ПОДГОТОВИТЕЛЬНЫЕ И ВСПОМОГАТЕЛЬНЫЕ РАБОТЫ

1. ПРИЕМКА И ПОДГОТОВКА ОБОРУДОВАНИЯ К МОНТАЖУ

Приемка оборудования. При приемке проверяют: комплектность оборудования по упаковочным листам и комплектовочно-отгрузочным ведомостям; его соответствие заводским чертежам и техническим условкям; исправность; наличие пломб; отсутствие повреждений или поломок, трещин и раковин; наличие избыточного давления в сосудах (если это предусмотрено в документации), а также полноту технической документации на оборудование, если она не была получена ранее.

Рабочие монтажники принимают участие в приемке оборудования совместно с линейными ИТР или работниками группы подготовки производства монтажной организации.

Транспортирование оборудования со склада заводазаказчика (базисного) до приобъектного склада, а при монтаже «с колес» в монтажную зону осуществляют силами и средствами заказчика по заявкам монтажной организации, передаваемым за три дня до планируемого срока подачи.

Документом, фиксирующим приемку (сдачу) оборудования в монтаж, является приемосдаточный акт. В акте делается оговорка, что полная характеристика технического состояния — дефекты конструкции и заводского изготовления, некомплектность, выявленные при расконсервации, монтаже и испытании оборудования, будет зафиксирована дополнительным актом. Акты подписывают представители заказчика, монтажной организации и генерального подрядчика, а также при необходимости завода-изготовителя.

Принятое от заказчика оборудование находится на ответственном хранении монтажной организации. Для предохранения от повреждений и деформации отдельные машины, их элементы, узлы и детали укладывают на дере-

вянные подкладки или настилы. Приборы, аппаратура, арматура, фитинги и другое мелкое оборудование хранят в закрытом складе на стеллажах, на которых вывешивается опись изделий, которые находятся на данном стеллаже.

По способу хранения в зависимости от массы, габаритных размеров, характера упаковки и требований защиты от атмосферных осадков оборудование делится на четыре группы.

Оборудование, не требующее защиты от атмосферных осадков, а также большой массы — негабаритное и мало подверженное коррозии — хранится на открытых площадках или прирельсовых эстакадах.

Оборудование, требующее защиты от атмосферных эсадков, хранится на полуоткрытых площадках под ин-дивидуальным чли общим навесом. Оборудование с обработанными посадочными или ра-

бочими поверхностями, требующее защиты от влаги и сырости, и мелкие детали хранят сухих закрытых неутепленных и неотапливаемых помещениях, оборудование, требующее дополнительной защиты от температурных влияний, хранят в закрытых утепленных, отапливаемых и вентилируемых складах.

Резиновые манжеты и другие изделия из резины должны храниться в закрытых помещениях при 0—20 °С.

Расконсервация и очистка оборудования. Консервация — временное предохранение защитными покрытиями (смазочными материалами, красками, лаками, упаковкой) товерхностей от коррозии.

Пластичные и консервационные смазки и лакокрасочные покрытия обеспечивают сохранность оборудования в течение одного года, а ингибированные смазки и рабочие масла с присадками — в течение 3—5 лет. Корпуса редукторов и внутренние поверхности емкостей консервируют маслостойкими красителями, растворами нитрата натрия чли воздухом, насыщенным парами ингибитора.

Расконсервацию — удаление консервационных сма-зок, лакокрасочных и других покрытий, выполняют на лриобъектных складах или в монтажной зоне на специаль-но отведенных площадках или непосредственно на фун-даментах. Затраты на выполнение этих работ учтены з стоимости монтажа оборудования.

Л. П. Алоксевнко и др.

Пластичные и консервационные смазки удаляют нагревом в ваннах с минеральным маслом при 100—120 °С с последующей протиркой салфетками из бязи, а также промыванием горячей водой или водно-моющими растворами с пассиваторами и последующей сушкой.

Используют также и специальные химические растворяющие вещества: растворители; обезжиривающие составы и моющие жидкости.

Основные растворители представляют собой бесцветные прозрачные подвижные и летучие жидкие органические соединения с характерным запахом, которые подразделяются на углеводороды, спирты, кетопы, сложные и простые эфиры.

Ацетон (диметилкетон) смешивается во ссех пропор-циях с водой, спиртом, эфирами, минеральными и расти-тельными маслами, бензином, керосипом и др. Раство-ряет жиры, многие смолы и лаки, ацетилен, ацетат цел-люлозы; не растворяет резину.

Бензин-раствориет резину.

Бензин-растворитель (уайт-спирит) растворяет все масла, кроме касторового, и является активным растворителем для масляных лаков, красок и эмалей.

Бензин-растворитель марок БР-1 «галоша», БР-2 и БР-2 с государстренным Знаком качества. Основное назна-

чение — растворитель резины.
Бензин для технических целей применяют в качестве растворителя.

Тетрахлорэтан применяют для растворения жиров,

серы, фосфора и др.

серы, фосфора и др.

Толуол — растворитель масел, смол, асфальтов; смешивается с ацетоном, углеводородами, эфиром.

Трихлорэтилен применяют для обезжиривания деталей перед сборкой. Он негорюч, токсичность незначительная.

Четыреххлористый технический углерод растворяет жиры, масла, каучук, канифоль, смолы, фосфор и др. Продукт негорюч, но ядовит — предельная концентрация в рабочей зоне не выше 20 мг/м³ (вблизи открытого огня токсичен).

Технический хифробензол растворим в спирте, нерастворим в воде. Служит в качестве растворителя смол, лаков, этилцеллюлозы. Трудно воспламеняется, но токсичен. Этиловый спирт смешивается в любых пропорциях с водой, спиртами, эфиром, глицерином, бензином. При-

качестве растворителя, моющей жидкости.

меняют в качестве растворителя, моющей жидкости, в антиобледенительных составах и др.

Для удаления смазок используют струйную промывку узлов и поверхностей оборудования подогретой смесью керосина и минерального масла или одного масла. Мелкие детали промывают в механизированных установках на решетках в ванне с подогревом и подачей промывочной смеси на очищаемые поверхности.

Громоздкие детали и узлы очищают от смазки струей насыщенного или сухого пара, который подается на деталь по резиновому шлангу с наконечником.

Если не истек гарантийный срок хранения, ингибированные смазки удаляют из механизмов заливкой рабочего масла и прокручиванием механизмов вхолостую в течение 20—30 мин. Затем смесь сливают и заливают чистое масло. Масляные краски удаляют щелочной пастой, в которую входят (мас. доли, %): каустическая сода 25, негашеная известь 15, порошковый мел 25, вода 35. Пасту наносят на очищаемую поверхность слоем толщиной 1—1,5 мм и выдерживают 1—3 ч в зависимости от типа и числа слоев краски. Размягченную краску вместе с пастой снимают шпателем, а ее остатки удаляют водой.

Лаковые покрытия снимают пастой-смывкой, которую наносят на поверхность и выдерживают в течение 3—5 мин, а затем удаляют кистью, а поверхность протирают салфеткой. Лакокрасочные покрытия удаляют также с помощью скребков, щеток и шлифовальных машинок, оснащенных специальными щетками и кругами. Для временного предохранения от коррозии расконсервированные поверхности не позже 1—2 ч после их очистки покрывают техническим вазелином, синтетическим солидолом или смазкой, указанной в технических условиях завода-изготовителя. смазкой, указанной в технических условиях заводаизготовителя.

наготовителя. На поверхность, покрытую ржавчиной (коррозией), наносят пасту слоем толщиной 1—1,5 мм и выдерживают в течение 0,25—6 ч в зависимости от плотности и толщины ржавчины. С очищенной поверхности пасту удаляют салфетками или водой. Для предохранения поверхности от дальпейшего окисления ее нейтрализуют 10%-ным водным раствором «Можеф» или 5—10%-ным раствором ортофосфорной кислоты. Технико-экономические показатели применения паст приведены в табл. 1.

•	Ann			
Ι.	Технико-экономические	показатели	применения	паст

Паста	Расход, кг/м²	Стоимость пасты, руб на 1 м ²	Время выдержки на поверхности металла, мин
Щелочная	2	0,12	60—180
Смывка	0,8	0,27	3—5
«Целлогель»	1,5	0,17	15—360

Расконсервацию узлов с подшипниками качения осуществляют на участке, специально оборудованном для этих целей. Подшипниковые узлы или крупногабаритные подшипники промывают в механизированной (душирующей) установке или направленной струей минерального масла, нагретого до 105—120 °C. При необходимости проводят предварительную сушку сухим паром. Промытые подшипники (узлы) протирают салфетками и обертывают плотной бумагой.

Загущенный раствор нитрата натрия удаляют из емкостей промывкой 2—2,5%-ным раствором нитрата натрия, содержащим 0,5%-ную кальцинированную соду, с последующей сушкой Воздух с парами ингибитора удаляют продуванием полостей (емкостей) нагретым воздухом или промывкой мыльно-содовым раствором с добавлением 1—2% нитрата натрия.

Обезжиривание кислородного оборудования осуществляют в соответствии с инструкциями на монтаж и

2. Расход растворителей для обезжиривания труб

Вну- тренний диаметр трубы, мм	ий теля на на тр 1 м диа		расход ний растворителя циаметр на 1 м трубы, мм трубы, дм ⁸ (л)		Расход растворителя на I м трубы, дм³ (л)
3 6 10 15 20 25 32	0,02 0,04 0,06 0,09 0,12 0,15 0,2	40 50 70 80 100 125	0,25 0,3 0,4 0,5 0,8 1	200 250 300 500 750 1000	1,6 2 2,4 4 6

стандартами. Пожаровзрывоопасные растворители применяют для обезжиривания изделий, работающих в среде кислорода, без ограничения рабочих давлений и температур. К ним относятся: четыреххлористый углерод, трихлорэтилен, тетрахлорэтилен и фреон-113. Расход растворителей этой группы для однократного обезжиривания труб приведен в табл. 2.

