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2.1 The Phenomenon of Decoherence

2.1.1 Superpositions

The superposition principle forms the most fundamental kinematical con-
cept of quantum theory. Its universality seems to have first been postulated
by Dirac as part of the definition of his “ket-vectors”, which he proposed as
a complete1 and general concept to characterize quantum states, regardless
of any basis of representation. They were later recognized by von Neumann
as forming an abstract Hilbert space. The inner product (also needed to de-
fine a Hilbert space, and formally indicated by the distinction between “bra”
and “ket” vectors) is not part of the kinematics proper, but required for the
probability interpretation, which may be regarded as dynamics (as will be
discussed). The third Hilbert space axiom (closure with respect to Cauchy
series) is merely mathematically convenient, since one can never decide em-
pirically whether the number of linearly independent physical states is infinite
in reality, or just very large.

According to this kinematical superposition principle, any two physical
states, |1〉 and |2〉, whatever their meaning, can be superposed in the form
c1|1〉+ c2|2〉, with complex numbers c1 and c2, to form a new physical state
(to be distinguished from a state of information). By induction, the principle
can be applied to more than two, and even an infinite number of states, and
appropriately generalized to apply to a continuum of states. After postulat-
ing the linear Schrödinger equation in a general form, one may furthermore
conclude that the superposition of two (or more) of its solutions forms again
a solution. This is the dynamical version of the superposition principle.

Let me emphasize that this superposition principle is in drastic contrast
to the concept of the “quantum” that gave the theory its name. Superposi-
tions obeying the Schrödinger equation describe a deterministically evolving
1 This conceptual completeness does not, of course, imply that all degrees of free-

dom of a considered system are always known and taken into account. It only
means that, within quantum theory (which, in its way, is able to describe all
known experiments), no more complete description of the system is required or
indicated. Quantum mechanics lets us even understand why we may neglect cer-
tain degrees of freedom, since gaps in the energy spectrum often “freeze them
out”.
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continuum rather than discrete quanta and stochastic quantum jumps. Ac-
cording to the theory of decoherence, these effective concepts “emerge” as a
consequence of the superposition principle when universally and consistently
applied (see, in particular, Chap. 3).

A dynamical superposition principle (though in general with respect to
real coefficients only) is also known from classical waves which obey a linear
wave equation. Its validity is then restricted to cases where these equations
apply, while the quantum superposition principle is meant to be universal and
exact (including speculative theories – such as superstrings or M-theory).
However, while the physical meaning of classical superpositions is usually
obvious, that of quantum mechanical superpositions has to be somehow de-
termined. For example, the interpretation of a superposition

∫
dq eipq |q〉 as

representing a state of momentum p can be derived from “quantization rules”,
valid for systems whose classical counterparts are known in their Hamiltonian
form (see Sect. 2.2). In other cases, an interpretation may be derived from
the dynamics or has to be based on experiments.

Dirac emphasized another (in his opinion even more important) differ-
ence: all non-vanishing components of (or projections from) a superposition
are “in some sense contained” in it. This formulation seems to refer to an en-
semble of physical states, which would imply that their description by formal
“quantum states” is not complete. Another interpretation asserts that it is
the (Schrödinger) dynamics rather than the concept of quantum states which
is incomplete. States found in measurements would then have to arise from an
initial state by means of an indeterministic “collapse of the wave function”.
Both interpretations meet serious difficulties when consistently applied (see
Sect. 2.3).

In the third edition of his textbook, Dirac (1947) starts to explain the su-
perposition principle by discussing one-particle states, which can be described
by Schrödinger waves in three-dimensional space. This is an important appli-
cation, although its similarity with classical waves may also be misleading.
Wave functions derived from the quantization rules are defined on their clas-
sical configuration space, which happens to coincide with normal space only
for a single mass point. Except for this limitation, the two-slit interference
experiment, for example, (effectively a two-state superposition) is known to
be very instructive. Dirac’s second example, the superposition of two basic
photon polarizations, no longer corresponds to a spatial wave. These two
basic states “contain” all possible photon polarizations. The electron spin,
another two-state system, exhausts the group SU(2) by a two-valued repre-
sentation of spatial rotations, and it can be studied (with atoms or neutrons)
by means of many variations of the Stern–Gerlach experiment. In his lecture
notes (Feynman, Leighton, and Sands 1965), Feynman describes the maser
mode of the ammonia molecule as another (very different) two-state system.

All these examples make essential use of superpositions of the kind |α〉 =
c1 |1〉+ c2 |2〉, where the states |1〉, |2〉, and (all) |α〉 can be observed as phys-
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ically different states, and distinguished from one another in an appropriate
setting. In the two-slit experiment, the states |1〉 and |2〉 represent the par-
tial Schrödinger waves that pass through one or the other slit. Schrödinger’s
wave function can itself be understood as a consequence of the superposi-
tion principle in being viewed as the amplitudes ψα(q) in the superposition
of “classical” configurations q (now represented by corresponding quantum
states |q〉 or their narrow wave packets). In this case of a system with a known
classical counterpart, the superpositions |α〉 =

∫
dq ψα(q)|q〉 are assumed to

define all quantum states. They may represent new observable properties
(such as energy or angular momentum), which are not simply functions of
the configuration, f(q), only as a nonlocal whole, but not as an integral over
corresponding local densities (neither on space nor on configuration space).

Since Schrödinger’s wave function is thus defined on (in general high-
dimensional) configuration space, increasing its amplitude does not describe
an increase of intensity or energy density, as it would for classical waves
in three-dimensional space. Superpositions of the intuitive product states of
composite quantum systems may not only describe particle exchange sym-
metries (for bosons and fermions); in the general case they lead to the fun-
damental concept of quantum nonlocality. The latter has to be distinguished
from a mere extension in space (characterizing extended classical objects). For
example, molecules in energy eigenstates are incompatible with their atoms
being in definite quantum states by themselves. Although the importance of
this “entanglement” for many observable quantities (such as the binding en-
ergy of the helium atom, or total angular momentum) had been well known,
its consequence of violating Bell’s inequalities (Bell 1964) seems to have sur-
prised many physicists, since this result strictly excluded all local theories
conceivably underlying quantum theory. However, quantum nonlocality ap-
pears paradoxical only when one attempts to interpret the wave function
in terms of an ensemble of local properties, such as “particles”. If reality
were defined to be local (“in space and time”), then it would indeed conflict
with the empirical actuality of a general superposition. Within the quantum
formalism, entanglement also leads to decoherence, and in this way it ex-
plains the classical appearance of the observed world in quantum mechanical
terms. The application of this program is the main subject of this book (see
also Zurek 1991, Mensky 2000, Tegmark and Wheeler 2001, Zurek 2003, or
www.decoherence.de).

The predictive power of the superposition principle became particularly
evident when it was applied in an ingenious step to postulate the existence
of superpositions of states with different particle numbers (Jordan and Klein
1927). Their meaning is illustrated, for example, by “coherent states” of dif-
ferent photon numbers, which may represent quasi-classical states of the elec-
tromagnetic field (cf. Glauber 1963). Such dynamically arising (and in many
cases experimentally confirmed) superpositions are often misinterpreted as
representing “virtual” states, or mere probability amplitudes for the occur-
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rence of “real” states that are assumed to possess definite particle number.
This would be as mistaken as replacing a hydrogen wave function by the
probability distribution p(r) = |ψ(r)|2, or an entangled state by an ensem-
ble of product states (or a two-point function). A superposition is in general
observably different from an ensemble consisting of its components with any
probabilities.

Another spectacular success of the superposition principle was the pre-
diction of new particles formed as superpositions of K-mesons and their an-
tiparticles (Gell-Mann and Pais 1955, Lee and Yang 1956). A similar model
describes the recently confirmed “neutrino oscillations” (Wolfenstein 1978),
which are superpositions of energy eigenstates.

The superposition principle can also be successfully applied to states that
may be generated by means of symmetry transformations from asymmet-
ric ones. In classical mechanics, a symmetric Hamiltonian means that each
asymmetric solution (such as an elliptical Kepler orbit) implies other solu-
tions, obtained by applying the symmetry transformations (e.g. rotations).
Quantum theory requires in addition that all their superpositions also form
solutions (cf. Wigner 1964, or Gross 1995; see also Sect. 9.4). A complete set
of energy eigenstates can then be constructed by means of irreducible linear
representations of the dynamical symmetry group. Among them are usually
symmetric ones (such as s-waves for scalar particles) that need not have a
counterpart in classical mechanics.

A great number of novel applications of the superposition principle have
been studied experimentally or theoretically during recent years. For exam-
ple, superpositions of different “classical” states of laser modes (“mesoscopic
Schrödinger cats”) have been prepared (Davidovich et al. 1996), the entan-
glement of photon pairs has been confirmed to persist over tens of kilometers
(Tittel et al. 1998), and interference experiments with fullerene molecules
were successfully performed (Arndt et al. 1999). Even superpositions of a
macroscopic current running in opposite directions have been shown to exist,
and confirmed to be different from a state with two (cancelling) currents –
just as Schrödinger’s cat superposition is different from a state with two cats
(Mooij et al. 1999, Friedman et al. 2000). Quantum computers, now under
intense investigation, would have to perform “parallel” (but not just spatially
separated) calculations, while forming one superposition that may later have
a coherent effect (Sect. 3.3.3.2). So-called quantum teleportation (Sect. 3.4.2)
requires the advanced preparation of an entangled state of distant systems (cf.
Busch et al. 2001 for a consistent description in quantum mechanical terms
– see also Sect. 3.4.2). One of its components may then later be selected by
a local measurement in order to determine the state of the other (distant)
system.

Whenever an experiment was technically feasible, all components of a
superposition have been shown to act coherently, thus proving that they
exist simultaneously. It is surprising that many physicists still seem to regard
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superpositions as representing some state of ignorance (merely characterizing
unpredictable “events”). After the fullerene experiments there remains but
a minor step to discuss conceivable (though hardly realizable) interference
experiments with a conscious observer. Would he have one or many “minds”
(being aware of his path through the slits)?

The most general quantum states seem to be superpositions of differ-
ent classical fields on three- or higher-dimensional space.2 In a perturbation
expansion in terms of free “particles” (wave modes) this leads to terms cor-
responding to Feynman diagrams, as shown long ago by Dyson (1949). The
path integral describes a superposition of paths, that is, the propagation of
wave functions according to a generalized Schrödinger equation, while the in-
dividual paths under the integral have no physical meaning by themselves. (A
similar method could be used to describe the propagation of classical waves.)
Wave functions will here always be understood in the generalized sense of
wave functionals if required.

