if you say:

new Bush();

the compiler will complain that it cannot find a constructor that matches. It’s as if
when you don’t put in any constructors, the compiler says “You are bound to need
some constructor, so let me make one for you.” But if you write a constructor, the
compiler says “You’ve written a constructor so you know what you’re doing; if you
didn’t put in a default it’s because you meant to leave it out.”

The this keyword
If you have two objects of the same type called a and b, you might wonder how it
is that you can call a method f() for both those objects:

class Banana { void f(int i) { /* ... */ } }
Banana a = new Banana(), b = new Banana();
a.f(1);
b.f(2);

If there’s only one method called f(), how can that method know whether it’s
being called for the object a or b?

Chapter 5: Initialization & Cleanup 161

To allow you to write the code in a convenient object-oriented syntax in which
you “send a message to an object,” the compiler does some undercover work for
you. There’s a secret first argument passed to the method f(), and that argument
is the reference to the object that’s being manipulated. So the two method calls
above become something like:

Banana.f(a,1);
Banana.f(b,2);

This is internal and you can’t write these expressions and get the compiler to
interchange them with a.f()-style calls, but it gives you an idea of what’s
happening.

Suppose you’re inside a method and you’d like to get the reference to the current
object. Since that reference is passed secretly by the compiler, there’s no
identifier for it. However, for this purpose there’s a keyword: this. The this
keyword produces a reference to the object the method has been called for. You
can treat this reference just like any other object reference. Keep in mind that if
you’re calling a method of your class from within another method of your class,
you don’t need to use this; you simply call the method. The current this
reference is automatically used for the other method. Thus you can say:

class Apricot {
 int id;
 void pick() { /* ... */ }
 void pit() { pick(); id; /* ... */ }
}

Inside pit(), you could say this.pick() or this.id but there’s no need to. The
compiler does it for you automatically. The this keyword is used only for those
special cases in which you need to explicitly use the reference to the current
object (Visual Basic programmers may recognize the equivalent of the VB
keyword me). For example, it’s often used in return statements when you want
to return the reference to the current object:

//:c05:Leaf.cs
// Simple use of the "this" keyword.
using System;

public class Leaf {
 int i = 0;
 Leaf Increment() {
 i++;
 return this;

162 Thinking in C# www.ThinkingIn.NET

 }
 void Print() {
 Console.WriteLine("i = " + i);
 }
 public static void Main() {
 Leaf x = new Leaf();
 x.Increment().Increment().Increment().Print();
 }
} ///:~

Because increment() returns the reference to the current object via the this
keyword, multiple operations can easily be performed on the same object.

Another place where it’s often used is to allow method parameters to have the
same name as instance variables. Previously, we talked about the value of
overloading methods so that the programmer only had to remember the one,
most logical name. Similarly, the names of method parameters and the names of
instance variables may also have a single logical name. C# allows you to use the
this reference to disambiguate method variables (also called “stack variables”)
from instance variables. For clarity, you should use this capability only when the
parameter is going to either be assigned to the instance variable (such as in a
constructor) or when the parameter is to be compared against the instance
variable. Method variables that have no correlation with same-named instance
variables are a common source of lazy defects:

//:c05:Name.cs
using System;

class Name {
 string givenName;
 string surname;
 public Name(string givenName, string surname){
 this.givenName = givenName;
 this.surname = surname;
 }

 public bool perhapsRelated(string surname){
 return this.surname == surname;
 }

 public void printGivenName(){
 /* Legal, but unwise */

Chapter 5: Initialization & Cleanup 163

 string givenName = "method variable";
 Console.WriteLine("givenName is: " + givenName);
 Console.WriteLine(
 "this.givenName is: " + this.givenName);
 }

 public static void Main(){
 Name vanGogh = new Name("Vincent", "van Gogh");
 vanGogh.printGivenName();
 bool b = vanGogh.perhapsRelated("van Gogh");
 if (b) {
 Console.WriteLine("He's a van Gogh.");
 }
 }
}///:~

In the constructor, the parameters givenName and surname are assigned to
the similarly-named instance variables and this is quite appropriate – calling the
parameters inGivenName and inSurname (or worse, using parameter names
such as firstName or lastName that do not correspond to the instance
variables) would require explaining in the documentation. The
perhapsRelated() method shows the other appropriate use – the surname
passed in is to be compared to the instance’s surname. The this.surname ==
surname comparison in perhapsRelated() might give you pause, because
we’ve said that in general, the == operator compares addresses, not logical
equivalence. However, the string class overloads the == operator so that it can
be used for logically comparing values.

Unfortunately, the usage in printGivenName() is also legal. Here, a variable
called givenName is created on the stack; it has nothing to do with the instance
variable also called givenName. It may be unlikely that someone would
accidentally create a method variable called givenName, but you’d be amazed at
how many name, id, and flags one sees over the course of a career! It’s another
reason why meaningful variable names are important.

Sometimes you’ll see code where half the variables begin with underscores and
half the variables don’t:

foo = _bar;

The intent is to use the prefix to distinguish between method variables that are
created on the stack and go out of scope as soon as the method exits and variables
that have longer lifespans. This is a bad idiom. For one thing, its origin had to do

164 Thinking in C# www.MindView.net

with visibility, not storage, and C# has explicit and infinitely better visibility
specifiers. For another, it’s used inconsistently – almost as many people use the
underscores for stack variables as use them for instance variables.

Sometimes you see code that prepends an ‘m’ to member variables names:

foo = mBar;

This isn’t quite as bad as underscores. This type of naming convention is an
offshoot of a C naming idiom called “Hungarian notation,” that prefixes type
information to a variable name (so strings would be strFoo). This is a great idea
if you’re programming in C and everyone who has programmed Windows has
seen their share of variables starting with ‘h’, but the time for this naming
convention has passed. One place where this convention continues is that
interfaces (a type of object that has no implementation, discussed at length in
Chapter 8) in the .NET Framework SDK are typically named with an initial “I”
such as IAccessible.

If you want to distinguish between method and instance variables, use this:

foo = this.Bar;

 It’s object-oriented, descriptive, and explicit.

Calling constructors from constructors
When you write several constructors for a class, there are times when you’d like
to call one constructor from another to avoid duplicating code. In C#, you can
specify that another constructor execute before the current constructor. You do
this using the ‘:’ operator and the this keyword.

Normally, when you say this, it is in the sense of “this object” or “the current
object,” and by itself it produces the reference to the current object. In a
constructor name, a colon followed by the this keyword takes on a different
meaning: it makes an explicit call to the constructor that matches the specified
argument list. Thus you have a straightforward way to call other constructors:

//:c05:Flower.cs
// Calling constructors with ": this."
using System;

public class Flower {
 int petalCount = 0;
 string s = "null";
 Flower(int petals) {

Chapter 5: Initialization & Cleanup 165

 petalCount = petals;
 Console.WriteLine(
 "Constructor w/ int arg only, petalCount= "
 + petalCount);
 }
 Flower(string ss) {
 Console.WriteLine(
 "Constructor w/ string arg only, s=" + ss);
 s = ss;
 }
 Flower(string s, int petals) : this(petals)
 //!, this(s) <- Can't call two base constructors!
 {
 this.s = s; // Another use of "this"
 Console.WriteLine("string & int args");
 }
 Flower() : this("hi", 47) {
 Console.WriteLine(
 "default constructor (no args)");
 }
 void Print() {
 Console.WriteLine(
 "petalCount = " + petalCount + " s = "+ s);
 }
 public static void Main() {
 Flower x = new Flower();
 x.Print();
 }
}///:~

The constructor Flower(String s, int petals) shows that, while you can call
one constructor using this, you cannot call two.

The meaning of static
With the this keyword in mind, you can more fully understand what it means to
make a method static. It means that there is no this for that particular method.
You cannot call non-static methods from inside static methods (although the
reverse is possible), and you can call a static method for the class itself, without
any object. In fact, that’s primarily what a static method is for. It’s as if you’re
creating the equivalent of a global function (from C). Except global functions are

166 Thinking in C# www.ThinkingIn.NET

not permitted in C#, and putting the static method inside a class allows it access
to other static methods and static fields.

Some people argue that static methods are not object-oriented since they do
have the semantics of a global function; with a static method you don’t send a
message to an object, since there’s no this. This is probably a fair argument, and
if you find yourself using a lot of static methods you should probably rethink your
strategy. However, statics are pragmatic and there are times when you genuinely
need them, so whether or not they are “proper OOP” should be left to the
theoreticians. Indeed, even Smalltalk has the equivalent in its “class methods.”

Cleanup: finalization and
garbage collection
Programmers know about the importance of initialization, but often forget the
importance of cleanup. After all, who needs to clean up an int? But with libraries,
simply “letting go” of an object once you’re done with it is not always safe. Of
course, C# has the garbage collector to reclaim the memory of objects that are no
longer used. Now consider a very unusual case. Suppose your object allocates
“special” memory without using new. The garbage collector knows only how to
release memory allocated with new, so it won’t know how to release the object’s
“special” memory. To handle this case, C# provides a method called a destructor
that you can define for your class. The destructor, like the constructor, shares the
class name, but is prefaced with a tilde:

class MyClass{
 public MyClass(){ //Constructor }
 public ~MyClass(){ //Destructor }
}

C++ programmers will find this syntax familiar, but this is actually a dangerous
mimic – the C# destructor has vastly different semantics, as you’ll see. Here’s
how it’s supposed to work. When the garbage collector is ready to release the
storage used for your object, it will first call the object’s destructor, and only on
the next garbage-collection pass will it reclaim the object’s memory. So if you
choose to use the destructor, it gives you the ability to perform some important
cleanup at the time of garbage collection.

This is a potential programming pitfall because some programmers, especially
C++ programmers, because in C++ objects always get destroyed in a
deterministic manner, whereas in C# the call to the destructor is non-
deterministic. Since anything that needs special attention can’t just be left around

Chapter 5: Initialization & Cleanup 167

to be cleaned up in a non-deterministic manner, the utility of C#’s destructor is
severely limited. Or, put another way:

Clean up after yourself.

If you remember this, you will stay out of trouble. What it means is that if there is
some activity that must be performed before you no longer need an object, you
must perform that activity yourself. For example, suppose that you open a file
and write stuff to it. If you don’t explicitly close that file, it might not get properly
flushed to the disk until the program ends.

You might find that the storage for an object never gets released because your
program never nears the point of running out of storage. If your program
completes and the garbage collector never gets around to releasing the storage for
any of your objects, that storage will be returned to the operating system en
masse as the program exits. This is a good thing, because garbage collection has
some overhead, and if you never do it you never incur that expense.

What are destructors for?
A third point to remember is:

Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is to recover
memory that your program is no longer using. So any activity that is associated
with garbage collection, most notably your destructor method, must also be only
about memory and its deallocation. Valuable resources, such as file handles,
database connections, and sockets ought to be managed explicitly in your code,
without relying on destructors.

Does this mean that if your object contains other objects, your destructor should
explicitly release those objects? Well, no—the garbage collector takes care of the
release of all object memory regardless of how the object is created. It turns out
that the need for destructors is limited to special cases, in which your object can
allocate some storage in some way other than creating an object. But, you might
observe, everything in C# is an object so how can this be?

It would seem that C# has a destructor because of its support for unmanaged
code, in which you can allocate memory in a C-like manner. Memory allocated in
unmanaged code is not restored by the garbage collection mechanism. This is the
one clear place where the C# destructor is necessary: when your class interacts
with unmanaged code that allocates memory, place the code relating to cleaning
up that memory in the destructor.

168 Thinking in C# www.MindView.net

After reading this, you probably get the idea that you won’t be writing destructors
too often. Good. Destructors are called non-deterministically (that is, you cannot
control when they are called), but valuable resources are too important to leave to
happenstance.

The garbage collector is guaranteed to be called when your program ends, so you
may include a “belts-and-suspender” last-chance check of any valuable resources
that your object may wish to clean up. However, if the check ever finds the
resource not cleaned up, don’t pat yourself on the back – go in and fix your code
so that the resource is cleaned up before the destructor is ever called!

Instead of a destructor, implement
IDisposable.Dispose()
The majority of objects don’t use resources that need to be cleaned up. So most of
the time, you don’t worry about what happens when they “go away.” But if you do
use a resource, you should write a method called Close() if the resource
continues to exist after your use of it ends or Dispose() otherwise. Most
importantly, you should explicitly call the Close() or Dispose() method as
soon as you no longer require the resource. This is just the principle of cleaning
up after yourself.

If you rely on the garbage collector to manage resources, you can count on
trouble:

//:c05:ValuableResource.cs
using System;
using System.Threading;

class ValuableResource {
 public static void Main(){
 useValuableResources();
 Console.WriteLine(
 "Valuable resources used and discarded");
 Thread.Sleep(10000);
 Console.WriteLine("10 seconds later...");
 //You would _think_ this would be fine
 ValuableResource vr = new ValuableResource();
 }

 static void useValuableResources(){
 for (int i = 0; i < MAX_RESOURCES; i++) {

Chapter 5: Initialization & Cleanup 169

 ValuableResource vr =
 new ValuableResource();
 }
 }

 static int idCounter;
 static int MAX_RESOURCES = 10;
 static int INVALID_ID = -1;
 int id;
 ValuableResource(){
 if (idCounter == MAX_RESOURCES) {
 Console.WriteLine(
 "No resources available");
 id = INVALID_ID;
 } else {
 id = idCounter++;
 Console.WriteLine(
 "Resource[{0}] Constructed", id);
 }
 }
 ~ValuableResource(){
 if (id == INVALID_ID) {
 Console.WriteLine("Things are awry!");
 } else {
 idCounter--;
 Console.WriteLine(
 "Resource[{0}] Destructed", id);
 }
 }
}///:~

In this example, the first thing that happens upon entering Main() is the
useValuableResources() method is called. This is straightforward – the
MAX_RESOURCES number of ValuableResource objects are created and
then immediately allowed to “go away.” In the ValuableResource()
constructor, the static idCounter variable is checked to see if it equals the
MAX_RESOURCES value. If so, a “No resources available” message is written
and the id of the ValuableResource is set to an invalid value (in this case, the
idCounter is the source of the “scarce” resource which is “consumed” by the id
variable). The ValuableResource destructor either outputs a warning message
or decrements the idCounter (thus, making another “resource” available).

170 Thinking in C# www.ThinkingIn.NET

When useValuableResources() returns, the system pauses for 10 seconds
(we’ll discuss Thread.Sleep() in great detail in Chapter 16), and finally a new
ValuableResource is created. It seems like that should be fine, since those created
in useValuableResources() are long gone. But the output tells a different
story:

Resource[0] Constructed
Resource[1] Constructed
Resource[2] Constructed
Resource[3] Constructed
Resource[4] Constructed
Resource[5] Constructed
Resource[6] Constructed
Resource[7] Constructed
Resource[8] Constructed
Resource[9] Constructed
Valuable resources used and discarded
10 seconds later...
No resources available
Things are awry!
Resource[9] Destructed
Resource[8] Destructed
Resource[7] Destructed
Resource[6] Destructed
Resource[5] Destructed
Resource[4] Destructed
Resource[3] Destructed
Resource[2] Destructed
Resource[1] Destructed
Resource[0] Destructed

Even after ten seconds (an eternity in computing time), no id’s are available and
the final attempt to create a ValuableResource fails. The Main() exits
immediately after the “No resources available!” message is written. In this case,
the CLR did a garbage collection as the program exited and the
~ValuableResource() destructors got called. In this case, they happen to be
deleted in the reverse order of their creation, but the order of destruction of
resources is yet another “absolutely not guaranteed” characteristic of garbage
collection.

Worse, this is the output if one presses Ctl-C during the pause:

Resource[0] Constructed

Chapter 5: Initialization & Cleanup 171

Resource[1] Constructed
Resource[2] Constructed
Resource[3] Constructed
Resource[4] Constructed
Resource[5] Constructed
Resource[6] Constructed
Resource[7] Constructed
Resource[8] Constructed
Resource[9] Constructed
Valuable resources used and discarded
^C
D:\tic\chap4>

That’s it. No cleanup. If the valuable resources were, say, network sockets or
database connections or files or, well, anything that actually had any value, they’d
be lost until you reboot (or some other process manages to restore their state by
brute force, as can happen with files).

//:c05:ValuableResource2.cs
using System;
using System.Threading;

class ValuableResource {
 static int idCounter;
 static int MAX_RESOURCES = 10;
 static int INVALID_ID = -1;
 int id;

 ValuableResource(){
 if (idCounter == MAX_RESOURCES) {
 Console.WriteLine("No resources available");
 id = INVALID_ID;
 } else {
 id = idCounter++;
 Console.WriteLine(
 "Resource[{0}] Constructed", id);
 }
 }

 public void Dispose(){
 idCounter--;
 Console.WriteLine(

172 Thinking in C# www.MindView.net

 "Resource[{0}] Destructed", id);
 if (id == INVALID_ID) {
 Console.WriteLine("Things are awry!");
 }
 GC.SuppressFinalize(this);
 }

 ~ValuableResource(){
 this.Dispose();
 }

 public static void Main(){
 UseValuableResources();
 Console.WriteLine(
 "Valuable resources used and discarded");
 Thread.Sleep(10000);
 Console.WriteLine("10 seconds later...");
 //This _is_ fine
 ValuableResource vr = new ValuableResource();
 }

 static void UseValuableResources(){
 for (int i = 0; i < MAX_RESOURCES; i++) {
 ValuableResource vr = new ValuableResource();
 vr.Dispose();
 }
 }
}///:~

We’ve moved the code that was previously in the destructor into a method called
Dispose(). Additionally, we’ve added the line:

GC.SuppressFinalize(this);

Which tells the Garbage Collector (the GC class object) not to call the destructor
during garbage collection. We’ve kept the destructor, but it does nothing but call
Dispose(). In this case, the destructor is just a safety-net. It remains our
responsibility to explicitly call Dispose(), but if we don’t and it so happens that
the garbage collector gets first up, then our bacon is pulled out of the fire. Some
argue this is worse than useless -- a method which isn’t guaranteed to be called
but which performs a critical function.

Chapter 5: Initialization & Cleanup 173

When ValuableResources2 is run, not only are there no problems with running
out of resources, the idCounter never gets above zero!

The title of this section is: Destructors,
IDisposable, and the using keywordInstead of
a destructor, implement IDisposable.Dispose(),
but none of the examples actually implement
this interface.
We’ve said that releasing valuable resources is the only task other than memory
management that needs to happen during clean up. But we’ve also said that the
call to the destructor is non-deterministic, meaning that the only guarantee about
when it will be called is “before the application exits.” So the main use of the
destructor is as a last chance to call your Dispose() method, which is where you
should do the cleanup.

Why is Dispose() the right method to use for special cleanup? Because the C#
language has a way to guarantee that the IDisposable.Dispose() method is
called, even if something unusual happens. The technique uses object-oriented
inheritance, which won’t be discussed until Chapter 7. Further, to illustrate it, we
need to throw an Exception, a technique which won’t be discussed until Chapter
11! Rather than put off the discussion, though, it’s important enough to present
the technique here.

To ensure that a “cleanup method” is called as soon as possible:

1. Declare your class as implementing IDisposable

2. Implement public void Dispose()

3. Place the vulnerable object inside a using() block

The Dispose() method will be called on exit from the using block. We’re not
going to go over this example in detail, since it uses so many as-yet-unexplored
features, but the key is the block that follows the using() declaration. When you
run this code, you’ll see that the Dispose() method is called, then the code
associated with the program leaving Main(), and only then will the destructor
be called!

//:c05:UsingCleanup.cs
using System;

class UsingCleanup : IDisposable {

174 Thinking in C# www.ThinkingIn.NET

 public static void Main(){
 try{
 UsingCleanup uc = new UsingCleanup();
 using(uc){
 throw new NotImplementedException();
 }
 }catch(NotImplementedException){
 Console.WriteLine("Exception ignored");
 }
 Console.WriteLine("Leaving Main()");
 }

 UsingCleanup(){
 Console.WriteLine("Constructor called");
 }

 public void Dispose(){
 Console.WriteLine("Dispose called");
 }

 ~UsingCleanup(){
 Console.WriteLine("Destructor called");
 }
}///:~

How a garbage collector works
If you come from a programming language where allocating objects on the heap
is expensive, you may naturally assume that C#’s scheme of allocating all
reference types on the heap is expensive. However, it turns out that the garbage
collector can have a significant impact on increasing the speed of object creation.
This might sound a bit odd at first—that storage release affects storage
allocation—but it means that allocating storage for heap objects in C# can be
nearly as fast as creating storage on the stack in other languages.

For example, you can think of the C++ heap as a yard where each object stakes
out its own piece of turf. This real estate can become abandoned sometime later
and must be reused. In C#, the managed heap is quite different; it’s more like a
conveyor belt that moves forward every time you allocate a new object. This
means that object storage allocation is remarkably rapid. The “heap pointer” is
simply moved forward into virgin territory, so it’s effectively the same as C++’s
stack allocation. (Of course, there’s a little extra overhead for bookkeeping but it’s

Chapter 5: Initialization & Cleanup 175

nothing like searching for storage.) Yes, you heard right – allocation on the
managed heap is faster than allocation within a C++-style unmanaged heap.

Now you might observe that the heap isn’t in fact a conveyor belt, and if you treat
it that way you’ll eventually start paging memory a lot (which is a big
performance hit) and later run out. The trick is that the garbage collector steps in
and while it collects the garbage it compacts all the objects in the heap so that
you’ve effectively moved the “heap pointer” closer to the beginning of the
conveyor belt and further away from a page fault. The garbage collector
rearranges things and makes it possible for the high-speed, infinite-free-heap
model to be used while allocating storage.

To understand how this works, you need to get a little better idea of the way the
Common Language Runtime garbage collector (GC) works. Garbage collection in
the CLR (remember that memory management exists in the CLR “below” the
level of the Common Type System, so this discussion equally applies to programs
written in Visual Basic .NET, Eiffel .NET, and Python .NET as to C# programs) is
based on the idea that any nondead object must ultimately be traceable back to a
reference that lives either on the stack or in static storage. The chain might go
through several layers of objects. Thus, if you start in the stack and the static
storage area and walk through all the references you’ll find all the live objects. For
each reference that you find, you must trace into the object that it points to and
then follow all the references in that object, tracing into the objects they point to,
etc., until you’ve moved through the entire web that originated with the reference
on the stack or in static storage. Each object that you move through must still be
alive. Note that there is no problem with detached self-referential groups—these
are simply not found, and are therefore automatically garbage. Also, if you trace
to an object that has already been walked to, you do not have to re-trace it.

Having located all the “live” objects, the GC starts at the end of the managed heap
and shifts the first live object in memory to be directly adjacent to the
penultimate live object. This pair of live objects is then shifted to the next live
object, the three are shifted en masse to the next, and so forth, until the heap is
compacted.

Obviously, garbage collection is a lot of work, even on a modern, high-speed
machine. In order to improve performance, the garbage collector refines the basic
approach described here with generations.

The basic concept of generational garbage collection is that an object allocated
recently is more likely to be garbage than an object which has already survived
multiple passes of the garbage collector. So instead of walking the heap all the
way from the stack or static storage, once the GC has run once, the collector may

176 Thinking in C# www.MindView.net

assume that the previously compacted objects (the older generation) are all valid
and only walk the most recently allocated part of the heap (the new generation).

Garbage collection is a favorite topic of researchers, and there will undoubtedly
be innovations in GC that will eventually find their way into the field. However,
garbage collection and computer power have already gotten to the stage where
the most remarkable thing about GC is how transparent it is.

Member initialization
C# goes out of its way to guarantee that variables are properly initialized before
they are used. In the case of variables that are defined locally to a method, this
guarantee comes in the form of a compile-time error. So if you say:

 void F() {
 int i;
 i++;
 }

you’ll get an error message that says that i is an unassigned local variable. Of
course, the compiler could have given i a default value, but it’s more likely that
this is a programmer error and a default value would have covered that up.
Forcing the programmer to provide an initialization value is more likely to catch a
bug.

If a primitive is a data member of a class, however, things are a bit different.
Since any method can initialize or use that data, it might not be practical to force
the user to initialize it to its appropriate value before the data is used. However,
it’s unsafe to leave it with a garbage value, so each primitive data member of a
class is guaranteed to get an initial value. Those values can be seen here:

//:c05:InitialValues.cs
// Shows default initial values.
using System;

class Measurement {
 bool t;
 char c;
 byte b;
 short s;
 int i;
 long l;
 float f;

Chapter 5: Initialization & Cleanup 177

 double d;
 internal void Print() {
 Console.WriteLine(
 "Data type Initial value\n" +
 "bool " + t + "\n" +
 "char [" + c + "] "+ (int)c +"\n"+
 "byte " + b + "\n" +
 "short " + s + "\n" +
 "int " + i + "\n" +
 "long " + l + "\n" +
 "float " + f + "\n" +
 "double " + d);
 }
}

public class InitialValues {
 public static void Main() {
 Measurement d = new Measurement();
 d.Print();
 /* In this case you could also say:
 new Measurement().print();
 */
 }
} ///:~

The output of this program is:

Data type Initial value
boolean Ffalse
char [] 0
byte 0
short 0
int 0
long 0
float 0.0
double 0.0

The char value is a zero, which prints as a space.

You’ll see later that when you define an object reference inside a class without
initializing it to a new object, that reference is given a special value of null (which
is a C# keyword).

178 Thinking in C# www.ThinkingIn.NET

You can see that even though the values are not specified, they automatically get
initialized. So at least there’s no threat of working with uninitialized variables.

Specifying initialization
What happens if you want to give a variable an initial value? One direct way to do
this is simply to assign the value at the point you define the variable in the class.
Here the field definitions in class Measurement are changed to provide initial
values:

class Measurement {
 bool b = true;
 char c = 'x';
 byte B = 47;
 short s = 0xff;
 int i = 999;
 long l = 1;
 float f = 3.14f;
 double d = 3.14159;
 //…

You can also initialize nonprimitive objects in this same way. If Depth is a class,
you can insert a variable and initialize it like so:

class Measurement {
 Depth o = new Depth();
 boolean b = true;
 // …

If you haven’t given o an initial value and you try to use it anyway, you’ll get a
run-time error called an exception (covered in Chapter 11).

You can even call a static method to provide an initialization value:

class CInit {
 int i = InitI();
 //...
 static int InitI(){ //… }
}

This method can have arguments, but those arguments cannot be instance
variables. Java programmers will note that this is more restrictive than Java’s
instance initialization, which can call non-static methods and use previously
instantiated instance variables.

Chapter 5: Initialization & Cleanup 179

This approach to initialization is simple and straightforward. It has the limitation
that every object of type Measurement will get these same initialization values.
Sometimes this is exactly what you need, but at other times you need more
flexibility.

Constructor initialization
The constructor can be used to perform initialization, and this gives you greater
flexibility in your programming since you can call methods and perform actions
at run-time to determine the initial values. There’s one thing to keep in mind,
however: you aren’t precluding the automatic initialization, which happens
before the constructor is entered. So, for example, if you say:

class Counter {
 int i;
 Counter() { i = 7; }
 // …

then i will first be initialized to 0, then to 7. This is true with all the primitive
types and with object references, including those that are given explicit
initialization at the point of definition. For this reason, the compiler doesn’t try to
force you to initialize elements in the constructor at any particular place, or
before they are used—initialization is already guaranteed1.

Order of initialization
Within a class, the order of initialization is determined by the order that the
variables are defined within the class. The variable definitions may be scattered
throughout and in between method definitions, but the variables are initialized
before any methods can be called—even the constructor. For example:

//:c05:OrderOfInitialization.cs
// Demonstrates initialization order.
using System;

// When the constructor is called to create a
// Tag object, you'll see a message:
class Tag {
 internal Tag(int marker) {

1 In contrast, C++ has the constructor initializer list that causes initialization to occur
before entering the constructor body, and is enforced for objects. See Thinking in C++, 2nd
edition (available at www.BruceEckel.com).

180 Thinking in C# www.MindView.net

 Console.WriteLine("Tag(" + marker + ")");
 }
}

class Card {
 Tag t1 = new Tag(1); // Before constructor
 internal Card() {
 // Indicate we're in the constructor:
 Console.WriteLine("Card()");
 t3 = new Tag(33); // Reinitialize t3
 }
 Tag t2 = new Tag(2); // After constructor
 internal void F() {
 Console.WriteLine("F()");
 }
 Tag t3 = new Tag(3); // At end
}

public class OrderOfInitialization {
 public static void Main() {
 Card t = new Card();
 t.F(); // Shows that construction is done
 }
} ///:~

In Card, the definitions of the Tag objects are intentionally scattered about to
prove that they’ll all get initialized before the constructor is entered or anything
else can happen. In addition, t3 is reinitialized inside the constructor. The output
is:

Tag(1)
Tag(2)
Tag(3)
Card()
Tag(33)
f()

Thus, the t3 reference gets initialized twice, once before and once during the
constructor call. (The first object is dropped, so it can be garbage-collected later.)
This might not seem efficient at first, but it guarantees proper initialization—
what would happen if an overloaded constructor were defined that did not
initialize t3 and there wasn’t a “default” initialization for t3 in its definition?

Chapter 5: Initialization & Cleanup 181

Static data initialization
When the data is static the same thing happens; if it’s a primitive and you don’t
initialize it, it gets the standard primitive initial values. If it’s a reference to an
object, it’s null unless you create a new object and attach your reference to it.

If you want to place initialization at the point of definition, it looks the same as
for non-statics. There’s only a single piece of storage for a static, regardless of
how many objects are created. But the question arises of when the static storage
gets initialized. An example makes this question clear:

//:c05:StaticInitialization.cs
// Specifying initial values in a
// class definition.
using System;

class Bowl {
 internal Bowl(int marker) {
 Console.WriteLine("Bowl(" + marker + ")");
 }
 internal void F(int marker) {
 Console.WriteLine("F(" + marker + ")");
 }
}

class Table {
 static Bowl b1 = new Bowl(1);
 internal Table() {
 Console.WriteLine("Table()");
 b2.F(1);
 }
 internal void F2(int marker) {
 Console.WriteLine("F2(" + marker + ")");
 }
 static Bowl b2 = new Bowl(2);
}

class Cupboard {
 Bowl b3 = new Bowl(3);
 static Bowl b4 = new Bowl(4);
 internal Cupboard() {
 Console.WriteLine("Cupboard()");

182 Thinking in C# www.ThinkingIn.NET

 b4.F(2);
 }
 internal void F3(int marker) {
 Console.WriteLine("F3(" + marker + ")");
 }
 static Bowl b5 = new Bowl(5);
}

public class StaticInitialization {
 public static void Main() {
 Console.WriteLine(
 "Creating new Cupboard() in main");
 new Cupboard();
 Console.WriteLine(
 "Creating new Cupboard() in main");
 new Cupboard();
 t2.F2(1);
 t3.F3(1);
 }
 static Table t2 = new Table();
 static Cupboard t3 = new Cupboard();
} ///:~

Bowl allows you to view the creation of a class, and Table and Cupboard
create static members of Bowl scattered through their class definitions. Note
that Cupboard creates a non-static Bowl b3 prior to the static definitions.
The output shows what happens:

Bowl(1)
Bowl(2)
Table()
fF(1)
Bowl(4)
Bowl(5)
Bowl(3)
Cupboard()
fF(2)
Creating new Cupboard() in main
Bowl(3)
Cupboard()
fF(2)
Creating new Cupboard() in main

Chapter 5: Initialization & Cleanup 183

Bowl(3)
Cupboard()
fF(2)
f2F2(1)
f3F3(1)

The static initialization occurs only if it’s necessary. If you don’t create a Table
object and you never refer to Table.b1 or Table.b2, the static Bowl b1 and b2
will never be created. However, they are initialized only when the first Table
object is created (or the first static access occurs). After that, the static objects
are not reinitialized.

The order of initialization is statics first, if they haven’t already been initialized
by a previous object creation, and then the non-static objects. You can see the
evidence of this in the output.

It’s helpful to summarize the process of creating an object. Consider a class called
Dog:

1. The first time an object of type Dog is created, or the first time a static
method or static field of class Dog is accessed, the C# runtime must
locate the assembly in which Dog’s class definition is stored.

2. As the Dog class is loaded (creating a Type object, which you’ll learn
about later), all of its static initializers are run. Thus, static
initialization takes place only once, as the Type object is loaded for the
first time.

3. When you create a new Dog(), the construction process for a Dog
object first allocates enough storage for a Dog object on the heap.

4. This storage is wiped to zero, automatically setting all the primitives in
that Dog object to their default values (zero for numbers and the
equivalent for bool and char) and the references to null.

5. Any initializations that occur at the point of field definition are executed.

6. Constructors are executed. As you shall see in Chapter 7, this might
actually involve a fair amount of activity, especially when inheritance is
involved.

Static constructors
C# allows you to group other static initializations inside a special “static
constructor.” It looks like this:

184 Thinking in C# www.MindView.net

class Spoon {
 static int i;
 static Spoon(){
 i = 47;
 }
 // …
}

This code, like other static initializations, is executed only once, the first time
you make an object of that class or the first time you access a static member of
that class (even if you never make an object of that class). For example:

//:c05:StaticConstructor.cs
// Explicit static initialization
// with static constructor
using System;

class Cup {
 internal Cup(int marker) {
 Console.WriteLine("Cup(" + marker + ")");
 }
 internal void F(int marker) {
 Console.WriteLine("f(" + marker + ")");
 }
}

class Cups {
 internal static Cup c1;
 static Cup c2;
 static Cups(){
 Console.WriteLine(
 "Inside static Cups() constructor");
 c1 = new Cup(1);
 c2 = new Cup(2);
 }
 Cups() {
 Console.WriteLine("Cups()");
 }
}

public class ExplicitStatic {
 public static void Main() {

Chapter 5: Initialization & Cleanup 185

 Console.WriteLine("Inside Main()");
 Cups.c1.F(99); // (1)
 }
 // static Cups x = new Cups(); // (2)
 // static Cups y = new Cups(); // (2)
} ///:~

The static constructor for Cups run when either the access of the static object
c1 occurs on the line marked (1), or if line (1) is commented out and the lines
marked (2) are uncommented. If both (1) and (2) are commented out, the static
constructor for Cups never occurs. Also, it doesn’t matter if one or both of the
lines marked (2) are uncommented; the static initialization only occurs once.

Array initialization
Initializing arrays in C is error-prone and tedious. C++ uses aggregate
initialization to make it much safer2. C# has no “aggregates” like C++, since
everything is an object in C#. It does have arrays, and these are supported with
array initialization.

An array is simply a sequence of either objects or primitives, all the same type
and packaged together under one identifier name. Arrays are defined and used
with the square-brackets indexing operator []. To define an array you simply
follow your type name with empty square brackets:

int[] a1;

This is a little different from C and C++, but is a sensible improvement, since it
says that the type is “an int array.”

The compiler doesn’t allow you to tell it how big the array is. This brings us back
to that issue of “references.” All that you have at this point is a reference to an
array, and there’s been no space allocated for the array. To create storage for the
array you must write an initialization expression. For arrays, initialization can
appear anywhere in your code, but you can also use a special kind of initialization
expression that must occur at the point where the array is created. This special
initialization is a set of values surrounded by curly braces. The storage allocation
(the equivalent of using new) is taken care of by the compiler in this case. For
example:

2 See Thinking in C++, 2nd edition for a complete description of C++ aggregate
initialization.

186 Thinking in C# www.ThinkingIn.NET

int[] a1 = { 1, 2, 3, 4, 5 };

So why would you ever define an array reference without an array?

int[] a2;

Well, it’s possible to assign one array to another in C#, so you can say:

a2 = a1;

What you’re really doing is copying a reference, as demonstrated here:

//:c05:Arrays.cs
// Arrays of primitives.
using System;

public class Arrays {
 public static void Main() {
 int[] a1 = { 1, 2, 3, 4, 5};
 int[] a2;
 a2 = a1;
 for (int i = 0; i < a2.Length; i++)
 a2[i]++;
 for (int i = 0; i < a1.Length; i++)
 Console.WriteLine("a1[" + i + "] = " + a1[i]);
 }
} ///:~

/

You can see that a1 is given an initialization value while a2 is not; a2 is assigned
later—in this case, to another array.

There’s something new here: all arrays have a property (whether they’re arrays of
objects or arrays of primitives) that you can query—but not change—to tell you
how many elements there are in the array. This member is Length. Since arrays
in C#, as in Java and C, start counting from element zero, the largest element you
can index is Length - 1. If you go out of bounds, C and C++ quietly accept this
and allow you to stomp all over your memory, which is the source of many
infamous bugs. However, C# protects you against such problems by causing a
run-time error (an exception, the subject of Chapter 11) if you step out of bounds.
Of course, checking every array access costs time and code, which means that
array accesses might be a source of inefficiency in your program if they occur at a
critical juncture. Sometimes the JIT can “precheck” to ensure that all index
values in a loop will never exceed the array bounds, but in general, array access
pays a small performance price. By explicitly moving to “unsafe” code (discussed
in Chapter 10), bounds checking can be turned off.

Chapter 5: Initialization & Cleanup 187

What if you don’t know how many elements you’re going to need in your array
while you’re writing the program? You simply use new to create the elements in
the array. Here, new works even though it’s creating an array of primitives (new
won’t create a nonarray primitive):

//:c05:ArrayNew.cs
// Creating arrays with new.
using System;

public class ArrayNew {
 static Random rand = new Random();

 public static void Main() {
 int[] a;
 a = new int[rand.Next(20) + 1];
 Console.WriteLine("length of a = " + a.Length);
 for (int i = 0; i < a.Length; i++)
 Console.WriteLine("a[" + i + "] = " + a[i]);
 }
}
///:~

Since the size of the array is chosen at random, it’s clear that array creation is
actually happening at run-time. In addition, you’ll see from the output of this
program that array elements of primitive types are automatically initialized to
“empty” values. (For numerics and char, this is zero, and for bool, it’s false.)

If you’re dealing with an array of nonprimitive objects, you must always use new.
Here, the reference issue comes up again because what you create is an array of
references. Consider the wrapper type IntHolder, which is a class and not a
primitive:

//:c05:ArrayClassObj.cs
// Creating an array of nonprimitive objects.
using System;

class IntHolder {
 int i;
 internal IntHolder(int i){
 this.i = i;
 }

 public override string ToString(){

188 Thinking in C# www.MindView.net

 return i.ToString();
 }
}

public class ArrayClassObj {
 static Random rand = new Random();

 public static void Main() {
 IntHolder[] a = new IntHolder[rand.Next(20) + 1];
 Console.WriteLine("length of a = " + a.Length);
 for (int i = 0; i < a.Length; i++) {
 a[i] = new IntHolder(rand.Next(500));
 Console.WriteLine("a[" + i + "] = " + a[i]);
 }
 }
} ///:~

Here, even after new is called to create the array:

IntHolder[] a = new IntHolder[rand.Next(20) + 1];

it’s only an array of references, and not until the reference itself is initialized by
creating a new IntHolder object is the initialization complete:

a[i] = new IntHolder(rand.Next(500));

If you forget to create the object, however, you’ll get an exception at run-time
when you try to read the empty array location.

The IntHolder method ToString() is marked with the override keyword.
This will be discussed in more detail later, but the short explanation is that this is
an object-oriented refinement of a ToString() method defined in some class
that is an “ancestor” to IntHolder (in fact, the ToString() method is defined in
the class Object, which is the ancestor to all classes).

It’s also possible to initialize arrays of objects using the curly-brace-enclosed list.
There are two forms:

//:c05:ArrayInit.cs
// Array initialization.

class IntHolder {
 int i;
 internal IntHolder(int i){
 this.i = i;

Chapter 5: Initialization & Cleanup 189

 }
}

public class ArrayInit {
 public static void Main() {
 IntHolder[] a = {
 new IntHolder(1),
 new IntHolder(2),
 new IntHolder(3),
 };

 IntHolder[] b = new IntHolder[] {
 new IntHolder(1),
 new IntHolder(2),
 new IntHolder(3),
 };
 }
} ///:~

This is useful at times, but it’s more limited since the size of the array is
determined at compile-time. The final comma in the list of initializers is optional.
(This feature makes for easier maintenance of long lists.)

The params method modifier
An unusual use of arrays is C#’s params method argument modifier. This
modifier, when applied to the last parameter of a method, specifies that the
method can be called with any number of arguments of the specified type. In this
case, a Burger can be created with any number of beef patties:

//:c05:Burger.cs
using System;

class Patty {
}
class Burger {
 Burger(bool cheese, params Patty[] patties){
 foreach(Patty p in patties){
 if (cheese) {
 Console.WriteLine("Cheeseburger!");
 } else {
 Console.WriteLine("Hamburger!");

190 Thinking in C# www.ThinkingIn.NET

 }
 }
 Console.WriteLine("You want fries with that?");
 }

 public static void Main(){
 Burger noMeat = new Burger(false);
 Burger petite = new Burger(false, new Patty());
 //Double cheeseburger
 Burger doubleDouble =
 new Burger(true, new Patty(), new Patty());
 //Heart attack
 Burger fourByFour =
 new Burger(true, new Patty(), new Patty(),
 new Patty(), new Patty());
 }
}///:~

The interesting part is in Burger.Main(), which shows the Burger constructor
being called with various amounts of Pattys (even no patties).

The params modifier is how the String.Format() method and
Console.WriteLine() allow us to write lines such as:

 String.Format("f{0}c{1}t{2}{3}{4}sl{5}"
 ,'a','e','i','o','u','y');

Multidimensional arrays
C# allows you to easily create multidimensional arrays:

//:c05:MultiDimArray.cs
// Creating multidimensional arrays.
using System;

class IntHolder {
 int i;
 internal IntHolder(int i) {
 this.i = i;
 }

 public override string ToString() {
 return i.ToString();

Chapter 5: Initialization & Cleanup 191

 }
}

public class MultiDimArray {
 static Random rand = new Random();

 static void Prt(string s) {
 Console.WriteLine(s);
 }

 public static void Main() {
 int[,] a1 = {
 { 1, 2, 3,},
 { 4, 5, 6,},
 };
 Prt("a1.Length = " + a1.Length);
 Prt(" == " + a1.GetLength(0)
 + " * " + a1.GetLength(1));
 for (int i = 0; i < a1.GetLength(0); i++)
 for (int j = 0; j < a1.GetLength(1); j++)
 Prt("a1[" + i + "," + j
 + "] = " + a1[i, j]);
 // 3-D rectangular array:
 int[,,] a2 = new int[2, 2, 4];
 for (int i = 0; i < a2.GetLength(0); i++)
 for (int j = 0; j < a2.GetLength(1); j++)
 for (int k = 0; k < a2.GetLength(2);
 k++)
 Prt("a2[" + i + ","
 + j + "," + k
 + "] = " + a2[i,j,k]);
 // Jagged array with varied-Length vectors:
 int[][][] a3 = new int[rand.Next(7) + 1][][];
 for (int i = 0; i < a3.Length; i++) {
 a3[i] = new int[rand.Next(5) + 1][];
 for (int j = 0; j < a3[i].Length; j++)
 a3[i][j] = new int[rand.Next(5) + 1];
 }
 for (int i = 0; i < a3.Length; i++)
 for (int j = 0; j < a3[i].Length; j++)
 for (int k = 0; k < a3[i][j].Length;

192 Thinking in C# www.MindView.net

 k++)
 Prt("a3[" + i + "]["
 + j + "][" + k
 + "] = " + a3[i][j][k]);
 // Array of nonprimitive objects:
 IntHolder[,] a4 = {
 { new IntHolder(1), new IntHolder(2)},
 { new IntHolder(3), new IntHolder(4)},
 { new IntHolder(5), new IntHolder(6)},
 };
 for (int i = 0; i < a4.GetLength(0); i++)
 for (int j = 0; j < a4.GetLength(1); j++)
 Prt("a4[" + i + "," + j
 + "] = " + a4[i,j]);
 IntHolder[][] a5;
 a5 = new IntHolder[3][];
 for (int i = 0; i < a5.Length; i++) {
 a5[i] = new IntHolder[3];
 for (int j = 0; j < a5[i].Length; j++) {
 a5[i][j] = new IntHolder(i*j);
 }
 }
 for (int i = 0; i < a5.GetLength(0); i++) {
 for (int j = 0; j < a5[i].Length; j++) {
 Prt("a5[" + i + "][" + j
 + "] = " + a5[i][j]);
 }
 }
 }
} ///:~

The code used for printing uses Length so that it doesn’t depend on fixed array
sizes.

The first example shows a multidimensional rectangular array of primitives.
You delimit each vector in the array with curly braces:

 int[,] a1 = {
 { 1, 2, 3, },
 { 4, 5, 6, },
 };

Each comma in the index moves you into the next level of the array.

Chapter 5: Initialization & Cleanup 193

The second example shows a three-dimensional rectangular array allocated with
new. Here, the whole array is allocated at once:

int[,,] a2 = new int[2, 2, 4];

In a rectangular array, each vector that makes up the array is a fixed size, and
therefore the array is itself a fixed size, in this case, an array of precisely the size
needed to hold 16 (2 * 2 * 4) integers.

The third example shows a different type of array, a jagged array in which each
vector in the arrays that make up the matrix can be of any length:

 int[][][] a3 = new int[rand.Next(7) + 1][][];
 for(int i = 0; i < a3.Length; i++) {
 a3[i] = new int[rand.Next(5)][];
 for(int j = 0; j < a3[i].Length; j++)
 a3[i][j] = new int[rand.Next(5)];
 }

The first new creates an array with a random-length first element and the rest
undetermined. The second new inside the for loop fills out the elements but
leaves the third index undetermined until you hit the third new.

You will see from the output that array values are automatically initialized to zero
if you don’t give them an explicit initialization value.

You can deal with arrays of nonprimitive objects in a similar fashion, which is
shown in the fourth example, demonstrating the ability to collect many new
expressions with curly braces:

 IntHolder[,] a4 = {
 { new IntHolder(1), new IntHolder(2)},
 { new IntHolder(3), new IntHolder(4)},
 { new IntHolder(5), new IntHolder(6)},
 };

The fifth example shows how an array of nonprimitive objects can be built up
piece by piece:

 IntHolder[][] a5;
 a5 = new IntHolder[3][];
 for(int i = 0; i < a5.length; i++) {
 a5[i] = new IntHolder[3];
 for(int j = 0; j < a5[i].length; j++)
 a5[i][j] = new IntHolder(i*j);

194 Thinking in C# www.ThinkingIn.NET

 }

The i*j is just to put an interesting value into the IntHolder.

What a difference a rectangle makes
The addition of rectangular arrays to C# is one of a few different language
features that have the potential to make C# a great language for numerically
intensive computing. With jagged arrays (arrays of the form Object[][]), it’s
impossible for an optimizer to make assumptions about memory allocation. A
jagged array may have multiple rows pointing to the same base array, unallocated
rows, and cross-references.

double[5][] myArray = new double[5][];
myArray[0] = new double[2];
myArray[1] = myArray[0];
myArray[2] = new double[1];
myArray[4] = new double[4];

[4][3][2][1][0]myArray[5][]

Figure 5-1: Jagged arrays can have complex relationships to physical memory

A rectangular array, on the other hand, is a contiguous block:

double myArray[5,4] = new double[5,4];

Figure 5-2: Rectangular arrays are contiguous blocks of memory

As you can see from Figures 5-1 and 5-2, jagged arrays are best thought of as
“references to references” while a rectangular array can be safely thought of as a

myArray[5,4]

Chapter 5: Initialization & Cleanup 195

“grid of references.” Since physical RAM is not a grid at all, but continuous, a
rectangular array is really a single contiguous chunk of memory. Jagged arrays
are more flexible in terms of efficiently storing references without having to copy
them back and forth, but rectangular arrays are perhaps a tiny bit easier to
initialize and use. In addition, several optimizing techniques are harder to do
with jagged arrays than with rectangular. When researchers at IBM added
rectangular arrays to Java, they speeded up some numerical benchmarks by
factors close to 50! So far, the C# optimizer doesn’t take advantage of such
possibilities, although it does run somewhat faster than Java on Cholesky
multiplication3.

Summary
This seemingly elaborate mechanism for initialization, the constructor, should
give you a strong hint about the critical importance placed on initialization in the
language. As Stroustrup was designing C++, one of the first observations he made
about productivity in C was that improper initialization of variables causes a
significant portion of programming problems. These kinds of bugs are hard to
find, and similar issues apply to improper cleanup. Because constructors allow
you to guarantee proper initialization and cleanup (the compiler will not allow an
object to be created without the proper constructor calls), you get complete
control and safety.

In C++, destruction is quite important because objects created with new must be
explicitly destroyed. In C#, the garbage collector automatically releases the
memory for all objects, so the equivalent cleanup method in C# isn’t necessary
much of the time. In cases where you don’t need destructor-like behavior, C#’s
garbage collector greatly simplifies programming, and adds much-needed safety
in managing memory. However, the garbage collector does add a run-time cost,
the expense of which is difficult to put into perspective because of the other
performance ramifications of the IL and CLR approach to binary files.

Because of the guarantee that all objects will be constructed, there’s actually more
to the constructor than what is shown here. In particular, when you create new
classes using either composition or inheritance the guarantee of construction also

3 The original article is The Ninja Project, Moreira et al., Communications of the ACM
44(10), Oct 2001. For more on C# performance, including a port of some of the
benchmarks used by Moreira from Java to C#, see http://www.ThinkingIn.Net
/performance.html

196 Thinking in C# www.MindView.net

holds, and some additional syntax is necessary to support this. You’ll learn about
composition, inheritance, and how they affect constructors in future chapters.

Exercises
1. Create a class with a default constructor (one that takes no arguments)

that prints a message. Create an object of this class.

2. Add an overloaded constructor to Exercise 1 that takes a string argument
and prints it along with your message.

3. Create an array of object references of the class you created in Exercise 2,
but don’t actually create objects to assign into the array. When you run
the program, notice whether the initialization messages from the
constructor calls are printed.

4. Complete Exercise 3 by creating objects to attach to the array of
references.

5. Create an array of string objects and assign a string to each element.
Print the array using a foreach loop.

6. Create a class called Dog with an overloaded Bark() method. This
method should be overloaded based on various primitive data types, and
print different types of barking, howling, etc., depending on which
overloaded version is called. Write a Main() that calls all the different
versions.

7. Modify Exercise 6 so that two of the overloaded methods have two
arguments (of two different types), but in reversed order relative to each
other. Verify that this works.

8. Create a class without a constructor, and then create an object of that
class in Main() to verify that the default constructor is automatically
synthesized.

9. Create a class with two methods. Within the first method, call the second
method twice: the first time without using this, and the second time
using this.

10. Create a class with a destructor that prints a message. In Main(), create
an object of your class. Explain the behavior of your program.

Chapter 5: Initialization & Cleanup 197

11. Modify Exercise 11 so that the object is created within a method other
than Main(). Modify your class so that it implements IDisposable and
the Dispose() method is called before Main() exits.

12. Create a class called Tank that can be filled and emptied, and has a
death condition that it must be empty when the object is cleaned up.
Write a Dispose() that verifies this death condition. In Main(), test
the possible scenarios that can occur when your Tank is used.

13. Create a class containing an int and a char that are not initialized, and
print their values to verify that C# performs default initialization.

14. Create a class containing a declared but uninitialized String reference.
Demonstrate that this reference is initialized by C# to null.

15. Create a class with a string field that is initialized at the point of
definition, and another one that is initialized by the constructor. What is
the difference between the two approaches?

16. Create a class with a static string field that is initialized at the point of
definition, and another one that is initialized by a static constructor. Add
a static method that prints both fields and demonstrates that they are
both initialized before they are used.

17. Write a method that creates and initializes a two-dimensional array of
double. The size of the array is determined by the arguments of the
method, and the initialization values are a range determined by
beginning and ending values that are also arguments of the method.
Create a second method that will print the array generated by the first
method. In Main() test the methods by creating and printing several
different sizes of arrays.

18. Repeat Exercise 17 for a three-dimensional array.

19. Comment the line marked (1) in StaticConstructor.cs and verify that
the static constructor is not called. Now uncomment one of the lines
marked (2) and verify that the static constructor is called. Now
uncomment the other line marked (2) and verify that static construction
only occurs once.

20. Referring back to the robotic party servant exercises from previous
chapters, describe the initialization and cleanup required for each of your
classes. Find at least one class that represents a “valuable resource” for
the party that is not in infinite supply.

198 Thinking in C# www.ThinkingIn.NET

21. For the “valuable resource” discovered in exercise 20, implement the
Dispose() method of the class. Write a program that creates and
consumes this resource and demonstates proper cleanup.

22. Try to find and implement a class in the party domain that requires static
initialization.

23. Try to find and implement a class in the party domain that uses an array
initialization

24. You should now have at least 5 programs in the party domain. Eliminate
common code by refactoring them into utility functions. Confirm that all
programs in the party domain continue to function!

199

6: Hiding the
Implementation

A primary consideration in object-oriented design is
“separating the things that change from the things that
stay the same.”

This is particularly important for libraries. The user (client programmer) of that
library must be able to rely on the part they use, and know that they won’t need to
rewrite code if a new version of the library comes out. On the flip side, the library
creator must have the freedom to make modifications and improvements with the
certainty that the client programmer’s code won’t be affected by those changes.

This can be achieved through convention. For example, the library programmer
must agree to not remove existing methods when modifying a class in the library,
since that would break the client programmer’s code. The reverse situation is
thornier, however. In the case of a data member, how can the library creator
know which data members have been accessed by client programmers? This is
also true with methods that are only part of the implementation of a class, and
not meant to be used directly by the client programmer. But what if the library
creator wants to rip out an old implementation and put in a new one? Changing
any of those members might break a client programmer’s code. Thus the library
creator is in a strait jacket and can’t change anything.

To solve this problem, C# provides access specifiers to allow the library creator to
say what is available to the client programmer and what is not. The levels of
access control from “most access” to “least access” are public, protected
internal, protected, internal, and private. From the previous paragraph you
might think that, as a library designer, you’ll want to keep everything as “private”
as possible, and expose only the methods that you want the client programmer to
use. This is exactly right, even though it’s often counterintuitive for people who
program in other languages (especially C) and are used to accessing everything
without restriction. By the end of this chapter you should be convinced of the
value of access control in C#.

200 Thinking in C# www.MindView.net

The concept of a library of components and the control over who can access the
components of that library is not complete, however. There’s still the question of
how the components are bundled together into a cohesive library unit. This is
controlled by the namespace keyword for creating related names and by
bundling related classes into assemblies. The access specifiers are affected by
whether a class is in the same assembly or in a separate assembly. Before we
discuss assemblies though, we need to learn about namespaces. Then you’ll be
able to understand the complete meaning of the access specifiers and move onto
multiple assemblies.

Organizing with namespaces
A namespace is what you get when you use the using keyword to bring in the
classes named in n entire library, such as

using System.Collections;

This makes visible to your code the entire System.Collections library that’s part of
the standard .NET Framework SDK distribution. Since, for example, the class
ArrayList is in System.Collections, you can now either specify the full name
System.Collections.ArrayList (which you can do without the using
statement), or you can simply say ArrayList (because of the using).

Namespaces exist to insulate related classes so that they can see each other, but
non-related classes cannot see all of the classes. A method F() inside a class A
will not clash with an F() that has the same signature (argument list) in class B.
But what about the class names? Suppose you create a Stack class that is
installed on a machine that already has a Stack class that’s written by someone
else? With C# and the Internet, this can happen without the user knowing it,
since class assemblies can be downloaded automatically in the process of running
a .NET program.

This potential clashing of names is why it’s important to have complete control
over the name spaces in C#, and to be able to create a completely unique name
regardless of the constraints of the Internet.

So far, most of the examples in this book have existed in a single file and have
been designed for local use, and haven’t bothered with namespaces. (In this case
the class name is placed in the “default namespace.”) This is certainly an option,
and for simplicity’s sake this approach will be used whenever possible throughout
the rest of this book. However, if you’re planning to create libraries or programs
that are friendly to other C# programs on the same machine, you must think
about preventing class name clashes.

Chapter 6: Hiding the Implementation 201

When you create a source-code file for C#, it’s commonly called a compilation
unit (sometimes a translation unit). By convention, each compilation unit has a
name ending in .cs. A compilation unit in C# may contain as many types as
desired. The compiler (csc.exe) translates one or more compilation unit into an
assembly. An assembly consists of some number of public classes that are
available for use by other assemblies and some amount of non-visible support
classes.

In contrast with Java, C# does not enforce a strict correspondence between
compilation units, public classes, namespaces, and assemblies. However, it is
generally a good idea to:

♦ Restrict a compilation unit to a single namespace

♦ Put only one public class in a single compilation unit

♦ Put the compilation units for a single namespace in a single source
directory

These are good ideas for a couple of different reasons. For one thing, once a
program gets to a medium size and has, say, a few dozen thousand lines of code,
even the very fast C# compiler takes a significant amount of time to recompile
everything. Second, the compilation unit is the natural unit of source code
control and testing. While it’s possible to create systems that are intelligent about
merging disparate changes and only testing changed classes, these are by far
more complex and error-prone than systems that are based on simply comparing
the timestamps on the compilation unit files!

Just because you’ve created a class in a namespace and compiled it into an
assembly does not automatically make it available to other software. For instance,
if you write:

namespace MyNamespace{
 public class MyClass{
 //…etc…
 }
}

and save it to a file MyClass.cs, you would compile with:

csc /target:library MyClass.cs

which would create an assembly called MyClass.DLL. To use this assembly
from another compilation unit, you would write something of this form:

using MyNamespace;

202 Thinking in C# www.ThinkingIn.NET

namespace MyNewNamespace{
 class MyNewClass{
 //Class referenced in "using"
 MyClass c = new MyClass();
 //… etc …
 }
}

but you would have to compile MyNewClass.cs with an explicit reference to the
assembly in which MyClass is stored:

csc /reference:MyClass.dll MyNewClass.cs

Otherwise you would receive a compilation error that “The type or namespace
‘MyNamespace’ could not be found.”

In addition, when the first object of type MyNewClass is created at runtime, it
must be able to find the MyClass.dll assembly. The easiest way to do this is to
place a copy of MyClass.dll in the same directory as the assembly that contains
MyNewClass. One of the greatest differences between .NET and previous
versions of Windows is support for “XCOPY deployment.” This means that,
except for niceties like creating shortcuts and items on the Start menu, you can
deploy a .NET application simply by copying files.

Creating unique names

You might observe that if you wanted your library assembly MyClass.dll to be
used by two or more applications, XCOPY deployment might not be the best
solution. It would be better if you installed your library into some location that
both applications (heck, all applications) automatically checked. As a Windows
user, this would naturally make you think of the Registry and subdirectories of
the Windows directory.

If you are a Windows programmer, you will also be aware of the problems this
can raise. What if another company ships an assembly named MyClass.dll or
someone accidentally copies an old version on top of your most recent one? These
are the causes of “DLL Hell,” that Windows condition in which installing a new
application causes problems in others.

To avoid DLL Hell, .NET provides an entirely new system of sharing assemblies.
This system has two components: qunique names based on public-key
cryptography and a set of sub-directories known as the Global Assembly Cache
(GAC). Each deployed version of the assembly gets its own unique identity; the

Chapter 6: Hiding the Implementation 203

system-level tools that manipulate the GAC assure that uniquely identified
assemblies do not overwrite one another. In addition, the choice to use
cryptography to create the unique names means that, in addition, the tools can
guarantee the integrity of the bits in the assembly. The process by which
assemblies are signed and installed into the GAC is covered in Chapter 13.

While cryptographically verified strong names assure binary stability, you should
still strive to create unique namespaces to aid in the organization of your work.
The naming convention for namespaces is
CompanyName.ProjectName.SubSystemName. For instance, you might
create your own ArrayList in a Collections subsystem:

//compiled with csc /target:library
using System;
namespace Thinkingin.CSharp.Collections{
 public class ArrayList{
 public ArrayList(){
 Console.WriteLine
 ("ThinkingIn.CSharp.Collections.ArrayList");
 }
 }
}

The second file must reference this namespace before use:

using Thinkingin.CSharp.Collections;

namespace usesanother{
 class UsesSpecialized{
 public static void Main(){
 ArrayList al = new ArrayList();
 //Can still explicitly reference other
 System.Collections.ArrayList realList =
 new System.Collections.ArrayList();
 realList.Add(
 "Oh! It's a real collection class!");
 }
 }
}

The compiler requires both a using statement in the source code and a
/reference switch on the command-line to bring in libraries that are not in
mscorlib.dll (“Microsoft .NET Core Libraries”). The referenced assembly must

204 Thinking in C# www.MindView.net

be in the path both at compile time and at runtime (unless it is loaded from the
GAC, as described in Chapter 13).

Collisions
What happens if two libraries are imported via using and they include the same
names? For example, suppose a program does this:

using ThinkingIn.CSharp.Collections;
using System.Collections;

Since System.Collections also contains an ArrayList class, this causes a
potential collision. However, as long as the collision does not actually occur,
everything is OK – this is good because otherwise you might end up doing a lot of
typing to prevent collisions that would never happen.

The collision does occur if you now try to make an ArrayList:

ArrayList al = new ArrayList();

Which ArrayList class does this refer to? The compiler can’t know, and the
reader can’t know either. So the compiler complains and forces you to
disambiguate the reference. If you want a standard .NET ArrayList, for
example, you must say:

System.Collections.ArrayList al =
 new System.Collections.ArrayList();

This (along with the assembly references specified at the command-line)
completely specifies which class you mean; the compiler can allow both using
statements to coexist.

Using #define to change behavior
A compilation feature that C# shares with C is the ability to change the behavior
of the compiler based on meta-commands embedded in the code or specified as
part of the compiler’s command-line. A common use for this feature is to enable
or disable debugging code. During development, debugging code that performs
costly verification or informational output is enabled; when release nears, it is
disabled. Here’s an example:

//:c06:TestDebug.cs
// Demonstrating conditional compilation.
// Comment or uncomment the following to change behavior:
#define DEBUG
using System;

Chapter 6: Hiding the Implementation 205

using System.Diagnostics;

public class Assert {
 private static void PErr(string s){
 Console.WriteLine(s);
 }
 [Conditional("DEBUG")]
 public static void True(bool exp){
 if (!exp) PErr("Assertion failed");
 }
 [Conditional("DEBUG")]
 public static void False(bool exp){
 if (exp) PErr("Assertion failed");
 }
 [Conditional("DEBUG")]
 public static void True(bool exp, string msg){
 if (!exp) PErr(msg);
 }
 [Conditional("DEBUG")]
 public static void False(bool exp, string msg){
 if (exp) PErr(msg);
 }
}

public class TestDebug {
 public static void Main() {
 Assert.True((2 + 2) == 5);
 Assert.False((1 + 1) == 2);
 Assert.True((2 + 2) == 5, "2 + 2 == 5");
 Assert.False((1 + 1) == 2, "1 +1 != 2");
 }
} //:~

By commenting or uncommenting #define DEBUG, you change your code from
the debug version to the production version. This technique can be used for any
kind of conditional code.

The use of some kind of #define DEBUG and an Assert class is so common
that .NET has built-in support for just this behavior. If you compile with DEBUG
defined, either by putting #define DEBUG in your code or by compiling with
csc /d:DEBUG, the Microsoft enables the Debug class in the
System.Diagnostics namespace, which includes an Assert method. The

206 Thinking in C# www.ThinkingIn.NET

Debug.Assert() raises a dialog box, which is fine for manual debugging, but
not very helpful for automated testing. Additionally, the Debug class and a
companion Trace class (enabled by defining TRACE) have methods that output
strings to a set of TraceListeners. TraceListeners can be used to send data to
the system’s event logs, the console, or custom sinks. We’ll cover the use of these
classes in Chapter 12.

C#’s access specifiers
When used, the C# access specifiers public, internal, protected, protected
internal and private are placed in front of each definition for each member in
your class, whether it’s a field, method, or property. Each access specifier controls
the access for only that particular definition. This is a distinct contrast to C++, in
which the access specifier controls all the definitions following it until another
access specifier comes along.

One way or another, everything has some kind of access specified for it. Even
when not specified, each program component has a default access:

Element Default Access
enum and interface public

Non-nested Class and struct internal

All type members (methods, properties,
fields, etc.)

private

In the following sections, you’ll learn all about the various types of access,
starting with the default access.

public: interface access
When you use the public keyword, it means that the member declaration that
immediately follows public is available to everyone, in particular to the client
programmer who uses the library. Suppose you define a namespace dessert
containing the following compilation unit:

//:c06:dessert:Cookie.cs
//Compile with
//csc /target:library Cookie.cs /out:dessert.dll
// Creates a library.
using System;

Chapter 6: Hiding the Implementation 207

namespace Dessert{
 public class Cookie {
 public Cookie() {
 Console.WriteLine("Cookie constructor");
 }
 void Bite() { Console.WriteLine("Bite"); }
 }
}///:~

Now if you create a program that uses Cookie:

//:c06:Dinner.cs
//Compile with
//csc /reference:Dessert.dll Dinner.cs
// Uses the library.
using Dessert;
using System;

public class Dinner {
 public Dinner() {
 Console.WriteLine("Dinner constructor");
 }
 public static void Main() {
 Cookie x = new Cookie();
 //! x.Bite(); // Can't access
 }
}///:~

you can create a Cookie object, since its constructor is public and the class is
public. (We’ll look more at the concept of a public class later.) However, the
Bite() member is inaccessible inside Dinner.cs since Bite() is private.

internal
What if you give no access specifier at all, as in all the examples before this
chapter? The default access for a type is internal, which is sometimes referred to
as “friendly.” It means that all the other classes in the current assembly have
access to the internal member, but to all the classes outside of this assembly the
member appears to be private.

Internal access allows you to group related classes together in an assembly so
that they can easily create each other. When you put classes together in an
assembly you “own” the code in that package. It makes sense that only code you
own should have internal access to other code you own. You could say that

208 Thinking in C# www.MindView.net

internal access gives a meaning or a reason for grouping classes together in an
assembly. In many languages the way you organize your definitions in files can be
willy-nilly, but in C# you’re compelled to organize them in a sensible fashion. In
addition, you’ll probably want to exclude classes that shouldn’t have access to the
classes being defined in the current assembly.

The class controls which code has access to its members. There’s no magic way to
“break in.” Code from another assembly can’t show up and say, “Hi, I’m a friend
of Bob’s!” and expect to see the protected, internal, protected internal, and
private members of Bob. The only way to grant access to a member is to:

1. Make the member public. Then everybody, everywhere, can access it.

2. Make the member internal by leaving off any access specifier if it’s a
class or by adding the internal keyword if it’s a method or property, and
put the other classes in the same assembly. Then the other classes can
access the member.

3. As you’ll see in Chapter 7, when inheritance is introduced, an inherited
class can access a protected member as well as a public member (but
not private members). It can access internal members only if the two
classes are in the same assembly. But don’t worry about that now. The
same goes for protected internal, which allows access from an
inherited member or from other classes in the assembly.

4. Expose the member via public properties that read and change the
value. This is the most civilized approach in terms of OOP, and it is
fundamental to C#, as you’ll see in Chapter 7.

private: you can’t touch that!
The private keyword means that no one can access that member except that
particular class, inside methods of that class. Other classes in the same assembly
cannot access private members, so it’s as if you’re even insulating the class
against yourself. On the other hand, it’s not unlikely that an assembly might be
created by several people collaborating, so private allows you to freely change
that member without concern that it will affect another class in the same
assembly. The default access type for the internals of a type is private.

The default internal access for types and private for type members generally
provide an adequate amount of hiding; remember, an internal member is
inaccessible to the user of the assembly. This is nice, since the default access is
the normal amount of caution you will use (and the one that you’ll get if you
forget to add any access control). Thus, you’ll typically think about access for the

Chapter 6: Hiding the Implementation 209

members that you explicitly want to make public for the client programmer, and
as a result, you might not initially think you’ll use the private keyword often
since it’s tolerable to get away without it. (This is a distinct contrast with C++.)
However, it turns out that the consistent use of private is very important,
especially where multithreading is concerned. (As you’ll see in Chapter 16.)

Here’s an example of the use of private:

//:c06:IceCream.cs
// Demonstrates "private" keyword.
using System;

class Sundae {
 private Sundae() {
 Console.WriteLine("private methods cannot be called"
 + " from methods not defined in class");
 }
 static internal Sundae MakeSundae() {
 Console.WriteLine("Sundae.MakeSundae() calls private");
 return new Sundae();
 }
}

public class IceCream {
 public static void Main() {
 //! Sundae x = new Sundae();
 Sundae x = Sundae.MakeSundae();
 }
} ///:~

This shows an example in which private comes in handy: you might want to
control how an object is created and prevent someone from directly accessing a
particular constructor (or all of them). In the example above, you cannot create a
Sundae object via its constructor; instead you must call the MakeSundae()
method to do it for you.

Any method that you’re certain is only a “helper” method for that class should be
kept private, to ensure that you don’t accidentally use it elsewhere in the
package and thus prohibit yourself from changing or removing the method.
Keeping a method private guarantees that you retain this option.

The same is true for a private field inside a class. Unless you must expose the
underlying implementation (which is a much rarer situation than you might

210 Thinking in C# www.ThinkingIn.NET

think), you should keep all fields private. However, just because a reference to
an object is private inside a class doesn't mean that some other object can't have
a public reference to the same object via other routes; if a public property
returns a reference to a private object, the client can manipulate it freely.

protected
The protected access specifier requires a jump ahead to understand. First, you
should be aware that you don’t need to understand this section to continue
through this book up through inheritance (Chapter 7). But for completeness, here
is a brief description and example using protected.

The protected keyword deals with a concept called inheritance, which takes an
existing class and adds new members to that class without touching the existing
class, which we refer to as the base class. You can also change the behavior of
existing members of the class. To inherit from an existing class, you add a colon
and the name of the class from which it inherits, like this:

class Foo : Bar {

The rest of the class definition looks the same.

If you create a new assembly and you inherit from a class in another assembly,
the only members you have access to are the public members of the original
assembly. (Of course, if you perform the inheritance in the same assembly, you
have the normal namespace access to all the internal members.) Sometimes the
creator of the base class would like to take a particular member and grant access
to derived classes but not the world in general. That’s what protected does. If
you refer back to the file Cookie.cs, the following class cannot access the
internal member:

//:c06:ChocolateChip.cs
//Compile with:
// csc /reference:Dessert.dll ChocolateChip.cs
// Can't access internal member
// in parent class in another namespace.
using System;
using Dessert;

public class ChocolateChip : Cookie {
 public ChocolateChip() {
 Console.WriteLine("ChocolateChip constructor");
 }
 public static void Main() {

Chapter 6: Hiding the Implementation 211

 ChocolateChip x = new ChocolateChip();
 //! x.Bite(); // Still can't access bite
 }
} //:~

One of the interesting things about inheritance is that if a method Bite() exists
in class Cookie, then it also exists in any class inherited from Cookie. But since
Bite() is internal to a foreign assembly, it’s unavailable to us in this one. Of
course, you could make Bite() public, but then everyone would have access and
maybe that’s not what you want. If we change the class Cookie as follows:

public class Cookie {
 public Cookie() {
 Console.WriteLine("Cookie constructor");
 }
 protected void Bite() {
 Console.WriteLine("bite");
 }
}

then Bite() no longer provides internal access within the Dessert assembly,
but it is now accessible to anyone inheriting from Cookie. However, it is not
public. If you wish to keep Bite() so that it still has internal access within the
Dessert assembly and also have it accessible from inherited classes, you can
declare it protected internal.

Interface and implementation
Access control is often referred to as implementation hiding. Wrapping data and
methods within classes in combination with implementation hiding is often
called encapsulation1. The result is a data type with characteristics and
behaviors.

Access control puts boundaries within a data type for two important reasons. The
first is to establish what the client programmers can and can’t use. You can build
your internal mechanisms into the structure without worrying that the client
programmers will accidentally treat the internals as part of the interface that they
should be using.

This feeds directly into the second reason, which is to separate the interface from
the implementation. If the structure is used in a set of programs, but client

1 However, other people refer to implementation hiding alone as encapsulation.

212 Thinking in C# www.MindView.net

programmers can’t do anything but send messages to the public interface, then
you can change anything that’s not public (e.g., internal, protected,
protected internal, or private) without requiring modifications to client code.

We’re now in the world of object-oriented programming, where a class is actually
describing “a class of objects,” as you would describe a class of fishes or a class of
birds. Any object belonging to this class will share these characteristics and
behaviors. The class is a description of the way all objects of this type will look
and act.

In the original OOP language, Simula-67, the keyword class was used to describe
a new data type. The same keyword has been used for most object-oriented
languages. This is the focal point of the whole language: the creation of new data
types that are more than just boxes containing data and methods.

The class is the fundamental OOP concept.

For clarity, you might prefer a style of creating classes that puts the public
members at the beginning, followed by the protected, internal, and private
members. The advantage is that the user of the class can then read down from the
top and see first what’s important to them (the public members, because they
can be accessed outside the file), and stop reading when they encounter the non-
public members, which are part of the internal implementation:

public class X {
 public void Pub1() { /* . . . */ }
 public void Pub2() { /* . . . */ }
 public void Pub3() { /* . . . */ }
 private void priv1() { /* . . . */ }
 private void priv2() { /* . . . */ }
 private void priv3() { /* . . . */ }
 private int i;
 // . . .
}

This will make it only partially easier to read because the interface and
implementation are still mixed together. That is, you still see the source code—
the implementation—because it’s right there in the class. In addition, the
comment documentation somewhat lessens the importance of code readability by
the client programmer. Displaying the interface to the consumer of a class is
really the job of the class browser, a tool whose job is to look at all the available
classes and show you what you can do with them (i.e., what members are

Chapter 6: Hiding the Implementation 213

available) in a useful fashion. Microsoft’s Visual Studio .NET is the first, but not
the only, tool to provide a class browser for C#.

Class access
In C#, the access specifiers can also be used to determine which classes within a
library will be available to the users of that library. If you want a class to be
available to a client programmer, you place the public keyword somewhere
before the opening brace of the class body. This controls whether the client
programmer can even create an object of the class.

To control the access of a class, the specifier must appear before the keyword
class. Thus you can say:

public class Widget {

Now if the name of your library is Mylib any client programmer can access
Widget by saying

using Mylib;
Widget w;

What if you’ve got a class inside Mylib that you’re just using to accomplish the
tasks performed by Widget or some other public class in Mylib? You don’t
want to go to the bother of creating documentation for the client programmer,
and you think that sometime later you might want to completely change things
and rip out your class altogether, substituting a different one. To give you this
flexibility, you need to ensure that no client programmers become dependent on
your particular implementation details hidden inside Mylib. To accomplish this,
you just leave the public keyword off the class, in which case it becomes
internal. (That class can be used only within that assembly.)

Note that a class cannot be private (that would make it accessible to no one but
the class), or protected. So you have only two choices for class access: internal
or public. If you don’t want anyone else to have access to that class, you can
make all the constructors private, thereby preventing anyone but you, inside a
static member of the class, from creating an object of that class2. Here’s an
example:

//:c06:Lunch.cs

2 You can also do it by inheriting (Chapter 7) from that class.

214 Thinking in C# www.ThinkingIn.NET

// Demonstrates class access specifiers.
// Make a class effectively private
// with private constructors:

class Soup {
 private Soup() {}
 // (1) Allow creation via static method:
 public static Soup MakeSoup() {
 return new Soup();
 }
 // (2) Create a static object and
 // return a reference upon request.
 // (The "Singleton" pattern):
 private static Soup ps1 = new Soup();
 public static Soup Access() {
 return ps1;
 }
 public void F() {}
}

class Sandwich { // Uses Lunch
 void F() { new Lunch(); }
}

// Only one public class allowed per file:
public class Lunch {
 void Test() {
 // Can't do this! Private constructor:
 //!Soup priv1 = new Soup();
 Soup priv2 = Soup.MakeSoup();
 Sandwich f1 = new Sandwich();
 Soup.Access().F();
 }
} ///:~

Up to now, most of the methods have been returning either void or a primitive
type, so the definition:

 public static Soup Access() {
 return ps1;
 }

Chapter 6: Hiding the Implementation 215

might look a little confusing at first. The word before the method name (Access)
tells what the method returns. So far this has most often been void, which means
it returns nothing. But you can also return a reference to an object, which is what
happens here. This method returns a reference to an object of class Soup.

The class Soup shows how to prevent direct creation of a class by making all the
constructors private. Remember that if you don’t explicitly create at least one
constructor, the default constructor (a constructor with no arguments) will be
created for you. By writing the default constructor, it won’t be created
automatically. By making it private, no one can create an object of that class.
But now how does anyone use this class? The above example shows two options.
First, a static method is created that creates a new Soup and returns a reference
to it. This could be useful if you want to do some extra operations on the Soup
before returning it, or if you want to keep count of how many Soup objects to
create (perhaps to restrict their population).

The second option uses what’s called a design pattern, which is covered in
Thinking in Patterns with Java, downloadable at www.BruceEckel.com. This
particular pattern is called a Singleton because it allows only a single object to
ever be created. The object of class Soup is created as a static private member
of Soup, so there’s one and only one, and you can’t get at it except through the
public method Aaccess().

As previously mentioned, if you don’t put an access specifier for class access it
defaults to internal. This means that an object of that class can be created by
any other class in the assembly, but not outside the assembly. However, if a
static member of that class is public, the client programmer can still access that
static member even though they cannot create an object of that class.

Summary
In any relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship with the
user of that library—the client programmer—who is another programmer, but
one putting together an application or using your library to build a bigger library.

Without rules, client programmers can do anything they want with all the
members of a class, even if you might prefer they don’t directly manipulate some
of the members. Everything’s naked to the world.

This chapter looked at how classes are built to form libraries: first, the way a
group of classes is packaged within a library, and second, the way the class
controls access to its members.

216 Thinking in C# www.MindView.net

It is estimated that a C programming project begins to break down somewhere
between 50K and 100K lines of code because C has a single “name space” so
names begin to collide, causing an extra management overhead. In C#, the
namespace keyword, the assembly referencing scheme, and the using keyword
give you complete control over names, so the issue of name collision is easily
avoided.

There are two reasons for controlling access to members. The first is to keep
users’ hands off tools that they shouldn’t touch: tools that are necessary for the
internal machinations of the data type, but not part of the interface that users
need to solve their particular problems. So making methods and fields private is
a service to users because they can easily see what’s important to them and what
they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow the library
designer to change the internal workings of the class without worrying about how
it will affect the client programmer. You might build a class one way at first, and
then discover that restructuring your code will provide much greater speed. If the
interface and implementation are clearly separated and protected, you can
accomplish this without forcing the users to rewrite their code.

Access specifiers in C# give valuable control to the creator of a class. The users of
the class can clearly see exactly what they can use and what to ignore. More
important, though, is the ability to ensure that no user becomes dependent on
any part of the underlying implementation of a class. If you know this as the
creator of the class, you can change the underlying implementation with the
knowledge that no client programmer will be affected by the changes because
they can’t access that part of the class.

When you have the ability to change the underlying implementation, you can not
only improve your design later, but you also have the freedom to make mistakes.
No matter how carefully you plan and design you’ll make mistakes. Knowing that
it’s relatively safe to make these mistakes means you’ll be more experimental,
you’ll learn faster, and you’ll finish your project sooner.

The public interface to a class is what the user does see, so that is the most
important part of the class to get “right” during analysis and design. Even that
allows you some leeway for change. If you don’t get the interface right the first
time, you can add more methods, as long as you don’t remove any that client
programmers have already used in their code.

Chapter 6: Hiding the Implementation 217

Exercises
1. Write a program that creates an ArrayList object without explicitly

importing System.Collections.

2. In the section labeled “the library unit,” turn the code fragments
concerning MyNamespace into a compiling and running pair of
assemblies (a library assembly and an executable assembly).

3. In the section labeled “Collisions,” take the code fragments and turn
them into a program, and verify that collisions do in fact occur.

4. Compile TestDebug.cs with Debug defined and not. Confirm that the
behavior is different due to the preprocessed directives.

5. Create a class with public, private, protected, and internal data
members and method members. Create an object of this class and see
what kind of compiler messages you get when you try to access all the
class members. Be aware that classes in the same assembly are part of the
“default” package.

6. Create a class with internal properties and methods. Compile it into a
library assembly. Create another class that attempts to read the data and
compile it into an executable assembly. Observe the behavior. Compile
both classes into a single executable assembly and observe the behavior.

7. Change the class Cookie as specified in the section labeled “protected:
‘sort of friendly.’” Verify that Bite() is not public.

8. In the section titled “Class access” you’ll find code fragments describing
Mylib and Widget. Create this library, then create a Widget in a class
that is not part of the Mylib package.

9. Following the form of the example Lunch.cs, create a class called
ConnectionManager that manages a fixed array of Connection
objects. The client programmer must not be able to explicitly create
Connection objects, but can only get them via a static method in
ConnectionManager. When the ConnectionManager runs out of
objects, it returns a null reference. Test the classes in Main().

10. Referring back to the party domain exercises from earlier chapters,
divide the domain into several logical namespaces.

218 Thinking in C# www.ThinkingIn.NET

11. Divide a large sheet of paper with the namespaces you developed in
exercise 10. Place the classes that you have developed into their
appropriate namespace. Using the programs that you have written, trace
execution with a coin.

If the coin accesses a method or property in the same class, mark the
method or property as private.

If the coin accesses method or property in a class within its namespace,
mark the method or data as internal.

When the coin crosses namespace boundaries, it necessarily must be
accessing something public.

Modify your code according to this exercise. Compile each namespace
into a separate assembly. Confirm that all your programs still work!

12. Taking the diagram developed in the previous exercise as a start, create a
new diagram that lists just the public classes, methods, and properties in
your party domain. Compare the readability of this diagram with the
complete diagram.

13. With the diagrams from the two previous exercises available, implement
a program in one of the namespaces that you haven’t concentrated on.
You should find that you need to access classes in other namespaces.
Eliminate common code and confirm that all your programs continue to
work. Are the diagrams helpful? Is one more helpful than the other?
Why?

219

7: Reusing Classes
One of the most compelling features about object
orientation is code reuse. Studies have shown that high-
quality reusable components can be the second-most
important factor to productivity (only the order-of-
magnitude difference in productivity between the best
and worst programmers counts more). Conversely, trying
to work with low-quality reusable components is the
greatest detractor from productivity. In other words, the
quality of the libraries that you use to build your solutions
has an enormous influence on software success.

Like everything in C#, the key to software quality lies in the object-oriented class.
You reuse code by creating new classes, but instead of creating them from
scratch, you use existing classes that someone has already built and debugged.

The trick is to use the classes without soiling the existing code. In this chapter
you’ll see two ways to accomplish this. The first is quite straightforward: You
simply create objects of your existing class inside the new class. This is called
composition, because the new class is composed of objects of existing classes.
You’re simply reusing the functionality of the code, not its form.

The second approach is more subtle. It creates a new class as a type of an existing
class. You literally take the form of the existing class and add code to it without
modifying the existing class. This magical act is called inheritance, and the
compiler does most of the work. Inheritance is one of the cornerstones of object-
oriented programming.

It turns out that much of the syntax and behavior are similar for both
composition and inheritance (which makes sense because they are both ways of
making new types from existing types). In this chapter, you’ll learn about these
code reuse mechanisms.

220 Thinking in C# www.MindView.net

Composition syntax
Until now, composition has been used quite frequently. You simply place object
references inside new classes. For example, suppose you’d like an object that
holds several string objects, a couple of primitives, and an object of another
class. For the non-value types, you put references inside your new class, but you
define the objects directly:

//:c07:SprinklerSystem.cs
// Composition for code reuse.
using System;

class WaterSource {
 private string s;
 internal WaterSource() {
 Console.WriteLine("WaterSource()");
 s = "Constructed";
 }
 public override string ToString() { return s;}
}

public class SprinklerSystem {
 private string valve1, valve2, valve3, valve4;
 WaterSource source;
 int i;
 float f;
 void Print() {
 Console.WriteLine("valve1 = " + valve1);
 Console.WriteLine("valve2 = " + valve2);
 Console.WriteLine("valve3 = " + valve3);
 Console.WriteLine("valve4 = " + valve4);
 Console.WriteLine("i = " + i);
 Console.WriteLine("f = " + f);
 Console.WriteLine("source = " + source);
 }
 public static void Main() {
 SprinklerSystem x = new SprinklerSystem();
 x.Print();
 }
} ///:~

Chapter 7: Reusing Classes 221

At first glance, you might assume—C# being as safe and careful as it is—that the
compiler would automatically construct objects for each of the references in the
above code; for example, calling the default constructor for WaterSource to
initialize source. The output of the print statement is in fact:

valve1 =
valve2 =
valve3 =
valve4 =
i = 0
f = 0
source =

Value types that are fields in a class are automatically initialized to zero, as noted
in Chapter 5. But the object references are initialized to null, and if you try to call
methods for any of them you’ll get an exception. It’s actually pretty good (and
useful) that you can still print them out without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for every
reference because that would incur unnecessary overhead in many cases. If you
want the references initialized, you can do it:

1. At the point the objects are defined. This means that they’ll always be
initialized before the constructor is called.

2. In the constructor for that class.

3. Right before you actually need to use the object. This is often called lazy
initialization. It can reduce overhead in situations where the object
doesn’t need to be created every time.

All three approaches are shown here:

//:c07:Bath.cs
// Constructor initialization with composition.
using System;

class Soap {
 private string s;
 internal Soap() {
 Console.WriteLine("Soap()");
 s = "Constructed";
 }
 public override string ToString() { return s;}

222 Thinking in C# www.ThinkingIn.NET

}

public class Bath {
 private string
 // Initializing at point of definition:
 s1 = "Happy",
 s2 = "Happy",
 s3, s4;
 Soap castille;
 int i;
 float toy;
 Bath() {
 Console.WriteLine("Inside Bath()");
// Initializing inside the constructor
 s3 = "Joy";
 i = 47;
 toy = 3.14f;
 castille = new Soap();
 }
 void Print() {
 // Delayed initialization:
 if (s4 == null)
 s4 = "Joy";
 Console.WriteLine("s1 = " + s1);
 Console.WriteLine("s2 = " + s2);
 Console.WriteLine("s3 = " + s3);
 Console.WriteLine("s4 = " + s4);
 Console.WriteLine("i = " + i);
 Console.WriteLine("toy = " + toy);
 Console.WriteLine("castille = " + castille);
 }
 public static void Main() {
 Bath b = new Bath();
 b.Print();
 }
} ///:~

Note that in the Bath constructor a statement is executed before any of the
initializations take place. When you don’t initialize at the point of definition,
there’s still no guarantee that you’ll perform any initialization before you send a
message to an object reference—except for the inevitable run-time exception.

Chapter 7: Reusing Classes 223

Here’s the output for the program:

Inside Bath()
Soap()
s1 = Happy
s2 = Happy
s3 = Joy
s4 = Joy
i = 47
toy = 3.14
castille = Constructed

When Print() is called it fills in s4 so that all the fields are properly initialized
by the time they are used.

Inheritance syntax
Inheritance is an integral part of C# (and OOP languages in general). It turns out
that you’re always doing inheritance when you create a class, because unless you
explicitly inherit from some other class, you implicitly inherit from C#’s standard
root class object.

The syntax for composition is obvious, but to perform inheritance there’s a
distinctly different form. When you inherit, you say “This new class is like that
old class.” You state this in code by giving the name of the class as usual, but
before the opening brace of the class body, put a colon followed by the name of
the base class. When you do this, you automatically get all the data members and
methods in the base class. Here’s an example:

//:c07:Detergent.cs
///Compile with: "/main:Detergent"
// Inheritance syntax & properties.
using System;

internal class Cleanser {
 private string s = "Cleanser";
 public void Append(string a) { s += a;}
 public void Dilute() { Append(" dilute()");}
 public void Apply() { Append(" apply()");}
 virtual public void Scrub() { Append(" scrub()");}
 public void Print() { Console.WriteLine(s);}
 public static void Main() {
 Cleanser x = new Cleanser();

224 Thinking in C# www.MindView.net

 x.Dilute(); x.Apply(); x.Scrub();
 x.Print();
 }
}

internal class Detergent : Cleanser {
 // Change a method:
 override public void Scrub() {
 Append(" Detergent.scrub()");
 base.Scrub(); // Call base-class version
 }
 // Add methods to the interface:
 public void Foam() { Append(" Foam()");}
 // Test the new class:
 new public static void Main() {
 Detergent x = new Detergent();
 x.Dilute();
 x.Apply();
 x.Scrub();
 x.Foam();
 x.Print();
 Console.WriteLine("Testing base class:");
 Cleanser.Main();
 }
} ///:~

This demonstrates a number of features. First, both Cleanser and Detergent
contain a Main() method. You can create a Main() for each one of your
classes, but if you do so, the compiler will generate an error, saying that you are
defining multiple entry points. You can choose which Main() you want to have
associated with the assembly by using the /Main:Classname switch. Thus, if you
compile the above with csc Detergent.cs /Main:Cleanser, the output will be:

Cleanser dilute() apply() scrub()

While if compiled with csc Detergent.cs /Main:Detergent, the result is:

Cleanser dilute() apply() Detergent.scrub() scrub() Foam()
Testing base class:
Cleanser dilute() apply() scrub()

This technique of putting a Main() in each class can sometimes help with
testing, when you just want to write a quick little program to make sure your
methods are working the way you intend them to. But for general testing

Chapter 7: Reusing Classes 225

purposes, you should use a unit-testing framework (see Appendix C). You don’t
need to remove the Main() when you’re finished testing; you can leave it in for
later testing.

Here, you can see that Detergent.Main() calls Cleanser.Main() explicitly,
passing it the same arguments from the command line (however, you could pass
it any string array).

It’s important that all of the methods in Cleanser are public. Remember that if
you leave off any access specifier the member defaults to private, which allows
access only to the very class in which the field or method is defined. So to plan for
inheritance, as a general rule leave fields private, but make all methods public.
(protected members also allow access by derived classes; you’ll learn details on
what this means later.) Of course, in particular cases you must make
adjustments, but this is a useful guideline.

Note that Cleanser has a set of methods in its interface: Append(), Dilute(),
Apply(), Scrub(), and Print(). Because Detergent is derived from
Cleanser it automatically gets all these methods in its interface, even though you
don’t see them all explicitly defined in Detergent. You can think of inheritance,
then, as reusing the interface. (The implementation also comes with it, but that
part isn’t the primary point.)

As seen in Scrub(), it’s possible to take a method that’s been defined in the base
class and modify it. In this case, you might want to call the method from the base
class inside the new version. But inside Scrub() you cannot simply call
Scrub(), since that would produce a recursive call, which isn’t what you want.
To solve this problem C# has the keyword base that refers to the “base class”
(also called the “superclass”) from which the current class has been inherited.
Thus the expression base.Scrub() calls the base-class version of the method
Scrub().

When inheriting you’re not restricted to using the methods of the base class. You
can also add new methods to the derived class exactly the way you put any
method in a class: just define it. The method Foam() is an example of this.

In Detergent.Main() you can see that for a Detergent object you can call all
the methods that are available in Cleanser as well as in Detergent (i.e.,
Foam()).

Initializing the base class
Since there are now two classes involved—the base class and the derived class—
instead of just one, it can be a bit confusing to try to imagine the resulting object

226 Thinking in C# www.ThinkingIn.NET

produced by a derived class. From the outside, it looks like the new class has the
same interface as the base class and maybe some additional methods and fields.
But inheritance doesn’t just copy the interface of the base class. When you create
an object of the derived class, it contains within it a subobject of the base class.
This subobject is the same as if you had created an object of the base class by
itself. It’s just that, from the outside, the subobject of the base class is wrapped
within the derived-class object.

Of course, it’s essential that the base-class subobject be initialized correctly and
there’s only one way to guarantee that: perform the initialization in the
constructor, by calling the base-class constructor, which has all the appropriate
knowledge and privileges to perform the base-class initialization. C#
automatically inserts calls to the base-class constructor in the derived-class
constructor. The following example shows this working with three levels of
inheritance:

//:c07:Cartoon.cs
// Constructor calls during inheritance.
using System;

internal class Art {
 protected Art() {
 Console.WriteLine("Art constructor");
 }
}

internal class Drawing : Art {
 protected Drawing() {
 Console.WriteLine("Drawing constructor");
 }
}

internal class Cartoon : Drawing {
 protected Cartoon() {
 Console.WriteLine("Cartoon constructor");
 }
 public static void Main() {
 Cartoon x = new Cartoon();
 }
} ///:~

The output for this program shows the automatic calls:

Chapter 7: Reusing Classes 227

Art constructor
Drawing constructor
Cartoon constructor

You can see that the construction happens from the base “outward,” so the base
class is initialized before the derived-class constructors can access it.

Even if you don’t create a constructor for Cartoon(), the compiler will
synthesize a default constructor for you that calls the base class constructor.

Constructors with arguments
The above example has default constructors; that is, they don’t have any
arguments. It’s easy for the compiler to call these because there’s no question
about what arguments to pass. If your class doesn’t have default arguments, or if
you want to call a base-class constructor that has an argument, you must
explicitly write the calls to the base-class constructor using the base keyword and
the appropriate argument list:

//:c07:Chess.cs
// Inheritance, constructors and arguments.
using System;

public class Game {
 internal Game(int i) {
 Console.WriteLine("Game constructor");
 }
}

public class BoardGame : Game {
 internal BoardGame(int i) : base(i) {
 Console.WriteLine("BoardGame constructor");
 }
}

public class Chess : BoardGame {
 internal Chess() : base(11){
 Console.WriteLine("Chess constructor");
 }
 public static void Main() {
 Chess x = new Chess();
 }
}///:~

228 Thinking in C# www.MindView.net

If you don’t call the base-class constructor in BoardGame(), the compiler will
complain that it can’t find a constructor of the form Game().

Catching base constructor exceptions
As just noted, the compiler forces you to place the base-class constructor call
before even the body of the derived-class constructor. As you’ll see in Chapter 11,
this also prevents a derived-class constructor from catching any exceptions that
come from a base class. This can be inconvenient at times.

//:c07:Dome.cs
using System;

class Dome {
 public Dome(){
 throw new InvalidOperationException();
 }
}

class Brunelleschi : Dome {
 public Brunelleschi(){
 Console.WriteLine("Ingenious Vaulting");
 }

 public static void Main(){
 try {
 new Brunelleschi();
 } catch (Exception ex) {
 Console.WriteLine(ex);
 }
 }
}///:~

prints:

System.InvalidOperationException: Operation is not valid
due to the current state of the object.
 at Dome..ctor()
 at Brunelleschi.Main()

Chapter 7: Reusing Classes 229

Combining composition
and inheritance
It is very common to use composition and inheritance together. The following
example shows the creation of a more complex class, using both inheritance and
composition, along with the necessary constructor initialization:

//:c07:PlaceSetting.cs
// Combining composition & inheritance.
using System;

class Plate {
 internal Plate(int i) {
 Console.WriteLine("Plate constructor");
 }
}

class DinnerPlate : Plate {
 internal DinnerPlate(int i) : base(i) {
 Console.WriteLine("DinnerPlate constructor");
 }
}

class Utensil {
 internal Utensil(int i) {
 Console.WriteLine("Utensil constructor");
 }
}

class Spoon : Utensil {
 internal Spoon(int i) : base(i) {
 Console.WriteLine("Spoon constructor");
 }
}

class Fork : Utensil {
 internal Fork(int i) : base(i) {
 Console.WriteLine("Fork constructor");
 }
}

230 Thinking in C# www.ThinkingIn.NET

class Knife : Utensil {
 internal Knife(int i) : base(i) {
 Console.WriteLine("Knife constructor");
 }
}

// A cultural way of doing something:
class Custom {
 internal Custom(int i) {
 Console.WriteLine("Custom constructor");
 }
}

class PlaceSetting : Custom {
 Spoon sp;
 Fork frk;
 Knife kn;
 DinnerPlate pl;
 PlaceSetting(int i) : base(i + 1) {
 sp = new Spoon(i + 2);
 frk = new Fork(i + 3);
 kn = new Knife(i + 4);
 pl = new DinnerPlate(i + 5);
 Console.WriteLine("PlaceSetting constructor");
 }
 public static void Main (){
 PlaceSetting x = new PlaceSetting(9);
 }
}///:~

While the compiler forces you to initialize the base classes, and requires that you
do it right at the beginning of the constructor, it doesn’t watch over you to make
sure that you initialize the member objects, so you must remember to pay
attention to that.

Guaranteeing proper cleanup
You may recall from Chapter 5 that although C# has a destructor, we said that the
proper way to guarantee that an object cleans up after itself involved the
IDisposable interface, implementing the method Dispose(), and wrapping
the “valuable resource” in a using block. At the time, we deferred a discussion of
how it worked, but with an understanding of inheritance, it starts to becomes

Chapter 7: Reusing Classes 231

clear. (Although understanding how the using block works will require an
understanding of Exceptions, which is coming in Chapter 11.)

 Consider an example of a computer-aided design system that draws pictures on
the screen:

//:c07:CADSystem.cs
// Ensuring proper cleanup.
using System;

class Shape : IDisposable {
 internal Shape(int i) {
 Console.WriteLine("Shape constructor");
 }
 public virtual void Dispose() {
 Console.WriteLine("Shape disposed");
 }
}

class Circle : Shape {
 internal Circle(int i) : base(i) {
 Console.WriteLine("Drawing a Circle");
 }
 public override void Dispose() {
 Console.WriteLine("Erasing a Circle");
 base.Dispose();
 }
}

class Triangle : Shape {
 internal Triangle(int i) : base(i) {
 Console.WriteLine("Drawing a Triangle");
 }
 public override void Dispose() {
 Console.WriteLine("Erasing a Triangle");
 base.Dispose();
 }
}

class Line : Shape {
 private int start, end;
 internal Line(int start, int end) : base(start){

232 Thinking in C# www.MindView.net

 this.start = start;
 this.end = end;
 Console.WriteLine("Drawing a Line: "
 + start + ", " + end);
 }
 public override void Dispose() {
 Console.WriteLine("Erasing a Line: "
 + start + ", " + end);
 base.Dispose();
 }
}

class CADSystem : Shape {
 private Circle c;
 private Triangle t;
 private Line[] lines = new Line[10];
 CADSystem(int i) : base(i + 1){
 for (int j = 0; j < 10; j++)
 lines[j] = new Line(j, j*j);
 c = new Circle(1);
 t = new Triangle(1);
 Console.WriteLine("Combined constructor");
 }
 public override void Dispose() {
 Console.WriteLine("CADSystem.Dispose()");
 // The order of cleanup is the reverse
 // of the order of initialization
 t.Dispose();
 c.Dispose();
 for (int i = lines.Length - 1; i >= 0; i--)
 lines[i].Dispose();
 base.Dispose();
 }
 public static void Main() {
 CADSystem x = new CADSystem(47);
 using(x){
 // Code and exception handling...
 }
 Console.WriteLine("Using block left");
 }
}///:~

Chapter 7: Reusing Classes 233

Everything in this system is some kind of Shape (which itself is a kind of object
since it’s implicitly inherited from the root class and which implements an
interface called IDisposable). Each class redefines Shape’s Dispose() method
in addition to calling the base-class version of that method using base. The
specific Shape classes—Circle, Triangle and Line—all have constructors that
“draw,” although any method called during the lifetime of the object could be
responsible for doing something that needs cleanup. Each class has its own
Dispose() method to restore nonmemory things back to the way they were
before the object existed.

In Main(), you can see the using keyword in action. A using block takes an
IDisposable as an argument. When execution leaves the block (even if an
exception is thrown), IDisposable.Dispose() is called. But because we have
implemented Dispose() in Shape and all the classes derived from it,
inheritance kicks in and the appropriate Dispose() method is called. In this
case, the using block has a CADSystem. Its Dispose() method calls, in turn,
the Dispose() method of the objects which comprise it.

Note that in your cleanup method you must also pay attention to the calling order
for the base-class and member-object cleanup methods in case one subobject
depends on another. In general, you should follow the same form that is imposed
by a C++ compiler on its destructors: First perform all of the cleanup work
specific to your class, in the reverse order of creation. (In general, this requires
that base-class elements still be viable.) Then call the base-class Dispose
method, as demonstrated here.

There can be many cases in which the cleanup issue is not a problem; you just let
the garbage collector do the work. But when you must do it explicitly, diligence
and attention is required.

Order of garbage collection
There’s not much you can rely on when it comes to garbage collection. The
garbage collector may not be called until your program exits. If it is called, it can
reclaim objects in any order it wants. It’s best to not rely on garbage collection for
anything but memory reclamation. If you have “valuable resources” which need
explicit cleanup, always initialize them as late as possible, and dispose of them as
soon as you can.

234 Thinking in C# www.ThinkingIn.NET

Choosing composition
vs. inheritance
Both composition and inheritance allow you to place subobjects inside your new
class. You might wonder about the difference between the two, and when to
choose one over the other.

Composition is generally used when you want the features of an existing class
inside your new class, but not its interface. That is, you embed an object so that
you can use it to implement functionality in your new class, but the user of your
new class sees the interface you’ve defined for the new class rather than the
interface from the embedded object. For this effect, you embed private objects
of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access the
composition of your new class, that is, to make the member objects public. The
member objects use implementation hiding themselves, so this is a safe thing to
do. When the user knows you’re assembling a bunch of parts, it makes the
interface easier to understand. A Car object is a good example:

//:c07:Car.cs
// Composition with public objects.

public class Engine {
 public void Start() {}
 public void Rev() {}
 public void Stop() {}
}

public class Wheel {
 public void Inflate(int psi) {}
}

public class Window {
 public void Rollup() {}
 public void Rolldown() {}
}

public class Door {
 public Window window = new Window();
 public void Open() {}

Chapter 7: Reusing Classes 235

 public void Close() {}
}

public class Car {
 public Engine engine = new Engine();
 public Wheel[] wheel = new Wheel[4];
 public Door left = new Door(),
 right = new Door(); // 2-door
 public Car() {
 for (int i = 0; i < 4; i++)
 wheel[i] = new Wheel();
 }
 public static void Main() {
 Car car = new Car();
 car.left.window.Rollup();
 car.wheel[0].Inflate(72);
 }
} ///:~

Because the composition of a car is part of the analysis of the problem (and not
simply part of the underlying design), making the members public assists the
client programmer’s understanding of how to use the class and requires less code
complexity for the creator of the class. However, keep in mind that this is a
special case and that in general you should make fields private.

When you inherit, you take an existing class and make a special version of it. In
general, this means that you’re taking a general-purpose class and specializing it
for a particular need. With a little thought, you’ll see that it would make no sense
to compose a car using a vehicle object—a car doesn’t contain a vehicle, it is a
vehicle. The is-a relationship is expressed with inheritance, and the has-a
relationship is expressed with composition.

protected
Now that you’ve been introduced to inheritance, the keyword protected finally
has meaning. In an ideal world, private members would always be hard-and-fast
private, but in real projects there are times when you want to make something
hidden from the world at large and yet allow access for members of derived
classes. The protected keyword is a nod to pragmatism. It says “This is private
as far as the class user is concerned, but available to anyone who inherits from
this class.”

236 Thinking in C# www.MindView.net

The best tack to take is to leave the data members private—you should always
preserve your right to change the underlying implementation. You can then allow
controlled access to inheritors of your class through protected methods:

//:c07:Orc.cs
// The protected keyword.

public class Villain {
 private int i;
 protected int Read() { return i;}
 protected void Set(int ii) { i = ii;}
 public Villain(int ii) { i = ii;}
 public int Value(int m) { return m*i;}
}

public class Orc : Villain {
 private int j;
 public Orc(int jj) :base(jj) { j = jj;}
 public void Change(int x) { Set(x);}
} ///:~ (non-executable code snippet)

You can see that Change() has access to Set() because it’s protected.

Incremental development
One of the advantages of inheritance is that it supports incremental development
by allowing you to introduce new code without causing bugs in existing code. This
also isolates new bugs inside the new code. By inheriting from an existing,
functional class and adding data members and methods (and redefining existing
methods), you leave the existing code—that someone else might still be using—
untouched and unbugged. If a bug happens, you know that it’s in your new code,
which is much shorter and easier to read than if you had modified the body of
existing code.

It’s rather amazing how cleanly the classes are separated. You don’t even need the
source code for the methods in order to reuse the code. This is true for both
inheritance and composition.

It’s important to realize that program development is an incremental process,
just like human learning. You can do as much analysis as you want, but you still
won’t know all the answers when you set out on a project. You’ll have much more
success—and more immediate feedback—if you start out to “grow” your project as

Chapter 7: Reusing Classes 237

an organic, evolutionary creature, rather than constructing it all at once like a
glass-box skyscraper.

Although inheritance for experimentation can be a useful technique, at some
point after things stabilize you need to take a new look at your class hierarchy
with an eye to collapsing it into a sensible structure. Remember that underneath
it all, inheritance is meant to express a relationship that says “This new class is a
type of that old class.” Your program should not be concerned with pushing bits
around, but instead with creating and manipulating objects of various types to
express a model in the terms that come from the problem space.

Upcasting
The most important aspect of inheritance is not that it provides methods for the
new class. It’s the relationship expressed between the new class and the base
class. This relationship can be summarized by saying “The new class is a type of
the existing class.”

This description is not just a fanciful way of explaining inheritance—it’s
supported directly by the language. As an example, consider a base class called
Instrument that represents musical instruments, and a derived class called
Wind. Because inheritance means that all of the methods in the base class are
also available in the derived class, any message you can send to the base class can
also be sent to the derived class. If the Instrument class has a Play() method,
so will Wind instruments. This means we can accurately say that a Wind object
is also a type of Instrument. The following example shows how the compiler
supports this notion:

//:c07:Wind.cs
// Inheritance & upcasting.

public class Instrument {
 public void play() {}
 static internal void tune(Instrument i) {
 // ...
 i.play();
 }
}

// Wind objects are instruments
// because they have the same interface:
public class Wind : Instrument {

238 Thinking in C# www.ThinkingIn.NET

 public static void Main() {
 Wind flute = new Wind();
 Instrument.tune(flute); // Upcasting
 }
} ///:~

What’s interesting in this example is the Tune() method, which accepts an
Instrument reference. However, in Wind.Main() the Tune() method is
called by giving it a Wind reference. Given that C# is particular about type
checking, it seems strange that a method that accepts one type will readily accept
another type, until you realize that a Wind object is also an Instrument object,
and there’s no method that Tune() could call for an Instrument that isn’t also
in Wind. Inside Tune(), the code works for Instrument and anything derived
from Instrument, and the act of converting a Wind reference into an
Instrument reference is called upcasting.

Why “upcasting”?
The reason for the term is historical, and based on the way class inheritance
diagrams have traditionally been drawn: with the root at the top of the page,
growing downward. (Of course, you can draw your diagrams any way you find
helpful.) The inheritance diagram for Wind.java is then:

Instrument

Wind

Figure 7-1: Traditionally, base classes are drawn higher on the page.

Casting from derived to base moves up on the inheritance diagram, so it’s
commonly referred to as upcasting. Upcasting is always safe because you’re going
from a more specific type to a more general type. That is, the derived class is a
superset of the base class. It might contain more methods than the base class, but
it must contain at least the methods in the base class. The only thing that can
occur to the class interface during the upcast is that it can lose methods, not gain
them. This is why the compiler allows upcasting without any explicit casts or
other special notation.

You can also perform the reverse of upcasting, called downcasting, but this
involves a dilemma that is the subject of Chapter 12.

Chapter 7: Reusing Classes 239

Composition vs. inheritance revisited
In object-oriented programming, the most likely way that you’ll create and use
code is by simply packaging data and methods together into a class, and using
objects of that class. You’ll also use existing classes to build new classes with
composition. Less frequently, you’ll use inheritance. So although inheritance gets
a lot of emphasis while learning OOP, it doesn’t mean that you should use it
everywhere you possibly can. On the contrary, you should use it sparingly, only
when it’s clear that inheritance is useful. One of the clearest ways to determine
whether you should use composition or inheritance is to ask whether you’ll ever
need to upcast from your new class to the base class. If you must upcast, then
inheritance is necessary, but if you don’t need to upcast, then you should look
closely at whether you need inheritance. The next chapter (polymorphism)
provides one of the most compelling reasons for upcasting, but if you remember
to ask “Do I need to upcast?” you’ll have a good tool for deciding between
composition and inheritance.

Explicit overloading only
Some of C#’s most notable departures from the object-oriented norm are the
barriers it places on the road to overloading functionality. In most object-
oriented languages, if you have classes Fork and Spoon that descend from
Utensil, a base method GetFood, and two implementations of it, you just declare
the method in the base and have identical signatures in the descending classes:

+GetFood()

Utensil

+GetFood()

Fork

+GetFood()

Spoon

Figure 7-2: Fork and Spoon overload Utensil.GetFood()

In Java, this would look like:

class Utensil{
 public void GetFood(){ //…}
}

240 Thinking in C# www.MindView.net

class Fork extends Utensil{
 public void GetFood(){
 System.out.println("Spear");
 }
}

class Spoon extends Utensil{
 public void GetFood(){
 System.out.println("Scoop");
 }
}

In C#, you have to jump through a bit of a hoop; methods for which overloading
is intended must be declared virtual and the overloading method must be
declared as an override. To get the desired structure would look like this:

class Utensil{
 public virtual void GetFood(){ //…}
}

class Fork extends Utensil{
public override void GetFood(){
 Console.WriteLine("Spear");
 }
}

class Spoon extends Utensil{
public override void GetFood(){
 Console.WriteLine("Scoop");
 }
}

This is a behavior that stems from Microsoft’s experience with “DLL Hell” and
thoughts about a world in which object-oriented components are the building
blocks of very large systems. Imagine that you are using Java and using a third-
party “Kitchen” component that includes the base class of Utensil, but you
customize it to use that staple of dorm life – the Spork. But in addition to
implementing GetFood(), you add a dorm-like method Wash():

//Spork.java
class Spork extends Utensil{

Chapter 7: Reusing Classes 241

 public void GetFood(){
 System.out.println(“Spear OR Scoop!”);
 }

 public void Wash(){
 System.out.println(“Wipe with napkin”);
 }
}

Of course, since Wash isn’t implemented in Utensil, you could only “wash” a
spork (which is just as well, considering the unhygienic nature of the
implementation). So the problem happens when the 3rd-party Kitchen
component vendor releases a new version of their component, and this time
they’ve implemented a method with an identical signature to the one you wrote:

//Utensil.java @version: 2.0
class Utensil{
 public void GetFood(){ //… }
 public void Wash(){
 myDishwasher.add(this);
 //etc…
 }
}

The vendor has implemented a Wash() method with complex behavior
involving a dishwasher. Given this new capability, people programming with
Utensil v2 will have every right to assume that once Wash() has been called, all
Utensils will have gone through the dishwasher. But in languages such as Java,
the Wash() method in Spork will still be called!

Figure 7-3: Late binding can cause undesired behavior if the base type changes

242 Thinking in C# www.ThinkingIn.NET

It may seem highly unlikely that a new version of a base class would “just
happen” to have the same name as an end-user’s extension, but if you think about
it, it’s actually kind of surprising it doesn’t happen more often, as the number of
logical method names for a given category of base class is fairly limited.

In C#, the behavior in Client’s WashAll() method would work exactly the way
clients expect, with Utensil’s dishwasher Wash() being called for all utensils in
myUtensils, even if one happens to be a Spork.

Now let’s say you come along and start working on Spork again after upgrading to
the version of Utensil that has a Wash() method. When you compile Spork.cs,
the compiler will say:

warning CS0108: The keyword new is required on
'Spork.Wash()' because it hides inherited member
'Utensil.Wash()'

At this point, calls to Utensil.Wash() are resolved with the dishwasher
washing method, while if you have a handle to a Spork, the napkin-wiping wash
method will be called.

//:c07:Utensil.cs
using System;

class Utensil {
 public virtual void GetFood(){}
 public void Wash(){
 Console.WriteLine("Washing in a dishwasher");
 }
}

class Fork : Utensil {
 public override void GetFood(){
 Console.WriteLine("Spear");
 }
}

class Spork : Utensil {
 public override void GetFood(){
 Console.WriteLine("Spear OR Scoop!");
 }

 public void Wash(){

Chapter 7: Reusing Classes 243

 Console.WriteLine("Wipe with napkin");
 }
}

class Client {
 Utensil[] myUtensils;
 Client(){
 myUtensils = new Utensil[2];
 myUtensils[0] = new Spork();
 myUtensils[1] = new Fork();
 }
 public void WashAll(){
 foreach(Utensil u in myUtensils){
 u.Wash();
 }
 }

 public static void Main(){
 Client c = new Client();
 c.WashAll();
 Spork s = new Spork();
 s.Wash();
 }
}///:~

results in the output:

Washing in a dishwasher
Washing in a dishwasher
Wipe with napkin

In order to remove the warning that Spork.Wash() is hiding the newly minted
Utensil.Wash(), we can add the keyword new to Spork’s declaration:

public new void Wash(){ //… etc ...

It’s even possible for you to have entirely separate method inheritance
hierarchies by declaring a method as new virtual. Imagine that for version 3 of
the Kitchen component, they’ve created a new type of Utensil, Silverware,
which requires polishing after cleaning. Meanwhile, you’ve created a new kind of
Spork, a SuperSpork, which also has overridden the base Spork.Wash()
method.

The code looks like this:

244 Thinking in C# www.MindView.net

//:c07:Utensil2.cs
using System;

class Utensil {
 public virtual void GetFood(){}
 public virtual void Wash(){
 Console.WriteLine("Washing in a dishwasher");
 }
}

class Silverware : Utensil {
 public override void Wash(){
 base.Wash();
 Console.WriteLine("Polish with silver cleaner");
 }
}

class Fork : Silverware {
 public override void GetFood(){
 Console.WriteLine("Spear");
 }
}

class Spork : Silverware {
 public override void GetFood(){
 Console.WriteLine("Spear OR Scoop!");
 }

 public new virtual void Wash(){
 Console.WriteLine("Wipe with napkin");
 }
}

class SuperSpork : Spork {
 public override void GetFood(){
 Console.WriteLine("Spear AND Scoop");

 }

 public override void Wash(){
 base.Wash();

Chapter 7: Reusing Classes 245

 Console.WriteLine("Polish with shirt");
 }
}

class Client {
 Utensil[] myUtensils;
 Client(){
 myUtensils = new Utensil[3];
 myUtensils[0] = new Spork();
 myUtensils[1] = new Fork();
 myUtensils[2] = new SuperSpork();
 }
 public void WashAll(){
 foreach(Utensil u in myUtensils){
 u.Wash();
 }
 Console.WriteLine("All Utensils washed");
 }

 public static void Main(){
 Client c = new Client();
 c.WashAll();
 Spork s = new SuperSpork();
 s.Wash();
 }
}///:~

Now, all of our Utensils have been replaced by Silverware and, when
Client.WashAll() is called, Silverware.Wash() overloads
Utensil.Wash(). (Note that Silverware.Wash() calls Utensil.Wash()
using base.Wash(), in the same manner as base constructors can be called.) All
Utensils in Client’s myUtensils array are now washed in a dishwasher and
then polished. Note the declaration in Spork:

public new virtual void Wash(){ //etc }

and the declaration in the newly minted SuperSpork class:

public override void Wash(){ //etc. }

When the Client class has a reference to a Utensil such as it does in WashAll()
(whether the concrete type of that Utensil be a Fork, a Spoon, or a Spork), the
Wash() method resolves to the appropriate overloaded method in Silverware.
When, however, the client has a reference to a Spork or any Spork-subtype, the

246 Thinking in C# www.ThinkingIn.NET

Wash() method resolves to whatever has overloaded Spork’s new virtual
Wash(). The output looks like this:

Washing in a dishwasher
Polish with silver cleaner
Washing in a dishwasher
Polish with silver cleaner
Washing in a dishwasher
Polish with silver cleaner
All Utensils washed
Wipe with napkin
Polish with shirt

And this UML diagram shows the behavior graphically:

+WashAll()

Client

+GetFood()
+Wash()

Utensil (3.0)

+Wash()

Silverware

1

-myUtensils

*

+new Wash()

Spork Fork Spoon

+Wash()

SuperSpork

Silverware.Wash() overloads
Utensil.Wash() and is used by
Client.WashAll().

1

-s

*
Superspork.Wash() overloads
new Spork.Wash() which is used
when Client has a reference
to a Spork or a subtype

Figure 7-4: C#’s binding model allows fine-tuned control of late-binding

Let’s say that you wanted to create a new class SelfCleansingSuperSpork,
that overloaded both the Wash() method as defined in Utensil and the
Wash() method as defined in Spork. What could you do? You cannot create a
single method name that overrides both base methods. As is generally the case,

Chapter 7: Reusing Classes 247

when faced with a hard programming problem, the answer lies in design, not
language syntax. Follow the maxim: boring code, interesting results.

One of the first things that jumps out when considering this problem is that the
inheritance hierarchy is getting deep. What we’re proposing is that a
SelfCleaningSuperSpork is-a SuperSpork is-a Spork is-a Silverware is-a
Utensil is-an object. That’s six levels of hierarchy – one more than Linnaeus
used to classify all living beings in 1735! It’s not impossible for a design to have
this many layers of inheritance, but in general, one should be dubious of
hierarchies of more than two or three levels below object.

Bearing in mind that our hierarchy is getting deep, we might also notice that our
names are becoming long and unnatural – SelfCleaningSuperSpork. While
coming up with descriptive names without getting cute is one of the harder tasks
in programming – Execute(), Run(), and Query() are bad, but I’ve heard a
story of a variable labeled riplvb because it’s initial value happened to be 0x723,
or decimal 1827, the year Ludwig van Beethoven died. Something’s wrong when a
class name becomes a hodge-podge of adjectives. In this case, our names are
being used to distinguish between two different properties – the shape of the
Utensil (Fork, Spoon, Spork, and SuperSpork) and the cleaning behavior
(Silverware, Spork, and SelfCleaningSuperSpork).

This is a clue that our design would be better using composition rather than
inheritance. As is very often the case, we discover that one of the “vectors of
change” is more naturally structural (the shape of the utensil) and that another is
more behavioral (the cleaning regimen). We can try out the phrase “A utensil has
a cleaning regimen,” to see if it sounds right, which indeed it does:

Utensil CleaningRegimen

1

-myCleaningRegiment

1

Figure 7-5: Refactoring the design

When a Utensil is constructed, it has a handle to a particular type of cleaning
regimen, but its Wash method doesn’t have to know the specific subtype of
CleaningRegimen it is using:

248 Thinking in C# www.MindView.net

+Wash()

Utensil

+Wash()

CleaningRegimen

WipeWithNapkin Dishwash SelfClean

1

-myCleaningRegimen

1

Wash(){
 myCleaningRegimen.Wash();
}

Figure 7-6: The Strategy design pattern

This is called the Strategy Pattern and it is, perhaps, the most important of all
the design patterns.

+Wash()

Utensil

+Wash()

CleaningRegimen

WipeWithNapkin Dishwash SelfClean

1

-myCleaningRegimen

1

Wash(){
 myCleaningRegimen.Wash();
}

Spoon Fork Spork

Figure 7-7: Manipulating CleaningRegimens on a per-Utensil basis

This is what the code would look like:

//:c07:Utensil3.cs
using System;

class Utensil {

Chapter 7: Reusing Classes 249

 CleaningRegimen myCleaningRegimen;
 internal Utensil(CleaningRegimen reg){
 myCleaningRegimen = reg;
 }

 void Wash(){
 myCleaningRegimen.Wash();
 }

 internal virtual void GetFood(){
 }
}

class Fork : Utensil {
 Fork() : base(new Dishwash()){}

 internal override void GetFood(){
 Console.WriteLine("Spear food");
 }
}

class Spoon : Utensil {
 Spoon() : base(new Dishwash()){}
 internal override void GetFood(){
 Console.WriteLine("Scoop food");
 }
}

class Spork : Utensil {
 Spork() : base(new WipeWithNapkin()){}
 internal override void GetFood(){
 Console.WriteLine("Spear or scoop!");
 }
}

abstract class CleaningRegimen {
 internal abstract void Wash();
}

class Dishwash : CleaningRegimen {
 internal override void Wash(){

250 Thinking in C# www.ThinkingIn.NET

 Console.WriteLine("Wash in dishwasher");
 }
}

class WipeWithNapkin : CleaningRegimen {
 internal override void Wash(){
 Console.WriteLine("Wipe with napkin");
 }
}///:~

At this point, every type of Utensil has a particular type of CleaningRegimen
associated with it, an association which is hard-coded in the constructors of the
Utensil subtypes (i.e., public Spork() : base(new WipeWithNapkin())).
However, you can see how it would be a trivial matter to totally decouple the
Utensil’s type of CleaningRegimen from the constructor – you could pass in
the CleaningRegimen from someplace else, choose it randomly, and so forth.

With this design, one can easily achieve our goal of a super utensil that combines
multiple cleaning strategies:

class SuperSpork : Spork{
 CleaningRegimen secondRegimen;
 public SuperSpork: super(new Dishwash()){
 secondRegimen = new NapkinWash();
 }
 public override void Wash(){
 base.Wash();
 secondRegimen.Wash();
 }
}

In this situation, the SuperSpork now has two CleaningRegimens, the normal
myCleaningRegimen and a new secondRegimen. This is the type of
flexibility that you can hope to achieve by favoring aggregation over inheritance.

Our original challenge, though, involved a 3rd party Kitchen component that
provided the basic design. Without access to the source code, there is no way to
implement our improved design. This is one of the things that makes it hard to
write components for reuse – “fully baked” components that are easy to use out
of the box are often hard to customize and extend, while “construction kit”
components that need to be assembled typically can sometimes take a long time
to learn.

Chapter 7: Reusing Classes 251

The const and readonly keywords
We know a CTO who, when reviewing code samples of potential programmers,
scans for numeric constants in the code – one strike and the resume goes in the
trash. We’re happy we never showed him any code for calendar math, because we
don’t think NUMBER_OF_DAYS_IN_WEEK is clearer than 7. Nevertheless,
application code often has lots of data that never changes and C# provides two
choices as to how to embody them in code.

The const keyword can be applied to value types: sbyte, byte, short, ushort, int,
uint, long, ulong, float, double, decimal, bool, char, string, structs and enums.
const fields are evaluated at compile-time, allowing for marginal performance
improvements. For instance:

//Number of milliseconds in a day
const long MS_PER_DAY = 1000 * 60 * 60 * 24;

will be replaced at compile time with the single value 86,400,000 rather than
triggering three multiplications every time it is used.

The readonly keyword is more general. It can be applied to any type and is
evaluated once — and only once — at runtime. Typically, readonly fields are
initialized at either the time of class loading (in the case of static fields), or at the
time of instance initialization for instance variables. It’s not necessary to limit
readonly fields to values that are essentially constant; you may use a readonly
field for any data that, once assigned, should be invariant – a person’s name or
social security number, a network address or port of a host, etc.

readonly does not make an object immutable. When applied to a non-value-
type object, readonly locks only your reference to the object, not the state of the
object itself. Such an object can go through whatever state transitions are
programmed into it – properties can be set, it can change its internal state based
on calculations, etc. The only thing you can’t do is change the reference to the
object. This can be seen in this example, which demonstrates readonly.

//:c07:Composition.cs
using System;
using System.Threading;

public class ReadOnly {
 static readonly DateTime
 timeOfClassLoad = DateTime.Now;
 readonly DateTime

252 Thinking in C# www.MindView.net

 timeOfInstanceCreation = DateTime.Now;
 public ReadOnly() {
 Console.WriteLine(
 "Class loaded at {0}, Instance created at {1}",
 timeOfClassLoad, timeOfInstanceCreation);
 }

 //used in second part of program
 static readonly ReadOnly ro = new ReadOnly();
 public int id;
 public int Id{
 get{ return id;}
 set{ id = value;}
 }

 public static void Main(){
 for (int i = 0; i < 10; i++) {
 new ReadOnly();
 Thread.Sleep(1000);
 }
 //Can change member
 ro.Id = 5;
 Console.WriteLine(ro.Id);
 //! Compiler says "a static readonly field
 //cannot be assigned to"
 //ro = new ReadOnly();
 }
}///:~

In order to demonstrate how objects created at different times will have different
fields, the program uses the Thread.Sleep() method from the Threading
namespace, which will be discussed at length in Chapter 16. The class ReadOnly
contains two readonly fields – the static TimeOfClassLoad field and the
instance variable timeOfInstanceCreation. These fields are of type
DateTime, which is the basic .NET object for counting time. Both fields are
initialized from the static DateTime property Now, which represents the system
clock.

When the Main creates the first ReadOnly object and the static fields are
initialized as discussed previously, TimeOfClassLoad is set once and for all.
Then, the instance variable field timeOfInstanceCreation is initialized.
Finally, the constructor is called, and it prints the value of these two fields to the

Chapter 7: Reusing Classes 253

console. Thread.Sleep(1000) is then used to pause the program for a second
(1,000 milliseconds) before creating another ReadOnly. The behavior of the
program until this point would be no different if these fields were not declared as
readonly, since we have made no attempt to modify the fields.

That changes in the lines below the loop. In addition to the readonly DateTime
fields, we have a static readonly ReadOnly field labeled ro (the class
ReadOnly contains a reference to an instance of ReadOnly –the Singleton
design pattern again). We also have a property called Id, but note that it is not
readonly.

(As a review of the discussion in Chapter 5, you should be able to figure out how
the values of ro’s timeOfClassLoad and timeOfInstanceCreation will relate
to the first ReadOnly created in the Main loop.)

Although the reference to ro is read only, the line ro.Id = 5; demonstrates how it
is possible to change the state of a readonly reference. What we can’t do,
though, is shown in the commented-out lines in the example – if we attempt to
assign to ro, we’ll get a compile time error.

The advantage of readonly over const is that const’s compile-time math is
immutable. If a class PhysicalConstants had a public const that set the speed of
light to 300,000 kilometers per second and another class used that for compile-
time math:

const long KILOMETERS_IN_A_LIGHT_YEAR = PhysicalConstants.C
* 3600 * 24 * DAYS_PER_YEAR

the value of KILOMETERS_IN_A_LIGHT_YEAR will be based on the 300,000
value, even if the base class is updated to a more accurate value such as 299,792.
This will be true until the class that defined
KILOMETERS_IN_A_LIGHT_YEAR is recompiled with access to the
updated PhysicalConstants class. If the fields were readonly though, the value
for KILOMETERS_IN_A_LIGHT_YEAR would be calculated at runtime,
and would not need to be recompiled to properly reflect the latest value of C.
Again, this is one of those features which may not seem like a big deal to many
application developers, but whose necessity is clear to Microsoft after a decade of
“DLL Hell.”

Sealed classes
The readonly and const keywords are used for locking down values and
references that should not be changed. Because one has to declare a method as
virtual in order to be overridden, it is easy to create methods that will not be

254 Thinking in C# www.ThinkingIn.NET

modified at runtime. Naturally, there is a way to specify that an entire class be
unmodifiable. When a class is declared as sealed, no one can derive from it.

There are two main reasons to make a class sealed. A sealed class is more
secure from intentional or unintentional tampering. Additionally, virtual
methods executed on a sealed class can be replaced with direct function calls,
providing a slight performance increase.

//:c07:Jurassic.cs
// Sealing a class

class SmallBrain {
}

sealed class Dinosaur {
 internal int i = 7;
 internal int j = 1;
 SmallBrain x = new SmallBrain();
 internal void F() {}
}

//! class Further : Dinosaur {}
// error: Cannot extend sealed class 'Dinosaur'

public class Jurassic {
 public static void Main() {
 Dinosaur n = new Dinosaur();
 n.F();
 n.i = 40;
 n.j++;
 }
}///:~

Defining the class as sealed simply prevents inheritance—nothing more.
However, because it prevents inheritance, all methods in a sealed class are
implicitly non-virtual, since there’s no way to override them.

Emphasize virtual functions
It can seem sensible to make as few methods as possible virtual and even to
declare a class as sealed. You might feel that efficiency is very important when
using your class and that no one could possibly want to override your methods
anyway. Sometimes this is true.

Chapter 7: Reusing Classes 255

But be careful with your assumptions. In general, it’s difficult to anticipate how a
class can be reused, especially a general-purpose class. Unless you declare a
method as virtual, you prevent the possibility of reusing your class through
inheritance in some other programmer’s project simply because you couldn’t
imagine it being used that way.

Initialization and
class loading
In more traditional languages, programs are loaded all at once as part of the
startup process. This is followed by initialization, and then the program begins.
The process of initialization in these languages must be carefully controlled so
that the order of initialization of statics doesn’t cause trouble. C++, for example,
has problems if one static expects another static to be valid before the second
one has been initialized.

C# doesn’t have this problem because it takes a different approach to loading.
Because everything in C# is an object, many activities become easier, and this is
one of them. As you will learn more fully in the next chapter, the compiled code
for a set of related classes exists in their own separate file, called an assembly.
That file isn’t loaded until the code is needed. In general, you can say that “Class
code is loaded at the point of first use.” This is often not until the first object of
that class is constructed, but loading also occurs when a static field or static
method is accessed.

The point of first use is also where the static initialization takes place. All the
static objects and the static code block will be initialized in textual order (that
is, the order that you write them down in the class definition) at the point of
loading. The statics, of course, are initialized only once.

Initialization with inheritance
It’s helpful to look at the whole initialization process, including inheritance, to get
a full picture of what happens. Consider the following code:

//:c07:Beetle.cs
// The full process of initialization.
using System;

class Insect {
 int i = 9;
 internal int j;

256 Thinking in C# www.MindView.net

 internal Insect() {
 Prt("i = " + i + ", j = " + j);
 j = 39;
 }
 static int x1 =
 Prt("static Insect.x1 initialized");
 internal static int Prt(string s) {
 Console.WriteLine(s);
 return 47;
 }
}

class Beetle : Insect {
 int k = Prt("Beetle.k initialized");
 Beetle() {
 Prt("k = " + k);
 Prt("j = " + j);
 }
 static int x2 =
 Prt("static Beetle.x2 initialized");

 public static void Main() {
 Prt("Beetle constructor");
 Beetle b = new Beetle();
 }
} ///:~

The output for this program is:

static Insect.x1 initialized
static Beetle.x2 initialized
Beetle constructor
Beetle.k initialized
i = 9, j = 0
k = 47
j = 39

The first thing that happens when you run Beetle is that you try to access
Beetle.Main() (a static method), so the loader goes out and finds the compiled
code for the Beetle class (this happens to be in an assembly called Beetle.exe).
In the process of loading it, the loader notices that it has a base class (that’s what
the colon after class Beetle says), which it then loads. This will happen whether

Chapter 7: Reusing Classes 257

or not you’re going to make an object of that base class. (Try commenting out the
object creation to prove it to yourself.)

If the base class has a base class, that second base class would then be loaded,
and so on. Next, the static initialization in the root base class (in this case,
Insect) is performed, and then the next derived class, and so on. This is
important because the derived-class static initialization might depend on the base
class member being initialized properly.

At this point, the necessary classes have all been loaded so the object can be
created. First, all the primitives in this object are set to their default values and
the object references are set to null—this happens in one fell swoop by setting
the memory in the object to binary zero. Then, the base-class fields are initialized
in textual order, followed by the fields of the object. After the fields are initialized,
the base-class constructor will be called. In this case the call is automatic, but you
can also specify the base-class constructor call (by placing a color after the
Beetle() constructor and then saying base()). The base class construction goes
through the same process in the same order as the derived-class constructor.
Finally, the rest of the body of the constructor is executed.

Summary
Both inheritance and composition allow you to create a new type from existing
types. Typically, however, you use composition to reuse existing types as part of
the underlying implementation of the new type, and inheritance when you want
to reuse the interface. Since the derived class has the base-class interface, it can
be upcast to the base, which is critical for polymorphism, as you’ll see in the next
chapter.

Despite the strong emphasis on inheritance in object-oriented programming,
when you start a design you should generally prefer composition during the first
cut and use inheritance only when it is clearly necessary. Composition tends to be
more flexible. In addition, by using the added artifice of inheritance with your
member type, you can change the exact type, and thus the behavior, of those
member objects at run-time. Therefore, you can change the behavior of the
composed object at run-time.

Although code reuse through composition and inheritance is helpful for rapid
project development, you’ll generally want to redesign your class hierarchy before
allowing other programmers to become dependent on it. Your goal is a hierarchy
in which each class has a specific use and is neither too big (encompassing so
much functionality that it’s unwieldy to reuse) nor annoyingly small (you can’t
use it by itself or without adding functionality).

258 Thinking in C# www.ThinkingIn.NET

Exercises
1. Create two classes, A and B, with default constructors (empty argument

lists) that announce themselves. Inherit a new class called C from A, and
create a member of class B inside C. Do not create a constructor for C.
Create an object of class C and observe the results.

2. Modify Exercise 1 so that A and B have constructors with arguments
instead of default constructors. Write a constructor for C and perform all
initialization within C’s constructor.

3. Create a simple class. Inside a second class, define a field for an object of
the first class. Use lazy initialization to instantiate this object.

4. Inherit a new class from class Detergent. Override Scrub() and add a
new method called Sterilize().

5. Take the file Cartoon.cs and comment out the constructor for the
Cartoon class. Explain what happens.

6. Take the file Chess.cs and comment out the constructor for the Chess
class. Explain what happens.

7. Prove that default constructors are created for you by the compiler.

8. Prove that the base-class constructors are (a) always called, and (b) called
before derived-class constructors.

9. Create a base class with only a nondefault constructor, and a derived
class with both a default and nondefault constructor. In the derived-class
constructors, call the base-class constructor.

10. Create a class called Root that contains an instance of each of classes
(that you also create) named Component1, Component2, and
Component3. Derive a class Stem from Root that also contains an
instance of each “component.” All classes should have default
constructors that print a message about that class.