вания труб приведен в табл. 2. Для промывки и обезжиривания других деталей и узлов машин кроме растворителей и их композиций наибольшее распространение получили моющие составы:

1) водные щелочные растворы с некоторыми улучшающими добавками; в их состав входят кальцинированная или каустическая сода, тринатрий фосфат, калиевый или натричвый хромпик, моющие присадки, эмульгаторы и др. (табл. 3);

и др. (табл. 3);

2) специальные концентрированные смеси, например креолин, предназначенный для отмывки гидроприводов и других гидросистем, деталей двигателей внутреннего сгорания от пригара и углеродистых сложений. Состав креолина (%): масло для креолина 49; фенолы каменноугольные 11; канифоль 17; мыло хозяйственное 14; остальное — раствор каустической соды.

Креолин применяют обычно в виде эмульсии (1:1), нагретой до 60—70 °С; он токсичен и пожароопасен.

Масло для креолина выпускают марок А и Б.
Моечный состав 1120 предназначен для удаления ржавчины и масляных следов с металлических поверхностей перед окрашиванием с последующей обработкой нейтрализующим составом 107.

Нейтрализиющий состав 107 — водная смесь этилового

Нейтрализующий состав 107 — водная смесь этилового спирта (40%) с аммиаком (не менее 0,5%) для нейтрализации металлической поверхности после очистки ее моечным составом 1120.

ным составом 1120.

Для очистки поверхностей оборудования от коррозии применяют пасты (табл. 4), водные травильные растворы (табл. 5), а также водные растворы кислот для одновременного обезжиривания и травления (табл. 6).

Расконсервацию оборудования осуществляют в зависимости от примененного метода консервации и вида защитных составов, используя способы, приведенные в табл. 7.

Ревизия оборудования. Предмонтажная ревизия — комплексная проверка состояния оборудования и устра-

3. Область применения и составы водных моющих растворов.

Область применения	Но- мер раст- вора	Компоненты	Коли- чество компо- нента на 1 дм ³ (л) воды,	Продел- житель- ность обезжи- ривания,
Трубопроводы из коррозионно-стойких сталей всех марок, чугуна, меди, латуни	1	Натрий фосфорно- кислый (трина- трийфосфат)	15	20
То же из алюминия и его сплавов	2	Стекло натриевое жидкое. Моющее вещество *1	20	30
Трубопроводы из коррозионно-стойких сталей всех марок, меди, латуни	3	Натрий гидрат окиси (едкий на- трий)	10	15
Для сильно загрязненных деталей	3	Натрий фосфорно- кислый (трина- трийфосфат)	15	15
То же	4	Стекло натриевое жидкое. Моющее вещество *1	2—3	15
Трубопроводы из стали всех марок, чугуна, меди, латуни, алюминия и его сплавов	5	Моющее вещество МЛ-2	50	30
То же	6	Моющее вещество бытовой химии *2	50	30

^{*1} ОП-7 или ОП-10 в количестве, 2—3 г/дм³ (2—3 г/л); моющий препарат синтанол ДС-10 в количестве 5 г/дм³.

*2 Средство бытовой химии («Дон», «Светлана» и др. в количестье 5 г/дм³ в растворах 1, 2 и 4.

Примечание. При употреблении растворов 5 и 6 следует обязательно осматривать обезжиренные изделия после промывки и просушки. Обнаруженные сухие остатки моющих растворов должны быть удалены.

4. Составы паст (в %) для очистки от коррозии

	Па	ста		Паста	
Состав	«Целло- гель›	травиль- ная	Состав	«Целло- гель»	травиль- ная
Вода Кислота (плотность кг/м³): серная (1840) соляная (1190) фосфорная (1707) Сульфитоцеллюлоз- ный щелок Жидкое стекло	39,7 	7,7 21,3 2,4 14,6	Ингибиторы: ЧМ уротропин Нефтяной контакт Опилки древесные Трепел	- 1 - 3,5 -	0,5 — 0,5 — 36

5. Составы водных травильных растворов (кг на 1 м³ раствора) и режимы обработки поверхностей изделий

		Состав						Режим травления		
Материал и зделий	Кислота (плотность, кг/м³)				Ингиби- торы		телі обр	должи- ьность работ- , мин		
	соляная (1190)	серная (1840)	азотная (1420)	Каустик (Катапин	H-1-A	Температура,	в ваннах	струй- ным ме- тодом	
Чугун	150±	35±5	_	_	1-3	Ī —	50—	10-	_	
и сталь То же	30 150±	_	_	_	_	2-3		30 10—		
»	30 150± 30	_	-	_	-		80 50—	30	3—5	
Медь и	-	70±	-	_	-	_	60 30—	10—	-	
ее сплавы Алюминий и его		20	_	100± 25	_	_	40 50— 60	20	0,5- <u>-</u>	
сплавы Магнитные сплавы	5±1	_	90±1	_	-	_	30	20— 30		

Примечания: 1. Медь и ее сплавы после травления осветляют в растворе азотной кислоты. 2. Магнитные сплавы после травления осветляют в 4—5%-ном водном растворе плавиковой кислоты. 3. При струйном методе обработки давление 0,15—0,25 МПа.

6. Составы водных растворов (кг ка 1 м³ раствора) и режим обработки для одновременного обезжиривания и травления металлических поверхностей

Изделис	Ссрная кнелота (плотность 1840 кг/м°)		ь натрий		Сульфанол	
Стальной прокат; конфи- гурация простой и сред- ней сложности	175 <u>±</u> 25	_		-		
Стальные отливки с большим слоем окалины	165±25		120	±10	4:	±1
Сложной конфигурации (с карманами и зазорами)	250±50			_	-	-
Чугунные отливки, обра- батываемые в шнековых установках	175 ±25	175 ±25				-
	Жидкссть	Эмульга- тор ОП-7 или ОП-10		'pa, °C	Продолжи• тельнесть обработки,	
Изделие	ПМС-200 или уайт-спирит			-емпература,	в ваннах	струй- ным ме- тодом
Стальной прокат; конфи- гурация простой и сред- ней сложности	0,3±0,2 *1 или 25±5 *2	2,5±0,5		50—60	_	3—5
Стальные отливки с большим слоем окалины	_			50—66	5—15	3 —5
Сложной конфигурации (с карманами и зазорами)	0,3±0,2 *1 или 25±5 *2	2,5:	±0 ,5	60—70	5—15	3—5
Чугунные отливки, обра- батываемые в шнековых установках		4:	±1	5060	5—10	
		'		, ,		

^{*1} Жидкость ПМС-200. *2 Уайт-спирит.

7. Способы расконсервации в зависимости от вида консервирующих покрытий или защитной среды

Консервирующее покрытие или защитная среда

Способ расконсервации

Спиртовой раствор ингибитора НДА, порошки ингибиторов НДА, УЛИ, КЦА и Г-2 Ингибированный воздух

Ингибированная бумага Жидкие ингибированные смазки НГ-203 (марок А, Б и В), К-17, НГ-204У Пластичные смазки ПВК, ЗЭС, ГОИ-54П, АМС-3, торсиол

Загущенный раствор нитрата натрия

Рабочие масла, ингибированные присадки АҚОР-1, МРИ-3, МСДА-11, КП, КП-2 и др.

Промывка 3—5%-ным раствором нитрата натрия с последующей сушкой сжатым воздухом Продувка горячим воздухом с температурой 80—90 °С. Промывка мыльносодовым раствором с добавлением 1—2% нитрата натрия Удаление бумаги Промывка бензином или уайт-спиритом, протирка ветошью; промывка водными моющими растворами Погружение в нагретое до 110 °С минеральное масло с последующей промывкой бензином или уайт-спиритом; промывка бензином или уайт-спиритом; промывка бензином или уайт-спиритом (алюминиевые ле-

щей пассивацией (трубы)
Промывка раствором, содержащим 3—5% нитрата натрия и 0,5 кальцинированной соды с последующей сушкой

тали); промывка в ваннах специальными растворами с последую-

Расконсервация не требуется

нение повреждений, вызванных хранением машин и агрегатов на складах заказчика сверх нормативных гарантийных сроков, предусмотренных техническими условиями на их изготовление и поставку. При отсутствии гарантийного срока ревизия производится через год.

Затраты на выполнение предмонтажной ревизии в сметах не предусматриваются, поэтому ревизию выполняют заказчик или работники монтажной организации по прямому договору, заключенному с заказчиком.

Предмонтажная ревизия предусматривает расконсервацию оборудования; разборку для расконсервации и осмотра вращающихся и движущихся деталей; удаление коррозии, грязи и посторонних частиц с последующей промывкой, протиркой и консервацией обработанных поверхностей; проверку состояния (сохранности) изделий;

замену антикоррозионных смазок рабочими, прокладок, сальниковых набивок и мелких деталей (подшипников, сальниковых набивок и мелких деталей (подшипников, питательных трубок, масленок, пробок и т. п.), пришедших в негодность в результате хранения; исправление мелких (неконструктивных) дефектов, шабрение посадочных мест подшипников, трущихся поверхностей, шлифование шеек и цапф валов; перемещение и кантовку оборудования, связанные с ревизией; последующую сборку оборудования; устройство стеллажей, настилов и ванн, необходимых для ревизии, и организацию участка; выполнение работ, определяемых особыми требованиями завода-изготовителя, по сохранности оборудования. вания.