One has to keep in mind this universality of the superposition princi-
ple and its consequences for individually observable physical properties in
order to appreciate the meaning of the program of decoherence. Since quan-
tum coherence is far more than the appearance of spatial interference fringes
observed statistically in series of “events”, decoherence must not simply be
understood in a classical sense as their washing out under fluctuating envi-
ronmental conditions.

2.1.2 Superselection Rules

In spite of this success of the superposition principle it is evident that not
all conceivable superpositions are found in Nature. This led some physicists
to postulate “superselection rules”, which restrict this principle by axiomat-
ically excluding certain superpositions (Wick, Wightman, and Wigner 1970,
Streater and Wightman 1964). There are also attempts to derive some of
these superselection rules from other principles, which can be postulated
in quantum field theory (see Chaps. 6 and 7). In general, these principles

2 The empirically correct “pre-quantum” configurations for fermions are given by
spinor fields on space, while the apparently observed particles are no more than
the consequence of decoherence by means of local interactions with the environ-
ment (see Chap. 3). Field amplitudes (such as ψ(r)) seem to form the general
arguments of the wave function(al) Ψ , while space points r appear as their “in-
dices” – not as dynamical position variables. Neither a “second quantization”
nor a wave-particle dualism are required on a fundamental level. N -particle wave
functions may be obtained as a non-relativistic approximation by applying the
superposition principle (as a “quantization procedure”) to these apparent parti-
cles instead of the correct pre-quantum variables (fields), which are not directly
observable for fermions. The concept of particle permutations then becomes a
redundancy (see Sect. 9.4). Unified field theories are usually expected to provide
a general (supersymmetric) pre-quantum field and its Hamiltonian.
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merely exclude “unwanted” consequences of a general superposition princi-
ple by hand.

Most disturbing in this sense seem to be superpositions of states with
integer and half-integer spin (bosons and fermions). They violate invariance
under 2π-rotations (see Sect. 6.2.3), but such a non-invariance has been ex-
perimentally confirmed in a different way (Rauch et al. 1975). The theory of
supersymmetry (Wess and Zumino 1971) postulates superpositions of bosons
and fermions. Another supposedly “fundamental” superselection rule forbids
superpositions of different charge. For example, superpositions of a proton
and a neutron have never been directly observed, although they occur in
the isotopic spin formalism. This (dynamically broken) symmetry was later
successfully generalized to SU(3) and other groups in order to characterize
further intrinsic degrees of freedom. However, superpositions of a proton and
a neutron may “exist” within nuclei, where isospin-dependent self-consistent
potentials may arise from an intrinsic symmetry breaking. Similarly, superpo-
sitions of different charge are used to form BCS states (Bardeen, Cooper, and
Schrieffer 1957), which describe the intrinsic properties of superconductors.
In these cases, definite charge values have to be projected out (see Sect. 9.4)
in order to describe the observed physical objects, which do obey the charge
superselection rule.

Other limitations of the superposition principle are less clearly defined.
While elementary particles are described by means of wave functions (that
is, superpositions of different positions or other properties), the moon seems
always to be at a definite place, and a cat is either dead or alive. A general
superposition principle would even allow superpositions of a cat and a dog (as
suggested by Joos). They would have to define a “new animal” – analogous
to a Klong, which is a superposition of a K-meson and its antiparticle. In the
Copenhagen interpretation, this difference is attributed to a strict conceptual
separation between the microscopic and the macroscopic world. However,
where is the border line that distinguishes an n-particle state of quantum
mechanics from an N -particle state that is classical? Where, precisely, does
the superposition principle break down?

Chemists do indeed know that a border line seems to exist deep in the
microscopic world (Primas 1981, Woolley 1986). For example, most molecules
(save the smallest ones) are found with their nuclei in definite (usually ro-
tating and/or vibrating) classical “configurations”, but hardly ever in super-
positions thereof, as it would be required for energy or angular momentum
eigenstates. The latter are observed for hydrogen and other small molecules.
Even chiral states of a sugar molecule appear “classical”, in contrast to its
parity and energy eigenstates, which correctly describe the otherwise analo-
gous maser mode states of the ammonia molecule (see Sect. 3.2.4 for details).
Does this difference mean that quantum mechanics breaks down already for
very small particle number?
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Certainly not in general, since there are well established superpositions
of many-particle states: phonons in solids, superfluids, SQUIDs, white dwarf
stars and many more! All properties of macroscopic bodies which can be cal-
culated quantitatively are consistent with quantum mechanics, but not with
any microscopic classical description. As will be demonstrated throughout
the book, the theory of decoherence is able to explain the apparent differ-
ences between the quantum and the classical world under the assumption of
a universally valid quantum theory.

The attempt to derive the absence of certain superpositions from (exact or
approximate) conservation laws, which forbid or suppress transitions between
their corresponding components, would be insufficient. This “traditional” ex-
planation (which seems to be the origin of the name “superselection rule”)
was used, for example, by Hund (1927) in his arguments in favor of the chiral
states of molecules. However, small or vanishing transition rates require in
addition that superpositions were absent initially for all these molecules (or
their constituents from which they formed). Similarly, charge conservation by
itself does not explain the charge superselection rule! Negligible wave packet
dispersion (valid for large mass) may prevent initially presumed wave packets
from growing wider, but this initial condition is quantitatively insufficient to
explain the quasi-classical appearance of mesoscopic objects, such as small
dust grains or large molecules (see Sect. 3.2.1), or even that of celestial bodies
in chaotic motion (Zurek and Paz 1994). Even the required initial conditions
for conserved quantities would in general allow one only to exclude global
superpositions, but not local ones (Giulini, Kiefer and Zeh 1995).

So how can superselection rules be explained within quantum theory?

2.1.3 Decoherence by “Measurements”

Other experiments with quantum objects have taught us that interference,
for example between partial waves, disappears when the property character-
izing these partial waves is measured. Such partial waves may describe the
passage through different slits of an interference device, or the two beams
of a Stern–Gerlach device (“Welcher Weg experiments”). This loss of coher-
ence is indeed required by mere logic once measurements are assumed to lead
to definite results. In this case, the frequencies of events on the detection
screen measured in coincidence with a certain (that is, measured) passage
can be counted separately, and thus have to be added to define the total
probabilities.3 It is therefore a plausible experimental result that the inter-
ference disappears also when the passage is “measured” without registration
3 Mere logic does not require, however, that the frequencies of events on the screen

which follow the observed passage through slit 1 of a two-slit experiment, say,
are the same as those without measurement, but with slit 2 closed. This dis-
tinction would be relevant in Bohm’s theory (Bohm 1952) if it allowed non-
disturbing measurements of the (now assumed) passage through one definite slit
(as it does not in order to remain indistinguishable from quantum theory). The
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of a definite result. The latter may be assumed to have become a “classical
fact” as soon the measurement has irreversibly “occurred”. A quantum phe-
nomenon may thus “become a phenomenon” without being observed. This is
in contrast to Heisenberg’s remark about a trajectory coming into being by
its observation, or a wave function describing “human knowledge”. Bohr later
spoke of objective irreversible events occurring in the counter. However, what
precisely is an irreversible quantum event? According to Bohr this event can
not be dynamically analyzed.

Analysis within the quantum mechanical formalism demonstrates nonethe-
less that the essential condition for this “decoherence” is that complete in-
formation about the passage is carried away in some objective physical form
(Zeh 1970, 1973, Mensky 1979, Zurek 1981, Caldeira and Leggett 1983, Joos
and Zeh 1985). This means that the state of the environment is now quan-
tum correlated (entangled) with the relevant property of the system (such as
a passage through a specific slit). This need not happen in a controllable way
(as in a measurement): the “information” may as well form uncontrollable
“noise”, or anything else that is part of reality. In contrast to statistical cor-
relations, quantum correlations characterize real (though nonlocal) quantum
states – not any lack of information. In particular, they may describe indi-
vidual physical properties, such as the non-additive total angular momentum
J2 of a composite system at any distance.

Therefore, one cannot explain entanglement in terms of a concept of infor-
mation (cf. Brukner and Zeilinger 2000 and see Sect. 3.4.2). This terminology
would mislead to the popular misunderstanding of the collapse as a “mere
increase of information” (which requires an initial ensemble describing igno-
rance). It would indeed be a strange definition if “information” determined
the binding energy of the He atom, or prevented a solid body from collapsing.
Since environmental decoherence affects individual physical states, it can nei-
ther be the consequence of phase averaging in an ensemble, nor one of phases
fluctuating uncontrollably in time (as claimed in some textbooks). Entangle-
ment exists, for example, in the static ground state of relativistic quantum
field theory, where it is often erroneously regarded as vacuum fluctuations in
terms of “virtual” particles.

When is unambiguous “information” carried away? If a macroscopic ob-
ject had the opportunity of passing through two slits, we would always be
able to convince ourselves of its choice of a path by simply opening our eyes in
order to “look”. This means that in this case there is plenty of light that con-

fact that these two quite different situations (closing slit 2 or measuring the
passage through slit 1) lead to exactly the same subsequent frequencies, which
differ entirely from those that are defined by this theory when not measured or
selected, emphasizes its extremely artificial nature (see also Englert et al. 1992,
or Zeh 1999). The predictions of quantum theory are here simply reproduced by
leaving the Schrödinger equation unaffected and universally valid, identical with
Everett’s assumptions (Everett 1957). In both these theories the wave function
is (for good reasons) regarded as a real physical object (cf. Bell 1981).
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tains information about the path (even in a controllable manner that allows
us to “look”). Interference between different paths never occurs, since the
path is evidently “continuously measured” by light. The common textbook
argument that the interference pattern of macroscopic objects be too fine to
be observable is entirely irrelevant. However, would it then not be sufficient
to dim the light in order to reproduce (in principle) a quantum mechanical
interference pattern for macroscopic objects?

This could be investigated by means of more sophisticated experiments
with mesoscopic objects (see Brune et al. 1996). However, in order to precisely
determine the subtle limit where measurement by the environment becomes
negligible, it is more economic first to apply the established theory which is
known to describe such experiments. Thereby we have to take into account
the quantum nature of the environment, as discussed long ago by Brillouin
(1962) for an information medium in general. This can usually be done easily,
since the quantum theory of interacting systems, such as the quantum the-
ory of particle scattering, is well understood. Its application to decoherence
requires that one averages over all unobserved degrees of freedom. In tech-
nical terms, one has to “trace out the environment” after it has interacted
with the considered system. This procedure leads to a quantitative theory of
decoherence (cf. Joos and Zeh 1985). Taking the trace is based on the prob-
ability interpretation applied to the environment (averaging over all possible
outcomes of measurements), even though this environment is not measured.
(The precise physical meaning of these formal concepts will be discussed in
Sect. 2.4.)

