

Single- and Multi-Chip
Microcontroller Interfacing
For the Motorola 68HC12

Academic Press Series in Engineering
Series Editor
J. David Irwin
Auburn University

Designed to bring together interdependent topics in electrical engineering, mechanical
engineering, computer engineering, and manufacturing, the Academic Press Series in
Engineering provides state-of-the-art handbooks, textbooks, and professional reference
books for researchers, students, and engineers. This series provides readers with a com-
prehensive group of books essential for success in modern industry. A particular emphasis
is given to the applications of cutting-edge research. Engineers, researchers, and students
alike will find the Academic Press Series in Engineering to be an indispensable part of
their design toolkit.

Published books in the series:
Industrial Controls and Manufacturing, 1999, E. Kamen
DSP Integrated Circuits, 1999, L. Wanhammar
Time Domain Electromagnetics, 1999, S. M. Rao
Single- and Multi-Chip Microcontroller Interfacing for the Motorola 68HC12, 1999,

G. J. Lipovski
Control in Robotics and Automation, 1999, B. K. Ghosh, N. Xi, T. J. Tarn

Single- and Multi-Chip
Microcontroller Interfacing
For the Motorola 68HC12

G. Jack Lipovski
Department of Electrical and Computer Engineering
University of Texas
Austin, Texas

ACADEMIC PRESS

San Diego London Boston
New York Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

Copyright © 1999 by Academic Press

All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

Academic Press
525 B. St., Suite 1900, San Diego, California 92101-4495, USA
http://www.apnet.com

Academic Press
24–28 Oval Road, London NW1 7DX, UK
http://www.hbuk.co.uk/ap/

Library of Congress Catalog Card Number: 98-89451
ISBN: 0-12-451830-3

Printed in the United States of America

99 00 01 02 03 MV 9 8 7 6 5 4 3 2 1

Disclaimer:
This eBook does not include the ancillary media that was
packaged with the original printed version of the book.

Dedicated to my mother,
Mary Lipovski

G. Jack Lipovski has taught electrical engineering and computer science at the
University of Texas since 1976. He is a computer architect internationally recognized for his
design of the pioneering database computer, CASSM, and the parallel computer, TRAC. His
expertise in microcomputers is also internationally recognized by his being a past director of
Euromicro and an editor of IEEE Micro. Dr. Lipovski has published more than 70 papers,
largely in the proceedings of the annual symposium on computer architecture, the IEEE
transactions on computers and the national computer conference. He holds eight patents,
generally in the design of logic-in-memory integrated circuits for database and graphics
geometry processing. He has authored seven books and edited three. He has served as chair-
man of the IEEE Computer Society Technical Committee on Computer Architecture, mem-
ber of the Computer Society Governing Board, and chairman of the Special Interest Group
on Computer Architecture of the Association for Computer Machinery. He has been elected
Fellow of the IEEE and a Golden Core Member of the IEEE Computer Society. He received
his Ph.D. degree from the University of Illinois, 1969, and has taught at the University of
Florida, and at the Naval Postgraduate School, where he held the Grace Hopper chair in
Computer Science. He has consulted for Harris Semiconductor, designing a microcomputer,
and for the Microelectronics and Computer Corporation, studying parallel computers. He
founded the company Linden Technology Ltd., and is the chairman of its board. His current
interests include parallel computing, database computer architectures, artificial intelligence
computer architectures, and microcomputers.

About the Author

Contents

Preface x i i i

List of Figures xv i i

List of Tables xxi

Acknowledgments xxi

About the Author xxii i

I Microcomputer Architecture I
1.1 An Introduction to the Microcomputer I

1.1.1 Computer Architecture 2
1.1.2 The Instruction 6
1.1.3 Microcomputers 9

1.2 The 6812 Instruction Set 11
1.2.1 6812 Addressing Modes 11
1.2.2 6812 Data Operator Instructions 16
1.2.3 6812 Control Instructions 23

1.3 Assembly-Language Directives 28
1.4 Organization of 6812 Microcontrollers 31

1.4.1 Notation for Block Diagrams 31
.,4.2 6812 Microcontroller I/O and Memory Organization 31
1.4.3 The MC68HC812A4 and MC68HC912B32 Memory Maps 35

1.5 Conclusions 36
Problems 38

2 Programming Microcomputers 45
2.1 Introduction to C 46
2.2 Data Structures 55

2.2.1 Indexable Data Structures 57
2.2.2 Sequential Data Structures 59

2.3 Writing Clear C Programs 66
2.3.1 C Procedures and Their Arguments 66
2.3.2 Programming Style 72
2.3.3 Object-Oriented Programming 73
2.3.4 Optimizing C Programs Using Declarations 83
2.3.5 Optimizing C Programs with Assembly Language 83

2.4 Conclusions 84
Problems 86

vu

Contents

3 Bus Hardware and Signals 93
3.1 Digital Hardware 94

3.1.1 Modules and Signals 94
3.1.2 Drivers, Registers, and Memories 97

3.2 Address and Control Signals in 6812 Microcontrollers 104
3.2.1 Address and Control Timing 104
3.2.2 Address and Control Signal Decoding 108

3.3 Conclusions 113
Problems 115

4. Parallel and Serial Input/Output
4.1 I/O Devices and Ports

4.1.1 Generic Port Architecture
4.1.2 Generic Port Classes
4.1.3 Debugging Tools

4.2 6812 Parallel Ports
4.2.1 MC68HC812A4 Port Architecture
4.2.2 MC68HC912B32 Port Architecture
4.2.3 Programming of PORTA
4.2.4 A Class for Ports with Direction Control

4.3 Input/Output Software
4.3.1 A Wire
4.3.2 A Movie
4.3.3 A Traffic Light Controller
4.3.4 A Sequential Machine
4.3.5 An IC Tester
4.3.6 Object-oriented Vector Functions and Interpreters

4.4 Input/Output Indirection
4.4.1 Indirect Input/Output
4.4.2 LCD Interfacing
4.4.3 Synchronous Serial Input/Output
4.4.4 The 6812 SPI Module
4.4.5 Accessing Devices Using Vectors and structs

4.4.5.1 Vector Access to Ports
4.4.5.2 Vector Pointer Access to Ports
4.4.5.3 Using #defines to Name Ports
4.4.5.4 Struct Pointer Access to Ports
4.4.5.5 Struct Access to Ports

4.4.6 Indirect and Serial I/O Objects
4.5 A Designer's Selection of I/O Ports and Software
4.6 Conclusions
Problems

Contents

5 Interrupts and Alternatives 193
5.1 Programmed Synchronization 196

5.1.1 Real-time Synchronization 196
5.1.2 Gadfly Synchronization 198

5.1.2.1 MC68HC812A4 Gadfly Synchronization 199
5.1.2.2 MC68HC912B32 Gadfly Synchronization 200
5.1.2.3 Gadfly Synchronization Characteristics 200

5.1.3 Handshaking 200
5.1.4 Some Examples of Programmed I/O 201
5.1.5 Object-oriented Classes for Programmed I/O 204

5.2 Interrupt Synchronization 210
5.2.1 Steps in an Interrupt 210

5.2.1.1 Steps in an Interrupt in the MC68HC812A4 211
5.2.1.2 Steps in an Interrupt in the MC68HC912B32 212
5.2.1.3 Properties of Interrupt Synchronization 213

5.2.2 Interrupt Handlers and Critical Sections 214
5.2.2.1 A Handler That Changes a Global Variable 214
5.2.2.2 A Handler That Fills or Empties a Buffer 216
5.2.2.3 A Handler That Uses a Queue for Input 218
5.2.2.4 A Handler That Uses a Queue for Output 220
5.2.2.5 Critical Sections 221

5.2.3 Polled Interrupts 222
5.2.3.1 Polled Interrupts in the MC68HC812A4 222
5.2.3.2 Polled Interrupts in the MC68HC912B32 224
5.2.3.3 Service Routines 225
5.2.3.4 Round-robin Handlers 226

5.2.4 Vectored Interrupts 228
5.2.4.1 Vectored Interrupts in the MC68HC812A4 228
5.2.4.2 Vectored Interrupts in the MC68HC912B32 230
5.2.4.3 Vectored Interrupts for Other Devices 231

5.2.5 Examples of Interrupt Synchronization 231
5.2.5.1 Keyboard Handling 23 i
5.2.5.2 Interrupts for SPI Systems 235
5.2.5.3 Histograms and Histories for the MC68HC812A4 236

5.2.6 Object-oriented Classes for Interrupts 237
5.2.6.1 An IQFPort Class 237
5.2.6.2 An OQFPort Class 239
5.2.6.3 Polling IQFPort and OQFPort Classes 240
5.2.6.4 Bar-code Class 240
5.2.6.5 An X-10 Class 241

5.3 Time-Sharing 244
5.3.1 Real-time Interrupts 244
5.3.2 Multithread Scheduling 245
5.3.3 Threads for Time-sharing 248
5.3.4 An Efficient Time Schedular 252
5.3.5 Special Instructions for Time-sharing 256

Contents

5.3.6 Object-oriented Classes for Time-sharing
5.4 Fast Synchronization Mechanisms

5.4.1 Direct Memory Access
5.4.2 Context Switching
5.4.3 Memory Buffer Synchronization

5.5 Conclusions
Problems

6 System Control 277
6.1 6812 Chip Modes 277

6.1.1 MODE Control Port 277
6.1.2 Port E Assignment 279

6.2 6812 Memory Map Control 280
6.2.1 Internal Memory Map Control 280
6.2.2 MC68HC812A4 Chip Selects 281
6.2.3 MC68HC812A4 Memory Expansion 284
6.2.4 Object-oriented Programming of Memory Expansion 285

6.3 EEPROM and Flash Memory Programming 286
6.4 MC68HC812A4 Timing Control 289
6.5 An External Memory for the MC68HC812A4 290
6.6 The 6812 Background Debug Module 295
6.7 6812 Reset Handler 299
6.8 Conclusions 301
Problems 302

7 Analog Interfacing 307
7.1 Input and Output Transducers 309

7.1.1 Positional Transducers 309
7.1.2 Radiant Energy Transducers 311
7.1.3 Other Transducers 313

7.2 Basic Analog Processing Components 314
7.2.1 Transistors and Silicon Controlled Rectifiers 314
7.2.2 Basic Linear Integrated Circuits 317
7.2.3 Practical Linear Integrated Circuits 321

7.3 OP AMP and Analog Switch Signal Conditioning 326
7.3.1 Filters 327
7.3.2 Selection of Inputs and Control of Gain 329
7.3.3 Nonlinear Amplification 332

7.4 Converters 334
7.4.1 Digital-to-Analog Converters 334
7.4.2 Analog-to-Digital Converters 338
7.4.3 Voltage Conversion to or from Frequency 340

7.5 Data Acquisition Systems 344
7.5.1 Basic Operation of a Data Acquisition System 345
7.5.2 The MC145040 A-to-D Converter 346
7.5.3 The MC68HC812A4 A-to-D Converter 347

7.5.4 Object-oriented Programming of Converters 349
7.5.5 Applications in Control Systems 350

7.6 Conclusions 352
Problems 354

8 Counters and Timers 361
8.1 The MC68HC812A4 Counter/Timer Subsystem 362
8.2 Signal Generation 363

8.2.1 Output Compare Logic 364
8.2.2 The Counter/Timer Square-Wave Generator 365
8.2.3 The MC68HC912B32 PWM Signal Generator 366
8.2.4 A Touch-tone Signal Generator 369
8.2.5 The Pulse Generator 373
8.2.6 A Rotary Dialer 374
8.2.7 Real-Time Clock and Trace Mechanism 375
8.2.8 Output Compare 7 376
8.2.9 Object-oriented Square-wave and Pulse Generation 378

8.3 Frequency and Period Measurement 381
8.3.1 The Input Capture Mechanism and Period Measurement 381
8.3.2 Pulse-width Measurement 383
8.3.3 Triac Control 385
8.3.4 Pulse Accumulation and Frequency Measurement 385
8.3.5 Object-oriented Period, Pulse-width, and Frequency Measurements 387

8.4 Conclusions 388
Problems 390

9. Communications Systems 397
9.1 Communications Principles 398
9.2 Signal Transmission 401

9.2.1 Voltage and Current Linkages 401
9.2.2 Frequency Shift-Keyed Links Using Modems 405
9.2.3 Infrared Links 407

9.3 UART Link Protocol 408
9.3.1 UART Transmission and Reception by Software 408
9.3.2 The UART 411
9.3.3 The ACIA 414
9.3.4 The M14469 417
9.3.5 The Serial Communication Interface System in the 6812 420
9.3.6 Object-oriented Interfacing to the SCI 423

9.4 Other Protocols 427
9.4.1 Synchronous Bit-oriented Protocols 427
9.4.2 MC68HC912B32 BDLC Device 430
9.4.3 IEEE-488 Bus Standard 432
9.4.4 The Small Computer System Interface (SCSI) 435

9.5 Conclusions 436
Problems 438

xii Contents

10. Display and Storage Systems 445
10.1 Display Systems 446

10.1.1 NTSC Television Signals 446
10.1.2 A 6812 SPI Display 448
10.1.3 A Bitmapped Display 450
10.1.4 An Object-oriented Display 453

10.2 Storage Systems 455
10.2.1 Floppy Disk Format 455
10.2.2. The Western Digital 37C65C Floppy Disk Controller 459
10.2.3. Floppy Disk Interfacing Procedures 462
10.2.4 Personal Computer Disk Data Organization 466
10.2.5 Object-oriented Disk I/O 470

10.3 Conclusions 473
Problems 475

Appendix. Using the HIWAVE CD-ROM 481

Index 483

Preface

By 1980, the microcomputer had changed so many aspects of engineering that the
cliche "microcomputer revolution" echoed from almost every other magazine article and
learned paper in the field. It is a great tool. This book's ancestor, Microcomputer
Interfacing: Principles and Practices, was written at that time to establish some design
theory for this dynamic field. A successor book, which is this book's predecessor,
Single- and Multiple-Chip Microcomputer Interfacing, was motivated by two
significant changes: the evolution of powerful single-chip microcomputers and the IEEE
Computer Society Curriculum Committee recommendation for a course on
microcomputer interfacing and communication. The development of powerful single-chip
microcomputers introduces a new design choice: to use either a microprocessor in a
personal computer with some 16M bytes of memory and an operating system or a less
costly single-chip microcomputer with much less overhead. This decision is largely
based on the designer's understanding of the capabilities and limitations of the single-
chip microcomputer. The development of a standard curriculum for a course lent stability
to this field. The book aimed to teach the principles and practices of microcomputer
systems design in general, and interfacing in particular, and to foster an understanding of
single-chip microcomputers within the guidelines of the IEEE Computer Society
Curriculum Committee's recommendations. This book was motivated by the
development of the Motorola 6812, and its need for more sophisticated software. Since
the 6812 featured so many on-chip I/O devices, which were already connected to the
6812's address and data buses, but which each had to be programmed, and managing a
number of I/O devices often necessitated the use of time sharing, this book features
programming in C and C++. However, the designer must be wary of high-level language
statements that do not do what he or she intended. High-level languages are designed for
algorithms, not for I/O interfacing, and optimizing high-level language compilers can
"optimize you right out of business." The designer is shown how each high-level
language statement is implemented in assembler language.

This book's predecessor evolved from a set of notes for a senior level course in
microcomputer design. The course - which is still taught - focuses on the combined
hardware/software design of microcomputer systems. It emphasizes principles of design
because theory is as necessary for a solid foundation in design as theory is in any
engineering discipline. However, it also emphasizes the practices - the details of how to
get a system to work - because microcomputer system design requires hands-on
experience. There is a remarkable difference between a student who merely reads about
microcomputers and a student who has worked with one - clear evidence that theory has
to be taught with practice. Practical experience is desirable in almost any engineering
course. This is not always possible. But microcomputer systems are inexpensive enough
that the school or the student can afford this hands-on opportunity; and the joy of seeing
the principles work is so attractive that the student often can't get enough of the material
to be satiated. The development of very powerful, inexpensive single-chip
microcomputers furthers this opportunity. So the course, this book's predecessor, and
this book, all emphasize both the principles and practices of microcomputer design.

xiv Preface

The principles and practices of microcomputer design have to cover both hardware
and software. A purely hardware approach might appeal to a seasoned digital system
designer or an electrical engineering student, but it leads to poor choices that either do
not take full advantage of software's tremendous power or force unnecessary constraints
and therefore higher costs on its development. However, a purely software approach
misses the opportunity to understand how and why things happen, and how to take
advantage of the hardware. The IEEE Computer Society Curriculum Committee
recommends a combined hardware/software approach.

A combined hardware/software approach does require more background. The course
this book is based on is the second of a two-course sequence. The first course teaches
how C statements are implemented in assembler-language programming. The second
course builds on that background and also presumes some background in logic design, as
would be obtained in a standard introductory course on that topic. This book, however,
has three chapters that survey these topics. These chapters can be skimmed as a review of
the required background material or carefully studied as a condensed tutorial if the reader
has not had the earlier courses or their equivalents. Because they are intended as review or
intensive tutorial material, to prepare the readers for the book's main subject, these three
chapters are comparatively compressed and terse.

We make the practices discussed in this book concrete through detailed discussion of
the 6812 microcontroller. However, these products are used as a means to the end of
teaching principles and practices in general, rather than to promote the use of specific
Motorola products. Applications notes and catalogues are available from Motorola to
that end. Specific, detailed discussion encourages and aids the reader in learning through
hands-on experience and vitally contributes to his or her enthusiasm for and
understanding of the principles. The 6812 is used primarily because the MC68HC812A4
(abbreviated 'A4) and the MC68HC912B32 (abbreviated 'B32) are believed to be the
most easily taught single-chip microcomputer. The 6812 instruction set is as complete
as that of any other comparable machine, supporting C and C++ well enough to teach
the intelligent use of data structures, and it is symmetrical and comparatively free of
quirks and warts that detract from the subject under discussion. Moreover, the 'A4's 4 K
bytes of EEPROM, which can be written 10,000 times, is well suited to university-level
lab and project use. The less costly 'B32, with its 1 K bytes of SRAM, is also suited to
simple lab experiments. Nevertheless, we stress that detailed comparisons between the
' A4 and other well-designed microcomputers clearly show that others may be better than
the 'A4 or 'B32 for different applications. However, a comparative study of different
microcomputers and applications is beyond the scope of this book.

As mentioned, the first three chapters quickly survey the background needed for the
remainder of the book. Chapter 1 is a survey that covers computer architecture and the
instruction set of the 6812. Chapter 2 covers some software techniques, including
subroutine parameter and local variable conventions, that are very useful in
microcomputers. Object-oriented programming is introduced for readers with advanced
programming skills. Chapter 3 covers basic computer organization, but confines itself to
those aspects of the topic that are particularly germane to microcomputers. For example,
basic computer organization traditionally covers floating point arithmetic, but this
chapter doesn't; and this chapter dwells on address decoders, a topic not often covered in
computer organization.

Preface

The rest of the book covers three basic themes: input-output (I/O) hardware and
software, analog signals, and communications. Parallel I/O ports are covered in Chapter
4, interrupts and alternatives in Chapter 5, analog components in Chapters 7 and 8,
communications devices in Chapter 9, and disk storage and CRT display devices in
Chapter 10. The simple parallel I/O port and the synchronous serial I/O port - especially
attractive in interfacing slow devices because it economizes on pins - are displayed in
Chapter 4. Hardware and software aspects are studied side by side. The reader need no
longer be intimidated by the basic interface. Chapter 5 discusses interrupts and their
alternatives. Hardware/software tradeoffs are analyzed, and different techniques are
exemplified. Chapter 6 describes system configuration ports for control over memory
and time. Chapter 7 surveys the traditional (voltage) analog components that are
commonly used in microcomputer I/O systems. Sufficient information is provided that
the reader can understand the uses, limitations, and advantages of analog components, and
can springboard from this chapter to other texts, magazine articles, or discussions with
colleagues to a fuller understanding of analog design. Chapter 8 introduces the
counter/timer as an interface to frequency-analog signals. Techniques to generate signals
with a frequency or to measure a signal with a frequency that is analog to some quantity
are discussed. Moreover, the hardware/software alternatives to using this most interesting
integrated circuit are discussed and evaluated. Chapter 9 describes communications
devices. The universal asynchronous receiver transmitter and its cousins are thoroughly
studied, and other communications techniques are described. Finally, Chapter 10
introduces the magnetic storage device and the CRT display device.

This book emphasizes the software aspect of interfacing because software design
costs dominate the cost of designing microcontroller systems. Software design cost is
reduced by using abstraction, which is facilitated by using high-level languages.
Programming is in C and C++, and the latter utilizes object-oriented techniques for I/O
software. Generally, techniques are first introduced in C, with explanations of what is
done, using assembler language. Then, in separately designated and optional sections, the
techniques are extended using C++. The optional sections are clearly designated by the
use of "object-oriented" in their title. These optional sections can be skipped without
loosing any necessary background in later non-optional sections and chapters. However,
if a given optional section is to be understood, previous optional sections need to be read
for the necessary background for it. We hope that this organization will permit a reader
who does not have extensive skills in programming to understand the use, in I/O
interfacing, of any high-level language in general and C in particular, while the reader
who does have extensive skills in programming to understand the use of objects in C++.

Object-oriented programming will be shown generally as an alternative to using
operating systems in a microcontroller, although it can also be used in conjunction with
operating systems. Objects obviously provide encapsulation, protection, and factoring of
common code, but they can also provide the entire infrastructure that is also provided by
an operating system, such as memory and time management, including time-sharing.
Frankly, an operating system is often overkill, white object-oriented programming can
provide just the right amount of infrastructure for an application in a microcontroller
such as the 6812. An operating system is desirable if the infrastructure that it provides,
such as managing disks and networks, is useful. However, if the application merely
needs some I/O, such as an A-to-D converter, using an operating system device driver is

xvi .Preface-

unnecessary, and the overhead it incurs is often objectionable. In this book, we show
you how to write what amounts to a tailor-made real-time operating system for your
microcontroller system. We show you how to write classes that are, in effect, operating
system device drivers, and we provide an efficient time-sharing kernel, which is adequate
for the kind of well-defined threads that run in a typical 6812 microcontroller.

After hearing a presentation about the use of object-oriented programming in this
book, someone remarked that it was nice to show students who have learned object-
oriented programming how it can be used in microcontroller interfacing. There is much
more to it. In this book we use object-oriented programming to elevate the programmer
to a level of systems design. This object-oriented methodology promises not only to
save software design cost, but also to integrate software and microcontroller organization
to make more intelligent hardware/software trade-offs and to more effficiently implement
changes that might be indicated after these trade-offs are evaluated.

Some remarks on this book's style are offered. On the one hand, terms are formally
introduced and used as carefully as possible. This is really necessary to make some sense
out of a subject as broad and rich as microcomputer system design. There is no room for
muddy terminology or the use of undefined jargon. Even though the terminology used in
trade journals and manufacturers' applications notes is inconsistent and often
contradictory, the terminology used in a text must be clear and consistent. On the other
hand, a book full of definitions is too hard to read. The first version of the course notes
that lead to this book tended to be ponderous. Moreover, students are more tuned to
television colloquialism today, and are turned off by "third person boring" that is often
the style of many learned textbooks. So we condescend to "first person conversational",
and we enjoy it. The "we" in this book stands not only for the author but also for his
colleagues and his teachers, as well as his students - who have taught him a great deal
and who have collectively inspired and developed the principles and practices discussed in
the book. But we admit to occasionally exploring Webster's Collegiate for just the
right word because we enjoy the challenge and even allowing a pun or two where it does
not interfere with the presentation of the material. We can't deny it: microcomputer
design is fun, and we have fun talking about it. Please forgive us if it shows in this
book's style.

G. J. Lipovski
Austin, Texas
February 3999

Figure Title Page

Figure 1,1. Analogy to the von Neumann Computer 3
Figure 1.2. Registers in the 6812 13
Figure 1.3, Block Diagram Showing the Effect of an Instruction 31
Figure 1.4. Organization of a von Neumann Computer 32
Figure 1.5. Single-Chip Mode of the MC68HC812A4 32
Figure 1.6. Expanded Wide Multiplexed Bus Mode of the MC68HC812A4 33
Figure 1.7. Single-Chip Mode of the MC68HC912B32 34
Figure 1.8. Expanded Wide Multiplexed Bus Mode of the MC68HC912B32 34
Figure 1.9. Memory Map of 6812 Microcontrollers 35

Figure 2.1. Conditional Statements 50
Figure 2.2. Case Statements 52
Figure 2.3. Loop Statements 53
Figure 2.4. A Huffman Coding Tree 62
Figure 2.5. An Object and its Pointers 78
Figure 2.6. Other Huffman Codes 88

Figure 3.1. Voltage Waveforms, Signals, and Variables 94
Figure 3.2. Some Common Gates 98
Figure 3.3. Logic Diagrams for a Popular Driver and Register 99
Figure 3.4. 16R4 PAL Used in Microcomputer Designs 103
Figure 3.5. Some Timing Relationships 105
Figure 3.6. Timing Relationships for the MC68HC812A4 105
Figure 3,7. Timing Relationships for the MC68HC912B32 107
Figure 3.8. Address and Data Bus Signals 109
Figure 3.9. Decoding for Table 3.1 110
Figure 3.10. Common Integrated Circuits Used in Decoders 111
Figure 3.11. Logic Design of Minimal Complete Decoder 112
Figure 3.12. A 74HC74 116
Figure 3.13. Some MSI I/O Chips 117

Figure 4.1. Logic Diagrams for I/O Devices for a Narrow Expanded Bus 124
Figure 4.2. A Readable Output Port for a Narrow Expanded Bus 124
Figure 4.3. An Unusual I/O Port 127
Figure 4.4. A Set Port 129
Figure 4.5. Address Output Techniques 130
Figure 4.6. MC68HC812A4 Parallel I/O Ports. 138
Figure 4.7. MC68HC812A4 Parallel I/O Control Ports 139
Figure 4.7. MC68HC912B32 Parallel I/O Ports 140
Figure 4.9. MC68HC812B32 Parallel I/O Control Ports 141
Figure 4.10. Traffic Light 148
Figure 4.11. Mealy Sequential Machine 151

xvn

List of Figures

xvHi List of Figures

Figure 4.12. A Linked-List Structure 152
Figure 4.13. Connections for a Chip Tester 154
Figure 4.14. The74HCOO 155
Figure 4.15. M68ISA Time-of-Day Chip 163
Figure 4.16. Connections to an LCD Display 165
Figure 4.17. Simple Serial Input/Output Ports 167
Figure 4.18. Configurations of Simple Serial Input/Output Registers 168
Figure 4.19. Flow Chart for Series Serial Data Output 170
Figure 4.20. Dallas Semiconductor 1620 Digital Thermometer 171
Figure 4.21. SPI Data, Control, and Status Ports 173
Figure 4.22. Multicomputer Communication System Using the SPI 174
Figure 4.23. Some ICs for I/O 185

Figure 5.1. Paper Tape Hardware 194
Figure 5.2. State Diagram for I/O Devices 195
Figure 5.3. Flow charts for Programmed I/O 198
Figure 5.4. Key Wakeup Ports for the MC68HC812A4 199
Figure 5.5. Infrared Control 202
Figure 5.6. Magnetic Card Reader 202
Figure 5.7. BSRX-10 203
Figure 5.8. Key Wakeup Interrupt Request Path 210
Figure 5.9. IRQ Interrupt Request Path 213
Figure 5.10. MC68HC812A4 Polled Interrupt Request Path 224
Figure 5.11. MC68HC912B32 Polled Interrupt Request Path 225
Figure 5.12. Flow Chart for Round-robin Interrupt Polling 226
Figure 5.13. MC68HC812A4 Vector Interrupt Request Path 229
Figure 5.14. MC68HC912B32 Vector Interrupt Request Path 230
Figure 5.15. Keys and Keyboards 232
Figure 5.16. SPI Network 235
Figure 5.17. Bar Code Frames 236
Figure 5.18. X-10 Frame 242
Figure 5.19. Periodic Interrupt Device 244
Figure 5.20. Centronics Parallel Printer Port 250
Figure 5.21. Connections for Context Switching 261
Figure 5.22. Fast Synchronization Mechanisms Using Memory Organizations 263
Figure 5.23. Indirect Memory Using an MCM6264D-45 264
Figure 5.24. Synchronization Mechanisms Summarized 267
Figure 5.25. 74HC266 271

Figure 6.1. MC68HC812A4 Mode Port 278
Figure 6.2. Memory Maps 278
Figure 6.3. MC68HC812A4 Port E Assignment Register 280
Figure 6.4. MC68HC812A4 Internal Memory Map Control Ports 280
Figure 6.5. MC68HC812A4 Chip Select Memory Map 281
Figure 6.6. MC68HC812A4 Chip Select Registers 282
Figure 6.7. Use of Chip Select Lines 282
Figure 6.8. MC68HC812A4 Memory Expansion Ports 284

List of Figures xix

Figure 6.9. MC68HC812A4 Memory Expansion Mapping 285
Figure 6.10. MC68HC812A4 EEPROM Control Ports 287
Figure 6,11. MC68HC912B32 Flash Control Ports 288
Figure 6.12. MC68HC812A4 Clock Control 289
Figure 6.13. An MCM6264D-45 Memory System 29!
Figure 6.14. Analysis of Memory Timing 292
Figure 6.15. MC68HC912B32 Address Demultiplexing 293
Figure 6.16. 8K-by-16-bit Word Wide Expanded Mode Memory System 294
Figure 6.17. Background Debug Module 295

Figure 7.1. Waveforms of Alternating Voltage Signals 307
Figure 7,2. Position Transducers 310
Figure 7.3. Power Output Devices 315
Figure 7.4. Triac Control Techniques 316
Figure 7.5. Operational Amplifier Circuits 318
Figure 7.6. Analog Switches 320
Figure 7.7. A Practical Voltage Follower 324
Figure 7.8. Practical Analog Switches 325
Figure 7.9. 555 Timer 326
Figure 7.10. Some Filters 328
Figure 7.11. Selecting Inputs for a Stereo Preamplifier 329
Figure 7.12. Computer Control of Amplification 331
Figure 7.13. Nonlinear Signal Conditioning 333
Figure 7.14. D-to-A Converters 336
Figure 7.15. The Crystal Semiconductor CS4330 337
Figure 7.16. A-to-D Converters 339
Figure 7.17. Frequency-to-Voltage Conversion 342
Figure 7.18. Voltage-to-Frequency Conversion 342
Figure 7.19. Phase-locked Loop 344
Figure 7.20. Data Acquisition System 345
Figure 7.21. Serial Interface A-to-D Converter 347
Figure 7.22. A-to-D Subsystem of the MC68HC812A4 348
Figure 7.23. The Spline Technique 35!
Figure 7.24. Feedback Control 351
Figure 7.25. Some OP AMP Circuits 356

Figure 8.1. The Counter/Timer Subsystem 363
Figure 8.2. Output Compare Logic 364
Figure 8.3. Pulse-Width Module Ports 367
Figure 8.4. A Touch-Tone Generator 371
Figure 8.5. Timing of Some Pulses 377
Figure 8.6. Output Compare 7 Ports 377
Figure 8.7. Input Capture 382
Figure 8.8. The Pulse Accumulator 386

List of Figures

Figure 9.1. Peer-to-Peer Communication in Different Levels 398
Figure 9.2. Drivers and Receivers 402
Figure 9.3. Originating a Call on a Modem 407
Figure 9.4. Frame Format for UART Signals 408
Figure 9.5. Block Diagram of a UART (IM6403) 411
Figure 9.6. Transmitter Signals 414
Figure 9.7. TheACIA 416
Figure 9.8. Output of a Test Program 417
Figure 9.9. TheM14469 417
Figure 9.10. 6812 Serial Communication Interface 421
Figure 9.11. Synchronous Formats 428
Figure 9.12. BDLC Formats 431
Figure 9.13. BDLC Ports 432
Figure 9.14. IEEE-488 Bus Handshaking Cycle 433
Figure 9.15, SCSI Timing 435

Figure 10.1. The Raster-Scan Display Used in Television 446
Figure 10.2. Character Display 447
Figure 10.3. The Composite Video Signal 448
Figure 10.4. Screen Display 449
Figure 10.5. Circuit Used for TV Generation 449
Figure 10.6. Display Hardware 451
Figure 10.7. Bit and Byte Storage for FM and MFM Encoding 456
Figure 10.8. Organization of Sectors and Tracks on a Disk Surface 458
Figure 10.9. A Special Byte (Data=OxAl, Clock Pulse Missing Between Bits 4 and 5)

459
Figure 10.10. The Western Digital WD37C65C 460
Figure 10.11. File Dump 465
Figure 10.12. PC Disk Organization 466
Figure 10.13. Dump of a Boot Sector 466
Figure 10.14. PC-file Organization 467
Figure 10.15. Dump of a Directory 468
Figure 10.16. Dump of an Initial FAT sector 469

Table Title Page

Table 1.1. Addressing Modes for the 6812 II
Table 1.2. 6812 Move Instructions 17
Table 1.3. 6812 Arithmetic Instructions 19
Table 1.4. 6812 Logic Instructions 21
Table 1.5. 6812 Edit Instructions 22
Table 1.6. 6812 Control Instructions 23
Table 1.7. Assembly-Language Directives for the 6812 29

Table 2.1. Conventional C Operators Used in Expressions 47
Table 2.2. Special C Operators 49
Table 2.3. Conditional Expression Operators 49
Table 2.4, ASCII Codes 60

Table 3.1. Address Map for a Microcomputer 108
Table 3.2. Outputs of a Gate 116
Table 3.3. Another Address Map for a Microcomputer 117

Table 4.1. Traffic Light Sequence 149
Table 4.2. LCD Commands 165

Table 5.1. Interrupt Vectors in the 6812 228

Table 7.1. Characteristics of the CA3140 321

Table 8.1. PWM Channel Ports 369
Table 8.2. Touch-tone Codes 370

Table 9.1. RS-232 Pin Connections for D25P and D25S Connectors 404
Table 9.2. ACIA Control and Status Bits 415

xxi

List of Tables

Acknowledgments

The author would like to express his deepest gratitude to everyone who contributed to the
development of this book. The students of EE 345L at the University of Texas at Austin
during Fall 1998 significantly helped correct this book; special thanks are due to Levent
Og, Ed Limbaugh, and Greg McCasKill, who located most of the errors. This text was
prepared and run off using a Macintosh and LaserWriter, running WriteNow. I am pleased
to write this description of the Motorola 6812, which is an incredibly powerful
component and a vehicle for teaching a considerable range of concepts.

G. J. L.

xxu

1

Microcomputer Architecture

Microcomputers, microprocessors, and microprocessing are at once quite familiar and a bit
fuzzy to most engineers and computer scientists. When we ask the question: "What is a
microcomputer?" we get a wide range of answers. This chapter aims to clear up these
terms. Also, the designer needs to be sufficiently familiar with the microcomputer
instruction set to be able to read the object code generated by a C compiler. Clearly, we
have to understand these concepts to be able to discuss and design I/O interfaces. This
chapter contains essential material on microcomputers and microprocessors needed as a
basis for understanding the discussion of interfacing in the rest of the book.

We recognize that the designer must know a lot about basic computer architecture
and organization. But the goal of this book is to impart enough knowledge so that the
reader, on completing it, should be ready to design good hardware and software for
microcomputer interfaces. We have to trade material devoted to basics for material needed
to design interface systems. There is so much to cover and so little space that we will
simply offer a summary of the main ideas. If you have had this material in other courses
or absorbed it from your work or from reading those fine trade journals and hobby
magazines devoted to microcomputers, this chapter should bring it all together. Some of
you can pick up the material just by reading this condensed version. Others will get an
idea of the amount of background needed to read the rest of the book.

For this chapter, we assume the reader is fairly familiar with some kind of assembly
language on a large or small computer or is able to pick it up quickly. The chapter will
present an overview of microcomputers in general and the MC68HC812A4, or
MC68HC912B32, single-chip microcomputer in particular.

1.1 An Introduction to the Microcomputer*

Just what is a microcomputer and a microprocessor, and what is the meaning of
"microprogramming" - which is often confused with "microcomputers"? This section will
survey these concepts and other commonly misunderstood terms in digital systems

*Portions of §1.1 were adapted with permission from "Digital Computer Architecture" pp. 298-327 by
G. J. Lipovski, and "Microcomputers," pp. 397-480 by G. J. Lipovski and T. K. Agerwala, in the
Encyclopedia of Computer Science and Technology, 1978, Belzer et al., courtesy of Marcel Dekker, Inc.

1

2 Chapter 1 Microcomputer Architecture

design. It describes the architecture of digital computers and gives a definition of
architecture. Note that all italicized words are in the index, and are listed at the end of
each chapter; these serve as a glossary to help you find terms that you may need later.

Because the microcomputer is pretty much like other computers except it is smaller
and less expensive, these concepts apply to large computers as well as microcomputers.
The concept of the computer is presented first, and the idea of an instruction is
scrutinized next. The special characteristics of microcomputers will be delineated last.

1.1.1 Computer Architecture

Actually, the first and perhaps the best paper on computer architecture, "Preliminary
discussion of the logical design of an electronic computing instrument," by A. W.
Burks, H. H. Goldstein, and J. von Neumann, was written 15 years before the term was
coined. We find it fascinating to compare the design therein with all computers produced
to date. It is a tribute to von Neumann's genius that this design, originally intended to
solve nonlinear differential equations, has been successfully used in business data
processing, information handling, and industrial control, as well as in numeric problems.
His design is so well defined that most computers - from large computers to
microcomputers - are based on it, and they are called von Neumann computers.

In the early 1960s a group of computer designers at IBM - including Fred Brooks -
coined the term "architecture" to describe the "blueprint" of the IBM 360 family of
computers, from which several computers with different costs and speeds (for example,
the IBM 360/50) would be designed. The architecture of a computer is, strictly
speaking, its instruction set and the input/output (I/O) connection capabilities. More
generally, the architecture is the view of the hardware as seen by the programmer.
Computers with the same architecture can execute the same programs and have the same
I/O devices connected to them. Designing a collection of computers with the same
blueprint or architecture has been done by several manufacturers. This definition of the
term "computer architecture" applies to this fundamental level of design, as used in this
book. However outside of this book, the term "computer architecture" has become very
popular and is also rather loosely used to describe the computer system in general,
including the implementation techniques and organization discussed next.

The organization of a digital system like a computer is usually shown by a block
diagram that shows the registers, buses, and data operators in the computer. Two
computers have the same organization if they have the same block diagram. For instance,
Motorola manufactures several microcomputers having the same architecture but different
organizations to suit different applications. Incidentally, the organization of a computer
is also called its implementation. Finally, the realization of the computer is its actual
hardware interconnection and construction. It is entirely reasonable for a company to
change the realization of one of its computers by replacing the hardware in a section of
its block diagram with a newer type of hardware, which might be faster or cheaper. In
this case the implementation or organization remains the same while the realization is
different. In this book, when we want to discuss an actual realization, we will name the
component by its full part number, like MC68HC812A4PV8. But we are usually
interested in the organization or the architecture only. In these cases, we will refer

1.1 An Introduction to the Microcomputer

Input/output

Figure 1.1. Analogy to the von Neumann Computer

to an organization as a partial name without the suffix, for example, the
MC68HC812A4 (without PV8), which we abbreviate as 'A4, or the MC68HC912B32,
abbreviated as 'B32 and refer to the architecture as a number 6812. This should clear up
any ambiguity, while also being a natural, easy-to-read shorthand.

The architecture of von Neumann computers is disarmingly simple, and the
following analogy shows just how simple. (For an illustration of the following terms,
see Figure 1.1.) Imagine a person in front of a mailbox, with an adding machine and
window to the outside world. The mailbox, with numbered boxes or slots, is analogous
to the primary memory; the adding machine, to the data operator (arithmetic-logic
unit); the person, to the controller; and the window, to input/output (I/O). The
person's hands access the memory. Each slot in the mailbox has a paper that has a
string of, say, eight Is and Os (bits) on it. A string of 8 bits is a byte. A string of bits
- whether or not it is a byte - in a slot of the memory box is called a word.

The primary memory may be in part a random access memory (RAM) (so-called
because the person is free to access words in any order at random, without having to wait
any longer for a word because it is in a different location). RAM may be static ram
(SRAM) if bits are stored in flip-flops, or dynamic ram (DRAM) if bits are stored as
charges in capacitors. Memory that is normally written at the factory, never to be
rewritten by the user, is called read-only memory (ROM). A programmable read-only
memory (PROM) can be written once by a user, by blowing fuses to store bits in it.
An erasable programmable read-only memory (EPROM) can be erased by ultraviolet
light and then written electrically by a user. An electrically erasable programmable read-
only memory (EEPROM) can be erased and then written by a user, but erasing and
writing words in EEPROM takes several milliseconds. A variation of this memory,
called flash, is less expensive but cannot be erased one word at a time.

With the left hand the person takes out a word from slot or box n, reads it as an
instruction, and replaces it. Bringing a word from the mailbox (primary memory) to the
person (controller) is called fetching. The hand that fetches a word from box n is
analogous to the program counter. It is ready to take the word from the next box, box
n + 1, when the next instruction is to be fetched.

4 Chapter 1 Microcomputer Architecture

An instruction in the 6812 is a binary code like 01000010, Consistent with the
notation used by Motorola, binary codes are denoted in this book by a % sign, followed
by Is or Os. (Decimal numbers, by comparison, will not use any special symbols.)
Since all those Is and Os are hard to remember, a convenient format is often used, called
hexadecimal notation. In this notation, a $ is written (to designate that the number is in
hexadecimal notation, rather than decimal or binary), and the bits, in groups of 4, are
represented as if they were "binary-coded" digits 0 to 9, or letters A, B, C, D, E, and F,
to represent values 10, 11, 12, 13, 14, and 15, respectively. For example, %0100 is the
binary code for 4, and %0010 is the binary code for 2, which in hexadecimal notation is
represented as $2. The binary code 01000010, mentioned previously, is represented as
$42 in hexadecimal notation. Whether the binary code or the simplified hexadecimal code
is used, instructions written this way are called machine-coded instructions because that
is the actual code fetched from the primary memory of the machine, or computer.
However, this is too cumbersome. So a mnemonic (which means a memory aid) is used
to represent the instruction. The instruction $42 in the 6812 actually increments (adds 1
to) accumulator A, so it is written as

INCA

(The 6812 accumulators and other registers are described in §1.2.1. - § means "section")
As better technology becomes available, and as experience with an architecture

reveals its weaknesses, a new architecture may be crafted that includes most of the old
instruction set and some new instructions. Programs written for the old computer should
also ran, with little or no change, on the new one, and more efficient programs can
perhaps be written using the new features of the new architecture. Such new architecture
is upward compatible from the old one if this property is preserved. If an architecture
executes the same machine code the same way, it is fully upward compatible, but more
generally, if it executes the same mnemonic instructions, even though they may be coded
as different machine codes, then the architecture is source code upward compatible. In
this book, we will focus on the 6812 architecture, which is source code upward
compatible from the 6811 and its first ancestor, the 6800.

An assembler is a program that converts mnemonics into machine code so that the
programmer can write in convenient mnemonics and the output machine code is ready to
be put in primary memory to be fetched as an instruction. The mnemonics are therefore
called assembly-language instructions. A compiler is a program that converts
statements in a high-level language either to assembly language, to be input to an
assembler, or to machine code, to be stored in memory and fetched by the controller.

While a lot of interface software is written in assembly language and many
examples in this book are discussed using this language, most will be written in the
high-level language C. However, quick fixes to programs are occasionally even written
in machine code. Finally, an engineer should know exactly how an instruction is stored
and how it is understood. Therefore, in this chapter we will show the assembly language
and machine code for some assembly-language instructions that are important and that
you might have some difficulty picking up on your own.

Many instructions in the 6812 are entirely described by one 8-bit word. However,
some instructions require 16 bits, 24 bits, or more to fully specify them. They are stored
in 8-bit words in consecutive primary memory locations (box numbers) so that when an
instruction is fetched, each of the 8-bit words can be fetched one after another.

1.1 An Introduction to the Microcomputer 5

Now that we have some ideas about instructions, we resume the analogy to
illustrate some things an instruction might do. For example, an instruction may direct
the controller to take a word from a box m in the mailbox with the right hand, copy it
into the adding machine (thus destroying the old word) and put the word back in the box.
This is an example of an instruction called the load instruction. In the 6812 an
instruction to load accumulator A with the word at location 256 in decimal, or $100 in
hexadecimal, is fetched as three words

$B6
$01
$00

where the second word is the most significant byte, and the third is the least significant
byte, of the address and is represented by mnemonics as

LDAA $100

in assembly language. The main operation - bringing a word from the mailbox (primary
memory) to the adding machine (data operator) - is called recalling data. The right hand
is used to get the word; it is analogous to the effective address.

As with instructions, assembly language uses a shorthand to represent locations in
memory. A symbolic address, which is actually some address in memory, is a name that
means something to the programmer. For example, location $100 might be called
ALPHA. Then the assembly-language instruction above can be written as follows

LDAA ALPHA

We will be using the symbolic address ALPHA in most of our examples in this chapter,
and it will represent location $100. Other symbolic addresses and other locations can be
substituted, of course. It is important to remember that a symbolic address is just a
representation of a number, which usually happens to be the numerical address of the
word in primary memory to which the symbolic address refers. As a number, it can be
added to other numbers, doubled, and so on. In particular, the instruction

LDAA ALPHA+1

will load the word at location $101 (ALHPA + 1 is $100+1) into the accumulator.
Generally, after such an instruction has been executed, the left hand (program

counter) is in position to fetch the next instruction in box n + 1. For example, the next
instruction may give the controller directions to copy the number in the adding machine
into a box in the mailbox, causing the word in that box to be destroyed. This is an
example of a store instruction. In the 6812, the instruction to store accumulator A into
location $100 can be written like this

STAA ALPHA

The main operation in this store instruction - putting a word from the adding machine
(data operator) into a box in the mailbox (primary memory) - is called memorizing data.
The right hand (effective address) is used to put the word into the box.

6 Chapter 1 Microcomputer Architecture

Before going on, we point out a feature of the von Neumann computer that is easy
to overlook, but is at once von Neumann's greatest contribution to computer architecture
and yet a major problem in computing. Because instructions and data both are stored in
the primary memory, there is no way to distinguish one from the other except by which
hand (program counter or effective address) is used to get the data. We can conveniently
use memory not needed to store instructions - if few are to be stored - to store more
data, and vice versa. It is possible to modify an instruction as if it were data, just before
it is fetched, although a good computer scientist would shudder at the thought. However,
through an error (bug) in the program, it is possible to start fetching data words as if
they were instructions, which produces strange results fast.

A program sequence is a sequence of instructions fetched from consecutive
locations one after another. To increment the word at location $100, we can load it into
the accumulator using the LDAA instruction, increment it there using the INC A
instruction, and then put it back using the STAA instruction. (A better way will be shown
in the next section, but we do it in three instructions here to illustrate a point.) This
program sequence is written in consecutive lines as follows

LDAA ALPHA

INCA

STAA ALPHA

Unless something is done to change the left hand (program counter), a sequence of
words in contiguously numbered boxes will be fetched and executed as a program
sequence. For example, a sequence of load and store instructions can be fetched and
executed to copy a collection of words from one place in the mailbox to another place.
However, when the controller reads the instruction, it may direct the left hand to move to
a new location (load a new number in the program counter). Such an instruction is called
a jump, which is an example of a control instruction. Such instructions will be
discussed further in §1.2.3, where concrete examples using the 6812 instruction set are
described. To facilitate the memory access functions, the effective address can be
computed in a number of ways, called addressing modes. The 6812 addressing modes
will be explained in §1.2.1.

1.1.2 The Instruction

In this section the concept of an instruction is described from different points of view.
The instruction is discussed first with respect to the cycle of fetching, decoding, and
sequencing of microinstructions. Then the instruction is discussed in relation to
hardware-software trade-offs. Some concepts used in choosing the best instruction set are
also discussed.

The controller fetches a word or a couple of words from primary memory and sends
commands to all the modules to execute the instruction. An instruction, then, is
essentially a complex command carried out under the direction of a single word or a
couple of words fetched as an inseparable group from memory.

1.1 An Introduction to the Microcomputer 7

The bits in the instruction are broken into several fields. These fields may be the bit
code for the instruction, for options in the instruction, for an address in primary memory,
or for a data operator register address. For example, the complete instruction LDAA ALPHA
may look like the bit pattern 101101100000000100000000. The leftmost bit and the
fifth to eighth bits from the left - 1,0110 - tell the computer that this is a load
instruction. Each instruction must have a different opcode word, like 1,0110, so the
controller knows exactly which instruction to execute just by looking at the instruction
word. The second bit from the left may identify the register that is to be loaded: 0
indicates that accumulator A is to be loaded. Bits 3 and 4 from the left, 11, indicate the
address mode to access the word to be loaded. Finally, the last 16 bits may be a binary
number address: 0000000100000000 indicates that the word to be loaded is to come from
word number $100 (ALPHA). Generally, options, registers, addressing modes, and primary
memory addresses differ for different instructions. The opcode code word - 1,0110, in this
example - must be decoded before it can be known that the second bit from the left, 0, is
a register address, the third and fourth bits are address mode designators, and so on.

The instruction can be executed by the controller as a sequence of small steps, called
microinstructions. As opposed to instructions, which are stored in primary memory,
microinstructions are usually stored in a small fast memory called control memory. A
microinstruction is a collection of data transfer orders that are simultaneously executed;
the data transfers that result from these orders are movements of, and operations on,
words of data as these words are moved about the machine. While the control memory
that stores the microinstructions is normally ROM, in some computers it can be
rewritten by the user. The process of writing programs for the control memory is called
microprogramming. It is the translation of an instruction's required behavior into the
control of data transfers that carry out the instruction.

The entire execution of an instruction is called the fetch-execute cycle and is
composed of a sequence of microinstructions. Access to primary memory is rather slow,
so the microinstructions are grouped into memory cycles, which are fixed times when
the memory fetches an instruction, memorizes or recalls a data word, or is idle. A
memory clock beats out time signals, one clock pulse per memory cycle. The fetch-
execute cycle is thus a sequence of memory cycles. The first cycle is the fetch cycle,
when the instruction code is fetched. If the instruction is n bytes long, the first n
memory cycles are usually fetch cycles. In some computers, the next memory cycle is a
decode cycle, in which the instruction code is analyzed to determine what to do next.
The 6812 doesn't need a separate cycle for this. The next cycle may be for address
calculations. Data may be read from memory in one or more recall cycles. Then the
instruction's main function is done in the execute cycle. Finally, the data may be
memorized in the last cycle, the memorize cycle. This sequence is repeated indefinitely
as each instruction is fetched and executed.

An instruction can be designed to execute a very complicated operation. Also,
certain operations can be performed on execution of some address modes in an instruction
that uses the address rather than additional instructions. It is also generally possible to
fetch and execute a sequence of simple instructions to carry out the same net operation.
The program sequence we discussed earlier can actually be done by a single instruction in
the 6812

INC ALPHA

Chapter 1 Microcomputer Architecture

It recalls word $100, increments it, and memorizes the result in location $100 without
changing the accumulator. If a useftil operation is not performed in a single instruction
like INC ALPHA, but in a sequence of simpler instructions like the program sequence
already described, such a sequence is either a macroinstruction (macro) or a subroutine.