Ревизию и совмещенную с ней укрупнительную сборку оборудования в монтажные блоки осуществляют на специально отведенных площадках.

Подготовка материалов и комплектующих изделий. В качестве материалов и комплектующих изделий применяют прокладки, сальниковые набивки, манжеты и специальные герметизирующие составы. Они служат для уплотнения плоских стыков машин и мест выхода подвижных деталей механизмов.

Прокладочные материалы. Конструкции и размеры прокладок при монтаже соединений выбирают, руководствуясь указаниями чертежей или технических условий (табл. 8).

Сальниковые набивки. Для герметизации машин и механизмов применяют волокнистые и комбинированные, сухие и пропитанные сальниковые набивки — плетеные, скатанные и кольцевые. Материал и вид набивок выбирают в зависимости от рабочей среды, ее температуры и давления (табл. 9).

Резиновые уплотняющие детали. Наиболее общее применение нашли манжеты (для цилиндров и штоков валов, для пневматических и гидравлических устройств) и кольца.

Герметизирующие составы. Для герметизации неподвижных разборных соединений, а также периодически подвижных соединений, частичной их смазки, предохранения деталей от коррозии, обеспечения подвижности и разбираемости служат различные герметизирующие смазки, мастики и мази. Области применения герметизи-

8. Материалы для изготовления прокладок

Область п	рименения				
Рабочая среда	Темпе- ратура, °С, не болес	Рабочее давле- ниг, МПа, не более	Матернал	Характеристика	
Вода, пар	55	5,0	Паронит ПОН	Листы толщиной	
Бензин, керо- син, масло	20	7,5	или ПА	0,4—6 мм	
То же	100	6,5	Паронит ПМБ	Листы толщиной 0,4—3 мм	
Вода, пар	450	5,0	Паронит ПА	Листы толщиной 0,8—1,2 мм	
Отработавший пар, горячие газы	450	0,15	Картон асбе- стовый	Листы толщиной 2—10 мм	
То же	250—425		Асбест	Скрученный или плетеный шнур диаметром 0,75— 55 мм	
Горячие газы	150	_	Асбометалли- ческий арми- рованный	Полотно толщиной 0,6; 0,7 и 1,1 мм	
Пар, газообразные продукты сгорания	450	0,1	Асбест	Ткань толщиной 1,8—3,5 мм	
Горячие газы	450	0,2	Асбест	Листы толщиной 1,4—1,75 мм	
Вода, нефть, масло в соеди- нениях	40	1,0	Картон техни- ческий	Листы или рулоны толщиной 0,3— 2,5 мм	
Масло, вода, воздух в соединениях оборудования и трубопроводов	30	0,15	Прессшпан	Марки А толщиной 0,35—0,4 мм, марки В толщиной 0,5 мм	

Продолжение табл. 8

			-	продолжение наст. с
Область п	рименения			
Рабочая ср ед а	Темпе- ратура, °С, не более	Рабочее давле- ние, МПа, не более	Матернал	Характеристика
Вода, воздух, вакуум	30	0,3	Резина листо- вая	1олщина, мм: 1—8
Вода, воздух	60	0,6	Резина с па- русиновой прослойкой	
Вода, воздух	90	1,0	Резина с ме- таллической сеткой	
Масло, керосин, нефть	20	0,1	Чертежная бумага про- масленная	Листы
Вода	40	0,3	Пеньковые волокна	_
Бензин, керо- син	80	1,0	Фибра	Листы толщиной 0,4—12,5 мм
Пар	250	3,5	Медь	Листы и проволо- лока из меди ма-
Вода	_	10,0	»	рок М1 и М3 от- ожженные
Кислоты		0,2	Свинец	Листы
Вода	_	10,0	Мягкая сталь	×
Пар	470		То же	»
Кислоты, бен- зин	60	4,0	Полихлорви- нил	»
Пар	300	20	Алюминий	Листы толщино й 2—4 мм

Примечание. Прокладки из бумаги или картона пропитывают смесью касторового масла с глицерином или машинным маслом. При установке на нефтепроводах и мазутопроводах прокладки предварительно пропитывают керосином или нефтью.

9. Область и условия применения набивок

э. Областв и условия применения набивок						
Область применения	Давленис, МПа, не бо- лес	Температу- ра, °С, не выше				
Плетеные						
Воздух, питьевая вода, нейтральные растворы, спирт, смазочные масла	20	100				
Воздух, промышленная вода, пары и газы, нефтепродукты	20	100				
Воздух, промышленная вода, водяной пар, смазочные масла	16	100				
Промышленная вода, ней- тральные растворы, слабо- кислые среды	1	130				
Возлух, пары и газы агрессивные, слабокислые растворы, топливо нефтяное, нефлепродукты	4,5	300				
Скатанные						
Кислые масла, топливо нефтяное, органические растворы	3	300				
Вода промышленная	20	100				
То же	20	100				
Промышленная вода, перегретый и насыщенный водяной пар	10	400				
Промышленная вода, перегретый и насыщенный воданий воданный воданный воданий пар	lυ	400				
	Плетеные Воздух, питьевая вода, нейтральные растворы, спирт, смазочные масла Воздух, промышленная вода, пары и газы, нефтепродукты Воздух, промышленная вода, водяной пар, смазочные масла Промышленная вода, нейтральные растворы, слабокислые среды Воздух, пары и газы агрессивные, слабокислые растворы, топливо нефтяное, пефтспродукты Скатанные Кислые масла, топливо нефтяное, органические растворы Вода промышленная То же Промышленная вода, перегретый и насыщенный водяной пар Промышленная вода, перегретый и насыщенный водя	Плетеные Воздух, питьевая вода, нейтральные растворы, спирт, смазочные масла Воздух, промышленная вода, нейтральные растворы, смазочные масла Промышленная вода, нейтральные растворы, слабокислые среды Воздух, пары и газы агрессивные, слабокислые растворы, топливо нефтяное, пефтспродукты Скатанные Кислые масла, топливо нефтяное, органические растворы Вода промышленная вода, перегретый и насыщенный водяной пар Промышленная вода, перегретый и насыщенный водяной пар				

10. Область применения уплотнительных смазок

	06	бласть применения	
Смазка	Уплотняемые детали	Среда	Температу- ра, °(
Бензиноупор- ная	Неподвижные резьбовые и дру- гие соединения	Нефтепродукты	_10÷+40
Вакуумная за- мазка	Соединения ва- куумных устано- вок	Воздух	_10÷+50
Вакуумная (Рамзая)	Стеклянные и металлические подвижные соединения	Воздух	_10÷+40
ВНИИ НП-263	Резьбовые соеди- нения	Воздух, вода	_50÷+100
33K- 2y	Люки, крышки и др.	Воздух, пары, вода	-15÷+100
ЛЗ-162	Задвижки, краны	Нефтепродукты, газ	$-25 \div + 150$
Насосная	Сальниковые уплотнения высо- кого давления	Нефтепродукты, загрязненные жидкости, спирт, вода, глицерин	+120
ЦИАТИМ-205	Неподвижные резьбовые соединения	Воздух, вода	-60÷+50
Резьбовая: Р-2	Резьбовые соеди- нения деталей и	Воздуж, вода	_40÷+100
P-113 P-402 P-416	труб То же »	То же »	$\begin{array}{r} -30 \div +200 \\ -50 \div +200 \\ -30 \div +100 \end{array}$

11. Область применения тиоколовых герметиков

Марка	Вид соеди нений		Температура эксплуата- ции, °C	Особенности применения
y -30M	Металлические (кроме латунных, медных, серебряных)	Воздух, жидкое топливо, разбавлен- ные кислоты и щелочи	-60÷+130	С клеевым подслоем

Продолжение табл. 11

			•	
Марка	Вид соеди нений	Среда	Температура эксплуата- ции, °C	Особенности применения
У-30МЭС-5	Металлически е	Воздух, жидкое	_60÷+130	Без подслоя
УТ-31	Металлические (кроме латун- ных, медных,	топливо То же	_60÷+130	С клеевым подслоем
УТ-32	серебрячых) Металлические	Воздух или	$-60 \div + 130$	Без подслоя
51-YT-36A	Металлические, пластмассовые	топливо Воздух, пары	_60÷+130	С адгезивом
ВИТЭФ-1	Металлические из органиче-	Воздух, пары воды	-60÷+150	Без подслоя
ВИТЭФ-2	ского стекла То же	и топлива То же	_60÷+130	С ускори- телем

рующих смазок, резиновых и тиоколовых герметиков приведены в табл. 10-11.

Прокладки из пеньки пропитывают вареным маслом или суриком.

2. ПРИЕМКА СТРОИТЕЛЬНОЙ ЧАСТИ ОБЪЕКТА

Порядок приемки. В соответствии с графиком к моменту начала монтажных работ должны быть подготовлены: монтажные и складские площадки, дороги и подъезды, фундаменты и опорные конструкции (подкрановые пути, монорельсы, постаменты, этажерки и т. п.) под оборудование, подземные коммуникации; выполнены обратная засыпка и уплотнение грунта, черновые полы, каналы и туннели; должны быть закончены стены, остекление окон и фонарей, уложена кровля, навешены ворота и двери, подготовлено временное или постоянное освещение. При выполнении работ в зимнер время производственные помещения должны быть утеплены, должна быть смонтирована и подключена система отопления, обеспечивающая поддержание температуры в помещениях не ниже +5°C.