11. Modify Exercise 10 so that each class only has nondefault constructors.

12. Add a proper hierarchy of Dispose() methods to all the classes in
Exercise 11.

Chapter 7: Reusing Classes 259

13. Create a class with a method that is overloaded three times. Inherit a new
class, add a new overloading of the method, and show that all four
methods are available in the derived class.

14. In Car.cs add a Service() method to Engine and call this method in
Main().

15. Create a class inside a namespace. Your class should contain a
protected method and a protected internal method. Compile this
class into a library assembly. Write a new class that tries to call these
methods; compile this class into an executable assembly (you’ll need to
reference the library assembly while compiling, of course). Explain the
results. Now inherit from your first class and call the protected and
protected internal methods from this derived class. Compile this
derived class into its own assembly and explain the resulting behavior.

16. Create a class called Amphibian. From this, inherit a class called Frog.
Put appropriate methods in the base class. In Main(), create a Frog
and upcast it to Amphibian, and demonstrate that all the methods still
work.

17. Modify Exercise 16 so that Frog overrides the method definitions from
the base class (provides new definitions using the same method
signatures). Note what happens in Main().

18. Create a class with a method that is not defined as virtual. Inherit from
that class and attempt to override that method.

19. Create a sealed class and attempt to inherit from it.

20. Prove that class loading takes place only once. Prove that loading may be
caused by either the creation of the first instance of that class, or the
access of a static member.

21. In Beetle.cs, inherit a specific type of beetle from class Beetle,
following the same format as the existing classes. Trace and explain the
output.

22. Find a way where inheritance can be used fruitfully in the party domain.
Implement at least one program that solves a problem by upcasting.

23. Draw a UML class diagram of the party domain, showing inheritance and
composition. Place classes that interact often near each other and classes
in different namespaces far apart or even on separate pieces of paper.

260 Thinking in C# www.MindView.net

Consider the task of ensuring that all guests are given a ride home by
someone sober or given a place to sleep over. Add classes, namespaces,
methods, and data as appropriate.

24. Consider how you would approach the tasks that you have solved in the
party domain in the programming language other than C#, with which
you are most familiar. Fill in this Venn diagram comparing aspects of the
C# approach with how you would do it otherwise:

Unique to C# Unique to other

Similar

♦ Are there aspects unique to one approach that you see as having a major
productivity impact?

♦ What are some important aspects that both approaches share?

261

8: Interfaces and
Implementation

Polymorphism is the next essential feature of an object-
oriented programming language after data abstraction. It
allows programs to be developed in the form of
interacting agreements or “contracts” that specify the
behavior, but not the implementation, of classes.

Polymorphism provides a dimension of separation of interface from
implementation, to decouple what from how. Polymorphism allows improved
code organization and readability as well as the creation of extensible programs
that can be “grown” not only during the original creation of the project but also
when new features are desired.

Encapsulation creates new data types by combining characteristics and
behaviors. Implementation hiding separates the interface from the
implementation by making the details private. This sort of mechanical
organization makes ready sense to someone with a procedural programming
background. But polymorphism deals with decoupling in terms of types. In the
last chapter, you saw how inheritance allows the treatment of an object as its own
type or its base type. This ability is critical because it allows many types (derived
from the same base type) to be treated as if they were one type, and a single piece
of code to work on all those different types equally. The polymorphic method call
allows one type to express its distinction from another, similar type, as long as
they’re both derived from the same base type. This distinction is expressed
through differences in behavior of the methods that you can call through the base
class.

In this chapter, you’ll learn about polymorphism (also called dynamic binding or
late binding or run-time binding) starting from the basics, with simple examples
that strip away everything but the polymorphic behavior of the program.

262 Thinking in C# www.ThinkingIn.NET

Upcasting revisited
In Chapter 7 you saw how an object can be used as its own type or as an object of
its base type. Taking an object reference and treating it as a reference to its base
type is called upcasting, because of the way inheritance trees are drawn with the
base class at the top.

You also saw a problem arise, which is embodied in the following:

//:c08:Music.cs
// Inheritance & upcasting.
using System;

public class Note {
 private int value;
 private Note(int val) { value = val;}
 public static Note
 MIDDLE_C = new Note(0),
 C_SHARP = new Note(1),
 B_FLAT = new Note(2);
} // Etc.

public class Instrument {
 public virtual void Play(Note n) {
 Console.WriteLine("Instrument.Play()");
 }
}

// Wind objects are instruments
// because they have the same interface:
public class Wind : Instrument {
 // Redefine interface method:
 public override void Play(Note n) {
 Console.WriteLine("Wind.Play()");
 }
}

public class Music {
 public static void Tune(Instrument i) {
 // ...
 i.Play(Note.MIDDLE_C);
 }

Chapter 8: Interfaces and Implementation 263

 public static void Main() {
 Wind flute = new Wind();
 Tune(flute); // Upcasting
 }
} ///:~

The method Music.Tune() accepts an Instrument reference, but also
anything derived from Instrument. In Main(), you can see this happening as a
Wind reference is passed to Tune(), with no cast necessary. This is acceptable;
the interface in Instrument must exist in Wind, because Wind is inherited
from Instrument. Upcasting from Wind to Instrument may “narrow” that
interface, but it cannot make it anything less than the full interface to
Instrument.

Forgetting the object type
This program might seem strange to you. Why should anyone intentionally forget
the type of an object? This is what happens when you upcast, and it seems like it
could be much more straightforward if Tune() simply takes a Wind reference
as its argument. This brings up an essential point: If you did that, you’d need to
write a new Tune() for every type of Instrument in your system. Suppose we
follow this reasoning and add Stringed and Brass instruments:

//:c08:Music2.cs
// Overloading instead of upcasting.
using System;

class Note {
 private int value;
 private Note(int val) { value = val;}
 public static readonly Note
 MIDDLE_C = new Note(0),
 C_SHARP = new Note(1),
 B_FLAT = new Note(2);
} // Etc.

class Instrument {
 internal virtual void Play(Note n) {
 Console.WriteLine("Instrument.Play()");
 }
}

class Wind : Instrument {

264 Thinking in C# www.MindView.net

 internal override void Play(Note n) {
 Console.WriteLine("Wind.Play()");
 }
}

class Stringed : Instrument {
 internal override void Play(Note n) {
 Console.WriteLine("Stringed.Play()");
 }
}

class Brass : Instrument {
 internal override void Play(Note n) {
 Console.WriteLine("Brass.Play()");
 }
}

public class Music2 {
 internal static void Tune(Wind i) {
 i.Play(Note.MIDDLE_C);
 }
 internal static void Tune(Stringed i) {
 i.Play(Note.MIDDLE_C);
 }
 internal static void Tune(Brass i) {
 i.Play(Note.MIDDLE_C);
 }
 public static void Main() {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 Brass frenchHorn = new Brass();
 Tune(flute); // No upcasting
 Tune(violin);
 Tune(frenchHorn);
 }
} ///:~

This works, but there’s a major drawback: You must write type-specific methods
for each new Instrument class you add. This means more programming in the
first place, but it also means that if you want to add a new method like Tune() or
a new type of Instrument, you’ve got a lot of work to do. Add the fact that the

Chapter 8: Interfaces and Implementation 265

compiler won’t give you any error messages if you forget to overload one of your
methods and the whole process of working with types becomes unmanageable.

Wouldn’t it be much nicer if you could just write a single method that takes the
base class as its argument, and not any of the specific derived classes? That is,
wouldn’t it be nice if you could forget that there are derived classes, and write
your code to talk only to the base class?

That’s exactly what polymorphism allows you to do. However, most programmers
who come from a procedural programming background have a bit of trouble with
the way polymorphism works.

The twist
The difficulty with Music.cs can be seen by running the program. The output is
Wind.Play(). This is clearly the desired output, but it doesn’t seem to make
sense that it would work that way. Look at the Tune() method:

 public static void tune(Instrument i) {
 // ...
 i.Play(Note.MIDDLE_C);
 }

It receives an Instrument reference. So how can the compiler possibly know
that this Instrument reference points to a Wind in this case and not a Brass or
Stringed? The compiler can’t. To get a deeper understanding of the issue, it’s
helpful to examine the subject of binding.

Method-call binding
Connecting a method call to a method body is called binding. When binding is
performed before the program is run (by the compiler and linker, if there is one),
it’s called early binding. You might not have heard the term before because it has
never been an option with procedural languages. C compilers have only one kind
of method call, and that’s early binding.

The confusing part of the above program revolves around early binding because
the compiler cannot know the correct method to call when it has only an
Instrument reference.

The solution is called late binding, which means that the binding occurs at run-
time based on the type of object. Late binding is also called dynamic binding or
run-time binding. When a language implements late binding, there must be some
mechanism to determine the type of the object at run-time and to call the

266 Thinking in C# www.ThinkingIn.NET

appropriate method. That is, the compiler still doesn’t know the object type, but
the method-call mechanism finds out and calls the correct method body. The
late-binding mechanism varies from language to language, but you can imagine
that some sort of type information must be installed in the objects.

Obviously, since there’s additional behavior at runtime, late binding is a little
more time-consuming than early binding. More importantly, if a method is early
bound and some other conditions are met, an optimizing compiler may decide
not to make a call at all, but instead to place a copy of the method’s source code
directly into the source code where the call occurs. Such inlining may cause the
resulting binary code to be a little larger, but can result in significant
performance increases in tight loops, especially when the called method is small.
Additionally, the contents of an early-bound method can be analyzed and
additional optimizations that can never be safely applied to late-bound methods
(such as aggressive code motion optimizations) may be possible. To give you an
idea, a 2001 study1 showed Fortran-90 running several times as fast as, and
sometimes more than an order of magnitude faster than, Java on a series of
math-oriented benchmarks (the authors’ prototype performance-oriented Java
compiler and libraries gave dramatic speedups).Larry ported some of the
benchmarks to C# and was disappointed to see results that were very comparable
to Java performance2.

All methods declared as virtual or override in C# use late binding, otherwise,
they use early binding (confirm). This is an irritation but not a big burden. There
are two scenarios: either you know that you’re going to override a method later
on, in which case it’s no big deal to add the keyword, or you discover down the
road that you need to override a method that you hadn’t planned on overriding,
which is a significant enough design change to justify a re-examination and
recompilation of the base class’ code! The one thing you can’t do is change the
binding from early-bound to late-bound in a component for which you can’t
perform a recompile because you don’t have the source code.

Producing the right behavior
Once you know that virtual method binding in C# happens polymorphically via
late binding, you can write your code to talk to the base class and know that all
the derived-class cases will work correctly using the same code. Or to put it

1 The Ninja Project, Moreira et al., Communications of the ACM 44(10), Oct 2001.

2 For details, see http://www.ThinkingIn.Net

Chapter 8: Interfaces and Implementation 267

another way, you “send a message to an object and let the object figure out the
right thing to do.”

The classic example in OOP is the “shape” example. This is commonly used
because it is easy to visualize, but unfortunately it can confuse novice
programmers into thinking that OOP is just for graphics programming, which is
of course not the case.

The shape example has a base class called Shape and various derived types:
Circle, Square, Triangle, etc. The reason the example works so well is that it’s
easy to say “a circle is a type of shape” and be understood. The inheritance
diagram shows the relationships:

Figure 8-1: Upcasting to Shape

The upcast could occur in a statement as simple as:

Shape s = new Circle();

Here, a Circle object is created and the resulting reference is immediately
assigned to a Shape, which would seem to be an error (assigning one type to
another); and yet it’s fine because a Circle is a Shape by inheritance. So the
compiler agrees with the statement and doesn’t issue an error message.

Suppose you call one of the base-class methods (that have been overridden in the
derived classes):

s.Draw();

Cast "up" the
inheritance

diagram

Circle
Handle

Shape

Draw()
Erase()

Circle

Draw()
Erase()

Square

Draw()
Erase()

Triangle

Draw()
Erase()

268 Thinking in C# www.MindView.net

Again, you might expect that Shape’s Draw() is called because this is, after all,
a Shape reference—so how could the compiler know to do anything else? And yet
the proper Circle.Draw() is called because of late binding (polymorphism).

The following example puts it a slightly different way:

//:c08:Shapes.cs
// Polymorphism in C#
using System;

public class Shape {
 internal virtual void Draw() {}
 internal virtual void Erase() {}
}

class Circle : Shape {
 internal override void Draw() {
 Console.WriteLine("Circle.Draw()");
 }
 internal override void Erase() {
 Console.WriteLine("Circle.Erase()");
 }
}

class Square : Shape {
 internal override void Draw() {
 Console.WriteLine("Square.Draw()");
 }
 internal override void Erase() {
 Console.WriteLine("Square.Erase()");
 }
}

class Triangle : Shape {
 internal override void Draw() {
 Console.WriteLine("Triangle.Draw()");
 }
 internal override void Erase() {
 Console.WriteLine("Triangle.Erase()");
 }
}

Chapter 8: Interfaces and Implementation 269

public class Shapes {
 static Random rand = new Random();

 public static Shape RandShape() {
 switch (rand.Next(3)) {
 case 0: return new Circle();
 case 1: return new Square();
 case 2: return new Triangle();
 default: return null;
 }
 }
 public static void Main() {
 Shape[] s = new Shape[9];
 // Fill up the array with shapes:
 for (int i = 0; i < s.Length;i++)
 s[i] = RandShape();
 // Make polymorphic method calls:
 foreach(Shape aShape in s)
 aShape.Draw();
 }
} ///:~

The base class Shape establishes the common interface to anything inherited
from Shape—that is, all shapes can be drawn and erased. The derived classes
override these definitions to provide unique behavior for each specific type of
shape.

The main class Shapes contains a static method RandShape() that produces
a reference to a randomly-selected Shape object each time you call it. Note that
the upcasting happens in the return statements, each of which takes a reference
to a Circle, Square, or Triangle and sends it out of the method as the return
type, Shape. So whenever you call this method you never get a chance to see
what specific type it is, since you always get back a plain Shape reference.

Main() contains an array of Shape references filled through calls to
RandShape(). At this point you know you have Shapes, but you don’t know
anything more specific than that (and neither does the compiler). However, when
you step through this array and call Draw() for each one, the correct type-
specific behavior magically occurs, as you can see from one output example:

Circle.Draw()
Triangle.Draw()
Circle.Draw()

270 Thinking in C# www.ThinkingIn.NET

Circle.Draw()
Circle.Draw()
Square.Draw()
Triangle.Draw()
Square.Draw()
Square.Draw()

Of course, since the shapes are all chosen randomly each time, your runs will
have different results. The point of choosing the shapes randomly is to drive
home the understanding that the compiler can have no special knowledge that
allows it to make the correct calls at compile-time. All the calls to Draw() are
made through dynamic binding.

Extensibility
Now let’s return to the musical instrument example. Because of polymorphism,
you can add as many new types as you want to the system without changing the
Tune() method. In a well-designed OOP program, most or all of your methods
will follow the model of Tune() and communicate only with the base-class
interface. Such a program is extensible because you can add new functionality by
inheriting new data types from the common base class. The methods that
manipulate the base-class interface will not need to be changed at all to
accommodate the new classes.

Consider what happens if you take the instrument example and add more
methods in the base class and a number of new classes. Here’s the diagram:

Chapter 8: Interfaces and Implementation 271

Figure 8-2: Despite increased complexity, old code works

All these new classes work correctly with the old, unchanged Tune() method.
Even if Tune() is in a separate file and new methods are added to the interface
of Instrument, Tune() works correctly without recompilation. Here is the
implementation of the above diagram:

//:c08:Music3.cs
// An extensible program.
using System;

class Instrument {
 public virtual void Play() {
 Console.WriteLine("Instrument.Play()");
 }
 public virtual string What() {

Instrument

void Play()
String What()
void Adjust()

Wind

void Play()
String What()
void Adjust()

Stringed

void Play()
String What()
void Adjust()

Woodwind

void Play()
String What()

Brass

void Play()
void Adjust()

Percussion

void Play()
String What()
void Adjust()

272 Thinking in C# www.MindView.net

 return "Instrument";
 }
 public virtual void Adjust() {}
}

class Wind : Instrument {
 public override void Play() {
 Console.WriteLine("Wind.Play()");
 }
 public override string What() { return "Wind";}
 public override void Adjust() {}
}

class Percussion : Instrument {
 public override void Play() {
 Console.WriteLine("Percussion.Play()");
 }
 public override string What() {
 return "Percussion";}
 public override void Adjust() {}
}

class Stringed : Instrument {
 public override void Play() {
 Console.WriteLine("stringed.Play()");
 }
 public override string What() { return "Sstringed";}
 public override void Adjust() {}
}

class Brass : Wind {
 public override void Play() {
 Console.WriteLine("Brass.Play()");
 }
 public override void Adjust() {
 Console.WriteLine("Brass.Adjust()");
 }
}

class Woodwind : Wind {
 public override void Play() {

Chapter 8: Interfaces and Implementation 273

 Console.WriteLine("Woodwind.Play()");
 }
 public override string What() { return "Woodwind";}
}

public class Music3 {
 // Doesn't care about type, so new types
 // added to the system still work right:
 static void Tune(Instrument i) {
 // ...
 i.Play();
 }
 static void TuneAll(Instrument[] e) {
 foreach(Instrument i in e)
 Tune(i);
 }
 public static void Main() {
 Instrument[] orchestra = new Instrument[5];
 int i = 0;
 // Upcasting during addition to the array:
 orchestra[i++] = new Wind();
 orchestra[i++] = new Percussion();
 orchestra[i++] = new Stringed();
 orchestra[i++] = new Brass();
 orchestra[i++] = new Woodwind();
 TuneAll(orchestra);
 }
} ///:~

Technically you don’t need those methods (in this or any of the later Music
examples), but I think it gets confusing – especially later on when you get into
abstract classes and interfaces. They can also be used to make the point that not
all virtual methods need to be overridden, but if you leave the examples as they
are, at least point it out, because otherwise it leaves the reader wondering why
you chose to do that.The new methods are What(), which returns a String
reference with a description of the class, and Adjust(), which provides some
way to adjust each instrument.

In Main(), when you place something inside the Instrument array you
automatically upcast to Instrument.

274 Thinking in C# www.ThinkingIn.NET

You can see that the Tune() method is blissfully ignorant of all the code changes
that have happened around it, and yet it works correctly. This is exactly what
polymorphism is supposed to provide. Your code changes don’t cause damage to
parts of the program that should not be affected. Put another way, polymorphism
is one of the most important techniques that allow the programmer to “separate
the things that change from the things that stay the same.”

Static methods cannot be virtual
As you know, there is a difference between a class (the type) and an object (an
instance of that class). Data and methods can either be associated with the class
(static data and methods) or with individual objects (“instance” data and
methods). Unfortunately, polymorphism does not work with static methods.
This is not a logical consequence of object orientation, it is a result of how
polymorphism is implemented.

Take sound equipment, where there are several types of components (CD players
and so forth) that you might own. Each type of component has a number of
channels that is characteristic: all CdPlayers have two channels and all Dolby
decoders have “5+1” channels. On the other hand, adjusting the sound is
something that is done polymorphically to individual components: the ways you
can adjust the tone from CD players are different than the ways you can adjust a
home theater tuner, but when an adjustment is done, it applies to this particular
CdPlayer or DolbyDecoder, not to every instance of the class.

According to our discussion of polymorphism, it would seem logical that the way
one would declare these two methods in the base class would be:

virtual static void SayChannel(){ … }
virtual void AdjustSound(){ … }

And then we would override them in subtypes with:

override static void SayChannel(){ … }
override void AdjustSound(){ … }

But the compiler refuses to compile static methods marked virtual. Instead, we
have to write code such as this:

//:c08:StaticNonPolymorphism.cs
//No polymorphism of static methods
using System;

class SoundEquipment {

Chapter 8: Interfaces and Implementation 275

 //! static virtual void GetChannels(){
 internal static void SayChannels(){
 Console.WriteLine("I don't know how many");
 }

 internal virtual void AdjustSound(){
 Console.WriteLine("No default adjustment");
 }

 public static void Main(){
 SoundEquipment[] components =
 { new CdPlayer(), new DolbyDecoder()};
 foreach(SoundEquipment c in components){
 //! Console.WriteLine(c.GetChannels());
 SoundEquipment.SayChannels();
 c.AdjustSound();
 }
 }
}

class CdPlayer: SoundEquipment {
 //!static override void SayChannels(){
 static new void SayChannels(){
 Console.WriteLine(
 "All CD players have 2 channels");
 }

 internal override void AdjustSound(){
 Console.WriteLine("Adjusting total volume");
 }
}

class DolbyDecoder : SoundEquipment {
 //! static override void SayChannels(){
 static new void SayChannels(){
 Console.WriteLine(
 "All DolbyDecoders have 5+1 channels");
 }

 internal override void AdjustSound(){
 Console.WriteLine("Adjusting effects channel");

276 Thinking in C# www.MindView.net

 }
}///:~

The SoundEquipment.Main() method creates a CdPlayer and a
DolbyDecoder and upcasts the result into a SoundEquipment[] array. It
then calls the static SoundEquipment.SayChannels() method and the
virtual SoundEquipment.AdjustSound() method. The
SoundEquipment.AdjustSound() virtual method call works as we desire,
late-binding to our particular CdPlayer and DolbyDecoder objects, but the
SoundEquipment.SayChannels() does not. The output is:

I don't know how many
Adjusting total volume
I don't know how many
Adjusting effects channel

The many benefits of overriding method calls are simply not available to static
methods. The way that virtual method calls are implemented requires a reference
to this and the hassle of a different implementation is great enough that the lack
of static virtual methods is allowed to pass.

Overriding vs. overloading
Let’s take a different look at the first example in this chapter. In the following
program, the interface of the method Play() is changed in the process of
overriding it, which means that you haven’t overridden the method, but instead
overloaded it. The compiler allows you to overload methods so it gives no
complaint. But the behavior is probably not what you want. Here’s the example:

//:c08:WindError.cs
// Accidentally changing the interface.
using System;

public class NoteX {
 public const int
 MIDDLE_C = 0, C_SHARP = 1, C_FLAT = 2;
}

public class InstrumentX {
 public void Play(int NoteX) {
 Console.WriteLine("InstrumentX.Play()");
 }
}

Chapter 8: Interfaces and Implementation 277

public class WindX : InstrumentX {
 // OOPS! Changes the method interface:
 public void Play(NoteX n) {
 Console.WriteLine("WindX.Play(NoteX n)");
 }
}

public class WindError {
 public static void Tune(InstrumentX i) {
 // ...
 i.Play(NoteX.MIDDLE_C);
 }
 public static void Main() {
 WindX flute = new WindX();
 Tune(flute); // Not the desired behavior!
 }
} ///:~

There’s another confusing aspect thrown in here. In InstrumentX, the Play()
method takes an int that has the identifier NoteX. That is, even though NoteX
is a class name, it can also be used as an identifier without complaint. But in
WindX, Play() takes a NoteX reference that has an identifier n. (Although you
could even say Play(NoteX NoteX) without an error.) Thus it appears that the
programmer intended to override Play() but mistyped the method a bit. The
compiler, however, assumed that an overload and not an override was intended.
Note that if you follow the standard C# naming convention, the argument
identifier would be noteX (lowercase ‘n’), which would distinguish it from the
class name.

In Tune, the InstrumentX i is sent the Play() message, with one of NoteX’s
members (MIDDLE_C) as an argument. Since NoteX contains int definitions,
this means that the int version of the now-overloaded Play() method is called,
and since that has not been overridden the base-class version is used.

The output is:

InstrumentX.Play()

This certainly doesn’t appear to be a polymorphic method call. Once you
understand what’s happening, you can fix the problem fairly easily, but imagine
how difficult it might be to find the bug if it’s buried in a program of significant
size.

278 Thinking in C# www.ThinkingIn.NET

Operator overloading
In C#, you can override and overload operators (e.g., ‘+’, ‘/’, etc.). Some people do
not like operator overloading, arguing that operator overloading is confusing for
relatively little benefit. Certainly it’s true that you should think twice before
overloading an operator; operators carry a lot of baggage in terms of expected
behavior and, when used, have a tendency to be overlooked in future code
reviews. When thought out, though, operator overloading definitely makes code
easier to read and write.

To overload an operator, you declare a static method that takes, as its first
argument, a reference to your type. For unary operators, which apply to a single
operator, this is the only argument that you need and the return type of the
method must be the same type. The keyword operator alerts the compiler that
you’re creating an overloaded function. This example overloads the ‘++’ unary
operator:

//:c08:Life.cs
//Demonstrates unary operator overloading
using System;

enum LifeState {
 Birth, School, Work, Death
};

class Life {
 LifeState state;

 Life(){
 state = LifeState.Birth;
 }
 public static Life operator ++(Life l){
 if (l.state != LifeState.Death) {
 l.state++;
 } else {
 Console.WriteLine("Still dead.");
 }
 return l;
 }

 public static void Main(){
 Life myLife = new Life();

Chapter 8: Interfaces and Implementation 279

 for (int i = 0; i < 4; i++) {
 Console.WriteLine(myLife.state);
 //Following call uses operator overloading
 myLife++;
 }
 }
}///:~

First, we specify the gamut of possible LifeStates3 and, in the Life()
constructor, we set the local LifeState to LifeState.Birth. The next line:

public static Life operator ++(Life l)

overloads the ++ operator so that it moves inexorably forward until the Life is in
LifeState.Death.

Although the first argument and the return type must be the same as the class in
which the operator is overloaded, if you overload an operator in a class from
which others descend, you can return objects of different subtypes:

//:c08:Canines.cs
//Demonstrates polymorphic operator overloading
using System;

class Canine {
 public virtual void Speak(){}

 public virtual Canine Grow(){ return this;}

 public static void Main(){
 Canine c = new Puppy();
 c.Speak();
 c++;
 c.Speak();
 c++;
 c.Speak();
 }

 public static Canine operator++(Canine c){
 return c.Grow();

3 At least according to the band The Godfathers.

280 Thinking in C# www.MindView.net

 }
}

class Puppy : Canine {
 public override void Speak(){
 Console.WriteLine("Yip!");
 }

 public override Canine Grow(){
 return new Dog();
 }
}

class Dog : Canine {
 public override void Speak(){
 Console.WriteLine("Whoof!");
 }

 public override Canine Grow(){
 Console.WriteLine("Already fully grown");
 return this;
 }
}///:~

The ++ operator is overloaded within the Canine class, from which Puppy and
Dog descend. If the argument to the ++ operator is a Canine that happens to be
a Puppy, the call to c.Grow() will be resolved by Puppy.Grow(), which
returns a Dog.

Figure 8-3 illustrates this program’s behavior with a UML Sequence Diagram.
While class diagrams are helpful for illustrating the static structure of a collection
of classes, sequence diagrams are helpful when talking about the dynamic
behavior of a set of objects. A sequence diagram is read from the top downward,
as time increases. Objects of interest are arranged horizontally, with each object’s
lifespan denoted by a vertical dashed line. A method call is represented by an
arrow pointing to the receiving object and the duration of the method call is
represented by a thin box on the object’s lifeline. Return values are shown using
dashed lines. This diagram uses a non-standard convention by showing the
names of virtual method calls in italic.

Chapter 8: Interfaces and Implementation 281

Main() c : Canine this : Puppy this : Dogthis : Canine

operator ++()

void Speak()
void Speak()

Canine Grow()
Canine Grow()

new

void Speak() void Speak()

operator ++()
Canine Grow()

Canine Grow()

this

the new Dogthe new Dog
the new Dog

this
same Dog

same Dog

Figure 8-3: Virtual calls to Canine.Grow() and Speak()

The first time Canine.Main() calls the virtual Canine.Speak() method, it is
resolved by the Canine this, which at this point is a Puppy. Similarly, when the
++ operator is called, its first argument is a Canine which happens to be a
Puppy. Thus, the call in operator++ to Canine.Grow() is resolved by the
Puppy.Grow() override. Puppy.Grow() creates a new Dog object and
returns a reference to it. Since the Puppy is no longer referenced, it is now
eligible for garbage collection, as indicated on the diagram by the end of the
Puppy’s object lifeline.

If you look at the Main() method, you’ll see that there is no assignment of the
results of the ++ operator. Rather, the Canine referenced by the c variable has

282 Thinking in C# www.ThinkingIn.NET

changed from a reference to a Puppy to a reference to a Dog as part of the
application of the ++ operator; you can see how this might be surprising to
someone just viewing the Main() method and why the logic of an overloaded
operator should be apparent. After the Puppy reference has been changed into a
Dog reference by the first application of the ++ operator, subsequent calls to the
virtual method Canine.Speak() will be resolved by Dog.Speak(), as will be
virtual calls to Canine.Grow(). The diagram illustrates these behaviors, too.

Multiargument operator overloading
Binary operators are those which take two arguments. One of the two arguments
must be the type of the containing class, the other argument can be of any type,
allowing full overloading. This example allows either Fans or Players to be
added to an Arena.

//:c08:Arena.cs
//Demonstrates binary operator overloading
using System;

class Arena {
 public static Arena
 operator+(Arena a, Player p){
 a.AddPlayer(p);
 return a;
 }

 public static Arena
 operator+(Arena a, Fan f){
 a.AddFan(f);
 return a;
 }

 void AddPlayer(Player p){
 Console.WriteLine("Player added");
 }

 void AddFan(Fan f){
 Console.WriteLine("Fan added");
 }

 public static void Main(){
 Arena a = new Arena();

Chapter 8: Interfaces and Implementation 283

 Fan f = new Fan();
 //Normal form
 a = a + f;

 Player p = new Player();
 //Also works
 a += p;
 }
}

class Player {
}

class Fan {
}///:~

The + operator is overloaded twice; both are static operator methods that take
an Arena as the first argument. One overload accepts a Player as the second
argument, and the other takes a Fan object. s are similar; they call an instance
method, Arena.AddFan() or Arena.AddPlayer() on their Arena argument
and return the result.

The static Arena.Main() method creates an Arena and a Fan and uses the
normal form a = a + f to add the Fan. Then, Main() creates a Player and uses
a += p to add it; in C#, += is not an atomic operator but is simply a combination
of the addition and assignment operators (a subtlety that will be revisited in
Chapter 16’s discussion of threading).

Explicit and implicit type conversions
Among the most common uses of operator overloading is implementing
conversions between types. If it is impossible for data to be lost during the
conversion, the conversion can be specified as implicit and the conversion will
not require a cast. If, on the other hand, data may be lost, the conversion should
be marked as explicit, and a client programmer attempting the conversion will
need to make a cast.

The operator that one overloads for a conversion is of the form:

public static implicitOrExplicit
operator TypeConvertedTo(TypeConvertedFrom){…}

284 Thinking in C# www.MindView.net

where implicitOrExplicit is either implicit or explicit. Although it’s easy
enough to cast the value of an enum to an int, we can remove even that burden
from users of the Day class in this example:

//:c08:DayOfWeek.cs
using System;

class Day {
 enum dow {
 Sunday = 0, Monday = 1, Tuesday = 2,
 Wednesday = 3, Thursday = 4, Friday = 5,
 Saturday = 6
 }

 dow dayOfWeek;
 dow DayOfWeek{
 get { return dayOfWeek;}
 }

 Day(int i){
 dayOfWeek = (dow) (i % 7);
 }

 public static explicit operator Day(int i){
 Day d = new Day(i);
 return d;
 }

 //Returns 0 (Sun) - 6 (Fri)
 public static implicit operator int(Day d){
 return(int) d.DayOfWeek;
 }

 public static void Main(){
 //Calls explicit operator Day(int i)
 Day d = (Day) 24;
 Console.WriteLine(d.DayOfWeek);
 //Calls implicit operator int(Day d)
 int iOfWeek = d;
 Console.WriteLine(iOfWeek);

Chapter 8: Interfaces and Implementation 285

 }
}///:~

The Day class overloads the cast from an int into a Day. Because some data is
lost in the conversion (the int is converted by modulo arithmetic), the conversion
is marked as explicit. Conversely, since no data is lost converting from Day to
int, that overload is marked as implicit. Both overloads are demonstrated in
Day.Main() and, although a cast is needed to convert an int into a Day, none is
needed for the reverse.

Operator overloading design guidelines
If an operator overload’s meaning isn’t obvious, you shouldn’t use operator
overloading. Overloading the ++ operator to mean “Increase the object’s age” is
not obvious and is a bad design choice. As a matter of fact, coming up with
“obvious” operator overloads is so difficult that it’s the primary argument against
operator overloading – 90% of the discussions of operator overloading use
imaginary numbers as their example because imaginary numbers are one of the
few types that clearly pass the “obvious” test.

Operator overloading is not guaranteed to exist in all .NET languages. This means
that you must either forego the possibility that your class will be used by a
language other than C# (a choice that undermines .NET’s fundamental value
proposition) or create an equivalent named method that exposes the functionality
for other languages.

A general design principle is that classes should have symmetric interfaces. This
means that methods will often be paired with their logical opposites: if you write
an On() method, you should write an Off(), TurnRight() implies a
TurnLeft(), etc.. Most operators have an opposite, so if you overload + (the
plus operator), you should overload - (the minus operator).

Abstract classes
and methods
In all the instrument examples, the methods in the base class Instrument were
always “dummy” methods. If these methods are ever called, you’ve done
something wrong. That’s because the intent of Instrument is to create a
common interface for all the classes derived from it.

The only reason to establish this common interface is so it can be expressed
differently for each different subtype. It establishes a basic form, so you can say
what’s in common with all the derived classes. Another way of saying this is to

286 Thinking in C# www.ThinkingIn.NET

call Instrument an abstract base class (or simply an abstract class). You create
an abstract class when you want to manipulate a set of classes through this
common interface. All derived-class methods that match the signature of the
base-class declaration will be called using the dynamic binding mechanism.
(However, as seen in the last section, if the method’s name is the same as the base
class but the arguments are different, you’ve got overloading, which probably
isn’t what you want.)

If you have an abstract class like Instrument, objects of that class almost always
have no meaning. That is, Instrument is meant to express only the interface,
and not a particular implementation, so creating an Instrument object makes
no sense, and you’ll probably want to prevent the user from doing it. This can be
accomplished by making all the methods in Instrument print error messages,
but that delays the information until run-time and requires reliable exhaustive
testing on the user’s part. It’s always better to catch problems at compile-time.

C# provides a mechanism for doing this called the abstract method4. This is a
method that is incomplete; it has only a declaration and no method body. Here is
the syntax for an abstract method declaration:

abstract void F();

A class containing abstract methods is called an abstract class. If a class contains
one or more abstract methods, the class must be qualified as abstract.
(Otherwise, the compiler gives you an error message.)

There’s no need to qualify abstract methods as virtual, as they are always
resolved with late binding.

If an abstract class is incomplete, what is the compiler supposed to do when
someone tries to instantiate an object of that class? It cannot safely create an
object of an abstract class, so you get an error message from the compiler. This
way the compiler ensures the purity of the abstract class, and you don’t need to
worry about misusing it.

If you inherit from an abstract class and you want to make objects of the new
type, you must provide method definitions for all the abstract methods in the
base class. If you don’t (and you may choose not to), then the derived class is also
abstract and the compiler will force you to qualify that class with the abstract
keyword.

4 For C++ programmers, this is the analogue of C++’s pure virtual function.

Chapter 8: Interfaces and Implementation 287

It’s possible to create a class as abstract without including any abstract
methods. This is useful when you’ve got a class in which it doesn’t make sense to
have any abstract methods, and yet you want to prevent any instances of that
class.

The Instrument class can easily be turned into an abstract class. Only some of
the methods will be abstract, since making a class abstract doesn’t force you to
make all the methods abstract. Here’s what it looks like:

Figure 8-4: Abstract classes provide shared behavior, but cannot be instantiated

Here’s the orchestra example modified to use abstract classes and methods:

//:c08:Music4.cs
// An extensible program.
using System;

abstract Instrument

abstract void Play();
string What() { /* ... */ }
abstract void Adjust();

Wind

void Play()
string What()
void Adjust()

Stringed

void Play()
string What()
void Adjust()

Woodwind

void Play()
string What()

Brass

void Play()
void Adjust()

Percussion

void Play()
string What()
void Adjust()

288 Thinking in C# www.MindView.net

abstract class Instrument {
 public abstract void Play();
 public virtual string What() {
 return "Instrument";
 }
 public abstract void Adjust();
}

class Wind : Instrument {
 public override void Play() {
 Console.WriteLine("Wind.Play()");
 }
 public override string What() { return "Wind";}
 public override void Adjust() {}
}

class Percussion : Instrument {
 public override void Play() {
 Console.WriteLine("Percussion.Play()");
 }
 public override string What() {
 return "Percussion";}
 public override void Adjust() {}
}

class Stringed : Instrument {
 public override void Play() {
 Console.WriteLine("stringed.Play()");
 }
 public override string What() { return "Sstringed";}
 public override void Adjust() {}
}

class Brass : Wind {
 public override void Play() {
 Console.WriteLine("Brass.Play()");
 }
 public override void Adjust() {
 Console.WriteLine("Brass.Adjust()");
 }
}

Chapter 8: Interfaces and Implementation 289

class Woodwind : Wind {
 public override void Play() {
 Console.WriteLine("Woodwind.Play()");
 }
 public override string What() { return "Woodwind";}
}

public class Music3 {
 // Doesn't care about type, so new types
 // added to the system still work right:
 static void Tune(Instrument i) {
 // ...
 i.Play();
 }
 static void TuneAll(Instrument[] e) {
 foreach(Instrument i in e)
 Tune(i);
 }
 public static void Main() {
 Instrument[] orchestra = new Instrument[5];
 int i = 0;
 // Upcasting during addition to the array:
 orchestra[i++] = new Wind();
 orchestra[i++] = new Percussion();
 orchestra[i++] = new Stringed();
 orchestra[i++] = new Brass();
 orchestra[i++] = new Woodwind();
 TuneAll(orchestra);
 }
} ///:~

You can see that there’s really no change except in the base class.

It’s helpful to create abstract classes and methods because they make the
abstractness of a class explicit, and tell both the user and the compiler how it was
intended to be used.

Constructors and polymorphism
As usual, constructors are different from other kinds of methods. This is also true
when polymorphism is involved. Even though constructors are not polymorphic

290 Thinking in C# www.ThinkingIn.NET

(although you can have a kind of “virtual constructor,” as you will see in Chapter
13), it’s important to understand the way constructors work in complex
hierarchies and with polymorphism. This understanding will help you avoid
unpleasant entanglements.

Order of constructor calls
The order of constructor calls was briefly discussed in Chapter 7, but that was
before polymorphism was introduced.

A constructor for the base class is always called in the constructor for a derived
class, chaining up the inheritance hierarchy so that a constructor for every base
class is called. This makes sense because the constructor has a special job: to see
that the object is built properly. A derived class has access to its own members
only, and not to private members of the base class. Only the base-class
constructor has the proper knowledge and access to initialize its own elements.
Therefore, it’s essential that all constructors get called, otherwise the entire object
wouldn’t be consistently constructed. That’s why the compiler enforces a
constructor call for every portion of a derived class. It will silently call the default
constructor if you don’t explicitly call a base-class constructor in the derived-class
constructor body. If there is no default constructor, the compiler will complain.
(In the case where a class has no constructors, the compiler will automatically
synthesize a default constructor.)

Let’s take a look at an example that shows the effects of composition, inheritance,
and polymorphism on the order of construction:

//:c08:Sandwich.cs
// Order of constructor calls.
using System;

public class Meal {
 internal Meal() { Console.WriteLine("Meal()");}
}

public class Bread {
 internal Bread() { Console.WriteLine("Bread()");}
}

public class Cheese {
 internal Cheese() { Console.WriteLine("Cheese()");}
}

Chapter 8: Interfaces and Implementation 291

public class Lettuce {
 internal Lettuce(){ Console.WriteLine("Lettuce()");}
}

public class Lunch : Meal {
 internal Lunch() { Console.WriteLine("Lunch()");}
}

public class PortableLunch : Lunch {
 internal PortableLunch() {
 Console.WriteLine("PortableLunch()");
 }
}

public class Sandwich : PortableLunch {
 Bread b = new Bread();
 Cheese c = new Cheese();
 Lettuce l = new Lettuce();
 internal Sandwich() {
 Console.WriteLine("Sandwich()");
 }
 public static void Main() {
 new Sandwich();
 }
} ///:~

This example creates a complex class out of other classes, and each class has a
constructor that announces itself. The important class is Sandwich, which
reflects three levels of inheritance (four, if you count the implicit inheritance
from object) and three member objects. When a Sandwich object is created in
Main(), the output is:

Bread()
Cheese()
Lettuce()
Meal()
Lunch()
PortableLunch()
Sandwich()

This means that the order of constructor calls for a complex object is as follows:

1. Member initializers are called in the order of declaration.

292 Thinking in C# www.MindView.net

2. The base-class constructor is called. This step is repeated recursively
such that the root of the hierarchy is constructed first, followed by the
next-derived class, etc., until the most-derived class is reached.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit, you know all
about the base class and can access any public, protected, or internal
members of the base class. This means that you must be able to assume that all
the members of the base class are valid when you’re in the derived class. In a
normal method, construction has already taken place, so all the members of all
parts of the object have been built. Inside the constructor, however, you must be
able to assume that all members that you use have been built. The only way to
guarantee this is for the base-class constructor to be called first. Then when
you’re in the derived-class constructor, all the members you can access in the
base class have been initialized. “Knowing that all members are valid” inside the
constructor is also the reason that, whenever possible, you should initialize all
member objects (that is, objects placed in the class using composition) at their
point of definition in the class (e.g., b, c, and l in the example above). If you
follow this practice, you will help ensure that all base class members and member
objects of the current object have been initialized. Unfortunately, this doesn’t
handle every case, as you will see in the next section.

Behavior of polymorphic methods
inside constructors
The hierarchy of constructor calls brings up an interesting dilemma. What
happens if you’re inside a constructor and you call a dynamically bound method
of the object being constructed? Inside an ordinary method you can imagine what
will happen—the dynamically bound call is resolved at run-time because the
object cannot know whether it belongs to the class that the method is in or some
class derived from it. For consistency, you might think this is what should happen
inside constructors.

This is not exactly the case. If you call a dynamically bound method inside a
constructor, the overridden definition for that method is used. However, the
effect can be rather unexpected, and can conceal some difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into existence (which is
hardly an ordinary feat). Inside any constructor, the entire object might be only
partially formed—you can know only that the base-class objects have been
initialized, but you cannot know which classes are inherited from you. A
dynamically bound method call, however, reaches “outward” into the inheritance

Chapter 8: Interfaces and Implementation 293

hierarchy. It calls a method in a derived class. If you do this inside a constructor,
you call a method that might manipulate members that haven’t been initialized
yet—a sure recipe for disaster.

You can see the problem in the following example:

//:c08:PolyConstructors.cs
// Constructors and polymorphism
// don't produce what you might expect.
using System;

abstract class Glyph {
 protected abstract void Draw();
 internal Glyph() {
 Console.WriteLine("Glyph() before draw()");
 Draw();
 Console.WriteLine("Glyph() after draw()");
 }
}

class RoundGlyph : Glyph {
 int radius = 1;
 int thickness;
 internal RoundGlyph(int r) {
 radius = r;
 thickness = 2;
 Console.WriteLine("RoundGlyph.RoundGlyph(), "
 + "radius = {0} thickness ={1}",
 + radius, thickness);
 }
 protected override void Draw() {
 Console.WriteLine("RoundGlyph.Draw(), "
 + "radius = {0} thickness = {1}",
 + radius, thickness);
 }
}

public class PolyConstructors {
 public static void Main() {
 new RoundGlyph(5);
 }
} ///:~

294 Thinking in C# www.ThinkingIn.NET

In Glyph, the Draw() method is abstract, so it is designed to be overridden.
Indeed, you are forced to override it in RoundGlyph. But the Glyph
constructor calls this method, and the call ends up in RoundGlyph.Draw(),
which would seem to be the intent. But look at the output:

Glyph() before draw()
RoundGlyph.Draw(), radius = 1 thickness = 0
Glyph() after draw()
RoundGlyph.RoundGlyph(), radius = 5 thickness = 2

When Glyph’s constructor calls Draw(), the values of radius are set to their
default values, not their post-construction intended values.

A good guideline for constructors is, “If possible, initialize member variables
directly. Do as little as possible in a constructor to set the object into a good state,
and if you can possibly avoid it, don’t call any methods.” The only safe methods to
call inside a constructor are non-virtual.

Designing with inheritance
Once you learn about polymorphism, it can seem that everything ought to be
inherited because polymorphism is such a clever tool. This can burden your
designs; in fact if you choose inheritance first when you’re using an existing class
to make a new class, things can become needlessly complicated.

A better approach is to choose composition first, when it’s not obvious which one
you should use. Composition does not force a design into an inheritance
hierarchy. But composition is also more flexible since it’s possible to dynamically
choose a type (and thus behavior) when using composition, whereas inheritance
requires an exact type to be known at compile-time. The following example
illustrates this:

//:c08:Transmogrify.cs
// Dynamically changing the behavior of
// an object via composition.
using System;

abstract class Actor {
 public abstract void Act();
}

class HappyActor : Actor {
 public override void Act() {

Chapter 8: Interfaces and Implementation 295

 Console.WriteLine("HappyActor");
 }
}

class SadActor : Actor {
 public override void Act() {
 Console.WriteLine("SadActor");
 }
}

class Stage {
 Actor a = new HappyActor();
 internal void Change() { a = new SadActor();}
 internal void Go() { a.Act();}
}

public class Transmogrify {
 public static void Main() {
 Stage s = new Stage();
 s.Go(); // Prints "HappyActor"
 s.Change();
 s.Go(); // Prints "SadActor"
 }
} ///:~

A Stage object contains a reference to an Actor, which is initialized to a
HappyActor object. This means Go() produces a particular behavior. But since
a reference can be re-bound to a different object at run-time, a reference for a
SadActor object can be substituted in a and then the behavior produced by
Go() changes. Thus you gain dynamic flexibility at run-time. (This is also called
the State Pattern.) In contrast, you can’t decide to inherit differently at run-time;
that must be completely determined at compile-time.

A general guideline is “Use inheritance to express differences in behavior, and
fields to express variations in state.” In the above example, both are used: two
different classes are inherited to express the difference in the Act() method, and
Stage uses composition to allow its state to be changed. In this case, that change
in state happens to produce a change in behavior.

Pure inheritance vs. extension
When studying inheritance, it would seem that the cleanest way to create an
inheritance hierarchy is to take the “pure” approach. That is, only methods that

296 Thinking in C# www.MindView.net

have been established in the base class or interface are to be overridden in the
derived class, as seen in this diagram:

Figure 8-5: A “pure” is-a relationship

This can be termed a pure “is-a” relationship because the interface of a class
establishes what it is. Inheritance guarantees that any derived class will have the
interface of the base class and nothing less. If you follow the above diagram,
derived classes will also have no more than the base class interface.

This can be thought of as pure substitution, because derived class objects can be
perfectly substituted for the base class, and you never need to know any extra
information about the subclasses when you’re using them:

Circle, Square,
Line, or new type

of Shape

Talks to Shape
Message

"Is-a"
relationship

Figure 8-6: After creation, the concrete subtype is of no concern

That is, the base class can receive any message you can send to the derived class
because the two have exactly the same interface. All you need to do is upcast from
the derived class and never look back to see what exact type of object you’re
dealing with. Everything is handled through polymorphism.

When you see it this way, it seems like a pure “is-a” relationship is the only
sensible way to do things, and any other design indicates muddled thinking and is
by definition broken. This too is a trap. As soon as you start thinking this way,

Shape

Draw()
Erase()

Circle

Draw()
Erase()

Square

Draw()
Erase()

Triangle

Draw()
Erase()

Chapter 8: Interfaces and Implementation 297

you’ll turn around and discover that extending the interface is the perfect
solution to a particular problem. This could be termed an “is-like-a” relationship
because the derived class is like the base class—it has the same fundamental
interface—but it has other features that require additional methods to
implement:

Figure 8-7: The subtype extends the base class

While this is also a useful and sensible approach (depending on the situation) it
has a drawback. The extended part of the interface in the derived class is not
available from the base class, so once you upcast you can’t call the new methods:

Useful part
Talks to Useful

object Message

MoreUseful
part

Figure 8-8: If you upcast, you can’t use the extended interface

If you’re not upcasting in this case, it won’t bother you, but often you’ll get into a
situation in which you need to rediscover the exact type of the object so you can
access the extended methods of that type. The following section shows how this is
done.

Useful

void F()
void G()

void F()

void G()

void U()

void V()

void W()

MoreUseful

}

Assume this
represents a big

interface

"Is-like-a"

}

Extending
the interface

298 Thinking in C# www.ThinkingIn.NET

Downcasting and run-time
type identification
Since you lose the specific type information via an upcast (moving up the
inheritance hierarchy), it makes sense that to retrieve the type information—that
is, to move back down the inheritance hierarchy—you use a downcast. However,
you know an upcast is always safe; the base class cannot have a bigger interface
than the derived class, therefore every message you send through the base class
interface is guaranteed to be accepted. But with a downcast, you don’t really
know that a shape (for example) is actually a circle. It could instead be a triangle
or square or some other type.

Figure 8-9: In non-“pure” interface inheritance, downcasting may be necessary

To solve this problem there must be some way to guarantee that a downcast is
correct, so you won’t accidentally cast to the wrong type and then send a message
that the object can’t accept. This would be quite unsafe. In some languages (like
C++) you must perform a special operation in order to get a type-safe downcast,
but in C# every cast is checked!

C# supports two types of downcast: a parenthesized cast that looks similar to the
casts in other C-derived languages

MoreUseful downCastObject = (MoreUseful) myUsefulHandle;

and the as keyword

Useful

void F()
void G()

void F()

void G()

void U()

void V()

void W()

MoreUseful

}

Assume this
represents a big

interface

"Is-like-a"

}

Extending
the interface

Chapter 8: Interfaces and Implementation 299

MoreUseful downCastObject = myUsefulHandle as MoreUseful;

At run-time, both these casts are checked to ensure that the myUsefulHandle
does in fact refer to an instance of type MoreUseful. If this a bad assumption,
the parenthesized cast will throw an InvalidCastException and the as cast will
assign downCastObject the value of null.

This act of checking types at run-time is called run-time type identification
(RTTI). The following example demonstrates the behavior of RTTI:

//:c08:RTTI.cs
// Downcasting & Run-time Type
// Identification (RTTI).

class Useful {
 public virtual void F() {}
 public virtual void G() {}
}

class MoreUseful : Useful {
 public override void F() {}
 public override void G() {}
 public void U() {}
 public void V() {}
 public void W() {}
}

public class RTTI {
 public static void Main() {
 Useful[] x = {
 new Useful(),
 new MoreUseful()
 };
 x[0].F();
 x[1].G();
 // Compile-time: method not found in Useful:
 //! x[1].U();
 ((MoreUseful)x[1]).U(); // Parenthesized downcast
 (x[1] as MoreUseful).U(); //as keyword
 ((MoreUseful)x[0]).U(); // Exception thrown
 }
} ///:~

300 Thinking in C# www.MindView.net

When you run this program, you will see something we’ve not yet discussed,
Visual Studio’s Just-In-Time Debugging dialog:

Figure 8-10: The Just-In-Time Debugging dialog box

This is certainly more welcome than a Dr. Watson dump or a Blue Screen of
Death, but we know the cause – we’re trying to treat x[0] as a MoreUseful
when it’s only a Useful. Select “No” and the program will end with a complaint
about an unhandled InvalidCastException.

As in the diagram, MoreUseful extends the interface of Useful. But since it’s
inherited, it can also be upcast to a Useful. You can see this happening in the
initialization of the array x in Main(). Since both objects in the array are of class
Useful, you can send the F() and G() methods to both, and if you try to call
U() (which exists only in MoreUseful) you’ll get a compile-time error message.

Chapter 8: Interfaces and Implementation 301

If you want to access the extended interface of a MoreUseful object, you can try
to downcast. If it’s the correct type, it will be successful. Otherwise, you’ll get an
InvalidCastException.

There’s more to RTTI than a simple cast. The is keyword allows you check the
type of an object before attempting a downcast.

//:c08:RTTI2.cs
// Downcasting & Run-time Type
// Identification (RTTI).

class Useful {
 public virtual void F() {}
 public virtual void G() {}
}

class MoreUseful : Useful {
 public override void F() {}
 public override void G() {}
 public void U() {}
 public void V() {}
 public void W() {}
}

public class RTTI2 {
 public static void Main() {
 Useful[] x = {
 new Useful(),
 new MoreUseful()
 };
 x[0].F();
 x[1].G();

 foreach(Useful u in x){
 if (u is MoreUseful) {
 ((MoreUseful) u).U();
 }
 }
 }
} ///:~

302 Thinking in C# www.ThinkingIn.NET

This program runs to completion without any exceptions being thrown.
Everything stays the same except the final iteration over the x array. The
foreach loop iterates over the array (all two elements of it!), but we guard the
downcast with a Boolean test to ensure that we only attempt the downcast on
objects of type MoreUseful.

Interfaces
The interface keyword takes the abstract concept one step further. You could
think of it as a “pure” abstract class. It allows the creator to establish the form
for a class: method and property names, argument lists, and return types, but no
method bodies. An interface provides only a form, but no implementation.

An interface says: “This is what all classes that implement this particular
interface will look like.” Thus, any code that uses a particular interface knows
what methods might be called for that interface, and that’s all. So the interface
is used to establish a “protocol” between classes. (Some object-oriented
programming languages have a keyword called protocol to do the same thing.)

To create an interface, use the interface keyword instead of the class
keyword. Like a class, you can add visibility modifiers such as the public
keyword before the interface keyword or leave it off to give internal status so
that it is only usable within the same assembly.

To make a class that conforms to a particular interface (or group of
interfaces), you use the colon (:) operator, just as you would to specify you were
inheriting from a Class.

Once you’ve implemented an interface, that implementation becomes an
ordinary class that can be extended in the regular way.

All interface methods are inherently public and virtual. You cannot use
visibility modifiers or the virtual keyword in your declarations.

You can see all this in the modified version of the Instrument example. Note
that every method in the interface is strictly a declaration, which is the only
thing the compiler allows. In addition, none of the methods in Instrument are
declared as either virtual or public, but they’re automatically public virtual
anyway:

//:c08:Music5.cs
// Interfaces.
using System;

Chapter 8: Interfaces and Implementation 303

interface Instrument {
 // Compile-time constant:
 // Cannot have method definitions:
 void Play(); // Automatically public & virtual
 string What();
 void Adjust();
}

class Wind : Instrument {
 public virtual void Play() {
 Console.WriteLine("Wind.Play()");
 }
 public virtual string What() { return "Wind";}
 public virtual void Adjust() {}
}

class Percussion : Instrument {
 public virtual void Play() {
 Console.WriteLine("Percussion.Play()");
 }
 public virtual string What() { return "Percussion";}
 public virtual void Adjust() {}
}

class Stringed : Instrument {
 public virtual void Play() {
 Console.WriteLine("Stringed.Play()");
 }
 public virtual string What() { return "stringed";}
 public virtual void Adjust() {}
}

class Brass : Wind {
 public override void Play() {
 Console.WriteLine("Brass.Play()");
 }
 public override void Adjust() {
 Console.WriteLine("Brass.Adjust()");
 }
}

304 Thinking in C# www.MindView.net

class Woodwind : Wind {
 public override void Play() {
 Console.WriteLine("Woodwind.Play()");
 }
 public override string What() { return "Woodwind";}
}

public class Music5 {
 // Doesn't care about type, so new types
 // added to the system still work right:
 static void Tune(Instrument i) {
 // ...
 i.Play();
 }
 static void TuneAll(Instrument[] e) {
 for (int i = 0; i < e.Length; i++)
 Tune(e[i]);
 }
 public static void Main() {
 Instrument[] orchestra = new Instrument[5];
 int i = 0;
 // Upcasting during addition to the array:
 orchestra[i++] = new Wind();
 orchestra[i++] = new Percussion();
 orchestra[i++] = new Stringed();
 orchestra[i++] = new Brass();
 orchestra[i++] = new Woodwind();
 TuneAll(orchestra);
 }
} //:~~

The rest of the code works the same. It doesn’t matter if you are upcasting to a
“regular” class called Instrument, an abstract class called Instrument, or to
an interface called Instrument. The behavior is the same. In fact, you can see
in the Tune() method that there isn’t any evidence about whether Instrument
is a “regular” class, an abstract class, or an interface. This is the intent: Each
approach gives the programmer different control over the way objects are created
and used.

Chapter 8: Interfaces and Implementation 305

“Multiple inheritance” in C#
The interface isn’t simply a “more pure” form of abstract class. It has a higher
purpose than that. Because an interface has no implementation at all—that is,
there is no storage associated with an interface—there’s nothing to prevent
many interfaces from being combined. This is valuable because there are times
when you need to say “An x is an a and a b and a c.” In C++, this act of
combining multiple class interfaces is called multiple inheritance, and it carries
some rather sticky baggage because each class can have an implementation. In
C#, you can perform the same act, but only one of the classes can have an
implementation, so the problems seen in C++ do not occur with C# when
combining multiple interfaces:

Abstract or Concrete
 Base Class

interface 1

interface 2

interface n

Base Class Functions interface 1 ...interface 2 interface n

......

Figure 8-11: “Multiple inheritance” with interfaces

In a derived class, you aren’t forced to have a base class that is either an abstract
or “concrete” (one with no abstract methods). If you do inherit from a non-
interface, you can inherit from only one. All the rest of the base elements must
be interfaces. You separate the base class (if there is one) and the interfaces
with commas. You can have as many interfaces as you want—each one becomes
an independent type that you can upcast to. The following example shows a
concrete class combined with several interfaces to produce a new class:

//:c08:Adventure.cs
// Multiple interfaces.
using System;

interface ICanFight {
 void Fight();
}

interface ICanSwim {

306 Thinking in C# www.ThinkingIn.NET

 void Swim();
}

interface ICanFly {
 void Fly();
}

class ActionCharacter {
 public void Fight(){Console.WriteLine("Fighting");}
}

class Hero : ActionCharacter, ICanFight, ICanSwim, ICanFly
{
 public void Swim() { Console.WriteLine("Swimming");}
 public void Fly() { Console.WriteLine("Flying");}
}

public class Adventure {
 static void T(ICanFight x) { x.Fight();}
 static void U(ICanSwim x) { x.Swim();}
 static void V(ICanFly x) { x.Fly();}
 static void W(ActionCharacter x) { x.Fight();}
 public static void Main() {
 Hero h = new Hero();
 T(h); // Treat it as an ICanFight
 U(h); // Treat it as an ICanSwim
 V(h); // Treat it as an ICanFly
 W(h); // Treat it as an ActionCharacter
 }
} ///:~

You can see that Hero combines the concrete class ActionCharacter with the
interfaces ICanFight, ICanSwim, and ICanFly. When you combine a concrete
class with interfaces this way, the concrete class must come first, then the
interfaces. (The compiler gives an error otherwise.)

Note that the signature for Fight() is the same in the interface ICanFight and
the class ActionCharacter, and that Fight() is not provided with a definition
in Hero. The rule for an interface is that you can inherit from it (as you will see
shortly), but then you’ve got another interface. If you want to create an object of
the new type, it must be a class with all definitions provided. Even though Hero
does not explicitly provide a definition for Fight(), the definition comes along

Chapter 8: Interfaces and Implementation 307

with ActionCharacter so it is automatically provided and it’s possible to create
objects of Hero.

In class Adventure, you can see that there are four methods that take as
arguments the various interfaces and the concrete class. When a Hero object is
created, it can be passed to any of these methods, which means it is being upcast
to each interface in turn. Because of the way interfaces are designed in C#, this
works without a hitch and without any particular effort on the part of the
programmer.

Keep in mind that the core reason for interfaces is shown in the above example:
to be able to upcast to more than one base type. However, a second reason for
using interfaces is the same as using an abstract base class: to prevent the client
programmer from making an object of this class and to establish that it is only an
interface. This brings up a question: Should you use an interface or an abstract
class? An interface gives you the benefits of an abstract class and the benefits
of an interface, so if it’s possible to create your base class without any method
definitions or member variables you should always prefer interfaces to
abstract classes. In fact, if you know something is going to be a base class, your
first choice should be to make it an interface, and only if you’re forced to have
method definitions or member variables should you change to an abstract class,
or if necessary a concrete class.

Name collisions when combining interfaces
You can encounter a small pitfall when implementing multiple interfaces. In the
above example, both ICanFight and ActionCharacter have an identical void
Fight() method. This is no problem because the method is identical in both
cases, but what if it’s not? Here’s an example:

//:c08:InterfaceCollision.cs
interface I1 { void F();}
interface I2 { int F(int i);}
interface I3 { int F();}
class C {
 public virtual int F() { return 1;}
}

class C2 : I1, I2 {
 public void F() {}
 public int F(int i) { return 1;}
}

308 Thinking in C# www.MindView.net

class C3 : C, I2 {
 public int F(int i) { return 1;}
}

class C4 : C, I3 {
 // Identical, no problem:
 public override int F() { return 1;}
}

class C5 : C , I1 {
 public override int F(){ return 1;}
 void F(){}
}

interface I4 : I1, I3 {}

class C6: I4 {
 void F() {}
 int F() { return 1;}
}///:~

The difficulty occurs because overriding, implementation, and overloading get
unpleasantly mixed together, and overloaded functions cannot differ only by
return type. If you attempt to compile this example, the error messages say it all:

InterfaceCollision.cs(23,10): error CS0111: Class 'C5'
already defines a member called 'F' with the same parameter
types
InterfaceCollision.cs(22,25): (Location of symbol related
to previous error)
InterfaceCollision.cs(30,8): error CS0111: Class 'C6'
already defines a member called 'F' with the same parameter
types
InterfaceCollision.cs(29,9): (Location of symbol related to
previous error)

Using the same method names in different interfaces that are intended to be
combined generally causes confusion in the readability of the code, as well. Strive
to avoid it.

However, if it is impossible to avoid, you can prepend the name of the class or
interface to the appropriate method. Thus, you could change the above to:

Chapter 8: Interfaces and Implementation 309

class C5 : C , I1 {
 public override int F(){ return 1; }
 void I1.F(){ }
}

class C6: I4{
 void I1.F() { }
 int I3.F() { return 1; }

}

In C5, the first F overrides the virtual method defined in C, while the second
declaration, I1.F() overrides the F() declared in interface I1. C6 similarly
overrides both I1 and I3 declarations of method F().

Extending an interface
with inheritance
You can easily add new method declarations to an interface using inheritance,
and you can also combine several interfaces into a new interface with
inheritance. In both cases you get a new interface, as seen in this example:

//:c08:HorrorShow.cs
// Extending an interface with inheritance.

interface Monster {
 void Menace();
}

interface DangerousMonster : Monster {
 void Destroy();
}

interface Lethal {
 void Kill();
}

class DragonZilla : DangerousMonster {
 public void Menace() {}
 public void Destroy() {}
}

310 Thinking in C# www.ThinkingIn.NET

interface Vampire : DangerousMonster, Lethal {
 void DrinkBlood();
}

public class HorrorShow {
 static void U(Monster b) { b.Menace();}
 static void V(DangerousMonster d) {
 d.Menace();
 d.Destroy();
 }
 public static void Main() {
 DragonZilla if2 = new DragonZilla();
 U(if2);
 V(if2);
 }
} ///:~

DangerousMonster is a simple extension to Monster that produces a new
interface. This is implemented in DragonZilla.

Summary
Polymorphism means “different forms.” In object-oriented programming, you
have the same face (the common interface in the base class) and different forms
using that face: the different versions of the dynamically bound methods.

You’ve seen in this chapter that it’s impossible to understand, or even create, an
example of polymorphism without using data abstraction and inheritance.
Polymorphism is a feature that cannot be viewed in isolation (like a switch
statement can, for example), but instead works only in concert, as part of a “big
picture” of class relationships. People are often confused by other, non-object-
oriented features of C#, like method overloading, which are sometimes presented
as object-oriented. Don’t be fooled: If it isn’t late binding, it isn’t polymorphism.

To use polymorphism—and thus object-oriented techniques—effectively in your
programs you must expand your view of programming to include not just
members and messages of an individual class, but also the commonality among
classes and their relationships with each other. Although this requires significant
effort, it’s a worthy struggle, because the results are faster program development,
better code organization, extensible programs, and easier code maintenance.

Interfaces contribute enormously to good designs. By explicitly separating the
concept of “What needs to be done” from “How it is implemented,” designers are

Chapter 8: Interfaces and Implementation 311

forced to consider the possibility of a difference between the two. Even if there
isn’t an immediately obvious difference, the complex types that form the core of
an application will benefit from having their interfaces made explicit. There are
several testing and debugging techniques that involve inserting classes “between”
an interface and its implementation. Over time, you’ll become better at
recognizing situations where an interface, an abstract class, or a concrete base
class is appropriate. But at this point in this book you should at least be
comfortable with the syntax and semantics. As you see these language features in
use you’ll eventually internalize them.

Exercises
1. Create an interface containing three methods, in its own namespace.

Implement the interface in a different namespace.

2. Prove that all the methods in an interface are automatically public.

3. In Sandwich.cs, create an interface called FastFood (with appropriate
methods) and change Sandwich so that it also implements FastFood.

4. Create three interfaces, each with two methods. Inherit a new
interface from the three, adding a new method. Create a class by
implementing the new interface and also inheriting from a concrete
class. Now write four methods, each of which takes one of the four
interfaces as an argument. In Main(), create an object of your class
and pass it to each of the methods.

5. Modify Exercise 4 by creating an abstract class and inheriting that into
the derived class.

6. Modify Music5.cs by adding a Playable interface. Move the Play()
declaration from Instrument to Playable. Add Playable to the
derived classes by including it in the implements list. Change tune()
so that it takes a Playable instead of an Instrument.

7. In Adventure.cs, add an interface called CanClimb, following the
form of the other interfaces.

8. Choose a program in your robotic party servant system with which you
are not satisfied. Describe the value you are trying to achieve in terms of
an interface (IMixCocktail or IDiscJockey or what-have-you). Change
your existing class so that it implements this interface, but change your

312 Thinking in C# www.MindView.net

existing implementation as little as possible. Write your Main() so that
it upcasts your implementation to the interface.

Write a new class that also implements the interface, but this time with
your desired improvements. Write your Main() to use this new class.
The change in Main() should only require you to change the right-hand
side of one line of code:

IPourDrinks ipd = new OriginalImplementation();

becomes:

IPourDrinks ipd = new ImprovedImplementation();

9. Implement this interface in at least 3 different ways:

interface IReverseString{
 ///<summary>Returns the input string with
 ///its characters reversed</summary>
 string Reverse(string input);
}

Write a test program that allows you to choose the different
implementations, upcasts to IReverseString, and uses
DateTime.Now to time their relative performance.

10. “Simulation games” such as The Sims™ work by assigning to each
element in the game a large number of characteristics, some of which
interact and some of which don’t. For instance, in a game about
managing a zoo, you might have people spend more time in front of big
animals such as elephants and tigers, while another aspect of the game
might involve preparing food for herbivores versus carnivores, which
wouldn’t have any influence on viewing. Identify some of the
characteristics that might be interesting to simulate in such a zoo
management game. A driving requirement is that level designers should
be able to create a new animal or situation by specifying artwork,
assemblies of pre-existing code, and a minimum of custom coding.
Identify interfaces and abstract classes to help achieve this goal.

11. Using your work from exercise 10, implement at least 3 animals
(“implement” in this case meaning “write a description of the desired
action or property to the console”).

12. Exercise 11 required you to refine your exercise 10 work, modifying,
adding, and perhaps deleting interfaces, methods, and characteristics.

Chapter 8: Interfaces and Implementation 313

Consider the challenges inherent in repeating this process of “design-a-
little, implement-a-little” over the course of a product lifespan of, say,
five years. Write a 500-word argument defending or refuting the
proposition that “Tools to help produce, store, and track design artifacts
such as class diagrams and documentation are worth a serious
investment in time and effort.”

315

9: Coupling and
Cohesion

Data encapsulation, inheritance, and polymorphism are
the cornerstone capabilities of object orientation, but
their use does not automatically create good or even
passable design. Good software design arises from
dividing a problem into coherent parts and tackling those
parts independently, in a manner that’s easy to test and
change. Object orientation facilitates just such
partitioning of concerns, but requires you to understand
the forces that make some software designs better than
others. These forces, coupling and cohesion, are universal
to all software systems and provide a basis for comparing
software architectures and designs.

When we speak of “architecture” and “design” in software systems, we can be
speaking of many different things – the physical structure of the network, the set
of operating system and server providers chosen, the graphic design of the entire
client-facing Website, the user-interface design of applications we write, or the
internal structure of the programs being written. All of these factors are
important and it’s a shame that we have not yet developed a common vocabulary
for giving each of them their just attention. For the purposes of this chapter, we
are solely concerned with the internal structure of programs – decisions that will
be made and embodied in the C# source code you write.

Software as architecture vs.
software architecture
As often as not, the lead programmer in a team has the title of Software Architect.
The popularity of this title comes from the popular view that the challenges of
building a software system are similar to the challenges of building a skyscraper
or bridge.

316 Thinking in C# www.MindView.net

The view of software as architecture stems from the undeniable truth that
software often fails. Most of those who have studied larger software projects
(projects in excess of 5,000 function points, which translates to probably 175,000
lines of C#) have concluded that aspects other than code construction are the
most important drivers of success or failure. What these people see in large
projects, time and again, are failures relating to requirements and failures
relating to integration: teams build the wrong thing and then they can’t get the
pieces they build to fit together. Based on these observations, the challenges of
software seemed to parallel the challenges of architecture – the craftsmanship of
the individual worker is all well and good, but success comes from careful
planning and coordination.

Every few years, the pendulum of popular opinion swings from this view towards
a view that emphasizes the individual contributions of talented programmers. A
few years later, the pendulum predictably swings the other way. This view of
software holds that, like it or not, code defines the software’s behavior and that
diagrams and specifications do not generally capture the real issues at hand when
designing programs. Proponents of this view argue that the software as
architecture view is primarily pushed by consultants and vendors selling
expensive tools that generate a lot of paper but little product.

Until recently, the escalation of defect costs over time was the trump card for the
software as architecture advocates. In 1987, Barry Boehm published a paper in
which he established that a defect corrected for $1 in the requirements phase
could cost $100 to fix once deployed1. With those economics, big up-front efforts
were obviously worthwhile. It’s doubtful that such numbers have much meaning
today; Boehm himself concluded in 2001 that for “smaller, noncritical software
systems” the cost escalation was “more like 5:1 than 100:1.” The explosively
popular set of practices called Extreme Programming is based on “the technical
premise [that] the cost of change [can rise] much more slowly, eventually
reaching an asymptote.”2

So should you view software development as an undertaking akin to building a
bridge or as one akin to growing a garden? Well, there are a few things we can say
for sure about software development: Programmers always overestimate their
long-term productivity. Most large software projects still cost more than
expected. Most projects still take longer to finish than expected. Many are

1 Software Defect Reduction Top 10 List, Boehm and Basili, IEEE Computer 34(1).

2 Extreme Programming Explained, pg. 23.

Chapter 9: Coupling and Cohesion 317

cancelled prior to completion and many, once deployed, fail to achieve the
business goals they were intended to serve. Beyond these generally pessimistic
statements, the variances between individuals, teams, companies, and industry
sectors swamp the statistics. Useful software systems range from programs that
are a few hundred lines long (the source code to ping is shorter than some of the
samples in this book!) to programs in excess of a million lines of code. Teams can
range from individuals to hundreds. A successful program may be a function-
optimizer that, on a single run out of a thousand, produces a meaningful result or
a life support system that, literally, never fails (yes, provably correct software is
possible). So when people start spouting statistics or pronouncements about
“best practices,” at best they’re over-generalizing and at worst they’re trying to
scare you into buying whatever it is they’re selling3.

We do know that there’s at least one major flaw in the software as architecture
metaphor, and that is that unlike a building that remains under construction
until a designated “grand opening,” software should be built and deployed
incrementally – if not one “room at a time” then at least “one floor at a time.”
This is, of course, easier in some situations than in others, but one of the great
truisms of software development management is that from the first weeks of the
project, you should be able to ship, at least potentially, your latest build.

What is software architecture?
Every non-trivial program should have an overall ordering principle. While that’s
vague enough to allow for a lot of different interpretations of what does and does
not constitute an architecture, you don’t gain much by viewing .NET as your
systems’ architecture. Rather, you should consider the way that data flows in and
out of your system and the ways in which it is transformed. At such a level of
abstraction, there are fewer variations in structure than you might guess.

Most programs are going to have at least a few subsystems, and each may have its
own architecture. For instance, almost all systems require some kind of user
interface, even if it’s just for administration, and UI subsystems are typically
architected to follow either the Model-View-Controller pattern or the
Presentation-Abstraction-Control pattern (both of which are thoroughly
explained in Chapter 14). However, neither of these architectures speaks to how

3 Be especially dubious if you hear “70% failure rate.” This, like the $300B that Y2K
failures were going to cost, is a number that originated in a single profit-motivated study
but the number has been repeated so many times that it’s taken on a life of its own.

318 Thinking in C# www.ThinkingIn.NET

the program should structure the creation of business value (what goes on in the
“Model” or “Abstraction” parts of MVC and PAC respectively).

Simulation architectures:
always taught, rarely used
Many people are taught that object oriented systems should be structured to
conform to objects in the problem domain, an architectural pattern we could call
Simulation. There is certainly historical precedent for this: object oriented
programming was in fact invented in response to the needs of simulation
programming. Unfortunately, outside of video games and certain types of
modeling, Simulation is not generally a useful architecture. Why? Well, because
the business interests of most companies are usually focused on transactions
driven by non-deterministic forces (i.e., people) and it just doesn’t do much for
the bottom line to try to recreate those forces inside the computer system.
Amazon’s ordering system probably has a Book class, and maybe an Author
class, but I’ll wager it doesn’t have an Oprah class, no matter how much the talk-
show host’s recommendations influence purchasers.

Simulation architectures tend to exemplify the concept of cohesion, though.
Cohesion is the amount of consistency and completion in a class or namespace,
the amount by which a class or namespace “hangs together.” In their proper
domain, simulations tend to have great cohesion: when you’ve got a Plant object
and an Animal object, it’s pretty easy to figure out where to put your
Photosynthesis() method. Similarly, with classes derived from real world
nouns, one doesn’t often have “coincidental cohesion” where a class contains
multiple, completely unrelated interfaces.

Client/server and n-tier architectures
When corporate networks first became ubiquitous in the early 1990s, there was a
great deal of excitement about the possibility of exploiting the desktop
computers’ CPU power and display characteristics, while maintaining data
integrity and security on more controllable servers. This client/server
architecture quickly fell out of favor as client software turned out to be costly to
develop and difficult to keep in sync with changing business rules. Client/server
was replaced with 3-tier and n-tier architectures, which divide the world into 3
concerns: a presentation layer at the client, one or more business rules layers that
“run anywhere” (but usually on a server), and a persistence or database layer that
definitely runs on a server, but perhaps not the same machines that run the
business rules layers.

Chapter 9: Coupling and Cohesion 319

Originally popular for corporate development, the dot-com explosion entrenched
the n-Tier architecture as the most common system architecture in development
today. Web Services, which we’ll discuss in more detail in Chapter 18, are n-tier
architectures where the communication between layers is done with XML over
Web protocols such as SOAP, HTTP, and SMTP.

In this architecture, all the interesting stuff happens in the business-rule tiers,
which are typically architected in a use-case-centric manner. “Control” classes
represent the creation of business value, which is usually defined in terms of a
use-case, an atomic use of the system that delivers value to the customer. These
control objects interact with objects that represent enduring business themes
(such as Sales, Service, and Loyalty), financial transactions (such as Invoices,
Accounts Receivable and Payable, and Taxes), regulatory constraints, and
business strategies. Classes that map into nouns in the real world are few and far
between.

The theme of such business-tier architectures is “isolating the vectors of change.”
The goal is to create classes based not on a mapping to real-world nouns but to
patterns of behavior or strategy that are likely to change over time. For instance,
a retail business is likely to have some concept of a Stock Keeping Unit – a
product in a particular configuration with a certain manufacturer, description,
and so forth – but may have many different strategies for pricing. In a typical
business-tier architecture, this might lead to the creation of classes such as
StockKeepingUnit, Manufacturer , and an interface for PricingStrategy
implemented by EverydayPrice, SalePrice, or ClearancePrice. The “vector
of change” in this case is the PricingStrategy, which is manipulated by a
control object; for instance, an object which lowers prices when a
StockKeepingUnit is discontinued:

320 Thinking in C# www.MindView.net

StockKeepingUnit

Manufacturer

+DollarAmount Price()

«interface»
PricingStrategy

EverydayPrice SalePrice ClearancePriceChanges infrequently

Control object changes pricing strategy to meet business rules

ClearDiscontinuedItems

Figure 9-1: Not all objects correspond to “physical things in the real world.”

This design fragment is typical of the types of structures one sees in business-tier
architectures: use-cases are reified (a fancy word for “instantiated as objects”),
there is extensive use of the Strategy pattern, and there are lots of classes which
do not map to tangible objects in the real world.

The business rule “When a product is discontinued by its manufacturer, place it
on sale until we have less than a dozen in inventory, then price it for clearance,”
might look like this in code:

//:c09:Manufacturing.cs
class ClearDiscontinuedItems {
 static readonly int MIN_BEFORE_CLEARANCE = 12;

 public void Discontinued(StockKeepingUnit[] line){
 foreach(StockKeepingUnit sku in line){
 int count = sku.NumberInStock;
 if (count < MIN_BEFORE_CLEARANCE) {
 sku.PricingStrategy =
 new ClearancePrice();
 } else {
 sku.PricingStrategy = new SalePrice();
 }

Chapter 9: Coupling and Cohesion 321

 }
 }
}

In a Simulation architecture, a StockKeepingUnit would price itself when
discontinued:

class StockKeepingUnit {
 //...
 static int numberInStock;
 public int NumberInStock{
 get { return numberInStock; }
 set { numberInStock = value; }
 }
 static readonly int MIN_BEFORE_CLEARANCE = 12;

 PricingStrategy ps;
 internal PricingStrategy PricingStrategy{
 get { return ps; }
 set { ps = value; }
 }

 void Discontinue(){
 if (numberInStock < MIN_BEFORE_CLEARANCE) {
 this.ps = new ClearancePrice();
 } else {
 this.ps = new SalePrice();
 }
 }
}

As can be seen in this design fragment, business-tier architectures tend to look
less cohesive than simulation architectures for small problems. In real-world
applications, though, there are typically dozens or hundreds of use-cases, each of
which may have several business rules associated with it. Business rules tend to
involve a lot of different factors and yet are the natural unit of thought for the
domain experts, so business-tier architectures tend to result in clearer lines of
communication between development teams and domain experts. “We need to
ask a question about the ‘price discontinued items’ business rules” is much
clearer to domain experts than “We need to ask a question about how an SKU
prices itself when it’s discontinued.”

322 Thinking in C# www.ThinkingIn.NET

Layered architectures
Once upon a time, computers were primarily used to automate repetitive
calculations: tide charts, gunnery tables, census statistics. Nowadays, CPU-
intensive math is one of the least frequent tasks asked of a computer. We imagine
there are many younger people who don’t know that, essentially, computers are
nothing but binary calculators. This is because layer after layer of increasing
abstraction has been placed between the end-user and the underlying hardware.
We’re not sure this is entirely beneficial when it comes to programming, but we
certainly don’t want to go back to the days when the big trick in graphics
programming was doing your work when the screen was doing a vertical retrace.
Layers of abstraction are among the most powerful architectures over the long
term, removing entire areas from the concerns of later programmers.

Layered architectures are commonly used when implementing protocols, since
protocols themselves have a tendency to be layered on top of other protocols.
Layers are also ubiquitous when working with device drivers or embedded
systems (not likely scenarios for C# today, but who knows what tomorrow
holds?).

The three places where one can anticipate a C# team looking towards layered
architectures are in the areas of object-relational mapping, concurrent libraries,
and network communications. The first two are areas where the .NET framework
does not provide sufficient abstraction and the last is a fast-moving area where
C# has the potential to really shine.

Layered architectures always seem to be difficult to get right. In a layered
architecture, all classes in a layer should share the same abstraction layer, and
each layer should be able to perform all its functions by only relying on its own
classes and those of the layer immediately “below” it. Pulling this off requires a
more complete understanding of the problem domain than is typically available
in the early stages of system development, when architecture is decided. So
usually with a layered architecture, you face two possibilities: a lot of upfront
effort or being very conscientious about moving objects and refactoring based on
abstraction level.

The great benefits of a layered architecture come down the line when an
understanding of the working of the lower levels is rarely or never needed. This is
the situation today with, say, graphics, where no one but game programmers
need concern themselves with the complex details of screen modes, pixel aspects,
and display pages (and with modern game engines built on DirectX and the

Chapter 9: Coupling and Cohesion 323

prevalence of graphics accelerator cards, apparently even game programmers are
moving away from this level of detail).

Problem-solving architectures
It’s increasingly rare to develop a system that solves a problem that is otherwise
intractable. This is too bad, because there are few thrills greater than developing
a tool and watching that tool accomplish something beyond your capabilities.
Such systems often require the development of specialized problem-solving
architectures — blackboard systems, function optimizers, fuzzy logic engines,
support-vector machines, and so forth. These problem solvers may themselves be
architected in any number of ways, so in a sense you could say that this is a
variation of the layered architecture, where the problem-solver is a foundation on
which the inputs and meta-behavior rely. But to solve a problem using, say, a
genetic optimizer or expert system requires an understanding of the
characteristics of the problem-solver, not so much an understanding of the way
that the problem-solver is implemented. So if you’re fortunate enough to be
working in such a domain, you should concentrate on understanding the core
algorithms and seeing if there’s a disconnect between the academic work on the
problem-solver and the task at hand; many such projects fail because the
problem-solver requires that the input or meta-data have a certain mathematical
characteristic. As an object lesson, research on artificial neural networks
languished for more than a decade because the original work used a
discontinuous “activation function.” Once someone realized the mathematical
problem with that, a famous “proof” of their limitations fell by the wayside and
neural nets became one of the hottest research topics in machine learning!

Dispatching architectures
An amazingly large amount of value can be derived from systems that manage the
flow of information without a great deal of interaction with the underlying data.
These systems typically deal with the general problem of efficiently managing the
flow from multiple, unknown-at-compilation-time sources of data with multiple,
unkn0wn-at-compilation-time sinks for data. “Efficiently” is sometimes
measured in terms of speed, sometimes in terms of resources, and sometimes in
terms of reliability. Sometimes the connections are transient, in which case the
architectures are usually called “event driven” and sometimes the connections are
longer lasting, in which case multiplexing and demultiplexing architectures are
commonly used.

Dispatching solutions tend to be relatively small and can sometimes be seen as
design elements, not the architectural organizing principle for an entire system or

324 Thinking in C# www.MindView.net

subsystem. But they often play such a crucial role in delivering value that they
deserve the greatest emphasis in a system’s development.

“Not really object-oriented”
One of the most common criticisms that you’ll hear about a piece of software is
that, although it’s written with an object-oriented language, “it’s not really object
oriented.” There are two root causes for this criticism, one of which is serious and
worth criticizing, and one of which betrays a lack of understanding on the part of
the criticizer.

The frivolous criticism comes from those who mistakenly believe that Simulation
architectures are the only valid ordering principle for object-oriented systems.
Each architecture has its strengths and weaknesses and while Simulation
architectures have historical ties with object orientation, they aren’t the best
choice in many, maybe most, real-world development efforts. There are many
more architectures than have been discussed here; we’ve just touched on some of
the more popular ones.

The serious criticism, the thing that makes too many systems “not really object
oriented” is low-level design that doesn’t use object-oriented features to improve
the quality of the software system. There are many different types of quality:
speed of execution, memory or resource efficiency, ease of integration with other
code, reusability, robustness, and extensibility (to name just a few). The most
important measure of software quality, though, is the extent to which your
software can fulfill business goals, which usually means the extent to which the
software fulfills user needs or the speed with which you can react to newly
discovered user needs. Since there’s nothing you can do about the former, the
conclusion is “the most important thing you can do is use object-oriented
features to improve the speed with which you can react to newly discovered user
needs.”

This is governed by the coupling and cohesion of your code.

Coupling
Dependence describes the extent to which a type or a method relies on another to
accomplish its behavior. Class A is said to be highly dependent on Class B if a
change in class B’s implementation is very likely to cause a change in A’s
behavior. The sample programs in this book are highly dependent on the
Console class and its WriteLine() method!

Chapter 9: Coupling and Cohesion 325

Coupling is just another word for dependence between two different methods or
types. There are several types of coupling, of varying levels of trouble:

Independent coupling
When two classes or methods do not share any data, they are independent. The
simple use of another class does not necessarily mean that there is a coupling to
the other class; in this example, A and B are still independent:

//:c09:IndependentCoupling.cs
class A {
 public void Foo(){
 B b = new B();
 b.Bar();
 }
}

class B {
 public void Bar(){
 //A change here will not affect A's behavior
 }
}

Data coupling
When class A passes an integral value type to B, they are data-coupled. The
majority of sample programs in this book are data-coupled to Console because
they pass in a string value to its WriteLine() method. The behavior of the
sample program’s would change if there was a change in either the passed-in
string or in the implementation of Console.WriteLine().

Stamp coupling
Stamp coupling occurs when class A passes a reference type or a struct to B.
Although stamp coupling is usually considered to be okay, it is slightly more
obscure than data coupling in that the casual reader of the method call signature
cannot tell exactly which fields in the parameter are used by the method.

//:c09:StampCoupling.cs
class A {
 public void Foo(){
 B b = new B();
 b.Bar(this);
 //this.f1 and this.f2 may be changed

326 Thinking in C# www.ThinkingIn.NET

 }

 int f1;
 public int Field1{
 get { return f1;}
 set { f1 = value;}
 }

 int f2;
 public int Field2{
 get { return f2;}
 set { f2 = value;}
 }
}

class B {
 public void Bar(A myA){
 //Could affect myA.Field1 or myA.Field2
 }
}

Tramp coupling
Tramp coupling is the name for when a parameter is passed, unchanged, through
many intermediate methods before being used.

//:c09:TrampCoupling.cs
using System.Drawing;
class Car {
 void BuildCar(Color bodyColor){
 BuildChassis(bodyColor);
 }

 void BuildChassis(Color bodyColor){
 //...etc...
 InstallEngine(bodyColor);
 }

 void InstallEngine(Color bodyColor){
 //...etc...
 PutOnTires(bodyColor);

Chapter 9: Coupling and Cohesion 327

 }

 void PutOnTires(Color bodyColor){
 //...etc...
 PaintBody(bodyColor);
 }

 void PaintBody(Color bodyColor){
 //Finally use the bodyColor!
 }
 public static void Main(){
 Car c = new Car();
 c.BuildCar(Color.Red);
 }
}///:~

Tramp coupling is confusing because a method’s parameters should all have
importance. If a Color is passed to InstallEngine(), the implication is that the
Engine relies on the Color (it’s either stamp or data coupled to the method that
calls InstallEngine). Instead of using tramp coupling, the Car class should have
a field that sets the desired body color when it is first calculated and
PaintBody() should just read the value of the field. This introduces state into
the equation – the behavior of Car.PaintBody() relies on calls that are made at
another point in Car’s lifecyle. There’s nothing wrong with state, so long as your
object is never in an invalid state; constructors and field initializers give you the
tools to ensure that your fields always have some reasonable default value.

Control coupling
If the logic of class B is controlled by a parameter given it by class A, the two
classes are control-coupled. The crucial concept is that the class A determines the
logic that class B will use. If class B makes its own decision, it is not control
coupling.

class CalendarPrint{
 public void ControlCoupledFeb
 (DayOfWeek firstIsOn, bool isLeap){
 //etc.
 }

 public void JustDataCoupledFeb(int year){
 //Could calc day of week of the first, leap year
 }

328 Thinking in C# www.MindView.net

}

For this Calendar-printing class to print February, it needs to know what day of
the week the first falls on and whether or not the year is a leap-year. These two
values could be passed in, as they are in this example’s
CalendarPrint.ControlCoupledFeb() method. Imagine the code that is
needed to call this:

//:c09:ControlCoupling.cs
class CalendarPrint{
 public void ControlCoupledFeb
 (DayOfWeek firstIsOn, bool isLeap){
 //etc.
 }

 public void JustDataCoupledFeb(int year){
 //Could calc day of week of the first, leap year
 }

 public void PrintJanuary(DayOfWeek beginsOn){
 //...etc...
 }
}

class CalendarMaker{
 public void PrintYear(int year){
 CalendarPrint cp = new CalendarPrint();
 DayOfWeek firstIsOn = CalcDayOfWeekForJan(year);
 cp.PrintJanuary(firstIsOn);
 firstIsOn += 3;
 bool isLeap = IsLeapYear(year);
 cp.ControlCoupledFeb(firstIsOn, isLeap);
 //...etc...
 }

 DayOfWeek CalcDayOfWeekForJan(int year){
 //...etc...
 }

 bool IsLeapYear(int year){
 //...etc...
 }

Chapter 9: Coupling and Cohesion 329

}

Control coupling is one of the most common design mistakes in object-oriented
code. While it’s not inconceivable that you’d have one class for printing and
another for doing the date calculations, it’s almost certainly a better design if
both of these concerns were handled by a single class.

External, Common, and Content coupling
If two classes communicate via a non-native object, such as via a file, they are
externally coupled. Challenges with external coupling include more failure modes
(what if the file is deleted by an unknowing user?) and much harder debugging,
because it is harder to trace the exact state transitions of the communication
object. Internet programming frameworks often rely on external coupling via
cookies or URL rewriting.

Common coupling occurs when two classes are dependent on the same static
data. Obviously, any change to the static data will affect all the classes that rely on
it.

When A and B directly modify each other’s internal state without going through
properties, they are content coupled. This is the most obvious form of coupling
and most designers learn to avoid it very quickly.

Cohesion
The never-to-be-reached goal with coupling is fully independent objects and
methods. Seemingly, the best way to achieve this is to place all your work within a
single Main() method; you’ll still be dependent on the .NET Framework Library
methods, but you won’t have any dependencies between your own methods and
objects because you won’t define any! Needless to say, something else is in play in
good designs: cohesion.

Cohesion is the degree to which all the elements of a method or type are related
to each other. It is not quite the opposite of coupling, but it’s related. In general,
the more cohesive a class, the looser is its external coupling. But there is a
problem: cohesion tends to break a task into more and more sub-tasks, but
coordinating those sub-tasks tends to increase coupling. The fun in software
design is attempting to discover a way to have your highly cohesive cake and
loosely couple it, too.

A cohesive class is one that implements the intuitive set of behaviors implied by
its name – a cohesive BaseballStatistics class would contain not just the

330 Thinking in C# www.ThinkingIn.NET

winning scores, but the myriad details that fans expect. The questions that are
asked to increase cohesion are the same that determine whether something
should be turned into an object: “Does this make sense as something whose
identity should be separate from other things?” and “Do these things intuitively
belong together?” These questions, not “Does this correspond to something
physical in the real world?” are what should guide your object-oriented designs.

Just as there are several types of coupling, so too are there several types of
cohesion.

Functional cohesion
A functionally cohesive method is one that is self-contained, whose every
argument has import, and that modifies one thing.

int Add(int x, int y){
 return x + y;
}

is an example of such a method. Such methods are easy to read, test, and modify.

Sequential cohesion
Many methods use the output of one step as inputs to another step. When this
happens, the methods are said to exhibit sequential cohesion (or sequential
association).

class AbstractExpressionist{
 public void MakeCanvas(){
 Paint p = ChooseRandomPaint();
 SplatterPaintRandomly(p);
 }
}

The method AbstractExpressionist.SplatterPaintRandomly() is
sequentially associated with
AbstractExpressionist.ChooseRandomPaint(): one cannot lay down a
brushstroke until one has chosen a paint. All object methods are sequentially
associated with the constructor, while static methods are sequentially associated
with the static constructor and class loading.

Try to avoid creating sequential associations between methods that are not
private. While it’s not a great sin to require some amount of sequencing from the
client programmer, strive for functional cohesion in the design of the non-private
methods in your classes. Consider this poor design:

Chapter 9: Coupling and Cohesion 331

//:c09:CarAndDriver1.cs
//Poor design
class Driver{
 Car c = new Car();

 public void Start(){
 c.PutInNeutral();
 c.InsertKey();
 c.TurnKey();
 }
}

class Car{
 public void PutInNeutral(){ … }
 public void InsertKey(){ … }
 public void TurnKey(){ … }
 //…etc…
}///:~

Here, the beginning designer might think that Driver.Start() is just calling the
sequentially associated Car.PutInNeutral(), Car.InsertKey(), and
Car.TurnKey() methods and that because the starting sequence does not
directly manipulate any of the Car instance data, the Start() method may as
well be in the Driver class. Wrong.

Put aside the appeal to intuition that Car is the “obvious” place to put the
Start() method and objectively look at the choice to put Start() in Driver.
One thing that jumps out immediately is that to test the Driver.Start() design,
you would need to create a Driver object and a Car object. Whereas, if you had:

class Car{
 public void PutInNeutral(){ … }
 public void InsertKey(){ … }
 public void TurnKey(){ … }
 public void Start(){
 PutInNeutral();
 InsertKey();
 TurnKey();
 }
 //…etc…
}

332 Thinking in C# www.MindView.net

you would only need to create a Car object and Start() would call the methods
on this (and raise the question: should only Start() should be public?). One of
the key insights of the Extreme Programming movement is that if something is
hard to test, there’s probably something wrong with the design. Conversely, the
easier something is to test, the better the design is likely to be (plus, it’s easier).

Further, think about modifying the Driver.Start() design to allow for the logic
that only stick-shift cars need be put in neutral before starting:

//:c09:CarAndDriver2.cs
//Consequence of following the previous poor design
class Driver {
 void Start(Car c){
 if (c is StickShift) {
 StickStart((StickShift) c);
 } else {
 QuickStart(c);
 }
 }

 void StickStart(StickShift c){
 c.PutInNeutral();
 QuickStart(c);
 }

 void QuickStart(Car c){
 c.InsertKey();
 c.TurnKey();
 }
 //...etc...
 }

This is typical of the refactoring that a programmer with a procedural
background would be likely to produce early in their object-oriented days. A
person with more object-oriented experience would likely do something like the
following, which uses a virtual method call4:

//:c09:CarAndDriver3.cs
abstract class Car {

4 Putting aside the question of whether introducing new classes such as Key and
Transmission might not be the best way to handle the issue.

Chapter 9: Coupling and Cohesion 333

 abstract public void Start();
 protected void QuickStart(){
 InsertKey();
 TurnKey();
 }

 public void InsertKey(){ //…etc…
 }
 public void TurnKey() { //…etc…
 }
}

class StickShift : Car {
 public override void Start(){
 PutInNeutral();
 QuickStart();
 }

 void PutInNeutral(){ //…etc…
 }
}

class Automatic : Car {
 public override void Start(){
 QuickStart();
 }
}

class Driver {
 Car c;

 void Start(){
 c.Start();
 }

 //...etc...
}///:~

 In this example, the transmission logic is associated with the sub-type of the
Car, not the Driver. This means that a Driver can start any kind of Car, and
new types of transmission could be added to the mix by subtyping Car without
touching existing code.

334 Thinking in C# www.ThinkingIn.NET

Communicational cohesion
Communicational association occurs when a group of methods acts on the same,
single piece of data. This is the part-and-parcel of object-oriented programming:
instance methods work on the data associated with the this reference, while
static methods work on the unique class data. Consider the String class, for
instance, and all of its methods for converting, trimming, searching, and
concatenating: all sorts of behavior are available to work on the particular string
referenced by the particular variable.

Communicational association and sequential association are different in that
sequential association is an assembly line, while the order in which
communicationally associated methods are called is unimportant.

Of course, the this object is only a stepping-stone to individual instance fields; if
you had, for instance:

//:c09:Boombox.cs

class Boombox{

 float fmRadioFrequency;

 void TuneInRadio(float frequency){

 fmRadioFrequency = frequency;

 }

 int currentCdTrack;

 void SetCdTrack(int track){

 currentCdTrack = track;

 }

}///:~

it would be incorrect to say that Boombox.TuneInRadio() and
Boombox.SetCdTrack() exhibited communicational cohesion. (Note also that
these methods would be better implemented as properties, which would also not
be considered communicationally cohesive.)

Although the general rule of object-oriented programming is to place both the
data and all the behavior associated with manipulating that data inside a single
class (in our example, placing the Start() method within the Car class rather
than the Driver class), there are times when you are trying to make a new,
independent identity for the logic that is separate from the identity of the data.

Chapter 9: Coupling and Cohesion 335

This will be discussed in more detail later in this chapter, when we discuss multi-
tiered architectures.

Procedural cohesion
The original Driver.Start() method that called a series of methods on the Car
c was marginal, but things are pretty clearly awry by the time methods are using
procedural association, in which a method embodies sequential logic on more
than one object that is not this.

//:c09:BadDriver.cs
class Driver {
 Car c;
 Cellphone p;

 void Start(){
 c.PutInNeutral();
 c.InsertKey();
 c.TurnKey();

 p.PlugIn();
 p.HandsFree = true;
 if (DestinationHome()) {
 p.Dial(p.SpeedDial.Home);
 //...etc...
 }
 }
}///:~

Procedurally associated methods are hard to test and therefore hard to modify.
This version of Driver.Start() is sequentially controlling method calls in both
the Car and the Cellphone; to test this method, you’d have to fully exercise all
variations on the Car starting procedure and on the Cellphone initialization.
Clearly, you’d want to move the logic for these responsibilities into the Car and
Cellphone classes.

Temporal cohesion
Temporal association occurs when a method’s behavior is related to the time at
which it is called. The most common example of this might be a threaded
program that “wakes up” periodically and performs some series of tasks related
only by the fact they’re done at a particular time (check for new email,
defragment the hard drive, send the day’s credit card transactions to the bank,
etc.). Batch-mode processing, where temporal association is most likely to crop

336 Thinking in C# www.MindView.net

up, is fairly rare now that we have ample computing resources at hand.
Additionally, in C# individual threads are relatively cheap and easy to use; there
are no obvious temptations that would lead to temporal association. Threading
will be covered in detail in chapter 16.

Logical cohesion
Logical association occurs when a method’s logic is determined by an external
method that passes in a control value.

//:c09:LogicalAssociation.cs
using System;

class Reservation{
 static ConfirmationNumber ConfirmReservation
 (string name, DateTime date, bool createIfNeeded){
 Reservation res = null;
 if (date == DateTime.Today) {
 res = CheckTodaysArrivals(name);
 } else {
 res = CheckFutureArrivals(name, date);
 }
 if (res != null) {
 ConfirmationNumber cn = res.Confirmation;
 return cn;
 } else {
 if (createIfNeeded) {
 Reservation newRes = new Reservation();
 //... build reservation ...
 ConfirmationNumber cn = newRes.Confirmation;
 return cn;
 } else {
 return null;
 }
<return type> }
<return type> }
 //...etc...
}///:~

The first step in Reservation.ConfirmReservation() is to see if the passed-
in Date is today; the result of this check activates different control paths,
CheckTodaysArrivals() or CheckFutureArrivals(). While the behavior of
Reservation.ConfirmReservation() changes depending on the value of

Chapter 9: Coupling and Cohesion 337

Date, this is not logical cohesion because the test and the control is within
Reservation.ConfirmReservation().

However, the bool createIfNeeded argument is ugly. It makes unit-testing
Reservation.ConfirmReservation() literally twice as hard.

Logical association can almost always be transformed into at least procedural
association. This first example shows code that might call
Reservation.ConfirmReservation() as it’s written:

class TravelAgent{
 void ConfirmPackage(Person customer){
 bool create = customer.CreateResIfNull();
 foreach(DateTime d in customer.TravelDates){
 ConfirmationNumber cn =
 Reservation.ConfirmReservation
 (customer.Name, d, create);
 if (cn != null) {
 customer.AddConfirmation(cn);
 }
 }
 }
}

But a first step towards improving the code would be to refactor from logical to
procedural association:

//:c09:RefactoredReservations.cs
using System;

class Reservation {
 internal Reservation(string name, DateTime d){
 //...etc...
 }
 public static ConfirmationNumber ConfirmReservation
 (string name, DateTime date){
 //...etc...
 return cn;
 }

 ConfirmationNumber cn;
 public ConfirmationNumber Confirmation{
 get { return cn; }

338 Thinking in C# www.ThinkingIn.NET

 set { cn = value; }
 }
}

class TravelAgent {
 public void ConfirmPackage(Person customer){
 bool create = customer.CreateResIfNull();
 foreach(DateTime d in customer.TravelDates){
 string name = customer.Name;
 ConfirmationNumber cn =
 Reservation.ConfirmReservation(name, d);
 if (cn == null && create == true) {
 Reservation res =
 new Reservation(name, d);
 cn = res.Confirmation;
 }
 if (cn != null) {
 customer.AddConfirmation(cn);
 }
 }
 }
}

While this new version of TravelAgent.ConfirmPackage() may still not be
ideal, where bool create is declared, assigned, and how it is used to affect
behavior is all localized within TravelAgent.ConfirmPackage(). You can see
exactly where it comes from and what it affects. With the original, logically
associated versions of these methods, this was far less apparent.

Coincidental cohesion
Coincidental association isn’t very common; it occurs when a method does two
totally unrelated tasks:

void PayTaxesAndPickUpALoafOfBread(){
 PayTaxes();
 PickUpALoafOfBread();
}

The one place where coincidental cohesion is seen fairly commonly is with
programmers who over-use graphical forms as a stand-in for object-oriented
design. This will be discussed in great detail in Chapter 14’s discussion of user-
interface architectures.

Chapter 9: Coupling and Cohesion 339

Design is as design does
The end-user has no interest in your software’s design. They care that your
software helps them do their job easier. They care that your software doesn’t
irritate them. They care that when they talk to you about what they need from the
software, you listen and respond sympathetically (and in English, not Geek).
They care that your software is cheap and reliable and robust. Other than that,
they don’t care if it’s written in assembly language, LISP, C#, or FORTRAN, and
they sure as shooting don’t care about your class and sequence diagrams.

So there’s really nothing that matters about design except how easy it is to change
or extend – the things that you have to do when you discover that your existing
code falls short in some manner.

So how do you design for change?

First, do no harm
It’s acceptable for you to decide not to make a change. It’s acceptable for your
change to turn out to be less helpful to the user than the original. It’s acceptable
for your change to be dead wrong, either because of miscommunication or
because your fingers slipped on the keys and typed a plus instead of a minus.
What is unacceptable is for you to commit a change that breaks something else in
your code. And it is unacceptable for you to not know if your change breaks
something else in the code. Yet such a pathological state, where the only thing
that developers can say about their code is a pathetic “Well, it shouldn’t cause
anything else to change,” is very common. Almost as common are situations
where changes do, in fact, seem to randomly affect the behavior of the system as a
whole.

It is counterintuitive, but the number one thing you can do to speed up your
development schedule is to write a lot of tests. It doesn’t pay off in the first days,
but it pays off in just a few weeks. By the time you get several months into a
project, you will be madly in love with your testing suite. Once you develop a
system with a proper suite of tests, you will consider it incompetent foolishness to
develop without one.

With modern languages that support reflection, it has become possible to write
test infrastructure systems that discover at runtime what methods are tests (by
convention, methods that begin with the string “test”) and running them and
reporting the results. The predominant such system is JUnit, created by Kent
Beck and Erich Gamma. Several ports and refactorings of JUnit for .NET

340 Thinking in C# www.MindView.net

languages are available, the most popular of which is Philip Craig’s NUnit.
Appendix C in this book goes into some detail on the use of NUnit.

Software systems are among the most complex structures built by humans, and
unintended consequences are an inevitable part of manipulating those systems.
The speed with which you can change a software system is dependent on many
things, but on nothing so much as your ability to isolate a change in both time
and program structure. Extensive unit tests, runnable by a batch process, is by far
the best way to do this.

Write boring code
A good application is interesting; good code is boring. The most boring code has
no cyclomatic complexity, no coupling, and functional cohesion. What can you
say about:

///<summary>Adds two integers</summary>
///<exception cref="System.OverflowException">
///Thrown if x+y > Int32.MaxValue or < Int32.MinValue
///</exception>
public int Add(int x, int y){
 return x + y;
}

that goes beyond the code? Even if this were a core method called a million times
per second, you could entrust to a junior programmer the task of modifying it to
work with 64-bit long values.

At the other extreme is “clever code.” Clever code is characterized by high
cyclomatic complexity and extensive coupling. Often, clever code is written in an
ill-advised attempt to increase performance. Often, clever code runs slower than
boring code.

Make names meaningful
Type, method, and variable names should all be as descriptive as possible. This is
an area where the book’s examples are not a good guide; the 54 character
columns of the book dictate that fully descriptive, fully spelled-out names can’t be
used.

Needless to say, names must also be accurate. This is an obvious quality feature
and yet people skimp on it, as it requires a search-and-replace that may have to
span multiple files. Such an operation is no big deal with any kind of decent
programming editor, but occasionally “clever code” interferes. For instance, one

Chapter 9: Coupling and Cohesion 341

of us (Larry) was once stymied to see a testing suite break after a class was
renamed during refactoring; it turned out that during initialization, the names of
classes that implemented a filtering interface were read from a configuration file
and dynamic class loading used to instantiate the desired filters; the
configuration file contained the old name. This is another lesson in the
importance of unit-testing: usually one expects that a clean compile is all that is
necessary to confirm a renaming operation, but a testing suite will flush out
unexpected problems such as this in a matter of minutes, not the hours or days
that might be required if the “obviously working” change had been checked in to
source-code control.

Classes should be named with the noun of the domain concept that is being
encapsulated: Car, Profit, or EducationalObjective. You should not repeat
the base-class name in descendant classes: Compact and FourDoor are good
names for classes descending from Car, not CompactCar and FourDoorCar.
An alternative can be used sparingly: sometimes a class does not correspond to a
domain concept but is created strictly to play a role in a design pattern. In this
situation, the class may be named according to the design role:
ConcreteFlyweight or CompositeElement are acceptable names for classes
that are playing particular roles in the Flyweight and Composite design patterns.
Better, even in this situation you should try to tie the role and the domain
together: perhaps ConcreteGlyphFlyweight or
CompositeGraphicElement.

Methods that return void should be named with a strong verb:
Document.Print(). If a method returns a value, the method name should be a
noun-based description of the return value: Invoice.SalesTax(). If a method is
difficult to describe with strong words, there’s probably a problem with its
cohesion. If you can’t come up with something better than Execute() or
DoCalculation(), or if the method name includes conjunctions
(Invoice.CalcFinalCostAndSendShippingOrder()), it almost certainly has
procedural cohesion or worse.

Sometimes, you’ll find that your class is like some standard library class. Even if
after consideration you decide that your class should not descend from the library
class, you should strongly consider naming (and implementing!) its methods to
correspond to those in the library class.

Limit complexity
The number of lines in a method is not a good indicator that you should split it
into two, but the cyclomatic complexity of the method is. If you use Visual Studio

342 Thinking in C# www.ThinkingIn.NET

.NET to program Windows Forms, it will place all the code relating to
constructing the user-interface into a method called InitializeComponent();
this method may be hundreds of lines long, but it contains no control-flow
operators, so it’s length is irrelevant. On the other hand, the 15 lines of this leap
year calculation are about as complex as is acceptable:

//:c09:LeapYearCalc.cs
using System;

class LeapYearCalc {
 static bool LeapYear(int year){
 if (year % 4 != 0) {
 return false;
 } else {
 if (year % 400 == 0) {
 return true;
 } else {
 if (year % 100 == 0) {
 return false;
 } else {
 return true;
 }
 }
 }
 }

 public static void Test(int year, bool val){
 if (val == LeapYear(year)) {
 Console.WriteLine(
 "{0} correctly calced as {1}", year, val);
 return;
 }
 throw new TestFailedException(
 String.Format("{0} not calc'ed as {1}", year, val));
 }

 public static void Main(){
 Test(1999, false);
 Test(2000, true);
 Test(1900, false);
 }

Chapter 9: Coupling and Cohesion 343

}

class TestFailedException : ApplicationException{
 public TestFailedException(String s): base(s){ }
}///:~

Some simple testing code is shown because, less than a month before this book
went to press, we found a bug in the LeapYearCalc() function had! So maybe
the 15 lines in that function are a little more complex than allowable…

Make stuff as private as possible
Now that we’ve introduced the concept of coupling and cohesion, the use of the
visibility modifiers in C# should be more compelling. The more visible a piece of
data, the more available it is to be used for common coupling or communicational
and worse forms of cohesion.

The very real advantages that come from object-orientation, C#, and the .NET
Framework do not derive from the noun.Verb() form of method calls or from
using brackets to specify scope. The success of the object-oriented paradigm
stems from encapsulation, the logical organization of data and behavior with
restricted access. Coupling and cohesion are more precise terms to discuss the
benefits of encapsulation, but class interfaces, inheritance, the visibility
modifiers, and Properties – the purpose of all of these things is to hide a large
number of implementation details while simultaneously providing functionality
and extensibility.

Why do details need to be hidden? For the original programmer, details that are
out of sight are out of mind, and the programmer frees some amount of his or her
finite mental resources for work on the next issue. More importantly than this,
though, details need to be hidden so software can be tested, modified, and
extended. Programming is a task that is characterized by continuously
overcoming failure: a missed semicolon at the end of a line, a typo in a name, a
method that fails a unit test, a clumsy design, a customer who says “this isn’t
what I wanted.” So as a programmer you are always revisiting existing work,
whether it’s three minutes, three weeks, or three years old. Your productivity as a
professional programmer is not governed by how fast you can create, it is
governed by how fast you can fix. And the speed with which you can fix things is
influenced by the number of details that must be characterized as relevant or
irrelevant. Objects localize and isolate details.

344 Thinking in C# www.MindView.net

Coupling, cohesion,
and design trends
Coupling and cohesion, popularized by Ed Yourdon and Larry Constantine way
back in the 1970s, are still the best touchstones for determining whether a
method or type is built well or poorly. The most important software engineering
book of the 1990s was Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (the “Gang of Four”). What really set Design
Patterns apart is that it was based on an archaeological approach to design;
instead of putting their no-doubt-clever heads together and saying “Here’s a new
way to solve this problem,” the book documents common structures and
interactions (design patterns) that they found in proven software systems. When
compared to other object-oriented design books, what leaps out about Design
Patterns is the complete lack of references to objects that correspond to physical
items in the real world and the recurring emphasis of techniques to decrease
coupling and increase cohesion.

An interesting question is whether low coupling and high cohesion are a cause of
good design or a consequence of it. The traditional view has been that they are a
consequence of design: you go into your cubicle, fire up your CASE tool, think
deep thoughts, and emerge with a set of diagrams that will wow the crowds at the
design review. This view is challenged by one of the better books of the past few
years: Martin Fowler’s Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999). This book makes the fairly radical claim that taking
“simple, even simplistic” steps on existing code, no matter how chaotic, leads to
good design. Fowler goes even further and points out that without refactoring,
the design of a system decays over time as the system is maintained; this is one of
those obvious-in-retrospect observations that invalidates an entire worldview, in
this case, the worldview that design is done with a diagramming tool and a blank
piece of paper.

Refactoring is changing the internal structure of your code without changing its
internal behavior; Fowler presents a suite of refactorings and “code smells” to
indicate when refactoring is needed. The book doesn’t explicitly address issues of

Chapter 9: Coupling and Cohesion 345

coupling and cohesion5, but when viewed through the lens of structured design,
refactoring is clearly driven by these concerns.

Summary
Any software project of more than a few hundred lines of code should be
organized by a principle. This principle is called the software’s architecture. The
word architecture is used in many ways in computing; software architecture is a
characteristic of code structure and data flows between those structures. There
are many proven software architectures; object-orientation was originally
developed to aid in simulation architectures but the benefits of objects are by no
means limited to simulations.

Many modern-day projects are complex enough that it is appropriate to
distinguish between the architecture of the overall systems and the architecture
of different subsystems. The most prevalent examples of this are Web-based
systems with rich clients, where the system as a whole is often an n-tier
architecture, but each tier is a significant project in itself with its own organizing
principle.

Where the aims of architecture are strategic and organizational, the aims of
software design are tactical and pragmatic. The purpose of software design is to
iteratively deliver client value as inexpensively as possible. The most important
word in that previous sentence is “iteratively.” You may fool yourself into
believing that design, tests, and refactoring are wastes of time on the current
iteration, but you can’t pretend that they are a waste of time if you accept that
whatever you’re working on is likely to be revisited every three months, especially
if you realize that if you don’t make things clear, they’re going to be going to be
calling you at 3 o’clock in the morning when the Hong Kong office says the
system has frozen6.

Software design decisions, which run the gamut from the parameters of a method
to the structure of a namespace, are best made by consideration of the principles
of coupling and cohesion. Coupling is the degree to which two software elements
are interdependent; cohesion is a reflection of a software element’s internal

5 Like Extreme Programming, another excellent recent book, Refactoring promotes
homespun phrases like “code smells” and “the rule of three” that are no more or less
exclusionary than the software engineering jargon they pointedly avoid.

6 Actually, they’ll call the IT guys first. That’s why it’s important to cultivate the perception
that you know absolutely nothing about system administration and hardware.

346 Thinking in C# www.ThinkingIn.NET

dependencies. Good software designs are characterized by loose coupling and
high cohesion. With the rise of object orientation, the word “encapsulation” has
come to be used to characterize all of the benefits of detail hiding, high cohesion,
and loose coupling.

At this halfway point in the book, we have covered C# as a language and the
concepts of object-orientation. However, we’ve hardly scratched the surface of
the .NET Framework SDK, hundreds of classes and namespaces that provide an
object-oriented view of everything from data structures to user-interfaces to the
World Wide Web. From hereon out, the concerns of the book are generally less
specific to the C# language per se and more generally applicable to the
capabilities that the .NET Framework would make available to any language. This
does not mean that we’ve exhausted our discussion of the C# language, however.
Some of the most interesting aspects of the C# language are yet to be introduced.

Exercises
1. Try pair programming on one of the problems in the party domain. Try to

reserve judgment until you've paired with programmers who are more,
less, and similarly experienced.

2. Read Appendix C, “Test-First Programming with NUnit” and tackle a
simple task in the party domain via test-first programming.

3. Write a one-page essay evaluating your personal experience with pair
and test-first programming.

4. Fill in the following Venn diagram comparing aspects of software
development with physical architecture.

Chapter 9: Coupling and Cohesion 347

Software
Development

Architecture

Shared

5. Write a one-page essay defending or refuting the statement “Software is
architecture.”

6. The hardware manufacturers are thrilled with your work with the robotic
party servant and want you to lead the development of all the robot's
behavioral software. What kind of architecture will you adopt? Why?

7. Evaluate your party servant system. Use everything that you have learned
to improve your design and implementation.

349

10: Collecting
Your Objects

It’s a fairly simple program that has only a fixed quantity of
objects with known lifetimes.

In general, your programs will always be creating new objects based on some
criteria that will be known only at the time the program is running. You won’t know
until run-time the quantity or even the exact type of the objects you need. To solve
the general programming problem, you need to be able to create any number of
objects, anytime, anywhere. So you can’t rely on creating a named reference to hold
each one of your objects:

MyType myObject;

since you’ll never know how many of these you’ll actually need.

To solve this rather essential problem, C# has several ways to hold objects (or
rather, references to objects). The built-in type is the array, which has been
discussed before. Also, the C# System.Collections namespace has a reasonably
complete set of container classes (also known as collection classes). Containers
provide sophisticated ways to hold and manipulate your objects.

Containers open the door to the world of computing with data structures, where
amazing results can be achieved by manipulating the abstract geometry of trees,
vector spaces, and hyperplanes. While data structure programming lies outside of
the workaday world of most programmers, it is very important in scientific,
graphic, and game programming.

Arrays
Most of the necessary introduction to arrays was covered in Chapter 5, which
showed how you define and initialize an array. Holding objects is the focus of this
chapter, and an array is just one way to hold objects. But there is a number of other
ways to hold objects, so what makes an array special?

There are two issues that distinguish arrays from other types of containers:
efficiency and type. The array is the most efficient way that C# provides to store

350 Thinking in C# www.ThinkingIn.NET

and randomly access a sequence of objects (actually, object references). The array is
a simple linear sequence, which makes element access fast, but you pay for this
speed: when you create an array object, its size is fixed and cannot be changed for
the lifetime of that array object. You might suggest creating an array of a particular
size and then, if you run out of space, creating a new one and moving all the
references from the old one to the new one. This is the behavior of the ArrayList
class, which will be studied later in this chapter. However, because of the overhead
of this size flexibility, an ArrayList is measurably less efficient than an array.

The vector container class in C++ does know the type of objects it holds, but it has
a different drawback when compared with arrays in C#: the C++ vector’s
operator[] doesn’t do bounds checking, so you can run past the end1. In C#, you
get bounds checking regardless of whether you’re using an array or a container—
you’ll get an IndexOutOfRangeException if you exceed the bounds. As you’ll
learn in Chapter 11, this type of exception indicates a programmer error, and thus
you don’t need to check for it in your code. As an aside, the reason the C++ vector
doesn’t check bounds with every access is speed—in C# you have the performance
overhead of bounds checking all the time for both arrays and containers.

The other generic container classes that will be studied in this chapter,
ICollection, IList and IDictionary, all deal with objects as if they had no
specific type. That is, they treat them as type object, the root class of all classes in
C#. This works fine from one standpoint: you need to build only one container, and
any C# object will go into that container. This is the second place where an array is
superior to the generic containers: when you create an array, you create it to hold a
specific type. This means that you get compile-time type checking to prevent you
from putting the wrong type in, or mistaking the type that you’re extracting. Of
course, C# will prevent you from sending an inappropriate message to an object,
either at compile-time or at run-time. So it’s not much riskier one way or the other;
it’s just nicer if the compiler points it out to you, faster at run-time, and there’s less
likelihood that the end user will get surprised by an exception.

Typed generic classes (sometimes called “parameterized types” and sometimes just
“generics”) are not part of the initial .NET framework but will be. Unlike C++’s
templates or Java’s proposed extensions, Microsoft wishes to implement support
for “parametric polymorphism” within the Common Language Runtime itself. Don
Syme and Andrew Kennedy of Microsoft’s Cambridge (England) Research Lab

1 It’s possible, however, to ask how big the vector is, and the at() method does perform
bounds checking.

Chapter 10: Collecting Your Objects 351

published papers in Spring 2001 on a proposed strategy and Anders Hjelsberg
hinted at C#’s Spring 2002 launch that implementation was well under way.

For the moment, though, efficiency and type checking suggest using an array if you
can. However, when you’re trying to solve a more general problem arrays can be too
restrictive. After looking at arrays, the rest of this chapter will be devoted to the
container classes provided by C#.

Arrays are first-class objects
Regardless of what type of array you’re working with, the array identifier is actually
a reference to a true object that’s created on the heap. This is the object that holds
the references to the other objects, and it can be created either implicitly, as part of
the array initialization syntax, or explicitly with a new expression. Part of the array
object is the read-only Length property that tells you how many elements can be
stored in that array object. For rectangular arrays, the Length property tells you
the total size of the array, the Rank property tells you the number of dimensions in
the array, and the GetLength(int) method will tell you how many elements are in
the given rank.

The following example shows the various ways that an array can be initialized, and
how the array references can be assigned to different array objects. It also shows
that arrays of objects and arrays of primitives are almost identical in their use. The
only difference is that arrays of objects hold references, while arrays of primitives
hold the primitive values directly.

//:c10:ArraySize.cs
// Initialization & re-assignment of arrays.
using System;

class Weeble {
} // A small mythical creature

public class ArraySize {
 public static void Main() {
 // Arrays of objects:
 Weeble[] a; // Null reference
 Weeble[] b = new Weeble[5]; // Null references
 Weeble[,] c = new Weeble[2, 3]; //Rectangular array
 Weeble[] d = new Weeble[4];
 for (int index = 0; index < d.Length; index++)
 d[index] = new Weeble();
 // Aggregate initialization:

352 Thinking in C# www.MindView.net

 Weeble[] e = {
 new Weeble(), new Weeble(), new Weeble()
 };
 // Dynamic aggregate initialization:
 a = new Weeble[] {
 new Weeble(), new Weeble()
 };
 // Square dynamic aggregate initialization:
 c = new Weeble[,] {
 { new Weeble(), new Weeble(), new Weeble()},
 { new Weeble(), new Weeble(), new Weeble()}
 };

 Console.WriteLine("a.Length=" + a.Length);
 Console.WriteLine("b.Length = " + b.Length);
 Console.WriteLine("c.Length = " + c.Length);
 for (int rank = 0; rank < c.Rank; rank++) {
 Console.WriteLine(
 "c.Length[{0}] = {1}", rank, c.GetLength(rank));
 }
 // The references inside the array are
 // automatically initialized to null:
 for (int index = 0; index < b.Length; index++)
 Console.WriteLine("b[" + index + "]=" + b[index]);
 Console.WriteLine("d.Length = " + d.Length);
 Console.WriteLine("d.Length = " + d.Length);
 a = d;
 Console.WriteLine("a.Length = " + a.Length);

 // Arrays of primitives:
 int[] f; // Null reference
 int[] g = new int[5];
 int[] h = new int[4];
 for (int index = 0; index < h.Length; index++)
 h[index] = index*index;
 int[] i = { 11, 47, 93};
 // Compile error: Use of unassigned local variable 'f'
 //! Console.WriteLine("f.Length=" + f.Length);
 Console.WriteLine("g.Length = " + g.Length);
 // The primitives inside the array are
 // automatically initialized to zero:

Chapter 10: Collecting Your Objects 353

 for (int index = 0; index < g.Length; index++)
 Console.WriteLine("g[" + index + "]=" + g[index]);
 Console.WriteLine("h.Length = " + h.Length);
 Console.WriteLine("i.Length = " + i.Length);
 f = i;
 Console.WriteLine("f.Length = " + f.Length);
 f = new int[] { 1, 2};
 Console.WriteLine("f.Length = " + f.Length);
 }
} ///:~

Here’s the output from the program:

a.Length=2
b.Length = 5
c.Length = 6
c.Length[0] = 2
c.Length[1] = 3
b[0]=
b[1]=
b[2]=
b[3]=
b[4]=
d.Length = 4
d.Length = 4
a.Length = 4
g.Length = 5
g[0]=0
g[1]=0
g[2]=0
g[3]=0
g[4]=0
h.Length = 4
i.Length = 3
f.Length = 3
f.Length = 2

The array a is initially just a null reference, and the compiler prevents you from
doing anything with this reference until you’ve properly initialized it. The array b is
initialized to point to an array of Weeble references, but no actual Weeble objects
are ever placed in that array. However, you can still ask what the size of the array is,
since b is pointing to a legitimate object. This brings up a slight drawback: you can’t
find out how many elements are actually in the array, since Length tells you only

354 Thinking in C# www.ThinkingIn.NET

how many elements can be placed in the array; that is, the size of the array object,
not the number of elements it actually holds. However, when an array object is
created its references are automatically initialized to null, so you can see whether a
particular array slot has an object in it by checking to see whether it’s null.
Similarly, an array of primitives is automatically initialized to zero for numeric
types, (char)0 for char, and false for bool.

Array c shows the creation of the array object followed by the assignment of
Weeble objects to all the slots in the array. Array d shows the “aggregate
initialization” syntax that causes the array object to be created (implicitly with new
on the heap, just like for array c) and initialized with Weeble objects, all in one
statement.

The next array initialization could be thought of as a “dynamic aggregate
initialization.” The aggregate initialization used by d must be used at the point of
d’s definition, but with the second syntax you can create and initialize an array
object anywhere. For example, suppose Hide() is a method that takes an array of
Weeble objects. You could call it by saying:

Hide(d);

but you can also dynamically create the array you want to pass as the argument:

Hide(new Weeble[] { new Weeble(), new Weeble() });

In some situations this new syntax provides a more convenient way to write code.

Rectangular arrays are initialized using nested arrays. Although a rectangular array
is contiguous in memory, C#’s compiler will not allow you to ignore the
dimensions; you cannot cast a flat array into a rectangular array or initialize a
rectangular array in a “flat” manner.

The expression:

a = d;

shows how you can take a reference that’s attached to one array object and assign it
to another array object, just as you can do with any other type of object reference.
Now both a and d are pointing to the same array object on the heap.

The second part of ArraySize.cs shows that primitive arrays work just like object
arrays except that primitive arrays hold the primitive values directly.

Chapter 10: Collecting Your Objects 355

The Array class
In System.Collections, you’ll find the Array class, which has a variety of
interesting properties and methods. Array is defined as implementing
ICloneable, IList, ICollection, and IEnumerable. This is actually a pretty
sloppy declaration, as IList is declared as extending ICollection and
IEnumerable, while ICollection is itself declared as extending IEnumerable
(Figure 10-1)!

ICollection

IEnumerable
ICloneable

IList

Array

Figure 10-1: The Array class has a complex set of base types

The Array class has some properties inherited from ICollection that are the same
for all instances: IsFixedSize is always true, IsReadOnly and IsSynchronized
are always false.

Array’s static methods
The Array class has several useful static methods, which are illustrated in this
program:

//:c10:ArrayStatics.cs
using System;
using System.Collections;

356 Thinking in C# www.MindView.net

class Weeble {
 string name;
 internal string Name{
 get { return name;}
 set { name = value;}
 }
 internal Weeble(string name) {
 this.Name = name;
 }
}
class ArrayStatics {
 static string[] dayList = new string[]{
 "sunday", "monday", "tuesday", "wednesday",
 "thursday", "friday", "saturday"
 };

 static string[,] famousCouples = new string[,]{
 { "George", "Martha"}, { "Napolean", "Josephine"},
 { "Westley","Buttercup"}
 };

 static Weeble[] weebleList = new Weeble[]{
 new Weeble("Pilot"), new Weeble("Firefighter")
 };

 public static void Main() {
 //Copying arrays
 Weeble[] newList = new Weeble[weebleList.Length];
 Array.Copy(weebleList, newList, weebleList.Length);
 newList[0] = new Weeble("Nurse");
 bool newReferences = newList[0] != weebleList[0];
 Console.WriteLine("New references == "
 + newReferences);
 //Copying a rectangular array works
 string[,] newSquareArray =
 new string[famousCouples.GetLength(0),
 famousCouples.GetLength(1)];
 Array.Copy(famousCouples, newSquareArray,
 famousCouples.Length);

Chapter 10: Collecting Your Objects 357

 //In-place sorting
 string[] sortedDays = new string[dayList.Length];
 Array.Copy(dayList, sortedDays, dayList.Length);
 Array.Sort(sortedDays);
 for (int i = 0; i < sortedDays.Length; i++) {
 Console.WriteLine("sortedDays[{0}] = {1}",
 i, sortedDays[i]);
 }
 //Binary search of sorted 1-D Array
 int tuesdayIndex =
 Array.BinarySearch(sortedDays, "tuesday");
 Console.WriteLine(
 "dayList[{0}] == \"tuesday\"", tuesdayIndex);
 //! int georgeIndex =
 //! Array.BinarySearch(famousCouples, "George"};
 // Causes compile error

 //Reverse
 Array.Reverse(sortedDays);
 for (int i = 0; i < sortedDays.Length; i++) {
 Console.WriteLine(
 "Reversed sortedDays[{0}] = {1}",
 i, sortedDays[i]);
 }

 //Quickly erasing an array section,
 //even if multidimensional
 Array.Clear(famousCouples, 2, 3);
 for(int x = 0; x < famousCouples.GetLength(0); x++)
 for(int y = 0; y < famousCouples.GetLength(1);
 y++)
 Console.WriteLine(
 "FamousCouples[{0},{1}] = {2}",
 x, y, famousCouples[x,y]);
 }
}///:~

After declaring a Weeble class (this time with a Name property to make them easier
to distinguish), the ArrayStatics class declares several static arrays – dayList
and weebleList, which are both one-dimensional, and the square
famousCouples array.

358 Thinking in C# www.ThinkingIn.NET

Array.Copy() provides a fast way to copy an array (or a portion of it). The new
array contains all new references, so changing a value in your new list will not
change the value in your original, as would be the case if you did:

Weeble[] newList = weebleList;
newList[0] = new Weeble("Nurse");

Array.Copy() works with multidimensional arrays, too. The program uses the
GetLength(int) method to allocate sufficient storage for the new SquareArray,
but then uses the famousCouples.Length property to specify the size of the
copy. Although Copy() seems to “flatten” multidimensional arrays, using arrays of
different rank will throw a runtime RankException.

The static method Array.Sort() does an in-place sort of the array’s contents and
BinarySearch() provides an efficient search on a sorted array.

Array.Reverse() is self-explanatory, but Array.Clear() has the perhaps
surprising behavior of slicing across multidimensional arrays. In the program,
Array.Clear(famousCouples, 2, 3) treats the multidimensional
famousCouples array as a flat array, setting to null the values of indices [1,0],
[1,1], and [2,0].

Array element comparisons
How does Array.Sort() work? A problem with writing generic sorting code is that
sorting must perform comparisons based on the actual type of the object. Of course,
one approach is to write a different sorting method for every different type, but you
should be able to recognize that this does not produce code that is easily reused for
new types.

A primary goal of programming design is to “separate things that change from
things that stay the same,” and here, the code that stays the same is the general sort
algorithm, but the thing that changes from one use to the next is the way objects are
compared. So instead of hard-wiring the comparison code into many different sort
routines, the Strategy Pattern is used. In the Strategy Pattern, the part of the code
that varies from case to case is encapsulated inside its own class, and the part of the
code that’s always the same makes a call to the part of the code that changes. That
way you can make different objects to express different strategies of comparison
and feed them to the same sorting code.

In C#, comparisons are done by calling back to the CompareTo() method of the
IComparable interface. This method takes another object as an argument, and
produces a negative value if the current object is less than the argument, zero if the

Chapter 10: Collecting Your Objects 359

argument is equal, and a positive value if the current object is greater than the
argument.

Here’s a class that implements IComparable and demonstrates the comparability
by using Array.Sort():

//:c10:CompType.cs
// Implementing IComparable in a class.
using System;

public class CompType: IComparable {
 int i;
 int j;
 public CompType(int n1, int n2) {
 i = n1;
 j = n2;
 }
 public override string ToString() {
 return "[i = " + i + ", j = " + j + "]";
 }

 public int CompareTo(Object rv) {
 int rvi = ((CompType)rv).i;
 if (i > rvi)
 return 1;
 else if (i == rvi)
 return 0;
 else
 return -1;
(i < rvi ? -1 : (i == rvi ? 0 : 1));
 }

 private static Random r = new Random();

 private static void ArrayPrint(String s, Array a){
 Console.Write(s);
 foreach(Object o in a){
 Console.Write(o + ",");
 }
 Console.WriteLine();
 }

360 Thinking in C# www.MindView.net

 public static void Main() {
 CompType[] a = new CompType[10];
 for (int i = 0; i < 10; i++) {
 a[i] = new CompType(r.Next(100), r.Next(100));
 }
 ArrayPrint("Before sorting, a = ", a);
 Array.Sort(a);
 ArrayPrint("After sorting, a = ", a);
 }
} ///:~

When you define the comparison function, you are responsible for deciding what it
means to compare one of your objects to another. Here, only the i values are used
in the comparison, and the j values are ignored.

The Main() method creates a bunch of CompType objects that are initialized
with random values and then sorted. If Comparable hadn’t been implemented,
then you’d get an InvalidOperationException thrown at runtime when you tried to
call Array.Sort().

What? No bubbles?
In the not-so-distant past, the sort and search methods used in a program were a
matter of constant debate and anguish. In the good old days, even the most trivial
datasets had a good chance of being larger than RAM (or “core” as we used to say)
and required intermediate reads and writes to storage devices that could take, yes,
seconds to access (or, if the tapes needed to be swapped, minutes). So there was an
enormous amount of energy put into worrying about internal (in-memory) versus
external sorts, the stability of sorts, the importance of maintaining the input tape
until the output tape was verified, the “operator dismount time,” and so forth.

Nowadays, 99% of the time you can ignore the particulars of sorting and searching.
In order to get a decent idea of sorting speed, this program requires an array of
1,000,000 elements, and still it executes in a matter of seconds:

//:c10:FastSort.cs
using System;

class Sortable : IComparable {
 int i;
 internal Sortable(int i) {
 this.i = i;
 }

Chapter 10: Collecting Your Objects 361

 public int CompareTo(Object o) {
 try {
 Sortable s = (Sortable) o;
 return i = s.i;
 } catch (InvalidCastException) {
 throw new ArgumentException();
 }
 }
}

class SortingTester {
 static TimeSpan TimedSort(IComparable[] s){
 DateTime start = DateTime.Now;
 Array.Sort(s);
 TimeSpan duration = DateTime.Now - start;
 return duration;
 }
 public static void Main() {
 for (int times = 0; times < 10; times++) {
 Sortable[] s = new Sortable[1000000];
 for (int i = 0; i < s.Length; i++) {
 s[i] = new Sortable(i);
 }
 Console.WriteLine("Time to sort already sorted"
 + " array: " + TimedSort(s));
 Random rand = new Random();
 for (int i = 0; i < s.Length; i++) {
 s[i] = new Sortable(rand.Next());
 }
 Console.WriteLine("Time to sort mixed up array: "
 + TimedSort(s));
 }
 }
}///:~

The results show that Sort() works faster on an already sorted array, which
indicates that behind the scenes, it’s probably using a merge sort instead of
QuickSort. But the sorting algorithm is certainly less important than the fact that a
computer that costs less than a thousand dollars can perform an in-memory sort of
a million-item array! Moore’s Law has made anachronistic an entire field of

362 Thinking in C# www.ThinkingIn.NET

knowledge and debate that seemed, not that long ago, fundamental to computer
programming.