Is it possible to explain all superselection rules in this way as an effect
induced by the environment4 – including the existence and position of the
border line between microscopic and macroscopic behavior in the realm of
molecules? This would mean that the universality of the superposition prin-
ciple could be maintained – as is indeed the basic idea of the program of
decoherence (Zeh 1970, Zurek 1982; see also Chap. 4 of Zeh 2001). If physical
states are thus exclusively described by wave functions rather than points in
configuration space – as originally intended by Schrödinger in space by means
of narrow wave packets instead of particles – then no uncertainty relations
apply to quantum states (apparently allowing one to explain probabilistic
aspects): the Fourier theorem applies to certain wave functions.

As another example, consider two states of different charge. They inter-
act very differently with the electromagnetic field even in the absence of
radiation: their Coulomb fields carry complete “information” about the total
charge at any distance. The quantum state of this field would thus decohere
a superposition of different charges if considered as a quantum system in a
bounded region of space (Giulini, Kiefer, and Zeh 1995). This instantaneous

4 It would be sufficient, for this purpose, to use an internal “environment” (unob-
served degrees of freedom), but the assumption of a closed system is in general
unrealistic.
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action of decoherence at an arbitrary distance by means of the Coulomb field
gives it the appearance of a kinematic effect, although it is based on the
dynamical law of charge conservation, compatible with a retarded field that
would “measure” the charge (see Sect. 6.4.1).

There are many other cases where the unavoidable effect of decoherence
can easily be imagined without any calculation. For example, superpositions
of macroscopically different electromagnetic fields, f(r), may be defined by
an appropriate field functional Ψ [f(r)]. Any charged particle in a sufficiently
narrow wave packet would then evolve into several separated packets, de-
pending on the field f , and thus become entangled with the quasi-classical
state of the quantum field (Kübler and Zeh 1973, Kiefer 1992, Zurek, Habib,
and Paz 1993; see also Sect. 4.1.2). The particle can be said to “measure”
the state of the field. Since charged particles are in general abundant in the
environment, no superpositions of macroscopically different electromagnetic
fields (or different “mean fields” in other cases) are observed under normal
conditions. This result is related to the difficulty of preparing and maintain-
ing “squeezed states” of light (Yuen 1976) – see Sect. 3.3.3.1. Therefore, the
field appears to be in one of its classical states (Sect. 4.1.2).

In all these cases, this conclusion requires that the quasi-classical states
(or “pointer states” in measurements) are robust (dynamically stable) under
natural decoherence, as pointed out already in the first paper on decoherence
(Zeh 1970; see also Diósi and Kiefer 2000).

A particularly important example of a quasi-classical field is the metric
of general relativity (with classical states described by spatial geometries on
space-like hypersurfaces – see Sect. 4.2.1). Decoherence caused by all kinds
of matter can therefore explain the absence of superpositions of macroscop-
ically distinct spatial curvatures (Joos 1986b, Zeh 1986, 1988, Kiefer 1987),
while microscopic superpositions would describe those hardly ever observable
gravitons.

Superselection rules thus arise as a straightforward consequence of quan-
tum theory under realistic assumptions. They have nonetheless been dis-
cussed mainly in mathematical physics – apparently under the influence of
von Neumann’s and Wigner’s “orthodox” interpretation of quantum mechan-
ics (see Wightman 1995 for a review). Decoherence by “continuous measure-
ment” seems to form the most fundamental irreversible process in Nature. It
applies even where thermodynamical concepts do not (such as for individual
molecules – see Sect. 3.2.4), or when any exchange of heat is entirely negligi-
ble. Its time arrow of “microscopic causality” requires a Sommerfeld radiation
condition for microscopic scattering (similar to Boltzmann’s chaos), viz., the
absence of any dynamically relevant initial correlations, which would define
a “conspiracy” in common terminology (Joos and Zeh 1985, Zeh 2001).
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2.2 Observables as a Derived Concept

Measurements are usually described by means of “observables”, formally rep-
resented by hermitean operators, and introduced in addition to the concepts
of quantum states and their dynamics as a fundamental and independent
ingredient of quantum theory. However, even though often forming the start-
ing point of a formal quantization procedure, this ingredient may not be
separately required if all physical states are perfectly described by general
quantum superpositions and their dynamics. This interpretation, to be fur-
ther explained below, complies with John Bell’s quest for the replacement
of observables with “beables” (see Bell 1987). It was for this reason that
his preference shifted from Bohm’s theory to collapse models (where wave
functions are assumed to completely describe reality) during his last years.

Let |α〉 be an arbitrary quantum state (perhaps experimentally prepared
by means of a “filter” – see below). The phenomenological probability for
finding the system in another quantum state |n〉, say, after an appropriate
measurement, is given by means of their inner product, pn = |〈n | α〉|2, where
both states are assumed to be normalized. The state |n〉 represents a specific
measurement. In a position measurement, for example, the number n has
to be replaced with the continuous coordinates x, y, z, leading to the “im-
proper” Hilbert states |r〉. Measurements are called “of the first kind” if the
system will again be found in the state |n〉 (except for a phase factor) when-
ever the measurement is immediately repeated. Preparations can be regarded
as measurements which select a certain subset of outcomes for further mea-
surements. n-preparations are therefore also called n-filters, since all “not-n”
results are thereby excluded from the subsequent experiment proper. The
above probabilities can be written in the form pn = 〈α | Pn | α〉, with a
special “observable” Pn := |n〉〈n|, which is thus derived from the kinemat-
ical concept of quantum states and their phenomenological probabilities to
“jump” into other states in certain situations.

Instead of these special “n or not-n measurements” (with fixed n), one
can also perform more general “n1 or n2 or . . . measurements”, with all ni’s
mutually exclusive (〈ni|nj〉 = δij). If the states forming such a set {|n〉} are
pure and exhaustive (that is, complete,

∑
Pn = 1l), they represent a basis of

the corresponding Hilbert space. By introducing an arbitrary “measurement
scale” an, one may construct general observables A =

∑
|n〉an〈n|, which

permit the definition of “expectation values” 〈α | A | α〉 =
∑
pnan.5 In the

special case of a yes-no measurement, one has an = δnn0 , and expectation val-
ues become probabilities. Finding the state |n〉 during a measurement is then

5 The popular textbook argument that observables must be hermitean in order to
have real expectation values is successful but wrong. The essential requirement
for an observable is its diagonalizability, which allows even the choice of a complex
scale an if convenient.
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also expressed as “finding the value an of an observable”.6 A unique change
of scale, bn = f(an), describes the same physical measurement; for position
measurements of a particle it would simply represent a coordinate transfor-
mation. Even a measurement of the particle’s potential energy is equivalent
to a position measurement (up to degeneracy) if the function V (r) is given.

According to this definition, quantum expectation values must not be
understood as mean values in an ensemble that represents ignorance of the
precise state. Rather, they have to be interpreted as probabilities for poten-
tially arising quantum states |n〉 – regardless of the latters’ interpretation.
If the set {|n〉} of such potential states forms a basis, any state |α〉 can be
represented as a superposition |α〉 =

∑
cn|n〉. In general, it neither forms an

n0-state nor any not-n0 state. Its dependence on the complex coefficients cn
requires that states which differ from one another by a numerical factor must
be different “in reality”. This is true even though they represent the same
“ray” in Hilbert space and cannot, according to the measurement postulate,
be distinguished operationally. The states |n1〉 + |n2〉 and |n1〉 − |n2〉 could
not be physically different from another if |n2〉 and −|n2〉 were the same
state. While operationally meaningless in the state |n2〉 by itself, any numer-
ical factor would become relevant in the case of recoherence. (Only a global
factor would be “redundant”.) For this reason, projection operators |n〉〈n|
are insufficient to characterize quantum states (cf. also Mirman 1970).

The expansion coefficients cn, relating physically meaningful states – for
example those describing different spin directions or different versions of the
K-meson – must in principle be determined (relative to one another) by ap-
propriate experiments. However, they can often be derived from a previously
known (or conjectured) classical theory by means of “quantization rules”.
In this case, the classical configurations q (such as particle positions or field
variables) are postulated to parametrize a basis in Hilbert space, {|q〉}, while
the canonical momenta p parametrize another one, {|p〉}. Their correspond-
ing observables, Q =

∫
dq |q〉q〈q| and P =

∫
dp |p〉p〈p|, are required to obey

commutation relations in analogy to the classical Poisson brackets. In this
way, they form an important tool for constructing and interpreting the spe-
cific Hilbert space of quantum states. These commutators essentially deter-
mine the unitary transformation 〈p | q〉 (e.g. as a Fourier transform eipq) –
thus more than what could be defined by means of the projection operators
|q〉〈q| and |p〉〈p|. This algebraic procedure is mathematically very elegant
and appealing, since the Poisson brackets and commutators may represent
generalized symmetry transformations. However, the concept of observables
6 Observables are axiomatically postulated in the Heisenberg picture and in the

algebraic approach to quantum theory. They are also presumed (in order to define
fundamental expectation values) in Chaps. 6 and 7. This may be pragmatically
appropriate, but appears to be in conflict with attempts to describe measurements
and quantum jumps dynamically – either by a collapse (Chap. 8) or by means of
a universal Schrödinger equation (Chaps. 1–4).
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(which form the algebra) can be derived from the more fundamental one of
state vectors and their inner products, as described above.

Physical states are assumed to vary in time in accordance with a dynam-
ical law – in quantum mechanics of the form i∂t|α〉 = H|α〉. In contrast,
a measurement device is usually defined regardless of time. This must then
also hold for the observable representing it, or for its eigenbasis {|n〉}. The
probabilities pn(t) = |〈n | α(t)〉|2 will therefore vary with time according to
the time-dependence of the physical states |α〉. It is well known that this
(Schrödinger) time dependence is formally equivalent to the (inverse) time
dependence of observables (or the reference states |n〉). Since observables
“correspond” to classical variables, this time dependence appeared sugges-
tive in the Heisenberg–Born–Jordan algebraic approach to quantum theory.
However, the absence of dynamical states |α(t)〉 from this Heisenberg picture,
a consequence of insisting on classical kinematical concepts, leads to para-
doxes and conceptual inconsistencies (complementarity, dualism, quantum
logic, quantum information, and all that).

An environment-induced superselection rule means that certain superpo-
sitions are highly unstable with respect to decoherence. It is then impossible
in practice to construct measurement devices for them. This empirical situa-
tion has led some physicists to deny the existence of these superpositions and
their corresponding observables – either by postulate or by formal manipu-
lations of dubious interpretation, often including infinities. In an attempt to
circumvent the measurement problem (that will be discussed in the follow-
ing section), they often simply regard such superpositions as “mixtures” once
they have formed according to the Schrödinger equation (cf. Primas 1990b).