A sequence is a macro if the complete sequence of instructions is written every
time in a program that the operation is required. It is a subroutine if the instruction
sequence is written just once, and a jump to the beginning of this sequence is written
each time the operation is required. In many ways macroinstructions and subroutines are
similar techniques to get an operation done by executing a sequence of instructions.
Perhaps one of the central issues in computer architecture design is this: What should be
created as instructions or included as addressing modes, and what should be left out, to be
carried out by macros or subroutines? On the one hand, it has been proven that a
computer with just one instruction can do anything any existing computer can. It may
take a long time to carry out an operation, and the program may be ridiculously long and
complicated, but it can be done. On the other hand, programmers might find complex
machine instructions that enable one to execute a high-level (for example, C) language
statement desirable. Such complex instructions create undesirable side effects, however,
such as long latency time for handling interrupts. However, the issue is overall
efficiency. Instructions, which enable selected operations performed by a computer to be
translated into programs, are chosen on the basis of which can be executed most quickly
(speed) and which enable the programs to be stored in the smallest room possible
(program density) without sacrificing low I/O latency (time to service an I/O request).
(The related issue of storing data as efficiently as possible is discussed in §2.2.)

The choice of instructions is complicated by the range of requirements in two ways.
Some applications need a computer to optimize speed, while others need their computer
to optimize program density. For instance, if a computer is used like a desk calculator
and the time to do an operation is only 0.1 second, there may be no advantage to
doubling the speed because the user will not be able to take advantage of it, while there
may be considerable advantage to doubling the program density because the cost of
memory may be halved and the cost of the machine may drop substantially. But, for
another example, if a computer is used in a computing center with plenty of memory,
doubling the speed may permit twice as many jobs to be done, so that the computer
center's income is doubled, while doubling the program density is not significant because
there is plenty of memory available. Moreover, the different applications computers are
put to require different proportions of speed and density.

No known computer is best suited to every application. Therefore, there is a wide
variety of computers with different features, and there is a problem picking the computer
that best suits the operations it will be used for. Generally, to choose the right computer
from among many, a collection of simple, well-defined programs pertaining to the
computer's expected use, called benchmarks, are available. Examples of benchmarks
include multiplying two unsigned 16-bit numbers, moving some words from one
location in memory to another, and searching for a word in a sequence of words.
Programs are written for each computer to effect these benchmarks, and the speed and
program density are recorded for each computer. A weighted sum of these values is used
to derive a figure of merit for each machine. If storage density is studied, the weights are

1.1 An Introduction to the Microcomputer 9

proportional to the number of times the benchmark (or programs similar to the
benchmark) is expected to be stored in memory, and the figure of merit is called the
static efficiency. If speed is studied, the weights are proportional to the number of times
the benchmark (or similar routines) is expected to be executed, and the figure of merit is
called the dynamic efficiency. These figures of merit, together with computer rental or
purchase cost, available software, reputation for serviceability, and other factors, are used
to select the machine.

The currently popular RISC (reduced instruction set computer) computer architecture
philosophy exploits the concept of using many very simple instructions to execute a
program most efficiently.

In this chapter and throughout the subject of software interface design, the issues of
efficiency and I/O latency continually appear in the selection instructions for "good"
programs. The 6812 has a very satisfactory instruction set, with several alternatives for
many important operations. Readers are strongly encouraged to develop the skill of using
the most efficient techniques. They should try to select instructions that execute the
program the fastest, if dynamic efficiency is prized, or that can be stored in the least
number of bytes, if static efficiency is desired.

1.1.3 Microcomputers

One can regard microcomputers as similar to the computers already discussed, but which
are created with inexpensive technology. If the controller and data operator are on a single
LSI integrated circuit or a small number of LSI integrated circuits, such a combination of
data operator and controller is called a microprocessor. If memory and I/O module are
added, the result is called a microcomputer. If the entire microcomputer (except the
power supply and some of the hardware used for I/O) is in a single chip, we have a
single-chip microcomputer. A personal computer, whether small or large, is any
computer used by one person at a time. However, a computer using microprocessors,
which are intended for industrial control rather than personal computing, is generally
called a microcontroller. A microcontroller can be a single-chip or multiple-chip
microcomputer. The 6812 is particularly useful for this book because it works as either,
so it is suitable for illustrating the concepts of interfacing to both types of systems.

Ironically, this superstar of the 1970s through the 1990s, the microcomputer, was
born of a broken marriage. At the dawn of this period, we were already putting pretty
complicated calculators on LSI chips. So why not a computer? Fairchild and Intel made
the PPS-25 and Intel 4004 respectively, which were almost computers but were not von
Neumann architectures. Datapoint Corporation, a leading and innovative terminal
manufacturer and one of the larger users of semiconductor memories, talked both Intel
and Texas Instruments into building a microcomputer they had designed. Neither Intel
nor Texas Instruments was excited about such an ambitious task, but Datapoint
threatened to stop buying memories from them, so they proceeded. The resulting devices
were disappointing - too expensive and much too slow. As a recession developed, Texas
Instruments dropped the project, but did get the patent on the microcomputer. Datapoint
decided it wouldn't buy the Intel 8008 after all, because it didn't meet specs. For some
time, Datapoint was unwilling to use microcomputers. Once burned, twice cautious. It is

10 Chapter 1 Microcomputer Architecture

ironic that two of the three parents of the microcomputer disowned the infant. Intel was a
new company and could not afford to drop the project altogether. So Intel marketed the
new machine as the 8008, and it sold. It is also ironic that Texas Instruments has the
patent on the Intel 8008. The 8008 was incredibly clumsy to program and took so many
additional supporting integrated circuits that it was about as large as a computer of the
same power that didn't use microprocessors. Some claim it set back computer
architecture at least ten years. But it was successfully manufactured and sold. It was in its
way a triumph of integrated circuit technology because it proved a microcomputer was a
viable product by creating a market where none had existed, and because the Intel
Pentium, designed to be upward compatible to the 8008, is one of the most popular
microcomputers in the world.

We will study the 6812 in this book. Larger microprocessors like the Motorola
68332 are used when more powerful software requiring more memory would be needed
than would fit in a 6812. However, we chose to discuss 6812-based microcontrollers in
this book because we encourage the reader to build and test some of the circuits we
describe, and 6812-based microcontroller memories and processors are less expensive
(especially if you connect power backward and pop the ICs) and the same concepts can be
discussed as with larger microcomputers. We chose the 6812 because it has an
instruction set that can efficiently execute programs written in C to illustrate good
software practices. One implementation, the 'A4, has 4K bytes of EEPROM, and this
novel component makes the 6812 architecture easy to experiment with. Another
implementation, the 'B32, has 32K bytes of flash memory, and is suitable for systems
requiring larger memory. A single-chip microcomputer can be used for a large variety of
experiments. Nevertheless, other microcomputers have demonstrably better static and
dynamic efficiency for certain benchmarks. Even if they have comparable (or even
inferior) performance, they may be chosen because they cost less, have a better reputation
for service and documentation, or are available, while the "best" chip does not meet these
goals. The reader is also encouraged to be prepared to use other microcomputers if
warranted by the application.

The microcomputer has unleashed a revolution in computer engineering. As the cost
of microcomputers approaches ten dollars, computers become mere components. They
are appearing as components in automobiles, kitchen appliances, toys, instruments,
process controllers, communication systems, and computer systems. They replace larger
computers in process controllers much as fractional horsepower motors replaced the large
motor and belt shaft. They are "fractional horsepower" computers. This aspect of
microcomputers will be our main concern through the rest of the book, since we will
focus on how they can be interfaced to appliances and controllers. However, there is
another aspect of microcomputers we will hardly have time to study, which will become
equally important: their use in conventional computer systems. We are only beginning
to appreciate their significance in computer systems. Microcomputers continue to spark
startling innovations; however, the features of microcomputers, minicomputers, and
large computers are generally very similar. In the following subsections the main
features of the 6812, a von Neumann architecture, are examined in greater detail. Having
learned basic principles on a 6812 microcontroller, you will be prepared to work with
other similar microcontrollers.

1.2 The 6812 Instruction Set 11

1.2 The 6812 Instruction Set

A typical machine has six types of instructions and several addressing modes. Each type
of instruction and addressing mode will be described in general terms. The types and
modes indicate what an instruction set might look like. They also give concrete details
about how the 6812 works, which help you understand the examples in this book.

This section describes the instruction set. It does not fully define the 6812's
instruction set because you could get lost in details. The CPU12 Reference Manual
available from Motorola (document CPU12RM/AD), should be used to fully specify the
6812 instruction set. We encourage you to experiment with the 6812. See the Appendix,

1.2.1 6812 Addressing Modes

The instructions discussed in §1.1 take a word from memory where the address of the
word is given directly in the instruction. This mode of addressing, called direct
addressing, is widely used on all computers. By the most commonly accepted definition,
direct addressing must be able to effectively address any word in primary memory. The
number of bits needed to directly address n words of memory is Iog2n. For a standard-
size 65,536-word memory, 16 bits are required to address each word. If the width of each
word is 8 bits, an instruction may require 24 bits for the instruction code bit pattern and
the address. This hurts static efficiency because a lot more bits are needed than with other
modes introduced in this section. It also hurts dynamic efficiency because a lot of time is
needed to pick up all those words. Then more efficient addressing modes are used to
access most often needed words faster and to get to any word in memory by some means,
without using as many bits as are needed to directly address each word of memory. This
problem leads to the addressing modes that are especially important in small computers.
In the remainder of this section, we discuss 6812 addressing modes. (See Table 1.1.)

Table 1.1. Addressing Modes for the 6812

Mode

Implied
Register
Immediate

PageO
Direct
Index
Double indexed
Autoincrement
Autodecrement
Indirect
Page relative

Example

SWI

INCA
LDAA #12

LDAA ALPHA
LDAA ALPHA
LDAA 5,X
LDAA D,Y
LDAA 1,X+
LDAA 1,-SP
LDAA [D,X]
BRA ALPHA
LDAA 2,PCR

Use

Improve efficiency
Improve efficiency
Initialize registers,

provide constant operands
Store global data (address 0 - $ff)
Access any word in memory
Address arrays
Address arrays
Access strings, queues
Access stacks
Access data via variable addresses
Provide position independence

12 Chapter 1 Microcomputer Architecture

Motorola's addressing-mode notation differs from that used in other manufacturers'
literature and in textbooks. In fact, Motorola's notation for its 6800-based
microcontrollers differs from that of its 68000-based microcontrollers. Because we're
using the 6812 to teach general principles, we'll use generally accepted terminology,
rather than Motorola's 6800-based microcontroller terminology, throughout this book.

What everyone else calls direct addressing is referred to by Motorola as extended
addressing, which you should know only if you want to read their literature. Motorola
uses the term "direct addressing" for a short form of addressing that uses an 8-bit address,
which we will call page zero addressing. Their terminology would be correct for a
primary memory of only 256 words. Then direct addressing would just need to address a
small memory, and addressing more memory would be called extended addressing. It
seems the designers of the original 6800 assumed most systems would require only such
a small (primary) memory. But as we now know, garbage accumulates to fill the
container, so if we build a bigger container, it will soon be filled. Thus, we should also
call it direct addressing when we use a 16-bit displacement as the effective address.

In the following discussion of addressing modes, the instruction bits used as an
address, or added to get the effective address, are called the displacement. Also, in the
following discussion an address is calculated the same way - in jump instructions - for
the program counter as for the effective address, in such instructions as LDAA or STAR .
Don't get confused about the addressing modes used in jump instructions; JMP ALPHA
doesn't take a word from location ALPHA to put it into the program counter using direct
addressing in the same way as in the instruction LDAA ALPHA. Rather, JMP ALPHA loads
the address of ALPHA into the program counter. The simple analogy we used earlier makes
it clear that the program counter is, like the effective address, a "hand" to address memory
and is treated the same way by the addressing modes.

Some techniques improve addressing efficiency by avoiding the calculation of an
address to memory. In implied addressing, the instruction always deals with the same
memory word or register so that no instruction bits specify it. An example is a kind of
jump to subroutine instruction called the software interrupt (swi; this instruction will be
further explained in §1.2.3). When the swi is executed, the old value of the program
counter is saved in a specific place (to be described later) and the new program counter
value is gotten from two other specific places (memory location $FFF6, $FFF7). The
instruction itself does not contain the usual bits indicating the address of the next
instruction: the address is implied. Motorola and others also call this mode "inherent."

A similar mode uses registers as the source and destination of data for instructions.
This is called register addressing. The 6812 has accumulators that can be so used, called
accumulator A, accumulator B, and accumulator D. See Figure 1.2. Accumulator D is
a 16-bit accumulator for 16-bit data operations and is actually the same as the two 8-bit
accumulators A and B joined together. That is, if accumulator A has $3B and accumulator
B has $A5, then accumulator D has $3BA5, and vice versa. In some instructions, such as
INC, one can increment a memory byte using direct addressing, as in INC ALPHA; or one
can increment a register, such as INCA. Thus, register addressing can be used instead of
memory addressing to get data for instructions. This mode substantially improves both
static and dynamic efficiency because fewer bits are needed to specify the register than a
memory word and a register can be accessed without taking up a memory cycle.

.2 The 6812 Instruction Set

I X Index Register

I Y Index Register I

(16 bits)
I SP Stack Pointer

| PC Program Counter

D Accumulator

I Condition Code Register I (8 bits)

a. The Machine State

(8 bits) (8 bits)

I Accumulator A Accumulator B I — (16 bits)

Accumulator D

X H 1 vTcl
Condition Code Register

b. Breakdown of D and CC Registers

Figure 1.2. Registers in the 6812

Another nonaddressing technique is called immediate addressing. Herein, part of the
instruction is the actual data, not the address of data. In a sense, the displacement is the
data itself. For example, a type of load instruction,

LDAA #$10

puts the number $10 into the accumulator. Using Motorola's notation, an immediate
address is denoted by the # symbol. The LDAA instruction, with addressing mode bits for
immediate addressing, is $86, so this instruction is stored in machine code like this

$86
$10

The number $10 is actually the second word (displacement) of the two-word instruction.
This form of addressing has also been called literal addressing.

Page addressing is closely related to direct addressing. (Two variations of page
addressing appear in the 6812, and will be discussed later.) If 8 bits can be used to give

! 4 Chapter 1 Microcomputer Architecture

the address inside the instruction, then 28 or 256 contiguous words can be directly
addressed with these bits. The 256 contiguous words in this example are called a page,
In the 6812, data stored on page 0, where it can be accessed by page zero addressing
(which Motorola calls direct addressing), can be accessed using an 8-bit displacement,
which is the low byte, padded with Os in the high byte to form a 16-bit address. Page
zero addressing is used to get the global data more efficiently because a shorter (2-byte)
instruction, rather than a longer direct addressed (3-byte) instruction, is used.

Although page 0 addressing permits one to access some data, one cannot access
much of it. For example, if a page is 256 words, then a 20 X 20-word global array cannot
be stored entirely on page 0. This is solved by index addressing, whereby fast registers
in the controller module, called index registers, are used to obtain the address. The index
registers in the 6812 are x, Y, and the stack pointer SP (see Figure 1.2). The effective
address is the (signed) sum of a selected index register and part of the instruction called
the offset. If x has $1000, then LDAA -8 ,x loads accumulator A with the contents of
location $0ff8. As selected by some bits in the instruction, the offset can be 5 bits, 9
bits or 16 bits. Additionally, an accumulator, A, B, or D, can be added to an index
register, x, Y, or SP, to get the effective address in double-indexed addressing. This mode
is useful when, to read or write VfiJ, an index register such as x points to the lowest
addressed word of vector V and the accumulator is the vector's index i. The contents of
the index register or accumulator are unchanged by index addressing. A simple form of
index addressing that uses an offset of 0, whose bit representation may be omitted from
the instruction altogether, is called pointer addressing, and the index registers are called
pointer registers. While pointer addressing can be used to recall any word in memory, it
is more difficult to use than index addressing because the register must be reloaded each
time to recall or memorize a word at a different location. However, autoincrement
addressing uses x, Y, or SP as a pointer register, and increments the contents of the
register after it is used in the address calculation. Autodecrement addressing with these
registers decrements the contents of the register just before it is used in the address
calculation. In the 6812, the instruction

STAA 1,X+

puts the word pointed to by x into accumulator A, then increments x by 1; the
instruction

LDAA 1,-Y

decrements the index register Y by 1 and then loads accumulator A with the word pointed
to by Y (after it is changed). In the 6812, an index register can be incremented or
decremented by a number from 1 to 8 in place of the number 1 in the above examples.

A part of memory, called the stack buffer, is set aside for a stack. The stack
pointer, SP, initially contains the lowest address of any word on the stack. Pushing a
word that is in accumulator A onto this stack is accomplished by

STAA 1,-SP

and pulling (or popping) a word from this stack into accumulator A is done by

1.2 The 6812 Instruction Set 15

LDAA 1,SP+

The stack fills out, starting at high addresses and building toward lower addresses, in
the stack buffer. If it builds into addresses lower than the stack buffer, a stack overflow
error occurs, and if it is pulled too many times, a stack underflow error occurs. If no
such errors occur, then the last word pushed onto the stack is the first word pulled from
it, a property that sometimes labels a stack a LIFO (last-in, first-out) stack. Stack
overflow or underflow often causes data stored outside of the stack buffer to be modified.
This bug is hard to find.

The jump to subroutine instruction is a jump instruction that also pushes the 2-
byte return address onto the stack, least significant byte first (which then appears at the
higher address). The corresponding return from subroutine instruction pulls two words
from the stack, putting them in the program counter. If nobody changes the stack pointer
SP, or if the net number of pushes equals the net number of pulls (a balanced stack)
between the jump to subroutine and the corresponding return from subroutine, then the
last instruction causes the calling routine to resume exactly where it left off when it
called the subroutine. This method of handling return addresses allows easy nesting of
subroutines, whereby the main program jumps to a subroutine, say Alpha, and
subroutine Alpha in turn jumps to subroutine Beta. When the main program jumps to
subroutine Alpha, it pushes the main program's return address onto the stack. When
Alpha jumps to subroutine Beta, it pushes Alpha' s return address onto the stack, on
top of (in lower memory words than) the other return address. When Beta is completed,
the address it pulls from the stack is the return address to subroutine Alpha. And when
Alpha is completed, what it pulls from the stack is the main program return address.

The stack in the 6812 is a good place to store local data, which is data used only by
a subroutine and not by other routines. It can also be used to supply arguments
(operands) for a subroutine and return results from it. To save local data, one can push it
on the stack and pull it from the stack to balance it. A reasonable number of words can
be stored this way. Note that the subroutine must pull as many words from the stack as
it pushed before the return from subroutine instruction is executed, or some data will be
pulled by that instruction into the program counter.

The stack pointer SP must be treated with respect. It should be initialized to point to
the high address end of the stack buffer as soon as possible, right after power is turned
on, and should not be changed except by incrementing or decrementing it to effectively
push or pull words from it. Words above (at lower addresses relative to) the stack pointer
must be considered garbage and may not be read after they are pulled.

An indirect address is where the instruction recalls a 16-bit word from memory,
which it uses to read or write data in memory. Indirect addressing is denoted by square
brackets []. There are two indirect addresses in the 6812, using index addressing with
accumulator D as in LDAA [D,x] , and index addressing with a 16-bit offset as in LDAA
[$ 12 34, x]. Indirect addressing is useful where the address of the data to be recalled or
memorized is calculated and then stored in memory, at run time, but is not known when
the program is assembled. Such cases are important when ROMs store the program.

Page relative addressing calculates the effective address by adding an 8-bit two's
complement displacement to the program counter to get the address for a jump
instruction (a branch) because one often jumps to a location that is fairly close to (on

16 Chapter! Microcomputer Architecture

the same page as) where the jump is stored. The displacement is added to the program
counter when it actually points to the beginning of the next instruction. This addressing
mode only works if the jump address is within -128 to +127 locations of the next
instruction's address after the branch instruction. Labels are followed by a semicolon (:).
For example, if the place we want to branch to has a label L at $200

L: LDAA ALPHA

a branch to this location is denoted
BRA L

If L is at location $200 and the instruction is at location $1FO, then the program counter
is at location $1F2 when the address is calculated, and the BRA instruction (whose
instruction code is $20) will be assembled and stored in memory as

$20
$OE

Note that the assembly-language instruction uses the symbolic address L rather than the
difference between the addresses, as in BRA L-$F2, and the assembly automatically
determines the difference between the current program counter address and the effective
address and puts this difference into the second word (displacement) of the instruction.

The program counter may be used in place of an index register in any instruction
that uses index addressing, but like the preceding branch instruction, the symbolic address
of the data is used rather than the difference between the current location and the address.

L: LDAA ALPHA,PCR

will load the data at location ALPHA into accumulator A, but the instruction will contain
the difference between the address of alpha and the address of the next instruction, just
like the BRA instruction bits contained the difference between the addresses.

1.2.2 6812 Data Operator Instructions

We now focus generally on the instruction set of a von Neumann computer, and in
particular on the instructions in the 6812. There are a substantial number of special
instructions in the 6212 architecture, such as those used for fuzzy logic. These include
ETBL, EMACS, MAXA, MAXD, MAXM, MEM, MINA, MINM, REV, REVW, TBL, and WAV. We could

attempt to cover all instructions, but these special instructions are not directly used in
I/O interfacing, nor are they generated by a compiler. Therefore, in order to begin
covering interfacing in earnest, we study only conventional 6812 instructions. The
conventional instructions are grouped together in this section to see the available
alternatives. The lowly but important move instruction is discussed first. The arithmetic
and the logical instructions are covered next. Edit instructions such as shifts, and, finally,
I/O instructions are covered in the remainder of this section. Control instructions such as
jump will be discussed in §1.2.3.

.2 The 6812 Instruction Set

Table 1.2. 6812 Move Instructions

LDAA
LDAB
LDD
LDX
LDY
LDS
MOVE
MOVW
LEAK
LEAY
LEAS

STAA
STAB
STD
STX
STY
STS
EXG
XGDX
XGDY

TFR
SEX
TAB
TBA
TAP
TPA
TSX
TXS
TSY

TYS

PSHA
PULA
PSHB
PULB
PSHC
PULC
PSHD
PULD
PSHX
PULX
PSHY
PULY

CLRA
CURB
CLR
TSTA
TSTB
TST

The simplest is a move instruction, such as load and store. This instruction moves
a word to or from a register, in the controller or data operator, from or to memory.
Typically, a third of program instructions are moves. If an architecture has good move
instructions, it will have good efficiency for many benchmarks. (Table 1.2 lists the
6812's move instructions.)

We have discussed the LDAA and STAA instructions, which are in this class. New
instructions, MOVE, PSHA, PULA (and so on), XGDY, and TST are 6812 move instructions,
as is CLR, which is an alternative to one of these.

The load and store instructions can load or store any of the 8-bit registers A or B or
the 16-bit registers x, Y, SP, or D. The instruction LDX ALPHA puts the words at locations
$100 and $101 into the x index register. The instruction LDY ALPHA puts the words at
locations $100 and $101 into the Y index register. Note that an index register can be used
in an addressing mode calculation even when that register itself is being changed by the
instruction, because in the fetch-execute cycle, the addresses are calculated before the data
from memory is recalled and loaded into the register. In particular, the instruction

LDX 0,X

is both legal and very useful. If x has the value $100 before the instruction is executed,
the instruction gets 2 words from location $100 and $101, then puts them into the index
register. Note that the richness of the addressing modes contributes greatly to the
efficiency of the lowly but important move instructions.

The MOVE instruction moves an 8-bit byte and the MOVW instruction moves a 16-bit
word. In effect it is a combination of a load and a store, and has addressing mode
information for both (e.g., MOVE 1 , X + , 1 , Y +) . It does not affect the data in
accumulators, which can be useful if the accumulators have valuable data in them. Using
pointer addressing, the load effective address instructions, LEAX, LEAY, and LEAS, merely
move the contents of x, Y, and SP into another of these registers.

Transfer and exchange instructions permit movement of data among registers of
similar width. There is a general TFR Rl, R2 instruction which transfers the data in Rl to

18 Chapter 1 Microcomputer Architecture

R2, where Rl and R2 can be any two registers. If the source is an 8-bit register and the
destination is a 16-bit register, the instruction extends the sign of the 8-bit data as it
loads the 16-bit register, so the instruction is called sign extend, or SEX. For example,
SEX B, D will fill accumulator A with copies of the sign bit of accumulator B. To provide
source code upward compatibility to the 6811, cases of this TFR instruction are given
6811-style mnemonics. TAB moves the contents of accumulator A to accumulator B
without changing A. Similarly TEA moves B to A, TAP moves A to the condition code
register, and TPA moves the condition code register to A. TSX moves SP to x. TXS moves
x to SP, TSY moves SP to Y, and TYS moves Y to SP, with the following correction,
There is a general EXG Rl ,R2 instruction that exchanges the contents of the registers,
where Rl and R2 can be any two registers. For source code upward compatibility with
6811 instructions, special cases of the EXG instructions are given 6811-style mnemonics:
the XGDX instruction can exchange the 2 bytes in x with those in D, and the XGDY
instruction can exchange the 2 bytes in Y with those in D.

The PS HA instruction pushes the byte in accumulator A onto the stack, and the PULA
instruction pulls a byte from the stack into accumulator A; similarly, PSHB and PULB
work on accumulator B, PSHC and PULC work on the condition code register, PSHD and
PULD work on accumulator D, PSHX and PULX work on x, and PSHY and PULY work on Y.
Note that PSHD, PULD, PSHX, PULX, PSHY and PULY push or pull two bytes.

The condition-code register bits control interrupts and save the results of
operations, (See Figure 1.2b.) Condition codes are used to generalize the conditional
jump capability of the computer and to control interrupts. When a result is obtained, the
zero bit Z is usually set to 1 if the result was 0; to the negative bit N if the result was
negative; to the carry bit C if an add operation produced a carry; and to an overflow bit
V if an add operation produces a result considered invalid in the 2's complement number
system because of overflow. These bits can be used in or tested by a later arithmetic or
conditional jump instruction. A half-carry bit H is used in decimal arithmetic. Also,
two interrupt inhibit bits (also called an interrupt mask bit) I and X are kept in the
condition code; when they are set, interrupts are not permitted. Finally, a stop disable
bit S is used to prevent execution of the STOP instruction operation, discussed later.

Load and store instructions change two condition codes used in conditional branch
instructions. If you want to set the condition codes as in a load instruction, but the data
is in an accumulator already, then the TSTA or TSTB instruction can be used. It is like
half a load instruction because it sets the condition codes like a LDAA instruction but does
not change A or B. Similarly, instruction TST ALPHA will set the condition codes like
LDAA ALPHA but will not change A. Finally, because a load instruction with an
immediate operand is used to initialize registers, since most initial values are 0, a
separate instruction CLR is provided. Use CLR rather than LDAA #0 to improve efficiency.
However, CLR changes the C condition code bit, while LDAA #0 doesn't change the C
bit, so the longer LDAA #0 instruction is often used to avoid altering this bit.

The arithmetic instructions add or subtract the value of the accumulator with the
value of a word taken from memory, or multiply or divide values in the registers. The
6812 has arithmetic instructions to be used with 8-bit registers and some arithmetic
instructions to be used with 16-bit registers. The 8-bit arithmetic instructions are
discussed first, then the 16-bit instructions. Table 1.3 lists these arithmetic instructions,

1.2 The 6812 Instruction Set

Table 1.3.6812 Arithmetic Instructions

ADDA,
ADCA,
ABA
SUBA,
SKA,
SBA
CMPA,
CBA

(Special

ADDB
ADCB

SUBB
SBCB

CMPB

: MUL

INCA,
DECA,
NEGA,
ASLA,
ASIA,
LSRA,
LSLA,

INCB,
DECB,
NEGB,
ASLB,
ASRB,
LSRB,
LSLB,

EMUL EMULS FDIV

INC
DEC
NEC
ASL
ASR
LSR
LSL

IDIV

ADDD
SUED
ABX,
CPD,
CPY,
LEAK
INX,
DEX,
ASLD

IDIVS

ABY
CPX
CPS
, LEAY, LEAS
INY,
DEY,

INS
DES

, LSRD, LSLD

EDIV EDIVS DAA)

The basic 8-bit ADDA or ADDB instruction can add any word from memory into either
accumulator A or accumulator B. The instruction is straightforward except for the setting
of condition codes. The same instruction is used for unsigned adds as for 2's complement
adds; only the testing of the codes differs. For example

ADDA ALPHA

will add the contents of accumulator A to word $100 of memory and put the result into
accumulator A. Usually, the result is 1 bit wider than the operands, and the extra leftmost
bit is put into the carry flip-flop. For unsigned numbers, the carry is often considered an
overflow indicator; if the carry is 1, the result in the accumulator is incorrect because
when the word is put back into the (8-bit-wide) memory, the ninth bit in the carry won't
fit, and so the result in memory will also be incorrect. Also, the carry is used to
implement multiple precision arithmetic, which is very important in a microcomputer,
and will be discussed shortly. The N and Z condition codes are set, just as in the load and
store instructions, to reflect that the result of the addition is negative or zero. A half-carry
bit, used in decimal arithmetic (discussed shortly), is set in this instruction and the
overflow bit V is set to 1 if the result is erroneous as a 2's complement number.

The instruction add with carry (ADCA or ADCB) is used to effect multiple precision
arithmetic. It adds a number from memory into the accumulator and sets the condition
codes, as in the ADDA or ADDB instruction, and also adds in the old carry flip-flop value in
the least significant bit position. However, ADDD adds a 16-bit number to accumulator D.
Addition of accumulator B to accumulator A is accomplished by ABA, and adding it (as an
unsigned 8-bit number) to x or Y is accomplished by ABX and ABY. The LEAX, LEAY, and
LEAS instructions, when used with double-indexed addressing modes, will add an
accumulator value to the x, Y, or SP registers. However in these instructions, an 8-bit
value will be sign-extended before adding to a 16-bit register.

The 6812, like most microcomputers, has a similar set of subtract instructions. The
instruction

SUBA ALPHA

20 Chapter 1 Microcomputer Architecture

subtracts the word from location $100 from accumulator A and sets the condition codes as
follows. N, Z, and V are set to indicate a negative result, 0 result, or 2's complement
overflow, as in the ADDA or ADDB instruction. The carry flip-flop is actually the borrow
indicator; it is set if subtraction requires a borrow from the next higher byte or if an
unsigned underflow error exists because the result, a negative number, can't be
represented as an unsigned number. SBA subtracts accumulator B from accumulator A. The
instruction subtract with carry (SBCA or SBCB) behaves like ADCA or ADCB to implement
multiple precision subtraction, and SUED subtracts 16-bit values.

Subtraction is often used to compare two numbers, sometimes just to see if they are
equal. The results are tested in conditional branch instructions. However, if we are
comparing a given number against several numbers to avoid reloading the given number,
it can be left in an accumulator, and a compare instruction, such as CMPA, can be used.
CMP A is just like the subtract instruction, but it does not change the accumulator, so the
number in it can be compared to others in later instructions. The condition codes are
changed and can be tested by conditional branch instructions. There is a comparison
instruction, CBA, to compare the contents of the two 8-bit accumulators. The 16-bit
accumulator or index registers are often compared to 16-bit immediate operands or data;
the CPD, CPX, CPY, or CPS instructions are used for these comparisons.

Because we often add or subtract just the constant 1, or negate a 2's complement
number, special short instructions are provided to improve efficiency. The instructions
INC, DEC, and NEG can increment, decrement, or negate either the accumulator or any
word in memory. INC and DEC may increment or decrement a word in memory: Also,
adding a number to itself and doubling it is an arithmetic left shift ASL, and dividing a
2's complement number by 2 and halving it is an arithmetic right shift ASR. Similarly,
LSR divides an unsigned number by 2. The condition codes for ASL are set just as if you
did add the number to itself, and the ASR and LSR instructions set N and Z as in the move
instructions and shift the low-order bit that is shifted out of the word into the C bit.
These edit instructions are also arithmetic instructions and can be applied to either
accumulator or to any word in memory.

The LEAX, LEAY, and LEAS instructions, used with displacement index addressing,
can add the displacement to index registers X, Y or SP. Therefore they can increment or
decrement an index register. To maintain source code compatibility with the 6811, 6811-
style instructions INX, INY, DEX, and DEY, which are fundamentally variations of these
instructions, are included in the 6812; in fact they are further implemented as 1-byte
instructions, whereas the LEAX, LEAY, and LEAS instructions are 2- or 3-byte instructions;
but the latter can add any constant to or subtract any constant from their designated index
register. Also, the latter instructions do not affect the V condition code.

Special arithmetic instructions act on the accumulators only. They enable us to
multiply, divide, or add numbers using the binary-coded decimal number representation
(BCD). To multiply two 8-bit unsigned numbers, put them in accumulators A and B, and
execute the MUL instruction. The 16-bit result will be put in accumulator D. The EMUL
instruction multiplies two unsigned 16-bit numbers to get a 32-bit product, and the
EMULS instruction multiplies two signed 16-bit numbers to get a 32-bit product. The
instruction FDIV divides accumulator D by index register x considered as a fraction,
leaving the quotient in X and the remainder in D. The instruction IDIV divides
accumulator D by index register x considered as an integer, leaving the quotient in x and

1.2 The 6812 Instruction Set

Table 1.4. 6812 Logic Instructions

EORA, EORB COMA, COMB, COM
ORAA, ORAB ORCC, ANDCC
ANDA, ANDB SEC, SEI, SEV
BITA, BITB CLC, CLI, CLV

BSET, BCLR

the remainder in D. EDIV divides an unsigned 32-bit number by a 16-bit unsigned
number, and EDIVS divides a signed 32-bit number by a 16-bit signed number. To
execute arithmetic on binary-coded decimal numbers, with two BCD numbers in the left
4 bits and right 4 bits of a word, add them with the ADDA instruction or the ADCA
instruction, followed immediately by the DAA (decimal adjust accumulator A) instruction,
DAA uses the carry and half-carry to correct the number so that the sum is the BCD sum
of the two numbers being added. Note, however, that accumulator A is an implied address
for DAA, and the half-carry is only changed by the ADDA and ADCA instructions, so the DAA
instruction only works after the ADDA and ADCA instructions.

Most logic instructions (see Table 1.4) are generally similar to arithmetic
instructions except that they operate logically on corresponding bits of an accumulator (A
or B) and an operand. The instruction

ANDA ALPHA

will logically "and," bit by bit, the word at $100 in memory to the accumulator A. We
can "and" into either accumulator A or accumulator B. For example, if the word at
location $ 100 were 01 101010 and at accumulator A were 11110000, then after such an
instruction is executed the result in accumulator A would be 01100000. A "bit test"
instruction BIT "ands" an accumulator with a word recalled from memory but only sets
the condition codes and does not change the accumulator. It may be used, like the CMP
instructions, to compare a word - without destroying it - to many words recalled from
memory to check if some of their bits are all 0. The complement instruction COM will
complement each bit in the accumulator or any word in memory.

Bit-oriented instructions permit the setting of individual bits (BSET) and the clearing
of those bits (BCLR). The instruction BSET ALPHA, #4 will set bit 2 in word ALPHA, and
BCLR ALPHA, #4 will clear it. After a space, we put a field to indicate the pattern of bits
to be ORed, or complemented and ANDed, into the word at the effective address. Note
that more than 1 bit can be set or cleared in one instruction.

The condition codes are often set or cleared. The interrupt mask bit I may be set to
prevent interrupts and cleared to allow them. The carry bit is sometimes used at the end
of a subroutine to signal a special condition to the routine it returns to and is sometimes
cleared before the instructions ADC or SBC. The carry bit is often set or cleared. The
ANDCC and ORCC instructions clear or set any condition code bit or combination of
condition code bits. But to preserve source code upward compatibility with the 6811,
6811-style instructions CLC, CLI, and CLV clear C, I, or V, respectively, and SEC, SEI,
and SEV are provided to set C, I, or V.

Chapter 1 Microcomputer Architecture

Table 1.5. 6812 Edit Instructions

ASIA, ASLB, ASL LSIA, LSLB, LSL RQLA, ROLB, ROL
ASRA, ASRB, ASR LSRA, LSRB, LSR RORA, RORB, ROR

LSLD,ASLD,LSRD

The next class of instructions - the edit instructions - earrange the data bits
without changing their meaning. The edit instructions in the 6812, shown in Table 1.5,
can be used to shift or rotate either accumulator or a word in memory that is selected by
any of the addressing modes. Most microcomputers have similar shift instructions. A
right logical shift LSRA will shift the bits in the accumulator right one position, filling a
0 bit into the leftmost bit and putting the old rightmost bit into the C condition code
register. Similarly, a logical left shift LSLA will shift the bits in the accumulator left one
position, filling a 0 bit into the rightmost bit and putting the old leftmost bit into the C
condition code register. A machine generally has several left and right shifts. The 6812
also has arithmetic shifts corresponding to doubling and halving a 2's complement
number, as discussed with respect to arithmetic instructions. However, although there are
different mnemonics for each, the LSLA and ASLA instructions do the same thing and have
the same machine code. The rotate instructions ROLA and RORA circularly shift the 9 bits
in accumulator A and the carry bit C 1 bit to the left or the right, respectively. They are
very useful for multiple word shifts. For example, to shift the 16-bit word in
accumulator D (accumulators A and B) 1 bit right, Filling with a 0, we can execute this
program sequence

LSRA

RORB

The RORB instruction rotates the bit shifted out of accumulator A, which is held in the C
condition code bit, into accumulator B. Of course, this technique is more useful when
more than 2 bytes must be shifted. Memory words can be shifted without putting them
in the accumulator first. Since an 8-bit or a 16-bit word is often inadequate, multiple-
precision shifting is common in microcomputers, and the RORA and ROLA instructions are
very important. Also for this reason, microcomputers do not have the multiple shift
instructions like LSRA 5, which would shift accumulator A right 5 bits in one
instruction. Such an instruction would require saving 5 bits in the condition code
registers to implement multiple precision shifts. That is generally too messy to use.
Rather, a loop is set up, so inside the loop 1 bit is shifted throughout the multiple-
precision word, and the loop is executed as many times as the number of bits to be
shifted. However, the 6812 has instructions ASLD, LSLD, and LSRD to shift the 16-bit
accumulator D the way ASL, LSL, and LSR shift 8-bit accumulators. Some computers
have more complex edit instructions than the shifts discussed here, such as instructions
to format strings of output characters for printing.

The next class of instructions is the I/O group for which a wide variety of
approaches is used. In most computers, there are 8-bit and 16-bit registers in the I/O
devices and control logic in the registers. In other computers there are instructions to

1.2 The 6812 Instruction Set 23

transfer a byte or 16-bit word from the accumulator to the register in the I/O device; to
transfer a byte or 16-bit word from the register to the accumulator; and to start, stop, and
test the device's control logic. In the 6812 architecture, there are no special I/O
instructions; rather, I/O registers appear as words in primary memory (memory-mapped
I/O), The LDAA or LDAB instructions serve to input a byte from an input register, and
STAA or STAB serves to output a byte; while LDD, LDX, and similar instructions serve to
input a 16-bit word from an input register, and STD, or STX, and similar instructions
serve to output a 16-bit word. Moreover, instructions like INC ALPHA will, if ALPHA is
the location of a (readable) output register, modify that register in place so the word is
not brought into the accumulator to modify it. CLR, ASR (which happens to be a test and
set instruction needed to coordinate multiple processors), and DEC can operate directly on
(readable) output registers in a memory-mapped I/O architecture. Indirect addressing can
be used by programs in read-only memory so they can work with I/O registers even if
they are at different locations. The indirect address can be in read-write memory and can
be changed to the address of the I/O device. That way, a program in a read-only memory
can be used in systems with different I/O configurations. Thus, the production of less
expensive read-only memory software becomes feasible. This aspect of the architecture is
of central importance to this book and will be dealt with extensively.

1.2.3 6812 Control Instructions

A final group contains the control instructions that affect the program counter. (See
Table 1.6.) Next to move instructions, control instructions are most common, so their
performance has a strong impact on a computer's performance. Also, microcomputers
with an instruction set missing such operations as floating point arithmetic, multiple
word shifts, and high-level language operations, such as switch statements, implement
these "instructions" as subroutines rather than macros to save memory space.
Unconditional jumps and no-operations are considered first, then the conditional branches
and finally the subroutine calls are scrutinized.

Table 1.6. 6812 Control Instructions

Unconditional

JMP
BRA, LBRA
BRN, LBRN
NOP
SKIP1
SKIP2

Conditional
simple

BEQ,
BNE,
BMI,
BPL,
BCS,
BCC,
BVS,
BVC,

LBEQ
LBNE
LBMI
LBPL
LBCS
LBCC
LBVS
LBVC

Conditional 2's Conditional Bit Subroutine
complement unsigned conditional and interrupt

BGT
BGE
BEQ
BLE
BLT

, LBGT
, LBGE
, LBEQ
, LBLE
, LBLT

BHI,
BBS,
BEQ,
BLS,
BLO,

LBHI BRSET
LBHS BRCLR
LBEQ
LBLS
LBLO

Count and loop

DBEQ,
IBNE,

DBN1, IBEQ,
TBEQ, TBNE

JSR
BSR
CALL
RTS
RTI
RTC
SWI
WAI
STOP
BGND

24 Chapter 1 Microcomputer Architecture

The left column of Table 1.6 shows unconditional jumps. As noted earlier, the IMP
instruction can use direct (16-bit) or indexed-addressing mode, but the effective address is
put in the program counter. The no-operation instructions do absolutely nothing. Why
have them, you ask? Programs providing signals to the "outside world" - known as real
time programs - may need time to execute a program segment for timing the length of a
pulse. No-operation instructions provide delays for that purpose. NOP and branch never
(BRN) delay one memory cycle, and long branch never (LBRN) delays three. Also, when
we test a program, these instructions can be placed to save room for other instructions
that we will later insert. An interesting instruction unconditionally skips over one or two
words that might be executed as instructions if a jump is made directly to them. CMPA
and CPX using immediate addressing do this, except they change the condition codes
(usually no problem). Therefore, they can be called SKIPI and SKIP2.

If we move the program intact from one place in memory to another, their relative
address remains unchanged. You may use page relative addressing of a BRA or a LBRA in
place of the direct addressing used in a jump instruction. If a program does not use direct
addressing in jump instructions but rather uses branch instructions, it has a characteristic-
called position independence. This means a program can be loaded anywhere in memory,
and it will run without change, thus simplifying program and subroutine loading. This
also means that a ROM can be loaded with the program and the same ROM will work
wherever it is addressed. Position independence permits ROMs to be usable in a larger
range of multiple-chip microcontrollers where the ROMs are addressed at different places
to avoid conflicts with other ROMs, so they can be sold in larger quantities and will
therefore cost less. Relative branch instructions simplify position independence.

When reading machine code, many programmers have difficulty with relative branch
instructions that branch backward. We recommend using 16's complement arithmetic to
determine the negative branch instruction displacement. The sixteen's complement is to
hexadecimal numbers as the 2's complement is to binary numbers. To illustrate this
technique consider a program that begins at location $200; the address of each word is
shown on the left, with the value shown on the right in each line. All numbers are in
hexadecimal.

1.2 The 6812 Instruction Set

The displacement used in the branch instruction, the last instruction in the program, is
shown as xx. It can be determined as follows. When the branch is executed, the program
counter has the value $20D, and we want to jump back to location $202. The difference,
$20D - $202, is $OB, so the displacement should be -$OB. A safe way to calculate the
displacement is to convert to binary, negate, and then convert to hexadecimal. $OB is
00001011, so the 2's complement negative is 11110101. In hexadecimal, this is SF5.
That is not hard to see, but binary arithmetic gets rather tedious. A faster way takes the
16's complement of the hexadecimal number. Just subtract each digit from $F (15), digit
by digit, then add 1 to the whole thing. -$OB is then ($F - 0),($F - B) + 1 or $F4 + 1,
which is $F5. That's pretty easy, isn't it!

A branch instruction may direct the person in the analogy to branch, for instance,
only if the number in the adder is positive. If that number is not positive, the next
instruction is fetched and executed because the left hand is not moved. This is a
conditional branch. The 6812 has only conditional branch instructions, rather than
conditional jumps or conditional subroutine calls and conditional subroutine returns (as
does the 8080). The conditional branch tests one or more condition codes, then branches
to another location specified by the displacement if the condition is true, using relative
addressing. For each conditional branch, which uses an 8-bit offset, there is also a
conditional long branch, which uses a 16-bit offset. The instruction

BCC L

branches to location L if the carry bit is cleared, otherwise the instruction does nothing.
A set of simple branches test any one of the condition codes, branching if the bit is

set or clear. For example, BCC L will branch to location L if the carry bit is clear, while
BCS L will branch there if the carry bit is set. Other sets test combinations of condition
codes (the Z, N, and V bits) that indicate 2's complement inequalities. The last set tests
combinations of the Z and C bits that indicate unsigned number inequalities. Column 2
of Table 1.6 tests each condition code separately. The BMI and BPL instructions check the
sign bit and should be used after LDAA, STAA, and TST (or equivalent) to check the sign of
a 2's complement number that was moved. The BCC and BCS instructions test the carry
bit, which indicates an overflow after adding unsigned numbers, or the bit shifted out
after a shift instruction. The BVS and BVC instruction set tests the V condition code, set if
an overflow occurs on adding 2's complement numbers. The Z bit is also tested easily,
but since we often compare two numbers to set the Z bit if the two numbers are equal,
the instruction is called BEQ and the complementary instruction is BNE. BEQ and BNE are
also used in the 2's complement and unsigned number branches discussed next.

A 2's complement overflow will occur if the two numbers being added have the
same sign and the result has a different sign. Have you ever added two positive numbers
and gotten a negative number? That's an overflow. Or if you add two negative numbers
and get a positive number, that too is an overflow. But if you add two numbers of
different signs, an overflow cannot occur. In using these condition codes in branch
instructions, we must be careful to test the carry bit, not the overflow bit, after an
unsigned binary add, since the carry bit is set if an unsigned overflow occurs; and we
must remember to test the overflow bit V after a 2's complement add, because it is set if
the result is erroneous as a 2's complement number. The branches listed in the middle

26 Chapter 1 Microcomputer Architecture

column of Table 1.6 are used after a compare (or subtract) instruction to sense the
inequalities of the two numbers being compared as 2's complement numbers. After a
CMPA ALPHA instruction, if the 2's complement number in accumulator A is greater than
the number at ALPHA, then the branch is taken. If the 2's complement number in
accumulator A is less than or equal to the number in location ALPHA, the branch
instruction does nothing.

The fourth column shows an equivalent set of branches that senses inequalities
between unsigned numbers. The program segment just presented could, by putting the
instruction BHI in place of BGT, compare the unsigned numbers in accumulator A against
the number at location ALPHA, putting $20 in accumulator B if the register was higher
than the word and otherwise putting $10 in accumulator B. These instructions test
combinations of the C and Z bits and should only be used after a compare or subtract
instruction to sense the inequalities of unsigned numbers. To test 2's complement
numbers after a compare, use the branches in the middle column of Table 1.6; and to test
the sign of numbers after a load, store, or test, use the BPL or BMI instructions.

As a memory aid in using these conditional branch instructions, remember that
signed numbers are greater than or less than and unsigned numbers are higher than or
lower than (SGUH). Also, when comparing any register with a word from memory, a
branch like BGT branches if the register is (greater than) the memory word.

The 6812 has some combined arithmetic-logic conditional branches, including bit
test and count and loop instructions. Analogous to the logic instructions BCLR and BSET
are bit test instructions BRCLR (branch if clear) and BRSET (branch if set). BRCLR
A L P H A , # 4 ,L branches to location L if bit 2 of location ALPHA is clear; BRSET
ALPHA,#4 ,L branches to L if it is set. This instruction may test several bits at once.
Count and loop branches are used in "DO-loops". A DO-loop repeats a given program
segment a given number, say n, times. DBNE decrements an accumulator or index
register and branches if the value (after decrementing) is nonzero. DBEQ decrements and
branches if the value is zero, IBNE increments and branches if the value is nonzero, IBEQ
increments and branches if the value is zero, TBNE branches if the value is nonzero, and
TBEQ branches if the value is zero.

The instruction jump to subroutine (JSR) is used to execute a program segment
called a subroutine, which is located in a different part of memory, and then return to the
instruction right below this instruction. It not only changes the program counter like a
jump, but also saves the old value of the program counter so that when the subroutine is
finished, the old value of the program counter is restored (to return to the routine right
after the jump to subroutine instruction). The last instruction of the subroutine - a return
from subroutine instruction - causes the program counter to be restored.

Subroutines are called using JSR, or the relative-addressed BSR instructions. The
6812 pushes the program counter on the stack and jumps to the address provided by the
instruction. These subroutines end in the RTS instruction, which pops the return address
to the program counter to resume the calling program. The 6812 has a memory
expansion mechanism so the memory can exceed the 64K bytes allowed by a 16-bit
address. See §6.2.3. An expansion program page register PPAGE holds the high-order
address bits. The CALL instruction saves PPAGE along with the program counter and
loads both PPAGE and the program counter with new values. Return from call, RTC,
pops the saved values back into the program counter and PPAGE.

1,2 The 6812 Instruction Set 27

Compare immediate can be used to skip over a 1-byte or 2-byte instruction. The
machine code $8FC603 is CPS #50691, but if the program counter is set to the
immediate operand, the instruction that is executed is LDAB #3. Thus, CPS # can skip a
2-byte instruction. Similarly CMPA # can skip a 1-byte instruction. These "instructions",
SKIP1 and SKIP2, are used by HIWARE's C compiler.

The hardware, or I/O, interrupt is an architectural feature that is very important to
I/O interfacing. Basically, it is invoked when an I/O device needs service, either to move
some more data into or out of the device, or to detect an error condition. Handling an
interrupt stops the program that is running, causes another program to be executed to
service the interrupt, and then resumes the main program exactly where it left off. The
program that services the interrupt (called an interrupt handler or device handler) is very
much like a subroutine, and an interrupt can be thought of as an I/O device for tricking
the computer into executing a subroutine. An ordinary subroutine called from an
interrupt handler is called an interrupt service routine. However, a handler or an interrupt
service routine should not disturb the current program in any way. The interrupted
program should get the same result no matter when the interrupt occurs.

I/O devices may request an interrupt in any memory cycle. However, the data
operator usually has bits and pieces of information scattered around and is not prepared to
stop the current instruction. Therefore, interrupts are always recognized at the end of the
current instruction, when all the data are organized into accumulators and other registers
(the machine state) that can be safely saved and restored. The time from when an I/O
device requests an interrupt until the data that it wants moved is moved, or until the error
condition is reported or fixed, is called the latency time. Fast I/O devices require low
latency interrupt service. The lowest latency that can be guaranteed is limited to the
duration of the longest instruction because the I/O device could request an interrupt at the
beginning of such an instruction's execution.