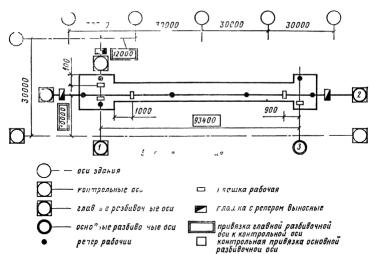


Рис. 1. Схема гсодезической основы монтажа агломерационной ма-шины;

1 — о ь вездо ег прів да головной части, 2 — продольная ось машины, 3 — ось звездочем разгрузочного устроиства

В насосных, насосно-аккумуляторных станциях, маслоподгалах, компрессорных, машинных залах, помещеннях для турбовоздуходувок, турбин и другого аналогичного оборудования должны быть закончены штукатурные работы, а к началу комплексного опробования машин и агрегатов — отделочные работы.

Фундаменты и помещения должны быть освобождены от строительных лесов, опалубки, очищены от мусора и сданы под монтаж оборудования по акту с предъявлением исполнительной схемы. При этом проемы в перекрытиях должны быть ограждены, а каналы, туннели, лотки и люки — закрыты. Фундаменты под монтаж оборудования принимаются как по всему зданию, так и по участкам или пролетам. При этом мостовые краны, используемые для монтажа машин, должны находиться в рабочем состоянии, а дороги подготовлены для подачи оборудования.

Фундаменты под монтаж оборудования должны приниматься в соответствии с техническими условиями. В процессе выполнения подготовительных работ монтажная организация, осуществляющая монтаж оборудования, составляет и передает строительной организации для исполнения схему геодезической основы монтажа. Пример такой схемы приведен на рис. 1.

При приемке по схеме контролируют точность нанесе-

ния всех осей и высотных отметок.

На фундаментах, предназначенных для установки машин и агрегатов, связанных в одну технологическую линию и требующих высокой точности установки, оси и высотные отметки должны быть вынесены на закладные плашки и реперы. Их установку, «закрепление» осей и фиксацию высотных отметок осуществляет строительная организация.

В производственных зданиях и цехах, в которых размещается легкое промышленное оборудование, не связанное между собой кинематически, пеховыми коммуникациями и конвейерами, контрольные и основные оси и высотные отметки могут выноситься на несущие строительные конструкции (колонны или стены) и фиксироваться на специальных закладных деталях или, при низких требованиях к точности геодезической разбивки, масляной краской, а рабочие осп — на полу пеха.

Места установки плашек и реперов проверяют по мон-

Места установки плашек и реперов проверяют по монтажным (установочным) чертежам с уточнением мест расположения плашек и реперов по заводским чертежам на оборудование и сверкой с фактической конфигурацией оборудования и его габаритами.

Число разбивочных осей, монтажных рисок, реперов, плашек, места их расположения, способ закрепления указывают в проекте производства работ или в проекте гео-

дезических работ.

Сдачу (приемку) строительной части объекта и проверку его готовности к монтажу осуществляют в соответствии с правилами СНиП 3.05.05—84 «Технологическое оборудование и технологические трубопроводы» и инструкциями по монтажу отдельных видов оборудования. Проведение и приемку геодезических работ осуществляют в соответствии с требованиями СНиП 3.01.03—84 «Геодезические работы в строительстве».

Технические условия на приемку фундаментов под монтаж. Приемку фундаментов под монтаж начинают после получения от строительной организации исполни-

тельной схемы и разрешения на производство монтажных работ. Готовность фундаментов к проведению монтажных работ оформляется актом. К акту прилагаются составленные строительной организацией исполнительные ехемы основных и привязочных размеров, отметок фундамента, расположения фундаментных болтов, шанцев и анкерных колодцев; расположения металлических плашек и реперов, заделанных в тело фундамента и фиксирующих его оси и высотные отметки.

К акту готовности фундаментов для монтажа машин с динамическими и ударными нагрузками придагается акт выполнения виброизоляции в соответствии с проектом. Фундаменты под машины и открытые технологичес-

Фундаменты под машины и открытые технологические установки монтажная организация может принять до полной строительной готовности объекта, если их монтаж по графику должен быть выполнен до окончания основных строительных работ.

Фундаменты под машины и другое технологическое оборудование, устанавливаемые без подливки, должны сооружаться на полную проектную отметку и сдаваться под монтаж с выровненной поверхностью.

Фундаменты под машины, устанавливаемые с последующей подливкой раствором, сдают под монтаж забетонированными на 50—80 мм ниже проектной отметки опорной поверхности станины машины, а при наличии в основании корпусной детали выступающих частей или ребер жесткости — на 50—80 мм ниже их проектной отметки.

Перед сдачей под монтаж машин фундамент, включая колодцы для фундаментных болтов, должен быть освобожден от опалубки и очищен от строительного мусора. Раковины, пористость, наслоения и другие дефекты недопустимы; выступающая из бетона арматура и проволока, а также металлические кондукторы должны быть обрезаны. На фундаментные болты должны быть установлены гайки и шайбы, а их нарезанные части должны быть защищены от коррозии и предохранены от повреждений. Оси и реперы, закрепленные на фундаменте, должны быть расположены вне контура опорных поверхностей корпусных деталей машин и механизмов.

Расположение фундаментов контролируют относительно главных осей, а их элементов — относительно рабочих монтажных осей.

12. Допуски (в мм) разбивки высотных отметок (для реперов)

Номинальный	Класс точности					
размер Н *1	1 2 3 1 5					6
До 2 500 Св. 2 500 до 4 000 » 4 000 » 8 000 » 8 000 » 16 000 » 16 000 » 25 000 » 25 000 » 40 000 » 40 000 » 60 000 » 60 000 » 100 000 » 100 000 » 160 000	0,6 1,0 1,6 2,4 4,0 6,0 10,0 16,0	0,6 1,0 1,6 2,4 4,0 6,0 10,0 16,0 24,0	1,0 1,6 2,4 4,0 6,0 10,0 16,0 24,0 20,0	1,6 2,4 4,0 6,0 10,0 16,0 24,0 40,0 60,0	2,4 4,0 6,0 10,0 16,0 24,0 40,0 60,0 100,0	10 10 22 40 60 100

 $^{^{*1}}$ H — расстояние между точками в вертикальной плоскости.

Фактическую точность вынесения основных и контрольных, а также отдельных рабочих осей и высотных отметок выборочно проверяют на соответствие требованиям, указанным в схеме геодезического обоснования, а для остальных осей и высотных отметок — по исполнительной схеме. В тех случаях, когда в проекте геодезического обоснования нет специальных требований к точ-

13. Допуски (в мм) разбивки точек и осей в плане (для плашек)

Номинальный		Класс точности				
размер <i>L</i> *1	1	1 2 3 4 5				
<pre></pre>	0,6 000 1,0 000 1,6 000 2,4 000 4,0 000 6,0 000 10,0 000 16,0 000 24,0	1,0 1,6 2,4 4,0 6,0 10,0 16,0 24,0 40,0	1,6 2,4 4,0 6,0 10,0 16,0 24,0 40,0 60,0	2,4 4,0 6,0 10,0 16,0 24,0 40,0 60,0 100,0	4 6 10 16 24 40 60 100 160	6 10 16 24 40 60 100 160

 $^{^{*1}}$ L — расстояние между точками и осями в горизонтальной плоскости.

			Класс т	очности		
F!∙оминальны¤ размер <i>L</i> »¹	1	2	3	1	5	6
До 8 000 Св. 8 000 до 16 000 » 16 000 » 25 000 » 25 000 » 40 000 » 40 000 » 60 000 » 60 000 » 100 000 » 100 000 » 160 000		0,6 1,0 1,6 2,4 4,0 6,0 10,0	1,0 1,6 2,4 4,0 6,0 10,0 16,0	1,6 2,4 4,0 6,0 10,0 16,0 24,0	2,4 4,0 6,0 10,0 16,0 24,0 40,0	4 6 10 16 24 40 60

14. Допуски (в мм) передачи высотных отметок (для реперов)

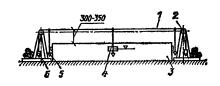
ности вынесения осей и высотных отметок, их принимают в соответствии с требованиями для заданных классов точности разбивочных работ. В этом случае при приемке реперов, расположенных на одном монтажном горизонте, контролируют соответствие точности разбивки еысотных отметок допускам, указанным в табл. 12, а точности разбивки осей — допускам, приведенным в табл. 13. Точность передачи высотных отметок с одного монтажного горизонта на другой должна соответствовать допускам, приведенным в табл. 14.

Готовые фундаменты принимают при условии соответствия их фактических размеров и расположения поверхностей, закладных деталей, анкерной арматуры, фунламентных болтов и колодцев под них проектным параметрам.

Отклонения фактических размеров фундаментов и их элементов не должны превышать приведенных ниже допустимых величин.

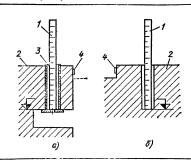
Допустимые отклонения (в мм) элементов монолитных бетонных и железобетонных фундаментов

10 11	
Верхних поверхностей от горизонтали на всю плоскость	± 20
Местные отклонения бетонной поверхности от проектного по-	
ложения при провсрке рейкой длиной 2 м, кроме опорных по-	. =
всрхностей	土5

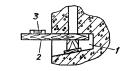

 $^{^{*1}}$ L — расстояние между точками (реперами) в горизонтальной плоскости.