This is an important lesson for those who wish to have long careers in
programming: never confuse the mastery of today’s facts with preparation for
tomorrow’s changes. Within a decade, we will have multi-terabyte storage on the
desktop, trivial access to distributed teraflop processing, and probably specialized
access to quantum computers of significant capability. Eventually, although
probably not within a decade, there will be breakthroughs in user interfaces and
we’ll abandon the keyboard and the monitor for voice and gesture input and
“augmented reality” glasses. Almost all the programming facts that hold today will
be as useless as the knowledge of how to do an oscillating sort with criss-cross
distribution. A programmer must never stand still.

Unsafe arrays
Despite the preceding discussion of the steady march of technical obsolescence, the
facts on the ground often agitate towards throwing away the benefits of safety and
abstraction and getting closer to the hardware in order to boost performance.
Often, the correct solution in this case will be to move out of C# altogether and into
C++, a language which will continue for some time to be the best for the creation of
device drivers and other close-to-the-metal components.

However, manipulating arrays can sometimes introduce bottlenecks in higher-level
applications, such as multimedia applications. In such situations, unsafe code may
be worthwhile. The basic impetus for using unsafe arrays is that you wish to
manipulate the array as a contiguous block of memory, foregoing bounds checking.

As a testbed for exploring performance with unsafe arrays, we’ll use a
transformation that actually has tremendous practical applications. Wavelet
transforms are fascinating and their utility has hardly been scratched. The simplest
transform is probably the two-dimensional Haar transform on a matrix of doubles.
The Haar transform converts a list of values into the list’s average and differences,
so the list {2, 4} is transformed into {3, 1} == {(2 + 4) / 2, ((2 + 4) / 2) – 2}. A two-
dimensional transform just transforms the rows and then the columns, so {{2,
4},{5,6}} becomes {{4.25, .75},{1.25, -0.25}}:

Chapter 10: Collecting Your Objects 363

2 4

5 6

3 1

5.5 0.5

4.25 .75

1.25 -.25

Horizontal transform

Vertical
transform

Figure 10-2: The Haar transform is a horizontal followed by vertical transform

Wavelets have many interesting characteristics, including being the basis for some
excellent compression routines, but are expensive to compute for arrays that are
typical of multimedia applications, especially because to be useful they are usually
computed log2(MIN(dimension size)) times per array!

The following program does such a transform in two different ways, one a safe
method that uses typical C# code and the other using unsafe code.

//:c10:FastBitmapper1.cs
using System;
using System.IO;

namespace FastBitmapper{
 public interface Transform{
 void HorizontalTransform(double[,] matrix);
 void VerticalTransform(double[,] matrix);
 }

 public class Wavelet {
 public void Transform2D(double[,] matrix,
 Transform t) {
 int minDimension = matrix.GetLength(0);
 if (matrix.GetLength(1) < minDimension)
 minDimension = matrix.GetLength(1);
 int levels =
 (int) Math.Floor(Math.Log(minDimension, 2));
 Transform2D(matrix, levels, t);
 }

 public void Transform2D(double[,] matrix,

364 Thinking in C# www.MindView.net

 int steps, Transform tStrategy) {
 for (int i = 0; i < steps; i++) {
 tStrategy.HorizontalTransform(matrix);
 tStrategy.VerticalTransform(matrix);
 }
 }

 public void TestSpeed(Transform t) {
 Random rand = new Random();
 double[,] matrix = new double[2000,2000];
 for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++) {
 matrix[i,j] = rand.NextDouble();
 }
 DateTime start = DateTime.Now;
 this.Transform2D(matrix, t);
 TimeSpan dur = DateTime.Now - start;
 Console.WriteLine(
 "Transformation with {0} took {1} ",
 t.GetType().Name, dur);
 }

 public static void Main() {
 Wavelet w = new Wavelet();
 for (int i = 0; i < 10; i++) {
 //Get things right first
 w.TestSpeed(new SafeTransform());
 //Have not defined UnsafeTransform yet
 //! w.TestSpeed(new UnsafeTransform());
 }
 }
 }

 internal class SafeTransform : Transform {
 private void Transform(double[] array) {
 int halfLength = array.Length >> 1;
 double[] avg = new double[halfLength];
 double[] diff = new double[halfLength];
 for (int pair = 0; pair < halfLength; pair++) {
 double first = array[pair * 2];
 double next = array[pair * 2 + 1];

Chapter 10: Collecting Your Objects 365

 avg[pair] = (first + next) / 2;
 diff[pair] = avg[pair] - first;
 }
 for (int pair = 0; pair < halfLength; pair++) {
 array[pair] = avg[pair];
 array[pair + halfLength] = diff[pair];
 }
 }

 public void HorizontalTransform(double[,] matrix) {
 int height = matrix.GetLength(0);
 int width = matrix.GetLength(1);
 double[] row = new double[width];
 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 row[j] = matrix[i, j];
 }
 Transform(row);
 for (int j = 0; j < width; j++) {
 matrix[i,j] = row[j];
 }
 }
 }

 public void VerticalTransform(double[,] matrix) {
 int height = matrix.GetLength(0);
 int length = matrix.GetLength(1);
 double[] colData = new double[height];
 for (int col = 0; col < length; col++) {
 for (int row = 0; row < height; row++) {
 colData[row] = matrix[row, col];
 }
 Transform(colData);
 for (int row = 0; row < height; row++) {
 matrix[row, col] = colData[row];
 }
 }
 }
 }
}///:~

366 Thinking in C# www.ThinkingIn.NET

Get things right…
The cardinal rule of performance programming is to first get the system operating
properly and then worry about performance. The second rule is to always use a
profiler to measure where your problems are, never go with a guess. In an object-
oriented design, after discovering a hotspot, you should always break the problem
out into an abstract data type (an interface) if it is not already. This will allow you to
switch between different implementations over time, confirming that your
performance work is accomplishing something and that it is not diverging from
your correct “safe” work.

In this case, the Wavelet class uses an interface called Transform to perform the
actual work:

Wavelet
Transform

void HorizontalTransform(double[,] matrix)
void VerticalTransform(double[,] matrix)

Figure 10-3: The Wavelet class relies on the Transform interface

The Transform interface contains two methods, each of which takes a rectangular
array as a parameter and performs an in-place transformation;
HorizontalTransform() converts a row of values into a row containing the
averages and differences of the row, and VerticalTransform() performs a
similar transformation on the columns of the array.

The Wavelet class contains two Transform2D() methods, the first of which
takes a rectangular array and a Transform. The number of steps required to
perform a full wavelet transform is calculated by first determining the minimum
dimension of the passed-in matrix and then using the Math.Log() function to
determine the base-2 magnitude of that dimension. Math.Floor() rounds that
magnitude down and the result is cast to the integer number of steps that will be
applied to the matrix. (Thus, an array with a minimum dimension of 4 would have
2 steps; an array with 1024 would have 9.)

The constructor then calls the second constructor, which takes the same
parameters as the first plus the number of times to apply the wavelet (this is a
separate constructor because during debugging a single wavelet step is much easier
to comprehend than a fully processed one, as Figure 10-4 illustrates)

Chapter 10: Collecting Your Objects 367

Figure 10-4: The results of one step of a Haar wavelet on a black-and-white photo

The Transform2D() method iterates steps times over the matrix, first
performing a horizontal transform and then performing a vertical transform.
Alternating between horizontal and vertical transforms is called the nonstandard
wavelet decomposition. The standard decomposition performs steps horizontal
transforms and then performs steps vertical transforms. With graphics anyway,
the nonstandard decomposition allows for easier appreciation of the wavelet
behavior; in Figure 10-4, the upper-left quadrant is a half-resolution duplicate of
the original, the upper-right a map of 1-pixel horizontal features, the lower-left a
similar map of vertical features, and the lower-right a complete map of 1-pixel
features. When the result is transformed again and again, the result has many
interesting features, including being highly compressible with both lossless and
lossy techniques.

368 Thinking in C# www.MindView.net

The TestSpeed() method in Wavelet creates a 4,000,000-element square array,
fills it with random doubles, and then calculates and prints the time necessary to
perform a full wavelet transform on the result. The Main() method calls this
TestSpeed() method 10 times in order to ensure that any transient operating
system events don’t skew the results. This first version of the code calls
TestSpeed() with a SafeTransform – get things right and then get them fast.

The SafeTransform class has a private Transform() method which takes a
one-dimensional array of doubles. It creates two arrays, avg and diff of half the
width of the original. The first loop in Transform() moves across the source
array, reading value pairs. It calculates and places these pairs’ average and
difference in the avg and diff arrays. After this loop finished, the values in avg are
copied to the first half of the input array and the values in diff to the second half.
After Transform() finishes, the input array now contains the values of a one-
step, one-dimensional Haar transformation. (Note that the transform is fully
reversible — the original data can be restored by first adding and then subtracting a
diff value to a corresponding avg value.)

SafeTransform.HorizontalTransform() determines the height of the passed-
in matrix and copies the values of each row into a one-dimensional array of doubles
called row. Then the code calls the previously described Transform() method
and copies the result back into the original two-dimensional matrix. When
HorizontalTransform() is finished, the input matrix as a whole now contains a
one-step, horizontal Haar transformation.

SafeTransform.VerticalTransform() uses a similar set of loops as
HorizontalTransform(), but instead of copying rows from the input matrix, it
copies the values in a column into a double array called colData, transforms that
with Transform(), and copies the result back into the input matrix. When this
finishes, control returns to Wavelet.Transform2D(), and one step of the
wavelet decomposition has been performed.

… then get them fast
Running this through a profiler (we used Intel’s vTune) shows that a lot of time is
spent in the HorizontalTransform() and VerticalTransform() methods in
addition to the Transform() method itself. So, let’s try to improve all three by
using unsafe code:

//:c10:UnsafeTransform.cs
//Compile with:
// csc /unsafe FastBitmapper1.cs UnsafeTransform.cs
//and, in FastBitmapper1.cs, uncomment call to:

Chapter 10: Collecting Your Objects 369

//TestSpeed(new UnsafeTransform());
using FastBitmapper;

internal class UnsafeTransform : Transform {
 unsafe private void Transform(double* array,
 int length) {
 //Console.WriteLine("UnsafeTransform({0}, {1}"
 //, *array, length);
 double* pOriginalArray = array;
 int halfLength = length >> 1;
 double[] avg = new double[halfLength];
 double[] diff = new double[halfLength];
 for (int pair = 0; pair < halfLength; pair++) {
 double first = *array;
 ++array;
 double next = *array;
 ++array;
 avg[pair] = (first + next) / 2;
 diff[pair] = avg[pair] - first;
 }
 for (int pair = 0; pair < halfLength; pair++) {
 pOriginalArray[pair] = avg[pair];
 pOriginalArray[pair + halfLength] = diff[pair];
 }
 }

 unsafe public void HorizontalTransform(
 double[,] matrix) {
 int height = matrix.GetLength(0);
 int width = matrix.GetLength(1);
 fixed(double* pMatrix = matrix) {
 double* pOffset = pMatrix;
 for (int row = 0; row < height; row++) {
 Transform(pOffset, width);
 pOffset += width;
 }
 }
 }

 unsafe public void VerticalTransform(
 double[,] matrix) {

370 Thinking in C# www.ThinkingIn.NET

 fixed(double* pMatrix = matrix) {
 int height = matrix.GetLength(0);
 int length = matrix.GetLength(1);
 double[] colData = new double[height];
 for (int col = 0; col < length; col++) {
 for (int row = 0; row < height; row++) {
 colData[row] = pMatrix[col + length * row];
 }
 fixed(double* pColData = colData) {
 Transform(pColData, height);
 }
 for (int row = 0; row < height; row++) {
 pMatrix[col + length * row] = colData[row];
 }
 }
 }
 }
}///:~

First, notice that UnsafeTransform has the same structure as SafeTransform,
a private Transform() function in addition to the public methods which
implement Transform. This is by no means necessary, but it’s a good starting
place for optimization.

UnsafeTransform.Transform() has a signature unlike any C# signature
discussed before: unsafe private void Transform(double* array, int
length). When a method is declared unsafe, C# allows a new type of variable,
called a pointer. A pointer contains a memory address at which a value of the
specified type is located. So the variable array contains not a double value such as
0.2 or 234.28, but a memory location someplace in the runtime, the contents of
which are interpreted as a double. Adding 1 to array does not change it to 1.2 or
235.28 but rather changes the memory location to point to the next location in
memory that’s big enough to hold a double. Such “pointer arithmetic” is
marginally more efficient than using a C# array, but even small differences add up
when applied to a 4,000,000 item array!

The first line in UnsafeTransform.Transform() initializes another pointer
variable pOriginalArray with the original value in array, whose value is going to
change. The declaration of the avg and diff arrays and the first loop are identical
with what was done in SafeTransform.Transform(), except that this time we
use the value of the passed-in length variable to calculate the value of halfLength
(in SafeTransform.Transform(), we used the Length property of the passed-

Chapter 10: Collecting Your Objects 371

in array, but pointers don’t have such a property, so we need the extra parameter).
The next lines, though, are quite different:

double first = *array;
++array;
double next = *array;
++array;

When applied to a pointer variable, the * operator retrieves the value that is stored
at that address (the mnemonic is “star = stored”). So the first double is assigned
the value of the double at array’s address value. Then, we use pointer arithmetic
on array so that it skips over a double’s worth of memory, read the value there as a
double and assign it to next and increment array again. The values of avg and
diff are calculated just as they were in SafeTransform.Transform().

So the big difference in this loop is that instead of indexing in to an array of
doubles of a certain length, we’ve incremented a pointer to doubles length
times, and interpreted the memory of where we were pointing at as a series of
doubles. There’s been no bounds or type checking on the value of our array
pointer, so if this method were called with either array set incorrectly or with a
wrong length, this loop would blithely read whatever it happened to be pointing at.

Such a situation might be hard to track down, but the final loop in
Unsafe.Transform() would probably not go undetected. A feature of pointers is
that you can use array notation to indicate an offset in memory. Thus, in this loop,
we write back into the region of memory at pOriginalArray large enough to
contain length doubles. Writing into an invalid region of memory is a pretty sure
way to cause a crash. So it behooves us to make sure that Unsafe.Transform() is
only called properly.

Unsafe.HorizontalTransform() takes a two-dimensional rectangular array of
doubles called matrix. Before calling Unsafe.Transform(), which takes a
pointer to a double, the matrix must be “pinned” in memory. The .NET garbage
collector is normally free to move objects about, because the garbage collector has
the necessary data to determine every reference to that object (indeed, tracking
those references is the very essence of garbage collection!). But when a pointer is
involved, it’s not safe to move references; in our case, the loops in Transform both
read and write a large block of memory based on the original passed-in address.

The line fixed(double* pMatrix = matrix) pins the rectangular array matrix in
memory and initializes a pointer to the beginning of that memory. Pointers
initialized in a fixed declaration are read-only and for the purposes of pointer

372 Thinking in C# www.MindView.net

arithmetic, we need the next line to declare another pointer variable pOffset and
initialize it to the value of pMatrix.

Notice that unlike SafeTransform.HorizontalTransform(), we do not have a
temporary one-dimensional row array which we load before calling Transform()
and copy from after. Instead, the main loop in HorizontalTransform() calls
Transform() with its pointer of pOffset and its length set to the previously
calculated width of the input matrix. Then, we use pointer arithmetic to jump
width worth of doubles in memory. In this way, we are exploiting the fact that we
know that a rectangular array is, behind-the-scenes, a contiguous chunk of
memory. The line pOffset += width; is significantly faster than the 8 lines of safe
code it replaces.

In UnsafeTransform.VerticalTransform(), though, no similar shortcut
comes to mind and the code is virtually identical to that in
SafeTransform.VerticalTransform() except that we still need to pin matrix
in order to get the pMatrix pointer to pass to Transform().

If we go back to Wavelet.Main() and uncomment the line that calls TestSpeed()
with a new UnsafeTransform(), we’re almost ready to go. However, the C#
compiler requires a special flag in order to compile source that contains unsafe
code. On the command-line, this flag is /unsafe , while in Visual Studio .NET, the
option is found by right-clicking on the Project in the Solution Explorer and
choosing Properties / Configuration Properties / Build and setting “Allow unsafe
code blocks” to true.

On my machines, UnsafeTransform runs about 50% faster than
SafeTransform in debugging mode, and is about 20% superior when
optimizations are turned on. Hardly the stuff of legend, but in a core algorithm,
perhaps worth the effort.

There’s only one problem. This managed code implementation runs 40% faster
than UnsafeTransform! Can you reason why?:

//:c10:InPlace.cs
//Compile with:
//csc /reference:FastBitmapper1.exe InPlace.cs
//Add timing code to FastBitmapper to test speed.
using FastBitmapper;

internal class InPlace : Transform {
 int length;
 int height;

Chapter 10: Collecting Your Objects 373

 int halfLength;
 int halfHeight;
 //Half the length of longer dimension
 double[] diff = null;

 private void LazyInit(double[,] matrix) {
 height = matrix.GetLength(0);
 length = matrix.GetLength(1);
 halfLength = length >> 1;
 halfHeight = height >> 1;
 if (halfHeight < halfLength) {
 diff = new double[halfLength];
 } else {
 diff = new double[halfHeight];
 }
 }

 public void HorizontalTransform(double[,] matrix) {
 if (diff == null) {
 LazyInit(matrix);
 }
 for (int i = 0; i < height; i++) {
 HTransform(matrix, i);
 }

 }

 public void VerticalTransform(double[,] matrix) {
 if (diff == null) {
 LazyInit(matrix);
 }

 for (int col = 0; col < length; col++) {
 VTransform(matrix, col);
 }
 }

 private void HTransform(double[,] matrix, int row) {
 for (int pair = 0; pair < halfLength; pair++) {
 double first = matrix[row, pair * 2];
 double next = matrix[row, pair * 2 + 1];

374 Thinking in C# www.ThinkingIn.NET

 double avg = (first + next) / 2;
 matrix[row, pair * 2] = avg;
 diff[pair] = avg - first;
 }
 for (int pair = 0; pair < halfLength; pair++) {
 matrix[row, pair + halfLength] = diff[pair];
 }
 }

 private void VTransform(double[,] matrix, int col) {
 for (int pair = 0; pair < halfHeight; pair++) {
 double first = matrix[pair * 2, col];
 double next = matrix[pair * 2 + 1, col];
 double avg = (first + next) / 2;
 matrix[pair * 2, col] = avg;
 diff[pair] = avg - first;
 }
 for (int pair = 0; pair < halfHeight; pair++) {
 matrix[pair + halfHeight, col] = diff[pair];
 }
 }
}///:~

InPlace removes loops and allocations of temporary objects (like the avg and diff
arrays) at the cost of clarity. In SafeTransform, the Haar algorithm of repeated
averaging and differencing is pretty easy to follow just from the code; a first-time
reader of InPlace might not intuit, for instance, that the contents of the diff array
are strictly for temporary storage.

Notice that both HorizontalTransform() and VerticalTransform() check to
see if diff is null and call LazyInit() if it is not. Some might say “Well, we know
that HorizontalTransform() is called first, so the check in
VerticalTransform() is superfluous.” But if we were to remove the check from
VerticalTransform(), we would be changing the design contract of the
Transform() interface to include “You must call HorizontalTransform()
before calling VerticalTransform().”

Changing a design contract is not the end of the world, but it should always be
given some thought. When a contract requires that method A() be called before
method B(), the two methods are said to be “sequence coupled.” Sequence
coupling is usually acceptable (unlike, say, “internal data coupling” where one class
directly writes to another class’s variables without using properties or methods to

Chapter 10: Collecting Your Objects 375

access the variables). Given that the check in VerticalTransform() is not within
a loop, changing the contract doesn’t seem worth what will certainly be an
unmeasurably small difference in performance.

Array summary
To summarize what you’ve seen so far, the first and easiest choice to hold a group of
objects of a known size is an array. Arrays are also the natural data structure to use
if the way you wish to access the data is by a simple index, or if the data is naturally
“rectangular” in its form. In the remainder of this chapter we’ll look at the more
general case, when you don’t know at the time you’re writing the program how
many objects you’re going to need, or if you need a more sophisticated way to store
your objects. C# provides a library of collection classes to solve this problem, the
basic types of which are IList and IDictionary. You can solve a surprising
number of problems using these tools!

Among their other characteristics, the C# collection classes will automatically resize
themselves. So, unlike arrays, you can put in any number of objects and you don’t
need to worry about how big to make the container while you’re writing the
program.

Cloning
When you copy an array of objects, you get a copy of the references to the single
heap-based object (see Page 50). To revisit the metaphor we used in Chapter 2, you
get a new set of remote controls for your existing television, not a new television.
But what if you want a new television in addition to a new set of remote controls?
This is the dilemma of cloning. Why a dilemma? Because cloning introduces the
problem of shallow versus deep copying.

When you copy just the references, you have a shallow copy. Shallow copies are,
naturally, simple and fast. If you have come this far in the book and are comfortable
with the difference between reference and value types, shallow copies should not
require any extra explanation. But in many situations, not just when it comes to
arrays or collection classes, there are times when you’d like to have a deep copy,
one in which you get a new version of the object and all its related objects with all
the values of the fields and properties set to the value of the original object. In the
world of objects, deep copies are often called clones.

Your first take on cloning might be to create a new object and instantiate its fields
to the values of the original:

//:c10:SimpleClone.cs

376 Thinking in C# www.MindView.net

//Simple objects are easy to clone
using System;

enum Upholstery{ leather, fabric };
enum Color { mauve, taupe, ecru };

class Couch{
 Upholstery covering;
 Color aColor;

 Couch Clone(){
 Couch clone = new Couch();
 clone.covering = this.covering;
 clone.aColor = this.aColor;
 return clone;
 }

 public override string ToString(){
 return String.Format("Couch is {0} {1}",
 aColor, covering);
 }

 public static void Main(){
 Couch firstCouch = new Couch();
 firstCouch.covering = Upholstery.leather;
 firstCouch.aColor = Color.mauve;

 Couch secondCouch = firstCouch.Clone();
 bool areTheSame = firstCouch == secondCouch;
 Console.WriteLine("{0} == {1}: {2}",
 firstCouch, secondCouch, areTheSame);
 }
}///:~

The Couch class declares a method Clone() that creates a new Couch on the
heap and copies the field values. Although the cloned Couch has identical values as
the original, areTheSame is false, since they are in fact different objects. Cloning
objects whose fields are all value types can indeed as simple as this, but what if your
objects contains a field that is supposed to be unique per instance or references to
other objects?

Chapter 10: Collecting Your Objects 377

For instance, we have used this idiom in this book to give similar objects a unique
id:

static int idCounter = 0;
int id = idCounter++;

If we were to have such a field in Couch, should the clone have a unique id or
should it have a copy of the value of the firstCouch’s id? There’s no “correct”
answer to that question and its more general extension to complex objects that
have relationships with other objects – if you want a new television, does that also
mean you want a new television stand (probably), a new electrical circuit for the
house (probably not), a new television transmitter (definitely not), etc.?

This is very similar to the challenge of initializing an object to a consistent state, as
discussed in Chapter 5. Just as there is no single way to know how many and what
type of other objects an object must create in its constructor, there is no way to
know how many other and what type of other objects must be created in the cloning
process. As with initialization, the use of inheritance can shield the client
programmer from the complexity of the process, but unlike constructors, which all
classes must have and which can always be counted on to ultimately call the
Object() constructor, cloning requires you to implement an interface.

The ICloneable interface has one method: object Clone(). On top of that, the
Object class has a method called MemberwiseClone() that performs a very fast
bit-by-bit shallow copy of the object, so we can rewrite the previous example this
way:

//:c10:SimpleCloneable.cs
//Implementing ICloneable
using System;

enum Upholstery{ leather, fabric };
enum Color { mauve, taupe, ecru };

class Couch : ICloneable{
 Upholstery covering;
 Color aColor;

 public object Clone(){
 return MemberwiseClone();
 }

 public override string ToString(){

378 Thinking in C# www.ThinkingIn.NET

 return String.Format("Couch is {0} {1}",
 aColor, covering);
 }

 public static void Main(){
 Couch firstCouch = new Couch();
 firstCouch.covering = Upholstery.leather;
 firstCouch.aColor = Color.mauve;

 Couch secondCouch = (Couch) firstCouch.Clone();
 bool areTheSame = firstCouch == secondCouch;
 Console.WriteLine("{0} == {1}: {2}",
 firstCouch, secondCouch, areTheSame);
 }
}///:~

The output is the same as the previous and the effort may not seem worth it for our
simple couch. But in a more complex situation, the Clone() method comes into its
own:

//:c10:ComplexClone.cs
//A slightly more complex object
using System;
using System.Text;

enum Upholstery { leather, fabric };
enum Color { mauve, taupe, ecru };

class Furniture {
 protected static int idCounter = 0;
 protected int id = idCounter++;

 protected Furniture(){
 Console.WriteLine("Furniture {0} in construction",
 id);
 }

 protected Upholstery covering;
 protected Color aColor;
}

class Ottoman : Furniture {

Chapter 10: Collecting Your Objects 379

 internal Ottoman(){
 Console.WriteLine("Ottoman created");
 covering = Upholstery.fabric;
 aColor = Color.ecru;
 }

 public override string ToString(){
 return String.Format("Ottoman {0} is {1} {2}",
 id, aColor, covering);
 }
}

class Couch : Furniture, ICloneable {
 Ottoman ottoman;

 protected Couch(Upholstery h, Color c){
 Console.WriteLine("Couch created");
 ottoman = new Ottoman();
 covering = h;
 aColor = c;
 }

 public object Clone(){
 Couch c = (Couch) MemberwiseClone();
 c.id = idCounter++; //Must override memberwise
 Console.WriteLine(
 "Couch {0} cloned into Couch {1}", id, c.id);
 return c;
 }

 public override string ToString(){
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("Couch {0} is {1} {2} with {3}",
 id, aColor, covering, ottoman);
 return sb.ToString();
 }

 public static void Main(){
 Couch firstCouch = new Couch(
 Upholstery.fabric, Color.ecru);

380 Thinking in C# www.MindView.net

 Couch secondCouch = (Couch) firstCouch.Clone();
 bool areTheSame = firstCouch == secondCouch;
 Console.WriteLine("{0} == {1}: {2}",
 firstCouch, secondCouch, areTheSame);

 bool ottomansTheSame =
 firstCouch.ottoman == secondCouch.ottoman;
 Console.WriteLine("Ottomans the same: "
 + ottomansTheSame);
 }
}///:~

In the Furniture class, we use our idCounter and id idiom and when the
firstCouch is constructed, it is assigned id 0 and the Ottoman it creates is
assigned id 1. When Couch.Clone() is called, it uses MemberwiseClone() to
duplicate its values. When you run this, you will see that because
MemberwiseClone() is a bit-level copy of memory as opposed to a more
disciplined (but slower) constructor call, the cloning of the firstCouch does not
activate the Couch constructor (and thereby the Ottoman constructor): The id
does not change, you do not see “Furniture in construction,” etc.

So to make the id in the cloned Couch act like we want, we have to manually
perform the idCounter++ call. Further, the ottoman is not cloned, which is the
desire we want (two ecru fabric couches sharing a single ottoman is the look in New
York nowadays).

The ICloneable interface gives you an initialization mechanism that is an
alternate to the constructor, one which allows you to create a combination of
shallow and deep copy semantics that are appropriate to your needs.
MemberwiseClone() is a very fast way to copy your objects, but as it bypasses
the more common initialization mechanisms, its behavior can be surprising.

Introduction to
data structures
The discussion of cloning touched upon the complexities that arise when you move
into a world of complex relationships between objects. Container classes are one of
the most powerful tools for raw development because they provide an entry into the
world of data structure programming. An interesting fact of programming is that
the hardest challenges often boil down to selecting a data structure and applying a
handful of simple operations to it. Object orientation makes it trivial to create data

Chapter 10: Collecting Your Objects 381

structures that work with abstract data types (i.e., a collection class is written to
work with type object and thereby works with everything).

The .NET System.Collections namespace takes the issue of “holding your objects”
and divides it into two distinct concepts:

1. IList: a group of individual elements, often with some rule applied to them.
An IList must hold the elements in a particular sequence, and a Set cannot
have any duplicate elements. (Note that the .NET Framework does not
supply either a set, which is a Collection without duplicates, or a bag, which
is an unordered Collection.)

2. IDictionary: a group of key-value object pairs (also called Maps). Strictly
speaking, an IDictionary contains DictionaryEntry structures, which
themselves contain the two references (in the Key and Value properties).
The Key property cannot be null and must be unique, while the Value entry
may be null or may point to a previously referenced object. You can access
any of these parts of the IDictionary structure – you can get the
DictionaryEntry values, the set of Keys or the collection of Values.
Dictionaries, like arrays, can easily be expanded to multiple dimensions
without adding new concepts: you simply make an IDictionary whose
values are of type IDictionary (and the values of those dictionaries can be
dictionaries, etc.)

Queues and stacks
For scheduling problems and other programs that need to deal with elements in
order, but which when done discard or hand-off the elements to other components,
you’ll want to conside a queue or a stack.

A queue is a data structure which works like a line in a bank; the first to arrive is the
first to be served.

A stack is often compared to a cafeteria plate-dispenser – the last object to be
added is the first to be accessed. This example uses this metaphor to show the basic
functions of a queue and a stack:

//:c10:QueueAndStack.cs
//Demonstrate time-of-arrival data structures
using System;
using System.Collections;

class Customer {

382 Thinking in C# www.ThinkingIn.NET

 string name;
 public string Name{
 get{ return name;}
 }

 PlateDispenser p;

 internal Customer(String name, PlateDispenser p){
 this.name = name;
 this.p = p;
 }

 internal void GetPlate(){
 string plate = p.GetPlate();
 Console.WriteLine(
 name + " got " + plate);
 }
}

class PlateDispenser {
 Stack dispenser = new Stack();
 internal void Fill(int iToPush){
 for (int i = 0; i < iToPush; i++) {
 string p = "Plate #" + i;
 Console.WriteLine("Loading " + p);
 dispenser.Push(p);
 }
 }

 internal string GetPlate(){
 return(string) dispenser.Pop();
 }
}

class Teller {
 Queue line = new Queue();
 internal void EnterLine(Customer c){
 line.Enqueue(c);
 }
 internal void Checkout(){
 Customer c = (Customer) line.Dequeue();

Chapter 10: Collecting Your Objects 383

 Console.WriteLine("Checking out: " + c.Name);
 }
}
class Cafeteria {
 PlateDispenser pd = new PlateDispenser();
 Teller t = new Teller();

 public static void Main(){
 new Cafeteria();
 }

 public Cafeteria(){
 pd.Fill(4);
 Customer[] c = new Customer[4];
 for (int i = 0; i < 4; i++) {
 c[i] = new Customer("Customer #" + i, pd);
 c[i].GetPlate();
 }
 for (int i = 0; i < 4; i++) {
 t.EnterLine(c[i]);
 }
 for (int i = 0; i < 4; i++) {
 t.Checkout();
 }
 }
}///:~

First, the code specifies that it will be using types from the System and
System.Collection namespaces. Then, the Customer class has a name and a
reference to a PlateDispenser object. These references are passed in the
Customer constructor. Finally, Customer.GetPlate() retrieves a plate from the
PlateDispenser and prints out the name of the customer and the identifier of the
plate.

The PlateDispenser object contains an internal reference to a Stack. When
PlateDispenser.Fill() is called, a unique string is created and Stack.Push()
places it on the top (or front) of the stack. Similarly, PlateDispenser.GetPlate()
uses Stack.Pop() to get the object at the stack’s top.

 The Teller class has a reference to a Queue object. Teller.EnterLine() calls
Queue.Enqueue() and Teller.Checkout() calls Queue.Dequeue(). Since
the only objects placed in the queue are of type Customer, it’s safe for the

384 Thinking in C# www.MindView.net

reference returned by Queue.Dequeue() to be cast to a Customer, and the
name printed to the console.

Finally, the Cafeteria class brings it all together. It contains a PlateDispenser
and a Teller. The constructor fills the plate dispenser and creates some customers,
who get plates, get in line for the teller, and check out. The output looks like this:

Loading Plate #0
Loading Plate #1
Loading Plate #2
Loading Plate #3
Customer #0 got Plate #3
Customer #1 got Plate #2
Customer #2 got Plate #1
Customer #3 got Plate #0
Checking out: Customer #0
Checking out: Customer #1
Checking out: Customer #2
Checking out: Customer #3

As you can see, the order in which the plates are dispensed is the reverse of the
order in which they were placed in the PlateDispenser’s Stack.

What happens if you call Pop() or Dequeue() on an empty collection? In both
situations you’ll get an InvalidOperationException with an explicit message
that the stack or queue is empty.

Stacks and queues are just the thing for scheduling problems, but if you need to
choose access on more than a time-of-arrival basis, you’ll need another data
structure.

ArrayList
If a numeric index is all you need, the first thing that you’ll consider is an Array, of
course. But if you don’t know the exact number of objects that you’ll need to store,
consider ArrayList.

Like the other collection classes, ArrayList has some very handy static methods you
can use when you want to ensure certain characteristics of the underlying
collection. The static methods ArrayList.FixedSize() and
ArrayList.ReadOnly() return their ArrayList arguments wrapped in
specialized handles that enforce these restrictions. However, care must be taken to
discard any references to the original argument to these methods, because the inner
ArrayList can get around the restrictions, as this example shows:

Chapter 10: Collecting Your Objects 385

//:c10:ArrayListStatics.cs
using System;
using System.Collections;

public class ArrayListStatics {
 public static void Main(){
 ArrayList al = new ArrayList();
 Random rand = new Random();
 int iToAdd = 50 + rand.Next(50);
 for (int i = 0; i < iToAdd; i++) {
 string s = "String #" + i;
 al.Add(s);
 }
 ArrayList noMore = ArrayList.FixedSize(al);
 try {
 noMore.Add("This won't work");
 } catch (Exception ex) {
 Console.WriteLine(ex);
 }
 ArrayList untouchable =
 ArrayList.ReadOnly(al);
 try {
 untouchable[0] = "This won't work";
 } catch (Exception ex) {
 Console.WriteLine(ex);
 }
 //But restrictions do not apply to original
 al[0] = "Modified";
 Console.WriteLine(
 "Untouchable[0] = " + untouchable[0]);
 int originalCount = noMore.Count;
 al.Insert(0, "Added");
 Console.WriteLine(
 "Size of noMore {0} != {1}",
 originalCount, noMore.Count);
 }
}///:~

 While the operations on the wrapped arrays will raise
NotSupportedExceptions (which are caught and printed to the console), a
change to the original al ArrayList is reflected in Untouchable and the size of

386 Thinking in C# www.ThinkingIn.NET

noMore can be increased! Another interesting static method of ArrayList is
Synchronized, which will be discussed in Chapter 16.

BitArray
A BitArray is used if you want to efficiently store a lot of on-off or true-false
information. It’s efficient only from the standpoint of size; if you’re looking for
efficient access, it is slightly slower than using an array of some native type.

A normal container expands as you add more elements, but with BitArray, you
must set the Length property to be sufficient to hold as many as you need. The
constructor to BitArray takes an integer which specifies the initial capacity (there
are also constructors which copy from an existing BitArray, from an array of
bools, or from the bit-values of an array of bytes or ints).

The following example shows how the BitArray works:

//:c10:Bits.cs
// Demonstration of BitSet.
using System;
using System.Collections;

public class Bits {
 static void PrintBitArray(BitArray b) {
 Console.WriteLine("bits: " + b);
 string bbits = "";
 for (int j = 0; j < b.Length ; j++)
 bbits += (b[j] ? "1" : "0");
 Console.WriteLine("bit pattern: " + bbits);
 }

 public static void Main() {
 Random rand = new Random();
 // Take the LSB of Next():
 byte bt = (byte)rand.Next();
 BitArray bb = new BitArray(8);
 for (int i = 7; i >=0; i--)
 if (((1 << i) & bt) != 0)
 bb.Set(i, true);
 else
 bb.Set(i, false);
 Console.WriteLine("byte value: " + bt);

Chapter 10: Collecting Your Objects 387

 PrintBitArray(bb);

 short st = (short)rand.Next();
 BitArray bs = new BitArray(16);
 for (int i = 15; i >=0; i--)
 if (((1 << i) & st) != 0)
 bs.Set(i, true);
 else
 bs.Set(i, false);
 Console.WriteLine("short value: " + st);
 PrintBitArray(bs);

 int it = rand.Next();
 BitArray bi = new BitArray(32);
 for (int i = 31; i >=0; i--)
 if (((1 << i) & it) != 0)
 bi.Set(i, true);
 else
 bi.Set(i, false);
 Console.WriteLine("int value: " + it);
 PrintBitArray(bi);

 // Test BitArrays that grow:
 BitArray b127 = new BitArray(64);
 //! Would throw ArgumentOutOfRangeException
 //! b127.Set(127, true);
 //Must manually expand the Length
 b127.Length = 128;
 b127.Set(127, true);
 Console.WriteLine(
 "set bit 127: " + b127);
 }
} ///:~

Dictionaries
Dictionaries allow you to rapidly look up a value based on a unique non-numeric
key and are among the most handy of the collection classes.

388 Thinking in C# www.MindView.net

Hashtable
The Hashtable is so commonly used that many programmers use the phrase
interchangeably with the concept of a dictionary! The Hashtable, though, is an
implementation of IDictionary that has all types of interesting implementation
details. Before we get to those, here’s a simple example of using a Hashtable:

//:c10:SimpleHash.cs
using System;
using System.Collections;

public class LarrysPets {
 static IDictionary Fill(IDictionary d) {
 d.Add("dog", "Cheyenne");
 // Non-unique key causes exception
 //! d.Add("dog", "Bette");
 d.Add("cat", "Harry");
 d.Add("goldfish", null);
 return d;
 }
 public static void Main() {
 IDictionary pets = new Hashtable();
 Fill(pets);
 foreach(DictionaryEntry pet in pets){
 Console.WriteLine(
 "Larry has a {0} named {1}",
 pet.Key, pet.Value);
 }
 }
} ///:~

produces output of:

Larry has a dog named Cheyenne
Larry has a goldfish named
Larry has a cat named Harry

Note that attempting to add a non-unique key to a Hashtable raises an
ArgumentException. This does not mean that one cannot change the value of a
Hashtable at a given key, though:

//:c10:ChangeHashtableValue.cs
using System;
using System.Collections;

Chapter 10: Collecting Your Objects 389

class ChangeHashtableValue {
 public static void Main(){
 Hashtable h = new Hashtable();
 h.Add("Foo","Bar");
 Object o = h["Foo"];
 h["Foo"] = "Modified";
 Console.WriteLine("Value is: " + h["Foo"]);
 h["Baz"] = "Bozo";
 }
}///:~

This example shows the use of C#’s custom indexers. A custom indexer allows one
to access an IDictionary using normal array notation. Although here we use only
strings as the keys, the keys in an IDictionary can be of any type and can be
mixed and matched as necessary.

After “Foo” is set as the key to the “Bar” value, array notation can be used to access
the value, for both reading and writing. As shown in the last line of Main(), the
same array notation can be used to add new key-value pairs to the Hashtable.

The most interesting Hashtable implementation detail has to do with the
calculation of the hashcode, a unique integer which “somehow” identifies the key’s
unique value. The hashcode is returned by object.GetHashCode(), a method
that needs to be fast and to return integers that are “spread out” as much as
possible. Additionally, the method must always return the same value for a given
object, so you can’t base your hashcode on things like system time. In this example,
the hashcode and the related object.Equals() method are used to express the
idea that the sole determinant of a circle’s identity is its center and radius :

//:c10:OverridingHash.cs
using System;
using System.Collections;
class Circle {
 int x, y, radius;
 internal Circle(int x, int y, int radius){
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 internal Circle(int topX, int topY, int lowerX,
 int lowerY){

390 Thinking in C# www.ThinkingIn.NET

 this.x = topX + (lowerX - topX) / 2;
 this.y = topY + (lowerY - topY) / 2;
 this.radius = (lowerX - topX) / 2;
 }

 public override int GetHashCode(){
 Console.WriteLine(
 "Returning {0}", x + y + radius);
 return x + y + radius;
 }

 public override bool Equals(Object o){
 if (o is Circle) {
 Circle that = (Circle) o;
 Console.WriteLine(
 "Comparing {0},{1},{2} with " +
 "{3},{4},{5}", x, y, radius,
 that.x, that.y, that.radius);
 return(this.x == that.x) &&
 (this.y == that.y) &&
 (this.radius == that.radius);
 }
 return false;
 }

 public static void Main(){
 Circle c = new Circle(15, 15, 5);
 Circle unlike = new Circle(15, 15, 6);
 Circle somewhatLike = new Circle(30, 1, 4);
 IDictionary d = new Hashtable();
 d.Add(c, "A circle");
 d.Add(unlike, "Another circle");
 try {
 Circle like = new Circle(10, 10, 20, 20);
 d.Add(like, "Just like c");
 } catch (Exception ex) {
 Console.WriteLine(ex);
 }
 }
}///:~

Chapter 10: Collecting Your Objects 391

When a Circle is added to a Hashtable, the Hashtable calls back to
Circle.GetHashCode() which returns the sum of the center coordinates and
radius of the circle. This is no problem for the first two circles, c and unlike,
because they have different hashcodes. Circle somewhatLike, though, causes
what is called a “hash collision” – the same hashcode is returned for two different
objects (in this case, both circles’ elements add up to 35). When a hash collision
takes place, Hashtable calls object.Equals() to see if the objects are, in fact, the
same object. Because these two circles have different centers and radii, they can
both be added to the Hashtable. Hash collisions seriously interfere with the
efficiency of the Hashtable, so frequent collisions should make you revisit your
hashcode algorithm.

In the try block, we create another new Circle, this time using an alternate
constructor. When it’s added to the Hashtable, this time there’s another collision,
but this time Circle.Equals() reveals that yes, c and like are logically equivalent
and therefore Hashtable throws an ArgumentException.

ListDictionary
If you have only a dozen or fewer objects to store in your dictionary,
ListDictionary will have better performance than a Hashtable. On the other
hand, on larger amounts of objects, ListDictionary has much, much worse
performance and the performance of a collection class with a small number of
elements is unlikely to be a hotspot in an application. It’s not impossible, though!
So if you’ve got a dictionary with a small amount of objects and it’s buried in the
central loop in your application, ListDictionary might come in handy. Otherwise,
go with Hashtable.

SortedList
Sometimes, you need to access a Collection in two different ways: key-based lookup
for one purpose, and index-based lookup for another. The SortedList provides this
dual-mode capability:

//:c10:ShowSortedList.cs
using System;
using System.Collections;

class ShowSortedList {
 SortedList monthList = new SortedList();
 ShowSortedList(){
 monthList.Add("January", 31);
 monthList.Add("February",28.25);

392 Thinking in C# www.MindView.net

 monthList.Add("March", 31);
 monthList.Add("April", 30);
 monthList.Add("May", 31);
 monthList.Add("June", 30);
 monthList.Add("July", 31);
 monthList.Add("August", 31);
 monthList.Add("September",30);
 monthList.Add("October",31);
 monthList.Add("November",30);
 monthList.Add("December",31);

 Console.WriteLine(
 "June has {0} days", monthList["June"]);
 Console.WriteLine(
 "The eighth month has {0} days",
 monthList.GetByIndex(7));
 }

 public static void Main(){
 ShowSortedList ssl = new ShowSortedList();
 }
}///:~

The SortedList can be accessed using any object of the key type, in this case
strings. Or, GetByIndex() can be used to retrieve a value based on a numeric
index.

String specialists
Strings are certainly the most used type for keys and values, and the .NET
Framework provides a number of specialized collections that work exclusively with
strings. These collections can be found in the System.Collections.Specialized
namespace.

One key, multiple values
The NameValueCollection serves for those situations when you want to
associate a single key string with multiple string values:

//:c10:Months.cs
using System;
using System.Collections.Specialized;

class Months {

Chapter 10: Collecting Your Objects 393

 public static void Main(){
 NameValueCollection months =
 new NameValueCollection();
 months.Add("Winter", "January");
 months.Add("Winter", "February");
 months.Add("winter", "December");
 months.Add("Spring", "March");
 months.Add("Spring", "April");
 months.Add("Spring", "May");
 foreach(string key in months.AllKeys){
 Console.WriteLine("Key: " + key);
 Console.WriteLine("CSV: " +
 months[key]);
 foreach(Object value in
 months.GetValues(key)){
 Console.WriteLine(
 "\tValue: " + value);
 }
 }
 }
}///:~

The output of the program is shown here:

Key: Winter
CSV: January,February,December
 Value: January
 Value: February
 Value: December
Key: Spring
CSV: March,April,May
 Value: March
 Value: April
 Value: May

In a rather strange design decision, the custom indexer and the Get() method
return the values as a single comma-separated string rather than as an array. If you
want to access the values as a string array, you have to use the GetValues()
method.

394 Thinking in C# www.ThinkingIn.NET

Customizing hashcode providers
Note that in the previous Months program, the “December” value was added for the
key “winter” as opposed to “January” and “February,” which used the key “Winter.”
In the discussion of Hashtable, we showed how a class could override its
GetHashCode() and Equals() methods to control placement in a Hashtable.
Even more customization is possible by changing the strategy that the Hashtable
or NameValueCollection uses to calculate equality; this can be done by creating
the dictionary with a custom IHashCodeProvider and IComparer. By default,
NameValueCollection uses a CaseInsensitiveHashcodeProvider and
CaseInsensitiveComparer to determine what fits into what slot.

This program demonstrates the creation of a custom IComparer and
IHashCodeProvider to create a hashtable which stores only the last even or odd
integer added (note that this is certainly “the most complicated thing that could
possibly work”):

//:c10:EvenOdd.cs
using System;
using System.Collections;

class EvenOddComparer : IComparer {
 public int Compare(Object x, Object y){
 //Only compare integers
 if (x is Int32 == false
 || y is Int32 == false) {
 throw new ArgumentException(
 "Can't compare non-Int32's");
 }
 //Unbox inputs
 int xValue = (int) x;
 int yValue = (int) y;
 if (xValue % 2 == yValue % 2) {
 return 0;
 }
 return -1;
 }
}

class EvenOddHashCodeProvider : IHashCodeProvider {
 public int GetHashCode(Object intObj){
 //Only hash integers

Chapter 10: Collecting Your Objects 395

 if (intObj is Int32 == false) {
 throw new ArgumentException(
 "Can't hash non-Int32's");
 }
 //Unbox input
 int x = (int) intObj;
 return x % 2;
 }
}

class EvenOdd {
 static EvenOddComparer c =
 new EvenOddComparer();
 static EvenOddHashCodeProvider p =
 new EvenOddHashCodeProvider();
 //Hashtable keys
 static readonly int EVEN_KEY = 2;
 static readonly int ODD_KEY = 3;
 //Custom IComparer & IHashCodeProvider strategies
 Hashtable evenOdd = new Hashtable(p, c);

 public void Test(){
 evenOdd[EVEN_KEY] = 2;
 evenOdd[ODD_KEY] = 3;
 evenOdd[EVEN_KEY] = 4;

 Console.WriteLine(
 "The last even number added was: " +
 evenOdd[EVEN_KEY]);
 Console.WriteLine(
 "The last odd number added was: " +
 evenOdd[ODD_KEY]);
 }

 public static void Main(){
 EvenOdd eo = new EvenOdd();
 eo.Test();
 }
}///:~

396 Thinking in C# www.MindView.net

String specialists: StringCollection
and StringDictionary
If you only want to store strings, StringCollection and StringDictionary are
marginally more efficient than their generic counterparts. A StringCollection
implements IList and StringDictionary naturally implements IDictionary.
Both the keys and values in StringDictionary must be strings, and the keys are
case-insensitive and stored in lower-case form. Here’s a dramatically abridged
dictionary program:

//:c10:WebstersAbridged.cs
using System;
using System.Collections.Specialized;

class WebstersAbridged {
 static StringDictionary sd =
 new StringDictionary();

 static WebstersAbridged(){
 sd["aam"] =
 "A measure of liquids among the Dutch";
 sd["zythum"] =
 "Malt beverage brewed by ancient Egyptians";
 }

 public static void Main(string[] args){
 foreach(string arg in args){
 if (sd.ContainsKey(arg)) {
 Console.WriteLine("{0}: {1}", arg, sd[arg]);
 } else {
 Console.WriteLine(
 "{0} : I don't know that word", arg);
 }
 }
 }
}///:~

The program iterates over the command-line arguments and either returns the
definition or admits defeat. Because the StringDictionary is case-insensitive, this
program is highly useful even when the CAPS LOCK key on the keyboard is left
turned on.

Chapter 10: Collecting Your Objects 397

Container disadvantage:
unknown type
Aside from StringCollection and StringDictionary, .NET’s collection classes
have the “disadvantage” of obscuring type information when you put an object into
a container. This happens because the programmer of that container class had no
idea what specific type you wanted to put in the container, and making the
container hold only your type would prevent it from being a general-purpose tool.
So instead, the container holds references to object, which is the root of all the
classes so it holds any type. This is a great solution, except:

1. Since the type information is obscured when you put an object reference
into a container, there’s no restriction on the type of object that can be put
into your container, even if you mean it to hold only, say, cats. Someone
could just as easily put a dog into the container.

2. Since the type information is obscured, the only thing the container knows
that it holds is a reference to an object. You must perform a cast to the
correct type before you use it.

On the up side, C# won’t let you misuse the objects that you put into a container. If
you throw a dog into a container of cats and then try to treat everything in the
container as a cat, you’ll get a run-time exception when you pull the dog reference
out of the cat container and try to cast it to a cat.

Here’s an example using the basic workhorse container, ArrayList. First, Cat and
Dog classes are created:

//:c10:Cat.cs
using System;

namespace pets{
 public class Cat {
 private int catNumber;
 internal Cat(int i) { catNumber = i;}
 internal void Print() {
 Console.WriteLine(
 "Cat #" + catNumber);
 }
 }
} ///:~

398 Thinking in C# www.ThinkingIn.NET

//:c10:Dog.cs
using System;

namespace pets{
 public class Dog {
 private int dogNumber;
 internal Dog(int i) { dogNumber = i;}
 internal void Print() {
 Console.WriteLine(
 "Dog #" + dogNumber);
 }
 }
} ///:~

Cats and Dogs are placed into the container, then pulled out:

//:c10:CatsAndDogs.cs
// Compile with: csc Cat.cs Dog.cs CatsAndDogs.cs
// Simple container example.
using System;
using System.Collections;

namespace pets{
 public class CatsAndDogs {
 public static void Main() {
 ArrayList cats = new ArrayList();
 for (int i = 0; i < 7; i++)
 cats.Add(new Cat(i));
 // Not a problem to add a dog to cats:
 cats.Add(new Dog(7));
 for (int i = 0; i < cats.Count; i++)
 ((Cat)cats[i]).Print();
 // Dog is detected only at run-time
 }
 }
}///:~

The classes Cat and Dog are distinct—they have nothing in common except that
they are objects. (If you don’t explicitly say what class you’re inheriting from, you
automatically inherit from object.) Since ArrayList holds objects, you can not
only put Cat objects into this container using the ArrayList method Add(), but
you can also add Dog objects without complaint at either compile-time or run-
time. When you go to fetch out what you think are Cat objects using the ArrayList

Chapter 10: Collecting Your Objects 399

indexer, you get back a reference to an object. Since the intent was that cats
should only contain felines, there is no check made before casting the returned
value to a Cat. Since we want to call the Print() method of Cat, we have to force
the evaluation of the cast to happen first, so we surround the expression in
parentheses before calling Print(). At run-time, though, when the loop tries to
cast the Dog object to a Cat, it throws a ClassCastException.

This is more than just an annoyance. It’s something that can create difficult-to-find
bugs. If one part (or several parts) of a program inserts objects into a container, and
you discover only in a separate part of the program through an exception that a bad
object was placed in the container, then you must find out where the bad insert
occurred. On the upside, it’s convenient to start with some standardized container
classes for programming, despite the scarcity and awkwardness.

Using CollectionBase to make type-conscious
collections
As mentioned at the beginning of the chapter, the .NET runtime will eventually
natively support typed collections. In the meantime, there’s CollectionBase, an
abstract IList that can be used as the basis for writing a strongly typed collection.
To implement a typed IList, one starts by creating a new type that inherits from
CollectionBase. Then, one has to implement ICollection.CopyTo(),
IList.Add(), IList.Contains(), IList.IndexOf(), IList.Insert(), and
IList.Remove() with type-specific signatures. The code is straightforward; the
CollectionBase.List property is initialized in the base-class constructor and all
your code has to do is pass your strongly-typed arguments on to
CollectionBase.Lists object-accepting methods and casting the Lists object-
returning methods to be more strongly typed:

//:c10:CatList.cs
//Compile with:
//csc Cat.cs Dog.cs CatList.cs
//An listthat contains only Cats

using System;
using System.Collections;

namespace pets{
 class CatList : CollectionBase {
 public Cat this[int index]{
 get{ return(Cat) List[index];}
 set{ List[index] = value;}

400 Thinking in C# www.MindView.net

 }

 public int Add(Cat feline){
 return List.Add(feline);
 }

 public void Insert(int index, Cat feline){
 List.Insert(index, feline);
 }

 public int IndexOf(Cat feline){
 return List.IndexOf(feline);
 }

 public bool Contains(Cat feline){
 return List.Contains(feline);
 }

 public void Remove(Cat feline){
 List.Remove(feline);
 }

 public void CopyTo(Cat[] array, int index){
 List.CopyTo(array, index);
 }

 public static void Main(){
 CatList cl = new CatList();
 for (int i = 0; i < 3; i++) {
 cl.Add(new Cat(i));
 }
 //! Can't Add(dog);
 //! cl.Add(new Dog(4));
 }
 }
}///:~

Note that if CatList had inherited directly from ArrayList, the methods that take
references to Cats, such as Add(Cat) would simply overload (not override) the
object-accepting methods (e.g., Add(object) would still be available). Thus, the
CatList becomes a surrogate to the ArrayList, performing some activities before
passing on the responsibility (see Thinking in Patterns with Java).

Chapter 10: Collecting Your Objects 401

Because a CatList will accept only a Cat, the line:

cl.add(new Dog(4));

will generate an error message at compile-time. This approach, while more tedious
from a coding standpoint, will tell you immediately if you’re using a type
improperly.

Note that no cast is necessary when using Get() or the custom indexer —it’s
always a Cat.

IEnumerators
In any container class, you must have a way to put things in and a way to get things
out. After all, that’s the primary job of a container—to hold things. In the
ArrayList, Add() and Get() are one set of ways to insert and retrieve objects.
ArrayList is quite flexible—you can select anything at any time, and select
multiple elements at once using different indexes.

If you want to start thinking at a higher level, there’s a drawback: you need to know
the exact type of the container in order to use it. This might not seem bad at first,
but what if you start out using an ArrayList, and later on in your program you
decide that because of the way you are using the container, you’d like to switch your
code to use a typed collection descending from CollectionBase? Or suppose you’d
like to write a piece of generic code that doesn’t know or care what type of container
it’s working with, so that it could be used on different types of containers without
rewriting that code?

The concept of an enumerator (or iterator) can be used to achieve this abstraction.
An enumerator is an object whose job is to move through a sequence of objects and
select each object in that sequence without the client programmer knowing or
caring about the underlying structure of that sequence. In addition, an enumerator
is usually what’s called a “light-weight” object: one that’s cheap to create. For that
reason, you’ll often find seemingly strange constraints for enumerators; for
example, some iterators can move in only one direction.

The .NET IEnumerator interface is an example of these kinds of constraints.
There’s not much you can do with one except:

1. Ask a collection (or any other type that implements IEnumerable) to hand
you an IEnumerator using a method called GetEnumerator(). This
IEnumerator will be ready to move to the first element in the sequence
on your first call to its MoveNext() method.

402 Thinking in C# www.ThinkingIn.NET

2. Get the current object in the sequence with the Current property.

3. Attempt to move to the next object in sequence with the MoveNext()
method. If the enumerator has reached the end of the sequence, this
method returns false.

4. Reset to its initial state, which is prior to the first element (i.e., you must
call MoveNext() once before reading the Current property).

That’s all. It’s a simple implementation of an iterator, but still powerful. To see how
it works, let’s revisit the CatsAndDogs.cs program from earlier in this chapter. In
the following modified version, we’ve removed the errant dog and use an
IEnumerator to iterate over the lists contents:

//:c10:CatsAndDogs2.cs
//Compile with:
//csc Cat.cs Dog.cs CatsAndDogs2.cs
// Using an explicit IEnumerator
using System;
using System.Collections;

namespace pets{
 public class CatsAndDogs {
 public static void Main() {
 ArrayList cats = new ArrayList();
 for (int i = 0; i < 7; i++)
 cats.Add(new Cat(i));
 IEnumerator e = cats.GetEnumerator();
 while (e.MoveNext() != false) {
 Object c = e.Current;
 ((Cat) c).Print();
 }
 }
 }
}///:~

You can see that the last few lines now use an IEnumerator to step through the
sequence instead of a for loop. With the IEnumerator, you don’t need to worry
about the number of elements in the container.

Behind the scenes, C#’s foreach() blocks do an even better job of iterating over an
IEnumerable type, since the foreach attempts to cast the object reference

Chapter 10: Collecting Your Objects 403

returned from the enumerator to a specific type. It doesn’t make a lot of sense to
use an IEnumerator when you can use:

foreach(Cat c in cats){
 c.Print();
}

Custom indexers
Previously, we saw how IDictionary types allow one to use index notation to
access key-value pairs using non-numeric indices. This is done by using operator
overloading to create a custom indexer.

The type-safe CatList collection shown in the discussion of CollectionBase
showed a custom indexer that took a numeric index, but returned a Cat instead of
an object reference. You can manipulate both index and return types in a custom
indexer, just as with any other C# method.

For instance, imagine a maze which consists of rooms connected by corridors in the
rooms’ walls. In such a situation, it might make sense to have the corridors be
indexed by direction in the room:

//:c10:Room.cs
//Not intended for a stand-alone compile
using System;
using System.Collections;

namespace Labyrinth{
 enum Direction {
 north, south, east, west
 };

 class Room {
 static int counter = 0;
 protected string name;
 internal string Name{
 get{ return name;}
 }

 public override string ToString(){
 return this.Name;
 }
 internal Room(){

404 Thinking in C# www.MindView.net

 name = "Room #:" + counter++;
 }
 Corridor[] c = new Corridor[
 Enum.GetValues(typeof(Direction)).Length];

 public Corridor this[Direction d]{
 get { return c[(int) d];}
 set { c[(int) d] = value;}
 }
 }

 class RegenSpot : Room {
 internal RegenSpot() : base(){
 name = "Regen Spot";
 }
 }

 class PowerUp : Room {
 internal PowerUp() : base(){
 name = "Power Up";
 }
 }
}///:~ (Example continues with Corridor.cs)

First, we declare a Direction enumeration corresponding to the cardinal points.
Then we declare a Room class with an internal static counter used to give each
room a unique name. The name is made into a property and is also used to override
the ToString() method to be a little more specific as to the exact room we’re
dealing with.

Every Room has an array called c that will hold references to its outbound
Corridors. Although it would be shorter to just declare this array as size 4 (since
we know that’s how many Directions there are), instead we use a facility we’ve not
yet discussed.

The static method Enum.GetValues() converts an enumeration into an array,
whose Length property can be read to tell us how many values there are in the
enumeration. Enum.GetValues() takes as its parameter, though, a Type object.
The general utility of Type objects will become more apparent in Chapter 13’s
discussion of reflection, but for the moment suffice it to say that the Type object
makes the structure of the type available for programmatic use; in this case, with
the Type object that represents the Direction enumeration, we can determine

Chapter 10: Collecting Your Objects 405

that there are just 4 specified directions. The Type object of a given class can be
retrieved by using the operator typeof and passing it the name of the class. The
form typeof(Classname) may look like a method call but is actually a language-
level operator.

Once we have transformed the Direction enumeration into an array, we can use
the Length property of the resulting array to size the Corridor array equivalently
(this way, we could accommodate octagonal rooms by simply adding values such as
NorthWest to Direction).

The custom indexer is next and looks like this:

public Corridor this[Direction d]{
 get { return c[(int) d];}
 set { c[(int) d] = value;}
}

The first line begins with what looks like a normal declaration of a public Property
of type Corridor, but the this[Type t] that ends the line indicates that it is an
customer indexer, in this case one that takes a Direction value as its key and
returns a Corridor. Since enums are value types that default to being represented
by integer constants that start with zero, we can safely use the cast to int to create a
numeric index to the c array of Corridors. Like a Property, a custom indexer’s set
method has a hidden parameter called value.

That finishes up the Room class, but we declare two additional types to inherit
from it – a RegenSpot and a PowerUp. They each differ from the base class
solely in the way they set up their Name property.

The Corridor class referenced in Room has one duty – maintain references to
two different Rooms and supply a Traverse() function which returns whichever
of the two rooms isn’t passed in as an argument:

//:c10:Corridor.cs
// Not intended for a stand-alone compile
using System;
using System.Collections;

namespace Labyrinth{

 class Corridor {
 Room x, y;

406 Thinking in C# www.ThinkingIn.NET

 internal Corridor(
 Room x, Direction xWall,
 Room y, Direction yWall){
 this.x = x;
 this.y = y;
 x[xWall] = this;
 y[yWall] = this;
 }

 public Room Traverse(
 Room origin, Direction wall){
 Console.WriteLine(
 "Leaving {0} by its {1} corridor",
 origin, wall);
 if (origin == x)
 return y;
 else
 return x;
 }

 public Room Traverse(Room origin){
 Console.WriteLine(
 "Retreating from " + origin);
 if (origin == x)
 return y;
 else
 return x;
 }
 }
}///:~ (Example continues with Maze.cs)

The Corridor() constructor uses Room’s custom indexers (e.g., x[xWall] =
this;). Note that there’s no problem in referring to this inside a constructor.

Custom enumerators & data structures
In the previous example, after a corridor is created, the Corridor contains a
reference to both Rooms, and both Rooms contain a reference to the Corridor:

Chapter 10: Collecting Your Objects 407

Room Corridorc[Direction]

x
y

Figure 10-5: Rooms and Corridors have references to each other

While we called them rooms and corridors, what we’ve really got here is a non-
directed graph. Here, “graph” is being used in its mathematical sense of “a set V of
Vertices and a set E of Edges that connect elements in V.” What we’ve designed is
“non-directed” because our Corridors can be traversed in either direction.

A lot of very interesting problems can be mapped into graph theory, for example:
problems such as winning a game of chess, how best to pack a container, the most
efficient way to schedule a bunch of jobs, and everyone’s favorite, which is the
cheapest route for a traveling salesperson to visit a bunch of cities. Writing a
custom enumerator (or perhaps more than one, to try out different algorithms) is
an elegant way to traverse a complex graph.

In this example, we create a simple Maze that consists of one RegenSpot and one
PowerUp, and several normal rooms (the names are taken from videogames for
which one can program “bots” – just think of them as the start and stop points):

//:c10:Maze.cs
//Not intended for a stand-alone compile
using System;
using System.Collections;
namespace Labyrinth{
 class Maze :IEnumerable {
 Room[] rooms;
 Room regenRoom;
 internal Room RegenSpot{
 get { return regenRoom;}
 }

 Maze(){
 regenRoom = new RegenSpot();
 rooms = new Room[]{
 new Room(), new Room(), new Room(),
 regenRoom, new Room(), new Room(),
 new PowerUp()
 };
 new Corridor(rooms[0], Direction.east,

408 Thinking in C# www.MindView.net

 rooms[4], Direction.north);
 new Corridor(rooms[0], Direction.south,
 rooms[1], Direction.north);
 new Corridor(rooms[1], Direction.south,
 rooms[3], Direction.north);
 new Corridor(rooms[2], Direction.east,
 rooms[3], Direction.west);
 new Corridor(rooms[3], Direction.east,
 rooms[4], Direction.west);
 new Corridor(rooms[3], Direction.south,
 rooms[5], Direction.south);
 new Corridor(rooms[5], Direction.south,
 rooms[6], Direction.north);
 }

 public static void Main(){
 Maze m = new Maze();
 foreach(Room r in m){
 Console.WriteLine(
 "RoomRunner in " + r.Name);
 }
 }

 public IEnumerator GetEnumerator(){
 return new DepthFirst(this);
 }
 }
}///:~ (Example continues with RoomRunner.cs)

Class Maze is declared to implement the IEnumerable interface, which we’ll use
to return a customized enumerator which runs the maze. Note that for our
purposes, we don’t care if the enumerator visits every vertex on the graph (every
room in the maze); as a matter of fact, we’re probably most interested in an
enumerator which visits as few vertices as possible! This is a different intention
from the generic enumerators of the .NET collection classes, which of course do
need to visit every element in the data structure.

The Maze contains an array rooms and a reference to the starting RegenRoom.
The maze’s dynamic structure is built in the Maze() constructor and consists of 7
Rooms and 7 Corridors.

Chapter 10: Collecting Your Objects 409

The Main() method constructs a Maze and then uses a foreach block to show
the traversal of the maze. Behind the scenes, the foreach block determines that
Maze is an IEnumerable type and silently calls GetEnumerator().

Maze’s implementation of IEnumerable.GetEnumerator() is the final
method in Maze. A new object of type DepthFirst (discussed shortly) is created
with a reference to the current Maze.

There are several different ways to traverse a maze. It is probable that when writing
a program to run mazes, you would want to try several different algorithms, one
that rushed headlong down the first unexplored corridor, another that methodically
explored all the routes from a single room, etc. However, each of these algorithms
has a lot of things in common: they must all implement the IEnumerator
interface, they all have references to the Maze and a current Room, they all begin
at the regen spot and end at the power up. Really, the only way they differ is in
their implementation of IEnumerator.MoveNext() when they’re “lost” in the
maze. This is a job for the Template Method pattern:

//:c10:RoomRunner.cs
//Not intended for a stand-alone compile
using System;
using System.Collections;
namespace Labyrinth{
 abstract class RoomRunner:IEnumerator {
 Maze m;
 protected RoomRunner(Maze m){
 this.m = m;
 }

 protected Room currentRoom = null;
 public oObject Current{
 get { return currentRoom;}
 }

 public virtual void Reset(){
 currentRoom = null;
 }

 public bool MoveNext(){
 if (currentRoom == null) {
 Console.WriteLine(
 "{0} starting the maze",

410 Thinking in C# www.ThinkingIn.NET

 this.GetType());
 currentRoom = m.RegenSpot;
 return true;
 }
 if (currentRoom is PowerUp) {
 Console.WriteLine(
 "{0} has found PowerUp!",
 this.GetType());
 return false;
 }
 return this.ConcreteMoveNext();
 }

 protected abstract bool ConcreteMoveNext();
 }
}///:~ (Example continues with DepthFirst.cs)

Here, an abstract class called RoomRunner implements the methods of the
IEnumerator interface, but leaves one tiny bit to its subclasses to implement.

The RoomRunner() constructor just stores a reference to the Maze that creates
it and initializes the currentRoom (exposed to the outside world as
IEnumerator’s Current Property) to null. Reset() also sets the currentRoom
to null – remember that IEnumerator.MoveNext() is always called once before
the first read of the Current property.

The first time RoomRunner.MoveNext() is called, currentRoom will be null.
Because RoomRunner is an abstract type that may be implemented by many
different subtypes, our console message can use this.GetType() to determine the
exact runtime type of RoomRunner. (The trick at the root of the Template
Method pattern.) After printing a message to the screen announcing the
RoomRunner’s readiness to start traversing the Maze, the current room is set to
the Maze’s RegenSpot and the method returns true to indicate that the
IEnumerator is at the beginning of the data structure.

Similarly, if the currentRoom is of type PowerUp, the maze running is, by our
definition, complete and MoveNext() returns false.

If, however, the currentRoom is neither null nor a PowerUp room, execution
goes to this.ConcreteMoveNext(). This is the template method. Just as
this.GetType() will return the exact runtime type, this.ConcreteMoveNext()
will execute the ConcreteMoveNext() method of the runtime type. For this to

Chapter 10: Collecting Your Objects 411

work, of course, RoomRunner.ConcreteMoveNext() must be declared as
virtual or, as in this case, abstract.

Maze.GetEnumerator() returned an object of type DepthFirst, which
implements RoomRunner’s template method ConcreteMoveNext():

//:c10:DepthFirst.cs
/* Compile with:
 csc /out:RoomRunner.exe Room.cs Corridor.cs Maze.cs
 RoomRunner.cs DepthFirst.cs
*/

using System;
using System.Collections;
namespace Labyrinth{
 class DepthFirst : RoomRunner {
 public DepthFirst(Maze m) : base(m){}

 ArrayList visitedCorridors = new ArrayList();
 Corridor lastCorridor = null;

 protected override bool ConcreteMoveNext(){
 foreach(Direction d in
 Enum.GetValues(typeof(Direction))){
 if (currentRoom[d] != null) {
 Corridor c = currentRoom[d];
 if (visitedCorridors.Contains(c)
 == false) {
 visitedCorridors.Add(c);
 lastCorridor = c;
 currentRoom =
 c.Traverse(currentRoom, d);
 return true;
 }
 }
 }
 //No unvisited corridors! Retreat!
 lastCorridor.Traverse(currentRoom);
 return true;
 }
 }
}///:~

412 Thinking in C# www.MindView.net

DepthFirst inherits from RoomBaseRunner, as its class declaration and constructor
show. This particular maze runner essentially goes down the first corridor it sees
that it hasn’t yet gone through. If there are none it hasn’t been down, it backtracks
to the previous room. Uh-oh – what if it backtracks into a room and that room
doesn’t have any unvisited corridors? Looks like a defect!

But on our maze, the DepthFirst works like a champ:

Figure 10-6: Custom enumerators allow complex data-structure traversal

Regen Spot

Room #2

Room #1

Room #4

Power Up!

Room #5

Room #4

RoomRunner in Regen Spot
Leaving Regen Spot by its north corridor
RoomRunner in Room #:2
Leaving Room #:2 by its north corridor
RoomRunner in Room #:1
Leaving Room #:1 by its east corridor
RoomRunner in Room #:4
Leaving Room #:4 by its west corridor
RoomRunner in Regen Spot
Leaving Regen Spot by its south corridor
RoomRunner in Room #:5
Leaving Room #:5 by its south corridor
RoomRunner in Power Up
Labyrinth.DepthFirst has found PowerUp!

Chapter 10: Collecting Your Objects 413

Sorting and searching Lists
Utility methods sort and search in Lists have the same names and signatures as
those for arrays of objects, but are instance methods of IList instead of Array.
Here’s an example:

//:c10:ListSortSearch.cs
// Sorting and searching ILists
using System;
using System.Collections;

public class ListSortSearch {
 private static void Fill(ArrayList list){
 for (int i = 0; i < 25; i++) {
 char c = (char) ('A' + i);
 list.Add(c);
 }
 }

 private static void Print(ArrayList list){
 foreach(Object o in list){
 Console.Write(o + ", ");
 }
 Console.WriteLine();
 }

 private static void Shuffle(ArrayList list){
 int len = list.Count;
 for (int i = 0; i < len; i++) {
 int k = rand.Next(len);
 Object temp = list[i];
 list[i] = list[k];
 list[k] = temp;
 }
 }

 static Random rand = new Random();

 public static void Main() {
 ArrayList list = new ArrayList();
 Fill(list);

414 Thinking in C# www.ThinkingIn.NET

 Print(list);
 Shuffle(list);
 Console.WriteLine("After shuffling: ");
 Print(list);
 list.Reverse();
 Console.WriteLine("Reversed: ");
 Print(list);
 list.Sort();
 Console.WriteLine("After sorting: ");
 Print(list);
 Object key = list[12];
 int index = list.BinarySearch(key);
 Console.WriteLine(
 "Location of {0} is {1}, list[{2}] = {3}",
 key, index, index, list[index]);
 }
} ///:~

The use of these methods is identical to the static ones in Array, but are instance
methods of ArrayList. This program also contains an implementation of Donald
Knuth’s shuffling algorithm to randomize the order of a List.

From collections to arrays
The ICollection interface specifies that all collections must be able to copy their
contents into an array. The destination array must be a one-dimensional array with
zero-based indexing. The copying procedure may insert objects into the array
starting at an arbitrary index, assuming of course that the index is zero or positive
and that the destination array is properly initialized.

Copying an ArrayList to an array is simple:

//:c10:ListToArray.cs
using System;
using System.Collections;

class ListToArray {
 public static void Main(){
 IList list = new ArrayList();
 Random r = new Random();
 int iToAdd = 10 + r.Next(10);
 for (int i = 0; i < iToAdd; i++) {
 list.Add(r.Next(100));

Chapter 10: Collecting Your Objects 415

 }
 int indexForCopyStart = r.Next(10);
 int[] array = new int[
 indexForCopyStart + list.Count];
 list.CopyTo(array, indexForCopyStart);
 for (int i = 0; i < array.Length; i++) {
 Console.WriteLine(
 "array[{0}] = {1}", i, array[i]);
 }
 }
}///:~

After initializing an ArrayList, we use a random number generator to choose to
add between 10 and 19 items. We loop, using list.Add() to add random numbers
between 0 and 99. Then, we choose a random number to indicate where in the
array we wish to begin copying. We then declare and initialize the array, which
must be sized to accommodate indexForCopyStart empty integers (since it’s an
array of ints, these will be initialized to 0) and list.Count integers from the
ArrayList. The CopyTo() method takes two parameters – the reference to the
destination array and the starting index for the copy. We then loop over the array,
outputting the contents.

Since integers are value types, modifying values in the destination array will not
be reflected in the ArrayList list. However, reference types would naturally copy
the reference, not the value, and with a reference type, modifying a value referenced
in the destination array will modify the value reference in the ArrayList. (To use
our metaphor from Chapter 2, you’ve created new TV remote controls, not new
TVs). A copy operation that just copies references is often referred to as a “shallow
copy.” A “deep copy,” in contrast, is one where the referenced objects and all their
associated objects are cloned (new TVs, new viewers, new couches, as it were).

Since IDictionary inherits from ICollection, implementing types must support
CopyTo(). The results are an array of DictionaryEntry items:

//:c10:DictionaryToArray.cs
using System;
using System.Collections;

class DictionaryToArray {
 public static void Main(){
 IDictionary dict = new Hashtable();
 Random r = new Random();
 int iKeys = 3 + r.Next(3);

416 Thinking in C# www.MindView.net

 for (int i = 0; i < iKeys; i++) {
 dict.Add(i, r.Next(100));
 }
 DictionaryEntry[] a =
 new DictionaryEntry[dict.Count];
 dict.CopyTo(a, 0);
 for (int i = 0; i < a.Length; i++) {
 DictionaryEntry de = a[i];
 Console.WriteLine(
 "a[{0}]: .Key = {1} .Value = {2}",
 i, de.Key, de.Value);
 }
 }
}///:~

A typical run looks like:

a[0]: .Key = 4 .Value = 11
a[1]: .Key = 3 .Value = 5
a[2]: .Key = 2 .Value = 6
a[3]: .Key = 1 .Value = 93
a[4]: .Key = 0 .Value = 4

You’ll note that the resulting array is not sorted on the value of the key, which
might be desirable, because IDictionary doesn’t require keys to be
IComparable. However, they often are and, if so, it would probably be nice if the
resulting array were ordered by key. This program demonstrates a technique to get
this result:

//:c10:DictionaryToSortedArray.cs
using System;
using System.Collections;

class DictionaryToArray {
 public static void Main(){
 IDictionary dict = new Hashtable();
 Random r = new Random();
 int iKeys = 3 + r.Next(3);
 for (int i = 0; i < iKeys; i++) {
 dict.Add(i, i);
 }

 //First, get array of keys

Chapter 10: Collecting Your Objects 417

 ICollection keyCol = dict.Keys;
 IComparable[] keyArray =
 new IComparable[keyCol.Count];
 //Would throw exception if keys not IComparable
 keyCol.CopyTo(keyArray, 0);

 //Second, get array of values
 ICollection valCol = dict.Values;
 Object[] valArray = new Object[valCol.Count];
 valCol.CopyTo(valArray, 0);

 Array.Sort(keyArray, valArray);

 //Instantiate destination array
 DictionaryEntry[] a =
 new DictionaryEntry[keyCol.Count];
 //Retrieve and set in key-sorted order
 for (int i = 0; i < a.Length; i++) {
 a[i] = new DictionaryEntry();
 a[i].Key = keyArray[i];
 a[i].Value = valArray[i];
 }

 //Output results
 for (int i = 0; i < a.Length; i++) {
 DictionaryEntry de = a[i];
 Console.WriteLine(
 "a[{0}]: .Key = {1} .Value = {2}",
 i, de.Key, de.Value);
 }
 }
}///:~

 The program starts off similarly to the previous examples, with a few key-value
pairs being inserted into a Hashtable. Instead of directly copying to the
destination array, though, we retrieve the ICollection of keys. ICollection
doesn’t have any sorting capabilities, so we use CopyTo() to move the keys into an
IComparable[] array. If any of our keys did not implement IComparable, this
would throw an InvalidCastException.

The next step is to copy the values from the Hashtable into another array, this
time of type object[]. We then use Array.Sort(Array, Array), which sorts both

418 Thinking in C# www.ThinkingIn.NET

its input arrays based on the comparisons in the first array, which in our case is the
key array. In general, one should avoid a situation where one changes the state of
one object (such as the array of values) based on logic internal to another object
(such as the sorting of the array of keys), a situation that’s called logical association
(see Chapter 9). We could avoid using Array.Sort(Array, Array) by sorting
keyArray and then using a foreach(object key in keyArray) loop to retrieve
the values from the Hashtable, but in this case that’s closing the barn door after the
horses have fled – the .NET Framework does not have an IDictionary which
maintains its objects in key order, which would be the best solution for the general
desire to move between an IDictionary and a sorted array.

In keeping with its singular nature, NameValueCollection.CopyTo() does not
act like Hashtable.CopyTo(). Where Hashtable.CopyTo() creates an array of
DictionaryEntry objects that contain both the key and value,
NameValueCollection’s CopyTo() method creates an array of strings which
represent the values in a comma-separated format, with no reference to the keys.
It’s difficult to imagine the utility of this format.

This example builds a more reasonable array from a NameValueCollection:

//:c10:NValColToArray.cs
using System;
using System.Collections;
using System.Collections.Specialized;

class NameValueCollectionEntry : IComparable {
 string key;
 public string Key{
 get { return key;}
 }

 string[] values;
 public string[] Values{
 get { return values;}
 }

 public NameValueCollectionEntry(
 string key, string[] values){
 this.key = key;
 this.values = values;
 }

Chapter 10: Collecting Your Objects 419

 public int CompareTo(Object o){
 if (o is NameValueCollectionEntry) {
 NameValueCollectionEntry that =
 (NameValueCollectionEntry) o;
 return this.Key.CompareTo(that.Key);
 }
 throw new ArgumentException();
 }

 public static NameValueCollectionEntry[]
 FromNameValueCollection(NameValueCollection src){
 string[] keys = src.AllKeys;
 NameValueCollectionEntry[] results =
 new NameValueCollectionEntry[keys.Length];
 for (int i = 0; i < keys.Length; i++) {
 string key = keys[i];
 string[] vals = src.GetValues(key);
 NameValueCollectionEntry entry =
 new NameValueCollectionEntry(key, vals);
 results[i] = entry;
 }
 return results;
 }
}

class NValColToArray {
 public static void Main(){
 NameValueCollection dict =
 new NameValueCollection();
 Random r = new Random();
 int iKeys = 3 + r.Next(3);
 for (int i = 0; i < iKeys; i++) {
 int iValsToAdd = 5 + r.Next(5);
 for (int j = 0; j < iValsToAdd; j++) {
 dict.Add(i.ToString(),
 r.Next(100).ToString());
 }
 }

 NameValueCollectionEntry[] a =
 NameValueCollectionEntry.

420 Thinking in C# www.MindView.net

 FromNameValueCollection(dict);

 Array.Sort(a);
 for (int i = 0; i < a.Length; i++) {
 Console.WriteLine(
 "a[{0}].Key = {1}", i, a[i].Key);

 foreach(string v in a[i].Values){
 Console.WriteLine(
 "\t Value: " + v);
 }
 }
 }
}///:~

We define a new type, NameValueCollectionEntry, which corresponds to the
DictionaryEntry of Hashtable. Like that type, our new type has a Key and a
Value property, but these are of type string and string[] respectively. Because
we know that the Key is always going to be a string, we can declare
NameValueCollectionEntry to implement IComparable and implement that
simply by comparing Key properties (if the parameter to CompareTo() is not a
NameValueCollectionEntry, we throw an ArgumentException).

The static FromNameValueCollection() method is where we convert a
NameValueCollection into an array of NameValueCollectionEntrys. First,
we get a string[] of keys from the AllKeys property of the input parameter (if we
had used the Keys property, we would have received the same data, but in an
object array). The Length propery of the keys allows us to size the results array.
The GetValues() method of NameValueCollection returns a string array,
which along with the string key, is what we need to instantiate a single
NameValueCollectionEntry. This entry is added to the results which are
returned when the loop ends.

Class NValColToArray demonstrates the use of this new class we’ve written. A
NameValueCollection is created and each entry is filled with a random number
of strings. A NameValueCollectionEntry array called a is generated using the
static function just discussed. Since we implemented IComparable in
NameValueCollectionEntry, we can use Array.Sort() to sort the results by
the Key strings. For each NameValueCollectionEntry, we output the Key,
retrieve the string[] Values, and output them to the console. We could, of course,
sort the Values as well, if that was desired.

Chapter 10: Collecting Your Objects 421

Persistent data with ADO.NET
While collection classes and data structures remain important to in-memory
manipulation of data, offline storage is dominated by third-party vendors
supporting the relational model of data storage. Of course, Oracle’s eponymous
product dominates the high-end market, while Microsoft’s SQL Server and IBM’s
DB2 are able competitors for enterprise data. There are hundreds of databases
appropriate for smaller projects, the most well-distributed of which is Microsoft’s
Access.

Meanwhile, the success of the Web made many people comfortable with the
concept that “just” text-based streams marked with human-readable tags were
sufficiently powerful to create a lot of end-user value. Extensible Markup Language
(XML) has exploded in popularity in the new millennium and is rapidly becoming
the preferred in-memory representation of relational data. This will be discussed in
depth in Chapter 17, but some discussion of XML is relevant to any discussion of
Active Data Objects for .NET (ADO.NET).

Like graphics programming, the complete gamut of database programming details
cannot be adequately covered in less than an entire book. However, also like
graphics programming, most programmers do not need to know more than the
basics. In the case of database programming, 99% of the work boils down to being
able to Create, Read, Update, and Delete data – the functions known as “CRUD.”
This section tries to deliver the minimum amount of information you need to be
able to use ADO.NET in a professional setting.

Although CRUD may encapsulate many programmers intent for ADO.NET, there’s
another “D” that is fundamental to ADO.NET – “Disconnected.” Ironically, the
more the World Wide Web becomes truly ubiquitous, the more difficult it is to
create solutions based on continuous connections. The client software that is
running in a widely distributed application, i.e., an application that is running over
the Internet, simply cannot be counted on to go through an orderly, timely lifecycle
of “connect, gain exclusive access to data, conduct transactions, and disconnect.”
Similarly, although continuous network access may be the rule in corporate
settings, the coming years are going to see an explosion in applications for mobile
devices, such as handhelds and telephones, which have metered costs; economics
dictate that such applications cannot be constantly connected.

ADO.NET separates the tasks of actually accessing the data store from the tasks of
manipulating the resulting set of data. The former obviously require a connection
to the store while the latter do not. This separation of concerns helps when
converting data from one data store to another (such as converting data between

422 Thinking in C# www.ThinkingIn.NET

relational table data and XML) as well as making it much easier to program widely-
distributed database applications. However, this model increases the possibility
that two users will make incompatible modifications to related data – they’ll both
reserve the last seat on the flight, one will mark an issue as resolved while the other
will expand the scope of the investigation, etc. So even a minimal introduction to
ADO.NET requires some discussion of the issues of concurrency violations.

Getting a handle on data with DataSet
The DataSet class is the root of a relational view of data. A DataSet has
DataTables, which have DataColumns that define the types in DataRows. The
relational database model was introduced by Edgar F. Codd in the early 1970s. The
concept of tables storing data in rows in strongly-typed columns may seem to be
the very definition of what a database is, but Codd’s formalization of these concepts
and others such such as normalization (a process by which redundant data is
eliminated and thereby ensuring the correctness and consistency of edits) was one
of the great landmarks in the history of computer science.

While normally one creates a DataSet based on existing data, it’s possible to create
one from scratch, as this example shows:

//:c10:BasicDataSetOperations.cs
using System;
using System.Data;

class BasicDataSetOperations {
 public static void Main(string[] args){
 DataSet ds = BuildDataSet();
 PrintDataSetCharacteristics(ds);
 }

 private static DataSet BuildDataSet() {
 DataSet ds = new DataSet("MockDataSet");

 DataTable auTable = new DataTable("Authors");
 ds.Tables.Add(auTable);

 DataColumn nameCol = new DataColumn("Name",
 typeof(string));
 auTable.Columns.Add(nameCol);

 DataRow larryRow = auTable.NewRow();

Chapter 10: Collecting Your Objects 423

 larryRow["Name"] = "Larry";
 auTable.Rows.Add(larryRow);
 DataRow bruceRow = auTable.NewRow();
 bruceRow["Name"] = "Bruce";
 auTable.Rows.Add(bruceRow);

 return ds;
 }

 private static void PrintDataSetCharacteristics(
 DataSet ds){
 Console.WriteLine(
 "DataSet \"{0}\" has {1} tables",
 ds.DataSetName, ds.Tables.Count);
 foreach(DataTable table in ds.Tables){
 Console.WriteLine(
 "Table \"{0}\" has {1} columns",
 table.TableName, table.Columns.Count);
 foreach(DataColumn col in table.Columns){
 Console.WriteLine(
 "Column \"{0}\" contains data of type {1}",
 col.ColumnName, col.DataType);
 }

 Console.WriteLine(
 "The table contains {0} rows",
 table.Rows.Count);
 foreach(DataRow r in table.Rows){
 Console.Write("Row Data: ");
 foreach(DataColumn col in table.Columns){
 string colName = col.ColumnName;
 Console.Write("[{0}] = {1}",
 colName, r[colName]);
 }
 Console.WriteLine();
 }
 }
 }
}///:~

The .NET classes related to DataSets are in the System.Data namespace, so
naturally we have to include a using statement at the beginning of the program.

424 Thinking in C# www.MindView.net

The Main() method is straightforward: it calls BuildDataSet() and passes the
object returned by that method to another static method called
PrintDataSetCharacteristics().

BuildDataSet() introduces several new classes. First comes a DataSet, using a
constructor that allows us to simultaneously name it “MockDataSet.” Then, we
declare and initialize a DataTable called “Author” which we reference with the
auTable variable. DataSet objects have a Tables property of type
DataTableCollection, which implements ICollection. While
DataTableCollection does not implement IList, it contains some similar
methods, including Add, which is used here to add the newly created auTable to
ds’s Tables.

DataColumns, such as the nameCol instantiated in the next line, are associated
with a particular DataType. DataTypes are not nearly as extensive or extensible
as normal types. Only the following can be specified as a DataType:

Boolean DateTime

Decimal Double

Int16 Int32

Int64 SByte

Single String

TimeSpan UInt16

UInt32 UInt64

In this case, we specify that the “Name” column should store strings. We add the
column to the Columns collection (a DataColumnCollection) of our auTable.

One cannot create rows of data using a standard constructor, as a row’s structure
must correspond to the Columns collection of a particular DataTable. Instead,
DataRows are constructed by using the NewRow() method of a particular
DataTable. Here, auTable.NewRow() returns a DataRow appropriate to our
“Author” table, with its single “Name” column. DataRow does not implement
ICollection, but does overload the indexing operator, so assigning a value to a
column is as simple as saying: larryRow["Name"] = "Larry".

The reference returned by NewRow() is not automatically inserted into the
DataTable which generates it; that is done by:

Chapter 10: Collecting Your Objects 425

 auTable.Rows.Add(larryRow);

After creating another row to contain Bruce’s name, the DataSet is returned to the
Main() method, which promptly passes it to PrintDataSetCharacteristics().
The output is:

DataSet "MockDataSet" has 1 tables
Table "Authors" has 1 columns
Column "Name" contains data of type System.String
The table contains 2 rows
Row Data: [Name] = Larry
Row Data: [Name] = Bruce

Connecting to a database
The task of actually moving data in and out of a store (either a local file or a
database server on the network) is the task of the IDbConnection interface.
Specifying which data (from all the tables in the underlying database) is the
responsibility of objects which implement IDbCommand. And bridging the gap
between these concerns and the concerns of the DataSet is the responsibility of the
IDbAdapter interface.

Thus, while DataSet and the classes discussed in the previous example
encapsulate the “what” of the relational data, the IDataAdapter, IDbCommand,
and IDbConnection encapsulate the “How”:

What How

DataColumn

DataRow

IDbCommand

IDbConnection

DataTable1..*1..*

0..*0..*

IDataAdapter *

11

DataSet

0..*0..*

*

Figure 10-7: ADO.NET separates the “What data” classes from the “How we get it”
classes

The .NET Framework currently ships with two managed providers that implement
IDataAdapter and its related classes. One is high-performance provider

426 Thinking in C# www.ThinkingIn.NET

optimized for Microsoft SQL Server; it is located in the System.Data.SqlClient
namespace. The other provider, in the System.Data.OleDb namespace, is based on
the broadly available Microsoft JET engine (which ships as part of Windows XP
and is downloadable from Microsoft’s Website). Additionally, you can download an
ODBC-suppporting managed provider from msdn.microsoft.com. One suspects
that high-performance managed providers for Oracle, DB2, and other high-end
databases will quietly become available as .NET begins to achieve significant
market share.

For the samples in this chapter, we’re going to use the OleDb classes to read and
write an Access database, but we’re going to upcast everything to the ADO.NET
interfaces so that the code is as general as possible.

The “Northwind” database is a sample database from Microsoft that you can
download from http://msdn.microsoft.com/downloads if you don’t already have it
on your hard-drive from installing Microsoft Access. The file is called “nwind.mdb”.
Unlike with enterprise databases, there is no need to run a database server to
connect to and manipulate an Access database. Once you have the file you can
begin manipulating it with .NET code.

This first example shows the basic steps of connecting to a database and filling a
dataset:

//:c10:DBConnect.cs
using System;
using System.Data;
using System.Data.OleDb;

class BasicDataSetOperations {
 public static void Main(string[] args){
 DataSet ds = Employees("Nwind.mdb");
 Console.WriteLine(
 "DS filled with {0} rows",
 ds.Tables[0].Rows.Count);
 }
 private static DataSet Employees(string fileName){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString=
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + fileName;
 DataSet ds = null;
 try {

Chapter 10: Collecting Your Objects 427

 cnctn.Open();

 string selStr = "SELECT * FROM EMPLOYEES";
 IDataAdapter adapter =
 new OleDbDataAdapter(selStr, cnctn);

 ds = new DataSet("Employees");
 adapter.Fill(ds);
 } finally {
 cnctn.Close();
 }

 return ds;
 }
}///:~

After specifying that we’ll be using the System.Data and System.Data.OleDb
namespaces, the Main() initializes a DataSet with the results of a call to the
static function Employees(). The number of rows in the first table of the result is
printed to the console.

The method Employees() takes a string as its parameter in order to clarify the
part of the connection string that is variable. In this case, you’ll obviously have to
make sure that the file “Nwind.mdb” is in the current directory or modify the call
appropriately.

The ConnectionString property is set to a bare minimum: the name of the
provider we intend to use and the data source. This is all we need to connect to the
Northwind database, but enterprise databases will often have significantly more
complex connection strings.

The call to cnctn.Open() starts the actual process of connecting to the database,
which in this case is a local file read but which would typically be over the network.
Because database connections are the prototypical “valuable non-memory
resource,” as discussed in Chapter 11, we put the code that interacts with the
database inside a try…finally block.

As we said, the IDataAdapter is the bridge between the “how” of connecting to a
database and the “what” of a particular relational view into that data. The bridge
going from the database to the DataSet is the Fill() method (while the bridge
from the DataSet to the database is the Update() method, which we’ll discuss in
our next example). How does the IDataAdapter know what data to put into the
DataSet? The answer is actually not defined at the level of IDataAdapter. The

428 Thinking in C# www.MindView.net

OleDbAdapter supports several possibilities, including automatically filling the
DataSet with all, or a specified subset, of records in a given table. The
DBConnect example shows the use of Structured Query Language (SQL), which is
probably the most general solution. In this case, the SQL query SELECT * FROM
EMPLOYEES retrieves all the columns and all the data in the EMPLOYEES table of
the database.

The OleDbDataAdapter has a constructor which accepts a string (which it
interprets as a SQL query) and an IDbConnection. This is the constructor we use
and upcast the result to IDataAdapter.

Now that we have our open connection to the database and an IDataAdapter, we
create a new DataSet with the name “Employees.” This empty DataSet is passed
in to the IDataAdapter.Fill() method, which executes the query via the
IDbConnection, adds to the passed-in DataSet the appropriate DataTable and
DataColumn objects that represent the structure of the response, and then
creates and adds to the DataSet the DataRow objects that represent the results.

The IDbConnection is Closed within a finally block, just in case an Exception
was thrown sometime during the database operation. Finally, the filled DataSet is
returned to Main(), which dutifully reports the number of employees in the
Northwind database.

Fast reading with IDataReader
The preferred method to get data is to use an IDataAdapter to specify a view into
the database and use IDataAdapter.Fill() to fill up a DataSet. An alternative, if
all you want is a read-only forward read, is to use an IDataReader. An
IDataReader is a direct, connected iterator of the underlying database; it’s likely
to be more efficient than filling a DataSet with an IDataAdapter, but the
efficiency requires you to forego the benefits of a disconnected architecture. This
example shows the use of an IDataReader on the Employees table of the
Northwind database:

//:c10:DataReader.cs
using System;
using System.Data;
using System.Data.OleDb;

class DataReader {
 public static void Main(){
 EnumerateEmployees("Nwind.mdb");
 }

Chapter 10: Collecting Your Objects 429

 private static void EnumerateEmployees(string fileName){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString=
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + fileName;
 IDataReader rdr = null;
 try {
 cnctn.Open();
 IDbCommand sel =
 new OleDbCommand("SELECT * FROM EMPLOYEES", cnctn);
 rdr = sel.ExecuteReader();
 while (rdr.Read()) {
 Console.WriteLine(rdr["FirstName"] + " "
 + rdr["LastName"]);
 }
 } finally {
 rdr.Close();
 cnctn.Close();
 }
 }
}///:~

The EnumerateEmployees() method starts like the code in the DBConnect
example, but we do not upcast the OleDbConnection to IDbConnection for
reasons we’ll discuss shortly. The connection to the database is identical, but we
declare an IDataReader rdr and initialize it to null before opening the database
connection; this is so that we can use the finally block to Close() the
IDataReader as well as the OleDbConnection.

After opening the connection to the database, we create an OleDbCommand
which we upcast to IDbCommand. In the case of the OleDbCommand
constructor we use, the parameters are a SQL statement and an
OleDbConnection (thus, our inability to upcast in the first line of the method).

The next line, rdr = sel.ExecuteReader(), executes the command and returns a
connected IDataReader. IDataReader.Read() reads the next line of the
query’s result, returning false when it runs out of rows. Once all the data is read,
the method enters a finally block, which severs the IDataReader’s connection
with rdr.Close() and then closes the database connection entirely with
cnctn.Close().

430 Thinking in C# www.ThinkingIn.NET

CRUD with ADO.NET
With DataSets and managed providers in hand, being able to create, read, update,
and delete records in ADO.NET is near at hand. Creating data was covered in the
BasicDataSetOperations example – use DataTable.NewRow() to generate
an appropriate DataRow, fill it with your data, and use DataTable.Rows.Add()
to insert it into the DataSet. Reading data is done in a flexible disconnected way
with an IDataAdapter or in a fast but connected manner with an IDataReader.

Update and delete
The world would be a much pleasanter place if data never needed to be changed or
erased2. These two operations, especially in a disconnected mode, raise the distinct
possibility that two processes will attempt to perform incompatible manipulation of
the same data. There are two options for a database model:

♦ Assume that any read that might end in an edit will end in an edit, and
therefore not allow anyone else to do a similar editable read. This model is
known as pessimistic concurrency.

♦ Assume that although people will edit and delete rows, make the
enforcement of consistency the responsibility of some software component
other than the database components. This is optimistic concurrency, the
model that ADO.NET uses.

When an IDbAdapter attempts to update a row that has been updated since the
row was read, the second update fails and the adapter throws a
DBConcurrencyException (note the capital ‘B’ that violates .NET’s the naming
convention).

As an example:

1. Ann and Ben both read the database of seats left on the 7 AM flight to
Honolulu. There are 7 seats left.

2. Ann and Ben both select the flight, and their client software shows 6 seats
left.

3. Ann submits the change to the database and it completes fine.

4. Charlie reads the database, sees 6 seats available on the flight.

2 Not only would it please the hard drive manufacturers, it would provide a way around the
second law of thermodynamics. See, for instance,
http://www.media.mit.edu/physics/publications/papers/96.isj.ent.pdf

Chapter 10: Collecting Your Objects 431

5. Ben submits the change to the database. Because Ann’s update happened
before Ben’s update, Ben receives a DBConcurrencyException. The
database does not accept Ben’s change.

6. Charlie selects a flight and submits the change. Because the row hasn’t
changed since Charlie read the data, Charlie’s request succeeds.

 It is impossible to give even general advice as to what to do after receiving a
DBConcurrencyException. Sometimes you’ll want to take the data and re-insert
it into the database as a new record, sometimes you’ll discard the changes, and
sometimes you’ll read the new data and reconcile it with your changes. There are
even times when such an exception indicates a deep logical flaw that calls for a
system shutdown.

This example performs all of the CRUD operations, rereading the database after the
update so that the subsequent deletion of the new record does not throw a
DBConcurrencyException:

//:c10:Crud.cs
using System;
using System.Data;
using System.Data.OleDb;

class Crud {
 public static void Main(string[] args){
 Crud myCrud = new Crud();
 myCrud.ReadEmployees("NWind.mdb");
 myCrud.Create();
 myCrud.Update();
 //Necessary to avoid DBConcurrencyException
 myCrud.Reread();
 myCrud.Delete();
 }

 OleDbDataAdapter adapter;
 DataSet emps;

 private void ReadEmployees(string pathToAccessDB){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString =
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + pathToAccessDB;

432 Thinking in C# www.MindView.net

 cnctn.Open();

 string selStr = "SELECT * FROM EMPLOYEES";
 adapter = new OleDbDataAdapter(selStr, cnctn);
 new OleDbCommandBuilder(adapter);

 emps = new DataSet("Employees");
 adapter.Fill(emps);
 }

 private void Create(){
 DataRow r = emps.Tables["Table"].NewRow();
 r["FirstName"] = "Bob";
 r["LastName"] = "Dobbs";
 emps.Tables["Table"].Rows.Add(r);
 adapter.Update(emps);
 }

 private void Update(){
 DataRow aRow = emps.Tables["Table"].Rows[0];
 Console.WriteLine("First Name: "
 + aRow["FirstName"]);
 string newName = null;
 if (aRow["FirstName"].Equals("Nancy")) {
 newName = "Adam";
 } else {
 newName = "Nancy";
 }
 aRow.BeginEdit();
 aRow["FirstName"] = newName;
 aRow.EndEdit();
 Console.WriteLine("First Name: "
 + aRow["FirstName"]);
 //Update only happens now
 int iChangedRows = adapter.Update(emps);
 Console.WriteLine("{0} rows updated",
 iChangedRows);
 }

 private void Reread(){
 adapter.Fill(emps);

Chapter 10: Collecting Your Objects 433

 }

 private void Delete(){
 //Seems to return 1 greater than actual count
 int iRow = emps.Tables["Table"].Rows.Count;
 DataRow lastRow =
 emps.Tables["Table"].Rows[iRow - 1];
 Console.WriteLine("Deleting: "
 + lastRow["FirstName"]);
 lastRow.Delete();
 int iChangedRows = adapter.Update(emps);
 Console.WriteLine("{0} rows updated",
 iChangedRows);
 }
}///:~

The Main() method outlines what we’re going to do: read the “Employees” table,
create a new record, update a record, reread the table (you can comment out the
call to Reread() if you want to see a DBConcurrencyException), and delete
the record we created.

The Crud class has instance variables for holding the OleDbDataAdapter and
DataSet that the various methods will use. ReadEmployees() opens the
database connection and creates the adapter just as we’ve done before.

The next line:

new OleDbCommandBuilder(adapter);

demonstrates a utility class that automatically generates and sets within the
OleDbDataAdapter the SQL statements that insert, update, and delete data in
the same table acted on by the select command. OleDbCommandBuilder is very
convenient for SQL data adapters that work on a single table (there’s a
corresponding SqlCommandBuilder for use with SQL Server). For more
complex adapters that involve multiple tables, you have to set the corresponding
InsertCommand, DeleteCommand, and UpdateCommand properties of the
OleDbDataAdapter. These commands are needed to commit to the database
changes made in the DataSet.

The first four lines of method Create() show operations on the DataSet emps
that we’ve seen before – the use of Table.NewRow(), and
DataRowCollection.Add() to manipulate the DataSet. The final line calls
IDataAdapter.Update(), which attempts to commit the changes in the DataSet

434 Thinking in C# www.ThinkingIn.NET

to the backing store (it is this method which requires the SQL commands generated
by the OleDbCommandBuilder).

The method Update() begins by reading the first row in the emps DataSet. The
call to DataRow.BeginEdit() puts the DataRow in a “Proposed” state. Changes
proposed in a DataRow can either be accepted by a call to DataRow.EndEdit()
or the AcceptChanges() method of either the DataRow, DataTable, or
DataSet. They can be cancelled by a call to DataRow.CancelEdit() or the
RejectChanges() methods of the classes.

After printing the value of the first row’s “FirstName” column, we put aRow in a
“Proposed” state and change the “FirstName” to “Fred.” We call CancelEdit()
and show on the console that “Fred” is not the value. If the first name is currently
“Nancy” we’re going to change it to “Adam” and vice versa. This time, after calling
BeginEdit() and making the change, we call EndEdit(). At this point, the data is
changed in the DataSet, but not yet in the database. The database commit is
performed in the next line, with another call to adapter.Update().

This call to Update() succeeds, as the rows operated on by the two calls to
Update() are different. If, however, we were to attempt to update either of these
two rows without rereading the data from the database, we would get the dread
DBConcurrencyException. Since deleting the row we added is exactly our
intent, Main() calls Reread(), which in turn calls adapter.Fill() to refill the
emps DataSet.

Finally, Main() calls Delete(). The number of rows is retrieved from the Rows
collection. But because the index into rows is 0-based, we need to subtract 1 from
the total count to get the index of the last row (e.g., the DataRow in a DataTable
with a Count of 1 would be accessed at Rows[0]). Once we have the last row in
the DataSet (which will be the “Bob Dobbs” record added by the Create()
method), a call to DataRow.Delete() removes it from the DataSet and
DataAdapter.Update() commits it to the database.

The object-relational impedance mismatch
If you ever find yourself unwelcome in a crowd of suspicious programmers, say “I
was wondering: what is your favorite technique for overcoming the object-
relational impedance mismatch?” This is like a secret handshake in programmer
circles: not only does it announce that you’re not just some LISP hacker fresh from
Kendall Square, it gives your inquisitors a chance to hold forth on A Matter of Great
Import.

Chapter 10: Collecting Your Objects 435

You can see the roots of the mismatch even in the basic examples we’ve shown here.
It’s taken us several pages just to show how to do the equivalent of new and
assignment to relational data! Although a table is something like a class, and a row
is something like an instance of the class, tables have no concept of binding data
and behavior into a coherent whole, nor does the standard relational model have
any concept of inheritance. Worse, it’s become apparent over the years that there’s
no single strategy for mapping between objects and tables that is appropriate for all
needs.

Thinking in Databases would be a very different book than Thinking in C#. The
object and relational models are very different, but contain just enough similarities
so that the pain hasn’t been enough to trigger a wholesale movement towards
object databases (which have been the Next Big Thing in Programming for more
than a decade).

High-performing, highly-reliable object databases are available today, but have no
mindshare in the enterprise market. What has gained mindshare is a hybrid model,
which combines the repetitive structure of tables and rows with a hierarchical
containment model that is closer to the object model. This hybrid model, embodied
in XML, does not directly support the more complicated concepts of relational joins
or object inheritance, but is a good waypoint on the road to object databases. We’ll
discuss XML in more detail in Chapter 17 and revisit ADO.NET in our discussion of
data-bound controls in Chapter 14.

Summary
To review the tools in the .NET Framework that collect objects:

An array associates numerical indices to objects. It holds objects of a known type so
that you don’t have to cast the result when you’re looking up an object. It can be
multidimensional in two ways – rectangular or jagged. However, its size cannot be
changed once you create it.

An IList holds single elements, an IDictionary holds key-value pairs, and a
NameObjectCollectionBase holds string-Collection pairs.

Like an array, an IList also associates numerical indices to objects—you can think
of arrays and ILists as ordered containers. An IDictionary overloads the bracket
operator of the array to make it easy to access values, but the underlying
implementation is not necessarily ordered.

Most collections automatically resize themselves as you add elements, but the
BitArray needs to be explicitly sized.

436 Thinking in C# www.MindView.net

ICollections hold only object references, so primitives are boxed and unboxed
when stored. With the exception of type-specific containers in
System.Collections.Specialized and those you roll yourself, you must always cast
the result when you pull an object reference out of a container. Type-specific
container classes will be supported natively by the .NET run-time sometime in the
future.

Data structures have inherent characteristics distinct from the data that is stored in
them. Sorting, searching, and traversal have traditionally been matters of great
day-to-day import. Advances in abstraction and computer power allow most
programmers to ignore most of these issues most of the time, but occasionally
produce the most challenging and rewarding opportunities in programming.

ADO.NET provides an abstraction of the relational database model. DataSets
represent relational data in memory, while IDataAdapters and related classes
move the data in and out of databases.

The collection classes are tools that you use on a day-to-day basis to make your
programs simpler, more powerful, and more effective. Thoroughly understanding
them and extending and combining them to rapidly solve solutions is one mark of
software professionalism.

Exercises
1. Create a new class called Gerbil with an int gerbilNumber that’s

initialized in the constructor. Give it a method called Hop() that prints
out its gerbilNumber and that it’s hopping. Create an ArrayList and
add a bunch of Gerbil objects to it. Now use the indexing operator [] to
move through the ArrayList and call Hop() for each Gerbil.

2. Modify the previous exercise so you use an IEnumerator to move
through the ArrayList while calling Hop().

3. Take the Gerbil class in and put it into a Hashtable instead, associating
the name of the Gerbil as a string (the key) for each Gerbil (the value)
you put in the table. Get an IEnumerator for the Hashtable.Keys()
and use it to move through the Hashtable, looking up the Gerbil for each
key and printing out the key and telling the Gerbil to Hop().

4. Create a container that encapsulates an array of string, and that only adds
strings and gets strings, so that there are no casting issues during use. If
the internal array isn’t big enough for the next add, your container should

Chapter 10: Collecting Your Objects 437

automatically resize it. In Main(), compare the performance of your
container with an ArrayList holding strings.

5. Create a class containing two string objects, and make it comparable so
that the comparison only evaluates the first string. Fill an array and an
ArrayList with objects of your class. Demonstrate that sorting works
properly.

6. Modify the previous exercise so that an alphabetic sort is used.

7. Create a custom indexer for maze running that implements breadth-first
traversal. For every non-visited tunnel out of a room, go to the next room.
If it’s the end, stop traversing. If it’s not the end, return to the original
room and try the next option. If none of the rooms out of the original room
are the final room, investigate the rooms that are two corridors distant
from the original room.

8. Modify the maze-running challenge so that each tunnel traversed has a
weight varying from 0 to 1. Use your depth- and bread-first traversals to
discover the cheapest route from the beginning to the end.

9. (Challenging) Write a maze-generating program that makes mazes
consisting of hundreds or thousands of rooms and tunnels. Find an
efficient way to determine the minimum traversal cost. If you can’t come
up with an efficient way to solve it, prove that there is no efficient way3.

10. Write a program to read and write to tables in the Northwind database
other than Employees.

11. Write a program to CRUD data stored in a SQL Server database.

12. (Challenging) Investigate applications of wavelets in domains such as
compression, database retrieval, and signal processing. Develop efficient
tools for investigating wavelet applications4.

3 If you complete this exercise, you will have proved whether or not P ≠ NP. In addition to
being a shoe-in for the Turing Award and probably the Fields Medal, you will be eligible for a
$1,000,000 prize from the Clay Foundation (http://www.claymath.org).

4 While not as challenging as proving P ≠ NP, there are loads of practical applications for
wavelets that are just begging to be written in fields as diverse as video processing,
bioinformatics, and Web retrieval.

439

11: Error Handling
with Exceptions

Every program is based on a vast array of expectations.
Some expectations are so basic that it doesn’t make sense
to worry about them – does the current computer have a
hard-drive, sufficient RAM to load the program, and so
forth. Other expectations are explicit in the code and
violations can be discovered at compile-time – this
method takes an integer as a parameter, not a string, that
method returns a Fish not a Fowl. The majority of
expectations, though, are implicit contracts between
methods and the client code that calls them. When the
reality at runtime is such that an expectation goes
unfulfilled, C# uses Exceptions to signal the disruption of
the program’s expected behavior.

When an object can recognize a problem but does not have the context to
intelligently deal with the problem, recovery may be possible. For instance, when
a network message is not acknowledged, perhaps a retry is in order, but that
decision shouldn’t be made at the lowest level (network games, for instance, often
have data of varying importance, some of which must be acknowledged and some
which would be worthless by the time a retry could be made). On the other hand,
a method may have a problem because something is awry with the way it is being
used – perhaps a passed-in parameter has an invalid value (a PrintCalendar
method is called for the month “Eleventember”) or perhaps the method can only
be meaningfully called when the object is in a different state (for instance, a
Cancel method is called when an Itinerary object is not in a “booked” state).

These misuse situations are tricky because there is no way in C# to specify a
method’s preconditions and postconditions as an explicit contract – a way in
source code to say “if you call me with x, y, and z satisfied, I will guarantee that
when I return condition a, b, and c will be satisfied (assuming of course that all

440 Thinking in C# www.MindView.net

the methods I call fulfill their contractual obligations with me).” For instance,
.NET’s Math class has a square root function that takes a double as its parameter.
Since .NET does not have a class to represent imaginary numbers, this function
can only return a meaningful answer if passed a positive value. If this method is
called with a negative value, is that an exceptional condition or a disappointing,
but predictable, situation? There’s no way to tell from the method’s signature:

double Math.Sqrt(double d);

Although preconditions and postconditions are not explicit in C# code, you
should always think in terms of contracts while programming and document pre-
and postconditions in your method’s param and returns XML documentation.
The .NET library writers followed this advice and the documentation for
Math.Sqrt() explain that it will return a NaN (Not A Number) value if passed a
negative parameter.

There is no hard-and-fast rule to determine what is an exceptional condition and
what is reasonably foreseeable. Returning a special “invalid value” such as does
Math.Sqrt() is debatable, especially if the precondition is not as obvious as
“square roots can only be taken on positive numbers.”

When an exceptional condition occurs such that a method cannot fulfill its
postconditions, there are only two valid things to do: attempt to change the
conditions that led to the problem and retry the method, or “organized panic” –
put objects into consistent states, close or release non-memory resources, and
move control to a much different context that can either perform a recovery or
log as much information as possible about the condition leading to the failure to
help in debugging efforts. Some people emphasize recovery far too early; until
late in the development of a high-availability system it’s better to have your
system break and trigger a defect-fixing coding session than to cleanup-and-
recover and allow the defect to continue.

Both of these valid choices (retrying or cleanup) usually cannot be fully done at
the point where the exceptional condition occurred. With a network error
sometimes just waiting a half-second or so and retrying may be appropriate, but
usually a retry requires changing options at a higher level of abstraction (for
instance, a file-writing related error might be retried after giving the user a
chance to choose a different location). Similarly, cleanup leading to either
recovery or an orderly shutdown may very well require behavior from all the
objects in your system, not just those objects referenced by the class experiencing
the problem.

Chapter 11: Error Handling with Exceptions 441

When an exceptional condition occurs, it is up to the troubled method to create
an object of a type derived from Exception. Such objects can be thrown so that
control moves, not to the next line of code or into a method call as is normally the
case, but rather propagates to blocks of code that are dedicated to the tasks of
either recovery or cleanup.

The orderly way in which Exceptions propagate from the point of trouble has
two benefits. First, it makes error-handling code hierarchical, like a chain of
command. Perhaps one level of code can go through a sequence of options and
retry, but if those fail, can give up and propagate the code to a higher level of
abstraction, which may perform a clean shutdown. Second, exceptions clean up
error handling code. Instead of checking for a particular rare failure and dealing
with it at multiple places in your program, you no longer need to check at the
point of the method call (since the exception will propagate right out of the
problem area to a block dedicated to catching it). And, you need to handle the
problem in only one place, the so-called exception handler. This saves you code,
and it separates the code that describes what you want to do from the code that is
executed when things go awry. In general, reading, writing, and debugging code
become much clearer with exceptions than with alternative ways of error
handling.

This chapter introduces you to the code you need to write to properly handle
exceptions, and the way you can generate your own exceptions if one of your
methods gets into trouble.

Basic exceptions
When you throw an exception, several things happen. First, the exception object
is created in the same way that any C# object is created: on the heap, with new.
Then the current path of execution (the one you couldn’t continue) is stopped and
the reference for the exception object is ejected from the current context. At this
point the exception handling mechanism takes over and begins to look for an
appropriate place to continue executing the program. This appropriate place is
the exception handler, whose job is to recover from the problem so the program
can either retry the task or cleanup and propagate either the original Exception
or, better, a higher-abstraction Exception.

As a simple example of throwing an exception, consider an object reference called
t that is passed in as a parameter to your method. Your design contract might
require as a precondition that t refer to a valid, initialized object. Since C# has no
syntax for enforcing preconditions, some other piece of code may pass your
method a null reference and compile with no problem. This is an easy

442 Thinking in C# www.ThinkingIn.NET

precondition violation to discover and there’s no special information about the
problem that you think would be helpful for its handlers. You can send
information about the error into a larger context by creating an object
representing the problem and its context and “throwing” it out of your current
context. This is called throwing an exception. Here’s what it looks like:

if(t == null)
 throw new ArgumentNullException();

This throws the exception, which allows you—in the current context—to abdicate
responsibility for thinking about the issue further. It’s just magically handled
somewhere else. Precisely where will be shown shortly.

Exception arguments
Like any object in C#, you always create exceptions on the heap using new,
which allocates storage and calls a constructor. There are four constructors in all
standard exceptions:

♦ The default, no argument constructor

♦ A constructor that takes a string as a message:
throw new ArgumentNullException("t");

♦ A constructor that takes a message and an inner, lower-level Exception:
throw new PreconditionViolationException("invalid t", new
ArgumentNullException("t"))

♦ And a constructor specifically designed for Remoting (.NET Remoting is
not covered in this book)

The keyword throw causes a number of relatively magical things to happen.
Typically, you’ll first use new to create an object that represents the error
condition. You give the resulting reference to throw. The object is, in effect,
“returned” from the method, even though that object type isn’t normally what the
method is designed to return. A simplistic way to think about exception handling
is as an alternate return mechanism, although you get into trouble if you take that
analogy too far. You can also exit from ordinary scopes by throwing an exception.
But a value is returned, and the method or scope exits.

Any similarity to an ordinary return from a method ends here, because where you
return is someplace completely different from where you return for a normal
method call. (You end up in an appropriate exception handler that might be miles
away—many levels away on the call stack—from where the exception was
thrown.)

Chapter 11: Error Handling with Exceptions 443

Typically, you’ll throw a different class of exception for each different type of
error. The information about the error is represented both inside the exception
object and implicitly in the type of exception object chosen, so someone in the
bigger context can figure out what to do with your exception. (Often, it’s fine that
the only information is the type of exception object, and nothing meaningful is
stored within the exception object.)

Catching an exception
If a method throws an exception, it must assume that exception is “caught” and
dealt with. One of the advantages of C#’s exception handling is that it allows you
to concentrate on the problem you’re trying to solve in one place, and then deal
with the errors from that code in another place.

To see how an exception is caught, you must first understand the concept of a
guarded region, which is a section of code that might produce exceptions, and
which is followed by the code to handle those exceptions.

The try block
If you’re inside a method and you throw an exception (or another method you call
within this method throws an exception), that method will exit in the process of
throwing. If you don’t want a throw to exit the method, you can set up a special
block within that method to capture the exception. This is called the try block
because you “try” your various method calls there. The try block is an ordinary
scope, preceded by the keyword try:

try {
 // Code that might generate exceptions
}

If you were checking for errors carefully in a programming language that didn’t
support exception handling, you’d have to surround every method call with setup
and error testing code, even if you call the same method several times. With
exception handling, you put everything in a try block and capture all the
exceptions in one place. This means your code is a lot easier to write and easier to
read because the goal of the code is not confused with the error checking.

Exception handlers
Of course, the thrown exception must end up someplace. This “place” is the
exception handler, and there’s one for every exception type you want to catch.
Exception handlers immediately follow the try block and are denoted by the
keyword catch:

444 Thinking in C# www.MindView.net

try {
 // Code that might generate exceptions
} catch(Type1 id1) {
 // Handle exceptions of Type1
} catch(Type2 id2) {
 // Handle exceptions of Type2
} catch(Type3) {
 // Handle exceptions of Type3 without needing ref
}

// etc...

Each catch clause (exception handler) is like a little method that takes one and
only one argument of a particular type. The identifier (id1, id2, and so on) can be
used inside the handler, just like a method argument. Sometimes you never use
the identifier because the type of the Exception gives you enough information to
diagnose and respond to the exceptional condition. In that situation, you can
leave the identifier out altogether as is done with the Type3 catch block above.

The handlers must appear directly after the try block. If an exception is thrown,
the exception handling mechanism goes hunting for the first handler with an
argument that matches the type of the exception. Then it enters that catch clause,
and the exception is considered handled. The search for handlers stops once the
catch clause is finished. Only the matching catch clause executes; it’s not like a
switch statement in which you need a break after each case.

Note that, within the try block, a number of different method calls might generate
the same exception, but you need only one handler.

Supertype matching
Naturally, the catch block will match a type descended from the specified type
(since inheritance is an is-a type relationship). So the line

}catch(Exception ex){ … }

will match any type of exception. A not uncommon mistake in Java code is an
overly-general catch block above a more specific catch block, but the C# compiler
detects such mistakes and will not allow this mistake.

Exceptions have a helplink
The Exception class contains a string property called HelpLink. This property
is intended to hold a URI and the .NET Framework SDK documentation suggests
that you might refer to a helpfile explaining the error. On the other hand, as we’ll

Chapter 11: Error Handling with Exceptions 445

discuss in Chapter 18, a URI is all you need to call a Web Service. One can
imagine using Exception.HelpLink and a little ingenuity to develop an error-
reporting system along the lines of Windows XP’s that packages the context of an
exception, asks the user for permission, and sends it off to a centralized server. At
the server, you could parse the Exception.StackTrace to determine if the
exception was known or a mystery and then take appropriate steps such as
sending emails or pages.

Creating your own exceptions
You’re not stuck using the existing C# exceptions. This is important because
you’ll often need to create your own exceptions to denote a special error that your
library is capable of creating, but which was not foreseen when the C# exception
hierarchy was created. C#’s predefined exceptions derive from SystemException,
while your exceptions are expected to derive from ApplicationException.

To create your own exception class, you’re forced to inherit from an existing type
of exception, preferably one that is close in meaning to your new exception (this
is often not possible, however). The most trivial way to create a new type of
exception is just to let the compiler create the default constructor for you, so it
requires almost no code at all:

//:c11:SimpleExceptionDemo.cs
// Inheriting your own exceptions.
using System;

class SimpleException : ApplicationException {
}

public class SimpleExceptionDemo {
 public void F() {
 Console.WriteLine(
 "Throwing SimpleException from F()");
 throw new SimpleException ();
 }
 public static void Main() {
 SimpleExceptionDemo sed =
 new SimpleExceptionDemo();
 try {
 sed.F();
 } catch (SimpleException) {
 Console.Error.WriteLine("Caught it!");

446 Thinking in C# www.ThinkingIn.NET

 }
 }
} ///:~

When the compiler creates the default constructor, it automatically (and
invisibly) calls the base-class default constructor. As you’ll see, the most
important thing about an exception is the class name, so most of the time an
exception like the one shown above is satisfactory.

Here, the result is printed to the console standard error stream by writing to
System.Console.Error. This stream can be redirected to any other
TextWriter by calling System.Console.SetError() (note that this is
“asymmetric” – the Error property doesn’t support assignment, but there’s a
SetError(). Why would this be?).

Creating an exception class that overrides the standard constructors is also quite
simple:

//:c11:FullConstructors.cs
using System;

class MyException : Exception {
 public MyException() : base() {}
 public MyException(string msg) : base(msg) {}
 public MyException(string msg, Exception inner) :
 base(msg, inner){}
}

public class FullConstructors {
 public static void F() {
 Console.WriteLine(
 "Throwing MyException from F()");
 throw new MyException();
 }
 public static void G() {
 Console.WriteLine(
 "Throwing MyException from G()");
 throw new MyException("Originated in G()");
 }

 public static void H(){
 try {
 I();

Chapter 11: Error Handling with Exceptions 447

 } catch (DivideByZeroException e) {
 Console.WriteLine(
 "Increasing abstraction level");
 throw new MyException("Originated in H()", e);
 }
 }

 public static void I(){
 Console.WriteLine("This'll cause trouble");
 int y = 0;
 int x = 1 / y;
 }

 public static void Main() {
 try {
 F();
 } catch (MyException e) {
 Console.Error.WriteLine(e.StackTrace);
 }
 try {
 G();
 } catch (MyException e) {
 Console.Error.WriteLine(e.Message);
 }
 try {
 H();
 } catch (MyException e) {
 Console.Error.WriteLine(e.Message);
 Console.Error.WriteLine("Inner exception: "
 + e.InnerException);
 Console.Error.WriteLine("Source: " + e.Source);
 Console.Error.WriteLine("TargetSite: "
 + e.TargetSite);
 }
 }
} ///:~

The code added to MyException is small—the addition of three constructors
that define the way MyException is created. The base-class constructor is
explicitly invoked by using the : base keyword.

The output of the program is:

448 Thinking in C# www.MindView.net

Throwing MyException from F()
 at FullConstructors.F()
 at FullConstructors.Main()
Throwing MyException from G()
Originated in G()
This'll cause trouble
Increasing abstraction level
Originated in H()
Inner exception: System.DivideByZeroException: Attempted to
divide by zero.
 at FullConstructors.I()
 at FullConstructors.H()
Source: FullConstructors
TargetSite: Void H()

You can see the absence of the detail message in the MyException thrown from
F(). The block that catches the exception thrown from F() shows the stack trace
all the way to the origin of the exception. This is probably the most helpful
property in Exception and is a great aid to debugging.

 When H() executes, it calls I(), which attempts an illegal arithmetic operation.
The attempt to divide by zero throws a DivideByZeroException
(demonstrating the truth of the previous statement about the type name being
the most important thing). H() catches the DivideByZeroException, but
increases the abstraction level by wrapping it in a MyException. Then, when
the MyException is caught in Main(), we can see the inner exception and its
origin in I().

The Source property contains the name of the assembly that threw the
exception, while the TargetSite property returns a handle to the method that
threw the exception. TargetSite is appropriate for sophisticated reflection-based
exception diagnostics and handling.

The process of creating your own exceptions can be taken further. You can add
extra constructors and members:

//:c11:ExtraFeatures.cs
// Further embellishment of exception classes.
using System;

class MyException2 : Exception {
 int errorCode;
 public int ErrorCode{

Chapter 11: Error Handling with Exceptions 449

 get { return errorCode;}
 }

 public MyException2() : base(){}

 public MyException2(string msg) : base(msg) {}

 public MyException2(string msg, int errorCode) :
 base(msg) {
 this.errorCode = errorCode;
 }
}

public class ExtraFeatures {
 public static void F() {
 Console.WriteLine(
 "Throwing MyException2 from F()");
 throw new MyException2();
 }
 public static void G() {
 Console.WriteLine(
 "Throwing MyException2 from G()");
 throw new MyException2("Originated in G()");
 }
 public static void H() {
 Console.WriteLine(
 "Throwing MyException2 from H()");
 throw new MyException2(
 "Originated in H()", 47);
 }
 public static void Main(String[] args) {
 try {
 F();
 } catch (MyException2 e) {
 Console.Error.WriteLine(e.StackTrace);
 }
 try {
 G();
 } catch (MyException2 e) {
 Console.Error.WriteLine(e.StackTrace);
 }

450 Thinking in C# www.ThinkingIn.NET

 try {
 H();
 } catch (MyException2 e) {
 Console.Error.WriteLine(e.StackTrace);
 Console.Error.WriteLine("e.ErrorCode = "
 + e.ErrorCode);
 }
 }
} ///:~

A property ErrorCode has been added, along with an additional constructor
that sets it. The output is:

Throwing MyException2 from F()
 at ExtraFeatures.F() in
D:\tic\exceptions\ExtraFeatures.cs:line 23
 at ExtraFeatures.Main(String[] args) in C:\Documents and
Settings\larry\My Documents\ExtraFeatures.cs:line 38
Throwing MyException2 from G()
 at ExtraFeatures.G() in
D:\tic\exceptions\ExtraFeatures.cs:line 28
 at ExtraFeatures.Main(String[] args) in
D:\tic\exceptions\ExtraFeatures.cs:line 43
Throwing MyException2 from H()
 at ExtraFeatures.H() in
D:\tic\exceptions\ExtraFeatures.cs:line 33
 at ExtraFeatures.Main(String[] args) in C:\Documents and
Settings\larry\My Documents\ExtraFeatures.cs:line 48
e.ErrorCode = 47

Since an exception is just another kind of object, you can continue this process of
embellishing the power of your exception classes. An error code, as illustrated
here, is probably not very useful, since the type of the Exception gives you a
good idea of the “what” of the problem. More interesting would be to embed a
clue as to the “how” of retrying or cleanup – some kind of object that
encapsulated the context of the broken contract. Keep in mind, however, that the
best design is the one that throws exceptions rarely and that the best programmer
is the one whose work delivers the most benefit to the customer, not the one who
comes up with the cleverest solution to what to do when things go wrong!

Chapter 11: Error Handling with Exceptions 451

C#’s lack of checked exceptions
Some languages, notably Java, require a method to list recoverable exceptions it
may throw. Thus, in Java, reading data from a stream is done with a method that
is declared as int read() throws IOException while the equivalent
method in C# is simply int read(). This does not mean that C# somehow
avoids the various unforeseeable circumstances that can ruin a read, nor even
that they are necessarily less likely to occur in C#. If you look at the
documentation for System.IO.Stream.Read() you’ll see that it can throw,
yes, an IOException.

The effect of including a list of exceptions in a method’s declaration is that at
compile-time, if the method is used, the compiler can assure that the Exception
is either handled or passed on. Thus, in languages like Java, the exception is
explicitly part of the method’s signature – “Pass me parameters of type such and
so and I’ll return a value of a certain type. However, if things go awry, I may also
throw these particular types of Exception.” Just as the compiler can enforce
that a method that takes an int and returns a string is not passed a double or
used to assign to a float so too does the compiler enforce the exception
specification.

One big problem with checked exceptions is that it locks an implementer into the
exception specification of the base class method. In Java, if you declare a class
and method:

interface Movie{
 void Enjoy() throws PeopleTalkingException{…}
}

implementations of Movie.Enjoy() may throw no exceptions, but the only
checked exceptions they may throw are of type PeopleTalkingException. The
good side of this is that any code that works with the Movie interface and that
catches PeopleTalkingExceptions is guaranteed to continue to work, no
matter how the Movie interface is implemented. But the down side is that
sometimes the assumption about what constitutes a valid exception is wrong:
Let’s say that you want to implement a HomeMovie where people can talk all
they want, but when the phone rings it is an exceptional circumstance. In Java,
you are forced either to rewrite the base interface’s exception specification,
inherit PhoneRingingException from PeopleTalkingException, or forego
the supposed benefits of checked exceptions.

Checked exceptions such as in Java are not intended to deal with precondition
violations, which are by far the most common cause of exceptional conditions. A

452 Thinking in C# www.MindView.net

precondition violation (calling a method with an improper parameter, calling a
state-specific method on an object that’s not in the required state) is, by
definition, the result of a programming error. Retries are, at best, useless in such
a situation (at worst, the retry will work and thereby allow the programming
error to go unfixed!). So Java has another type of exception that is unchecked.

In practice what happens is that while programmers are generally accepting of
strong type-checking when it comes to parameters and return values, the value of
strongly typed exceptions is not nearly as evident in real-world practice. There
are too many low-level things that can go wrong (failures of files and networks
and RAM and so forth) and many programmers do not see the benefit of creating
an abstraction hierarchy as they deal with all failures in a generic manner. And
the different intent of checked and unchecked exceptions is confusing to many
developers.

And thus one sees a great deal of Java code in two equally bad forms:
meaningless propagation of low-abstraction exceptions (Web services that are
declared as throwing IOExceptions) and “make it compile” hacks where methods
are declared as “throws Exception” (in other words, saying “I can throw anything
I darn well please.”). Worse, though, it’s not uncommon to see the very worst
possible “solution,” which is to catch and ignore the exception, all for the sake of
getting a clean compile.

Theoretically, if you’re going to have a strongly typed language, you can make an
argument for exceptions being part of the method signature. Pragmatically,
though, the prevalence of bad exception-handling code in Java argues for C#’s
approach, which is essentially that the burden is on the programmer to know to
place error-handling code in the appropriate places.

Catching any exception
It is possible to create a handler that catches any type of exception. You do this by
catching the base-class exception type Exception:

catch(Exception e) {
 Console.Error.WriteLine("Caught an exception");
}

This will catch any exception, so if you use it you’ll want to put it at the end of
your list of handlers to avoid preempting any exception handlers that might
otherwise follow it.

Since the Exception class is the base of all the exception classes, you don’t get
much specific information about the specific problem. You do, however, get some

Chapter 11: Error Handling with Exceptions 453

methods from object (everybody’s base type). The one that might come in handy
for exceptions is GetType(), which returns an object representing the class of
this. You can in turn read the Name property of this Type object. You can also
do more sophisticated things with Type objects that aren’t necessary in exception
handling. Type objects will be studied later in this book.

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just caught, particularly
when you use catch(Exception) to catch any exception. Since you already have
the reference to the current exception, you can simply rethrow that reference by
using throw again:

catch(Exception e) {
 Console.Error.WriteLine("An exception was thrown");
 throw;
}

Note that unlike the first time an exception is thrown, a rethrow does not require
an explicit reference to an exception; rather, the rethrow will use the exception
that was passed in to the exception block. Rethrowing an exception causes the
exception to go to the exception handlers in the next-higher context. Any further
catch clauses for the same try block are still ignored. In addition, everything
about the exception object is preserved, so the handler at the higher context that
catches the specific exception type can extract all the information from that
object.

Elevating the abstraction level
Usually when catching exceptions and then propagating them outward, you
should elevate the abstraction level of the caught Exception. For instance, at the
business-logic level, all you may care about is that “the charge didn’t go through.”
You’ll certainly want to preserve the information of the less-abstract Exception
for debugging purposes, but for logical purposes, you want to deal with all
problems equally.

//:c11:Rethrow.cs
using System;

class TransactionFailureException :
 ApplicationException {
 public TransactionFailureException(Exception e) :
 base("Logical failure caused by low-level "
 + "exception", e){

454 Thinking in C# www.ThinkingIn.NET

 }
}

class Transaction {
 Random r = new Random();
 public void Process(){
 try {
 if (r.NextDouble() > 0.3) {
 throw new ArithmeticException();
 } else {
 if (r.NextDouble() > 0.5) {
 throw new FormatException();
 }
 }
 } catch (Exception e) {
 TransactionFailureException tfe =
 new TransactionFailureException(e);
 throw tfe;
 }
 }
}

class BusinessLogic {
 Transaction myTransaction = new Transaction();

 public void DoCharge(){
 try {
 myTransaction.Process();
 Console.WriteLine("Transaction ok");
 } catch (TransactionFailureException tfe) {
 Console.WriteLine(tfe.Message);
 Console.Error.WriteLine(tfe.InnerException);
 }
 }

 public static void Main(){
 BusinessLogic bl = new BusinessLogic();
 for (int i = 0; i < 10; i++) {
 bl.DoCharge();
 }

Chapter 11: Error Handling with Exceptions 455

 }
} ///:~

In this example, the class Transaction has an exception class that is at its same
level of abstraction in TransactionFailureException. The
try…catch(Exception e) construct in Transaction.Process() makes for a
nice and explicit contract: “I try to return void, but if anything goes awry in my
processing, I may throw a TransactionFailedException.” In order to generate
some exceptions, we use a random number generator to throw different types of
low-level exceptions in Transaction.Process().

All exceptions are caught in Transaction.Process()’s catch block, where they
are placed “inside” a new TransactionFailureException using that type’s
overridden constructor that takes an exception and creates a generic “Logical
failure caused by low-level exception” message. The code then throws the newly
created TransactionFailureException, which is in turn caught by
BusinessLogic.DoCharge()’s catch(TransactionFailureException tfe)
block. The higher-abstraction exception’s message is printed to the console, while
the lower-abstraction exception is sent to the Error stream (which is also the
console, but the point is that there is a separation between the two levels of
abstraction. In practice, the higher-abstraction exception would be used for
business logic choices and the lower-abstraction exception for debugging).