While any basis {|n〉} in Hilbert space defines formal probabilities, pn =
|〈n|α〉|2, only a basis consisting of states that are not immediately destroyed
by decoherence defines “realizable observables”. Since the latter usually form
a genuine subset of all formal observables (diagonalizable operators), they
must contain a nontrivial “center” in algebraic terms. It consists of those
which commute with all the rest. Observables forming the center may be
regarded as “classical”, since they can be measured simultaneously with all
realizable ones. In the algebraic approach to quantum theory, this center ap-
pears as part of its axiomatic structure (Jauch 1968). However, since the con-
dition of decoherence has to be considered quantitatively (and may even vary
to some extent with the specific nature of the environment), this algebraic
classification remains an approximate and dynamically emerging scheme.

These “classical” observables thus characterize the subspaces into which
superpositions decohere. Hence, even if the superposition of a right-handed
and a left-handed chiral molecule, say, could be prepared by means of an
appropriate (very fast) measurement of the first kind, it would be destroyed
before the measurement may be repeated for a test. In contrast, the chiral
states of all individual molecules in a bag of sugar are “robust” in a normal
environment, and thus retain this property individually over time intervals
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which by far exceed thermal relaxation times. This stability may even be in-
creased by the quantum Zeno effect (Sect. 3.3.1). Therefore, chirality appears
not only classical, but also as an approximate constant of the motion that
has to be taken into account in the definition of thermodynamical ensembles
(see Sect. 2.3).

The above-used description of measurements of the first kind by means
of probabilities for transitions |α〉 → |n〉 (or, for that matter, by correspond-
ing observables) is phenomenological. However, measurements should be de-
scribed dynamically as interactions between the measured system and the
measurement device. The observable (that is, the measurement basis) should
thus be derived from the corresponding interaction Hamiltonian and the ini-
tial state of the device. As discussed by von Neumann (1932), this interaction
must be diagonal with respect to the measurement basis (see also Zurek 1981).
Its diagonal matrix elements are operators which act on the quantum state of
the device in such a way that the “pointer” moves into a position appropriate
for being read, |n〉|Φ0〉 → |n〉|Φn〉. Here, the first ket refers to the system,
the second one to the device. The states |Φn〉, representing different pointer
positions, must approximately be mutually orthogonal, and “classical” in the
explained sense.

Because of the dynamical superposition principle, an initial superposition∑
cn|n〉 does not lead to definite pointer positions (with their empirically ob-

served frequencies). If decoherence is neglected, one obtains their entangled
superposition

∑
cn|n〉|Φn〉, that is, a state that is different from all poten-

tial measurement outcomes |n〉|Φn〉. This dilemma represents the “quantum
measurement problem” to be discussed in Sect. 2.3. Von Neumann’s inter-
action is nonetheless regarded as the first step of a measurement (a “pre-
measurement”). Yet, a collapse seems still to be required – now in the mea-
surement device rather than in the microscopic system. Because of the en-
tanglement between system and apparatus, it would then affect the total
system.7

If, in a certain measurement, a whole subset of states |n〉 leads to the
same pointer position |Φn0〉, these states can not be distinguished by this
measurement. According to von Neumann’s interaction, the pointer state
|Φn0〉 will now be correlated with the projection of the initial state onto
the subspace spanned by this subset. A corresponding collapse was therefore
postulated by Lüders (1951) in his generalization of von Neumann’s “first
intervention” (Sect. 2.3).

7 Some authors seem to have taken the phenomenological collapse in the micro-
scopic system by itself too literally, and therefore disregarded the state of the
measurement device in their measurement theory (see Machida and Namiki 1980,
Srinivas 1984, and Sect. 9.1). Their approach is based on the assumption that
quantum states must always exist for all systems. This would be in conflict with
quantum nonlocality, even though it may be in accordance with early interpre-
tations of the quantum formalism.
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In this dynamical sense, the interaction with an appropriate measuring
device defines an observable. The formal time dependence of observables ac-
cording to the Heisenberg picture would now describe a time dependence of
the states diagonalizing the interaction Hamiltonian with the device, para-
doxically controlled by the intrinsic Hamiltonian of the system.

The question whether a certain formal observable (that is, a diagonaliz-
able operator) can be physically realized can only be answered by taking into
account the unavoidable environment. A macroscopic measurement device is
always asssumed to decohere into its macroscopic pointer states. However,
environment-induced decoherence by itself does not yet solve the measure-
ment problem, since the “pointer states” |Φn〉 may be assumed to include
the total environment (the “rest of the world”). Identifying the thus arising
global superposition with an ensemble of states, represented by a statistical
operator ρ, that merely leads to the same expectation values 〈A〉 = tr(Aρ)
for a limited set of observables {A} would beg the question. This argument
is nonetheless found wide-spread in the literature. For example, Haag (1992)
used it to select the subset of all local observables.

In Sect. 2.4, statistical operators ρ will be derived from the concept of
quantum states as a tool for calculating expectation values, whereby the
latter are defined, as described above, in terms of probabilities for the ap-
pearance of new states in measurements. In the Heisenberg picture, ρ is often
regarded as in some sense representing the ensemble of potential “values” for
all observables that are postulated to formally replace all classical variables.
This interpretation is suggestive because of the (incomplete) formal analogy
of ρ to a classical phase space distribution. However, “prospective values”
are physically meaningful only if they characterize prospective states. Note
that Heisenberg’s uncertainty relations refer to potential (mutually exclusive)
measurements – not to variables characterizing the physical states.

2.3 The Measurement Problem

The superposition of different measurement outcomes, resulting according
to a Schrödinger equation when applied to the total system (as discussed
above), demonstrates that a “naive ensemble interpretation” of quantum me-
chanics in terms of incomplete knowledge is ruled out. It would require that
a quantum state (such as

∑
cn|n〉|Φn〉) represents an ensemble of some as

yet unspecified fundamental states, of which a sub-ensemble (for example
represented by the quantum state |n〉|Φn〉) may be “picked out by a mere
increase of information”. If this were true, then the sub-ensemble resulting
from this measurement could in principle be traced back in time by means
of the Schrödinger equation in order to determine also the initial state more
completely (to “postselect” it – see Aharonov and Vaidman 1991 for an inap-
propriate attempt to do so). In the above case this would lead to the initial
quantum state |n〉|Φ0〉 that is physically different from – and thus inconsistent
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with – the superposition (
∑
cn|n〉)|Φ0〉 that had been prepared (whatever it

means).
In spite of this simple argument, which demonstrates that an ensemble

interpretation would require a complicated and miraculous nonlocal “back-
ground mechanism” in order to work consistently (cf. Footnote 3 regarding
Bohm’s theory), a merely statistical interpretation of the wave function seems
to remain the most popular one because of its pragmatic (though limited)
value. A general and more rigorous critical discussion of problems arising in
various ensemble interpretations may be found in d’Espagnat’s books (1976
and 1995), for example.

A way out of this dilemma within quantum mechanical concepts requires
one of two possibilities: a modification of the Schrödinger equation that
explicitly describes a collapse (also called “spontaneous localization” – see
Chap. 8), or an Everett type interpretation, in which all measurement out-
comes are assumed to exist in one formal superposition, but to be perceived
separately as a consequence of their dynamical autonomy resulting from de-
coherence. While this latter suggestion has been called “extravagant” (as it
requires myriads of co-existing quasi-classical “worlds”), it is similar in prin-
ciple to the conventional (though nontrivial) assumption, made tacitly in all
classical descriptions of observation, that consciousness is localized in certain
semi-stable and sufficiently complex subsystems (such as human brains or
parts thereof) of a much larger external world. Occam’s razor, often applied
to the “other worlds”, is a dangerous instrument: philosophers of the past
used it to deny the existence of the interior of stars or of the back side of the
moon, for example. So it appears worth mentioning at this point that envi-
ronmental decoherence, derived by tracing out unobserved variables from a
universal wave function, readily describes precisely the apparently observed
“quantum jumps” or “collapse events” (as will be discussed in great detail in
various parts of this book).

The effective dynamical rules which are used to describe the observed time
dependence of quantum states represent a “dynamical dualism”. This was
first clearly formulated by von Neumann (1932), who distinguished between
the unitary evolution according to the Schrödinger equation (remarkably his
“zweiter Eingriff” or “second intervention”),

i~
∂

∂t
|ψ〉 = H |ψ〉 , (2.1)

valid for isolated (absolutely closed) systems, and the “reduction” or “collapse
of the wave function”,

|ψ〉 =
∑

cn|n〉 → |n0〉 (2.2)

(remarkably his “first intervention”). The latter was meant to describe the
stochastic transitions into new state |n0〉 during measurements (Sect. 2.2).
This dynamical discontinuity had been anticipated by Bohr in the form of
“quantum jumps”, assumed to occur between his discrete atomic electron
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orbits. Later, the time-dependent Schrödinger equation (2.1) for interacting
systems was often regarded merely as a method of calculating probabilities
for similar (individually unpredictable) discontinuous transitions between dif-
ferent energy eigenstates (static quantum states) of atomic systems (Born
1926).8

In scattering theory, one usually probes only part of quantum mechanics
by restricting consideration to “free” asymptotic states and their phenomeno-
logical probabilities (disregarding their entangled superpositions). Quantum
correlations between them then appear statistical (“classical”). Occasionally
even the unitary scattering amplitudes 〈mout|nin〉 = 〈m|S |n〉 are confused
with the probability amplitudes 〈φm|ψn〉 for finding a state |φm〉 in an initial
one, |ψn〉, in a measurement. In his general S-matrix theory, Heisenberg tem-
porarily speculated about deriving the latter from the former. Since macro-
scopic systems never become asymptotic because of their unavoidable interac-
tion with their environment, they cannot be described by an S-matrix at all.

The unacceptable Born-von Neumann dynamical dualism was evidently
the major motivation for an ignorance interpretation of the wave function.
It attempts to explain the collapse not as a dynamical process occurring
in the system, but as an increase of information about it. This would be
represented by the reduction of an ensemble of possible states. While the
classical description of ensembles uses a similar dualism, a corresponding
interpretation in quantum theory leads to the severe (and apparently fatal)
difficulties indicated above. They are often circumvented by the invention
of new formal “rules of logic and statistics”, which are not based on any
interpretation in terms of ensembles or incomplete knowledge.