Вертикальных поверхностей от вертикали и линий их пере-	
сечения по всей высоге	± 20
Высотных отметок закладных частей, служащих опорами для	
колонн или сборных элементов	 5
Осей фундаментных болтов, расположенных:	5
внутри контура опоры монтируемого элемента вне контура опоры монтируемого элемента	10
Высотных отметок верхних торцов забетонированных фунда-	10
ментных болтов	+20
Допустимые отклонения (в мм) элементов сборных железобет	онных
фундаментов и оснований	
Высотных отметок верхних опорных поверхностей элементов	
фундаментов от проектных	-10
Высотных отметок дна стаканов фундаментов от проектных	 20
Осей фундаментных болтов и стаканов фундаментов относительно разбивочных осей	13
Допустимые отклонения (в мм) элементов фундаментов под технологические металлоконструкции и положения анкер болтов	ных
Установочных поверхностей на фундаменте, возведенном до проектной отметки:	
по высоте	± 5
по уклону на 1 м	1
Верхней поверхности выверенной и подлитой стальной плиты:	. 1 5
по высоте	$\pm 1,5$
Осей фундаментных болтов, расположенных:	•
внутри контура опоры монтируемого элемента	5
вне контура монтируемого элемента	10
Высотных отметок торцов фундаментных болтов	$+20 \\ +30$
	•
Схемы проверки фундаментов и их элементов п	риве-

15. Схемы проверки фундаментов и их элементов

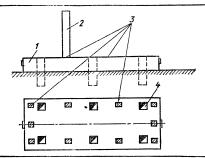

Объект проверки

Положение осей фундамента 1 — струна; 2 — стой-ка; 3 — фундамент; 4 — плашка с осевой и высотной отметкой; 5 — отвес; 6 — груз

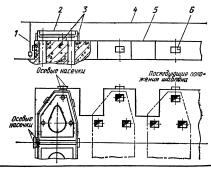


Объект проверкь

Установка анкерной арматуры (а) и глубины колодцев (б) I— нивелирная рейка; 2— фундамент; 3— анкерная арматура; 4— плашка с осевой и высотной отметкой



Ниша под анкерные плиты 1 — ниша; 2 — контрольная линейка; 3 — уровень



Места расположения подкладок на фундаменте 1 — фундамент; 2 — нивелирная рейка; 3 — места расположения подкладок, 4 —

колодцы

Расположение колодцев под фундаментные болты I — отвес; 2 — шаблон; 3 — стойки шаблона; 4 — струна, 5 — фундамент; 6 плашка с осевой н высотной отметкой

3. ПРЕДМОНТАЛЬНОЕ УКРУПНЕНИЕ ОБОРУДОВАНИЯ В БЛОКИ

Предварительное укрупнение. Укрупнение — сборка поставочных частей или сборочных единиц оборудования в монтажные блоки на строительной площадке или промышленных базах монтажных организаций перед установкой в проектное положение с целью улучшения условий труда, сокращения объема работ, выполняемых на высоте, и продолжительности монтажа. При этом осуществляют обвязку оборудования на нулевой отметке технологическими трубопроводами и металлоконструкциями, наносят изоляцию и выполняют футеровку.

Предварительное укрупнение оборудования в монтажные блоки обеспечивает сокращение сроков ввода промышленного объекта в эксплуатацию. При отсутствии такого эффекта выполнять предварительное укрупнение оборудования, конструкций и трубопроводов в блоки на монтажной площадке целесообразно только тогда, когда производственно-технические условия, при которых оно проводится, значительно лучше, чем условия, при которых осуществляется монтаж непосредственно на объекте.

Изготовление блоков. При предварительном укрупнении оборудования в монтажные блоки для его размещения и закрепления используют специальные опорные конструкции, называемые *базовыми*. Базовая конструкция представляет собой плоскую металлическую раму, состоящую из продольных и поперечных балок, сваренных между собой.

Базовые конструкции изготовляют в соответствии с требованиями СНиП III-18—75 по 4-му классу точности (ГОСТ 21779—82). До изготовления базовых конструкций проверяют соответствие фактических и проектных размеров, координирующих расположение крепежных болтов в опорных фланцах оборудования и его узлах. При несовпадении размеров должны быть внесены изменения в чертежи. Допускаемые отклонения от соосности отверстий ±2 мм. Защитную окраску базовых конструкций проводят в соответствии с требованиями технических условий на их изготовление.

Собранные узлы оборудования, входящего в состав блока, устанавливают на базовую конструкцию, выве-

ряют и закрепляют. При установке оборудования выше верха поперечных балок жесткость базовой конструкции в горизонтальной плоскости обеспечивается специальными диагональными связями и сварными соединениями поперечных и продольных балок.

При установке оборудования на поперечные балки его корпусные детали используются в качестве диагональных связей, обеспечивающих необходимую жесткость базовой конструкции. Зазор между опорами оборудования и опорными деталями не допускается. Его ликвидируют путем установки металлических рихтовочных пластин или шайб, привариваемых к опорным деталям. Размеры пластин или шайб в плапе принимают равными размерам опор оборудования. При необходимости устанавливают виброгасящие прокладки или виброизолирующие опоры.

Трубопроводы крепят на металлических опорах, приваренных к базовой конструкции. Отклонения установочных размеров трубопроводов не должны превышать допусков 16-го квалитета по ГОСТ 25347—82. Обслуживающие конструкции (лестницы, площадки, настилы, ограждения) выполняются типовыми.

Для изготовления блоков трубопроводов должны использоваться бесшовные трубные детали (отводы, тройники, переходы и т. п.). Детали трубопроводов, диаметры которых превышают размеры, указанные в стандартах, допускается изготовлять сварными.

Сварка оборудования и трубопроводов должна быть выполнена, а качество сварных швов проверено в соответствии с требованиями стандартов и технических условий.

Блоки насосов должны быть собраны на общей раме

ловий.

ловий.

Блоки насосов должны быть собраны на общей раме в комплекте с двигателями, арматурой, трубопроводами и другими устройствами.

Укрупнительную сборку оборудования можно проводить без использования базовых конструкций (рам) путем объединения нескольких элементов в один узел. Технология их сборки и особенности выполнения слесарносборочных работ рассмотрены в гл. 8.

Трубопроводная арматура, у которой истек гарантийный срок хранения, допускается к установке в блоки после испытания пробным давлением на прочность корпуса и герметичность запорного устройства по дей-

ствующим нормам. Результаты испытаный оформляются актом.

оборудование, конструкции, трубопроводы блока перед его монтажом окрашивают. Окончательную опознавательную окраску трубопроводов и трубопроводной арматуры осуществляет заказчик после монтажа блоков и их сдачи в эксплуатаппю. Окраску внецеховых трубопроводов выполняет монгажная организация, а внутрицеховых — строительная.

Условия маркировки, упаковки, транспортирования и хранения блоков должны соотестствовать требованиям ГОСТ 4666—75, ГОСТ 15108—80Е, ГОСТ 23170—78Е.

ГОСТ 4666—75, ГОСТ 15108—80Е, ГОСТ 23170—78Е. При необходимости длительной транспортировки или хранения консервацию блоков проводят в соответствии с требораниями технической документации.

Транспортировка блоков. Блоки оборудования транспортируют от места предварительного укрупнения до стройки железнолорожным и автомобильным транспортом. Перемещение поставочных узлов блоков волоком категорически запрещается. На транспортном средстве блоки устанавливают на деревянные прокладки толщиной не менее 40 мм. Их располагают поперек продольной оси платформы в местах прохождения поперечных балок базовой конструкции. Верх прокладок должен находиться строго в горизонтальной плоскости. Для перевозки по железной дороге рекомендуется применять четырехосные платформы мод. 13-401 грузоподъемностью 63 т.

На железнодорожных платформах блоки закрепляют в соответствии с Техническими условиями погрузки и крепления грузов, МПС СССР.

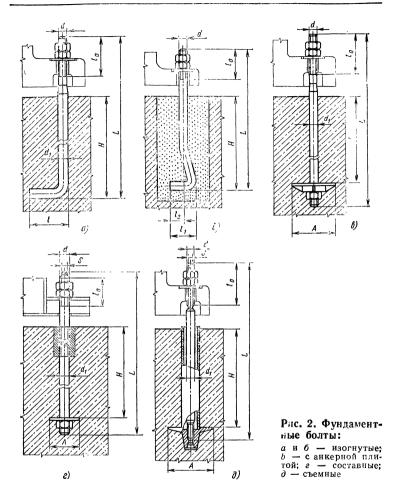
В качестве автомобильного транспорта применяют

В качестве автомобильного транспорта применяют полуприцепы или универсальные автоприцепы с тягачами специального назначения (табл. 16). Крупногабаритное оборудование перевозят с помощью специализированных транспортных средств.

Площадку для складпрования и укрупнительной сборки сборудования, конструкций и трубопроводов располагают на возможно близком расстсянии от монтируе-

мого объекта.