The condition code register, accumulators, program counter, and other registers in
the controller and data operator are collectively called the machine state and are saved and
restored whenever an interrupt occurs. Hardware interrupts and the swi instructions save
the machine state by pushing them onto the stack. After completion of a handler entered
by any SWI or hardware interrupt, the last instruction executed is return from interrupt
(RTI). It pulls the top 9 words from the stack, replacing them in the registers the
interrupt took them from.

The instruction WAI saves the registers on the stack as if an interrupt occurred, and
then waits for an interrupt. It can significantly reduce I/O latency. The STOP instruction
can push the registers like WAI and stop the computer until either a reset signal or
interrupts are received. It can be used to shut down a microcontroller to save power.

The swi instruction, which pushes all the registers (except SP) on the stack and puts
the contents of locations $fff6 and $fff7 into the program counter, is very useful for
testing programs as a breakpoint. A breakpoint is used to stop a program that is being
tested so one can execute a monitor program that examines or changes the contents of
registers or memory words. Because it is 1 byte long, it can be put in place of any
instruction. Suppose we tried to use a JSR instruction to jump to the monitor so we
could replace a single-length instruction like INCA, and we also jumped to the instruction
just below it from somewhere else. Since the instruction just below must be replaced by
the second word of the JMP instruction, and since it also was jumped to from somewhere

28 Chapter 1 Microcomputer Architecture

else, it would jump into the middle of the JMP instruction and do some damage. This is a
difficult problem to resolve, especially since a breakpoint often is used in a program that
doesn't work right in the first place. So a SWI instruction can be used without fear that
some jump instruction might jump into the second word, which might happen with a
longer instruction. This instruction saves all the registers automatically, thus making it
easy in the SWI handler to analyze them by examining the top nine words on the stack.
However, this marvelous trick does not work if the program is in read-only memory,
because an instruction in ROM can't be replaced by the SWI instruction. But EEPROM
can have a breakpoint temporarily inserted into it.

An illegal instruction can also be useful as a convenient subroutine call to execute
I/O operations and other complex "instructions," like floating point add. Its handler's
address is put in locations $FFF8 and $FFF9. Some illegal instructions can be used for
special subroutine calls to a monitor, to input or output data from or to a terminal or a
personal computer that the designer uses to debug his or her design.

If a subroutine is currently being executed, and the same subroutine is called from
within an interrupt handler or an interrupt service routine, data from the program that was
interrupted could get mixed up with data used in the subroutine called from the handler or
interrupt service routine, producing errors. If this is avoided, then the subroutine is said
to be reentrant because it can be entered again, even when it is entered and not finished.
Reentrancy is important in designing software for interfaces. Related to it is recursion
~ a property whereby a subroutine can call itself as many times as it wants. While
recursion is a nice abstract property and useful in working with some data structures
discussed in §2-2, it is not generally useful in interfacing; however, recursive subroutines
are usually reentrant, and that is important. If the subroutine is reentered the local data for
the subroutine's first execution are saved on the stack as new local data are pushed on top
of them, and the new data are used by the subroutine's second execution. When the first
execution is resumed, it uses the old data. Keeping all local data on the stack this way
simplifies implementation of reentrancy.

1.3 Assembly-Language Directives

To read the output of a compiler, and to modify a compiler's output to improve static
and dynamic efficiency, you often need to use some assembler directives. These appear
just like instructions in an assembly-language program, but they tell the assembler to do
something other than create the machine code for an instruction. They often control the
placement of data. (See Table 1.7 for a list of directives.) Although these directives differ
a little bit among various development systems, they are sufficiently similar that a brief
discussion of one such set of directives will enable you to quickly learn another set of
such directives. Most of the directives we need are used to allocate space for data storage.

Assembler directives allocate storage in one way or another. To allocate means to
find room for a variable or program in memory. The place an assembler puts data is the
value of a location counter. The origin statement sets the value of the location counter,
thus telling the assembler where to put the next word it generates after ORG.

1.3 Assembly-Language Directives

Table 1.7. Assembly-Language Directives for the 6812

ORG $100

LDAA ALPHA

will put the instruction code word for LDAA at location $100 (when the program is loaded
in memory and each succeeding word in consecutive locations) by incrementing the
location counter as each byte is generated. By using the ORG directive to insert words
further down in memory than they should be without the ORG directive, an area of
memory can be left aside to store data.

A second directive - define storage (bytes) DS. B - can be used to allocate an area of
memory. As an example,

L: DS.B $100

allocates $100 words for some data and lets you refer to it (actually the first byte in it)
using the label L. Recall that labels are followed by a colon (:). The value to the right of
the DS.B mnemonic (which may be an algebraic expression) is added to the location
counter. The assembler will skip over the $100 words to put its next word $100 words
further down (at higher addresses) than it would have. This can obviously be used to
allocate storage. The words in this allocated area can be accessed by using the label for
the DS. B directive with an offset. For instance, to load the first word from this area into
accumulator A, use LDAA L; to load the second word, use LDAA L + l; and so on.
Incidentally, the number of words can be 0 in an RMB directive; this can be used to put a
label on a line without putting an instruction on it.

A third way to allocate words of memory for data is to use the equate directive EQU.
A directive like

ALPHA: EQU $100

can be put anywhere in the program. This will tell the assembler that wherever ALPHA
appears in the program, the number $100 is to be substituted. EQU directives are useful
ways to tell the assembler where variables are located and are especially useful to label

30 Chapter 1 Microcomputer Architecture

I/O registers in memory and locations in other programs to jump or branch to. In an
EQU'S expression, the asterisk (*) is often used to indicate the current location counter.

The ORG, DS . B, and EQU directives determine where areas of data are to be put but
do not fill those areas with initial values. The following directives not only provide
room for variables but also initialize them with constants when the program is loaded.

The define constant (byte) directive DC. B will put a byte in memory for each
operand of the directive. The value of an operand is put into memory when the location
counter specifies the address and the location counter is incremented for each operand.
DC. B 10 will put $0A in a word in memory. The directive

L: DC.B 1 , 2 , 3

will initialize 3 bytes in memory to be

01
02
03

and will tell the assembler that L is the symbolic address of the first word, whose initial
value is $01. The location counter is incremented three times. ASCII characters can be
inserted as DC. B arguments by putting them between matching quotes. Define constant
(word) DC .W will initialize two consecutive 16-bit words for each argument. The value
of each operand is put in two consecutive words and the location counter is incremented
by two for each operand. For example, the directive

L: DC.W 1 , 2 , 3

will initialize six consecutive bytes in memory, as follows

00
01
00
02
00
03

and will tell the assembler that L is the address of the first word in this area, whose value
is $00. The location counter is incremented six times. The DC . W directive is especially
useful in putting addresses in memory so that they can be used in indirect addressing or
picked up into an index register. If ALPHA is $100 because an EQU directive set it to that
value or because it is a label of an instruction or directive like DC. B that begins at
location $100, then the directive

DC.W ALPHA

will generate the following 2 bytes in memory:

01
00

1.4 Organization of 6812 Microcontrollers 31

1.4 Organization of 6812 Microcontrollers

In this section, we describe the block diagram of the 'A4's and 'B32's hardware - specific
implementations of the 6812 architecture - considering its general implementation and
its particular input/output hardware. Because we will present hardware descriptions in a
style similar to the block diagrams programmers commonly see, we will also call our
descriptions block diagrams. After then discussing the memory and I/O organization, we
introduce the memory map, which explains the location of memory and I/O devices so
programmers can access them.

1.4.1 Notation for Block Diagrams

A block diagram is used to describe hardware organization from the programmer's point
of view (see §1.1.1). It is especially useful for showing how ICs work so that a
programmer can focus on the main ideas without being distracted by details unrelated to
the software. In this memory-mapped I/O architecture, a register is a location in memory
that can be read or written as if it were a word in memory. A block diagram shows
modules and registers as rectangles, with the most important inputs and outputs shown
around the perimeter. Also, the effects of software instructions can be illustrated nicely
on a block diagram; for instance, if the LDX $4000 instruction reads a 16-bit word from a
certain register or module, this can be shown, as in Figure 1.3. The LDX instruction
could be replaced by LDY , LDD, or any instruction that can read 16 bits of data in two
consecutive bytes. The instruction and the arrow away from the module show it can be
read (a readable register). If an instruction like STX $4000 appears there and an arrow is
shown into the module, it can be written (a writable register). And if both are shown
(LDX/STX and a double arrow), the register is read-write. If an instruction like LDAA
appears by the line to a register, an 8-bit word can be read, and if STAA appears there,
then an 8-bit word can be written in the register. Finally, a range of addresses can be
shown as in LDAA/STAA $8000/$8003; this means the module can read-write for addresses
$8000, $8001, $8002, $8003.

Figure 1.3. Block Diagram Showing the Effect of an Instruction

1.4.2 6812 Microcontroller I/O and Memory Organization

As §3.2 will clarify, most microcomputers, as von Neumann computers, are organized
around memory and a bus between memory and the controller and data operator. This can
be explained by a block diagram like Figure 1.4, without showing instructions and
addresses as in Figure 1.3. The controller sends an address to memory on an address bus

32 Chapter I Microcomputer Architecture

Figure 1.4. Organization of a von Neumann Computer

and a command to read or write. If the command is to write, the data to be written is sent
on the data bus. If the command is to read as when the processor fetches an op code, the
controller waits for memory to supply a word on the data bus and then uses it; and if the
command is to read as when the processor recalls a data word, the data operator puts the
word from the bus into some register in it. Memory-mapped I/O uses a "trick": it looks
like memory so the processor writes in it or reads from it just as if it reads or writes
memory words.

The 'A4 can operate in the single-chip mode or the expanded bus mode. In the
single-chip mode, the 'A4 can be the only chip in a system, for it is self-sufficient. The
processor, memory, controller, and I/O are all in the chip. (See Figure 1.5.) The
controller and data operator execute the 6812 instruction set discussed earlier. The
memory consists of 1K words of RAM and 4K words of EEPROM. The I/O devices
include a dozen parallel I/O registers (described in §4.2.1) a serial peripheral interface
(SPI) (described in §4.4.4), a serial communication interface (SCI), described in §9.3.5, a
timer (described in §8.1), and an A/D converter (described in §7.5.3).

Figure 1.5. Single-Chip Mode of the MC68HC812A4

1.4 Organization of 6812 Microcontrollers

Figure 1.6. Wide Expanded Bus Mode of the MC68HC812A4

The expanded bus mode of the 'A4 removes three or four of the parallel ports,
using their pins to send the address and data buses to other chips. RAM, ROM, and
PROM can be added to this expanded bus. In a narrow expanded mode, ports A and B are
removed for address lines, and port C is an 8-bit data bus. Port D is available for parallel
I/O. In a wide expanded mode (see Figure 1.6), ports A and B are removed and their pins
are used for address lines, and ports C and D are a 16-bit data bus. Port D is unavailable
for parallel I/O. In both modes, ports E, F, and G can be used for bus control, chip
selects, and memory expansion signals, or else for parallel I/O.

The 'B32 also operates in single-chip mode or expanded bus mode, but in the latter
mode, address and data are time multiplexed on the same pins. In the single-chip mode,
the 'B32 can be the only chip in a system. The processor, memory, controller, and I/O
are all in the chip. (See Figure 1.7.) The controller and data operator execute the 6812
instruction set discussed earlier. The memory consists of 1K words of RAM, 768 bytes
of EEPROM, and 32K words of flash memory, which is like EEPROM. The I/O
devices include eight parallel I/O registers, a serial peripheral interface (SPI), a serial
communication interface (SCI), a timer, a pulse-width modulator (PWM), a byte data
link communication module (BDLC), and an A/D converter.

34 Chapter 1 Microcomputer Architecture

Figure 1.7. Single-Chip Mode of the MC68HC912B32

Figure 1,8. Wide Expanded Multiplexed Bus Mode of the MC68HC912B32

1.4 Organization of 6812 Microcontrollers 35

The expanded bus mode of the 'B32 removes two of the parallel ports, ports A and
B, using their pins to send the time-multiplexed address and data buses to other chips.
The address and data buses are time-multiplexed; in the first part of each memory cycle,
the 16-bit address is output on the pins, and in the second part, data is output or input on
the indicated pins. In a narrow expanded mode, port A is used for an 8-bit data bus. In a
wide expanded mode (see Figure 1.8), ports A and B pins are used for a 16-bit data bus.
In both modes, port E can be used for bus control, or else for parallel I/O. RAM, ROM,
and PROM can be added to the expanded bus.

A significant advantage of the 'A4 and 'B32 is that each can be used in the single-
chip or in either the narrow or wide expanded multiplexed bus mode. The former mode is
obviously useful when the resources within the microcontroller are enough for the
application - that is, when there is enough memory and I/O devices for the application.
The latter mode is required when more memory is needed, when a program is in an
EPROM and has to be used with the 'A4 or 'B32, or when more or different I/O devices
are needed than are in the ' A4 or 'B32. We are excited about using it to teach interfacing,
because it can show single-chip computer interfacing concepts as well as those of
conventional multiple-chip system interfacing.

1.4.3 The MC68HC812A4 and MC68HC912B32 Memory Maps

A memory map is a description of the memory showing what range of addresses is used
to access each part of memory or each I/O device. Figure 1.9 presents memory maps for
the 'A4 and 'B32.

Actually, EEPROM, RAM, flash memory, and I/O may be put anywhere in
memory (on a 2K or 4K boundary), but we will use them in the locations shown in
Figure 1.9 throughout this text. I/O is at the lowest address to take advantage of page 0
addressing, and RAM is at $800 to $bff. In the 'A4, the EEPROM is at $F000; and in
the 'B32, the flash memory at $8000 may have a monitor. Usually your data are put in

Figure 1.9. Memory Maps of 6812 Microcontrollers

36 Chapter 1 Microcomputer Architecture

RAM and your program may be put in RAM, EEPROM, or flash memory. If you are
using a chip with a monitor, it uses some bytes of RAM for its data, and some bytes of
EEPROM or flash memory for its program and interrupt vectors, so you can use the
remaining low bytes of RAM for your program or data and low bytes of EEPROM or
flash memory for your program.

Figure 1.9a presents a memory map for the 'A4. I/O is at the lowest address to take
advantage of page 0 addressing, and RAM is at $800 to $bff. A 4K EEPROM at $f000
to $ffff often has a monitor. Usually your data is put in RAM and your program may be
put in RAM or in EEPROM memory. Figure 1.9b presents a memory map for the 'B32.
I/O is at the lowest address to take advantage of page 0 addressing, and RAM is at $800
to $bff. A small EEPROM is at $d00 to $fff. Flash memory at $8000 to $ffff has a
monitor. Usually your data is put in RAM and your program may be put in RAM, in
the small EEPROM, or in flash memory.

1.5 Conclusions

In this chapter, we have surveyed the background in architecture needed for
microcomputer interfacing. The first section covered bare essentials about von Neumann
computers, instructions and what they do, and microcomputers. You will find this
background helpful as you begin to learn precisely what happens in an interface.

The middle section covered addressing modes and instructions that you may expect
in any microcomputer, discussing those in the 6812 in more detail. The general
comments there should help if you want to learn about another machine. And the 6812
comments should help you read the examples and do some of the experiments suggested
in this book. A short section provides additional information needed for reading and
modifying assembly language programs that are generated by a compiler.

The final section described some of the hardware used in interfacing, as seen from
the programmer's perspective. You need to know this to write interfacing programs,
described in more detail later.

Do You Know These Terms?

Following is a list of all italicized words in this chapter. You should check these terms
to be sure that you recognize their meaning before going on to the next chapter. These
terms also appear in the index, with page numbers for reference, so you can look up
those that you do not understand. Here, they appear in the same order, down each
column, as they appear in the text.

von Neumann compiler index addressing logic
computer high-level language index register edit

architecture load stack pointer memory-mapped I/O
organization recall offset no-operation
implementation symbolic address double-indexed position
realization store addressing independence

1.5 Conclusions 37

primary memory
data operator
controller
input/output
access
bit
byte
word
random access

memory (RAM)
static ram (SRAM)
dynamic ram

(DRAM)
read-only memory

(ROM)
programmable read-

only memory
(PROM)

erasable
programmable
read-only memory
(EPROM)

electrically erasable
programmable
read-only memory
(EEPROM)

flash memory
fetch
program counter
binary code
hexadecimal notation
machine coded
mnemonic
upward compatible
source code upward

compatible
assembler
assembly language
memorize

bug
program sequence
jump
control instruction
addressing modes
opcode
microinstruction
control memory
data transfer order
data transfer
microprogramming
fetch execute cycle
memory cycle
memory clock
fetch cycle
decode cycle
address calculation
recall cycle
execute cycle
memorize cycle
macro
benchmark
static efficiency
dynamic efficiency
microprocessor
microcomputer
single-chip

microcomputer
personal computer
microcontroller
direct addressing
displacement
implied addressing
register addressing

accumulator

pointer
addressing

pointer registers
autoincrement

addressing
autodecrement

addressing
stack buffer
stack
push
pull
stack overflow
stack underflow
jump to subroutine
return from

subroutine
balanced stack
nesting of

subroutines
local data
argument
indirect address
page relative

addressing
branch
move
zero bit
negative bit
carry bit
overflow bit
half carry bit
interrupt inhibit bit
interrupt mask bit
stop disable bit
arithmetic

immediate addressing add with carry
page zero addressing subtract with carry
page compare

sixteen's
complement

conditional branch
subroutine
expansion program

page (PPAGE)
hardware interrupt
I/O interrupt
handling an interrupt
interrupt handler
device handler
interrupt service

routine
latency time
machine state
return from interrupt
breakpoint
monitor
reentrant
recursion
assembler directives
allocate
location counter
origin
define constant
define storage
equate
initialize
block diagram
single-chip mode
expanded bus mode
flash memory
pulse-width

modulator (PWM)
byte data link

communication
(BDLC)

memory map

38 Chapter 1 Microcomputer Architecture

Problems

Problems 1 through 3 in this chapter and many problems in later chapters are paragraph
correction problems. We use the following guidelines for all these problems.

These paragraph correction problems have been proven useful in helping students
understand concepts and definitions. The paragraph in each problem has some correct and
some erroneous sentences. Your task is to rewrite the paragraph so the whole paragraph
is correct, deleting any sentences that do not fit into the paragraph's theme. However, if
a sentence is correct, you should not change it, and you cannot use the word "not "or its
equivalent to correct the sentence. Consider the first sentence in problem 1: "The
architecture is the block diagram of a computer." This is incorrect. It can be made
correct by changing "architecture"to "organization,"or by changing "block diagram"to
either "programmer's view"or "instruction set and I/O connection capabilities."Any of
these corrections would be acceptable. The second sentence is correct, however, and
should not be rewritten. Try to complete the problems without referring to the chapter,
then check your answers by looking up the definitions. If you get a couple of sentences
wrong, you're doing fine. But if you have more trouble, you should reread the sections
the problem covers.

1. * The architecture is the block diagram of a computer. Von Neumann invented the
architecture used on microcomputers. In it, the controller is analogous to the adding
machine. We recall words from primary memory into the controller using the program
counter (left hand). Symbolic addresses are used in assembly languages to represent
locations in this memory. A macro is a program in another part of memory that is called
by a program, so that when the macro is done, the calling program resumes execution at
an instruction below the jump to macro. An I/O interrupt is like a subroutine that is
requested by an I/O device. The latency time is the time needed to completely execute an
interrupt. To optimize the speed of execution, choose a computer with good static
efficiency. A microcomputer is a controller and data operator on a single LSI chip, or on
a few LSI chips.

2, * Addressing modes are especially important because they affect the efficiency of the
most common class of instructions, the arithmetic class. Direct addressing has the
operand data in a part of the instruction called the displacement, and the displacement
would be 8 bits long for an instruction using it to load an 8-bit accumulator. Indirect
addressing allows programs to be position independent. The 6812 has direct page
addressing, which is a "quick-and-dirty" index-addressing mode. Index addressing is
especially useful for jumping to nearby locations. If we want to move data around in
memory during execution of a program, indirect addressing is the only mechanism that
can efficiently access single words as well as arrays.

Problems 39

3. * The 6812 has 96 bits of register storage, where the D accumulator is really the same
as the x index register. The x register serves as an additional stack pointer, and
instructions to push or pull can use x. Add with carry is used in multiple precision
arithmetic. It can add into accumulator D. The 6812 has an instruction to divide one
unsigned number into another unsigned number. The DAA instruction can be used after an
INCA instruction to increment a decimal number in accumulator A. BGT, BLT, BGE, and
BLE can be used after comparing 2's complement numbers. The SWI instruction is
particularly useful as a subroutine call to a fast, short subroutine because it is a fast
instruction.

4. Identify which applications would be concerned about storage density and which about
speed. Give reasons for your decisions.

a. Pinball machine game
b. Microwave oven control
c. Home security monitor
d. Fast Fourier transform (FFT) module for a large computer
e. Satellite communications controller

5. Write the (hexadecimal) code for a BRA L instruction, where the instruction code is at
locations $12A and $12B and

a. L is location $12F.
b. L is location $190.
c. L is location $12A.
d. L is location $120.
e. L is location $103.

6. Write the op code for the following instructions, assuming the first byte of the op
code is at $208A and L is at $2095, x is $1000, and Y is $8000; and explain in words
what happens when it is executed (including the effects on the condition codes).

a. BSET $52,#$12

b. BCLR $34,X,#5

C. BSET 3,Y,#$7F

d. BRCLR $EE,#6,L

e. BRSET 3,Y,#8,L

7. Write the op code for the following instructions, assuming that A is 5, B is 0x80, x is
$1000, and Y is $8000; write the effective address and write the final values of x and Y.

a. LDAA 2 , X
b. STD 8,-Y

C. INC A,X

d. JMP [D , x] (assuming the 16-bit word at $1580 is $1234)
e. ROL [$ 12, Y] (assuming the 16-bit word at $8012 is $1234)

40 Chapter 1 Microcomputer Architecture

8. Suppose a memory is filled, except for the program that follows, like this: the word
at address $WXYZ is $YZ (for example, location $2538 has value $38). Assuming that
an address in X never points to the program, what will the value of X be after each
instruction is executed in this program?

LDX #$1

LDX 0,X

LDX 4,X

9. Suppose the condition code register is clear and the ADDA APLHA instruction is
executed. Give the value in the condition code register if

a. Accumulator A is $77, ALPHA is $77.
b. Accumulator A is $C8, ALPHA is $77.
c. Accumulator A is $8C, ALPHA is $C8.
d. Repeat part c for SUBA ALPHA.

10. Explain under what conditions the H, N, Z, V, and C bits in the condition code
register are set. Also explain the difference between overflow and carry.

11. If the accumulator A contains the value $59 and ALPHA contains the value $6C, what
will be the value of the condition code register after the following instructions? (Assume
the condition code register is clear before each instruction.)

a. ADDA ALPHA

b. SUBA ALPHA

C, TSTA

d. COMA

e. BITA ALPHA

f. EORA ALPHA

12. Repeat problem 11, assuming that the accumulator A contains the value $C9, ALPHA
contains the value $59, and the condition code register is set to the value $FF before each
instruction.

13. Give the shortest 6812 instruction sequences that perform the same operation as the
following nonexistent 16-bit 6812 instructions. State whether the condition codes are set
properly or not.

a. ASRD (shift D right arithmetically) b. INCD ALPHA (increment 16-bit ALPHA)
c. NEGD (negate accumulator D) d. DECD ALPHA (decrement 16-bit ALPHA)
e. MULS (multiply signed 8-bit A times 8-bit B to get 16-bit result in D)

14. Give the shortest 6812 instruction sequences to implement 32-bit arithmetic
operations for each case given below. In each case, the data arrive in register Y (high 16
bits) and register D (low 16 bits), and are returned in the same way.

Problems 41

a. Complement b. Increment c. Decrement d. Shift right logical
e. Shift right arithmetic f. Shift left (arithmetic or logical)

15. Explain, in terms of condition code bits, when the branch is taken for the following
conditional branch instructions:

a. BEQ
b. BGT

C. BHI

d. BHS

C. BLE

f. BPL

16. How many times does the following loop get repeated when the instruction CND is

a. BNE?
b. BPL?

C. BLT?

LDAA #200

LOOP : statement list
DECA

CND LOOP

Show calculations or explain your answers.

17. What is the value of accumulator B after the following program ends, when the
instruction COND is

a. BEQ?
b. BMI?
C, BGT?

d. BVS?

LDAA #200

CLRB

LOOP: DECA

COND EXIT

INCB

BRA LOOP

EXIT: SWI

Show calculations or explain answers.

18. Convert the following high-level programming language construct into the shortest
6812 assembly-language instructions, assuming that the variable A is already assigned to
the accumulator A. As long as the expression in the while statement is true, the
statements inside braces are repeated.

42 Chapter 1 Microcomputer Architecture

A = 10;
while (A > 3)
{ statements;
A = A -1; }

19. Repeat problem 18 with the following high-level programming language construct,

A = 10;
do
{ statements;
A = A - 1; }

while (A > 3)

20. BETA initially contains the value $9C. What is the value of BETA after the
following instructions?

a. BCLR BETA $15

b.BSET BETA $38

21. BETA initially contains the value $9C. Will a branch occur after these instructions?

a, BRCLR BETA,#$64,HERE

b. BRSET BETA,#$64,HERE

C. BRCLR BETA,#$61,HERE

d. BRSET BETA,#$84,HERE

22. What are the hexadecimal values of registers D and x after the FDIV instruction if
they contain these values, respectively?

a. $4000, $8000 b. 0.5, 0.75

23. Repeat problem 22 with IDIV instruction and

a. D = $0064, x = $0002. b. D = $0064, x =$0003.

24. What are the values of registers A and B after the MUL instruction if they contain
these values, respectively?

a. $80, $80 b. $8C, $45

25. Write a shortest assembly-language program that adds five 8-bit unsigned numbers
stored in consecutive locations, the first of which is at location $802, and put the 8-bit
sum in $810. If any unsigned number addition errors occur, branch to ERROR.

26. Repeat problem 25 where the numbers are signed.

Problems 43

27. Repeat problem 25 where the numbers are 16-bit unsigned numbers,

28. Repeat problem 25 where the numbers are 16-bit signed numbers,

29. Write a shortest assembly-language program that adds a 5-byte unsigned number
stored in consecutive locations, the first of which is at location $802, to a five-byte
unsigned number stored in consecutive locations, the first of which is at location $812.
If any unsigned number addition errors occur, branch to ERROR.

30. Give the shortest 6812 subroutines to implement 32-bit arithmetic operations for
each case given below. In each case, one operand arrives in register Y (high 16 bits) and
register D (low 16 bits), and the result is returned in the same way; and the other operand
is pushed on the stack, high-order byte at lowest address, just before the subroutine is
entered, and is removed by the subroutine just before it returns. Compare returns a value
SNGD (bits 7 to 4) and USGD (bits 3 to 0), where SNGD and USGD have value 0 if less,
I if equal, and 2 if greater, for signed and for unsigned comparisons of two arguments.

a. Add b. Subtract (stack value from register) c. Multiply d. Compare

44 Chapter 1 Microcomputer Architecture

The MC68HC912B32 die.

Programming Microcomputers

We now consider programming techniques used in I/O interfacing. The interface designer
must know a lot about them. As the industry matures, the problems of matching voltage
levels and timing requirements, discussed in §3.2, are being solved by better-designed
chips, but the chips are getting more complex, requiring interface designers to write more
software to control them.

The state-of-the-art 6812 clearly illustrates the need for programming I/O devices in
a high-level language as well as for programming them in object-oriented languages. The
dozen I/O ports and its plethora of SPI, SCI, A-to-D, and timer ports may be a challenge
to many assembler language programmers. But the 4K-byte EEPROM memory is large
enough to support high-level language programs. Also, object-oriented features like
modularity, information hiding, and inheritance will further simplify the task of
controlling 6812 systems.

This book develops C and C++ interfacing techniques. Chapter 1, describing the
architecture of a microcomputer, has served well to introduce assembler language,
although a bit more will be done in this chapter. We introduce C in this chapter. The
simplest C programming constructs are introduced in the first section. The handling of
data structures is briefly covered in the next section. Programming styles, including the
writing of structured, modular, and object-oriented programming, will be introduced in the
last section. Subroutines will be further studied as an introduction to programming style.
The use of classes in C++ will be introduced at the end of this chapter. While this
introduction is very elementary and rather incomplete, it is adequate for the discussion of
interfacing hi this text. Clearly, these concepts must be well understood before we discuss
and design those interfaces.

For this chapter, the reader should have programmed in some high-level language.
From it, he or she should learn general fundamentals of programming in C or C++ to
become capable of writing and debugging tens of statements with little difficulty, and
should learn practices specifically applicable to the 6812 microprocessor. If you have
covered this material in other courses or absorbed it from experience this chapter should
bring it all together. You may pick up the material just by reading this condensed version.
Others should get an idea of the amount of background needed to read the rest of the book.

45

2

46 Chapter 2 Programming Microcomputers

2.1 Introduction to C

I/O interfacing has long been done in assembly language. However, experience has shown
that the average programmer can write something like ten lines of (debugged and
documented) code per day, whether the language is assembler or higher level. But a line of
high-level language code produces about 6 to 20 useful lines of assembly-language code,
so if the program is written in a high-level language, we might become six to 20 times
more efficient. We can write the program in a high-level language like C or C++.
However, assembly-language code produced by a high-level language is significantly less
statically and dynamically efficient, and somewhat less precise, than the best code
produced by writing in assembly language, because it generates unnecessary code. Thus in
smaller microcontrollers using the 6811, after a high-level language program is written it
may be converted first to assembly language, where it is tidied up; then the assembly-
language program is assembled into machine code. As a bonus, the original high-level
language can be used to provide comments to the assembly-language program. In
microcontrollers using processors designed for efficient high-level language programming,
such as the 6812, C or C++ can control the device without being converted to assembly
language. This has the advantage of being easier to maintain because changes in a C
program do not have to be manually translated into and optimized in assembly language.
Or, a small amount of assembly language, the part actually accessing the I/O device, can
be embedded in a larger C program. This approach is generally easier to maintain because
most of the program is implemented in C, and yet is efficient and precise in the small
sections where the I/O device is accessed.

We will explain the basic form of a C procedure, the simple and the special numeric
operators, conditional expression operators, and conditional and loop statements and
functions. However, we do not intend to give all the rules of C that you need to write
good programs. A C program consists of one or more procedures, of which the first to be
executed is called main, and the others "subroutines" or "functions" if they return a value.
All the procedures, including main, are written as follows:

declaration of local variable;
declaration of local variable;

2.1 Introduction to C 47

Table 2.1. Conventional C Operators Used in Expressions

/
%
&

make the left side equal to the expression on its right
add
subtract
multiply
divide
modulus (remainder after division)
logical bit-by-bit AND
logical bit-by-bit OR
logical bit-by-bit negation
shift left
shift right

Each declaration of a parameter or a variable and each statement ends in a semicolon
(;), and more than one of these can be put on the same line. Carriage returns and spaces
(except in names and numbers) are not significant in C and can be used to improve
readability. The ellipsis points (. . .) in the example do not appear in C programs, but are
meant here to denote that one or more declaration or statement may appear.

Parameters and variables used in the 6812 are usually 8-bit (char), 16-bit (int.), or
32-bit (long) signed integer types. They can be declared unsigned by putting the word
unsigned in front of char, int., or long. More than one variable can be put in a
declaration; the variables are separated by commas (,). A vector having n elements is
denoted by the name and square brackets around the number of elements n, and the
elements are numbered 0 to n - 1. For example, int a, b[10] ; shows two variables, a
scalar variable a and a vector b with ten elements. Variables declared outside the
procedure - e.g., before the line with procedure-name - are global, and those declared
within a procedure - e.g., between the braces "{" and "}" after procedure-name - are
local. Parameters are discussed in §2.3.1. A cast redefines a value's type. A cast is put in
parentheses before the value. If i is an int, (char) i is a char.

Statements may be algebraic expressions that generate assembly-language
instructions to execute the procedure's activities. A statement may be replaced by a
sequence of statements within a pair of curly braces "{" and "}". This will be useful in
conditional and loop statements, which are discussed soon. Operators used in statements
include addition, subtraction, multiplication, and division, as well as a number of very
useful operators that convert efficiently to assembly-language instructions or program
segments. Table 2.1 shows the conventional C operators that we will use in this book.
Although they are not all necessary, we use a lot of parentheses so that we will not have
to learn the precedence rules of C grammar. The following simple procedure main has
(signed) 16-bit local variables a and b, and 8 bit global c and vector d, it puts 5 into
a, 1 into b, and then the (a + b) t h element of vector d into 8-bit unsigned global c,
and returns nothing (void) as is shown to the left of the procedure name.

unsigned char c, d[10],

=5; b=1; c = d[a+b];

48 Chapter 2 Programming Microcomputers

We use the HIWARE C++ compiler to generate code for the 6812. The compiled and
linked program is disassembled using the DECODE program. We will show disassembled
machine code produced by the DECODE program from high-level procedures compiled by
it. We hasten to note, however, that different code is produced when different optimization
options are selected, or when a different version of the compiler is used. The assembly
language, as shown below, is typical, however, of what the compiler produces.

0000086C C60A LDAB #10

0000086E 87

0000086F 6C82

00000871 C601

00000873 6C80

00000875 C605

00000877 E380

00000879 B745

0000087B E6E209E1

0000087F 7B09EO

7: ;

00000882 1B84 LEAS 4,SP

00000884 3D RTS

After the procedure main is called, the procedure's first instruction, leas -4, sp,
makes room for (allocates) local variables on the stack; the last two instructions leas
4 , sp and rts, remove room for (deallocates) local variables on the stack and return
to the calling routine. Note that the first leas instruction subtracts 4 from the stack
pointer SP. Parameters and local variables will be obtained by index addressing with SP.
Global variables are obtained using direct addressing. This procedure first assigns or
initializes 16-bit local variables a and b and then it just uses these to read an element
from the vector d into global variable c in a manner discussed in the next section.

Some very powerful special operators are available in C. Table 2.2 shows the ones
we use in this book. For each operator, an example is given together with its equivalent
result, using the simple operators of Table 2.2. The assignment operator = assigns the
value on its right to the variable named on its left and returns the value it assigns so that
value can be used in an expression to the left of the assignment operation: the example
shows that 0 is assigned to c and value (0) is assigned to b; then that value is assigned
to a. The increment operator + + can be used without an assignment operator (e.g., a + +
just increments a). It can also be used in an expression in which it increments its
operand after the former operand value is returned to be used in the expression. For
example, b=a[i + +] will use the old value of i as an index to put a [i] into b, then
it will increment i. Similarly, the decrement operator -- can be used in expressions. If
the + + or -- appear in front of the variable, then the value returned by the expression
is the updated value; a[++i] will first increment i, then use the incremented value as
an index into a. The next row shows the use of the + and = operators used together to

2.1 Introduction to C 49

represent adding to a variable. The following rows show -, |, and & appended in front
of = to represent subtracting from, ORing to, or ANDing to a variable. Shift « and »
can be used in front of the = sign too. This form of a statement avoids the need to twice
write the name of, and twice compute addresses for, the variable being added to or
subtracted from. The last two rows of Table 2.2 show shift left and shift right operations
and their equivalents in terms of multiplication or division by powers of 2. However,
rather than allowing the use of a slower machine instruction, they force the use of the
faster logical shift instructions.

A statement involving several operations saves intermediate values on the stack. The
statement i = (i « 3) + (i « 1) + c - 'O ' / where i and c are local variables
declared as unsigned char c; int i,- is compiled into the following assembly
language:

00000867

00000869

0000086A

0000086B

000 008 6C

0000086D

0000086F

00000870

00000871

00000873

00000875

00000876

00000878

0000087B

EC 80

3B

59

59

59

B745

3A

59

1AE6

E682

87

1AE6

1AE1DO

6EB2

LDD

PSHD

ASLD

ASLD

ASLD

TFR

PULD

ASLD

LEAX

LDAB

CLRA

LEAX

LEAX

STX

Temporary results are transferred to or exchanged with other registers, or pushed on the
stack. The LEAX instruction is used in lieu of the ADDD instruction to add temporary
results in an index register. The stack pointer offset, to access a local variable, changes as
temporary results are saved on the stack.

Table 2.2. Special C Operators

Operator

=
++

-(.—
- =
i_
&=
«=
»=

Example

a=b=c=0;
a ++;
a --;
a += 2;
a -= 2;
a 1= 2;
a &= 2;
a«=3
a»=3

Equivalent to

a-Q;b~Q;c=Q;
a=a+1;
a=a-1;
a=a+2;
a=a-2;
a=a\2;
a=a&2;
a=a«3
a~a»3;

Table 2.3.
Conditional Expression Operators

&&

>
<

<r —

AND
OR
NOT
Greater than
Less than
Greater than or
Less than or equal
Equal to
Not equal to

50 Chapter 2 Programming Microcomputers

A statement can be conditional, or it can involve looping to execute a sequence of
statements that are written within it many times. We will discuss these control flow
statements by giving the flow charts for them. See Figure 2.1 for conditional statements,
Figure 2.2 for case statements, and Figure 2.3 for loop statements. These simple standard
forms appear throughout the book, and we will refer to them and their figures.

Simple conditional expressions of the form if then (shown in Figure 2. la), full
conditionals of the form if then else (shown in Figure 2.1b), and extended conditionals of
the form if then else if then else if then . . . else (shown in Figure 2.1c), use conditional
expression operators (shown in Table 2.3). In the last expression, the else if part can be
repeated as many times as needed, and the last part can be an optional else. Variables are
compared using relational operators (> and <), and these are combined using logical
operators (&&). For example, (a > 5) && (b < 7) is true if a > 5 and b < 7.

Figure 2.1. Conditional Statements

Consider a decision tree using conditional expressions, like if (alpha ! = 0)
beta=10; else if (gamma ==0) delta++; else if ((epsilon! = 0) && (zeta==1))
beta=beta«3;, where each variable is local and of type char. This example contains
many operators just discussed. This can be coded in assembly language as

2.1 Introduction to C 51

3: if (alpha! =0} beta=10;

00000867 A685

00000869 2706

0000086B C60A

0000086D 6B80

0000086F 2017

4: else

00000871 A684

00000873 2604

00000875 6283

00000877 200F

5: else

00000879 A682

0000087B 270B

0000087D A681

0000087F 042006

00000882 6880

00000884 6880

00000886 6880

LDAA 5,SP

BEQ *+8

LDAB #10

STAB 0,SP

BRA *+25

; abs =

;abs

0871

= 0888

if (gamma ==0) delta++;

LDAA 4,SP

BNE *+6

INC 3,SP
BRA *+17

;abs =

;abs

0879

= 0888

if((epsilon!=0)&& (zeta==l)) beta=beta«3

LDAA 2,SP

BEQ *+13

LDAA 1,SP

DBNE A,* + 9

ASL 0,SP

0ASL 0,SP

ASL 0,SP

;abs

;abs

= 0888

= 0888

The case statement is a useful alternative to the conditional statement. (See Figure
2.2.) A numerical expression is compared to each of several possible values; the match
determines which statement will be executed next. The case statement (such as the simple
one in Figure 2.2a) jumps into the statements where the variable matches the comparison
value and executes all the statements below it. The break statement (shown in Figure
2.2b) exits the whole case statement, in lieu of executing its remaining statements.

An expression switch (n) { case l:i=l; break; case 3 : i = 2 ; break; case
6: i = 3;break;} is coded in assembly language by comparing the same number (the
switch operand) against different case constants, conditionally branching to the case
statement's code.

= 0885

00000867

00000869

0000086B

0000086D

0000086F

00000871

00000873

00000875

00000877

00000879

0000087B

0000087D

6:

00000880

00000883

A681

8106

2218

8101

270A

8103

2709

8106

2708

200A

C601

8FC602

8FC603

6B80

LDAA

CMPA

BHI

CMPA

BEQ

CMPA

BEQ

CMPA

BEQ

BRA
case 1:

LDAB

CPS
case 3:

CPS
STAB

1,SP
#6

*+26
#1

* + 12
#3

* + ll

#6

* + 10
* + 12

; abs

; abs

; abs

; abs
;abs

i=l; break;

#1
#50690 ; is

i-2; break;

#50691

O.SP

" ~" S SKIP2 LDAB #3

Chapter 2 Programming Microcomputers

Figure 2.2. Case Statements

Alternative to the conditional branch statements shown above, case can be
implemented by a subroutine followed by a list of case values and relative branch offsets.
When a sequence of consecutively numbered cases from 0 to N - 1 are presented,
HIWARE's C compiler uses one of its seven such subroutines, followed by a list of
relative branch offsets. For instance, the expression switch (n) { case 0: i =1 ; break;
case 1:1=2; break; case 2: i =3;break; } is coded by calling the subroutine
_CASE_DIRECT_BYTE. The essential case statement's calling routine is implemented as

00000867 EC81

00000869 072D BSR NEAR _CASE_DIRECT_BYTE

0000086B 03 L

0000086C 06

0000086D 09

5;

0000086E C601 LO:

00000870 8FC602

6:

00000873 8FC603

00000876

The subroutine _CASE_DIRECT_BYTE is

PULX
LDAB D,X

JMP B,X

2.1 Introduction to C 53

Loop statements can be used to repeat a statement until a condition is met. A
statement within the loop statement will be executed repeatedly. The expressions in both
the following loop statements are exactly like the expressions of the conditional
statements, using operators as shown in Table 2.3.

Figure 2.3. Loop Statements

The while statement of Figure 2.3a tests the condition before the loop is executed
and is useful if, for example, a loop may have to be done 0 times. Assume i is initially
cleared. Then the while statement can clear the array alpha [1 0] . The statement
wh i1e1 (i < 10) aIpha [1 + +1 = 0; is compiled into assembly language as

00000867 200E BRA *+16 ;abs = 0877

00000869 A680

0000086B 36

0000086C 42

0000086D 6A81

0000086F 33

00000870 87

00000871 1A81

00000873 1AE6

00000875 6AOO

00000877 A680

00000879 810A

0000087B 25EC ECS *-18 ;abs

54 Chapter 2 Programming Microcomputers

The do while statement (shown in Figure 2.3b) tests the condition after the loop is
executed at least once, thus it tests results of the loop's activities. For instance, do
alpha [i + +] - 0; while (i < 10); clears alpha; it compiles into

4:

00000867 A680

00000869 36

0000086A 42

0000086B 6A81

0000086D 33

0000086E 36

0000086F 87

00000870 1A82

00000872 1AE6

00000874 6AOO

00000876 33

00000877 C10A

00000879 25EC BCS *-18 ;abs = 0867

Generally the do while() statement is generally more efficient than the while ()
statement, because the latter has an extra branch instruction to jump to its end. But the
HIWARE compiler optimizes while statements by removing this initial branch if the
initial value of the condition is determined at compile time to be true.

The more general for statement (shown in Figure 2.3c) has three expressions
separated by semicolons (;). The first expression initializes variables used in the loop; the
second tests for completion in the same style as the while statement; and the third updates
the variables each time after the loop is executed. Any of the expressions in the for
statement may be omitted. For example, for(i = 0;i<lO;i + +) alpha[i]=0; will clear
the array alpha as the above loops did it. It is compiled as follows:

4: for(i=0;i<10;i++) alpha[i]=0;

0000086B 6980 CLR 0,SP

0000086D E680 LDAB 0,SP

0000086F 87

00000870 1A81

00000872 1AE6

00000874 6AOO

00000876 6280

00000878 E680

0000087A C10A

0000087C 25EF BCS *-15 ;abs = 086D

This program segment is not particularly efficient. A more efficient assembly-language
program equivalent to for (i = 10; i ! = 0; i--) alpha [i - 1] = 0; is

Idx #10
LI: clr alpha-l,x

dbne x,Ll

2.2 Data Structures 55

However, the C compiler may not actually generate the assembly language shown above.
If you need tight code, you will have to insert the assembly-language code into a C
procedure, in a manner to be shown in §2.3.5. Note also that, as in this example if it
were efficiently compiled, the clearest C program does not always lead to the most
efficient assembly-language program. A less clear program may generate better code.

The break statement will cause the for, while, or do while loop to terminate
just as in the case statement, and may be used in a conditional statement. For instance,
for (; ;) {! + + ; if (i==30) break; } executes the statement {i + + ; if (i-=3Q)
break;} indefinitely, but the loop is terminated when i is 30.

An important feature of C, extensively used to access I/O devices, is its ability to
describe variables and addresses of variables. If a is a variable, then &a is the address of
a. If a is a variable that contains an address of another variable b, then *a is the
contents of the word pointed to by a, which is the contents of b. (Note that a *b is a
times b but *b is the contents of the word pointed to by b.) Whenever you see &, read
it as "address of; and whenever you see *, read it as "contents of thing pointed to by." In
a declaration statement, the statement char *p; means that the thing pointed to by p is
a character, and p points to (contains the address of) a character. In an assignment
statement, *p = 1 ; means that 1 is assigned to the value of the thing pointed to by p,
whereas p = 1; means that the pointer p is given the value 1. Similarly, a = *p,-
means that a is given the value of the thing pointed to by p, while a = p; means a
gets the value of the pointer p. Some C compilers will give an error message when you
assign an integer to a pointer. If that occurs, use a cast. Write p = (int *) 0x4000; to
tell the compiler 0x4000 is really a pointer value to an integer and not an integer itself.

Finally a comment is anything enclosed by /* and */. We strongly encourage you
to supply comments to document your code.

2.2 Data Structures

Data structures are at least as important as programming techniques, for if the program is
one-half of the software, the data and thek structures are the other half. When we discuss
storage density as an architecture characteristic, we discuss only the amount of memory
needed to store the program. We are also concerned about data storage and its impact on
static and dynamic efficiency, as well as the size of memory needed to store the data.
Prudent selection of the data structures a program uses can shorten or speed up the
program. These considerations about data structures are critical in microcontrollers.

A data structure is one among three views of data. The information structure is the
view of data the end user sees. For instance, the end user may think of his or her data as a
table, like Table 2.1 in this book. The programmer sees the same data as the data
structure: strongly related to the way the data are accessed but independent of details such
as size of words and position of bits. It is rather like a painter's template, which can be
filled in with different colors. So the data structure may be an array of characters that spell
out the words in Table 2.1. The storage structure is the way the information is actually
stored in memory, right down to the bit positions. So the table may appear as an array of
8-bit words in the storage structure.

56 Chapter 2 Programming Microcomputers

The data structure concept is a bit hard for some to accept. Its usefulness lies in its
ability to provide a level of abstraction, allowing us to make some overall observations of
how we store things, which can be applied to similar storage techniques. For instance, if
we can develop a concept of how to access an array, we can use similar ideas to access
arrays of 8-bit or 24-bit data, even though the programs could be quite different. But here
we must stress that a data structure is simply a kind of template that tells us how data are
stored, and it is also a menu of possible ways the data can be written or read. Two data
structures are different if they have different templates that describe their general structure
or if the menus of possible access techniques are different.

Constants are often used with data structures, for instance, to declare a size of a vector
and to use that same number in for loops. They can be defined by define statements or
enum statements and put before any declarations or statements to equate names to values.
The #define statement begins with the characters #define and does not end with a
semicolon.

#define ALPHA 100

Thenceforth, we can use the label ALPHA throughout the program, and 100 will
effectively be put in place of ALPHA just before the program is actually compiled. This
permits the program to be better documented, using meaningful labels, and easier to
maintain, so that if the value of a label is changed it is changed everywhere it occurs.

A number of constants can be created using the enum statement. Unless reinitialized
with an equal sign (=), each member has one greater than the value of the previous
member. The first member has value 0. Hexadecimal values are prefixed with zero ex (Ox):

enum { BETA, GAMMA, DELTA = 0x5};

defines BETA to have value 0, GAMMA to have value 1, and DELTA to have value 5.
The declaration of any scalar variable can be initialized by use of the = and a value.

For instance, if scalar integers i, j, and k have initial values 1, 2, and 3, we write a
global declaration:

C procedures access global variables using direct addressing, and such global variables
may be initialized in a procedure ccmain that is executed just before main is started.
Initialized local variables of a procedure should generate machine code to initialize them
just after they are allocated, each time the procedure is called. The procedure

k; /* allocate local variables */
k-=3; /* initialize local variables */

is equivalent to the procedure

void fun () {
int i = 1, j = 2, k = 3,- I* allocate and initialize local variables */

2.2 Data Structures 57

Data structures divide into three main categories: indexable, sequential, and linked.
Indexable and sequential, discussed here, are more important. Linked structures are very
powerful, but are not as easy to discuss in abstract terms. They will be discussed later.

2.2.1 Indexable Data Structures

Indexable structures include vectors, lists, arrays, and tables. A vector is a sequence of
elements, where each element is associated with an index i used to access it. To make
address calculations easy, C associates the first element with the index 0, and each
successive element with the next integer (zero-origin indexing). Also, the elements in a
vector are considered numbers of the same precision (number of bits or bytes needed to
store an element). We will normally consider one-word precision vectors, although we
also show an example of how the ideas can be extended to w-word vectors. Finally, the
cardinality of a vector is the number of elements in it. A vector is fully specified if its
origin, precision, and cardinality are given. A zero-origin, 16-bit, three-element vector 31,
17, and 10 is generated by a declaration int v[3] and stored in memory as (hexadecimal)

001F
0011
OOOA

and we can refer to the first element as v [0], which happens to be 31. However, the
same sequence of values could be put in a zero-origin vector of three 8-bit elements,
generated by a declaration char u[3] and stored in memory as

1F
11

OA

The declaration of a global vector variable can be initialized by the use of = and a list of
values, in braces. For instance, the three-element global integer vector v can be allocated
and initialized by

The vector « can be similarly allocated and initialized by the declaration

char u[3] = {31, 17, 10};

The procedure main () in §2.1 illustrated the accessing of elements of vectors in
expressions. The expression c = d[a+b] / accessed the (a+b) th element of the 8-bit,
10-element vector d. The term "vector" is a general term, and similar declarations and
statements can be used for elements of 16 bit, 32 bit, or other precision, and for other
cardinality vectors. The concept of "data structure" is to generalize the storage and access
used in one instance to cover other instances of the same kind of data-handling technique.
When reading the assembly code generated by C, be wary of the implicit multiplication of

58 Chapter 2 Programming Microcomputers

the vector's precision (in bytes) when calculating offset addresses of elements of the
vector. And because C does not check that indexes are within the cardinality of a vector,
your C program must be able to implicitly or explicitly ensure this to avoid nasty bugs
- when a vector's data is inadvertently stored outside the memory allocated to a vector.

A list is like a vector, accessed by means of an index, but the elements of a list can
be any combination of different precision words, code words, and so on. For example, the
list can have three elements: the one-byte number 5, the two-byte number 7, and the one-
byte number 9. This list is stored in machine code as follows:

05
0007
09

The powerful structure mechanism is used in C to implement lists. The mechanism is
implemented by a declaration that begins with the word struct and has a definition of the
structure within braces, and a list of variables of that structure type after the brackets, as
in

struct { char 11; int 12; char 13;} list;

A globally defined list can be initialized as we did with vectors, as in

struct { char 11; int 12; char 13;} list={5,7, 9};

The data in a list are identified by dot notation, where a dot (.) means "element." For
instance, list. 11 is the 11 element of the list list. If P is a pointer to a s t ruc t ,
then arrow notation, such as p->ll, can access the element 11 of the list. The
typedef statement, though it can be used to create a new data type in terms of existing
datatypes, is often used with structs. If typedef a struct { char 11; int 12;
char 13;} list; is written, then list is a data type, like int or char, and can be
used in declarations such as list b; that declares b to be an instance of type list.
The typedef statement is quite useful when a s truct has to be declared many times and
pointers to it need to be declared too. A structure can have bitfields, which are unsigned
integer elements having less than 16 bits. Such a structure as

struct {unsigned a:l, b:2, c:3;}l;

has a one-bit field 1. a, two-bit field 1. b, and three-bit field 1. c, A linked list
structure, a list in which some elements are addresses of (the first word in) other lists, is
flexible and powerful and is widely used in advanced software.