If the state of a classical system is incompletely known, and the cor-
responding point p,q in phase space therefore replaced by an ensemble (a
probability distribution) ρ(p, q), this ensemble can be “reduced” by an addi-
tional observation. For this purpose, the system must interact in a controllable
manner with an external “observer” who holds the information (cf. Szilard
1929). The latter’s physical memory state must thereby change in dependence
on the property-to-be-measured, without disturbing the system in the ideal
case (negligible “recoil”). According to deterministic dynamical laws, the en-
semble entropy of the combined system, which initially contains the entropy
corresponding to the unknown microscopic quantity, would remain constant
if it were defined to include the entropy characterizing the final ensemble of
different outcomes. However, since the observer is assumed to “know” (to be
8 Thus also Bohr (1928) in a subsection entitled “Quantum postulate and causal-

ity” about “the quantum theory”: “. . . its essence may be expressed in the so-
called quantum postulate, which attributes to any atomic process an essential
discontinuity, or rather individuality, completely foreign to classical theories and
symbolized by Planck’s quantum of action” (my italics). The later revision of
these early interpretations of quantum theory (required by the important role of
entangled quantum states for much larger systems) seems to have gone unnoticed
by many physicists.
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Fig. 2.1. Entropy relative to the state of information in an ideal classical mea-
surement. Areas represent sets of microscopic states of the subsystems (while those
of uncorrelated combined systems would be represented by their direct products).
During the first step of the figure, the memory state of the observer changes de-
terministically from 0 to A or B, depending on the state a or b of the system to
be measured. The second step depicts a subsequent reset, required if the measure-
ment is to be repeated with the same device (Bennett 1973). A′ and B′ are effects
which must thereby arise in the thermal environment in order to preserve the to-
tal ensemble entropy in accordance with presumed microscopic determinism. The
“physical entropy” (defined to add for subsystems) measures the phase space of
all microscopic degrees of freedom, including the property to be measured, while
depending on given macroscopic variables. Because of its presumed additivity, this
physical entropy neglects all remaining statistical correlations (dashed lines, which
indicate sums of products of sets) for being “irrelevant” in the future – hence
Sphysical ≥ Sensemble. I is the amount of information held by the observer. The min-
imum initial entropy, S0, is k ln 2 in this simple case of two equally probable values
a and b.

aware of) his own state, this ensemble is reduced correspondingly, and the
ensemble entropy defined with respect to his state of information is lowered.

This situation is depicted by the first step of Fig. 2.1, where ensembles of
states are represented by areas. In contrast to many descriptions of Maxwell’s
demon, the observer (regarded as a device) is here subsumed into the ensem-
ble description. Physical entropy, unlike ensemble entropy, is usually under-
stood as a local (additive) concept, which neglects long range correlations
for being “irrelevant”, and thus approximately defines an entropy density.
Physical and ensemble entropies are equal if there are no correlations. The
information I, given in the figure, measures the reduction of entropy cor-
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responding to the increased knowledge of the observer. This description is
consistent with classical concepts, where a real physical state is represented
by a point in the diagram, while physical entropy may be characterized by
means of “representative ensembles” (cf. Zeh 2001).

This picture does not necessarily require a conscious observer (although
it may ultimately rely upon him). It applies to any macroscopic measurement
device, since physical entropy is not only defined to be local, but also as a
function of “given” macroscopic properties (which thus define representative
ensembles). The dynamical part of the measurement transforms “physical”
entropy (here the ensemble entropy of the microscopic variables) determin-
istically into entropy of lacking information about controllable macroscopic
properties. Before the observation is taken into account (that is, before the
“or” is applied), both parts of the ensemble after the first step add up to
give the ensemble entropy. When it is taken into account (as done by the
numbers given in the figure), the ensemble entropy is reduced according to
the information gained by the observer.

Any registration of information by the observer must use up his memory
capacity (“blank paper”), which represents non-maximal entropy. If the same
measurement is to be repeated, for example in a cyclic process that could be
used to transform heat into mechanical energy (Szilard 1929), this capacity
would either be exhausted at some time, or an equivalent amount of entropy
must be absorbed by the environment (for example in the form of heat) in
order to reset the measurement or registration device (second step of Fig. 2.1).
The reason is that two different states cannot deterministically evolve into
the same final state (Bennett 1973).9 This argument is based on an arrow of
time of “causality”, which requires that all correlations possess local causes
in their past (no “conspiracy”). The irreversible formation of “irrelevant”
correlations then explains the increase of physical (local) entropy, while the
ensemble entropy is conserved.

The insurmountable problems encountered in a statistical interpretation
of the wave function (or of any other superposition, such as |a〉 + |b〉) are
reflected by the fact that there is no ensemble entropy that would repre-
sent the unknown property-to-be-measured (see the first step of Fig. 2.2 or
2.3 – cf. also Zurek 1984). The “ensemble entropy” is now defined by the
“corresponding” expression Sensemble = −ktr{ρ ln ρ} (but see Sect. 2.4 for the
meaning of the density matrix ρ). If the entropy of observer plus environment
were numerically the same as in the classical case of Fig. 2.1, the total initial
ensemble entropy would be lower; for equal initial probabilities of a and b
(as assumed in the figures) it is now given in terms of the previous values by
S0 − k ln 2. It would even vanish for pure states φ and χ, respectively, of ob-
server and environment: (|a〉+ |b〉)|φ0〉|χ0〉. The global Schrödinger evolution

9 Bennett did not define physical entropy to include that of the microscopic en-
semble a,b, since he regarded this variable as “controllable” – in contrast to the
thermal (ergodic or irrelevant) property A′,B′.



26 H. D. Zeh

b B 0

a A 0

or  (by reduction of 
     resulting ensemble)

A'  a
O

b B'  collapse

Sensemble = So 

Sphysical = So + kln2 

I  = 0

reset
( forget)

a 
+ 
b

A
+
B

O

Sensemble = So - kln2
(Sphysical = So + kln2)

I  = ?

a + b O

Sensemble = So - kln2
Sphysical = So - kln2

I  = 0

O

system observer environment

'measurement'
interaction

Sensemble = So - kln2 (each)
Sphysical = So - kln2

I  = kln2

Fig. 2.2. Quantum measurement of a superposition |a〉+ |b〉 by means of a collapse
process, here assumed to be triggered by the macroscopic pointer position. The
initial entropy is smaller by one bit than in Fig. 2.1 (and may in principle vanish),
since there is no initial ensemble a, b for the property to be measured. Dashed lines
before the collapse now represent quantum entanglement. (Compare the ensemble
entropies with those of Fig. 2.1!) Increase of physical entropy in the first step is
appropriate only if the arising entanglement is regarded as irrelevant. The collapse
itself is often divided into two steps: first increasing the ensemble entropy by re-
placing the superposition with an ensemble, and then lowering it by reducing the
ensemble (applying the “or” – for macroscopic pointers only). The increase of en-
semble entropy, observed in the final state of the Figure, is a consequence of this
first step of the collapse. It brings the entropy up to its classical initial value of
Fig. 2.1

(depicted in Fig. 2.3) would then be described by three dynamical steps,

(|a〉+ |b〉) |φ0〉 |χ0〉 → (|a〉 |φA〉+ |b〉 |φB〉) |χ0〉
→ |a〉 |φA〉 |χA′′〉+ |b〉 |φB〉 |χB′′〉
→ (|a〉 |χA′A′′〉+ |b〉 |χB′B′′〉) |φ0〉 , (2.3)

with an “irrelevant” (inaccessible) final quantum correlation between system
and environment as a relic from the initial superposition. In this unitary evo-
lution, the two “branches” recombine to form a nonlocal superposition. It
“exists, but it is not there”. Its local unobservability characterizes an “ap-
parent collapse” (as will be discussed). For a genuine collapse (Fig. 2.2),
the final correlation would be statistical, and the ensemble entropy would
increase, too.
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As mentioned in Sect. 2.2, the general interaction dynamics that is re-
quired to describe “ideal” measurements according to the Schrödinger equa-
tion (2.1) is derived from the special case where the measured system is
prepared in an eigenstate |n〉 before measurement (von Neumann 1932),

|n〉|Φ0〉 → |n〉|Φn〉 . (2.4)

Here, |n〉 corresponds to the states |a〉 or |b〉 used in the figures, the pointer
positions |Φn〉 to the states |φA〉 and |φB〉. (During non-ideal measurements,
the state |n〉 would change, too.) However, applied to an initial superposition,∑
cn|n〉, the interaction according to (2.1) leads to an entangled superposi-

tion, (∑
cn|n〉

)
|Φ0〉 →

∑
cn|n〉|Φn〉 . (2.5)

As explained in Sect. 2.1.1, the resulting superposition represents an indi-
vidual physical state that is different from all components appearing in this
sum. While decoherence arguments teach us (see Chap. 3) that neglecting the
environment of (2.5) would be absolutely unrealistic for macroscopic pointer
states |Φn〉, this superposition remains nonetheless valid if Φ is defined to
include the “rest of the universe”, such as |Φn〉 = |φn〉|χn〉, with an envi-
ronmental state |χ〉. This powerful consequence of the Schrödinger equation
holds regardless of all complications, such as decoherence and other, in prac-
tice irreversible, processes (which need not even be known). Therefore, it does
seem that the measurement problem can only be resolved if the Schrödinger
dynamics (2.1) is supplemented by a nonunitary collapse (2.2).

Specific proposals for such a process will be discussed in Chap. 8. Remark-
ably, however, there is no empirical evidence yet on where the Schrödinger
equation may have to be modified for this purpose (see Joos 1987a, Pearle and
Squires 1994, or d’Espagnat 2001). On the contrary, the dynamical superpo-
sition principle has been confirmed with fantastic accuracy in spin systems
(Weinberg 1989, Bollinger et al. 1989).

The Copenhagen interpretation of quantum theory insists that the mea-
surement outcome has to be described in fundamental classical terms rather
than as a quantum state. While according to Pauli (in a letter to Einstein:
Born 1969), the appearance of an electron position is “a creation outside of
the laws of Nature” (eine ausserhalb der Naturgesetze stehende Schöpfung),
Ulfbeck and Bohr (2001) now claim (similar to Ludwig 1990 in his attempt
to derive “the” Copenhagen interpretation from fundamental principles) that
it is the click in the counter that appears “out of the blue”, and “without an
event that takes place in the source itself as a precursor to the click”. Together
with the occurrence of this, thus not dynamically analyzable, irreversible event
in the counter, the wave function is then claimed to “lose its meaning” (pre-
cisely where it would otherwise describe decoherence!). The Copenhagen in-
terpretation is often hailed as the greatest revolution in physics, since it rules
out the general applicability of the concept of objective physical reality. I
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Fig. 2.3. Quantum measurement of a superposition by means of “branching”
caused by decoherence (see text). The increase of physical entropy during the second
step applies if the distinction between environmental degrees of freedom A′′, B′′,
responsible for decoherence, is “irrelevant” (uncontrollable). After the last step, all
entanglement has irreversibly become irrelevant in practice. Since the whole super-
position is here assumed to “exist” forever (and may have future consequences in
principle), the branching is meaningful only with respect to a local observer.

am instead inclined to regard it as a kind of “quantum voodoo”: irrational-
ism in place of dynamics. The theory of decoherence describes events in the
counter by means of a universal Schrödinger equation as a fast and for all
practical purposes irreversible dynamical creation of entanglement with the
environment (see also Shi 2000). In order to remain “politically correct”, some
authors have recently even re-defined complementarity in terms of entangle-
ment (cf. Bertet et al. 2001), although the latter has never been a crucial
element of the Copenhagen interpretation.