Перед установкой блока в проектное положение на бетонный пол в местах опирания регулировочных болтов базовой конструкции устанавливают на цементном рас-


16. Гехнические характеристики автотранспортных средств

,			B pas d	Высота,		
інп или марка полуприцепа	Марка тягача	Грузо- подъем- ность, т	Длина	Ширина	Высотя	допусти- мая при погруз- ке, мм
ММЗ-584Б	ЗИЛ-164, КАЗ-606A	7	6 050	2250	600	1400
ММЗ-584Б	ЗИЛ-164, КАЗ-606А	7,5	6 050	2250	600	1370
ОдАЗ-885	ЗИЛ-130В1-76, КАЗ-608В	7,5	6 070	2220	590	1400
KA3-717	КАЗ-608В, ЗИЛ-130В1-76	11,5	7 500	2240	590	1390
MA3-5201	MA3-504A	12	6 315	2350	860	1480
MA3-5215	MA3-504A	12	7 000	24 80	845	1480
MA3-5205A	MA3-504B	20	10 493	3000		1345
MA3-5245	MA3-504A	12,5	7 530	2480	845	1480
MA3-5245	MA3-504A,	13,5	7 875	2320	740	1585
MA3-5245	MA3-504B MA3-504A,	12,5	7 875	2300	355	1670
МАЗ-5247Б	МАЗ.504В МАЗ-537, КрАЗ-214	45	14 865	3880	1211	_
ПЛ-12-12	MA3-504	12,5	12 535	3000		1600
ПР-20	MA3-504B.	20	10 000	2500		1620
	KpA3-221					
ПР-25	КрАЗ 258Б1	24	17 500	2640	_	1900
Б-18	КрАЗ-258Б1	24	18 000	2650		1610
T17-24	KpA3-258E1	21	15000	2650		1560

творе металлические пластины размером 150×150 мм, телщиной 20 мм. Когда прочность раствора достигнет 70% окончательной прочности, блок устанавливают с опиранием регулировочных болтов на пластины и выверяют по высоте. Загем осуществляют замоноличивание бетоном базевой консгрукции на высоту, заданную проектом.

4. УСТАНОВКА ФУНДАМЕНТНЫХ БОЛТОВ

Фундаментные болты для крепления технологического оборудованчя различают по условиям эксплуатации и назначению, конструкции, способам установки и закреплечия в фундаменте. Конструктивные (малонагруженные)

болты служат для фиксации машин на фундаментах, повышения жесткости корпусных деталей и для предотвращения их смещения под действием случайных нагрузок. Расчетные (силовые) болты воспринимают нагрузки, которые возникают при работе оборудования.

Применяют шесть типов конструкций фундаментных болтов: изогнутые, с анкерной плитой, составные, съемные (рис. 2), прямые (рис. 3) и распорные (рис. 4).

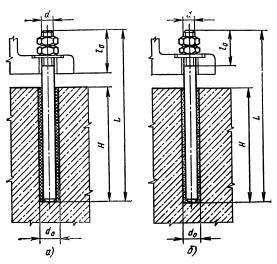
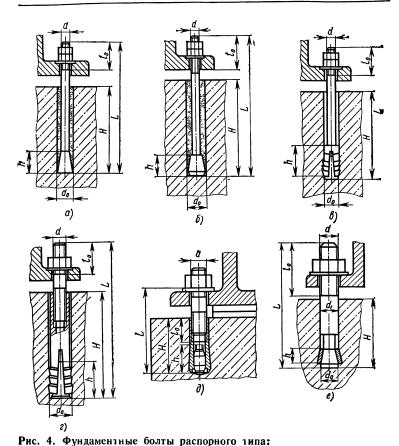



Рис. 3. Фундаментные прямые болты, устанавливаемые: a — на клее, δ — виброзачеканкой

 ${\sf K}$ основным установочным и конструктивным параметрам болтов относятся: глубина заложения ${\cal H}$, длина ${\cal L}$ болта, диаметр ${\it d}$ резьбы, длина ${\it l}_0$ резьбы, диаметр стержня ${\it d}_1$, длина ${\it l}$ изогнутой части, диаметр или сторона ${\it A}$ анкерной плиты, размер ${\it S}$ под ключ, диаметр ${\it d}_0$ отверстия в фундаменте, высота ${\it h}$ конуса.

В зависимости от конструкции болты устанавливают на кондукторах до бетонирования фундаментов (см. рис. 2, а, в—д); в колодиах, оставляемых при бетонировании (см. рис. 2, б), и в скважинах (отверстиях), пробуриваемых в готовых фундаментах, перекрытиях или полу цеха (см. рис. 3 и 4). Наиболее перспективно применение болтов, устанавливаемых в пробуриваемых скважинах (отверстиях). Этим способом устанавливают прямые болты, закрепляемые в фундаменте с применением клея различного типа и цементной зачеканки, а также болты распорного типа. Прямые болты не имеют специальных анкерующих устройств, поэтому менее надежны в эксплуатации по сравнению с другими и требуют тщательного соблюдения технологии установки. Болты распорного типа (см. рис. 4) обладают более высокой надежностью и про-

a — конические с цементной зачеланкой; b — конические, устанавливаемые вибропогружением; b — конические с разжимными цангами (самоанкерующиеся); c — составные с распорным конусом; b — дюбель-втулки; c — дюбели

анкерные распорные

стотой установки, хотя и сложнее по конструкции. Примёнение болтов распорного типа, обладающих малой глубиной заложения, в случаях, когда размеры фундаментов определяются длиной болтов, позволяет устанавливать оборудование без фундаментов с креплением непосредственно на перекрытиях или полу цеха.

Установку болтов осуществляют в соответствии со специально разработанным планом их расположения,

в котором болты «привязаны» к разбивочным осям оборудования.

в котором солты «привязаны» к разоивочным осям осорудования.

Установка на кондукторах. Глухие болты: изогнутые, с анкерными плитами и составные (см. рис. 2, а, в и г), а также анкерную арматуру съемных болтов (см. рис. 2, д) устанавливают в монолитные фундаменты до их бетонирования с помощью специальных монтажных приспособлений, обеспечивающих надежную фиксацию болтов и арматуры в проектном положении на период укладки и твердения бетона фундамента. Поддерживающие устройства служат для фиксации кондукторов в требуемом положении, а кондукторы — для размещения болтов в соответствии с осями отверстий в корпусных деталях машин, закрепляемых на данном фундаменте.

Поддерживающие устройства (каркас) собирают из типовых стоек и прогонов (продольных и поперечных балок), которые имеют одинаковую конструкцию для всех фундаментов цеха. Стойки различаются только высотой, а прогоны — длиной. Высоту стоек назначают на 200—300 мм меньше разницы высотных отметок бетонной подготовки фундамента и его поверхности. Длину продольных и поперечных балок каркаса определяют исходя из размеров опорного контура монтируемого оборудования.

рудования.

Стойки крепят к закладным пластинам, залитым в спе-циальные опоры, которые изготовляют одновременно с бе-тонной подготовкой фундамента (рис. 5). На стойках предусматривают узлы крепления балок каркаса, опа-лубки и настила.

лубки и настила.

К стойкам на проектной высоте приваривают балки каркаса. Для повышения жесткости каркас скрепляют диагональными связями. На верхних балках каркаса располагают кондукторы (рис. 6). Конструкция кондуктора определяется числом и расположением устанавливаемых фундаментных болтов. Отверстия в кондукторах изготовляют с такими же допусками расположения, как и в корпусных деталях. Диаметр отверстий в кондукторе должен быть больше диаметра болтов с резьбой до М48 на 1 мм, а для болтов с резьбой М56 и более — на 2 мм. Аналогично изготовляют кондукторы для фиксации анкерной арматуры, коробок и пробок для образования колодцев под болты или шанцев.

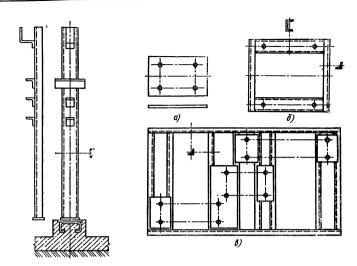


Рис. 5. Стойка каркаса поддерживающего устройства

Рис. 6. Кондукторы для фундаментных болтов:

a — листовой; b — из сортовой стали; b — комбинированный

Положение кондуктора в плане на балках каркаса выверяют геодезическими методами и фиксируют сваркой. После этого в кондукторе устанавливают и закрепляют болты, пробки и анкерную арматуру

При расположении глухих болтов с отгибами у края фундамента отогнутый конец болта необходимо ориентировать в сторону массива, а при расположении в углах — по их биссектрисе.

Нижние концы болтов, расположенные в местах пустот фундаментов (проемов, тоннелей и др.), допускается выполнять с отгибом.

Для глухих болтов в фундаментах предусматривают специальные шанцы, предназначенные для исправления положения болтов в плане после бетонирования фундамента путем их изгиба.

Детали, установленные в кондукторе, с целью предотвращения их отклонений от вертикального положения, при бетонировании соединяют поперечными связями из мелкосортного проката.

На изготовление поддерживающих устройств и кондукторов расходуется значительное количество сортового проката — в среднем до 30 кг на один болт. Для уменьшения расхода металла применяют метод установки фундаментных болтов на поддерживающих устройствах с укороченными стойками и съемные кондукторы. При установке болтов в простые фундаменты поддерживающие устройства не изготовляют, а кондукторы прикрепляют к опалубке или к арматуре.

При монтаже оборудования, опорные части которого стандартизованы, например химических аппаратов колонного типа, рекомендуется применять групповую установку болтов с помощью унифицированных кондукторов. Диаметр отверстий d_0 под болты назначают на 2 мм больше диаметра болтов.

диаметра болтов.