An array is a vector whose elements are vectors of the same length. We normally
think of an array as a two-dimensional pattern, as in

1 2 3
4 5 6
7 8 9

10 11 12

2.2 Data Structures 59

An array is considered a vector whose elements are themselves vectors. The array is stored
in row major order: in this arrangement a row is stored with its elements in consecutive
memory locations. (In column major order a column is stored with its elements in
consecutive memory locations.) For instance, the global declaration

allocates and initializes a row-major-ordered array arl, and a=arl[i] [j] ; puts the row-
i column-j element of arl into a, as shown in the previous example of an array.

A table is to a list as an array is to a vector. It is a vector of identically structured
lists (rows). Tables often store characters, where either a single character or a collection of
n consecutive characters are considered elements of the lists in the table. Index addressing
is useful for accessing elements in a row of a table, especially if the table is stored in row
major order. If the address register points to the first word of any row, then the
displacement can be used to access words in any desired column. Also, autoincrement
addressing can be used to select consecutive words from a row of the table.

In C, a table tbl is considered a vector whose elements are structures. For instance,
the declaration

struct {char ll;int 12;char 13;} tbl[3];

allocates a table whose rows are similar to the list list above. The dot notation with
indexes can be used to access it, as in

a = tbl[2].11;

In simple compilers, multidimensional arrays and structs are not implemented. They can
be reasonably simulated using one-dimensional vectors. The user becomes responsible for
generating vector index values to access row-column elements or struct elements.

2.2.2 Sequential Data Structures

Another important class of data structures is sequential structures, which are accessed by
relative position. Rather than having an index / to get to any element of the structure,
only the "next" element to the last one accessed may be accessed in a sequential structure.
Strings, stacks, queues, and deques are sequential structures important in microcontrollers.

A string is a sequence of elements such that after the ith element has been accessed,
only the (i + l)th element or the (i - l)th element can be accessed. In particular, a
character string, storing characters using the ASCII code (Table 2.4), is used to store
text. The ASCII code of a character is stored as a 7-bit code in a char variable. Character
constants are enclosed by single quotes around the character, as 'A ' is the character A.
Special characters are null ' \0 ', line feed ' \n ', form feed ' \f (begin new page),
carriage return ' \r', and ' ' space. Strings are allocated and used in C as if they were
char vectors, are initialized by putting the characters in double quotes, and end in the
null character ' \0'. (Allow an extra byte for it.)

One can initialize a global character c to be the code for the letter a and a global
string s to be ABCD with the global declaration

60 Chapter 2 Programming Microcomputers

Table 2.4. ASCII Codes

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

00 10 20 30

'\0' ' ' 0
! 1

2
3
$ 4
% 5
& 6

7

(8
) 9

'\n' * :
+ ;

'\f , <
V

>
/ ?

40

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

50

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
A

-

60

a
b
c
d
e
f
g
h
i
j
k
I
m
n
o

70

P
q
r
s
t
u
V

w
X

y
Z

{
I
}
~

Strings are also very useful for input and output when debugging C programs; we will
discuss the use of strings when we describe the print f function later. However, a
source-level debugger for a C compiler provides better debugging tools. Even so, some
discussion of string-oriented input and output is generally desirable for human interfacing.
This discussion of loStreams will be done in §4.3.6 and §4.4.6.

Characters in strings can be accessed by indexing or by pointers. An index can be
incremented to access each character, one after another, from first to last character. Or a
pointer to a character such as p can be used; *p is the character that it points to and
* (p+ +) returns the character pointed to and then increments the pointer p to point to the
next character in the string. Alternatively, an index can be used.

The characters you type on a terminal are usually stored in memory in a character
string. You can use a typed word as a command to execute a routine, with unique words
for executing each routine. A C program comparing a string stored in memory, and
pointed to by p, to a string stored in s tart_word is shown as main ().

char *p, start_word[6] = "START"; /* assume p points to a string stored elsewhere */
void main () { int i,nomatch;

for(i = nomatch = 0;i<5;i++){
i f (* (p + +) != start_word[i]){ nomatch=l; break;}

f (nomatch = = ()) strt(); /* if the string is START then execute the strt proc */

Inside the loop, we compare a character at a time of the input string against the string
s tart_word. If we detect any difference, we set local variable noma tch because the user
did not type the string start_,word. But if all five characters match up - the user did
type the word start_word - the program calls strt, presumably to start something.

2,2 Data Structures

The assembly language for this C program is listed below.

00000867 C7
00000868 87
00000869 6C82
0000086B 6C80

7; if(*(p+ +)
0000086D FE0806
00000870 A630
00000872 7E0806
00000875 EE80
00000877 A1E20800
0000087B 2707
0000087D C601
0000087F 87
00000880 6C82
00000882 2008

6: for(

00000884 08
00000885 6E80
00000887 8E0005
0000088A 2DE1

0000088C EC82
0000088E 2603
00000890 160896

9: }
00000893 1B84
00000895 3D

10: void strt() {} ;
strt:
00000896 3D

for(i = nomatch = 0;
CLRB
CLRA
STD 2,SP

STD 0,SP

.'=- start_word[i]) { nomatch=l; break;}}
LDX $0806

RTS

Besides character strings, bit strings are important in microcontrollers. In particular, a
very nice coding scheme called the Huffman code can pack characters into a bit stream
and achieve about a 75% reduction in storage space when compared to storing the
characters directly in an ASCII character string. It can be used to store characters more
compactly and can also be used to transmit them through a communications link more
efficiently. As a bonus, the encoded characters are very hard to decode without a code
description, so you get a more secure communications link using a Huffman code.
Furthermore, we need to handle data structures and bit shifting using the < < and > >
operators, and bit masking using the & operator, in many I/O procedures. Procedures for
Huffman coding and decoding provide a rich set of examples of these techniques.

62 Chapter 2 Programming Microcomputers

We recommend that you test your ability to read C by studying the procedures to
follow. We also suggest that you compile these procedures and step through them using a
high-level debugger. In this example, we are particularly interested in pointing out that
strings may have elements other than characters (here they are bits). Further, the elements
of strings can themselves be strings or other data structures, provided such data are
decipherable.

The code is rather like Morse code in that frequently used characters are coded as short
strings of bits, just as the often-used letter "e" is a single dot in Morse code. To ensure
that code words are unique and to suggest a decoding strategy, the code is defined by a tree
having two branches at each branching point (binary tree), as shown in Figure 2.4. The
letters at each end (leaf) are represented by the pattern of Is and Os along the branches from
the left end (root) to the leaf. Thus, the character string MISSISSIPPI can be represented
by the bit string 111100010001011011010. Note that the ASCII string would take 88
bits of memory, while the Huffman string would take 21 bits. When you decode the bit
string, start at the root and use each successive bit of the bit string to guide you up (if 0)
or down (if 1) the next branch until you get to a leaf. Then copy the letter and start over at
the root of the tree with the next bit of the bit string. The bit string has equal
probabilities of Is and Os, so techniques used to decipher the code based on probabilities
won't work. It is particularly hard to break a Huffman code.

Figure 2.4. A Huffman Coding Tree

A C program for Huffman coding is shown below. The original ASCII character
string is stored in the char vector strng. We will initialize it to the string
MISSISSIPPI for convenience, although any string of M, I, S, and P letters could be
used. The procedure converts this string into a Huffman-coded 48-bit bit string stored in
the vector code [3] . It uses shift () to shift a bit into code. This procedure, shown
at the end, is also used by the decoding procedure shown between these procedures.

extern int shift(void);

int code [3] , bitlength; /* output code and its length */
char strng [12] = "MISSISSIPPI "; /* input code, terminated in a NULL character */
struct table{ char letter; char charcode[4]; } codetable[4]

= { !S',"XXO", 'I',"X10", 'P1, "110", 'M', "111" };

2.2 Data Structures 63

void main () 1 int row, i; char *point, letter;
for (point=strng; *point ; point+ +) {

for (row = 0; row < 4; row ++){
if (((*point) & 0x7 f) == code table [row] . letter) {

for (i = 0; i < 3; i + +) {
letter = codetable[row].charcode[i];
if (letter ,'= 'X')

{ shift (); code [2] i = (letter & 1); bi t. length* + ; I

Huffman decoding, using the same shift(), is done as follows:

int code [3] = {Oxfll6, OxdOOO, 0}, bitlength = 21; /* input string */
char tbl[3][2] = {{'S',1}, {'I', 2}, { ' P ' , ' M ' } } ;
char strng[20]; /* output string */

void main (){ int row, entry; char *point;
point=strng; row = 0;
while((bitlength---)>=0) {

if ((entry = tbl [row] [shift ()]) < 0x20) row = entry;
else {row -0; *(point+ +) = entry &0x7f; }

i
pol n t = ' \ 0 ' •, / terminate C string with NULL character */

1 = 0; if(0x8000 & code[0]) 1=1; code[0] = code[0] «1;
if (code[lj & 0x8000) code[0] 1=1; code[l] = code[l] «1;
if (code[2] & 0x8000) codefl] 1=1; code[2] = code[2] «1;
return (i);

\

Now that we have shown how nice the Huffman code is, we must admit to a few
problems with it. To efficiently store some text, the text must be statistically analyzed to
determine which letters are most frequent, to assign these the shortest codes. Note that S
is most common, so we gave it a short code word. There is a procedure for generating the
best Huffman code, that is presented in many information theory books, but you have to
get the statistics of each letter's occurrences to get the code. Nevertheless, though less
than perfect, one can use a fixed code that is based on other statistics if the statistics are
reasonably similar. Finally, although the code is almost unbreakable without the decoding
tree, if any bit in the bit string is erroneous, your decoding routine can get completely
lost. This may be a risk you decide to avoid because the code has to be sent through a
communications link that is as error free as possible.

64 Chapter 2 Programming Microcomputers

A deque is a generalized data structure that includes two special cases: the stack and
the queue. A deque (pronounced deck) is a sequence of elements with two ends we call the
top and the bottom. You can only access the top or bottom elements on the deque. You
can push an element on top by placing it on top of the top element, which makes it the
new top element; or you can push an element on the bottom, making it the new bottom
element; or you can pull for pop) the top element, deleting the top element from the
deque, making the next to top element the top element and putting the old top element
somewhere else; or pull (or pop) the bottom element in like manner.

Deques are theoretically infinite, so you can push as many elements as you want on
either the top or bottom. But practical deques have a maximum capacity. If this capacity
is exceeded, we have an overflow error. Also, if you pull more elements than you push,
an underflow error exists.

In the procedure below, note that you cannot really associate the ith word from either
end of a deque with a particular location in memory. In fact, in a pure sense, you can only
access the deque's top and bottom words and cannot read or write any other word in the
deque. In practice, we sometimes access the ith element from the deque's top or bottom
by using a displacement with the indexes that points to the top and bottom words - but
this is not a pure deque. We call it an indexable deque to give it some name.

C declarations and programs for initializing, pushing, and pulling words are shown
below. The buffer is an area of memory set aside for use as the deque expands, that
cannot be used by any other data or program code. The programmer allocates as much
room for the buffer as appears necessary for the worst-case (largest) expansion of the
deque. Two indexes are used to read or write on the top or bottom, and a counter is used to
detect overflow or underflow. The deque buffer is implemented as a ten-element global
vector deque, and the indexes as global unsigned chars top and bottom initialized
to the first element of the deque, as in the C declaration

As words are pulled from top or bottom, more space is made available to push words
on either the top or bottom. To take advantage of this, we think of the buffer as a ring or
loop of words, so that the next word below the bottom of the buffer is the word on the
top of the buffer. That way, as words are pulled from the top, the memory locations can
become available to store words pushed on the bottom as well as words pushed on the
top, and vice versa. Then to push or pop data into or from the top or bottom of it, we can
execute the following procedures:

void pstop (in item_to_push) {
if ((++size) > 10) error = 1;
if (top ==10) top = 0; deque[top++] - item_to_push;

if (top==0) top = 10;
eturn (deque [- - top]);

2.2 Data Structures 65

void psbot (int item_to_push) {

if ((++size) > 10) error = 1;

if (bottom -= 0) bottom - 10;

d'egu e / - bottom] = item_ to_push;

(bottom == 10) bottom = 0;

eturn (deque[bottom++!);

A stack is a deque in which you can push or pull on only one end. We have
discussed the stack accessed by the stack pointer SP, which permits the machine to push
or pull words from the top of the stack to save registers for procedure calls, as well as
SWI and hardware interrupts. Now we consider the stack as a special case of a deque.
(Actually, the 6812 stack can be made a special case of indexable deque using SP with
index addressing.) It is an example of a stack that pushes or pulls elements from the top
only. Another equally good stack can be created that pushes or pulls elements only from
the bottom of the deque. In fact, if you want two different stacks in your memory, have
one that pushes and pulls from the top and another that pushes and pulls from the bottom.
Then both stacks can share the same buffer, as one starts at the top of this buffer (lowest
address) and builds downward, while the other starts at the bottom (highest address) and
builds upward. A stack overflow exists when the top pointer of the stack that builds
upward is equal to the bottom pointer of the stack that builds downward. Note that if one
stack is shorter, then the other stack can grow longer before an overflow exists, and vice
versa. You only have to allocate enough words in the buffer for the maximum number of
words that will be in both at the same time.

Programs to push or pull on the two stacks are simpler than the general program that
operates on the deque, because pointers do not roll around the top or bottom of the buffer.

The final structure that is important in microcomputer systems is the queue. This is
a deque in which we can push data on one end and pull data from the other end. In some
senses, it is like a shift register, but it can expand if more words are pushed than are
pulled (up to the size of the buffer). In fact, it has been called an elastic shift register. Or
conversely, a shift register is a special case of a queue, a fixed-length queue. Queues are
used to store data temporarily, such that the data can be used in the same order in which
they were stored. We will find them very useful in interrupt handlers and in procedures
that interact with them.

One of the rather satisfying results of the notion of data structures is that the stack
and queue, actually quite different concepts, are found to be special cases of the deque. The
two structures are, in fact, handled with similar programs. Other data structures - such as
multidimensional arrays, trees, partially ordered sets, and graphs such as lattices and
banyans - are important in general programming. You are invited to pursue the study of
data structures to improve your programming skills. However, this section has covered
the data structures we have found most useful in microcomputer interface software.

66 Chapter 2 Programming Microcomputers

2.3 Writing Clear C Programs

6812 systems are almost always large enough for programmers to consider the advantages
of writing clear assembly-language programs over the expense of writing short programs.
There may be reason for concern about static efficiency in smaller microcontrollers. An
implementation of the Motorola 6805 has so little memory - 2K words of ROM - and
the programs are so short that static efficiency is paramount and readability is less
important to a good programmer, who can comprehend even poorly written programs.
Readability is significant for programs larger than 16K, even for a good programmer,
because it may have to be written by several programmers who read one another's code
and may have to be maintained long after the original programmers have gone.

A significant technique for writing clear programs is good documentation, such as
using comments and flow charts. Of course, these do not take up memory in the machine
code, so they can be used when static or dynamic efficiency must be optimized. Another
technique is the use of consistent programming styles that constrain the programmer,
thereby reducing the chance of errors and increasing the reader's ease of understanding.
Also, a major idea in clear programming methodology is modular top-down design. We
also need to develop the concept of object-oriented programming. In order to discuss these
ideas, we first need to further refine our understanding of procedures and arguments,

2.3.1 C Procedures and Their Arguments

Conceptually, arguments or parameters are data passed from or to the calling routine to
or from a C procedure, like the x sin (x). Inside the procedure, the parameter is declared
as a variable, such as y, as in sin (int y) { ... }. It is called the formal parameter.
Each time the procedure is called the calling routine uses different variables for the
parameter. The variable in the calling routine is called the actual parameter. For
example, at one place in the program we put sin (alpha), in another, sin (beta), and
in another, sin (gamma). Variables alpha, beta, and gamma are actual parameters.

At the conceptual level, arguments are called by value, result, reference, or name. In
call by value, the actual parameters themselves are passed into the procedure. In call by
result, a formal parameter inside the procedure is usually left in a register (D). This value
is usually then used in an expression or stored into its actual parameter after the procedure
is finished.

In call by reference, or call by name, the data remain stored in the calling routine
and are not actually moved to another location, but the address of the data is given to the
procedure and the procedure uses this address to get the data whenever it needs to. The
addresses of the actual parameters are input to the procedure. Inside the procedure, the
address can be used to read the actual parameter data or to modify it. Large vectors, lists,
arrays, and other data structures can be more effectively called by reference so they don't
have to be copied into and out of the subroutine's local variables.

A procedure in C may be called by another procedure in C as a function. The
arguments may be the data themselves, which are call by value, or the address of the data,
which is call by reference or name.

2.3 Writing Clear C Programs 67

HIWARE's C compiler passes a function's single input and output argument in a
register. An 8-bit argument is passed in accumulator B, a 16-bit argument in D, a 24-bit
in B (high byte) and index register X (low 16 bits), and a 32-bit argument in D (high 16
bits) and X (low 16 bits). Consider in t square (int i) { return i*i; }.

TFR D,Y

EMUL

RTS

If an input operand needs to be saved within the procedure, it is generally pushed on
the stack upon entry, like a hidden local variable. In the following example, unsigned
int swap (unsigned int i) { return (i » 8) I (i « 8); }, shows this.

00000887 3B PSHD

00000888 B784 EXG

0000088A 3B PSHD

0000088B EC82 LDD

0000088D B710 TFR

0000088F C7 CLRB

00000890 EA81 GRAB

00000892 AAB3 ORAA

00000894 3D RTS

If more than one input argument is declared, all but the last argument are pushed on
the stack before the subroutine is called and pulled after the subroutine returns. Consider
RaisePower (&k, &j , i), returning j to the power i in k: where i, j, and k are
integers; i is passed by value, while j and k are passed by name.

void RaisePower (int *k, int *j, int i) {
for(*k = 1; i--;) *k = *k * *j;

The called procedure is implemented as

RaisePower:

00000887 EE84 LDX 4,SP

00000889 CD0001 LDY #1

0000088C 6DOO STY 0,X

0000088E B745 TFR D,X

00000890 2011 BRA *+19 ;abs = 08A3

3: for(*k = 1; i--;) *k = *k

00000892 ED84 LDY

00000894 EC40 LDD

00000896 34 PSHX

00000897 EE84 LDX 4,SP

00000899 3B PSHD

0000089A ECOO LDD

0000089C B765 TFR

0 00008 9E 31 PULY

68 Chapter 2 Programming Microcomputers

0000089F 13

000008AO 6COO
000008A2 30

000008A3 19 IF

0000 08A5 8EOOOO

000008A8 B765

000008AA 26E6

4: ;

00 000 SAC 3D RTS

5: void main () { int i, j - 2;

main:
000 00 SAD C602 LDAB #2

00000 8AF 87 CLRA

000008BO 6CAC STD 4,-SP
6' : jRa i s e Power (&i,

000008B2 1A82 LEAK 2,SP

000008B4 34 PSHX

000008B5 1A82 LEAK 2 , SP
000008B7 34 PSHX

000008B8 52 INCB

000008B9 07CC BSR

000008BB 1B88 LEAS

7: /
000008BD 3D

Call by value, as i is passed, does not allow data to be output from a procedure, but
any number of call-by-value input parameters can be used in a procedure. Actual
parameters passed by name in the calling procedure have an ampersand (<£) prefixed to
them to designate that the address is put in the parameter. In the called procedure, the
formal parameters generally have an asterisk (*) prefixed to them to designate that the
data at the address are accessed. Observe that call-by-name formal parameters./ or k used
inside the called procedure all have a prefix asterisk. A call-by-name parameter can pass
data into or out of a procedure, or both. Data can be input to a procedure using call by
name, because the address of the result is passed into the procedure and the procedure can
read data at the given address. A result can be returned from a procedure using call by
name, because the address of the result is passed into the procedure and the procedure can
write new data at the given address to pass data out of the procedure. Any number of call-
by-name input/output parameters can be used in a procedure.

A procedure may be used as a function which returns exactly one value and can be
used in the middle of algebraic expressions. The value returned by the function is put in a
return statement. For instance, the function power can be written

2.3 Writing Clear C Programs 69

This function can be called within an algebraic expression by a=power(b, 2), The
output of the function named in the return statement is passed by call by result.

In C, the address of a character string can be passed into a procedure, which uses a
pointer inside it to read the characters. For example, the string s is passed to a procedure
puts that outputs a string by outputting to the user's display screen one character at a
time using a procedure pu tchar. The procedure puts is written

It can be called in either of three ways, as shown side by side:

The first calling sequence, though permissible, is clumsy. The second is often used to
pass different strings to the procedure, while the third is preferred when the same constant
string is passed to the procedure in the statement of the calling program. The third calling
sequence is often used to write prompt messages out to the user and to pass a format
string to a formatted input or output procedure like printf (described shortly).

A prototype for a procedure can be used to tell the compiler how arguments are
passed to and from it. At the beginning of a program we write all prototypes, such as

extern void puts (char *);

The word extern indicates that the procedure pu t s (j is not actually here but is
elsewhere. The procedure itself can be later in the same file or in another file. The
argument char * indicates that the procedure uses only one argument and it will be a
pointer to a character (i.e., the argument is called by name). In front of the procedure name
a type indicates the procedure's result. The type void indicates that the procedure does not
return a result. After the prototype has been declared, any calls to the procedure will be
checked to see if the types match. For instance, a call puts (' A ') will cause an error
message because we have to send the address of a character (string), not a value of a
character to this procedure. The prototype for power () is:

extern int power (in t, int};

to indicate that it requires two arguments and returns one result, all of which are call-by -
value-and-result 16-bit signed numbers. The compiler will use the prototype to convert
arguments of other types if possible. For instance, if x and y are 8-bit signed numbers
(of type char) then a call power (x,y) will automatically extend these 8-bit numbers to
16-bit signed numbers before passing them to the procedure. If a procedure has a return

70 Chapter 2 Programming Microcomputers

n statement that returns a result, then the type statement in front of the procedure name
indicates the type of the result. If that type is declared to be void, as in the puts ()
procedure, there may not be a return n statement that returns a result.

At the beginning of each file, prototypes for all procedures in that file should be
declared. While writing a procedure name and its arguments twice, once in a prototype and
later in the procedure itself, may appear clumsy, it lets the compiler check for improper
arguments and, where possible, instructs it to convert types used in the calling routine to
the types expected in the called routine. We recommend the use of prototypes.

The macro is similar to a procedure, but is either evaluated at compile time or is
inserted into the program wherever it is used, rather than being stored in one place and
jumped to whenever it is called. The macro in C is implemented as a #define construct,
As # defines were earlier used to define constants, macros are also expanded just before
the program is compiled. The macro has a name and arguments, rather like a procedure,
and the rest of the line is the body of the macro. For instance

#define f(a, b, c) a = b * 2 + c

is a macro with name f and arguments a, b, and c. Wherever the name appears in the
program, the macro is expanded and its arguments are substituted. For instance if f (x,
y, 3) appeared, then x = y * 2 + 3 is inserted into the program. Macros with
constant arguments are evaluated at compile time, generating a constant at run time.

The procedures get char and gets input characters and character strings; InDec and
inHex input decimal numbers and hexadecimal numbers, and putchar, puts, and
print f output characters, character strings, and formatted character strings. These very
powerful functions are actually executed in a host computer on whose keyboard the user is
typing and on whose screen the user is reading the results, rather than in the target 6812
microcomputer, to avoid the loading of a lot of extra machine code for these I/O functions
along with the program, which may be a serious problem if the target computer's
memory is limited. They are not available when the 6812 microcontroller is used without
a host computer in a real stand-alone system. The target 6812 computer being debugged is
designed to carry out predetermined illegal instructions to actually execute these procedures
in the host computer. When the monitor gets an illegal instruction "interrupt," the host
computer reads the instruction from the target computer's memory. If it is one of the
predetermined illegal instructions selected to call these input-output procedures, the host
will execute the procedures, examining the target memory and writing data into it as
needed, and then resume the program after the illegal instruction. The C procedures
strcpy and streat are also very useful but can be easily loaded into the target
computer to manipulate strings being input or output.

The procedure print f requires a character string format as its first parameter and
may have any number of additional parameters as required by the format string. The
format string uses a percent sign (%) to designate the input of a parameter, and the
characters following the % establish the format for the output of the parameter value.
While there are a large number of formats, we generally use only a few. The string "%d"
will output the value in decimal. For instance, if i has the value 123, then

print f (" The number i s %

2.3 Writing Clear C Programs 71

will print on the terminal
The number is 123

Similarly, "%x" will output the value in hexadecimal. If i has the value Ox 1A, then

print f("The number is Ox%X", i);

will print on the terminal
OxlA

If a number is put between the % and the d or X letters, that number gives the
maximum number of characters that will be printed. If that number begins in a zero, it
specifies the exact number of characters that are printed for the corresponding parameter.

Similarly, "%s" will output a string of characters passed as a parameter. For
instance,

char st[6] = "ALPHA";
printf("%s", st) ;

will print on the terminal
ALPHA

Observe that the integers for decimal or hexadecimal output are passed by value, but the
string is passed by name, as we discussed earlier in this section. Thus, for example,

print f ("Hi There \nHow are you ? ") ;

will print on the terminal
Hi There
How are you?

Decimal numbers can be input using in Dec, and hexadecimal numbers are input
using inHex. They stop inputting when a nondigit character is typed in. Character
strings input using gets can be analyzed and disassembled using indexes in or pointers
to the strings. Character strings can be assembled for output using puts by the
procedures s trcpy and strcat. The procedure strcpy (s1, s2); will copy string s2
(up to the null character at its end) into string si. The procedure s trca t (si, s2) / will
concatenate string s2 (up to the null character at its end) onto the end of string si.
These simple procedures are shown below.

strcpy(sl,s2) char *sl, s2; { while(*s2) *sl++ = *s2++; }

streat(char *sl, char *s2) { while(*sl)sl++; while(*s2) *sl++=*s2++; }

We have examined techniques for calling subroutines and passing arguments. We
have also learned to use some simple tools for input and output in C. We should now be
prepared to write subroutines for interface software.

72 Chapter 2 Programming Microcomputers

2.3.2 Programming Style

We conform our programming techniques to some style to make the program easier to
read, debug, and maintain. The use of a consistent style is recommended, especially in
longer programs where static efficiency is not paramount. For instance, we can rigidly
enforce reentrancy and use some conventions to make this rather automatic. Another
programming style, structured programming, uses only simple conditional and loop
operations and avoids GOTO statements. After this we discuss top-down and bottom-up
programming, which leads to an introduction to object-oriented programming.

An element of structured programming is the use of single entry point, single exit
point program segments. This style makes the program much more readable because to
get into a program segment, there are no circuitous routes that are hard to debug and test.
The use of C for specification and documentation can force the use of this style. The
conditional and loop statements described in §2.1 are single entry point, single exit point
program segments, and they are sufficient for almost all programs. The while loop
technique is especially attractive because it tests the termination condition before the loop
is done even once, so programs can be written that accommodate all possibilities,
including doing the loop no times. And the for loop is essentially a beefed-up while
loop. You can use just these constructs. That means avoiding the use of GOTO
statements. Several years ago, Professor Edsger Dijkstra made the then controversial
remark, "GOTOs Considered Harmfull" Now, most good programmers agree with him.
We heard a story (from Harold Stone) that Professor Goto in Japan has a sign on his desk
that says "Dijkstras Considered Harmful!" (Professor Goto denies this.) A significant
exception is the reporting of errors. We sometimes GOTO an error-reporting or error-
correcting routine if an error is detected, such as an abnormal exit point for the program
segment. Errors can alternatively be reported by a convention such as using the carry bit
to indicate the error status: you exit the segment with carry clear if no errors are found and
exit with carry set if an error is found. Thus, all segments can have single exit points.

Top-down design produces programs more quickly than ad hoc and haphazard
writing. You write a main program that calls subroutines (or just program segments)
without writing the subroutines (or segments). A procedure is used if a part of the
program is called many times, and a program segment - not a procedure - is used if a part
of the program is used only once. The abstract specification is translated into a main
program, which is executed to check that the subroutines and segments are called up in the
proper order under all conditions. Then the subroutines (or segments) are written in lower-
level subroutines (or segments) and tested. This is continued until the lowest-level
subroutines (or segments) are written and tested. Superior documentation is needed in this
methodology to describe the procedure and program segments so they can be fully tested
before being written. Also, subroutine inputs and outputs have to be carefully specified.

The inverse of top-down design is bottom-up design, in which the lowest-level
subroutines or program segments are written first and then fully debugged. These are built
up, bottom to top, to form the main program. To test the procedure, you write a short
program to call the procedure, expecting to discard this program when the next higher-
level program is written. Bottom-up design is especially useful in interface design. The
lowest-level procedure that actually interfaces to the hardware is usually the trickiest to
debug. This methodology lets you debug that part of the program with less interference

2.3 Writing Clear C Programs 73

from other parts. Bottom-up design is like solving an algebra problem with three separate
equations, each equation in one unknown. Arbitrarily putting all the software and hardware
together before testing any part of it is like simultaneously solving three equations in
three unknowns. As the first algebraic problem is much easier, the use of bottom-up
design is also a much easier way to debug interfacing software. In a senior level
interfacing course at the University of Texas, students who tried to get everything
working at once spent 30 hours a week in the lab, while those who used bottom-up
design spent less than 10 hours a week on the same experiments.

Combinations of top-down and bottom-up design can be used. Top-down design
works well with the parts of the program that do not involve interfacing to hardware, and
bottom-up design works better with the parts that do involve interfacing.

2.3.3 Object-Oriented Programming

The concept of object-oriented programming was developed to program symbolic
processes, database storage and retrieval systems, and user-friendly graphic interfaces.
However, it is ideally suited to the design of I/O devices and systems that center on them.
It provides a programming and design methodology that simplifies interface design.

Object-oriented programming began with the language SMALLTALK. Programmers
using C wanted to use object-oriented techniques. Standard C cannot be used, but a
derivative of C, called C++, has been developed to utilize objects with a syntax similar to
that of C. A 6812 C++ compiler written by HIWARE was used to generate code for
6812-based microcontrollers to check out the ideas described below.

C++ has a few differences from C. C++ permits declarations inside expressions, as in
for (int. i = 0; i < 10; i + +). Parameters can be called by reference using a
PASCAL-like convention; & in front of a formal parameter is like VAR. See the actual
parameter a and corresponding formal parameter b below.

The advantage of call by reference over call by name, used in C or C++, is clarity. You do
not need to put the & in front of the actual parameter in the calling procedure, nor do you
need to put the * in front of the formal parameters where they appear inside the
procedure.

An object's data are data members and its procedures axe function members; data and
function members are encapsulated together in an object. Combining them is a good
idea because the programmer becomes aware of both together and logically separates them
from other objects. As you get the data, you automatically get the function members used
on it. In the class for a queue shown below, observe that data members QSize, Qlen,
error, Qin, QOut, and QEnd are declared much as in a C struct, and function
members push, pull, and error are declared pretty much like prototypes are declared
in C. Protection terms, protected, public, and virtual, will be soon explained.

74 Chapter 2 Programming Microcomputers

class Queue { protected: char Error; int *QIn, *QOut, *QEnd;
public: char QSize, Qlen; Queue(char); virtual void push (int};
virtual int pull(void); virtual char error(void)/

A class's function members are written rather like C procedures, with the return type
and class name in front of two colons and the function member name.

void Queue:: push (int i) {
if ((Qlen +=2) > QSize) Error = 1;
if(QEnd == Qln) Qln -= QSize;
*(QIn++)=i;

int Queue: : pull () {
if ((Qlen -= 2) < 0) Error = 1;
if(QEnd == QOut) QOut -= QSize;
return (Q0ut++) ;

char Queue : : error ()
{ char i; i= Error; Err or- 0; return i; }

Any data member, such as QSize, may be accessed inside any function member of
class queue, such as push () . Inside a function member, when a name appears in an
expression, the variable's name is first searched against local variables and function formal
parameters. If the name matches, the variable is local or an argument. Then the variable is
matched against the object data members, and finally against the global variables. In a
sense, object data members are global among the function members because each of them
can get to these same variables. However, it is possible that a data member and a local
variable or argument have the same name, such as size. The data member can be
identified as this~>size, using the keyword this as a pointer to the object that called
the function member, while the local variable or argument is just size.

C++ uses constructors, allocators, destructors, and deallocators. An allocator
allocates data member storage; it has the same function name as the class name. A
constructor initialize these variables, a destructor terminates the use of an object, and a
deallocator recovers storage for data members for later allocation. We do not use a
deallocator in our experiments; it is easier to reset the 6812 to deallocate storage. A
destructor has the same function name as the class name but has a tilde (~) in front of the
function member name. We will use destructors later. Here is Queue's constructor:

Queue::Queue(short i)

Throughout this text, a conventional C procedure allocate provides buffer storage for
an object's data members, as its allocator, and for an object's additional storage such as its

2.3 Writing Clear C Programs 75

queues. The contents of global variable free are initialized to the address just above the
last global variable; storage between free and the stack pointer is subdivided into buffers
for each object by the all oca te routine. Note that the stack used for return addresses and
local variables builds from one end and the allocator builds from the other end of a
common RAM buffer area. The procedure allocate's return type void * indicates a
pointer to anything.

char *free = Oxb80;
void *allocate (int i) {

void *p = free;

free + = i;
return p;

A global object of a class is declared and then used as shown below:

Queue Q(10);
void main() { int i;

Q.push(l) ;

i = Q.pulK) ;

The object's data members, QSize, Qlen, Error, Qin, QOut, and QEnd, are stored in
global memory just the way a global struct is stored. If a data member could be accessed
in main, as in i = Q. Err or or i = Qptr->Err or (we see later that it can't be so
accessed), the data member is accessed by using a predetermined offset from the base of the
object exactly as a member of a C struct is accessed. Function members can be called
using a notation like that used to access struct data; Q.push(l) calls Q'S push
function member to push 1 onto Q'S queue. The "Q. " in front of the function member is
rather like a first actual parameter, as in push (Q, 1) , but can be used to select the
function member to be ran, as we will see later, so it appears before the function.

The class's constructor is executed before the main procedure is executed, to initialize
the values of data members of the object. This declaration Q(10) passes actual parameter
1 0 to the constructor, which uses it, as formal parameter i, to allocate 10 bytes for the
queue. The queue is stored hi a buffer assigned by the allocate routine.

Similarly a local object of a class can be declared and then used as shown.

void main() { int i;

Queue Q(10) ;
Q.push(l) ;

i = Q.pulK) ;

The data members QSize, Qlen, Error, Qin, QOut, and QEnd are stored on the
stack, and the constructor is called just after main is entered to initialize these data
members; it then calls allocate to find room for the queue. The function members are

76 Chapter 2 Programming Microcomputers

called the same way, as in the first example when the object was declared globally.
Alternatively, a pointer Qptr to an object can be declared globally or locally; thus an

object is set up and then used as shown.

void main() { int i;

Queue * Qptr;

Qptr = new Queue (20) ;

Qptr ->push (1) ;

i = Qptr ->pull (} ;

In the first line, Qptr, a pointer to an object of class queue, is declared here as a local
variable. (Alternatively it could have been declared as a global variable pointer.) The
expression Qptr = new Queue (20) ; is put any where before the object is used. This is
called blessing the object. The allocator and then the constructor are both called by the
operator new. The allocate routine automatically provides room for the data members
QSize, Qlen, Error, Qin, QOut, and QEnd . The constructor explicitly calls up the
allocate procedure to obtain room for the queue itself and then initializes all the object's
data members. After it is thus blessed, the object can be used in the program. An
alternative way to use a pointer to an object is with a ftdefine statement to insert the
asterisk as follows:

#define Q (*Qptr)
void main () { int i;

Queue *Qptr = new Queue (20);
Q.push(l); i = Qptr. pull ();

Wherever the symbolic name Q appears, the compiler substitutes (*Qptr) in its place.
Note that *ptr .member is the same as ptr->member. So this makes the syntax of the
use of pointers to objects match the syntax of the use of objects most of the time.
However, the blessing of the object explicitly uses the pointer name.

A hierarchy of derived and base classes, inheritance, overriding, and factoring are all
related ideas. A class can be a derived class (also called subclass) of another class, and a
hierarchy of classes can be built up. We create derived classes to use some of the data or
function members of the base class, but we can add members to, or replace some of the
members of, the base class in the derived class. For instance, the aforementioned class
Queue can have a derived class charQueue for char variables; it declares a potentially
modifiable constructor, and different function members pull andpusli for its queue.
When defining the class CharQueue, the base class (also called superclass) of
CharQueue is written after its name and a colon as .-Queue. A class such as Queue,
with no base class, is called a root class; its declaration has no colon and base class.

class CharQueue : public Queue {
public:CharQueue(char); virtual void push(int);
virtual int pull(void);

2.3 Writing Clear C Programs 77

CharQueue::CharQueue(char i) : Queue(i) {}

void CharQueue:: push (int i) {
if((Qlen++)>(QSize))Error=1;
if(QEnd==QIn)QIn-=QSize;*(((char*)QIn)+

int CharQueue:: pull () {
if((Qlen--) ==0) Error=1;
if(QEnd=^QOut)QOut-=QSize;
return * (((char*)QOut)+ +) ;

}

The notion of inheritance is that an object will have data and function members
defined in the base class(es) of its class as well as those defined in its own class. The
derived class inherits the data members or function members of the parent that are not
redefined in the derived class. If we execute Qptr->error (10); then the function
member Queue:: error is executed because CharQueue does not declare a different error
function member. If a function member cannot be found in the class which the object was
declared or blessed for, then its base class is examined to find the function member to be
executed. In a hierarchy of derived classes, if the search fails in the class's base class, the
base class's base class is searched, and so on, up to the root class. Overriding is the
opposite of inheritance. If we execute Qptr-->push (l) , - the function member
CharQueue:: push is executed rather than Queue.-: push because the class defines an
overriding function member. Although this derived class uses no additional variables,
these rales of inheritance and overriding apply to data members as to function members.

Most programmers face the frustration of several times rewriting a procedure, such as
one that outputs characters to a terminal, only to wish they had saved an earlier copy for
use in later programs. Frequently reused procedures can be kept in a library. However
when we collect such common routines, we will notice some universal parts in different
routines. Common parts of these library procedures can be put in one place by factoring.
Factoring is common to many disciplines - for instance, to algebra. If you have ab + ac
you can factor out the shared term a and write a (b + c), which has fewer multiplies.
Similarly, if a large number of classes use the same function member, instead of
reproducing the function member in each, such a function member can be in one place in
a base class where all derived classes inherit it. Also, if an error were discovered and
corrected in a base class's function member, it is automatically corrected for use in all the
derived classes that use the common function member. We will use these ideas of
factoring and inheritance to develop a library of classes for 6812 I/O interfacing. The
CharQueue's constructor, using the notation :Queue(i) just after the constructor's name
CharQueue::CharQueue (char i) and before the constructor's body in {;, calls the
base class's constructor before its own constructor is executed. In fact, CharQueue's
constructor does nothing else, as is denoted by the empty procedure {}. All derived
classes declare their constructor, even if that constructor does nothing but call its base
class's constructor. Other function members can call their base's function members by the
keyword inherited as in inherited: :push (i) ,• or by explicitly naming the class, in
front of the call to the function, as in Queue: :push (i);.

78 Chapter 2 Programming Microcomputers

Consider the hypothetical situation where a program can declare classes Queue and
CharQueue,. Inside main, are a number of statements Qptr->push (l) ; and i =
Qptr->pul I () ;, At compile time, either of the objects can be declared for either Queue
or CharQueue, using conditional compilation; for instance, see the program on the left,

void main () { int. i; void main () { int i; Queue; *Qptr;
ftifdef mode #ifdef mode

Queue Q(10); Qptr = new Queue (10) ;

#else #else
CharQueue Q(10) ; Qptr = new CharQueue (10);

#endif #endif
Q.push(l); i = Q.pullO; Qptr->push(l) ; i = Qptr->puli () ;

which declares Q a class Queue object if mode is #declared; otherwise it is a class
CharQueue object. Then the remainder of the program is written unchanged.
Alternatively, at compile time, a pointer to objects can be blessed for either the Queue or
the CharQueue class. The program above right shows this technique.

Moreover, a pointer can be blessed to be objects of different classes at run time. At
the very beginning of main, assume a variable called range denotes the actual maximum
data size saved in the queue:

void main(){ int i, range; Queue *Qptr;

if(range<128) Qptr = new Char Queue (10);
else Qptr = new Queue (10);
Qptr->push (1) ;
i = Qptr->pull () ;

}

Qptr->push (1) ; and i = Qptr->pull () ; will use the queue of 8-bit members if the
range is small enough to save space, otherwise it will use a queue that has enough room
for each element to hold the larger data, as will be explained shortly.

Figure 2.5. An Object and Its Pointers

2.3 Writing Clear C Programs 79

Polymorphism means that any two classes - especially a class and one of its
inherited classes - can declare the same function member name and argument. It means
that simple intuitive names like push can be used for interchangeable function members
of different classes. Polymorphism will be used later when we substitute one object for
another object; the function member names and arguments do not have to be changed.
You don't have to generate obscure names for functions to keep them separate from each
other. Moreover, in C++, the number and types of operands, called the function's
signature, are part of the name when determining if two functions have the same name.
For instance, push (char a) is a different function than push (int a).

When a pointer to an object is able to be blessed at runtime as a pointer to different
classes, the virtual function becomes very useful. If we do not insert virtual in front
of a function member in the class declaration, then the function is directly called by means
of a JSR, BSR, or LBSR instruction, just like a normal C procedure. If a function member
is declared virtual, then to call it, we look its address up in a table shown on the right side
of Figure 2.5, This table is used because generally, a lot of objects of the same class
might be declared or blessed, and they might have many virtual function members. For
instance there could be queues for input and for output, and queues holding temporary
results in the program. As Figure 2.5 shows, to avoid storing the pointers to virtual
function members with every object that uses them, their pointers are collected together
and put in a common table for the class. This is accomplished by having the new
operator at runtime put the address of a different table into a hidden pointer (Figure 2.5)
that points to a table of virtual function member addresses, depending on the run-time
value of range in the last example. Then, data members are easily accessed by the
pointer, and virtual function members are almost as easily accessed by means of a pointer
to a pointer. If a function member is executed, as in Q. Push (i) or Qptr->push (1) ,
the object's hidden pointer has the address of a table of function members; the specific
function member is jumped to by using a predetermined offset from the hidden pointer.
Different objects of the same class point to the same table. Note that data members of
different objects of a class are different data items, but function members of different
objects of a class are common to all the objects of the same class via this table.

The user may want to enable or disable virtual functions throughout an application.
We suggest writing VIRTUAL in place of vir tual in the class definition. If we then
write Me fine VIRTUAL virtual, the class member functions are declared virtual. But
if we write #define VIRTUAL /**/ then the member functions are not virtual.

When object pointers are blessed at run time and have virtual function members, if a
virtual function member appears for a class and is overridden by function members with
the same name in its derived classes, the sizes and types of all the arguments should be
the same, due to the fact that the compiler does not know how an object will be blessed at
ran time. If they were not, the compiler would not know how to pass arguments to the
function members. For this reason, we defined the arguments of charQueue' s push and
pull function members to be int rather than char, so that the same function-member
name can be used for the int version, or a char version, of the queue. This run-time
selection of which class to assign to an object isn't needed with declarations of objects,
but only with blessing of object pointers, since the run-time program can't select at
compile time which of several declarations might be used. Also, the pointer to the object
must be declared an object of a common base class if it is to be used for several classes.

80 Chapter 2 Programming Microcomputers

Information hiding limits access to data or function members. A member can be
declared public, making it available everywhere; protected, making it available only to
function members of the same class or a derived class of it; or private, making it
available only to the same class's function members and hiding it from other functions,
These words appearing in a class declaration apply to all members listed after them until
another such word appears; the default if no such words appear is private. The data
member Error in the class Queue cannot be accessed by a pointer in main as in 1 =
0. Error or i = Q->Error because it is not public, but only through the public
function member error f) . This way, the procedure main can read (and automatically
clear) the Error variable, but cannot accidentally or maliciously set Error, nor can it
read it, forgetting to clear it. You should protect your data members to make your
program much more bug-proof. Declare all data and function members as private if they
are only to be used by the class's own function members, declare them protected if they
might be used by derived classes, and declare them public if they are used outside the
class and its derived classes.

Templates generalize object-oriented programming. A template class is a class that
is defined for an arbitrary data type, which is selected when the object is blessed or
declared. The class declaration and the function members have a prefix like template
<class T> to allow the user to bless or declare the object for a specific class having a
particular data type, as in Q = new Queue<char> (1 0) . The generalized class definition
is given below; you can substitute the word char for the letter T everywhere in the
declarations or the class function members.

The following class also exhibits another feature of C++ - especially a class and its
inherited classes - the ability to write the function member inside the declaration of the
class. The function is written in place of the prototype for the function. This is especially
useful when templates are used with short function members because otherwise the
notation template <class T> and the class name Queue:: would have to be repeated
before each function member.

template? <class T> class Queue {

private: T *QIn, *QOut, *QEnd, QSize, Qlen; char Error;

public : Queue<T>: : Queue (short i)
{ QEnd=(QIn=QOut=(T*) allocated) + (QSize=i)) ; Qlen=Error= 0; }

VIRTUAL Queue<T>:: push (T i)
{ if ((++Qlen) >=QSize) Error =1 ; if (QEnd^ =QIn) QIn-=QSize; * (QIn+ +) -=i / }

VIRTUAL T pull ()

{if((...... -Qlen)<0)Error=l;if(QEnd==QOut)QOut-=QSize;return*(QOut

VIRTUAL char error () { char i; i=Error; Error=0; return i; }

2.3 Writing Clear C Programs 8!

If you declare Queue<char> Q(10); or bless Qptr = new Queue<chai ••-(<<;
then a queue is implemented that stores 8-bit data; but if you declare Queue<in t > Q , 21; /
or bless Qptr = new Queue<int> (10);, then a queue is implemented that stores 16-bit
data. Clearly, templates permit us to define one generalized class that can be declared or
blessed to handle 8-bit, 16-bit, or 32-bit signed or unsigned data when the program is
compiled. This selection must be made at compile time, since it generates different calls.

Operator overloading means that the same operator symbol generates different
effects, depending on the type of the data it operates on. The C compiler already
effectively loads its operators. The + operator generates an ADDB instruction when adding
data of type char and an ADDD instruction when adding data of type int. What C++
does but C cannot do is to overload operators to do different things when an operand is an
object, which depends on the object's definition. In effect, the programmer provides a new
part of the compiler that generates code for symbols, depending on the types of data used
with the symbols. For instance, the « operator used for shift can be used for input or
output if an operand is an I/O device. The expression Q « a can be defined to output the
character a to the object Q, and Q » a can be defined to input into a a character from
the object Q. This type of operator overloading is used in I/O streams for inputting or
outputting formatted character strings. Without this feature, we simply have to write our
function calls as a=Q. input () and Q. Output (a) rather than Q « a or Q - * <...
However, with overloading we write a simpler program; for instance we can write an I/O
stream (? « a « " is the value of " « b;. Overloading creates arithmetic -
looking expressions that use function members to evaluate them. Besides operators like +
and -, C++ considers cast and assignment (=) to be operators. In the following example,
we overload the cast operator as shown by operator T (); and the assignment operator as
shown by T operator = (T); T will be a cast, like char, so operator T (); will
become opera tor char () ; . Whenever the compiler has an explicit cast like (char)i,
where i is an object, or an implicit cast where object i appears in an expression needing
a char, the compiler calls the user-defined overloaded operator to perform the cast
function. Similarly, wherever the compiler has calculated an expression that has a char
value but the assignment statement has an object i on its left, the compiler calls up the
overloaded = operator the user specifies with T operator = (T) /.

puhlic: Queue(short i) {
QEnd= (QIn=QOut=(T*)allocate(i)+(QSize=i)); Qlen=errors=0;

VIRTUAL void push(T i) {
i f I (++Q1 en) >QSi ze) errors=l ;
1 f (QEnd==QIn) QIn-~=QSize;
*(QIn++)=i;

82 Chapter 2 Programming Microcomputers

VIRTUAL T pull (void) {
i £ ((- -Qlen) >0) errors =1 ;
i£(QEnd==QOut)QOut-=QSize;
return *(QOut + +);

VIRTUAL char error (void)
{ char i; i = errors; errors=0; return i; }

operator T () { return pull(); }; /* cast operator */

T opera tor= (T da ta) {push (da ta) ; return da ta ; } //* assignment */

Now, whenever the compiler sees an object on the left side of an equal sign when it
has evaluated a number for the expression on the right side and it would otherwise be
unable to do anything correctly, the compiler looks at your declaration of the overloaded
assignment operator to determine that the number will be pushed onto the queue. The
expression Q = 1; will do the same thing as Q.push (1) ; and *Qptr = l will do the
same thing as Qptr->push(i). Similarly, whenever the compiler sees an object
anywhere on the right side of an equal sign when it is trying to get a number and it would
otherwise be unable to do anything correctly, the compiler looks at your declaration of the
overloaded cast operator, to determine that the number will be pulled from the queue. The
expression! = p/will do the same thing as i = Q.pull (), and i = *0ptrwilldo
the same thing as i = Qptr->pull (). Now if a queue Q returns a temperature in
degrees centigrade, you can write an expression like degreeF = (Q * 9) / 5 + 32; or
degreeF = (*Qptr * 9) / 5 + 32;, and the compiler will pull an item from the
queue each time it runs into the Q symbolic name. While overloading of operators isn't
necessary, it simplifies expressions so they look like common algebraic formulas.

A derived class usually defines an overloaded assignment operator even if its base
class has defined an overloaded assignment operator in exactly the same way, because the
(Metrowerks) C++ compiler can get confused with the =. If QI and Q2 are objects of
class Queue<char>, then QI ~ Q2; won't pop an item from Q2 and push it onto Ql,
as we would wish when we use overloaded assignment and cast operators, but "clones" the
object, copying device2's contents into devlcel as if the object were a struct. That
is, if Ql's class's base class overrides = but Ql's class itself does not override =, Ql =
Q2; causes Q2 to be copied into Ql. However, if = is overridden in Ql 's class
definition, the compiler treats = as an overridden assignment operator, and Ql = Q2 /
pops an item from Q2 and pushes it onto Ql. The derived class has to override = to push
data. The = operator, though quite useful, needs to be carefully handled. All our derived
classes explicitly define opera tor = if "=" is to be overridden.