Standard C# exceptions
The C# class Exception describes anything that can be thrown as an exception.
There are two general types of Exception objects (“types of” = “inherited from”).
SystemException represents exceptions in the System namespace and its
descendants (in other words, .NET’s standard exceptions). Your exceptions by
convention should extend from ApplicationException.

If you browse the .NET documentation, you’ll see that each namespace has a
small handful of exceptions that are at a level of abstraction appropriate to the
namespace. For instance, System.IO has an
InternalBufferOverflowException, which is pretty darn low-level, while
System.Web.Services.Protocols has SoapException, which is pretty darn high-
level. It’s worth browsing through these exceptions once to get a feel for the
various exceptions, but you’ll soon see that there isn’t anything special between
one exception and the next except for the name. The basic idea is that the name
of the exception represents the problem that occurred, and the exception name is
intended to be relatively self-explanatory.

456 Thinking in C# www.MindView.net

Performing cleanup
with finally
There’s often some piece of code that you want to execute whether or not an
exception is thrown within a try block. This usually pertains to some operation
other than memory recovery (since that’s taken care of by the garbage collector).
To achieve this effect, you use a finally clause at the end of all the exception
handlers. The full picture of an exception handling section is thus:

try {
 // The guarded region: Dangerous activities
 // that might throw A, B, or C
} catch(A a1) {
 // Handler for situation A
} catch(B b1) {
 // Handler for situation B
} catch(C c1) {
 // Handler for situation C
} finally {
 // Activities that happen every time
}

In finally blocks, you can use control flow statements break, continue, or
goto only for loops that are entirely inside the finally block; you cannot perform
a jump out of the finally block. Similarly, you can not use return in a finally
block. Violating these rules will give a compiler error.

To demonstrate that the finally clause always runs, try this program:

//:c11:AlwaysFinally.cs
// The finally clause is always executed.
using System;

class ThreeException : ApplicationException { }

public class FinallyWorks {
 static int count = 0;
 public static void Main() {
 while (true) {
 try {
 if (count++ < 3) {
 throw new ThreeException();

Chapter 11: Error Handling with Exceptions 457

 }
 Console.WriteLine("No exception");
 } catch (ThreeException) {
 Console.WriteLine("ThreeException");
 } finally {
 Console.Error.WriteLine("In finally clause");
 //! if(count == 3) break; <- Compiler error
 }
 if (count > 3)
 break;
 }
 }
} ///:~

This program also gives a hint for how you can deal with the fact that exceptions
in C# do not allow you to resume back to where the exception was thrown, as
discussed earlier. If you place your try block in a loop, you can establish a
condition that must be met before you continue the program. You can also add a
static counter or some other device to allow the loop to try several different
approaches before giving up. This way you can build a greater level of robustness
into your programs.

The output is:

ThreeException
In finally clause
ThreeException
In finally clause
ThreeException
In finally clause
No exception
In finally clause

Whether an exception is thrown or not, the finally clause is always executed.

What’s finally for?
Since C# has a garbage collector, releasing memory is virtually never a problem.
So why do you need finally?

finally is necessary when you need to set something other than memory back to
its original state. This is some kind of cleanup like an open file or network
connection, something you’ve drawn on the screen, or even a switch in the
outside world, as modeled in the following example:

458 Thinking in C# www.ThinkingIn.NET

//:c11:WhyFinally.cs
// Why use finally?
using System;

class Switch {
 bool state = false;
 public bool Read{
 get { return state;}
 set { state = value;}
 }

 public void On(){ state = true;}
 public void Off(){ state = false;}
}
class OnOffException1 : Exception {
}
class OnOffException2 : Exception {
}

public class OnOffSwitch {
 static Switch sw = new Switch();
 static void F() {}
 public static void Main() {
 try {
 sw.On();
 // Code that can throw exceptions...
 F();
 sw.Off();
 } catch (OnOffException1) {
 Console.WriteLine("OnOffException1");
 sw.Off();
 } catch (OnOffException2) {
 Console.WriteLine("OnOffException2");
 sw.Off();
 }
 }
} ///:~

The goal here is to make sure that the switch is off when Main() is completed, so
sw.Off() is placed at the end of the try block and at the end of each exception
handler. But it’s possible that an exception could be thrown that isn’t caught here,

Chapter 11: Error Handling with Exceptions 459

so sw.Off() would be missed. However, with finally you can place the cleanup
code from a try block in just one place:

//:c11:WhyFinally2.cs
// Why use finally?
using System;

class Switch {
 bool state = false;
 public bool Read{
 get { return state;}
 set { state = value;}
 }

 public void On(){ state = true;}
 public void Off(){ state = false;}
}
class OnOffException1 : Exception {
}
class OnOffException2 : Exception {
}

public class OnOffSwitch {
 static Switch sw = new Switch();
 static void F() {}
 public static void Main() {
 try {
 sw.On();
 // Code that can throw exceptions...
 F();
 } catch (OnOffException1) {
 Console.WriteLine("OnOffException1");
 } catch (OnOffException2) {
 Console.WriteLine("OnOffException2");
 } finally {
 sw.Off();
 }
 }
} ///:~

Here the sw.Off() has been moved to just one place, where it’s guaranteed to
run no matter what happens.

460 Thinking in C# www.MindView.net

Even in cases in which the exception is not caught in the current set of catch
clauses, finally will be executed before the exception handling mechanism
continues its search for a handler at the next higher level:

//:c11:NestedFinally.cs
// Finally is always executed.
using System;

class FourException : ApplicationException {}

public class AlwaysFinally {
 public static void Main() {
 Console.WriteLine(
 "Entering first try block");
 try {
 Console.WriteLine(
 "Entering second try block");
 try {
 throw new FourException();
 } finally {
 Console.WriteLine(
 "finally in 2nd try block");
 }
 } catch (FourException) {
 Console.WriteLine(
 "Caught FourException in 1st try block");
 } finally {
 Console.WriteLine(
 "finally in 1st try block");
 }
 }
} ///:~

The output for this program shows you what happens:

Entering first try block
Entering second try block
finally in 2nd try block
Caught FourException in 1st try block
finally in 1st try block

Chapter 11: Error Handling with Exceptions 461

Finally and using
Way back in Chapter #initialization and cleanup#, we discussed C#’s using
blocks. Now we can finally explain how it works. Consider this code, which uses
inheritance, upcasting, and a try…finally block to ensure that cleanup happens:

//:c11:UsingCleanup2.cs
using System;

class UsingCleanup : IDisposable {
 public static void Main(){
 try {
 IDisposable uc = new UsingCleanup();
 try {
 throw new NotImplementedException();
 } finally {
 uc.Dispose();
 }
 } catch (Exception) {
 Console.WriteLine("After disposal");
 }
 }

 UsingCleanup(){
 Console.WriteLine("Constructor called");
 }

 public void Dispose(){
 Console.WriteLine("Dispose called");
 }

 ~UsingCleanup(){
 Console.WriteLine("Destructor called");
 }
}///:~

You should not be surprised at the output:

Constructor called
Dispose called
After disposal
Destructor called

462 Thinking in C# www.ThinkingIn.NET

Changing the Main() method to:

 public static void Main(){
 try {
 UsingCleanup uc = new UsingCleanup();
 using(uc){
 throw new NotImplementedException();
 }
 }catch(Exception){
 Console.WriteLine("After disposal");
 }
 }

produces the exact same output. In fact, the using keyword is just “syntactic
sugar” that wraps an IDisposable subtype in a try…finally block! Behind the
scenes, the exact same code is generated, but the using block is terser.

Pitfall: the lost exception
In general, C#’s exception implementation is quite outstanding, but
unfortunately there’s a flaw. Although exceptions are an indication of a crisis in
your program and should never be ignored, it’s possible for an exception to
simply be lost. This happens with a particular configuration using a finally
clause:

//:c11:LostException.cs
// How an exception can be lost.
using System;

class VeryImportantException : Exception {
}

class HoHumException : Exception {
}

public class LostMessage {
 void F() {
 throw new VeryImportantException();
 }
 void Dispose() {
 throw new HoHumException();
 }
 public static void Main(){

Chapter 11: Error Handling with Exceptions 463

 try {
 LostMessage lm = new LostMessage();
 try {
 lm.F();
 } finally {
 lm.Dispose();
 }
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
} ///:~

The output is:

HoHumException: Exception of type HoHumException was
thrown.
 at LostMessage.Dispose()
 at LostMessage.Main()

You can see that there’s no evidence of the VeryImportantException, which is
simply replaced by the HoHumException in the finally clause. This is a rather
serious pitfall, since it means that an exception can be completely lost, and in a
far more subtle and difficult-to-detect fashion than the example above. In
contrast, C++ treats the situation in which a second exception is thrown before
the first one is handled as a dire programming error. To avoid this possibility, it is
a good idea to wrap all your work inside a finally block in a
try…catch(Exception):

//:c11:CarefulFinally.cs
using System;

class VeryImportantException : Exception {
}

class HoHumException : Exception {
}

public class LostMessage {
 void F() {
 throw new VeryImportantException();
 }
 void Dispose() {

464 Thinking in C# www.MindView.net

 throw new HoHumException();
 }
 public static void Main(){
 try {
 LostMessage lm = new LostMessage();
 try {
 lm.F();
 } finally {
 try {
 lm.Dispose();
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
} ///:~

Produces the desired output:

HoHumException: Exception of type HoHumException was
thrown.
 at LostMessage.Dispose()
 at LostMessage.Main()
VeryImportantException: Exception of type
VeryImportantException was thrown.
 at LostMessage.F()
 at LostMessage.Main()

Constructors
When writing code with exceptions, it’s particularly important that you always
ask, “If an exception occurs, will this be properly cleaned up?” Most of the time
you’re fairly safe, but in constructors there’s a problem. The constructor puts the
object into a safe starting state, but it might perform some operation—such as
opening a file—that doesn’t get cleaned up until the user is finished with the
object and calls a special cleanup method. If you throw an exception from inside a
constructor, these cleanup behaviors might not occur properly. This means that
you must be especially diligent while you write your constructor.

Chapter 11: Error Handling with Exceptions 465

Since you’ve just learned about finally, you might think that it is the correct
solution. But it’s not quite that simple, because finally performs the cleanup
code every time, even in the situations in which you don’t want the cleanup code
executed until the cleanup method runs. Thus, if you do perform cleanup in
finally, you must set some kind of flag when the constructor finishes normally so
that you don’t do anything in the finally block if the flag is set. Because this isn’t
particularly elegant (you are coupling your code from one place to another), it’s
best if you try to avoid performing this kind of cleanup in finally unless you are
forced to.

In the following example, a class called InputFile is created that opens a file and
allows you to read it one line (converted into a string) at a time. It uses the
classes FileReader and BufferedReader from the Java standard I/O library
that will be discussed in Chapter 12, but which are simple enough that you
probably won’t have any trouble understanding their basic use:

//:c11:ConstructorFinally.cs
// Paying attention to exceptions
// in constructors.
using System;
using System.IO;

namespace Cleanup{
 internal class InputFile : IDisposable {
 private StreamReader inStream;
 internal InputFile(string fName) {
 try {
 inStream =
 new StreamReader(
 new FileStream(
 fName, FileMode.Open));
 // Other code that might throw exceptions
 } catch (FileNotFoundException e) {
 Console.Error.WriteLine(
 "Could not open " + fName);
 // Wasn't open, so don't close it
 throw e;
 } catch (Exception e) {
 // All other exceptions must close it
 try {
 inStream.Close();
 } catch (IOException) {

466 Thinking in C# www.ThinkingIn.NET

 Console.Error.WriteLine(
 "in.Close() unsuccessful");
 }
 throw e; // Rethrow
 } finally {
 // Don't close it here!!!
 }
 }
 internal string ReadLine() {
 string s;
 try {
 s = inStream.ReadLine();
 } catch (IOException) {
 Console.Error.WriteLine(
 "ReadLine() unsuccessful");
 s = "failed";
 }
 return s;
 }
 public void Dispose() {
 try {
 inStream.Close();
 } catch (IOException) {
 Console.Error.WriteLine(
 "in.Close() unsuccessful");
 }
 }
 }

 public class Cleanup {
 public static void Main() {
 try {
 InputFile inFile =
 new InputFile("Cleanup.cs");
 using(inFile){
 String s;
 int i = 1;
 while ((s = inFile.ReadLine()) != null)
 Console.WriteLine(
 ""+ i++ + ": " + s);
 }

Chapter 11: Error Handling with Exceptions 467

 } catch (Exception e) {
 Console.Error.WriteLine("Caught in Main");
 Console.Error.WriteLine(e.StackTrace);
 }
 }
 }
} ///:~

The constructor for InputFile takes a string argument, which is the name of the
file you want to open. Inside a try block, it creates a FileStream using the
filename. A FileStream isn’t particularly useful for text until you turn around
and use it to create a StreamReader that can deal with more than one character
at a time.

If the FileStream constructor is unsuccessful, it throws a
FileNotFoundException, which must be caught separately because that’s the
one case in which you don’t want to close the file since it wasn’t successfully
opened. Any other catch clauses must close the file because it was opened by the
time those catch clauses are entered. (Of course, this is trickier if more than one
method can throw a FileNotFoundException. In that case, you might want to
break things into several try blocks.) The Close() method might throw an
exception so it is tried and caught even though it’s within the block of another
catch clause—it’s just another pair of curly braces to the C# compiler. After
performing local operations, the exception is rethrown, which is appropriate
because this constructor failed, and you wouldn’t want the calling method to
assume that the object had been properly created and was valid.

In this example, which doesn’t use the aforementioned flagging technique, the
finally clause is definitely not the place to Close() the file, since that would
close it every time the constructor completed. Since we want the file to be open
for the useful lifetime of the InputFile object this would not be appropriate.

The ReadLine() method returns a string containing the next line in the file. It
calls StreamReader.ReadLine(), which can throw an exception, but that
exception is caught so ReadLine() doesn’t throw any exceptions.

The Dispose() method must be called when the InputFile is finished with.
This will release the system resources (such as file handles) that are used by the
StreamReader and/or FileStream objects. You don’t want to do this until
you’re finished with the InputFile object, at the point you’re going to let it go.
You might think of putting such functionality into a destructor method, but as
mentioned in Chapter 5 you can’t always be sure when the destructor will be

468 Thinking in C# www.MindView.net

called (even if you can be sure that it will be called, all you know about when is
that it’s sure to be called before the process ends).

In the Cleanup class, an InputFile is created to open the same source file that
creates the program, the file is read in a line at a time, and line numbers are
added. The using keyword is used to ensure that InputFile.Dispose() is
called. All exceptions are caught generically in Main(), although you could
choose greater granularity.

One of the benefits of this example is to show you why exceptions are introduced
at this point in the book—you can’t do basic I/O without using exceptions.
Exceptions are so integral to programming in C# that you can accomplish only so
much without knowing how to work with them.

Exception matching
When an exception is thrown, the exception handling system looks through the
“nearest” handlers in the order they are written. When it finds a match, the
exception is considered handled, and no further searching occurs.

Matching an exception doesn’t require a perfect match between the exception and
its handler. A derived-class object will match a handler for the base class, as
shown in this example:

//:c11:Sneeze.cs
// Catching exception hierarchies.
using System;

class Annoyance : Exception {
}
class Sneeze : Annoyance {
}

public class Human {
 public static void Main() {
 try {
 throw new Sneeze();
 } catch (Sneeze) {
 Console.Error.WriteLine("Caught Sneeze");
 } catch (Annoyance) {
 Console.Error.WriteLine("Caught Annoyance");
 }
 }

Chapter 11: Error Handling with Exceptions 469

} ///:~

The Sneeze exception will be caught by the first catch clause that it matches—
which is the first one, of course. However, if you remove the first catch clause,
leaving only:

 try {
 throw new Sneeze();
 } catch(Annoyance) {
 Console.Error.WriteLine("Caught Annoyance");
 }

The code will still work because it’s catching the base class of Sneeze. Put
another way, catch(Annoyance e) will catch an Annoyance or any class
derived from it. This is useful because if you decide to add more derived
exceptions to a method, then the client programmer’s code will not need
changing as long as the client catches the base class exceptions.

If you try to “mask” the derived-class exceptions by putting the base-class catch
clause first, like this:

 try {
 throw new Sneeze();
 } catch(Annoyance a) {
 Console.Error.WriteLine("Caught Annoyance");
 } catch(Sneeze s) {
 Console.Error.WriteLine("Caught Sneeze");
 }

the compiler will give you an error message, since it sees that the Sneeze catch-
clause can never be reached.

Exception guidelines
Use exceptions to:

1. Fix the problem and call the method that caused the exception again.

2. Patch things up and continue without retrying the method.

3. Calculate some alternative result instead of what the method was
supposed to produce.

4. Do whatever you can in the current context and rethrow the same
exception to a higher context.

470 Thinking in C# www.ThinkingIn.NET

5. Do whatever you can in the current context and throw a different
exception to a higher context.

6. Terminate the program.

7. Simplify. (If your exception scheme makes things more complicated, then
it is painful and annoying to use.)

8. Make your library and program safer. (This is a short-term investment
for debugging, and a long-term investment for application robustness.)

Summary
Improved error recovery is one of the most powerful ways that you can increase
the robustness of your code. Error recovery is a fundamental concern for every
program you write, but it’s especially important in C#, where one of the primary
goals is to create program components for others to use. To create a robust
system, each component must be robust.

Exceptions are not terribly difficult to learn, and are one of those features that
provide immediate and significant benefits to your project.

Exercises
1. Create a class with a Main() that throws an object of class Exception

inside a try block. Give the constructor for Exception a string
argument. Catch the exception inside a catch clause and print the
string argument. Add a finally clause and print a message to prove you
were there.

2. Create your own exception class. Write a constructor for this class that
takes a string argument and stores it inside the object with a string
reference. Write a method that prints out the stored string. Create a try-
catch clause to exercise your new exception.

3. Write a class with a method that throws an exception of the type created
in the previous exercise. Try compiling it without an exception
specification to see what the compiler says. Add the appropriate
exception specification. Try out your class and its exception inside a try-
catch clause.

4. Define an object reference and initialize it to null. Try to call a method
through this reference. Now wrap the code in a try-catch clause to catch
the exception.

Chapter 11: Error Handling with Exceptions 471

5. Create a class with two methods, F() and G(). In G(), throw an
exception of a new type that you define. In F(), call G(), catch its
exception and, in the catch clause, throw a different exception (of a
second type that you define). Test your code in Main().

6. Create three new types of exceptions. Write a class with a method that
throws all three. In Main(), call the method but only use a single catch
clause that will catch all three types of exceptions.

7. Write code to generate and catch an IndexOutOfRangeException.

8. Create your own resumption-like behavior using a while loop that
repeats until an exception is no longer thrown.

9. Create a three-level hierarchy of exceptions. Now create a base-class A
with a method that throws an exception at the base of your hierarchy.
Inherit B from A and override the method so it throws an exception at
level two of your hierarchy. Repeat by inheriting class C from B. In
Main(), create a C and upcast it to A, then call the method.

10. Demonstrate that a derived-class constructor cannot catch exceptions
thrown by its base-class constructor.

11. Add a second level of exception loss to LostMessage.cs so that the
HoHumException is itself replaced by a third exception.

473

12: I/O in C#
Creating a good input/output (I/O) system is one of the
more difficult tasks for the language designer.

This is evidenced by the number of different approaches. The challenge seems to
be in covering all eventualities. Not only are there different sources and sinks of
I/O that you want to communicate with (files, the console, network connections),
but you need to talk to them in a wide variety of ways (sequential, random-access,
buffered, binary, character, by lines, by words, etc.).

The .NET library designers attacked this problem by creating lots of classes. In
fact, there are so many classes for .NET’s I/O system that it can be intimidating at
first (ironically, the design actually prevents an explosion of classes). As a result
there are a fair number of classes to learn before you understand enough of
.NET’s I/O picture to use it properly.

File, Directory, and Path
Before getting into the classes that actually read and write data to streams, we’ll
look at the utility classes that assist you in handling file directory issues. These
utility classes consist of three classes that have just static methods: Path,
Directory, and File. These classes have somewhat confusing names in that
there’s no correspondence between object instances and items within the file-
system (indeed, you can’t instantiate these classes – their constructors are not
public).

A directory lister
Let’s say you want to list the names of the files in the directory. This is easily done
with the static Directory.GetFiles() method, as is shown in this sample:

//c12:FList.cs
//Displays directory listing
using System.IO;

public class FList{
 public static void Main(string[] args){
 string dirToRead = ".";
 string pattern = "*";

474 Thinking in C# www.ThinkingIn.NET

 if(args.Length > 0){
 dirToRead = args[0];
 }
 if(args.Length > 1){
 pattern = args[1];
 }
 string[] fPaths =
 Directory.GetFiles(dirToRead, pattern);
 foreach(string fPath in fPaths){
 FileInfo fInfo = new FileInfo(fPath);
 Console.WriteLine(
 "Path = {0} Filename: {1} ext: {2} "
 + "touch: {3} size: {4}",
 fPath, fInfo.Name, fInfo.Extension,
 fInfo.LastWriteTime, fInfo.Length);
 Console.WriteLine(fName);
 }
 }
}///:~

When run with no arguments, this returns all the names in the current directory;
another directory can be specified with the first argument, and a standard DOS
file-name pattern with the second. An overload of the Directory.GetFiles()
method takes just a single string, which is equivalent to calling
Directory.GetFiles(dirString, "*").

The method Directory.GetFiles() is a little poorly named, it’s really returned
strings that represent the paths to files (so perhaps it would have been better
named GetFilePaths()). To get information on the corresponding file, the path
is passed in to a FileInfo constructor. The FileInfo and related DirectoryInfo
classes encapsulate what the file system knows – things like size, time of creation
and last edit, attributes such as being ReadOnly, etc.

Checking for and creating directories
The FList program above returned only paths to files, not to directories.
Directory.GetFileSystemEntries() returns paths to both files and
directories, while Directory.GetDirectories() returns paths to the
subdirectories of the given directory.

//:c12:DirList.cs
//Displays listing of subdirectories
using System;

Chapter 12: I/O in C# 475

using System.IO;

public class DirList {
 public static void Main(string[] args){
 string dirToRead = ".";
 string pattern = "*";
 if (args.Length > 0) {
 dirToRead = args[0];
 }
 if (args.Length > 1) {
 pattern = args[1];
 }
 string[] subdirs =
 Directory.GetDirectories(dirToRead, pattern);
 foreach(string subdir in subdirs){
 DirectoryInfo dInfo =
 new DirectoryInfo(subdir);
 Console.WriteLine(
 "Path = {0} Created: {1} Accessed: {2} "
 + " Written to {3} ",
 subdir, dInfo.CreationTime,
 dInfo.LastAccessTime, dInfo.LastWriteTime);
 }
 }
}///:~

In addition to getting information on files and directories, the File and
Directory classes contain methods for creating, deleting, and moving filesystem
entities. This example shows how to create new subdirectories, files, and delete
directories:

//:c12:FileManip.cs
//Demonstrates basic filesystem manipulation
using System;
using System.IO;

class FileManip {
 public static void Main(){
 string curPath =
 Directory.GetCurrentDirectory();
 DirectoryInfo curDir =
 new DirectoryInfo(curPath);

476 Thinking in C# www.MindView.net

 string curName = curDir.Name;
 char[] chars = curName.ToCharArray();
 Array.Reverse(chars);
 string revName = new String(chars);
 if (Directory.Exists(revName)) {
 Console.WriteLine("Deleting dir " + revName);
 Directory.Delete(revName, true);
 } else {
 Console.WriteLine("Making dir " + revName);
 Directory.CreateDirectory(revName);
 string fName = "./" + revName + "/Foo.file";
 File.Create(fName);
 }
 }
}///:~

First, we use Directory.GetCurrentDirectory() to retrieve the current path;
the same data is also available as Environment.CurrentDirectory. To get the
current directory’s name, we use the DirectoryInfo class and its Name
property. The name of our new directory is the current directory’s name in
reverse. The first time this program runs, Directory.Exists() will return false
(unless you happen to run this program in a directory with a reversed-name
subdirectory already there!). In that case, we use
Directory.CreateDirectory() and File.Create() (note the slight
inconsistency in naming) to create a new subdirectory and a file. If you check,
you’ll see that “Foo.file” is of length 0 – File.Create() works at the filesystem
level, not at the level of actually initializing the file with useful data.

The second time FileManip is run, the Exists() method will return true and
Directory.Delete() deletes both the directory and all its contents, including
files and subdirectories. If you don’t want this highly dangerous behavior, either
pass in a false value, or use the overloaded Directory.Delete(string) which
doesn’t take a bool and which will throw an IOException if called on a non-
empty directory.

Isolated stores
Some of the most common file-oriented tasks are associated with a single user:
Preferences should be set to individual users, security dictates that there be
restrictions on arbitrary file manipulation by components downloaded off the
Web, etc. In these scenarios, the .NET Framework provides for isolated storage.
An isolated store is a virtual file system within a data compartment. A data
compartment is based on the user, assembly, and perhaps other aspects of the

Chapter 12: I/O in C# 477

code’s identity (e.g., its signature). Isolated storage is for those situations when
you don’t need or want database-level security and control; isolated stores end up
as files on the hard drive and while operating-system restrictions may prevent
them from being casually available, it’s not appropriate to use isolated storage for
high-value data.

Getting an isolated store for the current assembly is straightforward if wordy, one
uses a static method called GetUserStoreForAssembly() in the
IsolatedStorageFile class:

//:c12:IsoStore.cs
using System;
using System.IO.IsolatedStorage;

class IsoStore {
 public static void Main(){
 IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForAssembly();
 Console.WriteLine(
 "Assembly identity {0} \n" +
 "CurrentSize {1} \n" +
 "MaximumSize {2} \n" +
 "Scope {3} \n",
 isf.AssemblyIdentity, isf.CurrentSize,
 isf.MaximumSize, isf.Scope);
 }
}///:~

First, we have to specify that we’re using the System.IO.IsolatedStorage
namespace. After we create the isolated store, we print some of its attributes to
the console. A typical run looks like this:

Assembly identity <System.Security.Policy.Url version="1">
 <Url>file://D:/tic/chap11/IsoStore.exe</Url>
</System.Security.Policy.Url>

CurrentSize 0
MaximumSize 9223372036854775807
Scope User, Assembly

Because we’ve not done any digital signing (see Chapter 13), the identity of the
assembly this is being run from is simply the name of the assembly as a URL. The
store consumes no space currently and would be allowed to consume as much as

478 Thinking in C# www.ThinkingIn.NET

9GB. The store that we’ve got a handle on is associated with the user and
assembly’s identity; if we changed either of those, we’d get a different isolated
store.

The IsolatedFileStore is essentially a virtual file system, but unfortunately it
does not support the general System.IO classes such as Directory,
DirectoryInfo, File, and FileInfo. Rather, the IsolatedFileStore class has
static methods GetDirectoryNames() and GetFileNames() which
correspond to Directory.GetDirectories() and
Directory.GetFileNames(). This is quite clumsy, as one cannot use objects to
traverse down a tree of directories (as one can do with the Directory class), but
rather must perform string manipulation to construct paths within the isolated
store. Hopefully future versions of the framework will move towards consistency
with the System.IO namespaces.

Input and output
I/O libraries often use the abstraction of a stream, which represents any data
source or sink as an object capable of producing or receiving pieces of data. The
stream hides the details of what happens to the data inside the actual I/O device.

The C# library classes for I/O are divided by input and output, as you can see by
examining the online help reference to the .NET Framework. By inheritance,
everything derived from the Stream class has basic methods called Read(),
ReadByte(), Write(), and WriteByte() for reading and writing arrays and single
bytes. However, you won’t generally use these methods; they exist so that other
classes can use them—these other classes provide a more useful interface. Thus,
you’ll rarely create an object for input or output by using a single class, but
instead will layer multiple objects together to provide your desired functionality.
The fact that you create more than one object to create a single resulting stream is
the primary reason that .NET’s IO library is confusing.

Another sad factor that contributes to confusion is that, alone of all the major
.NET namespaces, the System.IO namespace violates good object-oriented
design principles. In chapter 7, we spoke of the benefits of aggregating interfaces
to specify the mix of abstract data types in an implementation. Rather than do
that, the .NET IO classes have an overly inclusive Stream base class and a trio of
public instance properties CanRead, CanWrite, and CanSeek that substitute
for what should be type information. The motivation for this was probably a well-
meaning desire to avoid an “explosion” in types and interfaces, but good design is
as simple as possible and no simpler. By going too far with Stream, and with an

Chapter 12: I/O in C# 479

unfortunate handful of naming and behavior inconsistencies, the System.IO
namespace can be quite frustrating.

Types of Stream
Classes descended from Stream come in two types: implementation classes
associated with a particular type of data sink or source such as these three:

1. MemoryStreams are the simplest streams and work with in-memory
data representations

2. FileStreams work with files and add functions for locking the file for
exclusive access. IsolatedStorageFileStream descends from
FileStream and is used by isolated stores.

3. NetworkStreams are very helpful when network programming and
encapsulate (but provide access to) an underlying network socket. We are
not going to discuss NetworkStreams until Chapter 18.

And classes which are used to dynamically add additional responsibilities to
other streams such as these two:

1. CryptoStreams can encode and decode any other streams, whether
those streams originate in memory, the file system, or over a network.

2. BufferedStreams improve the performance of most stream scenarios
by reading and writing bytes in large chunks, rather than one at a time.

Classes such as CryptoStream and BufferedStream are called “Wrapper” or
“Decorator” classes (see Thinking in Patterns).

Text and binary
Having determined where the stream is to exist (memory, file, or network) and
how it is to be decorated (with cryptography and buffering), you’ll need to choose
whether you want to deal with the stream as characters or as bytes. If as
characters, you can use the StreamReader and StreamWriter classes to deal
with the data as lines of strings, if as bytes, you can use BinaryReader and
BinaryWriter to translate bytes to and from the primitive value types.

480 Thinking in C# www.MindView.net

Underlying Source
(Choose 1 only)

MemoryStream

FileStream

IsolatedStorageFileStream

NetworkStream

Decorator
(Choose 0, 1, or 2)

BufferedStream

CryptoStream

Text or Bytes
(Choose 0 or 1)

StreamReader (text)

StreamWriter (text)

BinaryReader (bytes)

BinaryWriter (bytes)

Figure 12-1: Streams use the Decorator pattern to build up capability

All told, there are 90 different valid combinations of these three aspects and
while it can be confusing at first, it’s clearer than having, for instance, a class
called BinaryCryptoFileReader. Just to keep you on your toes, though,
StreamReader and StreamWriter have sibling classes StringReader and
StringWriter which work directly on strings, not streams.

Working with different sources
This example shows that although the way in which one turns a source into a
stream differs, once in hand, any source can be treated equivalently:

//:c12:SourceStream.cs
using System;
using System.Text;
using System.IO;

class SourceStream {
 Stream src;

 SourceStream(Stream src){
 this.src = src;
 }

 void ReadAll(){
 Console.WriteLine(
 "Reading stream of type " + src.GetType());
 int nextByte;
 while ((nextByte = src.ReadByte()) != -1) {
 Console.Write((char) nextByte);
 }
 }

Chapter 12: I/O in C# 481

 public static void Main(){
 SourceStream srcStr = ForMemoryStream();
 srcStr.ReadAll();
 srcStr = ForFileStream();
 srcStr.ReadAll();
 }

 static SourceStream ForMemoryStream(){
 string aString = "mary had a little lamb";
 UnicodeEncoding ue = new UnicodeEncoding();
 byte[] bytes = ue.GetBytes(aString);
 MemoryStream memStream =
 new MemoryStream(bytes);
 SourceStream srcStream =
 new SourceStream(memStream);
 return srcStream;
 }

 static SourceStream ForFileStream(){
 string fName = "SourceStream.cs";
 FileStream fStream =
 new FileStream(fName, FileMode.Open);
 SourceStream srcStream =
 new SourceStream(fStream);
 return srcStream;
 }
}///:~

The constructor to SourceStream takes a Stream and assigns it to the instance
variable src, while the method ReadAll() reads that src one byte at a time until
the method returns -1, indicating that there are no more bytes. Each byte read is
cast to a char and sent to the console. The Main() method uses the static
methods ForMemoryStream() and ForFileStream() to instantiate
SourceStreams and then calls the ReadAll() method.

So far, all the code has dealt with Streams no matter what their real source, but
the static methods must necessarily be specific to the subtype of Stream being
created. In the case of the MemoryStream, we start with a string, use the
UnicodeEncoding class from the System.Text namespace to convert the
string into an array of bytes, and pass the result into the MemoryStream
constructor. The MemoryStream goes to the SourceStream constructor, and
then we return the SourceStream.

482 Thinking in C# www.ThinkingIn.NET

For the FileStream, on the other hand, we have to specify an extant filename
and what FileMode we wish to use to open it. The FileMode enumeration
includes:

FileMode.Value Behavior

Append

If the file exists, open it and go to the end of the
file immediately. If the file does not exist, create
it. File cannot be read.

Create
Creates a new file of the given name, even if that
file already exists (it erases the extant file).

CreateNew
Creates a new file, if it does not exist. If the file
exists, throws an IOException.

Open
Opens an existing file and throws a
FileNotFoundException otherwise.

OpenOrCreate
Creates and opens a file, creating a new file if
necessary

Truncate
Opens an existing file and truncates its size to
zero.

Fun with CryptoStreams
Microsoft has done a big favor to eCommerce developers by including industrial-
strength cryptography support in the .NET Framework. Many people mistakenly
believe that to be anything but a passive consumer of cryptography requires
hardcore mathematics. Not so. While few people are capable of developing new
fundamental algorithms, cryptographic protocols that use the algorithms for
complex tasks are accessible to anyone, while actual applications that use these
protocols to deliver business value are few and far between.

Cryptographic algorithms come in two fundamental flavors: symmetric
algorithms use the same key to encrypt and decrypt a data stream, while
asymmetric algorithms have a “public” key for encryption and a “private” key for
decryption. The .NET Framework comes with several symmetric algorithms and
two asymmetric algorithms, one for general use and one that supports the
standard for digital signatures.

Chapter 12: I/O in C# 483

Category Name Characteristics

Symmetric DES

 Older US Federal standard for
“sensitive but not classified” data.
56-bit effective key. Cracked in 22
hours by $250,000 custom
computer, plus 100K distributed
PCs. If it’s worth encrypting, it’s
worth not using DES.

Symmetric TripleDES

An extension of DES that has a
112-bit effective key (note that this
increases cracking difficulty by
256).

Symmetric RC2
Variable key size, implementation
seems to be fastest symmetric.

Symmetric Rijndael

Algorithm chosen for Advanced
Encryption Standard, effectively
DES replacement. Fast, variable
and large key sizes, generally the
best symmetric cipher.
Pronounced “rain-dahl”

Asymmetric DSA
Cannot be used for encryption;
only good for digital signing.

Asymmetric RSA
Patent expired, almost
synonymous with public-key
cryptopgraphy.

CryptoStreams are only created by the symmetric algorithms.

//:c12:SecretCode.cs
using System;
using System.IO;
using System.Security.Cryptography;

class SecretCode {
 string fileName;
 string FileName{
 get { return fileName;}
 set { fileName = value;}
 }

 RijndaelManaged rm;

484 Thinking in C# www.MindView.net

 SecretCode(string fName){
 fileName = fName;
 rm = new RijndaelManaged();
 rm.GenerateKey();
 rm.GenerateIV();
 }

 void EncodeToFile(string outName){
 FileStream src = new FileStream(
 fileName, FileMode.Open);

 ICryptoTransform encoder =
 rm.CreateEncryptor();
 CryptoStream str = new CryptoStream(
 src, encoder, CryptoStreamMode.Read);

 FileStream outFile = new FileStream(
 outName, FileMode.Create);

 int i = 0;
 while ((i = str.ReadByte()) != -1) {
 outFile.WriteByte((byte)i);
 }

 src.Close();
 outFile.Close();
 }

 void Decode(string cypherFile){
 FileStream src = new FileStream(
 cypherFile, FileMode.Open);

 ICryptoTransform decoder =
 rm.CreateDecryptor();
 CryptoStream str = new CryptoStream(
 src, decoder, CryptoStreamMode.Read);

 int i = 0;
 while ((i = str.ReadByte()) != -1) {
 Console.Write((char) i);
 }

Chapter 12: I/O in C# 485

 src.Close();
 }

 public static void Main(string[] args){
 SecretCode sc = new SecretCode(args[0]);
 sc.EncodeToFile("encoded.dat");
 Console.WriteLine("Decoded:");
 sc.Decode("encoded.dat");
 }
}///:~

The cryptographic providers are in the System.Security.Cryptography namespace.
Each algorithm has both a base class named after the algorithm (DES, Rijndael,
RSA, etc.) and an implementation of that algorithm provided by Microsoft. This
is a nice design, allowing one to plug in new implementations of various
algorithms as desired.

The System.Security.Cryptography namespace is not part of Microsoft’s
submission to ECMA and therefore the source code is not available to scrutiny as
part of the shared-source Common Language Infrastructure initiative that
Microsoft is trying to use to generate good will in the academic community.
Although Microsoft’s implementations have been validated by the US and
Canadian Federal governments, it’s a pity that this source code is not available for
public review.

In this case, we use the RijndaelManaged class that implements the Rijndael
algorithm. Like the other implementations, the RijndaelManaged class is able to
generate random keys and initialization vectors, as shown in the SecretCode
constructor, which also sets an instance variable fileName to the name of the
file which we’ll be encrypting.

EncodeToFile() opens a FileStream named src to our to-be-encrypted file.
The symmetric cryptographic algorithms each provide a CreateEncryptor()
and CreateDecryptor() method which returns an ICryptoTransform that is
a necessary parameter for the CryptoStream constructor. With the input
stream src, the ICryptoTransform encoder, and the
CryptoStreamMode.Read mode as parameters we generate a CryptoStream
called str.

The outFile stream is constructed in a familiar way but this time with
FileMode.Create. We read the str CryptoStream and write it to the outFile,
using the method WriteByte(). Once done, we close both the source file and the
newly created encrypted file.

486 Thinking in C# www.ThinkingIn.NET

The method Decode() does the complement; it opens a FileStream, uses the
RijndaelManaged instance to create an ICryptoTransform decoder and a
CryptoStream appropriate for reading the encrypted file. We read the
encrypted file one byte at a time and print the output on the console.

The Main() method creates a new SecretCode class, passing in the first
command-line argument as the filename to be encoded. Then, the call to
EncodeToFile() encrypts that file to another called “encoded.dat.” Once that
file is created, it is in turn decoded by the Decode() method.

One characteristic of a good encrypted stream is that it is difficult to distinguish
from a stream of random data; since random data is non-compressible, if you
attempt to compress “encoded.dat” you should see that sure enough the
“compressed” file is larger than the original.

BinaryReader and BinaryWriter
While we’ve been able to get by with reading and writing individual bytes, doing
so requires a lot of extra effort when dealing with anything but the simplest data.
BinaryReader and BinaryWriter are wrapper classes which can ease the task
of dealing with the most common primitive value types. The BinaryWriter class
contains a large number of overridden Write() methods, as illustrated in this
sample:

//:c12:BinaryWrite.cs
using System;
using System.IO;

class BinaryWrite {
 public static void Main(){
 Stream fStream = new FileStream(
 "binaryio.dat", FileMode.Create);
 WriteTypes(fStream);
 fStream.Close();
 }

 static void WriteTypes(Stream sink){
 BinaryWriter bw = new BinaryWriter(sink);

 bw.Write(true);
 bw.Write(false);
 bw.Write((byte) 7);
 bw.Write(new byte[]{ 1, 2, 3, 4});

Chapter 12: I/O in C# 487

 bw.Write('z');
 bw.Write(new char[]{ 'A', 'B', 'C', 'D'});
 bw.Write(new Decimal(123.45));
 bw.Write(123.45);
 bw.Write((short) 212);
 bw.Write((long) 212);
 bw.Write("<boolean>true</boolean>");
 }
}///:~

BinaryWrite’s Main() method creates a FileStream for writing, upcasts the result
to Stream, passes it to the static WriteTypes() method, and afterwards closes
it. The WriteTypes() method takes the passed in Stream and passes it as a
parameter to the BinaryWriter constructor. Then, we call
BinaryWriter.Write() with various parameters, everything from bool to
string. Behind the scenes, the BinaryWriter turns these types into sequences
of bytes and writes them to the underlying stream.

Every type, except for string, has a predetermined length in bytes – even bools,
which could be represented in a single bit, are stored as a full byte — so it might
be more accurate to call this type of storage “byte data” rather than “binary data.”
To store a string, BinaryWriter first writes one or more bytes to indicate the
number of bytes that the string requires for storage; these bytes use 7 bits to
encode the length and the 8th bit (if necessary) to indicate that the next byte is
not the first character of the string, but another length byte.

The BinaryWriter class does nothing we couldn’t do on our own, but it’s much
more convenient. Naturally, there’s a complementary BinaryReader class, but
because one cannot have polymorphism based only on return type (see chapter
8), the methods for reading various types are a little longer:

//:c12:BinaryRead.cs
using System;
using System.IO;

class BinaryRead {
 public static void Main(string[] args){
 Stream fStream = new BufferedStream(
 new FileStream(args[0], FileMode.Open));
 ByteDump(fStream);
 fStream.Close();
 fStream = new BufferedStream(
 new FileStream(args[0], FileMode.Open));

488 Thinking in C# www.MindView.net

 ReadTypes(fStream);
 fStream.Close();
 }

 static void ByteDump(Stream src){
 int i = 0;
 while ((i = src.ReadByte()) != -1) {
 Console.WriteLine("{0} = {1} ", (char) i, i);
 }
 Console.WriteLine();
 }

 static void ReadTypes(Stream src){
 BinaryReader br = new BinaryReader(src);

 bool b = br.ReadBoolean();
 Console.WriteLine(b);
 b = br.ReadBoolean();
 Console.WriteLine(b);
 byte bt = br.ReadByte();
 Console.WriteLine(bt);
 byte[] byteArray = br.ReadBytes(4);
 Console.WriteLine(byteArray);
 char c = br.ReadChar();
 Console.WriteLine(c);
 char[] charArray = br.ReadChars(4);
 Console.WriteLine(charArray);
 Decimal d = br.ReadDecimal();
 Console.WriteLine(d);
 Double db = br.ReadDouble();
 Console.WriteLine(db);
 short s = br.ReadInt16();
 Console.WriteLine(s);
 long l = br.ReadInt64();
 Console.WriteLine(l);
 string tag = br.ReadString();
 Console.WriteLine(tag);
 }
}///:~

BinaryRead.Main() introduces another wrapper class, BufferedStream,
which increases the efficiency of non-memory-based streams by using an internal

Chapter 12: I/O in C# 489

memory buffer to temporarily store the data rather than writing a single byte to
the underlying file or network. BufferedStreams are largely transparent to use,
although the method Flush(), which sends the contents of the buffer to the
underlying stream, regardless of whether it’s full or not, can be used to fine-tune
behavior.

BinaryRead works on a file whose name is passed in on the command line.
ByteDump() shows the contents of the file on the console, printing the byte as
both a character and displaying its decimal value. When run on “binaryio.dat”,
the run begins:

☺ = 1
 = 0
 = 7
☺ = 1
☻ = 2
♥ = 3
♦ = 4
z = 122
A = 65
B = 66
C = 67
D = 68
…etc…

The first two bytes represent the Boolean values true and false, while the next
parts of the file correspond directly to the values of the bytes and chars we wrote
with the program BinaryWrite. The more complicated data types are harder to
interpret, but towards the end of this method, you’ll see a byte value of 212 that
corresponds to the short and the long we wrote.

The last part of the output from this method looks like this:

↨ = 23
< = 60
b = 98
o = 111
o = 111
l = 108
e = 101
a = 97
n = 110
> = 62

490 Thinking in C# www.ThinkingIn.NET

t = 116
r = 114
u = 117
e = 101
< = 60
/ = 47
b = 98
o = 111
o = 111
l = 108
e = 101
a = 97
n = 110
> = 62

This particular string, which consumes 24 bytes of storage (1 length byte, and 23
character bytes), is the XML equivalent of the single byte at the beginning of the
file that stores a bool. We’ll discuss XML in length in chapter 17, but this shows
the primary trade-off between binary data and XML – efficiency versus
descriptiveness. Ironically, while local storage is experiencing greater-than-
Moore’s-Law increases in data density (and thereby becoming cheaper and
cheaper) and network bandwidth (especially to the home and over wireless) will
be a problem for the foreseeable future, file formats remain primarily binary and
XML is exploding as the over-network format of choice!

After BinaryRead dumps the raw data to the console, it then reads the same
stream, this time with the static method ReadTypes(). ReadTypes()
instantiates a BinaryReader() and calls its various Readxxx() methods in
exact correspondence to the BinaryWriter.Write() methods of
BinaryWrite.WriteTypes(). When run on binaryio.dat,
BinaryRead.ReadTypes() reproduces the exact data, but you can also run the
program on any file and it will gamely interpret that program’s bytes as the
specified types. Here’s the output when BinaryRead is run on its own source
file:

True
True
58
System.Byte[]
B
inar
-3.5732267922136636517188457081E-75

Chapter 12: I/O in C# 491

6.2763486340252E-245
29962
8320773185183050099
em.IO;

class BinaryRead{
 public static void Main(string[] args){
 Stream fStream = new BufferedStream(

Again, this is the price to be paid for the efficiency of byte data – the slightest
discrepancy between the types specified when the data is written and when it is
read leads to incorrect data values, but the problem will probably not be detected
until some other method attempts to use this wrong data.

StreamReader and StreamWriter
Because strings are such a common data type, the .NET Framework provides
some decorator classes to aid in reading lines and blocks of text. The
StreamReader and StreamWriter classes decorate streams and
StringReader and StringWriter decorate strings.

The most useful method in StreamReader is ReadLine(), as demonstrated in
this sample, which prints a file to the console with line numbers prepended:

//:c12:LineAtATime.cs
using System;
using System.IO;

class LineAtATime {
 public static void Main(string[] args){
 foreach(string fName in args){
 Stream src = new BufferedStream(
 new FileStream(fName, FileMode.Open));
 LinePrint(src);
 src.Close();
 }
 }

 static void LinePrint(Stream src){
 StreamReader r = new StreamReader(src);
 int line = 0;
 string aLine = "";
 while ((aLine = r.ReadLine()) != null) {

492 Thinking in C# www.MindView.net

 Console.WriteLine("{0}: {1}", line++, aLine);
 }
 }
}///:~

The Main() method takes a command-line filename and opens it, decorates the
FileStream with a BufferedStream, and passes the resulting Stream to the
LinePrint() static method. LinePrint() creates a new StreamReader to
decorate the BufferedStream and uses StreamReader.ReadLine() to read
the underlying stream a line at a time. StreamReader.ReadLine() returns a
null reference at the end of the file, ending the output loop.

StreamReader is useful for writing lines and blocks of text, and contains a slew of
overloaded Write() methods similar to those in BinaryWriter, as this example
shows:

//:c12:TextWrite.cs
using System;
using System.IO;

class TextWrite {
 public static void Main(){
 Stream fStream = new FileStream(
 "textio.dat", FileMode.Create);
 WriteLineTypes(fStream);
 fStream.Close();
 }

 static void WriteLineTypes(Stream sink){
 StreamWriter sw = new StreamWriter(sink);

 sw.WriteLine(true);
 sw.WriteLine(false);
 sw.WriteLine((byte) 7);
 sw.WriteLine('z');
 sw.WriteLine(new char[]{ 'A', 'B', 'C', 'D'});
 sw.WriteLine(new Decimal(123.45));
 sw.WriteLine(123.45);
 sw.WriteLine((short) 212);
 sw.WriteLine((long) 212);
 sw.WriteLine("{0} : {1}",
 "string formatting supported", "true");

Chapter 12: I/O in C# 493

 sw.Close();
 }
}///:~

Like the BinaryWrite sample, this program creates a filestream (this time for a
file called “textio.dat”) and passes that to another method that decorates the
underlying data sink and writes to it. In addition to Write() methods that are
overloaded to write the primitive types, StreamWriter will call ToString() on
any object and supports string formatting. In one of the namespace’s
annoyances, StreamWriter is buffered (although it doesn’t descend from
BufferedStream), and so you must explicitly call Close() in order to flush the
lines to the underlying stream.

The data written by StreamWriter is in text format, as shown in the contents of
textio.dat:

True
False
7
z
ABCD
123.45
123.45
212
212
string formatting supported : true

Bear in mind that StreamReader does not have Readxxx() methods – if you
want to store primitive types to be read and used as primitive types, you should
use the byte-oriented Reader and Writer classes. You could store the data as
text, read it as text, and then perform the various string parsing operations to
recreate the values, but that would be wasteful.

It’s worth noting that StreamReader and StreamWriter have sibling classes
StringReader and StringWriter that are descended from the same Reader
and Writer abstraction. Since string objects are immutable (once set, a string
cannot be changed), there is a need for an efficient tool for building strings and
complex formatting tasks. The basic task of building a string from substrings is
handled by the StringBuilder class, while the complex formatting can be done
with the StringWriter (which decorates a StringBuilder in the same way that
the StreamWriter decorates a Stream).

494 Thinking in C# www.ThinkingIn.NET

Random access with Seek
The Stream base class contains a method called Seek() that can be used to jump
between records and data sections of known size (or sizes that can be computed
by reading header data in the stream). The records don’t have to be the same size;
you just have to be able to determine how big they are and where they are placed
in the file. The Seek() method takes a long (implying a maximum file size of 8
exabytes, which will hopefully suffice for a few years) and a value from the
SeekOrigin enumeration which can be Begin, Current, or End. The
SeekOrigin value specifies the point from which the seek jumps.

Although Seek() is defined in Stream, not all Streams support it (for instance,
one can’t “jump around” a network stream). The CanSeek bool property
specifies whether the stream supports Seek() and the related Length() and
SetLength() mehods, as well as the Position() method which returns the
current position in the Stream. If CanSeek is false and one of these methods is
called, it will throw a NotSupportedException. This is poor design. Support
for random access is based on type, not state, and should be specified in an
interface (say, ISeekable) that is implemented by the appropriate subtypes of
Stream.

If you use SeekOrigin.End, you should use a negative number for the offset;
performing a Seek() beyond the end of the stream moves to the end of the file
(i.e., ReadByte() will return a -1, etc.).

This example shows the basic use of Stream.Seek():

//:c12:FibSeek.cs
using System;
using System.IO;

class FibSeek {
 Stream src;

 FibSeek(Stream src){
 this.src = src;
 }

 void DoSeek(SeekOrigin so){
 if (so == SeekOrigin.End) {
 src.Seek(-10, so);
 } else {

Chapter 12: I/O in C# 495

 src.Seek(10, so);
 }
 int i = src.ReadByte();
 Console.WriteLine(
 "10 bytes from {0} is : {1}", so, (char) i);
 }

 public static void Main(string[] args){
 foreach(string fName in args){
 FileStream f = null;
 try {
 f = new FileStream(fName, FileMode.Open);
 FibSeek fs = new FibSeek(f);
 fs.DoSeek(SeekOrigin.Begin);
 fs.DoSeek(SeekOrigin.End);
 f.Seek(12, SeekOrigin.Begin);
 fs.DoSeek(SeekOrigin.Current);
 } catch (Exception ex) {
 Console.WriteLine(ex);
 } finally {
 f.Close();
 }
 }
 }
}///:~

Standard I/O
The term standard I/O refers to the Unix concept (which is reproduced in some
form in Windows and many other operating systems) of a single stream of
information that is used by a program. All the program’s input can come from
standard input, all its output can go to standard output, and all of its error
messages can be sent to standard error. The value of standard I/O is that
programs can easily be chained together and one program’s standard output can
become the standard input for another program. More than just a convenience,
this is a powerful architectural pattern called Pipes and Filters; although this
architecture was not very common in the 1990s, it’s a very powerful one, as
anyone who’s witnessed a UNIX guru can testify.

496 Thinking in C# www.MindView.net

Reading from standard input
Following the standard I/O model, the Console class exposes three static
properties: Out, Error, and In. In Chapter 11 we sent some error messages to
Console.Error. Out and Error are TextWriters, while In is a TextReader.

Typically, you either want to read console input as either a character or a
complete line at a time. Here’s an example that simply echoes each line that you
type in:

//:c12:EchoIn.cs
//How to read from standard input.
using System;

public class EchoIn {
 public static void Main(){
 string s;
 while ((s = Console.In.ReadLine()).Length != 0)
 Console.WriteLine(s);
 // An empty line terminates the program
 }
} ///:~

Redirecting standard I/O
The Console class allows you to redirect the standard input, output, and error
I/O streams using simple static method calls:

SetIn(TextReader)
SetOut(TextWriter)
SetError(TextWriter)

(There is no obvious reason why these methods are used rather than allowing the
Properties to be set directly.)

Redirecting output is especially useful if you suddenly start creating a large
amount of output on your screen and it’s scrolling past faster than you can read
it. Redirecting input is valuable for a command-line program in which you want
to test a particular user-input sequence repeatedly. Here’s a simple example that
shows the use of these methods:

//:c12:Redirecting.cs
// Demonstrates standard I/O redirection.
using System;

Chapter 12: I/O in C# 497

using System.IO;

public class Redirecting {
 public static void Main(){
 StreamReader sr = new StreamReader(
 new BufferedStream(
 new FileStream(
 "Redirecting.cs", FileMode.Open)));
 StreamWriter sw = new StreamWriter(
 new BufferedStream(
 new FileStream(
 "redirect.dat", FileMode.Create)));
 Console.SetIn(sr);
 Console.SetOut(sw);
 Console.SetError(sw);

 String s;
 while ((s = Console.In.ReadLine()) != null)
 Console.Out.WriteLine(s);
 Console.Out.Close(); // Remember this!
 }
} ///:~

This program attaches standard input to a file, and redirects standard output and
standard error to another file.

Debugging and Tracing
We briefly discussed the Debug and Trace classes of the System.Diagnostics
namespace in chapter 6. These classes are enabled by conditionally defining the
values DEBUG and TRACE either at the command-line or in code. These
classes write their output to a set of TraceListener classes. The default
TraceListener of the Debug class interacts with the active debugger, that of
the Trace class sends data to the console. Customizing both is easy; the
TextWriterTestListener decorates any TextWriter with TestListener
capabilities. Additionally, EventLogTraceListener ; sending data to the
console or the system’s event logs takes just a few lines of code:

//:c12:DebugAndTrace.cs
//Demonstates Debug and Trace classes
#define DEBUG
#define TRACE

498 Thinking in C# www.ThinkingIn.NET

using System;
using System.Diagnostics;

class DebugAndTrace {
 public static void Main(){
 TextWriterTraceListener conWriter =
 new TextWriterTraceListener(Console.Out);
 Debug.Listeners.Add(conWriter);
 Debug.WriteLine("Debug to stdout");

 EventLogTraceListener logWriter =
 new EventLogTraceListener("DebugTraceProg");
 Trace.Listeners.Add(logWriter);
 Debug.Listeners.Add(logWriter);

 Trace.WriteLine("Traced");
 Debug.WriteLine("Debug trace");
 logWriter.Close();
 }
}///:~

When run, both Debug and Trace are written to the console. In addition, an
EventLogTraceListener object whose Source property is set to
“DebugTraceLog.” This value is used to show in the system’s event logs the source
of trace information:

Chapter 12: I/O in C# 499

Figure 12-2: Using the system Event Viewer to see program output

If you wish to create your own event log, that’s easy, too:

EventLog log = new EventLog("MySecond.log");
log.Source = "DebugAndTraceProgram";
EventLogTraceListener logWriter =
 new EventLogTraceListener(log);
I think this section could be expanded a bit.

Regular expressions
Regular expressions are a powerful pattern-matching tool for interpreting and
manipulating strings. Although regular expressions are not necessarily related to
input and output, it is probably their most common application, so we’ll discuss
them here.

Regular expressions have a long history in the field of computer science but
continue to be expanded and improved, which gives rise to an intimidating set of
capabilities and alternate routes to a given end. The regular expressions in the
.NET Framework are Perl 5 compatible but include additional features such as
right-to-left matching and do not require a separate compilation step.

The fundamental responsibility of the System.Text.RegularExpressions
Regex class is to match a given pattern with a given target string. The pattern is
described in a terse notation that combines literal text that must appear in the

500 Thinking in C# www.MindView.net

target with meta-text that specifies both acceptable variations in text and desired
manipulations such as variable assignment or text replacement.

This sample prints out the file names and lines that match a regular expression
typed in the command line:

//:c12:TGrep.cs
//Demonstrate basic regex matching against files
using System;
using System.IO;
using System.Text.RegularExpressions;

class TGrep {
 public static void Main(string[] args){
 TGrep tg = new TGrep(args[0]);
 tg.ApplyToFiles(args[1]);
 }
 Regex re;

 TGrep(string pattern){
 re = new Regex(pattern);
 }

 void ApplyToFiles(string fPattern){
 string[] fNames =
 Directory.GetFiles(".", fPattern);
 foreach (string fName in fNames) {
 StreamReader sr = null;
 try {
 sr = new StreamReader(
 new BufferedStream(
 new FileStream(
 fName, FileMode.Open)));
 string line = "";
 int lCount = 0;
 while ((line = sr.ReadLine()) != null) {
 lCount++;
 if (re.IsMatch(line)) {
 Console.WriteLine(
 "{0} {1}: {2}", fName, lCount, line);
 }
 }

Chapter 12: I/O in C# 501

 } finally {
 sr.Close();
 }
 }
 }
}///:~

The Main() method passes the first command-line argument to the TGrep()
constructor, which in turn passes it to the Regex() constructor. The second
argument is then passed as the argument to the ApplyToFiles() method.

ApplyToFiles() uses IO techniques we’ve discussed previously to read a series
of files line-by-line and incrementing the variable lCount to let us know what
line number works. Each line is passed to the Regex.IsMatch() method, and if
that method returns true, the filename, line number, and contents of the line are
printed to the screen.

You might guess that “tgrep using tgrep.cs” would print lines 3, 4, and 5 of
tgrep.cs, but you might not expect that “tgrep [0-9] tgrep.cs” would print every
line that contains a number, or that “tgrep [\s]f[\w]*[\s]*= *.cs” would print
every line that assigns a value to a variable that begins with a lowercase “f”. Like
SQL in ADO.NET, the regular expression notation is a separate language quite
unlike C#, and Thinking in Regular Expressions would be quite a different book
than this one.

In addition to simply determining if a match exists, Regex can actually return
the value of the matches, as this program demonstrates:

//:c12:GrepMatches.cs
using System;
using System.IO;
using System.Text.RegularExpressions;

class GrepMatches {
 public static void Main(string[] args){
 GrepMatches tg = new GrepMatches(args[0]);
 string target = args[1];
 tg.ApplyToFiles(target);
 }
 Regex re;

 GrepMatches(string pattern){
 re = new Regex(pattern);

502 Thinking in C# www.ThinkingIn.NET

 }

 void ApplyToFiles(string fPattern){
 string[] fNames = Directory.GetFiles(
 ".", fPattern);
 foreach (string fName in fNames) {
 StreamReader sr = null;
 try {
 sr = new StreamReader(
 new BufferedStream(
 new FileStream(fName, FileMode.Open)));
 string line = "";
 int lCount = 0;
 while ((line = sr.ReadLine()) != null) {
 lCount++;
 if (re.IsMatch(line)) {
 Console.WriteLine(
 "{0} {1}: {2}", fName, lCount, line);
 ShowMatches(re.Matches(line));
 }
 }
 } finally {
 sr.Close();
 }
 }
 }

 private void ShowMatches(MatchCollection mc){
 for (int i = 0; i < mc.Count; i++) {
 Console.WriteLine(
 "Match[{0}] = {1}", i, mc[i]);
 }
 }
}///:~

Regex.Matches() returns a MatchCollection which naturally contains
Match objects. This sample program can be helpful in debugging the
development of a regular expression, which for most of us requires a considerable
amount of trial and error!

Chapter 12: I/O in C# 503

The static method Regex.Replace() can make complex transformations
surprisingly straightforward. This sample makes pattern substitutions in a text
file:

//:c12:TSed.cs
using System;
using System.IO;
using System.Text.RegularExpressions;

class TSed {
 public static void Main(string[] args){
 TSed tg = new TSed(args[0], args[1]);
 string target = args[2];
 tg.ApplyToFiles(target);
 }

 string pattern;
 string rep;

 TSed(string pattern, string rep){
 this.pattern = pattern;
 this.rep = rep;
 }

 void ApplyToFiles(string fPattern){
 string[] fNames =
 Directory.GetFiles(".", fPattern);
 foreach (string fName in fNames) {
 StreamReader sr = null;
 try {
 sr = new StreamReader(
 new BufferedStream(
 new FileStream(fName, FileMode.Open)));
 string line = "";
 int lCount = 0;
 while ((line = sr.ReadLine()) != null) {
 string nLine =
 Regex.Replace(line, pattern, rep);
 Console.WriteLine(nLine);
 }
 } finally {

504 Thinking in C# www.MindView.net

 sr.Close();
 }
 }
 }
}///:~

Like the previous samples, this one works with command-line arguments, but
this time, instead of instantiating a Regex for pattern-matching, the first two
command-line arguments are just stored as strings, which are later passed to the
Regex.Replace() method. If the pattern matches, the replacement pattern is
inserted into the string, if not, the line is untouched. Whether touched or not, the
line is written to the console; this makes this program a “tiny” version of UNIX’s
sed command and is very convenient.

Checking capitalization style
In this section we’ll look at a complete example of the use of C# IO which also
uses regular expression. This project is directly useful because it performs a style
check to make sure that your capitalization conforms to the C# style. It opens
each .cs file in the current directory and extracts all the class names and
identifiers, then shows you if any of them don’t meet the C# style. You can then
use the TSed sample above to automatically replace them.

The program uses two regular expressions that match words that precede a block
and which begin with a lowercase letter. One Regex matches block-oriented
identifiers (such as class, interface, property, and namespace names) and the
other catches method declarations. Doing this in a single Regex is one of the
exercises at the end of the chapter.

//:c12:CapStyle.cs
//Scans all .cs files for properly capitalized
//method and classnames
using System;
using System.IO;
using System.Text.RegularExpressions;

public class CapStyle {
 public static void Main(){
 string[] fNames =
 Directory.GetFiles(".","*.cs");
 foreach(string fName in fNames){
 CapStyle cs = null;
 try {

Chapter 12: I/O in C# 505

 cs = new CapStyle(fName);
 cs.Check();
 } finally {
 cs.Close();
 }
 }
 }

 string[] keyWords= new string[]{
 "abstract", "event", "new", "struct", "as",
 "explicit", "null", "switch", "base", "extern",
 "object", "this", "bool", "false", "operator",
 "throw", "break", "finally", "out", "true",
 "byte", "fixed", "override", "try", "case",
 "float", "params", "typeof", "catch", "for",
 "private", "uint", "char", "foreach",
 "protected", "ulong", "checked", "goto",
 "public", "unchecked", "class", "if",
 "readonly", "unsafe", "const", "implicit",
 "ref", "ushort", "continue", "in", "return",
 "using", "decimal", "int", "sbyte", "virtual",
 "default", "interface", "sealed", "volatile",
 "delegate", "internal", "short", "void", "do",
 "is", "sizeof", "while", "double", "lock",
 "stackalloc", "else", "long", "static", "enum",
 "namespace", "string", "try", "catch",
 "finally", "using", "else", "switch", "public",
 "static", "void", "foreach", "if", "while",
 "bool", "byte", "for", "get", "set"
 };

 StreamReader fStream;

 Regex blockPrefix;
 Regex methodDef;

 CapStyle(string fName){
 fStream = new StreamReader(
 new BufferedStream(
 new FileStream(fName, FileMode.Open)));
 /*

506 Thinking in C# www.ThinkingIn.NET

 matches just-before-bracket identifier
 starting with lowercase
 */
 blockPrefix =
 new Regex(@"[\s](?<id>[a-z][\w]*)[\s]*{");

 /*
 matches just-before-bracket with argument list
 and identifier starting with lowerCase
 */
 methodDef =
 new Regex(
 @"[\s](?<id>[a-z][\w]*)\s*\((.*)\)[\s]*{");

 Console.WriteLine(
 "Checking file: " + fName);
 }

 void Close(){
 fStream.Close();
 }

 void Check(){
 string line = "";
 int lCount = 0;
 while ((line = fStream.ReadLine()) != null) {
 lCount++;
 if (Suspicious(line)) {
 Console.WriteLine(
 "{0}: {1}", lCount, line);
 }
 }
 }

 bool Suspicious(string line){
 if (MatchNotKeyword(line, blockPrefix) == true) {
 return true;
 }
 if (MatchNotKeyword(line, methodDef) == true) {
 return true;
 }

Chapter 12: I/O in C# 507

 return false;
 }

 bool MatchNotKeyword(string line, Regex re){
 if (re.IsMatch(line)) {
 Match m = re.Match(line);
 string identifier = m.Groups["id"].Value;
 if (Array.IndexOf(keyWords, identifier) < 0) {
 return true;
 }
 }
 return false;
 }
}///:~

The Main() generates a list of all the C# files in the current directory and for
each one creates a CapStyle instance, runs CapStyle.Check() and then
CapStyle.Close().

Each CapStyle instance contains a list of C# keywords that are allowed to be in
lowercase, as well as instance variables that hold the two regular expressions, and
a StreamReader instance variable that reads the underlying file. The
CapStyle() constructor opens the file and constructs the two two regular
expressions. The expressions will match namespaces, class and interface
identifiers, properties, and method names that precede a ‘{‘ character (handling
multiline bracketing conventions is another exercise!). Additionally, the
expressions use group naming to associate the word that begins with a lowercase
letter to a regex variable called id (“(?<id>[a-z][\w]*)” is the relevant
notation; the parentheses specify the group, the ?<id> specifies the name).

The Check() method goes through the StreamReader line-by-line, seeing if
Suspicious() returns true; if so, that line is output to the console.
Suspicious() in turn calls MatchNotKeyword(), passing in the suspect line
and a reference to one of the two instance Regexs. MatchNotKeyword()
checks for a match; if there is one it assigns the value of the Regex group named
id to the string identifier. If this string does not appear in the array of C#
keywords, MatchNotKeyword() returns true, which causes Suspicious to
return true to Check().

In addition to not handling multiline bracketing, this program sometimes marks
strings that contain formatting brackets incorrectly. If you improve the program,
please drop the authors a line at www.ThinkingIn.Net.

508 Thinking in C# www.MindView.net

Summary
The .NET IO stream library does satisfy the basic requirements: you can perform
reading and writing with the console, a file, a block of memory, or even across the
Internet (as you will see in Chapter 18). With inheritance, you can create new
types of input and output objects.

The IO library brings up mixed feelings; it does the job and it uses the Decorator
pattern to good effect. But if you don’t already understand the Decorator pattern,
the design is nonintuitive, so there’s extra overhead in learning and teaching it.
There are also some poor choices in naming and implementation issues.

However, once you do understand the fundamentals of Streams and the
Decorator pattern and begin using the library in situations that require its
flexibility, you can begin to benefit from this design, at which point its cost in
extra lines of code will not bother you at all.

Exercises
1. Open a text file so that you can read the file one line at a time. Read each

line as a string and place that string object into a SortedList. Print all
of the lines in the SortedList in reverse order.

2. Modify the previous exercise so that the name of the file you read is
provided as a command-line argument.

3. Modify the previous exercise to also open a text file so you can write text
into it. Write the lines in the SortedList, along with line numbers, out to
the file.

4. Modify Exerise 2 to force all the lines in the SortedList to upper case and
send the results to the console.

5. Modify Exercise 2 to take additional command-line arguments of words
to find in the file. Print all lines in which any of the words match.

6. Modify DirList.cs to actually open each file and only list those files
whose contents contain any of the words specified on the command-line.

7. Modify WordCount.cs so that it produces an alphabetic sort.

8. Write a program that compares the performance of writing to a file when
using buffered and unbuffered I/O.

Chapter 12: I/O in C# 509

9. Write a program that changes operators within a C# source code file (for
instance, that changes addition operators into subtraction, or flips binary
tests from true to false). Use this program to explore mutation testing,
which starts from the premise that every operator ought to affect the
behavior of the program.

10. Write a program that creates Markov chains. First, write a program that
reads each word in a series of files and stores, for each word, the words
that follow it and the probability of that word being next (for instance,
the word “.Net” is likely to be followed by the words “framework” or
“platform” more often than being followed by the word “crepuscular”).
Once this data structure is created from a large enough corpus, generate
new sentences by picking a common word, choosing a successor
probabilistically (use Random.NextDouble() and the fact that all
probabilities sum to 1). Run the program on different source texts (press
releases, Hemingway short stories, books on computer programming).

11. Incorporate punctuation, sentence length, and Markov chains longer
than a single word into the previous example.

511

13: Reflection and
Attributes

The idea of run-time type identification (RTTI) seems
fairly simple at first: It lets you find the exact type of an
object when you only have a reference to the base type.

However, the need for RTTI uncovers a whole plethora of interesting (and often
perplexing) OO design issues, and raises fundamental questions of how you
should structure your programs.

This chapter looks at the ways that C# allows you to add and discover
information about objects and classes at run-time. This takes three forms:
“traditional” RTTI, which assumes that you have all the types available at
compile-time and run-time, the “reflection” mechanism, which allows you to
discover class information solely at run-time, and the “attributes” mechanism,
which allows you to declare new types of “meta-information” with a program
element and write programs that recognize and work with that new meta-
information. We’ll cover these three mechanisms in order.

The need for RTTI
Consider the now familiar example of a class hierarchy that uses polymorphism.
The generic type is the base class Shape, and the specific derived types are
Circle, Square, and Triangle:

512 Thinking in C# www.MindView.net

Figure 13-1: The Shape hierarchy

This is a typical class hierarchy diagram, with the base class at the top and the
derived classes growing downward. The normal goal in object-oriented
programming is for the bulk of your code to manipulate references to the base
type (Shape, in this case), so if you decide to extend the program by adding a
new class (Rhomboid, derived from Shape, for example), the bulk of the code
is not affected. In this example, the dynamically bound method in the Shape
interface is Draw(), so the intent is for the client programmer to call Draw()
through a generic Shape reference. Draw() is overridden in all of the derived
classes, and because it is a dynamically bound method, the proper behavior will
occur even though it is called through a generic Shape reference. That’s
polymorphism.

Thus, you generally create a specific object (Circle, Square, or Triangle),
upcast it to a Shape (forgetting the specific type of the object), and use that
Shape abstract data type reference in the rest of the program.

As a brief review of polymorphism and upcasting, you might code the above
example as follows:

//:c13:Shapes.cs
using System;
using System.Collections;

class Shape {
 internal void Draw() {
 Console.WriteLine(this + ".Draw()");
 }
}

class Circle : Shape {

Shape

Draw()

Circle Square Triangle

Chapter 13: Reflection and Attributes 513

 public override string ToString() {
 return "Circle";}
}

class Square : Shape {
 public override string ToString() {
 return "Square";}
}

class Triangle : Shape {
 public override string ToString() {
 return "Triangle";}
}

public class Shapes {
 public static void Main() {
 IList s = new ArrayList();
 s.Add(new Circle());
 s.Add(new Square());
 s.Add(new Triangle());
 IEnumerator e = s.GetEnumerator();
 while (e.MoveNext()) {
 ((Shape)e.Current).Draw();
 }
 }
} ///:~

The base class contains a Draw() method that indirectly uses ToString() to
print an identifier for the class by passing this to Console.WriteLine(). If that
function sees an object, it automatically calls the ToString() method to produce
a String representation.

Each of the derived classes overrides the ToString() method (from object) so
that Draw() ends up printing something different in each case. In Main(),
specific types of Shape are created and then added to an IList. This is the point
at which the upcast occurs because the IList holds only objects. Since
everything in C# is an object, an IList can also hold Shape objects. But during
an upcast to object, it also loses any specific information, including the fact that
the objects are Shapes. To the ArrayList, they are just objects.

At the point you fetch an element out of the IList’s IEnumerator with
MoveNext(), things get a little busy. Since the IList holds only objects,

514 Thinking in C# www.ThinkingIn.NET

MoveNext() naturally produces an object reference. But we know it’s really a
Shape reference, and we want to send Shape messages to that object. So a cast
to Shape is necessary using the traditional “(Shape)” cast. This is the most
basic form of RTTI, since in C# all casts are checked at run-time for correctness.
That’s exactly what RTTI means: At run-time, the type of an object is identified.

In this case, the RTTI cast is only partial: The object is cast to a Shape, and not
all the way to a Circle, Square, or Triangle. That’s because the only thing we
know at this point is that the IList is full of Shapes. At compile-time, this is
enforced only by your own self-imposed rules, but at run-time the cast ensures it.

Now polymorphism takes over and the exact method that’s called for the Shape
is determined by whether the reference is for a Circle, Square, or Triangle.
And in general, this is how it should be; you want the bulk of your code to know
as little as possible about specific types of objects, and to just deal with the
abstract data type that represents a family of objects (in this case, Shape). As a
result, your code will be easier to write, read, and maintain, and your designs will
be easier to implement, understand, and change. So polymorphism is the general
goal in object-oriented programming.

But what if you have a special programming problem that’s easiest to solve if you
know the exact type of a generic reference? For example, suppose you want to
allow your users to highlight all the shapes of any particular type by turning them
purple. This way, they can find all the triangles on the screen by highlighting
them. Or perhaps you have an external method that needs to “rotate” a list of
shapes, but it makes no sense to rotate a circle so you’d like to skip only the circle
objects. This is what RTTI accomplishes: you can ask a Shape reference the exact
type that it’s referring to. With RTTI you can select and isolate special cases.

The Type object
To understand how RTTI works in C#, you must first know how type information
is represented at run-time. This is accomplished through a special kind of object
called the Type object, which contains information about the class. (This is
sometimes called a meta-class.) In fact, the Type object is used to create all of
the “regular” objects of your class1.

There’s a Type object for each type that is part of your program. That is, each
time you write and compile a new type, whether it be a value type such as a
structure, or a “real” object, a single Type object is created. A collection of Type

1 In fact, all your objects will be of type RuntimeType, which is a subtype of Type.

Chapter 13: Reflection and Attributes 515

objects is stored in binary format in an assembly (usually having an extension of
.dll or .exe). At run-time, when you want to make an object of that type, the CLR
first checks to see if the Type has been instantiated within the current
AppDomain (roughly, an AppDomain is the runtime container for the
assemblies of a single application). If the type has not been instantiated, the CLR
reads the assembly and transforms the CIL contents into machine instructions
appropriate to the local hardware (this process is called Just In Time
Compilation, and JIT has become a common verb to describe it). This happens in
every AppDomain that uses the Type; some amount of memory efficiency is
traded for the benefits, such as security, that come from isolating AppDomains.
Thus, a .NET program isn’t completely loaded before it begins, which is different
from many traditional languages.

Once the Type object for that type is in memory, it is used to create all instances
of that type.

If this seems shadowy or if you don’t really believe it, here’s a demonstration
program to prove it:

//:c13:SweetShop.cs
// Examination of the way type loading works.
using System;

class Candy {
 static Candy(){
 Console.WriteLine("Candy loaded");
 }
}

class Gum {
 static Gum(){
 Console.WriteLine("Gum loaded");
 }

 internal static string flavor = "juicyfruit";
}

class Cookie {
 static Cookie() {
 Console.WriteLine("Cookie loaded");
 }
}

516 Thinking in C# www.MindView.net

public class SweetShop {
 public static void Main() {
 Console.WriteLine("Inside Main");
 new Candy();
 Console.WriteLine("After creating Candy");
 Type t = Type.GetType("Gum");
 Console.WriteLine(
 "After Type.GetType(\"Gum\")");
 Console.WriteLine(Gum.flavor);
 Console.WriteLine("Before creating Cookie");
 new Cookie();
 Console.WriteLine("After creating Cookie");
 }
} ///:~

Each of the classes Candy, Gum, and Cookie have a static constructor that is
executed the first time an instance of the class is created. Information will be
printed to tell you when that occurs. In Main(), the object creations are spread
out between print statements to help detect the time of loading.

A particularly interesting sequence is:

Type t = Type.GetType("Gum");
Console.WriteLine(
 "After Type.GetType(\"Gum\")");
Console.WriteLine(Gum.flavor);

Type.GetType() is a static method that attempts to load a type of the given
name. A Type object is like any other object and so you can get and manipulate a
reference to it. One of the ways to get a reference to the Type object is
Type.GetType(), which takes a string containing the textual name of the
particular class you want a reference for.

When you run this program, the output will be:

Inside Main
Candy loaded
After creating Candy
After Type.GetType("Gum")
Gum loaded
juicyfruit

Chapter 13: Reflection and Attributes 517

Before creating Cookie
Cookie loaded
After creating Cookie

You can see that each Class object is loaded only when it’s needed, and the static
constructor is run immediately prior to when data from the Type is needed (in
this case, the static string that told the Gum’s flavor). This is in slight contrast
to Java, which instantiates the static state of a type immediately upon class
loading.

Type retrieval operator
C# provides a second way to produce the reference to the Type object, using the
type retrieval operator typeof(). In the above program this would look like:

typeof(Gum);

which is not only simpler, but also safer since it’s checked at compile-time.
Because it eliminates the method call, it’s also more efficient.

Checking before a cast
So far, you’ve seen RTTI forms including:

♦ The classic cast; e.g., “(Shape),” which uses RTTI to make sure the cast
is correct.

♦ The Type object representing the type of your object. The Type object
can be queried for useful run-time information.

In C++, the classic cast “(Shape)” does not perform RTTI. It simply tells the
compiler to treat the object as the new type. In C#, which does perform the type
check, this cast is often called a “type safe downcast.” The reason for the term
“downcast” is the historical arrangement of the class hierarchy diagram. If
casting a Circle to a Shape is an upcast, then casting a Shape to a Circle is a
downcast. However, you know a Circle is also a Shape, and the compiler freely
allows an upcast assignment, but you don’t know that a Shape is necessarily a
Circle, so the compiler doesn’t allow you to perform a downcast assignment
without using an explicit cast.

There’s one more form of RTTI in C#. These are the keyword is and as. The
keyword is tells you if an object is an instance of a particular type. It returns a
bool so you use it in the form of a question, like this:

if(cheyenne is Dog)
 ((Dog)cheyenne).Bark();

518 Thinking in C# www.ThinkingIn.NET

The above if statement checks to see if the object cheyenne belongs to the class
Dog before casting cheyenne to a Dog. It’s important to use is before a
downcast when you don’t have other information that tells you the type of the
object; otherwise you’ll end up with an InvalidCastException.

The keyword as performs a downcast to the specified type, but returns null if the
object is not an object of the specified type. So the above example becomes:

Dog d = cheyenne as Dog;
d.Bark();

 If the object cheyenne did not belong to class Dog, this would still compile fine,
but you would get a NullReferenceException when the line d.Bark()
attempts to execute. You should exercise extreme caution with as, especially if
you do not immediately attempt to use the result. Leaving possibly null values
floating around is sloppy programming.

Ordinarily, you will be hunting for one type (triangles to turn purple, for
example), but you can easily tally all of the objects using is. Suppose you have a
family of Pet classes:

//:c13:Pets.cs
class Pet { }
class Dog :Pet { }
class Pug :Dog { }
class Cat :Pet { }
class Rodent :Pet { }
class Gerbil :Rodent { }
class Hamster :Rodent { }
///:~

Using is, all the pets can be counted:

//:c13:PetCount1.cs
//Compile with:
//csc Pets.cs PetCount1.cs
using System;
using System.Collections;

public class PetCount {
 static string[] typenames = {
 "Pet", "Dog", "Pug", "Cat",
 "Rodent", "Gerbil", "Hamster",
 };

Chapter 13: Reflection and Attributes 519

 public static void Main() {
 ArrayList pets = new ArrayList();
 Type[] petTypes = {
 Type.GetType("Dog"),
 Type.GetType("Pug"),
 Type.GetType("Cat"),
 Type.GetType("Rodent"),
 Type.GetType("Gerbil"),
 Type.GetType("Hamster"),
 };

 Random r = new Random();

 for (int i = 0; i < 15; i++) {
 Type t = petTypes[r.Next(petTypes.Length)];
 object o = Activator.CreateInstance(t);
 pets.Add(o);
 }

 Hashtable h = new Hashtable();
 foreach(string typename in typenames){
 h[typename] = 0;
 }
 foreach(object o in pets){
 if (o is Pet)
 h["Pet"] = ((int) h["Pet"]) + 1;
 if (o is Dog)
 h["Dog"] = ((int) h["Dog"]) + 1;
 if (o is Pug)
 h["Pug"] = ((int) h["Pug"]) + 1;
 if (o is Cat)
 h["Cat"] = ((int) h["Cat"]) + 1;
 if (o is Rodent)
 h["Rodent"] = ((int) h["Rodent"]) + 1;
 if (o is Gerbil)
 h["Gerbil"] = ((int) h["Gerbil"]) + 1;
 if (o is Hamster)
 h["Hamster"] = ((int) h["Hamster"]) + 1;
 }
 foreach(object o in pets)

520 Thinking in C# www.MindView.net

 Console.WriteLine(o.GetType());
 foreach(string s in typenames)
 Console.WriteLine("{0} quantity: {1}",
 s, h[s]);
 }
} ///:~

There’s a rather narrow restriction on is: You can compare it to a named type
only, and not to a Type object. In the example above you might feel that it’s
tedious to write out all of those is expressions, and you’re right. But there is no
way to cleverly automate is by creating an ArrayList of Type objects and
comparing it to those instead (stay tuned—you’ll see an alternative). This isn’t as
great a restriction as you might think, because you’ll eventually understand that
your design is probably flawed if you end up writing a lot of is expressions.

Of course this example is contrived—you’d probably put a static data member in
each type and increment it in the constructor to keep track of the counts. You
would do something like that if you had control of the source code for the class
and could change it. Since this is not always the case, RTTI can come in handy.

Using type retieval
It’s interesting to see how the PetCount.cs example can be rewritten using type
retrieval. The result is significantly cleaner:

//:c13:PetCount2.cs
//Compile with:
//csc Pets.cs PetCount2.cs
// Using type retrieval
using System;
using System.Collections;

public class PetCount2 {
 public static void Main(String[] args){
 ArrayList pets = new ArrayList();
 Type[] petTypes = {
 // Class literals:
 typeof(Pet),
 typeof(Dog),
 typeof(Pug),
 typeof(Cat),
 typeof(Rodent),
 typeof(Gerbil),

Chapter 13: Reflection and Attributes 521

 typeof(Hamster)
 };

 Random r = new Random();
 for (int i = 0; i < 15; i++) {
 //Offset by 1 to eliminate Pet class
 Type t = petTypes[
 1 + r.Next(petTypes.Length - 1)];
 object o = Activator.CreateInstance(t);
 pets.Add(o);
 }

 Hashtable h = new Hashtable();
 foreach(Type t in petTypes){
 h[t] = 0;
 }
 foreach(object o in pets){
 Type t = o.GetType();
 foreach(Type mightBeType in petTypes){
 if (t == mightBeType ||
 t.IsSubclassOf(mightBeType)) {
 h[mightBeType] =
 ((int) h[mightBeType]) + 1;
 }
 }
 }
 foreach(object o in pets)
 Console.WriteLine(o.GetType());
 foreach(Type t in petTypes)
 Console.WriteLine("{0} quantity: {1}",
 t, h[t]);
 }
} ///:~

Here, the typenames array has been removed in favor of using the types directly
as the Hashtable keys.

When the Pet objects are dynamically created, you can see that the random
number is restricted so it is between one and petTypes.length and does not
include zero. That’s because zero refers to Pet.class, and presumably a generic
Pet object is not interesting.

522 Thinking in C# www.ThinkingIn.NET

The loop that counts the different types needs to increment the count of the base
classes (and interfaces) of the particular pet. Given a Type you can work in either
direction: You can determine whether Type aType is a subtype of Type
maybeAncestor by calling:

 maybeAncestor.IsAssignableFrom(aType);

or you can call:

aType.IsSubclassOf(maybeAncestor);

In this example, we use the latter method to determine our count.

Given a Type and an object, you can use Type.IsInstanceOfType(), passing
in the object, as well. So, if:

Object someObject = new SomeType();
Object anotherObject = new AnotherType();
Object aThirdObject = new AThirdType();
Type someType = someObject.GetType();
Type anotherType = anotherObject.GetType();

Then:

Operation If true:

someType.isAssignableFrom
 (anotherType);

SomeType

AnotherType

Possibly many
layers of
inheritance

someType.IsSubclassOf
 (anotherType);

AnotherType

SomeType

Possibly many
layers of
inheritance

Chapter 13: Reflection and Attributes 523

someType.IsInstanceOfType
 (aThirdObject);

SomeType

AThirdType

Possibly many
layers of
inheritance

RTTI syntax
C# performs its RTTI using the Type object, even if you’re doing something like
a cast. The class Type also has a number of properties and methods that you can
use to exploit RTTI.

First, you must get a reference to the appropriate Type object. One way to do
this, as shown in the previous example, is to use a string and the
Type.GetType() method. This is convenient because you don’t need an object
of that type in order to get the Type reference. However, if you do already have
an object of the type you’re interested in, you can fetch the Type reference by
calling a method that’s part of the object root class: GetType(). This returns
the Type reference representing the actual type of the object. Type has some
interesting methods, partially explored in the following example:

//:c13:ToyTest.cs
// Testing class Type.
using System;

interface HasBatteries {}
interface Waterproof {}
interface ShootsThings {}
class Toy {
 // Comment out or make less visible the following
 //default constructor to see MissingMethodException
 //thrown at (*1*)
 public Toy() {}
 public Toy(int i) {}
}

class FancyToy : Toy, HasBatteries,
Waterproof, ShootsThings {
 FancyToy():base(1) {}

524 Thinking in C# www.MindView.net

}

public class ToyTest {
 public static void Main(){
 Type t = null;
 t = Type.GetType("FancyToy");
 PrintInfo(t);
 Type[] faces = t.GetInterfaces();
 foreach(Type iFace in faces){
 PrintInfo(iFace);
 }
 Type parent = t.BaseType;
 Object o = null;
 // Requires default constructor:
 Console.WriteLine("Creating " + parent);
 o = Activator.CreateInstance(parent); // (*1*)
 PrintInfo(o.GetType());
 }

 static void PrintInfo(Type t) {
 Console.WriteLine(
 "Class name: " + t.FullName
 + " is interface? ["
 + t.IsInterface + "]");
 }
} ///:~

You can see that class FancyToy is quite complicated, since it inherits from
Toy and implements the interfaces of HasBatteries, Waterproof, and
ShootsThings. In Main(), a Type reference is created and initialized to the
FancyToy Type using Type.GetType().

The Type.GetInterfaces() method returns an array of Type objects
representing the interfaces that are contained in the Type object of interest.

If you have a Type object you can also ask it for its direct base class using the
BaseType property. This, of course, returns a Type reference that you can
further query. This means that, at run-time, you can discover an object’s entire
class hierarchy.

The Activator.CreateInstance() can, at first, seem like just another way to
clone an object. However, you can create a new object with CreateInstance()
without an existing object, as seen here, because there is no Toy object—only

Chapter 13: Reflection and Attributes 525

parent, which is a reference to a Type object. This is a way to implement a
“virtual constructor,” which allows you to say “I don’t know exactly what type you
are, but create yourself properly anyway.” In the example above, parent is just a
Type reference with no further type information known at compile-time. And
when you create a new instance, you get back an object reference. But that
reference is pointing to a Toy object. Of course, before you can send any
messages other than those accepted by object, you have to investigate it a bit and
do some casting. In addition, in this scenario the class that’s being created with
CreateInstance() must have a default constructor. In the next section, you’ll
see how to dynamically create objects of classes using any constructor, with the
C# reflection API.

The final method in the listing is PrintInfo(), which takes a Type reference
and gets its name, including its namespace, from its FullName property and
whether it’s an interface with IsInterface.

The output from this program is:

Class name: FancyToy is interface? [false]
Class name: HasBatteries is interface? [true]
Class name: Waterproof is interface? [true]
Class name: ShootsThings is interface? [true]
creating Toy
Class name: Toy is interface? [false]

Thus, with the Type object you can find out just about everything you want to
know about an object.

Reflection: run-time
class information
If you don’t know the precise type of an object, RTTI will tell you. However,
there’s a limitation: the type must be known at compile-time in order for you to
be able to detect it using RTTI and do something useful with the information. Put
another way, the compiler must know about all the classes you’re working with
for RTTI.

This doesn’t seem like that much of a limitation at first, but suppose you’re given
a reference to an object that’s not in your program space. In fact, the class of the
object isn’t even available to your program at compile-time. For example,
suppose you get a bunch of bytes from another AppDomain or from a network
connection and you’re told that those bytes represent a class. Since the compiler

526 Thinking in C# www.ThinkingIn.NET

can’t know about the class while it’s compiling the code, how can you possibly use
such a class?

In a traditional programming environment this seems like a far-fetched scenario.
But as we move into a larger programming world there are important cases in
which this happens. The first is component-based programming, in which you
build projects using Rapid Application Development (RAD) in an application
builder tool such as the Visual Designer in Visual Studio .NET. This is a visual
approach to creating a program (which you see on the screen as a “form”) by
moving icons that represent components onto the form. These components are
then configured by setting some of their properties at program time. This design-
time configuration requires that any component be instantiable, that it exposes
parts of itself, and that it allows its values to be read and set. In addition,
components that handle GUI events must expose information about appropriate
methods so that the RAD environment can assist the programmer in overriding
these event-handling methods. Reflection provides the mechanism to detect the
available methods and produce the method names.

And the Visual Designer and other “form builders” are just a step on the path
towards visual programming. By using reflection to access a type’s methods and
the arguments to those methods, graphical editors can be used to specify
significant amounts of program behavior.

Another compelling motivation for discovering class information at run-time is to
provide the ability to create and execute objects on remote platforms across a
network. This is called Remoting and it allows a C# program to have objects
distributed across many machines. This distribution can happen for a number of
reasons: For example, perhaps you’re doing a computation-intensive task and
you want to break it up and put pieces on machines that are idle in order to speed
things up. In some situations you might want to place code that handles
particular types of tasks (e.g., “Business Rules” in an n-tier architecture) on a
particular machine, so that machine becomes a common repository describing
those actions and it can be easily changed to affect everyone in the system. (This
is an interesting development, since the machine exists solely to make software
changes easy!) Along these lines, distributed computing also supports specialized
hardware that might be good at a particular task—matrix inversions, for
example—but inappropriate or too expensive for general purpose programming.

The class Type (described previously in this chapter) supports the concept of
reflection, and there’s an additional namespace, System.Reflection, with
classes EventInfo, FieldInfo, MethodInfo, PropertyInfo, and
ConstructorInfo (each of which inherit from MemberInfo). Objects of these

Chapter 13: Reflection and Attributes 527

types are created at run-time to represent the corresponding member in the
unknown class. You can then use the ConstructorInfos to create new objects,
read and modify fields and properties associated with FieldInfo and
PropertyInfo objects, and the Invoke() method to call a method associated
with a MethodInfo object. In addition, you can call the convenience methods
Type.GetEvents(), GetFields(), GetMethods(), GetProperties(),
GetConstructors(), etc., to return arrays of the objects representing the fields,
methods, properties, and constructors. (You can find out more by looking up the
class Type in your online documentation.) Thus, the class information for
anonymous objects can be completely determined at run-time, and nothing need
be known at compile-time.

It’s important to realize that there’s nothing magic about reflection. When you’re
using reflection to interact with an object of an unknown type, the CLR will
simply look at the object and see that it belongs to a particular class (just like
ordinary RTTI) but then, before it can do anything else, the Type object must be
loaded. Thus, the assembly for that particular type must still be available to the
CLR, either on the local machine or across the network (unless you are using the
System.Reflection.Emit namespace to dynamically create types – a powerful
capability that is beyond the scope of this book). So the true difference between
RTTI and reflection is that with RTTI, the compiler opens and examines the
assembly at compile-time. Put another way, you can call all the methods of an
object in the “normal” way. With reflection, the assembly is unavailable at
compile-time; it is opened and examined by the run-time environment.

Adding meta-information with attributes
How would you implement a mechanism whose behavior was applicable to a
broad array of types? Examples of such “cross-cutting” concerns could include
security, serialization, testing, and more esoteric things like the role of a class or
method plays in implementing a design pattern.

You’d face two challenges: one would be associating your mechanism and its
parameters with all the different types to which it applies, the second would be
integrating, at the appropriate time, the custom mechanism into the behavior of
the system. Attributes provide an efficient mechanism for the former, while
reflection is used to help with the second challenge.

Attributes are just classes
An Attribute is just a class descended from class Attribute. This is a perfectly
valid attribute:

//:c13:Meaningless1.cs

528 Thinking in C# www.MindView.net

//Compile with csc /target:library Meaningless1.cs
using System;
public class Meaningless : Attribute {
}///:~

What makes Attributes special is that every .NET language must support a
special syntax so that Attribute types can be associated with programming
elements such as classes, methods, parameters, assemblies, and so forth. In C#,
this association is done by putting the name of the attribute in square brackets
immediately preceding the declaration of the target. So, for instance:

[SerializableAttribute] class MyClass { }

associates the type SerializableAttribute with the class MyClass.
Additionally, if there is no type with the exact name specified in the brackets and
if there is a type with the name of form BracketNameAttribute, that type will
be associated. So:

[Serializable] class MyClass { } will first try to find an Attribute of type
Serializable, but if such a type does not exist, type SerializableAttribute will
be associated. This is a naming convention that is used throughout the .NET
Framework SDK: The type is named BracketNameAttribute, and applied with
the shorthand [BracketName].

Associating an Attribute with a programming element with square brackets is
said to be a declarative association.

Specifying an attribute’s targets
Although Attributes can be associated with almost any programming element, a
specific attribute generally only makes sense when applied to a subset:
SerializableAttribute, which controls the ability of an object to be transformed
into and from a Stream, only makes sense for classes, structs, enums, and
delegates. SecurityAttribute, on the other hand, applies to assemblies, classes,
structs, constructors, and methods.

The programming elements with which an Attribute can be associated are said to
be the Attribute’s targets. The compiler will produce an error if an Attribute is
declaratively associated with an invalid target. How are target’s specified? Why,
with the AttributeUsageAttribute:

//:c13:Meaningless2.cs
//Compile with csc /target:library Meaningless2.cs
//A meaningless attribute
using System;

Chapter 13: Reflection and Attributes 529

[AttributeUsage (AttributeTargets.Class)]
public class Meaningless : Attribute {
 public Meaningless(){
 Console.WriteLine("Meaningless created");
 }
}///:~

The Meaningless class declaration element is preceded by a declarative
association of the AttributeUsageAttribute. The declaration specifies that
Meaningless Attributes can be associated with class declaration elements. This
allows us to write, for instance:

//:c13:Jellyfish.cs
//Compile with:
//csc /reference:Meaningless2.dll Jellyfish.cs
//A class with a Meaningless attribute
using System;

[Meaningless] class Jellyfish {
 //! [Meaningless] <-- generates "not valid"
 public static void Main(){
 new Jellyfish();
 Console.WriteLine("Jellyfish created");
 }
}///:~

Class Jellyfish is declared to have the Meaningless Attribute. In order for this
class to compile, the compiler needs access to the Meaningless type, so this
class must be compiled with a reference to the Meaningless2.dll generated in
the previous sample.

Attribute arguments
Going back to the AttributeUsageAttribute, you’ll see that it takes an
argument, one or more values from the AttributeTargets enumeration. The
AttributeTargets enum is defined as:

[Flags] public enum AttributeTargets{
Assembly = 1, Module = 2, Class = 4, Struct = 8,
Enum = 16, Constructor = 32, Method = 64,

530 Thinking in C# www.ThinkingIn.NET

Property = 128, Field = 256, Event = 512, Interface = 1024,
Parameter = 2048, Delegate = 4096, ReturnValue =– 8192, All
= 16383 };2

The FlagsAttribute makes AttributeTargets bitwise-combinable:

[AttributeUsage (AttributeTargets.Class |
AttributeTargets.Struct)]

Or you can use AttributeTargets.All as shorthand for all the values.

It is the support for arguments that really make attributes shine. Not only can you
associate the custom Attribute type with a target, you can associate custom
design-time data with the target. The data must be a constant, typeof expression,
or an array creation expression, but within those limits there is still a brand new
area of interesting potential.

You can set an Attribute’s arguments by overloading its constructor and by
exposing public properties. Our Meaningless3 Attribute uses both techniques:

//:c13:Meaningless3.cs
//Compile with csc /target:library Meaningless3.cs
//Demonstrates arguments to Attribute
using System;

[AttributeUsage (AttributeTargets.Class)]
public class Meaningless : Attribute {
 Type t;
 public Type TypeProperty{
 get { return t;}
 set { t = value;}
 }
 public Meaningless(string s){
 Console.WriteLine("Meaningless created");
 }
}///:~

To pass data in to an Attribute, you use a syntax which is quite different than
anything we’ve seen:

2foreach(object o in
 Enum.GetValues(typeof(AttributeTargets))){
 Console.WriteLine("{0} : {1}", o, (int) o);
}

Chapter 13: Reflection and Attributes 531

//:c13:Jellyfish2.cs
//Compile with:
//csc /reference:Meaningless3.dll Jellyfish2.cs
using System;
using System.Reflection;

[Meaningless("Some string",
 TypeProperty=typeof(Jellyfish))] class Jellyfish {
 public static void Main(){
 Console.WriteLine("In Main()");
 new Jellyfish();
 Console.WriteLine("Jellyfish created");
 }
}///:~

Things start off in a way that looks a little like a constructor, the attribute’s
typename, an open parenthesis, and then the constructor arguments (in this case,
a single string variable). These constructor arguments have to be in order and a
value must be provided for each expected argument in the constructor. Aside
from the lack of the new keyword, this isn’t far from what we’re used to in C#.
Then, still within the open parenthesis, comes a list of property name-value
pairs. Not all properties have to be set in this list, the order in which properties
are set is unimportant, the name of the property is not associated with any
reference to an object and the list occurs within the same method-call-like
parentheses pair that contains the constructor arguments.

Things get even stranger when we start investigating the behavior of Attributes.
You may have noticed that our Meaningless Attributes have all written to the
console in their constructor call, but if you’ve compiled and run the Jellyfish
programs, you’ve seen that the Meaningless constructor has not written
anything to the screen.

That’s because Attributes aren’t instantiated until they’re retrieved! The Attribute
arguments are actually “pickled” in the target assembly’s metadata section and
are only brought out of storage and used to instantiate the Attribute when and if
special steps are taken to read the Attribute.

This is done to avoid versioning issues with Attributes and so that attribute
objects are not created at compile time, which could have security implications.
An Attribute type, like any other, has a public interface and a private
implementation. The public interface of a type is only changed with great
deliberation, but the private implementation should be absolutely transient—you
should be able to change it on a whim. This raises the great problem of object

532 Thinking in C# www.MindView.net

storage: The bytes that make up an object on Monday might not be able to
recreate that object on Wednesday if on Tuesday a new assembly was installed
with a different implementation.

One strategy for handling this is to figure that implementations don’t change that
often. This is the strategy Java uses: it assumes that bytes stored on Monday will
be valid on Wednesday and, if on Wednesday this turns out to be an invalid
assumption, Java throws an Exception while recreating the object. C#’s language
design, though, is clearly influenced by Microsoft’s experience with “DLL Hell,”
where the uncommon event of changing an implementation file, multiplied by
tens of millions of users, became an expensive support issue. Thus, .NET’s
strategy for storing Attribute arguments: instead of instantiating the Attribute
and storing its bytes, the arguments themselves are stored when the target is
compiled on Monday. On Wednesday, as long as the Attribute’s assembly
contains an appropriate constructor and properties, the Attribute is instantiated
for the first time, using the arguments stored in the target assembly3. This section
is very difficult to understand. Maybe if you expand it a bit, it will make more
sense. Giving a concrete example would probably be a good idea.

The Global Assembly Cache
Attributes are also used to control the process by which shared assemblies are
uniquely identified and made available to all programs that use them. This was
covered very briefly in the discussion of namespaces in chapter 6, but the
discussion of the process by which an assembly was uniquely named, signed, and
installed had to be deferred until this discussion of attributes.

There are three major problems that the cryptographic approach to a global
assembly cache solves:

1. How can I judge whether to install a component?

2. How can I ensure that installing one version of a component will not
overwrite a version that is still needed by another program?

3. How can I know that an installed component hasn’t been replaced by a
malicious spoof?

3 If, on the other hand, the Attribute’s assembly has had its public interface changed,
.NET Framework v. 1.0.3705 fatally crashes the runtime, no matter what you do with
try…catch and finally blocks. Hopefully, Microsoft will demonstrate the ease with which
implementations can be updated and this won’t be an issue by the time you read this!

Chapter 13: Reflection and Attributes 533

All of these solutions are premised on the use of tools to manipulate the GAC, so
we’re not going to detail the structure of the directory \Windows\Assembly\GAC.

The strong identity of your assembly is determined by four things: the
[AssemblyProduct], [AssemblyVersion] and [AssemblyCulture]
attributes and the assembly’s filename. The AssemblyProductAttribute takes
a string that specifies the name of the assembly (which can be more elaborate
than just a filename). The AssemblyVersionAttribute takes a string that
should be a dotted number; the convention is that this is, from left-to-right, the
major version, the minor version, the number of the official daily build, and an
extra number for intraday emergency releases. The
AssemblyCultureAttribute can specify culture-specific assemblies (discussed
further in Chapter 14), when passed a blank string in its constructor, it creates an
assembly that is “neutral” about culture.

In order to sign your assembly cryptographically, you must additionally specify
the AssemblyKeyFileAttribute, which takes a string specifying the name of a
file that contains both a public and private cryptographic key:

[assembly:AssemblyKeyFile("MyKeyFile.keys")]

This line specifies that the target of the attribute is not the element that
immediately follows, but the assembly in which the attribute declaration is made.

The contents of MyKeyFile.keys, meanwhile, is created by running the Strong
Naming Tool that ships with the .NET Framework SDK:

sn –k MyKeyFile.keys

The sn tool has a wide variety of case-sensitive command-line options.

The complete set of attributes for a strongly named class would look like this:

//:c13:StronglyNamedAttribute.cs
/* Compile with
csc /target:library StronglyNamedAttribute.cs
*/
using System;
using System.Reflection;

//Common name of product
[assembly:AssemblyProduct("Strongly Named Example")]
//First major release, built on day 180 of the project
[assembly:AssemblyVersion("1.0.180.0")]

534 Thinking in C# www.ThinkingIn.NET

//Location of public-private keyfile
[assembly:AssemblyKeyFile("MyKeyFile.keys")]
//Neutral culture
[assembly:AssemblyCulture("")]

[AttributeUsage (AttributeTargets.Class)]
public class SName : Attribute {
 Type t;
 public Type TypeProperty{
 get { return t;}
 set { t = value;}
 }
 public SName(){
 Assembly thisAssembly =
 Assembly.GetAssembly(typeof(SName));
 bool GACLoaded =
 thisAssembly.GlobalAssemblyCache;
 AssemblyName thisName = thisAssembly.GetName();
 string fName = thisName.FullName;
 Version v = thisName.Version;

 Console.WriteLine("{0} v. {1} from GAC: {2}",
 fName, v, GACLoaded);
 }
}///:~

There are several other AssemblyXxxAttribute classes that can embed other
information data (such as copyright information) into an assembly, but do not
influence the strong name of the assembly.

The SName() constructor uses Assembly.GetAssembly() to retrieve its own
Assembly. The Assembly.GlobalAssemblyCache property specifies whether
the Assembly was loaded from the GAC. The AssemblyName contains all of
the strong name attributes, including version information and the public key.

After compilation, this assembly can be added to the GAC by running:

GACUtil /i StronglyNamedAttribute.dll

Once in the GAC, an assembly is available for runtime sharing; however, it is not
automatically available for use as a compile-time reference. In other words, once
you install StronglyNamedAttribute.dll in the GAC, you will not be able to
switch directories and compile any class with

Chapter 13: Reflection and Attributes 535

csc /reference:StronglyNamedAttribute.dll SomeClass.cs

This is initially confusing behavior, but makes sense when you consider the
difference between the compilation use-case and the runtime loading use-case.
Obviously, the compiler writers could have made the /reference switch check in
the GAC if the referenced DLL was not in the current directory. But if the GAC
contains multiple copies of StronglyNamedAttribute.DLL, which should be
used by SomeClass.cs for referencing? The latest version? Probably, but not
always! It is a not uncommon problem for one programmer on a team to install
something and suddenly be using a different version of a shared library, which
leads to the classic “It works okay on my machine,” dilemma.

.NET is more restrictive by default: shared libraries should be placed within the
development directory tree (and, of course, copies should be stored in the source-
code control system). Although the /reference switch just refers to a filename;
assemblies are bound to the complete strong name (filename, version, and
public-key token).

If you’ve installed StronglyNamedAssembly.dll to the GAC, uninstall it with:

GACUtil /u StronglyNamedAssembly

Note that the uninstall command does not use the .DLL suffix. With a copy of
StronglyNamedAssembly.dll in the local directory, compile this example:

//:c13:Jellyfish3.cs
//A class that refers to a strongly-named attribute
/*
 With StronglyNamedAttribute.DLL local compile with:
 csc /r:StronglyNamedAttribute.dll Jellyfish3.cs
*/
using System;
using System.Reflection;

[SName] class Jellyfish {
 public static void Main(){
 Console.WriteLine("In Main()");
 new Jellyfish();
 Console.WriteLine("Jellyfish created");
 try {
 //Trigger attribute instantiation
 Attribute.GetCustomAttribute
 (typeof(Jellyfish), typeof(SName));
 } catch (Exception e) {

536 Thinking in C# www.MindView.net

 Console.WriteLine(e);
 }
 }
}///:~

Run Jellyfish.exe. Attribute.GetCustomAttribute() will trigger the
instantiation of the SName attribute. If you’ve deleted
StronglyNamedAssembly from the GAC, the value of GACLoaded in the
SName() constructor will be false. Reinstall
StronglyNamedAssembly.DLL in the GAC:

GACUtil /i StronglyNamedAssembly.DLL

Now when you run Jellyfish.exe, GACLoaded will be true and you are free to
delete the local copy of StronglyNamedAssembly.DLL. Now, Jellyfish.exe
is tightly bound to the version of StronglyNamedAssembly that is in the GAC.
I think it would be valuable to go into more depth about what’s happening behind
the scenes in this section. I think the deeper the explanation, the easier it will be
to see what’s going on at the highest level. I’ve reread the section several times,
and it’s still not entirely clear what’s happening. When run, the output will be
similar to this (your public key will be different, of course):

In Main()
Jellyfish created
StronglyNamedAttribute, Version=1.0.180.0, Culture=neutral,
PublicKeyToken=24ced6b495827404 v. 1.0.180.0 from GAC: True

You can browse the contents of the GAC using Windows Explorer:

Figure 13-2: Windows Explorer allows you to view the GAC

Chapter 13: Reflection and Attributes 537

If you use Visual Studio, you will see that it is possible to add references to .NET
assemblies from a dialog. However, just adding an assembly to the GAC does not
populate this dialog. If you are in the business of distributing libraries for other
programmers, you’ll probably want to make your DLLs available via this dialog
rather than the generally-superior method of copying them into the project
directory so that they’re locally available.

Assemblies shown in this box are controlled by a path-based Registry key. So if
prior to registering it in the GAC, you put StronglyNamedAssembly.DLL in,
say, c:\program files\mycompany\assemblies, you would add to the
Registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\Assemb
lyFolders\MyCompany]@="c:\program
files\mycompany\assemblies"

Figure 13-3 shows the results; a new registry value and the ability to reference the
assembly from Visual Studio without additional XCOPY deployment of the
library.

Figure 13-3: Adding an assembly to thte GAC

Designing with attributes
A common question among first-time attribute developers is “After I’ve written
my Attribute, how do I automatically intercept it?” That is, attributes
implemented in the .NET runtime such as STAThreadAttribute and
WebMethodAttribute (discussed in Chapter 18) work to seamlessly modify
their target’s behavior. The belief is that there’s some way to say “Get me all the
targets of Meaningless currently in memory.” There is not. The steps that make

538 Thinking in C# www.ThinkingIn.NET

a WebService as simple as adding [WebMethod] to a method only happen
because Visual Studio checks for the attribute within the chain of code associated
with compilation.4

Retrieving the Attributes associated with a target is done with the static methods
Attribute.GetCustomAttribute() and
Attribute.GetCustomAttributes(), which have overloads for each of the
AttributeTargets. Attribute.GetCustomAttribute() takes, as its final
argument, the type of the Attribute in which you are interested.

So if attributes aren’t magic – Attribute is just another class and there’s no
cloud of Attributes floating around in the execution space—what are the sorts of
things you should do with them?

Attributes can target everything from assemblies to fields, which gives one clue.
They are stored in their target’s assembly’s metadata, which gives another.
Attributes are generally used, not to interfere with the target’s state or behavior,
but to work at a level outside those issues, perhaps modifying the context in
which that function takes place or perhaps to control behavior at a time other
than the target’s runtime. Attributes are best used to tackle problems in meta-
programming – programming whose subject is the task of programming or the
execution of a program.

This example is a sketch of how Attributes might be used in a unit-testing
framework. The idea is that testing could be made more rigorous if the code for a
class or method was explicitly linked to its tests with a [TestWith] attribute.
Then, a batch-oriented program could read an assembly to determine the
appropriate tests, run them, and take the appropriate steps.

First, a simple TestWithAttribute:

//:c13:TestWithAttribute.cs
//Compile with
//csc /target:library TestWithAttribute.cs
//Associates a test class or method with its target
using System;

[AttributeUsage (AttributeTargets.Class |

4 Actually, .NET’s context architecture provides exactly the sort of dynamic interception
described. This aspect of the CLR is a moving, undocumented target. The adventurous are
referred to the System.Runtime.Remoting.Contexts namespace.

Chapter 13: Reflection and Attributes 539

 AttributeTargets.Method)]
public class TestWithAttribute : Attribute {
 Type testType;

 public Type TestType{
 get { return testType;}
 set { testType = value;}
 }
 public TestWithAttribute(Type t){
 testType = t;
 }
}///:~

This attribute stores a Type that contains the testing code to exercise the
TestWithAttribute’s target. In this next snippet, [TestWith] is applied to a
trivial addition method:

//:c13:SomethingToTest.cs
//A class that could be tested
using System;

class SomethingToTest {
 [TestWith(typeof(AdditionTester))]
 public static int Add(int x, int y){
 return x + y;
 }
}///:~ (Example continues with AdditionTester.cs)

The TestWithAttribute() constructor takes a reference to the
AdditionTester type:

//:c13:AdditionTester.cs
//A dynamically applied test class
/* Compile with:
csc /reference:TestWithAttribute.dll /target:library
 SomethingToTest.cs AdditionTester.cs
*/
using System;

class AdditionTester {
 //Invoke all test methods
 public AdditionTester(){
 Console.WriteLine("Invoking test methods");

540 Thinking in C# www.MindView.net

 if (TestPositiveNumbers()) {
 Console.WriteLine("Test passed");
 } else {
 Console.WriteLine("Test failed");
 }
 }
 bool TestPositiveNumbers(){
 int shouldBeFour = SomethingToTest.Add(2, 2);
 if (shouldBeFour != 4) {
 return false;
 } else {
 return true;
 }
 }
}///:~

When an instance of the AdditionTester stored in the TestWithAttribute is
constructed, it exercises the target’s methods; in this case, just confirming that 2
+ 2 = 4. In a complete design for a testing framework, all testing classes would
likely descend from a base class that used reflection and patterns such as
Template Method to consistently apply test methods and react to the test
methods’ success or failure.

The final component of our TestWithAttribute example is TestRunner, a
class which uses reflection and the TestWithAttribute but has no design-time
knowledge of either the testing types or the targets of those tests:

//:c13:TestRunner.cs
//Demonstrates reflection & attributes
using System;
using System.Text.RegularExpressions;
using System.Reflection;

class TestRunner {
 //Usage: TestRunner TypeName,Assembly*
 public static void Main(string[] args){
 Regex pairPattern =
 new Regex(@"(?<tName>.*),(?<aName>.*)");
 foreach(string arg in args){
 Match m = pairPattern.Match(arg);
 string typeName = m.Groups["tName"].Value;
 string asmName = m.Groups["aName"].Value;

Chapter 13: Reflection and Attributes 541

 new TestRunner(typeName, asmName);
 }
 }

 TestRunner(string typeName, string asmName){
 Assembly typeAsm = Assembly.Load(asmName);
 Type targetType = typeAsm.GetType(typeName);
 MethodInfo[] methods = targetType.GetMethods();

 foreach(MethodInfo method in methods){
 TestMethod(method);
 }
 }

 void TestMethod(MethodInfo methodInfo){
 TestWithAttribute twa =
 (TestWithAttribute)
 Attribute.GetCustomAttribute(
 methodInfo, typeof(TestWithAttribute));
 if (twa == null) {
 Console.WriteLine("No test defined for: " +
 methodInfo.Name);
 } else {
 Type testType = twa.TestType;
 Console.WriteLine("Testing {0} with {1}",
 methodInfo.Name, testType);
 Type[] noargs = new Type[0];
 ConstructorInfo defCon =
 testType.GetConstructor(noargs);
 defCon.Invoke(null);
 }
 }
}///:~

TestRunner’s Main() method is called with a command line argument of the
form:

TestRunner TestTarget,TestTargetAssembly

The Main() method loops over the command-line arguments, using a regular
expression to parse the test target and assembly names. Main() passes each
type-and-assembly pair to a TestRunner() constructor.

542 Thinking in C# www.ThinkingIn.NET

The TestRunner() constructor shows how easy it is to use reflection: It
dynamically loads the specified assembly, the t0-be-tested type, and retrieve’s all
of that type’s methods. For each method, it calls TestRunner.TestMethod().

TestMethod() shows how to retrieve Attributes with
Attribute.GetCustomAttribute(). The first argument is the passed in
MethodInfo, the second argument the Type of the Attribute we are trying to
retrieve, in this case typeof(TestWithAttribute). If the method is not
associated with the specified Attribute, the variable twa is null and a message is
written to the screen.

If, on the other hand, there is a TestWithAttribute associated with the current
method, the act of retrieving the TestWithAttribute will trigger the creation of
the TestWithAttribute. So when the TestRunner gets to
SomethingToTest.Add(), a TestWithAttribute is created with a
constructor argument of typeof(AdditionTester). The constructor assigns the
TestWithAttribute.TestType property to typeof(AdditionTester).

After writing a message to the screen, TestRunner.TestMethod() retrieves
the TestWithAttribute.TestType and uses reflection to retrieve its no-args
constructor. Type.GetConstructor() takes a Type][] representing the
argument list, since we want the default constructor we just pass in an empty
array.

Finally, TestMethod uses ConstructorInfo.Invoke() to instantiate an object
of type AdditionTester. As discussed previously, the AdditionTester()
constructor takes care of the business of running the test methods.

The output of:

TestRunner SomethingToTest,SomethingToTest

is:

No test defined for: GetHashCode
No test defined for: Equals
No test defined for: ToString
Testing Add with AdditionTester
Invoking test methods
Test passed
No test defined for: GetType

Chapter 13: Reflection and Attributes 543

Which illustrates the potential benefit of using Attributes for unit-testing: The
important question “What is the test coverage for this type and is that coverage
complete?” is answered by the Type itself via its TestWithAttributes.

Beyond objects with aspects
Attributes allow you to perform meta-programming on a broad range of targets,
bypassing inheritance as the only means of organizing types across a program or
system. However, you still have to explicitly associate an Attribute with each of
its targets and there is not an automatic way to “inject” the Attribute’s behavior
into the program’s behavior. Aspect-Oriented Programming is an emerging
technology that eliminates both of these restrictions. Aspect-Oriented
Programming is generating a buzz similar to the buzz that surrounded Object-
Oriented Programming in the late 80s. Whether it’s going to emerge as an
important programming paradigm is by no means certain, but it’s certainly
something that should be on your radar screen.

At the moment, there are no aspect-oriented languages implemented on .NET.
This is likely to change soon, as .NET’s value proposition of “Any language, one
platform,” makes it fertile ground for new approaches to programming.
Additionally, the .NET Framework Library contains classes beyond the scope of
this book for emitting code, dynamic compilation, and programmatic type
extension; .NET is potentially the most significant contribution to the
development of new computer languages in 25 years. That would be nice; the rise
of object-oriented imperative languages has had important benefits (the patterns
movement could not have happened without the widespread adoption of the
vocabulary of objects) but there has been a loss of awareness of the diversity and
potential of alternate paradigms. Aspect-orientation, declarative, functional, and
data-flow programming all have things to offer us today, and these are just some
obvious areas. Hopefully, the commercial use of .NET will not blind visionaries to
the value of the .NET infrastructure for research and development of
programming technology.

Summary
RTTI allows you to discover type information from an anonymous base-class
reference. Thus, it’s ripe for misuse by the novice since it might make sense
before polymorphic method calls do. For many people coming from a procedural
background, it’s difficult not to organize their programs into sets of switch
statements. They could accomplish this with RTTI and thus lose the important
value of polymorphism in code development and maintenance. The intent of C#
is that you use polymorphic method calls throughout your code, and you use
RTTI only when you must.

544 Thinking in C# www.MindView.net

However, using polymorphic method calls as they are intended requires that you
have control of the base-class definition because at some point in the extension of
your program you might discover that the base class doesn’t include the method
you need. If the base class comes from a library or is otherwise controlled by
someone else, a solution to the problem is RTTI: You can inherit a new type and
add your extra method. Elsewhere in the code you can detect your particular type
and call that special method. This doesn’t destroy the polymorphism and
extensibility of the program because adding a new type will not require you to
hunt for switch statements in your program. However, when you add new code in
your main body that requires your new feature, you must use RTTI to detect your
particular type.

Putting a feature in a base class might mean that, for the benefit of one particular
class, all of the other classes derived from that base require some meaningless
stub of a method. This makes the interface less clear and annoys those who must
override abstract methods when they derive from that base class. For example,
consider a class hierarchy representing musical instruments. Suppose you
wanted to clear the spit valves of all the appropriate instruments in your
orchestra. One option is to put a ClearSpitValve() method in the base class
Instrument, but this is confusing because it implies that Percussion and
Electronic instruments also have spit valves. RTTI provides a much more
reasonable solution in this case because you can place the method in the specific
class (Wind in this case), where it’s appropriate. However, a more appropriate
solution is to put a PrepareInstrument() method in the base class, but you
might not see this when you’re first solving the problem and could mistakenly
assume that you must use RTTI.

RTTI will sometimes solve efficiency problems. If your code nicely uses
polymorphism, but it turns out that one of your objects reacts to this general
purpose code in a horribly inefficient way, you can pick out that type using RTTI
and write case-specific code to improve the efficiency. Be wary, however, of
programming for efficiency too soon. It’s a seductive trap. It’s best to get the
program working first, then decide if it’s running fast enough, and only then
should you attack efficiency issues—with a profiler.

Finally, Attributes and RTTI are used to associate metadata with a variety of
elements in .NET’s programming structure. Attributes are best used to either
modify the context of execution or for the development of systems concerned
with the programming structure itself. Attributes such as [STAThread] and
[DLLImport] are examples of context-changing attributes, which modify the
runtime environment of their targets. The TestWithAttribute sketched in this

Chapter 13: Reflection and Attributes 545

chapter is an example of the second type of attribute, which concerns itself with
something other than the runtime behavior of the target.

Exercises
1. Add Rhomboid to Shapes.cs. Create a Rhomboid, upcast it to a

Shape, then downcast it back to a Rhomboid. Try downcasting to a
Circle and see what happens.

2. Modify the previous exercises so that it uses is to check the type before
performing the downcast. Now try it using as to perform the downcast
but without checking.

3. Modify Shapes.cs so that it can “highlight” (set a flag) in all shapes of a
particular type. The ToString() method for each derived Shape should
indicate whether that Shape is “highlighted.”

4. Modify SweetShop.cs so that each type of object creation is controlled
by a command-line argument. That is, if your command line is
“SweetShop Candy,” then only the Candy object is created. Notice
how you can control which class objects are loaded via the command-line
argument.

5. Add a new type of Pet to PetCount2.cs. Verify that it is created and
counted correctly in Main().

6. Write a program that takes a class name from the command-line and
prints all the objects in that class’s inheritance hierarchy.

7. Create a new container that uses a private ArrayList to hold the
objects. Capture the type of the first object placed into your container.
From then on, allow the user to only insert objects of that type.

8. Write a LastModifiedAttribute that can be applied to a method. The
attribute should specify the date and programmer who last touched the
method and possibly an enumerated value of why the method was
changed (new feature, defect correction, etc.). Write a program that loads
an assembly and lists the classes and methods, sorted by their last-
modified date.

9. Extend the previous example so that it works on all the assemblies in a
given directory and can be filtered so that it only prints those classes and
methods modified in the previous day, week, month, etc.

546 Thinking in C# www.ThinkingIn.NET

10. Extend the previous example so that the data is output to a file in a
format appropriate for analyzing the activity of a development project
(which classes are most active, which methods have been changed the
most, etc.).

547

14: Programming
Windows Forms

A fundamental design guideline is “make simple things
easy, and difficult things possible.” A variation on this is
called “the principle of least astonishment,” which
essentially says: “don’t surprise the user.”

There have been two antagonistic forces at work in the
Windows GUI programming world – the ease of use
epitomized by Visual Basic and the control available to C
programmers using the Win32 API. Reconciling these
forces is one of the great achievements of the .NET
Framework. Visual Studio .NET provides a VB-like toolset
for drawing forms, dragging-and-dropping widgets onto
them, and rapidly specifying their properties, event, and
responses. However, this easy-to-use tool sits on top of
Windows Forms and GDI+, systems whose object-
oriented design, consistency, and flexibility are
unsurpassed for creating rich client interfaces.

The aim of this chapter is to give a good understanding of the underlying
concepts at play in implementing graphical user interfaces and to couple those
concepts with concrete details on the most commonly-used widgets.

For Java programmers, the ease with which rich, highly responsive interfaces and
custom components can be created in C# will come as a revelation. Java’s UI
models have been based on the premise that operating system integration is
superfluous to the task of creating program interfaces. This is absurd, if for no
other reason than its violation of the guidelines mentioned at the beginning of
this chapter. Sun’s bid to commoditize the operating system has utterly failed.
While it may be that not every application requires OS-specific integration, it’s
equally obvious that some applications do. In addition to Windows, there remain

548 Thinking in C# www.MindView.net

solid markets for applications that take advantage of the unique capabilities of
the Macintosh, Palm, Linux, and, yes, Solaris operating systems.

The power of Windows programming requires a thorough understanding of
another C# language feature, the delegate.

Delegates
One of C#’s most interesting language features is its support for delegates, an
object-oriented, method type. The line:

delegate string Foo(int param);

is a type declaration just as is:

class Bar{ }

And just as to be useful a class type has to be instantiated (unless it just has
static data and methods), so too must delegate types be instantiated to be of any
use. A delegate can be instantiated with any method that matches the delegate’s
type signature. Once instantiated, the delegate reference can be used directly as a
method. Delegates are object-oriented in that they can be bound not just to static
methods, but to instance methods; in doing so, a delegate will execute the
specified method on the designated object. A simple example will show the basic
features of delegates:

//:c14:Profession.cs
//Declaration and instantiation of delegates
using System;

delegate void Profession();

class ProfessionSpeaker {

 static void StaticSpeaker(){
 Console.WriteLine("Medicine");
 }

 static int doctorIdCounter = 0;
 int doctorId = doctorIdCounter++;

 void InstanceSpeaker(){
 Console.WriteLine("Doctor " + doctorId);
 }

Chapter 14: Programming Windows Forms 549

 int DifferentSignature(){
 Console.WriteLine("Firefighter");
 return 0;
 }

 public static void Main(){
 //declare delegate reference (== null)
 Profession p;
 //instantiate delegate reference
 p = new Profession(
 ProfessionSpeaker.StaticSpeaker);
 p();

 ProfessionSpeaker s1 = new ProfessionSpeaker();
 ProfessionSpeaker s2 = new ProfessionSpeaker();

 //"instantiate" to specific instances
 Profession p1 = new Profession(
 s1.InstanceSpeaker);
 Profession p2 = new Profession(
 s2.InstanceSpeaker);

 p1();
 p2();

 //Won't compile, different signature
 //Profession p3 = new Profession(
 // s2.DifferentSignature);
 }
}///:~

The Profession delegate type is declared to take no parameters and to return
void. The ProfessionSpeaker has two methods with this signature: a static
StaticSpeaker() method and an instance method called InstanceSpeaker().
ProfessionSpeaker has a static doctorIdCounter which is incremented
every time a new ProfessionSpeaker is instantiated; thus
InstanceSpeaker() has different output for each ProfessionSpeaker
instance.

550 Thinking in C# www.ThinkingIn.NET

ProfessionSpeaker.Main() declares a delegate reference Profession p. Like
all declared but not initialized variables, p is null at this point. The next line is the
delegate’s “constructor” and is of the form:

new DelegateTypeName(NameOfMethodToDelegate);

This first delegate is instantiated with the StaticSpeaker() method (note that
the value passed to the delegate “constructor” is just the name of the method
without the parentheses that would specify an actual method call).

Once the delegate is initialized, the reference variable acts as if it was an in-scope
method name. So the line p() results in a call to
ProfessionSpeaker.StaticSpeaker().

Main() then instantiates two new ProfessionSpeakers; one of which will
have a doctorId of 0 and the other of 1. We declare two new Profession
delegates, but this time use a slight different form:

new DelegateTypeName(objectReference.MethodName);

You can think of this as passing “the instance of the method” associated with the
objectReference, even though “that’s not how it really is” in memory (there’s a
copy of each piece of data for an instance, but methods are not duplicated). The
two delegates p1 and p2 can now be used as proxies for the methods
s1.InstanceSpeaker() and s2.InstanceSpeaker().

The delegated-to method must have the exact parameters and return type of the
delegate type declaration. Thus, we can’t use DifferentSignature() (which
returns an int) to instantiate a Profession delegate.

When run, the calls to the delegates p, p1, and p2 result in this output:

Medicine
Doctor 0
Doctor 1

Designing With Delegates
Delegates are used extensively in Windows Forms, .NET’s object-oriented
framework for GUI programming. However, they can be effectively used in any
situation where variables in behavior are more important than variables in state.
We’ve already talked about the Strategy pattern (#ref#):

Chapter 14: Programming Windows Forms 551

Client

+Strategy()

«interface»
IStrategy

Strategy1 Strategy2 Strategy3

1

-myStrategy

1

Strategy myStrategy = new Strategy1();
myStrategy.Strategy();

Figure 14-1: Interfaces are one way to implement the Strategy pattern

Delegates provide an alternate design:

Client «delegate»
void Strategy(void)

1

-myStrategy

1 +StratHandler()

AnyClass

myStrategy = new Strategy(AnyClass.StratHandler);
myStrategy();

Figure 14-2: Delegates provide a slightly easier alternative

The Strategy pattern explicitly binds the implementation to its use satisfying the
contract of the interface IStrategy; any class which will be used as a Strategy
must declare itself as : IStrategy and implement the method void Strategy().
With delegates, there is no explicit binding of the handler to the delegate type; a
new programmer coming to the situation wouldn’t necessarily know that
AnyClass.StratHandler() was being used to instantiate a Strategy delegate.
This might lead to trouble: the new programmer could change the behavior of
StratHandler() in a way inappropriate to its use as a Strategy delegate and
the change would not be caught by either the compiler or by AnyClass’s unit
tests; the problem wouldn’t appear until Client’s unit tests were run.

On the other hand, the delegate model is significantly less typing and can
delegate handling to a method in a type for which you don’t have source code
(although there’s no obvious scenario that would call for that).

552 Thinking in C# www.MindView.net

Multicast delegates
Delegates that return type void may designate a series of methods that will be
invoked when the delegate is called. Such delegates are called multicast
delegates. Methods can be added and remove from the call chain by using the
overloaded += and -= operators. Here’s an example:

//:c14:Multicast.cs
//Demonstrates multicast delegates
using System;

class Rooster {
 internal void Crow(){
 Console.WriteLine("Cock-a-doodle-doo");
 }
}

class PaperBoy {
 internal void DeliverPapers(){
 Console.WriteLine("Throw paper on roof");
 }
}

class Sun {
 internal void Rise(){
 Console.WriteLine("Spread rosy fingers");
 }
}

class DawnRoutine {
 delegate void DawnBehavior();
 DawnBehavior multicast;

 DawnRoutine(){
 multicast = new DawnBehavior(new Rooster().Crow);
 multicast += new DawnBehavior(
 new PaperBoy().DeliverPapers);
 multicast += new DawnBehavior(new Sun ().Rise);
 }

 void Break(){

Chapter 14: Programming Windows Forms 553

 multicast();
 }

 public static void Main(){
 DawnRoutine dr = new DawnRoutine();
 dr.Break();
 }
}///:~

After declaring three classes (Rooster, PaperBoy, and Sun) that have methods
associated with the dawn, we declare a DawnRoutine class and, within its
scope, declare a DawnBehavior delegate type and an instance variable
multicast to hold the instance of the delegate. The DawnRoutine()
constructor’s first line instantiates the delegate to the Crow() method of a
Rooster object (the garbage collector is smart enough to know that although
we’re using an anonymous instance of Rooster, the instance will not be
collected as long as the delegate continues to hold a reference to it).

New instances of DawnBehavior are instantiated with references to “instances”
of PaperBoy.DeliverPapers() and Sun.Rise(). These DawnBehavior
delegates are added to the multicast delegate with the += operator. Break()
invokes multicast() once, but that single call in turn is multicast to all the
delegates:

Cock-a-doodle-doo
Throw paper on roof
Spread rosy fingers

Multicast delegates are used throughout Windows Forms to create event-
handling chains, each of which is responsible for a particular aspect of the total
desired behavior (perhaps display-oriented, perhaps logical, perhaps something
that writes to a logfile).

Multicast delegates are similar to the Chain of Responsibility design pattern:

554 Thinking in C# www.ThinkingIn.NET

Client

+HandleRequest()

Handler

1

-successor1

+HandleRequest()

ConcreteHandler1

+HandleRequest()

ConcreteHandler2

1 1

HandleRequest(){
 //some behavior
 if(successor != null){
 successor.HandleRequest();
 }
}

Figure 14-3: The Chain of Responsibility design pattern

The one difference is that the Chain of Responsibility is usually implemented so
that an individual handler can decide to end the processing chain (that is, a
handler may decide not to call its successor’s HandleRequest() method). It
is not possible for a delegated-to method to have this sometimes-desired option,
so there may be times when you implement a Chain of Responsibility within an
interface on which you create single or multicast delegates:

//:c14:DelegatedChainOfResponsibility.cs
//Shows polymorphic delegation, plus CoR pattern
using System;

interface Handler{
 void HandleRequest();
}

class ConcreteHandler1 : Handler {
 Random r = new Random();
 Handler successor = new ConcreteHandler2();

 public void HandleRequest() {
 if (r.NextDouble() > 0.5) {
 Console.WriteLine("CH1: Handling incomplete");
 successor.HandleRequest();
 } else {
 Console.WriteLine("CH1: Handling complete");
 }
 }
}

Chapter 14: Programming Windows Forms 555

class ConcreteHandler2 : Handler {
 public void HandleRequest() {
 Console.WriteLine("H2 handling");
 }
}

class Client {
 delegate void PolyDel();

 private static void AlsoHandler(){
 Console.WriteLine("AlsoHandler");
 }

 public static void Main(){
 //Note upcast
 Handler h = new ConcreteHandler1();
 PolyDel del = new PolyDel(h.HandleRequest);
 del += new PolyDel(AlsoHandler);

 del();
 }
}///:~

The Handler interface and its two subtypes implement the Chain of
Responsibility pattern. ConcreteHandler1 “flips a coin” in the form of a
random number and either calls successor.HandleRequest() or not. The
PolyDel delegate declared within Client matches the interface in Handler, so
when a new Handler is instantiated in Client.Main(), there is no problem in
using that handle’s HandleRequest method as the argument to a new PolyDel
delegate. Since delegates are object-oriented, there is no problem using a handle
that’s been upcast to an abstract data type in the construction of a delegate. When
del() is invoked, half the time the ConcreteHandler1 will forward a call to its
ConcreteHandler2 successor and half the time not. Because PolyDel is a
multicast handler, though, AlsoHandler() will always be called.

Events
 The behavior of a multicast delegate can be interpreted as a single event (the
multicast method call) causing multiple behaviors (the calls on the various
delegated-to methods). However, with a normal delegate, the delegated-to
method has no way of knowing anything about the context in which it was

556 Thinking in C# www.MindView.net

invoked. In our Multicast example, the Sun.Rise() method (say) could not
have affected any change in the DawnRoutine object that invoked it. By
convention, multicast delegates that require context should be of type:

delegate void DelegateName(
 object source, EventArgsSubtype x);

The EventArgs class is defined in the System namespace and, by default,
contains nothing but a static readonly property Empty that is defined as
returning an EventArg equivalent to an EventArg created with a no-args
constructor (in other words, a generic, undistinguishable, and therefore “Empty”
argument).

Subtypes of EventArgs are expected to define and expose properties that are the
most likely important pieces of context. For instance, the DawnBehavior
delegate might be paired with a DawnEventArgs object that contained the
weather and time of sunrise.