The “Heisenberg cut” between observer and observed has often been
claimed to be quite arbitrary. This cut represents the borderline at which the
probability interpretation for the occurrence of events is applied. However,
shifting it too far into the microscopic realm would miss the readily observed
quantum aspects of certain large systems (SQUIDs etc.), while placing it
beyond the detector would require the latter’s decoherence to be taken into
account anyhow. As pointed out by John Bell (1981), the cut has to be placed
“far enough” from the measured object in order to ensure that our limited
capabilities of investigation (such as those of keeping the measured system
isolated) prevent us from discovering any inconsistencies with the assumed
classical properties or a collapse.
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As noticed quite early in the historical debate, the cut may even be
placed deep into the human observer, whose consciousness, which may be
provisionally located in the cerebral cortex, represents the final link in the
observational chain. This view can be found in early formulations by Heisen-
berg, it was favored by von Neumann, later discussed by London and Bauer
(1939), and again supported by Wigner (1962), among others. It has even
been interpreted as an objective influence of consciousness on physical reality
(e.g. Wigner l.c.), although it may be consistent with the formalism only
when used with respect to one final observer, that is, in a strictly subjective
(though partly objectivizable) sense (Zeh 1971).

The “indivisible chain between observer and observed” is physically rep-
resented by a complex interacting medium, or a causal chain of intermediary
systems |χ(i)〉, in quantum mechanical terms symbolically written as∣∣ψsystem

n

〉 ∣∣∣χ(1)
0

〉 ∣∣∣χ(2)
0

〉
· · ·
∣∣∣χ(K)

0

〉 ∣∣χobs
0

〉
→
∣∣ψsystem
n

〉 ∣∣∣χ(1)
n

〉 ∣∣∣χ(2)
0

〉
· · ·
∣∣∣χ(K)

0

〉 ∣∣χobs
0

〉
...
→
∣∣ψsystem
n

〉 ∣∣∣χ(1)
n

〉 ∣∣∣χ(2)
n

〉
· · ·
∣∣∣χ(K)
n

〉 ∣∣χobs
n

〉
, (2.6)

instead of the simplified form (2.4). While an initial superposition of the ob-
served system now leads to a superposition of such product states (similar
to (2.5)), we know empirically that a collapse must be “taken into account”
by the conscious observer before (or at least when) the information arrives
at him as the final link. If there are several chains connecting observer and
observed (for example via other observers, known as “Wigner’s friends”), the
correctly applied Schrödinger equation warrants that each individual com-
ponent (2.6) describes consistent (“objectivized”) measurement results (cf.
Zeh 1973). From the subjective point of view of the final observer, all inter-
mediary systems (“Wigner’s friends” or “Schrödinger’s cats”, including their
environments) could well remain in a superposition of drastically different
situations until he observes (or communicates with) them!

Environment-induced decoherence means that an avalanche of other causal
chains unavoidably branch off from the intermediary links of the chain as soon
as they become macroscopic (see Chap. 3). This might even trigger a genuine
collapse process (to be described by hypothetical dynamical terms), since
the many-particle correlations arising from decoherence would render the to-
tal system prone to such as yet unobserved, but nevertheless conceivable,
non-linear many-particle forces (Pearle 1976, Diósi 1985, Ghirardi, Rimini,
and Weber 1986, Tessieri, Vitali, and Grigolini 1995; see also Chap. 8). De-
coherence by a microscopic environment has been experimentally confirmed
to be reversible in a process now often called “quantum erasure of a mea-
surement” (see Herzog et al. 1995). In analogy to the concept of particle
creation, reversible decoherence may be regarded as “virtual decoherence”.
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“Real” decoherence, which gives rise to the familiar classical appearance of
the macroscopic world, is instead characterized by its unavoidability and ir-
reversibility in practice.

In an important contribution, Tegmark (2000) was able to demonstrate
that neuronal and other processes in the brain also become quasi-classical
because of environmental decoherence – see Sect. 3.2.5. (Successful neuronal
models are indeed classical.) This seems to imply that at least objective as-
pects of human thinking and behavior can be described by conceptually clas-
sical (though not necessarily deterministic) models of the brain. Since no
precise “localization of consciousness” within the brain has been confirmed
yet, the neural network (just as the retina, say) may still be part of the “exter-
nal world” with respect to the unknown ultimate observer system (Zeh 1979).
Because of Tegmark’s arguments, this problem may not affect an objective
theory of observation any longer.

However, even “real” decoherence in the sense of above must be dis-
tinguished from the concept of a genuine collapse, which is defined as the
disappearance of all but one components from reality (thus representing an
irreversible law).10 As pointed out before, a collapse could well occur later
in the observational chain, and possibly remain less fine-grained than deco-
herence. It should nonetheless be detectable in other situations if it follows
dynamical rules. Environment-induced decoherence alone (the dynamically
arising strong correlations with the rest of the world) leads to the possibly
sufficient consequence that, in a world with no more than few-particle forces,
certain “robust” states

∣∣χobs
n

〉
are not affected by what goes on in the other

branches that would have formed according to the Schrödinger equation.
In order to represent a subjective observer, such a physical system must be

in a definite state with respect to properties of which he/she/it is aware. The
salvation of a psycho-physical parallelism of this kind was von Neumann’s
main argument for the introduction of his “first intervention” (the collapse).
As a consequence of the mentioned dynamical independence of the different
individual components of type (2.6) in their superposition, one may instead
associate all arising factor wave functions

∣∣ψobs
n

〉
(different ones in each com-

ponent) with separate subjective observers, that is, with independent states
of consciousness. This description, which avoids a collapse as a new dynami-
cal law, is essentially Everett’s “relative state interpretation” (so called, since
the worlds observed by these different observer states are described by their
respective relative factor states). While also called a “many worlds inter-
pretation”, it describes one quantum universe. Because of its (essential and

10 Proposed decoherence mechanisms involving event horizons (Hawking 1987, El-
lis, Mohanty and Nanopoulos 1989) would either have to postulate such a funda-
mental violation of unitarity, or merely represent a specific kind of environmental
decoherence (entanglement beyond the horizon) – see Sect. 4.2.5. The most imme-
diate consequence of quantum entanglement is that an exactly unitary evolution
can only be consistently applied to the whole universe.
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non-trivial) reference to conscious observers, it would more appropriately be
called a “multi-consciousness” or “many minds interpretation” (Zeh 1970,
1971, 1979, 1981, 2000, Albert and Loewer 1988, Lockwood 1989, Squires
1990, Stapp 1993, Donald 1995, Page 1995).11

Because of their dynamical independence, none of these different observers
(or, in another language, different arising “versions” of the same observer) can
find out by experiments whether or not the other components resulting from
the Schrödinger equation have survived. This dynamical consequence leads
to the impression that all “other” components have ceased to exist as soon
as decoherence became irreversible for all practical purposes. So it remains
a pure matter of taste whether Occam’s razor is applied to the wave func-
tion (by adding appropriate but not directly detectable collapse-producing
nonlinear terms to its dynamical law), or to the dynamical law (by instead
adding myriads of unobservable Everett components to our conception of
“reality”). Traditionally (and mostly successfully), consistency of the law has
been ranked higher than simplicity of the facts.

Fortunately, the dynamics of decoherence can be discussed without hav-
ing to make this choice. A collapse (real or apparent) just has to be taken
into account in order to describe the dynamics of that (partial) wave func-
tion which represents our observed quasi-classical world (the time-dependent
component which contains “our” observer states

∣∣χobs
n

〉
). Only specific dy-

namical collapse models could be confirmed or ruled out by experiments,
while Everett’s relative states, on the other hand, may in principle depend
on the definition of the observer system.12 (No other “systems” have to be
specified in principle. Their density matrices, which describe decoherence and
quasi-classical concepts, are merely convenient.)

11 As Bell (1981) once pointed out, Bohm’s theory would instead require conscious-
ness to be psycho-physically coupled to certain classical variables (which this
theory postulates to exist). These variables are probabilistically related to the
wave function by means of a conserved statistical initial condition. Thus one
may argue that the “many minds interpretation” merely eliminates Bohm’s un-
observable and therefore meaningless intermediary classical variables and their
trajectories from this psycho-physical connection. This is possible because of the
dynamical autonomy of a wave function that evolves in time according to a uni-
versal Schrödinger equation, and independently of Bohm’s classical variables.
The latter cannot, by themselves, carry memories of their “surrealistic” histo-
ries. Memories are solely in the quasi-classical wave packets that effectively guide
them, while the other myriads of “empty” Everett world components (criticized
for being “extravagant” by Bell) exist as well in Bohm’s theory. Barbour (1999),
in his theory of timelessness, proposed in effect a static Bohm theory. It eliminates
the latter’s formal classical trajectories, while preserving a concept of memories
without a history (“time capsules” – see also Chap. 6 of Zeh 2001).

12 Another aspect of this observer-relatedness of the observed world is the concept
of a presence, which is not part of physical time. It reflects the empirical fact that
the subjective observer is local in space and time.
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In contrast to Bohm’s theory and stochastic collapse models, nothing has
been said yet (or postulated) about probabilities of measurement outcomes.
For this purpose, the Everett branches have to be given statistical weights in
a way that appears ad hoc again. However, these probabilities are meaningful
to an observer only as frequencies in series of equivalent measurements, which
lead to multiple branchings. Graham (1970) was able to show that the norm
of the superposition of all those Everett branches which contain frequencies
of outcomes that substantially differ from Born’s probabilities vanishes in the
limit of infinite series. Although the definition of the norm, which is used in
this argument, is precisely equivalent to Born’s probabilities, it is preferred
in comparison with other choices of a norm by its unique property of being
conserved under the Schrödinger dynamics.