C++ object-oriented programming offers many useful features. Encapsulation
associates variables with procedures that use them in classes; inheritance permits factoring
out of procedures that are common to several classes; overriding permits the redefinition
of procedures; polymorphism allows common names to be used for procedures; virtual
functions permit different procedures to be selected at run time; information hiding

2.3 Writing Clear C Programs 83

protects data; template classes generalize classes to use different data types; and operator
overloading permits a program to be written in the format of algebraic expressions. If the
programmer doesn't have C++ but has a minimal C compiler, many of the features of
object-oriented programming can be simulated by adhering to a set of conventions. For
instance, in place of a C++ call Queue.push (), one can write instead QueuePush (}.
Information hiding can be enforced by only accessing variables like QptrQSize in
procedures like QueuePush (). C++ gives us a good model for useful C conventions.

2.3.4 Optimizing C Programs Using Declarations

We will discuss some of C++'s techniques that can be used to improve your interface
software, and some techniques that you can use to get around its limitations for this
application. While the techniques discussed here are specific to a C++ compiler, if you are
using another compiler or cross-compiler, similar ideas can be implemented.

C and C++ have some additional declaration keywords. If the word register is put in
front of a local variable, that variable will be stored in a register. Data variables declared as
in register int i or register char c, and pointer variables declared as in
register int *i or register char *c, are stored in a register such as Y. Putting
often-used local variable in registers instead of on the stack obviously speeds up
procedures. It also puts them in known places that can be used in embedded assembly
language, which is discussed in the next subsection. You can check your understanding of
the use of these registers by writing a C procedure with embedded assembly language and
then disassembling your program.

If the word static is put in front of a local variable, that variable will be initialized,
stored, and accessed as is a global variable, but will only be "known" to the procedure as a
local variable is. If the word static is put in front of a global variable or a procedure
name, that variable or procedure will only be known within the file and not linked to
other files. For instance if a C++ project is composed of several files of source code such
as filel.c, file2.c, and so on, then if a procedure fun () in filel.c is declared static, it
cannot be called from a procedure in file2.c. However both filel.c and file2.c can have
procedures fun () in them without creating duplicate procedure names when they are
linked together to run (or download) the procedures. If the word static is put in front of a
class data member, that variable is common to all the objects of the class, just as function
members are common to all objects of the class.

2.3.5 Optimizing C Programs with Assembly Language

Assembly language can be embedded in a C program. It is the only way to insert some
instructions, like CLI , which is used to enable interrupts. It can be used to implement
better procedures than are produced from C source code by the compiler. For instance, the
DBNE instruction can be put in assembly language embedded in C to get a faster do-while
loop. Finally, the DC . B or DC . w directives can be used to build the machine code of
instructions that are in the 6812 instruction set, such as the use of illegal instructions as
calls to debug routines, and are thus not generated by C.

84 Chapter 2 Programming Microcomputers

Many C++ compilers restrict your ability to insert assembly language into its
procedures. Having implemented protection using private, protected, and p u b l i c
declarations, these compilers don't want the programmer to get around this protection
using embedded assembly language. Generally, to embed assembly language in them, the
procedure body is completely written in machine code in in I ine procedures, as in
ill int; It) = 0x1234;, or in a list, as in i nt inline f (i n t) = {0X1234,
0x56 7$, Ox9abcd}; (parameters are optional). However, HIWARE's C++ compiler
permits embedded assembly language.

A single embedded assembly-language instruction is put after an expression asm.
For instance, the line

will insert the SEI instruction in the C procedure. However, no other statements may
appear after this construction. Also, several assembly-language instructions can be put on
consecutive lines; the first line is preceded by asm{ and the last is followed by a
matching }. These first and last lines should have no assembly-language statements on
them. Each intervening line will have a different assembly-language statement on it.

Parameters can be used in assembly-language instructions. For instance, a procedure
clr to quickly clear a block of N bytes starting at location A can be written

void clr (char *A, int N) { asm

The char pointer variable *A is pushed on the stack before the subroutine is called; it
happens to be at an offset of 2,SP when the subroutine is running. The symbolic name A
is used in LDY A, SP, so you don't have to manually compute the stack offset to get the
parameter values. The rightmost argument, label N, is passed in accumulator D.

Consult Chapter 1 and the CPU 12 Reference Manual to understand the machine
coding of 6812 instructions and the meaning of instructions. Using these resources, you
should be able to insert assembly language and machine code into your C++ programs.

2.4 Conclusions

In this chapter, we have surveyed some software background needed for microcomputer
interfacing. The first section introduced C. It was followed by the description and handling
of data structures. C constructs were introduced in order to make the implementation of
storage structures concrete. Indexed and sequential structures were surveyed. We then
covered programming style and procedure-calling and argument-passing techniques. We
then discussed structured, top-down, and bottom-up programming, introducing object-

2.4 Conclusions 85

oriented C. Finally, we showed some techniques used to improve C procedures or insert
necessary corrections to the code produced by the compiler.

If you found any section difficult, we can recommend additional readings. The C
Programming Language by Kernighan and Richie, who were the original developers of
C, remains the bible and fundamental reference for C. A fundamental reference for C++ is
Tutorials on object-oriented programming are available from the IEEE Computer Society
Press. Other fine books are available on these topics, and more are appearing daily. We
might wish to contact a local college or university instructor who teaches architecture,
microprocessors, or C programming for the most recent books on these topics.

Do You Know These Terms?

See page 36 for instructions.

procedure
main
declaration of a

parameter or
a variable

procedure-name
cast
statement
allocate
deallocate
relational operator
logical operator
case
while
do while
for
break
information

structure
data structure
storage structure
define
enum
vector
zero-origin indexing
precision
cardinality

list
structure
struct
typedef
bit field
linked list
array
row major order
column major order
table
string
ASCH code
character string
Huffman code
binary tree
deque
overflow error
underflow error
indexable deque
buffer
public
stack
queue
arguments
parameters
formal parameter
actual parameter

call by value
call by result
call by reference
call by name
return statement
prototype
extern
void
macro
#define
getchar
gets
InDec
InHex
putchar
puts
printf
strcpy
strcat
structured

programming
top-down design
bottom-up design
data members
function members
encapsulate
object

allocator
constructor
destructor
deallocator
blessing
new
derived class
subclass
base class
superclass
root class
inheritance
overriding
inherited
factoring
range
polymorphism
virtual
information hiding
protected
private
template class
operator

overloading
register
static

86 Chapter 2 Programming Microcomputers

Problem 4 is a paragraph correction problem (see the guidelines on page 38). Other
problems in this chapter and many in later chapters are C and C++ language
programming problems. We recommend the following guidelines for problems answered
in C: In main () or "self-initializingprocedures", each statement must be limited to C
operators and statements described in this chapter, should include all initialization
operations, and should have comments as noted at the end of §2./. C subroutines should
follow the C+ + style for C procedures recommended in §2.5./. Unless otherwise noted,
you should write programs with the greatest static efficiency.

1. Write a shortest C or C++ procedure void main() that will find x and y if ax + by
= c and dx + ey - f. Assume a, b, c, d, e, f are global integers that somehow
are initialized with the correct parameters, and your answers, x and y, are stored in local
variables in main (). (You might verify your program with a source-level debugger).

2. Write a shortest C or C++ procedure void main() that will sort five numbers in
global integer vector a [5] using an algorithm that executes four passes, where each pass
compares each a[i], for all i running from 0 to 3, with a [j] , for j = i + :\ to
3 and puts the smaller element ina[i] and larger in a [j] .

3. Write a C or C++ procedure void main() to generate the first five Fibonacci numbers
F(i), (F(0) = F(l) = 1 and for i > 1, F(i) = F(i-l) + F(i-2)) in global int aO, ai,
a2, a.3, s4 so that ai is F(i). Compute F(2), F(3), and F(4).

4.* The information structure is the way the programmer sees the data and is dependent
on such details as the size of words and positions of bits. The data structure is the way the
information is actually stored in memory, right down to the bit positions. A queue is a
sequence of elements with two ends, in which an element can be pushed or pulled from
either the top or bottom. A stack is a special case of queue, where an element can only be
pushed from one end and pulled from the other. An important element in constricted
programming is the use of single-entry single-exit point in a program segment, A calling
routine passes the address of the arguments, called formal parameters, to the procedure. In
call by value and call by result, the data are not actually moved to another location, but
the address of the data is given to the procedure. Large vectors, lists, and arrays can be
more effectively called by reference than by value.

5. A two-dimensional array can be simulated using one-dimensional vectors. Write a
shortest C or C++ procedure void main() to multiply two 3x3 integer matrices, A and
B, putting the result in C, all stored as one-dimensional vectors in row major order.
Show the storage declarations/directives of the matrices, so that A and B are initialized as

1 2 3 1 0 1 3 1 6
A= 4 5 6 B= 11 14 17

7 8 9 1 2 1 5 1 8

Problems 87

6. A long can be simulated using one-dimensional char vectors. Suppose A is a zero-
origin 5x7 array of 32-bit numbers, with each number stored in consecutive bytes most
significant byte first, and the matrix stored in row major order in a 140-byte char vector.
Write a Cor C++procedure in t get (char *a, unsigned char i, unsigned char
j, char *v) where a is the storage array, i and j are row and column, and v is the
vector result. If 0 * i < Sand 0 s; i < 7, this procedure puts the Ith row, fth
column 32-bit value into locations v, v+1, v+2, and v+3, most significant byte first,
and returns 1; otherwise it returns a 0 and does not write into v.

7. A struct can be simulated using one-dimensional arrays char vectors. The
struct {long vl; unsigned int v2:4, v3:8, v4:2, w5:1}; has, tightly packed, a
32-bit element vl, a 4-bit element v2, an 8-bit element v3, a 2-bit element v4, a 1-bit
element v5, and an unused bit to fill out a 16-bit unsigned int. Write shortest C or C++
procedures void getVl(char *s, char *v), void getV2 (char *s, char *v),
void getV3 (char *s, char *v), void, getV4 (char *s, char *v) , void
getV5(char *s, *v), void putVl (char *s, char *v), void putV2 (char *sf

char *v), void putV3(char *s, char *v), void putV4(char *s, char *v),
void putV5(char *s, *v), in which get will copy the element from the struct to
the vector and put will copy the vector into the struct. For example, getV2 (s, v)
copies element V2 into v, and putV5 (s, v) copies v into element V5.

8. Write a shortest C or C++ procedure void main () and procedures it calls, without
any assembly language, that will first input up to 32 characters from the keyboard to the
6812 (using getchar ()) , and will then jump to one of the procedures, given below,
whose name is typed in (the names can be entered in either upper case or lower case, or a
combination of both, but a space is represented as an underscore). The procedures: - void
start (}, void step_up(), void step_down(), void recalibrate (), and void
shut_down () - just type out a message; for instance, start() will type out "Start
Entered" on the host computer monitor. The main () procedure should generate the least
number of bytes of object code possible and should run on HIWAVE. Although you do
not have to use HIWAVE to answer this problem, you can use it without penalty, and it
may help you get error-free results faster.

9. Suppose a string such as "SEE THE MEAT", "MEET A MAN", or "THESE NEAT
TEAS MEET MATES" is stored in char string[40];. Using one-dimensional vector
rather than linked list data structures to store the coding/decoding information:

a. Write a C or C++ procedure encode () to convert the ASCII string to Huffman
code, as defined by the coding tree in Figure 2.6a, storing the code as a bit string, first bit
as most significant bit of first element of in t code [16];.

b. Write a C or C++ procedure decode () that decodes such a code in in t code [l 6],
using the coding tree in Figure 2.6a, putting the ASCII string back as it was in char
string[40] ; ,

10. Repeat problem 9 for the Huffman coding tree in Figure 2.6b.

88 Chapter 2 Programming Microcomputers

11. Write an initialization and four shortest C or C++ procedures - void ps t op < i r i i
push to top, int pltopO pull from top, psbot (int) push to bottom, and im
plbot () pull from bottom, of a 10-element 16-bit word deque. The deque's buffer is
int deque [10] . Use global int pointers, top, and bottom. (Note: the deque in
§2.2.2 used indexes where this deque uses pointers. See also §2.3.3 for a queue that uses
pointers.) Use global char variables for the size of the deque, size, and error flag
errors, which is to remain cleared if there are no errors, and to be 1 if there are
underflow or overflow errors. Note that C or C++ always initializes global variables to
zero if not otherwise initialized. The procedures should manage the deque correctly as long
as errors is zero. Procedures pstop () and psbot (,) pass by value, and procedures
pltop () and plbot () pass by result.

This is a "space" character
(hexadecimal 0x20)

a. Chain b. Uniform Tree

Figure 2.6. Other Huffman Codes

12. Write embedded assembly language in a C or C++ procedure get (char *a, int
i) which moves i bytes following address a into a char global vector v, assuming
v has a dimension larger than or equal to i . To achieve speed, use the MOVE and DBNE
instructions. The call to this procedure, get(s, n), is implemented as follows:

ldx s

pshx

Idd n

jsr get

leas 2,sp

Problems 89

13. Write a C or C++ procedure monadic (in t *a, int * result, int f u n) that
executes any subroutine f u n () in Chapter 1, problem 14, on 32-bit call-by-name
argument a, returning the result in call-by-name argument resul t.

14. Write a C or C++procedure dyadic (int *al, int *a2, int * result, int
tun) that uses an assembly-language subroutine f u n () (described in Chapter 1,
problem 30) to operate on 32-bit call-by-name arguments al and a2, returning the
result in call-by-name argument resul t.

15. Write a shortest C or C++ procedure hexString (unsigned int n, char *s) that
runs in HIWAVE to convert an unsigned integer n into printable characters in s that
represent it in hexadecimal so that s [0] is the ASCII code for the 1000s hex digit, s [1]
is the code for the 100s hex digit, and so on. Suppress leading Os by replacing them with
blanks.

16. Write a shortest procedure int inhexO in C or C++ to input a four-digit
hexadecimal number from the keyboard (the letters A through F may be uppercase or
lowercase, typing any character other than '0'...'9', 'a'...'f, 'A'...'F, or entering more than
four hexadecimal digits, terminates the input and starts the conversion) and convert it to a
binary number, returning the converted binary number as an unsigned int. Although
you do not have to use HIWAVE to answer this problem, you can use it without penalty,
and it may help you get error-free results faster.

17. Write a shortest C or C++ program int check (int base, int size, int
range) to write a checkerboard pattern in a vector of size s - 2n elements beginning
at base, and then check to see that it is still there after it is completely written. It
returns 1 if the vector is written and read back correctly, otherwise it returns 0. A
checkerboard pattern is range r = 2k elements of Os, followed by 2k element of $FF,
followed by 2k elements of Os, . . . for k < n, repeated throughout the vector. (This
pattern is used to check dynamic memories for pattern sensitivity errors.)

18. Write a class Bi tQueue that is fully equivalent to the class Queue in §2.3.3, but
that pushes, stores, and pulls 1-bit values; and all sizes are in bits rather than 16-bit
words. The bits are stored in 16-bit int vectors allocated by the a11ocate () procedure.

19. Write a class shiftint that is fully equivalent to the class Queue in §2.3.3, but
the constructor has an argument n, and function member j = obj. shift (i) / shifts
an in t value i into a shift register of n in ts, and shifts out an in t value to j .

20. Write a class shiftchar that is a derived class of the class shiftint in problem
19, where function member j = shift (i) ; shifts a char value i into a shift register
of n chars and shifts out a char value to j. Shiftchar uses Shi ftint's,
constructor.

90 Chapter 2 Programming Microcomputers

21. Write a class shifts! t that is fully equivalent to the class Shiftlnt in problem
19, but that shifts 1-bit values, and all sizes are in bits rather than 16-bit words. The bits
are stored in 16-bit int vectors allocated by the allocate () procedure.

22. Write a templated class Deque that is a derived class of templated class Queue and
that implements a deque which can be pushed into and pulled from either end. The
function members are pstopO push to top, p l t o p () pull from top, psbot () push to
bottom, and plbotO pull from bottom. Use inherited data and function members
wherever possible.

23. Write a templated class indexDeque that is a derived class of templated class
Queue, and that implements an indexable deque which can be pushed into and pulled from
either end, and in which the ith member from the top or bottom can be read. The
function members are ps top () push to top, pi top (} pull from top, psbot () push to
bottom, plbot () pull from bottom, rdtop(i) read the ith element from the top, and
rdbot (i) read the ith element from the bottom of the deque. Function members
rdtop (i) and rdbot (i) do not move the pointers. Use inherited data and function
members wherever possible.

24. Write a templated class Ma trix that implements matrix addition and multiplication
for square matrixes (number of rows = number of columns). Overloaded operator + adds
two matrixes resulting in a matrix; overloaded operator * multiplies two matrixes
resulting in a matrix; and overloaded operators = and cast with overloaded operator f 7
writes or reads elements. For instance if M is an object of class Ma trix then ML i] [j i
= 5; will write 5 into row i, column j, of matrix M, and k = M[i] [j] ; will read
row i, column j, of matrix Minto k. Matrix's constructor has an argument size
that is stored as a data member size, and that allocates enough memory to hold a size
by size matrix of elements of the template's data width, using a call to the procedure
allocate.

25. Intervals can be used to calculate worst-case possibilities, for instance, in determining
if an I/O device's setup and hold times are satisfied. An interval <a,b>, a * b, is a
range of real numbers between a and b. If <a, b> and <c, d> are intervals A and B,
then the sum of A and B is the interval <a + c, b + d>, and the negative of A is <
b, -a>. Interval A contains interval B if every point in A is also in B. Write a
templated class interval having public overloaded operators + for adding two intervals
resulting in an interval; - for negating an interval resulting in an interval; and an
overloaded operator > returning a char value 1 if the left interval contains the right
interval, and otherwise returning 0. If A, B, and c are objects of class interva J, the
expression A = B + C; will add intervals A and B and put the result in c, A = B;
will put the negative of A into B, and the expression if (A > B) i = 0; will clear i
if A contains B. The template allows for the values such as a or b to be char, int,
or long. The class has a public variable error that is initially cleared, and set if an
operation cannot be done or results in an overflow.

Problems 91

26. Write a templated class interval having the operators of problem 25 and additional
public overloaded operators * for multiplying two intervals to get an interval and / for
dividing two intervals to get an interval, and also showing a procedure
sqrt (interval), which is a friend of interval, for taking the square root Use the
naive rule for multiplication, where all four terms are multiplied, and the lowest and
highest of these terms are returned as the product interval, and assume there is already a
procedure Jong sqrt (long) that you can use for obtaining the square root (do not write
this procedure). If A, B, and c are of class Interval, the expression A = B * C;
will multiply intervals B and c and put the result in A, A = B/C will divide B by c
and put the result in A, and A = sqrt (B) / will put the square root of B into A. Note
that a/bis a * (l/b), so the multiply operator can be used to implement the divide
operator; a - b is a + (-b), so the add and negate operators can be used to implement
the subtract operator; and 4*aisa + a + a + a, so scalar multiplication can be
done by addition. Also, in terval has a public data member error that can be set if we
invert an interval containing 0 or get the square root of an interval containing a negative
value. Finally, write a main() procedure that will initialize intervals a to <1,2>, b to
<3,4>, and c to <5,6>, and then evaluate the result of the expression (-b + sqrt \ l
* b - 4 * a * c)) / (a + a).

92 Chapter 2 Programming Microcomputers

TheMC68HC812A4die.

Bus Hardware and Signals

Understanding the data and address buses is critical, because they are at the heart of
interfacing design. This chapter will discuss what a bus is, how data are put onto it, and
how data from it is used. The chapter progresses logically, with the first section covering
basic concepts in digital hardware, the next section using those concepts to describe the
control signals on the bus, and the final section discussing the important issue of timing
in the microprocessor bus.

The first section of this chapter is a condensed version of background material on
computer realization (as opposed to architecture, organization, and software discussed in
earlier chapters) needed to understand the remainder of the book. This led to the study of
bus timing and control - very important to the design of interfaces. Its importance can
be shown in the following experience. Microcomputer manufacturers have applications
engineers who write notes on how to use the chips the companies manufacture and who
answer those knotty questions that systems designers can't handle. The author had an
opportunity to sit down with Charlie Melear, one of the very fine applications engineers
at Motorola's plant, when the first edition of this book was written. Charlie noted that
the two most common problems designers have are (1) improper control signals for the
bus, whereby several bus drivers are given commands to drive the bus at the same time,
and (2) failure to meet timing specifications for address and data buses. These problems,
which will be covered in §3.2.2, remain. Even today, when much of the hardware is on a
single chip and the designer isn't concerned about them, they reappear when I/O and
memory chips are added to a single-chip microcontroller.

This chapter introduces a lot of terminology to provide background for later sections
and enable you to read data sheets provided by the manufacturers. The terminology is
close to that used in industry, and microprocessor notation conforms to that used in
Motorola data sheets. However, some minor deviations have been introduced where
constructs appear so often in this book that further notation is useful.

This chapter should provide enough background in computer organization for the
remaining sections. After reading the chapter, you should be able to read a logic diagram
or the data sheets describing microcomputers or their associated integrated circuits, and
you also should have a fundamental knowledge of the signals and their timing on a
typical microcomputer bus.

93

3

Chapter 3 Bus Hardware and Signals

3.1 Digital Hardware

The basic notions and building blocks of digital hardware are presented in this section.
While you have probably taken a course on digital hardware design that most likely
emphasized minimization of logic gates, microcomputer interfacing requires an emphasis
on buses. Therefore, this section focuses on the digital hardware that can be seen on a
typical microcomputer bus. The first subsection provides clear definitions of terms used
to describe signals and modules connected to a bus. The second subsection considers the
kinds of modules you might see there.

3.1.1 Modules and Signals

Before the bus is explained, we need to discuss a few hardware concepts, such as the
module and the signal. Since we are dealing in abstractions, we do not use concrete
examples with units like electrons and fields.

Voltage

High Threshold

Low Threshold

True

False

Positive Logic

Negative Logic

Figure 3.1. Voltage Waveforms, Signals, and Variables

False

True

True

False

One concept is the binary signal, (See Figure 3.1.) Although a signal is a voltage
or a current, we think of it only as a high signal if the voltage or current is above a
predefined threshold, or as a low signal if it is below another threshold. We will use the
symbols H for high and L for low. A signal is determinate when we can know for sure
whether it is high or low. Related to this concept, a variable is the information a signal
carries, and has values true (T) and false (F). For example, a wire can carry a signal L,
and being a variable called "ENABLE," it can have a value T to indicate that something
is indeed enabled. The expression assert a variable means to make it true; negate a

3.1 Digital Hardware 95

variable means make it false; and complement a variable means make it true if it was
false or make it false if it was true. Two possible relations exist between signals and
variables. In positive logic, a high signal represents a true variable and a low signal, a
false variable. In negative logic, a high signal represents a false variable and a low
signal, a true variable. Signals, which can be viewed on an oscilloscope or a logic
analyzer, are preferred when someone, especially a technician, deals with actual hardware.
Variables have a more conceptual significance and seem to be preferred by designers,
especially in the early stages of design, and by programmers, especially when writing I/O
software. Simply put, "true" and "false" are the 1 and 0 of the programmer, the architect,
and the system designer; and "high" and "low" are the 1 and 0 of the technician and 1C
manufacturer. While nothing is wrong with using 1 and 0 where the meaning is clear, we
use the words "true" and "false" when talking about software or system design and the
words "high" and "low" when discussing the hardware realization, to be clear.

Two types of variables and their corresponding signals are important in hardware, A
memory variable is capable of being made true or false and of retaining this value, but a
link variable is true or false as a result of functions of other variables. A link variable is
always some function of other variables (as the output of some gate). At a high level of
abstraction, these variables operate in different dimensions; memory variables are used to
convey information through time (at the same point in space), while link variables
convey information through space (at the same point in time). Some transformations on
hardware, like converting from a parallel to a serial adder, are nicely explained by this
abstract view. For instance, one can convert a parallel adder into a serial adder by
converting a link variable that passes the carry into a memory variable that saves the
carry. Also, in a simulation program, we differentiate between the types because memory
variables have to be initialized and link variables don't.

A synchronous signal is associated with a periodic variable (for example, a square
wave) called a clock. The signal or variable is indeterminate except when the clock is
asserted. Or, alternatively, the value of the signal is irrelevant except when the clock is
asserted. Depending on the context, the signal is determinate either precisely when the
clock changes from false to true or as long as the clock is true. The context depends on
what picks up the signal and will be discussed when we study the flip-flop. This is so in
the real world because of delays resulting from circuitry, noise, and transmission-line
ringing. In our abstraction of the signal, we simply ignore the signal except when this
clock is asserted, and we design the system so the clock is asserted only when we can
guarantee the signal is determinate under worst-case conditions. Though there are
asynchronous signals where there is no associated clock and the signals are supposed to
be determinate at all times, most microprocessor signals are synchronous; thus in further
discussions, we will assume all signals are synchronous. Then two signals are
equivalent if they have the same (H or L) value whenever the clock is asserted.

The other basic idea is that of the module, which is a block of hardware with
identifiable input, output, and memory variables. Input variables are the input ports and
output variables are the output ports. Often, we are interested only in the behavior.
Modules are hehaviorally equivalent if, for equivalent values of the initial memory
variables and equivalent sequences of values of input variables, they deliver equivalent
sequences of values of output variables. Thus, we are concerned not about how they are
constructed internally, what the precise voltages are, or what the signals are when the
clock is not asserted, but only about what the signals are when the clock is asserted.

96 Chapter 3 Bus Hardware and Signals

In §1.1.3, we introduced the idea of an integrated circuit (1C) to define the
microprocessor. Now we further explore the concept. An integrated circuit is a module
that is often contained in a dual in-line package, a surface-mount thin-quad flat pack, or
a similar package. The pins are the input and output ports. Viewed from the top, one of
the short edges has an indent or mark. The pins are numbered counterclockwise from this
mark, starting with pin 1. Gates are defined in the next section, but will be used here to
describe degrees of complexity of integrated circuits. A small-scale integrated circuit, or
SSI, has in the order of 10 gates on one chip, a medium-scale integrated circuit (MSI)
has about 100, a large-scale integrated circuit (LSI) has about 1,000, and a very large
scale integrated circuit (VLSI) has more than 10,000. SSI and MSI circuits are
commonly used to build up address decoders and some I/O modules in a microcomputer;
LSI and VLSI are commonly used to implement 8- and 16-bit word microprocessors,
64K-bit and 128K-bit memory chips, and some complex I/O chips.

A family of integrated circuits is a collection of different types made with the same
technology and having the same electrical characteristics so that they can be easily
connected with others in the same family. Chips from different families can be
interconnected, but this might require some careful study and design. The low-power
Schottky or LS family, and the complementary metal oxide semiconductor or CMOS
family, are often used with microprocessors. The LS family is used where higher speed is
required, and the CMOS family, where lower power or higher immunity to noise is
desired. The HCMOS family is a high-speed CMOS family particularly useful in 'A4
designs because it is fast enough for address decoding but requires very little power and
can tolerate large variations in the power supply.

A block diagram was introduced at the beginning of §1.4. In block diagrams, names
represent variables rather than signals, and functions like AND or OR represent functions
on variables rather than signals. An AND function, for example, is one in which the
output is T if all the inputs are T. Such conventions ignore details needed to build the
module, so the module's behavior can be simply explained.

Logic diagrams (also called schematics) describe the realization of hardware to the
level of detail needed to build it. In logic diagrams, modules are generally shown as
rectangles, with input and output ports shown along the perimeter. Logic functions are
generally defined for signals rather than variables (for example, an AND function is one
whose output is H if its inputs are all H). It is common, and in fact desirable, to use
many copies of the same module. The original module, here called the type, has a name,
the type name. Especially when referring to one module copy among several, we give
each copy a distinct copy name. The type name or copy name may be put in a logic
diagram when the meaning is clear, or both may be put in the rectangle or over the left
upper corner. Analogous to subroutines, inputs and outputs of the type name are formal
parameter names, and inputs and outputs of the copy name are actual parameter names.
Integrated circuits in particular are shown this way: formal parameters are shown inside a
box representing the integrated circuit, and pin numbers and actual parameters are shown
outside the rectangle for each connection that has to be made. Pins that don't have to be
connected are not shown as connections to the module. (Figure 3.3 provides some
examples of these conventions.)

Connections supplying power (positive supply voltage and ground) are usually not
shown. They might be identified in a footnote, if necessary. In general, in LSI and VLSI
N channel MOS chips such as microprocessors and I/O chips discussed in these notes,

3.1 Digital Hardware 97

Vss is the ground pin (0 volts) and Vcc or Vdd is usually +5 volts. You might remember
this by a quotation improperly attributed to Winston Churchill: "ground the SS ," For
SSI and MSI chips, the pin with the largest pin number is generally connected to +5
volts, while the pin catercorner from it is connected to ground. One should keep power
and ground lines straight and wide to reduce inductance that causes ringing, and put a
capacitor (. 1 microfarad disc) between power and ground to isolate the ICs from each
other. When one chip changes its power supply current, these bypass capacitors serve to
prevent voltage fluctuations from affecting the voltage supplied to other chips, which
might look like signals to them. Normally, such a capacitor is needed for four SSI chips
or each LSI chip, but if the power and ground lines appear to have noise, more capacitors
should be put between power and ground.

In connections to inner modules, negative logic is usually shown by a small bubble
where the connection touches the rectangle. In inputs and outputs to the whole system
described by the logic diagram, negative logic is shown by a bar over the variable's
name. Ideally, if a link is in negative logic, all its connections to modules should have
bubbles. However, since changing logic polarity effects an inversion of the variable,
designers sometimes steal a free inverter this way; so if bubbles do not match at both
ends, remember that the signal is unchanged, but the variable is inverted as it goes
through the link.

A logic diagram should convey all the information needed to build a module,
allowing only the exceptions we just discussed to reduce the clutter. Examples of logic
diagrams appear throughout this book. An explanation of Figures 3.2 and 3.3, which
must wait until the next section, should clarify these conventions.

3,1.2 Drivers, Registers, and Memories

This section describes the bus in terms of the D flip-flop and the bus driver. These
devices serve to take data from the bus and to put data onto it. The memory - a
collection of registers - is also introduced.

A gate is an elementary module with a single output, where the value of the output
is a Boolean logic function of the values of the inputs. The output of a gate is generally
a link variable. For example, a three-input NOR gate output is true if none of its inputs
are true, otherwise it is false. The output is always determined in terms of its inputs. A
buffer is a gate that has a more powerful output amplifier.

Your typical gate has an output stage that may be connected to up to f other inputs
of gates of the same family (f is called the fan-out) and to no other output of a gate. If
two outputs are connected to the same link, they may try to put opposite signals on the
link, which will certainly be confusing to inputs on the link and may even damage the
output stages. However, a bus or buss is a link to which more than two gate outputs
are connected. The gates must have specially designed output amplifiers so that all but
one output on a bus may be disabled. The gates are called bus drivers. An upper limit to
the number of outputs that can be connected to a bus is called the fan-in. Bus drivers
may also be buffers to provide higher power to drive the bus. And in these cases, the gate
may be very simple, so that it has just one input, and the output is the complement of
the input (inverting) or the same signal as the input (noninverting).

98 Chapter 3 Bus Hardware and Signals

An open collector gate or open collector driver output can be connected to a wire-
OR bus (the bus must have a pull-up resistor connected between it and the positive
supply voltage). If any output should attempt to put out a low signal, the signal on the
bus will be low. Only when all outputs attempt to put out a high signal will the output
be high. Generally, the gate is a two-input AND gate, with inputs in positive logic and
output in negative logic. Data, on one input, are put onto the bus whenever the other
input is true. The other input acts as a positive-logic enable. When the enable is
asserted, we say the driver is enabled. Since this bus is normally used in the negative-
logic relationship, the value on the bus is the OR of the outputs, which is so common
that the bus is called a wire-OR bus.

A tristate gate or tristate driver has an additional input, a tristate enable. When the
tristate enable is asserted (the driver is enabled), the output amplifier forces the output
signal high or low as directed by the gate logic. When the enable is not asserted, the
output amplifier lets the output float. Two or more outputs of tristate gates may be
connected to a tristate bus. The circuitry must be designed to ensure that no two gates
are enabled at the same time, lest the problem with connecting outputs of ordinary gates
arise. If no gates are enabled, the bus signal floats - it is subject to stray static and
electromagnetic fields. In other words, it acts like an antenna.

Figure 3.2. Some Common Gates

Gates are usually shown in logic diagrams as D-shaped symbols, the output on the
round edge and inputs on the flat edge. (See Figure 3.2 for the positive-logic AND,
NAND, and other gates.) Even though they are not shown using the aforementioned
convention for modules, if they are in integrated circuits, the pin numbers are often
shown next to all inputs and outputs.

3.1 Digital Hardware 99

Dynamic logic gates are implemented by passing charges (collections of electrons
or holes) through switches; the charges have to be replenished, or they will discharge.
Most gates use currents rather than charges and are not dynamic. Dynamic logic must be
pulsed at a rate between a minimum and a maximum time, or it will not work; but
dynamic logic gates are more compact than normal (static) logic gates.

Figure 3.3. Logic Diagrams for a Popular Driver and Register

Gates are usually put into integrated circuits so that the total number of pins is 14
or 16, including two pins for positive supply voltage and ground. This yields, for
instance, the quad two-input NAND gate, the 7400, which contains four two-input
positive logic NAND gates. The 74HC00 is an HCMOS part with the pin configuration
of the older 7400 TTL part. The 7404 has six inverters in a chip; it is called a hex
inverter, so it is a good treat for Halloween (to invert hexes). A typical microprocessor
uses an 8-bit-wide data bus, where eight identical and separate bus wires carry 1 bit of
data on each wire. This has, in an 1C, engendered octal bus drivers, with eight inverting
or noninverting bus drivers that share common enables. The 74HC244 and 74HC240 are
popular octal noninverting and inverting tristate bus driver integrated circuits. Figure

100 Chapter 3 Bus Hardware and Signals

3.3a shows a logic diagram of the 74HC244 in which, to clearly show pin connections,
the pins are placed along the perimeter of the module exactly as they appear on the dual
in-line package. A positive 5-volt supply wire is connected to pin 20, and a ground wire
to pin 10. If the signals on both pins 1 and 19 are low, the eight separate tristate gates
will be enabled. For instance, the signal input to pin 2 will be amplified and output on
pin 18. If pins 1 and 19 are high, the tristate amplifiers are not enabled, and pin outputs
18, 16, 14, 12, 3, 5, 7, and 9 are allowed to float. This kind of diagram is valuable in
catalogs to most clearly show the inputs and outputs of gates in integrated circuits.

To save effort in drawing logic diagrams, if a number n of identical wires connect
to identical modules, a single line is drawn with a slash through it and the number n is
drawn next to the slash, or a list of n pins is written next to the line. Corresponding
pins in the list at one end are connected to corresponding pins in the list at the other end.
Commonly, however, the diagram is clear without showing the list of pin numbers.
Also, if a single wire is connected to several pins, it is diagrammed as a single line, and
the list of pins is written by the line. Figure 3.3c shows how the 74HC244 just
discussed might be more clearly shown connecting to a bus in a logic diagram. Note the
eight tristate drivers, their input and output links shown by one line and gate symbol.
The list of 8 input and 8 output pins indicates the driver should be replicated eight times,
Each input in the input list feeds the corresponding output in that list.

A D flip-flop, also called a (1-bit) latch, is an elementary module with data input
D, clock C, and output Q. Q is always a memory variable having the value of the bit
of data stored in the flip-flop. When the clock C is asserted (we call it a clocked flip-
flop), the value of D is copied into the flip-flop memory. The clock input is rather
confusing because it is really just a WRITE ENABLE. It sounds as though it must be
the same as the microcomputer system clock. It may be connected to such a clock, but
usually it is connected to something else, such as an output of a controller, which is
discussed in §1.1.1. It is, however, the clock that is associated with the synchronous
variable on the D input of that flip-flop, since the variable has to be determinate
whenever this clock is asserted. As long as C is asserted, Q is made equal to D. As long
as C is false, Q remains what it was. Note that when C is false, Q is the value of D at
the moment when C changed from true to false. However, when C is asserted, the flip-
flop behaves like a wire from D to Q, and Q changes as D changes. D flip-flops are used
to hold data sent to them on the D inputs, so the data, even though long since gone from
the D input, will still be available on the Q output.

A D edge-triggered flip-flop is like the D flip-flop, except that the data stored in it
and available on the Q output are made equal to the D input only when the clock C
changes from false to true. The clock causes the data to change (the flip-flop is clocked)
in this very short time. A D master slave flip-flop (also called a dual-rank flip-flop) is a
pair of D flip-flops where the D input to the second flip-flop is internally connected to
the Q output of the first, and the second flip-flop's clock is the complement of the first
flip-flop's clock. Though constructed differently, a D master slave flip-flop behaves the
same as the D edge-triggered flip-flop. These two flip-flops have the following property:
data on their Q output are always the former value of data in them at the time that new
data are put into them. It is possible, therefore, to use the signal output from an edge-
triggered flip-flop to feed data into the same or another edge-triggered flip-flop using the
same clock, even while loading new data. This should not be attempted with D flip-flops
because the output will be changing as it is being used to determine the value to be

3,1 Digital Hardware 101

stored in the flip-flops that use the data. When a synchronous signal is input to a D
edge-triggered flip-flop, the clock input to the flip-flop is associated with the signal, and
the signal only has to be determinate when the clock changes from false to true.

In either type of flip-flop or in more complex devices that use flip-flops, the data
have to be determinate (a stable high or a stable low signal) over a range of time when
the data are being stored. For an edge-triggered or dual-rank flip-flop, the setup time is
the time during which the data must be determinate before the clock edge. The hold time
is the time after the clock edge during which the data must be determinate. For a latch,
the setup time is the minimum time at the end of the period when the clock is true in
which the data must be determinate; and the hold time is the minimum time just after
that when the data must still be determinate. These times are usually specified for worst-
case possibilities. If you satisfy the setup and hold times, the device can be expected to
work as long as it is kept at a temperature and supplied with power voltages that are
within specified limits. If you don't, it may work some of the time, but will probably
fail according to Murphy's law, at the worst possible time.

In most integrated circuit D flip-flops or D edge-triggered flip-flops, the output Q is
available along with its complement, which can be thought of as the output Q in
negative logic. They often have inputs - set, which if asserted will assert Q, and reset,
which if asserted will make Q false. Set and reset are often in negative logic; when not
used, they should be connected to a false value or high signal. Other flip-flops such as
set-reset flip-flops and JK edge-triggered flip-flops are commonly used in digital
equipment, but we won't need them in the following discussions.

A one-shot is rather similar to the flip-flop. It has an input TRIG and an output Q,
and has a resistor and capacitor connected to it. The output Q is normally false. When the
input TRIG changes from false to true, the output becomes true and remains true for a
period of time T that is fixed by the values of a resistor and a capacitor.

The use of 8-bit-wide data buses has engendered ICs that have four or eight flip-flops
with common clock inputs and common clear inputs. If simple D flip-flops are used, the
module is called a latch; if edge-triggered flip-flops are used, it is a register. Also,
modules for binary number counting (counters) or shifting data in one direction (shift
registers) may typically contain four or eight edge-triggered flip-flops. Note that even
though a module may have additional capabilities, it can still be used without these
capabilities. A counter or a shift register is sometimes used as a simple register. More
interestingly, a latch can be used as a noninverting gate or using the complemented Q
output as an inverter. This is done by tying the clock to true. The 74HC163 is a popular
4-bit binary counter; the 74HC164, 74HC165, and 74HC299 are common 8-bit shift
registers; and the 74HC373 and 74HC374 are popular octal latches and registers, with
built-in tristate drivers. The 74HC374 will be particularly useful in the following
discussion of practical buses, since it contains a register to capture data from the bus as
well as a tristate driver to put data onto the bus.

The following conventions are used to describe flip-flops in logic diagrams. The
clock and D inputs are shown on the left of a square, the set on the top, the clear on the
bottom, and the Q on the right. The letter D is put by the D input, but the other inputs
need no letters. The clock of an edge-triggered flip-flop is denoted by a triangle just inside
the jointure of that input. This triangle and the bubble outside the square describe the
clocking. If neither appears the flip-flop is a D flip-flop that inputs data from D when the
clock is high; if a bubble appears, it is a D flip-flop that inputs data when the clock is

102 Chapters Bus Hardware and Signals

low; if a triangle appears, it is an edge-triggered D flip-flop that inputs data when the
clock changes from low to high; and if both appear, it is an edge-triggered D flip-flop
that inputs data when the clock input changes from high to low. This notation is quite
useful because a lot of design errors are due to clocking flip-flops when the data is not
ready to be input. If a signal is input to several flip-flops, they should all be clocked at
the same time, when the signal will be determinate.

The logic diagram of the 74HC374 is shown in Figure 3.3b as it might appear in a
catalog. Note that the common clock for all the edge-triggered D flip-flops on pin 11
makes them store data on their own D inputs when it rises from low to high. Note also
that when the signal on pin 1 is low, the tristate drivers are all enabled, so the data in the
flip-flops is output through them. Using this integrated circuit in a logic diagram, we
might compact it using the bus conventions, as shown in Figure 3.3d.

An (i,j) random access memory (RAM) is a module with i rows and j columns of
D flip-flops and an address port, an input port, and an output port. A programmable
read-only memory (PROM) is like a RAM, but can only be read having been written at
the factory. A row of the memory is available simultaneously and is usually referred to
as a word, and the number j is called the word width. There is considerable ambiguity
here, because a computer may think of its memory as having a word width, but the
memory module itself may have a different word width, and it may be built from RAM
integrated circuits having yet a different word width. So the word and the word width
should be used in a manner that avoids this ambiguity. The output port outputs data read
from a row of the flip-flops to a bus and usually has bus drivers built into it. Sometimes
the input and output ports are combined. The address port is used to input the row
number of the row to be read or written. A memory cycle is a time when the memory
can write j bits from the input port into a row selected by the address port data, read j
bits from a row selected by the address port data to the output port, or do nothing. If the
memory reads data, the drivers on the output port are enabled. There are two common
ways to indicate which of the three possible operations to do in a memory cycle. In one,
two variables called chip enable (CE) and read/not write (R/W) indicate the
possibilities; a do-nothing cycle is executed if CE is false, a read if CE and R/W are
both asserted, and a write if CE is asserted but R/W is not. In the other, two variables,
called read enable (RE) and write enable (WE), are used. When neither is asserted,
nothing is done; when RE is asserted, a read is executed; and if WE is asserted, a write is
executed. Normally, CE, RE, and WE are in negative logic. The memory cycle time is
the time needed to complete a read or a write operation and be ready to execute another
read or write. The memory access time is the time from the beginning of a memory
cycle until the data read from a memory are determinate on the output, or the time when
data to be written must be determinate on the input of the memory. A popular, fast (20-
nanosecond access time) (4,4) RAM is the 74LS670. It has four input ports and four
separate output ports; by having two different address ports it is actually able to
simultaneously read a word selected by the read address port and to write a word selected
by the write address port, A large (8K, 8) RAM is the 6264. It has a 13-bit address, eight
input/output ports, and two Es and W variables that permit it to read or write any word
in a memory cycle. A diagram of this chip appears in Figure 6.13.

The programmable array logic (PAL) chip has become readily available and is
ideally suited to implementing microcomputer address decoders and other "glue" logic.
(See Figure 3.4.)

3,1 Digital Hardware 103

Figure 3.4. 16R4 PAL Used in Microcomputer Designs

A PAL is basically a collection of gates whose inputs are connected by fuses like a
PROM. The second line from the top of Figure 3.4 represents a 32-input AND gate that
feeds the tristate enable of a 7-input NOR gate, which in turn feeds pin 19. Each crossing

104 Chapter3 Bus Hardware and Signals

line in this row represents a fuse, which, if left unblown, connects the column to this
gate as an input; otherwise the column is disconnected, and a T is put into the AND
gate. Each triangle-shaped gate with two outputs generates a signal and its complement
and feeds two of the columns. The second line from the top can have any input from pins
2 to 9 or their complement, or the outputs on pins 12 to 19 or their complement, as
inputs to the AND gate. For each possible input, the fuses are blown to select the input
or its complement, or to ignore it. Thus, the designer can choose any AND of the 16 I/O
variables or their complements as the signal controlling the tristate gate. Similarly, the
next seven lines each feed an input to the NOR gate, so the output on pin 19 may be a
Boolean "sum-of-products" of up to seven "products," each of which may be the AND of
any I/O variable or its complement. This group of eight rows is basically replicated for
each NOR gate. The middle four groups feed registers clocked by pin 1, and their outputs
are put on pins 14 to 17 by tristate drivers enabled by pin 11. The registers can store a
state of a sequential machine, which will be discussed further in §4.3.4. PALs such as
the PAL16L8 have no registers and are suited to implementing address decoders and other
collections of gates needed in a microcomputer system. There is now a rather large
family of PALS having from zero to eight registers and one to eight inverted or
noninverted outputs in a 20-pin DIP, and there also are 24-pin DIP PALs. These can be
programmed to realize just about any simple function, such as an address decoder

3.2 Address and Control Signals in 6812 Microcontrollers

One of the main problems designers face is how to control bus drivers so two of them
will never try to drive the same bus at the same time. To approach this problem, the
designer must be acquainted with control signals and the sequences of control signals
generated by a microprocessor. This section is devoted to aspects of microprogramming
and microcomputer instruction execution necessary for the comprehension and
explanation of control signals on the microcomputer bus. The problem of controlling
memory and I/O devices is first one of designing address decoders, and second, of timing
the address, data, and control signals. The first subsection covers the decoding of address
and control signals. The second subsection discusses timing requirements. With this
discussion, you should understand how to interface memory and I/O devices to the buses,
which is at the heart of the aforementioned problem.

3.2.1 Address and Control Timing

One common problem faced by interface designers is the problem of bus timing. To
connect memory or I/O registers to the microprocessor, the actual timing requirements of
the address bus and data bus have to be satisfied. When adding memory or I/O chips, one
may have to analyze the timing requirements carefully. To build decoders, timing control
signals must be ANDed with address signals. Therefore, we discuss them here. We
discuss first the simpler, nonmultiplexed 'A4 bus and then the multiplexed 'B32 bus.
The reader should study both timings, regardless of which system is to be used.

3.2 Address and Control Signals in 6812 Microcontrollers

c

D

Ar\

I

• " " • rj: " " '«* +» i •*
50 nsNk'

\

N
>r.

Figure 3.5. Some Timing Relationships

Timing diagrams are used to show the requirements. A timing diagram is like an
oscilloscope trace of the signals, as is shown in Figure 3.5. For collections of variables,
like the 16 address lines shown by the trace labeled A, two parallel lines indicate that any
particular address line may be high or low but will remain there for the time interval
where the lines are parallel. A crossing line indicates that any particular line can change
at that time. A line in the middle of the high and low line levels indicates the output is
floating because no drivers are enabled, or the output may be changing as it tries to reach
a stable value. A line in the middle means the signal is indeterminate; it is not
necessarily at half the voltage. (Motorola also uses a Crosshatch pattern like a row of Xs
to indicate that the signal is invalid but not Instated, while a line in the middle means
the output is in the tristate open circuit mode on the device being discussed. That
distinction is not made in this book, because both cases mean that the bus signal is
indeterminate and cannot be used.) Timing is usually shown to scale, as on an
oscilloscope, and requirements are indicated the way dimensions are shown on a blue
print. On the left, the "dimension arrow" shows that addresses change 50 nanoseconds
after C rises, and, in the middle, the "dimension arrow" shows that the address should be
stable for at least 150 nanoseconds.

125-

EClk

Addr[15 to 0]

R/W and LSTRB

Data[15 to 0]

\-^ bu —

x
/I

1̂

20

^

/ -^ bU—

/s

»̂-

20

\
^^ fĉ

25

,̂ MI*̂~""

X
V\

a. Read Cycle

Figure 3.6. Timing Relationships for the MC68HC812A4

Chapter 3 Bus Hardware and Signals

•125-

EClkV*

X

Data[15 to 0]

20

-̂P>

25)C
r
K:

b. Write Cycle

Figure 3.6. continued

Pins otherwise used for ports A, B, and possibly C or D are used for the address and
data bus. (Additional address bus expansion is considered in §6.1.) In the 'A4 narrow
mode, pins otherwise used for port C are used for the data bus, and pins used for port E
bits 2 and 4 are used for control signals read/write (R/W) and E clock (E). In the ' A4
wide mode, pins are used as in the narrow mode; in addition, pins otherwise used for
port D are also used for the data bus, and a pin used for port E bit 3 is used for the low
strobe LSTRB. The 'B32 time-multiplexes the address and data on port A and B pins.

A memory cycle is a period of time when the 6812 requests memory to read or
write a word. The E clock is low in the first part and high in the second part of the
memory cycle, and the address bus A[15 to 0] supplies the address of the data to be read
or written as long as E is high. See Figure 3.6.

A memory cycle is either a read cycle, where data is read from a memory or input
device, or a write cycle, where data is written into a memory or output device. In a read
cycle, R/W is high during the cycle and the data bus - D[7 to 0] in the narrow mode, and
D[15 to 0] in the wide mode - moves data from the memory or I/O device to the 'A4. In
a write cycle, R/W is low during the cycle and the data bus - D[7 to 0] in the narrow
mode and D[15 to 0] in the wide mode - moves data the opposite way.

We will first look at an example to show the principles of bus transfers, using
approximate numbers for timing. (See Figure 3.6 for approximate timing relationships
of the 'A4.) The timings represent worst-case numbers and do not necessarily add up; for
instance, the E clock is low for at least 60 nanoseconds and high for at least 60
nanoseconds (adding up to 120 nanoseconds), but the cycle time may be no shorter than
125 nanoseconds. Other microprocessors have similar timing relationships.

The E clock can be an 8 MHz square wave. A memory cycle begins and ends when
E falls from high to low. The address bus is indeterminate from the beginning of the
cycle for 40 nanoseconds, which is 20 nanoseconds before E rises. This delay is due to
the propagation of control signals to gate drivers and the propagation of the address
through an internal bus to the external address bus. In a read cycle, the read/write signal,
shown in trace R/W, remains high throughout the cycle, and the microprocessor expects
valid data on the data bus for 20 nanoseconds before the falling edge of E, until it falls.
These times are the setup and hold times of registers inside the 'A4. If any data line

Address and Control Signals in 6812 Microcontrollers 107

changes in this interval, the microprocessor may randomly input either an L or H on that
line. The memory is responsible for providing valid and constant signals during this
interval during the setup and hold time. In a write cycle, the R/W signal is guaranteed
low at the time the address becomes stable and can rise 25 nanoseconds after the
beginning of the next cycle. Due to delays in the path of the control signal and the delay
through the bus driver between an internal bus and the data bus, the data to be written are
put on the data bus and are guaranteed determinate 40 nanoseconds after the rising edge of
E and remaining stable for 25 nanoseconds after E falls. These signals are available to
control the memory. We note, however, that R/W does not have a rising edge whose
timing can be depended on. R/W is not a timing signal You cannot depend on it to
satisfy setup and hold times. Similarly, address signals are not precisely aligned with the
memory cycle. Such timing signals are often required and can be obtained by ORing the
R/W with the inverted E clock or ANDing E with the AND of various address signals or
their complements. Alternatively, the 'A4 chip select signals can be used; see §6.2.2,

•125"

EClk

Addr[15 to 0]
Data[15 to 0]

R/W and LSTRB

Y^ 50

X

^

20

/ "^ bU

y

21 }-\

i ^4*. ^

^»

18

23

\

\
-^
^

X"
1 fl

^̂•~

/

r
\

a. Read Cycle

EClk

R/W and LSTRB

DBE

•̂ i

«\-—

0]

1

X
\

20

^

^b P^

/
^ ,-" ^^

> >
\

__ ^

V

15

\ _l
^^ fc^

25 x_
r

A~
b. Write Cycle

Figure 3.7. Timing Requirements of the Motorola MC68HC912B32

108 Chapter 3 Bus Hardware and Signals

In the MC68HC912B32, to save pins, the port address is sent from the
microprocessor on the same bus as the memory address. This bus replaces only PORTA
and PORTB. DBE is high when the bus contains an address that is an I/O address or a
memory address, and low when data are on the bus. See Figure 3.7. An external latch
must be built to capture the address when DBE is T (1), and the address decoder should
assert the enable low only when the E clock is T (1) and DBE is F (0).