If a class wishes to define a multicast delegate of this sort and expose it publicly
as a property, the normal C# syntax would be:

void DawnDelegate(object source, DawnEventArgs dea);
class DawnEventArgs : EventArgs{}

class DawnBehavior{
 private DawnDelegate d;
 public DawnDelegate DawnEvent{
 get { return d; }
 set { d = value; }
 }
}

A shortcut is to simply declare an event property:

public event DawnDelegate DawnEvent;

You still have to define the delegate and the subtype of DawnEventArgs and
there is no difference in behavior between a public multicast delegate exposed as
a normal property and one exposed as an event property. However, event
properties may be treated differently by developer tools such as the doc-comment
generator or visual builder tools such as the one in Visual Studio.NET.

This example shows event handlers that modify their behavior depending on the
context:

Chapter 14: Programming Windows Forms 557

//:c14:EventProperty.cs
using System;

delegate void DawnDelegate(
 object source, DawnEventArgs dea);

enum Weather {
 sunny, rainy
};

class DawnEventArgs : EventArgs {
 //Hide base class constructor
 private DawnEventArgs() : base(){}
 public DawnEventArgs(Weather w){
 this.w = w;
 }

 private Weather w;
 public Weather MorningWeather{
 set { w = value;}
 get { return w;}
 }
}

class DawnBehavior {
 public event DawnDelegate DawnEvent;

 public static void Main(){
 DawnBehavior db = new DawnBehavior();
 db.DawnEvent = new DawnDelegate(
 new Rooster().Crow);
 db.DawnEvent += new DawnDelegate(
 new Sun ().Rise);
 DawnEventArgs dea =
 new DawnEventArgs(Weather.sunny);
 db.DawnEvent(typeof(DawnBehavior), dea);
 dea = new DawnEventArgs(Weather.rainy);
 db.DawnEvent(typeof(DawnBehavior), dea);
 }
}

558 Thinking in C# www.ThinkingIn.NET

class Rooster {
 internal void Crow(object src, DawnEventArgs dea){
 if (dea.MorningWeather == Weather.sunny) {
 Console.WriteLine("Cock-a-doodle-doo");
 } else {
 Console.WriteLine("Sleep in");
 }
 }
}

class Sun {
 internal void Rise(object src, DawnEventArgs dea){
 if (dea.MorningWeather == Weather.sunny) {
 Console.WriteLine("Spread rosy fingers");
 } else {
 Console.WriteLine("Cast a grey pall");
 }
 }
}///:~

In this example, the DawnEvent is created in the static Main() method, so we
couldn’t send this as the source nor does passing in the db instance seem
appropriate. We could pass null as the source, but passing null is generally a bad
idea. Since the event is created by a static method and a static method is
associated with the class, it seems reasonable to say that the source is the type
information of the class, which is retrieved by typeof(DawnBehavior).

Recursive traps
Conceptually, event-driven programs are asynchronous – when an event is
“fired” (or “raised” or “sent”), control returns to the firing method and, sometime
in the future, the event handler gets called. In reality, C#’s events are
synchronous, meaning that control does not return to the firing method until the
event handler has completed. This conceptual gap can lead to serious problems.
If the event handler of event X itself raises events, and the handling of these
events results in a new event X, the system will recurse, eventually either causing
a stack overflow exception or exhausting some non-memory resource.

In this example, a utility company sends bills out, a homeowner pays them, which
triggers a new bill. From a conceptual standpoint, this should be fine, because the
payment and the new bill are separate events.

//:c14:RecursiveEvents.cs

Chapter 14: Programming Windows Forms 559

//Demonstrates danger in C# event model
using System;

delegate void PaymentEvent(object src, BillArgs ea);

class BillArgs {
 internal BillArgs(double c){
 cost = c;
 }
 public double cost;
}

abstract class Bookkeeper {
 public event PaymentEvent Inbox;

 public static void Main(){
 Bookkeeper ho = new Homeowner();
 UtilityCo uc = new UtilityCo();

 uc.BeginBilling(ho);
 }

 internal void Post(object src, double c){
 Inbox(src, new BillArgs(c));
 }
}

class UtilityCo : Bookkeeper {
 internal UtilityCo(){
 Inbox += new PaymentEvent(this.ReceivePmt);
 }

 internal void BeginBilling(Bookkeeper bk){
 bk.Post(this, 4.0);
 }

 public void ReceivePmt(object src, BillArgs ea){
 Bookkeeper sender = src as Bookkeeper;
 Console.WriteLine("Received pmt from " +
 sender);
 sender.Post(this, 10.0);

560 Thinking in C# www.MindView.net

 }
}

class Homeowner : Bookkeeper {
 internal Homeowner(){
 Inbox += new PaymentEvent(ReceiveBill);
 }
 public void ReceiveBill(object src, BillArgs ea){
 Bookkeeper sender = src as Bookkeeper;
 Console.WriteLine("Writing check to " +
 sender + " for " + ea.cost);
 sender.Post(this, ea.cost);
 }
}///:~

First, we declare a delegate type called PaymentEvent which takes as an
argument a BillArgs reference containing the amount of the bill or payment. We
then create an abstract Bookkeeper class with a PaymentEvent event called
Inbox. The Main() for the sample creates a HomeOwner, a UtilityCo, and
passes the reference to the HomeOwner to the UtilityCo to begin billing.
Bookkeeper then defines a method called Post() which triggers the
PaymentEvent(); we’ll explain the rationale for this method in a little bit.

UtilityCo.BeginBilling() takes a Bookkeeper (the homeowner) as an
argument. It calls that Bookkeeper’s Post() method, which in turn will call
that Bookkeeper’s Inbox delegate. In the case of the Homeowner, that will
activate the ReceiveBill() method. The homeowner “writes a check” and
Post()s it to the source. If events were asynchronous, this would not be a
problem.

However, when run, this will run as expected for several hundred iterations, but
then will crash with a stack overflow exception. Neither of the event handlers
(ReceiveBill() and ReceivePayment()) ever returns, they just recursively
call each other in what would be an infinite loop but for the finite stack. More
subtle recursive loops are a challenge when writing event-driven code in C#.

Perhaps in order to discourage just these types of problems, event properties
differ from delegates in one very important way: An event can only be invoked by
the very class in which it is declared; even descendant types cannot directly
invoke an event. This is why we needed to write the Post() method in
Bookkeeper, HomeOwner and UtilityCo cannot execute Inbox(),
attempting to do so results in a compilation error.

Chapter 14: Programming Windows Forms 561

This language restriction is a syntactical way of saying “raising an event is a big
deal and must be done with care.” Event-driven designs may require multiple
threads in order to avoid recursive loops (more on this in Chapter 16). Or they
may not. This restriction on events does not force you into any particular design
decisions – as we showed in this example, one can simply create a public proxy
method to invoke the event.

The genesis of Windows Forms
While C# events are not asynchronous, “real” Windows events are. Behind the
scenes, Windows programs have an event loop that receives unsigned integers
corresponding to such things as mouse movements and clicks and keypresses,
and then say “If that number is x, call function y.” This was state-of-the-art stuff
in the mid-1980s before object-orientation became popular. In the early 1990s,
products such as Actor, SQL Windows, Visual Basic, and MFC began hiding this
complexity behind a variety of different models, often trading off object-oriented
“purity” for ease of development or performance of the resulting application.

Although programming libraries from companies other than Microsoft were
sometimes superior, Microsoft’s libraries always had the edge in showcasing
Windows latest capabilities. Microsoft parlayed that into increasing market share
in the development tools category, at least until the explosion of the World Wide
Web in the mid-1990s, when the then-current wisdom about user interfaces
(summary: “UIs must consistently follow platform standards, and UIs must be
fast”) was left by the wayside for the new imperative (“All applications must run
inside browsers”).

One of the programming tools that had difficulty gaining marketshare against
Microsoft was Borland’s Delphi, which combined a syntax derived from Turbo
Pascal, a graphical builder a la Visual Basic, and an object-oriented framework
for building UIs. Delphi was the brainchild of Anders Hejlsberg, who
subsequently left Borland for Microsoft, where he developed the predecessor of
.NET’s Windows Forms library for Visual J++. Hejlsberg was, with Scott
Wiltamuth, one of the chief designers of the C# language and C#’s delegates trace
their ancestry to Delphi. (Incidentally, Delphi remains a great product and is
now, ironically, the best tool for programming native Linux applications!)

So Windows Forms is an object-oriented wrapper of the underlying Windows
application. The doubling and redoubling of processor speed throughout the
1990s has made any performance hit associated with this type of abstraction
irrelevant; Windows Forms applications translate the raw Windows events into

562 Thinking in C# www.ThinkingIn.NET

calls to multicast delegates (i.e., events) so efficiently that most programmers
will never have a need to side-step the library.

Creating a Form
With Windows Forms, the static Main() method calls the static method
Application.Run(), passing to it a reference to a subtype of Form. All the
behavior associated with creating, displaying, closing, and otherwise
manipulating a Window (including repainting, a finicky point of the “raw”
Windows API) is in the base type Form and need not be of concern to the
programmer. Here’s a fully functional Windows Form program:

//:c14:FirstForm.cs
using System.Windows.Forms;

class FirstForm : Form {
 public static void Main(){
 Application.Run(new FirstForm());
 }
}///:~

that when run produces this window:

Figure 14-4: Not bad for 8 lines of code

Chapter 14: Programming Windows Forms 563

The base class Form contains more than 100 public and protected properties, a
similar number of methods, and more than 70 events and corresponding event-
raising methods. But it doesn’t stop there; Form is a subtype of a class called
Control (not a direct subtype, it’s actually Form : ContainerControl :
ScrollableControl : Control). Instances of Control have a property called
Controls which contains a collection of other controls. This structure, an
example of the Composite design pattern, allows everything from simple buttons
to the most complex user-interfaces to be treated uniformly by programmers and
development tools such as the visual builder tool in Visual Studio .NET.

GUI architectures
Architectures were presented in Chapter 9 as an “overall ordering principle” of a
system or subsystem. While the Controls property of Control is an ordering
principle for the static structure of the widgets in a Windows Forms application,
Windows Forms does not dictate an ordering principle for associating these
widgets with particular events and program logic. Several architectures are
possible with Windows Forms, and each has its strengths and weaknesses.

It’s important to have a consistent UI architecture because, as Larry Constantine
and Lucy Lockwood point out, while the UI is just one, perhaps uninteresting,
part of the system to the programmer, to the end user, the UI is the program. The
UI is the entry point for the vast majority of change requests, so you’d better
make it easy to change the UI without changing the logical behavior of the
program. Decoupling the presentation layer from the business layer is a
fundamental part of professional development.

Using the Visual Designer
Open Visual Studio .NET, bring up the New Project wizard, and create a
Windows Application called FormControlEvent. The wizard will generate some
source code and present a “Design View” presentation of a blank form. Drag and
drop a button and label onto the form. You should see something like this:

564 Thinking in C# www.MindView.net

Figure 14-5: Visual Studio.NET makes C# programming as easy as Visual Basic

In the designer, double-click the button. Visual Studio will switch to a code-
editing view, with the cursor inside a method called button1_Click(). Add the
line;

label1.Text = "Clicked";

The resulting program should look a lot like this:

//:c14:FormControlEvent.cs
//Designer-generated Form-Control-Event architecture
using System;

Chapter 14: Programming Windows Forms 565

using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace FormControlEvent{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form {
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Button button1;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container
 components = null;

 public Form1(){
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after
 // InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing){
 if (disposing) {
 if (components != null) {
 components.Dispose();
 }
 }
 base.Dispose(disposing);

566 Thinking in C# www.ThinkingIn.NET

 }

#region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support
 /// - do not modify the contents of this method
 /// with the code editor.
 /// </summary>
 private void InitializeComponent(){
 this.label1 =
 new System.Windows.Forms.Label();
 this.button1 =
 new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // label1
 //
 this.label1.Location =
 new System.Drawing.Point(136, 24);
 this.label1.Name = "label1";
 this.label1.Size =
 new System.Drawing.Size(56, 16);
 this.label1.TabIndex = 0;
 this.label1.Text = "label1";
 //
 // button1
 //
 this.button1.Location =
 new System.Drawing.Point(32, 24);
 this.button1.Name = "button1";
 this.button1.TabIndex = 1;
 this.button1.Text = "button1";
 this.button1.Click +=
 new System.EventHandler(this.button1_Click);
 //
 // Form1
 //
 this.AutoScaleBaseSize =
 new System.Drawing.Size(5, 13);
 this.ClientSize =
 new System.Drawing.Size(292, 266);

Chapter 14: Programming Windows Forms 567

 this.Controls.AddRange(
 new System.Windows.Forms.Control[]{
 this.button1, this.label1});
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);
 }
#endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main() {
 Application.Run(new Form1());
 }

 private void button1_Click(
 object sender, System.EventArgs e) {
 label1.Text = "Clicked";
 }
 }
}///:~

The first interesting detail is the #region - #endregion statements. These
preprocessing directives (see Chapter 4) delineate a code section that Visual
Studio .NET may collapse in its “outlining” mode; indeed, when you first switch
to code view, this area of the code was probably somewhat hidden from view.
While it’s generally a good idea to heed the warning about not editing Designer-
generated code, the code is well worth taking a closer look at.

The label and button that we dragged onto the form are initialized as new objects
from the System.Windows.Forms namespace. The call to SuspendLayout()
indicates that a series of manipulations are coming and that each individual one
should not trigger the potentially expensive layout calculation on the Control
and all of its sub-Controls. Some of the basic properties for each control are
then set:

♦ Location specifies the point where the upper-left corner of the control is
relative to the upper-left corner of the containing control or, if the
Control is a Form Location is the screen coordinates of the upper-left
corner (including the Form’s border if it has one, as most do). This is a

568 Thinking in C# www.MindView.net

value that you can freely manipulate without worrying about the
?resizing behavior of the Form.

♦ Size is measured in pixels. Like Location, this property returns a value,
not a reference, so to manipulate the Control, you must assign any
change to the property to have any effect:

Size s = myControl.Size;
s.Width += 10; //not a reference, no change to control
myControl.Size = s; //Now control will change

♦ TabIndex specifies the order in which a control is activated when the
user presses the Tab key.

♦ Text is displayed in various ways, depending upon the Control’s type.
The Text of the form, for instance, is displayed as the Window’s title,
while the Button and Label have other properties such as TextAlign
and Font to fine-tune their appearance (Form has a Font property, too,
but it just sets the default font for its subcontrols; it does not change the
way the title of the Form is displayed). The Name property corresponds
to the named variable that represents the control and is necessary for the
visual designer to work; don’t manually change this.

The final part of the block of code associated with button1 reads:

this.button1.Click +=
 new System.EventHandler(this.button1_Click);

From our previous discussion of multicast delegates, this should be fairly easy to
interpret: Button has an event property Click which specifies a multicast
delegate of type EventHandler. The method this.button1_Click() is being
added as a multicast listener.

At the bottom of the InitializeComponent method, additional properties are
set for the Form1 itself. AutoScaleBaseSize specifies how the Form will react
if the Form’s font is changed to a different size (as can happen by default in
Windows). ClientSize is the area of the Control in which other Control’s can
be placed; in the case of a window, that excludes the title bar and border,
scrollbars are also not part of the client area.

The method Controls.AddRange() places an array of Controls in the
containing Control. There is also an Add() method which takes a single
control, but the visual designer always uses AddRange().

Finally, ResumeLayout(), the complement to SuspendLayout(), reactivates
layout behavior. The visual designer passes a false parameter, indicating that it’s
not necessary to force an immediate relayout of the Control.

Chapter 14: Programming Windows Forms 569

The Main() method is prepended with an [STAThread] attribute, which sets
the threading model to “single-threaded apartment.” We’ll discuss this attribute
briefly in Chapter 15.

The last method is the private method button1_Click(), which was attached
to button1’s Click event property in the InitializeComponent() method. In
this method we directly manipulate the Text property of the label1 control.

Some obvious observations about the output of the visual designer: It works with
code that is both readable and (despite the warning) editable, the visual designer
works within the monolithic InitializeComponent() except that it creates
event-handler methods that are in the same Control class being defined, and the
code isn’t “tricky” other than the [STAThread] attribute and the Dispose()
method (a method which is not necessary unless the Control or one of its
subcontrols contains non-managed resources, as discussed in Chapter 5).

Less obviously, taken together, the visual designer does implicitly impose “an
overall ordering principle” to the system. The visual designer constructs
applications that have a statically structured GUI, individual identity for controls
and handlers, and localized event-handling.

The problem with this architecture, as experienced Visual Basic programmers can
attest, is that people can be fooled into thinking that the designer is “doing the
object orientation” for them and event-handling routines become monolithic
procedural code chunks. This can also lead to people placing the domain logic
directly in handlers, thus foregoing the whole concept of decoupling UI logic from
domain logic.

This is a prime example of where sample code such as is shown in articles or this
book is misleading. Authors and teachers will generally place domain logic inline
with a control event in order to save space and simplify the explanation (as we
did with the label1.Text = “Clicked” code). However, in professional
development, the structure of pretty much any designer-generated event handler
should probably be:

private void someControl_Click(
 object sender, System.EventArgs e) {
 someDomainObject.SomeLogicalEvent();
}

This structure separates the concept of the Control and GUI events from domain
objects and logical events and a GUI that uses this structure will be able to
change its domain logic without worrying about the display details.

570 Thinking in C# www.ThinkingIn.NET

Unfortunately, alerting domain objects to GUI events is only half the battle, the
GUI must somehow reflect changes in the state of domain objects. This challenge
has several different solutions.

Form-Event-Control
The first GUI architecture we’ll discuss could be called “Form-Event-Control.”
The FEC architecture uses a unified event-driven model: GUI objects create GUI
events that trigger domain logic that create domain events that trigger GUI logic.
This is done by creating domain event properties and having controls subscribe
to them, as this example shows:

//:c14:FECDomain.cs
using System;
using System.Text.RegularExpressions;
using System;
delegate void StringSplitHandler(
 object src, SplitStringArgs args);

class SplitStringArgs : EventArgs {
 private SplitStringArgs(){}
 public SplitStringArgs(string[] strings){
 this.strings = strings;
 }

 string[] strings;
 public string[] Strings{
 get { return strings;}
 set { strings = value;}
 }
}

class DomainSplitter {
 Regex re = new Regex("\\s+");
 string[] substrings;

 public event StringSplitHandler StringsSplit;

 public void SplitString(string inStr){
 substrings = re.Split(inStr);
 StringsSplit(
 this, new SplitStringArgs(substrings));

Chapter 14: Programming Windows Forms 571

 }
}///:~

This is our domain object, which splits a string into its substrings with the
Regex.Split() method. When this happens, the DomainSplitter raises a
StringsSplit event with the newly created substrings as an argument to its
SplitStringArgs. Now to create a Windows Form that interacts with this
domain object:

//:c14:FECDomain2.cs
//Compile with csc FECDomain FECDomain2
using System;
using System.Drawing;
using System.Windows.Forms;

class FECDomain : Form {
 TextBox tb = new TextBox();
 Button b = new Button();
 Label[] labels;
 DomainSplitter domainObject = new DomainSplitter();

 FECDomain(){
 tb.Location = new Point(10, 10);
 tb.Text = "The quick brown fox";
 b.Location = new Point(150, 10);
 b.Text = "Split text";

 b.Click += new EventHandler(this.GUIEvent);
 domainObject.StringsSplit +=
 new StringSplitHandler(this.DomainEvent);

 this.Text = "Form-Event-Control";
 this.Controls.Add(tb);
 this.Controls.Add(b);
 }

 void GUIEvent(object src, EventArgs args){
 domainObject.SplitString(tb.Text);
 }

 void DomainEvent(object src, SplitStringArgs args){
 string[] strings = args.Strings;

572 Thinking in C# www.MindView.net

 if (labels != null) {
 foreach(Label l in labels){
 this.Controls.Remove(l);
 }
 }
 labels = new Label[strings.Length];
 int row = 40;
 for (int i = 0; i < labels.Length; i++) {
 labels[i] = new Label();
 labels[i].Text = strings[i];
 labels[i].Location = new Point(100, row);
 row += 20;
 }
 this.Controls.AddRange(labels);
 }

 public static void Main(){
 Application.Run(new FECDomain());
 }
}///:~

Obviously, we didn’t use Visual Studio’s designer to build this form but have
reverted to working directly from within a code editor. Our FECDomain form
contains a text box, a button, an array of Label controls, and a reference to
DomainSplitter.

The first part of the FEDomain() constructor specifies the location and text of
the text box and button. We then specify two delegates: GUIEvent is a delegate
of type EventHandler and is attached to the button’s Click event property and
DomainEvent is of type StringSplitHandler and is attached to the
DomainSplitter’s StringSplit event. The final part of the constructor adds the
textbox and button to the form.

When the button is pressed, the Click delegate invokes the GUIEvent()
method, which passes the text of the textbox to the
domainObject.SplitString() logical event. This in turn will raise a
StringSplit event that calls back to the DomainEvent() method.

The DomainEvent() method creates and displays a label for each of the
individual strings. The first time DomainEvent() is called, the labels array
will be null because we do not initialize it in the constructor. If, though, labels is
not null, we remove the existing labels from the Controls collection. We
initialize the labels array to be able to hold a sufficient number of references and

Chapter 14: Programming Windows Forms 573

then initialize individual labels with the appropriate string and a new position.
Once all the labels are created, Controls.AddRange() adds them to the
FECDomain’s client area.

The FEC architecture is vulnerable to the recursive loops problems discussed
previously. If a domain event triggers a GUI handler which in turn activates the
relevant domain event, the system will recurse and crash (when dealing with
GUIs, the crash exception typically involves starvation of some Windows resource
before the stack overflows). However, FEC is very straightforward – although in
the tiny programs that illustrate a book it is more complex than just putting
domain logic directly into a GUI event handler, in practice it will very likely be
less complex and provides for a very clean and understandable separation of GUI
and domain logic.

Presentation-Abstraction-Control
An alternative GUI architecture to FEC proposes that the whole concept of
separating domain logic from Controls is overemphasized. In this view,
flexibility is achieved by encapsulating all the display, control, and domain logic
associated with a relatively fine-grained abstraction. Groups of these self-
contained components are combined to build coarser-grained abstractions (with
correspondingly more complex displays, perhaps panels and entire forms). These
coarser-grained abstractions are gathered together to make programs.

In the PAC architecture, the lowest-level objects are likely to be subtypes of
specific controls; for instance, a Button that encapsulates a bit of domain logic
relating to a trigger or switch. Mid-level objects may descend from UserControl
(essentially, an interface-less Control) and would encapsulate discrete chunks of
business logic. Higher-level objects would likely descend from Form and are
likely to encapsulate all the logic associated with a particular scenario or use-case.

In this example, we have a type descended from Button that knows whether it is
on or off and a type descended from Panel that contains these TwoState
buttons and knows if all the TwoStates within it are in state “On”:

//:c14:PAC.cs
//Presentation-Abstraction-Control
using System.Drawing;
using System.Windows.Forms;
using System;

class TwoState : Button {
 static int instanceCounter = 0;

574 Thinking in C# www.ThinkingIn.NET

 int id = instanceCounter++;

 internal TwoState(){
 this.Text = State;
 System.EventHandler hndlr =
 new System.EventHandler(buttonClick);
 this.Click += hndlr;
 }

 bool state = true;
 public string State{
 get {
 return(state == true) ? "On" : "Off";
 }
 set{
 state = (value == "On") ? true : false;
 OnStateChanged();
 }
 }

 private void buttonClick(
 object sender, System.EventArgs e){
 changeState();
 }

 public void changeState(){
 state = !state;
 OnStateChanged();
 }

 public void OnStateChanged(){
 Console.WriteLine(
 "TwoState id " + id + " state changed");
 this.Text = State;
 }
}

class ChristmasTree : Panel {
 bool allOn;
 internal bool AllOn{
 get { return allOn;}

Chapter 14: Programming Windows Forms 575

 }

 public ChristmasTree(){
 TwoState ts = new TwoState();
 ts.Location = new Point(10, 10);
 TwoState ts2 = new TwoState();
 ts2.Location = new Point(120, 10);
 Add(ts);
 Add(ts2);
 BackColor = Color.Green;
 }

 public void Add(TwoState c){
 Controls.Add(c);
 c.Click += new EventHandler(
 this.TwoClickChanged);
 }

 public void AddRange(TwoState[] ca){
 foreach(TwoState ts in ca){
 ts.Click += new EventHandler(
 this.TwoClickChanged);
 }
 Controls.AddRange(ca);
 }

 public void TwoClickChanged(
 Object src, EventArgs a){
 allOn = true;
 foreach(Control c in Controls){
 TwoState ts = c as TwoState;
 if (ts.State != "On") {
 allOn = false;
 }
 }
 if (allOn) {
 BackColor = Color.Green;
 } else {
 BackColor = Color.Red;
 }
 }

576 Thinking in C# www.MindView.net

}

class PACForm : Form {
 ChristmasTree p1 = new ChristmasTree();
 ChristmasTree p2 = new ChristmasTree();

 public PACForm(){
 ClientSize = new Size(450, 200);
 Text = "Events & Models";

 p1.Location = new Point(10,10);
 p2.Location = new Point(200, 10);
 Controls.Add(p1);
 Controls.Add(p2);
 }

 static void Main(){
 Application.Run(new PACForm());
 }
}///:~

When run, if you set both the buttons within an individual ChristmasTree
panel to “On,” the ChristmasTree’s background color will become green,
otherwise, the background color will be red. The PACForm knows nothing
about the TwoStates within the ChristmasTree. We could (and indeed it
would probably be logical) change TwoState from descending from Button to
descending from Checkbox and TwoState.State from a string to a bool and
it would make no difference to the PACForm that contains the two instances of
ChristmasTree.

Presentation-Abstraction-Control is often the best architecture for working with
.NET. Its killer advantage is that it provides an encapsulated component. A
component is a software module that can be deployed and composed into other
components without source-code modification. Visual Basic programmers have
enjoyed the benefits of software components for more than a decade, with
thousands of third-party components available. Visual Studio .NET ships with a
few components that are at a higher level than just encapsulating standard
controls, for instance, components which encapsulate ADO and another which
encapsulates the Crystal Reports tools.

PAC components need not really be written as a single class; rather, a single
Control class may provide a single public view of a more complex namespace

Chapter 14: Programming Windows Forms 577

whose members are not visible to the outside world. This is called the Façade
design pattern.

The problem with PAC is that it’s hard work to create a decent component. Our
ChristmasTree component is horrible – it doesn’t automatically place the
internal TwoStates reasonably, it doesn’t resize to fit new TwoStates, it doesn’t
expose both logical and GUI events and properties… The list goes on and on.
Reuse is the great unfulfilled promise of object orientation: “Drop a control on
the form, set a couple of properties, and boom! You’ve got a payroll system.” But
the reality of development is that at least 90% of your time is absolutely
controlled by the pressing issues of the current development cycle and there is
little or no time to spend on details not related to the task at hand. Plus, it’s
difficult enough to create an effective GUI when you have direct access to your
end-users; creating an effective GUI component that will be appropriate in
situations that haven’t yet arisen is almost impossible.

Nevertheless, Visual Studio .NET makes it so easy to create a reusable component
(just compile your component to a .DLL and you can add it to the Toolbar!) that
you should always at least consider PAC for your GUI architecture.

Model-View-Controller
Model-View-Controller, commonly referred to simply as “MVC,” was the first
widely known architectural pattern for decoupling the graphical user interface
from underlying application logic. Unfortunately, many people confuse MVC with
any architecture that separates presentation logic from domain logic. So when
someone starts talking about MVC, it’s wise to allow for quite a bit of imprecision.

In MVC, the Model encapsulates the system’s logical behavior and state, the View
requests and reflects that state on the display, and the Controller interprets low-
level inputs such as mouse and keyboard strokes, resulting in commands to either
the Model or the View.

MVC trades off a lot of static structure — the definition of objects for each of the
various responsibilities – for the advantage of being able to independently vary
the view and the controller. This is not much of an advantage in Windows
programs, where the view is always a bitmapped two-dimensional display and the
controller is always a combination of a keyboard and a mouse-like pointing
device. However, USB’s widespread support has already led to interesting new
controllers and the not-so-distant future will bring both voice and gesture control
and “hybrid reality” displays to seamlessly integrate computer-generated data
into real vision (e.g., glasses that superimpose arrows and labels on reality). If
you happen to be lucky enough to be working with such advanced technologies,

578 Thinking in C# www.ThinkingIn.NET

MVC may be just the thing. Even if not, it’s worth discussing briefly as an
example of decoupling GUI concerns taken to the logical extreme. In our
example, our domain state is simply an array of Boolean values; we want the
display to show these values as buttons and display, in the title bar, whether all
the values are true or whether some are false:

//:c14:MVC.cs
using System;
using System.Windows.Forms;
using System.Drawing;

class Model {
 internal bool[] allBools;

 internal Model(){
 Random r = new Random();
 int iBools = 2 + r.Next(3);
 allBools = new bool[iBools];
 for (int i = 0; i < iBools; i++) {
 allBools[i] = r.NextDouble() > 0.5;
 }
 }
}

class View : Form {
 Model model;
 Button[] buttons;

 internal View(Model m, Controller c){
 this.model = m;

 int buttonCount = m.allBools.Length;
 buttons = new Button[buttonCount];
 ClientSize =
 new Size(300, 50 + buttonCount * 50);
 for (int i = 0; i < buttonCount; i++) {
 buttons[i] = new Button();
 buttons[i].Location =
 new Point(10, 5 + i * 50);
 c.MatchControlToModel(buttons[i], i);
 buttons[i].Click +=

Chapter 14: Programming Windows Forms 579

 new EventHandler(c.ClickHandler);
 }
 ReflectModel();
 Controls.AddRange(buttons);
 }

 internal void ReflectModel(){
 bool allAreTrue = true;
 for (int i = 0; i < model.allBools.Length; i++) {
 buttons[i].Text = model.allBools[i].ToString();
 if (model.allBools[i] == false) {
 allAreTrue = false;
 }
 }
 if (allAreTrue) {
 Text = "All are true";
 } else {
 Text = "Some are not true";
 }
 }
}

class Controller {
 Model model;
 View view;

 Control[] viewComponents;

 Controller(Model m){
 model = m;
 viewComponents = new Control[m.allBools.Length];
 }

 internal void MatchControlToModel
 (Button b, int index){
 viewComponents[index] = b;
 }

 internal void AttachView(View v){
 this.view = v;
 }

580 Thinking in C# www.MindView.net

 internal void ClickHandler
 (Object src, EventArgs ea){
 //Modify model in response to input
 int modelIndex =
 Array.IndexOf(viewComponents, src);
 model.allBools[modelIndex] =
 !model.allBools[modelIndex];
 //Have view reflect model
 view.ReflectModel();
 }

 public static void Main(){
 Model m = new Model();
 Controller c = new Controller(m);
 View v = new View(m, c);
 c.AttachView(v);
 Application.Run(v);
 }
}///:~

The Model class has an array of bools that are randomly set in the Model
constructor. For demonstration purposes, we’re exposing the array directly, but
in real life the state of the Model would be reflected in its entire gamut of
properties.

The View object is a Form that contains a reference to a Model and its role is
simply to reflect the state of that Model. The View() constructor lays out how
this particular view is going to do that – it determines how many bools are in the
Model’s allBools array and initializes a Button[] array of the same size. For
each bool in allBools, it creates a corresponding Button, and associates this
particular aspect of the Model’s state (the index of this particular bool) with this
particular aspect of the View (this particular Button). It does this by calling the
Controller’s MatchControlToModel() method and by adding to the
Button’s Click event property a reference to the Controller’s
ClickHandler(). Once the View has initialized its Controls, it calls its own
ReflectModel() method.

View’s ReflectModel() method iterates over all the bools in Model, setting
the text of the corresponding button to the value of the Boolean. If all are true,
the title of the Form is changed to “All are true,” otherwise, it declares that
“Some are false.”

Chapter 14: Programming Windows Forms 581

The Controller object ultimately needs references to both the Model and to the
View, and the View needs a reference to both the Model and the Controller.
This leads to a little bit of complexity in the initialization shown in the Main()
method; the Model() is created with no references to anything (the Model is
acted upon by the Controller and reflected by the View, the Model itself never
needs to call methods or properties in those objects). The Controller is then
created with a reference to the Model. The Controller() constructor simply
stores a reference to the Model and initializes an array of Controls to sufficient
size to reflect the size of the Model.allBools array. At this point, the
Controller.View reference is still null, since the View has not yet been
initialized.

Back in the Main() method, the just-created Controller is passed to the
View() constructor, which initializes the View as described previously. Once
the View is initialized, the Controller’s AttachView() method sets the
reference to the View, completing the Controller’s initialization. (You could as
easily do the opposite, creating a View with just a reference to the Model,
creating a Controller with a reference to the View and the Model, and then
finish the View’s initialization with an AttachController() method.)

During the View’s constructor, it called the Controller’s
MatchControlToModel() method, which we can now see simply stores a
reference to a Button in the viewComponents[] array.

The Controller is responsible for interpreting events and causing updates to the
Model and View as appropriate. ClickHandler() is called by the various
Buttons in the View when they are clicked. The originating Control is
referenced in the src method argument, and because the index in the
viewComponents[] array was defined to correspond to the index of the
Model’s allBools[] array, we can learn what aspect of the Model’s state we
wish to update by using the static method Array.IndexOf(). We change the
Boolean to its opposite using the ! operator and then, having changed the
Model’s state, we call View’s ReflectModel() method to keep everything in
synchrony.

The clear delineation of duties in MVC is appealing – the View passively reflects
the Model, the Controller mediates updates, and the Model is responsible
only for itself. You can have many View classes that reflect the same Model (say,
one showing a graph of values, the other showing a list) and dynamically switch
between them. However, the structural complexity of MVC is a considerable
burden and is difficult to “integrate” with the Visual Designer tool.

582 Thinking in C# www.ThinkingIn.NET

Layout
Now that we’ve discussed the various architectural options that should be of
major import in any real GUI design discussion, we’re going to move back
towards the expedient “Do as we say, not as we do” mode of combining logic,
event control, and visual display in the sample programs. It would simply
consume too much space to separate domain logic into separate classes when,
usually, our example programs are doing nothing but writing out simple lines of
text to the console or demonstrating the basics of some simple widget.

Another area where the sample programs differ markedly from professional code
is in the layout of Controls. So far, we have used the Location property of a
Control, which determines the upper-left corner of this Control in the client
area of its containing Control (or, in the case of a Form, the Windows display
coordinates of its upper-left corner).

More frequently, you will use the Dock and Anchor properties of a Control to
locate a Control relative to one or more edges of the container in which it
resides. These properties allow you to create Controls which properly resize
themselves in response to changes in windows size.

In our examples so far, resizing the containing Form doesn’t change the Control
positions. That is because by default, Controls have an Anchor property set to
the AnchorStyles values Top and Left (AnchorStyles are bitwise
combinable). In this example, a button moves relative to the opposite corner:

//:c14:AnchorValues.cs
using System.Windows.Forms;
using System.Drawing;

class AnchorValues: Form {
 AnchorValues(){
 Button b = new Button();
 b.Location = new Point(10, 10);
 b.Anchor =
 AnchorStyles.Right | AnchorStyles.Bottom;
 Controls.Add(b);
 }

 public static void Main(){
 Application.Run(new AnchorValues());
 }

Chapter 14: Programming Windows Forms 583

}///:~

If you combine opposite AnchorStyles (Left and Right, Top and Bottom) the
Control will resize. If you specify AnchorStyles.None, the control will move
half the distance of the containing area’s change in size. This example shows
these two types of behavior:

//:c14:AnchorResizing.cs
using System.Windows.Forms;
using System.Drawing;

class AnchorResizing: Form {
 AnchorResizing(){
 Button b = new Button();
 b.Location = new Point(10, 10);
 b.Anchor =
 AnchorStyles.Left
 | AnchorStyles.Right
 | AnchorStyles.Top;
 b.Text = "Left | Right | Top";
 Controls.Add(b);

 Button b2 = new Button();
 b2.Location = new Point(100, 10);
 b2.Anchor = AnchorStyles.None;
 b2.Text = "Not anchored";
 Controls.Add(b2);
 }

 public static void Main(){
 Application.Run(new AnchorResizing());
 }
}///:~

If you run this example and manipulate the screen, you’ll see two undesirable
behaviors: b can obscure b2, and b2 can float off the page. Windows Forms’
layout behavior trades off troublesome behavior like this for its straightforward
model. An alternative mechanism based on cells, such as that used in HTML or
some of Java’s LayoutManagers, may be more robust in avoiding these types of
trouble, but anyone who’s tried to get a complex cell-based UI to resize the way
they wish is likely to agree with Windows Forms’ philosophy!

584 Thinking in C# www.MindView.net

A property complementary to Anchor is Dock. The Dock property moves the
control flush against the specified edge of its container, and resizes the control to
be the same size as that edge. If more than one control in a client area is set to
Dock to the same edge, the controls will layout side-by-side in the reverse of the
order in which they were added to the containing Controls array (their reverse
z-order). The Dock property overrides the Location value. In this example, two
buttons are created and docked to the left side of their containing Form.

//:c14:Dock.cs1
using System.Windows.Forms;
using System.Drawing;

class Dock: Form {
 Dock(){
 Button b1 = new Button();
 b1.Dock = DockStyle.Left;
 b1.Text = "Button 1";
 Controls.Add(b1);

 Button b2 = new Button();
 b2.Dock = DockStyle.Left;
 b2.Text = "Button2";
 Controls.Add(b2);
 }

 public static void Main(){
 Application.Run(new Dock());
 }
}///:~

When you run this, you’ll see that b appears to the right of b2 because it was
added to Dock’s Controls before b2.

DockStyle.Fill specifies that the Control will expand to fill the client area from
the center to the limits allowed by other Docked Controls. DockStyle.Fill will
cover non-Docked Controls that have a lower z-order, as this example shows:

//:c14:DockFill.cs
using System.Windows.Forms;
using System.Drawing;

class DockFill: Form {
 DockFill(){

Chapter 14: Programming Windows Forms 585

 //Lower z-order
 Button visible = new Button();
 visible.Text = "Visible";
 visible.Location = new Point(10, 10);
 Controls.Add(visible);

 //Will cover "Invisible"
 Button docked = new Button();
 docked.Text = "Docked";
 docked.Dock = DockStyle.Fill;
 Controls.Add(docked);

 //Higher z-order, gonna' be invisible
 Button invisible = new Button();
 invisible.Text = "Invisible";
 invisible.Location = new Point(100, 100);
 Controls.Add(invisible);
 }

 public static void Main(){
 Application.Run(new DockFill());
 }
}///:~

Developing complex layouts that lay themselves out properly when resized is a
challenge for any system. Windows Forms’ straightforward model of
containment, Location, Anchor, and Dock is especially suited for the PAC GUI
architecture described previously. Rather than trying to create a monolithic
chunk of logic that attempts to resize and relocate the hundreds or dozens of
widgets that might comprise a complex UI, the PAC architecture would
encapsulate the logic within individual custom controls.

Non-code resources
Windows Forms wouldn’t be much of a graphical user interface library if it did
not support graphics and other media. But while it’s easy to specify a Button’s
look and feel with only a few lines of code, images are inherently dependent on
binary data storage.

It’s not surprising that you can load an image into a Windows Form by using a
Stream or a filename, as this example demonstrates:

//:c14:SimplePicture.cs

586 Thinking in C# www.ThinkingIn.NET

//Loading images from file system

using System;
using System.IO;
using System.Windows.Forms;
using System.Drawing;

class SimplePicture : Form {
 public static void Main(string[] args){
 SimplePicture sp = new SimplePicture(args[0]);
 Application.Run(sp);
 }

 SimplePicture(string fName){
 PictureBox pb = new PictureBox();
 pb.Image = Image.FromFile(fName);
 pb.Dock = DockStyle.Fill;
 pb.SizeMode = PictureBoxSizeMode.StretchImage;
 Controls.Add(pb);

 int imgWidth = pb.Image.Width;
 int imgHeight = pb.Image.Height;

 this.ClientSize =
 new Size(imgWidth, imgHeight);
 }
}///:~

The Main() method takes the first command-line argument as a path to an
image (for instance: “SimplePicture c:\windows\clouds.bmp”) and passes that
path to the SimplePicture() constructor. The most common Control used to
display a bitmap is the PictureBox control, which has an Image property. The
static method Image.FromFile() generates an Image from the given path
(there is also an Image.FromStream() static method which provides general
access to all the possible sources of image data).

The PictureBox’s Dock property is set to Dockstyle.Fill and the ClientSize
of the form is set to the size of the Image. When you run this program, the
SimplePicture form will start at the same size of the image. Because
pb.SizeMode was set to StretchImage, however, you can resize the form and
the image will stretch or shrink appropriately. Alternate PictureBoxSizeMode
values are Normal (which clips the Image to the PictureBox’s size),

Chapter 14: Programming Windows Forms 587

AutoSize (which resizes the PictureBox to accommodate the Image’s size),
and CenterImage.

Loading resources from external files is certainly appropriate in many
circumstances, especially with isolated storage (#ref#), which gives you a per-
user, consistent virtual file system. However, real applications which are
intended for international consumption require many resources localized to the
current culture – labels, menu names, and icons may all have to change. The
.NET Framework provides a standard model for efficiently storing such resources
and loading them. Momentarily putting aside the question of how such resources
are created, retrieving them is the work of the ResourceManager class. This
example switches localized labels indicating “man” and “woman.”

//:c14:International.cs
using System;
using System.Drawing;
using System.Resources;
using System.Globalization;
using System.Windows.Forms;

class International : Form {
 ResourceManager rm;
 Label man;
 Label woman;

 public International(){
 rm = new ResourceManager(typeof(International));

 RadioButton eng = new RadioButton();
 eng.Checked = true;
 eng.Location = new Point(10, 10);
 eng.Text = "American";
 eng.CheckedChanged +=
 new EventHandler(LoadUSResources);

 RadioButton swa = new RadioButton();
 swa.Location = new Point(10, 30);
 swa.Text = "Swahili";
 swa.CheckedChanged +=
 new EventHandler(LoadSwahiliResources);

 man = new Label();

588 Thinking in C# www.MindView.net

 man.Location = new Point(10, 60);
 man.Text = "Man";

 woman = new Label();
 woman.Location = new Point(10, 90);
 woman.Text = "Woman";

 Controls.AddRange(new Control[]{
 eng, swa, man, woman});

 Text = "International";
 }

 public void LoadUSResources
 (Object src, EventArgs a){
 if (((RadioButton)src).Checked == true) {
 ResourceSet rs =
 rm.GetResourceSet(
 new CultureInfo("en-US"), true, true);
 SetLabels(rs);
 }
 }

 public void LoadSwahiliResources
 (Object src, EventArgs a){
 if (((RadioButton)src).Checked == true) {
 ResourceSet rs =
 rm.GetResourceSet(
 new CultureInfo("sw"), true, true);
 SetLabels(rs);
 }
 }

 private void SetLabels(ResourceSet rs){
 man.Text = rs.GetString("Man");
 woman.Text = rs.GetString("Woman");
 }

 public static void Main(){
 Application.Run(new International());
 }

Chapter 14: Programming Windows Forms 589

}///:~

Here, we wish to create an application which uses labels in a local culture (a
culture is more specific than a language; for instance, there is a distinction
between the culture of the United States and the culture of the United Kingdom).
The basic references we’ll need are to ResourceManager rm, which we’ll load
to be culture-specific, and two labels for the words “Man” and “Woman.”

The first line of the International constructor initializes rm to be a resource
manager for the specified type. A ResourceManager is associated with a
specific type because .NET uses a “hub and spoke” model for managing resources.
The “hub” is the assembly that contains the code of a specific type. The “spokes”
are zero or more satellite assemblies that contain the resources for specific
cultures, and the ResourceManager is the link that associates a type (a “hub”)
with its “spokes.”

International() then shows the use of radio buttons in Windows Forms. The
model is simple: All radio buttons within a container are mutually exclusive. To
make multiple sets of radio buttons within a single form, you can use a
GroupBox or Panel. International has two RadioButtons, eng has its
Checked property set to true, and, when that property changes, the
LoadEnglishResources method will be called. RadioButton swa is similarly
configured to call LoadSwahiliResources() and is not initially checked. By
default, the man and woman labels are set to a hard-coded value.

The LoadxxxResources() methods are similar; they check if their source
RadioButton is checked (since they are handling the CheckedChange event,
the methods will be called when their source becomes unchecked as well). If their
source is set, the ResourceManager loads one of the “spoke” ResourceSet
objects. The ResourceSet is associated with a particular CultureInfo instance,
which is initialized with a language tag string compliant with IETF RFC 1766
(you can find a list of standard codes in the .NET Framework documentation and
read the RFC at http://www.ietf.org/rfc/rfc1766.txt). The GetResourceSet()
method also takes two bools, the first specifying if the ResourceSet should be
loaded if it does not yet exist in memory, and the second specifying if the
ResourceManager should try to load “parents” of the culture if the specified
CultureInfo does not work; both of these bools will almost always be true.

Once the ResourceSet is retrieved, it is used as a parameter to the
SetLabels() method. SetLabels() uses ResourceSet.GetString() to
retrieve the appropriate culture-specific string for the specified key and sets the
associated Label.Text. ResourceSet’s other major method is GetObject()
which can be used to retrieve any type of resource.

590 Thinking in C# www.ThinkingIn.NET

We’ve not yet created the satellite assemblies which will serve as the “spokes” to
our International “hub,” but it is interesting to run the program in this state. If
you run the above code and click the “Swahili” radio button, you will see this
dialog:

Figure 14-6: A detailed exception handling dialog from Microsoft

This is not a dialog you’d ever want an end-user to see and a real application’s
exception handling would hide it, but it’s an interesting example of the kind of
behavior that you could potentially include in your own components to aid 3rd
party developers during debugging.

Creating satellite assemblies
For your satellite assembly to work, you must follow naming (including
capitalization) and directory conventions. First, you will create a new
subdirectory for each culture you wish to support and named with the culture’s
language tag. If you compiled International.exe in the directory c:\tic\chap14,
you will create c:\tic\chap14\sw and c:\tic\chap14\en-US.

In the \sw subdirectory, create a file with these contents:

Man=mwanamume
Woman=mwanamke

And save the file with a .txt extension (say, as “Swahili.txt”). Use the command-
line resource generator tool to turn this file into a binary resource file that follows
the naming convention MainAssembly.languagetag.resources. For this
example, the command is:

Chapter 14: Programming Windows Forms 591

resgen swahili.txt International.sw.resources

The .resources file now has to be converted into a satellite assembly named
MainAssembly.resources.dll. This is done with the assembly linker tool al.
Both of these lines should be typed as a single command:

al /t:lib /embed:International.sw.resources
/culture:sw /out:International.resources.dll

The resulting .DLL should still be in the \sw subdirectory. Do the same process in
the \en-US directory after creating an appropriate text file:

resgen american.txt International.en-US.resources

al /t:lib /embed:International.en-US.resources /culture:en-
US /out:International.resources.dll

Switch back to the parent directory and run International. Now, when you run
the program, the man and woman labels should switch between Swahili and
American in response to the radio buttons.

Constant resources
While culturally appropriate resources use satellite assemblies, it may be the case
that you wish to have certain resources such as graphics and icons embedded
directly in the main assembly. Using graphics as resources is a little more
difficult than using text because you must use a utility class to generate the
resource file. Here’s an example command-line class that takes two command-
line arguments: the name of a graphics file and the name of the desired resources
file:

//:c14:GrafResGen.cs
//Generates .resource file from a graphics file
//Usage: GrafResGen [inputFile] [outputFile]
using System.IO;
using System.Resources;
using System.Drawing;

class GrafResGen {
 GrafResGen(
 string name, Stream inStr, Stream outStr){
 ResourceWriter rw = new ResourceWriter(outStr);

 Image img = new Bitmap(inStr);

592 Thinking in C# www.MindView.net

 rw.AddResource(name, img);
 rw.Generate();
 }

 public static void Main(string[] args){
 FileStream inF = null;
 FileStream outF = null;
 try {
 string name = args[0];
 inF = new FileStream(name, FileMode.Open);
 string outName = args[1];
 outF =
 new FileStream(outName, FileMode.Create);
 GrafResGen g =
 new GrafResGen(name, inF, outF);
 } finally {
 inF.Close();
 outF.Close();
 }
 }
}///:~

A ResourceWriter generates binary .resource files to a given Stream. A
ResXResourceWriter (not demonstrated) can be used to create an XML
representation of the resources that can then be compiled into a binary file using
the resgen process described above (an XML representation is not very helpful
for binary data, so we chose to use a ResourceWriter directly).

To use this program, copy an image to the local directory and run:

GrafResGen someimage.jpg ConstantResources.resources

This will generate a binary resources file that we’ll embed in this example
program:

//:c14:ConstantResources.cs
/*
Compile with: csc /res:ConstantResources.resources
 ConstantResources.cs
*/
//Loads resources from the current assembly
using System.Resources;
using System.Drawing;

Chapter 14: Programming Windows Forms 593

using System.Windows.Forms;

class ConstantResources:Form {
 ConstantResources(){
 PictureBox pb = new PictureBox();
 pb.Dock = DockStyle.Fill;
 Controls.Add(pb);

 ResourceManager rm =
 new ResourceManager(this.GetType());
 pb.Image =
 (Image) rm.GetObject("someimage.jpg");
 }

 public static void Main(){
 Application.Run(new ConstantResources());
 }
}///:~

The code in ConstantResources is very similar to the code used to load
cultural resources from satellites, but without the GetResourceSet() call to
load a particular satellite. Instead, the ResourceManager looks for resources
associated with the ConstantResources type. Naturally, those are stored in the
ConstantResources.resources file generated by the GrafResGen utility just
described. For the ResourceManager to find this file, though, the resource file
must be linked into the main assembly in this manner:

csc /res:ConstantResources.res ConstantResources.cs

Assuming that the resources have been properly embedded into the
ConstantResources.exe assembly, the ResourceManager can load the
“someimage.jpg” resource and display it in the PictureBox pb.

What about the XP look?
If you have been running the sample programs under Windows XP, you may have
been disappointed to see that Controls do not automatically support XP’s
graphical themes. In order to activate XP-themed controls, you must set your
Control’s FlatStyle property to FlatStyle.System and specify that your
program requires Microsoft’s comctl6 assembly to run. You do that by creating
another type of non-code resource for your file: a manifest. A manifest is an XML
document that specifies all sorts of meta-information about your program: it’s
name, version, and so forth. One thing you can specify in a manifest is a

594 Thinking in C# www.ThinkingIn.NET

dependency on another assembly, such as comctl6. To link to comctl6, you’ll
need a manifest of this form:

<?xml
 version="1.0" encoding="UTF-8" standalone="yes"
?>
<!-- XPThemed.exe.manifest -->
<assembly
 xmlns="urn:schemas-microsoft-com:asm.v1"
 manifestVersion="1.0">
 <assemblyIdentity
 type="win32"
 name="Thinkingin.Csharp.C13.XPThemes"
 version="1.0.0.0"
 processorArchitecture = "X86"
 />
 <description>Demonstrate XP Themes</description>
 <!-- Link to comctl6 -->
 <dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
 </dependency>
</assembly>

The manifest file is an XML-formatted source of meta-information about your
program. In this case, after specifying our own assemblyIdentity, we specify
the dependency on Common-Controls version 6.

Name this file programName.exe.manifest and place it in the same directory
as your program. If you do, the .NET Runtime will automatically give the
appropriate Controls in your program XP themes. Here’s an example program:

//:c14:XPThemed.cs
using System.Windows.Forms;
using System.Drawing;

Chapter 14: Programming Windows Forms 595

class XPThemed: Form {
 XPThemed(){
 ClientSize = new Size(250, 100);
 Button b = new Button();
 b.Text = "XP Style";
 b.Location = new Point(10, 10);
 b.FlatStyle = FlatStyle.System;
 Controls.Add(b);

 Button b2 = new Button();
 b2.Text = "Standard";
 b2.Location = new Point(100, 10);
 Controls.Add(b2);
 }

 public static void Main(){
 Application.Run(new XPThemed());
 }
}///:~

When run without an appropriate manifest file, both buttons will have a default
gray style:

Figure 14-7: By default, Windows Forms do not use XP styles

When XPThemed.exe.manifest is available, b will use the current XP theme,
while b2, whose FlatStyle is the default FlatStyle.Standard, will not.

596 Thinking in C# www.MindView.net

Figure 14-8: A manifest file provides access to the XP look-and-feel

Fancy buttons
In addition to creating theme-aware buttons, it is an easy matter to create
buttons that have a variety of graphical features and that change their appearance
in response to events. In order to run this example program, you’ll have to have
four images in the active directory (in the example code, they’re assumed to be
named “tic.gif”, “away.gif”,”in.gif”, and “hover.gif”).

//:c14:ButtonForm.cs
///Demonstrates various types of buttons
using System.Windows.Forms;
using System;
using System.Collections;
using System.Drawing;

class ButtonForm : Form {

 ButtonForm() {
 ClientSize = new System.Drawing.Size(400, 200);
 Text = "Buttons, in all their glory";

 Button simple = new Button();
 simple.Text = "Simple";
 simple.Location = new Point(10, 10);

 Button image = new Button();
 image.Image = Image.FromFile(".\\TiC.gif");
 image.Text = "Text";
 image.Location = new Point(120, 10);

 Button popup = new Button();

Chapter 14: Programming Windows Forms 597

 popup.Location = new Point(230, 10);
 popup.Text = "Popup";
 popup.FlatStyle = FlatStyle.Popup;

 FlyOverButton flyOver =
 new FlyOverButton("Away", "In", "Hovering");
 flyOver.Location = new Point(10, 40);

 FlyOverImages flyOverImages =
 new FlyOverImages(
 ".\\away.gif",".\\in.gif",".\\hover.gif");
 flyOverImages.Location = new Point(230, 40);

 Controls.AddRange(new Control[]{
 simple, image, popup, flyOver, flyOverImages});
 }

 public static void Main() {
 Application.Run(new ButtonForm());
 }
}

class FlyOverButton : Button {
 string away;
 string inStr;
 string hover;
 internal FlyOverButton(
 string away, string inStr, string hover) {
 this.away = away;
 this.inStr = inStr;
 this.hover = hover;
 FlatStyle = FlatStyle.Popup;
 Text = away;
 MouseEnter += new EventHandler(OnMouseEnter);
 MouseHover += new EventHandler(OnMouseHover);
 MouseLeave += new EventHandler(OnMouseLeave);
 }
 private void OnMouseEnter(
 object sender, System.EventArgs args) {
 ((Control)sender).Text = inStr;
 }

598 Thinking in C# www.ThinkingIn.NET

 private void OnMouseHover(
 object sender, System.EventArgs args) {
 ((Control)sender).Text = hover;
 }

 private void OnMouseLeave(
 object sender, System.EventArgs args) {
 ((Control)sender).Text = away;
 }
}

class FlyOverImages : Button {
 internal FlyOverImages(
 string away, string inStr, string hover) {
 ImageList = new ImageList();
 ImageList.Images.Add(Image.FromFile(away));
 ImageList.Images.Add(Image.FromFile(inStr));
 ImageList.Images.Add(Image.FromFile(hover));
 FlatStyle = FlatStyle.Popup;
 ImageIndex = 0;
 MouseEnter += new EventHandler(OnMouseEnter);
 MouseHover += new EventHandler(OnMouseHover);
 MouseLeave += new EventHandler(OnMouseLeave);
 }
 private void OnMouseEnter(
 object sender, System.EventArgs args) {
 ((Button)sender).ImageIndex = 1;
 }

 private void OnMouseHover(
 object sender, System.EventArgs args) {
 ((Button)sender).ImageIndex = 2;
 }

 private void OnMouseLeave(
 object sender, System.EventArgs args) {
 ((Button)sender).ImageIndex = 0;
 }
}///:~

Chapter 14: Programming Windows Forms 599

The first button created and placed on the form is simple and its appearance and
behavior should be familiar. The second button image, sets its Image property
from an Image loaded from a file. The same Image is displayed at all times; if
the Text property is set, the label will be drawn over the Image.

The third button popup has a FlatStyle of FlatStyle.Popup. This button
appears flat until the mouse passes over it, at which point it is redrawn with a 3-D
look.

The fourth and fifth buttons require more code and so are written as their own
classes: FlyOverButton and FlyOverImages. The FlyOverButton is a
regular button, but has event handlers for MouseEnter, MouseHover, and
MouseLeave which set the Text property as appropriate.

FlyOverImages takes advantage of the ImageList property of Button. Like
FlyOverButton, FlyOverImages uses mouse events to change the image
displayed on the button, but instead of manipulating the Image property, it sets
the ImageIndex property, which correspond indices in the ImageList
configured in the FlyOverImages() constructor.

Tooltips
The one “fancy” thing that the previous example did not show is probably the one
you most expect – the help text that appears when the mouse hovers over a
control for more than a few moments. Such tooltips are, surprisingly, not a
property of the Control above which they appear, but rather are controlled by a
separate ToolTip object. This would seem to violate a design rule-of-thumb:
Objects should generally contain a navigable reference to all objects externally
considered associated. As a user or programmer, one would definitely consider
the tooltip to be “part of” what distinguishes one control from another, so one
should expect a Tooltip property in Control. Another surprise is that the
ToolTip does not conform to the containment model of Windows Forms, it is
not placed within the Controls collection of another Control. This is an
example of how even the best-designed libraries (and Windows Forms is top-
notch) contain inconsistencies and quirks; while it can be very helpful to study
the design of a good library to aid your design education, all libraries contain
questionable choices.

Adding a ToolTip to a Control requires that a reference to the Control and its
desired text be passed to an instance of ToolTip (which presumably maintains
an internal IDictionary, which begs the question of why a ToolTip instance is
required rather than using a static method). Here’s an example that shows the
basic use of a ToolTip:

600 Thinking in C# www.MindView.net

//:c14:TooltipDisplay.cs
using System;
using System.Drawing;
using System.Windows.Forms;

class TooltipDisplay : Form {
 TooltipDisplay(){
 Button b = new Button();
 b.Text = "Button";
 b.Location = new Point(10, 10);
 Controls.Add(b);

 ToolTip t = new ToolTip();
 t.SetToolTip(b, "Does nothing");
 }

 public static void Main(){
 Application.Run(new TooltipDisplay());
 }
}///:~

Displaying and editing text
One of the most common tasks for a GUI is displaying formatted text. In
Windows Forms, formatted text is the realm of the RichTextBox, which
displays and manipulates text in Rich Text Format. The details of the RTF syntax
are thankfully hidden from the programmer, text appearance is manipulated
using various Selectionxxx properties, which manipulate the chosen substring
of the total RichTextBox.Text. You can even, if you’re so inclined, get and set
the full RTF text (which is actually helpful when dragging-and-dropping from,
say, Word. Drag-and-drop is covered later in this chapter.)

This example allows you to add arbitrary text to a RichTextBox with various
formatting options chosen semirandomly:

//:c14:TextEditing.cs
///Demonstrates the TextBox and RichTextBox controls
using System.Windows.Forms;
using System;
using System.Collections;
using System.Drawing;

Chapter 14: Programming Windows Forms 601

class TextEditing : Form {
 TextBox tb;
 RichTextBox rtb;
 Random rand = new Random();

 TextEditing() {
 ClientSize = new Size(450, 400);
 Text = "Text Editing";

 tb = new TextBox();
 tb.Text = "Some Text";
 tb.Location = new Point(10, 10);

 Button bold = new Button();
 bold.Text = "Bold";
 bold.Location = new Point(350, 10);
 bold.Click += new EventHandler(bold_Click);

 Button color = new Button();
 color.Text = "Color";
 color.Location = new Point(350, 60);
 color.Click += new EventHandler(color_Click);

 Button size = new Button();
 size.Text = "Size";
 size.Location = new Point(350, 110);
 size.Click += new EventHandler(size_Click);

 Button font = new Button();
 font.Text = "Font";
 font.Location =new Point(350, 160);
 font.Click += new EventHandler(font_Click);

 rtb = new RichTextBox();
 rtb.Location = new Point(10, 50);
 rtb.Size = new Size(300, 180);

 Controls.AddRange(
 new System.Windows.Forms.Control[]{
 tb, rtb, bold, color, size, font});
 }

602 Thinking in C# www.ThinkingIn.NET

 private void AddAndSelectText() {
 string newText = tb.Text + "\n";
 int insertionPoint = rtb.SelectionStart;
 rtb.AppendText(newText);
 rtb.SelectionStart = insertionPoint;
 rtb.SelectionLength = newText.Length;
 }

 private void ResetSelectionAndFont() {
 /* Setting beyond end of textbox places
 insertion at end of text */
 rtb.SelectionStart = Int16.MaxValue;
 rtb.SelectionLength = 0;
 rtb.SelectionFont =
 new Font("Verdana", 10, FontStyle.Regular);
 rtb.SelectionColor = Color.Black;
 }
 private void bold_Click(
 object sender, System.EventArgs e) {
 AddAndSelectText();
 rtb.SelectionFont =
 new Font("Verdana", 10, FontStyle.Bold);
 ResetSelectionAndFont();
 }

 private void color_Click(
 object sender, System.EventArgs e) {
 AddAndSelectText();
 rtb.SelectionColor =
 (rand.NextDouble()) > 0.5 ?
 Color.Red : Color.Blue;
 ResetSelectionAndFont();
 }

 private void size_Click(
 object sender, System.EventArgs e) {
 AddAndSelectText();
 int fontSize = 8 + rand.Next(10);
 rtb.SelectionFont =

Chapter 14: Programming Windows Forms 603

 new Font("Verdana", fontSize,
 FontStyle.Regular);
 ResetSelectionAndFont();
 }

 private void font_Click(
 object sender, System.EventArgs e) {
 AddAndSelectText();
 FontFamily[] families = FontFamily.Families;
 int iFamily = rand.Next(families.Length);
 rtb.SelectionFont =
 new Font(families[iFamily], 10,
 FontStyle.Regular);
 ResetSelectionAndFont();
 }

 static void Main() {
 Application.Run(new TextEditing());
 }
}///:~

Everything in the TextEditing() constructor should be familiar: A number of
Buttons are created, event handlers attached, and a TextBox and
RichTextBox are placed on the Form as well.

The methods AddAndSelectText() and ResetSelectionAndFont() are
used by the various event handlers. In AddAndSelectText() the text to be
inserted is taken from the TextBox tb and a newline added. The current
rtb.SelectionStart is remembered, the new text appended to the
RichTextBox, and the selection is set to begin with the remembered
insertionPoint and SelectionLength to the length of the inserted text.

ResetSelectionAndFont() sets the insertion point at the end of the text by
giving it an impossibly high value. The selection is reset to use the default font (1o
pt. Verdana in black) using the appropriate properties.

The various event handlers call AddAndSelectText() and then manipulate
various aspects of the selected text – different sizes, colors, and fonts are
randomly chosen.

604 Thinking in C# www.MindView.net

Linking text
In the past decade, hypertext has gone from an esoteric topic to probably the
dominant form of human-computer interaction. However, incorporating text
links into a UI has been a big challenge. Windows Forms changes that with its
LinkLabel control. The LinkLabel has powerful support for linking, allowing
any number of links within the label area. The LinkLabel facilitates the creation
of even complex linking semantics, such as the XLink standard
(http://www.w3.org/TR/xlink/).

While it’s possible to use a LinkLabel to activate other Windows Forms
behavior, the most common use is likely to be activating the full-featured Web
browser. To do that, we need to introduce the Process class from the
System.Diagnostics namespace. The Process class provides thorough access
to local and remote processes, but the core functionality is starting a local
process, i.e., launching another application while your application continues to
run (or shuts down – the launched process is independent of your application).
There are three overloaded versions of Process.Start() that provide various
degrees of control over the launched application. The most basic
Process.Start() method just takes a string and uses the OS’s underlying
mechanism to determine the appropriate way to run the request; if the string
specifies a non-executable file, the extension may be associated with a program
and, if so, that program will open it. For instance, ProcessStart("Foo.cs") will
open the editor associated with the .cs extension.

The most advanced Process.Start() takes a ProcessStartInfo info.
ProcessStartInfo contains properties for setting environment variables,
whether a window should be shown and in what style, input and output
redirection, etc. This example uses the third overload of Process.Start(), which
takes an application name and a string representing the command-line
arguments, to launch Internet Explorer and surf to www.ThinkingIn.Net.

//:c14:LinkLabelDemo.cs
//Demonstrates the LinkLabel
using System;
using System.Drawing;
using System.Diagnostics;
using System.Windows.Forms;

class LinkLabelDemo : Form {
 LinkLabelDemo(){
 LinkLabel label1 = new LinkLabel();

Chapter 14: Programming Windows Forms 605

 label1.Text = "Download Thinking in C#";
 label1.Links.Add(9, 14,
 "http://www.ThinkingIn.Net/");
 label1.LinkClicked +=
 new LinkLabelLinkClickedEventHandler(
 InternetExplorerLaunch);
 label1.Location = new Point(10, 10);
 label1.Size = new Size(160, 30);
 Controls.Add(label1);

 LinkLabel label2 = new LinkLabel();
 label2.Text = "Show message";
 label2.Links.Add(0, 4, "Foo");
 label2.Links.Add(5, 8, "Bar");
 label2.LinkClicked +=
 new LinkLabelLinkClickedEventHandler(
 MessageBoxShow);
 label2.Location = new Point(10, 60);
 Controls.Add(label2);
 }

 public void InternetExplorerLaunch(
 object src, LinkLabelLinkClickedEventArgs e){
 string url = (string) e.Link.LinkData;
 Process.Start("IExplore.exe", url);
 e.Link.Visited = true;
 }

 public void MessageBoxShow(
 object src, LinkLabelLinkClickedEventArgs e){
 string msg = (string) e.Link.LinkData;
 MessageBox.Show(msg);
 e.Link.Visited = true;
 }

 public static void Main(){
 Application.Run(new LinkLabelDemo());
 }
}///:~

Not all the LinkLabel.Text need be a link; individual links are added to the
Links collection by specifying an offset and the length of the link. If you do not

606 Thinking in C# www.ThinkingIn.NET

need any information other than the fact that the link was clicked, you do not
need to include the third argument to Links.Add(), but typically you will store
some data to be used by the event handler. In the example, the phrase “Thinking
in C#” is presented underlined, in the color of the LinkColor property (by
default, this is set by the system and is usually blue). This link has as its
associated data, a URL. Label2 has two links within it, one associated with the
string “foo” and the other with “bar.”

While a LinkLabel can have many links, all the links share the same event
handler (of course, it’s a multicast delegate, so you can add as many methods to
the event-handling chain as desired, but you cannot directly associated a specific
event-handling method with a specific link). The Link is passed to the event
handler via the event arguments, so the delegate is the descriptively named
LinkLabelLinkClickedEventHandler. The LinkData (if it was specified in
the Link’s constructor) can be any object. In the example, we downcast the
LinkData to string.

The InternetExplorerLaunch() method uses Process.Start() to launch
Microsoft’s Web browser. MessageBoxShow() demonstrates the convenient
MessageBox class, which pops up a simple alert dialog. At the end of the event
handlers, the appropriate Link is set to Visited, which redraws the link in the
LinkLabel.VisitedLinkColor.

Checkboxes and RadioButtons
As briefly mentioned in the International example, radio buttons in Windows
Forms have the simple model of being mutually exclusive within their containing
Controls collection. Sometimes it is sufficient to just plunk some radio buttons
down on a Form and be done with it, but usually you will use a Panel or
GroupBox to contain a set of logically related radio buttons (or other controls).
Usually, a set of related RadioButtons should have the same event handler
since generally the program needs to know “Which of the radio buttons in the
group is selected?” Since EventHandler delegates pass the source object as the
first parameter in their arguments, it is easy for a group of buttons to share a
single delegate method and use the src argument to determine which button has
been activated. The use of a GroupBox and this form of sharing a delegate
method is demonstrated in the next example.

CheckBox controls are not mutually exclusive; any number can be in any state
within a container. CheckBoxes cycle between two states
(CheckState.Checked and CheckState.Unchecked) by default, but by

Chapter 14: Programming Windows Forms 607

setting the ThreeState property to true, can cycle between Checked,
Unchecked, and CheckState.Indeterminate.

This example demonstrates a standard CheckBox, one that uses an Image
instead of text (like Buttons and many other Controls, the default appearance
can be changed using a variety of properties), a three-state CheckBox, and
grouped, delegate-sharing RadioButtons:

//:c14:CheckAndRadio.cs
//Demonstrates various types of buttons
using System.Windows.Forms;
using System;
using System.Collections;
using System.Drawing;

class CheckAndRadio : Form {
 CheckAndRadio() {
 ClientSize = new System.Drawing.Size(400, 200);
 Text = "Checkboxes and Radio Buttons";

 CheckBox simple = new CheckBox();
 simple.Text = "Simple";
 simple.Location = new Point(10, 10);
 simple.Click +=
 new EventHandler(OnSimpleCheckBoxClick);

 CheckBox image = new CheckBox();
 image.Image = Image.FromFile(".\\TiC.gif");
 image.Location = new Point(120, 10);
 image.Click +=
 new EventHandler(OnSimpleCheckBoxClick);

 CheckBox threeState = new CheckBox();
 threeState.Text = "Three state";
 threeState.ThreeState = true;
 threeState.Location = new Point(230, 10);
 threeState.Click +=
 new EventHandler(OnThreeStateCheckBoxClick);

 Panel rbPanel = new Panel();
 rbPanel.Location = new Point(10, 50);
 rbPanel.Size = new Size(420, 50);

608 Thinking in C# www.MindView.net

 rbPanel.AutoScroll = true;

 RadioButton f1 = new RadioButton();
 f1.Text = "Vanilla";
 f1.Location = new Point(0, 10);
 f1.CheckedChanged +=
 new EventHandler(OnRadioButtonChange);
 RadioButton f2 = new RadioButton();
 f2.Text = "Chocolate";
 f2.Location = new Point(140, 10);
 f2.CheckedChanged +=
 new EventHandler(OnRadioButtonChange);
 RadioButton f3 = new RadioButton();
 f3.Text = "Chunky Monkey";
 f3.Location = new Point (280, 10);
 f3.CheckedChanged +=
 new EventHandler(OnRadioButtonChange);
 f3.Checked = true;

 rbPanel.Controls.AddRange(
 new Control[]{ f1, f2, f3});

 Controls.AddRange(
 new Control[]{
 simple, image, threeState, rbPanel});
 }

 private void OnSimpleCheckBoxClick(
 object sender, EventArgs args){
 CheckBox cb = (CheckBox) sender;
 Console.WriteLine(
 cb.Text + " is " + cb.Checked);
 }

 private void OnThreeStateCheckBoxClick(
 object sender, EventArgs args){
 CheckBox cb = (CheckBox) sender;
 Console.WriteLine(
 cb.Text + " is " + cb.CheckState);
 }

Chapter 14: Programming Windows Forms 609

 private void OnRadioButtonChange(
 object sender, EventArgs args){
 RadioButton rb = (RadioButton) sender;
 if (rb.Checked == true)
 Console.WriteLine(
 "Flavor is " + rb.Text);
 }

 public static void Main() {
 Application.Run(new CheckAndRadio());
 }
}///:~

List, Combo, and CheckedListBoxes
Radio buttons and check boxes are appropriate for selecting among a small
number of choices, but the task of selecting from larger sets of options is the work
of the ListBox, the ComboBox, and the CheckedListBox.

This example shows the basic use of a ListBox. This ListBox allows for only a
single selection to be chosen at a time; if the SelectionMode property is set to
MultiSimple or MultiExtended, multiple items can be chosen
(MultiExtended should be used to allow SHIFT, CTRL, and arrow shortcuts). If
the selection mode is SelectionMode.Single, the Item property contains the
one-and-only selected item, for other modes the Items property is used.

//:c14:ListBoxDemo.cs
//Demonstrates ListBox selection
using System;
using System.Drawing;
using System.Windows.Forms;

class ListBoxDemo : Form {
 ListBoxDemo(){
 ListBox lb = new ListBox();
 for (int i = 0; i < 10; i++) {
 lb.Items.Add(i.ToString());
 }
 lb.Location = new Point(10, 10);
 lb.SelectedValueChanged +=
 new EventHandler(OnSelect);
 Controls.Add(lb);

610 Thinking in C# www.ThinkingIn.NET

 }

 public void OnSelect(object src, EventArgs ea){
 ListBox lb = (ListBox) src;
 Console.WriteLine(lb.SelectedItem);
 }

 public static void Main(){
 Application.Run(new ListBoxDemo());
 }
}///:~

The ComboBox is similarly easy to use, although it can only be used for single
selection. This example demonstrates the ComboBox, including its ability to
sort its own contents:

//:c14:ComboBoxDemo.cs
///Demonstrates the ComboBox
using System;
using System.Drawing;
using System.Windows.Forms;

class ComboBoxDemo : Form {
 ComboBox presidents;
 CheckBox sorted;

 ComboBoxDemo() {
 ClientSize = new Size(320, 200);
 Text = "ComboBox Demo";

 presidents = new ComboBox();
 presidents.Location = new Point(10, 10);
 presidents.Items.AddRange(
 new string[]{
 "Washington", "Adams J", "Jefferson",
 "Madison", "Monroe", "Adams JQ", "Jackson",
 "Van Buren", "Harrison", "Tyler", "Polk",
 "Taylor", "Fillmore", "Pierce", "Buchanan",
 "Lincoln", "Johnson A", "Grant", "Hayes",
 "Garfield", "Arthur", "Cleveland",
 "Harrison", "McKinley", "Roosevelt T",
 "Taft", "Wilson", "Harding", "Coolidge",

Chapter 14: Programming Windows Forms 611

 "Hoover", "Roosevelt FD", "Truman",
 "Eisenhower", "Kennedy", "Johnson LB",
 "Nixon", "Ford", "Carter", "Reagan",
 "Bush G", "Clinton", "Bush GW"});
 presidents.SelectedIndexChanged +=
 new EventHandler(OnPresidentSelected);

 sorted = new CheckBox();
 sorted.Text = "Alphabetically sorted";
 sorted.Checked = false;
 sorted.Click +=
 new EventHandler(NonReversibleSort);
 sorted.Location = new Point(150, 10);

 Button btn = new Button();
 btn.Text = "Read selected";
 btn.Click += new EventHandler(GetPresident);
 btn.Location = new Point(150, 50);

 Controls.AddRange(
 new Control[]{presidents, sorted, btn});
 }

 private void NonReversibleSort(
 object sender, EventArgs args) {
 //bug, since non-reversible
 presidents.Sorted = sorted.Checked;
 }

 private void OnPresidentSelected(
 object sender, EventArgs args) {
 int selIdx = presidents.SelectedIndex;
 if (selIdx > -1) {
 Console.WriteLine(
 "Selected president is: "
 + presidents.Items[selIdx]);
 } else {
 Console.WriteLine(
 "No president is selected");
 }
 }

612 Thinking in C# www.MindView.net

 private void GetPresident(
 object sender, EventArgs args) {
 //Doesn't work, since can be blank
 // or garbage value
 Console.WriteLine(presidents.Text);
 //So you have to do something like this...
 string suggestion = presidents.Text;
 if (presidents.Items.Contains(suggestion)) {
 Console.WriteLine(
 "Selected president is: " + suggestion);
 } else {
 Console.WriteLine(
 "No president is selected");
 }
 }

 public static void Main() {
 Application.Run(new ComboBoxDemo());
 }
}///:~

After the names of the presidents are loaded into the ComboBox, a few handlers
are defined: the checkbox will trigger NonReversibleSort() and the button
will trigger GetPresident(). The implementation of NonReversibleSort()
sets the ComboBox’s Sorted property depending on the selection state of the
sorted Checkbox. This is a defect as, once sorted, setting the Sorted property
to false will not return the ComboBox to its original chronologically-ordered
state.

GetPresident() reveals another quirk. The value of ComboBox.Text is the
value of the editable field in the ComboBox, even if no value has been chosen,
or if the user has typed in non-valid data. In order to confirm that the data in
ComboBox.Text is valid, you have to search the Items collection for the text,
as demonstrated.

The CheckedListBox is the most complex of the list-selection controls. This
example lets you specify your musical tastes, printing your likes and dislikes to
the console.

//:c14:CheckedListBoxDemo.cs
///Demonstrates the CheckedListBox
using System;

Chapter 14: Programming Windows Forms 613

using System.Drawing;
using System.Windows.Forms;

class CheckedListBoxDemo : Form {
 CheckedListBox musicalTastes;

 CheckedListBoxDemo(){
 ClientSize = new Size(320, 200);
 Text = "CheckedListBox Demo";

 musicalTastes = new CheckedListBox();
 musicalTastes.Location = new Point(10, 10);
 musicalTastes.Items.Add(
 "Classical", CheckState.Indeterminate);
 musicalTastes.Items.Add(
 "Jazz", CheckState.Indeterminate);
 musicalTastes.Items.AddRange(
 new string[]{
 "Blues", "Rock", "Punk", "Grunge",
 "Hip hop"});

 MakeAllIndeterminate();

 Button getTastes = new Button();
 getTastes.Location = new Point(200, 10);
 getTastes.Width = 100;
 getTastes.Text = "Get tastes";
 getTastes.Click +=
 new EventHandler(OnGetTastes);

 Controls.Add(musicalTastes);
 Controls.Add(getTastes);
 }

 private void MakeAllIndeterminate(){
 CheckedListBox.ObjectCollection items =
 musicalTastes.Items;
 for (int i = 0; i < items.Count; i++) {
 musicalTastes.SetItemCheckState(
 i, CheckState.Indeterminate);
 }

614 Thinking in C# www.ThinkingIn.NET

 }

 private void OnGetTastes(object o, EventArgs args){
 //Returns checked _AND_ indeterminate!
 CheckedListBox.CheckedIndexCollection
 checkedIndices = musicalTastes.CheckedIndices;
 foreach(int i in checkedIndices){
 if (musicalTastes.GetItemCheckState(i)
 != CheckState.Indeterminate) {
 Console.WriteLine(
 "Likes: " + musicalTastes.Items[i]);
 }
 }

 //Or, to iterate over the whole collection
 for (int i = 0;
 i < musicalTastes.Items.Count; i++) {
 if (musicalTastes.GetItemCheckState(i)
 == CheckState.Unchecked) {
 Console.WriteLine(
 "Dislike: " + musicalTastes.Items[i]);
 }
 }
 }
 public static void Main(){
 Application.Run(new CheckedListBoxDemo());
 }
}///:~

The CheckedListBoxDemo() constructor shows that items can be added
either one at a time, with their CheckState property defined, or en masse.

The OnGetTastes() method shows a defect in the CheckedListBox control;
the CheckedIndices property returns not just those items with
CheckState.Checked, but also those with CheckState.Indeterminate! An
explicit check must be added to make sure that the value at the index really is
checked. Once an appropriate index is in hand, the value can be retrieved by
using the Items[] array operator.

Chapter 14: Programming Windows Forms 615

Multiplane displays with the
Splitter control
It is often desirable to allow the user to change the proportion of a window
devoted to various logical groups; windows with such splits are often said to be
divided into multiple “panes.” The Splitter control allows the user to resize
controls manually.

We discussed the use of GroupBox as one way to logically group controls such
as RadioButtons. A more general-purpose grouping control is the Panel, which
by default is invisible. By placing logically related Controls on a Panel, and then
associating a Splitter with the Panel, multipane UIs can be created easily. A
Splitter is associated with a Control via the Dock property – the Splitter
resizes the Control placed immediately after it in the container. The Control to
be resized and the Splitter should be assigned the same Dock value.

In this example, we use Panels that we make visible by setting their BackColor
properties.

//:c14:SplitterDemo.cs
using System;
using System.Drawing;
using System.Windows.Forms;

class SplitterDemo : Form {
 SplitterDemo(){
 Panel r = new Panel();
 r.BackColor = Color.Red;
 r.Dock = DockStyle.Left;
 r.Width = 200;

 Panel g = new Panel();
 g.BackColor = Color.Green;
 g.Dock = DockStyle.Fill;

 Panel b = new Panel();
 b.BackColor = Color.Blue;
 b.Dock = DockStyle.Right;
 b.Width = 200;

 Splitter rg = new Splitter();

616 Thinking in C# www.MindView.net

 //Set dock to same as resized control (p1)
 rg.Dock = DockStyle.Left;

 Splitter gb = new Splitter();
 //Set dock to same as resized control (p3)
 gb.Dock = DockStyle.Right;

 Controls.Add(g);

 //Splitter added _before_ panel
 Controls.Add(gb);
 Controls.Add(b);

 //Splitter added _before_ panel
 Controls.Add(rg);
 Controls.Add(r);

 Width = 640;
 }

 public static void Main(){
 Application.Run(new SplitterDemo());
 }
}///:~

After creating panels r, g, and b and setting their BackColors appropriately, we
create a Splitter rg with the same Dock value as the r Panel and another called
gb with the same Dock value as b. It is critical that the Splitters are added to
the Form immediately prior to the Panels they resize. The example starts with r
and b at their preferred Width of 200 pixels, while the entire Form is set to
take 640. However, you can resize the Panels manually.

TreeView and ListView
Everyone seems to have a different idea of what the ideal TreeView control
should look like and every discussion group for every UI toolkit is regularly
swamped with the intricacies of TreeView programming. Windows Forms is no
exception, but the general ease of programming Windows Forms makes basic
TreeView programming fairly straightforward. The core concept of the
TreeView is that a TreeView contains TreeNodes, which in turn contain
other TreeNodes. This model is essentially the same as the Windows Forms
model in which Controls contain other Controls. So just as you start with a

Chapter 14: Programming Windows Forms 617

Form and add Controls and Controls to those Controls, so too you create a
TreeView and add TreeNodes and TreeNodes to those TreeNodes.

However, the general programming model for Windows Forms is that events are
associated with the pieces that make up the whole (the Controls within their
containers), while the programming model for the TreeView is that events are
associated with the whole; TreeNodes have no events.

This example shows the simplest possible use of TreeView.

//:c14:TreeViewDemo1.cs
//Demonstrates TreeView control
using System;
using System.Drawing;
using System.Windows.Forms;

class TreeViewDemo1 : Form {
 TreeViewDemo1(){
 TreeView tv = new TreeView();
 TreeNode root = new TreeNode("Fish");
 TreeNode cart = new TreeNode("Sharks & Rays");
 TreeNode bony = new TreeNode("Bony fishes");
 tv.Nodes.Add(root);
 root.Nodes.Add(cart);
 root.Nodes.Add(bony);

 tv.AfterSelect +=
 new TreeViewEventHandler(AfterSelectHandler);
 Controls.Add(tv);
 }

 public void AfterSelectHandler(
 object src, TreeViewEventArgs a){
 TreeNode sel = ((TreeView) src).SelectedNode;
 Console.WriteLine(sel);
 }
 public static void Main(){
 Application.Run(new TreeViewDemo1());
 }
}///:~

In the constructor, after a TreeView control is initialized, three TreeNodes are
created. The root node is added to the Nodes collection of the TreeView. The

618 Thinking in C# www.ThinkingIn.NET

branch nodes cart and bony are added to the Nodes collection, not of the
TreeView, but of the root node. A TreeViewEventHandler delegate is
created to output the value of the selected node to the console. The delegate is
added to the TreeView’s AfterSelect event – the TreeView has a dozen
unique events relating to node selection, collapsing and expanding, and changes
to the item’s checkbox (itself an optional property).

 ListView
ListView may finally replace TreeView as “most discussed UI widget.” The
ListView is an insanely customizable widget that is similar to the right-hand
side of Windows Explorer – items placed within a ListView can be viewed in a
detail view, as a list, and as grids of large or small icons. Like the TreeView, the
ListView uses a basic containment model: a TreeView contains a collection of
ListViewItems which do not themselves have events. The ListViewItems are
added to the Items property of the ListView. Various properties of the
ListView and the individual ListViewItems control the various displays.

Icon views
The ListView contains two ImageLists, which hold icons (or other small
graphics) that can be associated with different types of ListViewItems. One
ImageList should be assigned to the SmallImageList and the other to the
LargeImageList property of the ListView. Corresponding images should be
added to both ImageList’s at the same offsets, since the selection of either
ImageList is determined by the ListViewItem’s ImageIndex property. In
other words, if the ListViewItem.ImageIndex is set to 3, if ListView.View is
set to ListView.LargeIcon the 4th image in LargeImageList will be displayed
for that ListViewItem, while if ListView.View == View.SmallIcon, the 4th
image in SmallImageList will be displayed.

Details view
The details view of a ListView consists of a series of columns, the first of which
displays the ListViewItem and its associated icon from the SmallImageList.
Subsequent columns display text describing various aspects related to the
ListViewItem. The text displayed by the 2nd and subsequent columns is
determined by the collection of ListViewSubItems in the ListViewItem’s
SubItems property. The column header text is set with the ListView.Columns
property. The programmer is responsible for coordinating the consistency of
column header offsets and the indices of ListViewSubItems.

This example demonstrates the ListView’s various modes.

Chapter 14: Programming Windows Forms 619

//:c14:ListViewDemo.cs
//Demonstrates the ListView control
using System;
using System.IO;
using System.Drawing;
using System.Windows.Forms;

class ListViewDemo : Form {
 ListView lv;

 ListViewDemo(){
 //Set up control panel
 Panel p = new Panel();
 RadioButton[] btn = new RadioButton[]{
 new RadioButton(), new RadioButton(),
 new RadioButton(), new RadioButton()
 };
 btn[0].Checked = true;
 btn[0].Text = "Details";
 btn[1].Text = "Large Icons";
 btn[2].Text = "List";
 btn[3].Text = "Small Icons";
 for (int i = 0; i < 4; i++) {
 btn[i].Location =
 new Point(10, 20 * (i + 1));
 btn[i].CheckedChanged +=
 new EventHandler(SelectView);
 }
 p.Controls.AddRange(btn);
 p.Dock = DockStyle.Left;
 p.Width = 100;

 Splitter s = new Splitter();
 s.Dock = DockStyle.Left;

 //ListView initial stuff
 lv = new ListView();
 lv.Dock = DockStyle.Fill;

 lv.Columns.Add(
 "File Name", 150, HorizontalAlignment.Left);

620 Thinking in C# www.MindView.net

 lv.Columns.Add(
 "Size", 150, HorizontalAlignment.Left);
 lv.View = View.Details;

 //Load images
 Image smallCS = Image.FromFile("cs_sm.bmp");
 Image smallExe = Image.FromFile("exe_sm.bmp");
 ImageList il = new ImageList();
 il.Images.Add(smallCS);
 il.Images.Add(smallExe);
 lv.SmallImageList = il;

 Image largeCS = Image.FromFile("cs_lrg.bmp");
 Image largeExe = Image.FromFile("exe_lrg.bmp");
 ImageList il2 = new ImageList();
 il2.Images.Add(largeCS);
 il2.Images.Add(largeExe);
 lv.LargeImageList = il2;

 DirectoryInfo dir = new DirectoryInfo(".");
 foreach(FileInfo f in dir.GetFiles("*.*")){
 string fName = f.Name;
 string size = f.Length.ToString();
 string ext = f.Extension;

 ListViewItem item = new ListViewItem(fName);
 if (ext == ".cs") {
 item.ImageIndex = 0;
 } else {
 item.ImageIndex = 1;
 }
 item.SubItems.Add(size);
 lv.Items.Add(item);
 }

 Controls.Add(lv);
 Controls.Add(s);
 Controls.Add(p);
 Width = 640;
 }

Chapter 14: Programming Windows Forms 621

 public void SelectView(Object src, EventArgs ea){
 RadioButton rb = (RadioButton) src;
 string viewDesired = rb.Text;
 switch (viewDesired) {
 case "Details" :
 lv.View = View.Details;
 break;
 case "Large Icons" :
 lv.View = View.LargeIcon;
 break;
 case "List" :
 lv.View = View.List;
 break;
 case "Small Icons" :
 lv.View = View.SmallIcon;
 break;
 }
 }

 public static void Main(){
 Application.Run(new ListViewDemo());
 }
}///:~

The ListViewDemo() constructor defines a Panel and RadioButton array to
select the various ListView.View values. A Splitter is also defined to allow this
panel to be resized. The ListView lv is created and its Dock property set to
DockStyle.Fill. We specify that when the ListView is switched to details view,
the two columns will be labeled “File Name” and “Size,” each will initially be 150
pixels wide, and each will display its text left-aligned. We then set lv’s initial view
state to, in fact, be View.Details.

The next section of the constructor, labeled “LoadImages,” loads small and then
larger images, and places the corresponding images (cs_sm.bmp and
cs_lrg.bmp and exe_sm.bmp and exe_lrg.bmp) in ImageLists which are
assigned to the ListView’s SmallImageList and LargeImageList properties.

The ListView is populated with the files in the current directory. For each file
found, we determine the name, file length, and extension and create a
ListViewItem with it’s “main” Text set to the file’s name. If the extension is
“.cs” we set that ListViewItem’s IconIndex to correspond to the C# images in
the ListView’s ImageLists, otherwise we set the index to 1.

622 Thinking in C# www.ThinkingIn.NET

The string value representing the file’s length is added to the SubItems
collection of the ListViewItem. The ListViewItem itself is always the first
item in the SubItems list; in this case that will appear in the “File Name”
column of the TreeView. The size string will appear in the second column of the
TreeView, under the “Size” heading.

The last portion of the constructor adds the Controls to the ListViewDemo
form in the appropriate order (remember, because there’s a Splitter involved,
the Splitter must be added to the form immediately before the Panel it resizes).

The SelectView() delegate method, called by the SelectionChanged event of
the RadioButtons, sets ListView.View to the appropriate value from the
View enumeration.

Using the clipboard and
drag and drop
Another perennially challenging interface issue is using the Clipboard and
supporting drag and drop operations.

Clipboard
Objects on the Clipboard are supposed to be able to transform themselves into a
variety of formats, depending on what the pasting application wants. For
instance, a vector drawing placed on the Clipboard should be able to transform
itself into a bitmap for Paint or a Scalable Vector Graphics document for an XML
editor. Data transfer in Windows Forms is mediated by classes which implement
the IDataObject interface. A consuming application or Control first gets a
reference to the Clipboard’s current IDataObject by calling the static method
Clipboard.GetDataObject(). Once in hand, the IDataObject method
GetDataPresent() is called with the desired type in a string or Type
argument. If the IDataObject can transform itself into the requested type,
GetDataPresent() returns true, and GetData() can then be used to retrieve
the data in the requested form.

In this example, one Button places a string on the Clipboard, and the other
button puts the Clipboard’s content (if available as a string) into a Label. If you
copy an image or other media that cannot be transformed into a string onto the
Clipboard and attempt to paste it with this program, the label will display
“Nothing.”

//:c14:ClipboardDemo.cs
//Cuts to and pastes from the system Clipboard

Chapter 14: Programming Windows Forms 623

using System;
using System.Drawing;
using System.Threading;
using System.Windows.Forms;

class ClipboardDemo : Form {
 Label l;

 ClipboardDemo(){
 Button b = new Button();
 b.Location = new Point(10, 10);
 b.Text = "Clip";
 b.Click +=
 new EventHandler(AddToClipboard);
 Controls.Add(b);

 Button b2 = new Button();
 b2.Location = new Point(100, 10);
 b2.Text = "Paste";
 b2.Click +=
 new EventHandler(CopyFromClip);
 Controls.Add(b2);

 l = new Label();
 l.Text = "Nothing";
 l.Location = new Point(100, 50);
 l.Size = new Size(200, 20);
 Controls.Add(l);
 }

 public void AddToClipboard(Object s, EventArgs a){
 Clipboard.SetDataObject("Text. On clipboard.");
 }

 public void CopyFromClip(Object s, EventArgs a){
 IDataObject o = Clipboard.GetDataObject();
 if (o.GetDataPresent(typeof(string))) {
 l.Text = o.GetData(typeof(string)).ToString();
 } else {
 l.Text = "Nothing";
 }

624 Thinking in C# www.MindView.net

 }

 public static void Main(){
 Application.Run(new ClipboardDemo());
 }
}///:~

Nothing unusual is done in the ClipboardDemo() constructor; the only thing
somewhat different from other demos is that the Label l is made an instance
variable so that we can set its contents in the CopyFromClip() method.

The AddToClipboard() method takes an object, in this case a string. If the
Clipboard is given a string or Image, that value can be pasted into other
applications (use RichTextBox.Rtf or SelectedRtf for pasting into Microsoft
Word).

CopyFromClip() must be a little cautious, as there is no guarantee that the
Clipboard contains data that can be turned into a string (every .NET Framework
object can be turned into a string, but the Clipboard may very well contain data
that is not a .NET Framework object). If the IDataObject instance can indeed
be expressed as a string, we retrieve it, again specifying string as the type we’re
looking for. Even though we’ve specified the type in the argument, we still need to
change the return value of GetData() from object to string, which we do by
calling the ToString() method (we could also have used a (string) cast).

Drag and drop
Drag and drop is a highly visual form of data transfer between components and
applications. In Windows Forms, drag and drop again uses the IDataObject
interface, but also involves visual feedback. In this example, we demonstrate both
drag and drop and the creation of a custom IDataObject that can transform
itself into a variety of types.

An exemplar of something that transforms into a variety of types is, of course,
SuperGlo, the floorwax that tastes like a dessert topping (or is it the dessert
topping that cleans like a floorwax? All we know for sure is that it’s delicious and
practical!)

//:c14:SuperGlo.cs
//Compile with:
//csc SuperGloMover.cs DragAndDropDemo.cs SuperGlo.cs
//Domain objects for custom drag-and-drop
using System;

Chapter 14: Programming Windows Forms 625

interface FloorWax{
 void Polish();
}

interface DessertTopping{
 void Eat();
}

class SuperGlo : FloorWax, DessertTopping {
 public void Polish() {
 Console.WriteLine(
 "SuperGlo makes your floor shine!");
 }
 public void Eat() {
 Console.WriteLine(
 "SuperGlo tastes great!");
 }
}///:~ (example continues with SuperGloMover.cs)

In this listing, we define the domain elements – a FloorWax interface with a
Polish() method, a DessertTopping interface with an Eat() method, and the
SuperGlo class, which implements both the interfaces by writing to the console.
Now we need to define an IDataObject implementation that is versatile enough
to demonstrate SuperGlo:

//(continuation)
//:c14:SuperGloMover.cs
//Custom IDataObject, can expose SuperGlo as:
//FloorWax, DessertTopping, or text
using System;
using System.Windows.Forms;

class SuperGloMover : IDataObject {
 //Concern 1: What formats are supported?
 public string[] GetFormats() {
 return new string[]{
 "FloorWax", "DessertTopping", "SuperGlo"};
 }

 public string[] GetFormats(bool autoConvert) {
 if (autoConvert) {
 return new string[]{

626 Thinking in C# www.ThinkingIn.NET

 "FloorWax", "DessertTopping",
 "SuperGlo", DataFormats.Text};
 } else {
 return GetFormats();
 }
 }

 //Concern 2: Setting the data

 //Storage
 SuperGlo superglo;

 public void SetData(object o) {
 if (o is SuperGlo) {
 superglo = (SuperGlo) o;
 }
 }

 public void SetData(string fmt, object o) {
 if (fmt == "FloorWax" || fmt == "DessertTopping"
 || fmt == "SuperGlo") {
 SetData(o);
 } else {
 if (fmt == DataFormats.Text) {
 superglo = new SuperGlo();
 } else {
 Console.WriteLine(
 "Can't set data to type " + fmt);
 }
 }
 }

 public void SetData(Type t, object o) {
 SetData(t.Name, o);
 }

 public void SetData(
 String fmt, bool convert, object o) {
 if (fmt == DataFormats.Text
 && convert == false) {
 Console.WriteLine(

Chapter 14: Programming Windows Forms 627

 "Refusing to change a string " +
 "to a superglo");
 } else {
 SetData(fmt, o);
 }
 }

 //Concern 3: Is there a format client can use?
 public bool GetDataPresent(string fmt) {
 if (fmt == "DessertTopping" || fmt == "FloorWax"
 || fmt == DataFormats.Text
 || fmt == "SuperGlo") {
 return true;
 } else {
 return false;
 }
 }

 public bool GetDataPresent(Type t) {
 return(GetDataPresent(t.Name));
 }

 public bool GetDataPresent(
 String fmt, bool convert) {
 if (fmt == DataFormats.Text
 && convert == false) {
 return false;
 } else {
 return GetDataPresent(fmt);
 }
 }

 //Concern 4: Get the data in requested format
 public object GetData(string fmt) {
 switch (fmt) {
 case "FloorWax" :
 return superglo;
 case "DessertTopping" :
 return superglo;
 case "SuperGlo" :
 return superglo;

628 Thinking in C# www.MindView.net

 case "Text" :
 return "SuperGlo -- It's a FloorWax! "
 + "And a dessert topping!";
 default :
 Console.WriteLine(
 "SuperGlo is many things, but not a "
 + fmt);
 return null;
 }
 }

 public object GetData(Type t) {
 string fmt = t.Name;
 return GetData(fmt);
 }

 public object GetData(string fmt, bool convert) {
 if (fmt == DataFormats.Text
 && convert == false) {
 return null;
 } else {
 return GetData(fmt);
 }
 }
}///:~ (example continues with DragAndDropDemo.cs)

To implement IDataObject, you must address four concerns: What are the
formats that are supported, setting the data, is the data in a format the client can
use, and getting the data in the specific format the client wants.

The first concern is addressed by the two overloaded GetFormats() methods.
Both return string arrays which represent the .NET classes into which the stored
data can be transformed. In addition to the types which the SuperGlo class
actually instantiates, we also specify that SuperGlo can automatically be
converted to-and-from text. The DataFormats class contains almost two dozen
static properties defining various Clipboard formats that Windows Forms already
understands.

Setting the data is done, in the simplest case, by passing in an object, which is
stored in the instance variable superglo. If a person attempts to store a non-
SuperGlo object, the request will be quietly ignored. The .NET documentation is
silent on whether SetData() should throw an exception if called with an

Chapter 14: Programming Windows Forms 629

argument of the wrong type; and typically silence means that one should not
throw an exception. This goes against the grain of good programming practice
(usually, the argument to a method should always either affect the return value of
the method, affect the state of the object or the state of the argument, or result in
an exception).

The second SetData() method takes a string representing a data format and an
object. If the string is any one of the native types of SuperGlo (“SuperGlo,”
“Dessert,” or “FloorWax”), the object is passed to the SetData(object) method.
If the string is set to DataFormats.Text, a new SuperGlo is instantiated and
stored. If the string is not one of these four values, a diagnostic is printed and
the method fails. The third SetData() method takes a Type as its first argument
and simply passes that argument’s Name property forward to SetData(string,
object).

The fourth-and-final SetData() method takes, in addition to a format string
and the data object itself, a bool that may be used to turn off auto-conversion
(in this case, the “conversion” from DataFormat.Text that just instantiates a
new SuperGlo).

The GetDataPresent() methods return true if the argument is one of the
SuperGlo types or DataTypes.Text (except if the convert argument is set to
false).

The GetData() method returns a reference to the stored SuperGlo if the
format requested is “SuperGlo,” “FloorWax,” or “DessertTopping.” If the format
requested is “Text,” the method returns a promotional reference. If anything else,
GetData() returns a null reference.

Now that we have the domain objects and SuperGloMover, we can put it all
together visually:

//(continuation)
//:c14:DragAndDropDemo.cs
//Demonstrates drag-and-drop with SuperGlo and
//SuperGloMover
using System;
using System.Drawing;
using System.Windows.Forms;

class DragAndDropDemo : Form {
 DragAndDropDemo() {
 ClientSize = new Size(640, 320);

630 Thinking in C# www.ThinkingIn.NET

 Text = "Drag & Drop";

 Button b = new Button();
 b.Text = "Put SuperGlo on clipboard";
 b.Location = new Point(10, 40);
 b.Width = 100;
 b.Click += new EventHandler(OnPutSuperGlo);

 PictureBox pb = new PictureBox();
 pb.Image = Image.FromFile(@".\superglo.jpg");
 pb.SizeMode = PictureBoxSizeMode.AutoSize;
 pb.Location = new Point(220, 100);
 pb.MouseDown +=
 new MouseEventHandler(OnBeginDrag);

 Panel floor = new Panel();
 floor.BorderStyle = BorderStyle.Fixed3D;
 floor.Location = new Point(10, 80);
 Label f = new Label();
 f.Text = "Floor";
 floor.Controls.Add(f);
 floor.AllowDrop = true;
 floor.DragEnter +=
 new DragEventHandler(OnDragEnterFloorWax);
 floor.DragDrop +=
 new DragEventHandler(OnDropFloorWax);

 Panel dessert = new Panel();
 dessert.BorderStyle = BorderStyle.Fixed3D;
 dessert.Location = new Point(300, 80);
 Label d = new Label();
 d.Text = "Dessert";
 dessert.Controls.Add(d);
 dessert.AllowDrop = true;
 dessert.DragEnter +=
 new DragEventHandler(
 OnDragEnterDessertTopping);
 dessert.DragDrop +=
 new DragEventHandler(OnDropDessertTopping);

 TextBox textTarget = new TextBox();

Chapter 14: Programming Windows Forms 631

 textTarget.Width = 400;
 textTarget.Location = new Point(120, 250);
 textTarget.AllowDrop = true;
 textTarget.DragEnter +=
 new DragEventHandler(OnDragEnterText);
 textTarget.DragDrop +=
 new DragEventHandler(OnDropText);

 Controls.AddRange(
 new Control[]{
 b, pb, floor, dessert, textTarget});
 }

 private void OnPutSuperGlo(object s, EventArgs a){
 SuperGlo superglo = new SuperGlo();
 SuperGloMover mover = new SuperGloMover();
 mover.SetData(superglo);
 Clipboard.SetDataObject(mover);
 }

 private void OnBeginDrag(
 object s, MouseEventArgs args) {
 SuperGloMover sgm = new SuperGloMover();
 sgm.SetData(new SuperGlo());
 ((Control) s).DoDragDrop(
 sgm, DragDropEffects.Copy);
 }

 private void OnDragEnterFloorWax(
 object s, DragEventArgs args) {
 if (args.Data.GetDataPresent("FloorWax")) {
 args.Effect = DragDropEffects.Copy;
 }
 }

 private void OnDropFloorWax (
 object s, DragEventArgs args) {
 FloorWax f =
 (FloorWax) args.Data.GetData("FloorWax");
 f.Polish();
 }

632 Thinking in C# www.MindView.net

 private void OnDragEnterDessertTopping(
 object s, DragEventArgs args) {
 if (args.Data.GetDataPresent("DessertTopping")) {
 args.Effect = DragDropEffects.Copy;
 }
 }

 private void OnDropDessertTopping(
 object s, DragEventArgs args) {
 DessertTopping d =
 (DessertTopping) args.Data.GetData
 ("DessertTopping");
 d.Eat();
 }

 private void OnDragEnterText(
 object s, DragEventArgs args) {
 if (args.Data.GetDataPresent("Text")) {
 args.Effect = DragDropEffects.Copy;
 }
 }

 private void OnDropText(
 object sender, DragEventArgs args) {
 string s = (string) args.Data.GetData("Text");
 ((Control)sender).Text = s;
 }

 public static void Main() {
 Application.Run(new DragAndDropDemo());
 }
}///:~

When run, this application looks like this:

Chapter 14: Programming Windows Forms 633

Figure 14-9: Dragging SuperGlo to different targets results in different behavior

If you click on the image, you can drag it to either of the two Panels, the
TextEdit display, or into a text editor such as Microsoft Word. As you drag, the
mouse cursor will change to indicate whether or not the SuperGlo can be
dropped. If you drop the SuperGlo on the “Floor” panel you’ll see one message
on the console, if on the “Dessert” panel another, and if in the TextEdit box or in
another application, the promotional message will be pasted. If you click on the
button, you can put a new SuperGlo on the Clipboard.

The DragAndDropDemo() constructor should have no surprises until we add
a MouseEventHandler on for the MouseDown event of the PictureBox
control. That event will trigger the creation of a new SuperGloMover (as will
the pressing of the Button).

The Panels both have their AllowDrop property set to true, so when the
mouse enters them while dragging an object, the mouse will give visual feedback
that a drop target is being traversed. Additionally, the Panel’s DragEnter and
DragDrop events are wired to event handlers.

When the button is pressed, it ends up calling OnPutSuperGlo(). A new
SuperGlo domain object is created, as is a new SuperGloMover. The mover’s
data is set to the just-created SuperGlo and the mover is placed on the system
Clipboard. In another application such as a text editor that accepts Clipboard text
data, you should be able to paste data. That other application will end up calling
SuperGloMover.GetData() requesting DataType.Text, resulting in the

634 Thinking in C# www.ThinkingIn.NET

message “SuperGlo – It’s a FloorWax! And a dessert topping!” being pasted into
the other application.

The method OnBeginDrag() is pretty similar to OnPutSuperGlo() but after
the SuperGloMover is instantiated, the method DoDragDrop() is called on
the originating Control. This is somewhat confusing, as you might think that
the destination should be in charge, but on reflection it makes sense that the
originator knows the most about the data, even when the data is “far away” on the
screen. There are several different DragDropEffects, which are bitwise
combinable; in this case, the effect we want is to copy the data to the target.

Both Panels have very similar OnDragEnterxxx() methods. The
DragEventArgs args has a Data property that contains the SuperGloMover
created in OnBeginDrag(). This Data is checked to make sure that it can
present the appropriate type (“FloorWax” or “DessertTopping”) and if so, setting
the args.Effect property makes the mouse show the appropriate visual cue for
DragDropEffects.Copy.

Similarly, both Panels have similar OnDropxxx() methods. The Data
property (the SuperGloMover) has its GetData() method called with the
desired type, either a FloorWax or DessertTopping. This will return the
SuperGlo. Either FloorWax.Polish() or DessertTopping.Eat() is called,
and the appropriate message printed on the console.

The TextBox has similar OnDragEnterText() and OnDropText() methods,
except the SuperGloMover is queried for the “Text” type.

Data-bound controls
Windows Forms and ADO.NET combine to make data-driven user interfaces very
easy to program. In Chapter 10, we saw how ADO.NET separates the concerns of
moving data in and out from a persistent datastore from the concerns of
manipulating the in-memory DataSet. Once a DataSet is populated, instances
of the DataBinding class mediate between Controls and DataSets.

One of the more impressive Controls for displaying data is the DataGrid,
which can display all the columns in a table. This example revisits the
“Northwind.mdb” Access database:

//:c14:DataBoundDemo.cs
//Demonstrates the basics of data-binding
using System;
using System.Data;

Chapter 14: Programming Windows Forms 635

using System.Data.OleDb;
using System.Windows.Forms;

class DataBoundDemo : Form {
 OleDbDataAdapter adapter;
 DataSet emps;

 DataBoundDemo(){
 DataGrid dg = new DataGrid();
 dg.Dock = DockStyle.Fill;
 Controls.Add(dg);

 ReadEmployees("NWind.mdb");

 dg.SetDataBinding(emps, "Table");
 }

 private void ReadEmployees(string pathToAccessDB){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString=
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + pathToAccessDB;
 cnctn.Open();

 string selStr = "SELECT * FROM EMPLOYEES";
 adapter = new OleDbDataAdapter(selStr, cnctn);
 new OleDbCommandBuilder(adapter);

 emps = new DataSet("Employees");
 adapter.Fill(emps);
 }

 public static void Main(){
 Application.Run(new DataBoundDemo());
 }
}///:~

A DataGrid dg control is created and set so that it will fill the entire client area of
the DataBoundDemo form. Then, the ReadEmployees() method fills the
DataSet emps, just as in the examples in Chapter 10. Once emps is filled, the
dg.SetDataBinding() associates the DataGrid with the “Table” table in emps,
which in this case is the only table in the DataSet. The result shows the contents of

636 Thinking in C# www.MindView.net

the Northwind database:

Figure 14-10: Data access is easy with Windows Forms

Even more powerfully, the BindingManagerBase class can coordinate a set of
Bindings, allowing you to have several Controls whose databound properties
are simultaneously and transparently changed to correspond to a single record in
the DataSet. This example allows you to navigate through the employee data:

//:c14:Corresponder.cs
//Demonstrates how bound controls can be made to match

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Data;
using System.Data.OleDb;

class Corresponder : Form {
 OleDbDataAdapter adapter;
 DataSet emps;

 Corresponder(){
 ReadEmployees("NWind.mdb");

Chapter 14: Programming Windows Forms 637

 Label fName = new Label();
 fName.Location = new Point(10, 10);
 Binding fBound =
 new Binding("Text", emps, "Table.FirstName");
 fName.DataBindings.Add(fBound);
 Controls.Add(fName);

 Label lName = new Label();
 lName.Location = new Point(10, 40);
 Binding lBound =
 new Binding("Text", emps, "Table.LastName");
 lName.DataBindings.Add(lBound);
 Controls.Add(lName);

 Button next = new Button();
 next.Location = new Point(100, 70);
 next.Text = ">";
 next.Click += new EventHandler(OnNext);
 Controls.Add(next);

 Button prev = new Button();
 prev.Location = new Point(10, 70);
 prev.Text = "<";
 prev.Click += new EventHandler(OnPrev);
 Controls.Add(prev);
 }

 void OnNext(object src, EventArgs ea){
 BindingManagerBase mgr =
 BindingContext[emps, "Table"];
 mgr.Position++;
 }

 void OnPrev(object src, EventArgs ea){
 BindingManagerBase mgr =
 BindingContext[emps, "Table"];
 mgr.Position--;
 }

 private void ReadEmployees(
 string pathToAccessDB){

638 Thinking in C# www.ThinkingIn.NET

 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString=
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + pathToAccessDB;
 cnctn.Open();

 string selStr = "SELECT * FROM EMPLOYEES";
 adapter = new OleDbDataAdapter(selStr, cnctn);
 new OleDbCommandBuilder(adapter);

 emps = new DataSet("Employees");
 adapter.Fill(emps);
 }

 public static void Main(){
 Application.Run(new Corresponder());
 }
}///:~

After populating the DataSet emps from the database, we create a Label to
hold the first name of the current employee. A new Binding object is created;
the first parameter specifies the name of the Property to which the data will be
bound (often, this will be the “Text” property), the second the DataSet that will
be the data source, and the third the specific column in the DataSet to bind to.
Once the Binding is created, adding it to fName.Bindings sets the Label’s
Text property to the DataSet value.

The commented-out line immediately after lName’s constructor call is a call that
will lead to a runtime exception – Bindings cannot be shared between
Controls. If you wish multiple controls to reflect the same DataSet value, you
have to create multiple Bindings, one for each Control.

A similar process is used to configure the lName label for the last name, and two
Buttons are created to provide rudimentary navigation.

The Buttons’ event-handlers use the BindingContext’s static [] operator
overload which takes a DataSet and a string representing a data member. The
data member in this case is the “Table” result. The resulting
BindingManagerBase.Property value is then incremented or decremented
within the event handler. As that happens, the BindingManagerBase updates
its associated Bindings, which in turn update their bound Controls with the
appropriate data from the Bindings’ DataSet. This diagram illustrates the
static structure of the relationships.

Chapter 14: Programming Windows Forms 639

BindingContext BindingManagerBase

CurrencyManager PropertyManager

1

-[DataSet, string]

*

Binding

1

-Bindings

*

DataSet

Control1*

string

1
*

1

Figure 14-11: Coordinating the relationship between Controls and DataSets

You’ll notice that the BindingManagerBase is an abstract class instantiated by
CurrencyManager and PropertyManager. If the call to
BindingContext[object, string] returns an object that implements IList,
you’ll get a CurrencyManager whose Position property moves back and forth
between items in the IList (this is what was shown in the example; manipulating
the Position in the event-handler switches between employees). If the call to
BindingContext[object, string] does not return an object implementing
IList, a PropertyManager is returned.

Editing data from bound controls
Objects of the Binding class manipulate the DataSet. As discussed in Chapter
10, changing the DataSet does not affect the backing store, the IDataAdapter
is responsible for mediating between the in-memory DataStore and the
IDbConnection.

This example demonstrates updating the database, provides a more detailed look
at the events that occur during data binding, and illustrates a useful UI technique
for manipulating databases or other large data structures. The UI technique is
based on the premise that it may be expensive in terms of memory or resources
or redrawing to have every editable portion of the screen actually be editable;
rather, the Control that manages the editing process is dynamically positioned
on the screen at the insertion point (or, in this case, when the mouse clicks on a
data-bound Label which we wish to edit). This technique is not worth the effort
on simple screens, but really comes into its own on complex UIs such as you
might have on a word processor, spreadsheet, or a workflow application. If you
use this technique, you should implement it using the PAC GUI architecture so
that the result appears as a seamless component.

640 Thinking in C# www.MindView.net

//:c14:FormEdit.cs
//Demonstrates data write from Form
using System;
using System.Collections;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Windows.Forms;

class FormEdit : Form {
 Hashtable colForLabel = new Hashtable();
 bool editWindowActive = false;
 TextBox editWindow = new TextBox();
 Label labelBeingEdited = null;

 OleDbDataAdapter adapter;
 DataSet emps;

 FormEdit(){
 ReadEmployees("NWind.mdb");
 InitDataStructure();
 InitLabels();
 InitCommitter();
 }

 private void InitDataStructure(){
 colForLabel[new Label()] = "FirstName";
 colForLabel[new Label()] = "LastName";
 }

 private void InitLabels(){
 int x = 10;
 int y = 10;
 int yIncrement = 35;

 foreach(string colName in colForLabel.Values){
 //Bihashtable w KeyForValue() not in library
 foreach(Label lbl in colForLabel.Keys){
 string aColName =
 (string) colForLabel[lbl];
 if (aColName == colName) {

Chapter 14: Programming Windows Forms 641

 //Right key (label) for value (colName)
 InitLabel(lbl, colName, x, y);
 y += yIncrement;
 }
 }
 }
 }

 private void InitLabel(Label lbl, string colName,
 int x, int y){
 lbl.Location = new Point(x, y);
 lbl.Click += new EventHandler(OnLabelClick);
 lbl.TextChanged +=
 new EventHandler(OnTextChange);
 Controls.Add(lbl);

 string navPath = "Table." + colName;
 Binding b =
 new Binding("Text", emps, navPath);
 b.Parse +=
 new ConvertEventHandler(OnBoundDataChange);
 lbl.DataBindings.Add(b);
 }

 private void InitCommitter(){
 Button b = new Button();
 b.Width = 120;
 b.Location = new Point(150, 10);
 b.Text = "Commit changes";
 b.Click += new EventHandler(OnCommit);
 Controls.Add(b);
 }

 public void OnLabelClick(Object src, EventArgs ea){
 Label srcLabel = (Label) src;
 if (editWindowActive)
 FinalizeEdit();
 PlaceEditWindowOverLabel(srcLabel);
 AssociateEditorWithLabel(srcLabel);
 }

642 Thinking in C# www.ThinkingIn.NET

 private void PlaceEditWindowOverLabel(Label lbl){
 editWindow.Location = lbl.Location;
 editWindow.Size = lbl.Size;
 if (Controls.Contains(editWindow) == false) {
 Controls.Add(editWindow);
 }
 editWindow.Visible = true;
 editWindow.BringToFront();
 editWindow.Focus();
 editWindowActive = true;
 }

 private void AssociateEditorWithLabel(Label l){
 editWindow.Text = l.Text;
 labelBeingEdited = l;
 }

 public void FinalizeEdit(){
 Console.WriteLine("Finalizing edit");
 labelBeingEdited.Text = editWindow.Text;
 Console.WriteLine("Text changed");
 //Needed to trigger binding event
 labelBeingEdited.Focus();

 editWindow.Visible = false;
 editWindow.SendToBack();
 editWindowActive = false;
 }

 public void OnTextChange(Object src, EventArgs ea){
 Label lbl = (Label) src;
 string colName = (string) colForLabel[lbl];
 Console.WriteLine(
 colName + " has changed");
 }

 public void OnBoundDataChange(
 Object src, ConvertEventArgs ea){
 Console.WriteLine("Bound data changed");
 }

Chapter 14: Programming Windows Forms 643

 private void OnCommit(Object src, EventArgs ea){
 FinalizeEdit();
 adapter.Update(emps);
 }

 private void ReadEmployees(
 string pathToAccessDB){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString =
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + pathToAccessDB;
 cnctn.Open();

 string selStr = "SELECT * FROM EMPLOYEES";
 adapter = new OleDbDataAdapter(selStr, cnctn);
 new OleDbCommandBuilder(adapter);

 emps = new DataSet("Employees");
 adapter.Fill(emps);
 }

 public static void Main(){
 Application.Run(new FormEdit());
This example is very clean and easy to follow.

 }
}///:~

The FormEdit class has several instance variables: colForLabel is a
Hashtable that is used to establish a correspondence between a DataSet
column name and a Label control. The next three instance variables,
editWindowActive, editWindow, and labelBeingEdited are used in the
“dynamic” editing scheme – all editing is done in the editWindow TextBox,
while a reference to the editing target is held in the labelBeingEdited variable.
The adapter and emps variables are the familiar variables holding the
IDataAdapter and DataSet associated with the Northwind database.

The FormEdit() constructor initializes emps and adapter in
ReadEmployees(), which does not differ from the previous examples.
InitDataStructure() initializes the colForLabel data structure; an
anonymous Label is used as the key and the column’s name is the value. One can

644 Thinking in C# www.MindView.net

imagine a more sophisticated version of this method that iterates over the
DataSet, creating as many Controls as are necessary.

InitLabels() is responsible for setting up the display of the data structure
initialized in InitDataStructure(). Because the .NET Framework does not
have a bidirectional version of the IDictionary interface that can look up a key
based on the value, we have to use a nested loop to find the Label associated
with the colName. Once found, InitLabels() calls InitLabel() to configure
the specific Label. Again, a more sophisticated version of this method might do a
more sophisticated job of laying out the display.

InitLabel() is responsible for wiring up the Label to the DataSet’s column
name. Two event handlers are added to the Label: OnLabelClick() and
OnTextChange(). The method also associates OnBoundDataChange()
with the Binding’s Parse event, which occurs when the value of a databound
control changes. The Binding is created from the column name that was passed
in as an argument and associated with the Label that was also passed in.

The last method called by the constructor is InitCommitter(), which initializes
a Button that will be used to trigger a database update.

After the constructor runs, the DataSet emps is filled with Northwind’s
employee data and the Labels on the EditForm show the first and last name of
the first record (this example doesn’t have any navigation). When the user clicks
on one of these labels, they activate OnLabelClick().

All Labels on the form share the OnLabelClick() event handler, but simply
casting the src to Label gives us the needed information to manipulate the
editWindow. The first time through OnLabelClick(), the
editWindowActive Boolean will be false, so let’s momentarily delay
discussion of the FinalizeEdit() method.

Our dynamic editing technique is to place the editing control on the UI at the
appropriate place, and then to associate the editing control with the underlying
data. PlaceEditWindowOverLabel() sets the editWindow to overlay the
Label the user clicked on, makes it visible, and requests the focus.
AssociateEditorWithLabel() sets the text of the editorWindow to what is
in the underlying Label and sets the labelBeingEdited instance variable to the
clicked-on Label. The visual effect of all this is that when someone clicks on
either Label, it appears as if the Label turns into an EditBox. Again, this is no
big deal with two labels on the form, but if there were a couple dozen fields beings
displayed on the screen, there can be a significant resource and speed
improvement by having a single, dynamic editing control.

Chapter 14: Programming Windows Forms 645

Since PlaceEditWindowOverLabel() set editWindowActive to true,
subsequent calls to OnLabelClick() will call FinalizeEdit().
FinalizeEdit() puts the text from the editWindow into the underlying
labelBeingEdited. This alone does not update the DataBinding, you must
give the label the focus, even for a moment, in order to update the data.
OnBoundDataChanged() is called subsequent to the data update, and when
run, you’ll see:

Finalizing edit
FirstName has changed
Text changed
Bound data changed

Indicating this sequence:

this : EditForm labelBeingEdited :
Label

 : Binding emps : DataSet

FinalizeEdit

"Finalizing Edit" OnTextChanged

"First Name has changed"

"Text Changed"
Focus

Update

OnBoundDataChanged

"Bound Data Changed"

Update

Figure 14-12: The sequence by which a data change propagates

The above diagram is a UML activity diagram and is one of the most helpful
diagrams for whiteboard sessions (as argued effectively by Scott Ambler at
http://www.agilemodeling.org, you will derive more benefit from low-tech
modeling with others than you can ever derive from high-tech modeling by
yourself).

The activity diagram has time on the vertical axis and messages and objects on
the horizontal. The boxes on the vertical lines correspond to method invocations

646 Thinking in C# www.ThinkingIn.NET

and the call stack. Thus, this.OnBoundDataChanged() is called from an
anonymous BindingObject’s Update()1 method, which is called from
labelBeingEdited.Focus(), which we call in this.FinalizeEdit().

Although FinalizeEdit() modifies the DataSet emps, the call to
adapter.Update() in OnCommit() is required to actually move the data back
into the database. Be sure to be familiar with ADO.NET’s optimistic concurrency
behavior, as discussed in Chapter 10, before engaging in any database projects.

Menus
User interface experts say that menus are overrated. Programmers, who are
trained to think in terms of hierarchies, and whose careers are computer-centric,
don’t bat an eye at cascading menu options and fondly recall the DOS days when
you could specify incredibly complex spreadsheet and word processing behaviors
by rattling off the first letters of menu sequences (nowadays, you have to say “So
are you seeing a dialog that says ‘Display Properties’ and that has a bunch of
tabs? Okay, find the tab that says ‘Appearance’ and click on it. Do you see the
button that reads ‘Advanced’? It should be in the lower-right corner…”). For
many users, though, menus are surprisingly difficult to navigate. Nevertheless,
unless you’re creating a purely Web-based interface, the odds are quite good that
you’ll want to add menus and context menus to your UIs.

There are two types of menu in Windows Forms, a MainMenu that displays
across the top of a Form, and a ContextMenu that can be associated with any
Control and is typically displayed on a right-button mouse click over the
Control.

Both forms of menu contain MenuItems and MenuItems may, in turn, contain
other MenuItems (once again, the familiar containment model of Windows
Forms) . When selected, the MenuItem triggers a Click event, even if the
MenuItem was chosen via a shortcut or access key. This example shows both
types of menus and how to create cascading menus:

//:c14:MenuDemo.cs
//Demonstrates menus

1 Actually, the names and sequence of events that happen in Control.Focus() is
considerably more complex than what is portrayed here, but glossing over details not
relevant to the task at hand is one of the great benefits of diagramming. This is one of the
reasons diagramming tools that dynamically bind to actual source code are often less
useful than, say, a piece of paper.

Chapter 14: Programming Windows Forms 647

using System;
using System.Drawing;
using System.Windows.Forms;

class MenuDemo : Form {
 MenuDemo(){
 Text = "Menu Demo";
 MainMenu courseMenu = new MainMenu();

 MenuItem appetizers = new MenuItem();
 appetizers.Text = "&Appetizers";
 MenuItem[] starters = new MenuItem[3];
 starters[0] = new MenuItem();
 starters[0].Text = "&Pot stickers";
 starters[1] = new MenuItem();
 starters[1].Text = "&Spring rolls";
 starters[2] = new MenuItem();
 //Note escaped "&"
 starters[2].Text = "&Hot && Sour Soup";
 appetizers.MenuItems.AddRange(starters);
 foreach(MenuItem i in starters){
 i.Click +=
 new EventHandler(OnCombinableMenuSelected);
 }

 MenuItem mainCourse = new MenuItem();

 mainCourse.Text = "&Main Course";
 MenuItem[] main = new MenuItem[4];
 main[0] = new MenuItem();
 main[0].Text = "&Sweet && Sour Pork";
 main[1] = new MenuItem();
 main[1].Text = "&Moo shu";
 main[2] = new MenuItem();
 main[2].Text = "&Kung Pao Chicken";
 //Out of Kung Pao Chicken
 main[2].Enabled = false;
 main[3] = new MenuItem();
 main[3].Text = "General's Chicken";
 mainCourse.MenuItems.AddRange(main);

648 Thinking in C# www.MindView.net

 foreach(MenuItem i in main){
 i.RadioCheck = true;
 i.Click +=
 new EventHandler(OnExclusiveMenuSelected);
 }

 MenuItem veg = new MenuItem();
 veg.Text = "Vegetarian";
 veg.RadioCheck = true;
 veg.Click +=
 new EventHandler(OnExclusiveMenuSelected);
 MenuItem pork = new MenuItem();
 pork.Text = "Pork";
 pork.RadioCheck = true;
 pork.Click +=
 new EventHandler(OnExclusiveMenuSelected);
 main[1].MenuItems.AddRange(
 new MenuItem[]{veg,pork});

 courseMenu.MenuItems.Add(appetizers);
 courseMenu.MenuItems.Add(mainCourse);

 ContextMenu contextMenu = new ContextMenu();
 foreach(MenuItem a in starters){
 contextMenu.MenuItems.Add(a.CloneMenu());
 }
 contextMenu.MenuItems.Add(
 new MenuItem().Text = "-");
 foreach(MenuItem m in main){
 contextMenu.MenuItems.Add(m.CloneMenu());
 }
 Menu = courseMenu;
 ContextMenu = contextMenu;
 }

 private void OnCombinableMenuSelected(
 object sender, EventArgs args){
 MenuItem selection = (MenuItem) sender;
 selection.Checked = !selection.Checked;
 }

Chapter 14: Programming Windows Forms 649

 private void OnExclusiveMenuSelected(
 object sender, EventArgs args){
 MenuItem selection = (MenuItem) sender;
 bool selectAfterClear = !selection.Checked;
 //Must implement radio-button functionality
 //programmatically
 Menu parent = selection.Parent;
 foreach(MenuItem i in parent.MenuItems){
 i.Checked = false;
 }
 selection.Checked = selectAfterClear;
 }

 public static void Main(){
 Application.Run(new MenuDemo());
 }
}///:~

The MenuDemo() constructor creates a series MenuItems. The ampersand
(&) in the MenuItem.Text property sets the accelerator key for the item (so
“Alt-A” will activate the “Appetizers” menu and “Alt-M” the “Main Course”
menu). To include an ampersand in the menu text, you must use a double
ampersand (for instance, “Hot && Sour Soup”).

Each MenuItem created is added to either the mainMenu.MenuItems
collection or to the MenuItems collection of one of the other MenuItems.

The MenuItems in the appetizers Menu have the default false value for their
RadioCheck property. This means that if their Selection.Checked property is
set to true, they will display a small checkmark. The MenuItems in
mainCourse have RadioCheck set to true, and when they have
Selected.Checked set to true, they display a small circle. However, this is a
display option only, the mutual exclusion logic of a radio button must be
implemented by the programmer, as is shown in the
OnExclusiveMenuSelected() method.

Additionally, RadioCheck does not “cascade” down into child menus. So, in this
case, it’s possible to select two main courses if one of the selected main courses is
in the “Moo Shu” sub-menu.

A MenuItem is deactivated by setting its Enabled property to false, as is done
with the “Kung Pao Chicken” entrée.

650 Thinking in C# www.ThinkingIn.NET

To duplicate a Menu, you use not Clone() but CloneMenu(), as shown in the
loops that populate the contextMenu. The contextMenu also demonstrates
that a MenuItem with its Text property set to a single dash is displayed as a
separator bar in the resulting menu.

Standard dialogs
Windows Forms provides several standard dialogs both to ease common chores
and maintain consistency for the end user. These dialogs include file open and
save, color choice, font dialogs, and print preview and print dialogs. We’re going
to hold off on the discussion of the printing dialogs until the section on printing
in the GDI+ chapter, but this example shows the ease with which the others are
used:

//:c14:StdDialogs.cs
using System;
using System.Drawing;
using System.Windows.Forms;

class StdDialogs : Form {
 Label label = new Label();

 StdDialogs(){
 MainMenu menu = new MainMenu();
 Menu = menu;

 MenuItem fMenu = new MenuItem("&File");
 menu.MenuItems.Add(fMenu);

 MenuItem oMenu = new MenuItem("&Open...");
 oMenu.Click += new EventHandler(OnOpen);
 fMenu.MenuItems.Add(oMenu);

 MenuItem cMenu = new MenuItem("&Save...");
 cMenu.Click += new EventHandler(OnClose);
 fMenu.MenuItems.Add(cMenu);
 fMenu.MenuItems.Add(new MenuItem("-"));

 MenuItem opMenu = new MenuItem("&Options");
 menu.MenuItems.Add(opMenu);

 MenuItem clrMenu = new MenuItem("&Color...");

Chapter 14: Programming Windows Forms 651

 clrMenu.Click += new EventHandler(OnColor);
 opMenu.MenuItems.Add(clrMenu);

 MenuItem fntMenu = new MenuItem("&Font...");
 fntMenu.Click += new EventHandler(OnFont);
 opMenu.MenuItems.Add(fntMenu);

 label.Text = "Some text";
 label.Dock = DockStyle.Fill;
 Controls.Add(label);
 }

 public void OnOpen(object src, EventArgs ea){
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter =
 "C# files (*.cs)|*.cs|All files (*.*)|*.*";
 ofd.FilterIndex = 2;

 DialogResult fileChosen = ofd.ShowDialog();
 if (fileChosen == DialogResult.OK) {
 foreach(string fName in ofd.FileNames){
 Console.WriteLine(fName);
 }
 } else {
 Console.WriteLine("No file chosen");
 }
 }

 public void OnClose(object src, EventArgs ea){
 SaveFileDialog sfd = new SaveFileDialog();
 DialogResult saveChosen = sfd.ShowDialog();
 if (saveChosen == DialogResult.OK) {
 Console.WriteLine(sfd.FileName);
 }
 }

 public void OnColor(object src, EventArgs ea){
 ColorDialog cd = new ColorDialog();
 if (cd.ShowDialog() == DialogResult.OK) {
 Color c = cd.Color;
 label.ForeColor = c;

652 Thinking in C# www.MindView.net

 Update();
 }
 }

 public void OnFont(object src, EventArgs ea){
 FontDialog fd = new FontDialog();
 if (fd.ShowDialog() == DialogResult.OK) {
 Font f = fd.Font;
 label.Font = f;
 Update();
 }
 }

 public static void Main(){
 Application.Run(new StdDialogs());
 }
}///:~

The StdDialogs() constructor initializes a menu structure and places a Label
on the form. OnOpen() creates a new OpenFileDialog and sets its Filter
property to show either all files or just those with .cs extensions. File dialog
filters are confusing. They are specified with a long string, delimited with the pipe
symbol (|). The displayed names of the filters are placed in the odd positions,
while the filters themselves are placed in the even positions. The FilterIndex is
one-based! So by setting its value to 2, we’re settings its value to the *.* filter, the
fourth item in the list.

Like all the dialogs, the OpenFileDialog is shown with the ShowDialog()
method. This opens the dialog in modal form; the user must close the modal
dialog before returning to any other kind of input to the system. When the dialog
is closed, it returns a value from the DialogResult enumeration.
DialogResult.OK is the hoped-for value; others are:

♦ Abort

♦ Cancel

♦ Ignore

♦ No

♦ None

♦ Retry

♦ Yes

Obviously, not all dialogs will return all (or most) of these values.

Chapter 14: Programming Windows Forms 653

Both the OpenFileDialog and the SaveFileDialog have OpenFile() methods
that open the specified file (for reading or writing, respectively), but in the
example, we just use the FileNames and FileName properties to get the list of
selected files (in OnOpen()) and the specified file to be written to in
OnSave(). The SaveFileDialog.OverwritePrompt property, which defaults
to true, specifies whether the dialog will automatically ask the user “Are you
sure…?”

OnColor() and OnFont() both have appropriate properties (Color and Font)
that can be read after the dialogs close. The label is changed to use that value
and then the Update() method is called in order to redraw and relayout the
StdDialogs form.

Usage-centered design
In the discussion of GUI Architectures, we mentioned the adage that “To the end
user, the UI is the application.” This is one of the tenets of usage-centered
design, an approach to system development that fits very well with the move
towards agile development that propose that shorter product cycles (as short as a
few weeks for internal projects) that are intensely focused on delivering requested
end-user value are much more successful than the traditional approach of
creating a balance of functional, non-functional, and market-driven features that
are released in “major roll-outs.”

Far too many discussions of software development fail to include the end user,
much less accord them the appropriate respect as the driver of what the
application should do and how it should appear. Imagine that one day you were
given a survey on your eating habits as part of a major initiative to provide you a
world-class diet. Eighteen months later, when you’d forgotten about the whole
thing, you’re given a specific breakfast, lunch, and dinner and told that this was
all you could eat for the next eighteen months. And that the meals were prepared
by dieticians, not chefs, and that the meals had never actually been tasted by
anyone. That’s how most software is developed.

No interface library is enough to make a usable interface. You must actively work
with end users to discover their needs (you’ll often help them discover the words
to express a need they assumed could not be fixed), you must silently watch end
users using your software (a humbling experience), and you must evolve the user

654 Thinking in C# www.ThinkingIn.NET

interface based on the needs of the user, not the aesthetic whims of a graphic
designer.2

One of us (Larry) had the opportunity to work on a project that used usage-
centered design to create new types of classroom management tools for K-12
teachers (a group that is rightfully distrustful of the technical “golden bullets”
that are regularly foisted upon them). The UI had lots of standard components,
and three custom controls. Two of the custom controls were never noticed by end
users (they just used them, not realizing that they were seeing complex, non-
standard behavior). We could always tell when users saw the third, though,
because they literally gasped when they saw it. It was a heck of a good interface.3

Summary
C# has an object-oriented bound method type called delegate. Delegates are first-
class types, and can be instantiated by any method whose signature exactly
matches the delegate type.