плазово-блочный метод применяют при большом числе фундаментных болтов (свыше 500), устанавливаемых в цехе, с целью индустриализации их изготовления и монтажа блоками. Применение такого метода позволяет перенести изготовление блоков фундаментных болтов со строительной площадки в заготовительные мастерские или на заводы монтажных заготовок. Блоки собирают или на заводы монтажных заготовок. Блоки собирают на специальных стендах, оборудованных плазом, т. е. дощатым щитом с наклеенным на него чертежом плана расположения болтов, выполненным в натуральную величину. Блоки (рис. 7) состоят из группы болтов I, приваренных к базовой опорной балке 2 и связанных между собой продольными и поперечными связями 3 в жесткий каркас. Продольные и поперечные стороны блока образуют ферму. Размеры a, l, l_1 , l_2 называют, исходя из расположения болтов, а размер b — из условия закрепления блока на опорных конструкциях. При длине блока L до 1 м высоту фермы m принимают равной 300 мм и диагональную связь не ставят; при длине блока до 2 м высоту m принимают равной 450—500 мм и ставят две диагональные связи. При длине болтов L=2 м высоту m назначают равной 1 м. Перепад высотных отметок торцов фундаментных болтов $\Delta z = z_2 - z_1$ в одном блоке не должен превышать 500 мм. На чертежах блоков указывают высотные отметки торцов фундаментных болтов, которые назначают в соот-

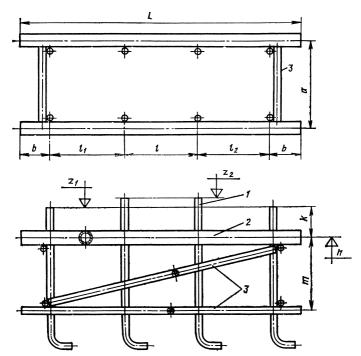


Рис. 7. Блок фундаментных болтов

ветствии с планом расположения болтов. Верхняя балка продольной стороны блока является базовой. На чертежах указывают высотную отметку h ее нижней стороны, а остальные размеры дают от этой отметки. Базовые балки выступают за габарит блока на 150-800 мм. Все элементы обвязки болтов в блоки выполняют из круглого стального проката диаметром 8—10 мм, а базовые балки из труб. Опорные конструкции блоков выполняют в виде П-

образных стоек, связанных вверху опорными балками,

внизу стержнями.

При разработке плазового чертежа (рис. 8) на полотнище миллиметровой бумаги, размер которого соответствует самому большому блоку болтов, наносят оси X и Y, а также намечают все места расположения болтов (центры отверстий под них) с допуском ± 1 мм относительно ра-

³ п. п. Алексеенко и др.

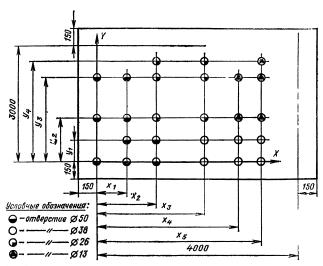


Рис. 8. Плазовый чертеж

бочих осей. Затем на этом же чертеже отмечают места расположения болтов в следующем блоке и т. д. в пределах одной монтажной схемы.

Стенд для сборки блоков состоит из металлической рамы, установленной на стойках высотой 2—2,5 мм, на которую уложен плаз с просверленными отверстиями под болты. Болты каждого блока подают под стенд, заводят в отверстия и крепят сверху гайками. У болтов с одинаковыми высотными отметками гайки навинчивают в уровень с их торцом. При разности высотных отметок под гайки устанавливают соответствующие им дистанционные трубки. Болты балками и связями соединяют в блок сваркой. После этого отвинчивают гайки и опускают блок под щит.

Опорные конструкции блоков доставляют на место монтажа и устанавливают на бетонную подготовку фундамента. Соответствие положения опорных конструкций монтажной схеме тщательно проверяют. Блоки устанавливают на опорные конструкции базовыми опорными балками. Положение блока контролируется по двум дигонально расположенным и наиболее удаленным болтам, после чего блок приваривают к опорным балкам.

Установку в скважины, пробуренные в готовых фундаментах, применяют для болтов прямых, конических с цементной зачеканкой и с вибропогружением, болтов с разрезными и разжимными цангами, а также составных с распорным конусом и дюбелей-втулок. Применение таких болтов, обладающих небольшой глубиной заложения

болтов, обладающих небольшой глубиной заложения $H=(4 \div 8)\ d$, позволяет не только устанавливать и закреплять оборудование на железобетонных перекрытиях промышленных зданий или непосредственно на полу цеха, но и дает возможность избежать изготовления металлоемких дорогостоящих кондукторов и поддерживающих устройств. При этом повышается точность установки болтов, что упрощает выверку оборудования. Скважины под болты изготовляют с помощью станков для сверления, оснащенных алмазными кольцевыми сверлами. При небольших диаметрах (до 60 мм) более эффективно применять перфораторы и машины ударно-вращательного бурения со специальным рабочим инструментом: буровыми коронками, шнековыми бурами и спиральными сверлами с твердосплавными вставками (табл. 17—23). Буровые коронки и буры могут перетачиваться до диаметра на 4—6 мм меньше номинального. Диаметры скважин под болты различных конструкций приведены в табл. 24. При жестких допусках на диаметр отверстия преимущественно применяют сверление алмазными сверлами. лами.

Разметку мест установки болтов осуществляют:

а) методами геодезической разбивки; при этом рекомендуется оси оборудования и оси отверстий намечать керном по масляной краске; б) по шаблону (снятого с анкер-плана) или опорной части оборудования с использованием его как кондуктора; в) путем предварительной установки оборудования с кернением мест расположения болтов через отверстия в станине.

Разметка отверстий должна проводиться в соответствии с размерами на нертежах

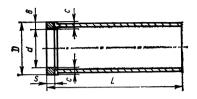
с размерами на чертежах.

При ударно-вращательном бурении электроперфораторами с применением спиральных сверл их хвостовики должны быть переточены под патрон механизированного инструмента (см. табл. 22). При этом рекомендуется применять сверла с пластинами из твердого сплава типа ВК6 и ВК15.

17. Технические характеристики механизированного инструмента для сверления бетона и железобетона

		Ручны	е маши	ны	Передвижные станки				
Параметр	ИЭ 1029	ИП 1023	ИП 1018	MC-50M	ИЭ 1801	ИЭ 1801А	ИЭ 1805	9081 СИ	ИЭ 4353
Control of the Contro									
Диаметр сверления, мм	До 25	До 25	До 25	20—50	50—125	50—125	80—160	25—160	25—80
Глубина сверления, м Средняя скорость сверления, мм/мин	0,3 60	0,3 50	0,3 40	0,27 50	0,38 50	0,5 40	0,38 60	0,55 40	0,3 50
мм/мин Частота вращения шпинде- ля, мин-1	3800	12000	8900	2900	700	850	600	500	700
Потребляемая мощность, Вт Напряжение, В Частота тока, Гц Рабочее давление воздуха, МПа	1070 36 200 —	880 — — 0,5	600 — — 0,5	1100 36 200 —	3000 220/380 50 —	2200 220/380 50 —	3000 220/380 50 —	2200 220/380 50 —	2200 220/380 50 —
Удельный расход: воздуха, м ³ /мин охлаждающей воды, л/мин Размеры, мм:	_ 1—2	1,2 1—2	1,0 1—3	_ 1—2	 4_6	 56	— 5—6	— 5—7	— 5—6
длина ширина высота Масса, кг	780 380 142 6,7	550 133 135 5,4	694 95 205 6,0	780 400 140 10,5	1440 510 1120 140	700 500 1400 100	1250 600 1420 200	785 580 1160 100	1050 465 1180 125

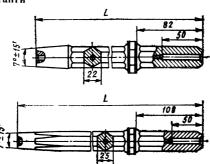
18. Технические характеристики электроперфораторов для бурения скважин под болты


Параметр	ИЭ 4712	ИЭ 4709	ИЭ 471°	ИЭ 4714	ИЭ 4710	ИЭ 4707
Диаметр скважин, мм Энергия удара, Дж Частота удара, Гц Средняя скорость бурения, мм/мин Потребляемая мощность, Вт	6—16 2 30 90 350	6—25 2,5 50 110 650	6—12 1,0 40 90 350	8—16 2 30 90 420	12—30 4 25 70 450	22—52 25 18 110
Напряжение, В Частота тока, Гц Размеры, мм: длина ширина высота Масса, кг Наибольшая глубина бурения, мм	500 200 75 4,5 0,2	350 95 195 6,8 0,8	220 50 420 155 75 3,5 0,1		655 137 197 7,5 0,3	725 425 265 27,0 2,0

19. Технические характеристики перфораторов для бурения скважин под болты

Параметр	П-47	пп-36	ПП-50В1	ПП-54	ПП-63
Диаметр скважин в бетоне, мм	20	32—46	32—56	32—46	36—80
Глубина бурения, м	_	2	3	4	5
Энергия удара, Дж	2,5	36	54	54	63
Частота ударов, Гц	38	38,3	38	38,3	30
Рабочее давление воз- духа, МПа	0,5	0,5	0,5	0,5	0,5
Удельный расход воз- духа, м ³ /мин	0,45	2,6	2,2	4,0	3,8
Масса, кг	-	24	29,5	32	35

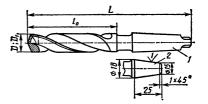
20. Алмазные кольцевые сверла


(s равно 4 или 8 мм; $L = 350 \pm 5$ мм)

Размеры, мм

Ди	аметр онки <i>D</i>				Ди коро	аметр онки <i>D</i>			
номи- нальный	предель- ные от- клонения	b	đ	a	номи- нальный	предель- ные от- клонения	ь	d	c
20	1 0 010		14		70			63	
25	+0,210		19		80	+0,300		73	
32			26		90		3,5	83	0,4
40	10050	3,0	34	0,4	100	+0,350		93	
45	+0,250	-,-	39	.,-	110			102	
50			44		125		4.0	117	0.5
55	1.0.200		49		140	+0,400	4,0	132	0,5
60	+0,300		54		160			152	