In analyzing timing requirements, one compares the timing of two parts, such as the
microprocessor and some memory to be connected, as we do in §6.5. The object is to
verify whether data will be available at the receiver when needed. One should be aware
that a specific chip may not meet all of its specifications. Some manufacturers just test a
few chips from each batch, while others (such as Motorola) test each part for most
specifications. A design in which some requirements are not satisfied may still work.
because some parts may surpass their specifications. In fact, if you are willing to take
the time or pay the expense, you can screen the parts to find out which ones meet your
tighter specifications. However, if the system fails because the design does not meet its
parts' specifications, we blame the designer. If the design meets specifications but the
system fails, we blame the part manufacturer or the part.

The key idea you need from this discussion is that the E signal has a falling edge
which establishes the setup and hold timing for the read cycle, and the timing for
determinate data during the write cycle. The R/W signal, which is often mistakenly used
for write-cycle timing, has a rather sloppy rising edge, occurring well into the next cycle.
The R/W signal is like the address signals in its timing. Therefore, as we build address
decoders in Chapter 4 for I/O devices, we generally AND the complement of the E clock
with address and R/W signals, or their inverses, to obtain the enables for I/O devices.
Other aspects of bus timing will be further considered in Chapter 6.

3.2.2 Address and Control Signal Decoding

To define the problem of designing address decoders, we first describe the ' A4 address and
data bus signals and the control signals associated with them. Figure 3.8 shows these
signals for the two available external bus modes on both the *A4 and 'B32. The narrow
mode permits the attachment of 8-bit wide memory and I/O devices, while the wide mode
permits attachment of 16-bit wide memory and I/O devices,

Table 3.1. Address Map for a Microcomputer

The design problem is to use the 'A4 address and control signals to enable each
memory and I/O device when and only when it is supposed to read or write data. For a
given system, the address map identifies all the memories and I/O devices used by the
microcontroller and the range of addresses each device uses. Each memory or I/O device is

3.2 Address and Control Signals in 6812 Microcontrollers 109

listed on a line, and the address lines that must be 1 or true (T), must be 0 or false (F), or
are not specified (X) are shown. See Table 3.1. If a device has 2n memory words in it,
then the low-order n address bits should be unspecified (X) because these bits are
generally input to the device and decoded internally to select therein the word to be read or
written. The device address ranges must be mutually exclusive; no two devices should be
selected by any address (an exception called a shadowed output device is considered in
§4.1.1). The selection of the addresses to be used for each device, which determines how
the address map is written, can significantly affect the cost of the control logic, but while
there is no exact theory on how to select the addresses to minimize the cost of the
control circuit, most designers acquire an adequate skill through trial and error. Generally,
a good design is achieved, nevertheless, if either the addresses for each device are evenly
spaced in the range of addresses, or else if a number of devices are contiguously addressed.

The address decoder enables a device when it should read data in a read cycle, write
data in a write cycle, or both. It is designed in two steps. First, an arbitrarily large
negative-logic output AND gate (a NAND gate) is designed, that inputs address and
control signals, some of which are to be inverted. Second, this generally unrealizable
NAND gate is implemented in terms of available gates or other integrated circuits.

Figure 3.8. Address and Data Bus Signals

110 Chapter 3 Bus Hardware and Signals

c. MC68HC912B32 Wide Expanded Bus d. MC68HC912B32 Narrow Expanded Bus

Figure 3.8. continued

Figure 3.9. Decoding for Table 3.1

3.2 Address and Control Signals in 6812 Microcontrollers 111

When a reliable hardware system is needed, such as to debug software, complete
decoding is indicated. Basically, every address line and control line must feed into the
large NAND gate, unless it is supplied to the device to be used internally. Figure 3.9a
shows the NAND gates needed to completely specify the decoding of the devices shown
in Table 3.1 for the narrow mode. The E clock is ANDed into each gate because the
addresses are only valid when E is true. R/W is not ANDed into a decoder gate if it is
used inside the device.

To reduce hardware costs, incomplete decoding may be used. It assumes that the
program will only use permissible addresses that are listed in the address map. The
decoders use the least number of inputs to each gate such that no permissible address will
enable a device other than the device specified in the address map. Consider the address
map of Table 3.1 as you reduce the ROM's NAND gate. If A14 is deleted from the gate,
then the ROM is enabled if the address is in the range OxfcOO to Oxffff, which it should
be, and echo range OxbcOO to Oxbfff, which it shouldn't be. But the addresses OxbcOO to
Oxbfff are never used by any of the other devices, so they are not permissible. The
program should never generate an address in this range. Therefore A14 is removed from
the ROM's NAND gate. We extend this technique to delete further decoder inputs. The
other gates are similarly reduced too. If only one memory module is used with the 'A4,
then all inputs except the E clock could be eliminated. Incomplete decoding can
eliminate much of the hardware used to decode addresses in a microcomputer. But it
should only be used when the program can be trusted to avoid using impermissible
addresses. The technique is especially useful for small microcomputers dedicated to
execute a fixed program that has no software bugs which might use duplicate addresses.

Figure 3.10. Common Integrated Circuits Used in Decoders

112 Chapter 3 Bus Hardware and Signals

Figure 3.10. continued

The next step is to implement the decoder using existing integrated circuits. The real
objective is to reduce hardware cost. However, as a reasonable objective for problems at
the end of the chapter, we can restrict the selection of integrated circuits to those of
Figure 3.10, defining the "best" solution as that using the least number of these chips. If
two solutions use the same number of chips, we rather arbitrarily define the "best" to be
the one using the least number of inputs.

Figure 3.10 shows common gates: the 74HCOO quad NAND gate, 74HC04 hex
inverter, 74HC08 quad AND gate, 74HC10 triple NAND gate, 74HC11 triple AND gate,
74HC20 dual NAND gate, 74HC30 NAND gate, 74HC33 OR gate, 74HC133 NAND
gate, 74HC4078 NOR gate, 74HC138 decoder, and 74HC139 dual decoder. The
74HC4078 provides two outputs that are complements of each other. The 74HC138
decoder asserts output Z[A] low if all three enables are asserted. Each half of the
74HC139 dual decoder asserts output Z[A] low if E is asserted.

Figure 3.11. Logic Design of Minimal Complete Decoder

3.3 Conclusions 113

A minimal-logic design of the complete decoder is shown in Figure 3.11. Observe
the shared gates used to implement two or more decoders. Also, note that when
connecting gates to gates, bubbles indicating negative logic either appear on all ends of a
line or do not appear on an end of any line. The reader is invited to design a minimal
incomplete decoder for the address map shown in Table 3.1.

The wide mode has some additional decoding considerations with respect to the
LSTRB signal. One may write into an 8-bit memory or output register using a STAB
instruction or the equivalent, at an even or an odd address, or one may write into a 16-bit
memory or output register using a STD instruction or the equivalent. An enable for an 8-
bit memory handling the left, high-order byte of a 16-bit word should write only if a STD
instruction is used or a STAB instruction uses an even address. This occurs when R/W and
AO are low. An enable for an 8-bit memory handling the right, low-order byte of a 16-bit
word should write only if a STD instruction is used or a STAB instruction uses an odd
address. This occurs when R/W and LSTRB are low. Reading is not generally a problem
in the wide expanded mode, because regardless of whether 16 bits are read or 8 bits are
read from an even or odd address, the 6812 will read 16 bits and, if necessary, use the
correct 8-bit value out of the 16 bits that are read.

In §6.2, we resume the discussion of decoding. The 6812 has a Lite Systems
Integration Module in it that decodes addresses and provides chip select signals. It can be
used in lieu of, or in addition to, the SSI/MSI-based decoder discussed above.

3.3 Conclusions

The study of microcomputer data and address buses is critical because scanty knowledge
in these areas leads to serious interface problems. Before getting on these buses, data
inside the microprocessor are unobservable and useless for interfacing. But when data are
on the bus, they are quite important in the design of interface circuitry. This chapter has
discussed what address, data, and control signals look like on a typical microcomputer
bus. You should now be able to read the data sheets and block or logic diagrams that
describe the microprocessor and other modules connected to the bus. You should also be
able to analyze the timing requirements on a bus. And, finally, you should have
sufficient hardware background to understand the discussions of interface modules in the
coming chapters.

If you found any difficulty with the discussion on hardware modules and signals, a
number of fine books are available on logic design. We recommend Fundamentals of
Logic Design, fourth edition, by C. H. Roth, PWS Publishing Co., because it is
organized as a self-paced course. However, there are so many good texts in different
writing styles that you may find another more suitable. Further details on the
MC68HC812A4 can be obtained from the MC68HC812A4TS/D Motorola, 1996; §11
gives the timing specifications of the microcomputer. As noted earlier, we have not
attempted to duplicate the diagrams and discussions in that book because we assume you
will refer to it while reading this book; also, we present an alternative view of the
subject so you can use either or both views. The final section in this chapter, however,
has not been widely discussed in texts available before now. But several books on
interfacing are currently being introduced, and this central problem should be discussed in
any good book on interfacing.

Chapter 3 Bus Hardware and Signals

Do You Know These Terms?

See page 36 for instructions.

signal
high
low
determinate
variable
TRUE
FALSE
assert a

variable
negate a

variable
complement a

variable
positive logic
negative logic
memory

variable
link variable
synchronous
clock
equivalent
module
input port
output port
behaviorally

equivalent
dual in-line

package
thin-quad flat

pack
small scale

integrated
circuit (SSI)

medium
scale
integrated
circuit
(MSI)

large scale
integrated
circuit (LSI)

very large
scale
integrated
circuit (VLSI)

family
low-power

Schottky (LS)
complementary

metal oxide
semiconductor
(CMOS)

logic diagram
type
type name
copy name
formal parameter

name
actual parameter

name
bypass

capacitor
gate
buffer
fan-out
bus

buss
bus driver
fan-in
open collector gate
wire-OR
pull-up resistor
enable
enabled
tristate gate
tristate enable
tristate bus
dynamic logic
D flip-flop
data input
clock input
clocked flip-flop
D edge-

triggered
flip-flop

D master slave
flip-flop

setup time
hold time
one-shot
latch
register
counter
shift register
random access

memory
(RAM)

programmable
read-only

memory
(PROM)

word
word width
memory cycle
chip enable

(CE)
read/not write

(R/W)
read enable

(RE)
write enable

(WE)
memory access

time
programmable

array logic
(PAL)

narrow mode
wide mode
E clock
low strobe
read cycle
write cycle
address map
screen the parts
address decoder
compete
decoding
incomplete

decoding
echo range

Problems 115

Problems

Problems 1 and 2 are paragraph correction problems. See the guidelines on page 38.
Hardware designs should minimize cost (minimal number of chips, where actual chips
are specified; and when the number of chips is the same, a minimal number of gates and
then a minimal number of pin connections, unless otherwise noted). A logic diagram
should describe a circuit in enough detail that one could use the diagram to build a
circuit. When logic diagrams are requested, use bubbles to represent negative logic and
gates representing high and low signals, and show pin numbers where applicable. A
block diagram should describe a circuit in enough detail that one could write a program
to use the block diagram. When block diagrams are presented, show variables and gates
representing true and false values, and show the maximum detail you can, unless
otherwise stated. (Note that a box with SYSTEM written inside it is a block diagram
for any problem, but is not a good answer; give the maximum amount of detail in your
answer that is possible with the information provided in the question.)

1.* A negative logic signal has a low signal representing a true variable. To negate a
variable is to make it low. A synchronous variable is one that repeats itself periodically,
like a clock. A family of integrated circuits is a collection of integrated circuits that have
the same architecture. A block diagram describes the realization of some hardware to
show exactly how to build it. In a block diagram, logic functions are in terms of true and
false variables. Vss is normally +5 volts. We normally put .001-microfarad bypass
capacitors across power and ground of each MSI chip or about every 4 SSI chips.

2.* A buffer is a gate whose output can be connected to the outputs of other buffers.
Open collector drivers can be connected on a bus, called a wire-OR bus that ORs the
outputs in positive logic. When a tristate bus driver is disabled, its outputs are pulled to
0 volts by the driver. A flip-flop is a module that copies the variable on the D input
when the CLOCK input is high, and leaves the last value in it at other times. The setup
time for a D edge-triggered flip-flop is the time the data must be stable before the edge
occurs that clocks the data into the flip-flop. The word width of a microcomputer is the
number of bits put into the accumulator during an LDAA instruction. The memory cycle
time is from when the address is stable until data can be read from or written into the
word addressed. Read-only memories store changing data in a typical microprocessor. A
programmable array logic (PAL) chip is similar to a PROM, having fuses that are blown
to program the device, and it is suitable for "glue" logic and address decoders.

3. Draw the integrated circuits of Figure 3.10 so that they use OR gates rather than
AND gates, and put appropriate bubbles on inputs or outputs to get the correct function.

4. A 74CH133 chip being unavailable, show how to implement such a chip's function
using the least number of 74HC04s and 74HC20s (see Figure 3.10).

116 Chapter 3 Bus Hardware and Signals

5. A decoder chip being unavailable, show how to implement such a chip's function
using the least number of SSI gates as indicated (see Figure 3.10).

a. Implement a 74HC138 using 74HC04s and 74HC20s.
b. Implement a 74HC139 using 74HC04s and 74HC10s.

6. The output signals of a gate are defined for each input signal by Table 3.2. What is
the usual name for the logic function when inputs and outputs are considered variables if

Table 3.2. Outputs of a Gate

a. A, B, and C are positive-logic variables.

b. A and B are positive logic and C is negative logic.

c. A and B are negative logic and C is positive logic.

d. A, B, and C are negative-logic variables.

7. A 74HC74 dual D flip-flop stores two bits that can be changed by addresses on a
6812 address bus or by a separate signal. Show a logic diagram that makes the flip-flop
have TF (10, left to right, as shown in Figure 3.12) if address 0x5A31 is presented on
the 6812 address bus, makes it have FF (00) if address Ox4D21 is presented on the 6812
address bus, and makes it have 01 (FT) if an input signal CMPLT rises from low to
high. (Hint: let CMPLT clock the shift register to change from TF to FT.)

Figure 3.12. A 74HC74

8. From the Motorola high-speed CMOS logic data book description of the 74HC163
(Figure 3.13a), determine which control signals among CLOCK, RESET, LOAD,
ENABLE P, and ENABLE T are high, are low, or have a rising edge or falling edge, to

a. cause the data on pins 3, 4, 5, and 6 to be stored in its register.
b. cause data stored in its register to be incremented by 1.

Problems I17

Figure 3.13. Some MSI I/O Chips

9. From the Motorola high-speed CMOS logic data book description of the 74HC299
(Figure 3.13b), determine which control signals among CLOCK, RESET, OE1, OE2,
SI, and S2 have to be high, be low, or have a rising edge or falling edge to

a. cause data on pins 4, 5, 6, 7, 13, 14, 15, and 16 to be stored in its register.
b. cause data stored in its register to be output on pins 4, 5, 6, 7, 13, 14, 15, and 16.
c. cause data stored in the register to be shifted so that a bit shifts out pin 17 as a

bit on pin 11 is shifted into the register.
d. cause data stored in the register to be shifted so that a bit shifts out pin 8 as a

bit on pin 18 is shifted into the register.

10. Draw the block diagram of a completely specified decoder using arbitrarily large
AND gates with appropriate bubble inputs and outputs, like Figure 3.9, for Table 3.3's
memory map. Include R/W and E control signals in each decoder as needed.

Table 3.3. Another Address Map for a Microcomputer

11. Show a logic diagram of a minimum-cost complete decoder for the memory map of
Table 3.3. Use only SSI chips from Figure 3.10.

12. Draw the block diagram of a complete decoder using arbitrarily large AND gates
with appropriate bubble inputs and outputs, like Figure 3.9, that will select memory
module 1 for addresses in the range 0x0000 to OxlFFF, memory module 2 for addresses
in the range OxFOOO to OxFFFF, register 1 for address 0x4000, and register 2 for address
0x8000. Do not include R/W and E control signals in each decoder.

13. Show a logic diagram of a minimum-cost complete decoder for the memory map
given in problem 12. Use only SSI chips from Figure 3.10.

118 Chapter 3 Bus Hardware and Signals

14. Using just one 74HC10 (see Figure 3.10), show a logic diagram that can implement
an incompletely specified decoder in an expanded multiplexed bus 6812 microcomputer
for the memories and I/O device ports selected in Table 3.1. Do not use the E signal in
your decoder. For this realization, answer the following.

a. What memories or I/O device ports will be written into by STAA $9002?
b. What memories or I/O device ports are stored into by STAA $FFFF?
c. What memories or I/O device ports are written into by STAA $80FF?
d. What memories or I/O device ports are written into by STAA $4000?
e. What five different addresses, other than $8001, access the I/O device port at

$8001?

15. Using just one 74HC04 and one 74HC75, show a logic diagram that can implement
the decoder for the memories and registers selected in Table 3.3, without decoding the E
clock. For this realization, answer the following.

a. What memories or I/O device ports will be written into by STAA $300?
b. What memories or I/O device ports are stored into by STAA $FFFF?
c. What memories or I/O device ports are written into by STAA $812?
d. What memories or I/O device ports are written into by STAA $200?
e. What five different addresses, other than $300, access the input device?

16. Show the logic diagram of a minimum cost decoder, using a 74HC133 and a
74HC138, that provides enables for a set of eight registers addressed at locations %0111
1111 1111 Irrr, where bits rrr indicate which register is enabled.

17. A set of eight 8-byte memories are to be addressed at locations % 1000 0000 00mm
mxxx. The bits mmm will be FFF (000) to enable the first memory, . . ., and TTT
(111) to enable the eighth memory. Bits xxx are sent to each memory and decoded
internally to select one of eight words to be read or written. Show the logic diagram of a
minimum cost decoder that provides these enables. Use the 74HC4078 and 74HC138.

18. Build an address decoder as discussed in §3.2.1, and determine the 6812 bus timing
as discussed in §3.2.2. Using a 74HC04 chip and 74HC3Q chip, design a decoder so that
it recognizes addresses % 1011 IxOx xxxx xxxx (asserts the decoder output low whenever
an address appears with the indicated Is and Os). Show the oscilloscope traces of (1) the
E clock, (2) R/W, and (3) decoder output. Then for inputs indicated below connected to
the 74HC30 decoder chip, show the oscilloscope traces of the decoder output for (4) the
inverted E clock only, (5) the R/W signal only, (6) both the inverted E clock and
inverted R/W signal, and (7) both the inverted E clock and R/W signal. You should have
seven sets of traces. Repeat this exercise and copy each of the tracings, to write location
OxbcOO instead of reading it. Finally, for the final decoder, determine and write down for
what ranges of addresses the decoder will assert its output low. Show which pulse widths
are approximately 60 nanoseconds and which are approximately 90 nanoseconds.

Problems 119

19. Intel's I/O devices have negative logic RD and WR instead of the R/W signal and E
clock of the 6812. When RD is asserted low, the device reads a word, and when WR is
asserted low, the device writes a word. Show the logic diagram for a minimum-cost
circuit to generate RD and WR from R/W and E. Show the timing of the RD signal
when the device is being read and of the WR signal when it is being written into,

20. A set of four Intel-style I/O devices are to be addressed at locations %0111 1111
1111 1 Irr; each device has an RD and a WR signal to enable reading and writing in it.
The bits rr will be FF (00) to enable the first device, . . . , and TT (11) to enable the
fourth device. Show the logic diagram of a minimum-cost decoder that provides these RD
and WR signals. Use the 74HC133 and 74HC138.

120 Chapter 3 Bus Hardware and Signals

Technological Arts* Adapt812 is a modular implementation of the 68HC812A4, in single-
chip mode, which includes all essential support circuitry for the microcontroller. A well
designed connector scheme groups the dedicated I/O lines on one standard 50-pin con-
nector, while routing the dual-purpose I/O lines to a second 50-pin connector, to form the
address and data bus for use in expanded memory modes.

Parallel and Serial Input/Output

The first three chapters were compact surveys of material you need to know to study
interface design. In the remainder of the book, we will have more expanded discussions
and more opportunities to study interesting examples and work challenging problems.
The material in these chapters is not intended to replace the data sheets provided by the
manufacturers, nor do we intend to simply summarize them. If the reader wants the best
description of the *A4, 'B32, or any chip discussed at length in the book, data sheets
supplied by the manufacturer should be consulted. The topics are organized around
concepts rather than around subsystems because we consider the former more important
in the long run. In the following chapters, we will concentrate on the principles and
practices of designing interfaces for the 'A4 and 'B32.

The first section of this chapter discusses some terminology used in describing I/O
ports and describes how to build and access generic parallel I/O ports. We then study the
parallel ports in the 'A4 and 'B32. The third section introduces simple software used
with parallel I/O ports. Indirect I/O is then discussed. Serial I/O devices, considered next,
are particularly easy to connect to a computer because only a small number of wires are
needed, and the devices are useful when the relatively slow operation of the serial I/O
port is acceptable. These serial ports are called synchronous because a clock is used.
Asynchronous serial ports are discussed in Chapter 9, where communications systems
are described. Throughout these sections, we show how 6812 I/O devices can be accessed
in C and how objects can be used to design I/O devices and their software.

Upon finishing this chapter, the reader should be able to design hardware and write
software for simple parallel and serial input and output ports. Programs of around 100
lines to input data to a buffer, output data from a buffer, or control something using
programmed or interpretive techniques should be easy to write and debug. The reader
should understand the use of object-oriented programming for I/O device control. The
reader should be able to write classes and use them effectively in debugging and
maintaining I/O software. Moreover, the reader will be prepared to study the ports
introduced in later chapters, which use parallel and serial I/O ports as major building
blocks.

121

4

! 22 Chapter 4 Parallel and Serial Input/Output

4.1 I/O Devices and Ports

We first consider the parallel port from the programmer's viewpoint (the I/O port's
architecture). One question is whether I/O ports appear as words in primary memory, to
be accessed using a pointer to memory, or as words in an architecturally different
memory, to be accessed by different instructions. Another concern is where to place the
port in the address space. A final aspect is whether the port can be read from or written
in, or both. The "write-only memory" is usually only a topic for a computer scientist's
joke collection, but an I/O port can be write-only; to understand why, you need to
understand hardware design and cost. So we introduce I/O port hardware design and
programming techniques to access the hardware. This section will also be useful in later
sections that introduce the 6812 parallel ports and the software used with these ports.

From a designer's viewpoint, an I/O device is a subsystem of a computer that
inputs or outputs data. I/O devices have ports. In simplified terms, a port is a "window"
to the outside world through which a logically indivisible and atomic unit of data passes.
An input port passes data into the computer and an output port passes data out of it
Data are moved to and from ports in the memory bus as words. Recall that a word has
already been defined as a unit of data that is read from or written to memory in one
memory cycle. A port can be a word, although it doesn't have to be one word, because
the unit of data read or written in a memory cycle need not be an indivisible unit of data
that passes into or out of the computer, as we shall see later in this section.

All three of the above terms can be hierarchical. An I/O device can be composed of
I/O devices, since subsystems can be composed of smaller subsystems. A port can be
composed of ports because a unit of data passed indivisibly at one time can be subdivided
and an indivisible subunit can be passed at a different time. Even a word accessed in a
memory cycle can be the same as two words accessed in two memory cycles elsewhere.

There are two major ways in a microcomputer to access I/O, relative to the address
space in primary memory. In the first method, isolated I/O, the ports are read from by
means of input instructions, such as IN 5. This kind of instruction would input a word
from I/O port 5 into a data register. Similarly, output instructions like OUT 3 would
output a word from a data register to the third I/O port.

The second way is by memory-mapped I/O, in which the ports are read by means
of LDAB instructions, or the equivalent, such as LDAA, ADDB, ORB, or MOVB .
Memory-mapped I/O uses the data and address buses just as memory uses them. The
microprocessor thinks it is reading or writing data in memory, but the I/O ports are
designed to supply the data read or capture the data written at specific memory locations.

Memory-mapped I/O is more popular because most microcomputers have
instructions that operate directly in memory, such as INC 0x100 or ROL 0x100. If the
program is in read-only memory, indexed addressing and indirect memory can be used to
relocate memory-mapped I/O, while isolated I/O may not have this capability. The use
of these instructions operating directly on (readable) output ports in memory-mapped I/O
is very powerful; their use can also shorten programs that would otherwise need to bring
the word into the data register, operate on it, and then output it. Finally, conventional C
without embedded assembly language can access I/O ports using variable pointers or
using constant address pointers. However, object-oriented C++ can make isolated I/O
behave essentially like memory-mapped I/O.

4.1 I/O Devices and Ports 123

We can accidentally write over an output port when we use memory-mapped I/O,
Memory-mapped I/O can be protected, however, by a lock. The lock is an output port
that the program can change. The lock's output is ANDed with address and other control
signals to get the enable or clock signals for all other I/O ports. If the lock is F, no I/O
ports can be read or written. Before reading an I/O port, the program has to store T in the
lock; then store F in the lock after all I/O operations are complete - 6812 ports
controlling EEPROM and flash memory programming are locked.

One of the most common faulty assumptions in port architecture is that I/O ports
are 8 bits wide. For instance, in the 6812, the 1-byte-wide LDAB instructions are used in
I/O programs in many texts. There are a large number of 8-bit I/O ports on I/O chips
that are designed for 8-bit microcomputers. But 8 bits is not a fundamental width. In this
book, where we emphasize fundamentals, we avoid that assumption. Of course, if the
port is 8 bits wide, the LDAB instruction can be used - in C by accessing a variable of
type char. There are also 16-bit ports. They can be read by LDD instructions, or as an
int variable in C or C++. A port can be 1 bit wide; if so, a 1-bit input port is read in
bit 7; reading it will set the N condition code bit, which a BMI instruction easily tests.
Many ports read or write ASCII data. ASCII data is 7 bits wide, not 8 bits wide. If you
read a 10-bit analog-to-digital converter's output, you should read a 10-bit port.
Whatever your device needs, consider using a port of the right width.

4.1.1 Generic Port Architecture

As in the memory design to be presented in §6.5, generic parallel I/O device hardware,
such as a tristate driver or a register, is enabled or clocked by an address decoder in the
device that decodes the address on the address bus. The decoder can either be completely
or incompletely specified, and built with SSI gates, decoders, or PALs. Generally,
though, the 6812 must be read from or written into the port when a specific memory
address is sent out and must not access it when any other address used by the program is
sent out. (An exception, shadowed output, is discussed later in this section.)

The generic input port samples a signal when the microcomputer executes a LDAB
or LDD instruction in memory-mapped I/O, and reads the sample into the 6812. Because
most microcomputers use tristate bus drivers, the port must drive the sample of data
onto the data bus exactly when the microprocessor executes a read command with this
port's address. See Figure 4.la for an 8-bit input device with an input port at 0x4000.
Since this port address has many zeros, the use of negative-logic-input/output AND
gates (positive-logic OR gates such as the 74HC4078) often reduces the decoder's cost.

The output port usually has to hold output data for an indefinite time, until the
program changes it. The generic basic output port is therefore a latch or register that is
capable of clocking data from the data bus whenever the microcomputer writes to a
location in memory-mapped I/O. The D bus is connected to the D input of the register
or latch, and the clock is connected to an address decoder so that the register is clocked
when the microprocessor executes a STAB or STD instruction at the address selected for
this port. See Figure 4.1b for an 8-bit output device with its port at 0x67ff. Since the
port address has many Is, the use of NAND gates such as the 74HC30 often reduces
cost.

124 Chapter 4 Parallel and Serial Input/Output

Figure 4.1. Logic Diagrams for I/O Devices for a Narrow Expanded Bus

The following discussion is oriented to 8-bit ports aligned to 8-bit word boundaries.
A similar set of examples can be generated for 16-bit ports, and for ports that do not
align with 8-bit or 16-bit words. We consider the design and use of a 16-bit port in
problem 7. We defer consideration of odd-aligned ports to the end of this discussion.

An output port can be combined with an input port at the same address that inputs
the data stored in the output port, to implement a more flexible but more costly generic
readable output port Figure 4.2 shows a readable output port that can be read from or
written in at location 0x1000. The decoder shown therein should be implemented with a
minimal number of available gates, but this design is left as problem 8 in this chapter.

Figure 4.2. A Readable Output Port for a Narrow Expanded Bus

4.1 I/O Devices and Ports 125

These generic ports can be accessed in assembly language. To read the data from an
input port (Figure 4.la) or readable output port (Figure 4.2), use the following
instruction or its equivalent

LDAB $4000

When LDAB recalls an 8-bit word from location $4000, the decoder responds, asserting the
74HC244's negative-logic tristate enable. At that time, the 74HC244 drives the data bus
with its input data SRC, and the 6812 puts the data on the bus into accumulator B. Many
instructions, including BESET and BRCLR, also read from an input port. The following
instruction writes into a basic output port (Figure 4.1b) or readable output port (Figure
4.2),

STAB $67ff

When the STAB instruction memorizes an 8-bit word at location $67ff, the decoder
responds, causing a rising edge on the 74HC374 clock at the end of the memory cycle
when the E clock falls. The 6812 has put the contents of accumulator B onto the data
bus, and the rising edge causes this data to be stored in the 74HC374. This data is
available to the outside world until the 6812 writes new data into it. To read, modify, and
write into a readable output shown in Figure 4.2, one can use the following instruction:

INC $1000

When the INC instruction recalls an 8-bit word from location $1000, the bottom decoder
output asserts the tristate gate's negative-logic tristate enable to input DST to the 6812's
data bus. When the INC instruction memorizes an 8-bit word at location $1000, the top
decoder output causes a rising edge on the 74HC374 clock at the end of the memory cycle
when the E clock falls. The data from the 6812 data bus, which is the incremented value
of DST, is written back into the 74HC374, which outputs this data until it is written
into again. Besides INC, the instructions DEC, ASL, ASR, LSR, ROL, ROR, BSET, and
BCLR read from, modify, and write into a readable output port.

These ports can be accessed in C or C++. The declaration or cast for an 8-bit port is
usually char (if we want to test the sign bit) or unsigned char (if we want to
prevent sign extension) and is further declared to be volatile, indicating that the data
can change due to external activities, to prevent the compiler's optimizer from removing
access to it. A constant, cast to a volatile unsigned char pointer, can be used to
read a port. Or a volatile unsigned char global variable in can be forced to have
an address 0x4000 by means of an "at" sign (@), as in volatile unsigned char
in@0x4 000. Finally, a volatile unsigned char pointer inPtr can be loaded with
0x4000. To read the data from an input port (Figure 4. la) or readable output port (Figure
4,2) into a char variable i, use one of the following statements or their equivalent:

i = *(volatile unsigned char *) 0x4000;
i =• in;

i = * inPtr;

126 Chapter 4 Parallel and Serial Input/Output

The statements i = * (volatile unsigned char *) 0x4000; and i = in; (where
iiHS 0x4000) generate LDAB 0x4000, and i = *inptr; generates a LDAB 0,x.

A constant, cast to a volatile unsigned char pointer, can write into an 8-bit
port. Or a volatile unsigned char global variable out can be forced to have an
address Ox67ff by means of an "at" sign (@), as in volatile unsigned ~va'
o u t & 0 x 6 7 f f . Finally, a volatile unsigned char pointer out Ptr can be loaded
with Ox67ff. To write / into a basic output port (Figure 4.1b) or readable output port
(Figure 4.2), one can use any of the following statements:

The statements *(volatile unsigned char *)0x67fff = i; and out = i; (where
out is Ox67ff) generate STAB 0x67 ff, and * out Ptr = i / generates STAB 0,x.

A constant, cast to a volatile unsigned char pointer port Ptr, can be used to
read from, modify, and then write into an 8-bit readable output port. A volat i le
unsigned char global variable port can be forced to have address 0x1000 by means
of an "at" sign (@), as in volatile unsigned char in@0x!000, or a volatile
unsigned char pointer out Ptr can be loaded with 0x1000; then, to increment a
readable output as shown in Figure 4.2, one can use the following:

The statements (*(volatile unsigned char *) Oxl000)+ + ; andport + + ; (where
symbolic name port is 0x1000) generate INC port, and (*portPtr) + + ; generates
INC 0,x. Similarly port--/ port j= i; and port &= i; generally also access a
readable output port with DEC , BSET, and BCLR read-modify-write instructions.

Notice that an instruction like INC $ 1000, generated by port++; fails to work on
Figure 4.1b"s basic output port, which is not a readable output port. The instruction
reads garbage on the data bus, increments it, then writes "incremented garbage" into the
output port. To use any read/modify/write instructions, build a more costly readable
output port.

Alternatively, an output port can be at the same address as a word in RAM; writing
at the address writes data in both the I/O port and the RAM and reading data reads the
word in RAM. This technique is called shadowed output. This effect can be achieved,
moreover, through software. If a basic output port is to be updated after being read, like
a readable output port, a global variable can keep a duplicate of the data in the port so it
can be read whenever the program needs to get the data last put into the port. In C or
C++, for instance, using a pointer outPtr to a port, declare also a global volatile
unsigned char portValue;, then write *outPtr = portValue = i; whenever we
output to the port. Then i = port value; reads what is in the port. Also, *outPtr =
portValue + + ; increments it,*outPtr = portValue--; decrements it, *outPtr =
(portValue |-- i;; sets bits, and *outPtr = (portValue &= i); clears bits. If
we consistently copy output data written into the port into portValue; we can read
portval ue when we want to read the port.

4,1 I/O Devices and Ports

Figure 4.3. An Unusual I/O Port

A port may be only part of a word or of two adjacent words. See Figure 4.3. A
"worst-case" 3-bit port, low bit of the 8-bit word at location 0x4000 and two high bits of
the 8-bit word at 0x4001 (i.e., the middle 3 bits of the 16-bit word at 0x4000), occupies
two consecutive 8-bit words in the memory map (Figure 4.3a) and parts of each word
(Figure 4.3b). Generally, if an n-bit port (n < 16) is read as a 16-bit word, the other
"garbage" bits should be stripped off, and if it is not left-aligned, logical shift instructions
should align the port data. If such a port is written into, other ports that share word(s)
written in order to write into this port must be read and then rewritten to be maintained.
Consider an example of inputting from and outputting to a misaligned port.

Assuming that we use the declaration int *ptr = (int*) 0x4000 and that
0x4000 is the address of a pair of 8-bit words containing the 3-bit input port just
discussed, the port is read into a variable d with d = (*ptr » 6) & 7. The
declaration, (int*), causes reading or writing 16 bits at the address pointed to by
ptr. The operator » moves data from the port to the least significant bits of d, and
the operator & removes data that is not in the port from the words read from memory;
this generates the following:

0000086D EDOO LDY 0,X

0000086F C606 LDAB #6

00000871 35 PSHY

00000872 160890 JSR $0890

00000875 C407 ANDB #7

00000877 87 CLRA

The subroutine at $890 shifts the data, in Y, accumulator B places to the left.

00000890 87 CLRA

00000891 D7 TSTB

00000892 B7C6 EXG D,Y

00000894 2705 BEQ *+7 ;abs = 089B

00000896 47 ASRA

00000897 56 RORB

00000898 03 DEY

00000899 26FB BNE *-3 ;abs = 0896

0000089B 3D RTS

128 Chapter 4 Parallel and Serial Input/Output

Omit the shift operator if the port is aligned so that the least significant bit of the
port is the least significant bit of a word. The AND operator is omitted if the port
consists of whole words. For instance, assuming pointer ptr = (int*) 0x4000 is the
address of a 16-bit port, d = *ptr; will read a 16-bit port at 0x4000 into d.

Similarly, consider the case where those three bits are a readable output port within
words that also contain other readable output ports that must be unchanged. Assume that
pointer ptr -= (int*) Oxl 000 points to a 16-bit word containing the aforementioned 3-
bit readable output port. Then *ptr = *ptr & OxFE3F \ ((d « 6) & Ox.I CO;

1 / puts d into the port, generating the following (without balancing the stack):

0000087B 13 EMUL

0000087C C4CO ANDB #192

0000087E 8401 ANDA #1

00000880 3B PSHD

00000881 EC82 LDD 2,SP

00000883 C43F ANDB #63

00000885 84FE ANDA #254

00000887 EA81 GRAB 1,SP

00000889 AA80 ORAA 0,SP

0000088B 6COO STD 0,X

The expression d « 6, which is implemented by the EMUL instruction, moves the
least significant bits of the data in d into position to put in the port; & Oxlco removes
parts of d that are not to be output; *ptr & OxFE3F gets data in the words not in the
port that must be unchanged. The OR instructions merge the data, in d to be written
into the port, and the data, in the words not in the port together, putting this data into the
words at 0x1000 and 0x1001. If the port is aligned so that the least significant bit of the
port is the least significant bit of a word, the shift operator is omitted; and if the words
being written into have no ports other than the port being written, the *ptr & OxFE3F
| may be omitted. For instance, assuming pointer ptr = (int*) 0x4000 is the address
of a word, *ptr = d; will write 16-bit data in d into a 16-bit output port at location
ptr. If the output port is not readable, but is a basic output port of Figure 4.1b, then a
copy of the data, that is output to that and other ports in the words it writes into, must be
kept in memory. It can be kept in int variableportvalue; the statement *ptr =
port-Value = portValue & OxFE3F \ ((d « 14) & OxlCO); is not that
much more complex than the statement for a readable output port.

The I/O port can also be accessed as an element of a vector. If an input port is at
0x4001 and ptr is 0x4000, then the expression i = * fptr + 1) / reads the port's
data into i . Note that ptr [1] is the same as * fp t r + l), so this statement can be
written i = ptr [1]; which is often considered easier to understand. See also §4.4.5.1.

I/O ports can also be accessed as elements of a struct, which can be declared:

typedef struct F { volatile unsigned char A, B, int C; } F;

If we declare a pointer to this s truct; F *fptr = (F *) 0x100;, then if an input
port is at 0x101, d = fptr->B; reads the port's data. Similarly, fptr->B = d;
writes data into the port. Further, if we declare F f@0x!00; then d = f . B ; reads
the port's data. Similarly, f.B = d;, writes data into the port. See also §4.4.5.4,

4,1 I/O Devices and Ports 129

If the struct has bit fields, these statements generate code like that just shown for the
misaligned port discussed under Figure 4,3, but are easier to understand.

typedef struct F { volatile unsigned char A:2, B:3, C:3, D:2; } F;

In HIWARE's C++ compiler, if in "advanced options" the setting for "code generation"
has "bit field byte allocation" set to "most significant bit in byte first," bit fields are
coded eight bits to a byte such that the left struct element corresponds to the leftmost
bit. Otherwise, the right struct element corresponds to the leftmost bit (the default
setting). But if a bit field were to overlap the boundary between bytes, as in Figure 4.3,
the potentially overlapping bit field is left-aligned on the next byte boundary instead.

Some logic functions can be implemented in hardware upon writing to a port. The
data can set bits in a set port. See Figure 4.4. A pattern of Is and Os is written by the
processor via the data bus: wherever it writes a 1, the port bit is set; wherever it writes a
0, nothing is done. The data bit is ANDed with the decoded address enable, which is
asserted only when a matching address appears; the E clock is high at the end of a
memory cycle; and R/W is low because we are memorizing. Note that if the data bit and
enable are true (1), a bit in the flip-flop at the bottom of this figure will be set. If a data
bit is false (0), nothing is done.

Data can clear bits in a clear port. In such a port, writing a true (1) clears the port
bit, and writing a false (0) does nothing. For instance, if a clear port at 0x4000 is to
have bits 1 and 4 cleared, and ptr is 0x4000;, the statement *ptr = 0x12; clears
the two bits. The hardware is the same as in Figure 4.4, except that the clear input to
the flip-flop is asserted low if the decoder enable is asserted and a data bit is true (1).
Alternatively, wherever the processor writes a false (0), the port bit is cleared; wherever
it writes a true (1), nothing is done. This hardware is the same as in Figure 4.4, except
that the clear input to the flip-flop is asserted low if the decoder enable is asserted and a
data bit is false (0).

Figure 4.4. A Set Port

130 Chapter 4 Parallel and Serial Input/Output

These ports are set or cleared by just writing a constant or variable into them, if a
set port at the address 0x4000 is to have bits 0 and 3 set, and ptr is declared as above,
the statement *ptr = 9; sets the bits. If an 8-bit clear port at 0x4000 is to have bits 1
and 2 cleared, and writing Os clears a bit, we can use *ptr = Oxf3; or the statement
*p t r 6; to clear the bits. Set ports and clear ports can be readable; if so, the data in
the port are read without logic operations being done to them. A clear port is frequently
used in devices that themselves set the port bit, and the programmer only clears the bit.
An interrupt request, discussed in the next chapter, is set by the device and can be cleared
by the processor writing to a clear port. C and some assembly languages have means to
OR or to AND data to memory, so these port functions are redundant. Nevertheless, the
6812 timer flags are clear ports; writing a 1 in a bit position clears a timer flag bit there,

Finally, we introduce two techniques that use the address bus without the data bus
to output data. These are the address trigger used in many Motorola I/O devices, and the
address output port used in the 68000-based Atari 520ST.

In an address trigger, an instruction's recalling or memorizing at an address causes
the address decoder to provide a pulse that can be used to trigger a one-shot, clear or set a
flip-flop, or provide an output from the computer. Figure 4,5a shows an example of a
trigger that produces a 60-ns pulse when location 0x1000 is read or written. An address
trigger is, in effect, an output port in a word that requires no data bits in it. These
instructions could simultaneously load or store data in another port even while the
address triggers a one-shot in a manner similar to the shadow output port, or they might
load garbage into the data register or store the data register into a nonexistent storage
word (which does nothing). Some variations of an address trigger are the read address
trigger, which produces a pulse only when a fetch or recall operation generates the
address; a write address trigger, which generates a pulse only when the address is
recognized in a memorize operation; and an address trigger sequence, which generates a
pulse when two or more addresses appear in a sequence.

Figure 4.5. Address Output Techniques

4.1 I/O Devices and Ports ! 31

An address-register output was used in the 68000-based Atari 520ST. The design of
its extension ports supports only read-only memories, in order to plug games into the
computer, and thus is suitable for use only for an input port. But output can be done.
The high-order 8 bits of the address are decoded; the low-order 8 bits of the address are
not decoded, as if a memory chip used these bits internally. Rather, these low-order 8
bits are input to the device's register. To use the port for 8-bit output, data are put on
low-order 8 bits of the address while the device address is put on the high-order bits of
the address bus. This is easily handled in C: let a be a dummy variable, d be
volatile unsigned char data, and ptr point to the port; the low-order 8 bits of
ptr are Os, and a = * (ptr+d) puts the data in d into the register.

4.1.2 Generic Port Classes

Although a high-level language greatly simplifies I/O interfacing, objects further
simplify this task through encapsulation, information hiding, polymorphism,
inheritance, and operator overloading. This section shows how they can be used.

Objects can be used as part of the core of a program, as well as for I/O interfacing.
The original idea of an object was to tie together a data structure with all the operations
that can operate on it. For instance, we define a data structure such as a queue, and we tie
to it the operations like push, pull, and so on. Further, and independently, the I/O
software they use can be organized in terms of objects.

I/O devices can be encapsulated into objects, as discussed in §2.3.3. In effect, we
will handle all access to parallel I/O devices using object function members. Since all
these alternative techniques can now be implemented in the same way, replacing a device
using one technique with a device using another technique is easy. We can separate the
design into a part having to deal with algorithms and interpreting a data structure, and a
part having to deal with the I/O, and test each part separately, or mix and match different
alternatives of both parts of the design at will. We can make I/O operations device-
independent, meaning that they are basically identically written at compile time in the
main program, regardless of the implementation technique. By using different procedure
arguments that declare or bless an I/O object, a different I/O device that uses the same
techniques or one that uses different techniques can be substituted. When this can be
done at run time, blessing pointers to objects, this is called I/O redirection.

Both device independence and I/O redirection are also key ideas of device drivers in
operating systems. Device drivers appear to be better suited to complex I/O devices like
terminals that may need to recognize special characters such as backspace, and disks that
need directories and allocation bit maps. Objects appear better suited to simple I/O
devices: parallel I/O ports, and A-to-D converters. These simpler devices can also use
device independence and I/O redirection, but a device driver is much more complex.

We can define classes of objects for I/O devices in many ways, each having
increased power and sophistication. We can get as sophisticated as a device driver.
However, this sophistication also increases overhead. When a class has a function
member with the same name as a function member of its base class, the class's function
member overrides the base class's function member, as discussed in §2.3.3. However,
the compiler generally loads both function members into memory, because it may be

132 Chapter 4 Parallel and Serial Input/Output

unable to determine if the base class's function members will ever get used. We must be
cautious about what we put into classes and base classes or we will fill memory with a
lot of unnecessary function members. (By the way, a similar kind of overhead appears
when operating systems use device drivers.) Having tried a number of different
approaches, we have concluded that the following rales should be used for I/O objects.

1 . There will be a hierarchical library of classes designed for interchangeable I/O devices.

2. The root class's function members and instance variables will be defined for a
template root class Port; all 8-bit, 16-bit, and 32-bit I/O devices are objects of this
class or of its derived classes. There should be a constructor, virtual function
members for input (get), output (put), and options (option), and possibly a
destructor. There can also be virtual overloaded operators to cast, assign, and OR or
AND into an object. The constructor initializes the I/O device as well as the object
data members. One of the constructor's int parameters specifies the port address,
which is copied into a data member port, to point to 8-bit, 16-bit, or 32-bit ports.

The root class Port and its data and function members are defined below. It will be
redefined in §4.2.3 and again in §4.3.6 to include more capabilities, especially options.
In this section we see how C++ I/O software uses templates and overloaded operators.
We make all 8-bit ports objects of class Port<char>; 16-bit ports are objects of class
Port<int>. Similarly, 32-bit ports can be objects of the class Port<long>. These
ports are also often further templated as unsigned to inhibit sign extension.

template <class T> class Port{

protected : T *port; II data members

public: Port (unsigned int. a) { port = (T *)a; } //constructor

virtual void put (T data) { *port = data; } //output

virtual T get (void){ return *port; } //input

T operator = (T data) { put (data); return data; } //assignment

operator T () { return get (); } //cast

virtual T operator |= (T data) {put (data |= get()); return data;}

virtual T operator &= (T data) { put(data &= get()); return data; }

Consistent with C++ conventions, all input function members are get, and
output function members are put. They simply use the pointer port, initialized by
the constructor, to read data from or write to the port. An object of class Port can be
declared, or a pointer ptr can be blessed for class Port, and then used as shown next.
The rest of the program, here simply represented by the second-to-last line, is the same,
regardless of which class the object is declared or blessed a member thereof.

4. 1 I/O Devices and Ports 1 33

void main () {unsigned char i; void main () {unsigned char i;Port<char>*ptr
Port<char> port (0x1000) ; ptr = new Port<char>(0x1000) ;
port .put (3) ; i=port . get () ; ptr->put (3) ; i-ptr->get () ;

} }

Our classes are designed to be interchangeable, to effect device independence and I/O
redirection. Whereas the above example switches classes at compile time, which is
device independence, an object can also be blessed for different classes at run time, which
is I/O redirection. In both cases, except for the declaration of the object or blessing of
the object, the rest of the program will be unchanged.

void / func (char mode) { unsigned char i; Port<char> *ptr;
if (mode) ptr = new Port<char> (0x1000} ;
else ptr = new Port<char> (0x2000) ;
ptr->put(3); i = ptr->get();

}

The cast and assignment "=" operators can be overloaded for input or output
operations throughout the remainder of the program, so they appear as I/O operations
using the simple data types described in §4.1.1 . Do not overlook the advantage of using
these overloaded operators over using put and ge t function members; a program using
simple input and output software as discussed in §4.1.1 can be converted to classes
without modifying the main program, except for the inclusion of the class declaration
and the constructor. Conversely, a program written using I/O classes can be changed
back to one using simple data types without rewriting most of it.

Overloaded ORing | = and ANDing &= are useful for set and clear ports, as
illustrated in the next two classes. A set port or clear port can be given its own class, a
derived class that overrides | = and &= .

template <class T> class SetPort : public Port<T> {

public: SetPort (int a) : Port (a) { }

virtual T operator \= (T data) { put (data); return data) =get () ; }

} ;

template <class T> class ClearPort : public Port<T> {

public: ClearPort (int a) : Port (a) { }

virtual T operator &= (T data) { put (-data); return data&=get () ; }

Then if port is an object of class Port or Set Port, the expression port | = i;
will OR the data i into the the data stored in a register inside the device. Similarly,
clear ports directly handle &=. For instance, an I/O subsystem (a device) might be
written and tested on an ' A4 using a clear port, and the object port will be of the class
ClearPort. Then if it is implemented on a 'B32 using external hardware such as a
74HC74, which readily implements an ordinary output port, port can be of class
Port, and the software will perform the ANDing operation. If port is an object of

134 Chapter 4 Parallel and Serial Input/Output

class Port, the software will AND the argument into the output port (which should be
readable). But if the hardware ANDs the output data into its register, port should be of
class clearPort, which simply writes the data to the port, and the software will not
interfere with the hardware operation that ANDs the data written into the register. A
program written to clear a port's bits will work exactly the same way in both the 'A4
and 'B32 environments.

The advantage of object-oriented programming for I/O should be somewhat apparent
from the preceding examples. However, object-oriented programming has additional
useful features when one is designing a state-of-the-art microcomputer's I/O devices, as
proposed by Grady Booch in his tutorial Object-Oriented Computing. Encapsulation is
extended to include not only instance variables and methods, but also the I/O device and
the digital, analog, and mechanical systems used for this I/O. An object is all these
parts considered as a single unit. For instance, suppose you are designing an automobile
controller. An object (Call it PLUGS) might be the spark plugs, their control hardware,
and procedures. Having defined PLUGS, you call function members (for instance,
SetRate (1 0) to PLUGS) rather like connecting wires between the hardware parts of
these objects. The system takes shape in a clear intuitive way as the function members
are defined. In top-down design, you can specify the arguments and the semantics of the
methods that will be executed before you write them. In bottom-up design, the object
PLUGS can be tested by a driver as a unit before it is connected to other objects.