There are several architectures that may be used to structure the GUI, either as
an independent subsystem or for the program as a whole. The Visual Designer
tool in Visual Studio .NET facilitates an architecture called Form-Event-Control,
which provides a minimal separation of the interface from the domain logic.
Model-View-Controller provides the maximum separation of interface, input, and
domain logic, but is often more trouble than it’s worth. Presentation-Abstraction-
Control is an architecture that creates self-contained components that are
responsible for both their own display and domain logic; it is often the best
choice for working in Windows Forms.

Windows Forms is a well-architected class library that simplifies the creation of
the vast majority of user interfaces. It is programmed by a series of public
delegate properties called events that are associated with individual Controls.
Controls contain other Controls. A Form is a type of Control that takes the
form of a window.

2 This is not to disparage graphic designers or their work. But creating a usable interface is
nothing like creating a readable page or an eye-catching advertisement. If you can’t get a
designer with a background in Computer-Human Interaction (CHI), at least use a designer
with a background in industrial design.

3 Unfortunately, the CEO saw fit to spend our $15,000,000 in venture capital on
prostitutes, drugs, and a Jaguar sedan with satellite navigation for the company car. Oh
yeah, we also had free soda.

Chapter 14: Programming Windows Forms 655

Controls are laid out within their containing Control by means of the
Location, Dock, and Anchor properties. This layout model is simple, but not
simplistic, and if combined with a proper attention to GUI architecture, can lead
to easily modified, easy-to-use user interfaces.

Properties of Controls can be bound to values within a DataSet via a collection
of Bindings. Often, the bound property is the “Text” property of the Control. A
collection of Bindings may be coordinated by a BindingManagerBase
provided by a BindingContext. Such coordinated Bindings will refer to a
single data record or set of properties and thus, Controls bound to those
Bindings will simultaneously update.

While Windows Forms is well-architected, there are many quirks and
inconsistencies in the various Controls. These quirks range from what are
clearly defects (CheckedListBox.CheckedIndexCollection includes items
whose checkstate is indeterminate), to design flaws (there should be a
Control.Tooltip property), to undocumented behaviors (when handed an
object of illegal type, should IDataObject.SetObject() throw an exception?),
to behaviors that reflect an underlying quirk in the operating system (the string
that specifies OpenFileDialog.Filter).

Visual Studio .NET makes the creation of Windows Forms interface very easy but
is no substitute for working directly with the implementing code. Most real
applications will use a combination of Visual Designer-generated code and hand-
written implementations. One way or the other, the success of your application is
dependent on the usability of your interface; if at all possible, work with a
computer-human interface specialist to guide the creation of your UI.

Exercises
1. Extend Profession.cs with a new profession and a new method.

Instantiate the Profession delegate with this new data.

2. Refactor the previous example so that your Profession delegate is
instantiated by a method in a different class.

3. Add a GarbageTruck class that performs CollectGarbage() as part
of the morning routine in Multicast.cs.

4. Add to EventProperty.cs a Bird class that performs
CatchTheWorm() if the dawn is rainy and Sing()s if the day is fair.

656 Thinking in C# www.MindView.net

5. Fill in this Venn diagram with aspects of the three GUI architectures
described in this chapter:

PAC

FCE MVC

6. Implement at least three of the programs in this chapter using Visual
Studio .NET’s visual designer. Fill in this Venn diagram comparing
aspects of hand coding a UI versus using this tool.

Chapter 14: Programming Windows Forms 657

Unique to
Handcoding

Unique to
VS.NET

Similar

7. Add a new language to International.cs.

8. Write a program that shows the various tables in the Northwind
database using a ListView in one pane and a DataGrid in another.

9. Write an interface that compares to Microsoft Outlook: a menu, a
treeview in a left-hand pane, a list (or ListView) in an upper-right pane,
and a detail view in a lower-right pane. Use it to, say, organize your
digital medias.

659

15: GDI+ Overview
While Windows Forms provides a great basis for the large
majority of user interfaces, the .NET Framework allows
access to the full rendering capabilities of Windows XP.
Windows Forms interfaces are based on the concept of
Controls that, among other things, know how to draw
themselves. If your interface requires drawing that’s
beyond the capabilities of the Controls at your disposal,
you’ll need to turn to .NET’s GDI+ namespaces.

GDI+ provides a range of drawing, coordinate, and measurement tools ranging
from simple line-drawing to complex gradient fills. The advantage of this is that
virtually any kind of interface can be created using GDI+ (3D interfaces require
DirectX, which will be discussed later). The disadvantage is that GDI+ is stateless
and you must write code capable of re-rendering the entire GDI+ interface at any
time. Most GDI+ work will also involve writing custom input code.

The amount of detail involved in handling redraws and input means that you
must pay even more attention to separating domain logic from your interface
code. It’s difficult for the FEC architecture to handle the complexity of a GDI+
interface. PAC should still be where the discussion begins, but the power of MVC
can become more attractive as one contemplates building UIs with innovative
display or input characteristics. The sample code in this chapter does not
separate domain logic from display and should not be used as a starting place for
your designs.

Your canvas: the Graphics Class
The Control class is at the center of Windows Forms programming; you place a
Control, you set certain attributes of it, you associate it with business logic. All
of these hold true in GDI+ programs, except that you will be responsible for
drawing everything within the client area of your control. Typicallly, you will
create a new class inheriting from Panel, and define your own properties to
control your object’s appearance. You’ll sometimes hear people referring to this
process as developing an owner-draw control.

660 Thinking in C# www.MindView.net

The canvas on which you draw is an instance of the Graphics class. This class
encapsulates the GDI+ drawing surface for your Control. You do not have to
worry about other windows (or even other Controls), screen location, and so
forth. You can still use properties such as Dock, Anchor, and Position to
handle the task of placing your custom Control within a general Windows
Forms interface.

Every instance of Graphics that you use consumes a low-level operating system
resource (a Win32 handle). This leads to two restrictions:

♦ You must always call Dispose() on a Graphics object when you are
done with it; you can either do this in a try…finally block or with the
using keyword.

♦ You must not maintain a reference to a Graphics() object outside of the
event handler which obtained it, as the underlying handle is not
guaranteed to be valid over time.

There are several ways to obtain a reference to a Graphics object. The most
direct is to call Control.CreateGraphics(), a method whose name highlights
the transient nature of the resulting object. This example places two buttons on a
Form. When the controller is clicked, it gets a reference to a Graphics object
for the target and fills the target’s client area with red.

//:c15:GraphicsHandle.cs
//Accessing the drawing surface of a control
using System;
using System.Drawing;
using System.Windows.Forms;

class GraphicsHandle : Form {
 Button target;

 GraphicsHandle(){
 target = new Button();
 target.Location = new Point(10, 10);
 Controls.Add(target);

 Button controller = new Button();
 controller.Location = new Point(10, 60);
 controller.Text = "Clear target Graphics";
 controller.Width = 150;
 controller.Click += new EventHandler(OnClick);

Chapter 15: GDI+ Overview661

 Controls.Add(controller);
 }

 public void OnClick(object src, EventArgs ea){
 Graphics canvas = target.CreateGraphics();
 using(canvas){
 canvas.Clear(Color.Red);
 }
 }

 public static void Main(){
 Application.Run(new GraphicsHandle());
 }
}///:~

After OnClick() calls target.CreateGraphics(), it wraps the use of the
resulting object in using, which as discussed in Chapter 11 expands behind-the-
scenes into a try…finally block that calls Dispose() on its IDisposable
argument.

Understanding repaints
The GraphicsHandle sample can illustrate some Windows behavior that can be
confusing. Run the program and press the “Clear target Graphics” button. The
target button will disappear, replaced by a red rectangle. Now minimize or
otherwise obscure the GraphicsHandle application and then uncover it. The
red rectangle is now replaced by the appearance of the normal button. So far, this
seems logical: When the target button is redrawn, it draws itself as a button,
when the controller button is clicked, the Clear(Color.Red) call temporarily
replaces the button’s “real” appearance.

Now press “Clear target Graphics” and move the application window around the
screen; the red rectangle remains. This might make you go “Hmm…,” since
moving a window involves turning pixels on and off, i.e., repainting. Why doesn’t
the button redraw itself in its normal way?

Now do something that partially obscures the red rectangle (move a window
edge over the control, or move the GraphicsHandle demo off the edge of the
screen) and then uncover it. Now you’ll see that the portion of the target button
that was obscured gets repainted as a normal button, while the portion that was
not obscured remains a red rectangle. What’s going on?

662 Thinking in C# www.ThinkingIn.NET

The answer lies in the underlying Windows system for controlling the display.
Essentially, Windows tries to avoid asking for a repaint. If the top-level window is
being moved, Windows doesn’t ask for a repaint at all, it just moves the pixels in
the display card’s memory. If a window is partially obscured and then revealed,
Windows only repaints the affected area. If Windows used a different
architecture, in which the entire client area was repainted, applications would
show noticeable flicker even on fast machines.

This underlying argues strongly for not grabbing another Controls Graphics
context, drawing on it, and then disposing it; any drawing that you do in this
manner is, as shown in the GraphicsHandle demo, temporary.

Control: paint thyself
In Windows Forms, the Paint event triggers the redrawing of the client area. All
Controls have a protected OnPaint() method which is responsible for
rendering. This is the preferred method for creating an owner-drawn control –
inherit from an existing control and override OnPaint(). This example shows a
custom Panel that draws a sine wave from individual pixels.

//:c15:SineWave.cs
//Demonstrates GDI+ Drawing
using System;
using System.Drawing;
using System.Windows.Forms;

class OwnerDrawPanel : Panel {
 internal OwnerDrawPanel(){
 ResizeRedraw = true;
 }

 Color c = Color.Blue;
 static int drawCount = 0;

 protected override void OnPaint(PaintEventArgs e){
 base.OnPaint(e);
 Console.WriteLine("PaintSine called");
 Graphics g = e.Graphics;
 g.Clear(Color.White);
 Pen pen = null;
 if (drawCount == 0) {
 pen = new Pen(Color.Blue);

Chapter 15: GDI+ Overview663

 } else {
 pen = new Pen(Color.Red);
 }
 drawCount++;
 double inc = Math.PI * 4 / Width;
 int x = 0;
 for (double d = 0; d < Math.PI * 4; d += inc) {
 double sin = Math.Sin(d);
 int y = (int) (this.Height / 2 * sin);
 y += this.Height / 2;
 Rectangle rec = new Rectangle(x, y, 1, 1);
 g.DrawRectangle(pen,rec);
 x++;
 }
 }
}

class SineWave : Form {
 SineWave(){
 Panel p = new Panel();
 p.Dock = DockStyle.Left;
 p.Width = 120;

 Splitter s = new Splitter();
 s.Dock = DockStyle.Left;
 Controls.Add(s);
 Controls.Add(p);

 OwnerDrawPanel ownerDraw = new OwnerDrawPanel();
 ownerDraw.Dock = DockStyle.Fill;
 Controls.Add(ownerDraw);
 }

 public static void Main(){
 Application.Run(new SineWave());
 }
}///:~

The OwnerDrawPanel() constructor specifies that the ResizeRedraw
property inherited from Control is true. This should be set to true if, as in this
case, the control needs to redraw its entire client area on a resize event. The

664 Thinking in C# www.MindView.net

downside to setting this property to true is that the Control is much more likely
to flicker during a resizing operation than if it is left at its default false value.

When you override Control.OnXxx() methods such as OnPaint(), you
should always have the first line in your method call base.OnXxx() in order to
assure that all the vdelegates attached to the event get called. After calling
base.OnPaint(), the first order of business is getting a reference to a
Graphics. Instead of calling Control.CreateGraphics(), an appropriate
Graphics comes in as part of the PaintEventArgs. You do not have to worry
about disposing of this Graphics at the end of the method (the Windows Forms
infrastructure calls its Dispose() method at the appropriate time).

To draw lines on a Graphics, you use an instance of the Pen class. Pen’s have
various properties to control their appearance, but a Pen without a Color is
meaningless, so you must specify a Color in the Pen() constructor. (A shortcut
for a simple pen of 1-pixel width with a predefined Color such as is used in this
demo would be to use the Pens class: Pens.Red or Pens.Blue.)

The first time OwnerDraw.OnPaint() is called, the Pen used is blue,
subsequent paintings use a red one. The next several lines of OnPaint() specify
the sine wave: We’re interested in drawing two sine wave cycles, and we want to
draw the sine wave value at each pixel in the Control’s Width. So the inc
variable holds the amount by which we’ll count from 0 to 4π radians. The value
returned from Math.Sin() varies from -1 to 1. In order to fit these to the client
area, the result is multipled by half the height and then half the height added to
the result. This scales and transforms the values to fit in the client area (we’ll talk
about more efficient ways to do such steps later in the chapter).

We wish to draw a dot for each value we calculate, not a connected line. We
accomplish this by specifying a Rectangle that is 1 unit in size at the calculated x
and y coordinates.

The methods used for drawing betray how close GDI+ is to the underlying
operating system. The Graphics.DrawXxx() methods are primitives, each one
is implemented in some specialized, speed-optimized manner at the operating
system level. This is also true of the Graphics.FillXxx() methods that will be
discussed shortly.

In this case, the drawing is done with a call to Graphics.DrawRectangle()
that takes the Pen and the Rectangle calculated previously. Once the rectangle
is drawn, we increment the value of x and continue the loop.

Chapter 15: GDI+ Overview665

The SineWave() constructor first creates and places a blank Panel and a
Splitter that are set to DockStyle.Left. The OwnerDraw is then set to
DockStyle.Fill. When run, the Panel p will obscure the first part of the
OwnerDraw’s client area: since OwnerDraw has no knowledge of the
Splitter, the OwnerDraw actually fills the SineWave’s entire client area, p
just obscures it. If you drag the Splitter to the left, you’ll see more of the
OwnerDraw come into view, but only the just-revealed portion will be drawn in
red, as Windows will avoid repainting the still-exposed portion of the
OwnerDraw.

Now, grab a corner of the SineWave application and resize it. On some
computers, you’ll see a flicker during redraw, but the console output will
demonstrate that this is because OnPaint() is constantly being called. You’ll
also see a large number of repaints if you take another window and drag it over
the SineWave application.

Scaling and transforms
One thing that may have taken you aback when running SineWave is that the
sine wave appears inverted – instead of starting at 0 and rising, it starts at 0 but
moves towards the bottom of the SineWave Form. This is because Windows
Forms default coordinate system is like that of a typewriter: x increases from
right to left and y increases from the top to the bottom of the page:

Figure 15-1: The default coordinate system of Windows Forms

If we wanted to have our sine wave appear so that positive is towards the top of
the Form and negative towards the bottom, we could add the line

y *= -1;

to our calculations. Similarly, if instead of reaching all the way to the top and
bottom, we wanted to consume only 90% of the space, we could use y *= -0.9f
instead. If we wanted to combine this inversion and scaling with the
transformation we need to make negative numbers appear, we could write:

y = -0.9f *(Height / 2 + Sin(d));

x

y

666 Thinking in C# www.ThinkingIn.NET

Naturally, we could do similar math with the x coordinate. Or we could use the
Graphics.ScaleTransform() to automatically do the multiplication for all
values written to the context and Graphics.TranslateTransform() to
automatically add some value to all values written to the context.

This example uses these two methods to work directly with the values returned by
Math.Sin():

//:c15:SineLine.cs
//Demonstrates Scaling and Transform
using System;
using System.Drawing;
using System.Windows.Forms;

class TransformPanel : Panel {
 internal TransformPanel(){
 ResizeRedraw = true;
 }

 protected override void OnPaint(PaintEventArgs e){
 base.OnPaint(e);
 Graphics g = e.Graphics;
 g.Clear(Color.White);
 Pen pen = new Pen(Color.Red);

 float widthScale = (float)
 (Width / (Math.PI * 4));
 float heightScale = Height / 2;
 float invertHeightScale = -heightScale;
 invertHeightScale *= .9f;
 Console.WriteLine("scale {0} {1}",
 widthScale, invertHeightScale);

 pen.Width = 1 / widthScale;

 //Set transforms for Graphics
 g.TranslateTransform(0, Height / 2);
 g.ScaleTransform(widthScale, invertHeightScale);

 PointF lastPoint = new PointF(0f, 0f);
 double inc = Math.PI * 4 / Width;
 for (float f = 0; f < Math.PI * 4; f += .1f) {

Chapter 15: GDI+ Overview667

 float sin = (float) Math.Sin(f);
 PointF newPoint = new PointF(f, sin);
 g.DrawLine(pen, lastPoint, newPoint);
 lastPoint = newPoint;
 }
 }
}

class SineLine : Form {
 SineLine(){
 TransformPanel tPanel = new TransformPanel();
 tPanel.Dock = DockStyle.Fill;
 Controls.Add(tPanel);
 }

 public static void Main(){
 Application.Run(new SineLine());
 }
}///:~

Since we know that we’re interested in drawing two cycles (4π radians) of the sine
wave, we know that the resolution of our graph is Width / 4π. We calculate this
value as widthScale in the OnPaint() method of our TransformPanel.
Similarly, we know that since the sine values range from -1 to 1, multiplying those
values by ½ the Height will end up consuming the entire vertical space of the
Control. This is the heightScale value that’s calculated; invertHeightScale is
the negative of that value (as we want positive numbers to be closer to the top of
the Form). Finally, we multiply the invertHeightScale by .9, so that instead of
taking up the entire vertical height, the results will consume 90% of the height.

The Pen.Width of the pen we’re using begins with a default value of 1.
Graphics.TransformScale() works on everything in the context, though, so a
Pen with Width = 1 will draw a line Width / 4π pixels wide! Therefore, we set
Pen.Width = 1 / widthScale, which brings it back to being one pixel.

The line

g.TranslateTransform(0, Height / 2);

tells the Graphics to add nothing to all x values passed in and to add half the
height to all the y values passed in, i.e., put the y axis halfway down the form.

The line

668 Thinking in C# www.MindView.net

g.ScaleTransform(widthScale, invertHeightScale);

multiplies all x values by widthScale and all y values by invertHeightScale.

Transforms applied to the Graphics are cumulative (but obviously do not persist
between one call to OnPaint() and the next, as every time you are dealing with
a new Graphics object). You can reset to the default, no-rotation, no-translation,
transform (the identity transform) by calling Graphics.ResetTransform().
Although transforms are cumulative, they are generally order-dependent (that is,
translating and then rotating will have a different effect than rotating then
translating). The mathematics of transforms will be covered in more detail a bit
later.

Now that we’re dealing with a scaled Graphics, we can no longer use integers to
specify Points on the canvas. The Point(1, 1) is at the top and more than 1/12th
of the way across the form. Instead, we switch to the PointF structure, which
allows us to specify locations in floating point.

Before entering our sine-calculating loop, we initialize Point lastPoint to the
origin. Then, our loop increments f from 0 to 4 π in increments of 1/10th. The
sine of f is calculated and f and sin are used directly to initialize a PointF value.
If you stretch the original SineWave example, it breaks up into individual
values; SineLine uses Graphics.DrawLine() to connect the individual values
as they’re calculated.

It may seem to you that SineLine is not superior to SineWave, which may be
true, but this example shows how transforms can dramatically reduce code
length:

//:c15:SpinTheBottle.cs
//Demonstrates rotation transforms

using System;
using System.Drawing;
using System.Windows.Forms;

class BottleSpinner : Panel {
 internal BottleSpinner(){
 ResizeRedraw = true;
 }

 PointF[] pointer = new PointF[]{
 new PointF(0, 0), new PointF(.1f, .05f),

Chapter 15: GDI+ Overview669

 new PointF(.09f, .2f), new PointF(.1f, .5f),
 new PointF(.02f, 1f), new PointF(-.02f, 1f),
 new PointF(-.1f, .5f), new PointF(-.09f, .2f),
 new PointF(-.1f, .05f), new PointF(0, 0),
 };

 private float scale = .5f;
 public int PointerScale{
 get { return(int) (scale * 100);}
 set { scale = (float) value / 100;}
 }

 private int rot = 90;
 public int PointerRotation{
 get { return rot;}
 set { rot = value;}
 }

 protected override void OnPaint(PaintEventArgs ea){
 base.OnPaint(ea);
 Graphics g = ea.Graphics;
 g.Clear(Color.White);

 //Origin Offset = center of client area, plus some
 int xOrigin = Width / 2 + 50;
 int yOrigin = Height / 2;

 g.TranslateTransform(xOrigin, yOrigin);
 g.RotateTransform(rot);
 int smallerAxis = Width;
 if (Height < smallerAxis) {
 smallerAxis = Height;
 }
 float scaleTransform = smallerAxis / 2 * scale;
 g.ScaleTransform(scaleTransform, scaleTransform);

 //Draw bottle
 Pen p = new Pen(Color.Red);
 p.Width = 1 / scaleTransform;

 g.DrawCurve(p, pointer);

670 Thinking in C# www.ThinkingIn.NET

 }
}

class SpinTheBottle: Form {
 BottleSpinner bs;
 TrackBar scaler;
 TrackBar spinner;

 SpinTheBottle(){
 Panel control = new Panel();
 control.Dock = DockStyle.Left;
 control.Width = 100;
 Splitter s = new Splitter();
 Controls.Add(s);
 Controls.Add(control);

 //Initializes controllers
 scaler = new TrackBar();
 scaler.Minimum = 1;
 scaler.Maximum = 100;
 scaler.Value = 50;
 scaler.TickFrequency = 10;
 scaler.Location = new Point(10, 10);
 scaler.Text = "Scale";
 scaler.ValueChanged +=
 new EventHandler(OnScaleChange);
 control.Controls.Add(scaler);

 spinner = new TrackBar();
 spinner.Minimum = 0;
 spinner.Maximum = 360;
 spinner.Value = 90;
 spinner.TickFrequency = 15;
 spinner.Location = new Point(10, 60);
 spinner.ValueChanged +=
 new EventHandler(OnSpinChange);
 control.Controls.Add(spinner);

 bs = new BottleSpinner();
 bs.Dock = DockStyle.Fill;
 Controls.Add(bs);

Chapter 15: GDI+ Overview671

 }

 public void OnScaleChange(object src, EventArgs a){
 int scale = scaler.Value;
 bs.PointerScale = scale;
 bs.Invalidate();
 }

 public void OnSpinChange(object src, EventArgs a){
 int angle = spinner.Value;
 bs.PointerRotation = angle;
 bs.Invalidate();
 }

 public static void Main(){
 Application.Run(new SpinTheBottle());
 }
}///:~

The BottleSpinner panel first defines an array of PointFs that define (very
roughly) a bottle shape using values from 0 to 1. Two properties, PointerScale
and PointerRotation, will specify the transformation to be applied to the bottle
shape.

OnPaint() calls base.OnPaint() (as should always be done), clears the
canvas, and calculates the desired offset of the origin halfway across and down
the BottleSpinner. Three transforms are then applied:
TranslateTransform() sets the origin, ScaleTransform() sets the
y-axis to increase towards the top of the screen, and RotateTransform() sets
the rotation equal to the value of the rot variable. Surprisingly,
RotateTransform() takes an angle in degrees, not radians.

After these transforms are applied, the real scaling transform is calculated from
the value of the scale variable and the size of the BottleSpinner panel.
ScaleTransform() is called again; since transforms are additive, this scaling
transform works with the previous ScaleTransform() that flipped the y axis. A
new Pen is created and its width set à la DemoLine.

Finally, Graphics.DrawCurve() is used to draw the shape. DrawCurve()
draws cardinal splines, a smooth curve that passes through all the points in the
passed-in array.

672 Thinking in C# www.MindView.net

The SpinTheBottle Form contains both a BottleSpinner panel and two
TrackBar controls. TrackBars, also called “slider” controls, are used to
manipulate an integer value in a specified range. In this case, we specify that the
scaler can have a range of 1 to 100 and the spinner a range of 0 to 360. Both
have ValueChanged delegates that set the corresponding property in the
BottleSpinner bs and then call Invalidate(), which triggers the OnPaint()
event of our custom control.

Filling regions
So far, we have just used lines to draw on our Graphics context. Generally, in
addition to (or in place of) drawing an outline, you’ll want to fill a region. Just as
lines are drawn with a series of DrawXxx() methods in the Graphics class,
fills are drawn with a series of FillXxx() methods. However, instead of using a
Pen as the drawing tool, the FillXxx() methods use a Brush. This example
contrasts drawing and filling:

//:c15:RegionFill.cs
//Demonstrates filling a region
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class RegionFill : Form {

 protected override void OnPaint(PaintEventArgs e){
 base.OnPaint(e);
 Graphics g = e.Graphics;
 ClientSize = new Size(120, 120);

 BackColor = Color.White;

 g.FillRectangle(Brushes.Red, 10, 10, 100, 100);
 g.DrawRectangle(Pens.Green, 10, 10, 100, 100);

 Pen pointer = new Pen(Color.Black);
 pointer.EndCap = LineCap.ArrowAnchor;
 g.DrawLine(pointer, 100, 7, 109, 7);

 g.DrawLine(pointer, 120, 7, 111, 7);
 }

Chapter 15: GDI+ Overview673

 public static void Main(){
 Application.Run(new RegionFill());
 }
}///:~

Unlike previous examples, the owner-drawn Control in RegionFill is
descended from Form, not Panel. This allows the sample programs to be
slightly shorter, at the cost of losing any claim to decent object design. The
DrawRectangle call uses a Pen from the Pens class and FillRectangle uses a
Brush from the corresponding Brushes class.

The Pen pointer uses the LineCap enumeration that is part of the
System.Drawing.Drawing2D namespace to add an arrow to lines drawn with
the Pointer. Two lines are drawn to bracket the 110th pixel in the Form. When
you run RegionFill, you’ll see that the green rectangle is not entirely covered by
the red fill even though both are given the same extents; edges of the green
rectangle are still visible. The lines drawn by the pointer indicate that the
DrawXxx() methods draw the boundary specified (in this case, [{10, 10}, {110,
110}]), while the FillXxx() methods draw the interior (what is filled is [{9, 9},
{109, 109}]).

Although the Pens and Brushes classes are convenient, they do not expose an
important feature of GDI+’s color model. The Color structure encapsulates a 32-
bit color representation that includes an 8-bit transparent component (also
known as an alpha channel) in addition to 8-bit components for each of the Red,
Green, and Blue components.1 An alpha value of 255 corresponds to a totally
opaque color, while a value of 0 is totally transparent. In this example, we create
alphaGreen, a somewhat transparent green, create a new Brush of that color,
and overlay a rectangle filled with alphaGreen on a rectangle with Color.Red.

//:c15:AlphaFill.cs
//Demonstrates transparent color
using System;
using System.Drawing;
using System.Windows.Forms;

1 While there are many color models, RGB is the dominant one for computer graphics, as
it corresponds to the display components in monitors. The Color structure has methods
to convert between RGB and Hue-Saturation-Brightness, a color model more popular with
graphics designers.

674 Thinking in C# www.ThinkingIn.NET

class AlphaFill : Form {
 protected override void OnPaint(PaintEventArgs e){
 base.OnPaint(e);
 Graphics g = e.Graphics;
 ClientSize = new Size(130, 130);

 BackColor = Color.White;
 g.FillRectangle(Brushes.Red, 10, 10, 100, 100);

 Color alphaGreen =
 Color.FromArgb(227, 0, 255, 0);
 Brush aBrush = new SolidBrush(alphaGreen);
 g.FillRectangle(aBrush, 20, 20, 100, 100);
 }

 public static void Main(){
 Application.Run(new AlphaFill());
 }
}///:~

The line where the Brush is instantiated contains an upcast from SolidBrush
to Brush. The next example illustrates all but one of the other subtypes of the
abstract Brush class:

//:c15:BrushFill.cs
//Demonstrates filling a region
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class BrushFill : Form {

 protected override void OnPaint(PaintEventArgs e){
 base.OnPaint(e);
 Graphics g = e.Graphics;
 ClientSize = new Size(250, 250);
 BackColor = Color.White;

 Image img = Image.FromFile("images.jpg");
 Brush tBrush = new TextureBrush(img);
 g.FillRectangle(tBrush, 10, 10, 100, 100);

Chapter 15: GDI+ Overview675

 Brush hBrush =
 new HatchBrush(HatchStyle.DiagonalCross,
 Color.Black, Color.White);
 g.FillRectangle(hBrush, 30, 90, 100, 100);

 Point startGradient = new Point(10, 120);
 Point endGradient = new Point(110, 220);
 Brush lBrush =
 new LinearGradientBrush(
 startGradient, endGradient,
 Color.Cyan, Color.Magenta);
 g.FillRectangle(lBrush, 10, 120, 100, 100);
 }

 public static void Main(){
 Application.Run(new BrushFill());
 }
}///:~

A TextureBrush tiles a region with the given Image, in this case one loaded
from a file. A HatchBrush can draw various types of hatching, specified with
the HatchStyle enumeration of the Drawing2D namespace; the hatch is drawn
with the Colors specified in the HatchBrush’s Foreground and
Background properties.

The LinearGradientBrush creates a smooth blend from one Color to another,
from one Point to another. A LinearGradientBrush has a large number of
properties to fine-tune the way the gradient is constructed. The
LinearGradientBrush constructs a logical gradient between two Points.
These Points need not be within the actual region being filled.

The only type of Brush not yet discussed is the PathGradientBrush which,
like the LinearGradientBrush, is used to fill a region with a smooth blend of
two colors. However, while the LinearGradientBrush creates a blend based on
two logical Points, the PathGradientBrush creates a blend based on the
center and boundaries of a GraphicsPath.

A GraphicsPath is a series of connected lines and curves. The GraphicsPath
used by the PathGradientBrush is considered to be closed (the last point on
the path is considered connected to the first point on the path), so even if you
create a path from just two lines, for the purposes of the gradient, the path will be
considered a triangle. Like LinearGradientBrush, PathGradientBrush has

676 Thinking in C# www.MindView.net

a wide variety of properties that can fine-tune the creation of the gradient, but
this example demonstrates a basic GraphicsPath and a basic
PathGradientBrush:

//:c15:PathGradientDemo.cs
//Demonstrates GraphicsPath and gradient fill
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class PathGradientDemo : Form {
 protected override void OnPaint(PaintEventArgs ea){
 base.OnPaint(ea);
 Graphics g = ea.Graphics;

 GraphicsPath path = new GraphicsPath();
 path.AddLine(0, 0, 250, 0);
 path.AddLine(250, 0, 0, 250);

 PathGradientBrush pgb =
 new PathGradientBrush(path);
 pgb.CenterColor = Color.Khaki;
 pgb.SurroundColors = new Color[]{
 Color.Red, Color.Green, Color.Blue};
 g.FillRectangle(pgb, 0, 0, 250, 250);
 }

 static void Main(){
 Application.Run(new PathGradientDemo());
 }
}///:~

The GraphicsPath path is a right triangle with legs of length 250; one leg and
the hypotenuse are added explicitly, while we count on the
PathGradientBrush to implicitly derive the third edge. We specify that we
want a gradient with a khaki center. The
PathGradientBrush.SurroundColors property specifies an array of colors
corresponding to the endpoints of the components of the GraphicsPath. The
color at any given point is a blend between the CenterColor and the two
SurroundColors corresponding to the nearest points in the GraphicsPath.

Chapter 15: GDI+ Overview677

Finally, to show the gradient, we use FillRectangle(). Although the fill is for a
rectangle, the GraphicsPath is triangular, so the appearance of the gradient is a
triangle with a khaki center and red, green, and blue vertices.

Non-rectangular windows
Many multimedia applications have customizable interfaces (“skins”) that
prominently feature non-rectangular shapes. Programming this type of interface
has traditionally required some pretty hard-core low-level stuff, but Windows
Forms and GDI+ combine to make customized control shapes very simple. Each
Control has a Region property that can be set to a Region containing a
GraphicsPath. The GraphicsPath determines the shape of the Control.
Since a Form is itself a Control, this can be used to create custom-shaped
application windows.

//:c15:BinocularForm.cs
//Creates a non-rectangular application window
using System;
using System.Windows.Forms;
using System.Drawing;
using System.Drawing.Drawing2D;

class BinocularForm : Form {
 BinocularForm(){
 GraphicsPath gp = new GraphicsPath();
 gp.AddEllipse(0, 0, 200, 200);
 gp.AddEllipse(180, 00, 200, 200);
 this.Region = new Region(gp);
 }
 public static void Main(){
 Application.Run(new BinocularForm());
 }
}///:~

This is certainly the weirdest-looking example in this book and is definitely worth
compiling and running. Notice that you can continue to resize the form by drag-
clicking the border visible inside the right-hand ellipse. Note also that when you
click in the hole created by the intersection of the two ellipses, the event passes
“through” your application and activates the application you’re running on top of.
In order to create a “skinned” application, you would create a resource file
(perhaps in XML) describing the graphics paths of all the customizable controls
and their back- and foreground-colors, fonts, and so forth. To change the skin,

678 Thinking in C# www.ThinkingIn.NET

you’d simply create new GraphicsPaths and assign them to the appropriate
controls.

Matrix transforms
GraphicsPath objects can be transformed, independently of the Graphics
transforms by using the Matrix class. To understand the Matrix transforms,
you must understand a small amount of matrix math.

An affine transformation is a rotation around the origin followed by a translation
and is represented in matrix notation as:

x y

plusX plusY

Rotation & Scale elements

Translation elements

0

0

1

yScaleSin(θ)Cos(θ)xScale

Cos(θ)yScalexScale-Sin(θ)

Figure 15-2: The elements of an affine transformation

This transformation would be expressed in this code:

newX = Math.Cos(theta) * xScale * x
 - Math.Sin(theta) * xScale * x
 + plusX;
newY = Math.Sin(theta) * yScale * y
 + Math.Cos(theta) * yScale * y
 + plusY;

The final column in an affine matrix is always the same. You can see how the
newX value is derived by multiplying the first column of the 2-by-1 matrix (i.e.,
x) by each of the values in the first column of the 3-by-3 matrix, and then
summing those results. Similarly, newY is derived by summing the products of
the second columns.

Mostly, you will have no reason to calculate the Matrix elements directly.
Instead, you’ll start with the identity transform:

Chapter 15: GDI+ Overview679

0

0

1

0

1

0

1

0

0

Figure 15-3: The identity transform

If you put these values into the above code, you’ll see that the result is unrotated,
unscaled, and untranslated. Then, you will call methods such as
Matrix.Rotate(), Matrix.Scale(), and Matrix.Translate() to calculate the
new Matrix values.

A transform Matrix can be assigned to a Graphics.Transform property or
passed as an argument to GraphicsPath.Transform(). This example shows a
custom control that displays the elements of an affine Matrix, another that
displays a rectangle transformed by the Matrix, and an example of how the
Matrix elements can be set directly.

//:c15:MatrixElements.cs
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

//Displays a 3 x 3 Matrix
class MatrixPanel : Panel {
 GraphicsPath bracket;

 public MatrixPanel(){
 ResizeRedraw = true;

 bracket = new GraphicsPath();
 bracket.AddLine(.1f, 0, 0, 0);
 bracket.AddLine(0, 0, 0, 1f);
 bracket.AddLine(0, 1f,.1f, 1f);
 }

 private Matrix matrix;
 public Matrix Matrix{
 get { return matrix;}
 set { matrix = value; Invalidate();}
 }

680 Thinking in C# www.MindView.net

 protected override void OnPaint(PaintEventArgs e){
 Graphics g = e.Graphics;

 DrawBrackets(g);
 DrawMatrix(g);
 }

 float scale = 0.9f;
 float offset = 0.04f;

 private void DrawBrackets(Graphics g){
 g.ScaleTransform(scale * Width, scale * Height);
 Pen p = new Pen(Color.Red);
 p.Width = 1 / Width;

 GraphicsContainer gState = g.BeginContainer();
 g.RotateTransform(180);
 g.TranslateTransform(-1 - offset, -1 - offset);
 g.DrawPath(p, bracket);
 g.EndContainer(gState);
 g.BeginContainer();
 g.TranslateTransform(offset, offset);
 g.DrawPath(p, bracket);
 g.EndContainer(gState);
 }

 private void DrawMatrix(Graphics g){
 if (matrix != null) {
 Font f = new Font("Arial", .1f);
 float[] els = matrix.Elements;
 PointF drawPoint = new PointF(0.05f, 0.1f);
 string s = els[0].ToString("0.00");
 g.DrawString(s, f, Brushes.Black, drawPoint);
 s = els[1].ToString("0.00");
 drawPoint.X = 0.4f;
 g.DrawString(s, f, Brushes.Black, drawPoint);
 s = els[2].ToString("0.00");
 drawPoint.X = 0.05f;
 drawPoint.Y = 0.4f;
 g.DrawString(s, f, Brushes.Black, drawPoint);

Chapter 15: GDI+ Overview681

 s = els[3].ToString("0.00");
 drawPoint.X = 0.4f;
 g.DrawString(s, f, Brushes.Black, drawPoint);
 s = els[4].ToString("0.00");
 drawPoint.X = 0.05f;
 drawPoint.Y = 0.7f;
 g.DrawString(s, f, Brushes.Black, drawPoint);
 s = els[5].ToString("0.00");
 drawPoint.X = 0.4f;
 g.DrawString(s, f, Brushes.Black, drawPoint);

 //Draw 3rd col of affine
 drawPoint.X = .7f;
 drawPoint.Y = .1f;
 g.DrawString(
 "0.00", f, Brushes.Black, drawPoint);
 drawPoint.Y = .4f;
 g.DrawString(
 "0.00", f, Brushes.Black, drawPoint);
 drawPoint.Y = .7f;
 g.DrawString(
 "1.00", f, Brushes.Black, drawPoint);
 }
 }
}///:~ (Continues with TransformDisplay.cs)

The GraphicsPath bracket defines the shape of the tall square brackets that
are used to display a matrix. The bracket shape is initialized in the
MatrixPanel() constructor that also sets ResizeRedraw to true.

The Matrix property of the MatrixPanel is used to get and set the associated
Matrix. If the Matrix is assigned, the display should update to reflect its values,
so a call to Invalidate() is placed in the set method.

MatrixPanel.OnPaint() calls DrawBrackets() and then DrawMatrix().
DrawBrackets scales the Graphics so that a value of 1.0 is 90% of the Height
or Width of the Panel.

Graphics.BeginContainer() and EndContainer() can be used during
complex transformation sequences to save the current state of the Graphics().
Here, for instance, we save the state in a GraphicsContainer gState after the
scaling transform, but then rotate and translate the Graphics to draw the right-
hand bracket (the shape is defined as being a bracket that opens to the right, so to

682 Thinking in C# www.ThinkingIn.NET

draw the closing bracket, we have to flip it and move it over to the right-hand side
of the Panel). After we’re done, though, instead of reversing the translations, we
just call Graphics.EndContainer() with the state we wish to restore as an
argument. Then, we can draw the left-hand bracket with just two lines of code.

MatrixPanel.DrawMatrix() first has to create a Font that’s small enough to
display on the scaled Panel. Then, the Matrix elements are retrieved and
displayed in their proper positions. String formatting is used to constrain the
lengths of the displayed data to two decimal places.

//:c15:TransformDisplay.cs
//Renders a rectangle transformed by a Matrix
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TransformDisplay : Panel {
 Matrix matrix;
 internal Matrix Matrix{
 set{ matrix = value;}
 get{ return matrix;}
 }

 internal TransformDisplay(){
 ResizeRedraw = true;
 matrix = new Matrix(1, 0, 0, 1, 0, 0);
 }

 protected override void OnPaint(PaintEventArgs e){
 Graphics g = e.Graphics;
 g.Clear(Color.White);
 g.Transform = matrix;
 Rectangle r = new Rectangle(0, 0, 100, 100);
 g.DrawRectangle(Pens.Red, r);
 }
}///:~ (Continues with MatrixAndTransform.cs)

TransformDisplay is a simple owner-drawn Panel that has a Matrix
property, and, in OnPaint(), applies this Matrix to its Graphics before
drawing a red Rectangle from 0, 0 to 100, 100.

//:c15:MatrixAndTransform.cs

Chapter 15: GDI+ Overview683

//Compile with
/*
csc MatrixAndTransform.cs TransformDisplay.cs
 MatrixElements.cs
*/
//Displays various matrices and their transforms
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class MatrixAndTransform : Panel {
 internal MatrixAndTransform(Matrix m){
 MatrixPanel mp = new MatrixPanel();
 mp.Matrix = m;
 mp.Dock = DockStyle.Left;
 mp.Width = 120;
 TransformDisplay td = new TransformDisplay();
 td.Matrix = m;
 td.Dock = DockStyle.Left;
 Controls.Add(td);
 Controls.Add(mp);
 }
}

class MatrixElements : Form {
 MatrixElements(){
 Matrix m = new Matrix(1f, 0, 0, 1, 0, 0);
 MatrixAndTransform mt1 =
 new MatrixAndTransform(m);
 mt1.Dock = DockStyle.Top;
 Controls.Add(mt1);

 Matrix m2 = (Matrix) m.Clone();
 m2.Rotate(45);
 MatrixAndTransform mt2 =
 new MatrixAndTransform(m2);
 mt2.Dock = DockStyle.Top;
 Controls.Add(mt2);

 Matrix m3 = (Matrix) m.Clone();

684 Thinking in C# www.MindView.net

 m3.Scale(0.25f, .5f);
 m3.Rotate(30);
 m3.Translate(125, -70);
 MatrixAndTransform mt3 =
 new MatrixAndTransform(m3);
 mt3.Dock = DockStyle.Top;
 Controls.Add(mt3);

 float rot = (float) Math.PI / 6;
 float xScale = .25f;
 float yScale = .5f;
 float el1 = (float) (Math.Cos(rot) * xScale);
 float el2 = (float) (Math.Sin(rot) * yScale);
 float el3 = (float) (-Math.Sin(rot) * xScale);
 float el4 = (float) (Math.Cos(rot) * yScale);
 float el5 = 36f;
 float el6 = 0;
 Matrix m4 =
 new Matrix(el1, el2, el3, el4, el5, el6);
 MatrixAndTransform mt4 =
 new MatrixAndTransform(m4);
 mt4.Dock = DockStyle.Top;
 Controls.Add(mt4);
 Height = 440;
 }

 public static void Main(){
 MatrixElements me = new MatrixElements();
 Application.Run(me);
 }
}///:~

The third custom control of this program is MatrixAndTransform, a Panel
that combines a MatrixPanel and a TransformDisplay and sets them both to
have the same Matrix.

MatrixElements is a Form that contains several MatrixAndTransforms.
The MatrixAndTransform mt1 is given the identity matrix to display. mt2
uses Matrix.Rotate() to rotate 45 degrees around the origin before drawing.

mt3 shows how transformations can accumulate. First, Matrix.Scale() is used
to scale the x and y dimensions by different amounts. Second, the Matrix is

Chapter 15: GDI+ Overview685

rotated 30 degrees. Finally, the resulting scaled and rotated matrix is translated
125 units along the x axis and -70 on the y axis. Remember that this translation
occurs after scaling and rotating, so these values are added along scaled, rotated
axes (as will be apparent when compared to mt4).

For our final MatrixAndTransform, we’re going to calculate the matrix’s
elements directly. Here we see the inconsistency between the rotation
transformation methods (Graphics.RotateTransform() and
Matrix.Rotate()) that use degrees, and the trigonometric functions of the
Math class (Math.Sin() and Math.Cos() are needed here) that use radians.
While mt3 was rotated 30 degrees, the equivalent is π / 6 radians. This value,
and the xScale and yScale values, are used to calculate the first 4 elements of
the Matrix. The 5th and 6th elements, which are the translation elements, are
set directly. These values will be added directly to the screen coordinates: setting
them to 36 and 0 will end up having the same effect as the m3.Translate(125, -
70) translation.

Figure 15-4 shows mt4 on top and mt3 below. You can see how the rotation and
scaling elements (the four elements in the upper-left corner of both matrices) are
identical, while the translation elements (the first two elements in the lowest row)
are set precisely in mt4 and a little off in mt3.

686 Thinking in C# www.ThinkingIn.NET

Figure 15-4: Various transforms and their effect

Trigonometry, matrix math, and linear algebra are the most important
mathematical disciplines for programmers. They are of constant use, especially in
game programming.

Hit detection
When programming GDI+, you’ll generally want to react to mouse clicks near the
shapes you are drawing. The GraphicsPath class has several methods to assist
you. This example uses GraphicsPath.IsVisible(), which returns true if a
given point is within the GraphicsPath, to determine if the mouse was clicked
within the desired shape:

//:c15:GraphicsPathHitTest.cs
//Demonstrates hit testing with a GraphicsPath

Chapter 15: GDI+ Overview687

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class GraphicsPathHitTest : Form {
 GraphicsPath shape = new GraphicsPath();

 GraphicsPathHitTest(){
 shape.AddLine(10, 10, 30,10);
 Point[] curves = new Point[]{
 new Point(30, 10), new Point(70, 120),
 new Point(18, 240)
 };
 shape.AddCurve(curves);
 shape.AddLine(18, 240, 10, 10);
 shape.CloseFigure();

 this.MouseUp += new MouseEventHandler(HitTest);
 }

 protected override void OnPaint(PaintEventArgs ea){
 base.OnPaint(ea);
 Graphics g = ea.Graphics;

 g.DrawPath(Pens.Red, shape);
 }

 public void HitTest(object src, MouseEventArgs ea){
 Point mouseLocation = new Point(ea.X, ea.Y);
 if (shape.IsVisible(mouseLocation)) {
 Console.WriteLine("Clicked within path");
 }
 }

 public static void Main(){
 Application.Run(new GraphicsPathHitTest());
 }
}///:~

The GraphicsPathHitTest() constructor builds a strange shape that combines
straight lines and a cardinal spline. When done, GraphicsPath.CloseFigure()

688 Thinking in C# www.MindView.net

is used to connect the final point to the initial point (this is not necessary for this
particular shape, which is already closed, but is a good habit to develop). After
constructing the shape, an event handler is added to the MouseUp event.

The OnPaint() method shows the Graphics.DrawPath() method, which
takes a Pen and a GraphicsPath (naturally, there is a Graphics.FillPath()
method as well). The HitTest() method extracts the location of the mouse from
the MouseEventArgs that are passed in, constructs a Point from them, and
then uses GraphicsPath.IsVisible() to determine if the mouse was clicked
within the shape.

Fonts and text
Although the RichTextBox control can be used in many interfaces for creating a
user interface featuring formatted text, the full power of Windows text support
requires GDI+. We’ve already used the Font class as a property of a Windows
Forms Control and in the FontDialog common dialog, but GDI+ allows a Font
to be drawn with a Brush of any type. This example demonstrates that you can
even draw text using a tiled image:

//:c15:FontDrawing.cs
//Basic text output in GDI+, using custom Brush
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class FontDrawing : Form {
 protected override void OnPaint(PaintEventArgs ea){
 base.OnPaint(ea);
 Graphics g = ea.Graphics;

 Font arial =
 new Font("Arial", 96, FontStyle.Regular);

 string hw = "Hello, C#";
 SizeF sizeOfString = g.MeasureString(hw, arial);
 if (Width < sizeOfString.Width + 20) {
 Width = (int) sizeOfString.Width;
 }

 Image img = Image.FromFile("images.jpg");

Chapter 15: GDI+ Overview689

 TextureBrush tb = new TextureBrush(img);

 Point p = new Point(10, 10);
 g.DrawString(hw, arial, tb, p);
 Rectangle txtOrg = new Rectangle(10, 10, 2, 2);
 g.DrawEllipse(Pens.Red, txtOrg);
 }

 public static void Main(){
 Application.Run(new FontDrawing());
 }
}///:~

Since we want to be able to see at least some of the Image that we’ll be drawing
the Font with, we create a 96 point Font. Then, we use
Graphics.MeasureString() to determine the size that the string “Hello, C#”
will require when drawn in the given context with the specified Font. If the
current size of the Form is not big enough to accommodate the full text, the
Width of the Form is increased (however, since ResizeRedraw is left at its
default false value, the application window can be made smaller than the
displayed text without triggering a repainting event).

A TextureBrush is created from a local image file, and
Graphics.DrawString() is called with the string to draw, the Font to use,
the Brush to render the Font with, and the Point that corresponds to the
upper-left corner of the rendered text. That point is circled in red; when you run
this program, you may be surprised by how far from the text this appears.

If you find yourself using GDI+ to draw text on the screen, you probably are
interested in drawing the text in strange ways (vertically, diagonally, etc.). You
can use the various transformation methods in the Graphics class, as this
example shows (before running this program, see if you can predict what the
output will look like):

//:c15:TextTransform.cs
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

class TextTransform : Form {

 protected override void OnPaint(PaintEventArgs ea){

690 Thinking in C# www.ThinkingIn.NET

 base.OnPaint(ea);
 Graphics g = ea.Graphics;

 Font arial =
 new Font("Arial", 24, FontStyle.Regular);

 g.RotateTransform(90);
 g.ScaleTransform(1.5f, -1);
 string hw = "Hello, C#";

 Rectangle r = new Rectangle(10, 10, 100, 100);
 g.DrawString(hw, arial, Brushes.Black, r);
 g.DrawRectangle(Pens.Red, r);
 }

 public static void Main(){
 Application.Run(new TextTransform());
 }
}///:~

In addition to rotating and scaling the drawing canvas, a Rectangle, not a
Point, is used as the final argument to Graphics.DrawString(). This overload
of DrawString() wraps and clips the text to the Rectangle.

Printing
Now that you’ve had a whirlwind tour of GDI+, you can finally print from
Windows Forms. Printing is done with a PrintDocument, an object with a
PrintPage event. You attach a delegate to this event and receive an instance of
PrintPageEventArgs, which includes a Graphics. This Graphics object
corresponds to one page of your output device. You draw graphics on the
Graphics, just as you would in an OnPaint() method. When done, the page
will be printed.

In this example, we define a simple form that calls both the
PrintPreviewDialog and PrintDialog common dialogs:

//:c15:Printing.cs
//Demonstrates printing from Windows Forms
using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Windows.Forms;

Chapter 15: GDI+ Overview691

class Printing : Form {
 PaperWaster pw = new PaperWaster();
 Printing(){
 MainMenu menu = new MainMenu();
 Menu = menu;

 MenuItem fMenu = new MenuItem("&File");
 menu.MenuItems.Add(fMenu);
 MenuItem prvMenu = new MenuItem("P&review...");
 fMenu.MenuItems.Add(prvMenu);
 prvMenu.Click += new EventHandler(OnPreview);
 MenuItem prtMenu = new MenuItem("&Print...");
 fMenu.MenuItems.Add(prtMenu);
 prtMenu.Click += new EventHandler(OnPrint);
 }

 public void OnPreview(object src, EventArgs ea){
 PrintPreviewDialog ppd =
 new PrintPreviewDialog();
 ppd.Document = pw.Document;
 if (ppd.ShowDialog() == DialogResult.OK) {
 //Dialog showed okay
 }
 }

 public void OnPrint(object src, EventArgs ea){
 PrintDialog pd = new PrintDialog();
 pd.Document = pw.Document;
 if (pd.ShowDialog() == DialogResult.OK) {
 //Dialog showed okay
 }
 }

 public static void Main(){
 try{
 Application.Run(new Printing());
 }catch(Exception ex){
 Console.WriteLine(ex);
 }
 }

692 Thinking in C# www.MindView.net

}

class PaperWaster {
 PrintDocument pd = new PrintDocument();
 internal PrintDocument Document{
 get { return pd;}
 }

 internal PaperWaster(){
 pd.PrintPage +=
 new PrintPageEventHandler(PrintAPage);
 }

 void PrintAPage(object src, PrintPageEventArgs ea){
 Graphics g = ea.Graphics;
 Font f = new Font("Arial", 36);
 SolidBrush b = new SolidBrush(Color.Black);
 PointF p = new PointF(10.0f, 10.0f);
 g.DrawString("Reduce, Reuse, Recycle", f, b, p);
 ea.HasMorePages = false;
 }
}///:~

Both the PrintPreview and PrintDialog classes have a Document property
which must be set to an instance of class PrintDocument. This is done in the
OnPreview() and OnPrint() event handlers in the Printing form. Our
domain class PaperWaster has a Document property that returns a
PrintDocument whose PrintPage event has been delegated to
PaperWaster.PrintAPage().

The only part of PrintAPage() that is new is setting the HasMorePages
property of the PrintPageEventArgs argument to false. This is actually
unnecessary, as false is its default value, but if set to true, PrintAPage will be
called again. It is up to you to maintain the state of your domain object so that a
sequence of calls to PrintAPage() properly output pages in order and then
terminate by setting HasMorePages to false.

Bitmaps
Since we’ve already shown the use of an Image inside of a TextureBrush, it
shouldn’t be a shock that GDI+ supports displaying Images directly. To display
an Image you already have in memory, you use Graphics.DrawImage(),

Chapter 15: GDI+ Overview693

which has a variety of overloads that allows you to display the image or a portion
of it in original size or scaled and as a parallelogram. This example shows some of
these overloads:

//:c15:BitMapDemo.cs
//Demonstrates basic bitmap manipulation
using System;
using System.Drawing;
using System.Windows.Forms;

class BitMapDemo : Form {
 Bitmap bmp;

 BitMapDemo(){
 bmp = new Bitmap("tumbuan.jpg");
 }
 protected override void OnPaint(PaintEventArgs ea){
 base.OnPaint(ea);
 Graphics g = ea.Graphics;
 g.DrawImage(bmp, new Point(70, 70));

 Rectangle scaled = new Rectangle(20, 20, 60, 60);
 g.DrawImage(bmp, scaled);
 g.DrawRectangle(Pens.Red, scaled);

 Point[] pGram = new Point[]{
 new Point(50, 10),
 new Point(100, 30),
 new Point(20, 100),
 };
 g.DrawImage(bmp, pGram);
 }

 public static void Main(){
 Application.Run(new BitMapDemo());
 }
}///:~

The demo loads a Bitmap that is included in the book’s source code file. The first
DrawImage() call draws the Image, unscaled, at the specified Point. The
second DrawImage() scales the bitmap to fit in the Rectangle.

694 Thinking in C# www.ThinkingIn.NET

The third overload of DrawImage() accepts an array of 3 Points; these Points
define a parallelogram. The first Point is the origin, the second point is the
upper-right corner of the parallelogram. The Image will be drawn to follow the
slope defined by these two points. The third Point defines the lower-left corner
of the parallelogram and the fourth corner of the parallelogram is inferred. If you
pass an incorrectly sized array to this method, DrawImage() will throw an
exception.

The easiest way to draw on an Image is to use the static method
Graphics.FromImage(), which returns a Graphics on which you can use the
gamut of GDI+ drawing tools. This example loads a bitmap, draws on it, and
saves the result to disk.

//:c15:ImageDrawAndSave.cs
//Demonstrates how to draw on an Image
using System;
using System.Drawing;
using System.Windows.Forms;

class ImageDrawAndSave : Form {
 Image img;
 PictureBox pb;
 string fName;

 ImageDrawAndSave(){
 MainMenu mm = new MainMenu();
 Menu = mm;

 MenuItem fMenu = new MenuItem("&File");
 mm.MenuItems.Add(fMenu);

 MenuItem oMenu = new MenuItem("&Open...");
 oMenu.Click += new EventHandler(OpenImage);
 fMenu.MenuItems.Add(oMenu);

 MenuItem sMenu = new MenuItem("&Save...");
 sMenu.Click += new EventHandler(SaveImage);
 fMenu.MenuItems.Add(sMenu);

 pb = new PictureBox();
 pb.Dock = DockStyle.Fill;
 Controls.Add(pb);

Chapter 15: GDI+ Overview695

 }

 public void OpenImage(object src, EventArgs ea){
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter = "Image files (*.bmp;*.jpg;*.gif)"
 + "|*.bmp;*.jpg;*.gif;*.png";
 DialogResult fileChosen = ofd.ShowDialog();
 if (fileChosen == DialogResult.OK) {
 try {
 img = Image.FromFile(ofd.FileName);
 fName = ofd.FileName;
 pb.Image = img;
 DrawOnImage(img);
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
 }

 void DrawOnImage(Image img){
 Graphics g = Graphics.FromImage(img);
 using(g){
 g.FillRectangle(Brushes.Red, 10, 10, 20, 20);
 }
 pb.Invalidate();
 }

 public void SaveImage(object src, EventArgs ea){
 if (img != null) {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.FileName= fName;
 DialogResult saveChosen = sfd.ShowDialog();
 if (saveChosen == DialogResult.OK) {
 img.Save(sfd.FileName);
 }
 }
 }

 public static void Main(){
 Application.Run(new ImageDrawAndSave());
 }

696 Thinking in C# www.MindView.net

}///:~

The program uses OpenFileDialog and SaveFileDialog as discussed in the
previous chapter. After the Image is opened, DrawOnImage() generates a
Graphics for it and draws a red rectangle on the image. In order to ensure that
the Graphics is disposed of properly, it’s given as an argument to a using block.
Once drawn upon, pb.Invalidate() is called to trigger a repaint of the
PictureBox.

Although using a Graphics allows the use of all of GDI+ tools, when an Image
is a Bitmap, you can directly set and get the color of individual pixels using
Bitmap.GetPixel() and Bitmap.GetPixel(). This example randomly
speckles a bitmap with randomly colored pixels:

//:c15:ManipPixels.cs
//Shows direct pixel manipulation in a Bitmap
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

class ManipPixels : Form {
 PictureBox pb;

 ManipPixels(){
 MainMenu mm = new MainMenu();
 Menu = mm;

 MenuItem fMenu = new MenuItem("&File");
 mm.MenuItems.Add(fMenu);

 MenuItem oMenu = new MenuItem("&Open...");
 oMenu.Click += new EventHandler(OpenImage);
 fMenu.MenuItems.Add(oMenu);

 pb = new PictureBox();
 pb.Dock = DockStyle.Fill;
 Controls.Add(pb);
 }

 public void OpenImage(object src, EventArgs ea){
 OpenFileDialog ofd = new OpenFileDialog();

Chapter 15: GDI+ Overview697

 ofd.Filter = "Image files (*.bmp;*.jpg;*.gif)"
 + "|*.bmp;*.jpg;*.gif;*.png";
 DialogResult fileChosen = ofd.ShowDialog();
 if (fileChosen == DialogResult.OK) {
 try {
 Bitmap bmp = new Bitmap(ofd.FileName);
 pb.Image = bmp;
 RandPixels(bmp);
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
 }

 void RandPixels(Bitmap bmp){
 Random rand = new Random();

 int imgSize = bmp.Width * bmp.Height;
 int iToChange = (int) (imgSize * .25);

 for (int i = 0; i < iToChange; i++) {
 int x = rand.Next(bmp.Width);
 int y = rand.Next(bmp.Height);

 int r = rand.Next(255);
 int g = rand.Next(255);
 int b = rand.Next(255);
 Color c = Color.FromArgb(255, r, g, b);

 bmp.SetPixel(x, y, c);
 }

 pb.Invalidate();
 }

 public static void Main(){
 Application.Run(new ManipPixels());
 }
}///:~

RandPixels calculates the total number of pixels in the Bitmap by multiplying
the Width by the Height. The loop runs so that approximately one-fourth of the

698 Thinking in C# www.ThinkingIn.NET

pixels in the image are changed (only approximately because the same pixel may
be chosen in the loop). A random coordinate (x, y) is chosen and a random
Color created. Bitmap.SetPixel() makes the change. When the loop is done,
pb.Invalidate() causes a repaint. Bitmap.GetPixel() is similarly
straightforward: given a coordinate, it returns a Color.

Rich clients with interop
One of the real joys of working with the .NET Framework after spending several
years programming for browser-based interfaces is the rediscovery of the power
of the client machine. Heck, just having normal menus again is a thrill. Windows
Forms provides many powerful components, but there are many additional
components available to Windows users. You can use these components in two
ways:

♦ If the component supports Microsoft’s Component Object Model (COM),
you can generate a Runtime Callable Wrapper (RCW) proxy that allows
you to use the component much as if it were a native .NET object.

♦ If the component is a .DLL that exports functions, you can write your
own wrapper class that accesses the functions as if they were static
methods.

There are two significant problems with working with Interop: documentation of
the non-.NET component and the component’s implementation quality. Sadly,
neither of these can be taken for granted and there’s little that can be done about
it. .NET’s threading and memory models are the best kind: sophisticated enough
to be easy. Before using any component, .NET or otherwise, you should perform
due diligence by searching newsgroup archives for pointers to bugs, resource
issues, and programming quirks.

COM Interop and the WebBrowser
control
If the RichTextBox doesn’t provide the display capabilities you need, perhaps
the core HTML component of Internet Explorer will be sufficient. Since Internet
Explorer 4, Microsoft has made its browser’s components available as COM
components.

COM Interop is enabled by the generation of a Runtime Callable Wrapper, an
assembly that mediates between the .NET world and the COM world. Tools
provided in the .NET Framework SDK automatically can generate these wrappers
from COM typelibs. The general solution to creating a wrapper is to use the tool

Chapter 15: GDI+ Overview699

tlbimp. If the component you are attempting to import is an ActiveX control
(COM’s version of the visual Components in Windows Forms), the aximp tool
automatically creates a proxy for the ActiveX control that makes visual
programming far easier, as it exposes .NET-style properties and events.

The Internet Explorer controls are available as an ActiveX control stored in the
file shdocvw.dll, which you should have in your \Windows\System32
directory. Assuming that this is the case and that you’ve installed Windows in
drive C, you create a Runtime Callable Wrapper with this command line:

aximp c:\windows\system32\shdocvw.dll

This should generate two .NET assemblies: SHDocVw.dll and
AxSHDocVw.dll. AxSHDocVw.dll contains the .NET proxy for the ActiveX
control and relies on SHDocVw.dll. Your code only needs to reference
AxSHDocVw, but both assemblies (and, of course, the original COM
component) need to be available for your .NET program to run.

Programming an ActiveX with COM Interop requires just a little bit more
attention to detail than programming in Windows Forms:

//:c15:COMInterop.cs
//Compile with:
//csc /reference:AxSHDocVw.dll COMInterop.cs
//Demonstrates COM Interop with the WebBrowser ctl
using System;
using System.Drawing;
using System.Windows.Forms;
using AxSHDocVw;

class COMInterop : Form {
 AxWebBrowser browserCtl;
 COMInterop() {
 browserCtl = new AxWebBrowser();
 browserCtl.BeginInit();
 browserCtl.Dock = DockStyle.Fill;
 browserCtl.NavigateComplete2 +=
 new
DWebBrowserEvents2_NavigateComplete2EventHandler(
 DoNavigationComplete);
 browserCtl.EndInit();
 Controls.Add(browserCtl);

700 Thinking in C# www.MindView.net

 this.Load += new EventHandler(DoNavigate);
 }

 protected override void Dispose(bool b){
 if (b) {
 foreach(Control c in Controls){
 c.Dispose();
 }
 }
 base.Dispose(b);
 }

 void DoNavigate(object src, EventArgs ea) {
 string url = "http://www.ThinkingIn.Net/";
 object flags = 0;
 object tgtFrame = "";
 object httpPostData = "";
 object addlHeaders = "";

 browserCtl.Navigate(url, ref flags,
 ref tgtFrame, ref httpPostData,
 ref addlHeaders);
 }

 void DoNavigationComplete(object src,
 DWebBrowserEvents2_NavigateComplete2Event e){
 Console.WriteLine("Successfully surfed to: "
 + e.uRL);
 }

 [STAThread]
 public static void Main() {
 Application.Run(new COMInterop());
 }
}///:~

The COM wrapper defines the namespace AxSHDocVw, which contains a class
called AxWebBrowser. Visual Studio .NET provides code completion and
object browsing tools for COM objects; command-line users can use ILDasm
and Web searches to get a handle on programming an unfamiliar COM
component.

Chapter 15: GDI+ Overview701

After instantiating an AxWebBrowser object in the COMInterop()
constructor, calls to manipulate the initial state of the ActiveX object are wrapped
within calls to BeginInit() and EndInit(). These methods ensure that the
ActiveX is not displayed before it is completely initialized; they may not be
necessary if you are not going to use a design-time tool such as Visual Studio’s
Designer tool but when dealing with unmanaged code, safe is better than sorry.
Similarly, when using Interop, always implement a Dispose(bool) method à la
that shown here.

The AxWebBrowser initialization code sets the control to fill the
COMInterop form’s client area and attaches a delegate to the event associated
with navigation completing.

During development, calls to AxWebBrowser.Navigate() failed when used
within the COMInterop() constructor, so the DoNavigate() method is
attached to the COMInterop’s Load event. The DoNavigate() method just
sets up the arguments to the browserCtl AxWebBrowser object’s
Navigate() method. The most important variable is, of course, the URL.
Information on the other arguments (and a comprehensive reference to the
WebBrowser control) can be found on MSDN.

The event handler DoNavigationComplete() simply outputs the surfed-to
URL when navigation is completed.

COM Interop requires that the executing thread’s ApartmentState property be
set to ApartmentState.STA, which stands for single-threaded apartment
model. The easiest way to do this is to apply the [STAThread] attribute to the
static Main() method. You can ignore the ApartmentState property in all
other circumstances.

To compile COMInterop, use the command-line:

csc /reference:AxSHDocVw.dll COMInterop.cs

Happy surfing!

COM Interop challenges
Okay, now that you’ve had a good experience with COM Interop, it’s time for a
little no-silver-bullet reality. Using COM Interop to work with existing Windows
systems may go very well, but there may be significant challenges. Specifically,
the biggest challenge emerging with COM Interop is that many COM systems are
written in a way that is dependent on deterministic finalization (the COM
component expects its cleanup-and-release code to be called explicitly), while

702 Thinking in C# www.ThinkingIn.NET

COM Interop relies on the garbage collector, which as discussed in chapter 5, is
non-deterministic. Design and implementation of complex COM Interop
scenarios is beyond the scope of this book, but suffice it to say that there are
specific calls (such as Marshal.ReleaseComObject()) that provide the
needed functionality, but may also require significant amounts of design and
implementation effort to work with a complex, legacy COM system.

Non-COM Interop
Probably most of your desire to interact with the unmanaged world will be via
COM and ActiveX objects. However, it is also possible to use unmanaged “plain
vanilla” DLLs from C#. Here, even more than with COM Interop, you have to take
pains to properly initialize and dispose of the unmanaged objects.

To demonstrate non-COM Interop, we’re going to access what’s probably the
most actively used piece of code in the world – the DLL that’s responsible for
drawing the cards that are used in Windows Solitaire. The card-drawing routines
are stored in an unmanaged DLL called cards.dll that is found in the
\system32 subdirectory of your Windows directory.

The DLL has a function cdtTerm() that should be called when your use of the
DLL has ended. We can’t just put a call to cdtTerm() in a Dispose() or a
destructor, since those are called for every instance of the card created. Instead,
we need to have a reference count to the number of cards that have been created
and destroyed. When the reference count gets to 0, only then should we call
cdtTerm().

The example demonstrates interoperability with non-COM components: the most
general level of Windows interoperability. We used dumpbin /exports
c:\windows\system32\cards.dll and some Internet research to discover the
appropriate function signatures.

//:c15:CardPainter.cs
//Demonstrates non-COM Interop,
//and the ever-important ability to draw cards!
using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;
using System.Runtime.InteropServices;

Chapter 15: GDI+ Overview703

class CardHolder : Panel {
 [DllImport("cards.dll")]
 public static extern
 long cdtInit(ref long x, ref long y);
 [DllImport("cards.dll")]
 public static extern long cdtTerm();
 [DllImport("cards.dll")]
 public static extern
 long cdtDrawExt(IntPtr hdc, long x, long y,
 long dx, long dy, long ordCard,
 long iDraw, long color);
 [DllImport("cards.dll")]
 public static extern
 long cdtDraw(IntPtr hdc, long xOffset,
 long cardChosen, long dx, long dy, long color);
 [DllImport("cards.dll")]
 public static extern
 long cdtAnimate(IntPtr hdc, long ordCard,
 long x, long y, long animationType);

 static int dllRefCount = 0;
 static int defX, defY;

 void InitDLL(){
 long x = 0;
 long y = 0;
 Console.WriteLine("Initializing DLL");
 cdtInit(ref x, ref y);
 defX = (int) x;
 defY = (int) y;
 }

 internal CardHolder(int iCard){
 cardChosen = iCard;
 lock(typeof(CardHolder)){
 Interlocked.Increment(ref dllRefCount);
 if (dllRefCount == 1) {
 InitDLL();
 }
 }
 Width = defX;

704 Thinking in C# www.MindView.net

 Height = defY;
 }

 int cardChosen = 0;

 protected override void OnPaint(
 PaintEventArgs pea){
 Graphics g = pea.Graphics;
 pea.Graphics.Clear(Color.White);
 IntPtr handle = g.GetHdc();
 try {
 cdtDraw(
 handle, 0, cardChosen,
 this.Width, this.Height, 0);
 } finally {
 g.ReleaseHdc(handle);
 }
 }

 protected override void Dispose(bool b){
 lock(typeof(CardHolder)){
 Interlocked.Decrement(ref dllRefCount);
 Console.WriteLine(dllRefCount);
 if (dllRefCount == 0) {
 Console.WriteLine("Finalizing dll");
 cdtTerm();
 }
 }
 }
}

public class CardPainter : Form {
 ArrayList cards = new ArrayList();
 static Random r = new Random();
 int offset = 10;

 public CardPainter() {
 Button draw = new Button();
 draw.Text = "Deal";
 draw.Click += new EventHandler(OnDrawCard);
 draw.Location = new Point(10, 10);

Chapter 15: GDI+ Overview705

 Controls.Add(draw);

 Button discard = new Button();
 discard.Text = "Discard";
 discard.Click += new EventHandler(OnDiscard);
 discard.Location = new Point(10, 60);
 Controls.Add(discard);
 }

 public void OnDrawCard(object src, EventArgs e){
 CardHolder ch = new CardHolder(r.Next(51));
 offset += 10;
 ch.Location = new Point(offset, offset);
 cards.Add(ch);
 Controls.Add(ch);
 }

 public void OnDiscard(object src, EventArgs e){
 if (cards.Count > 0) {
 CardHolder ch =
 (CardHolder) cards[cards.Count - 1];
 cards.Remove(ch);
 Controls.Remove(ch);
 offset -= 10;
 Invalidate();
 }
 }

 protected override void Dispose(bool b){
 if (b) {
 foreach(Control c in cards){
 c.Dispose();
 }
 }
 base.Dispose(b);
 }

 public static void Main(){
 Application.Run(new CardPainter());
 }
}///:~

706 Thinking in C# www.ThinkingIn.NET

The program references the System.Threading namespace because it uses the
Interlocked class for reference counting; this example is single-threaded, but
the Interlocked class provides thread-safe reference counting, which is
generally very important when working with unmanaged code (we’ll revisit
Interlocked in the next chapter).

The program also references the System.Runtime.InteropServices
namespace, which supplies the DllImportAttribute type. In the example, the
DllImportAttributes specify that we’re importing functions from cards.dll,
which is not a .NET assembly, but an old fashioned Windows dynamic link
library. Since C-based DLLs do not have objects and methods, their functions are
the equivalent of static methods. The extern keyword specifies that the
implementation is external – located in the DLL specified in the [DllImport]
attribute.

We’re wrapping the calls to cards.dll in a custom control descended from
Panel. The CardHolder() constructor takes an integer, which should be in the
range 0 to 51, that specifies the card.

The static variable dllRefCount contains the number of CardHolder’s that
have been created. We want to call cdtInit() when that number is 1, and
cdtTerm() when that number returns to 0. The lock keyword and the block
that follows will be discussed in length in the next chapter; for the moment just
know that the purpose here is to ensure that only one thread at a time can access
the dllRefCount variable.

If dllRefCount is 1, the method InitDLL() is called. In turn, it calls cdtInit,
passing in two arguments that, subsequent to the call, contain the default width
and height of the cards that the DLL will draw (on my machines, these seem to
always be 71 and 96 – perhaps they vary with screen resolution). These values are
stored in the static variables defX and defY; back in the CardHolder()
constructor, these variables are used to set the size of the CardHolder panel.

CardHolder.OnPaint() uses a method within the cards.dll to draw on the
screen. As a relic of the by-gone days of Windows programming, cdtDraw()
takes as its first parameter a device context handle (an hDC, represented in .NET
as an IntPtr). hDC’s must be requested and released explicitly with calls to
Graphics.GetHdc() and Graphics.ReleaseHdc(). In order to be
responsible, it’s a good habit to put all usage of an hDC in a try…finally block.

Chapter 15: GDI+ Overview707

The final argument to cdtDraw() is an integer between 0 and 51, representing
the various cards in the deck. This is the taken from the cardChosen variable
that was passed to the CardHolder() constructor.

The CardHolder.Dispose() method is, of course, called for each object of type
CardHolder. But we do not want to call cdtTerm() until there are no objects
of type CardHolder in the program; we also do not want to call it if the
“Discard” button has been pressed erroneously. Thus we have to use
Interlocked.Decrement() to complement the Interlocked.Increment()
called in the constructor, and because we’re pretending that CardHolder might
be used in a multithreaded environment, we again lock the class’s Type to
ensure that Interlocked.Decrement() cannot be called twice before the
comparison of dllRefCount to 0.

The CardPainter class puts two Buttons on the form and attaches the
OnDrawCard() and OnDiscard() methods to their Click events.
OnDrawCard() instantiates a new CardHolder for a random card and places
it on the CardPainter client area, incrementing the offset instance variable so
that subsequent cards will appear tiled. The CardHolder is also added to an
ArrayList cards.

OnDiscard() uses the cards collection as an easy way to track the various
CardHolders. If there are any CardHolders in cards, the last CardHolder is
retrieved and removed from the cards collection and from the form.2

As always when using either COM or non-COM Interop, we implement a
Dispose() method that calls the Dispose() method of our interoperating
classes. When the CardPainter application is closed, you will see
CardHolder.Dispose() count down the CardHolder.dllRefCount variable
and, when it reaches 0, the call to cdtTerm. If the “Discard” button is pressed
more times than the “Deal” button, you’ll still see that cdtTerm is called only
when the dllRefCount goes to 0.

Summary
GDI+ provides a stateless drawing context that can be used to fully customize
your user interface. Access to GDI+’s capabilities come by way of the Graphics
class, which is a low-level “canvas” on which you can draw lines and curves, text,

2 The CardPainter class is not thread-safe. We kept our “forward referencing” to
threading issues limited to the CardHolder class.

708 Thinking in C# www.MindView.net

images, and complex shapes. Windows underlying repainting algorithms, which
are designed to reduce flickering in the user interface, can be somewhat
confusing, only redraw the portion of the display that has been marked “dirty” by
the underlying Windows logic. This mostly causes confusion while redrawing a
window that is being resized; setting Control.ResizeRedraw to true is usually
sufficient for eliminating this problem.

Instances of type Graphics are short-lived and associated with Windows
internal data-structures that cannot be recovered by garbage collection.
Therefore, you must dispose of Graphics either by explicitly calling their
Dispose() method within a finally block or by using the Graphics as an
argument to a using block. Graphics can be transformed in a variety of ways,
including scaling, translating (moving), rotating, and shearing transforms.

Graphics contains a series of primitive methods which draw lines and fill
regions; the characteristics of a line being drawn are encapsulated in a Pen
object, the characteristics of a region being filled are within a Brush. Graphics
also has primitives for displaying text and images. The characteristics of the text
being drawn are encapsulated within a Font, and Graphics.MeasureString()
is an important method for determining the size required to display some given
text. If Graphics.DrawString() is passed a Rectangle instead of a Point, it
will wrap the text to the width of the Rectangle, if the wrapped text cannot fit in
the Rectangle, the text will be clipped.

Images can be drawn on Graphics in their original size, scaled, or as a
parallelogram; in combination with the transformations that can be performed
on the Graphics itself, and on GraphicsPaths, essentially any graphical effect
can be achieved.

Exercises
1. Write a custom control that draws graduated diagonal lines from corner

to corner. Place this custom control in a standard Windows Form and
confirm that it docks and lays itself out appropriately.

2. Refactor the previous exercise so that either inheritance or a delegate is
used to draw the graduated lines so that they scale (hashmarks at 1/8th-
length positions) or maintain an absolute size (hashmarks every 1/8th of
an inch).

3. Write a program that turns mouse-clicks into points in a curve and allows
you to select the color and pixel-width of the pen that draws the curve.

Chapter 15: GDI+ Overview709

4. Add the ability to place text, geometric shapes, and arrows to the
program developed in Exercise 3.

5. Refactor the previous example so that the shape closest to the mouse
point becomes editable (allow deletion and movement).

6. Add the ability to fill shapes to the shape-drawing program.

7. Refactor the previous shape-drawing program so that it defines a shape-
drawing interface and can dynamically load assemblies implementing
that interface. Implement the interface with a class that draws a spiral.

8. (Advanced) Using the System.Reflection.Emit namespace (not
discussed in this book) and others, write a program that dynamically
compiles and graphs a function typed into a text box.

9. Add the ability to scale and rotate shapes to the shape-drawing program.

10. Add the ability to print to your shape-drawing program.

11. Using everything you have learned, write a solitaire game.

12. Using the past two chapters and the wavelet transform code from
Chapter 10, write a wavelet explorer program that allows you to view,
transform, and manipulate wavelet-transformed graphical images.

711

16: Multithreaded
Programming

Objects divide the solution space into logical chunks of
state and behavior. Often, you need groups of your objects
to perform their behavior simultaneously, as independent
subtasks that make up the whole.

Each of these independent subtasks is called a thread, and you program as if each
thread runs by itself and has the CPU to itself. Some underlying mechanism is
actually dividing up the CPU time for you, but in general, you don’t have to think
about it, which makes programming with multiple threads a much easier task.

A process is a self-contained running program with its own address space. In C#,
each application runs in its own process. A multitasking operating system is
capable of running more than one process (program) at a time, while making it
look like each one is chugging along on its own, by periodically providing CPU
cycles to each thread within each process. A thread is a single sequential flow of
control within a process (a “thread of execution”). A single process can thus have
multiple concurrently executing threads.

There are many possible uses for multithreading, but in general, you’ll have some
part of your program tied to a particular calculation or resource, and you don’t
want to hang up the rest of your program because of that. So you create a thread
associated with that calculation or resource and let it run independently of the
main program. A good example is a “cancel” button to stop a lengthy calculation
—you don’t want to be forced to poll the cancel button in every piece of code you
write in your program and yet you want the cancel button to be responsive, as if
you were checking it regularly. In fact, one of the most immediately compelling
reasons for multithreading is to produce a responsive user interface.

Responsive user interfaces
As a starting point, consider a program that performs some CPU-intensive
operation and thus ends up ignoring user input and being unresponsive. This one
simply covers the display in a random patchwork of red spots:

712 Thinking in C# www.MindView.net

//:c16:Counter1.cs
// A non-responsive user interface.
using System;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

class Counter1 : Form {
 int numberToCountTo;

 Counter1(int numberToCountTo) {
 this.numberToCountTo = numberToCountTo;
 ClientSize =
 new System.Drawing.Size(500, 300);
 Text = "Nonresponsive interface";

 Button start = new Button();
 start.Text = "Start";
 start.Location = new Point(10, 10);
 start.Click +=
 new EventHandler(StartCounting);

 Button onOff = new Button();
 onOff.Text = "Toggle";
 onOff.Location = new Point(10, 40);
 onOff.Click += new EventHandler(StopCounting);

 Controls.AddRange(
 new Control[]{ start, onOff});
 }

 public void StartCounting(
 Object sender, EventArgs args) {
 Rectangle bounds = Screen.GetBounds(this);
 int width = bounds.Width;
 int height = bounds.Height;

 Graphics g = this.CreateGraphics();
 using(g){
 Pen pen = new Pen(Color.Red, 1);

Chapter 16: Multithreaded Programming 713

 Random rand = new Random();
 runFlag = true;
 for (int i = 0; runFlag
 && i < numberToCountTo; i++) {
 //Do something mildly time-consuming
 int x = rand.Next(width);
 int y = rand.Next(height);
 g.DrawRectangle(pen, x, y, 1, 1);
 Thread.Sleep(10);
 }
 }
 }
 bool runFlag = true;

 public void StopCounting(
 Object sender, EventArgs args){
 runFlag = false;
 }

 public static void Main() {
 Application.Run(new Counter1(10000));
 }
} ///:~

At this point, the graphics code should be reasonably familiar from Chapters 14
and 15, except that instead of painting the display in OnPaint(), we use
Control.CreateGraphics() to stay busy: The method loops
numberToCountTo times, picks a random spot on the form, and draws a 1-
unit rectangle there.

Part of the loop inside startCounting() calls Thread.Sleep().
Thread.Sleep() immediately pauses the currently executing thread for some
amount of milliseconds. Regardless of whether you’re explicitly using threads,
you can produce the current thread used by your program with Thread and the
static Sleep() method.

When the Start button is pressed, startCounting() is invoked. On examining
startCounting(), you might think that it should allow multithreading because
it goes to sleep. That is, while the method is asleep, it seems like the CPU could be
busy monitoring other button presses. But it turns out that the real problem is
that startCounting() doesn’t return until after it’s finished, and this means
that stopCounting() is never called until it’s too late for its behavior to be

714 Thinking in C# www.ThinkingIn.NET

meaningful. Since you’re stuck inside startCounting() for the first button
press, the program can’t handle any other events. (To get out, you must either
wait until startCounting() ends, or kill the process; the easiest way to do this is
to press Control-C or to click a couple times to trigger Windows’ “Program Not
Responding” dialogue.)

The basic problem here is that startCounting() needs to continue performing
its operations, and at the same time it needs to return so that stopCounting()
can be activated and the user interface can continue responding to the user. But
in a conventional method like startCounting() it cannot continue and at the
same time return control to the rest of the program. This sounds like an
impossible thing to accomplish, as if the CPU must be in two places at once, but
this is precisely the illusion that threading provides.

The thread model (and its programming support in C#) is a programming
convenience to simplify juggling several operations at the same time within a
single program. With threads, the CPU will pop around and give each thread
some of its time. Each thread has the consciousness of constantly having the CPU
to itself, but the CPU’s time is actually sliced between all the threads. The
exception to this is if your program is running on multiple CPUs. But one of the
great things about threading is that you are abstracted away from this layer, so
your code does not need to know whether it is actually running on a single CPU
or many. Thus, threads are a way to create transparently scalable programs.

Threading reduces computing efficiency somewhat, but the net improvement in
program design, resource balancing, and user convenience is often quite valuable.
Of course, if you have more than one CPU, then the operating system can
dedicate each CPU to a set of threads or even a single thread and the whole
program can run much faster. Multitasking and multithreading tend to be the
most reasonable ways to utilize multiprocessor systems.

.NET’s threading model
Like most modern operating systems, Windows differentiates between processes,
which separate applications, and threads, which are the low-level unit of flow
control inside a process; .NET introduces the concept of an Application Domain
as an intermediate container between the two. An AppDomain, in addition to
being responsible for loading and executing assemblies, is responsible for a
managed process. In the same way that .NET has a managed heap that includes a
Garbage Collector, managed processes are somewhat safer than unmanaged
processes; specifically, a managed process can guarantee that finally clauses are

Chapter 16: Multithreaded Programming 715

executed, that IDisposable.Dispose() is called appropriately, and that garbage
collection works properly with objects referenced by the managed process.

At any time, a given Thread is managed by some AppDomain. The controlling
AppDomain may very well change over time, so Thread.GetDomain() is a
method, not a property. The AppDomain may, conversely, be managing many
threads but there is no easy way to determine this set given just an AppDomain
reference. You do not usually need to interact with the AppDomain of a
Thread, but it is important for remoting (not discussed in this book).

You must manage your Thread through five of its seven states of its life:
Unstarted, Running, WaitSleepJoin, Suspended, and Stopped. The
runtime will handle two intermediate states, SuspendRequested and
AbortRequested. At any time, Thread.ThreadState will be one of these
values.

Not all Threads need to enter all these states, as the state-transition diagram in
Figure 16-1 illustrates. State-transition diagrams are UML diagrams that are
especially handy to illustrate complex object lifecycles, such as is done here (they
can also be used as the basis for a Finite-State-Machine architecture, popular
with embedded programmers and developers of bad game AI).

Running

Thread.Start

WaitSleepJoin SuspendRequested

SuspendedAbortRequested

Aborted

Thread.Abort

Thread.Resume

Thread.Sleep

Thread.Join

Monitor.Wait

Thread.Suspend

Thread.AbortThread.Abort

Thread.Interrupt

Figure 16-1: The lifecycle of a Thread

716 Thinking in C# www.MindView.net

Running a thread
A .NET Thread must be constructed with a delegate of type ThreadStart. The
ThreadStart delegate takes no arguments and returns nothing:

public delegate void ThreadStart();

Once constructed, Thread.Start() will put the Thread in
ThreadState.Running and the ThreadStart delegate will get called. If the
Thread does not call the various methods shown in Figure #, and if no other
Thread calls Thread.Suspend() on your Thread, when the ThreadStart()
delegate returns, the Thread will call Thread.Abort() on itself and eventually
change to ThreadState.Aborted.

This sample shows the bare minimum needed to get some behavior out of a
Thread.

//:c16:SecondaryThread.cs
//Demonstrates starting a thread
using System;
using System.Threading;

class SecondaryThread {
 static void MyThreadedExecutionBlock(){
 Console.WriteLine(
 "Executed from my thread:" +
 Thread.CurrentThread.ThreadState);
 }
 public static void Main(){
 ThreadStart myDelegate =
 new ThreadStart(MyThreadedExecutionBlock);
 Thread myThread = new Thread(myDelegate);
 Console.WriteLine(
 "Before Start(): " + myThread.ThreadState);
 myThread.Start();
 Console.WriteLine(
 "After Start():" + myThread.ThreadState);
 }
}///:~

The threading classes are in the System.Threading namespace, so we need to
bring in those references with using System.Threading. The Main()
instantiates a ThreadStart delegate with the MyThreadedExecutionBlock

Chapter 16: Multithreaded Programming 717

method. The delegate is passed to the Thread() constructor and we write
myThread.ThreadState to the console.

If you run this program, sometimes you may see this output:

Before Start(): Unstarted
Executed from my thread:Running
After Start():Stopped

which is exactly what you’d expect if, as with a normal method call, the execution
of Main() was suspended by the call to Start() that in turn called
MyThreadedExecutionBlock(). However, most times you run this program,
you’ll see this:

Before Start(): Unstarted
After Start():Unstarted
Executed from my thread:Running

Precisely because Main() is not suspended that long. Main() is suspended
during the call to Start(), but Thread.Start() simply triggers the start of the
secondary thread, it does not wait for any behavior from it. The line that writes
“After Start()…” is written by the application thread; whether that line is written
before myThread has begun processing or after its processing is a matter of a
race between the main thread getting to the “After Start()…” line before and the
secondary thread getting to the “Executed from…” line.

Waiting for a thread to complete
It’s appropriate that our very first multithreaded program demonstrates a race
condition defect. When programming with threads, you must never assume the
order in which threads will reach certain blocks of code. If we wanted to ensure
that the secondary thread had completed, we might try this:

//:c16:BusyWait.cs
//A bad way to synchronize threads
using System;
using System.Threading;

class BusyWait {
 static bool secondaryThreadFinished = false;

 static void MyThreadedExecutionBlock(){
 Console.WriteLine(
 "Executed from my thread:" +

718 Thinking in C# www.ThinkingIn.NET

 Thread.CurrentThread.ThreadState);
 secondaryThreadFinished = true;
 }
 public static void Main(){
 ThreadStart myDelegate =
 new ThreadStart(MyThreadedExecutionBlock);
 Thread myThread = new Thread(myDelegate);
 Console.WriteLine(
 "Before Start(): " + myThread.ThreadState);
 myThread.Start();
 int iSpins = 0;
 //busy wait
 while (secondaryThreadFinished == false) {
 iSpins++;
 };
 Console.WriteLine(
 "After Start():" + myThread.ThreadState);
 Console.WriteLine("Spun {0} times", iSpins);
 }
}///:~

Here, bool secondaryThreadFinished is a condition variable that is used to
communicate between threads. After Main() calls myThread.Start(), it spins
in a tight loop, checking to see if the condition has been satisfied. This is what is
called a busy-wait. The iSpins variable is not necessary for the logic of the
program, but is used to illustrate why busy-waits are bad ideas. This program will
have the desired behavior of delaying the writing of “After Start()…” until after
the secondary thread has completed, but you may be shocked at the value of
iSpins. This value represents a lot of wasted CPU effort.

Instead of a busy-wait, changing the loop to:

 while(secondaryThreadFinished == false){
 //Sleep for 1 ms.
 Thread.Sleep(1);
 iSpins++;
 };

will have a dramatic effect on the final value of iSpins (it will probably reduce it
to 1). The static method Thread.Sleep() takes an integer representing a time
in milliseconds or a TimeSpan and places the current thread (that is, the
Thread that is executing the line of code) into the WaitSleepJoin state for that

Chapter 16: Multithreaded Programming 719

amount of time. This suspension is done at the OS level and allows the CPU to be
used efficiently.

If you pass a value of 0 to Thread.Sleep(), you suspend the current thread so
that other waiting threads may execute, but you are not requesting an actual
pause in the current thread’s processing. If you pass a value of
Timeout.Infinite, you are requesting that the Thread be put to sleep forever;
we’ll cover how to get out of that situation with Thread.Interrupt() a little
later.

Multiple threads in action
The following example creates any number of threads that it keeps track of by
assigning each thread a unique number, generated with a static variable. The
delegated behavior is in the Run() method, which is overridden to count down
each time it passes through its loop and finishes when the count is zero (at the
point when the delegated method returns, the thread is terminated).

//:c16: SimpleThreading.cs
// Demonstrates scheduling
using System;
using System.Threading;

public class SimpleThreading {
 private int countDown = 5;
 private static int threadCount = 0;
 private int threadNumber = ++threadCount;

 public SimpleThreading() {
 Console.WriteLine(
 "Making " + threadNumber);
 }

 public void Run() {
 while (true) {
 Console.WriteLine("Thread " +
 threadNumber + "(" + countDown + ")");
 if (--countDown == 0) return;
 }
 }

 public static void Main() {

720 Thinking in C# www.MindView.net

 for (int i = 0; i < 5; i++) {
 SimpleThreading st = new SimpleThreading();
 Thread aThread =
 new Thread(new ThreadStart(st.Run));
 aThread.Start();
 }
 Console.WriteLine("All Threads Started");
 }
} ///:~

The ThreadStart delegate method (often called Run()) virtually always has
some kind of loop that continues until the thread is no longer necessary, so you
must establish the condition on which to break out of this loop (or, in the case
above, simply return from Run()). Often, Run() is cast in the form of an
infinite loop, which means that, barring some external factor that causes Run()
to terminate, it will continue forever.

In Main() you can see a number of threads being created and run. The Start()
method in the Thread class performs the initialization for the thread and then
calls Run(). So the steps are: The constructor is called to build the object that
will do the work, the ThreadStart delegate is given the name of the working
function, the ThreadStart is passed to a newly created Thread, then Start()
configures the thread and calls the delegated function — Run(). If you don’t call
Start(), the thread will never be started.

The output for one run of this program (it will be different from one run to
another) is:

Making 1
Making 2
Making 3
Thread 1(5)
Thread 1(4)
Thread 1(3)
Thread 1(2)
Thread 1(1)
Making 4
Making 5
All Threads Started
Thread 2(5)
Thread 2(4)
Thread 2(3)
Thread 2(2)

Chapter 16: Multithreaded Programming 721

Thread 2(1)
Thread 5(5)
Thread 5(4)
Thread 5(3)
Thread 5(2)
Thread 5(1)
Thread 4(5)
Thread 4(4)
Thread 4(3)
Thread 4(2)
Thread 4(1)
Thread 3(5)
Thread 3(4)
Thread 3(3)
Thread 3(2)
Thread 3(1)

You’ll notice that nowhere in this example is Thread.Sleep() called, and yet the
output indicates that each thread gets a portion of the CPU’s time in which to
execute. This shows that Sleep(), while it relies on the existence of a thread in
order to execute, is not involved with either enabling or disabling threading. It’s
simply another method.

You can also see that the threads are not run in the order that they’re created. In
fact, the order that the CPU attends to an existing set of threads is indeterminate,
unless you go in and adjust the Priority property of the thread.

When Main() creates the Thread objects it isn’t capturing the references for
any of them. This is where the managed process capability of the AppDomain
comes into play. An ordinary object with no references to it would be fair game
for garbage collection, but not a Thread in a managed process. As long as the
Thread has not entered ThreadState.Stopped, it will not be garbage
collected.

Threading for a responsive interface
Now it’s possible to solve the problem in Counter1.cs with a thread. The trick is
to make the working method —that is, the loop that’s inside StopCounting()—
a delegate of a Thread. When the user presses the start button, the thread is
started, but then the creation of the thread completes, so even though the thread
is running, the main job of the program (watching for and responding to user-
interface events) can continue. Here’s the solution:

722 Thinking in C# www.ThinkingIn.NET

//:c16:Counter2.cs
// A responsive user interface.
using System;
using System.ComponentModel;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

class Counter2 : Form {
 int numberToCountTo;

 Counter2(int numberToCountTo) {
 this.numberToCountTo = numberToCountTo;
 ClientSize = new Size(500, 300);
 Text = "Responsive interface";

 Button start = new Button();
 start.Text = "Start";
 start.Location = new Point(10, 10);
 start.Click +=
 new EventHandler(StartCounting);

 Button onOff = new Button();
 onOff.Text = "Toggle";
 onOff.Location = new Point(10, 40);
 onOff.Click +=
 new EventHandler(StopCounting);

 this.Closing +=
 new CancelEventHandler(StopCountingIfClosing);

 Controls.AddRange(
 new Control[]{ start, onOff});
 }

 public void StartCounting(
 Object sender, EventArgs args) {
 ThreadStart del =
 new ThreadStart(paintScreen);
 Thread t = new Thread(del);
 t.Start();

Chapter 16: Multithreaded Programming 723

 }

 public void paintScreen(){
 Rectangle bounds = Screen.GetBounds(this);
 int width = bounds.Width;
 int height = bounds.Height;

 Graphics g = CreateGraphics();
 using(g){
 Pen pen = new Pen(Color.Red, 1);

 Random rand = new Random();
 runFlag = true;
 for (int i = 0; runFlag
 && i < numberToCountTo; i++) {
 //Do something mildly time-consuming
 int x = rand.Next(width);
 int y = rand.Next(height);
 g.DrawRectangle(pen, x, y, 1, 1);
 Thread.Sleep(10);
 }
 }
 }

 bool runFlag = true;

 public void StopCounting(
 object sender, EventArgs args){
 runFlag = false;
 }

 public void StopCountingIfClosing(object sender,
 CancelEventArgs ea){
 runFlag = false;
 }

 public static void Main() {
 Application.Run(new Counter2(10000));
 }
} ///:~

724 Thinking in C# www.MindView.net

Counter2 is a straightforward program, whose only job is to set up and maintain
the user interface. But now, when the user presses the start button, the event-
handling code does not do the time-consuming work. Instead a thread is created
and started, and then the Counter2 interface can continue to respond to events.

When you press the onOff button it toggles the runFlag condition variable
inside the Counter2 object. Then, when the “worker” thread calls
PaintScreen(), it can look at that flag and decide whether to continue or stop.
Pressing the onOff button produces an apparently instant response. Of course,
the response isn’t really instant, not like that of a system that’s driven by
interrupts. The painting stops only when the thread has the CPU and notices that
the flag has changed.

If the thread painting the screen is running when the form is closed, the program
will throw a fairly cryptic ExternalException with the explanation that “a
generic error occurred in GDI+.” To get rid of this, we add another delegate
StopCountingIfClosing and attach it to the Counter2 form’s Closing event.
This also requires us to add using System.ComponentModel at the top of the
program.

Interrupting a sleeping Thread
In Counter2, the loop within PaintScreen() calls Thread.Sleep() to sleep
for 20 milliseconds. What if some crisis happened and even that was too long?
Or, to return to something we discussed earlier, what if Thread.Sleep() was
called with the value of Timeout.Infinite, would we be doomed to face another
non-responsive interface? The answer is that in both situations, we can use
Thread.Interrupt() to force the Thread to wake.

If you refer to Figure 16-1, you’ll see that to get out of
ThreadState.WaitSleepJoin and back to ThreadState.Running requires
someone to call Thread.Interrupt(). When you call Thread.Sleep(), the call
is done by the runtime when the time’s up. But you can do it yourself if you want
to interrupt a sleeping thread (the method name Thread.Interrupt() may be a
little counter-intuitive at first, as stopping or pausing an active thread is also
sometimes called “interrupting the thread.” If you just repeat “You can
Interrupt a Sleeping Thread” enough times, you’ll get used to it.)

When you call Thread.Interrupt(), a ThreadInterruptedException is
thrown from the method you called that put the Thread in the WaitSleepJoin
state (in this case, Thread.Sleep()). If you do not catch this exception, it will
propagate out of your ThreadStart delegate and your Thread will abort.

Chapter 16: Multithreaded Programming 725

This example shows a Cat which has a CatNap() method that is used as a
ThreadStart delegate. The Cat is interested in a Mouse that is not hiding in
the walls. The Cat wakes up every 10 seconds for just long enough to determine if
the mouse is in the room, if not, the Cat goes to sleep again. The Mouse class
has a method SneakAbout() which is also to be used as an instance of
ThreadStart. The Mouse has a 20% chance of moving from hole to room and
vice versa and, if in the room, it has a 10% chance of squeaking. If it squeaks, it
will call Thread.Interrupt() on the theCat Thread.

//:c16:CatNap.cs
//Demonstrates Thread.Interrupt
using System;
using System.Threading;

class Cat {
 public void CatNap(){
 try {
 while (prey.InHole == true) {
 Console.WriteLine("Going back to sleep");
 //Sleep for 10 seconds
 Thread.Sleep(10000);
 Console.WriteLine(
 "Waking up @" + DateTime.Now);
 }
 } catch (ThreadInterruptedException) {
 Console.WriteLine(
 "Awakened @" + DateTime.Now);
 }
 Console.WriteLine("Chasing mouse");
 }

 Mouse prey;
 public Mouse Prey{
 set { prey = value;}
 get { return prey;}
 }
}

class Mouse {
 static Random r = new Random();
 Thread theCat;

726 Thinking in C# www.ThinkingIn.NET

 bool inHole = true;
 public bool InHole{
 set { inHole = value;}
 get { return inHole;}
 }

 internal Mouse(Thread theCat){
 this.theCat = theCat;
 }

 public void SneakAbout(){
 while(theCat.ThreadState != ThreadState.Stopped) {
 if (inHole) {
 Console.WriteLine("In hole");
 Thread.Sleep(1000);
 if (r.NextDouble() < .2) {
 Console.WriteLine("Going for a walk");
 inHole = false;
 }
 } else {
 Console.WriteLine("In room");
 if (r.NextDouble() < .2) {
 Console.WriteLine("Getting to shelter");
 inHole = true;
 } else {
 if (r.NextDouble() < .1) {
 Console.WriteLine("Squeak! Squeak!");
 theCat.Interrupt();
 }
 Thread.Sleep(1000);
 }
 }
 }
 }
}

class TomAndJerry {
 public static void Main(){
 Cat tom = new Cat();
 ThreadStart tomDel =
 new ThreadStart(tom.CatNap);

Chapter 16: Multithreaded Programming 727

 Thread tomThread = new Thread(tomDel);
 Mouse jerry = new Mouse(tomThread);
 tom.Prey = jerry;
 ThreadStart jerryDel =
 new ThreadStart(jerry.SneakAbout);
 Thread jerryThread = new Thread(jerryDel);
 jerryThread.Start();
 tomThread.Start();
This is a very good example, but I think it would be even more clear if the output
was prepended with the name of the thread it’s coming from (i.e. “Jerry: In
Room” or “Tom: Chasing mouse”)

 }
}///:~

When you run this, sometimes it will end when the mouse is quietly in the room
and the cat happens to wake up. Other times, it will end because
Thread.Interrupt() immediately wakes the cat, triggering the exception
handler. If the ThreadInterruptedException was not handled in the cat’s
ThreadStart method CatNap(), the call to myCat.Interrupt() would just
terminate the myCat thread silently.

Thread.Join() waits for another thread
to end
If you thought Thread.Interrupt() was a counterintuitive name,
Thread.Join() is downright inexplicable. Thread.Join() blocks the calling
thread until the Thread on which Join() has been called terminates. Why this
is called “joining” the other thread is a mystery.1

Strange name aside, Thread.Join() is very useful, as waiting for another thread
to end is probably one of the most commonly desired behaviors. Going back to
the SecondaryThread example, Thread.Join() allows us to eliminate both
the condition variable and the loop.

//:c16:JoinDemo.cs
//Waiting for another thread to end
using System;

1 This is not a C# or .NET issue; this use of the word join is traditional in the world of

multithreading. Perhaps you can think of “boards are Joined end-to-end” as a mnemonic.

728 Thinking in C# www.MindView.net

using System.Threading;

class JoinDemo {
 static void MyThreadedExecutionBlock(){
 Console.WriteLine(
 "Executed from my thread:" +
 Thread.CurrentThread.ThreadState);
 }
 public static void Main(){
 ThreadStart myDelegate =
 new ThreadStart(MyThreadedExecutionBlock);
 Thread myThread = new Thread(myDelegate);
 Console.WriteLine(
 "Before Start(): " + myThread.ThreadState);
 myThread.Start();
 //Put main application thread in WaitSleepJoin
 //until myThread becomes ThreadState.Stopped
 myThread.Join();
 Console.WriteLine(
 "After Start():" + myThread.ThreadState);
 }
}///:~

The line myThread.Join() is executed by the main application thread. When
executed, the main application thread changes to
ThreadState.WaitSleepJoin until myThread changes to
ThreadState.Stopped. (However, if someone had a reference to the main
thread of execution and called Thread.Interrupt() on it, a
ThreadInterruptedException would be thrown from inside the
myThread.Join() call. See the preceding section for an explanation.)

If you do not trust that the other thread will end, you can pass an int millisecond
value or TimeSpan to Join(). If the other thread hasn’t ended before the
timeout elapses, the current thread will restart.

//:c16:JoinTimeout.cs
//Demonstrates a Join that times out
using System;
using System.Threading;

class JoinTimeOut {
 static public void DoesNotEnd(){

Chapter 16: Multithreaded Programming 729

 Thread.Sleep(Timeout.Infinite);
 }

 public static void Main(){
 ThreadStart del = new ThreadStart(DoesNotEnd);
 Thread nonEndingThread = new Thread(del);
 nonEndingThread.IsBackground = true;
 nonEndingThread.Start();
 //Timeout after 3 seconds
 nonEndingThread.Join(3000);
 Console.WriteLine("Other thread is: " +
 nonEndingThread.ThreadState);
 }
}///:~

If you comment out the line

nonEndingThread.IsBackground = true;

the program will continue to run even after Main() has exited. Every Thread is
either a background thread or a foreground thread; an application only exits
when all foreground threads have stopped. For Java programmers, this is the
equivalent of the Thread.isDaemon().

Sharing limited resources
The state-transition diagram in Figure 16-1 shows one more method that can put
a Thread in ThreadState.WaitSleepJoin: Monitor.Wait(). Before we can
discuss this method, though, we’ll have to introduce some more multithreading
complexity.

You can think of a single-threaded program as one lonely entity moving around
through your problem space and doing one thing at a time. Because there’s only
one entity, you never have to think about the problem of two entities trying to use
the same resource at the same time, like two people trying to park in the same
space, walk through a door at the same time, or even talk at the same time.

With multithreading, things aren’t lonely anymore, but you now have the
possibility of two or more threads trying to use the same limited resource at once.
Colliding over a resource must be prevented or else you’ll have two threads trying
to access the same bank account at the same time, print to the same printer, or
adjust the same valve, etc.

730 Thinking in C# www.ThinkingIn.NET

Improperly accessing resources
Consider a variation on the counters that have been used so far in this chapter. In
the following example, each thread contains two counters that are incremented
and displayed inside Run(). In addition, there’s another thread of class
Watcher that is watching the counters to see if they’re always equivalent. This
seems like a needless activity, since looking at the code it appears obvious that
the counters will always be the same. But that’s where the surprise comes in.
Here’s the first version of the program:

//:c16:Sharing1.cs
// Problems with resource sharing while threading.
using System;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

public class Sharing1 : Form {
 private TextBox accessCountBox = new TextBox();
 private Button start = new Button();
 private Button watch = new Button();

 private int accessCount = 0;
 public void IncrementAccess() {
 accessCount++;
 accessCountBox.Text = accessCount.ToString();
 }

 private int numCounters = 12;
 private int numWatchers = 15;

 private TwoCounter[] s;

 public Sharing1() {
 ClientSize = new Size(450, 480);
 Panel p = new Panel();
 p.Size = new Size(400, 50);

 start.Click +=
 new EventHandler(StartAllThreads);
 watch.Click +=
 new EventHandler(StartAllWatchers);

Chapter 16: Multithreaded Programming 731

 accessCountBox.Text = "0";
 accessCountBox.Location = new Point(10, 10);
 start.Text = "Start threads";
 start.Location = new Point(110, 10);
 watch.Text = "Begin watching";
 watch.Location = new Point(210, 10);

 p.Controls.Add(start);
 p.Controls.Add(watch);
 p.Controls.Add(accessCountBox);

 s = new TwoCounter[numCounters];
 for (int i = 0; i < s.Length; i++) {
 s[i] = new TwoCounter(
 new TwoCounter.IncrementAccess(
 IncrementAccess));
 s[i].Location =
 new Point(10, 50 + s[i].Height * i);
 Controls.Add(s[i]);
 }

 this.Closed += new EventHandler(StopAllThreads);

 Controls.Add(p);
 }

 public void StartAllThreads(
 Object sender, EventArgs args) {
 for (int i = 0; i < s.Length; i++)
 s[i].Start();
 }

 public void StopAllThreads(
 Object sender, EventArgs args){
 for (int i = 0; i < s.Length; i++) {
 if (s[i] != null) {
 s[i].Stop();
 }
 }
 }

732 Thinking in C# www.MindView.net

 public void StartAllWatchers(
 Object sender, EventArgs args) {
 for (int i = 0; i < numWatchers; i++)
 new Watcher(s);
 }

 public static void Main(string[] args) {
 Sharing1 app = new Sharing1();
 if (args.Length > 0) {
 app.numCounters = SByte.Parse(args[0]);
 if (args.Length == 2) {
 app.numWatchers = SByte.Parse(args[1]);
 }
 }
 Application.Run(app);
 }
}

class TwoCounter : Panel {
 private bool started = false;
 private Label t1;
 private Label t2;
 private Label lbl;
 private Thread t;

 private int count1 = 0, count2 = 0;
 public delegate void IncrementAccess();
 IncrementAccess del;

 // Add the display components
 public TwoCounter(IncrementAccess del) {
 this.del = del;

 this.Size = new Size(350, 30);
 this.BorderStyle = BorderStyle.Fixed3D;
 t1 = new Label();
 t1.Location = new Point(10, 10);
 t2 = new Label();
 t2.Location = new Point(110, 10);
 lbl = new Label();

Chapter 16: Multithreaded Programming 733

 lbl.Text = "Count1 == Count2";
 lbl.Location = new Point(210, 10);
 Controls.AddRange(new Control[]{t1, t2, lbl});

 //Initialize the Thread
 t = new Thread(new ThreadStart(Run));
 t.IsBackground = true;
 }
 public void Start() {
 if (!started) {
 started = true;
 t.Start();
 }
 }

 public void Stop(){
 t.Abort();
 }
 public void Run() {
 while (true) {
 t1.Text = (++count1).ToString();
 t2.Text = (++count2).ToString();
 Thread.Sleep(500);
 }
 }
 public void SynchTest() {
 del();
 if (count1 != count2)
 lbl.Text = "Unsynched";
 }
}

class Watcher {
 TwoCounter[] s;

 public Watcher(TwoCounter[] s) {
 this.s = s;
 Thread t = new Thread(new ThreadStart(Run));
 t.IsBackground = true;
 t.Start();
 }

734 Thinking in C# www.ThinkingIn.NET

 public void Run() {
 while (true) {
 for (int i = 0; i < s.Length; i++)
 s[i].SynchTest();
 Thread.Sleep(500);
 }
 }
}///:~

As before, each counter contains its own display components: two text fields and
a label that initially indicates that the counts are equivalent. These components
are added to the panel of the Sharing1 object in the Sharing1 constructor.

Because a TwoCounter thread is started via a button press by the user, it’s
possible that Start() could be called more than once. It’s illegal for
Thread.Start() to be called more than once for a thread (an exception is
thrown). You can see the machinery to prevent this in the started flag and the
Start() method.

The accessCountBox in Sharing1 keeps track of how many total accesses have
been made on all TwoCounter threads. One way to do this would have been to
have a static property that each TwoCounter could have incremented during
SynchTest(). Instead, we declared an IncrementAccess() delegate within
TwoCounter that Sharing1 provides as a parameter to the TwoCounter
constructor.

In Run(), count1 and count2 are incremented and displayed in a manner that
would seem to keep them identical. Then Sleep() is called; without this call the
UI becomes unresponsive because all the CPU time is being consumed within the
loops.

The SynchTest() calls its IncrementAccess delegate and then performs the
apparently superfluous activity of checking to see if count1 is equivalent to
count2; if they are not equivalent it sets the label to “Unsynched” to indicate
this.

The Watcher class is a thread whose job is to call SynchTest() for all of the
TwoCounter objects that are active. It does this by stepping through the array
of TwoCounters passed to it by the Sharing1 object. You can think of the
Watcher as constantly peeking over the shoulders of the TwoCounter objects.

Sharing1 contains an array of TwoCounter objects that it initializes in its
constructor and starts as threads when you press the “Start Threads” button.

Chapter 16: Multithreaded Programming 735

Later, when you press the “Begin Watching” button, one or more watchers are
created and free to spy upon the unsuspecting TwoCounter threads.

By changing the numCounters and numWatchers values, which you can do
at the command-line, you’ll change the behavior of the program.

Here’s the surprising part. In TwoCounter.Run(), the infinite loop is just
repeatedly passing over the adjacent lines:

 t1.Text = (++count1).ToString();
 t2.Text = (++count2).ToString();

(as well as sleeping, but that’s not important here). When you run the program,
however, you’ll discover that count1 and count2 will be observed (by the
Watchers) to be unequal at times! This is because of the nature of threads—they
can be suspended at any time. So at times, the suspension occurs between the
time count1 and count2 are incremented, and the Watcher thread happens to
come along and perform the comparison at just this moment, thus finding the
two counters to be different.

This example shows a fundamental problem with using threads. You never know
when a thread might be run. Imagine sitting at a table with a fork, about to spear
the last piece of food on your plate and as your fork reaches for it, the food
suddenly vanishes (because your thread was suspended and another thread came
in and stole the food). That’s the problem that you’re dealing with. Any time you
rely on the state of an object being consistent, and that state can be manipulated
by a different thread, you are vulnerable to this type of problem. This is another
manifestation of a race condition defect (because your program’s proper
functioning is dependent on its thread winning the “race” to the resource). This
type of bug (and all bugs relating to threading) is difficult to track down, as they
will often slip under the radar of your unit testing code and appear and disappear
depending on load, hardware and operating system differences, and the whimsy
of the fates.

Preventing this kind of collision is simply a matter of putting a lock on a resource
when one thread is relying on that resource. The first thread that accesses a
resource locks it, and then the other threads cannot access that resource until it is
unlocked, at which time another thread locks and uses it, etc. If the front seat of
the car is the limited resource, the child who shouts “Dibs!” asserts the lock.

Using Monitor to prevent collisions
Real-world programs have to share many types of resources – network sockets,
database connections, sound channels, etc. By far the most common collisions,

736 Thinking in C# www.MindView.net

though, occur when some threads are changing the states of objects and other
threads are relying on the state being consistent. This is the case with our
TwoCounter and Watcher objects, where a thread controlled by
TwoCounter increments the count1 and count2 variables, while a thread
controlled by Watcher checks these variables for consistency.

 The Monitor class helps prevent collisions over object state. Every reference
type in C# has an associated “synchronization block” object which maintains a
lock for that object and a queue of threads waiting to access the lock. The
Monitor class is the public interface to the behind-the-scenes sync block
implementation.

The method Monitor.Enter(object o) acts as gatekeeper – when a thread
executes this line, the synchronization block for o is checked; if no one currently
has the lock, the thread gets the lock and processing continues, but if another
thread has already acquired the lock, the thread waits, or “blocks,” until the lock
becomes available. When the critical section of code has been executed, the
thread should call Monitor.Exit(object o) to release the lock. The next
blocking thread will then be given a chance to obtain the lock.

Making value types, which are created on the stack or inline, Monitor-able
would be hugely inefficient, so you can only use Monitor on reference types. If
you incorrectly use a value type as an argument to Monitor.Enter(), it will
throw a SynchronizationLockException at runtime. The current version of
the runtime diagnoses an attempt to lock a value type with this somewhat
misleading message: “Object synchronization method was called from an
unsynchronized block of code.”

Because you virtually always want to release the lock on a thread at the end of a
critical section, even when throwing an Exception, calls to Monitor.Enter()
and Monitor.Exit() are usually wrapped in a try block:

try{
 Monitor.Enter(o);
 //critical section
}finally{
 Monitor.Exit(o);
}

Synchronizing the counters
Armed with this technique it appears that the solution is at hand: We’ll use the
Monitor class to synchronize access to the counters. The following example is

Chapter 16: Multithreaded Programming 737

the same as the previous one, with the addition of Monitor.Enter/Exit calls at
the two critical sections:

//:c16:Sharing2.cs
// Problems with resource sharing while threading.
using System;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

public class Sharing2 : Form {
 private TextBox accessCountBox = new TextBox();
 private Button start = new Button();
 private Button watch = new Button();

 private int accessCount = 0;
 public void IncrementAccess() {
 accessCount++;
 accessCountBox.Text = accessCount.ToString();
 }

 private int numCounters = 12;
 private int numWatchers = 15;

 private TwoCounter[] s;

 public Sharing2() {
 ClientSize = new Size(450, 480);
 Panel p = new Panel();
 p.Size = new Size(400, 50);

 start.Click +=
 new EventHandler(StartAllThreads);
 watch.Click +=
 new EventHandler(StartAllWatchers);

 accessCountBox.Text = "0";
 accessCountBox.Location = new Point(10, 10);
 start.Text = "Start threads";
 start.Location = new Point(110, 10);
 watch.Text = "Begin watching";

738 Thinking in C# www.ThinkingIn.NET

 watch.Location = new Point(210, 10);

 p.Controls.Add(start);
 p.Controls.Add(watch);
 p.Controls.Add(accessCountBox);

 s = new TwoCounter[numCounters];
 for (int i = 0; i < s.Length; i++) {
 s[i] = new TwoCounter(
 new TwoCounter.IncrementAccess(
 IncrementAccess));
 s[i].Location =
 new Point(10, 50 + s[i].Height * i);
 Controls.Add(s[i]);
 }

 this.Closed += new EventHandler(StopAllThreads);

 Controls.Add(p);
 }

 public void StartAllThreads(
 Object sender, EventArgs args) {
 for (int i = 0; i < s.Length; i++)
 s[i].Start();
 }

 public void StopAllThreads(
 Object sender, EventArgs args){
 for (int i = 0; i < s.Length; i++) {
 if (s[i] != null) {
 s[i].Stop();
 }
 }
 }

 public void StartAllWatchers(
 Object sender, EventArgs args) {
 for (int i = 0; i < numWatchers; i++)
 new Watcher(s);
 }

Chapter 16: Multithreaded Programming 739

 public static void Main(string[] args) {
 Sharing2 app = new Sharing2();
 if (args.Length > 0) {
 app.numCounters = SByte.Parse(args[0]);
 if (args.Length == 2) {
 app.numWatchers = SByte.Parse(args[1]);
 }
 }
 Application.Run(app);
 }
}

class TwoCounter : Panel {
 private bool started = false;
 private Label t1;
 private Label t2;
 private Label lbl;
 private Thread t;

 private int count1 = 0, count2 = 0;
 public delegate void IncrementAccess();
 IncrementAccess del;

 // Add the display components
 public TwoCounter(IncrementAccess del) {
 this.del = del;

 this.Size = new Size(350, 30);
 this.BorderStyle = BorderStyle.Fixed3D;
 t1 = new Label();
 t1.Location = new Point(10, 10);
 t2 = new Label();
 t2.Location = new Point(110, 10);
 lbl = new Label();
 lbl.Text = "Count1 == Count2";
 lbl.Location = new Point(210, 10);
 Controls.AddRange(new Control[]{t1, t2, lbl});

 //Initialize the Thread
 t = new Thread(new ThreadStart(Run));

740 Thinking in C# www.MindView.net

 t.IsBackground = true;
 }
 public void Start() {
 if (!started) {
 started = true;
 t.Start();
 }
 }

 public void Stop(){
 t.Abort();
 }
 public void Run() {
 while (true) {
 try {
 Monitor.Enter(this);
 t1.Text = (++count1).ToString();
 t2.Text = (++count2).ToString();
 Thread.Sleep(0);
 } finally {
 Monitor.Exit(this);
 }
 }
 }
 public void SynchTest() {
 del();
 try {
 Monitor.Enter(this);
 if (count1 != count2) {
 lbl.Text = "Unsynched";
 }
 } finally {
 Monitor.Exit(this);
 }
 }
}

class Watcher {
 TwoCounter[] s;

 public Watcher(TwoCounter[] s) {

Chapter 16: Multithreaded Programming 741

 this.s = s;
 Thread t = new Thread(new ThreadStart(Run));
 t.IsBackground = true;
 t.Start();
 }
 public void Run() {
 while (true) {
 for (int i = 0; i < s.Length; i++)
 s[i].SynchTest();
 Thread.Sleep(500);
 }
 }
}///:~

You’ll notice that both TwoCounter.Run() and SynchTest() call
Monitor.Enter() and Exit(). If you use the Monitor only on Run(), the
Watcher threads calling SynchTest() will happily read the state of the
TwoCounter even while the TwoCounter thread has entered the critical
section and has placed the object in an inconsistent state by incrementing
Counter1 but not yet changing Counter2.

There’s nothing magic about thread synchronization – it’s the manipulation of
the TwoCounter instance’s sync block via the Monitor that does the work. All
synchronization depends on programmer diligence: Every piece of code that can
place an object in an inconsistent state or that relies on an object being in a
consistent state must be wrapped in an appropriate block.

lock blocks – a shortcut for using Monitor

In order to save you some time typing, C# provides the lock keyword, which
creates a guarded code block exactly equivalent to the

try{
 Monitor.Enter();
 …
}finally{
 Monitor.Exit();
}

idiom. Instead of all that typing, you use the lock(object) keyword and specify a
code block to be protected:

lock(this){

742 Thinking in C# www.ThinkingIn.NET

 //critical section
}

Although lock()’s form makes it appear to be a call to a base class method
(implemented by object presumably), it’s really just syntactic sugar. The choice
of lock as a keyword may be a little misleading, in that you may expect that a
“locked” object would be automatically thread-safe. This is not so; lock says that
the current thread will act appropriately. If all threads follow the rules, things
will work out for the best, but if another piece of code has a reference to the
“locked” object, it may mistakenly manipulate the object without ever using
Monitor. It’s like taking a number for service at a bakery – a fine idea that
breaks down as soon as someone misbehaves through laziness or ignorance. Java
has a similar mechanism, but uses the keyword synchronized, which gives a
better indication that success requires the cooperation of multiple objects and
threads.

Another advantage of lock over Monitor.Enter() is that the compiler will
refuse to compile code that attempts to lock a value type.

Choosing what to monitor
Monitor.Enter() and Exit() can be passed any object for synchronization. It
is best to use this – an inability to use this for synchronization (perhaps because
you have mutually exclusive types of inconsistency to guard against) is a “code
smell” that indicates that your object may be trying to do too many things at once
and may be best broken up into smaller classes. For instance, in the
TwoCounter class, we could place counter1 and counter2 in an inner class,
add thread-safe accessors and methods, and achieve our goal without ever
locking the entire TwoPanel instance:

//:c16:Sharing3.cs
// Refactoring for finer granularity
using System;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

public class Sharing3 : Form {
 private TextBox aCount = new TextBox();
 private Button start = new Button();
 private Button watch = new Button();

 private int accessCount = 0;

Chapter 16: Multithreaded Programming 743

 public void IncrementAccess() {
 accessCount++;
 aCount.Text = accessCount.ToString();
 }

 private int numCounters = 12;
 private int numWatchers = 15;

 private TwoCounter[] s;
 private Watcher[] w;

 public Sharing3() {
 ClientSize = new Size(450, 480);
 Panel p = new Panel();
 p.Size = new Size(400, 50);

 start.Click +=
 new EventHandler(StartAllThreads);
 watch.Click +=
 new EventHandler(StartAllWatchers);

 aCount.Text = "0";
 aCount.Location = new Point(10, 10);
 start.Text = "Start threads";
 start.Location = new Point(110, 10);
 watch.Text = "Begin watching";
 watch.Location = new Point(210, 10);

 p.Controls.Add(start);
 p.Controls.Add(watch);
 p.Controls.Add(aCount);

 s = new TwoCounter[numCounters];
 for (int i = 0; i < s.Length; i++) {
 s[i] = new TwoCounter(
 new TwoCounter.IncrementAccess(
 IncrementAccess));
 s[i].Location =
 new Point(10, 50 + s[i].Height * i);
 Controls.Add(s[i]);
 }

744 Thinking in C# www.MindView.net

 this.Closed +=
 new EventHandler(StopAllThreads);

 Controls.Add(p);
 }

 public void StartAllThreads(
 Object sender, EventArgs args) {
 for (int i = 0; i < s.Length; i++)
 s[i].Start();
 }

 public void StopAllThreads(
 Object sender, EventArgs args){
 if (s != null) {
 for (int i = 0; i < s.Length; i++) {
 if (s[i] != null) {
 s[i].Stop();
 }
 }
 }
 if (w != null) {
 for (int i = 0; i < w.Length; i++) {
 if (w[i] != null) {
 w[i].Stop();
 }
 }
 }
 }

 public void StartAllWatchers(
 Object sender, EventArgs args) {
 w = new Watcher[numWatchers];
 for (int i = 0; i < numWatchers; i++)
 w[i] = new Watcher(s);
 }

 public static void Main(string[] args) {
 Sharing3 app = new Sharing3();
 if (args.Length > 0) {

Chapter 16: Multithreaded Programming 745

 app.numCounters = SByte.Parse(args[0]);
 if (args.Length == 2) {
 app.numWatchers = SByte.Parse(args[1]);
 }
 }
 Application.Run(app);
 }
}

class TwoCounter : Panel {
 private bool started = false;
 private Label t1;
 private Label t2;
 private Label lbl;
 private Thread t;

 class Counter {
 private int c1 = 0;
 private int c2 = 0;
 public void Increment(){
 lock(this){
 ++c1;
 ++c2;
 }
 }
 public int Count1{
 get{
 lock(this){ return c1;}
 }
 }
 public int Count2{
 get{
 lock(this){ return c2;}
 }
 }
 }
 private Counter counter = new Counter();
 public delegate void IncrementAccess();
 IncrementAccess del;

 // Add the display components

746 Thinking in C# www.ThinkingIn.NET

 public TwoCounter(IncrementAccess del) {
 this.del = del;

 this.Size = new Size(350, 30);
 this.BorderStyle = BorderStyle.Fixed3D;
 t1 = new Label();
 t1.Location = new Point(10, 10);
 t2 = new Label();
 t2.Location = new Point(110, 10);
 lbl = new Label();
 lbl.Text = "Count1 == Count2";
 lbl.Location = new Point(210, 10);
 Controls.AddRange(
 new Control[]{t1, t2, lbl});

 //Initialize the Thread
 t = new Thread(new ThreadStart(Run));
 t.IsBackground = true;
 }
 public void Start() {
 if (!started) {
 started = true;
 t.Start();
 }
 }

 public void Stop(){
 t.Abort();
 }
 public void Run() {
 while (true) {
 counter.Increment();
 t1.Text =
 counter.Count1.ToString();
 t2.Text =
 counter.Count2.ToString();
 Thread.Sleep(500);
 }
 }
 public void SynchTest() {
 del();

Chapter 16: Multithreaded Programming 747

 if (counter.Count1 != counter.Count2) {
 lbl.Text = "Unsynched";
 }
 }
}

class Watcher {
 TwoCounter[] s;
 Thread t;

 public Watcher(TwoCounter[] s) {
 this.s = s;
 t = new Thread(new ThreadStart(Run));
 t.IsBackground = true;
 t.Start();
 }
 public void Run() {
 while (true) {
 for (int i = 0; i < s.Length; i++)
 s[i].SynchTest();
 Thread.Sleep(500);
 }
 }
 public void Stop(){
 t.Abort();
 }
}///:~

The Counter class, an inner class of TwoPanel is now “thread-safe,” by
removing any chance that an external object can place it in an inconsistent state.
Incrementing the counter integers is done inside the Increment method, with a
locked critical section, and access to the integers is done via the Count1 and
Count2 properties, which also synchronize against the Monitor to ensure that
they cannot be read until the Increment critical section has exited (and,
undesirably, also ensure that Count1 and Count2 cannot be read
simultaneously by two different threads – a small penalty typical of the design
decisions made when developing multithreaded apps).

Sometimes, locking this doesn’t seem like the right idea. When an object
contains some resource, and especially when that resource is a container of some
sort, such as a Collection or a Stream or an Image, it is common to want to
perform some operation across some subset of that resource without worrying

748 Thinking in C# www.MindView.net

about whether some other thread will change the resource halfway through your
operation. In a situation like this, it’s common to lock the resource, not this.
we’re of two minds on this: On the one hand, the principle of coupling leads to
the thought that if the only thing that’s vulnerable to being placed in an
inconsistent state is the resource, then lock the resource, as locking this
unnecessarily couples this and the resource. On the other hand, the principle of
cohesion leads us to think that if one portion of the methods and resources in an
instance are vulnerable to race conditions, but other methods and resources in
the instance aren’t, then maybe we ought to refactor. This is what we did with our
TwoPanel class, splitting the initial class into two, and we think Sharing3 is
clearly a superior design to Sharing2.

Monitoring static value types
At this point, you shouldn’t be surprised that this program quickly fails:

//:c16:RefCount1.cs
//How to synch a static value type? This program fails
using System;
using System.Threading;

class RefCount1 {
 static int refCount = 0;

 static RefCount1(){
 ThreadStart ts = new ThreadStart(ValCheck);
 Thread t = new Thread(ts);
 t.Start();
 }

 static void ValCheck(){
 Console.WriteLine("Starting ValCheck");
 while (true) {
 Console.WriteLine(DateTime.Now);
 if (refCount != 0 && refCount != 1) {
 Console.WriteLine(
 "Invalid: " + refCount);
 return;
 }
 Thread.Sleep(5000);
 }
 }

Chapter 16: Multithreaded Programming 749

 RefCount1(){
 ThreadStart ts = new ThreadStart(Run);
 Thread t = new Thread(ts);
 t.IsBackground = true;
 t.Start();
 }

 //Thread unsafe
 void Run(){
 Console.WriteLine("Starting RefCount");
 while (true) {
 refCount++;
 refCount--;
 }
 }

 public static void Main(){
 for (int i = 0; i < 2; i++) {
 new RefCount1();
 }
 }
}///:~

The Run() method, which is used by a bunch of threads, increments and then
decrements refCount, while a thread running the static delegate method
ValCheck() stops the program if the value of refCount is ever not 0. When you
run this, it is not long before refCount becomes either 2 or -1. This is what
happens:

1. A RefCount instance thread increments refCount, making it 1.

2. That thread is interrupted by another thread, which increments refCount to
2.

3. The ValCheck() thread interrupts that thread and sees a value of 2.

To synchronize access to the static value-type refCount, you have to wrap all
access to the refCount object inside lock blocks that use some dummy object to
synchronize on. You cannot lock(refCount) because it’s a value type. And
lock(this) is ineffective on static objects! So you have to create a static dummy
object to serve as a guard for the critical sections:

750 Thinking in C# www.ThinkingIn.NET

static SomeObject myDummyObject = new SomeObject();
…
 static void ValCheck(){
 Console.WriteLine("Starting ValCheck");
 while (true) {
 Console.WriteLine(DateTime.Now);
 lock(myDummyObject){
 if (refCount != 0 && refCount != 1) {
 Console.WriteLine(
 "Invalid: " + refCount);
 return;
 }
 }
 Thread.Sleep(5000);
 }
 }
…
void Run(){
 Console.WriteLine("Starting RefCount");
 while (true) {
 lock(myDummyObject){
 refCount++;
 refCount--;
 }
 }
 }

And indeed, that’s the general solution to synchronizing static value types.

For the specific problem of reference counting, however, the Interlocked class
allows you to increment, decrement, and assign to an int or long in a thread-safe
and very, very fast manner. It can also compare two ints or two longs without
requiring the overhead of the Monitor implementation.

Even aside from its synchronization capabilities, Interlocked should be used to
generate serially increasing id values. Although

class StrangeButTrue{
 static int counter = 0;
 //Amazingly, this isn't thread-safe
 public static int Next(){
 return counter++;

Chapter 16: Multithreaded Programming 751

 }
}

is fine for a single-threaded program, it’s not thread-safe, since the ++ operator
reads and assigns the value in two separate operations. A thread can come along
after the read but before the assignment and therefore, in a multithreaded
program, Next() could return the same value twice.

The Monitor is not “stack-proof”
You might expect this program to freeze:

//:c16:RecursiveNotLocked.cs
using System;
using System.Threading;

class RecursiveNotLocked {
 int MAX_CALLS = 4;

 void RecursiveCall(int callCount){
 Console.WriteLine("Entering recursive call");
 lock(this){
 Console.WriteLine(
 "Exclusive access to this");
 if (callCount < MAX_CALLS) {
 RecursiveCall(++callCount);
 }
 }
 }

 public static void Main(){
 RecursiveNotLocked rl =
 new RecursiveNotLocked();
 rl.RecursiveCall(0);
 }
}///:~

The first time RecursiveCall() is called, it acquires the Monitor to this. Then,
from within that locked block, it calls RecursiveCall(). What happens when it
comes to the lock block on this second call? You might think “Well, it’s a different
call to the method, so it will block.” But the right to enter the block is owned by
the calling Thread; since it owns the lock on this, it continues into the lock
block and recurses MAX_CALLS times.

752 Thinking in C# www.MindView.net

Where to monitor
An object’s thread-safety is entirely a function of the object’s state. A class
without any static or instance variables, consisting solely of methods that don’t
call methods that put it into ThreadState.WaitSleepJoin, is inherently
thread-safe. Any variables or resources that affect whether your object is in a
consistent state should be private or protected and only available to outside
objects by way of properties or methods. It’s just foolish to ever allow direct
references to these critical resources from external objects. If instead you create
properties and methods which consistently use the Monitor class (or the
equivalent lock blocks), you’ll save yourself considerable headaches when it
comes to locating and debugging threading problems.

Cross-process synchronization with Mutex
The Mutex class is similar to the Monitor class, but is used to synchronize
behavior across application domains. And instead of locking on an arbitrary
object, the Mutex locks itself – owning the Mutex provides cross-process
mutual exclusion.

You attempt to acquire the Mutex by calling one of the overloaded
Mutex.WaitOne() methods. If you pass in no arguments, the calling thread
goes into ThreadState.WaitSleepJoin until the Mutex is available. Or you
can call Mutex.WaitOne() with a timeout value and a bool that interacts with
the SynchronizedAttribute. If you do not use the [Synchronized()]
attribute, the value you use for this is irrelevant.

This example allows only one copy of the application to run on the machine at a
time. To run this, open two console windows and run the program in both
simultaneously.

//:c16:MutexDemo.cs
//Demonstrates "Application Singleton"
using System;
using System.Threading;

class MutexDemo {
 public static void Main(){
 Mutex mutex = new Mutex(false, "MutexDemo");
 bool gotTheMutex = mutex.WaitOne(0, true);
 while (gotTheMutex == false) {
 Console.WriteLine(
 "Another app has the Mutex");

Chapter 16: Multithreaded Programming 753

 gotTheMutex = mutex.WaitOne(3000, true);
 }
 Console.WriteLine(
 "This application has the mutex");
 Thread.Sleep(10000);
 Console.WriteLine("Okay, I'm done");
 }
}///:~

When run, the output of the second instance of the application will be:

Another app has the Mutex
Another app has the Mutex
This application has the mutex

(You may have one more or fewer “Another app has the Mutex” lines, depending
on how fast you started the second application.)

The first line of MutexDemo.Main() instantiates a .NET Mutex that
corresponds to an OS-level mutex that is identified at the OS-level by the string
“MutexDemo.” The call to WaitOne(0, true) returns true immediately the
first time the application is called – the OS-level “MutexDemo” mutex is
available. Since gotTheMutex is true, the first application reports that it has
the mutex and blocks for ten seconds.

If one or more additional applications are run within that ten second period, their
calls to WaitOne(0, true) will immediately return false because the
“MutexDemo” mutex is held by the first application. As long as gotTheMutex is
false, the application reports it to the console and calls WaitOne(), again, this
time specifying a 3,000 millisecond timeout.

For the purposes of this book, the only thing that you can use a Mutex for is as
the basis of cross-process blocking. If your work involves .NET Remoting, you’ll
learn how methods and objects can be invoked and moved across process
boundaries and the Mutex will become the basis of synchronizing such
behaviors.

Deadlocks
We’ve discussed race conditions as one of the challenges of multithreading
programming. To fight race conditions, we introduced the various methods that
put the current Thread into ThreadState.WaitSleepJoin. Unfortunately, this
introduces a new type of problem: the deadlock.