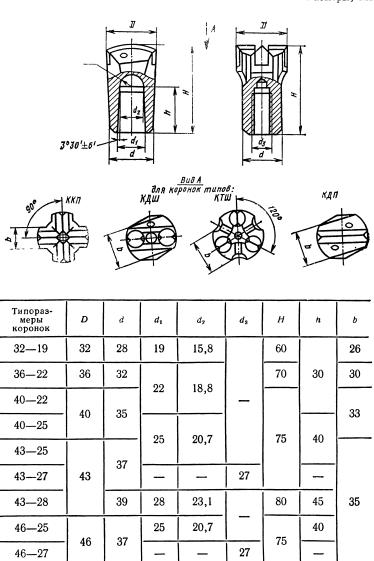
21. Буровые штанги



Тип штанги	Длина <i>L</i> , мм	Macca, Kr	Тип штанги	Длина L, мм	Macca, кг
БШ 22-700 БШ 22-1600 БШ 22-2500 БШ 22-3400 БШ 22-4300 БШ 25-700 БШ 25-1000	700 1600 2500 3400 4300 700 1000	2,1 4,8 7,4 10,1 12,8 2,8 3,9	БШ 25-1300 БШ 25-1600 БШ 25-2500 БШ 25-3100 БШ 25-3400 БШ 25-3700 БШ 25-4300	1300 1600 2500 3100 3400 3700 4300	5,1 6,3 9,9 12,3 13,4 14,7 17,7

22. Спиральные сверла

Размеры, мм


I — конус Морзе; 2 — конус, расточенный для электроперфоратора; D — диаметр сверла по ГОСТ 22736—77; D_1 — диаметр сверла для строительных работ

D	D_1	L	l _o	Конус Морзе	D	D_1	L	l _o	Конус Морзе
15 16 17 18 19 20 21	15 16 17 18 19 20 21	175 180 185 190 195 220 225	75 80 85 90 95 100	2 2 2 2 2 3 3	23 24 25 26 27 28 30	23 24 25 — —	230 235 235 235 240 270 275	110 115 115 115 120 120 125	3 3 3 3 4 4

23. Буровые коронки

Размеры, мм

Продолжение табл. 23

тіродолжение таол, 20											
Типораз меры коронок	D	d	d ₁	d₂	d_3	Н	h	b			
52—25	50	39	25	20,7		75	40				
52—31	52	10	_	_	31	105		40			
56—32	56	42									
60—38	60	52			38	110					
65—31	0.5	45			31						
65—38	65	52			38						
70—31	70				31	115	75	45			
75—31	75	58									
85—31	0.5					115					
85—38	85				38						

Для образования скважин диаметром более 60 мм пневмоперфораторами бурение может проводиться в два этапа. Сначала просверливается скважина диаметром 20—40 мм, а затем скважина требуемого диаметра. Ударновращательное бурение скважин в железобетоне с верхним армированием при необходимости может осуществляться с перерезкой арматуры с помощью кислородноацетиленовых резаков.

Установку болтов на клею, на цементных и цементнопесчаных смесях осуществляет строительная организация.

Конические болты с вибропогружением устанавливают в скважины, заполненные цементной или цементно-песчаной смесью, внедряя их с помощью механизированного инструмента ударно-вращательного действия, оснащенного специальным переходником для захвата резьбы болта, или вручную легким постукиванием молотком.

Конические болты с распорными втулками или разрезными цангами устанавливают в скважинах с помощью

24. Диаметры (в мм) скважин для установки фундаментных болтов

60st-	Болты													
δ.	прямые на клее		конические								дюбели			
резъбы			с вибропогру- жением		с разрезной цангой		с распорной цангой		составные с распорным конусом		втулки		анкерные распорные	
Диаметр та, мм	тиаметр.	Отило- нения ¹	Диаметр	Откло- нения 1	Диаметр	Откло- нения	Диаметр	Откло- нения	Диаметр	Откло- нения 1	Диа- метр	Отклоне- ния ¹	Диа- метр	Отклоне- ния ¹
M6 M8 M10 M12	16 18	- +3 +3		- - -2	 20	 ±0,2	- - 16	- - +1	- 14 16	- +0,5 +1	8 10 12 15	+0,25 $+0,3$ $+0,3$ $+0,3$	6 8 10 12	+0,25 $+0,3$ $+0,3$ $+0,3$
M16	22	+4	36 (27)	+10	25	±0,2	22	+1	22	+1	20	+0,35	16	+0,35
M20	26	+4	46 (33)		35	±0,2	28	+1	28	+1	25	+0,35	_	_
M24	34	+4	52 (40)	-5 + 15	40	±0,3	32	+1,5	3 2	+1	_	_	_	_
M30	40	+6	60 (43)	-5 + 15	50	±0,5	40	+1,5		_		_	_	_
M36	46	+6	80 (60)	$\begin{array}{c c} -10 \\ -10 \\ +20 \end{array}$	60	±0,5	50	+3		-		_	_	_
M42	52	+6	90 (63)	$-10 \\ +20$	70	±0,5	60	+3	_	-	_	_	_	_
M48	58	+6	100 (79)	$\begin{vmatrix} -10 \\ +20 \end{vmatrix}$	80	±1	68	+3	_	_	_	_	_	_

¹ Фактические отклонения при бурении перфораторами с применением рабочего инструмента номинального диаметра не превышают указанных допускаемых величин.

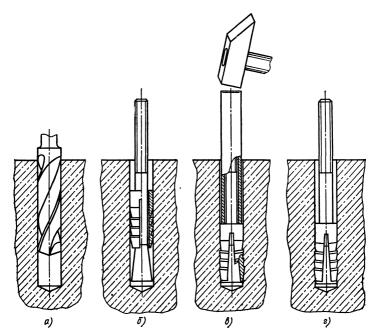


Рис. 9. Схемы установки конических болтов с расклиниванием цанг: a — бурение скважины; b — установка болта; b — расклинивание болта монтажной оправкой; b — установленный болт

монтажных оправок, легким ударом слегка осаживая втулки или цанги на конусе (рис. 9). Так как эти болты являются самоанкерующимися и их расклинивание происходит в процессе затяжки, то при установке требуется обеспечить лишь первоначальное зацепление цанг.

Иногда болты этого типа устанавливают с помощью дистанционных монтажных трубок *1*, расклинивая втулки или цанги завинчиванием гаек (рис. 10). Применение дистанционных трубок обеспечивает извлекаемость болтов. После расклинивания цанг болтов, установленных до монтажа оборудования (рис. 10, *a*), трубки снимают. Если станину оборудования подливают, то трубки оставляют (рис. 10, *б*).

Болты с распорным конусом закрепляют в скважинах путем осаживания разрезной втулки на распорный ко-

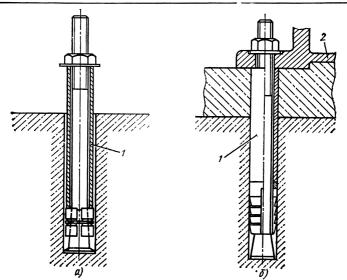


Рис. 10. Схема установки конических болтов с помощью монтажных трубок:

→ монтажная трубка; 2 — станина оборудования

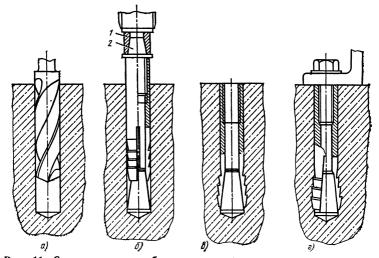


Рис. 11. Схемы установки болтов с распорным конусом: a — бурение скважины; b — начало расклинивания; b — окончание расклинивания; b — закрепление оборудования; b — патрон механизированного инструмента; b — переходный конус

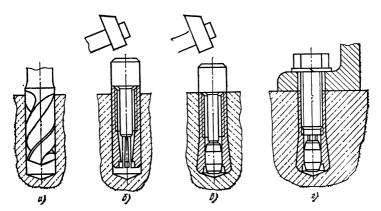


Рис. 12. Схемы установки дюбельтвтулок: a — бурение скважины; b — забивка втулки; b — расклинивание втулки конусом с применением оправки; b — установка болта

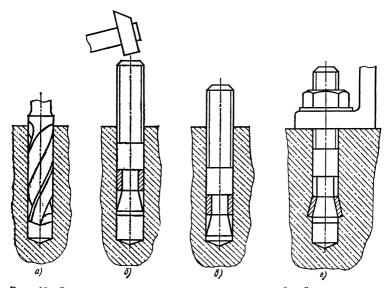


Рис. 13. Схемы установки анкерных распорных дюбелей: a — бурение скважины; δ — забивка дюбеля; δ — установленный дюбель; ϵ — расклинивание дюбеля при затяжке гайки

нус механизированным инструментом ударного действия (рис. 11). При этом верх втулки не должен выступать над поверхностью бетона.

Дюбель-втулку устанавливают в скважину в два этапа. Вначале опускают в нее распорную втулку, при необходимости осаживая ее с применением специальной оправки до тех пор, пока верх втулки не будет заподлицо с поверхностью фундамента. После этого во втулку устанавливают конический элемент и расклинивают дюбель в скважине той же оправкой (рис. 12).

Установку дюбелей анкерных распорных осуще-

ставляют, как показано на рис. 13.

Глухие изогнутые болты (см. рис. 2, б) устанавливают в колодцы после предварительной выверки оборудования.