An object can be replaced by another object, if the function calls are written the
same way (polymorphism). If you replace your spark plug firing system with another,
the whole old PLUGS object can be removed and a whole new PLUGS1 object inserted.
You can maintain a library of classes to construct new products by building on large
pretested modules. Having several objects with different costs and performances, you can
insert a customer-specified one in each unit. Factoring can be used to save design effort.

Factoring can be used in a different way to simplify the programming of rather
complex 6812 I/O systems. In order to use the 6812's SPI module for external I/O
devices, some basic routines, available in a library of classes, will be needed to initialize
it, to repetitively exchange data with the device, or to exchange data with it only on the
program's or the device's command. Then, as larger systems, such as PLUGS , are
implemented that use the SPI, new classes can be defined as derived classes of these
existing classes, to avoid rewriting the methods inherited from the classes in the library.

Putting these two notions together might produce an incompatible notion of
factoring, but they actually appear to work synergetically. The hierarchy of classes at the
root end can implement the factoring of routines needed to control a 6812's I/O system
and prevent duplication of code. In this book, we will build up this infrastructure. For
instance we will build an object for an I/O device that includes all the methods needed to
initialize and use it. The leaf-ward part of the hierarchy can be used to add special
functions to the basic I/O system to meet a specific application's requirements. For
instance, an object for a robot controller might be coupled to the 6812 system by means
of an RS-232 serial link as discussed in Chapter 9. The object ROBOT can be a member
of a newly defined class ROBOTDevice that has additional methods, or can use the
methods of its base class(es) to correctly and efficiently function calls sent to ROBOT
or received from ROBOT . The control of ROBOT will be high-level, because all lower-
level operations are invisible to the writer of the function calls (information hiding),
which substantially reduces the design cost and improves system reliability.

4,1 I/O Devices and Ports 135

4.1.3 Debugging Tools

Object-oriented programs for I/O devices, which separates I/O procedures from the rest of
the program, can be debugged using techniques described in this section. An object driver
can exercise the object, object stubs can replace the I/O device object, and function-
member checking can make the function inform the designer of improper actions (at run
time if the device is redirected, so the error isn't discovered until run time).

An object driver executes the object function members to test the passing of
parameters between the object and the rest of the program and the passing of data
between the object function members and the hardware. A simple output object driver,
shown following, simply inverts the output pattern each time it executes an output
operation. It is shown with an object dataPort declared a member of class Port,

The expression pattern A = 0 x f f ; inverts the value of pattern and passes that value
to the output function member put each time it executes. The output port should have a
square wave on each bit, each bit having the same period. A slightly better driver for an
output device simply increments the output pattern each time it executes an output
operation. It is shown with an object pointer ptr blessed to make the object ptr ;
points to a member of the class Port.

The output port should have a square wave on each bit, but each bit should have a period
that is twice as long as its next-less significant bit. Using an oscilloscope and this
output driver, a technician can expose hardware errors due to shorting outputs together or
miswiring outputs. A simple input device's driver shown below uses an output port to
provide data that are read through the input port and checked with the data that was sent.
It is shown with an object pointer ptr blessed as a member of the class Port,

Clearly, an easily written object driver can check the hardware without much effort.
However, more complicated object drivers are needed when outputting arbitrary patterns
causes undesirable effects - for instance, if the output is connected to hardware that acts
catastrophically to some patterns. Also, one may not be able to rewire an input port so
that during testing it is connected to an output port but during normal operation it is
connected to something totally different. In these cases it is necessary to write
specialized object drivers that are compatible with the environment of the I/O device.

1.36 Chapter 4 Parallel and Serial Input/Output

An object can be blessed as a member of the Stub class to verify the program that
uses an I/O device. A stub class is defined below.
template <class T> class Stub : Port<T> {

public: Stub(T * a) : Port<T>((int)a) { } //constructor

virtual T get (void) { return. *port+ + ; }; //input

virtual void put (T data) { *port++ = data; }; //output

virtual T operator = (T data) {put(data);return data;}

Note that the input function member merely gets consecutive items from an input
vector, presumably a vector initialized with constant values that are a useful input test
pattern. The output function member merely puts consecutive items into consecutive
elements of a vector, presumably a variable vector. This vector can be examined after the
program stops. Examples of defining an object as a member of this stub class in lieu
of Port are shown below.

unsigned char outStream[5], inStream[] = { 1,2,3,4,5 };

void main(){ unsigned char i;
Stub<unsigned char> in(inStream), out(outStream);
out = 5; i = in;

I

void main () { int i, j; Port<unsigned char> *inPtr, *outPtr;
inPtr = new Stub<unsigned char>(inStream);
outPtr = new Stuix unsigned char> (outStream);
*outPtr = 5; i =*inPtr;

The Stub function members can also have function calls to output data in them to
verify that they are executed. Constructor parameters can be output, or put function
member parameters can be output to verify that the right data are being sent to them.
However, calls to output data can slow down execution, which can interfere with
debugging real-time programs. The use of input and output vectors as shown in the
example above interferes less with real-time programming; that is why we recommend
using these stub members.

Another tool in debugging object-oriented I/O programs is to use function-member
checking. Here, the class is expanded to include illegal calls to function members,
which set Port's data member errors when they are executed. Alternatively, printf can
be used to indicate an error. These errors can detect when hardware is asked to do
something it can't do, such as loading arbitrary data into a set port, and when the
function member's parameters are illogical, such as when a pointer to a char is passed
in place of a char that is expected by the function member. The example below
illustrates the SetPort class with some function-member checking.

4.1 I/O Devices and Ports 137

template <class T> class SetPort : Port { char errors;

public: SetPort (long 1) : Port<T> (1) { } //constructor

virtual T operator |= (T data) {put (data); return data) =get ();}

virtual void put (T data) { errors = 1; }; //illegal

virtual T' operator = (T data) { errors = I; return data; } //illegal

virtual T operator &= (T data) { errors = 1; return data; } //illegal

virtual T operator \ = (T *data) { errors = 1; return 0; } //illegal

One can list every data type and operation that is illegal in this class, to let the compiler
tell the programmer when an improper operation is requested. Further, new classes can
be defined with checks for improper requests. We used Port for input ports as well as
readable output ports. An input port could use a derived class of Port with a function
member put that sets errors to indicate that the operation was not completed.

Normally, the use of function-member checking doesn't warrant the effort needed to
define additional classes or function members; a programmer can simply not use the
overloaded operator &= with SetPort or the function member put for input ports. We
don't use function-member checking in most examples in this book so that they will be
easier to understand. However, classes in a 6812 library should insert or remove
function-member checking using conditional compiling, so it can be used to catch run-
time errors. For instance, if CHECKING is defined, function-member checking is inserted,
otherwise it is removed in the following procedure:

virtual T operator &= (T data) {
#ifdef CHECKING

errors = 1; return data;
#else

return 0;
#3ndif

While this discussion of debugging is specific to C++ object-oriented I/O
interfacing, it can be adapted in part to conventional C programming by using ^define
statements that expand into different macros, depending on how the ^define statements
conditionally compile the program. For instance, if debug is # d e f i n e d , then some
message is printed, but if debug isn't #defined, the program reads a port's data.

#ifdef debug
#define inputPort (0 & printf("read data"));
#else
#define InputPort (*(unsigned char *)0x1000)
#endif

138 Chapter 4 Parallel and Serial Input/Output

4.2 6812 Parallel Ports

The first two subsections independently describe the 'A4 and the 'B32 parallel ports.
You can read the subsection that applies to the system you are using, without having to
read the other. The last subsection describes an object-oriented class for parallel ports.

Figure 4.6. MC68HC812A4 Parallel I/O Ports

4.2 6812 Parallel Ports 139

4.2.1 MC68HC812A4 Port Architecture

The 'A4 has a dozen parallel ports - A through H, J, S, T, and AD ~ which are quite
similar to each other (see Figure 4.6). However, they are also extensively used for other
functions - ports A and B for extended mode address bus, ports C and D for extended
mode data bus, ports E, F, and G for extended mode bus control signals, port S for serial
I/O, port T for timer I/O, and port AD for analog to digital I/O - that they are not
always available for parallel I/O, Ports can be named in assembly language using EQU
directives, or in C or C++ using # d e f i n e or declaration statements. The type volatile
means the data can be changed from outside, so the compiler will not optimize
statements using it, and the @ symbol precedes the address of the port.

volatile unsigned char PORTA@0 PORTB@1, DDRA@2, DDRB@3, PORTC@4,

PORTD@5, DDRC@6, DDRD@7, PORTE@8, DDRE@9, PORTF@Ox30, PORTG@0x31,

DDRF@Ox32, DDRG@Ox33, PORTH@Ox24, DDRH@Ox25, PORTJ@Ox28, DDRJ@Ox29,

PORTAD@Ox6£, PORTS@Oxd6, DDRS@Oxd7, PORTT&Oxae, DDRT@Oxaf,

PUPSJ@Ox2d, PULEJ@Ox2e, PUCR@Oxc, RDRIV@Oxd;

volatile int PORTAB@0, DDRAB@2, PORTCD@4, DDRCD@6, PORTFG@Qx30,

DDRFG@Ox32;

Pull-ups are needed if wire-or logic is used on a port pin; the pull-up can be
provided by an external 10K resistor to +5 V, or by having the 'A4 pull up the pin.
Each bit of port PUCR can attach a pull-up on one of the ports. See Figure 4.7. If PUPH
has a T (1) stored in it, then all bits of PORTH have pull-ups, causing their lines to be
pulled high if nothing is connected to them, otherwise all the bits of PORTH do not have
pull-ups, causing their lines to float if nothing is connected to them. Similarly, PUPG
pulls up all pins on PORTG, etc. The 'A4 can reduce the drive current on all port bits of
a port in order to reduce power consumption or noise that interferes with A-to-D
(analog-to-digital) conversion. Each bit of port RDRIV can reduce drive power on one of
the ports. If RDPJ has a F (0) stored in it then all bits of PORTJ supply enough current
to drive a TTL gate; otherwise, all PORTJ pins have reduced power, about 40% of this
power. RDPH reduces power on PORTH, and so on.

Pull-ups or pull-downs can be connected on a line connected to any PORTJ pin.
Pull-downs are useful if the desired default condition, when no device is driving the port
pin, is low (0). Each bit of port PULEJ, if true (1), can cause a pull-up if the
corresponding bit of PUPSJ is true (1) or can cause a pull-down if the corresponding bit
of PUPSJ is false (0). If the bit of PULEJ is false, neither pull-up nor pull-down is used
on the corresponding PORTJ pin. PUPSJ should be written into before PULEJ.

Figure 4.7. MC68HC812A4 Parallel I/O Control Ports

140 Chapter 4 Parallel and Serial Input/Output

4.2.2 MC68HC912B32 Port Architecture

The 'B32 has eight similar parallel ports (Figure 4.8) - A, B, E, DLC, P, S, T, and AD.
However, they are also extensively used for other functions - ports A and B for extended
mode address and data buses, port E for bus control signals, port DLC for the BDLC
module, port P for pulse width modulation, port S for serial I/O, port T for timer I/O,
and port AD for analog to digital I/O - that they're not always available for parallel I/O,

These ports can be named in assembly language using EQU directives, or in C or
C++ using # d e f i n e or global declaration statements. The following declarations can be
put in a header file which is incorporated into each program using #includes,

volatile unsigned char PORTA@O, PORTB@1, DDRA@2, DDRB@3, PORTE@8,

DDRE@9, PORTP@Ox56, DDRP@Ox57, PORTAD@0x6f, PORTS@Oxd6,

DDRS@0xd7, PORTT@0xae, DDRT@Oxaf, PUCR@Oxc, RDRIV@0xd,

PORTDLC@Oxfe, DDRDLC@0xff;

volatile int PORTAB@0, DDRAB@2;

Figure 4.8. MC68HC912B32 Parallel I/O Ports

4.2 6812 Parallel Ports 141

Figure 4.9. MC68HC912B32 Parallel I/O Control Ports

Pull-ups are needed if wire-or logic is used on a port pin; the pull-up can be
provided by an external 10K resistor to +5 V, or by having the 'B32 pull up the pin.
Each bit of port PUCR can attach a pull-up on one of the ports. See Figure 4.9. If PUPA
has a T (1) stored in it, then all bits of PORT A have pull-ups, causing their lines to be
pulled high if nothing is connected to them; otherwise, all the bits of PORTA do not
have pull-ups, causing their lines to float if nothing is connected to them. Similarly
PUPB pulls up all pins on PORTB, and so on. The 'B32 can reduce the drive current on
all port bits of a port in order to reduce power consumption or noise that interferes with
A-to-D conversion. Each bit of port RDRIV can reduce drive power on one of the ports.
If RDPA has a F (0) stored in it, then all bits of PORTA supply enough current to drive a
TTL gate, otherwise all PORTA pins have reduced power, about 40% of this power.
RDPB reduces power on PORTB, and so on.

4.2.3 Programming of PORTA

This section illustrates assembly language and C programming techniques to access port
A. Througout this chapter we use port A in our examples because port A is available in
both the 'A4 and 'B32. So we introduce techniques to program port A here. But these
techniques can be applied to any of the parallel ports in either the 'A4 or the 'B32.

All ports, except the analog port PORTAD, have a direction port. For port A, for
each bit position, if the direction bit is F (0), as it is after reset, the port bit is an input,
otherwise if the direction bit is T (1) the port bit is a readable output bit. The other ports
and their direction port exhibit the same relationship, except PORTAD. A direction port
is an example of a control port, which is an output port that controls the device but
does not send data outside it. Writing the contents of a device's control ports is called the
initialization ritual. This configures the device for its specific use.

We illustrate the use of PORTA in assembly language first, and in C or C++ after
that. To make PORTA an output port, we can write in assembly language.

Idab #$ff ; generate all ones
stab DDRA ; put them in direction bits for output

Then, any time after that, to output accumulator B to PORTA we can write

stab PORTA ; output accumulator B

To make PORTA an input port, we can write

clr DDRA ; put zeros in direction bits for input.

142 Chapter 4 Parallel and Serial Input/Output

Then, any time after that, to input PO.RTA into accumulator B we can write

Idab PORTA ; read PORTA into accumulator B

It is possible to make some bits - for instance, the rightmost three bits - readable
output bits and the remaining bits input bits, as follows:

Idab #7 ; generate three Is in rightmost bits
stab DDRA ; put them in direction bits for output

The instruction stab PORTA writes the rightmost three bits into the readable output
port bits. The instruction Idab PORTA reads the left five bits as input port bits and the
right three bits as readable output bits. A minor feature also occurs on writing the 8-bit
word: the bits written where the direction is input are saved in a register in the device,
and appear on the pins if later the pins are made readable output port bits.

The equivalent operations in C or C++ are shown below. To make PORTA an
output port, we can write

DDRA = Oxff;

Note that DDRA is declared an unsigned char variable. Then, any time after that, to a
char variable i to PORTA, write

PORTA = i;

Note that PORTA is declared an unsigned char variable. To make PORTA an input port,
we can write

DDRA = 0;

Then, any time after that, to input PORTA into an unsigned char variable I we can
write

i = PORTA;

Generally, the direction port is written into in assembly language or C before the port is
used the first time, and need not be written into again. However, one can change the
direction port from time to time, as shown in the IC tester example in a later section.

PORTA and PORTB together, and their direction ports DDRA and DDRB together, can
be treated as a 16-bit port because they occupy consecutive locations. Therefore they can
be read from or written into using LDD and STD instructions. These examples are
considered in problem 9 at the end of the chapter. Furthermore, they can be accessed in C
and C++ as shown below. To make PORTA and PORTB an output port, we can write

DDRAB = Oxffff;

Note that DDRAB is declared an int variable. Then, any time after that, to an int
variable i, high byte to PORTA and low byte to PORTB, we can write

PORTAB = i;

Note that PORTAB is declared an int variable. To make PORTA and PORTB, an input
port, we write

4.2 6812 Parallel Ports 143

Then, any time after that, to input PORT A (as high byte) and PORTB (as low byte) into
an .int variable i, we can write

i = PORTAB;

In the 'A4, PORTC and PORTD can similarly be read and written as 16-bit data, and
PORTF and PORTG can also be written this way. However, PORTF and PORTG have
missing bits: PORTF bit 1 and PORTG bits 6 and 7 are not implemented.

4.2.4 A Class for Ports with Direction Control

The 'A4 and 'B32 parallel ports are symmetrically and consistently organized, which
makes them well suited to being described by classes. Our class Port is redefined below
to manage extra features of these ports, most of which have direction ports.

put(T data) { *port - value - data; };

t {void! {if (attr&OxSO) return value;else return *port;};

option (int c = 0, int mask -= 0) {

mask; break; IIPUCR (hi) and RDRV (low)
(int *)0x2d\= mask; break; IIPUPSJ (hi) and PULEJ (low)

T operator = (T data) { put (data); return data; }

operator T () { return get (); }

virtual T operator)=(T data) { put(data\=get ()); return data; }

virtual T operator &= (T data) { put (data &= get()); return data;

The constructor performs the initialization ritual for a parallel port. Its left argument
can be conveniently initialized using this enurn;

144 Chapter 4 Parallel and Serial Input/Output

The constructor has two additional operands, which are zero if they are omitted, to
initialize the object's attr and its direction port. Values from the enum statement

can be ORed into the attribute argument. wrOnfy should be ORed into it if the port is a
basic output port that is write-only; it causes the get function to return the value that
was last output by the put function. dirAtl should be ORed into it if the port has a
direction port that is in the next location below the data port, and dirAt2 should be
ORed into it if the port has a direction port that is in a location two words below the
data port; these values cause the direction port to be initialized using the constructor's
third argument. Ports A, B, C, D, F, and G should use dirAt2, while all other ports
except AD should use dirAtl. Note that ports AB, CD, and FG should use dirAtl.

The get and put, function members, and overloaded cast, assignment =, ORing
| =, and ANDing &= operators essentially duplicate those of the previously defined
Port class, except that get and put have been modified to handle a basic output port.

Devices generally have operations other than input and output. The Port class
above needs a way to report errors and write into direction, PUCR, RDRV, PUPSJ, and
PULEJ ports. All such special functions are implemented by an option function
member, whose first operand (the "case") designates which operation is to be performed
with the optional second parameter (the "input"), or what data are output from the
function. Case 0 returns errors, just as the queue class used an error procedure, to
ensure proper response to error conditions. The error value is stored in the rightmost bits
of attr. Case 1 is reserved for putting the input into the direction register, case 2 puts
the input into PUCR and RDRV, and case 3 into PUPSJ and PULEJ. Other numbers
will be reserved for special functions used in other devices. This is done so that, if an
option doesn't apply to a device, such as setting an SPI's "direction", the program
compiles without errors and executes without crashing. However, in function-member
checking, illegal cases are written to set the error indicator.

Case 2 ORs the input's rightmost byte into PUCR to enable pull-ups, and its
leftmost byte into the RDRV to select low power outputs, enum values shown below,
beginning with "u" enable pull-ups; for instance, option (2, uA) ; enables PORTA pull-
ups. Values beginning with "p" reduce power; for instance, option (2,pA); reduces
power on PORTA .

enum { uA = 0x100, uB = 0x200, uC = 0x400, uD = 0x800, uE = 0x1000,

uF = 0x2000, uG = 0x4000, uH = 0x8000, uJ -.-. 0, uS = 0, uT = 0,

uP ==- 0, uDLC = 0, uAB = 0x300, uCD = OxcOO, uFG = 0x6000};

enum { pA = 1, pB = 1, pC = 2, pD = 4, pE = 8, pF = 16, pG = 32,

pH = 64, pj = 128, pS = 0, pT = 0, pP = 0, pDLC = 0, pAB = 0x01,

pCD = 0x06, pFG = 0x18};

Case 3 ORs the input's rightmost byte into PULEJ to enable pull-ups or pull-
downs, and its leftmost byte into the PUPSJ to select whether pull-ups (1) or pull-
downs (0) will be used. For instance, to make PORTJ bit 2 pull up, execute
option (3, 0x404); and to make its bit 4 pull down, execute option (3, 0xl 0) .
Such values can be ORed together in a single call to option for either case.

4.2 6812 Parallel Ports 145

For instance, an object for 'A4's 8-bit parallel PORTJ is initialized for readable
output, configured for pull-ups and reduced power, and then used for output, as follows:

void main() { char i; II local variable
Port<char> port (aJ, dirAtl, Oxff); //declaration
port, option (3, Oxffff); II make all bits pull-up
port. option (2,pj); II reduce power
port = 5; i = port; II write to port, read data written

}

Port's constructor's parameters are an address, attributes, and the direction port value
initialize port and attr. First parameter aJ means the address for PORTJ. Port's
constructor then sets the device's direction port calling option with parameter 1,
because we always set up the port's direction before the port is used; option can also
be called later to change the device's direction. Function member option can be
explicitly called right after the object is declared or blessed, to make PORTJ use pull-ups
and to reduce power on all pins. Having declared or blessed a Port device, function
members get, put, and opt ion, and overloaded operators cast, assignment, j=, and
&=, can be used with Port. Additional members will be added to Port in §4.3.6.

An object for 'B32's 16-bit parallel port AB can be blessed for readable output,
configured for pull-ups and reduced power, and then used for output, as follows:

void main() { int i; Port<int> *ptr;
ptr = new Port<int>(aAB,dirAtl, Oxffff) ///constructor
ptr->option (2, pAB\ UAB); II for reduced power, pull-up
*ptr = 5; i - *ptr; II Rest of program uses same code.

}

An object for an 8-bit basic output port at 0x200 can be declared and used for
output, as follows:

void rnain() { char c; Port<char> d(0x200, wrOnly); //constructor
d = 5; c d/ // Rest of program uses same code.

This class doesn't provide function-member checking, but that can be added as
shown in problem 13 at the end of the chapter. Another interesting class in problem 15
is for one-bit input or output. The constructor gets an id whose low-order 3 bits
designate a bit number and whose high-order bits designate a port (0 is PORTA, etc.).

The use of object-oriented programming simplifies the use of the 'A4 and 'B32
parallel ports. It is easy to design software for one port, and then change the software to
another port if the hardware design has to be changed because the first port is needed for
another device. This makes possible a library of programs that use a port with a block of
hardware; a program and block of hardware can be taken from the library and easily
modified to adapt it to another port. One merely has to change the constructor's
arguments. Finally, the class function members are easy to test in a function-member
driver, and they can be substituted for by a stub. Function-member checking, if it is
implemented, also catches illegal use of devices if an inappropriate device is chosen for
an application, or an inappropriate option is specified.

146 Chapter 4 Parallel and Serial Input/Output

43 Input /Output Software

Software for input and output devices can be very simple or quite complex. In this
section, we look at some of the simpler software. We show C programs to make the
discussion concrete. The software to use a single input and a single output device to
simulate (replace) a wire will be considered first because it provides an opportunity to
microscopically examine what is happening in input and output instructions. We next
discuss input to and output from a buffer by analogy to a movie. Programmed control of
external mechanical and electrical systems is discussed next. We will discuss the control
of a traffic light and introduce the idea of a delay loop used for timing. Then, in a more
involved example, we'll discuss a table-driven traffic light controller and a linked-list
interpreter, which implement a sequential machine. Finally we discuss an IC tester.

4.3.1 A Wire

The program main() following this discussion will move data from an 8-bit input port
at 0x4000 (Figure 4.la) to an 8-bit output port at Ox67ff (Figure 4.1b) repetitively.
This program only simulates eight wires, so it is not very useful. However, it illustrates
the reading of input and writing of output ports in C. Observe the manner in which the
addresses of the ports are set up. The cast (char*) is only needed if the C compiler
checks types and objects to assigning integers to addresses. Alternatively, the addresses
can be specified when the pointers are declared, as we will show in the next example.
This program is worth running to see how data are sampled and how they are output,
using a square-wave generator to create a pattern of input data and an oscilloscope to
examine the output data. You may also wish to read the assembly-language code that is
produced by the C compiler and count the number of memory cycles in the loop,
counting also the number of cycles from when data are read to when they are output (the
latency). Timing is hard to predict for all C compilers, and the best way to really
determine it is to run the program and measure the timing.

The assembly language generated for this C procedure is

00000869 CE4000 LDX #16384
0000086C CD67FF LDY #26623

0000086F A600 LDAA 0,X

00000871 6A40 STAA 0,Y

00000873 20FA BRA *-4 ;abs = 086F

The 6812 actually reads the input port in the instruction LDAA 0,X, and then writes

4.3 Input/Output Software 147

into the output port in STAA 0,X about 375 ns later. The loop executes in 1.125 us.
However, loop timing depends on the compiler and the programmer's style. Timing is
best determined by measuring chip enable pulses on an oscilloscope.

4.3.2 4 Movie

We may wish to input data to a buffer. The declaration bufferfOxlOO] creates a vector of
length 0x100 bytes to receive data from an input port at 0x4000. Observe that the
address of the input port is initialized in the declaration of the pointer.

void main() {unsigned char *src=(unsigned char*) 0x4000,buffer[Oxl00], i;

The assembly language generated by this C for loop is shown below:

0000866 C7 CLRB

0000867 37 PSHB

0000868 87 CLRA

0000869 1981 LEAY 1,SP

000086B 19EE LEAY D,Y

000086D E600 LDAB 0,X

000086F 6B40 STAB 0,Y

0000871 33 PULB

0000872 52 INCB

0000873 C140 CMPB #64

0000875 25FO BCS *-14 ;abs = 867

Finally we may wish to output data from a buffer. Observe that the address pn t of
the buffer is initialized in the for loop statement, and is incremented in the for loop
statement rather than in the third expression of the for statement, which is missing.
Note the ease of indexing a vector or using a pointer in a for loop statement. This
operation, emptying data from a buffer to an output port or filling a buffer with data read
from an input port, is one of the most common of all I/O programming techniques. It
can use either pointers or indexes to read from or write into the buffer. The programmer
should try both approaches, because some architectures and compilers give more efficient
results with one or the other approach.

The assembly language generated by this C for loop is

148 Chapter 4 Parallel and Serial Input/Output

0000866 1A80 LEAX 0,SP
0000868 2004 BRA *+6 ;abs = 86E

000086A A630 LDAA 1,X+

000086C 6A40 STAA 0,Y

000086E B754 TFR X,D

0000870 1AF20100 LEAX 256,SP

0000874 3B PSHD

0000875 AEB1 CPX 2,SP+

0000877 B745 TFR D,X

0000879 22EF BHI *-15 ;abs = 86A

4.3.3 A Traffic Light Controller

Microcomputers are often used for logic-timer control. In this application, some
mechanical or electrical equipment is controlled through simple logic involving inputs
and memory variables, and by means of delay loops. (Numeric control, which uses A/D
and D/A converters, is discussed in Chapter 7.) A traffic light controller is a simple
example; light patterns are flashed on for a few seconds before the next set of lights is
flashed on. Using light-emitting diodes (LEDs) instead of traffic lights, this controller
provides a simple and illuminating laboratory experiment. Moreover, techniques used in
this example extend to a broad class of controllers based on logic, timing, and little else.

In the following example, a light pattern is a collection of output variables that
turns certain lights on and others off. (See Figure 4.10a.) Each bit of the output port
LIGHTS turns on a pair of LEDs (see Figure 4.1 Ob) if the bit is T. For example, if the
north and south lights are paralleled, and the east and west lights are similarly paralleled,
six variables are needed; if they are the rightmost 6 bits of a word, then TFFFFF would

Figure 4.10. Traffic Light

4,3 Input/Output Software [49

turn on the red light, FTFFFF would turn on the yellow light, and FFTFFF would turn
on the green light in the north and south lanes. FFFTFF, FFFFTF, and FFFFFT would
similarly control the lights in the east and west lane. Then TFFFFT would turn on the
red north and south and green east and west lights. We will assume that the 6812 output
is connected so its right 6 bits control the lights as just described. The right 6 bits of
DDRA are set to make these bits of PORT A outputs. The left 2 bits of the 8-bit output
port need not be connected at all. Also, for further reference, TIME will be a binary
number whose value is the number of seconds that a light pattern is to remain on. For
example, the pair LIGHT = TFFFFT and TIME = 16 will put the red north and south
and green east and west lights on for 16 seconds. Finally, a sequence of light patterns
and associated times describes how the traffic light is controlled. This is an example of a
cycle, a sequence that repeats itself forever.

In this technique, as the program in Figure 4.10c is executed it supplies multiple
instances of immediate operands to the output port (as in PORTA = 0x21;) and
immediate operands to control the duration of the light pattern. A loop such as
for (i = 0; i <Oxl 00; i + +); is called a delay loop. It is used to match the time of the
external action with the time needed to complete the instruction. Delay loops are
extensively used in I/O interface programs. The usual loop statement after the for i; / >
and before the ending semicolon (Figure 2.3c) is missing because the control part of the
for statement provides the required delay. The constant 0x100 that must be put in the
statement to get a specific loop delay is hard to predict analytically and varies from one
compiler to another, but it can be empirically determined.

A better way than programming a control sequence using immediate operands is an
interpreter; it is usually recommended for most applications because it simplifies writing
the control sequences and to store them in a small microcomputer memory. An
interpreter is a program that reads values from a data structure such as a vector, a bit or
character string, a list, or a linked-list structure to control something, like drill presses
or traffic lights, or to execute interpretive high-level languages such as BASIC, LISP, or
JAVA. You might want to scan §2.2 to review data structures before looking at
interpreters. Table and linked-list interpreters are particularly useful in interface
applications. The table interpreter is described first, then the linked-list interpreter is
introduced by modifying the table interpreter.

A traffic light cycle might be described by Table 4.1. It can be stored in a table or
array data structure. Recall from §2.2.1 that arrays can be stored in row-major order or
column major order. C accesses arrays in row major order. The array has two columns -
one to store the light pattern and the other to store the time the pattern is output - with
one row for each pair. Consecutive rows are read to the output port and the delay loop.

Table 4,1. Traffic Light Sequence

LIGHT

TFFFFT

TFFFTF
FFTTFF

FTFTFF

TIME

16
4
20
4

150 Chapter 4 Parallel and Serial Input/Output

void main () { unsigned char * lights, i, j, k, tbl [4] [2] ;
lights = ('unsigned char *) 0; f* set up pointer to I/O port */
lights [2] = 0x3f; I* initialize direction register for output*/
tbl [0] 10] = 0x21; /* initialize first light pattern */
tbl 10] [l] = 16; /* initialize first delay period */
tbl [1] 10] = 0x22; /* initialize second light pattern */
tbl [l] [1] =-• 4; /* initialize second delay period */
tbl [2] [0] = 0x0c; /* initialize third light pattern */
tbl [2] [l] =20; /* initialize third delay period */
tbl [3] [0] = 0x14; /* initialize fourth light pattern, */
tbl 13] [l] = 4; /* initialize fourth delay period */
do /* do the four-step sequence forever */

for (i=0; i <4 ; i + +) { I* do four Steps */
PORTA = tbl [i] [0] ; /* output a light pattern */
for (3=0; j<tbl [i] [l]; j++) I* repeat following to delay */

for(k=0;k <0xffff;k++) ; /* delay a bulk amount */

Structures can implement tables more efficiently than arrays can, so their columns
can have different data types and sizes. You can use a pointer to point to the structure, as
discussed next. We first introduce a very simple link mechanism using the index in an
array, and then the use of pointer variables and structures to implement links.

4.3.4 A Sequential Machine

Linked-list interpreters strongly resemble sequential machines. We have learned that
most engineers have little difficulty thinking about sequential machines, and that they
can easily learn about linked-list interpreters by the way sequential machines are modeled
by a linked-list interpreter. (Conversely, programmers find it easier to learn about
sequential machines through their familiarity with linked-list structures and interpreters
from this example.) Linked-list interpreters or sequential machines are powerful
techniques used in sophisticated control systems, such as robot control. You should
enjoy studying them, as you dream about building your own robot.

A Mealy sequential machine is a common model for (small) digital systems. While
the model, described soon, is intuitive, if you want more information, consult almost
any book on logic design, such as Fundamentals of Logic Design, by C. H. Roth,
West Publishing Co.; Chapter 14 is especially helpful. The machine is conceptually
simple and easy to implement in a microcomputer using a linked-list interpreter. Briefly,
a Mealy sequential machine is a set S of internal states, a set I of input states, and a set
O of output states. At any moment, the machine is in a present internal state and has
an input state sent to it. As a function of this pair, it provides an output state and a
next internal state. In the next time step, the next internal state is the present internal
state.

4.3 Input/Output Software 151

Figure 4.11. Mealy Sequential Machine

The Mealy sequential machine can be shown in graph or table form. (See Figures
4.1 la and 4.1 Ib for these forms for the following example.) Herein, the machine has
internal states S = (A, B, C}, input states I = {a, b}, and output states O = (0, 1}. The
graph shows internal states as nodes, and, for each input state, an arc from a node goes to
the next internal state. Over the arc, the pair representing the input state/output state is
written. In the table, each row describes an internal state and each column, an input state;
the pair signifying the next internal state/output state is shown for each internal and
output state. Herein, if the machine were in state A and received input a, it would output
0 and go to state B; if it received input b, it would output 1 and go back to state A.

Consider a simple example of a sequential machine operation. If the machine starts in
internal state A and the input a arrives, it goes to state B and outputs a 0. In fact, if it
starts in state A and receives the sequence abbaba of input states, it goes from internal
state A through the internal state sequence BCABCA and generates output 000001.

The table representation can be stored in a microcomputer in a three-dimensional
array in row-major order. The interpreter for it would read an input, presumably from the
least significant bit of PORTS, and send the output to an output, least significant bit of
PORT A, The input state a is the value 0x00, when read from the input port, and b is
0x01. The internal state is associated with the leftmost array index being read. If the
initial internal state is A, then the program implements this by initializing an index to
index 0 associated with state A. The table is interpreted by the following program.

PORTB@1, DDRA@2, DDRB @3 ;

/* initialize table */
unsigned char PORTAQO,

void main() {
DDRA = l; DDRB = 0; i = 0; /* set up initial state */
while (1) { /* interpret forever */

j = PORTS & l; I* get input state */
PORTA = tbl [i] [j] [1] ; /* output the output state */
i = tbl [i] [j] [0]; /* read out next internal state */

152 Chapter 4 Parallel and Serial Input/Output

Figure 4.12. A Linked-List Structure

For low-end C compilers, two- or three-dimensional arrays are not implemented.
However, the traffic light and sequential machine examples can be implemented with one-
dimensional vectors. See the problems at the end of the chapter. To assist checking such a
vector, it can be laid out like a higher-dimensional array; an example of this layout will
be given when an object-oriented traffic light controller is discussed.

The program using structures is a bit more complex, but it is a more correct use of
linked lists in C. In either program, an input port senses the input state and an output
port provides the output state to some external system. We introduced the linked-list
structure by comparing it to a row of the table. The structure is accessed (read from or
written in) by a program, an interpreter. The key idea is that the next row to be interpreted
is not the next lower row, but a row specified by reading one of the table's columns. For
example, after interpreting the row for state A, if a b is entered, the row for A is
interpreted again because the address read from a column of the table is this same row's
address. This view of a list is intuitively simple. More formally, a linked-list structure is
a collection of blocks having the same template. A block is a list like the row of the
table and the template is like the column heading. Each block is composed of elements
that conform to the template. Elements can be 1 bit to tens of bits wide. They may or
may not correspond directly to memory words, but if they do, they are easier to use. In
our example, the block (row) is composed of four elements: The first is an 8-bit element
containing a next address, the second is a 16-bit output element, and the third and fourth
elements are like the first and second. Addresses generally point to the block's first word,
as in our example, and are loaded into the address register to access data in the block.
Elements are accessed by using the offset in indexed addressing. Another block is selected
by reloading the address register to point to that block's first word. Rather than describe
blocks as rows of a table, we graphically show them, with arcs coming from address
fields to the blocks they point to, as in Figure 4.12. Note the simple and direct
relationship between Figure 4.12 and Figure 4.11 a. This intuitive relationship can be
used to describe any linked-list structure, and, without much effort, the graph can be
translated into the equivalent table and stored in the microprocessor memory.

4,3 Input/Output Software 153

Linked lists generally have elements that are of different sizes. Also, pointers that
are addresses to memory may be needed because they are not multiplied and added to
compute memory addresses, as array indexes are, and thus are faster. Such linked lists
should be stored as structures. Recall that in order to point to an element e of a
structure s, we used s.e in earlier discussions. If a pointer is moved to different copies
of a structure as the current internal state in the sequential machine, we can put it in the
structure pointer variable ptr, and (*ptr) . e is the element e of the structure pointed
to by the pointer ptr. As a shorthand, the operator -> is used; ptr->e is equivalent
to (*p f r) . e. It can now be rewritten:

void main () {
struct, state {struct state *next;char out; }A[2] ,B[2] ,C[2] , *ptr = A;
A [01 .next = B ; A[0] .out = 0 ; A [1] .next = A ; A [I] .out --= I;
B[0] .next = A ; B[0] .out = 0 ; B[1] .next = C ; B[1]. out = 0;
CIO].next = A ; C[0].out = 1 ; C[l].next = A ; C[l].out = 0; DDRB=1;

Note that a data type, struct state, stores the next internal and the output states for a
present internal state and input state combination. There is a vector for each internal state;
A [2] has, for each input state, a pointer to a struct state, and the entire vector
represents the internal state A. We have to initialize the structures in the program, not in
the declaration, because locations of structures must be declared before they are used as
entries in a structure. The initial internal state is initialized at the end of the declaration of
the structure to be state A. In the while loop, the input number is read from the input
port and added to the pointer ptr. If a "1" is read, ptr is moved from A [0] to A /1 1,
from B [0] to B[l], or from C [0] to c[l] . Then the structure's element out is
output, and the structure's element next is put in the pointer ptr.

The structure and pointer are very useful in I/O programming. An I/O device may
have many ports of different sizes that can be described best by structures. The device's
address can be put in a pointer ptr, and ptr->port will access the port element of it.
Linked-list structures are especially useful for the storage of the control of sophisticated
machines, robots, and so on. You can model some of the operations as a sequential
machine first, then convert the sequential machine to a linked-list structure and write an
interpreter for the table. You can also define the operations solely in terms of a linked list
and its interpretive rules. Some of our hardware colleagues seem to prefer the sequential
machine approach, but our software friends insist that the linked-list structure is much
more intuitive. You may use whichever you prefer. They really are equivalent.

The interpreters are useful for logic-timer control. A table is a good way to represent
a straight sequence of operations, such as the control for a drill press that drills holes in a
plate at points specified by rows in the table. A linked-list interpreter is more flexible and
can be used for sequences that change depending on inputs. Interpreters are useful in these
ways for driving I/O ports. Their use, though, extends throughout computer applications,
from database management to operating systems, compilers, and artificial intelligence.

154 Chapter 4 Parallel and Serial Input/Output

4.3.5 An 1C Tester

In this subsection we consider a design problem to be able to test standard 14-pin ICs,
about 30% of the ones we use, at the behavior level. We want to be able to put an 1C
into a socket, then run a test program that will determine whether the 1C provides the
correct sequence of outputs for any sequence of inputs; but we are not testing the delays,
the input and output electrical characteristics, or the setup, hold, rise, or fall times of
signals. Such a tester could be used to check bargain mail-order house ICs,

In principle, there are two design strategies: top-down and bottom-up. In top-down
design, you try to understand the problem thoroughly before you even start to think about
the solution. This is not easy, because most microcomputer design problems are said to
be "nasty"; that means it is hard to state the problem without stating one of its solutions.
In bottom-up design, one has a solution - a component or a system - for which one tries
to find a matching "problem." This is like a former late-night TV show character,
Carnack the Magnificent. Carnack reads the answer to a question written inside an
envelope, then he opens the envelope and reads the question. This is bottom-up design.
We do it all the time. The answer is microcomputers; what was the question? Now, if
you are an applications engineer for Zilog, you are paid to find uses for a chip made by
Zilog. But a good design engineer must use top-down design!

We now design this 1C tester top-down. We need 12 I/O bits to supply signals to all
the pins and to examine the outputs for all the pins except power and ground. But the
pins are not standard from chip to chip. Pin 1 may be an input in one chip and an output
in another chip. An 'A4's or 'B32's ports A and B would be more suitable than the
simple parallel I/O device because a line to these ports can be made an input or an output
under control of software for different chips. Note that this is not always the case, and a
simpler I/O device (a basic output device using a 74HC374 or an input device using a
74HC244) may be indicated if it is cheaper or uses up less board space. Assuming these
ports are available, we choose them. We examine ports A and B.

We will configure the devices so the A data port will input or output data to the
high-number pins, and the B data port the low-number pins. A rugged (ZIP) socket will
be used for 14-pin ICs, with power and ground connections permanently wired to pins 14
and 7, and other pins connected to the port bits as shown in Figure 4.13a, making it
impossible to connect a port's output pin to +5 V or ground, which may damage it. The
user will plug a 14-pin 1C into the 14-pin socket to test it. Another rugged (ZIP) 16-pin
socket can be used for testing 16-pin dual in-line packages.

Figure 4.13. Connections for a Chip Tester

4,3 Input/Output Software 155

The general scheme for programming will be as follows. A direction pattern will be
set up once, just before the chip is inserted, and a sequence of patterns will be tested, one
at a time, to check out the chip. A pattern of T and F values will be put into the direction
ports: an F if the corresponding pin is an output from the test 1C (and an input to the
ports), and a T if the corresponding pin is a chip input (output from the ports). Then a
test pattern will be put in the data port to set up inputs to the 1C under test wherever they
are needed. The test pattern bits corresponding to the IC's output pins are, for the
moment, "don't cares." Data will be read from the I/O ports, and the bits corresponding to
the test chip's output pins will be examined. They will be compared against the bits that
should be there. The bits corresponding to the input pins on the test chip are supposed to
be exactly the bits that were output previously. The other bits of the pattern, which were
don't cares, will now be coded to be the expected values output from the 1C under test,
Summarizing, if an IC's pin is a chip input, the corresponding port bit's direction bit is
T, and its data bit in the test pattern is the value to be put on the test IC's input pie;
otherwise, if the IC's pin is a chip output, the corresponding direction bit is F, and the
data bit is the value that should be on the pin if the chip is good. The test sequences are
read from a vector by a vector-driven interpreter.

Constants for chip testing are #defined; these 16-bit values are finally put into
ports A (high byte) and B (low byte). From Figure 4.13a we construct the definitions:

We illustrate the general scheme by showing concretely how a quad-2 input HAND
gate, the 74HCOO, containing four independent gates, can be tested. Figure 4.14a is the
truth table for one of the four gates in the 74HCOO. We use the above definitions to
construct a value that is the number of testing iterations, a value to be put in the direction
ports, and values to be tested by the vector interpreter. From the 74HCOO chip pin
connections shown in Figure 4.14b, we recognize that the truth table A value should be
put on pins 1, 4, 10, and 13; the truth table B value must be put on pins 2, 5, 9, and 12;
and the Z result will appear on pins 3, 6, 8, and 11. So we easily write the *Mt-» , > -
statements shown to the right of Figure 4.14.

Figure 4.14. The 74HCOO

156 Chapter 4 Parallel and Serial Input/Output

These corresponding contents of the vector, which are actually evaluated to be v [6]
= {4, 0x264, 0x264, Ox6£6, Oxb6d, Oxd9b}; are used in the procedure cJ<ecK (/,
(The advantages of using ttdefine statements can be appreciated if you try to construct
these constants manually.) The first element of v, the number of iterations, is used in
the for loop; the second element is used to initialize the direction port. The next
element, corresponding to the top row of the truth table, has Is exactly where Z appears
because the truth table so indicates, so we initialize it to the value Z; the next element
of v, corresponding to the second row of the truth table, has Is exactly where B and z
appears, so we initialize it to the value B\Z, and so on. The program sets up PORT A
and PORTS to be inputs where v[lj appears to be true (1), so their direction is
initialized to ~v[l]. Then the vector is read, element by element; the values of bits A
and B are output, and the value returned is checked to see if it matches the element value.
For a particular element, the vector value is output; wherever the direction bit is T the
element's bit is output and wherever the direction bit is F the element's bit is ignored.
The ports are read, and wherever the direction bit is T the element's bit is compared to the
bit from the port. v[l] is a mask to check only the bits read back from the chip. The
procedure check () returns 1 if the chip agrees with test inputs, and 0 if it fails to match
the patterns in v.

unsigned int. v[6]={ 4, Z, z,B\Z, A\Z, A j B} //* test vector for the 7400 */

int. check() { unsigned int i, bits;
DDRAB ~v[l]; /* initialization ritual for ports A and B */
ford = 0; i < v[0]; i + +) {I* for all rows of truth table */

PORTAB = bits = v[i + 2]; /* output to chip, save pattern for testing */
.i f ((bi ts&v[l]) != (PORTAB&v[l])) return 0; /* mismatch? exit with 0 */

I

1; /* if all match, return 1 */

The procedure above tests the 74HCOO chip. Other combinational logic chips can be
tested in an almost identical manner, requiring only different vectors v. Chips with
memory variables require more care in initialization and testing. Also, a thorough test of
any chip can require a lot of patterns. If a combinational chip has a total of n input pins,
then 2" patterns must actually be tested.

A very powerful message of this example is the ability of high-level languages to
abstract and simplify a design. By #define statements that are in turn defined in terms
of other #define statements, we are able to utilize the ports of the 'A4 or 'B32 in a
manner that is easy to understand and debug. It is easy to develop vectors for other chips
like the 7408, which has a different truth table, or the 7404, which has a different pin
configuration and a different truth table. It is easy to modify this program to use, for
instance, ports C and D, or F and G, which have some missing bits. This modification is
not unlike porting the program to a machine with a different I/O architecture. High-level
languages simplify porting a program from one machine to another.

4.3 Input/Output Software 157

4.3.6 Object-oriented Vector Functions and Interpreters

In this subsection, we repeat this section's examples shown earlier to use object-oriented
programming. The program wire illustrates simple input/output.

void rnainf) { char i;
Port<char>*dst; Port<char> *src;
dst = new Fort<char>(0x67ff);
src = new Port<char>(0x4000) ;
do *dst - i = *src; while (1) ;

Overloaded cast and assignment operators make this program look almost like the first
wire example, but *src calls the overloaded cast operator that calls the get function
member, and *dst calls the overloaded assignment operator that calls pu t . The local
variable i is used herein to force the use of overloaded cast and assignment operators;
otherwise *dst = *src; would call the copy constructor instead to make the object
dst a copy of the object src. Objects have some overhead, especially in using virtual
function members, but this overhead is often not a problem. But to simplify debugging,
or change the entire program to work with 6812 parallel ports, we can just change
main's first three lines to bless the object as a member of the stub or another class.

Earlier movie examples illustrate input and output from a buffer. This very important
genus of I/O software will be handled by additional function members and overloaded
operators. Functions to input (get (T *v, int n)) or output (put (T *v, int. n))
whole vectors are useful because direct memory access (DMA) and floppy disk sector
input and output can directly input or output whole vectors. It is better to pass them a
vector rather than passing one byte at a time from a vector, then combining the bytes into
a vector, to input or output the vector as a whole. In the event that your I/O operation is
ever redirected to a DMA or disk, user-callable vector functions will allow efficient input
or output of whole vectors. So even though your current design might not transfer whole
vectors, using vector input and output functions and overloaded operators may make it
possible at a later date, if the I/O should be redirected to a disk or DMA device, to take
advantage of such devices. Besides, using these vector functions and operators factors the
code used to step through the vectors into one place, in Port function members and
overloaded operators, rather than having this code throughout the program. The vector
get and put functions input and output whole vectors, without the application program
managing each byte transfer.

These vector input and output functions are often called "raw I/O" because data are
not interpreted as control characters. Port supports a minimal subset of conventional
C++ loStream functions. It uses the overloaded operators » for "cooked I/O" input and
« for "cooked I/O" output of ASCII data, honoring control characters like carriage
return. A string of « operators provides a convenient output mechanism for terminals
and keyboards similar to C'sprintf. Character input, Port &operator » (T & c) ,
inputs one character and echoes it, using the object'sput function. Character string input
Port & opera tor » (T *b) inputs a character line ending in a carriage return \x ,
allowing line editing responsive to backspace ' \ £ > ' and delete line ' ctl x '.

158 Chapter 4 Parallel and Serial Input/Output

int option (int. c --= 0, int mask = 0) {
j f : (c =•= 0) { char i; l=attr & Oxl f; attr &-= OxeO; i ^ u > ; i
if(c — I){if(attr&0x20)port[2]=mask; if (attr&0x40)poi t [Lj -nujr ,
if(c .=--- 2) * (int *)0xc \= mask; break; IIPUCR (hi) and RDRV (low)
if(c -=- 3) * (int *)0x2d\= mask; break; IIPUPSJ (hi) andPULEJ (low)
return 0;

virtual void put (T data) { *port = value; = data; };

virtual T get(void){if(attr&0x80) return value; else return *port;};

virtual void put (T *v, int n) { while (n--) put. (*v+ +); ////vector output

virtual void get (T *v, int n) { while (n--) *v++ = get () ; } ; II vector input

T operator = (T data) { put (data); return data; }

operator T () { return get (); }

vlrcua.l T operator\ = (T data) { put (data \ =get ()) ; return, data; }

virtual T operator &= (T data) { put(data&=get()); return data; }

Port ^operator « (T c) { put(c); return *this; }

Port &operator « (T *s) { while(*s) put(*s++); return *this; }

Port &operator » (T &c) {c = get (); put(c); return *this; }

Port &operator » (T *b) {
do {va.lue=get () ; i f (echoPort) echoPort->put (value) ; }

while(value < ' 0 ') ;
do { /* input alphanumerics, permit backspace and cancel line */

i f (value==0x08) {i f (curPos) {backspace () ; curPos--; } }// bspc
else? if (value==0x!8) {while (curPos) {backspace (); curPos--; }}
else { b[curPos+ +] = value;.

if(curPos >= MAXCHARS) {attr j= 1; return *this;}}
value - get();if(value>= '0 ') put(value);

} while((value >= ' 0 ') \\ (value =- 8) \\ (value == 0x18));
curPos = 0; b[curPos + +] = ' \0 ' ; return *this; I* null terminate */

}

virtual void backspace (void) { put (' < ') ; } II app. can override for device's bspc

4.3 Input/Output Software 159

The movie examples, exhibiting raw I/O, become very simple using vector function
members, as shown below:

Streamed output, exhibiting cooked I/O, simplifies formatting, as shown below;

void main(){ int x = 0x1234; Port<char> c(aH);
c «"x is "«itoa(x)«" or in hexadecimal: "«htoa (x)« ' \r';

Single-character output is implemented by the segment « \r . Since a single
character /r appears to the right of the « operator, the Port class's overloaded
operator Port &operator « (T c) is used, A string of characters is output by a
segment such as « " or in hexadecimal: ". Since a character string " or in
hexadecimal: " appears to the right of the « operator, the Port class's overloaded
operator Port &operator « (T *s) is used. Using procedures that return a character
pointer to a null-terminated ASCII character string, such as i toa (x) and htoa(x),
numbers can be converted to character strings, and the « operator can output the strings,
as in « itoa(x) or « htoa (x) . Since a function returning a character string itoa()
appears to the right of the « operator, the Port class's overloaded operator Port
& opera tor « (T *s) also is used to output the string returned by I toa (). A library
can supply conversion routines such as itoa or htoa, or the programmer can write
tailored conversion routines for special applications.