To give an example: an isolated decaying quantum system may be de-
scribed by a superposition of its metastable initial state with those of all its
decay channels. On a large but finite region of space and time the total wave
function may then approximately decrease exponentially and coherently in ac-
cordance with the Schrödinger equation (with very small late-time deviations
from exponential behavior caused by the dispersion of the outgoing waves).
For a system that decays by emitting electromagnetic radiation into a reflect-
ing cavity, a superposition of different decay times has in fact been confirmed
in the form of coherent “state vector revival” (Rempe, Walther and Klein
1987). An even more complex experiment exhibiting coherent state vector re-
vival was performed by means of spin waves (Rhim, Pines and Waugh 1971).
In general, however, the decay fragments would soon be “monitored” by sur-
rounding matter. The resulting state of the environment must then depend
on the decay time, such that the superposition will decohere into dynamically
independent components corresponding to different (approximately defined)
decay times for all nuclei. From the point of view of a local observer, each
individual nucleus may be assumed to decay discontinuously (even when the
decay is not actually observed). This situation does not allow coherent state
vector revival any more. Instead, it leads to an exactly exponential statistical
decay law, valid shortly after the decaying state was produced (see Joos 1984
and Sect. 3.3.1).

A similar decoherence mechanism explains the quasi-discontinuous colli-
sions observed for a Brownian particle under a light microscope (which leads
to almost immediate decoherence). In turn, scattered molecules contribute to
the decoherence.

As long as the information about the decay has not yet reached the ob-
server, (∑

n

cn
∣∣ψsystem
n

〉 ∣∣∣χ(1)
n

〉 ∣∣∣χ(2)
n

〉
· · ·
∣∣∣χ(K)
n

〉) ∣∣χobs
0

〉
, (2.7)

he may as well assume (from his subjective point of view) that the nonlocal
superposition still exists. According to the formalism, Schrödinger’s cat (rep-
resented by

∣∣χ(2)
〉
, say) would then “become” dead or alive only when the
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observer becomes aware of it. On the other hand, the property described by
the state |ψsystem

n 〉 (just as the cat’s status of being dead or alive,
∣∣∣χ(2)
n

〉
) can

be assumed to have become “real” as soon as decoherence has become irre-
versible in practice. (In the case of strong decoherence the time of the cat’s
death can be approximately determined later by forensic investigation of the
state of the cat’s body, which thus contains even controllable information in
physical form.) In the same way, decoherence must corrupt any controllable
entanglement that might lead to a violation of Bell’s inequalities (as it does
– see Venugopalan, Kumar and Ghosh 1995b). All predictions which a local
observer can check are consistent with the assumption that the system was
in one of the states |ψsystem

n 〉 (with probability |cn|2) before the second mea-
surement (see also Sect. 2.4). This justifies the interpretation that the cat is
determined to die or not yet to die as soon as irreversible decoherence has
occurred somewhere in the causal chain (which will in general be the case
even before the poison is applied).

2.4 Density Matrix, Coarse Graining, and “Events”

The theory of decoherence uses some (more or less technical) auxiliary con-
cepts. Their physical meaning will be recalled and discussed in this section,
since it is essential for a correct understanding of what will be achieved.

In classical statistical mechanics, incomplete information about the real
physical state of a system is described by means of “ensembles”, that is, by
probability distributions, such as ρ(p, q), on the space of states (in Fig. 2.1
indicated by areas of uniform probability). Such ensembles are often called
“thermodynamic” or “macroscopic states”. Corresponding mean values of
functions of state, a(p, q), with respect to these ensembles are then given by
the expression

∫
dp dq ρ(p, q)a(p, q). An ensemble ρ(p, q) may be recovered

from the mean values of a complete set of state functions (such as all δ-
functions), while a smaller set (that can be realized in practice) determines
only a “coarse-grained” probability distribution.

If all members of an ensemble are assumed to obey the same Hamiltonian
equations, their probability distribution ρ evolves according to the Liouville
equation,

∂ρ

∂t
= {H , ρ} , (2.8)

with their common Hamiltonian H and the Poisson bracket {, }. However,
this assumption would be highly unrealistic for a many-particle system. Even
if the fundamental dynamics were given, the induced Hamiltonian for the con-
sidered system would very sensitively depend on the state of the “environ-
ment”, which cannot be assumed to be known better than that of the system
itself. Borel (1914b) showed long ago that even the gravitational effect result-
ing from shifting a small rock at the distance of Sirius by a few centimeters
would completely change the microscopic state of a gas in a vessel here on
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earth within seconds after the retarded field has arrived (see also Chap. 3).
In a similar connection, Ernst Mach spoke of the “profound interconnect-
edness of things”. Borel’s surprising conclusion follows from the enormous
amplification in subsequent collisions of those tiny differences in molecular
trajectories that result from the slightly different forces. Conversely, small
microscopic variations in the state of the gas must affect its environment,
thus leading in turn to slightly different effective Hamiltonians for the gas.
This will in general have strong (“chaotic”) effects in the microscopic states
which form the original ensemble, and thus induce statistical correlations of
the gas with its environment. Their neglect leads to an increase of ensemble
entropy.

This effective local dynamical indeterminism can be taken into account in
this universe (when calculating forward in time) by means of stochastic forces
(using a Langevin equation) for the individual states, or by means of a corre-
sponding master equation for an ensemble of states, ρ(p, q; t). The increase of
the local ensemble entropy is thus attributed to an uncertain effective Hamil-
tonian. In this way, statistical correlations with the environment are regarded
as dynamically irrelevant for the future evolution. An example is Boltzmann’s
collision equation (where the arising irrelevant correlations are intrinsic to
the gas, however). The justification of this time-asymmetric procedure forms
a basic problem of physics and cosmology (Zeh 2001).

When applying the conventional quantization rules to the Liouville equa-
tion (2.8) in a formal way, one obtains the von Neumann equation (or quantum
Liouville equation),

i~
∂ρ

∂t
= [H , ρ] , (2.9)

for the dynamics of “statistical operators” or “density operators” ρ. Similarly,
expectation values 〈A〉 = tr(Aρ)/tr(ρ) of observables A formally replace mean
values ā =

∫
dp dq a(p, q)ρ(p, q) of the state functions a(p, q). Expectation

values of a restricted set of observables would again represent a generalized
coarse graining for the density operators. The von Neumann equation (2.9) is
thus unrealistic for similar reasons as is the Liouville equation (2.8), although
quantitative differences between these two cases may arise from the differ-
ent energy spectra – mainly at low energies. Discrete spectra have relevant
consequences for macroscopic systems in practice only in exceptional cases,
while they often prevent mathematically rigorous proofs of ergodic or chaos
theorems that are valid only in excellent approximation. However, whenever
quantum correlations do form in analogy to classical correlations (as is the
rule), they lead to far more profound consequences than their classical coun-
terparts.

In order to understand these differences, the concept of a density matrix
has to be derived from that of a (pure) quantum state instead of being postu-
lated by means of quantization rules. According to Sect. 2.2, the probability
for a state |n〉 to be “found” in a state |α〉 in an appropriate measurement is
given by |〈n | α〉|2. Its mean probability in an ensemble of states {|α〉} with
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probabilities pα, representing incomplete information about the initial state
α, is, therefore, pn =

∑
pα|〈n | α〉|2 = tr{ρPn}, where ρ =

∑
|α〉pα〈α| and

Pn = |n〉〈n|. This result remains true for general observables A =
∑
anPn in

place of Pn. The ensemble of wave functions |α〉, which thus defines a density
matrix as representing a state of information about the quantum state, need
not consist of mutually orthogonal states, although the density matrix can
always be diagonalized in terms of its eigenbasis. Its representation by a gen-
eral ensemble of states is therefore far from unique – in contrast to a classical
probability distribution. Nonetheless, the density matrix could still be shown
to obey a von Neumann equation if all states contained in the ensemble were
assumed to evolve unitarily according to one and the same Hamiltonian.

However, the fundamental nonlocality of quantum states means that in
general the state of a local system does not even exist in principle: it cannot
be merely unknown. As a consequence, there is no induced local Hamiltonian
that would allow (2.9) to apply (see Kübler and Zeh 1973). In particular,
a time-dependent Hamiltonian would in general require a (quasi-)classical
source for its potential energy term. This specific quantum aspect is easily
overlooked when the density matrix is introduced axiomatically by “quantiz-
ing” a classical probability distribution on phase space.

Quantum nonlocality means that the generic state of a composite system
(“system” and environment, say),

|Ψ〉 =
∑
m,n

cmn
∣∣φsystem
m

〉 ∣∣φenvironment
n

〉
, (2.10)

does not factorize in any basis. The expectation values of all local observables,

A = Asystem ⊗ 1lenvironment , (2.11)

are calculated by “tracing out” the environment,

〈Ψ |A |Ψ〉 ≡ tr {A |Ψ〉 〈Ψ |} = trsystem

{
Asystemρsystem

}
. (2.12)

Here, the density matrix ρsystem, which in general has nonzero entropy even
for a pure (completely defined) global state |Ψ〉, is defined by a partial trace,

ρsystem ≡
∑
m,m′

∣∣φsystem
m

〉
ρsystem
mm′

〈
φsystem
m′

∣∣
:= trenv {|Ψ〉 〈Ψ |} ≡

∑
m,m′

∣∣φsystem
m

〉∑
n

cmnc
∗
m′n

〈
φsystem
m′

∣∣ , (2.13)

where tr ≡ trsystem ⊗ trenv. It represents a specific coarse-graining, viz. the
restriction to all subsystem observables. This “reduced density matrix” can
be formally represented by various ensembles of subsystem states (includ-
ing its eigenrepresentation or diagonal form), while according to its deriva-
tion it describes here one pure though entangled global state. A density ma-
trix thus based on entanglement has been called an “improper mixture” by
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d’Espagnat (1966). It can evidently not explain genuine ensembles of defi-
nite measurement outcomes. If proper and improper mixtures were identified
for operationalist reasons, then decoherence would indeed completely solve
the measurement problem. Unfortunately, this argument is circular, since the
identification of proper and improper mixtures is itself based on the measure-
ment postulate.

Regardless of its origin and interpretation, the density matrix can be
replaced by its partial Fourier transform, known as the Wigner function (see
also Sect. 3.2.3):

W (p, q) : =
1
π

∫
e2ipxρ(q + x, q − x) dx

≡ 1
2π

∫ ∫
δ

(
q − z + z′

2

)
eip(z−z′)ρ(z, z′) dzdz′

= : trace{Σp,qρ} . (2.14)

The third line is here written in analogy to the Bloch vector, πi = trace{σiρ},
since

Σp,q(z, z′) :=
1

2π
eip(z−z′) δ

(
q − z + z′

2

)
(2.15)

is a generalization of the Pauli matrices (with an index pair p, q instead of
the vector index i = 1, 2, 3 – see also Sect. 4.4 of Zeh 2001). Although the
Wigner function is formally analogous to a phase space distribution, it does,
according to its derivation, by no means represent an ensemble of classical
states (phase space points). This fact is reflected by its potentially negative
values, while even a Gaussian wave packet, which leads to a non-negative
Wigner function, is nonetheless one (pure) quantum state.