754 Thinking in C# www.ThinkingIn.NET

A deadlock is a situation where Thread a requires a resource locked by Thread
b, which Thread b will not release until it acquires a resource locked by Thread
a. Both threads enter WaitSleepJoin and, at best, the program times out. Of
course, if it’s just two threads you have a good chance of finding the problem and
debugging it; the real joy of deadlocks comes when it’s Thread a depending on
Thread b depending on Thread c … depending on Thread z that depends on
Thread a.

The classic deadlock exemplar is the Dining Philosophers problem. Five
philosophers, or in this case language designers, are seated around a table. Each
coder has a chopstick to his (or her) left and right.

Figure 16-2: Language designers are happy when they have access to food

The coders do nothing but pontificate and eat. To eat, they pick up the chopstick
on their left and then the chopstick on the right.

//:c16:DiningDesigners.cs
//Demonstrates dining philosophers problem
using System;
using System.Threading;

enum Desire {
 Pontificate, Eating
}

class Table {
 readonly int iDiners = 5;

 Diner[] diners;

Chapter 16: Multithreaded Programming 755

 Chopstick[] chopsticks;

 Table(){
 diners = new Diner[iDiners];

 diners[0] = new Diner("Lovelace",
 "The difference engine rocks the most.");
 diners[1] = new Diner("Hejlsberg",
 "C# rules, ok?");
 diners[2] = new Diner("Stroustrup",
 "C++ is still the fastest");
 diners[3] = new Diner("Gosling",
 "Write once, run anywhere!");
 diners[4] = new Diner("van Rossum",
 "Brackets are bad");

 chopsticks = new Chopstick[iDiners];
 for (int i = 0; i < iDiners; i++) {
 Chopstick c = new Chopstick();
 chopsticks[i] = c;
 diners[i].LeftChopstick = c;
 diners[(i + 1) % iDiners].RightChopstick = c;
 }
 }

 public static void Main(){
 new Table();
 }
}

class Diner {
 readonly int basePonderTime = 10;
 readonly int ponderTimeRand = 0;
 readonly int baseEatTime = 10;
 readonly int eatTimeRand = 0;
 readonly int postEatTime = 10;
 readonly int betweenChopstickTime = 50;
 readonly int maxStartupDelay = 150;
 readonly int starvationTimeout = 100;

 static int totalMealsEaten = 0;

756 Thinking in C# www.MindView.net

 string name;
 internal string Name{
 get{ return name;}
 }

 string opinion;

 Thread myThread;

 Chopstick left;
 internal Chopstick LeftChopstick{
 set { left = value;}
 get{ return left;}
 }
 Chopstick right;
 internal Chopstick RightChopstick{
 set{ right = value;}
 get{ return right;}
 }

 Desire desire = Desire.Pontificate;
 static Random r = new Random();

 internal Diner(string name, string opinion){
 this.name = name;
 this.opinion = opinion;
 ThreadStart ts = new ThreadStart(EatAndTalk);
 myThread = new Thread(ts);
 myThread.Start();
 }

 void EatAndTalk(){
 Thread.Sleep(r.Next(maxStartupDelay));
 while (true) {
 if (desire == Desire.Eating) {
 Eat();
 } else {
 Pontificate();
 }
 }

Chapter 16: Multithreaded Programming 757

 }

 void Pontificate(){
 Console.WriteLine(name + ": " + opinion);
 Thread.Sleep(basePonderTime +
 r.Next(ponderTimeRand));
 desire = Desire.Eating;
 }

 void Eat(){
 GetChopsticks();
 Console.WriteLine(name + ": Eating");
 Thread.Sleep(baseEatTime + r.Next(eatTimeRand));
 Console.WriteLine(name + ": Burp");
 Thread.Sleep(postEatTime);
 ReleaseChopsticks();
 Interlocked.Increment(ref totalMealsEaten);
 desire = Desire.Pontificate;
 }

 void GetChopsticks(){
 Console.WriteLine(name
 + ": Picking up left chopstick");
 left.Pickup(this);
 Thread.Sleep(betweenChopstickTime);
 Console.WriteLine(name
 + ": Picking up right chopstick");
 right.Pickup(this);
 }

 void ReleaseChopsticks(){
 left.Putdown();
 right.Putdown();
 }

 internal void Wait(int id){
 Console.WriteLine(name
 + ": Waiting for chopstick[{0}]", id);
 try {
 Thread.Sleep(starvationTimeout);
 Console.WriteLine(name

758 Thinking in C# www.ThinkingIn.NET

 + " starved to death waiting for "
 + " chopstick[{0}]", id);
 Console.WriteLine("Meals served: "
 + totalMealsEaten);
 myThread.Abort();
 } catch (ThreadInterruptedException) {
 }
 }

 internal void Interrupt(int id){
 myThread.Interrupt();
 Console.WriteLine(name
 + ": alerted to availability of "
 + "chopstick[{0}]", id);
 }
}

class Chopstick {
 static int counter = 0;
 int id = counter++;

 bool acquired = false;
 Diner waitingFor = null;

 internal void Pickup(Diner d){
 if (acquired == true) {
 waitingFor = d;
 //Must wait
 d.Wait(id);
 }
 acquired = true;
 Console.WriteLine(d.Name
 + ": Got chopstick[{0}]", id);
 }

 internal void Putdown(){
 Console.WriteLine(
 "Chopstick[{0}] released", id);
 acquired = false;
 if (waitingFor != null) {
 Console.WriteLine("Someone's waiting");

Chapter 16: Multithreaded Programming 759

 waitingFor.Interrupt(id);
 }
 waitingFor = null;
 }
}///:~

When you run this program, the diners pontificate for a while and then start to
eat. When a diner is in Pickup() and they attempt to pick up a chopstick that is
being used by their neighbor, they must wait. A reference to the Diner that is
going to wait is stored in the Chopstick’s waitingFor variable. The call to
Diner.Wait() puts the diner’s thread into ThreadState.WaitSleepJoin. If
that Thread is not interrupted before the timeout, the diner starves to death. If,
on the other hand, the current diner holding that chopstick calls Putdown(), it
calls waitingFor.Interrupt() which in turn calls Interrupt() on the thread
that has been put into WaitSleepJoin.

When you run this program, it may run for a few seconds or it may run for quite a
while, but eventually what will happen is that every diner will pick up the
chopstick to their left and be waiting for the diner on their right to release their
chopstick. All of the diners will starve to death.

There are several different ways to keep the diners from starving to death (for
instance, if one of the group picks up the chopstick to their right first, no
deadlock will occur), but the issue isn’t really keeping dime-a-dozen language
designers alive, it’s developing good practices for minimizing deadlock.

One way to avoid a deadlock is to never wait for one resource while holding a lock
on another. If there’s no hold-and-wait, there can be no deadlock. However,
theoretically this can trigger livelock, in which the threads release and then ask
for the resources again with such perfect timing that they never resolve the issue.
In Windows, this threat can be discounted; given the speed with which locks are
acquired and the nature of the OS-level thread scheduler, livelock may not even
be possible.

The most general way to beat deadlocks is to design the acquisition of locks such
that there is no possibility of circular dependencies. Without a circular wait,
deadlocks cannot occur. If you get into complex blocking code, use the overloads
of Monitor.Wait() and Thread.Join() that take a maximum time before
throwing TimeoutExceptions.

To minimize deadlock, you must work on the balance between properly
controlling the critical regions in your code and the dependencies that arise from
blocking. This is an area where commonly used programming language and the

760 Thinking in C# www.MindView.net

.NET Framework fall short of what could be done. Multithreading is where
memory management was a decade ago: a detail-oriented source of bugs that is
the programmer’s responsibility. Just as software and hardware advances made
managed memory models practical on the desktop, so too can we hope that a
more advanced parallel processing model will eventually be incorporated into the
.NET Framework and into application programming languages.2

Object-Oriented Deadlock
Creating a safe multithreaded library is considerably more difficult than creating
a single multithreaded application. Not only do you have to try to avoid deadlock
in all the scenarios in which your library is used logically, you must never expose
a virtual method that is called within a critical section. The problem is that if you
declare a method as virtual and call it within a critical section (that is, a section
in which you’ve acquired a Monitor), it is possible that the client programmer
will override it in a way that creates a new thread and attempts to acquire the
same Monitor. For this deadlock scenario to play out, the client must create a
new thread since, as discussed on page 751, a call to acquire the Monitor within
the same thread’s calling stack will succeed. This is a subtle-enough requirement
that this object-oriented deadlock can sneak by a lot of unit tests and code
reviews.

The injunction goes against all virtual calls: those marked virtual, interfaces,
abstract classes, and delegate calls are all vulnerable to this object-oriented
deadlocking. In the following program, a Library object executes the method
Client.VirtualCall(). This works alright for FineClient, but BadClient
deadlocks:

//:c16:VirtualCritical.cs
//Never expose a virtual method inside a lock
using System;
using System.Threading;
using System.Collections;

class Library {

2 Cilk adds just 3 keywords to the C programming language, has a conceptually simple
work-stealing scheduler, and yet is very efficient. Parallel processing can be made much
more accessible to the average programmer; it just has not yet been a priority for language
designers. Even without keywords, one can imagine using attributes to declaratively
identify parallelization opportunities and constraints.

Chapter 16: Multithreaded Programming 761

 Client client;
 public Client MyClient{
 set { client = value;}
 }

 Thread t;

 public void Run(){
 ThreadStart ts = new ThreadStart(ThreadCaller);
 t = new Thread(ts);
 t.Name = "Library thread";
 t.Start();
 }

 public void Stop(){
 t.Abort();
 t.Join();
 }

 void ThreadCaller(){
 while (true) {
 Console.WriteLine(Thread.CurrentThread.Name +
 " asking for lock");
 lock(this){
 Console.WriteLine(Thread.CurrentThread.Name +
 " acquired lock");
 client.VirtualCall();
 Thread.Sleep(1000);
 }
 Console.WriteLine(Thread.CurrentThread.Name +
 " released lock");
 }
 }
}

abstract class Client{
 public abstract void VirtualCall();

 Library l;
 public Library Library{
 set { l = value;}

762 Thinking in C# www.ThinkingIn.NET

 }

 protected bool callDone = false;

 public void LockAndTalk(){
 callDone = false;
 while (callDone == false) {
 Console.WriteLine(this.GetType() +
 " asking for lock");
 lock(l){
 Console.WriteLine(Thread.CurrentThread.Name +
 " acquired lock");
 Console.WriteLine("Virtual call executed");
 Thread.Sleep(1000);
 callDone = true;
 }
 }
 Console.WriteLine(Thread.CurrentThread.Name +
 " released lock");
 }
}

class FineClient: Client {
 public override void VirtualCall(){
 LockAndTalk();
 }
}

class BadClient: Client {
 public override void VirtualCall(){
 ThreadedLockAndTalk();
 }

 public void ThreadedLockAndTalk(){
 ThreadStart ts = new ThreadStart(LockAndTalk);
 Thread t = new Thread(ts);
 t.Name = "BadClient";
 t.IsBackground = true;
 t.Start();
 while (callDone == false) {
 Thread.Sleep(1000);

Chapter 16: Multithreaded Programming 763

 }
 }
}

class TestingClass {
 Library l;
 TestingClass(Client c){
 Console.WriteLine("Testing " + c.GetType());
 l = new Library();
 l.MyClient = c;
 c.Library = l;
 l.Run();

 Thread.Sleep(10000);
 Console.WriteLine("Ending test now...");
 l.Stop();
 }

 public static void Main(){
 new TestingClass(new FineClient());
 new TestingClass(new BadClient());

 }
}///:~

The Library class contains a reference to a Client object, whose VirtualCall()
method is called within a lock block inside of Library.ThreadCaller(). The
two methods Library.Run() and Library.Stop() use previously discussed
techniques to begin and end the ThreadCaller() loop.

In addition to the abstract method VirtualCall(), the abstract class Client
specifies a method called LockAndTalk(), which acquires a lock on the
Library object, outputs something to the screen, waits a second, and then
releases the lock. (This violates our preference to lock(this), but it’s the easiest
code to demonstrate the danger of virtual method calls.)

FineClient just calls LockAndTalk(). When LockAndTalk() is called in
FineClient, it is being executed in the same thread that executed
Library.ThreadCaller() and that owns the Library monitor. Therefore,
FineClient() works just fine.

BadClient() implements VirtualCall() in a way that the Library author did
not anticipate: it starts a new Thread whose ThreadStart() delegate, a

764 Thinking in C# www.MindView.net

method called ThreadedLockAndTalk(), calls LockAndTalk() from within
a new thread. Notice that there is no explicit attempt on the part of the
BadClient programmer to lock anything; the BadClient programmer is not
doing anything obviously prone to failure. However, when
ThreadedLockAndTalk() calls LockAndTalk() and that method attempts
to acquire the lock on the Library object, the lock attempt is being executed
from a different thread than the original thread in Library.ThreadCaller(),
which of course already has the lock on the Library object. The result is that
although the BadClient programmer has done nothing obviously wrong, the
Library deadlocks.

Writing a multithreaded library that is reentrant, that is, can be safely invoked
from multiple threads, concurrently, and in a nested manner, is difficult enough
at the best of times, but it is much harder if your library makes a virtual method
call while holding onto a lock. Critical sections must be as controlled as possible;
a virtual method call cedes that control and makes disaster all too likely.

Not advised: Suspend() and Resume()
Referring back to Figure 16-1, you’ll see that in addition to the WaitSleepJoin
that we’ve discussed extensively, a call to Thread.Suspend() will place a
Thread into ThreadState.SuspendRequested and subsequently into
ThreadState.Suspended(). Unlike the static Thread.Join() and
Thread.Sleep() methods, Thread.Suspend() is an instance method. Thus,
Suspend is useful in situations where, for some reason, the current Thread
doesn’t have sufficient knowledge to control its own scheduling.

If an inability to lock(this) is a “code smell” that suggests that a refactoring may
be called for, a need to use Thread.Suspend() is a stench. Why does the
current thread not have enough knowledge to know what resources it needs to
wait on or in what situations it should suspend processing? In a good object-
oriented design, objects encapsulate both the state and behavior they need to
fulfill their design contracts; in a good multithreaded design, the object that
contains the ThreadStart delegate should take the responsibility to maintain
the state and behavior necessary to properly control the Thread using the
ThreadStart delegate.

Sometimes people try to use Suspend() and Resume() to prioritize the
scheduling of their application’s calculations, but that is precisely what the
Thread.Priority property should be used for.

Chapter 16: Multithreaded Programming 765

Threads and collections
The collection classes in .NET’s System.Collections namespace are not thread-
safe and behavior is “undefined” when collisions occur. This program illustrates
the issue:

//:c16:SyncCol.cs
using System;
using System.Collections;
using System.Threading;

class SyncCol1 {
 public static void Main(){
 int iThreads = 25;
 SyncCol1 sc1 = new SyncCol1(iThreads);
 }

 int iThreads;
 SortedList myList;
 public SyncCol1(int iThreads){
 this.iThreads = iThreads;
 myList = new SortedList();
 TimedWrite(myList);
 myList =
 SortedList.Synchronized(new SortedList());
 TimedWrite(myList);
 }

 public void TimedWrite(SortedList myList){
 WriterThread.ExceptionCount = 0;
 WriterThread[] writerThreads =
 new WriterThread[iThreads];
 DateTime start = DateTime.Now;
 for (int i = 0; i < iThreads; i++) {
 writerThreads[i] =
 new WriterThread(myList, i);
 writerThreads[i].Start();
 }
 WaitForAllThreads(writerThreads);
 DateTime stop = DateTime.Now;
 TimeSpan elapsed = stop - start;

766 Thinking in C# www.ThinkingIn.NET

 Console.WriteLine(
 "Synchronized List: " + myList.IsSynchronized);
 Console.WriteLine(iThreads + " * 5000 = "
 + myList.Count + "? "
 + (myList.Count == (iThreads * 5000)));
 Console.WriteLine(
 "Number of exceptions thrown: " +
 WriterThread.ExceptionCount);
 Console.WriteLine(
 "Time of calculation = " + elapsed);
 }

 public void WaitForAllThreads(WriterThread[] ts){
 for (int i = 0; i < ts.Length; i++) {
 while (ts[i].Finished == false) {
 Thread.Sleep(1000);
 }
 }
 }
}

class WriterThread {
 static int iExceptionsThrown = 0;
 public static int ExceptionCount{
 get{ return iExceptionsThrown;}
 set{ iExceptionsThrown = value;}
 }

 Thread t;
 SortedList theList;

 public WriterThread(SortedList theList, int i){
 t = new Thread(new ThreadStart(WriteThread));
 t.IsBackground = true;
 t.Name = "Writer[" + i.ToString() + "]";
 this.theList = theList;
 }
 public bool Finished{
 get{ return isFinished;}
 }
 bool isFinished = false;

Chapter 16: Multithreaded Programming 767

 public void WriteThread(){
 for (int loop = 0; loop < 5000; loop++) {
 String elName = t.Name + loop.ToString();
 try {
 theList.Add(elName, elName);
 } catch (Exception) {
 ++iExceptionsThrown;
 }
 }
 isFinished = true;
 t.Abort();
 }
 public void Start(){
 t.Start();
 }
}///:~

The Main() creates a SyncCol1 class with a parameter indicating how many
threads to simultaneously write to a collection. A SortedList is created and
passed to the TimedWrite method. This method sets the static variable
ExceptionCount of the WriterThread class to 0 and creates an array of
WriterThreads. The WriterThread constructor takes the list and a variable.
Each WriterThread creates a new thread, whose processing is delegated to the
WriterThread.WriteThread() method. The IsBackground property of the
WriterThread’s thread is set to true. Being able to create background “daemon”
threads is very convenient, especially in a GUI, where the user can request a
program closure at any time.

After the WriterThread constructor returns, the next line of TimedWrite()
calls the Start() method, which in turn starts the inner thread, which in turn
delegates processing to WriteThread(). WriteThread() loops 5,000 times,
each time creating a new name (such as “Writer[12]237”) and attempting to add
that to theList. A SortedArray is backed by two stores – one to store the values
and another to store a sorted list of keys (the keys may or may not be the same as
the values).

The call to Add() an element to the list is wrapped in a catch block. Since we are
ignoring the details of the exception and only recording how many exceptions
were thrown, the catch statement does not specify a variable name for the
caught exception. Once the loop is finished, we set the Finished property of the
WriterThread, kill the Thread, and return. Back in the SyncCol1 class, the

768 Thinking in C# www.MindView.net

main application thread goes through the array, checking to see if it’s finished. If
it’s not, the main thread goes to sleep for 1,000 milliseconds before checking
again. When all the WriterThread’s are Finished, the WriteThread() writes
some data on the experiment and returns.

After the initial call with a regular SortedList, we create a new SortedList and
pass it to the static method SortedList.Synchronized(). All the Collections
have this static method, which creates a new, thread-safe Collection. To be clear,
the program creates a total of 3 SortedLists: the one for the initial run through
WriteThread(), a second anonymous one, which is used as the parameter to
SortedList.Synchronize(), which returns a third one. After Chapter 12’s
description of the .NET I/O library, you should recognize the Decorator pattern
in play.

When you run this program, you’ll see that the first run with a plain SortedList
throws a large number of exceptions (if you have a sufficiently speedy computer,
you may get no exceptions, but if you increase the number of threads, eventually
you’ll run into trouble), while the list produced by Synchronized() adds all the
data flawlessly. You’ll also see why Collections aren’t synchronized by default: the
thread-safe list takes something like 5-8 times the duration to complete.3 You can
find out if a Collection is synchronized or not by examining its Synchronized
property, as TimedWrite() does during its status-writing lines.

If, instead of using a list produced by SortedList.Synchronized(), you put a
lock(theList) block around the Add() call, you’ll get exception-less behavior
on both runs as well. Curiously, if you do this, the synchronized list seems to
always outperform the unsynchronized list by a small margin!

In general, though, the challenge of working with collections and threads is not
the thread-safety of the underlying collection, but the inherent challenge of
objects being added, deleted, or changed by threads while your current thread
tries to deal with the collection as a single logical unit. For instance, in an object
with an instance object called myCollection, whether the Collection is
Synchronized or not, the lines

int i = myCollection.Count;

3 If you said “But it’s the same Big O!” give yourself a gold star. If you said, “But ignorant
hacks would confuse library performance with language performance and compare thread-
safe collections to non-thread-safe collections, and on the basis of simplistic benchmarks
write that C# has a performance problem, just as they did with Java!” give yourself a
platinum star.

Chapter 16: Multithreaded Programming 769

Object o = myCollection[i];

are inherently thread-unsafe because another thread might have removed
element i before the second line is executed. If the class obeys the
recommendation that the only references to a critical resource like
myCollection are internal, any method that accesses myCollection can simply
lock(this) and achieve thread-safety.

The foreach keyword uses the IEnumerator interface to traverse a collection.
You can also get an IEnumerator directly by calling GetEnumerator() on
any of the collection classes. The IEnumerator methods MoveNext() and
Reset() will throw an InvalidOperationException if their originating
collection is changed during the enumerator’s lifetime. This is true even if the
collection is synchronized – traversing a non-locked data structure is inherently
thread-unsafe.

It’s not always possible to design classes that don’t expose internal instance or
static collections, but give it a hard try before giving up on the attempt. Can you
Clone the collection? Use the Proxy pattern to return, not the collection itself,
but an interface to your own thread-safe methods? If not, be prepared for some
long debugging sessions, because it’s a good bet that any time you open the door
to multithreading defects, someone will introduce them.

Summary
Multithreaded programming cannot be done casually. If you never lock
anything, you will face race conditions. If you lock excessively, you will have
deadlocks.

♦ To ensure state in a multithreaded environment, you must protect critical
sections with lock blocks (or the equivalent calls to Monitor.Enter()
and, within a finally block, Monitor.Exit()). A critical section may be
as short as a single use of the ++ operator, so you must be painstaking in
your consideration of all operations involving the critical state of your
class.

♦ If non-readonly non-value data is ever shared between threads, every
thread that writes or reads the data must obtain a lock on the data before
writing or reading the data. The synchronization mechanism is required
for reliable interthread communication as well as for mutual exclusion.

♦ Hold locks for as short a time as possible. The longer you hold a lock, the
greater the chance for a deadlock.

770 Thinking in C# www.ThinkingIn.NET

♦ Don’t call virtual methods from within a critical section. A virtual method
can be implemented in any way and may cause a deadlock.

♦ Flaws in threading logic may very well escape all unit and acceptance
testing, and are often difficult to recreate. Proper multithreading is the
most demanding aspect of C#’s programming model.

Exercises
1. Starting with a single thread, write a program that counts as high as it

can in 30 seconds, then doubles the number of threads used, counts for
another 30 seconds, doubles the thread count, and so forth. Run it until
things go awry. Graph the results.

2. Refactor any unresponsive user interfaces that you have created in
previous exercises. Use threads to increase perceived appearance.

3. Write a splashscreen class for C# that, in addition to showing a graphic,
shows a status message as different classes load and initialize. (Hint: Use
the static constructor)

4. Write a custom control that draws an animated sine wave that appears to
scroll like an oscilloscope

5. Write a custom control that slowly scrolls text in a Label.

6. Write a custom control that does “Star Wars”-style scrolling, with the text
transformed so that it appears to recede into the distance as it
approaches the top of the control.

7. Using the suggestion in the text (one language designer is contrarian and
picks up the chopsticks in reverse order), save the dining language
designers.

8. Using “dining philosophers” as your starting search term, use the
Internet to research a different strategy for saving the dinner guests.
Implement the solution.

9. Write a Mandelbrot or Julia set explorer. Use threads to maintain a
responsive interface.

10. Using code from either the previous exercise or the wavelet transform
code from earlier chapters, write a program that performs a number of
such time-consuming computations in “batch mode.” First run the
program so that all the time-consuming computations are done with a

Chapter 16: Multithreaded Programming 771

single thread, then with two threads sharing the load, then four, then
eight, etc. Graph the results. If possible, repeat the experiment on a
multiprocessor machine4.

4 Check both Microsoft and Intel Websites for information on the latest JIT compilers.

773

17: XML
Exensible Markup Language (XML) will power the second
half of the Web Revolution. Everything that’s happened
with the Web to date, the rise of e-commerce, worldwide
business and personal presence, and the shift in
perception of computers from business devices to general
purpose information appliances, has been built on the
shaky foundation of HTML, a format specifically designed
not to do many of the tasks for which it has been coopted.
HTML is a brilliant format for creating and writing
scientific papers; outside of that application, it succeeds
despite itself.

XML is a text-based format for specifying data. Where HTML is best used for
browser-rendered human consumption, XML is best used for program-to-
program communication of structured data. Sometimes the XML consuming
program will do little more than render the data for immediate human
consumption à la a Web browser, but just as often, the consuming program will
use the data for more complex behavior that may involve long-lasting internal
state modifications or further XML-based conversations with the serving
program.

XML may be generated in a variety of ways. Indeed, one of the great benefits of
XML is that it allows a human with a text editor to stand in for an unavailable
programmatic source or sink of the XML data; a Web Designer need not hit a live
server in order to design an XSLT-based browser-based interface, a Web Services
programmer need not fill out a form and click a button to generate a SOAP
request.

For the purposes of learning about XML, this chapter will read and write XML
files. The next chapter, 18, will have more to say about XML that is generated in
different processes, either on the same machine or over the Web.

774 Thinking in C# www.ThinkingIn.NET

XML structure
An XML Application is a specification of the syntax and semantics of a data
structure. Scalable Vector Graphics is an XML Application, the Schools
Interoperability Framework is an XML Application, the Open Travel Alliance
Specification is an XML Application, etc. This can be confusing: “Application” has
come to be synonymous with “computer program,” so “XML application” is heard
by most people as “a computer program that uses XML.” So people often refer to
the XML-based specification as an XML standard, or an XML format, even
though those terms, too, might lead to confusion.

So to develop anything meaningful in XML requires two steps: one, you must
learn about XML itself, then, every time you tackle a new domain, you must learn
about the XML application (aka specification, standard, format) of the domain.
As a programmer, it’s imperative that you learn XML itself, as a career strategy,
you would be well advised to become highly cognizant of the specifications in
vertical industries that appeal to you.

XML data structures are treelike; they consist of a Root Element that has some
number of sub-Elements that, in turn, have some number (perhaps zero) of sub-
Elements. All Elements have a Name and all Elements may contain zero-or-more
Attributes (not to be confused with .NET Attributes). Non-Empty Elements
contain one piece of text-based Element Data.

An XML Document, which is the high-level container that contains an instance of
an XML data structure, must contain well-formed data – a data structure starting
from the root element in which every element is closed; non-empty elements are
closed by a tag matching the opening element but beginning with a slash (/),
empty elements are closed by putting a slash at the end of the element.

An XML Document must contain an XML Declaration that asserts that what
follows is XML and that specifies the encoding. In addition, an XML Document
may contain processing instructions, which are instructions to the application
that is processing the data. One common processing instruction is the xml-
stylesheet instruction, which specifies the way the XML data should be
transformed into a human-readable format. Figure 17-1 illustrates the structure
of a simple XML document and how it might be visualized as a data structure.

Chapter 17: XML 775

Car

Vin = “12345678”

Model CruiseControlMileage

Units = “Miles”

Data = 80000

Make

Data = “Civic”

Manufacturer

Data = “Honda”

Year

Data = “1992”

<Car VIN="12345678">
 <Model>
 <Year>1992</Year>
 <Manufacturer>Honda</Manufacturer>
 <Make>Civic</Make>
 </Model>
 <Mileage Units="Miles">80000</Mileage>
 <CruiseControl/>
</Car>

Root Element

Attribute

Nested elements

Empty Element

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="car.css" type="test/css" ?>

XML Declaration

Processing Instruction

XML Data

Figure 17-1: An XML document can be viewed as a tree-like data structure

The preceding description of XML should make it clear that XML follows neither
the object-oriented model nor the relational model. XML is more hierarchical
than either the object-oriented world of loosely interacting objects or the
relational world of tightly related tables.1 This emphasis on hierarchies, though,
is the source of one very desirable trait of XML: An XML element can be viewed
either as a complete data tree or it can be viewed as a stream of individual nodes.

XML as a stream
This example reads the XML document shown in Figure 17-1 from a file. As it’s
reading the file, it outputs some information on the nodes as it finds them.

//:c17:CarStreamReader.cs
//Reads an XML file
using System;
using System.IO;
using System.Xml;

class CarStreamReader {
 CarStreamReader(string fileName){
 XmlTextReader xIn = new XmlTextReader(fileName);
 try {
 while (xIn.Read()) {
 XmlNodeType typeOfNode = xIn.NodeType;
 Console.WriteLine("Read a {0} node",
 typeOfNode);

1 Elliotte Rusty Harold has extended the classic “blind men and the elephant” fable to
criticize OOP programmers, database programmers, Web developers, computer scientists,
and technical writers who fail to see beyond their own biases when approaching XML.

776 Thinking in C# www.MindView.net

 if (typeOfNode == XmlNodeType.Element) {
 Console.WriteLine("<{0}>", xIn.Name);
 if (xIn.HasAttributes) {
 while (xIn.MoveToNextAttribute()) {
 Console.WriteLine("[{0}] = {1}",
 xIn.Name, xIn.Value);
 }
 }
 }
 if (typeOfNode == XmlNodeType.Text) {
 Console.WriteLine("Text = " + xIn.Value);
 }
 }
 } finally {
 xIn.Close();
 }
 }
 public static void Main(){
 new CarStreamReader("car.xml");
 }
}///:~

First we specify that we’ll be referencing the System.Xml namespace. In the
CarStreamReader() constructor, we instantiate an XmlTextReader(). This
class provides a forward-only, non-cached, stream-oriented reader of an XML
source (in this case a file, but it can be any kind of Stream). Every time
XmlTextReader.Read() returns true, various properties in the
XmlTextReader are set to reflect the value of the current XML node. The
reason for this design is to increase performance: Because it does not create an
object for each node, the XmlTextReader can rapidly read even very large XML
streams.

After it’s read the node, the XmlTextReader.NodeType property is one of the
values of the XmlNodeType enumeration. This value is output to the console. If
the node is an XmlNodeType.Element the value of XmlTextReader.Name
is the element’s name and XmlTextReader.HasAttributes specifies if there
are attributes. If so, we loop with
XmlTextReader.MoveToNextAttributes(), which sets the
XmlTextReader’s Name and Value properties appropriately.

If you run this program on the XML from Figure 17-1, you’ll see that there are
many nodes of type XmlNodeType.Whitespace. Often, you don’t care about

Chapter 17: XML 777

such nodes; you can specify that the XmlTextReader ignore non-significant
whitespace by switching its WhitespaceHandling property to
WhitespaceHandling.Significant.

XML as a tree
Where XmlTextReader deals with XML in a stream-based manner,
XmlDocument deals with XML as a treelike data structure. This program has a
similar output to the previous, but because the XmlDocument is read entirely
into memory before the data structure is traversed, it uses a recursive structure
for traversal.

//:c17:CarDomReader.cs
//Loads an XML file
using System;
using System.IO;
using System.Xml;

class CarDomReader {
 CarDomReader(string fileName){
 XmlDocument doc = new XmlDocument();
 doc.Load(fileName);

 WriteInfo(doc);
 }

 void WriteInfo(XmlNode node){
 Console.WriteLine("Current node is of type {0}",
 node.NodeType);
 if (node.NodeType == XmlNodeType.Element) {
 Console.WriteLine("<{0}>", node.Name);
 foreach(XmlAttribute att
 in node.Attributes){
 Console.WriteLine("[{0}] = {1}",
 att.Name, att.Value);
 }
 }
 if (node.NodeType == XmlNodeType.Text) {
 Console.WriteLine("Text = " + node.Value);
 }
 foreach(XmlNode child in node.ChildNodes){
 WriteInfo(child);

778 Thinking in C# www.ThinkingIn.NET

 }
 }

 public static void Main(){
 new CarDomReader("car.xml");
 }
}///:~

After the XmlDocument object is created, XmlDocument.Load() reads the
entire contents of the passed-in Stream and constructs an in-memory
representation of the XML. XmlDocument is itself just one type of XmlNode,
so the call to CarDomReader.WriteInfo() upcasts the XmlDocument to
XmlNode. After printing out information about the XmlNode, WriteInfo()
iterates across each of the XmlNodes in the current node’s ChildNodes
collection. Each child node is passed as an argument to a recursive call of
WriteInfo().

This example will throw an XmlException in Load() if the document is poorly
formed. The CarStreamReader example only throws an XmlException when
XmlTextReader.Read() attempts to read a poorly formed element. This is
one difference in behavior that can help you choose between XmlDocument
and XmlTextReader.

Writing XML
XML wouldn’t be much good if you couldn’t produce it programmatically. Just as
with reading XML, you can choose between doing this in a forward-only, stream-
based manner and doing it with the XmlDocument as an in-memory data
structure. This example uses the latter to create the car document that we’ve been
using:

//:c17:CarDomWriter.cs
//Creates an XML Document
using System;
using System.IO;
using System.Xml;
using System.Text;

class CarDomWriter {
 CarDomWriter(Stream outStr){
 XmlDocument doc = new XmlDocument();
 XmlDeclaration decl =
 doc.CreateXmlDeclaration("1.0", "UTF-8", null);

Chapter 17: XML 779

 doc.AppendChild(decl);
 string ssText =
 "type='text/xsl' href='book.xsl'";
 XmlProcessingInstruction pi =
 doc.CreateProcessingInstruction(
 "xml-stylesheet",ssText); doc.AppendChild(pi);
 XmlNode root = CreateCarNode(doc);
 doc.AppendChild(root);

 XmlTextWriter writer =
 new XmlTextWriter(outStr, new UTF8Encoding());
 writer.Formatting = Formatting.Indented;
 doc.WriteTo(writer);
 writer.Flush();
 writer.Close();
 }

 XmlNode CreateCarNode(XmlDocument doc){
 XmlElement car = doc.CreateElement("Car");
 car.SetAttribute("VIN","12345678");

 XmlNode model = CreateModelNode(doc);
 car.AppendChild(model);
 XmlNode miles = CreateMilesNode(doc);
 car.AppendChild(miles);
 XmlNode cruise = CreateCruiseNode(doc);
 car.AppendChild(cruise);
 return car;
 }

 XmlNode CreateModelNode(XmlDocument doc){
 XmlElement model = doc.CreateElement("Model");
 XmlElement year = doc.CreateElement("Year");
 year.InnerText = "1992";
 model.AppendChild(year);
 XmlElement mfr =
 doc.CreateElement("Manufacturer");
 mfr.InnerText = "Honda";
 model.AppendChild(mfr);
 XmlElement make = doc.CreateElement("Make");
 make.InnerText = "Civic";

780 Thinking in C# www.MindView.net

 model.AppendChild(make);
 return model;
 }

 XmlNode CreateMilesNode(XmlDocument doc){
 XmlElement miles = doc.CreateElement("Mileage");
 miles.SetAttribute("Units", "Miles");
 miles.InnerText = "80000";
 return miles;
 }

 XmlNode CreateCruiseNode(XmlDocument doc){
 XmlElement cruise =
 doc.CreateElement("CruiseControl");
 return cruise;
 }

 public static void Main(){
 FileStream outStr = new FileStream(
 "car.xml",FileMode.Create);
 try {
 new CarDomWriter(outStr);
 } finally {
 outStr.Close();
 }
 }
}///:~

After initializing an XmlDocument object, the task is basically to create each
node and append it to the XmlDocument. Because an XmlDocument has a
particular encoding, nodes are not created directly with the new command, but
rather the XmlDocument has a suite of CreateXxx() methods. This is the
Factory Pattern.

The XmlDocument.CreateXxx() methods do not automatically place the
just-created node in the data structure, they must be placed by calls to
XmlDocument.AppendChild(), XmlDocument.InsertBefore(), or
XmlDocument.InsertAfter().

After creating and adding the XML declaration and processing instruction, we
call our own method CarDomWriter.CreateCarNode() that in turn calls the
other CarDomWriter.CreateXxx() methods. Each goes through similar

Chapter 17: XML 781

steps: First, an XmlElement node is created using the
XmlDocument.CreateElement() factory method. Then, if the element has
an attribute, we use XmlElement.SetAttribute() to specify the name and
value. If the element is a non-empty element, it’s data is set with
XmlElement.InnerText. This property is actually a shortcut; if we wanted to
really duplicate the behavior of XmlDocument.Load(), we’d create an
XmlText node, set its Value property, and append it to the XmlElement. But
using InnerText eliminates two lines of code per assignment and doesn’t do any
harm, so we used that.

XmlElement.AppendChild() is used to create the document’s tree – we
attach the nodes for the manufacturer, year, and make to the node for the model
which we append to the node for the car itself. By the time CreateCarNode()
returns, it contains the whole tree of XmlElements and we can append it to the
XmlDocument node after the XmlProcessingInstruction.

We create an XmlTextWriter object with a sink of the Stream passed in as an
argument to the CarDomWriter() constructor and an encoding corresponding
to the value in our XmlDeclaration. XmlTextWriter.Formatting defaults to
Formatting.None, which outputs the XML as a single line. By setting it to
Formatting.Indented, the output is spread across several lines and contains
extra whitespace, but is much more readable.

XmlDocument.WriteTo() takes the XmlTextWriter as an argument. The
call to XmlTextWriter.Close() flushes the XmlDocument to the
XmlTextWriter’s Stream.

XmlDocument.WriteTo() is the complement of XmlDocument.Load(),
which as we discussed loads an entire document into memory. Not surprisingly,
the XmlTextWriter has a set of methods that complements the forward-
reading, stream-based XmlTextReader.Read() method discussed in the
CarDomReader example.

//:c17:CarStreamWriter.cs
//Creates an XML Document
using System;
using System.IO;
using System.Xml;
using System.Text;

class CarStreamWriter {
 CarStreamWriter(Stream outStr){
 XmlTextWriter writer =

782 Thinking in C# www.ThinkingIn.NET

 new XmlTextWriter(outStr, new UTF8Encoding());
 writer.Formatting = Formatting.Indented;
 writer.WriteStartDocument();
 writer.WriteProcessingInstruction
 ("xml-stylesheet","type='text/xsl' " +
 "href='book.xsl'");
 WriteCarNode(writer);
 writer.WriteEndDocument();
 writer.Close();
 }

 void WriteCarNode(XmlTextWriter writer){
 writer.WriteStartElement("Car");
 writer.WriteAttributeString("VIN", "12345678");

 WriteModelNode(writer);
 WriteMilesNode(writer);
 WriteCruiseNode(writer);

 writer.WriteEndElement(); //Car
 }

 void WriteModelNode(XmlTextWriter writer){
 writer.WriteStartElement("Model");

 writer.WriteStartElement("Year");
 writer.WriteString("1992");
 writer.WriteEndElement(); //Year

 writer.WriteStartElement("Manufacturer");
 writer.WriteString("Honda");
 writer.WriteEndElement(); //Mnfctr.

 writer.WriteStartElement("Make");
 writer.WriteString("Civic");
 writer.WriteEndElement(); //Make

 writer.WriteEndElement(); //Model
 }

 void WriteMilesNode(XmlTextWriter writer){

Chapter 17: XML 783

 writer.WriteStartElement("Mileage");
 writer.WriteAttributeString("Units", "Miles");
 writer.WriteString("80000");
 writer.WriteEndElement(); //Mileage
 }

 void WriteCruiseNode(XmlTextWriter writer){
 writer.WriteStartElement("CruiseControl");
 writer.WriteEndElement();
 }

 public static void Main(){
 FileStream outStr = new FileStream(
 "car.xml",FileMode.Create);
 try {
 new CarStreamWriter(outStr);
 } finally {
 outStr.Close();
 }
 }
}///:~

The major difference between XmlDocument.WriteTo() and the stream-
based approach of XmlTextWriter are the paired
XmlTextWriter.WriteStartXxx() and XmlTextWriter.EndStartXxx()
methods that need to be carefully matched. XmlTextWriter is sophisticated
enough so that it properly writes empty and non-empty elements properly based
on the placement of the XmlTextWriter.WriteEndElement() method – the
CruiseControl node is written as an empty node, not as a non-empty node with
no data.

XML serialization
In the previous examples that used XmlDocument or XmlTextReader and
XmlTextWriter to read and write XML, the code becomes very predictable very
quickly – all nodes are created the same way, the hierarchy is built the same way,
etc. As soon as you begin working in XML, you begin to think about ways to get
rid of this boilerplate and directly serialize to and from XML. The
System.Xml.Serialization namespace provides exactly this behavior – the
ability to transform an XML document into a data structure composed not of
XmlNodes but of domain and, from a set of domain objects, the ability to create
a well-formed XML document.

784 Thinking in C# www.MindView.net

XML serialization only serializes the public properties of an object (it will also
serialize public fields, but you shouldn’t have public fields). Additionally, XML
serialization requires that there be a public, no-args constructor for the class.
These constraints mean that XML serialization is not appropriate if your object’s
internal state is not entirely expressed with public properties. Not every type
should fulfill these constraints; XML serialization is a great feature, but it
shouldn’t drive your design.

The XmlSerializer class itself is not serializable because an XmlSerializer
can (and should) be cheaply recreated at runtime; what little advantage there
might be in serializing an instance is overwhelmed by the temporal problems
associated with object serialization (see Chapter 13). In this case, XmlSerializer
is tightly bound to the set of public signatures of its target type; if the target’s
signature changes, all previously serialized XmlSerializers would break.

XML serialization has a lot of flexibility, but to use it in its barest form is easy:
Create an XmlSerializer for the class you wish to serialize, create an instance of
that class, and use XmlSerialize.Serialize() to write XML to a specified
Stream:

//:c17:CarStructure1.cs
//Demonstrates XML Serialization
using System;
using System.Xml.Serialization;

public class Car {
 public Car(){
 }

 string vin;
 public string VIN{
 get { return vin;}
 set { vin = value;}
 }

 public static void Main(){
 Car c = new Car();
 c.VIN = "12345678";
 XmlSerializer carScribe =
 new XmlSerializer(typeof(Car));
 carScribe.Serialize(Console.Out, c);
 }

Chapter 17: XML 785

}///:~

In this example, the Car class has just one public property, the Vehicle
Identification Number (VIN). The XmlSerializer carScribe object is specific
to the Car type as shown in the XmlSerializer() constructor. Once the
carScribe object is created, we use it to write the specific Car we created (c) to
the screen. The output of this program is:

<?xml version="1.0" encoding="IBM437"?>
<Car xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <VIN>12345678</VIN>
</Car>

This is just a little different than the XML we’ve been reading and writing. The
important difference is the addition of attributes within the Car element that
define XML namespaces. The other difference is that the VIN has been output as
a child element of the Car element, rather than as an XML attribute, as we’ve
been doing in our previous examples.

The System.Xml.Serialization namespace contains a large number of .NET
Attributes to control XML output. To specify that the VIN be output as an XML
attribute we associate the .NET Attribute XmlAttributeAttribute with the
VIN property:

 [XmlAttribute]
 public string VIN{
 get { return vin; }
 set { vin = value; }
 }

leads to:

<?xml version="1.0" encoding="IBM437"?>
<Car xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
VIN="12345678" />

This example outputs an XML document very similar to the ones we were writing
out by hand:

//:c17:CarStructure2.cs
//Demonstrates XML Serialization
using System;
using System.Xml.Serialization;

786 Thinking in C# www.ThinkingIn.NET

public class Car {
 public Car(){ }

 string vin;
 [XmlAttribute]
 public string VIN{
 get { return vin;}
 set { vin = value;}
 }

 Model model;
 public Model Model{
 get { return model;}
 set { model = value;}
 }

 Mileage miles;
 public Mileage Mileage{
 get { return miles;}
 set { miles = value;}
 }

 AirConditioning air;
 [XmlElement("AirConditioning",IsNullable=true)]
 public AirConditioning Air {
 get { return air;}
 set { air = value;}
 }

 public static void Main(){
 Car c = new Car();
 c.VIN = "12345678";
 c.Model = new Model(1992, "Honda", "Civic");
 c.Mileage = new Mileage("Miles", 80000);
 c.Air = new AirConditioning();
 XmlSerializer xs = new XmlSerializer(typeof(Car));
 xs.Serialize(Console.Out, c);
 }
}

Chapter 17: XML 787

public class Model {
 public Model(){
 }

 public Model(int yr, string mfr, string make){
 this.yr = yr;
 this.mfr = mfr;
 this.make = make;
 }

 int yr;
 public int Year{
 get { return yr;}
 set { yr = value;}
 }

 string mfr;
 [XmlElement("Manufacturer")]
 public string Maker{
 get { return mfr;}
 set { mfr = value;}
 }

 string make;
 public string Make{
 get { return make;}
 set { make = value;}
 }

 int horsepower = 100;
 [XmlIgnore]
 public int Horsepower{
 get { return horsepower;}
 set { horsepower = value;}
 }
}

public class Mileage {
 string units;
 [XmlAttribute("Units")]
 public string Units{

788 Thinking in C# www.MindView.net

 get { return units;}
 set { units = value;}
 }

 int val;
 [XmlText]
 public int Quantity{
 get { return val;}
 set { val = value;}
 }

 public Mileage(){ }

 public Mileage(string units, int val){
 this.units = units;
 this.val = val;
 }
}

public class AirConditioning {
 public AirConditioning(){ }
}///:~

which produces the output:

<?xml version="1.0" encoding="IBM437"?>
<Car xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
VIN="12345678">
 <Model>
 <Year>1992</Year>
 <Manufacturer>Honda</Manufacturer>
 <Make>Civic</Make>
 </Model>
 <Mileage Units="Miles">80000</Mileage>
 <AirConditioning />
</Car>

In addition to XmlAttributeAttribute, this example uses the
XmlElementAttribute so that the Car.Air property is output as an empty
element named <AirConditioning />and the Model.Maker property is
output as <Manufacturer>.

Chapter 17: XML 789

The Model.Horsepower property is associated with the [XmlIgnore]
attribute, which specifies that the XmlSerializer not include the property in the
XML document.

Deserializing XML
The XmlSerializer.Deserialize() method converts an XML document into an
object of the appropriate type:

//:c17:CarFromFile.cs
//Compile with:
//csc /reference:CarStructure2.exe CarFromFile.cs
//Demonstrates XML Deserialization
using System;
using System.IO;
using System.Xml.Serialization;

public class CarFromFile {
 public static void Main(){
 XmlSerializer xs = new XmlSerializer(typeof(Car));
 FileStream str =
 new FileStream("car.xml", FileMode.Open);
 Car c = (Car) xs.Deserialize(str);
 str.Close();
 Console.WriteLine("{0} {1} {2}, {3} {4}",
 c.Model.Year, c.Model.Maker, c.Model.Make,
 c.Mileage.Quantity, c.Mileage.Units);
 }
}///:~

This example requires a reference to the Car and other domain objects defined in
the CarStructure example, but so long as the public properties of the object
suffice to put it into a viable state, the XmlSerializer can both write and read
objects to any kind of Stream.

Can’t serialize cycles
This is a perfectly legitimate object-oriented relationship:

Yang Yin
111 1

Figure 17-2: Cyclical relationships can be hard to express in XML

790 Thinking in C# www.ThinkingIn.NET

In this relationship, a Yang contains a reference to a Yin and a Yin to a Yang. It
is possible for both objects to contain references to each other; the data structure
may have a cycle.

XML does not use references to relate objects, it uses containment. One object
contains another, which in turn contains its subobjects. There are no references
native to XML. If the XmlSerializer detects a cycle, it throws an
InvalidOperationException, as this example demonstrates:

//:c17:YinYang.cs
//Throws an exception due to cyclical reference
using System;
using System.Xml.Serialization;

public class Yin {
 Yang yang;
 public Yang Yang{
 get{ return yang;}
 set { yang = value;}
 }
 public Yin(){
 }
}

public class Yang {
 Yin yin;
 public Yin Yin{
 get{ return yin;}
 set { yin = value;}
 }
 public Yang(){
 }

 public static void Main(){
 Yin yin = new Yin();
 Yang yang = new Yang();
 //Set up cycle
 yin.Yang = yang;
 yang.Yin = yin;

 XmlSerializer xs = new XmlSerializer(typeof(Yin));
 //Throws InvalidOperationException

Chapter 17: XML 791

 xs.Serialize(Console.Out, yin);
 }
}///:~

If you wish to use XML to serialize an object structure that might contain cycles,
you will have to create your own proxy for references. This will always require the
use of unique text-based ids in lieu of references, the use of [XmlIgnore] and
the dynamic “reattachment” of references based on the XML Ids.

Throughout this book, we’ve often used the phrase “This is an example of the X
design pattern.” Here, we have what seems to be the opposite case, a situation
where we see a common problem (XML serialization of cyclical references) and
can identify a path towards a general solution. There’s a certain temptation to
design something and present it as “the Mock Reference pattern” (or whatever).
However, probably the most distinctive feature of the seminal books in the
patterns movement (Design Patterns and Pattern-Oriented Software
Architecture) is that they were based on software archaeology; patterns were
recognized in existing, proven software solutions. There are no .NET patterns yet
and very few XML patterns; there simply has not been enough time for a variety
of design templates to prove themselves in the field.

Having said that, let’s take a crack at a serializable Yin-Yang object structure:

//:c17:SerializedYinYang.cs
// Can serialize cycles
using System;
using System.IO;
using System.Collections;
using System.Xml.Serialization;

public class Yin {
 static Hashtable allYins = new Hashtable();
 public static Yin YinForId(Guid g){
 return(Yin) allYins[g];
 }

 Yang yang;

 public Yang Yang{
 get{ return yang;}
 set {
 yang = value;
 }

792 Thinking in C# www.MindView.net

 }

 Guid guid = Guid.NewGuid();
 [XmlAttribute]
 public Guid Id{
 get { return guid;}
 set{
 lock(typeof(Yin)){
 allYins[guid] = null;
 allYins[value] = this;
 guid = value;
 }
 }
 }

 public Yin(){
 allYins[guid] = this;
 }
}

public class Yang {
 Yin yin;
 [XmlIgnore]
 public Yin Yin{
 get{ return yin;}
 set { yin = value;}
 }

 public Guid YinId{
 get { return yin.Id;}
 set {
 yin = Yin.YinForId(value);
 if (yin == null) {
 yin = new Yin();
 yin.Id = value;
 }
 }
 }

 Guid guid = Guid.NewGuid();

Chapter 17: XML 793

 [XmlAttribute]
 public Guid Id{
 get { return guid;}
 set { guid = value;}
 }
 public Yang(){
 }

 public static void Main(){
 Yin yin = new Yin();
 Yang yang = new Yang();
 yin.Yang = yang;
 yang.Yin = yin;

 XmlSerializer xs = new XmlSerializer(typeof(Yin));

 MemoryStream memStream = new MemoryStream();
 xs.Serialize(memStream, yin);

 memStream.Position = 0;
 StreamReader reader = new StreamReader(memStream);
 string xmlSerial = reader.ReadToEnd();
 Console.WriteLine(xmlSerial);

 Console.WriteLine("Creating new objects");
 memStream.Position = 0;
 Yin newYin = (Yin) xs.Deserialize(memStream);
 xs.Serialize(Console.Out, newYin);

 Yang newYang = newYin.Yang;
 Yin refToNewYin = newYang.Yin;
 if (refToNewYin == newYin) {
 Console.WriteLine("\nCycle re-established");
 }
 if (newYin == yin) {
 Console.WriteLine("Objects are the same");
 } else {
 Console.WriteLine("Objects are different");
 }
 }
}///:~

794 Thinking in C# www.ThinkingIn.NET

This program relies on the Guid structure, which is a “globally unique identifier”
value; both classes have Id properties associated with the
XmlAttributeAttribute that can serve to uniquely identify the objects over
time.2 The Yin class additionally has a static Hashtable allYins that returns
the Yin for a particular Guid. The Yin() constructor and the Yin.Id.set
method update the allYins keys so that allYins and YinForId() properly
return the Yin for the particular Guid.

The Yang class property Yin is marked with [XmlIgnore] so that the
XmlSerializer won’t attempt to do a cycle. Instead, Yang.YinId is serialized.
When Yang.YinId.set is called, the reference to Yang.Yin is reestablished by
calling Yin.YinForId().

The Yang.Main() method creates a Yin and a Yang, establishes their cyclical
relationship, and serializes them to a MemoryStream. The MemoryStream
is printed to the console, gets its Position reset, and is then passed to
XmlSerializer.Deserialize(), creating new Yin and Yang objects. Although
newYin and newYang have the same Id values and the same cyclical
relationships that the original yin and yang had, they are new objects, as Figure
17-3 illustrates.

2 It’s theoretically possible for GUIDs generated at different times to have the same value,
but it’s exceedingly rare. That’s why GUIDs are only “globally” and not “universally”
unique.

Chapter 17: XML 795

yang : YangYang.Main yin : Yin allYins xs :
XmlSerializer

new

new

[yinGuid] = yin

Yang = yang

Yin = yin

Serialize(yin)

Deserialize(memStream)

newYang :
Yang

new

Id.set(yinGuid)

[yinGuid] = null
changes "official"
Yin for yinGuid
from yin to newYin[yinGuid] = newYin

new

YinId.set(yinGuid)
Get(yinGuid)

newYin

newYin : Yin

newYin

796 Thinking in C# www.MindView.net

Figure 17-3: Reconstructing cycles from an XML document

The output of the program looks like this, although the Guids will be different:

<?xml version="1.0"?>
<Yin xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Id="8342aaa3-31e4-4d56-95fc-0959301a7ccf">
 <Yang Id="531ba739-673e-4840-a2c1-3027f9e60d9f">
 <YinId>8342aaa3-31e4-4d56-95fc-0959301a7ccf</YinId>
 </Yang>
</Yin>
Creating new objects
<?xml version="1.0" encoding="IBM437"?>
<Yin xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Id="8342aaa3-31e4-4d56-95fc-0959301a7ccf">
 <Yang Id="531ba739-673e-4840-a2c1-3027f9e60d9f">
 <YinId>8342aaa3-31e4-4d56-95fc-0959301a7ccf</YinId>
 </Yang>
</Yin>
Cycle re-established

Schemas
So far, the only restriction that we’ve placed on the XML is that it be well formed.
But XML has an additional capability to specify that only elements of certain
types and with certain data be added to the document. Such documents not only
are well formed, they are valid. XML documents can be validated in two ways,
via Document Type Definition (DTD) files and via W3C XML Schema (XSD) files.
The XML Schema definition is still quite new, but is significantly more powerful
than DTDs. Most significantly, DTDs are not themselves XML documents, so you
can’t create, edit, and reason about DTDs with the same tools and code that you
use to work with XML documents.

An XML Schema, on the other hand, is itself an XML document, so working with
XML Schemas can be done with the same classes and methods that you use to
work with any XML document. Another advantage of XML Schemas is that they
provide for validity checking of the XML data; if the XML Schema specifies that
an element must be a positiveInteger, then a variety of tools can validate the
data flowing in or out of your program to confirm the element’s values.

This XML Schema validates the data of the CarStructure example:

Chapter 17: XML 797

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Car" nillable="true" type="Car" />
 <xs:complexType name="Car">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
 name="Model" type="Model" />
 <xs:element minOccurs="0" maxOccurs="1"
 name="Mileage" type="Mileage" />
 <xs:element minOccurs="1" maxOccurs="1"
 name="AirConditioning" nillable="true"
 type="AirConditioning" />
 </xs:sequence>
 <xs:attribute name="VIN" type="xs:string" />
 </xs:complexType>
 <xs:complexType name="Model">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1"
 name="Year" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1"
 name="Manufacturer" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1"
 name="Make" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Mileage">
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="Units" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="AirConditioning" />
 <xs:element name="Model" nillable="true"
 type="Model" />
 <xs:element name="Mileage" nillable="true"
 type="Mileage" />
 <xs:element name="AirConditioning" nillable="true"
 type="AirConditioning" />
</xs:schema>

798 Thinking in C# www.ThinkingIn.NET

We aren’t going to go over the details, because you’ll never have to handcraft an
XML Schema until you’re working at a quite advanced level. The .NET
Framework SDK comes with a tool (xsd.exe) that can generate an XML Schema
from an already compiled .NET assembly. This example was generated with this
command line:

xsd CarStructure.exe

More commonly, you’ll be working in a domain with a standards group that
produces the XML Schema as one of its key technical tasks. If given an XML
Schema, the xsd tool can generate classes with public properties that conform to
the XML Schema’s specification. In practice, this rarely works without
modification of the schema; whether the fault lies in the xsd tool or the
widespread lack of experience with XML Schema in vertical industries is difficult
to say.

You can also use the xsd tool to generate a class descended from type DataSet.
As discussed in Chapter 10, a DataSet is an in-memory, disconnected
representation of relational data. So with the xsd tool, you can automatically
bridge the three worlds of objects, XML, and relational data.

ADO and XML
From the discussion of ADO in Chapter 10, you’ll remember that a DataSet is an
in-memory representation of a relational model. An XmlDataDocument is an
XML Doocument whose contents are synchronized with a DataSet, changes to
the XML data are reflected in the DataSet’s data, changes to the DataSet’s data
are reflected in the XmlDataDocument (as always, committing these changes
to the database requires a call to IDataAdapter.Update()).

 This example quickly revisits the Northwind database and is essentially a rehash
of our first ADO.NET program (you’ll need a copy of NWind.mdb in the current
directory):

//:c17:NwindXML.cs
//Demonstrates ADO to XML bridge
using System;
using System.Xml;
using System.Text;
using System.Data;
using System.Data.OleDb;

class NWindXML {

Chapter 17: XML 799

 public static void Main(string[] args){
 DataSet ds = Employees("Nwind.mdb");
 Console.WriteLine(
 "DS filled with {0} rows",
 ds.Tables[0].Rows.Count);
 //New lines begin here
 ds.WriteXml(Console.OpenStandardOutput());
 Console.WriteLine();
 ds.WriteXmlSchema(Console.OpenStandardOutput());
 //End new stuff
 }
 private static DataSet Employees(string fileName){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString =
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + fileName;
 DataSet ds = null;
 try {
 cnctn.Open();
 string selStr =
 "SELECT FirstName, LastName FROM EMPLOYEES";
 IDataAdapter adapter =
 new OleDbDataAdapter(selStr, cnctn);

 ds = new DataSet("Employees");
 adapter.Fill(ds);
 } finally {
 cnctn.Close();
 }
 return ds;
 }
}///:~

After retrieving a DataSet filled from the Employees table using the same
ADO.NET code shown in Chapter 10,3 we create a new XmlDataDocument
that is linked to the DataSet ds. We then use DataSet.WriteXml() and
DataSet.WriteXmlSchema() to present the XML view of the DataSet (an

3 Well, almost the same. Instead of “SELECT * FROM EMPLOYEES” we limit the data to
first and last names because the EMPLOYEES table contains photographs that make the
returned XML unwieldy.

800 Thinking in C# www.MindView.net

alternative would be to use an XmlTextWriter). When run, the output ends like
this:

…
<Table>
 <FirstName>Anne</FirstName>
 <LastName>Dodsworth</LastName>
 </Table>
 <Table>
 <FirstName>Bob</FirstName>
 <LastName>Dobbs</LastName>
 </Table>
</Employees>
<?xml version="1.0"?>
<xs:schema id="Employees" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Employees" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Table">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string"
minOccurs="0" />
 <xs:element name="LastName" type="xs:string"
minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

A DataSet can also directly read an XML stream, either validating it against an
existing schema or inferring a schema from the data. Here, the car.xml becomes
the source of a DataSet and its inferred schema written to the screen:

//:c17:CarDataSet.cs
//Demonstrates DataSet from XML
using System;

Chapter 17: XML 801

using System.Xml;
using System.Text;
using System.IO;
using System.Data;
using System.Data.OleDb;

class CarDataSet {
 public static void Main(){
 DataSet carDataSet = new DataSet();
 carDataSet.ReadXml(
 "car.xml", XmlReadMode.InferSchema);

 Stream stdout = Console.OpenStandardOutput();
 carDataSet.WriteXmlSchema(stdout);
 }
}///:~

Combined with the BindingContext class discussed in Chapter 14, .NET’s
powerful infrastructure for XML, data, and display is beginning to fall into place.
The final piece of the puzzle will have to wait until the next chapter, with our
discussion of Web Services that use XML as the native “language” of Web-based
conversations.

XPath navigation
While SQL is the native means of navigating relational data, XPath is the native
means of navigating XML data. Since XML has a treelike structure, the natural
way to get from one place to another is to specify a “path” up-or-down the
branches from either the current Node or from the root Element. XPath is not
itself expressed as an XML Document, rather it is reminiscent of file-system
navigation commands.

The simplest XPaths are those that specify an absolute path to an object. Given
this XML:

<!DOCTYPE set SYSTEM "docbookx.dtd">
<set>
 <book>
 <bookinfo>
 <title>Thinking in C#</title>
 <author>
 <personname>
 <firstname>Larry</firstname>

802 Thinking in C# www.ThinkingIn.NET

 <surname>O'Brien</surname>
 </personname>
 </author>
 <author>
 <personname>
 <firstname>Bruce</firstname>
 <surname>Eckel</surname>
 </personname>
 </author>
 <copyright>
 <year>2002</year>
 <holder>Larry O'Brien & Bruce
Eckel</holder>
 </copyright>
 </bookinfo>
 <preface>
 <title>Introduction</title>
 </preface>
 <chapter>
 <title>Those Who Can, Code</title>
 </chapter>
 <chapter>
 <title>Introduction To Objects</title>
 </chapter>
 <chapter>
 <title>Hello, Objects</title>
 </chapter>
 </book>
</set>

The XPath statement /set/chapter/title selects the titles of all the chapters.
The command //title on the other hand, selects all title elements, including the
title element that is contained below the bookinfo node.

The asterisk (*) command selects all elements contained within the specified
path; //bookinfo/* selects the title, author, and copyright elements.

You move about an XmlDocument (or any other object that implements
IXPathNavigable) via an XPathNavigator. This is the same philosophy that
gives rise to the use of IEnumerators on collection classes – separating the
issues of traversal from the issues of the data structure. However, XPath takes
this one step further: The XPathNavigator is responsible for selecting a

Chapter 17: XML 803

particular node, the XPathNavigator then produces an XPathNodeIterator
to actually move about relative to the position selected by the XPathNavigator.
These relationships are illustrated in Figure 17-4, which illustrates the behavior
of this example:

//:c17:CarNavigator.cs
//Demonstrates XPathNavigator
using System;
using System.Xml;
using System.Xml.XPath;

class CarNavigator {
 CarNavigator(string fName){
 XmlDocument myDocument = new XmlDocument();
 myDocument.Load(fName);

 XPathNavigator myNavigator =
 myDocument.CreateNavigator();

 XPathNodeIterator myIterator =
 myNavigator.Select("//Model/*");

 while (myIterator.MoveNext()) {
 Console.WriteLine(
 "Node {0} Value {1}",
 myIterator.Current.Name,
 myIterator.Current.Value);
 }
 }

 public static void Main(){
 new CarNavigator("car.xml");
 }
}///:~

804 Thinking in C# www.MindView.net

Car

Vin = “12345678”

Model CruiseControlMileage

Units = “Miles”

Data = 80000

Make

Data = “Civic”

Manufacturer

Data = “Honda”

Year

Data = “1992”

myNavigator.Select()

myIterator :
XPathNodeIterator

myDocument :
XmlDocument

Figure 17-4: Navigating with XPathNodeIterator

The CarNavigator() constructor loads the data structure from the car.xml
file. XmlDocument.CreateNavigator() is a factory method that generates
the XPathNavigator. The XPathNavigator.Select() is given an argument
that translates as “select all the children nodes of all the Model nodes.”

There’s an overloaded version of XmlDocument.CreateNavigator() that
takes a reference to an XmlNode as an argument; it creates an
XPathNavigator whose context node is not the root node (as was the case in
the previous example) but the passed-in XmlNode. This allows you to work with
subsets of a large XML document. The next example uses this method to create
an XPathNavigator that navigates across a specific sale from the Northwind
database. Additionally, the XPath selection statement in this example uses an
argument to qualify the nodes returned by XPath.Select(). When an XPath
expression is qualified with square bracket notation, the contents of the square
brackets are logically evaluated. In addition to logical expressions, 1-based index
values can be used. Thus //chapter[3] or //chapter[title=‘Hello, Objects!’] both
select the third chapter of this book’s Docbook representation. In this example,
this type of XPath qualifier is used to select only the sales of a particular
employee:

//:c17:NWindNavigator.cs
//Demonstrates XPathNavigator subselection
using System;
using System.Xml;
using System.Xml.XPath;
using System.Data;
using System.Data.OleDb;

Chapter 17: XML 805

class NWindNavigator {
 public static void Main(string[] args){
 DataSet ds = EmployeesOrders("Nwind.mdb");
 Console.WriteLine(
 "DS filled with {0} rows",
 ds.Tables[0].Rows.Count);

 XmlDataDocument doc = new XmlDataDocument(ds);
 SelectSalesByLastName(doc, "Callahan");
 }

 private static void SelectSalesByLastName(
 XmlDataDocument doc, string lastName){
 XPathNavigator nav = doc.CreateNavigator();
 string xPathSel =
 "//Table[LastName='" + lastName + "']";
 XPathNodeIterator iter = nav.Select(xPathSel);
 while (iter.MoveNext()) {
 XPathNavigator saleNav = iter.Current.Clone();
 saleNav.MoveToFirstChild();
 string fName = saleNav.Value;
 saleNav.MoveToNext();
 string lName = saleNav.Value;
 saleNav.MoveToNext();
 string delDate = saleNav.Value;
 Console.WriteLine(
 "{0} {1} sold for delivery on {2}",
 fName, lName, delDate);
 }
 }

 private static DataSet EmployeesOrders(
 string fileName){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString =
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + fileName;
 DataSet ds = null;
 try {
 cnctn.Open();
 string selStr =

806 Thinking in C# www.ThinkingIn.NET

 "SELECT FirstName, LastName, OrderDate FROM"
 + " EMPLOYEES, ORDERS where "
 + " Employees.EmployeeId = Orders.EmployeeId";
 IDataAdapter adapter =
 new OleDbDataAdapter(selStr, cnctn);

 ds = new DataSet("Employees");
 adapter.Fill(ds);
 } finally {
 cnctn.Close();
 }

 return ds;
 }
}///:~

This example starts similarly to the previous Northwind examples, except instead
of just loading data from the Employees table, this time the SQL SELECT
statement joins the employees and their orders. The resulting dataset is
approximately 800 lines long.

After the DataSet is returned to the NWindNavigator() constructor, the
constructor creates an XmlDataDocument synchronized with the DataSet.
This XmlDataDocument and the last name of one salesperson become
arguments to NWindNavigator.SelectSalesByLastName().

The NWindNavigator.SelectSalesByLastName() method constructs an
XPath selector of the form:

//Table[LastName=’Callahan’]

which creates an XPathNodeIterator for “Every node that is a Table and which
in turn has a LastName child node whose value is ‘Callahan.’”

We are not interested in the Table node, of course, we are interested in its
children nodes: the FirstName, LastName, and DeliveryDate nodes. To
navigate to them, we clone XPathNodeIterator.Current and call the resulting
XPathNavigator saleNav. We use XPathNavigator.MoveToFirstChild()
and XPathNavigator.MoveToNext() to traverse the instance of the Table
node. We write to the screen the values of the various nodes in this sub-tree.

This combination of XPathNavigator.Select(),
XPathNodeIterator.MoveNext(), and XPathNavigator.MoveToXxx()
methods is typical of use. The XPathNavigator.MoveToXxx() methods are

Chapter 17: XML 807

significantly faster than XPathNavigator.Select(), but not as flexible for
complex navigation.

If you will be using a single XPathNavigator.Select() statement repeatedly,
you can use XPathNavigator.Compile() to get a reference to an
XPathExpression, which you can pass in to an overloaded version of
XPathNavigator.Select().

XPath syntax has a few other tricks:

♦ The at symbol (@) is used to specify an attribute. Thus, you might select
a specific car by using /Car[@VIN=“12345678”] or a specific yin node
with /yin[@Id=“8342aaa3-31e4-4d56-95fc-0959301a7ccf”>

♦ You can combine paths with the vertical bar operator (|) . //chapter |
//preface selects all elements that are either chapters or prefaces .

♦ The XPath axes child, descendant, parent, ancestor, following-
sibling, and preceding-sibling can be used to select nodes that have
the appropriate structural relationship with the specified node.
/set/book/chapter[1]/following-sibling selects the second chapter of the
book (remember that XPath indices are
1-based, so chapter[1] selects the first chapter). The child axis is the
default axis and need not be specified.

An XPath explorer
The best way to understand XPath is to experiment. This program loads XML
documents into a TreeView control, and highlights element nodes
corresponding to the XPath selection statement you type into the provided
TextBox.

//:c17:XmlTreeView.cs
//Provides a graphical XPath navigator
using System;
using System.Text;
using System.Drawing;
using System.Xml;
using System.Xml.XPath;
using System.Windows.Forms;

class XmlTreeView : TreeView {
 XmlDocument doc;

 readonly Color DEFAULT_FORECOLOR = Color.Black;

808 Thinking in C# www.MindView.net

 readonly Color DEFAULT_BACKCOLOR = Color.White;
 readonly Color HIGHLIGHT_FORECOLOR = Color.Blue;
 readonly Color HIGHLIGHT_BACKCOLOR = Color.Red;

 internal XmlTreeView(XmlDocument src){
 Init(src);
 }

 private void Init(XmlDocument src){
 doc = new XmlDocument();
 PopulateTreeFromNodeSet(
 src.CreateNavigator(), doc, this.Nodes);
 }

 void PopulateTreeFromNodeSet(
 XPathNavigator nav, XmlNode buildNode,
 TreeNodeCollection pNodeCol){
 do {
 string eType = nav.Name;
 string eVal = nav.Value;
 string nodeText = eType + ": " + eVal;
 XmlTreeNode node = null;
 switch (nav.NodeType) {
 case (XPathNodeType.Element) :
 node = new XmlTreeNode(eType, doc);
 break;
 case(XPathNodeType.Text) :
 node = new XmlTreeNode(eVal, doc);
 break;
 default:
 node = new XmlTreeNode(
 nav.NodeType.ToString(), doc);
 break;
 }
 pNodeCol.Add(node.TreeNode);
 buildNode.AppendChild(node);
 if (nav.HasChildren) {
 XPathNavigator clone = nav.Clone();
 clone.MoveToFirstChild();
 PopulateTreeFromNodeSet(
 clone, node, node.TreeNode.Nodes);

Chapter 17: XML 809

 }
 }while (nav.MoveToNext());
 }

 internal void Highlight(string xPath){
 ResetFormatting();
 try {
 XPathNavigator nav = doc.CreateNavigator();
 XPathNodeIterator iter = nav.Select(xPath);
 while (iter.MoveNext()) {
 XmlNode node =
 ((IHasXmlNode)iter.Current).GetNode();
 if (node is XmlTreeNode) {
 XmlTreeNode tNode = (XmlTreeNode) node;
 tNode.TreeNode.BackColor = Color.Red;
 tNode.TreeNode.ForeColor = Color.Blue;
 Invalidate();
 }
 }
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }

 internal void ResetFormatting(){
 foreach(TreeNode node in Nodes){
 ResetNodeFormatting(node);
 }
 Invalidate();
 }

 private void ResetNodeFormatting(TreeNode node){
 node.BackColor = DEFAULT_BACKCOLOR;
 node.ForeColor = DEFAULT_FORECOLOR;
 foreach(TreeNode child in node.Nodes){
 ResetNodeFormatting(child);
 }
 }

 internal void LoadFile(string fName){
 try {

810 Thinking in C# www.ThinkingIn.NET

 XmlDocument doc = new XmlDocument();
 doc.Load(fName);
 Nodes.Clear();
 Init(doc);
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }
}

class XmlTreeNode : XmlElement {
 internal XmlTreeNode(string val, XmlDocument doc)
 : base("",val,"",doc){
 tn = new TreeNode(val);
 }

 TreeNode tn;
 internal TreeNode TreeNode{
 get { return tn;}
 set { tn = value;}
 }
}

class XmlTreeViewForm : Form {
 XmlTreeView tl;
 TextBox xPathText;

 public XmlTreeViewForm(){
 Text = "XPath Explorer";

 XmlDocument doc = new XmlDocument();
 doc.Load("car.xml");
 tl = new XmlTreeView(doc);
 tl.Dock = DockStyle.Fill;
 Controls.Add(tl);

 Panel cPanel = new Panel();
 cPanel.Dock = DockStyle.Top;
 cPanel.Height = 25;

 Button xPathSel = new Button();

Chapter 17: XML 811

 xPathSel.Text = "Highlight";
 xPathSel.Dock = DockStyle.Left;
 xPathSel.Click += new EventHandler(NewXPath);
 cPanel.Controls.Add(xPathSel);

 xPathText = new TextBox();
 xPathText.Dock = DockStyle.Left;
 xPathText.Width = 150;
 cPanel.Controls.Add(xPathText);

 Label lbl = new Label();
 lbl.Text = "XPath: ";
 lbl.Dock = DockStyle.Left;
 lbl.Width = 60;
 cPanel.Controls.Add(lbl);

 Controls.Add(cPanel);

 MainMenu mainMenu = new MainMenu();
 MenuItem fMenu = new MenuItem("&File");
 mainMenu.MenuItems.Add(fMenu);
 MenuItem open = new MenuItem("&Open");
 fMenu.MenuItems.Add(open);
 open.Click += new EventHandler(FileOpen);
 fMenu.MenuItems.Add(new MenuItem("-"));
 MenuItem exit = new MenuItem("E&xit");
 exit.Click += new EventHandler(AppClose);
 fMenu.MenuItems.Add(exit);

 Menu = mainMenu;
 }

 void NewXPath(object src, EventArgs e){
 string xPath = xPathText.Text;
 tl.Highlight(xPath);
 }

 void FileOpen(object src, EventArgs e){
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter = "XML files (*.xml)|*.xml";
 ofd.FilterIndex = 1;

812 Thinking in C# www.MindView.net

 DialogResult fChosen = ofd.ShowDialog();
 if (fChosen == DialogResult.OK) {
 string fName = ofd.FileName;
 tl.LoadFile(fName);
 }
 }

 void AppClose(object src, EventArgs e){
 Application.Exit();
 }

 public static void Main(){
 Application.Run(new XmlTreeViewForm());
 }
}///:~

The concept of this program is that a TreeView with its TreeNodes is
conceptually similar to an XmlDocument with its XmlNodes. To bridge the
gap between the two classes, we create XmlTreeView, a type of TreeView that
contains a reference to an XmlDocument, and a bunch of XmlTreeNodes, a
type of XmlElement that contains a reference to a TreeNode. An
XPathNavigator selects the XmlNodes in the XmlDocument, selected
XmlNodes that are of type XmlTreeNode change the appearance of their
corresponding TreeNode:

Chapter 17: XML 813

Figure 17-5: The class structure of XmlTreeView

The first task is populating a TreeView with the elements from an
XmlDocument. XmlTreeView.Init(), which the XmlTreeView()
constructor calls, creates a new XmlDocument called doc. The passed-in
XmlDocument src is used as the basis for an XPathNavigator that will walk
over all of its nodes, while the XmlTreeView’s inherited TreeNodeCollection
nodes is the source of the TreeNodes. Init() calls
XmlTreeView.PopulateNodeFromTreeSet with hthese three arguments,
XPathNavigator nav, XmlNode doc (upcast from XmlDocument), and
TreeNodeCollection Nodes.

XmlTreeView.PopulateNodeFromTreeSet() iterates over each XmlNode
in the XPathNavigator nav nodeset. A new XmlTreeNode is created for each
node in the nodeset. The XmlTreeNode() constructor in turn creates a new
TreeNode. The TreeNode is appended to the passed-in TreeNodeCollection
and the XmlTreeNode is appended to the XmlDocument doc. If the node
has children, the method clones the XPathNavigator and recursively calls
itself, this time with arguments set to the cloned XPathNavigator (pointing to a
child node of the original XmlDocument), the just-created XmlTreeNode,
and a reference to the just-created TreeNode. The end result is that

TreeView

XmlTreeView

Sets
appearance Selects

Nodes

XPathNavigator XmlNode

TreeNode

* *

* * Nodes

Nodes

XmlDocument
1 1

doc

XmlTreeNode

tn

* *

814 Thinking in C# www.ThinkingIn.NET

XmlDocument doc contains XmlTreeNodes, each of which maintains a
reference to its TreeNode.

When someone calls XmlTreeView.Highlight() with a string argument
corresponding to an XPath selector, the first step is to reset the formatting of
each TreeNode in the XmlTreeView. This is done with a recursive call to
XmlTreeView.ResetNodeFormatting(), which simply sets the colors of
each TreeNode to their defaults. Once XmlTreeView.Highlight() has reset
the colors, it calls XmlDocument.CreateNavigator() on the
XmlDocument doc, which contains nothing but XmlTreeNodes. So the
XPathNodeIterator created by XPathNavigator.Select() traverses over a
bunch of XmlTreeNodes. Each XmlNode returned is downcast to
XmlTreeNode and the appearance of its corresponding TreeNode is changed
to highlight the selection.

When run, the program provides an easy-to-use explorer of XPath functionality:

Figure 17-6: The XPath Explorer sample in action

Chapter 17: XML 815

Transforming a document
In addition to using XPath to select and navigate XML nodes, the .NET
Framework provides the System.Xml.Xsl namespace4 for transforming XML
documents with Extensible Stylesheet Language Transformations (XSLT). XSLT
is a declarative programming language that transforms XML documents from
one form to another. The most common use of XSLT is to transform an XML
document into a form suitable for display. Often, this means transforming it into
XHTML, an XML-ified version of HTML. Blogs, for instance, typically use XML
as their native storage format and use XSLT for the presentation.

The principle of separating domain data from presentation logic is one that we
have praised in Chapter 14. Unfortunately, XSLT has not “broken out” as a
mainstream technology for Web design; it is not supported in the major tools
used by Web designers, the percentage of browsers incapable of displaying XSLT-
based pages remains at least in the high teens, and the search engines have
difficulty indexing XML-based sites. Although you can set things up so that the
XSLT transformation occurs at the server if the client is using a non-compliant
browser, the burden imposed can be significant, especially if you’re really trying
to exploit the power of XSLT. During the writing of this book, we changed the
www.ThinkingIn.Net site from an XML and XSLT solution to straight HTML,
primarily because of the search engine problem and the performance hit of
server-side conversion.

Microsoft’s decision to ship an XSLT class in the .NET Framework initially seems
a little out of step with the lack of success of XSLT as a display technology,
especially as Microsoft seems to be moving away from client-side XSLT towards
Cascading Style Sheets (CSS) as the preferred mechanism for styling XML for
browser display. However, the key is the deep relationship between
XmlDocuments and DataSets, especially in the XmlDataDocument class,
which synchronizes changes between XML and relational data. Rather than
viewing XslTransform just as a tool for creating interfaces, it is better to think
of it as the final piece of the data-manipulation puzzle; you may be just as likely
to use an XslTransform to restructure a database as to create a Web page.

In this example, we use a DataRelation to retrieve more than one table from
the Northwind relational database.

//:c17:TwoTables.cs

4 The namespace should be called Xslt since it does not support XSL Formatting Objects.

816 Thinking in C# www.MindView.net

//Retrieves 2 tables from Northwind, outputs as XML
using System;
using System.IO;
using System.Xml;
using System.Xml.XPath;
using System.Data;
using System.Data.OleDb;

class TwoTables {
 public static void Main(string[] args){
 DataSet ds = EmpAndOrdRel("Nwind.mdb");

 FileStream outFile = new FileStream("EmpOrd.xml",
 FileMode.Create);
 ds.WriteXml(outFile);
 outFile.Close();
 }

 private static DataSet EmpAndOrdRel(
 string fileName){
 OleDbConnection cnctn = new OleDbConnection();
 cnctn.ConnectionString =
 "Provider=Microsoft.JET.OLEDB.4.0;" +
 "data source=" + fileName;
 DataSet ds = null;
 try {
 cnctn.Open();
 string empStr =
 "SELECT EmployeeId, FirstName, LastName FROM "
 + "EMPLOYEES AS EMPLOYEES";
 OleDbDataAdapter empAdapter =
 new OleDbDataAdapter(empStr, cnctn);

 string ordStr =
 "SELECT * FROM ORDERS AS ORDERS;";
 OleDbDataAdapter ordAdapter =
 new OleDbDataAdapter(ordStr, cnctn);

 ds = new DataSet("TwoTables");
 empAdapter.Fill(ds,"Employees");
 ordAdapter.Fill(ds,"Orders");

Chapter 17: XML 817

 DataRelation rel = new DataRelation(
 "EmpOrder",
 ds.Tables["Employees"].Columns["EmployeeId"],
 ds.Tables["Orders"].Columns["EmployeeId"]);
 ds.Relations.Add(rel);
 } finally {
 cnctn.Close();
 }
 return ds;
 }
}///:~

The result is an XML document of this form:

<TwoTables>
 <Employees>
 <EmployeeId>1</EmployeeId>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 <Employees>
 <EmployeeId>2</EmployeeId>
 <FirstName>Andrew</FirstName>
 <LastName>Fuller</LastName>
 </Employees>
…
 <Orders>
 <OrderID>10330</OrderID>
 <CustomerID>LILAS</CustomerID>
 <EmployeeID>3</EmployeeID>
 <OrderDate>1994-11-16T00:00:00.0000000-
08:00</OrderDate>
 <RequiredDate>1994-12-14T00:00:00.0000000-
08:00</RequiredDate>
 <ShippedDate>1994-11-28T00:00:00.0000000-
08:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>12.75</Freight>
 <ShipName>LILA-Supermercado</ShipName>
 <ShipAddress>Carrera 52 con Ave. BolÃ-var #65-98 Llano
Largo</ShipAddress>

818 Thinking in C# www.ThinkingIn.NET

 <ShipCity>Barquisimeto</ShipCity>
 <ShipRegion>Lara</ShipRegion>
 <ShipPostalCode>3508</ShipPostalCode>
 <ShipCountry>Venezuela</ShipCountry>
 </Orders>
…
</TwoTables>

Both <Employees> and <Orders> elements are placed as immediate children
of the root node <TwoTables>. The following XSLT program is designed to
transform the output of the TwoTables example:

<!-- Transforms EmpOrd.XML output from TwoTables.cs
-->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/TwoTables">
 <EmployeeOrders>
 <xsl:apply-templates select="./Employees"/>
 </EmployeeOrders>
</xsl:template>

<xsl:template match="/TwoTables/Employees">
 <xsl:variable name="empId" select="./EmployeeId"/>
 <Employee>
 <xsl:attribute name="Id">
 <xsl:value-of select="$empId"/>
 </xsl:attribute>
 <FullName>
 <xsl:value-of select="./FirstName"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="./LastName"/>
 </FullName>
 <xsl:call-template name="OrdsForId">
 <xsl:with-param name="empId"
 select="$empId"/>
 </xsl:call-template>
 </Employee>
</xsl:template>

<xsl:template name="OrdsForId">

Chapter 17: XML 819

 <xsl:param name="empId"/>
 <xsl:apply-templates
 select="//Orders[EmployeeID=$empId]"/>
</xsl:template>

<xsl:template match="Orders">
 <xsl:variable name="Id">
 <xsl:value-of select="./OrderID"/>
 </xsl:variable>
 <Order>
 <xsl:attribute name="Id">
 <xsl:value-of select="$Id"/>
 </xsl:attribute>
 <DeliveryDate>
 <xsl:value-of select="./OrderDate"/>
 </DeliveryDate>
 </Order>
</xsl:template>

</xsl:stylesheet>

When applied to a target document, an XSL stylesheet creates a new document
whose structure is determined by the stylesheet. An XSL stylesheet consists of a
set of templates, which use either an XPath selector in a match attribute or a text
name attribute as identifiers. Templates contain a mix of XSLT commands, such
as <xsl:call-template> and <xsl:for-each>, and non-XSLT elements. The
first template in this stylesheet matches the <TwoTables> root element and
creates a new root element <EmployeeOrders>. The contents of the
<EmployeeOrders> element are filled with the results of applying templates to
the nodeset specified in the <xsl:apply-templates select="./Employees">.
The second template matches each of these <Employees> nodes. The second
template shows some additional capabilities of the XSLT language: variables,
whitespace output, and the ability to explicitly call a template rather than rely on
XPath selectors. The second template calls the OrdsForId template with the
value of the empId variable that reflects the <EmployeeId> node in the
original XML document. OrdsForId uses this value to create an XPath selector
that retrieves the orders for the particular employee. The final template of the
stylesheet creates an <Order> element with an Id attribute and a <SaleDate>
element that corresponds to the original <OrderDate> element.

This program applies the stylesheet, saved in a file named EmpOrd.xsl, to the
EmpOrd.xml data produced by the TwoTables program:

820 Thinking in C# www.MindView.net

//:c17:QuickTransform.cs
//Demonstrates XslTransform class
using System;
using System.Xml;
using System.Xml.XPath;
using System.Xml.Xsl;

class QuickTransform {
 public static void Main(){
 XslTransform xslt = new XslTransform();
 xslt.Load("empord.xsl");
 XPathDocument doc =
 new XPathDocument("empord.xml");
 XmlTextWriter writer =
 new XmlTextWriter(Console.Out);
 writer.Formatting=Formatting.Indented;
 xslt.Transform(doc, null, writer);
 }
}///:~

QuickTransform creates an XslTransform object and loads the XSL
stylesheet. An XPathDocument provides a fast, read-only IXPathNavigable
object intended especially for XSLT processing. XslTransform.Transform()
works with any IXPathNavigable object (including XmlDocument and
XmlDataDocument), but XPathDocument is preferred for high-speed
transformation.

The second argument to XslTransform.Transform() is an
XsltArgumentList that allows you to extend the power of the XslTransform
object; such extensions are beyond the range of this discussion.

When run, this program transforms the output of TwoTables into an XML
document of the form:

<EmployeeOrders>
 <Employee Id="1">
 <FullName>Nancy Davolio</FullName>
 <Order Id="10340">
 <SaleDate>1994-11-29T00:00:00.0000000-
08:00</SaleDate>
 </Order>
 <Order Id="10258">

Chapter 17: XML 821

 <SaleDate>1994-08-17T00:00:00.0000000-
07:00</SaleDate>
 </Order>
…etc…
 </Employee>
</EmployeeOrders>

While you could achieve this type of output by manipulating an XmlDocument
programmatically, once understood, XSLT makes XML transformations much
easier than the equivalent direct programming tasks.

Summary
XML is a non-compact, text-based format for specifying structured data. Its
strengths come from its readability, editability, and structure, which is neither
relational nor object-oriented but close enough to bridge these worlds and
flexible enough to be viewed as either a stream or as a treelike structure. XML
itself is not all that interesting, but XML is the lingua franca for an entire
generation of emerging data-interchange standards.

The .NET Framework allows you to work with XML as either a stream, using
XmlTextReader and XmlTextWriter, or as a tree, using XmlDocument,
which encapsulates the Core of W3C DOM Levels 1 and 2. Additionally, the .NET
Framework exposes several pieces of core functionality in XML forms; objects
can be serialized to and from XML, as can ADO.NET data.

The advantage of viewing an XML document as a tree is that you can apply
various traversals and transformations to it, using the same principles that apply
to all data structures (see Chapter 10). In particular, XPath is an XML
specification that allows you to specify complex traversals that are themselves
expressed in XML and XSLT allows you to specify complex transformations in
XML.

The advantage of viewing an XML document as a stream is that it makes event-
driven processing simple, and one can begin acting on XML data before (and
whether or not) a complete document has been read. This is particularly valuable
when moving XML to and from a network connection, but may also be the right
approach any time XML documents will grow very large.

XML has emerged as the de facto standard for serializing data over the Web, but
XML does not have a native way to express the full complexity of object-oriented
data structures, such as reference cycles in which two objects refer to each other.

822 Thinking in C# www.ThinkingIn.NET

If these sorts of things are necessary to the application, they must be added
programmatically.

Although XML is not a perfect solution, it has absolutely exploded onto the
programming scene and will dominate over-the-net data transfer for the next
decade at least. Because .NET embraces XML as the glue that binds stream,
database, and object models together, it is important to develop a good
understanding of XML’s strengths and weaknesses.

Exercises
1. Investigate XML specifications in an industry or topic in which you are

interested. Possibilities range from education (the Schools
Interoperability Framework at http://www.sifinfo.org/) to travel (the
Open Travel Alliance at http://www.opentravel.org/) to chemistry
(Chemical Markup Language at http://www.xml-cml.org/).

2. Write a program that compares the time needed to count the number of
nodes in a large XML document using an XmlTextReader (stream-
based) with the time required by an XmlDocument (document-based)
approach.

3. Modify the program in the previous example to select a random number
of nodes (say, 100) and prints these nodes to the screen. Compare the
times required by the stream-based versus document-based approach.

4. Write a program that creates an XML document that represents a deck of
cards:

<Deck>
 <Card>
 <Suit>Spade</Suit>
 <Value>Ace</Value>
 </Card>
… etc …
</Deck>

5. Write a program to shuffle the “deck of cards” created in the previous
example. This will require investigating the difficulties associating with
creating a “perfect” shuffle algorithm.

6. Create an XML schema that describes the “deck of cards” from the
previous examples.

Chapter 17: XML 823

7. Write a program that transforms the shuffled “deck of cards” XML
document into a “deal” of four five-card hands:

<Deal>
 <Hand id="1">
 <Card>
 <Suit>Spade</Suit>
 <Value>Ace</Value>
 </Card>
 <Card>
 <Suit>Club</Suit>
 <Value>2</Value>
 </Card>
 … etc …
 </Hand>
 <Hand id="2">
 … etc…
 </Hand>
 … etc …
</Deal>

8. Repeat the above exercise but create the “Deal” solely by applying an
XSLT transform to a “shuffled deck.”

9. Write a program that ranks the five-card hands from the previous
exercises according to standard poker rules.

10. Using what you have learned from the previous exercises, estimate the
feasibility of creating an XML standard for the description of card games.

824

18: Web
Programming

The Web has profound economic consequences for any
industry that derives value from the flow of information,
which is to say, all industries. As the desktop becomes a
legacy form factor, cutting edge programming has moved
in two directions: onto the server and into post-desktop
devices such as handhelds, tablets, and phones. The .NET
Framework makes programming for both these worlds
straightforward. Programming non-desktop devices does
not rely on radically different “enterprise” or “mobile”
programming models or types. Rather, attributes,
managed memory and threading, the scalable database
architecture of ADO.NET, and the power of XML are
added to the solid object-oriented support of the C#
language.

Network programming in .NET is easy; a characteristic of networked .NET
applications is how little code is devoted to network-specific issues. This trend is
taken to its extreme with the WebMethodAttribute, which makes a method
Web-callable with 11 keystrokes.1 Although WebMethodAttribute is likely to
be the most commonly used way you will expose methods to the Web, we’re going
to give a Cook’s tour of more explicit ways to send data over the network.

Identifying a machine
Of course, in order to tell one machine from another to make sure that you are
connected to the machine you want, there must be some way of quniquely
identifying machines on a network. Early networks were satisified to provide

1 And the purchase of a Microsoft server operating system!

Chapter 18: Web Programming 825

unique machines within the local network. However, with IP (Internet Protocol)
becoming by far the most common way of connecting computers, every machine
in the world can have a unique identity. This is accomplished with the IP address,
a 32-bit number that is expressed in the “dotted quad” format that has become so
familiar.2 Even more often, the DNS (Domain Name Service) is used to look up
the particular IP address of a human-readable name such as
www.ThinkingIn.Net.

.NET provides the IPAddress class to encapsulate the address. You can create
an IPAddress for a specific 32-bit number, but you are far more likely to use
IPAddress.Parse() method to create an IPAddress from a dotted-quad
string or the Resolve() or GetHostByName() methods of the Dns class.

 The following program uses Dns.GetHostByName() to produce your IP
addresses. To use it effectively, you need to know the name of your computer.
You can find this in the Computer Name tab in the My Computer
Properties dialog.

//:c18:WhoAmI.cs
//Resolves current IP addresses
using System;
using System.Net;

class WhoAmI {
 public static void Main(string[] args){
 string machineName = args.Length == 0 ?
 "localhost" : args[0];
 IPHostEntry addresses =
 Dns.GetHostByName(machineName);
 foreach(IPAddress ip in addresses.AddressList){
 Console.WriteLine(ip);
 }
 }
}///:~

If you run this program with no command-line arguments, it will resolve the
address of “localhost,” which always resolves as 127.0.0.1. You can also use it find
that www.microsoft.com resolves to several IP addresses.

2 Curiously, .NET’s IPAddress class uses a 64-bit long rather than a 32-bit uint to store
this number. This is especially curious because IPv6, the long-awaited replacement of the
32-bit IPv4 is 128 bits in length, so it’s not a case of the class having forward compatibility.

826 Thinking in C# www.ThinkingIn.NET

In addition to an address, IP uses a second more-specific location called a port,
which is supposed to allow fine-tuning of what services are made available to the
outside world. Of course, most system administrators are paranoid about
opening ports to the outside world, perhaps because they do not understand that
a process must be listening at the port to introduce a vulnerability.3 This has
created the absurd situation where there are more services than ever, but the
majority of them are “tunneled” through the Web Server at port 80, thus
reducing the ability of system administrators to quickly gain a clear picture of
what services are causing what activity on the network.

Sockets
Data sent over the Internet is split into datagrams, each of which contains a
header containing addressing information and a payload containing data. The
developers of Berkeley UNIX did a great service to the world by abstracting all
the bookkeeping details associated with acknowledging, retrying, and
reassembling all this data so that it appears as a stream no different than that
which is read from a local file system. The facility for doing this is called Berkeley
sockets and .NET exposes them via Socket and related classes in the
System.Net.Sockets namespace.

In the .NET Framework, you use a socket to connect two machines, then you get a
NetworkStream that lets you treat the socket like any other IO stream object.
You get this NetworkStream from an even higher-level abstraction than
Socket, though: a TcpListener that a server uses to listen for incoming
connections, and a TcpClient that a client uses in order to initiate a
conversation. Once a client makes a socket connection, the TcpListener returns
(via the AcceptTcpClient() method) a corresponding server-side TcpClient
through which direct communication will take place. From then on, you have a
TcpClient to TcpClient connection and you treat both ends the same. At this
point, you use TcpClient.GetStream() to produce the NetworkStream
objects from each TcpClient. You will usually decorate these with buffers and
formatting classes just like any other stream object described in Chapter 12.

Whois for ZoneAlarm
This example shows how easy it is to write a socket-based utility using the
TcpClient class. Most people do not have a dedicated firewall machine at their

3 Although even one open port makes the server or network visible and thus potentially a
target. However, if you run a Web server, your potential enemies will know your IP
address.

Chapter 18: Web Programming 827

home. While Windows XP provides a personal firewall, for various reasons one of
use (Larry) runs ZoneAlarm from Zone Labs. While the payware version of
ZoneAlarm provides a whois program for determining information on specific
IP addresses, it is a manual process. After seeing a surprisingly large volume of
alerts logged; he wanted to see if any addresses in particular were causing
trouble. This program extracts IP addresses from the ZoneAlarm logfile, counts
the number of events from that IP and, if the number of events exceeds a
threshold, runs a whois query on the IP address:

//:c18:ZALogAnalyzer.cs
//Parses ZoneAlarm logfiles for suspicious IP sources
//Compile with:
//csc /reference:Whois.exe ZALogAnalyzer.cs
using System;
using System.Collections;
using System.IO;
using System.Net;
using System.Net.Sockets;

class ZALogAnalyzer {
 readonly int MULTI_HITTER_THRESHOLD = 500;

 StreamReader GetFile() {
 StreamReader log =
 File.OpenText("ZALog.txt");
 return log;
 }

 void ReadFile() {
 Hashtable sources = new Hashtable();
 StreamReader log = GetFile();
 string line = null;
 int i = 0;
 while ((line = log.ReadLine()) != null) {
 BlockInfo info = BlockInfo.Build(line);
 if (info != null && info is FWin) {
 IPAddress src = ((FWin)info).Origin;
 Object cnt = sources[src];
 if (cnt == null)
 sources[src] = 1;
 else {

828 Thinking in C# www.MindView.net

 sources[src] = ((int)cnt) + 1;
 }
 i++;
 if ((i % 1000) == 0) {
 Console.WriteLine(i);
 }
 }
 }
 log.Close();
 Console.WriteLine(i);
 Console.WriteLine(sources.Count);
 int multiHitters = 0;
 foreach(IPAddress src in sources.Keys){
 if ((int)sources[src] >
 MULTI_HITTER_THRESHOLD) {
 multiHitters++;
 Console.WriteLine(
 src + ": " + sources[src]);
 Whois.OwnerOf(src);
 }
 }
 Console.WriteLine(
 "{0} multihitters,", multiHitters);
 }

 public static void Main() {
 ZALogAnalyzer prog = new ZALogAnalyzer();
 prog.ReadFile();
 }
}

class BlockInfo {
 private const int I_FWIN = 14;

 //Can't be instantiated by others
 protected BlockInfo(){}

 public static BlockInfo Build(string csv) {
 string[] components =
 csv.Split(new Char[]{',',':', '(', ')'});
 switch (components.Length) {

Chapter 18: Web Programming 829

 case I_FWIN :
 return new FWin(components);
 default:
 return null;
 }
 }
}

class FWin : BlockInfo {
 //Protect construction
 protected FWin(){}

 DateTime time;
 IPAddress originator;
 public IPAddress Origin{
 get{return originator;}
 set{ originator = value;}
 }
 int targetPort;
 bool wasTCP;
 string flags;

 internal FWin(string[] comp) {
 string dateTime =
 string.Format("{1} {2}:{3}", comp);
 time = DateTime.Parse(dateTime);
 originator = IPAddress.Parse(comp[6]);
 targetPort = Int32.Parse(comp[9]);
 wasTCP = (comp[10] == "TCP") ? true : false;
 flags = comp[12];
 }
}///:~ (Example continues with Whois.cs)

The ZALogAnalyzer starts by hard-coding a few assumptions: that only those
IP addresses that generated more than 500 logged events are worthy of
investigation, and that the ZoneAlarm log is in its default path.
ZALogAnalyzer.GetFile() uses File.OpenText(), which returns a
StreamReader for the ZoneAlarm log.

ZALogAnalyzer.ReadFile() loops over every line in the log. Each line is
passed to the static method BlockInfo.Build(). Data in the ZoneAlarm log is of
this form (new lines are indicated with ‘\n’) :

830 Thinking in C# www.ThinkingIn.NET

FWOUT,2002/05/09,01:30:07 -7:00
GMT,192.168.1.1:1026,1.2.3.4:53,UDP \n
FWIN,2002/05/09,01:57:22 -7:00
GMT,1.2.3.4:0,192.168.1.1:0,ICMP (type:3/subtype:13) \n

The first line indicates that ZoneAlarm blocked an outbound DNS query from the
local machine (IP address 192.168.1.1) to the machine at IP address 1.2.3.4. For
the purposes of this utility, we’re going to ignore outbound events4 and look only
at inbound events. String.Split() separates each line by the passed-in Char
parameters. This will split the lines we’re interested in into a string[] array of a
characteristic I_FWIN length.

BlockInfo.Build() is a skeleton of a more capable method. It is defined as
returning a BlockInfo. FWin, the only type returned by the current
implementation, is a subtype of BlockInfo. However, different utilities might be
interested in creating different types to interpret different line types, and one can
imagine BlockInfo.Build() recognizing them, putting them in their own
cases, and returning different subtypes of BlockInfo. This is a variation on the
Builder creational pattern; Builder uses a Director class that is not part of the
inheritance hierarchy to determine the specific subtype to be created.

 The FWin() constructor uses String.Format() to reassemble three
components from the logfile line into a string appropriate for consumption by
DateTime.Parse(). The fourth line of the FWin() constructor introduces our
first network-specific code when IPAddress.Parse() is used to transform the
dotted-quad into an IP address.

Back in ZALogAnalyzer.ReadFile(), if the results of parsing the logfile line
result in the creation of a FWin object, the Hashtable sources is checked to
see if it has the IPAddress as an existing key. If not, the IPAddress is added as
a new key and the value is set to 1. If the IPAddress is an existing key, the value
is cast to an int and incremented.

Since the ZoneAlarm logs can be quite large, every 1000 lines, we write an
informational message to the console. Once the log is finished, we write the total
number of lines and the number of different IP addresses associated with
inbound events. Those IPAddresses associated with more than
MULTI_HITTER_THRESHOLD events are sent to that static method
Whois.OwnerOf().

4 A similar utility that checks the target of outbound events might also be helpful in
assuring that your machine has not been compromised.

Chapter 18: Web Programming 831

//:c18:Whois.cs
//Barebones "whois" utility
using System;
using System.Text;
using System.IO;
using System.Net;
using System.Net.Sockets;

public class Whois {
 private static string
 RESOLVER = "whois.arin.net";
 private static readonly int WHOIS_PORT = 43;

 public static string OwnerOf(IPAddress address){
 string whoisquery = "whois " + address;
 StringBuilder response = new StringBuilder();
 TcpClient cxn = null;
 try {
 cxn = new TcpClient(RESOLVER, WHOIS_PORT);
 BufferedStream stream =
 new BufferedStream(cxn.GetStream());
 StreamWriter upStream =
 new StreamWriter(stream);
 upStream.WriteLine(whoisquery);
 upStream.Flush();
 StreamReader downStream =
 new StreamReader(stream);
 string aLine;
 do {
 aLine = downStream.ReadLine();
 response.Append(aLine + "\n");
 }while (aLine != null);
 Console.WriteLine(
 response.ToString());
 } finally {
 if (cxn != null)
 cxn.Close();
 }
 return response.ToString();
 }

832 Thinking in C# www.MindView.net

 public static void Main(string[] args){
 IPHostEntry he = Dns.Resolve(args[0]);
 if (args.Length == 2) {
 RESOLVER = args[1];
 }
 if (he.AddressList != null &&
 he.AddressList.Length > 0) {
 IPAddress tgt = he.AddressList[0];
 Whois.OwnerOf(tgt);
 }
 }
}///:~

Whois functionality requires a service provider, by default this utility uses one
from the American Registry for Internet Numbers although you can pass in an
alternate provider on the command-line.

The TcpClient is the primary class for reading socket-based data. After declaring
a TcpClient cxn, its used inside a try block so that we can know that we will
always have an opportunity to close it. The TcpClient() constructor takes a
string and an int that is the whois port on the RESOLVER.
TcpClient.GetStream() returns a network connection as a Stream which can
be used in any way discussed in Chapter 10. The NetworkStream returned can
be used for both sending and receiving data over the network, which is exactly
what is done here. The StreamWriter upStream is used to send the whois
query to the whois provider, while the StreamReader downStream loops
over the response, adding the lines to the StringBuilder response. When
done, the result is printed on the console and the finally block ensures that the
TcpClient is closed.

Whois.cs has a Main() method to make it a more general-purpose utility than
just as a tool for analyzing ZoneAlarm logs. The Dns.Resolve() method accepts
either a dotted-quad or human-readable Internet address. If you pass two
arguments on the command-line, the second overrides the ARIN whois server.

Even though Whois.exe is a stand-alone program, you can still reference it from
ZALogAnalyzer as if it were a library assembly. To compile
ZALogAnalyzer.cs, first compile Whois and then compile ZALogAnalyzer:

csc /reference:Whois.exe ZALogAnalyzer.cs

Chapter 18: Web Programming 833

Receiving incoming connections
The previous example used an existing whois server. If you wish to create your
own server, you will use the TcpListener class. This program demonstrates a
very simple server. All the server does is wait for a connection, then uses the
TcpClient produced by that connection to create a NetworkStream. After
that, everything it reads coming in it echoes back down until it receives the line
END, at which time it closes the connection.

The client makes the connection to the server, then creates a NetworkStream.
Lines of text are sent through the Stream and received lines are printed to the
console (in this case, what is printed is just the echo of the lines sent up).

Here is the server:

//:c18:JabberServer.cs
// Very simple server that just
// echoes whatever the client sends.
using System;
using System.Net;
using System.Net.Sockets;
using System.IO;

public class JabberServer {
 // Choose a port outside of the range 1-1024:
 public static readonly int PORT = 1711;
 public static void Main(){
 TcpListener server = new TcpListener(PORT);
 TcpClient cnxn = null;
 try {
 server.Start();
 Console.WriteLine("Started: " + server);
 // Blocks until a connection occurs:
 cnxn = server.AcceptTcpClient();
 Console.WriteLine(
 "Connection accepted: "+ cnxn);C#
 StreamReader reader =
 new StreamReader(cnxn.GetStream());
 StreamWriter writer =
 new StreamWriter(cnxn.GetStream());
 writer.AutoFlush = true;
 Console.WriteLine("Beginning receive loop");

834 Thinking in C# www.ThinkingIn.NET

 while (true) {
 String str = reader.ReadLine();
 if (str == "END") break;
 Console.WriteLine("Echoing: " + str);
 writer.WriteLine(str);
 }
 //Close connection, stop server
 } finally {
 try {
 Console.WriteLine("closing...");
 cnxn.Close();
 } finally {
 server.Stop();
 }
 }
 }
}///:~

You can see that the TcpListener just needs a port number, not an IP address
(since it’s running on this machine!). You call TcpListener.Start() and
TcpListener.Stop() to control when you want to listen at the underlying port.
After you have called TcpListener.Start(), the call to
TcpListener.AcceptTcpClient(), blocks until some client tries to connect to
it. That is, it’s there waiting for a connection, but other processes can run (see
Chapter 16). When a connection is made, TcpListener.AcceptTcpClient()
returns with a TcpClient object representing that connection.

The responsibility for cleaning up the sockets is crafted carefully here. Nested
try-finally blocks are used to ensure that we will both close the TcpClient
cnxn and stop the TcpListener. If the ServerSocket constructor fails, the
program just quits (notice we must assume that the constructor for
ServerSocket doesn’t leave any open network sockets lying around if it fails).
For this case, main() throws IOException so a try block is not necessary. If
the ServerSocket constructor is successful then all other method calls must be
guarded in a try-finally block to ensure that, no matter how the block is left, the
ServerSocket is properly closed.

The same logic is used for the Socket returned by accept(). If accept() fails,
then we must assume that the Socket doesn’t exist or hold any resources, so it
doesn’t need to be cleaned up. If it’s successful, however, the following
statements must be in a try-finally block so that if they fail the Socket will still
be cleaned up. Care is required here because sockets use important nonmemory

Chapter 18: Web Programming 835

resources, so you must be diligent in order to clean them up (see Chapters 5 and
11).

The next part of the program looks just like opening files for reading and writing
except that the StreamReader and StreamWriter are created from the
NetworkStream object returned by TcpClient.GetStream(). The
StreamWriter object has its Autoflush property set to true so that after every
call to StreamWriter.Write() or StreamWriter.WriteLine(), the buffer is
sent over the network. Flushing is important for this particular example because
the client and server each wait for a line from the other party before proceeding.
If flushing doesn’t occur, the information will not be put onto the network until
the buffer is full, which in this example doesn’t happen, resulting in the programs
just sitting after the initial connection is made.

When writing network programs you need to be careful about using automatic
flushing. Every time you flush the buffer a packet must be created and sent. In
this case, that’s exactly what we want, since if the packet containing the line isn’t
sent then the handshaking back and forth between server and client will stop. Put
another way, the end of a line is the end of a message. But in many cases,
messages aren’t delimited by lines so it’s much more efficient to not use auto
flushing and instead let the built-in buffering decide when to build and send a
packet. This way, larger packets can be sent and the process will be faster.

The infinite while loop reads lines from the StreamReader reader and writes
information to the console and to the StreamWriter writer. Note that reader
and writer could be any streams, they just happen to be connected to the
network.

When the client sends the line consisting of “END,” the program breaks out of the
loop, closes the TcpClient, and stops the TcpListener.

Here’s the client:

//:c18:JabberClient.cs
// Very simple client that just sends
// lines to the server and reads lines
// that the server sends.
using System;
using System.Net;
using System.Net.Sockets;
using System.IO;

public class JabberClient {

836 Thinking in C# www.MindView.net

 private static readonly int PORT = 1711;
 public static void Main(string[] args){
 IPAddress addr = IPAddress.Loopback;
 if (args.Length == 1) {
 addr = Dns.Resolve(args[0]).AddressList[0];
 }
 Console.WriteLine("addr = " + addr.ToString());
 TcpClient client = new TcpClient();
 // Guard everything in a try-finally to make
 // sure that the socket is closed:
 try {
 Console.WriteLine("Client = " + client);
 client.Connect(addr, PORT);
 StreamReader reader =
 new StreamReader(client.GetStream());
 StreamWriter writer =
 new StreamWriter(client.GetStream());
 writer.AutoFlush = true;
 for (int i = 0; i < 10; i ++) {
 writer.WriteLine("howdy " + i);
 string str = reader.ReadLine();
 Console.WriteLine(str);
 }
 writer.WriteLine("END");
 } finally {
 Console.WriteLine("closing...");
 client.Close();
 }
 }
} ///:~

In Main() you can see an alternative to Dns.Resolve() for getting the local
IPAddress; if this program is run without a command-line argument, the
IPAddress addr is set to the special “loopback” IP address of 127.0.0.1.

Once the TcpClient object has been connected to the JabberServer with the
call to TcpClient.Connect(), the process of turning its NetworkStream into
a StreamReader and StreamWriter is the same as in the server (again, in
both cases you start with a TcpClient). Here, the client initiates the conversation
by sending the string “howdy” followed by a number. Note that the buffer must
again be flushed (which happens automatically since the writer’s Autoflush

Chapter 18: Web Programming 837

property has been set to true). Each line that is sent back from the server is
written to the console to verify that everything is working correctly. To terminate
the conversation, the agreed-upon “END” is sent. If the client simply hangs up,
then the server throws an exception.

You can see that the same care is taken here to ensure that the network resources
represented by the TcpClient are properly cleaned up, using a try-finally block.

Sockets produce a “dedicated” connection that persists until it is explicitly
disconnected. (The dedicated connection can still be disconnected unexplicitly if
one side, or an intermediary link, of the connection crashes.) This means the two
parties are locked in communication and the connection is constantly open. This
seems like a logical approach to networking, but it puts an extra load on the
network. Later in this chapter you’ll see a different approach to networking, in
which the connections are only temporary.

Serving multiple clients
The JabberServer works, but it can handle only one client at a time. In a typical
server, you’ll want to be able to deal with many clients at once. The answer is
multithreading, and in languages that don’t directly support multithreading this
means all sorts of complications. In Chapter 16 you saw that multithreading in
.NET is about as simple as possible, considering that multithreading is a rather
complex topic. Because threading in C# is reasonably straightforward, making a
server that handles multiple clients is relatively easy.

The basic scheme is to make a single ServerSocket in the server and call
accept() to wait for a new connection. When accept() returns, you take the
resulting Socket and use it to create a new thread whose job is to serve that
particular client. Then you call accept() again to wait for a new client.

In the following server code, you can see that it looks similar to the
JabberServer.java example except that all of the operations to serve a
particular client have been moved inside a separate thread class:

//:c18:MultiJabberServer.cs
// A server that uses multithreading to handle
//any number of clients
using System;
using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Threading;

838 Thinking in C# www.ThinkingIn.NET

public class MultiJabberServer {
 // Choose a port outside of the range 1-1024:
 public static readonly int PORT = 1711;
 public static void Main(){
 new MultiJabberServer();
 }

 public MultiJabberServer(){
 TcpListener server = new TcpListener(PORT);
 try {
 server.Start();
 Console.WriteLine("Started: " + server);
 while (true) {
 // Blocks until a connection occurs:
 TcpClient cnxn = server.AcceptTcpClient();
 Console.WriteLine(
 "Connection accepted: "+ cnxn);
 new ServeOneJabber(cnxn);
 }
 } catch (Exception ex) {
 Console.WriteLine(ex);
 } finally {
 server.Stop();
 }
 }
}

class ServeOneJabber {
 TcpClient cnxn;

 internal ServeOneJabber(TcpClient cnxn){
 this.cnxn = cnxn;

 ThreadStart oneServer =
 new ThreadStart(Run);
 Thread svrThread = new Thread(oneServer);
 svrThread.Start();
 }

 public void Run(){

Chapter 18: Web Programming 839

 try {
 StreamReader reader =
 new StreamReader(cnxn.GetStream());
 StreamWriter writer =
 new StreamWriter(cnxn.GetStream());
 writer.AutoFlush = true;
 Console.WriteLine("Beginning receive loop");
 while (true) {
 String str = reader.ReadLine();
 if (str == "END") break;
 Console.WriteLine("Echoing: " + str);
 writer.WriteLine(str);
 }
 } finally {
 cnxn.Close();
 }
 }
}///:~

The MultiJabberServer() constructor starts the TcpListener and waits for a
connection to be made. When the connection is made, it creates a
ServeOneJabber object, passing it the TcpClient that represents the new
connection.

The ServeOneJabber() constructor stores the TcpClient cnxn in the
instance variable of the same name, creates a ThreadStart delegate, and starts
the new Thread. This constructor finishes quickly and allows
MultiJabberServer to resume listening for other connection requests.

The ServeOneJabber.Run() method is the thread delegate method and its
content is identical to the original JabberServer’s logic of just echoing whatever
is sent to it.

The responsibility for cleaning up the TcpClient can not be trusted to the
MultiJabberServer that creates it, though. Rather, ServeOneJabber.Run()
takes on the responsibility of calling TcpClient.Close() inside a finally clause.

Notice the simplicity of the MultiJabberServer. As before, a TcpListener is
created and AcceptTcpClient() is called to allow a new connection. But this
time, the return value (a TcpClient) is passed to the constructor for
ServeOneJabber, which creates a new thread to handle that connection. When
the connection is terminated, the thread simply goes away.

840 Thinking in C# www.MindView.net

To test that the server really does handle multiple clients, the following program
creates many clients (using threads) that connect to the same server. The
maximum number of threads allowed is determined by the final int
MAX_THREADS. You can experiment with MAX_THREADS to see where
your particular system begins to have trouble with too many connections.

//:c18:MultiJabberClient.cs
// Client that tests the MultiJabberServer by
//starting up multiple clients

using System;
using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Threading;

public class MultiJabberClient {
 private static readonly int PORT = 1711;
 private static readonly int MAX_THREADS = 25;
 public static void Main(string[] args){
 IPAddress addr = IPAddress.Loopback;
 if (args.Length == 1) {
 addr = Dns.Resolve(args[0]).AddressList[0];
 }
 Console.WriteLine("addr = " + addr.ToString());
 for (int i = 0; i < MAX_THREADS; i++) {
 new MultiJabberClient(i, addr);
 }
 }

 int index;
 IPAddress addr;

 MultiJabberClient(int index, IPAddress addr){
 this.index = index;
 this.addr = addr;
 ThreadStart del = new ThreadStart(Run);
 Thread clientThread = new Thread(del);
 clientThread.Start();
 }

Chapter 18: Web Programming 841

 public void Run(){
 TcpClient client = new TcpClient();
 // Guard everything in a try-finally to make
 // sure that the socket is closed:
 try {
 Console.WriteLine("Client = " + index);
 client.Connect(addr, PORT);
 StreamReader reader =
 new StreamReader(client.GetStream());
 StreamWriter writer =
 new StreamWriter(client.GetStream());
 writer.AutoFlush = true;
 for (int i = 0; i < 10; i ++) {
 writer.WriteLine("howdy {0} from client {1} ",
 i, index);
 string str = reader.ReadLine();
 Console.WriteLine(str);
 }
 writer.WriteLine("END");
 } finally {
 Console.WriteLine("closing client {0}", index);
 client.Close();
 }
 }
} ///:~

The MultiJabberClient constructor takes an int index and InetAddress,
stores them in local variables, and fires up a Thread using
MultiJabberClient.Run() for its behavior. MultiJabberClient.Run() does
just what JabberClient did: connect to the server with a TcpClient. You’re
probably starting to see the pattern: The TcpClient is always used to create
some kind of StreamReader and/or StreamWriter. Here, messages are sent
to the server and information from the server is echoed to the screen. However,
the thread has a limited lifetime and eventually completes.

Communicating with Microsoft Messenger
The previous examples demonstrate how to connect two computers directly, but
the past few years have seen an explosion in so-called “peer-to-peer” applications,
which combine server-based directory and search capabilities with machine-to-
machine direct transfers. This next example uses Microsoft Messenger to send
pointless jabber to your friends and family.

842 Thinking in C# www.ThinkingIn.NET

This example differs from the others in this book by presenting an interface to an
essentially undocumented object. Working with undocumented objects and APIs
is part of the professional programmer’s job. The associated business and
technology risks must be addressed by management, but often the least-
documented areas contain the greatest potential for creating innovative client
value. This example also differs from the others in this book by presenting what is
essentially a flat-out “hack” – directly modifying the Intermediate Language (IL)
code of a generated class to make up for a defect in one of Microsoft’s tools.

There is no .NET Framework managed class for communicating with Microsoft
Messenger, so developing for Microsoft Messenger requires COM Interop,
newsgroup archives, and trial-and-error. The first step for interacting with
Microsoft Messenger is to use tlbimp to create a COM Interop wrapper:

tlbimp "c:\program files\messenger\msmsgs.exe"

You’ll need to add a reference to the resulting Messenger.dll and mark your
code with the [STAThread] attribute, which is always necessary when using
COM Interop (chapter 14).

//:c18:MessengerSend.cs
//Command-line Microsoft Messenger sender
//Compile with:
//csc /reference:Messenger.dll MessengerSend.cs
using System;
using System.Text;
using System.Runtime.InteropServices;
using Messenger;

class MessengerSend {
 static readonly string USER="larry@ThinkingIn.Net";
 static readonly string PASS="NotMyRealPassWord";

 [STAThread] public static void Main(string[] args){
 if (args.Length < 2) {
 Console.WriteLine(
 "USAGE: MessengerSend recipient message");
 return;
 }
 MessengerSend ms = new MessengerSend();
 ms.Login(USER, PASS);
 IMsgrUser recipient =
 ms.FindByFriendlyName(args[0]);

Chapter 18: Web Programming 843

 StringBuilder msg = new StringBuilder();
 for (int i = 1; i < args.Length; i++) {
 msg.Append(args[i] + " ");
 }
 if (recipient != null) {
 ms.SendMessage(recipient, msg.ToString());
 }
 }

 MsgrObjectClass msgrObj = new MsgrObjectClass();

 void Login(string user, string pass){
 IMsgrServices svcs = msgrObj.Services;
 IMsgrService msn = svcs.PrimaryService;
 try {
 msgrObj.Logon(user, pass, msn);
 } catch (COMException logonException) {
 if (logonException.Message ==
 "Exception from HRESULT: 0x81000304.") {
 Console.WriteLine("Already logged in");
 } else {
 throw logonException;
 }
 }
 }

 IMsgrUser FindByFriendlyName(string fName){
 IMsgrUsers contacts =
 msgrObj.get_List(MLIST.MLIST_CONTACT);
 Console.WriteLine("I have {0} contacts",
 contacts.Count);
 for (int i = 0; i < contacts.Count; i++) {
 IMsgrUser contact = contacts.Item(i);
 if (contact.FriendlyName == fName) {
 return contact;
 }
 }
 return null;
 }

 void SendMessage(IMsgrUser recipient, string msg){

844 Thinking in C# www.MindView.net

 IMsgrIMSession session =
 msgrObj.CreateIMSession(recipient);
 try {
 session.SendText(null, msg,
 MMSGTYPE.MMSGTYPE_ALL_RESULTS);
 } catch (Exception ex) {
 Console.WriteLine(ex);
 }
 }
}///:~

MessengerSend is hard-coded to login as a particular Passport user as
specified by the USER and PASS readonly variables. If you don’t have a
Passport, you can get one for free from http://www.passport.com. The biggest
practical challenge for programming with COM Interop is documentation;
figuring out what objects to create and how to get from these objects the
references to the interfaces you suspect you need and, once you have the
interfaces, generating valid arguments and interpreting the results. If you use
Visual Studio .NET, the Object Browser window is invaluable; Figure 18-1 shows
an Object Browser view of Messenger.DLL. In the left-hand pane are the types
exposed by the assembly; a large number of enumerations such as
MLOCALOPTION, the MsgrObject interface, and the MsgrObjectClass
class. After creating a managed DLL for COM Interop, you should look for the
classes exposed – there will usually be only a handful of options and, naturally,
these are the only objects that you can directly create (there will often be many
interfaces, but as you know, interfaces cannot be directly instantiated). From
there, it’s just a matter of searching MSDN, newsgroup archives, and the Web in
general to develop a route of inquiry. In this case, it turns out that the
MsgrObjectClass is the root object from which we can send and receive
information.

Natively, many COM calls are defined as returning a 32-bit integer known as an
HRESULT. In Windows, the value of the HRESULT specifies either that the
method succeeded or the particular reason why it failed. In .NET code, this is
exactly the role of exceptions and with COM Interop, HRESULTs are
automatically mapped into exceptions. Thus, tlbimp does a lot of the “heavy
lifting” associated with exposing the COM server as an object-oriented library. As
can be seen in the Object Browser figure, tlbimp automatically generates not just
methods, but properties and events (we’ll talk more about the events in the next
example).

Chapter 18: Web Programming 845

Figure 18-1: The Object Browser is vital to programming COM Interop

So after determining that MsgrObjectClass is the type we want to create, it is
fairly obvious that our first step is to log on to the IM service and the
MsgrObjectClass.Logon() method seems the obvious route. Examining the
call in the Object Browser raises the typical COM Interop challenge – the first two
arguments bstrUser and bstrPassword are simple enough, but the third
argument is a reference to an IMsgrService interface. How do we get that?

Well, the short answer is legwork. The task can be made slightly easier with this
utility that uses reflection to determine what properties and methods return the
particular Type in which you are interested :

//:c18:WhatReturns.cs
//Determines what methods return a given type
using System;
using System.Reflection;

public class WhatReturns {
 ///<Summary>
 ///Prints a list of methods in a given assembly

846 Thinking in C# www.ThinkingIn.NET

 ///that return a given type also in the assembly
 ///USAGE: WhatReturns MyAssembly MyType
 ///</Summary>
 public static void Main(string[] args){
 if (args.Length != 2) {
 Console.WriteLine(
 "USAGE WhatReturns AssemblyName TypeName");
 }
 new WhatReturns(args[0], args[1]);
 }

 WhatReturns(string assemblyName, string typeName){
 Assembly asm = Assembly.Load(assemblyName);
 Console.WriteLine("Assembly loaded");
 Type[] types = asm.GetExportedTypes();
 Console.WriteLine(
 "Contains {0} types", types.Length);
 Type targetType = asm.GetType(typeName);
 Console.WriteLine("Target type created");
 Console.WriteLine("Type is: " + targetType);
 foreach(Type type in types){
 TypeReturns(type, targetType);
 }
 }

 bool TypeReturns(Type type, Type targetType){
 bool atLeastOneThingReturnsType = false;

 PropertyInfo[] props = type.GetProperties();
 foreach(PropertyInfo prop in props){
 bool b = PropertyOfType(prop, targetType);
 if (b) {
 Console.WriteLine(
 " of type " + type.Name);
 atLeastOneThingReturnsType = true;
 }
 }
 MethodInfo[] methods = type.GetMethods();
 foreach(MethodInfo method in methods){
 bool b = MethodReturns(method, targetType);
 if (b) {

Chapter 18: Web Programming 847

 Console.WriteLine(
 " of type " + type.Name);
 atLeastOneThingReturnsType = true;
 }
 }
 return atLeastOneThingReturnsType;
 }

 bool PropertyOfType(PropertyInfo prop,
 Type targetType){
 Type t = prop.PropertyType;
 bool b = (t == targetType
 || t.IsSubclassOf(targetType));
 if (b) {
 Console.Write("Property: " + prop.Name);
 }
 return b;
 }

 bool MethodReturns(MethodInfo method,
 Type targetType){
 Type t = method.ReturnType;
 bool b = (t == targetType
 || t.IsSubclassOf(targetType));
 if (b) {
 Console.Write("Returned by: " + method.Name);
 }
 return b;
 }
}///:~

With this utility and a bit of sleuthing, we discover that the MsgrObjectClass
has an IMsgrServices property that has a PrimaryService property that, in
fact, turns out to be the .NET Messenger Service we’re interested in. As discussed
above, COM methods return HRESULTs that are converted into exceptions.
This can sometimes cause confusion because HRESULT design guidelines are
not as strict as exception design guidelines; one should not throw an exception as
part of a normal course of execution but as can be seen here
MsgrObjectClass.Logon() ends up throwing a COMException in the
perfectly legitimate scenario in which you’re already logged in to the service. The
catch block in MessengerSend.Login() catches any COMException

848 Thinking in C# www.MindView.net

thrown, but only swallows the particular exception associated with being already
logged in. Otherwise, the exception is rethrown.

MessengerSend.FindByFriendlyName() attempts to find the IMsgUser
corresponding to the name passed in as the first argument to the program. Again,
getting this to work was a matter of exploratory programming. If an IMsgUser is
returned by MessengerSend.FindByFriendlyName(), the next step is
MessengerSend.SendMessage(). Microsoft Messenger does not appear to
provide a stream-based interface to the underlying connection, which is of type
IMsgrIMSession. Instead, you must use the IMsgrIMSession.SendText()
command to send a block of data at a time. The first parameter consists of the
header text, which can be null (but which turns out should be a MIME header –
details in the next example).

After compiling this with:

csc /reference:Messenger.dll SendMessenger.cs

you will have a command-line transmitter for Microsoft Messenger.

Naturally, the next step is to receive messages. Unfortunately, a defect in the
current tlbimp raises its ugly head. As Figure 18-1 shows, tlbimp generates
event delegates for the Microsoft Messenger COM Server. Unfortunately, it
incorrectly generates private helper classes for these events! The end result is
that you can write event-handling code and everything compiles fine, but when
you run your program, the attempt to set a delegate method in your code
generates a COMException with HRESULT set to 0x80040202.

You can fix this problem with a hack: You disassemble the generated assembly,
change the helper class to public, and reassemble the assembly. To do this you
will need to use the Intermediate Languge assembler and disassembler
(ilasm.exe and ildasm.exe) that come with the .NET Framework SDK.

The first step is to transform the assembly into Intermediate Language (IL) form:

ildasm Messenger.dll /out:Messenger.il

When you open this (large) file in a programming editor you will see the
assembly language of the .NET virtual computer (with “machine-level” support
for everything from virtual function calls to try-finally blocks). Search for the
function:

.class private auto ansi sealed
DMsgrObjectEvents_SinkHelper

Chapter 18: Web Programming 849

and change the class declaration to public:

.class public auto ansi sealed DMsgrObjectEvents_SinkHelper

Now, save the file, and reassemble it into a binary library:

ilasm /dll Messenger.il

Obviously, it is to be expected that Microsoft will fix tlbimp so that this hack is
not needed in the future, but the role of the programmer is to deliver client value
as quickly as possible, not to sit around and wait for perfect tools.

With your newly fixed Messenger.dll in hand, you can now write event-
handlers for Messenger events. In this case, we are simply interested in writing a
console program that echoes received text. The corresponding event is
MsgrObjectClass.OnTextReceived() and its delegate type is
DMsgrObjectEvents_OnTextReceivedEventHandler.

The code is straightforward:

//:c18:MessengerReceive.cs
//Compile with
//csc /reference:Messenger.dll MessengerReceive.cs
//Echoes MSN Messenger text to console
using System;
using System.Runtime.InteropServices;
using Messenger;
using System.Threading;

class MessengerReceive {
 private static readonly string
 USER="noone@ThinkingIn.Net";
 private static readonly string
 PASS="NotMyPassword";

 [STAThread]
 public static void Main() {
 try {
 MsgrObjectClass msgrObj =
 new MsgrObjectClass();
 msgrObj.OnTextReceived +=
 new
 DMsgrObjectEvents_OnTextReceivedEventHandler(
 TextReceived);

850 Thinking in C# www.ThinkingIn.NET

 try {
 IMsgrServices svcs = msgrObj.Services;
 msgrObj.Logon(
 USER, PASS, svcs.PrimaryService);
 } catch (COMException logonException) {
 if (logonException.Message ==
 "Exception from HRESULT: 0x81000304.") {
 Console.WriteLine("Already logged in");
 } else {
 throw logonException;
 }
 }
 Console.WriteLine("Logged in as " + USER);
 while (true) {
 Thread.Sleep(10000);
 }
 } catch (Exception ex) {
 Console.WriteLine(ex.StackTrace);
 }
 }

 public static void TextReceived(
 IMsgrIMSession session, IMsgrUser user,
 string header, string text, ref bool b) {
 Console.WriteLine(
 "Message from " + user.FriendlyName);
 Console.WriteLine("Header: " + header);
 Console.WriteLine("Contents: " + text);
 }
}///:~

After creating a MsgrObjectClass object, the
MessageReceiver.TextReceived() is set to receive incoming text events. The
main thread just idles; when text is received,
MessageReceiver.TextReceived() outputs the name of the sender, the
header, and the text. A typical run of this might look like:

Logged in as lobrien@ThinkingIn.Net
Message from Hotmail
Header: MIME-Version: 1.0
Content-Type: text/x-msmsgsprofile; charset=UTF-8
LoginTime: 1023398920

Chapter 18: Web Programming 851

EmailEnabled: 1
MemberIdHigh: 72103
MemberIdLow: -1129385323
lang_preference: 1033
preferredEmail: notreallyanaddress@hotmail.com
country: US
PostalCode: 94930
Gender: m
Kid: 0
Age: 38
sid: 507
kv: 2
MSPAuth:
2IZcLlTK1Dj8gTBMWJ*hMRi3e15hDXXJeCyfyRY*GvWn5aV16HcFU!4EMCw
LyTM8telveUq
2uD3PvrE8IwWdbwqg$$

Contents:
Message from Hotmail
Header: MIME-Version: 1.0
Content-Type: text/x-msmsgsinitialemailnotification;
charset=UTF-8

Contents: Inbox-Unread: 113
Folders-Unread: 118
Inbox-URL: /cgi-bin/HoTMaiL
Folders-URL: /cgi-bin/folders
Post-URL: http://www.hotmail.com

Message from bruce
Header: MIME-Version: 1.0
Content-Type: text/x-msmsgscontrol
TypingUser: bruce@ThinkingIn.Net

Contents:

Message from bruce

852 Thinking in C# www.MindView.net

Header: MIME-Version: 1.0
Content-Type: text/x-msmsgscontrol
TypingUser: bruce@ThinkingIn.Net

Contents:

Message from bruce
Header: MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
X-MMS-IM-Format: FN=MS%20Shell%20Dlg; EF=; CO=0; CS=0; PF=0

Contents: The possibilities are endless

As you can see, the header information is even more interesting than the message
text! After you receive your own profile, you receive information on your Hotmail
account, and control messages (so that’s how the IM client can change its status
to “Bruce is typing a message”) before ultimately receiving the text itself. One can
imagine introducing new MIME content/types to extend the capabilities of the
instant messaging realm – sports scores, traffic updates, chess moves.
Unfortunately, COM Interop does not work on Microsoft’s .NET Compact
Framework, so wireless applications will have to rely on other undocumented
techniques that are “left as an exercise for the interested student!”

This has been a very interesting
discussion.Creating and receiving HTTP
requests
Now that we’ve talked about low-level connections with TcpClient and
TcpListener, and peer-to-peer connections with MSN Messenger, it’s time to
turn our attention to programming for the World Wide Web. As you know, the
World Wide Web is based on the Hypertext Transport Protocol (HTTP), which is
an application-level, generic, stateless protocol originally intended for creating
distributed hypermedia applications.5

Of course, the most common applications that generate HTTP requests are Web
browsers, but it is often useful, especially for debugging purposes, to
programmatically generate HTTP requests. The .NET Framework SDK makes

5 Defined at http://www.ietf.org/rfc/rfc2068.txt

Chapter 18: Web Programming 853

this easy with the WebRequest and HttpWebRequest classes in the
System.Net namespace. The simplest HTTP request just sends an HTTP GET
request to a specific Uniform Resource Identifier (URI, the technical term for
what are commonly called URLs). An HTTP Server (aka a Web Server) responds
with a status code, a header, and then a message body.

This example sends an HTTP GET request for a command-line argument:

//:c18:HttpGet.cs
//Echoes result of simple HTTP Get request
//Use: HttpGet http://www.ThinkingIn.Net/index.html
using System;
using System.Net;
using System.IO;

class HttpGet {
 public static void Main(string[] args){
 HttpWebRequest req =
 (HttpWebRequest) WebRequest.Create(args[0]);

 Console.WriteLine("Created, but not connected");
 HttpWebResponse res =
 (HttpWebResponse) req.GetResponse();
 Console.WriteLine("Status: " + res.StatusCode);
 foreach(string key in res.Headers.Keys){
 Console.WriteLine("Header[{0}]:{1}",
 key, res.Headers[key]);
 }

 Console.WriteLine("Contents:");
 StreamReader rdr = new StreamReader(
 res.GetResponseStream());
 Console.WriteLine(rdr.ReadToEnd());
 }
}///:~

The way in which you construct an HttpWebRequest is similar to the Builder-
like pattern employed in the ZALogAnalyzer example earlier in this chapter: a
string is passed to a base class, in this case WebRequest, which returns an
appropriate implementation, in this case an HttpWebRequest. The only other
type of WebRequest in the .NET Framework SDK is a FileWebRequest that
is created if the argument to WebRequest.Create() starts with “file://,” but if

854 Thinking in C# www.ThinkingIn.NET

you write a new subtype for, say, “ftp://” URIs, you can call the static
WebRequest.RegisterPrefix() method and WebRequest.Create() will
thereafter return the new WebRequest subtype appropriately.

