| | | Page | |---------|------------------|-----------| | | Workpiece faults | 355 - 356 | | | | | | | Varance william | | | | Keyway milling | 357 | | | | | | | Tool faults | 358 - 360 | #### **Workpiece faults** | Workpiece faults | | | | |---------------------------------------|---|---|--| | Problem | Cause | Solution | | | Surface too rough | Wrong tool selection Wrong chipload per tooth Work material requires coolant/lubrication/MQL | Use finish cutter Use cutter with higher spiral Check technical data, modify chipload Use water-soluble, oil or MQL | | | Surface chatter | Spindle not stable Work clamping too weak Workpiece too instable Cutter instability Wrong chipload per tooth Wrong axial or radial depth of cut Excessive run-out of tool or holder | Improve situation where possible Use shorter cutter, and/or larger diameter Reduce speed Check our tech data for chiploads Check our tech data, and optimize Improve run-out, use shrink-fit holders | | | Surface marks parallel to cutter axis | Excessive run-out of tool or holder Chipload per tooth too high | Improve run-out, use shrink-fit holders Reduce chipload per tooth | | | Surface undulating | • Run-out error (dominating tooth) | Improve run-out Check cutter | | # **Workpiece faults** # **Keyway milling** | Problem | Cause | Solution | |---|---|---| | Keyway milling in one pass: Keyway too wide | Cutters with 2 or 4 flutes may be too small due to wear Cutters with 3 flutes Run-out error | Use new cutter Use 2 or 4 flute cutter Improve run-out, use shrink-fit holder | | Keyway milling in frames: Keyway too tight | Cutter too small (by selection or by wear) | Change size by radius correction | | Keyway sides not right in angle | • 2 flute cutter | • Frame milling or circular milling | | Keyway sides not parallel | • 3 flute cutter | • Frame milling or circular milling | #### **Tool faults** # Problem Cause Solution Flank wear • Insufficient cutter toughness or hardness • Use coated cutter • Too high speed • Reduce speed • Feed rate too low • Increase feed rate **Notch wear** • Speed too high • Reduce speed • Use tougher cutter substrate · Lack of abrasion resistance **Cratering (Pitting)** Reduce speed Improve coolant/cooling, use cold-air nozzle • High temperature at cutting edge • High pressure at rake face · Reduce feed rate Crater wear indexable tooling • High cutting pressure at insert • Use insert with 5° positive rake # **Tool faults** | Problem | Cause | Solution | |--|--|---| | Thermal fissures | Extreme temperature fluctuation | Increase flow of coolant, use internal coolant-lubricant supply and/or high pressure supply Do not use any coolant at all Use cold-air nozzle | | Cold welding (material built-up) at the cutting edges | Work material tends to be sticky Cutting temperature too high or too small | Use coated tools Improve coolant Modify speed | | Cold welding (material built-up) at the cutting edges with indexable tooling | | Use inserts and holders with positive rake | | Short tool life indexable tooling | Insert too softRun-out error | Use tougher carbide grade Check run out, change holder, use shrink-fit holder Change tool shank | # **Tool faults** | Problem | Cause | Solution | |---------------------------------|---|---| | Cutting edge chipping | Cutting edge too brittle Wrong tool selection Unstable tool/holder/workpiece situation Cutting edge too weak | Reduce feed per tooth Use harder carbide grade Use 0° insert instead of 5° Use rhombic inserts | | Insert breaks | • Excessive insert chipload | Reduce depth of cut and feed/speed | | Tool vibrates | Over or under stress of tool | Reduce depth of cut and/or feed/speed | | High wear | Unfavorable cutting conditions Abrasive work material | Use climb milling Check cutting data Improve chip removal | | Vibrations at workpiece | • Insufficient clamping | • Improve clamping situation | | For Time-S-Cut: chip compressed | • a _p too large | • Reduce a _p | | | | Page | |-------------|-----------------------------------|-------| | | Threading Technology | . 362 | | > | Thread Milling Technology | . 363 | | > | Tool Clamping | - 365 | | > | Workpiece Clamping | - 367 | | > | Other EMUGE Catalogs | . 368 | | > | Internet & Tool Finder | . 369 | | > | Index of EDP Tool Identifications | . 370 | | > | Test-A-Tool Mill Application Form | . 371 | | | Terms & Conditions | 372 |