The degree of entanglement represented by an improper mixture (2.13)
is conveniently measured by the latter’s formal entropy, such as the linear
entropy Slin = trace(ρ − ρ2). In a “bipartite system”, the mutual entangle-
ment of its two parts is often controllable, and thus may be used for specific
applications (EPR-Bell type experiments, quantum cryptography, quantum
“teleportation”, etc.). This is possible as far as the entanglement is not ob-
scured by a mixed state of the total system. Therefore, effective measures
have been proposed to characterize the operationally available entanglement
in mixtures (Peres 1996, Vedral et al. 1997). However, these measures do not
represent the true and complete entanglement, since a mixed state, which
reduces this measure, is either based on entanglement itself (of the bipartite
system as a whole with its environment), or the consequence of averaging
over an ensemble of unknown (but nonetheless entangled) states.

The eigenbasis of the reduced density matrix can be used, by orthogo-
nalizing the correlated “relative states” of the environment, in order to write
the total state as a single sum,

|Ψ〉 =
∑
k

√
pk

∣∣∣φ̂system
k

〉 ∣∣∣φ̂environment
k

〉
. (2.16)
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While Erhard Schmidt (1907a) first introduced this representation as a math-
ematical theorem, Schrödinger (1935b) used it for discussing entanglement
as representing what he called “probability relations between separated sys-
tems”. It was later shown to be useful for describing quantum nonlocality
and decoherence by means of a universal wave function (Zeh 1971, 1973).

The two orthogonal systems φ̂k of the Schmidt form (2.16) are deter-
mined (up to degeneracy of the pk’s) by the total state |Ψ〉 itself. A time
dependence of |Ψ〉 must therefore in general affect both the Schmidt states
and their (formal) probabilities pk – hence also the subsystem entropy, such
as
∑
pk(1 − pk) – see Kübler and Zeh (1973), Pearle (1979), and Albrecht

(1993). The induced subsystem dynamics is thus not “autonomous”. Sim-
ilar to the motion of a shadow that merely reflects the regular motion of
a physical object, the reduced information content of the subsystem den-
sity matrix by itself is insufficient to determine its own change. Likewise,
Boltzmann had to introduce his Stoßzahlansatz, based on statistical assump-
tions, when neglecting statistical correlations between particles (instead of
quantum entanglement). The exact dynamics of any local “system” would
in general require the whole Universe to be taken into account; no effective
time-dependent Hamiltonian would suffice.

Effective “open systems quantum dynamics” has indeed been postulated
as an approximation for calculating forward in time in analogy to the Boltz-
mann equation in the form of semigroups or master equations. An equivalent
formalism was introduced by Feynman and Vernon (1963) in terms of path
integrals (see Chap. 5). This approach can not explain the appearance of
proper mixtures unless it is meant to postulate a fundamental correction to
the Schrödinger equation. The formal theory of master equations will be dis-
cussed in Chap. 7 (see also Zeh 2001). Their approximate foundation in terms
of a global unitary Schrödinger equation requires very specific (statistically
improbable) cosmic initial conditions.

According to a universal Schrödinger equation, quantum correlations with
the environment are permanently created with great efficiency for all macro-
scopic systems, thus leading to decoherence, defined as the irreversible dislo-
calization of phase relations (see Chap. 3 for many examples). The apparent
(or “improper”) ensembles, obtained for subsystems in this way, often led to
claims that decoherence be able (or meant) to solve the measurement prob-
lem.13 The apparent nature of these ensembles has then in turn been used to
13 In the Schmidt basis, interference terms are exactly absent by definition. Hepp

(1972) used the formal limit N →∞ to obtain this result in a given basis (though
this may require infinite time). However, the global state always remains one
pure superposition. The Schmidt representation has therefore been used instead
to specify the Everett branches, that is, to define the ultimate “pointer basis”
|χobserver
n 〉 for each observer (cf. Zeh 1973, 1979, Albrecht 1992, 1993, Barvinsky

and Kamenshchik 1995). It is also used in the “modal interpretation” of quantum
mechanics (cf. Dieks 1995).
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declare the program of decoherence a failure. As explained in Sect. 2.3, both
claims miss the point. However, decoherence represents a crucial dynamical
step in the measurement process. The rest may remain a pure epistemological
problem (requiring only a reformulation of the psycho-physical parallelism in
consistent quantum mechanical terms). If the Schrödinger equation is exact,
the observed quantum indeterminism can only reflect that of the observer’s
identity – not one to be found in objective dynamics.

The process of decoherence leads to a new type of (generalized) dynamical
coarse graining. If phase relations between certain Hilbert subspaces of a
system permanently disappear by means of decoherence, the latter’s reduced
density matrix may be approximated in the form

ρ =
∑
m,n

PmρPn ≈
∑
n

PnρPn , (2.17)

where Pn projects on to the n-th decohered subspace, while
∑
Pn = 1l. The

dynamics of formal probabilities, pn(t) := tr{Pnρ(t)}, may then be written
as a master equation, similar to the Pauli equation,

ṗn =
∑
m

Anm(pm − pn) , (2.18)

and valid in the time direction defined by decoherence, as was shown by
Joos (1984). Since (2.18) describes an ensemble of stochastic evolutions n(t),
it defines probabilities for coarse-grained “histories”, corresponding to time-
ordered sequences of projections Pn1(t1) . . . Pnk(tk). Probabilities for such
histories in discrete time steps can be written as

p(n1, . . . , nk) = tr{Pnk(tk) . . . Pn1(t1)ρ(t0)} (2.19)

(using the property P 2 = P of projection operators). States nk dynamically
arising according to a stochastic equation may contain “consistent memories”
(or “time capsules” in Barbour’s terminology – Barbour 1999). Individual
stochastic histories obey a quantum Langevin equation (an indeterministic
generalization of the Schrödinger equation). Models have been proposed by
Diósi (1986), Belavkin (1989a), Gisin and Percival (1992), and others – see
also Diósi and Kiefer (2001). They are often assumed to hold exactly, thus
incorrectly interpreting the evolving mixture as a “proper” one.

In the theory of “consistent histories” (Griffiths 1984, Omnès 1992, 1995),
formal projections Pn are called “events”, regardless of any dynamics. These
events are thus not dynamically described within the theory – in accord with
the Copenhagen interpretation, where events are assumed to occur “out of the
blue” or “outside the laws of nature”. However, only those histories n1, . . . nk
are then admitted by postulate (that is, assumed to “occur” in reality) which
possess “consistent” probabilities in the sense of being compatible with a
stochastic evolution. This condition requires (a weak form of) decoherence
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that is not necessarily based on entanglement (cf. Omnès 1999). It is some-
times described in terms of a “new logic”, reflected by Omnès’ (1995) sur-
prising conclusion that “the formalism of logic is not time-reversal invariant,
as can be seen in the time ordering of the (projection) operators”. However,
logic has nothing to do with the concept of time. A property a at time t1
that is said to “imply” a property b at time t2 > t1 would describe a causal
(that is, dynamical) rather than logical relationship. This confusion of the
concepts of causes and reasons seems to have a long tradition in philosophy,
while even in mathematics the truth of logical theorems is often inappropri-
ately defined by means of logical operations that have to be performed in
time (thus mimicking a causal relationship).

In the theory of decoherence, apparent events in the detector are described
dynamically by a universal Schrödinger equation, using certain initial con-
ditions for the environment, as a very fast but smooth formation of entan-
glement. Similarly, “particles” appear in the form of narrow wave packets in
space as a consequence of decoherence. The identification of observable events
with a decoherence process applies regardless of any conceivable subsequent
genuine collapse. Decoherence is not only responsible for the classical aspects
of quantum theory, but also for its “quantum” aspects (see Sect. 3.4.1). All
fundamental physical concepts seem to be continuous and in accordance with
a Schrödinger equation (generalized to relativistic field functionals).

This description of quantum events as fast but continuous evolutions also
avoids any superluminal effects that have been shown (with mathematical
rigor – see Hegerfeldt 1994) to arise (not very surprisingly) from explicitly or
tacitly assumed instantaneous quantum jumps between exact energy or parti-
cle number eigenstates.14 The latter require infinite exponential tails that can
never form in a relativistic world. Supporters of explicit collapse mechanisms
are quite aware of this problem, and try to avoid it (cf. Diósi and Lukácz
1994 and Chap. 8). In the nonlocal quantum formalism, dynamical locality
is achieved by using Hamiltonian operators that are spatial integrals over
a Hamiltonian operator density. This form prevents superluminal signalling
and the like.
14 Such superluminal “phenomena” are reminiscent of the story of Der Hase und

der Igel (the race between The Hedgehog and the Rabbit), narrated by the Grimm
brothers. Here, the hedgehog, as a competitor in the race, does not run at all,
while his wife is waiting at the end of the furrow, shouting in low German “Ick
bin all hier!” (“I’m already here!”). Similar arguments hold for “quantum tele-
portation”, where an appropriate nonlocal state that contains the state to be
ported as a component has to be well prepared (cf. also Vaidman 1998). Exper-
iments clearly support this view of a continuous evolution instead of quantum
jumps (cf. Fearn, Cock, and Milonni 1995). Teleportation would be required if
reality were local and physical properties entered existence “out of the blue” in
fundamental quantum events. Therefore, this whole concept is another artifact of
the Copenhagen interpretation.
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2.5 Conclusions

Let me recall the interpretation of quantum theory that has emerged in ac-
cordance with the concept of decoherence:
(1) General quantum superpositions (including nonlocal wave functions) rep-
resent individual physical states (Sect. 2.1.1).
(2) According to a universal Schrödinger equation, most superpositions are
almost immediately, and in practice irreversibly, dislocalized by interaction
with their environment. Although the resulting nonlocal superpositions still
exist, we do not know, in general, what they mean (or how they could be
observed). However, if dynamics is local (described by a Hamiltonian den-
sity in space, H =

∫
h(r)d3r), approximately factorizing components of the

global wave function may be dynamically autonomous after this decoherence
has occurred, and nonlocal superpositions cannot return into local ones if
statistical arguments apply to the future (Zeh 2001).
(3) Any observer (assumed to be local for empirical and dynamical reasons)
who attempts to observe a subsystem of the nonlocal superposition must be-
come part of this entanglement. Those of his component states which are then
related only by nonlocal phase relations must describe “different observers”
(novel psycho-physical parallelism).
(4) Because of this dynamical autonomy of decohered world components
(“branches”), there is no other reason than conventionalism to deny the exis-
tence of “the other” components which result from the Schrödinger equation
(“many minds interpretation” – Sect. 2.3).
(5) Probabilities are meaningful only as frequencies in series of repeated mea-
surements. In order to derive the observed Born probabilities in terms of
frequencies, we have to postulate merely that we are living in an “Everett
branch” with not extremely small norm.