The request does not actually go out over the network until the call to
WebRequest.GetResponse(). Because we know that we’re dealing with a
request that begins with “http://,” we know that we can downcast the
WebResponse to HttpWebResponse. After outputting the
HttpWebResponse.StatusCode, we write the HTTP headers to the console.
The headers are in the HttpWebResponse.Headers property and take the
form of a WebHeaderCollection object that is a subtype of
NameValueCollection. Finally, the contents of the Web page are echoed to the
console.

The flip side of generating an HttpRequest is responding to them. The .NET
Framework SDK is designed to support Microsoft’s Internet Information Server
(IIS), and the most direct form of support is the IHttpHandler interface, also in
the System.Web namespace.

IHttpHandler defines just two things: a bool property called IsReusable that
specifies whether the object is capable of servicing another HTTP request. This
will depend upon the state of the object that implements IHttpHandler. When
writing Web programs one component of scalability is minimizing state in your
server, so it’s generally preferable if your design can result in this property being
true.

The other component of IHttpHandler is the
IHttpHandler.ProcessRequest() method, which takes an HttpContext
object as its lone argument. The most important properties in HttpContext are
the HttpRequest and HttpResponse objects (note that these classes are
different than the HttpWebRequest and HttpWebResponse classes that are
used at the client).

The HttpRequest contains a large number of properties, the most commonly
used of which is the HttpRequest.Form property, which returns a
NameValueCollection whose keys are the form variable names and whose
values are the form values as strings.

This example responds with the mime types that are accepted by the client, as
well as any form variables:

//:c18:SimpleHandler.cs
//A simple form handler for integration with IIS

Chapter 18: Web Programming 855

//Compile with:
//csc /target:library SimpleHandler.cs
using System;
using System.Web;

class SimpleHandler : IHttpHandler {
 public bool IsReusable{
 get { return true;}
 }

 public void ProcessRequest(HttpContext context){
 HttpResponse res = context.Response;
 res.Write(
 "<html><body><h1>Mime types</h1>");
 HttpRequest req = context.Request;
 foreach(string mimetype in req.AcceptTypes){
 res.Write("" + mimetype + "");
 }
 res.Write("");
 if (req.Form.Count > 0) {
 res.Write("<h1>Form variables</h1>");
 foreach(string varName in req.Form){
 res.Write("" + varName + ":" +
 req.Form[varName] + "");
 }
 res.Write("");
 }
 res.Write("</body></html>");
 }
}///:~

After getting the HttpResponse object from the HttpContext argument,
SimpleHandler.ProcessRequest() begins the task of writing HTML.
Writing the HTTP response header is not necessary, but if you need to customize
the header, you can do so by setting a variety of properties of the HttpResponse
and calling methods such as HttpResponse.SetCookie().

As part of the HTTP request message, the client sends a list of MIME types that it
can accept. This is typical of the sort of property that the HttpRequest exposes
but which most of the time you do not care about. In this case, the types are
written to the output as an HTML unordered list. The method then checks if
there are any form variables and, if so, outputs them, also as an unordered list.

856 Thinking in C# www.MindView.net

Installing the program for IIS takes a few additional steps. First, compile the
program to a library assembly. To better illustrate IIS’ configuration, specify the
name of the assembly with:

csc /target:library /out:MyHandlers.dll SimpleHandler.cs

Then, decide where on the Web site and by what name you wish to expose the
functionality. By convention, the name of a .NET program exposed on a Web site
should be Xxx.aspx. So let’s say that we wish to expose the SimpleHandler
type in the MyHandlers.dll assembly on the local machine’s IIS so that it could
be reached by:

http://localhost/TargetName.aspx

To let IIS know that when it receives such a request it should load and call our
program, you have to edit the Web.config file in the Web directories (which are
often installed at c:\inetpub\wwwroot). The Web.config file is an XML
document with many options, adding IHttpHandlers is done by manipulating
the <httpHandlers> element that is a child of <system.web>:

<configuration>
 <system.web>
 <!-- etc -->
 <httpHandlers>
 <add path="TargetName.aspx" verb="*"
 type="SimpleHandler,MyHandlers"/>
 </httpHandlers>
 <!-- etc -->
 </system.web>
</configuration>

The <httpHandlers> element does not seem to be part of the default
Web.config, so you will probably have to add it. The actual configuration of the
SimpleHandler object is done with the <add> element.

The path attribute specifies what URLs should be handled by this
IHttpHandler. The path attribute accepts wildcards so, for instance,
path="*.mytype" could be used to handle all requests for a particular type. The
HttpRequest.Url (that’s an ‘l’ at the end, not an ‘i') could then be used to
retrieve an object of type Uri (‘i’ not ‘l’) to determine exactly what “mytype” to
retrieve.

The verb attribute specifies which HTTP request types (GET, POST, etc.) this
type should handle, in this example we are handling all of them. Finally, the type
attribute specifies that our IHttpHandler is of type SimpleHandler as

Chapter 18: Web Programming 857

defined in the MyHandlers assembly (notice that one does not specify the “.dll”
extension).

After saving this file, IIS will attempt to handle the desired URI with our type. IIS
loads the assembly from the \bin subdirectory of the directory in which the
Web.config file has been saved (if the above was saved as
c:\inetpub\wwwroot\Web.config, IIS would attempt to load the
SimpleHandler type from c:\inetpub\wwwroot\bin\MyHandlers.dll).

When accessed from this Web page:

<html>
<body>
<form action="http://localhost/TargetName.aspx"
method="post">
<input type="text" name="textfield" size="35">
<input type="submit" value="Submit">
</form>
</body>
</html>

The output will look like Figure 18-2

858 Thinking in C# www.ThinkingIn.NET

Figure 18-2: The SampleHandler in action

Asynchronous Web requests
A previously undiscussed aspect of the .NET Frameworks IO streams is support
for asynchronous IO, in which the calls to read from or write to a stream do not
block. Asynchronous IO uses an asynchronous design that Microsoft is
advocating for widespread use: there is a begin operation and an end operation
and these activate asynchronous delegates of type:

public delegate void AsyncCallback(IAsyncResult ar);

The IAsyncResult ar has fields that contain:

♦ An Object AsyncState that is the domain object that should reflect any
state that is needed for the callback to function

♦ A WaitHandle AsyncWaitHandle that can be used to synchronize
multiple threads involved in the asynchronous operation

Chapter 18: Web Programming 859

♦ CompletedSynchronously and IsCompleted, both bools, that
specify whether the begin operation completed synchronously and
whether the end operation has completed at all.

In the case of a WebRequest, the synchronous call to
WebRequest.GetResponse() has the corresponding asynchronous begin and
end methods of WebRequest.BeginGetResponse () and
WebRequest.EndGetResponse(). To create a truly asynchronous Web
request, you need to use these methods as bookends for an asynchronous read of
the response’s Stream using Stream.BeginRead() and
Stream.EndRead().

To download a large file asynchronously, you could, of course, use
Stream.ReadXxx() methods in your own ThreadStart delegate. But the
asynchronous IO library in .NET is likely to be more efficient and robust. This
example shows a class that asynchronously downloads a given URI and passes
the results back using a custom event.

//:c18:AsyncWeb.cs
//Demonstrates asynchronous network IO
using System;
using System.Text;
using System.Net;
using System.IO;
using System.Threading;

public delegate void PageDownloadedHandler(
 object sender, PageDownloadedEventArgs mea);

public class PageDownloadedEventArgs : EventArgs {
 private string msg;
 public string Message{
 get { return msg;}
 set { msg = value;}
 }
 public PageDownloadedEventArgs(string msg){
 this.msg = msg;
 }
}

class AsyncDownloader {
 WebRequest req;

860 Thinking in C# www.MindView.net

 WebResponse resp;
 StringBuilder responseBuilder =
 new StringBuilder();
 Stream responseStream;
 Decoder streamDecode = Encoding.UTF8.GetDecoder();
 static readonly int BUFFER_SIZE = 256;
 byte[] buffer = new byte[BUFFER_SIZE];

 public event PageDownloadedHandler PageDownloaded;

 protected void OnPageDownloaded(
 PageDownloadedEventArgs ea){
 Console.WriteLine("Page downloaded");
 if (PageDownloaded != null) {
 PageDownloaded(this, ea);
 }
 }

 public AsyncDownloader(string uri){
 Console.WriteLine("AsyncDownloader({0}", uri);
 req = WebRequest.Create(uri);
 Console.WriteLine("AsyncDownloader() ends");
 }

 public void Run(){
 Console.WriteLine("Run()");
 //Set request callback
 AsyncCallback beginReqCallback =
 new AsyncCallback(BeginRequestCallback);
 req.BeginGetResponse(beginReqCallback, null);
 Console.WriteLine("Run() ends");
 }

 //BeginGetResponse delegate
 private void BeginRequestCallback(IAsyncResult ar){
 Console.WriteLine("BeginRequestCallback()");
 resp =
 (HttpWebResponse) req.EndGetResponse(ar);
 responseStream = resp.GetResponseStream();
 AsyncCallback strRdCb =
 new AsyncCallback(StreamReadCallback);

Chapter 18: Web Programming 861

 responseStream.BeginRead(
 buffer, 0, BUFFER_SIZE, strRdCb, null);
 Console.WriteLine("BeginRequestCallback ends");
 }

 private void StreamReadCallback(
 IAsyncResult asyncResult){
 Console.WriteLine("StreamReadCallback()");
 int read = responseStream.EndRead(asyncResult);
 if (read > 0) {
 Console.WriteLine("Read {0} bytes", read);
 Char[] charBuffer = new Char[BUFFER_SIZE];
 int len = streamDecode.GetChars(
 buffer, 0, BUFFER_SIZE, charBuffer, 0);
 String str = new String(charBuffer, 0, len);
 //Console.WriteLine("Read: " + str);
 lock(this){
 responseBuilder.Append(str);
 }
 AsyncCallback moreToGoCb =
 new AsyncCallback(StreamReadCallback);
 responseStream.BeginRead(
 buffer, 0, BUFFER_SIZE, moreToGoCb, null);
 } else {
 Console.WriteLine("No more to read");
 responseStream.Close();
 PageDownloadedEventArgs ea =
 new PageDownloadedEventArgs(
 responseBuilder.ToString());
 OnPageDownloaded(ea);
 }
 Console.WriteLine("StreamReadCallback() ends");
 }
}

class AsyncClient {
 static Thread mainThread;

 public static void Main(){
 AsyncDownloader ad = new AsyncDownloader(
 "http://www.ThinkingIn.Net");

862 Thinking in C# www.ThinkingIn.NET

 ad.PageDownloaded +=
 new PageDownloadedHandler(
 MyDownloadEventHandler);
 Console.WriteLine("Before async call happens");
 ad.Run();
 Console.WriteLine("After async call");
 mainThread = Thread.CurrentThread;
 try {
 Thread.Sleep(30000);
 } catch (ThreadInterruptedException) {
 Console.WriteLine("Finished before timeout");
 }
 }

 static void MyDownloadEventHandler(
 object src, PageDownloadedEventArgs ea){
 Console.WriteLine("Got a page of {0} chars",
 ea.Message.Length);
 mainThread.Interrupt();
 }
}///:~

 The first things we define are the delegate and event arguments for the “page
downloaded” event, PageDownloadedHandler and
PageDownloadedEventArgs. The PageDownloadedEventArgs will
contain the downloaded page in its Message property.

We then begin defining the AsyncDownloader class. All three important
elements of an HTTP request are stored in instance variables: the WebRequest
req, the WebResponse resp, and the Stream responseStream. Then, we
define a byte[] buffer to hold the raw response data and to convert the raw
response into a single string we declare and initialize StringBuilder
responseBuilder and Decoder streamDecode.

The event PageDownloaded is a multicast delegate that can be subscribed to
by anyone interested in being notified when the asynchronous page download is
complete. Following the standard .NET idiom for writing events (see Chapter 14),
we place the raising of the PageDownloaded event inside a protected method
called OnPageDownloaded that simply determines if anyone has subscribed to
the PageDownloaded event and, if so, activates the delegate, passing in this as
the source of the event and the passed-in event arguments.

Chapter 18: Web Programming 863

The AsyncDownloader() constructor takes a string uri as a parameter and
uses that to initialize the instance variable WebRequest req. The next method
Run() actually begins the process of an asynchronous download. First, we
specify that BeginRequestCallback should be used as our first
AsyncCallback delegate. WebRequest.BeginGetResponse() takes an
AsyncCallback and any object that encapsulates important state that the
callback may need to determine its context. Because our
BeginRequestCallback delegate is a method of this, when the callback occurs
we will have all the context we need and so, rather than pass in something
meaningless, explicitly pass null. If this was not null, the object we passed in
would be available to the AsyncCallback in the IAsyncResult argument’s
AsyncState property.

When you run this program, the call to BeginGetResponse() does not block,
so “Run() ends” is printed immediately after “Run().” But at some point, the Web
request begins and the BeginRequestCallback gets called.
WebRequest.EndGetResponse() is used to end the asynchronous
production of the WebResponse resp, but that’s only half our asynchronous
challenge, because now we must asynchronously read the response stream (well,
we could read it synchronously, but that would defeat the whole purpose of the
exercise, as it’s the data of the response body that’s large, not the data making up
the response header).

In order to read the stream asynchronously, we need another AsyncCallback
delegate, this time using the method StreamReadCallback. We call
Stream.BeginRead() with a reference to this.buffer, the starting position in
buffer and size to write (0 and BUFFER_SIZE respectively), and the
AsyncCallback to StreamReadCallback. Again, we’re calling back to this, so
we pass null for the IAsyncResult’s AsyncState.

StreamReadCallback() gets called when the responseStream has filled the
buffer or finished reading. If data was read, the bytes in the buffer are converted
into a Char[] array by the Decoder streamDecode, then into a string, and
then the string is appended to the StringBuilder responseBuilder (this data
manipulation is placed in a lock clause to ensure the thread integrity of the
buffer and responseBuilder objects). Since more data might remain, a new
AsyncCallback is instantiated on StreamReadCallback. Remember that
Stream.BeginRead() doesn’t block and returns immediately, so even though
this may look like a recursive call, it’s not.

Jumping back towards the top of StreamReadCallback(), when the Stream
has no more data, the call to Stream.EndRead() will return 0 bytes read and

864 Thinking in C# www.MindView.net

control will move to the else part of the clause. The final step in the
asynchronous read of the page is to close the responseStream, create a new
PageDownloadedEventArgs with all the data that’s accumulated in the
StringBuilder responseBuilder, and call
AsyncDownloader.OnPageDownloaded().

The AsyncClient class creates an AsyncDownloader class to read
www.ThinkingIn.net. The PageDownloaded event is subscribed to by the
static method MyDownloadEventHandler. After calling
AsyncDownloader.Run(), the main thread is sent to sleep for 30 seconds (in
a graphical application, one can imagine a splash screen, progress bar, or
hourglass appearing). When MyDownloadEventHandler is called by the
AsyncDownloader, it calls Thread.Interrupt() on the main thread, so even
if the 30 seconds has not elapsed, the main thread is interrupted when the read
completes.

When you run this program, the most striking thing is that
AsyncDownloader.StreamReadCallback() many times before it returns
even once, indicating that it is called asynchronously by the thread that is
monitoring the response stream. As mentioned previously, the asynchronous IO
design of the library is almost undoubtedly more efficient than what one would
casually implement.

From Web programming to Web
Services
Web Services are headless applications whose input and output are sent with
standard Internet protocols. By “headless,” we mean that Web Services do not
have user interfaces (of course, a user interface is ultimately needed, but it’s
created by something other than the Web Service). Instead of objects, or HTML
(which is a user-interface specification), Web Services use XML documents for
input and output. How the XML input is generated and how the XML output is
consumed are not the concerns of the Web Service.

By “standard Internet protocols,” we give ourselves a lot of wiggle room. As “Web
Services” becomes the buzzword du jour, various vendors compete by looking at
their own feature list and saying either “If it doesn’t support this protocol, it’s not
complete!” or “That protocol is a frivolous extension designed to lock you in to
their solution!”

More significantly, there are competing standards for several core functions,
including the means by which a procedure is called and the means by which Web

Chapter 18: Web Programming 865

Services are described and discovered. The former is a critical decision for all
Web Service development, but .NET is firmly in the camp of Simple Object Access
Protocol (SOAP). The latter will eventually become critical to the development of
new channels but today virtually all Web Service development is done in direct
partnership with the service’s consumers and description and discovery is done,
not automatically, but via meetings, emails, and project Wikis.6

Insanely simple Web services
The “Hello, C#” programs that started this book included one associated with the
WebMethodAttribute. As part of its compilation process, Visual Studio .NET
recognizes this attribute and automatically exposes on IIS via SOAP. It turns out,
though, that exposing methods with [WebMethod] can be even easier.

IIS handles URIs ending in .asmx with Web Service tools. The file must have a
special Web Service declaration line at the beginning, but other than that,
exposure as a Web Service is strictly a matter of attributes. This example returns
the time on the current server:

//:c18:WhatsTheTime.asmx
//Web Service example
//Save in /inetpub/wwwroot as WhatsTheTime.asmx
//Access via http://localhost/WhatsTheTime.asmx
<%@ WebService Language="C#" Class="WhatsTheTime" %>

using System;
using System.Web.Services;

[WebService(Namespace="http://www.ThinkingIn.Net/")]
class WhatsTheTime{
 [WebMethod] public DateTime Time(){
 return DateTime.Now;
 }
}///:~

The file must be saved as Xxx.asmx, it must include the <%@ … %> declaration,
exposed methods must be both public and associated with

6 A Wiki is an openly editable Web site and is a must for any development team’s intranet.
The original “WikiWikiWeb” was created by Ward Cunningham to house a repository of
design patterns for programming. See http://c2.com/cgi-bin/wiki?WikiWikiWeb

866 Thinking in C# www.ThinkingIn.NET

WebMethodAttribute, and you must serve it from IIS running on a system
with the .NET Framework installed.

IIS takes care of generating a service description in Web Services Description
Language (WSDL) and generating a sample page that shows you how the Web
Service can be called with HTTP POST and GET requests as well as with SOAP.
The auto-generated page also allows you to test the Web Service interactively as
shown in Figure 11-3.

Chapter 18: Web Programming 867

Figure 18-3: This page was created automatically

As tremendous as this is, most of the time you will not want to put all of your
code into a single .asmx file but will prefer to load them from an assembly.

868 Thinking in C# www.MindView.net

In that case, you still need an .asmx file, but the WebService declaration takes
a slightly different form:

<%@ WebService Language="C#" Class="Type,Assembly" %>

This time, the WebMethodAttribute methods in the Type type will be loaded
from the Assembly assembly in the \bin subdirectory. When you use Visual
Studio .NET to create a Web Service project, this is the type of WebService
declaration that it generates.

The <%@ … @> block is an ASP.NET declaration. ASP.NET is, like ADO.NET
and XML, a technology that intersects with C#, but is not a subset. ASP.NET is a
compiled environment, programmed by embedding blocks (such as the
WebService declaration above) in HTML code. ASP.NET is beyond the scope of
this book, but we’ll mention one more ASP.NET facility that is relevant to many
Web Service development scenarios, which is state management in Web Services

Maintaining state
As the WhatsTheTime example demonstrated, any method can be exposed as a
Web Service. However, there is a WebService class in the
System.Web.Services namespace that provides additional functionality that is
often useful. In particular, WebService provides a Application property of
type HttpApplicationState and a Session property of type
HttpSessionState. Both of these properties are derived from
NameObjectCollectionBase (see chapter ir10). There purpose is to maintain
conversational state across, respectively, the application and session lifecycles.
The application lifecycle begins when the WebService class is first loaded and
persists until the Web server shuts down; it is analogous to static object data. The
session lifecycle begins when a particular client hits the server and, by default,
works via cookies. If cookies are not available, session state can still be stored via
URL rewriting. The cookie is not used to store state, but is used as a key to server-
side storage. HttpSessionState is analogous to object data.

Web services vs. Web APIs
One of the authors (Larry) has spent most of the past five years actually
developing various XML-over-HTTP services for a variety of clients. One
characteristic of the successful development projects is that they did not expose
an Application Programming Interface, but rather operated in a stateless manner
to expose complete, use-case-based value to the client program. An API is really a
programmer’s viewpoint of a system and often requires sequential association
(see page 335); in other words, method Y() is usually a fine-grained atom of
functionality that may have as a precondition that method X() has already been

Chapter 18: Web Programming 869

called. You can write such a system and expose it over the Web and call it a Web
Service, but just as we’ve seen that the benefits of object orientation do not come
from the simple availability of classes and objects, so too the benefits of Web
Services do not come from the simple availability of XML remote procedure calls.

The benefits of Web Services really kick in when the exposed functions
individually embody user-meaningful chunks of data. These types of Web
Services are sometimes described as document-centric because the idea is that
the XML queries and responses are complete and self-contained documents.7

For instance, when you reserve an airline ticket with a travel agent using a
reservation terminal, this is how the sequence goes:

1. “Show me the flights from NYC to SFO on August 1.”

2. “Give me two unrestricted seats in the economy class of the flight shown
on the third line of the availability response.”

3. “Show me the flights from SFO to NYC on August 8.”

4. “Add two unrestricted economy-class seats for the flight shown on the
second line of the response.”

5. “Give me the lowest fare compatible with the dates and the desired travel
restrictions, converting the unrestricted reservations into restricted
ones.”

6. “Here’s the traveler information…”

7. “Ticket it using payment method ABC.”

Now, you could expose each of these steps as individual function calls with
sequential association (adding seats and traveler information to a growing
itinerary). However, if you were programming for the document-centric Open
Travel Alliance XML specification, you would say something more like:

1. “What is availability for NYC-SFO on August 1?”

2. “What is availability for SFO-NYC on August 8?”

7 Yes, we have to admit that what we’re advocating is a usage-centered object-oriented
document-centric outward-looking service built with a risk-driven quality-centric use-
case-oriented team-based approach.

870 Thinking in C# www.ThinkingIn.NET

3. “What are the available pricing codes for two tickets in economy class for
the itinerary SomeAir flight 12 on August 1, SomeAir flight 14 on August
8 (NYC-SFO-NYC)?”

4. “Ticket these two travelers with pricing code XYZ and payment method
ABC on SomeAir 12 on August 1 and SomeAir14 on Aug 8.”

This document-centric approach is better for several reasons. Both approaches
ultimately have the same number of alternate scenarios (“What if the user doesn’t
like any of the shown flights? What if they want to split the price between a credit
card and frequent flyer miles? What if they are flexible in terms of travel dates?”),
but in the document-centric approach, the effect of these alternate scenarios is
confined to individual steps. Thus, if you were generating incorrect itinerary
prices, in the API-style Web Service you would have a difficult time saying with
confidence that things were x% complete or know exactly how to allocate effort.
In the document-style approach, you could say with confidence “We know
availability works and we know that if we ticket with pricing code XYZ, we get the
correct itinerary price, so the problem must be in the third step, which was Dumb
Dan’s responsibility. We’re going to have Arnold the Amazing team up with
Dumb Dan to see if we can’t shake that out and put Productive Paula on the
‘flexible flight dates’ use-case.’”

Note that the document-centric approach allows for:

♦ Better managerial control in terms of both task completion and resource
allocation

♦ Better client communication

♦ Better fault isolation

♦ Better change-request impact analysis

♦ Isolation of business logic concerns from presentation concerns

And also notice that none of these benefits are guaranteed just because the
project is using XML or SOAP or WSDL or any other technologically-oriented
thing. Just as C# facilitates but does not guarantee high-productivity
programming, and just as object-orientation facilitates highly-cohesive, loosely-
coupled design, so too the document-centric approach to Web Services facilitates,
but does not guarantee, some project characteristics that would be beneficial in
any situation.

Even in the document-centric approach, there may of course be temporal
requirements – a travel Web site may very well assume that all users will do an
availability request before issuing a ticketing request. But in the document-

Chapter 18: Web Programming 871

centric view of Web Services, such things are responsibilities of the presentation
layer, which include the ASP.NET portion of the system. Not all server-side
programming is “Web Service” programming. In a Web Services project you will
often conceptually have three different servers as shown in Figure 18-4: one for
serving static and dynamic Web content, one for controlling the database, and a
third for receiving and responding to XML-based Web Service requests.

Figure 18-4: Not all server-side programming is Web Service programming

Whether these three servers are on three different boxes is strictly an IT issue
relating to performance. Also, although “XML in, XML out” is the conceptual
mantra of Web Services, we’d recommend using an ADO.NET native
IDataAdapter if possible; .NET’s abstraction of relational, XML, and object
data (as discussed in Chapters 10 and 17) provides a thorough safety-net if a pure
XML view of the data is required.

Web
Server

Web Services
Server

Database
Server

Client
machine

Client
machine

Client
machine

Trusted
Partner

XML

872 Thinking in C# www.MindView.net

Consuming Web services
One of the impressive capabilities of the WebMethodAttribute class is that it
can generate a formal description of the method in an XML format known as
Web Services Description Language (WSDL). While WSDL does not yet have the
broad support that SOAP does, the sheer market power of .NET makes its success
somewhat of a fait accompli. That is because the .NET Framework SDK ships
with a tool, wsdl.exe, that takes a WSDL description and generates source code
for a class that can serve as a proxy for the Web Service. The proxy class can
invoke the Web Service, interpret the results, and return them as native objects.
In other words, the WebMethodAttribute and the wsdl.exe tool make the
creation of Web Services truly trivial, as the WebMethodAttribute both
exposes the service on the server and generates the WSDL that the wsdl.exe tool
can use to generate the proxy class on the client.

If you run:

wsdl http://localhost/WhatsTheTime.asmx?wsdl

it will generate the following as WhatsTheTime.cs:

//---
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.209
//
// Changes to this file may cause incorrect
// behavior and will be lost if
// the code is regenerated.
// </autogenerated>
// Reformatted for book display
//---

//
// This source code was auto-generated by wsdl,
// Version=1.0.3705.209.
//
using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.ComponentModel;
using System.Web.Services;

Chapter 18: Web Programming 873

using System.Web.Services.Description;

/// <remarks/>
[DebuggerStepThroughAttribute()]
[DesignerCategoryAttribute("code")]
[WebServiceBindingAttribute
 (Name="WhatsTheTimeSoap",
 Namespace="http://www.ThinkingIn.Net/")]
public class WhatsTheTime : SoapHttpClientProtocol {

 public WhatsTheTime() {
 this.Url =
 "http://localhost/WhatsTheTime.asmx";
 }
 [SoapDocumentMethodAttribute
 ("http://www.ThinkingIn.Net/Time",
RequestNamespace="http://www.ThinkingIn.Net/",
ResponseNamespace="http://www.ThinkingIn.Net/",
Use= SoapBindingUse.Literal,
ParameterStyle= SoapParameterStyle.Wrapped)]
 public System.DateTime Time() {
 object[] results =
 this.Invoke("Time", new object[0]);
 return ((System.DateTime)(results[0]));
 }

 /// <remarks/>
 public System.IAsyncResult BeginTime(
 System.AsyncCallback callback,
 object asyncState) {
 return this.BeginInvoke(
 "Time",
 new object[0], callback, asyncState);
 }

 /// <remarks/>
 public System.DateTime EndTime(
 System.IAsyncResult asyncResult) {
 object[] results =
 this.EndInvoke(asyncResult);
 return ((System.DateTime)(results[0]));

874 Thinking in C# www.ThinkingIn.NET

 }
}

As you can see, the generated WhatsTheTime class descends from
SoapHttpClientProtocol from the System.Web.Services.Protocols
namespace and relies on that class’s methods to call the Web Service either
synchronously with SoapHttpClientProtocol.Invoke() or asynchronously
with SoapHttpClientProtocol.BeginInvoke() and EndInvoke(). You can
see that the WhatsTheTime.Time() method has precisely the same signature
(no arguments and returns a DateTime) as the original method in the
WhatsTheTime.asmx Web Service. Thus, using this class is as simple as:

//:c18:WebServiceClient.cs
//Compile with proxy class
//csc WhatsTheTime.cs WebServiceClient.cs
//Or, if proxy has been compiled into a library
//csc /reference:WhatsTheTime.dll WebServiceClient.cs
using System;

class WebServiceClient {
 public static void Main(){
 WhatsTheTime clientProxy = new WhatsTheTime();
 DateTime now = clientProxy.Time();
 Console.WriteLine(now.ToString());
 }
}///:~

The call clientProxy.Time() is actually a remote procedure call to the
WhatsTheTime Web Service, but as you can see, the code makes the process
totally transparent.

Modifying XML returns
By associating WebMethodAttribute with a method, you aren’t achieving the
most common goal for Web Services, which is adherence to a vertical industry
XML specification. As discussed in Chapter 17, the [XmlElement] attribute can
be used to control the XML data returned. This example returns XML in RDF Site
Summary (RSS) format, the popular language of blogs?.

<!-- :c18:Rss.asmx -->
<%@ WebService Language="C#" Class="rss" %>

using System;
using System.Web.Services;

Chapter 18: Web Programming 875

using System.Xml.Serialization;

[WebService(Namespace="http://www.ThinkingIn.Net/")]
public class rss{
 [XmlAttribute("version")]
 public double version = 0.92;

 public Channel channel = new Channel();
 public Item item = new Item();

 [WebMethod]
 public rss GetBlog(){
 return new rss();
 }
}

public class Channel{
 public string title="My blog";
 public string link = "http://www.ThinkingIn.Net/";

 [XmlElement(ElementName="description")]
 public string desc =
 "By using [XMLElement] and [XmlAttribute], you"
 + " can generate standard-compliant XML easily";
}

public class Item{
 [XmlElement(ElementName="description")]
 public string desc = "An item in the blog";
}///:~

The example is another “inline” Web Service class, as opposed to being placed in
a library and primarily consists of a number of public variables that would
normally have dynamic content and be encapsulated as properties. By default,
public data is serialized as child elements with the name of the exposed property
or field, but the example fine-tunes the result to adhere to RSS. The double
version field is marked with [XmlAttribute] and the two desc fields are
output as “description” elements. One cannot apply the XmlElementAttribute
to a class name, though, and the root element of an RSS document is <rss> in
lowercase, so we were forced to break the C# naming convention and call our
class rss as well.

876 Thinking in C# www.MindView.net

The result of this Web Service is a valid RSS document:

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="0.92" xmlns="http://www.ThinkingIn.Net/">
 <channel>
 <link>http://www.ThinkingIn.Net/</link>
 <description>By using [XMLElement] and [XmlAttribute],
you can generate standard-compliant XML
easily</description>
 </channel>
 <item>
 <description>An item in the blog</description>
 </item>
</rss>

Summary
In C# and .NET, network and Web programming is just a variation on themes
developed throughout this book: object-orientation, separation of concerns, and
increasing levels of abstraction. ?The Internet has transformed the computer and the
subject of software development from primarily calculation-based to primarily
communication-based. The .NET Framework allows you to communicate in any
number of ways: with full access to low-level socket programming, using higher-level
network libraries, or on top of transport protocols such as HTTP or even MSN
Messenger or other Instant Messaging protocols. XML, as discussed in the previous
chapter, provides a convenient standard way to package data for interchange between
programs. SOAP, an XML specification for invoking behavior, and WSDL, which
describes the data format provided by a Web-facing service, makes it even easier for
programs to interact.

Web Services are not a silver bullet. It is possible to write a terrible API and expose it
over the Web. It is possible to write an unstable system and attempt to deploy it on
your server. It is possible to write a hairball of an application that is impossible to
modify over time. But it’s also possible to avoid these things. Web Services have a
tendency to promote coarse-grained, usage-centered scenarios that provide “atoms of
user functionality.” They have a tendency to promote a tiered separation of concerns:
Web Service clients that deal with the computer-human interface, Web Service tiers
that concern themselves with business rules, and persistence tiers that concern
themselves with data storage. These two tendencies, coarse-grained documents and

Chapter 18: Web Programming 877

tier separation, may be exploited by savvy software project managers to control risk,
bring services to market faster, and enhance quality.

This summary has been almost completely buzzword-compliant; the issues relating to
Web Services are not really at the language-level, but in the softer realms of product
and project management. This book starts with the premise that the language you
think in channels your thoughts and that C# is language that facilitates the rapid
development of robust and scalable programs that deliver client value and can be
modified easily. If you have worked your way to here, we hope that those words have
become more meaningful to you, that they now carry connotations of objects and
architectures, practices and patterns. There is, of course, much more to professional
software development than competence in a language, design methodology, or class
library, but we said early on that the concerns of this book stop at the edge of the
screen.

We hope that we have helped you develop some amount of confidence in your ability
to tackle a problem with C# and the .NET Framework. We hope that thinking in and
expressing a solution in C# has started to become second nature to you. The more
you work in C#, or any language, the more you will internalize it, and the more you
will be able to say precisely what you mean, the more you will be able to express
subtleties and, in the expression, discover and define your unique voice. The
programming world is filled with brilliant people, infinite potential, and endless
mysteries.

Those who can, code.

Exercises
1. Using one the symmetric cryptographic resources of the .NET IO library

(as described in chapter 12), modify the JabberServer and
JabberClient programs so that the data they transmit is encrypted
using a pre-determined key.

2. Modify exercise 3 so that JabberClient and JabberServer do not
need a pre-determined key. To do this, the JabberServer should
respond to an initial connection by sending a public key. JabberClient
generates a random session key that will be used for subsequent
communication. JabberClient encrypts this key with JabberServer’s
public key and sends the result to JabberServer. JabberServer
decrypts this message to find the session key. Further communication
between JabberClient and JabberServer should use symmetric
cryptography with the session key as the encoding/decoding key.

878 Thinking in C# www.ThinkingIn.NET

3. Study the Builder design pattern and compare it to the technique used in
this chapter in the whois example. Identify circumstances where
“classic” Builder would be superior to this method and vice versa.

4. Write your own graphical interface to the MSN Messenger interface.

5. Using the Markov generator from exercise 131, write an MSN chatbot.

6. Write an IHttpHandler that stores submitted email addresses in a
database.

7. Write an IHttpHandler that returns the accumulated email addresses
from the previous exercise as an XML document to be displayed in a Web
browser.

8. Add an XSLT processing instruction to transform the XML returned
from the previous example into XHTML.

9. (Advanced) Using everything you have learned in this book and
investigating the System.Web.Mail namespace, write a .NET Web
Service that provides a mailing list manager.

10. (Advanced) Write a client to your .NET Web Service using a non-.NET
language such as Java. Demonstrate interoperability.

11. (Advanced) Write a Web Service that uses the MSN Messenger network
to create ad hoc computing grids. Investigate and implement a
computationally expensive task (fractal generation, large-number
factoring, global climate modeling, etc.) with a custom user interface.

12. (Advanced) Write the coolest thing ever.

879

A: C# for Visual
Basic
Programmers

As a group, Visual Basic programmers have the most to gain by moving to C#.
While it’s always treacherous to make broad pronouncements about a population
of several million people, it should be safe to say that Visual Basic programmers
have chosen to buy into Microsoft’s platform strategies. It may also be safe to say
that the majority of Visual Basic programmers have consciously traded some
amount of generality in their career for the immediate productivity gains they
perceive in Visual Basic. Visual Basic has always been the easiest way to develop
Windows programs and, over the years, has consistently made it easy to access
operating system features. C# is perhaps not quite as easy as Visual Basic, but the
advantages of the C-derived syntax, full and consistent object orientation, and the
type system more than make up for the incremental difficulty.

The first thing that will strike a VB programmer using Visual Studio .NET is –
nothing. In the opening moments of programming a Windows application, C#
and Visual Basic .NET are essentially identical. There is a form builder onto
which you drop controls. An object inspector allows you to set properties. You
double-click on a control and a code window appears, already wired to the event.
While the syntax of C# is considerably different than Visual Basic, many VB
programmers will be pleasantly surprised at how similar the two are beneath the
surface; over the years, VB has added support for most of the features in the
Common Language Specification. But where some of these things have
traditionally been optional, C# makes them mandatory.

In particular, in C# one must explicitly declare the types of all variables and, in
general, is significantly more rigid about issues related to types. While this may
seem an unnecessary burden at first, there are advantages to so-called strong
typing. Probably the single most practical advantage is that when you explicitly
spell out the type of the arguments and return values of a function (method, in
C#’s preferred terminology), the Visual Studio .NET code editor can give you
meaningful prompts about what type the values should be. As a practical matter,

880 Thinking in C# www.MindView.net

this eliminates the problem of passing a string to a method that expects a number
and vice versa.

Another difference that will strike Visual Basic programmers quickly is that C#
has less whitespace than Visual Basic. Where a Visual Basic programmer might
be used to typing For Each, in C# this will become foreach. Where Visual
Basic’s control structures use words to delimit scope (If…Then…End Ifand so
forth), C#’s structures use curly brackets. This may strike some VB programmers
as overly dense, but in time you will probably learn to prefer the quick single-
keystroke of a curly bracket.

An enormous advantage of C# is that its syntax is derived from the C family of
programming languages. This family of languages, when coupled with the
object.Field referencing convention that is already familiar to Visual Basic
programmers, absolutely dominates in the field of professional programming
discourse. Most discussions of algorithms, program structure, and
implementations are now written in this type of syntax; a C# programmer can
participate in a much broader world of discussions than can a Visual Basic
programmer, not because of any innate weaknesses in the VB syntax, but simply
because a C#-like syntax has become the lingua franca of the programming
community.

Just as importantly, the C# syntax prepares the Visual Basic programmer for the
possibility of a significant career shift towards other programming languages
such as C++ or Java. One of the sadder truths about programming as a career is
that there is no such thing as job security. Many excellent programmers have
found their careers ground on the rocks because the languages they have
mastered have suddenly become obsolete. The speed with which languages fall
out of favor is surprising; a few years ago, it was commonly believed that COBOL
and dBase programmers would never have to worry about unemployment and
Silicon Valley (an important bellwether of technology trends) has recently seen a
precipitous drop in Java opportunities.1 The two most important things in a
programmer’s career management are risk management and continual
education. C# is an ideal risk management choice for VB programmers, as they
risk nothing in terms of productivity, avoid the possibility of a decrease in
demand for Visual Basic, and position themselves so that even if something
catastrophic happens to the local demand for Windows programming, they know

1 This is not to say that Java is in any danger of disappearing soon, as it is the most
commonly taught language in colleges.

Appendix A: C# for Visual Basic Programmers 881

a C-derived language that gives them a “fighting chance” to move into another
area of programming.

However, if C# is used as nothing but a C-like Visual Basic, programmers will
have missed a golden opportunity to increase their productivity even beyond
Visual Basic’s capability. While Visual Basic can be said to be “object-based,”
most VB programmers use Forms as the central organizing principle of their
solutions. With C# and “true” object-orientation, the graphical Form loses its
central role and becomes just one more object among a number of others. The
first half of this book is really an extended tutorial not so much on the C#
language’s syntax, but on object-oriented programming. OOP involves a very
significant change in the way one thinks about programming; object orientation
provides a way of envisioning, discussing, and making decisions about programs
that most people agree is far more effective than the procedural way of thinking.

The first paragraphs of this discussion talked about how Visual Studio .NET
provides a very familiar environment for Visual Basic programmers. However, we
strongly advise readers, especially VB programmers, to avoid Visual Studio at
least until Chapter 14’s discussion of Windows Forms. One unfortunate thing
about Visual Basic is that it fails to distinguish between the capabilities of the
language and the capabilities of the development environment. The Form-
centric architecture that characterizes many VB programs is largely due to the
environment’s behavior, not the inherent characteristics of the VB language.
Because Visual Studio .NET provides an environment very similar to VB, it can
actually stand in the way of “getting” OOP, which again is really the key to
thinking in C#. By using a separate programming editor (or Visual Studio’s
editor, but without creating Visual Studio projects or solutions) and a command-
line compiler, you will gain a much clearer sense of the essence of programming
C#. Once you have learned C# to the point where you have no need for Visual
Studio .NET, you’ll discover that it provides a suite of tools that greatly speed
certain tasks and you’ll be free to choose to use those tools or not, making you at
least as productive as you are today with Visual Basic, but with the huge added
advantages that OOP brings to advanced software development.

883

B: C# for Java
Programmers

Of course, no one really believes that Java’s success has
borne out its stated value proposition of “write once, run
anywhere” (at least no one who believes that the
Macintosh is a significant part of “anywhere”).1 Java has
succeeded in two key areas: as the dominant language for
writing server-side applications and as the top language
for teaching computer science in colleges. The .NET
Framework is better for both these areas, although
obviously it is not inevitable that it will become dominant
in either. For writing client applications, there is no
question that C# clearly outstrips Java.

There are several good reasons for a Java programmer to learn C#. Before going
into them, though, it’s important to acknowledge that C# and .NET have been
shaped in part by Sun’s litigation over Microsoft’s version of Java. Although
Microsoft had been talking since at least 1991 about some C++-derived language
to bridge the gap between Visual Basic and C++, Java’s blistering pace of
innovation in 1996 and 1997 gave Sun tremendous credibility regarding the claim
that Java was commoditizing the operating system. By 1998, people (most
importantly, Judge Ronald Whyte) were willing to believe that Microsoft’s
platform-specific variations were “an attempt to fragment the standardized
application environment, and break with cross platform compatibility.”2 Even

1 Yes, yes, the Macintosh supports Java and OS X brings the level of that support to a
reasonable par with what’s available on Windows and UNIX. But this is a recent
occurrence and only became true long after Java had succeeded due to its other merits.

2 Despite, incidentally, a license that said that Microsoft could “modify, adapt, and create
Derivative Works of the Technology.” Further, the finding that Microsoft’s behavior would
cause “irreparable harm” to Sun was not based on an analysis of the market for computer
languages and technology, but on the finding that Microsoft’s behavior constituted a

884 Thinking in C# www.MindView.net

Bill Gates wrote in those days that “It’s still very unclear to me what our OS will
offer to Java client applications code that will make them unique enough to
preserve our market position.”

Now, it’s much clearer. Java is just another platform, not the end of platforms.
The pace of Java innovation has greatly slowed, especially when it comes to
application-level features. It took years for Java to support mouse-wheels, Swing
is not available on J2ME, J2EE is needlessly complex, and .NET leapfrogs Java in
the area of Web Services.

To the extent that Java’s goal was to commoditize the operating system, it has
utterly failed. Windows is still important, as are the Macintosh operating
systems, Linux, Solaris, and PalmOS. Obviously, a Java programmer has the
advantage of being able to jump back and forth to develop solutions for any of
these platforms, but Java does not come close to subsuming the capabilities of
any operating system. If you’re interested in providing your users a rich client-
side experience, Java just isn’t competitive with native applications. C# makes
writing native Windows applications incredibly easy; Windows Forms is
noticeably easier to program than Swing, has much better performance, a more
comprehensive widget set, and COM Interop and PInvoke (technologies for
accessing non-.NET resources) are vastly easier to use than Java Native
Interfacing.

Obviously, if you choose to write a rich client application in C#, you’re giving up
on alternate operating systems, too. Most significantly, you’re giving up on
Macintosh and the PalmOS, which are the only two non-Windows platforms that
are serious markets for client applications (Linux, which has a strong claim for
being the most significant threat to Microsoft’s OS dominance, is dominated by a
mentality that thinks software should be free). However, there are only three
significant areas where Microsoft does not yet provide a solution – mainframes,
telephones, and the Macintosh. Mainframes are now legacy systems and
Microsoft is poised to enter the telephone market, where it is likely to achieve the
same type of success it has achieved in the handheld market (where PalmOS still
has a marketshare lead, but Microsoft’s PocketPC is an increasingly important
player). Unfortunately, no one has announced any plans for a port of the
Common Language Infrastructure to Macintosh (although Mono does run on
Linux running on the PowerPC chip).

copyright violation rather than “just” a contract violation. Copyright violations carry with
them the presumption of irreparable harm and thus do the wheels of justice turn when
many billions of dollars are involved.

Aside from rich client applications, the .NET Framework SDK is an excellent
programming platform for server-side programming. There is no separate
programming model for enterprise development as there is with EJBs. While
J2EE does provide for scalability, it does so by introducing considerable
complexity and constraining the programmer in annoying ways. Just as Java was
striking for how much easier it made programming network and simple graphical
programs than using Microsoft Foundation Classes and MFC, so too is .NET
striking for how much easier it makes backend programming than using J2EE.
Although .NET is new, Microsoft really bought into the Web Services vision
several years ago and Java is actually playing catch-up to .NET in terms of
delivering value via XML and standard Web protocols.

Finally, .NET turns the value proposition of Java upside-down. Where Java
proposes a single language to “write once, run anywhere,” .NET proposes “Any
language, one platform.” For those who have a broad interest in programming,
the dominance of object-oriented imperative programming has been a mixed
blessing. On the one hand, it’s the common ground from which the patterns
movement sprang and the patterns movement was certainly among the most
significant developments of the 1990s. On the other hand, it’s introduced a
certain blandness to an industry that used to support an “Exotic Language of the
Month Club.” One of the few non-environmental correlates to the highly variable
measure of programmer productivity is the number of programming languages
spoken; it is more significant than age, years of experience, or salary.

Different programming languages allow for much more dramatic differences in
approach than different libraries. Java and C# are likely to produce similar
structures to tackle similar problems; the chief differences would be the use of
Java inner classes versus C#’s delegate types for event handling, C#’s lack of
checked exceptions, and the exact names and methods in the library functions
used. On the other hand, PROLOG (a declarative language) and C# would
produce dramatically different structures to solve the same problem; declarative
programming engages the mind in a different way than imperative programming.
Java’s position as the most-taught language in colleges is all well and good, but it
necessarily limits the audience and constrains the topics of software development
to those aspects of programming that Java embodies. The .NET Framework
provides a much more robust infrastructure for teaching a much broader concept
of programming to a much broader audience.

As a programming language, the Java developer will find in C# an evolutionary
improvement, as a programming platform, .NET is superior to the Java standard
edition and markedly superior to J2EE. For those Java programmers who have

886 Thinking in C# www.ThinkingIn.NET

become disillusioned with the evolution of Java and the behavior of Sun, C#
provides a higher-productivity solution for very little investment in time.

887

C: Test-First
Programming
with NUnit

The number one way to decrease total development time
is to increase the effort spent on quality. Throughout this
book we have tried to emphasize the benefits of quality-
oriented practices and in particular unit-testing, the
testing of individual methods. Until recently, most
programmers have not had access to a robust testing
framework and have done unit-testing haphazardly. The
JUnit testing framework, originally developed by Erich
Gamma and Kent Beck for Java, changed that for Java
programmers and has become an important tool in many
Java teams. JUnit has been ported and extended in
several different ways; Philip Craig initially ported it to
.NET.

The .NET version of JUnit is called NUnit and is available at
http://www.nunit.org/. As this book was nearing finalization, a significant
update to NUnit was released. This version, NUnit 2.0, is much closer in spirit to
a native .NET application and uses attributes in a way somewhat similar to what
we suggested as a direction in Chapter 13. Contributions to this version were
made by James Newkirk, Michael C. Two, Alexei A. Vorontsov, and Charlie Poole
in addition to Philip Craig. NUnit is an excellent tool and should definitely be
incorporated into your development process. To use NUnit, you must use the
object-oriented and attribute facilities in C# and therefore this appendix assumes
that you have made your way through the first two-thirds of this book.

To use NUnit, you inherit from the class TestCase and implement methods
declared as void TestXxx(). Here’s the simplest class possible:

888 Thinking in C# www.MindView.net

//:AppendixC:Mine.cs
//Boiler plate – similar code in all NUnit test code
using NUnit.Framework;
using System;

public class Mine: TestCase {

 public Mine(String s) : base(s) {}
 protected static ITest Suite{
 get {return new TestSuite(typeof (Mine));}
 }
 //End of boiler plate. Write tests beginning here
 public void TestFramework(){
 Assertion.Assert(true);
 }
}///:~

Save this class as Mine.cs and compile it with a reference to the
NUnitCore.dll:

csc /reference:"c:\program files\nunit
v2.0\bin\nunit.framework.dll" /target:library Mine.cs

This will compile the file into a .NET managed DLL called Mine.dll. Now, with
NUnit-Console.exe in the path, run:

NUnit-Console /fixture:Mine /assembly:Mine.dll

To generate this output:

NUnit version 2.0.6
Copyright (C) 2002 James W. Newkirk, Michael C. Two, Alexei
A. Vorontsov.
Copyright (C) 2000-2002 Philip Craig.
All Rights Reserved.
.

Tests run: 1, Failures: 0, Not run: 0, Time: 0.050072
seconds.

The command line tells NUnit-Console to load the TestFixture-attributed
class Mine from the assembly Mine.DLL. Then, NUnit-Console executes
every Test-attributed method in that TestFixture-attributed class – in this
case, that means Mine.ATestMethod(). As long as no exception is propagated
from the method, it is considered to be a success. NUnit provides a class called

Assertion that contains several static methods (Assert(), AssertNotNull(),
AssertEquals(), etc.) that throw an exception if their arguments do not
evaluate to true. Add this method to the above class:

[Test] public void TestFailure(){
 Assertion.Assert("false is not true", false);
}

And recompile and rerun. Now, the output will be:

NUnit version 2.0.6
Copyright (C) 2002 James W. Newkirk, Michael C. Two, Alexei
A. Vorontsov.
Copyright (C) 2000-2002 Philip Craig.
All Rights Reserved.
..F

Tests run: 2, Failures: 1, Not run: 0, Time: 0.2203168
seconds

Failures:
1) Mine.TestFailure : false is not true
 at Mine.TestFailure()

Now, when NUnit-Console loads the class Mine, it discovers two test methods
Mine.ATestMethod() that continues to work fine, and Mine.TestFailure()
that generates a failure. The method that generated the failure is reported to the
console, so that you can determine what caused the problem.

Of course, the two methods that we’ve shown aren’t really testing anything. To be
of any value, you run your own code to generate some kind of condition variable
and then you test that.

For instance, the .NET Framework contains a Random class that has a static
method Random.Next(int max) that is documented to return “a positive
random number less than the specified maximum.” Does it work? You might
write this test method to find out:

[Test] public void TestRandomNext(){
 Random r = new Random();
 int MAX_PARAM = 10;
 int maxValue = 0;
 int minValue = 10000;
 for (int i = 0; i < 10000; i++){

890 Thinking in C# www.ThinkingIn.NET

 int aRandVal = r.Next(MAX_PARAM);
 if (aRandVal < minValue){
 minValue = aRandVal;
 }
 if (aRandVal > maxValue){
 maxValue = aRandVal;
 }
 }
 //"a positive integer…
 Assertion.Assert(minValue >= 0);
 //"… less than the specified maximum"
 Assertion.Assert(maxValue < MAX_PARAM);
}

(This puts aside the question of whether the values returned by the Random
class have a biased distribution, but that would be a significantly more complex
test case.)

Performance questions can be similarly tested using the .NET Framework’s
DateTime and TimeSpan classes. This example tests the ratio of time spent
inserting 1, 10, and 100 million random values into a Hashtable with lots of
collisions. Similar types of test can help flush out Big O problems in all sorts of
algorithms.

//:appendixC:HashtableTest.cs
using System;
using System.Collections;
using NUnit.Framework;

[TestFixture] public class HashtableTest {
 [Test] public void TestInsertionStability(){
 double MAX_ACCEPTABLE_STABLE_DIFF = 1.0;
 Hashtable ht = new Hashtable();
 DateTime startOfSmallInsert = DateTime.Now;
 InsertRandomElements(ht, 1000000);
 TimeSpan smallInsertTime =
 DateTime.Now - startOfSmallInsert;
 DateTime startOfModerateInsert = DateTime.Now;
 InsertRandomElements(ht, 10000000);
 TimeSpan moderateInsertTime =
 DateTime.Now - startOfModerateInsert;
 DateTime startOfLargeInsert = DateTime.Now;

 InsertRandomElements(ht, 100000000);
 TimeSpan largeInsertTime =
 DateTime.Now - startOfLargeInsert;
 long smallTicks = smallInsertTime.Ticks;
 long medTicks = moderateInsertTime.Ticks;
 long longTicks = largeInsertTime.Ticks;

 Console.WriteLine("Raw times: {0} {1} {2}",
 smallInsertTime, moderateInsertTime,
 largeInsertTime);
 double medToSmallRatio =
 (double) medTicks / (double) smallTicks;
 double largeToMedRatio =
 (double) longTicks / (double) medTicks;
 double diffInRatios =
 largeToMedRatio - medToSmallRatio;
 Console.WriteLine("Difference in ratios: "
 + diffInRatios);
 Assertion.Assert(
 Math.Abs(diffInRatios)
 < MAX_ACCEPTABLE_STABLE_DIFF);
 }

 Random r = new Random();

 void InsertRandomElements(
 Hashtable map, int elementsToAdd){
 for (int i = 0; i < elementsToAdd; i++) {
 map[r.Next(100)] = r.Next(1000);
 }
 }
}///:~

In an agile development project, nothing is more important than obeying these
rules: Write unit tests for everything that could fail, before and during
development of the solution, and never check in code without running the entire
suite of unit tests developed in the project. (There is a GUI version of NUnit, but
the console version is easier to integrate into an automated build process.) It
seems like a hassle to write testing code, but the counter-intuitive truth is that
writing testing code absolutely, positively speeds up your code development.
Once you work this way for two weeks, you will never look back.

892 Thinking in C# www.MindView.net

So what do you do if the tests reveal a problem? This is where programmers
skeptical of agile methods try to make their case. “You can’t refactor your way out
of a bad architecture,” they’ll say. And indeed, there’s something to that. If you
never test non-functional requirements such as performance until you’ve got tens
of thousands of lines of source code and have across-the-board issues, it is
unlikely a handful of changes will bring the application up to snuff. On the other
hand, a comprehensive test suite built up of unit tests is of incredible benefit
when you do need to make some sweeping change that touches every class in the
system such as reimplementing a base class or changing a core interface.

The key to cutting this Gordian knot lies in the agile emphasis on small releases.
When an XP programmer speaks of shortening release cycles, they aren’t talking
about cutting from an 18-month cycle to a 9-month cycle. They’re talking about
shortening it to a handful of weeks. It needs to be emphasized that this does not
always mean a real deployment of the release to the entire customer base, but for
Web Services programmers, for whom deployment is just a matter of the servers
in the closet versus the servers in the collocation facility, you should deploy live
every few weeks. This will seem insane until you have embraced unit-testing. You
can deploy live every few weeks, because everything your application does is
being validated several times per day and nothing is ever checked in that
invalidates any of your application’s behavior. (Or, if it does, the responsibility is
instantly apportioned – “Joe checked in these classes and this test in this test
class broke. Fix it Joe!”)

Programmers of Web Services have it especially easy when it comes to embracing
this model of development because Web Services are by definition “headless” –
your responsibilities begin with accepting an XML request and end with
returning XML. Writing NUnit unit tests that fully exercise a Web Service is, if
not entirely trivial, largely mechanical, involving the transcription of an XML
vertical industry standard into a suite of sample requests and responses. It is true
that this will invariably flush out inconsistencies, gaps, and logic flaws in the
industry standard, but such problems are the natural result of the lack of
widespread XML experience. And, as an added bonus, a test suite that exercises
the standard and embodies your interpretation of the standard’s ambiguities is a
huge asset in maintaining a relationship with the lurching pace of standards. If
you do a decent job documenting your test cases and are willing to share, you
have an excellent chance of gaining influence in the technical working groups.
Naturally, since you are both defining the test cases and programming to match
them, your company has the inside track on claiming compliance to the standard.

If a method or class is hard to test, your design is very likely to be flawed.
Refactoring an implementation to increase testability almost always results in an
overall improvement in design quality.

895

D: Programming
the Pocket PC

One of the joys of working with C# is the ability to bring
to bear the full power of modern programming tools on
new hardware devices. As the desktop becomes a legacy
formfactor, products running the Pocket and Tablet PC
versions of Windows provide ample opportunity for new
applications. C# is an ideal way to quickly bring such
applications to market.

While the Tablet PC runs a modified version of the Windows XP operating system
and therefore can take advantage of the full .NET Framework SDK as described
throughout this book, and additionally has a managed library for interacting with
“ink” – the fundamental data structure of pen input – the Pocket PC uses a
slimmed down version of the .NET Framework SDK called the Compact .NET
Framework.

Developing for the Compact .NET Framework is best done from inside Visual
Studio, as the build-and-deploy process is more complicated than just compiling
a .cs file. The “New Projects Wizard” in Visual Studio .NET 1.1 provides options
for developing a “Smart Device Application.” Following the Wizard, you will be
given a choice for targeting Windows CE or Pocket PC. Windows CE is like the
tool blocks by which one builds embedded operating systems and Pocket PC is
one of the operating systems built with Windows CE. It’s not exactly accurate to
say that Pocket PC is built on Windows CE because Pocket PC is not a strict
superset of Windows CE capabilities (Pocket PC does not support DCOM, for
instance).

Once you’ve used the New Projects Wizard to generate the project file, working in
Visual Studio .NET to develop a Pocket PC application is almost no different than
developing a desktop application. The most significant difference is that the
Compact .NET Framework does not support all the features of Windows Forms
and GDI+. Laying out a GUI on Pocket PC typically involves more hard-coding of

896 Thinking in C# www.MindView.net

positions and sizes than one would want to do in a desktop application, but this is
a reasonable thing on a platform that has far less variation in screen resolutions.

This program is a cellular automata simulator for the Pocket PC. A one-
dimensional cellular automaton is a simple array of cells that can be in one of two
states. The state of a cell is determined by the state of itself and its immediate
neighbors in the previous generation. For instance, you might have the rule “If
the cell and its ancestors were on in the previous generation, the cell will be off in
this generation.” The state of every cell in the array is calculated this way and the
generation is drawn on its own line on the screen. By repeatedly drawing
generations this way, the evolution of the cellular automata over time can be read
from the top of the screen to the bottom.

Although cellular automata (CAs) are simple to describe and program, they have
surprising properties, notably, some CAs have been proven computationally
complete, which is to say that given enough memory and time, these CAs can
perform any calculation that is calculable by any computer. This program shows
one such CA.

//:Appendix:CAPocketPC.cs
using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;
using System.Threading;

namespace CAPocketPC
{
 public class Form1 : Form{
 Automata ca;
 Bitmap screenDisplay;
 Thread processThread;
 bool shouldRun = true;

 Form1(){
 ca = new Automata(this, this.Width, 110);
 screenDisplay =
 new Bitmap(this.Width, this.Height);
 Graphics g =
 Graphics.FromImage(screenDisplay);
 g.Clear(Color.Black);

 processThread =
 new Thread(new ThreadStart(ca.Run));
 processThread.Start();
 }

 public static void Main(string[] args){
 Application.Run(new Form1());
 }

 protected override void OnPaint(
 PaintEventArgs e){
 e.Graphics.DrawImage(screenDisplay, 0, 0);
 }

 public void NewGenerationReady(Automata a){
 OnNewGeneration();
 Invalidate();
 }

 int curLine = 0;

 private void OnNewGeneration(){
 Graphics g =
 Graphics.FromImage(screenDisplay);
 using(g){
 if (curLine == this.Height){
 g.Clear(Color.Black);
 curLine = 0;
 }
 Pen redPen = new Pen(Color.Red);
 Pen blackPen = new Pen(Color.Black);
 short[] pop = ca.Population;
 for (int i = 0; i < pop.Length; i++){
 short cell = pop[i];
 Pen pen =
 (cell == 0) ? redPen : blackPen;
 //Neat "shifting curtain" effect
 g.DrawRectangle(pen, i, curLine, i, 60);
 }
 curLine++;
 }

898 Thinking in C# www.ThinkingIn.NET

 Invalidate();
 }

 public void CloseHandler(
 object src, EventArgs e){
 shouldRun = false;
 }
 }

 public class Automata{
 bool shouldRun = true;
 public bool ShouldRun{
 set { shouldRun = value;}
 get { return shouldRun;}
 }
 static Rule[] RulesForDecimal(short rep){
 Rule[] rules = new Rule[8];
 int i = 0;
 for (short hiBit = 0; hiBit < 2; hiBit++){
 for
 (short medBit = 0; medBit < 2; medBit++){
 for
 (short lowBit = 0; lowBit < 2; lowBit++){
 short[] rule =
 new short[]{hiBit, medBit, lowBit};
 short ruleBit = (short) (rep & 1);
 rules[i] = new Rule(rule, ruleBit, 1);
 Console.WriteLine(
 hiBit + "" + medBit + "" + lowBit + "->" + ruleBit);
 i++;
 rep >>= 1;
 }
 }
 }
 return rules;
 }

 static Rule[] baseRules = new Rule[]{
 new Rule(new short[]{0, 1, 1,}, 1, 2),
 new Rule(new short[]{0, 0, 0, 0, 0}, 0, 2),
 new Rule(new short[]{0, 0, 0, 0, 0}, 0, 2),

 new Rule(new short[]{0, 0, 0, 0, 0}, 0, 2),
 new Rule(new short[]{0, 0, 0, 0, 0}, 0, 2),
 };

 int cellCount;
 short[] population;
 internal short[] Population{
 get{ return population;}
 set{ population = value;}
 }

 Rule[] rulebase;

 internal Automata(Form1 parentForm,
 int cellCount, short decRep):
 this(parentForm, cellCount,
 2, RulesForDecimal(decRep)){
 }

 internal Automata(Form1 parentForm,
 int cellCount):
 this(parentForm, cellCount, 2, baseRules) {
 }

 internal Automata(Form1 parentForm,
 int cellCount, int nStates, Rule[] rules){
 this.cellCount = cellCount;
 rulebase = rules;
 population = new short[cellCount];
 Random rand = new Random();
 for (int i = 0; i < population.Length; i++){
 population[i] = (short) rand.Next(nStates);
 }
 NewGeneration =
 new AutomataHandler(parentForm.NewGenerationReady);
 }

 public void Run(){
 while (shouldRun)
 Generation();
 }

900 Thinking in C# www.MindView.net

 short[] Generation(){
 short[] newGen = new short[population.Length];
 short width = rulebase[0].Width;
 short resultIndex = rulebase[0].ResultIndex;
 for (int i = 0; i < newGen.Length; i++){
 int pattern = 0;
 for
 (int ruleIdx = 0; ruleIdx < width; ruleIdx++){
 int prtIdx = i - resultIndex + ruleIdx;
 if (prtIdx < 0){
 prtIdx += population.Length;
 } else{
 if (prtIdx >= population.Length){
 prtIdx -= population.Length;
 }
 }
 pattern += population[prtIdx]<<ruleIdx;
 }
 short result = rulebase[pattern].Result;
 newGen[(i + resultIndex) % cellCount]
 = result;
 }
 population = newGen;
 NewGeneration(this);
 return newGen;
 }

 public delegate void AutomataHandler(Automata ca);
 public event AutomataHandler NewGeneration;
 }

 class Rule{
 readonly public short ANY = -1;
 short[] predecessor;
 internal Rule(short[] predecessor, short result,
 short resultIndex){
 this.predecessor = predecessor;
 this.result = result;
 this.resultIdx = resultIndex;
 width = (short) predecessor.Length;

 }

 short width;
 public short Width{
 get{ return width;}
 set{width = value;}
 }

 short resultIdx;
 public short ResultIndex{
 get{ return resultIdx;}
 set{ resultIdx = value;}
 }

 short result;
 public short Result{
 get{ return result;}
 set{ result = value;}
 }

 public short this[int rulePos]{
 get{ return predecessor[rulePos];}
 set{ predecessor[rulePos] = value;}
 }
 }
}///:~

This code should be straightforward if you’ve read the chapters on GUI and
multithreaded programming. The program works by creating an Automata of
type “110.” The numbering scheme is a shortcut way of referring to one of the 256
rulesets that can be generated for a
1-dimensional CA that has three ancestor cells that are in one of two states. The
rule for an ancestor state of 000 is either 1 or 0, the rule for an ancestor state of
001 is either 1 or 0, etc. Once you’ve enumerated all the ancestor states, the rules
for the CA is just an 8-digit sequence of 1s and 0. “110” is the decimal
representation of a CA capable of universal computation (“30” is another
interesting CA that generates a random sequence of very high quality).

After the ruleset for the Automata is created, the program starts a Thread tha
calls Automata.Run() that in turn calls Automata.Generation(). That
method consults the ruleset and the previous population and creates the new

902 Thinking in C# www.ThinkingIn.NET

population. Once the new population is ready, Automata.Generation()
triggers the NewGeneration event.

Form1.OnNewGeneration() responds to the NewGeneration event by
drawing the Automata’s latest state into the screenDisplay bitmap.
Form1.OnPaint() simply paints the screenDisplay bitmap onto the screen.

As you can see, no special work needs to be done to accommodate the Pocket PC.
The process of deploying to a real Pocket PC device or an emulator is taken care
of by Visual Studio .NET.

Figure D-1: A cellular automata running on a PocketPC emulator

When run, the 110 CA produces complex repetitive structures that can be seen as
signals that propagate over time (remember that each line in the display
represents a temporal step, so the bottom of the screen is a few hundred steps in
time after the top). If given a large enough “working memory” (i.e., array width)
and an appropriate starting state, the 110 CA can generate logic gates for the
diagonally-propagating signals.

The dynamics of cellular automata are described in exhaustive detail in Stephen
Wolfram’s A New Kind of Science (Wolfram Media Inc.: 2002).

E: C#
programming
guidelines

This appendix contains suggestions to help guide you in
performing low-level program design, and in writing code.

Naturally, these are guidelines and not rules. The idea is to use them as
inspirations, and to remember that there are occasional situations where you
need to bend or break a rule.

Design
1. Deliver value. It is the programmer’s moral duty to make the life of the

user better in some way. To do that, you must ship, and what you ship
must be worthwhile to the end-user. Not to you, not to your peers, not to
the marketing department, but to the user. This means writing and
shipping programs that work as unobtrusively as possible to accomplish
user goals in a manner that the user perceives as “natural.” Theodore
Sturgeon said “Sure, 90% of science fiction is crud. That's because 90% of
everything is crud.” Don’t write crud. (And, yes, “crud” was the word he
used.)

2. Hurrying slows you down. In the short term it might seem like it’s
faster to cut-and-paste a section of code that almost does what you want
and modify it for a special case, or to skip writing a unit test because you
need to get the functionality before you quit for the day, or to jump
straight from a discussion with a customer to coding without writing
down exactly what you think you’ve been asked to do. Haste doesn’t work

in programming. If you want to experience profound leaps in
productivity, you must strive for elegance, such that your solutions work
the first time they are integrated and are easily modified in response to
new user requests instead of requiring hours, days, or months of struggle.
This point may take some experience to believe, because it can appear
that you’re not being productive while you’re making a piece of code
elegant. Elegance always pays off.

3. First make it work, then make it fast. This is true even if you are
certain that a piece of code is really important and that it will be a
principal bottleneck in your system. Don’t do it. Get the system going
first with as simple a design as possible. Then if it isn’t going fast enough,
profile it. You’ll almost always discover that “your” bottleneck isn’t the
problem. Save your time for the really important stuff.

4. Remember the “divide and conquer” principle. If the problem
you’re looking at is too confusing, try to imagine what the basic operation
of the program would be, given the existence of a magic “piece” that
handles the hard parts. That “piece” is an object—write the code that uses
the object, then look at the object and encapsulate its hard parts into
other objects, etc.

13. Separate the class creator from the class user (client
programmer). The class user is the “customer” and doesn’t need or
want to know what’s going on behind the scenes of the class. The class
creator must be the expert in class design and write the class so that it
can be used by the most novice programmer possible, yet still work
robustly in the application. Library use will be easy only if it’s
transparent.

14. When you create a class or method, attempt to make what it
does so transparent that comments are unnecessary. Your goal
should be to make the client programmer’s interface conceptually simple.
To this end, use method overloading when appropriate to create an
intuitive, easy-to-use interface.

15. Your analysis and design must produce, at minimum, the
classes in your system, their public interfaces, and their
relationships to other classes, especially base classes. If your
design methodology produces more than that, ask yourself if all the
pieces produced by that methodology have value over the lifetime of the
program. If they do not, maintaining them will cost you. Members of

development teams tend not to maintain anything that does not
contribute to their productivity; this is a fact of life that many design
methods don’t account for.

16. Test everything. Write the test code first (before you write the class),
and keep it with the class. Automate the running of your tests through a
makefile or similar tool. This way, any changes can be automatically
verified by running the test code, and you’ll immediately discover errors.
Because you know that you have the safety net of your test framework,
you will be bolder about making sweeping changes when you discover the
need. Remember that the greatest improvements in languages come from
the built-in testing provided by type checking, exception handling, etc.,
but those features take you only so far. You must go the rest of the way in
creating a robust system by filling in the tests that verify features that are
specific to your class or program.

17. Write the test code first (before you write the class) in order to
verify your class design. If you can’t write test code, you don’t know
what your class looks like. If a method is hard to test, it should probably
be two or more methods. The act of writing the test code will often flush
out additional features or constraints that you need in the class—these
features or constraints don’t always appear during analysis and design.
Tests also provide example code showing how your class can be used.

18. Automate build-and-test. Using a makefile or similar tool, make it so
that thoroughly testing your code is as simple as running a single
command.

19. All software design problems can be simplified by introducing
an extra level of conceptual indirection. Andrew Koenig has
proposed this as a fundamental rule of software engineering. It is the
basis of abstraction, the primary feature of object-oriented programming.

20. An indirection should have a meaning (in concert with guideline
9). This meaning can be something as simple as “putting commonly used
code in a single method.” If you add levels of indirection (abstraction,
encapsulation, etc.) that don’t have meaning, it can be as bad as not
having adequate indirection.

21. Make classes as atomic as possible. Give each class a single, clear
purpose. If your classes or your system design grows too complicated,
break complex classes into simpler ones. The most obvious indicator of
this is sheer size: if a class is big, chances are it’s doing too much and

should be broken up.
Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using polymorphism.
2) A large number of methods that cover broadly different types of
operations: consider using several classes.
3) A large number of member variables that concern broadly different
characteristics: consider using several classes.

22. Watch for long argument lists. Long argument lists are a symptom
of a problem with coupling or cohesion (chapter 9). Such methods are
difficult to write, read, and maintain. Instead, try to move the method to
a class where it is (more) appropriate and refactor for better cohesion
and less coupling.

23. Don’t repeat yourself. If a piece of code recurs, put that code into a
single method in the base class and call it from the derived-class
methods. Not only do you save code space, you provide for easy
propagation of changes. Sometimes the discovery of this common code
will add valuable functionality to your interface.

24. Watch for switch statements or chained if-else clauses. This is
typically an indicator of type-check coding, which means you are
choosing what code to execute based on some kind of type information
(the exact type may not be obvious at first). You can usually replace this
kind of code with inheritance and polymorphism; a polymorphic method
call will perform the type checking for you, and allow for more reliable
and easier extensibility.

25. From a design standpoint, look for and separate things that
change from things that stay the same. That is, search for the
elements in a system that you might want to change without forcing a
redesign, then encapsulate those elements in classes. You can learn
significantly more about this concept in Thinking in Patterns with Java,
downloadable at www.BruceEckel.com.

26. Don’t extend fundamental functionality by subclassing. If an
interface element is essential to a class it should be in the base class, not
added during derivation. If you’re adding methods by inheriting, perhaps
you should rethink the design.

27. Less is more. Start with a minimal interface to a class, as small and
simple as you need to solve the problem at hand, but don’t try to
anticipate all the ways that your class might be used. As the class is used,

you’ll discover ways you must expand the interface. However, once a
class is in use you cannot shrink the interface without disturbing client
code. If you need to add more methods, that’s fine; it won’t disturb code,
other than forcing recompiles. But even if new methods replace the
functionality of old ones, leave the existing interface alone (you can
combine the functionality in the underlying implementation if you want).
If you need to expand the interface of an existing method by adding more
arguments, create an overloaded method with the new arguments; this
way you won’t disturb any existing calls to the existing method.

28. Read your class relationships aloud to make sure they’re
logical. Refer to the relationship between a base class and derived class
as “is-a” and member objects as “has-a.”

29. When deciding between inheritance and composition, ask if
you need to upcast to the base type. If not, prefer composition
(member objects) to inheritance. This can eliminate the perceived need
for multiple base types. If you inherit, users will think they are supposed
to upcast.

30. Use data members for variation in value and method
overriding for variation in behavior. That is, if you find a class that
uses state variables along with methods that switch behavior based on
those variables, you should probably redesign it to express the
differences in behavior within subclasses and overridden methods.

31. Watch for overloading. A method should not conditionally execute
code based on the value of an argument. In this case, you should create
two or more overloaded methods instead.

32. Use exception hierarchies—preferably derived from specific
appropriate classes in the standard C#Base Class Library exception
hierarchy. The person catching the exceptions can then catch the specific
types of exceptions, followed by the base type. If you add new derived
exceptions, existing client code will still catch the exception through the
base type.

33. Sometimes simple aggregation does the job. A “passenger comfort
system” on an airline consists of disconnected elements: seat, air
conditioning, video, etc., and yet you need to create many of these in a
plane. Do you make private members and build a whole new interface?
No—in this case, the components are also part of the public interface, so
you should create public member objects. Those objects have their own

private implementations, which are still safe. Be aware that simple
aggregation is not a solution to be used often, but it does happen.

34. Consider the perspective of the client programmer and the
person maintaining the code. Design your class to be as obvious as
possible to use. Anticipate the kind of changes that will be made, and
design your class so that those changes will be easy.

35. Watch out for “giant object syndrome.” This is often an affliction
of procedural programmers who are new to OOP and who end up writing
a procedural program and sticking it inside one or two giant objects.
With the exception of application frameworks, objects represent concepts
in your application, not the application.

36. Always hide one thing. Every type and method should encapsulate
one (and only one) thing from the outside world. This doesn’t mean that
a class should just have one method! What is hidden varies between
abstraction levels; classes operate at a much higher level of abstraction
than methods. More challenging is that within a single class, it may be
appropriate for different groups of methods to have different abstraction
levels. For instance, the private methods of a class may hide one step of
the more abstract “one thing” a public method hides.

37. If you must do something ugly, make an abstraction for that
service and localize it within a class. This extra level of indirection
prevents the ugly nature of what you’re doing from being distributed
throughout your program. (This idiom is embodied in the Bridge
Pattern).

38. OObjects should not simply hold some data. They should also have
well-defined behaviors. (If you need a “data object” to package and
transport a group of items when a generalized container is
innappropriate, use a struct.)

39. Choose composition first when creating new classes from
existing classes. You should only used inheritance if it is required by
your design. If you use inheritance where composition will work, your
designs will become needlessly complicated.

40. Use inheritance and method overriding to express differences
in behavior, and fields to express variations in state. An extreme
example of what not to do is inheriting different classes to represent
colors instead of using a “color” field.

41. Watch out for variance. Two semantically different objects may have
identical actions, or responsibilities, and there is a natural temptation to
try to make one a subclass of the other just to benefit from inheritance.
This is called variance, but there’s no real justification to force a
superclass/subclass relationship where it doesn’t exist. A better solution
is to create a general base class that produces an interface for both as
derived classes—it requires a bit more space, but you still benefit from
inheritance, and will probably make an important discovery about the
design.

42. Watch out for limitation during inheritance. The clearest designs
add new capabilities to inherited ones. A suspicious design removes old
capabilities during inheritance without adding new ones. But rules are
made to be broken, and if you are working from an old class library, it
may be more efficient to restrict an existing class in its subclass than it
would be to restructure the hierarchy so your new class fits in where it
should, above the old class.

43. Use design patterns to eliminate “naked functionality.” That is,
if only one object of your class should be created, don’t bolt ahead to the
application and write a comment “Make only one of these.” Wrap it in a
singleton. If you have a lot of messy code in your main program that
creates your objects, look for a creational pattern like a factory method in
which you can encapsulate that creation. Eliminating “naked
functionality” will not only make your code much easier to understand
and maintain, it will also make it more bulletproof against the well-
intentioned maintainers that come after you.

44. Watch out for “analysis paralysis.” Remember that you must
usually move forward in a project before you know everything, and that
often the best and fastest way to learn about some of your unknown
factors is to go to the next step rather than trying to figure it out in your
head. You can’t know the solution until you have the solution. Java C#
has built-in firewalls; let them work for you. Your mistakes in a class or
set of classes won’t destroy the integrity of the whole system.

45. Start with the simplest thing that could possibly work. One
important contributor to analysis paralysis is the introduction of
variables for which you either have no data or are outside today’s market.
Will it work with quantum computers or people who have never used
computers before? Unless quantum computers or computer illiterates
have been identified by your users and company as important in the

near future, put aside your consideration of them. Don’t build complexity
into the system on the basis that it will simplify things later; develop
habits and an environment that allow you to efficiently introduce
complexity at the appropriate time.

46. When you think you’ve got a good analysis, design, or
implementation, do a walkthrough. Bring someone in from outside
your group—this doesn’t have to be a consultant, but can be someone
from another group within your company. Reviewing your work with a
fresh pair of eyes can reveal problems at a stage when it’s much easier to
fix them, and more than pays for the time and money “lost” to the
walkthrough process.

Implementation
47. Whatever coding style you use, it really does make a difference

if your team (and even better, your company) standardizes on
it. This means to the point that everyone considers it fair game to fix
someone else’s coding style if it doesn’t conform. The value of
standardization is that it takes less brain cycles to parse the code, so that
you can focus more on what the code means.

48. Follow standard capitalization rules. Capitalize the first letter of
class names and non-private methods and properties. The first letter of
private fields, methods, and objects (references) should be lowercase. All
identifiers should run their words together, and capitalize the first letter
of all intermediate words. For example:
ThisIsAClassName
ThisIsANonPrivateMethodOrPropertyName
thisIsAPrivateMethodOrPropertyName
Capitalize all the letters of readonly values. This is a traditional way to
indicate constants.

49. Don’t create your own “decorated” private data member
names. This is usually seen in the form of prepended underscores and
characters. Hungarian notation is the worst example of this, where you
attach extra characters that indicate data type, use, location, etc., as if
you were writing assembly language and the compiler provided no extra
assistance at all. These notations are confusing, difficult to read, and
unpleasant to enforce and maintain. Let classes and packages do the
name scoping for you. (Note that the .NET convention of prepending a
capital I to interface names violates this rule.)

50. Follow a “canonical form” when creating a class for general-purpose
use. Include definitions for Equals(), GetHashCode(), ToString(),
and MemberwiseClone(). Implement IDisposable if the class
contains non-memory resources that need to be explicitly finalized.

51. For each non-private class, write a test class using NUnit or
other unit-testing framework. Test every non-private method that is
not entirely trivial. Never check in code that breaks the test suite. You are
not done with a task until you have a clean run through the test suite.

52. Sometimes you need to inherit in order to access protected
members of the base class. This can lead to a perceived need for
multiple base types. If you don’t need to upcast, first derive a new class to
perform the protected access. Then make that new class a member object
inside any class that needs to use it, rather than inheriting.

53. If two classes are associated with each other in some functional way
(such as containers and iterators), try to make one a nested class of the
other. This not only emphasizes the association between the classes, but
it allows the class name to be reused within a single package by nesting it
within another class.

54. Don’t fall prey to premature optimization. This way lies madness.
In particular, don’t worry about writing (or avoiding) native methods,
making some methods non-virtual, or tweaking code to be efficient when
you are first constructing the system. Your primary goal should be to
deliver value to your clients and part of the discussion with them should
be the non-functional performance characteristics they require.

55. Keep scopes as small as possible so the visibility and lifetime of
your objects are as small as possible. This reduces the chance of
using an object in the wrong context and hiding a difficult-to-find bug.
For example, suppose you have a container and a piece of code that
iterates through it. If you copy that code to use with a new container, you
may accidentally end up using the size of the old container as the upper
bound of the new one. If, however, the old container is out of scope, the
error will be caught at compile-time.

56. Use the containers in the .NET Framework SDK. Become
proficient with their use and you’ll greatly increase your productivity.

57. For a program to be robust, each component must be robust.
Use all the tools provided by C#: access control, exceptions, type

checking, and so on, in each class you create. That way you can safely
move to the next level of abstraction when building your system.

58. Prefer compile-time errors to run-time errors. Try to handle an
error as close to the point of its occurrence as possible. Prefer dealing
with the error at that point to throwing an exception. Catch any
exceptions in the nearest handler that has enough information to deal
with them. Do what you can with the exception at the current level; if
that doesn’t solve the problem, rethrow the exception.

59. Watch for long method definitions. Methods should be brief,
functional units that describe and implement a discrete part of a class
interface. A method that is complicated is difficult and expensive to
maintain, and is probably trying to do too much all by itself. If you see
such a method, it indicates that, at the least, it should be broken up into
multiple methods. It may also suggest the creation of a new class. Small
methods will also foster reuse within your class. (The important thing is
the complexity, not the number of lines of source code.)

60. Keep things as “private as possible.” Once you publicize an aspect
of your library (a method, a class, a field), you can never take it out. If
you do, you’ll wreck somebody’s existing code, forcing them to rewrite
and redesign. If you publicize only what you must, you can change
everything else with impunity, and since designs tend to evolve this is an
important freedom. In this way, implementation changes will have
minimal impact on derived classes.

61. Use comments liberally, and use the comment-documentation
syntax to produce your program documentation. However, the
comments should add geniune meaning to the code; comments that only
reiterate what the code is clearly expressing are annoying. Note that the
typical verbose detail of C# class and method names reduce the need for
as many comments.

62. Avoid using “magic numbers”—which are numbers hard-wired into
code. These are a nightmare if you need to change them, since you never
know if “100” means “the array size” or “something else entirely.”
Instead, create a constant with a descriptive name and use the constant
identifier throughout your program. This makes the program easier to
understand and much easier to maintain.

63. When creating constructors, consider exceptions. In the best
case, the constructor won’t do anything that throws an exception. In the

next-best scenario, the class will be composed and inherited from robust
classes only, so they will need no cleanup if an exception is thrown.
Otherwise, you must clean up composed classes inside a finally clause.
If a constructor must fail, the appropriate action is to throw an exception,
so the caller doesn’t continue blindly, thinking that the object was
created correctly.

64. If your class requires any cleanup when the client programmer
is finished with the object, make your class implement
IDisposable. Non-memory resources include handles to files or
network streams, database connections, and references to non-managed
objects. Remember that C#’s destructor is non-deterministic. However, if
you implement IDisposable, you should also write a C# destructor that
will serve as a “belts and suspender” last-chance to call
IDisposable.Dispose(). You should write your Dispose() method so
that it is robust even if called multiple times, but if your Dispose() has
a time-consuming implementation, use GC.SuppressFinalize(this) so
that the destructor is not called.

65. When you are creating a fixed-size container of objects,
transfer them to an array—especially if you’re returning this
container from a method. This way you get the benefit of the array’s
compile-time type checking, and the recipient of the array might not
need to cast the objects in the array in order to use them.

66. Choose interfaces over abstract classes. If you know something is
going to be a base class, your first choice should be to make it an
interface, and only if you’re forced to have method definitions or
member variables should you change it to an abstract class. An
interface talks about what the client wants to do, while a class tends to
focus on (or allow) implementation details.

67. Inside constructors, do only what is necessary to set the object
into the proper state. Actively avoid calling other methods (except for
final methods) since those methods can be overridden by someone else
to produce unexpected results during construction. (See Chapter 5 for
details.) Smaller, simpler constructors are less likely to throw exceptions
or cause problems.

68. Remember that code is read much more than it is written. Clean
designs make for easy-to-understand programs, but comments, detailed
explanations, and examples are invaluable. They will help both you and

everyone who comes after you. If nothing else, the frustration of trying to
ferret out useful information from the online Java documentation should
convince you.

 915

F: Resources
.NET Software

You do not need to buy Microsoft’s excellent Visual Studio .NET Integrated
Development Environment in order to program in C#. Every program in this
book can be written, compiled, and run with a text editor and the command-line
tools that are provided in Microsoft’s .NET Platform SDK available at
http://msdn.microsoft.com. It is a large download at 130MB, but is highly
recommended.

Mono is an effort to make an Open Source implementation of the .NET
Framework primarily targeting Linux and includes a free C# compiler. The Mono
product is at http://www.go-mono.com/. Dot-GNU Portable .NET is a similar
effort based in Britain and is available at http://www.southern-
storm.com.au/portable_net.html.

SharpDevelop (http://www.icsharpcode.net/opensource/sd/) is an Open Source
development environment for .NET written by Mike Kruger.

As discussed in Appendix C, NUnit is a unit testing framework by Philip Craig
that is based on the JUnit framework written by Erich Gamma and Kent Beck.
You can download NUnit from http://www.nunit.org/.

Non-.NET Books
Peopleware, by DeMarco and Lister (Dorset House, 1999). This is the most
important book on software development ever published. It does not contain a
line of code, but more than any other book it establishes that software
development is not primarily a technical task at all, but success and productivity
result from the psychic and physical environment in which development takes
place.

Extreme Programming Explained by Beck (Addison Wesley, 2000), Agile
Modeling by Ambler (Wiley, 2002), The Unified Modeling Language User Guide
by Booch, Jacobson, and Rumbaugh (Addison Wesley, 1998). The furor over
development methodologies is all about secondary considerations. “The driver of
a software project is the customer. If the software doesn’t do what they want it to
do, you have failed.” (Beck); “The primary goal of software development is to
produce high-quality software that meets the needs of your project stakeholders

in an effective manner” (Ambler); “The primary product of a development team is
not beautiful documents, world-class meetings, great slogans, or Pulitzer prize-
winning lines of source code. Rather, it is good software that satisfies the evolving
needs of its users and the business. Everything else is secondary” (Booch).
Everyone agrees that the primary goal is delivering customer value and that the
key to doing so effectively is incremental and iterative development. This is not
to say that the debate about how much non-code artifacts contribute to this goal
is not interesting and worthwhile and these three books effectively lay out the
poles and a pragmatic middle ground.

Software for Use, by Constantine and Lockwood (Addison Wesley, 1999). While
everyone agrees that customer value is what should drive the development
process, Software for Use is the only book that actually describes effective
techniques that place the user in control of what is developed. The book’s heavy
emphasis on user-interface issues follows from its premise that “to the user, the
UI is the software.”

Refactoring, by Fowler (Addison Wesley, 1999). This is the only book ever
written on rewriting code. This is truly amazing in that everyone agrees that
iteration is one of the key best practices in software development. Martin Fowler
presents both a tutorial on when and how to go about restructuring existing code
and an encyclopedia of “common refactorings” that are common to object-
oriented code and therefore applicable to C#, although the book predates C#.

Software Assessments, Benchmarks, and Best Practices, by Jones (Addison
Wesley, 2000). Even though most organizations have abysmal software
development processes, they will not allow major changes unless a business case
can be made that can show data relating to success and failure. This book is the
best source of software productivity data, even if it is necessarily behind-the-
times in terms of data associated with Web programming.

 917

Concordance
:

:Add()·413, 767, 808
:AddLine()·679
:AppendChild()·808
:AppendText()·602
:BeginInit()·699
:BeginInvoke()·873
:BeginRead()·861
:Close()·465, 466, 861
:ConcreteMoveNext()·410
:CreateDecryptor()·484
:CreateEncryptor()·484
:CreateGraphics()·661, 712
:Dispose()·172, 231, 232, 565, 700, 705
:Draw()·36, 269
:EndInit()·699
:EndInvoke()·873
:EndRead()·861
:Erase()·36
:F()·58
:Format()·829
:GenerateIV()·484
:GenerateKey()·484
:GetItemCheckState()·614
:GetLength()·356, 357, 363, 364, 365, 369, 370,

373
:GetMethods()·846
:GetProperties()·846
:GetResourceSet()·588
:GetResponseStream()·860
:GetType()·410, 480, 522, 593
:GetValues()·419
:Highlight()·811
:HorizontalTransform()·364
:Interrupt()·726, 862
:Invoke()·873
:IsAssignableFrom()·522
:IsMatch()·500, 502, 507
:LoadFile()·812
:Match()·507
:Matches()·502
:Navigate()·700
:OnPaint()·662, 666, 669, 672, 674, 676, 687,

688, 690, 693
:Play()·272, 288
:Post()·559
:println()·240, 241
:ReadLine()·466
:ReflectModel()·580

:ResumeLayout()·567
:Scrub()·224
:SetItemCheckState()·613
:SomeLogicalEvent()·569
:Split()·828
:Start()·897
:SuspendLayout()·566
:ToCharArray()·476
:ToString()·730, 767
:VerticalTransform()·364
:Wash()·244, 249, 250

B

BlockInfo: Build()·827

C

CapStyle: Check()·505; Close()·505
Change: Act()·295
Collections: ArrayList()·203, 204
Columns: Add()·422, 619, 620
Contains: BringToFront()·642; Focus()·642;

SendToBack()·642
Controller: AttachView()·580
Controls: Add()·571, 575, 576, 582, 583, 584,

585, 586, 593, 595, 600, 605, 609, 613, 616,
617, 620, 623, 630, 635, 637, 641, 642, 651,
660, 661, 663, 667, 670, 683, 684, 694, 696,
699, 705, 731, 743, 744, 810, 811; AddRange(
)·567, 572, 575, 579, 588, 597, 601, 608, 611,
619, 631, 712, 733, 746; Contains()·642;
Remove()·572, 705

Counter: Increment()·746; ToString()·188, 190
Current: Clone()·805

D

Data: GetData()·631, 632; GetDataPresent(
)·631, 632

DataBindings: Add()·637, 641
Debug: WriteLine()·498
Decoder: GetChars()·861
DomainSplitter: SplitString()·571
Drawing: Point()·566; Size()·566, 596, 607, 712

E

Enum: GetValues()·404, 411
Error: WriteLine()·447, 449, 450, 452, 453,

454, 457, 465, 466, 467, 468, 469
EventLogTraceListener: Close()·498

F

Forms: Button()·566; Label()·566

H

Handler: HandleRequest()·554

I

Images: Add()·598, 620
Int32: ToString()·743
IntHolder: AddFan()·282; AddPlayer()·282
IsolatedStorageFile: GetUserStoreForAssembly(

)·477
Items: Add()·609, 613, 620; AddRange()·610,

613; Contains()·612

K

Key: CompareTo()·419

L

Length: ToString()·620
Links: Add()·605
List: Add()·400; Contains()·400; CopyTo(

)·400; IndexOf()·400; Insert()·400;
Remove()·400

Listeners: Add()·498

M

Matrix: Clone()·683
Measurement: Print()·177
MenuItems: Add()·648, 650, 651, 691, 694,

696, 811; AddRange()·647, 648
Model: CloneMenu()·648

N

Name: perhapsRelated()·163; printGivenName(
)·163

NameValueCollectionEntry: CloneMenu()·648
Nodes: Add()·617; Clear()·810
NodeType: ToString()·808

O

Out: Close()·497; WriteLine()·497

P

PDouble: Wash()·243, 245
PictureBox: Invalidate()·695, 697

R

RecursiveNotLocked: RecursiveCall()·751
Relations: Add()·817
Rows: Add()·423, 425, 432

S

SByte: Parse()·732, 745
SourceStream: ReadAll()·481
Stack: Pop()·382; Push()·382
SubItems: Add()·620
System: Activator; CreateInstance()·519, 521,

524; Array; BinarySearch()·357; Clear()·357;
Copy()·356, 357; IndexOf()·507, 580;
Reverse()·357, 476; Sort()·357, 360, 361,
417, 420; Attribute; GetCustomAttribute(
)·541; Console; OpenStandardOutput()·799,
801; SetError()·497; SetIn()·497; SetOut(
)·497; Write()·108, 109, 359, 413, 423, 480,
484, 847; WriteLine()·72, 77, 78, 83, 89, 90,
91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105,
108, 109, 117, 118, 129, 131, 132, 133, 134, 135,
136, 137, 142, 143, 145, 150, 151, 153, 154, 155,
157, 162, 163, 165, 168, 169, 171, 172, 174, 177,
180, 181, 182, 184, 185, 186, 187, 188, 191,
205, 207, 210, 211, 220, 221, 222, 223, 224,
226, 227, 228, 229, 230, 231, 232, 240, 242,
243, 244, 245, 249, 250, 252, 256, 262, 263,
264, 268, 271, 272, 273, 275, 276, 277, 279,
280, 282, 284, 288, 289, 290, 291, 293, 295,
303, 304, 306, 352, 353, 356, 357, 359, 361,
364, 369, 382, 383, 385, 386, 387, 388, 389,

Concordance 919

390, 392, 393, 395, 396, 397, 398, 406, 408,
409, 410, 413, 414, 415, 416, 417, 420, 423,
426, 429, 432, 433, 445, 446, 447, 449, 454,
457, 458, 459, 460, 461, 462, 463, 464, 466,
474, 475, 477, 480, 485, 488, 492, 495, 496,
500, 502, 503, 506, 512, 515, 516, 520, 521,
524, 529, 530, 531, 534, 535, 536, 539, 540,
541, 548, 549, 552, 554, 555, 558, 559, 560,
574, 608, 609, 610, 611, 612, 614, 617, 625,
626, 628, 642, 651, 662, 666, 687, 695, 697,
700, 703, 704, 716, 717, 718, 719, 720, 725,
726, 728, 729, 748, 749, 750, 751, 752, 753,
766, 775, 776, 777, 789, 793, 799, 803, 805,
809, 810, 825, 828, 831, 833, 834, 836, 838,
839, 840, 841, 842, 843, 844, 846, 847, 850,
853, 860, 861, 862, 874, 898; DateTime;
Parse()·829; ToString()·874; EventHandler(
)·566, 568, 574; GC; SuppressFinalize()·172;
Guid; NewGuid()·792; IDisposable; Dispose(
)·461; Math; Cos()·678, 684; Floor()·363;
Sin()·663, 667, 678, 684; Sqrt()·440;
Object; GetType()·520, 521, 524; Print(
)·403; Random; Next()·91, 93, 94, 99, 103,
107, 108, 145, 187, 188, 191, 193, 269, 360,
361, 385, 386, 387, 413, 414, 415, 416, 419,
519, 521, 578, 602, 603, 697, 705, 713, 890,
899; NextDouble()·99, 133, 142, 143, 364,
454, 554, 578, 602, 726; String; Format(
)·190; Type; GetConstructor()·541;
GetInterfaces()·524; GetMethods()·541;
GetType()·516, 519, 524; IsSubclassOf()·521,
847

System.Collections: ArrayList; Add()·203, 385,
398, 402, 411, 519, 521, 705; BinarySearch(
)·414; Contains()·411; FixedSize()·385;
GetEnumerator()·402; ReadOnly()·385;
Remove()·705; Reverse()·414; Sort()·414;
BitArray; Invalidate()·671; Set()·386, 387;
Hashtable; Add()·389; ICollection; CopyTo(
)·417; IDictionary; Add()·390, 416; CopyTo(
)·416; IEnumerator; MoveNext()·513; IList;
Add()·414, 513; CopyTo()·415;
GetEnumerator()·513; Queue; Dequeue(
)·382; Enqueue()·382; SortedList; Add(
)·391, 392; GetByIndex()·392; Synchronized(
)·765

System.Collections.Specialized:
NameValueCollection; Add()·393, 419;
GetValues()·393; StringDictionary;
ContainsKey()·396

System.Data: DataRow; BeginEdit()·432;
Delete()·433; EndEdit()·432; DataSet;
ReadXml()·801; WriteXml()·799, 816;
WriteXmlSchema()·799, 801; DataTable;
NewRow()·422, 423; IDataAdapter; Fill(
)·427, 432, 635, 638, 643, 799, 806; Update(
)·432, 433, 643; IDataReader; Close()·429;
Read()·429; IDbCommand; ExecuteReader(
)·429

System.Data.OleDb: OleDbConnection; Close(
)·427, 429, 799, 806, 817; Open()·427, 429,
432, 635, 638, 643, 799, 805, 816;
OleDbDataAdapter; Fill()·816

System.Diagnostics: Process; Start()·605
System.Drawing: Bitmap; SetPixel()·697; Color;

Dispose()·700, 705; FromArgb()·674, 697;
Graphics; BeginContainer()·680; Clear(
)·661, 662, 666, 669, 682, 704, 896, 897;
DrawCurve()·669; DrawEllipse()·689;
DrawImage()·693, 897; DrawLine()·667,
672; DrawPath()·680, 687; DrawRectangle(
)·663, 672, 682, 690, 693, 713, 897;
DrawString()·680, 681, 689, 690, 692;
EndContainer()·680; FillRectangle()·672,
674, 675, 676, 695; FromImage()·695, 896,
897; GetHdc()·704; MeasureString()·688;
ReleaseHdc()·704; RotateTransform()·669,
680, 690; ScaleTransform()·666, 669, 680,
690; TranslateTransform()·666, 669, 680;
Image; FromFile()·586, 620, 674, 688, 695;
Save()·695

System.Drawing.Drawing2D: GraphicsPath;
AddCurve()·687; AddEllipse()·677;
AddLine()·676, 687; CloseFigure()·687;
IsVisible()·687

System.IO: BinaryReader; ReadBoolean()·488;
ReadByte()·488; ReadBytes()·488;
ReadChar()·488; ReadChars()·488;
ReadDecimal()·488; ReadDouble()·488;
ReadString()·488; BinaryWriter; Write(
)·486, 487; Directory; CreateDirectory()·476;
Delete()·476; Exists()·476;
GetCurrentDirectory()·475; GetDirectories(
)·475; GetFiles()·474, 502; File; Create(
)·476; OpenText()·827; FileStream; Close(
)·484, 485, 495, 592, 789, 816; Seek()·495;
WriteByte()·484; Stream; Close()·486, 487,
488, 491, 492, 506; CreateNavigator()·808;
ReadByte()·495; Seek()·494, 495;
StreamReader; Close()·501, 502, 504, 828;
ReadLine()·831, 834, 836, 839, 841;
ReadToEnd()·793, 853; StreamWriter;
Close()·493; Flush()·831; WriteLine()·492,
831, 834, 836, 839, 841

System.Net: Dns; GetHostByName()·825;
Resolve()·832, 836, 840; HttpWebRequest;
GetResponse()·853; HttpWebResponse;
GetResponseStream()·853; IPAddress;
Parse()·829; WebRequest; Create()·853,
860

System.Net.Sockets: TcpClient; Close()·831,
834, 836, 839, 841; Connect()·836, 841;
GetStream()·831, 833, 836, 839, 841;
TcpListener; AcceptTcpClient()·833, 838;
Start()·833, 838; Stop()·834, 838

System.Reflection: Assembly; GetAssembly(
)·534; GetExportedTypes()·846; GetName(
)·534; GetType()·541, 846; Load()·541, 846

System.Resources: ResourceManager;
GetObject()·593; ResourceSet; GetString(
)·588; ResourceWriter; AddResource()·592;
Generate()·592

System.Text: StringBuilder; Append()·831, 843,
861; ToString()·831, 861; UnicodeEncoding;
GetBytes()·481

System.Text.RegularExpressions: Regex;
Match()·540; Replace()·503; Split()·570

System.Threading: Interlocked; Decrement(
)·704; Increment()·703; Monitor; Enter(
)·736, 741, 769; Exit()·736, 741; Mutex;
WaitOne()·752, 753

System.Web: HttpRequest; BeginGetResponse(
)·860; EndGetResponse()·860;
HttpResponse; Write()·855

System.Windows.Forms: Application; Exit(
)·812; Run()·562, 567, 572, 576, 580, 582,
583, 584, 585, 586, 588, 593, 595, 597, 600,
603, 605, 609, 610, 612, 614, 616, 617, 621,
624, 632, 635, 638, 643, 649, 652, 661, 663,
667, 671, 673, 674, 675, 676, 677, 684, 687,
689, 690, 691, 693, 695, 697, 700, 705, 713,
732, 745, 812, 897; Clipboard;
GetDataObject()·623; SetDataObject()·623,
631; ColorDialog; ShowDialog()·651;
DataGrid; SetDataBinding()·635;
FontDialog; ShowDialog()·652; IDataObject;
GetData()·623; GetDataPresent()·623;
Label; Focus()·642; MessageBox; Show(
)·605; OpenFileDialog; ShowDialog()·651,
695, 697, 812; PrintDialog; ShowDialog(
)·691; PrintPreviewDialog; ShowDialog(
)·691; SaveFileDialog; ShowDialog()·651,
695; Screen; GetBounds()·712

System.Xml: XmlDataDocument;
CreateNavigator()·805, 809; XmlDocument;
CreateNavigator()·803; Load()·777, 803,
810; XmlTextReader; Close()·776;
MoveToNextAttribute()·776; Read()·775

System.Xml.Serialization: XmlSerializer;
Deserialize()·789, 793; Serialize()·784, 786,
791, 793

System.Xml.Xpath: XPathNodeIterator;
MoveNext()·803, 805, 809

System.Xml.Xsl: XslTransform; Load()·820;
Transform()·820

T

Tables: Add()·422
Thread: Abort()·733, 746, 747, 767; Join()·728,

729; Sleep()·168, 172, 252, 713, 718, 725,
726, 729, 733, 734, 746, 747, 748, 750, 753,
766, 850, 862; Start()·716, 718, 720, 727,
728, 729, 733, 746, 747, 748, 749, 767, 838,
840

ToolTip: SetToolTip()·600
Trace: WriteLine()·498
Transaction: Process()·454
Tree: Info()·153
TwoCounter: IncrementAccess()·731, 743

U

Useful: Fight()·306; Fly()·306; Swim()·306
UtilityCo: BeginBilling()·559

W

WhatsTheTime: Time()·874
WriteLine: play()·237; ToString()·836, 840

 921

Class, Method,
Property Cross-
Reference

.

.Add(),413, 767, 808

.AddLine(),679

.AppendChild(),808

.AppendText(),602

.BeginInit(),699

.BeginInvoke(),873

.BeginRead(),861

.Close(),465, 466, 861

.ConcreteMoveNext(),410

.CreateDecryptor(),484

.CreateEncryptor(),484

.CreateGraphics(),661, 712

.Dispose(),172, 231, 232, 565, 700, 705

.Draw(),36, 269

.EndInit(),699

.EndInvoke(),873

.EndRead(),861

.Erase(),36

.F(),58

.Format(),829

.GenerateIV(),484

.GenerateKey(),484

.GetItemCheckState(),614

.GetLength(),356, 357, 363, 364, 365, 369, 370,
373

.GetMethods(),846

.GetProperties(),846

.GetResourceSet(),588

.GetResponseStream(),860

.GetType(),410, 480, 522, 593

.GetValues(),419

.Highlight(),811

.HorizontalTransform(),364

.Interrupt(),726, 862

.Invoke(),873

.IsAssignableFrom(),522

.IsMatch(),500, 502, 507

.LoadFile(),812

.Match(),507

.Matches(),502

.Navigate(),700

.OnPaint(),662, 666, 669, 672, 674, 676, 687,
688, 690, 693

.Play(),272, 288

.Post(),559

.println(),240, 241

.ReadLine(),466

.ReflectModel(),580

.ResumeLayout(),567

.Scrub(),224

.SetItemCheckState(),613

.SomeLogicalEvent(),569

.Split(),828

.Start(),897

.SuspendLayout(),566

.ToCharArray(),476

.ToString(),730, 767

.VerticalTransform(),364

.Wash(),244, 249, 250

A

Abort(): in Thread,733, 746, 747, 767
AcceptTcpClient(): in TcpListener,833, 838
Act(): in Change,295
Activator.CreateInstance(),519, 521, 524
Add(): in,413, 767, 808; in ArrayList,203, 385,

398, 402, 411, 519, 521, 705; in Columns,422,
619, 620; in Controls,571, 575, 576, 582, 583,
584, 585, 586, 593, 595, 600, 605, 609, 613,
616, 617, 620, 623, 630, 635, 637, 641, 642,
651, 660, 661, 663, 667, 670, 683, 684, 694,
696, 699, 705, 731, 743, 744, 810, 811; in
DataBindings,637, 641; in Hashtable,389; in
IDictionary,390, 416; in IList,414, 513; in
Images,598, 620; in Items,609, 613, 620; in
Links,605; in List,400; in Listeners,498; in
MenuItems,648, 650, 651, 691, 694, 696,

811; in NameValueCollection,393, 419; in
Nodes,617; in Relations,817; in Rows,423,
425, 432; in SortedList,391, 392; in
SubItems,620; in Tables,422

AddCurve(): in GraphicsPath,687
AddEllipse(): in GraphicsPath,677
AddFan(): in IntHolder,282
AddLine(): in,679; in GraphicsPath,676, 687
AddPlayer(): in IntHolder,282
AddRange(): in Controls,567, 572, 575, 579,

588, 597, 601, 608, 611, 619, 631, 712, 733,
746; in Items,610, 613; in MenuItems,647,
648

AddResource(): in ResourceWriter,592
Append(): in StringBuilder,831, 843, 861
AppendChild(): in,808
AppendText(): in,602
Application.Exit(),812
Application.Run(),562, 567, 572, 576, 580, 582,

583, 584, 585, 586, 588, 593, 595, 597, 600,
603, 605, 609, 610, 612, 614, 616, 617, 621,
624, 632, 635, 638, 643, 649, 652, 661, 663,
667, 671, 673, 674, 675, 676, 677, 684, 687,
689, 690, 691, 693, 695, 697, 700, 705, 713,
732, 745, 812, 897

Array.BinarySearch(),357
Array.Clear(),357
Array.Copy(),356, 357
Array.IndexOf(),507, 580
Array.Reverse(),357, 476
Array.Sort(),357, 360, 361, 417, 420
ArrayList(): in Collections,203, 204
ArrayList.Add(),203, 385, 398, 402, 411, 519,

521, 705
ArrayList.BinarySearch(),414
ArrayList.Contains(),411
ArrayList.FixedSize(),385
ArrayList.GetEnumerator(),402
ArrayList.ReadOnly(),385
ArrayList.Remove(),705
ArrayList.Reverse(),414
ArrayList.Sort(),414
Assembly.GetAssembly(),534
Assembly.GetExportedTypes(),846
Assembly.GetName(),534
Assembly.GetType(),541, 846
Assembly.Load(),541, 846
AttachView(): in Controller,580
Attribute.GetCustomAttribute(),541

B

BeginBilling(): in UtilityCo,559
BeginContainer(): in Graphics,680
BeginEdit(): in DataRow,432
BeginGetResponse(): in HttpRequest,860
BeginInit(): in,699

BeginInvoke(): in,873
BeginRead(): in,861
BinaryReader.ReadBoolean(),488
BinaryReader.ReadByte(),488
BinaryReader.ReadBytes(),488
BinaryReader.ReadChar(),488
BinaryReader.ReadChars(),488
BinaryReader.ReadDecimal(),488
BinaryReader.ReadDouble(),488
BinaryReader.ReadString(),488
BinarySearch(): in Array,357; in ArrayList,414
BinaryWriter.Write(),486, 487
BitArray.Invalidate(),671
BitArray.Set(),386, 387
Bitmap.SetPixel(),697
BlockInfo.Build(),827
BringToFront(): in Contains,642
Build(): in BlockInfo,827
Button(): in Forms,566

C

CapStyle.Check(),505
CapStyle.Close(),505
Change.Act(),295
Check(): in CapStyle,505
Clear(): in Array,357; in Graphics,661, 662,

666, 669, 682, 704, 896, 897; in Nodes,810
Clipboard.GetDataObject(),623
Clipboard.SetDataObject(),623, 631
Clone(): in Current,805; in Matrix,683
CloneMenu(): in Model,648; in

NameValueCollectionEntry,648
Close(): in,465, 466, 861; in CapStyle,505; in

EventLogTraceListener,498; in
FileStream,484, 485, 495, 592, 789, 816; in
IDataReader,429; in OleDbConnection,427,
429, 799, 806, 817; in Out,497; in
Stream,486, 487, 488, 491, 492, 506; in
StreamReader,501, 502, 504, 828; in
StreamWriter,493; in TcpClient,831, 834,
836, 839, 841; in XmlTextReader,776

CloseFigure(): in GraphicsPath,687
Collections.ArrayList(),203, 204
Color.Dispose(),700, 705
Color.FromArgb(),674, 697
ColorDialog.ShowDialog(),651
Columns.Add(),422, 619, 620
CompareTo(): in Key,419
ConcreteMoveNext(): in,410
Connect(): in TcpClient,836, 841
Console.OpenStandardOutput(),799, 801
Console.SetError(),497
Console.SetIn(),497
Console.SetOut(),497
Console.Write(),108, 109, 359, 413, 423, 480,

484, 847

Class, Method, Property Cross-Reference 923

Console.WriteLine(),72, 77, 78, 83, 89, 90, 91,
93, 94, 95, 97, 98, 101, 102, 103, 104, 105,
108, 109, 117, 118, 129, 131, 132, 133, 134, 135,
136, 137, 142, 143, 145, 150, 151, 153, 154, 155,
157, 162, 163, 165, 168, 169, 171, 172, 174, 177,
180, 181, 182, 184, 185, 186, 187, 188, 191,
205, 207, 210, 211, 220, 221, 222, 223, 224,
226, 227, 228, 229, 230, 231, 232, 240, 242,
243, 244, 245, 249, 250, 252, 256, 262, 263,
264, 268, 271, 272, 273, 275, 276, 277, 279,
280, 282, 284, 288, 289, 290, 291, 293, 295,
303, 304, 306, 352, 353, 356, 357, 359, 361,
364, 369, 382, 383, 385, 386, 387, 388, 389,
390, 392, 393, 395, 396, 397, 398, 406, 408,
409, 410, 413, 414, 415, 416, 417, 420, 423,
426, 429, 432, 433, 445, 446, 447, 449, 454,
457, 458, 459, 460, 461, 462, 463, 464, 466,
474, 475, 477, 480, 485, 488, 492, 495, 496,
500, 502, 503, 506, 512, 515, 516, 520, 521,
524, 529, 530, 531, 534, 535, 536, 539, 540,
541, 548, 549, 552, 554, 555, 558, 559, 560,
574, 608, 609, 610, 611, 612, 614, 617, 625,
626, 628, 642, 651, 662, 666, 687, 695, 697,
700, 703, 704, 716, 717, 718, 719, 720, 725,
726, 728, 729, 748, 749, 750, 751, 752, 753,
766, 775, 776, 777, 789, 793, 799, 803, 805,
809, 810, 825, 828, 831, 833, 834, 836, 838,
839, 840, 841, 842, 843, 844, 846, 847, 850,
853, 860, 861, 862, 874, 898

Contains(): in ArrayList,411; in Controls,642; in
Items,612; in List,400

Contains.BringToFront(),642
Contains.Focus(),642
Contains.SendToBack(),642
ContainsKey(): in StringDictionary,396
Controller.AttachView(),580
Controls.Add(),571, 575, 576, 582, 583, 584,

585, 586, 593, 595, 600, 605, 609, 613, 616,
617, 620, 623, 630, 635, 637, 641, 642, 651,
660, 661, 663, 667, 670, 683, 684, 694, 696,
699, 705, 731, 743, 744, 810, 811

Controls.AddRange(),567, 572, 575, 579, 588,
597, 601, 608, 611, 619, 631, 712, 733, 746

Controls.Contains(),642
Controls.Remove(),572, 705
Copy(): in Array,356, 357
CopyTo(): in ICollection,417; in

IDictionary,416; in IList,415; in List,400
Cos(): in Math,678, 684
Counter.Increment(),746
Counter.ToString(),188, 190
Create(): in File,476; in WebRequest,853, 860
CreateDecryptor(): in,484
CreateDirectory(): in Directory,476
CreateEncryptor(): in,484
CreateGraphics(): in,661, 712
CreateInstance(): in Activator,519, 521, 524

CreateNavigator(): in Stream,808; in
XmlDataDocument,805, 809; in
XmlDocument,803

Current.Clone(),805

D

Data.GetData(),631, 632
Data.GetDataPresent(),631, 632
DataBindings.Add(),637, 641
DataGrid.SetDataBinding(),635
DataRow.BeginEdit(),432
DataRow.Delete(),433
DataRow.EndEdit(),432
DataSet.ReadXml(),801
DataSet.WriteXml(),799, 816
DataSet.WriteXmlSchema(),799, 801
DataTable.NewRow(),422, 423
DateTime.Parse(),829
DateTime.ToString(),874
Debug.WriteLine(),498
Decoder.GetChars(),861
Decrement(): in Interlocked,704
Delete(): in DataRow,433; in Directory,476
Dequeue(): in Queue,382
Deserialize(): in XmlSerializer,789, 793
Directory.CreateDirectory(),476
Directory.Delete(),476
Directory.Exists(),476
Directory.GetCurrentDirectory(),475
Directory.GetDirectories(),475
Directory.GetFiles(),474, 502
Dispose(): in,172, 231, 232, 565, 700, 705; in

Color,700, 705; in IDisposable,461
Dns.GetHostByName(),825
Dns.Resolve(),832, 836, 840
DomainSplitter.SplitString(),571
Draw(): in,36, 269
DrawCurve(): in Graphics,669
DrawEllipse(): in Graphics,689
DrawImage(): in Graphics,693, 897
Drawing.Point(),566
Drawing.Size(),566, 596, 607, 712
DrawLine(): in Graphics,667, 672
DrawPath(): in Graphics,680, 687
DrawRectangle(): in Graphics,663, 672, 682,

690, 693, 713, 897
DrawString(): in Graphics,680, 681, 689, 690,

692

E

EndContainer(): in Graphics,680
EndEdit(): in DataRow,432
EndGetResponse(): in HttpRequest,860

EndInit(): in,699
EndInvoke(): in,873
EndRead(): in,861
Enqueue(): in Queue,382
Enter(): in Monitor,736, 741, 769
Enum.GetValues(),404, 411
Erase(): in,36
Error.WriteLine(),447, 449, 450, 452, 453, 454,

457, 465, 466, 467, 468, 469
EventHandler(): in System,566, 568, 574
EventLogTraceListener.Close(),498
ExecuteReader(): in IDbCommand,429
Exists(): in Directory,476
Exit(): in Application,812; in Monitor,736, 741

F

F(): in,58
Fight(): in Useful,306
File.Create(),476
File.OpenText(),827
FileStream.Close(),484, 485, 495, 592, 789, 816
FileStream.Seek(),495
FileStream.WriteByte(),484
Fill(): in IDataAdapter,427, 432, 635, 638, 643,

799, 806; in OleDbDataAdapter,816
FillRectangle(): in Graphics,672, 674, 675, 676,

695
FixedSize(): in ArrayList,385
Floor(): in Math,363
Flush(): in StreamWriter,831
Fly(): in Useful,306
Focus(): in Contains,642; in Label,642
FontDialog.ShowDialog(),652
Format(): in,829; in String,190
Forms.Button(),566
Forms.Label(),566
FromArgb(): in Color,674, 697
FromFile(): in Image,586, 620, 674, 688, 695
FromImage(): in Graphics,695, 896, 897

G

GC.SuppressFinalize(),172
Generate(): in ResourceWriter,592
GenerateIV(): in,484
GenerateKey(): in,484
GetAssembly(): in Assembly,534
GetBounds(): in Screen,712
GetByIndex(): in SortedList,392
GetBytes(): in UnicodeEncoding,481
GetChars(): in Decoder,861
GetConstructor(): in Type,541
GetCurrentDirectory(): in Directory,475
GetCustomAttribute(): in Attribute,541

GetData(): in Data,631, 632; in
IDataObject,623

GetDataObject(): in Clipboard,623
GetDataPresent(): in Data,631, 632; in

IDataObject,623
GetDirectories(): in Directory,475
GetEnumerator(): in ArrayList,402; in IList,513
GetExportedTypes(): in Assembly,846
GetFiles(): in Directory,474, 502
GetHdc(): in Graphics,704
GetHostByName(): in Dns,825
GetInterfaces(): in Type,524
GetItemCheckState(): in,614
GetLength(): in,356, 357, 363, 364, 365, 369,

370, 373
GetMethods(): in,846; in Type,541
GetName(): in Assembly,534
GetObject(): in ResourceManager,593
GetProperties(): in,846
GetResourceSet(): in,588
GetResponse(): in HttpWebRequest,853
GetResponseStream(): in,860; in

HttpWebResponse,853
GetStream(): in TcpClient,831, 833, 836, 839,

841
GetString(): in ResourceSet,588
GetType(): in,410, 480, 522, 593; in

Assembly,541, 846; in Object,520, 521, 524;
in Type,516, 519, 524

GetUserStoreForAssembly(): in
IsolatedStorageFile,477

GetValues(): in,419; in Enum,404, 411; in
NameValueCollection,393

Graphics.BeginContainer(),680
Graphics.Clear(),661, 662, 666, 669, 682, 704,

896, 897
Graphics.DrawCurve(),669
Graphics.DrawEllipse(),689
Graphics.DrawImage(),693, 897
Graphics.DrawLine(),667, 672
Graphics.DrawPath(),680, 687
Graphics.DrawRectangle(),663, 672, 682, 690,

693, 713, 897
Graphics.DrawString(),680, 681, 689, 690, 692
Graphics.EndContainer(),680
Graphics.FillRectangle(),672, 674, 675, 676,

695
Graphics.FromImage(),695, 896, 897
Graphics.GetHdc(),704
Graphics.MeasureString(),688
Graphics.ReleaseHdc(),704
Graphics.RotateTransform(),669, 680, 690
Graphics.ScaleTransform(),666, 669, 680, 690
Graphics.TranslateTransform(),666, 669, 680
GraphicsPath.AddCurve(),687
GraphicsPath.AddEllipse(),677
GraphicsPath.AddLine(),676, 687
GraphicsPath.CloseFigure(),687
GraphicsPath.IsVisible(),687

Class, Method, Property Cross-Reference 925

Guid.NewGuid(),792

H

Handler.HandleRequest(),554
HandleRequest(): in Handler,554
Hashtable.Add(),389
Highlight(): in,811
HorizontalTransform(): in,364
HttpRequest.BeginGetResponse(),860
HttpRequest.EndGetResponse(),860
HttpResponse.Write(),855
HttpWebRequest.GetResponse(),853
HttpWebResponse.GetResponseStream(),853

I

ICollection.CopyTo(),417
IDataAdapter.Fill(),427, 432, 635, 638, 643,

799, 806
IDataAdapter.Update(),432, 433, 643
IDataObject.GetData(),623
IDataObject.GetDataPresent(),623
IDataReader.Close(),429
IDataReader.Read(),429
IDbCommand.ExecuteReader(),429
IDictionary.Add(),390, 416
IDictionary.CopyTo(),416
IDisposable.Dispose(),461
IEnumerator.MoveNext(),513
IList.Add(),414, 513
IList.CopyTo(),415
IList.GetEnumerator(),513
Image.FromFile(),586, 620, 674, 688, 695
Image.Save(),695
Images.Add(),598, 620
Increment(): in Counter,746; in

Interlocked,703
IncrementAccess(): in TwoCounter,731, 743
IndexOf(): in Array,507, 580; in List,400
Info(): in Tree,153
Insert(): in List,400
Int32.ToString(),743
Interlocked.Decrement(),704
Interlocked.Increment(),703
Interrupt(): in,726, 862
IntHolder.AddFan(),282
IntHolder.AddPlayer(),282
Invalidate(): in BitArray,671; in

PictureBox,695, 697
Invoke(): in,873
IPAddress.Parse(),829
IsAssignableFrom(): in,522
IsMatch(): in,500, 502, 507

IsolatedStorageFile.GetUserStoreForAssembly(
),477

IsSubclassOf(): in Type,521, 847
IsVisible(): in GraphicsPath,687
Items.Add(),609, 613, 620
Items.AddRange(),610, 613
Items.Contains(),612

J

Join(): in Thread,728, 729

K

Key.CompareTo(),419

L

Label(): in Forms,566
Label.Focus(),642
Length.ToString(),620
Links.Add(),605
List.Add(),400
List.Contains(),400
List.CopyTo(),400
List.IndexOf(),400
List.Insert(),400
List.Remove(),400
Listeners.Add(),498
Load(): in Assembly,541, 846; in

XmlDocument,777, 803, 810; in
XslTransform,820

LoadFile(): in,812

M

MakeSundae(): in Sundae,209
Match(): in,507; in Regex,540
Matches(): in,502
Math.Cos(),678, 684
Math.Floor(),363
Math.Sin(),663, 667, 678, 684
Math.Sqrt(),440
Matrix.Clone(),683
Measurement.Print(),177
MeasureString(): in Graphics,688
MenuItems.Add(),648, 650, 651, 691, 694, 696,

811
MenuItems.AddRange(),647, 648
MessageBox.Show(),605
Model.CloneMenu(),648

Monitor.Enter(),736, 741, 769
Monitor.Exit(),736, 741
MoveNext(): in IEnumerator,513; in

XPathNodeIterator,803, 805, 809
MoveToNextAttribute(): in XmlTextReader,776
Mutex.WaitOne(),752, 753

N

Name.perhapsRelated(),163
Name.printGivenName(),163
NameValueCollection.Add(),393, 419
NameValueCollection.GetValues(),393
NameValueCollectionEntry.CloneMenu(),648
Navigate(): in,700
NewGuid(): in Guid,792
NewRow(): in DataTable,422, 423
Next(): in Random,91, 93, 94, 99, 103, 107, 108,

145, 187, 188, 191, 193, 269, 360, 361, 385,
386, 387, 413, 414, 415, 416, 419, 519, 521,
578, 602, 603, 697, 705, 713, 890, 899

NextDouble(): in Random,99, 133, 142, 143,
364, 454, 554, 578, 602, 726

Nodes.Add(),617
Nodes.Clear(),810
NodeType.ToString(),808

O

Object.GetType(),520, 521, 524
Object.Print(),403
OleDbConnection.Close(),427, 429, 799, 806,

817
OleDbConnection.Open(),427, 429, 432, 635,

638, 643, 799, 805, 816
OleDbDataAdapter.Fill(),816
OnPaint(): in,662, 666, 669, 672, 674, 676, 687,

688, 690, 693
Open(): in OleDbConnection,427, 429, 432,

635, 638, 643, 799, 805, 816
OpenFileDialog.ShowDialog(),651, 695, 697,

812
OpenStandardOutput(): in Console,799, 801
OpenText(): in File,827
Out.Close(),497
Out.WriteLine(),497

P

Parse(): in DateTime,829; in IPAddress,829; in
SByte,732, 745

PDouble.Wash(),243, 245
perhapsRelated(): in Name,163

PictureBox.Invalidate(),695, 697
play(): in WriteLine,237
Play(): in,272, 288
Point(): in Drawing,566
Pop(): in Stack,382
Post(): in,559
Print(): in Measurement,177; in Object,403
PrintDialog.ShowDialog(),691
printGivenName(): in Name,163
println(): in,240, 241
PrintPreviewDialog.ShowDialog(),691
Process(): in Transaction,454
Process.Start(),605
Push(): in Stack,382

Q

Queue.Dequeue(),382
Queue.Enqueue(),382

R

Random.Next(),91, 93, 94, 99, 103, 107, 108,
145, 187, 188, 191, 193, 269, 360, 361, 385,
386, 387, 413, 414, 415, 416, 419, 519, 521,
578, 602, 603, 697, 705, 713, 890, 899

Random.NextDouble(),99, 133, 142, 143, 364,
454, 554, 578, 602, 726

Read(): in IDataReader,429; in
XmlTextReader,775

ReadAll(): in SourceStream,481
ReadBoolean(): in BinaryReader,488
ReadByte(): in BinaryReader,488; in

Stream,495
ReadBytes(): in BinaryReader,488
ReadChar(): in BinaryReader,488
ReadChars(): in BinaryReader,488
ReadDecimal(): in BinaryReader,488
ReadDouble(): in BinaryReader,488
ReadLine(): in,466; in StreamReader,831, 834,

836, 839, 841
ReadOnly(): in ArrayList,385
ReadString(): in BinaryReader,488
ReadToEnd(): in StreamReader,793, 853
ReadXml(): in DataSet,801
RecursiveCall(): in RecursiveNotLocked,751
RecursiveNotLocked.RecursiveCall(),751
ReflectModel(): in,580
Regex.Match(),540
Regex.Replace(),503
Regex.Split(),570
Relations.Add(),817
ReleaseHdc(): in Graphics,704
Remove(): in ArrayList,705; in Controls,572,

705; in List,400

Class, Method, Property Cross-Reference 927

Replace(): in Regex,503
Resolve(): in Dns,832, 836, 840
ResourceManager.GetObject(),593
ResourceSet.GetString(),588
ResourceWriter.AddResource(),592
ResourceWriter.Generate(),592
ResumeLayout(): in,567
Reverse(): in Array,357, 476; in ArrayList,414
rollup(): in Window,235
RotateTransform(): in Graphics,669, 680, 690
Rows.Add(),423, 425, 432
Run(): in Application,562, 567, 572, 576, 580,

582, 583, 584, 585, 586, 588, 593, 595, 597,
600, 603, 605, 609, 610, 612, 614, 616, 617,
621, 624, 632, 635, 638, 643, 649, 652, 661,
663, 667, 671, 673, 674, 675, 676, 677, 684,
687, 689, 690, 691, 693, 695, 697, 700, 705,
713, 732, 745, 812, 897

S

Save(): in Image,695
SaveFileDialog.ShowDialog(),651, 695
SByte.Parse(),732, 745
ScaleTransform(): in Graphics,666, 669, 680,

690
Screen.GetBounds(),712
Scrub(): in,224
Seek(): in FileStream,495; in Stream,494, 495
SendToBack(): in Contains,642
Serialize(): in XmlSerializer,784, 786, 791, 793
Set(): in BitArray,386, 387
SetDataBinding(): in DataGrid,635
SetDataObject(): in Clipboard,623, 631
SetError(): in Console,497
SetIn(): in Console,497
SetItemCheckState(): in,613
SetOut(): in Console,497
SetPixel(): in Bitmap,697
SetToolTip(): in ToolTip,600
Show(): in MessageBox,605
ShowDialog(): in ColorDialog,651; in

FontDialog,652; in OpenFileDialog,651, 695,
697, 812; in PrintDialog,691; in
PrintPreviewDialog,691; in
SaveFileDialog,651, 695

Sin(): in Math,663, 667, 678, 684
Size(): in Drawing,566, 596, 607, 712
Sleep(): in Thread,168, 172, 252, 713, 718, 725,

726, 729, 733, 734, 746, 747, 748, 750, 753,
766, 850, 862

SomeLogicalEvent(): in,569
Sort(): in Array,357, 360, 361, 417, 420; in

ArrayList,414
SortedList.Add(),391, 392
SortedList.GetByIndex(),392
SortedList.Synchronized(),765

SourceStream.ReadAll(),481
Split(): in,828; in Regex,570
SplitString(): in DomainSplitter,571
Sqrt(): in Math,440
Stack.Pop(),382
Stack.Push(),382
Start(): in,897; in Process,605; in

TcpListener,833, 838; in Thread,716, 718,
720, 727, 728, 729, 733, 746, 747, 748, 749,
767, 838, 840

Stop(): in TcpListener,834, 838
Stream.Close(),486, 487, 488, 491, 492, 506
Stream.CreateNavigator(),808
Stream.ReadByte(),495
Stream.Seek(),494, 495
StreamReader.Close(),501, 502, 504, 828
StreamReader.ReadLine(),831, 834, 836, 839,

841
StreamReader.ReadToEnd(),793, 853
StreamWriter.Close(),493
StreamWriter.Flush(),831
StreamWriter.WriteLine(),492, 831, 834, 836,

839, 841
String.Format(),190
StringBuilder.Append(),831, 843, 861
StringBuilder.ToString(),831, 861
StringDictionary.ContainsKey(),396
SubItems.Add(),620
SuppressFinalize(): in GC,172
SuspendLayout(): in,566
Swim(): in Useful,306
Synchronized(): in SortedList,765
System.EventHandler(),566, 568, 574

T

Tables.Add(),422
TcpClient.Close(),831, 834, 836, 839, 841
TcpClient.Connect(),836, 841
TcpClient.GetStream(),831, 833, 836, 839, 841
TcpListener.AcceptTcpClient(),833, 838
TcpListener.Start(),833, 838
TcpListener.Stop(),834, 838
Thread.Abort(),733, 746, 747, 767
Thread.Join(),728, 729
Thread.Sleep(),168, 172, 252, 713, 718, 725,

726, 729, 733, 734, 746, 747, 748, 750, 753,
766, 850, 862

Thread.Start(),716, 718, 720, 727, 728, 729, 733,
746, 747, 748, 749, 767, 838, 840

Time(): in WhatsTheTime,874
ToCharArray(): in,476
ToolTip.SetToolTip(),600
ToString(): in,730, 767; in Counter,188, 190; in

DateTime,874; in Int32,743; in Length,620;
in NodeType,808; in StringBuilder,831, 861;
in WriteLine,836, 840

Trace.WriteLine(),498
Transaction.Process(),454
Transform(): in XslTransform,820
TranslateTransform(): in Graphics,666, 669,

680
Tree.Info(),153
TwoCounter.IncrementAccess(),731, 743
Type.GetConstructor(),541
Type.GetInterfaces(),524
Type.GetMethods(),541
Type.GetType(),516, 519, 524
Type.IsSubclassOf(),521, 847

U

UnicodeEncoding.GetBytes(),481
Update(): in IDataAdapter,432, 433, 643
Useful.Fight(),306
Useful.Fly(),306
Useful.Swim(),306
UtilityCo.BeginBilling(),559

V

VerticalTransform(): in,364

W

WaitOne(): in Mutex,752, 753
Wash(): in,244, 249, 250; in PDouble,243, 245
WebRequest.Create(),853, 860
WhatsTheTime.Time(),874
Write(): in BinaryWriter,486, 487; in

Console,108, 109, 359, 413, 423, 480, 484,
847; in HttpResponse,855

WriteByte(): in FileStream,484
WriteLine(): in Console,72, 77, 78, 83, 89, 90,

91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105,
108, 109, 117, 118, 129, 131, 132, 133, 134, 135,
136, 137, 142, 143, 145, 150, 151, 153, 154, 155,
157, 162, 163, 165, 168, 169, 171, 172, 174, 177,
180, 181, 182, 184, 185, 186, 187, 188, 191,
205, 207, 210, 211, 220, 221, 222, 223, 224,

226, 227, 228, 229, 230, 231, 232, 240, 242,
243, 244, 245, 249, 250, 252, 256, 262, 263,
264, 268, 271, 272, 273, 275, 276, 277, 279,
280, 282, 284, 288, 289, 290, 291, 293, 295,
303, 304, 306, 352, 353, 356, 357, 359, 361,
364, 369, 382, 383, 385, 386, 387, 388, 389,
390, 392, 393, 395, 396, 397, 398, 406, 408,
409, 410, 413, 414, 415, 416, 417, 420, 423,
426, 429, 432, 433, 445, 446, 447, 449, 454,
457, 458, 459, 460, 461, 462, 463, 464, 466,
474, 475, 477, 480, 485, 488, 492, 495, 496,
500, 502, 503, 506, 512, 515, 516, 520, 521,
524, 529, 530, 531, 534, 535, 536, 539, 540,
541, 548, 549, 552, 554, 555, 558, 559, 560,
574, 608, 609, 610, 611, 612, 614, 617, 625,
626, 628, 642, 651, 662, 666, 687, 695, 697,
700, 703, 704, 716, 717, 718, 719, 720, 725,
726, 728, 729, 748, 749, 750, 751, 752, 753,
766, 775, 776, 777, 789, 793, 799, 803, 805,
809, 810, 825, 828, 831, 833, 834, 836, 838,
839, 840, 841, 842, 843, 844, 846, 847, 850,
853, 860, 861, 862, 874, 898; in Debug,498;
in Error,447, 449, 450, 452, 453, 454, 457,
465, 466, 467, 468, 469; in Out,497; in
StreamWriter,492, 831, 834, 836, 839, 841;
in Trace,498

WriteLine.play(),237
WriteLine.ToString(),836, 840
WriteXml(): in DataSet,799, 816
WriteXmlSchema(): in DataSet,799, 801

X

XmlDataDocument.CreateNavigator(),805,
809

XmlDocument.CreateNavigator(),803
XmlDocument.Load(),777, 803, 810
XmlSerializer.Deserialize(),789, 793
XmlSerializer.Serialize(),784, 786, 791, 793
XmlTextReader.Close(),776
XmlTextReader.MoveToNextAttribute(),776
XmlTextReader.Read(),775
XPathNodeIterator.MoveNext(),803, 805, 809
XslTransform.Load(),820
XslTransform.Transform(),820

 929

Index
Please note that some names will be duplicated in
capitalized form. Following C# style, the capitalized
names refer to C# classes, while lowercase names refer to
a general concept.

A

al.exe (assembly linking utility),195, 203, 204,
266, 385, 591

aliasing,90
array: bounds checking,350
assemblies,532
attributes,540, 760, 824

B

Beck, Kent,887
binding,634, 642
Boehm, Barry,7, 316
bounds checking,350

C

callback,858, 860, 873
CLR (Common Language Runtime),538
comments,83
const keyword,251, 253, 276, 505, 828
constant,51
constants,51
constructor: static,184

D

deadlock,769, 770
default constructor,165, 523, 524
default values,57, 183
delegates: callback functions and,858, 860, 873
dictionary,381

E

Enter(): in type Monitor,769

F

finally blocks,532
for loops,134, 137

G

graphics,591, 673

H

Hejlsberg, Anders,2, 561

I

IL (intermediate language),77, 78
Integral types,See Value types

J

Jones, Capers,7, 9

K

keyword,137

M

McConnell, Steve,7
Monitor.Enter(),769
multicast delegates,552
multidimensional,190, 357, 435
multidimensional arrays,190

O

operator overloading,278, 279, 282
overloading operators,278, 279, 282

P

patterns: design,865
Picasso, Pablo,3

R

reflection,540

S

Scope of this book,3

sealed classes,254
serialization,52
static constructors,184
Sun,883

T

thread safety,750
Turing, Alan,3

U

upcasting,237, 262, 263, 264
using keyword,660

V

value types,51, 92, 94
Value types: size and default values,57
values, default,57, 183
versioning,52
von Neumann, John,3

Index 931