Cooked input echoes input characters so a user can see, on the output device, what he
or she enters on the input device. String cooked output further handles special characters
such as backspace and cancel (control-X, 0x18). The overloaded operator assembles all
other characters, here loosely called "alphanumeric" characters, until a non-alphanumeric
character is met again. Such collected characters can be passed to library or user-defined
functions like atoi or atoh that convert the ASCII character string to a signed integer or
a hexadecimal number corresponding to it. For instance,

void main () {char si [MAXCHARS] ,s2[MAXCHARS], i;int x,y;Port<char> c(aB);
c » s.7 » i » s2; x = atoi (s 1) ; y =-- atoh(s2);

skips non-alphanumeric characters, then enters alphanumeric characters into s1; skips
non-alphanumeric characters, then puts the next character into i / skips further non-
alphanumeric characters, then enters alphanumeric characters into s2, until it encounters
non-alphanumeric characters and a carriage return, si is then converted as a signed
decimal number, and s2 is converted as a hexadecimal number. If the user types
123,a,456(c.r.) then x becomes 123, i becomes ASCII a, and y becomes 0x456.

The vector functions and overloaded operators « and » extend all the I/O class's
capabilities, so they are included in the base class Port. However, all these functions
and overloaded operators generate a significant amount of code, which HIWARE's current

160 Chapter 4 Parallel and Serial Input/Output

linker does not remove. Therefore, in the file Port.c, we have put conditional
compilation preprocessor commands around most of these functions and overloaded
operators to remove them when they are not needed. The user can #define a constant
USAGE so as to compile only the functions and overloaded operators needed in an
application. In future HIWARE linkers, which should be able to load only the functions
actually used, these conditional compilation preprocessor commands won't be needed.

Interpreters such as the traffic light controller that interprets an array, discussed in
§4.3.3, and the chip tester that interprets a vector of test patterns in §4.3.5, are essentially
operations that can be applied to the data structures storing the patterns. The data
structures and their (interpreter) operations can be encapsulated like arrays, and their
operations are often encapsulated using objects. We will illustrate the traffic light
controller object in the following example.

void traffic_table:: install (char data, short location) { II verify parameters
if (((location & 1) == 1) &&

'((((data & 7) == 1)||((data & 7) == 2)\
(((data&0x38)==8)\\ ((data&0x38)==0x10)\ \

errors = 1;
if(((location & 1)==0) && ((data < 4) &&
tbl [location] = data;

void traf fic_table::Execute () { char i, j; long k;
while (P. error () == 0) {

for(l = 0; i < rows; 1 + +) {
P.put(j = tbl[i « I]) ;
for(j = 0; j < tbl[(i « 1) + 1]; j + +)

for(k = 0; k < 0x100; k++) ;

4.3 Input/Output Software 161

Observe that before main is executed, constructors of global objects T of class
t r a f f i. c_ table and P of class Port<char> are executed. All main does is call
Execute if no errors occur in the constructors. All Execute does is follow the procedure
of the earlier traffic light example. But Ts constructor allocates room for a copy of the
traffic light table from an external constant vector table (observe that both are vectors,
but the constant global vector table is written spaced out to look like a two-dimensional
array for ease of checking against the table provided to the user (Table 4.1). This use of an
external vector and an internal vector illustrates the protection provided by object-oriented
programming. The external global vector is an "initial" value that is copied into space
provided by the allocate procedure into a "working copy" whose pointer, and therefore
whose contents, are protected. Input data is verified by install to ensure that exactly one
light is on in a north-south lane and in an east-west lane, and the delay time is reasonable.
ins tal 1 could conceivably be used, after initialization is complete and the interpreter is
running, to change a light pattern. The internal working copy of the traffic light pattern is
changeable but protected against illegal patterns, while the global initial vector is really
used just to set up this internal copy without having to use a lot of parameters to the
constructor, or a lot of calls to a build function member. Such duplication of data
structures is common in operating-system device drivers, where a constant data structure
is used to initialize a working copy of the data structure, which permits modification but
is protected against improper modification.

We conclude with an object-oriented example of the 1C tester. We use the same
tide fine statements as in the earlier 1C tester example; it incorporates similar concepts
to those used in the previous traffic light controller. Streamed output to an object cout
indicates the test result. You should therefore study this last example on your own.

Port<int> PfidAB, 0);
unsigned int pOO[6] = {4, Z, Z, B\Z, A\Z, A\B};

class ICTest { unsigned int *pattern;
ICTest(unsigned int *pattern) {

this->pattern - (unsigned int *)allocate (2 + *pattern);
for(short i=0;i<(2+*pattern);i++) this->pattern[i]=pattern[i];

int ICTest::check(void){ register unsigned bits, i;
P .optl on (1, pa t tern [1]) ; /* initialize ports A and B */
for(i = 0; i < * pat tern; i + +){

P = pat tern[i + 2];
i f ((P & pattern[1]) ! = (pattern[i + 2] & pattern[1])) return 0;

}
return 1; /* if all match, return 1 */

162 Chapter 4 Parallel and Serial Input/Output

4,4 Input/Output Indirection

When studying single-chip microcomputers, we found it easy to use parallel ports on
them to simulate the control signals on a memory bus, flipping them around in software.
The kind of I/O considered up to now is analogous to direct memory addressing. The use
of a parallel port to simulate a memory bus is like indirect addressing. Shift register-
connected I/O is further indirection. Incidentally, a coprocessor actually is an I/O device
that is read or written in microcode, which is one level below normal I/O, analogous to
immediate addressing. In this section, we examine I/O indirection and examine some
issues a designer should consider regarding I/O indirection. We will cover indirect I/O in
the first subsection, followed by serial I/O, and will conclude with object-oriented
programming and a discussion of design issues.

4.4.1 Indirect Input/Output

Up to now, the I/O device has been attached to the address and data buses. We shall call
this direct I/O. We will show a direct I/O connection of a time-of-day chip, the 6818.
The address, data, and control pins of an I/O device can be connected to a parallel I/O
device's I/O port pins. One or more parallel ports are used to connect to an I/O chip's
address, data, and control pins that are normally connected to the memory bus. Explicit
bit setting and clearing instructions, often called bit-banging, can raise and lower the
control signals for the I/O chip. Note that the 'A4 has 12 parallel ports, so it is
exceptionally well suited to using some parallel ports to control another I/O device. We
will show the advantages of this indirect I/O technique.

We want to keep track of the time of day, so we choose the MC6818A or
MCI46818A time-of-day clock chip to do this even when the microcomputer is turned
off. Figure 4.15a shows the memory organization of the MC6818A. The current time is
in locations 0 to 9, except for locations 1, 3, and 5, which hold an alarm time to generate
an interrupt. Control ports at locations OxA to OxD allow different options. Locations
OxE to Ox3F are just some CMOS low-power RAM. After an initialization, the time
may be loaded into locations 0 to 9, and then 0x8 is put into control port C to start the
timekeeping. Locations 0 to 9 can be read after that to get the current time.

The MC6818A can be indirectly controlled through the 'A4's PORTA and PORTB, as
shown in Figure 4.15d. M6818A control-signal timing, and address and data sequencing,
are taken from Motorola data sheets. Figure 4.15b shows the write cycle and Figure 4.15c
shows the read cycle. Control signals - address strobe as, data strobe ds, read-write r w,
and chip select cs - are set high or low in the 'A4 PORTB, to write a word. Except for
ds, they are initially high. We first raise as high, put the address into PORTA, make
cs and rw low, drop as low, make ds high, put data to PORTA, drop ds low, and
raise cs, rw, and as high. Reading is essentially the same, except that ru/ remains
high and data are read from PORTA. Control signals are defined in the enum statement
by having a 1 in the bit position through which they connect to PORTB.

4.4 Input/Output Indirection 1.63

Figure 4.15. MC6818A Time-of-Day Chip

164 Chapter 4 Parallel and Serial Input/Output

The C procedure main initializes port directions and initializes the 6818 control bits
to their default states. The C procedure out a accesses the chip. Observe that ouia rather
tediously but methodically manipulates the MC68181A's control signals. A call
out a (d, 6) in indirect I/O writes d to location 6 in the MC6818A, which stores the day
of the week. High-level language programs are easy to write. It is generally possible to
write the procedure outa in assembly language, while the main program is in C, to
regain some speed but keep most of the advantages of high-level languages. While the
program shows how MC6818A memory can be written into, similar routines can read it.

void main() {int yr,mo,dm,dw,hr,mn,se;
DDRA = 0; /* make port A an input */ DDRB = Oxf; /* make port B output */
PORTS = as+rw+cs; I* initialize control bits to default state */
outa (0x80, Oxb) ; outa (Oxf, Oxa) ; outa (yr, 9) ; outa (mo, 8) ; outa (dm, 7} ;
outa (dw, 6} ; outa (hr, 4) ; outa (mn, 2) ; outa (se, 0) ; outa (8, Oxb) ;

}

void outa (int d, char a) {
DDRA = Oxff; /* make port A an output */
PORTA = a; PORTB = as+cs; PORTE = as; /* output the address a */
PORTB =- 0; PORTB = ds; PORTA = d; PORTB = 0; PORTB = as;

PORTB = as+rw; PORTB = as+rw+cs; DDRA = 0; /* make port A an input */

The main point of this section is the concept of indirect I/O, which we now elaborate
on further. Besides being a good way to connect complex I/O devices to a single-chip
computer, indirect I/O is a very good way to experiment with an I/O chip. The main
advantage is that the connections to the chip are on the "other side" of an I/O port, rather
than directly on the 6812's address and data buses. Therefore, if you short two wires
together, the 6812 still works sufficiently to run a program. You have not destroyed the
integrity of the microcomputer. You can then pin down the problem by single-stepping
the program and watching the signals on the ports with a logic probe. There is no need
for a logic analyzer. Indirect I/O is also a good way to implement some completed designs
because it generally doesn't use external SSI chips; rather, it uses software to control a
device. Indirect I/O is particularly easy to implement in the 'A4 because the address, data,
and control buses in expanded mode are available as PORTAB, PORTCD, and PORTE
parallel ports in the single-chip mode.

We used this technique to experiment with a floppy disk controller chip and a CRT
controller chip set described in Chapter 10. We got these experiments to work in perhaps
a quarter of the time it would have taken us using direct I/O. That experience induced us
to write a whole section on this technique here in Chapter 4. There is a limitation to this
approach. Recall from Chapter 3 that some chips use "dynamic" logic, which must be ran
at a minimum as well as a maximum clock speed. The use of indirect I/O may be too
slow for the minimum clock speed required by dynamic logic chips. However, if the chip
is not dynamic, this indirect I/O technique is very useful to interface to complex I/O
chips.

4,4 Input/Output Indirection 165

4.4.2 LCD Interfacing

The liquid crystal display (LCD) has become the display device of choice for
microcontrollers. An LCD features low power, full ASCII character displays of one to
four lines, from 16 to 40 characters per line, and low cost. Many inexpensive LCD
modules use the Hitachi HD44780 LCD controller chip. The LCDs of OPTREX's DMC
series, which uses this Hitachi controller, can display a 16-column 1-row, a 16-column 2-
row, a 20-column 1-row, a 20-column 2-row, a 20-column 4-row, or a 40-column 2-row
ASCII message. Essentially, all displays use a standard interface that can be connected to
'A4's PORT A, as shown in Figure 4.16b.

Figure 4.16. An LCD Display.

Table 4.2. LCD Commands

166 Chapter 4 Parallel and Serial Input/Output

We show procedures for the 16-column 1-row display, main's initialization ritual
selects cursor blinking and movement. (See Table 4.2.) Its second line duplicates a
command to configure its input port to 4 bits. The put procedure outputs a command or
a character, using a delay loop to wait for the command's execution, and the putStr
procedure outputs up to 16 characters. The constant d4lO puts a 410~us delay and dlO
puts a I0-us delay after the command is given. For an inexpensive 16-by-l display, the
cursor must be repositioned after outputting 8 characters, with the statement /1 < ? '
> it (o •-< f> -1 d l O) ; . To control other size displays, this statement is deleted.

c ,,u/ri - *n-(>x?0, C'-OxlO, dW-J.O, d4 ' (}*8in>!; I* you might adjust dlO, d410 */

vo<d ruin i ii char L, j ;
DDRA 0*3 f; I* prepare PORTA for output */
OM (i)x.l^, 0, dlO); put (0x28, 0, dlO); I* use 4-bit interface */
put f (->, (i, d l O) ; I* set entry mode to autoincrement */
put i 0\e, 0, dlO); /* set display mode: display and cursor on */
pu;•• (l, 0, d4lO) / /* clear display */
ru-^1 ' if-! lo world, Hello world! "); /* print a message */

void put (char c, char a, Int d) /* output high nibble, low nibble, then delay */
/ put4(((c » 4) & Oxf) | a); put4((c & Oxf) \ a); while (d) d

void put4 (char c) {PORTA = c + e; PORTA =- c;}/* display on falling e edge */

putstr(char *s) { int i;
pu t (0x8Or 0, d410); /* clear display */
ford = 0; *s; s+ + , i+ +) {/* output until null */

pu t (*s, rs, dlO); /* output a character */
i f (1 = = 7 t put(Oxc0, Of dl 0); /* after 8th character, reposition cursor */

4.4.3 Synchronous Serial Input/Output

Except when they come with a personal computer or are laid out inside a microcontroller
chip, a parallel port and its address decoder take a lot of wiring to do a simple job. Just
wire up an experiment using them, and you will understand our point. In production
designs, they use up valuable pins and board space. Alternatively, a serial signal can be
time-multiplexed to send 8 bits of data in eight successive time periods over one wire,
rather than sending them in one time period over eight wires. This technique is limited to
applications in which the slower transfer of serial data is acceptable, but a great many
applications do not require a fast parallel I/O technique. Serial I/O is similar to indirect
I/O, covered in §4.4.1, but uses yet another level of indirection, through a parallel I/O
port and through a serial shift register, to the actual I/O device.

4.4 Input/Output Indirection 167

This subsection considers the serial I/O system that uses a clock signal in addition to
the serial data signal; such systems are called synchronous. Asynchronous serial
communication systems (Chapter 9) dispense with the clock signal. Relatively fast (4
megabits per second) synchronous serial systems are useful for communication between a
microcomputer and serial I/O chips or between two or more microcomputers on the same
printed circuit board, while asynchronous serial systems are better suited to slower (9600
bits per second), longer distance communications. We first examine some simple chips
that are especially suited for synchronous serial I/O. We then consider the use of a parallel
I/O port and software to communicate to these chips.

Although serial I/O can be implemented with any shift register, such as the
74HC164, 74HC165, 74HC166, and 74HC299, two chips - the 74HC595 parallel
output shift register and the 74HC589 parallel input shift register - are of special value.

The 74HC589 is a shift register with an input port and a tristate driver on the serial
output of the shift register. (See Figures 4.17b and 4.17d.) Data on the parallel input pins
are transferred to the input port on the rising edge of the register clock RCLK. Those data
are transferred to the shift register if the load signal LD is low. When LD is high, data in
the shift register are shifted left on the rising edge of the shift clock SCLK and a bit is
shifted in from IN, as in the 74HC595, but the data shifted out are available on the OUT
pin only if the output enable EN is asserted low; otherwise it is tristated open.

Figure 4.17. Simple Serial Input/Output Ports

168 Chapter 4 Parallel and Serial Input/Output

Figure 4.18. Configurations of Simple Serial Input/Output Registers

The 74HC595 is a shift register with an output port and tristate driver on the parallel
outputs. (See Figures 4.17a and 4.17c.) We consider the shift register to shift left rather
than right. A shift occurs on the rising edge of the shift clock SCLK. A bit is shifted in
from IN and the bit shifted out is in OUT. On the rising edge of the register clock RCLK,
the data in the shift register are transferred into the output port. If the output enable EN is
asserted low, the data in the output port are available to the output pins; otherwise they
are tristated open.

4.4 Input/Output Indirection 169

These chips can be connected in series or parallel configurations. (See Figure 4,18.)
The 74HC589 can be connected in a series configuration to make a longer register, as we
see in the 24-bit input port diagrammed in Figure 4.18a.

We will judiciously select PORTS and PORT A pins so that in the next discussion of
the 6812 SPI we use the same pins for the same purposes - to run experiments with the
SPI with the least amount of rewiring. In Figure 4.18a, The outputs OUT of each chip
are connected to the inputs IN of the next chip to form a 24-bit shift register. Each 589's
RCLK and LD pins are connected to PORTS bit 7 to clock the input ports and to load the
shift registers together, and each chip's SCLK pins are connected to PORTS bit 6 to clock
the shift registers together. The EN pins are connected to ground to enable the tristate
drivers. In the software considered later, we pulse PORTS bit 7 twice to load the input
registers at one time so as to get a consistent "snapshot" of the data; next we transfer this
data into the shift register at one time by making LD low; and then, with LD high, we
send 24 pulses on SCLK to shift the data into the 'A4.

The 74HC589 can be connected in a parallel configuration to make several separate
input ports, as we see in the three 8-bit input ports of Figure 4.18b. Each chip's output
OUT is connected to a common tristate bus line, and each chip's tristate enable EN is
connected to different PORTA bits: 2 to 0, LD and RCLK connect to PORTS bit 7, and
bits 4 and 6, are connected as in Figure 4.18a. Any of the input ports may be selected by
asserting its tristate enable low, the others being negated high. Then a sequence similar to
that discussed in the previous paragraph inputs the chip's data, using eight pulses on
PORTS bit 6. While this configuration requires more output pins, software can choose
any chip to read its data without first reading the other chip's data.

Figures 4.18c and 4.18d show the corresponding series and parallel configurations for
the 74HC595. Reset can be connected to the 'A4 reset pin, which resets the system when
it is turned on or when the user chooses; however, here it is merely connected to +5 V to
negate it. The output enable EN is connected to ground to assert it. The series
configuration makes a longer shift register. The parallel configuration makes separate
ports that can output data by shifting the same data into each port but only pulsing the
RCLK on one of them to transfer the data into the output register.

Series-parallel configurations, rather than simple series or simple parallel
configurations, may be suited to some applications. The 74HC595 RCLK signals can
come from the data source's logic, rather than from the microcomputer, to acquire data
when the source is ready. The 74HC589 output enable EN can connect the output to a
parallel data bus, so the output can be disabled when other outputs on that bus are
enabled. These configurations suggest some obvious ways to connect serial ports.

Serial I/O chips can use parallel I/O port bits to control the lines to the chips using
indirect I/O. We discuss the general principles after we consider this example: sending 24
bits of data to a series configured output, as shown in Figure 4.18c, following the flow
chart in Figure 4.19. The outer loop of the procedure serial jOutQ reads a word from a
buffer and an inner loop shifts 1 bit at a time into PORTS bit 5, clocking PORTS bit 6
after each bit is sent, and then pulsing PORTS bit 7 to put the data into the output buffer
register. Procedures for the other configurations in Figure 4.18 are similar to this one
(see problem 24). The basic concept is that the individual signals needed to control the
external chips can be manipulated by setting and clearing bits in parallel I/O ports. It is
easy to write programs that will interface to serial I/O devices via a parallel I/O port.

170 Chapter 4 Parallel and Serial Input/Output

void serial Out funsigned char *s) {unsigned char i, j;
DDRS = OxeO;
forfj = 0; j < 3; j + +){

for(i = 7; i >= 0; i--) {
PORTS = 0; /* make data and clock bits false (0) */
i f (0x8O&s [j]) PORTS \ = 0x20;/* if msb is 1, make data true (1) */
PORTS |= 0x40; PORTS & = • 0x4 0; I* pulse shift clock */

s [j] «= l;/* shift data*/

PORTS \= 0x30 ; PORTS &= ~ 0x80; /* pulse output register clock */

Figure 4.19. Flow Chart for Series Serial Data Output

4.4 Input/Output Indirection 1 7 1

The procedure above can be trivially modified to input data from three 74HC589s,
connected as in Figure 4.18a. PORTS bit 7, normally high, has to be pulsed to move data
from the 74HC589s' input pins into their parallel holding register on the rising edge
before the shift procedure is executed, and is again pulsed low to transfer the data to the
shift register; shifting, when PORTS bit 7 is high, puts that data serially into PORTS bit
4. Further, combining Figures 4.18a and 4.18c, three bytes of data can be output to the
*595s as three bytes are input from the '589s at the same time.

Parallel input or output connections can be similarly implemented. Parallel output
(Figure 4.18d) can get data to only one output register, without taking the time to shift
data through all of them, as the serial connection requires. Initialize PORT A to output a
high signal on bits 2 to 4 and, after shifting 8 bits, to pulse just one of them low,
Parallel input (Figure 4.18b) similarly holds exactly one of PORTA[2 to 4] low while
the shifting takes place (see serial in below). Its parameter a is 0 to input a byte from
the leftmost '589, is 1 to input from the middle, and is 2 to input from the right .

PORTS &= ~ 0x80; PORTS \= 0x80 ; II clock data into first register
PORTS &=-:.• ~ 0x80; PORTS \= 0x80 ; II load data into second register
PORTA = ~(l « a); II assert PORTA's ath bit low to enable ath '589
for(i = 0; i < 7; i + +) {

value «= I;/* shift data */
if SPORTS & 0x10) value \ = 1; /* get a bit from the port, insert it */
PORTS |= 0x40; PORTS &= ~ 0x40; /* pulse the shift clock */

The first line sets the direction to output control signals and input returned data. The
next two lines pulse PORTS bit 7 to clock data into the '589's first register on its rising
edge and then load the shift register when it is low. Then, when PORTS bit 7 is high, one
of the tristate drivers is enabled, and then the data is shifted into the 6812.

Figure 4.20. Dallas Semiconductor 1620 Digital Thermometer

172 Chapter 4 Parallel and Serial Input/Output

As an example of serial I/O, we consider a digital thermometer (see Figure 4.20). The
Dallas Semiconductor 1620 has a CONFIG register and a TEMPERATURE register
(among others), and uses a serial three-wire interface (see Figure 4.20). Data are shifted in
and out, least significant bit first, on D (pin 1). Each message consists of sending an 8-
hit command, optionally followed by sending or receiving 8 or 9 data bits. RST (pin 3)
must be high from before the command is sent until when the data has been completely
sent or completely received, and there must be a 5-ms delay between issuing commands,
while RST is low. Temperature is measured about once per second.

The program below sends out a command to write 2 into the 8-bit 1620 CONFIG
register to initialize it for temperature measurement; then it reads the 9-bit
TEMPERATURE register, which is a 2's complement number, in units of '/2 C°

void main() { int i;

DDKS = OxeO; PORTS = 0;

PORTS) =RST; send (WrCnfg, 8) ; send (2, 8) ; PORTS &=~RST; wai t (2) ;// wait 5 ms
PORTS] =RST; send (start, 8) ; PORTS&=~RST; wait (20) ; //wait 1 S

PORTS (= RST; send(RdTemp, 8); i = receive (9) ; PORTS &= -RST;

oid send (int d, char n) { char i;

D; if(d & 1) PORTS = D

int receive (char n) { int d; char i;
DDRS &= ~D;
for(i - d = 0; i < n; i + +)

{ d »= 1; i f (D & PORTS) d+=0x!00; PORTS \= CLK; PORTS &= -CLK;}
DDRS \= D; if (n == 8) d »= 1; return d;

4.4.4 The 6812 SPI Module

The 'A4 and 'B32 were designed with the intent of exploiting serial modules like the
74HC589 and 74HC595. They incorporate a serial peripheral interface (SPI) that takes
care of shifting serial data to and from the 'A4 or 'B32, essentially implementing the
inner loop of serial O u t , entirely in hardware. In this section we introduce the SPI
module.

Figure 4.21 shows the SPI data, control, and status ports; PORTS and DDRS from
Figures 4.6 and 4.8 are repeated here. We first consider ports needed to use the SPI for a
procedure that is like serialOu t, then the additional ports are discussed.

4.4 Input/Output Indirection 173

The enable port SPE must be set to use the SPI. Although the SPI module can also
act as a slave to another computer, it is usually a master and we will consider it so until
the end of this section. Thus master SPE and MSTR must be T. Input and output are
determined by DDKS . When data are not being shifted, PORTS is output. Putting output
data in the data port SPODR starts the shifting. These bits are shifted out of master-out,
slave-in (MOSI) PORTS bit 5, most significant bit first. The shift clock (SCLK), PORTS
bit 6, clocks the internal and any external shift ports. Bits shifted in, most significant bit
first, from master-in, slave-out (MISO) PORTS bit 4, can then be read from the data port
SPODR. The procedure serial Out shifts out the three byte vector s, using the series
output configuration shown in Figure 4.18c.

Writing into SPODR to begin the shifting is an example of a write address trigger,
For input, a statement like SPODR = 0; is needed to start a shift, even if no data need be
output. The SPIF flag becomes set when all bits are shifted; it can be tested to wait for
shifting to be done. In the next chapter this will be called a gadfly loop. This SPJ F flag
is an example of a status port, an input port that lets the programmer input information
from the device, but this information is from the device itself, not from the outside world.
This port tells the programmer that the SPI has completed its shift. Note that although
the data shifted in is not needed in this example, nevertheless the statement d - srcuh ;
is needed to clear SPIF. Reading SPODR after reading SPOSR clears SPIF. This is an
example of an address-trigger sequence.

Figure 4.21. SPI Data, Control, and Status Ports

174 Chapter 4 Parallel and Serial Input/Output

volatile unsigned char SPOCRWOxdO, SPOCR2@Oxdl, SPOBR@Oxd2, " n P ,
SPODR@Oxd5;

enum { SPIE = 0x80, SPE = 0x40, SWOM = 0x20, MSTR = 0x10, CPf'l <
enum { CPHA = 4, SSOE = 2, LSBF = 1, PUPS = 8, RDS = 4, SPCO I
enum { SPIF = 0x80, WCOL = 0x40, MODF = 0x10);
enum. { SS = 0x80, SCLK = 0x40, MOSI = 0x20, MISO = 0x10};
void serialOut(unsigned char *s) {unsigned char j, d;

DDRS = SS + SCLK + MOSI; /* make outputs for connections to the S.R. */
SPOCRI = SPE + MSTR; /* set up all bits in the control port at once */
f o r (j = 0; j < 3; j++} /* transfer one byte at a time */

{ SPODR=s [j] ; while(! (SPOSR&SPIF)) ; d=SPODR; } /* move byte */
PORTS |= SS ; PORTS &= ~ SS; /* pulse output port clock */

We now consider SPI ports useful in other applications. The SCLK bit rate is given
by the SPR field of the SPOBR port. It is reset to 0, the default case, which results in a
4-MHz shift clock that the 74HC595 can handle. SPR can be set at any time to other
values; if the E clock is 8 MHz, SCLK's frequency is 4/(2SPR). The SWOM bit
determines whether the SPI's pins are wire-or and is usually F. The bits CPOL and
CPHA determine the shape of the shift clock SCLK pulse. The value F, F (0, 0) is
suitable for positive-edge clocked registers like the 74HC589 or 74HC595. Port SSOE
modifies the master mode so that if DDRS bit 7 is true (1), PORTS bit 7 is asserted low
only during shifting, and if DDRS bit 7 is false (0), asserting PORTS bit 7 low can cause
an interrupt called a mode fault. LSBF permits data to be shifted least significant bit first,
PUPS puts pull-ups on the high nibble of PORTS, and RDS reduces output power on
these bits, in the same way the other ports have pull-ups and reduced power. Port SPCO
permits MOSI to be used for bidirectional shifting of data for single-wire data transfers: if
DDRS bit 5 is true (1), MISO is serial data output; otherwise, MISO is serial data input.
MISO is then called master-out, master-in (MOMI).

Figure 4.22. Multicomputer Communication System Using the SPI

The SPI interface can be used to communicate among several 6812s as shown in
Figure 4.22. One 6812 is made a master, and all the others are slaves. In slaves, PORTS
bit 7 is used as a slave select SS input. The MOSI, MISO, and SCLK pins are connected

4,4 Input/Output Indirection 175

together. In contrast to the master, the slave clears its SPOCRI bit MSTR and DDRS bits
5, 6, and 7, and sets DDKS bit 4. As one SPI is initialized and inadvertently pulses its
output port bits that input to the other SPIs, other SPIs may have to ignore the resulting
spurious input byte. The master controls the slaves through some parallel output port
like PORTS bits 2 and 3, by asserting exactly one slave SS input low. Then the SPI
exchanges the data of the master SPI shift register with the data in the selected slave SPI
shift register using a program like that just shown. To send data, the slave
microcontroller writes its data into its SPODR before the master writes its data into its
SPODR, which begins the shift operation. The slave's JPIF bit 7 is tested until it
becomes asserted, indicating data have been exchanged. The slave reads the master's data
from its SPODR . This address trigger sequence - writing, testing, and reading - is needed
even when a step doesn't seem to be needed, because this controls the slave's SPI just as
it does the master's SPI. In addition to this master/slave relationship, several 6812s can
communicate as equals (see Chapter 9, problem 7).

The serial port is a valuable alternative to the parallel port. It requires substantially
fewer pins and wires. The 6812's SPI interface makes it easy to use these devices, but,
with a modest amount of software, any parallel I/O port can be used to control them.
However, a parallel port is required where speed is needed, because the serial port
implemented with indirect I/O is considerably slower than §4.1 's parallel port.

4.4.5 Accessing Devices Using Vectors and struct s

The 6812 SPI device has a fair number of ports; such a collection of ports can be accessed
using a vector or a struct, and #define or enum statements can be used to clearly
name its ports. Vector notation is useful in accessing neighboring ports having the same
width, struct notation is useful in accessing ports having different widths and also can be
useful in accessing ports of the same width. Vector notation can also be used in simple
compilers that do not support structs to handle ports that have different widths. We
illustrate these concepts in following subsections by writing §4.4.4's serialOut.

4,4.5.1 Vector Access to Ports

A vector can be assigned to the locations of the SPI by the global declaration char
sp i [8] @ OxdO;. Then the procedure ser i alOut can be rewritten

176 Chapter 4 Parallel and Serial Input/Output

4.4.5.2 Vector Pointer Access to Ports

Alternatively, a global or local variable pointer to the SPI ports char *spi; can be
initialized in the first statement of main. Then, treating this pointer with offsets as a
vector with indexes, we write into the SPI ports in the remaining lines.

void serialOut(unsigned char *s) {
unsigned char j, d, *spi; spi = (unsigned char*)OxdO;
spi[7] = SS + SCLK + MOST; *spi = SPE + MSTR;
f o r (j = 0; j < 3; j + +) I* transfer one byte at a time */

{spi [5] =s [j] ; whi le ('. (SPOSR & S P I F)) ; d=spi [5] ; } /* move byte */
spi [6] & = ~ SS; /* pulse output port clock */

4.4.5.3 Using ^defines to Name Ports

The above example illustrates the use of vectors in handling devices with a lot of
identically wide ports. However, tfdefine or enum statements can make access to these
ports more self-documenting. (These appear in three columns to save space.)

Then we write into the SPI ports in the remaining lines. Note that the procedure looks
like the first serialOut in this subsection, except that the pointer spi must be initialized,
but the assembly-language code actually uses this pointer to access the ports.

void serialOut (unsigned char *s) {
unsigned char j, d, *spi; spi - (unsigned char*)OxdO;
DDRS •= SS + SCLK + MOST; SPOCR1 = SPE + MSTR;
for(j = 0; j < 3; j + +)

{ SPODR = s[j] ; while('(SPOSR & SPIF)) i d = SPODR;}
PORTS \= SS ; PORTS &= ~ SS; /* pulse output port clock */

4.4.5.4 struct Pointer Access to Ports

The struct SPI illustrates how structs access ports of different widths, and our
procedure serialOut shows how these struct members can be used. However, in
HIWARE's compiler, the "advanced options" setting for "code generation" must have "bit
field byte allocation" set to "most significant bit in byte first" for the struct members
to correspond to ports in the same order in the declaration as they are in the data sheet.

4.4 Input/Output Indirection 177

typedef struct SPI {

unsigned int SPIE:1, SPE:1, SWOM:1, MSTR:lt CPOL-.l, CPHA:1, SSOE-.l,

LSBF:1, :4, PUPS:!, RDS:1, :1, SPCO:1, :5, SPR:3, SPIF:1,

WCOL:1, :1, MODF.-l;
} SPI;

void serialOut(unsigned char *s) {

unsigned char j, d; SPI *spiPtr = (SPI *) OxdO;

DDKS =- SS + SCLK + MOST; spiPtr->SPE = 1; spiPtr->MSTR = 1;

for(j = 0; j < 3; j + +)

{ SPODR = s[j] ; while(!spiPtr->SPIF) ; d = SPODR;}

PORTS I= SS ; PORTS &= ~ SS;

4,4.5.5 struct Access to Ports

Alternatively, if we globally declare the SPI using an @ to force its location, as in S
spi @ OxdO ; we can write the same procedure

void serialOut (unsigned char *s) {unsigned char j, d;

DDKS = SS + SCLK + MOST; spi.SPE=l; spi.MSTR=1;

for(j = 0; j < 3; j++)
{ SPODR = s[j] ; while (! spi, SPIF) ; d = SPODR;}

PORTS I = SS ; PORTS &= ~SS;

Either a pointer is initialized to the port address, or else a globally defined struct is
forced to be at a predefined location using the @ symbol in the global declaration.
structs can give self-documenting names to ports, especially where the ports have a
variety of widths or even are identical- width ports otherwise described by vectors.

4.4.6 Indirect and Serial I/O Objects

Indirect and serial I/O using the SPI are suited to object-oriented programming. The
classes indirect and SerialOut shown below illustrate encapsulation, inheritance,
overriding functions, and operator overloading. We discuss these two classes in this
subsection. We also describe a class for an LCD utilizing Port class's lostream.

Indirect I/O for the 6818 uses two parallel ports. This creates a minor dilemma: how
do we define a class that might inherit function and data members from two classes?
While C++ provides multiple inheritance to handle such cases, we couldn't find a simple
way to express our design using multiple inheritance. Instead, we define one of these, the
port through which address and data are time-multiplexed, as indirect's base class,
which is Port. The other port, carrying control information, is a Port blessed inside
indirect 's constructor. The put and get function members execute the same
algorithms as C procedures outa() and ina () described in §4.4.1.

178 Chapter 4 Parallel and Serial Input/Output

void put(char value){
control = as + rw + cs; option (1, Oxff); I make an output */
Port<char>: .-put (index); *control=as+cs; *control=as;f* output addr. */
* control = 0; *control=ds;Port<char>: -.put (value) ; *control = 0;/* out data */
* control = as + rw + cs; option (1, 0);/* make this port an input */

}

char get (void) {
con trol = as+rw+cs; option (I, Oxff); / make this port an output */
Port<char>: .-put (index); *control=as+rw; *control=rw; /* out address */
option (1,0); /* make this port an input */
*control =rw+ds;va 1 ue=Port<char>: -.get (); *control =ZTV;/* input data */
*control - rw + cs; * control = as + rw + cs; return value;

The overloaded index operator [] illustrates another C++ feature that is very well suited
to indirect I/O. This overloaded operator is called whenever the compiler sees an index []
to the right of an object, as in clock[0], whether the object and index are on the left or
right of an assignment statement =. It executes the overloaded operator [] before it
executes the overloaded cast or overloaded assignment operator. This overloaded operator
stores what is inside the square brackets, 0 in our example, in object data member
index. Then the following overloaded cast or assignment operator can use this saved
value to supply an address, such as the address of a 6818 port or memory location.

main () declares the object clock to be of class indirect. Its first parameter,
idJ, is used in Lndirect's constructor's call to Port's constructor, so th i s is an
object through which data and addresses are passed to the 6818. Indirect'ps constructor's
second parameter is a pointer to an object of class Port / the object is blessed as ma in
declares the object clock, to be used to output the control signals to the 6818,

void main() { Indirect clock (idJ, new Port<char>(idH, O x f)) ;
char i, yr=l, mo=2, dm=3,d w=4, hr=5, nm=6, se=7;
clock[Oxb]=0x80;clock[Oxa]=0xf;clock[9]=yr;clock[8]=mo;clock[7]=dm;
clock[6]=dw;clock[4]=hr;clock[2]=mn;clock[0]=se;clock[Oxb]=8;i=clock[0j

Using the overloaded index operator [] with overloaded assignment and cast
operators, main, after initialization, accesses the 6818 ports using vector notation. The
statement clock[8] = mo; puts local variable mo into 6818's location 8. Actually,

4,4 Input/Output Indirection 179

o calls the indirect class's overloaded operator [], which just stores 8 in the
data member index. Then because an object is on the left of an assignment, Indi i ect 's
overloaded operator = is called; it uses index to provide the address sent to the 68ISA.
Similarly, i clock[0]; uses indirect's overloaded f] operator to store 0 in
member variable index. Then because an object is on the right of an assignment,
L/id i c r - t ' s overloaded cast operator is called; it uses index to send the 68ISA
address. The code looks like last section's access to a device's multiple ports using
vectors. #define statements could make the code even more self-documenting.

virtual void put (T c) { unsigned char i, d;

for(i = 0; i < sizeof (T) ; i + +) {

port [5] =c» ((sizeof (T) -i) *8) ;

while (! (port [3]&0x80)) ;

d=port [5] ; c«=8;

/* pulse an output register clock */

virtual T get (void) { unsigned char i, d; T c;

ford = 0; i < sizeof (T); i + +) {
port [5] - d;

while (! (port [3] & 0x80)) ;

d .- port [5]; c «= 8;

0; /* pulse an output register clock */ return c;

void main (}{ SerialOut<char> sDevice (0x5003); char i-~5;ll example program
for(l = 0; i < 5; i + +) s[i] - sDevice[i];

ior(i ~ 0; 1 < 5; i + +) sDevlce[i] = s[i];

180 Chapter 4 Parallel and Serial Input/Output

Class Serial Out shows again how the overloaded index operator [] can be used
with objects, and how the function member option simplifies taking care of all the
options if an object is redirected. The templated class Serial Out outputs an 8-bit
char, a 16-bit int, or a 32-bit long variable to one of three groups of *595s, where
each group is internally connected in series (Figure 4.18c) but the groups as a whole are
connected in parallel (Figure 4.18d). SerialOut's constructor's int argument initializes
the SPI control ports. Its left 8 bits are put into SPOCR1, the next four bits go into
SPOCR2, and the right four bits go into SPOBR. The class Serial Out has a put
function member, which sends one byte out at a time through the SPI for as many bytes
as there are in the template data type, and then, through PORT A it pulses the clock of the
group that loads the shifted data into its output registers. The option function member
with first argument 0, calls Port's option function member (§4.3.6) to return errors. If
the first argument is between 4 and 7, it writes the second argument into an SPI control
port chosen by the two low-order bits of the first argument, and if the first argument is
between 8 and Oxb, it reads an SPI control/status port similarly chosen. Using this
option function member, if an object is redirected, inappropriate commands are safely
ignored. The programmer can request any capability that the SPI can deliver.

The LCD can use C++'s Port class for formatted output. This class is

class Led : public Port<char> {//use §4.3.6's PORT class as base

void put4 (char c) { Port<ohar>: :put(c + e); Port<char>::put(c) }

virtual void backspace () { put (0x10, 0); } II overrides Port's bspc

Porfs overloaded operator « is used to output different data types as described in
§4.3.6. But backspacing is taken care of by calling Lcd's virtual backspace ()
function, which for this class, by shifting the cursor left, writing a space, and shifting the
cursor left again, clears the character that the backspace removed, then moves the cursor

4.5 A Designer's Selection of I/O Ports and Software 181

back one position. This class can be used to output data on the LCD display, main
displays the ASCII character stream "x is", prints the value of x in decimal, then
displays the message "or in hexadecimal:" and displays the value of x in hexadecimal,
using library or user-defined functions i toa(x) and htoa (x) .

4.5 A Designer's Selection of I/O Ports and Software

The parallel I/O device is the most flexible and common I/O device. When designing a
parallel I/O device, the first step is to decide on the architecture of the port.

First we select the address. The address is often selected with an eye to minimizing
the cost of address decoders.

Second, we select the data transfer mode of the port. One of the major design
questions is whether the port should be directly or indirectly coupled to the
microcontroller, or serially coupled through a three-wire interface.

Indirect I/O is a mode where one I/O device is used to provide the address, data, and
control signals for another I/O device. Software emulates the microprocessor controller
and generates its signals to the I/O device. It is generally an order of magnitude slower
than direct I/O. But it is very useful when a parallel I/O device is available anyhow, such
as in single-chip microcomputers like the 6812, or in personal computers that have a
parallel port - often used for a printer. It is not necessary to attach devices to the address,
data, and control buses within the computer; doing so might destroy the integrity of the
computer and render debuggers inoperable.

Serial I/O, whether we use indirect I/O or the SPI, provides an obvious advantage
over direct I/O by requiring fewer pins or wires. If the computer needs to be isolated from
the external world, serial I/O uses fewer opto-isolators. Many manufacturers of specialty
I/O devices, such as D-to-A converters, select this least expensive data-transfer mode, and
three-wire interface devices are becoming widespread.

The main factor affecting the design decision is the speed of the I/O device.
Sometimes the speed is dictated by the external system's speed, as when data are sent to
or from a fast communication network using light pipes; and sometimes it is dictated by
the process technology used to build the chip, as when dynamic logic is used, requiring a
maximum time between events. Generally, the slower the required speed, the simpler the
system. Many I/O devices are overdesigned with respect to speed. You should carefully
determine the minimum allowable speed for the device and then choose the technique that
fits that requirement. Then look at the system and determine if it has the needed
mechanisms - a parallel port of sufficient width for indirect I/O, or a coprocessor
mechanism for coprocessor-immediate I/O. We suspect that a lot of cases where indirect
I/O is suitable and available are designed around direct I/O, which significantly increases
their design and maintenance costs.

If indirect I/O is used, the next decision should be which parallel ports to use for
determining address, data, and control signals for the device to be connected. If directly
coupled, the decision is similar: which of the 12 parallel ports in the 6812 should be
selected, or else what external port should be built. In the latter case, we need to consider
whether an output port should be basic, readable, shadowed, or a set or clear port, or
whether an address-trigger or address-register output is indicated. The availability of
existing ports and the I/O port latency are the most important criteria. If the port is

182 Chapter 4 Parallel and Serial Input/Output

available on the 'A4 and is not needed by other devices, the first choice is to use one of
these ports. If there is competition for their use, then external devices need to he
considered.

[f an 'A4 port is to be used, note that PORTS is generally used for SPI and SCI
devices (§9,3.5), so their main attraction is for contrasting the operation using a parallel
port to the same operation for using the SPI or SCI, and they are thus less desirable for
general parallel port use. Similarly, PORTT will be shared with the counter/timer device
(§8.1), so the main advantage to using these port bits is to compare a solution using a
parallel port with a solution using the counter-timer device; they are thus also less
desirable for general parallel port use. Again similarly, PORTAD is shared with the A-to-D
converter devices (§7.5.3), and they are thus also less desirable for general parallel port
use. Besides, PORTAD is input-only. Finally, PORTE, PORTF, and POHTGhave less than
8 bits of general I/O and are used for special control signals. PORT A and PORT'S, or
PORTC and PORTD, suit a 16-bit port in a single-chip 'A4. PORTA and PORTS suit I-bit
or 8-bit ports since these ports are in the 'A4 and the 'B32, The choice of a first I/O port
follows from the preceding discussion, but the selection of a fourth or fifth device usually
becomes less clear. We can use less desirable ports for less critical devices, but we are
lucky that the 'A4 and 'B32 have so many generally useful ports.

For external ports other than the serial three-wire interface, a basic output port is
cheapest, but the software cannot read the data in it, so many structs having bit fields,
and explicit software equivalent to bit fields, won't work with basic output ports. A
readable output port is most general, but also about twice as expensive as the basic
output port. However, a RAM shadow, or software keeping a duplicate copy of the output
data, can be used to avoid building a readable output port.

While some questions regarding the use of narrow or wide external data buses for
external ports are yet to be considered (see Chapter 6), the basic issues of hardware
implementation of different external direct ports and the software they use has been well
covered in this chapter. The hardware for a basic output, readable output, input, or other
external port can be implemented using simple TTL MSI chips. This chapter showed how
to use SSI gate chips and decoders to implement the address decoder, and the popular
74HC244 and 74HC374 medium-scale integrated circuits to implement these ports. While
other chips can be used, these chips are often used in printed circuit card microcomputers
that are mass produced and intended for a wide variety of applications.

Besides hardware cost which govern the choices above, software costs are more often
critical. Programming decisions generally affect clarity, which is reflected in the cost to
write, maintain, and debug programs, and often affect static or dynamic efficiency. We
now consider the designer's choice of software techniques to be used with I/O device.

A fundamental question is which language to use. Use assembly language for code
that must operate quickly or with precise timing, and to use microcontroller features not
available through the compiler, such as fuzzy logic instructions. However, programming
in C or C++ is preferred over assembler-language programming because such code is
about an order of magnitude cheaper to design and maintain. Because of its simplicity and
wide acceptance, C is the language of choice for most I/O interfacing code. C provides
operators that directly specify pointer usage, shifting, or masking, whereas other
languages like PASCAL, BASIC, or JAVA miss some key parts that C provides.
However, C++ offers object-oriented programming, which we discuss later.

4.6 Conclusions 183

I/O devices can be accessed with constant pointers, as in d- (char*) 0x4000;: with
variable pointers, as in char ptr= (char*) 0x4000; d- *ptr,-; using global variables
positioned with embedded assembly-language origin statements; with vector indexing, as
in char ptr= (char*) 0x4000; dp [0] , - ; and with pointers to structures, as in
spiPort->bd=2;. We have shown several examples of each. Constant pointers seem to
be useful where an I/O port is accessed once or twice. Global variables work well for
most I/O devices. Vectors seem to be clearer when a device has a number of same-size
ports. Structure pointer access is very useful for devices with many ports of assorted
sizes. Finally, any long program can likely benefit from the intelligent use of # < ? » ? / , m*
statements to rename these constructs to be meaningful port names to provide self-
documenting code.

Objects provide a mechanism to efficiently implement the capabilities of device
drivers, such as device independence and I/O redirection. They achieve a major fraction of
the capabilities of operating system I/O device drivers, but with a small fraction of the
overhead. They provide I/O independence, which permits compile-time substitution,
without changing the body of the code outside the I/O device objects, and I/O redirection,
which permits the same flexibility at run time. They provide this independence and
redirection by protecting functions and data so that there are no subtle interactions among
I/O devices and the main procedure or its subroutines, other than the directly stated
interactions in public function-member arguments and data members. Also, this ability to
provide protection enhances documentation and maintainability, and thus reduces software
design cost. One is less likely to confuse or abuse a variable that is bound to the
functions that use it. If C++ is unavailable, its mechanisms can be emulated in C by
enforcing appropriate conventions in symbolic names and function arguments.

Objects described in this chapter, in clearly marked and optional sections, provide
more than just a way to show students who have had a course in C++ how object-oriented
programming can be used in interface design. The fundamental ideas of object-oriented
programming can elevate the programmer from mere software to full system design. By
considering the object as encapsulating the function and data member, as well as the I/O
port and external hardware, the designer can have predesigned and tested objects (functions.
data, and external hardware) that can be inserted into an application as a unit, - plug-and-
play - or be available in a library, to significantly reduce the design cost of a
microcontroller-based system. Further uses of objects will appear in the next and
following chapters. An outstanding article, "Object-Oriented Development" by Grady
Booch, in the IEEE Computer Society Press tutorial Object-Oriented Computing, Gerald
Peterson, Ed., vol. 2, led us to appreciate the use of objects in the design of embedded
microcomputer systems. You might consult it for additional insights on this approach.

4.6 Conclusions

The interfacing of a microcomputer to almost any I/O system has been shown to be
simple and flexible, using parallel and serial I/O devices. We studied different ways data
can be passed through a port, into or out of a microcontroller. We saw some I/O software
that moved data through a microcomputer, moved data into a buffer, and implemented a
traffic light controller and 1C tester using the simple I/O devices. Because timing is

184 Chapter 4 Parallel and Serial Input/Output

important to them, we studied the timing of such program segments. We studied indirect
and serial I/O, which are especially attractive to the 'A4 and other microcontroller
systems. Finally, we considered how the SPI can assist in serial I/O. We can use the
same approach to designing an 1C (or an I/O system) as we can for studying it, and thus
develop an understanding of why it was designed as it was and how it might be used. In
the remaining chapters, these techniques are extended to analog interfacing, counters,
communications interfacing, display, and magnetic recording chips.

Do You Know These Terms?

See page 36 for instructions.

synchronous
I/O device
port
input port
output port
isolated I/O
input instructions
output instructions
memory-mapped I/O
lock
function-member

checking
basic output port
readable output

port

shadowed
output

set port
clear port
address trigger
read address trigger
write address

trigger
address-trigger

sequence
address-register

output
direction port
control port

initialization ritual
configure
device-independent
I/O redirection
Port
object
object driver
Stub
logic-timer
light pattern
sequence
cycle
delay loop
interpreter

Mealy sequential
machine

present internal state
input state
output state
next internal state
linked-list structre
block
template
direct I/O
bit-banging
indirect port
status port

Problems 185

Problems

Problem 1 is a paragraph correction problem. Seepage 38 for guidelines. Guidelines for
software problems are given on page 86, and for hardware problems, on page 115.

I*. A port is a subsystem that handles I/O. Memory-mapped I/O is used on the 6812
and is popular even on microcomputers that have isolated I/O, because it can use
instructions that operate directly on memory and is more reliable in the face of a runaway
stack than is isolated I/O. However, if a program error writes over I/O devices, a lock can
be used to prevent the calamity. A basic output port is a tristate driver and a decoder; the
decoder needs only to look at the address and the R/W line to see if the device is to be
written into. An input port is a tristate driver and a decoder; the decoder needs only to
look at the address and the R/W line to see if the device is to be read. A basic output port
is a read-only port that cannot be written by the program. Therefore, the program should
keep an extra copy of a word in such an output port if it wants to know what is in it.
The data can be recorded automatically in memory by using an address trigger. Such
output devices are commonly used because they are cheaper than readable output devices.
An address output line uses a register to capture the low-order address bits when the
high-order address bits match the decoder pattern.

2. A group of eight 1-bit input ports is to be addressed at locations Ox2C30 to Ox2C3F
so they will be read in the sign bit position. Show the logic diagram of such a port,
whose decoder is fully specified and whose input is a 74HC251 (Figure 4.23). This chip
has tristate outputs Z and Z inverted. Use only a 74HC4078 and 74HC30 (Figure 3.10).

Figure 4.23. Some ICs for I/O

3. A group of eight 1-bit output ports is to be addressed at locations 0x73AO to 0x73 AF
so they will write the sign bit of these words. Show the logic diagram of such a port,
whose decoder is fully specified and whose output latches are in the 74HC259 addressable
latch. Use only a 74HC259 (Figure 4.23), 74HC4078, and 74HC30 (Figure 3.10).
(Note: This group of output ports can have the same address as a read/write memory
using a shadow, so that when words are written in the memory, the sign bits appear in
the outputs of the corresponding latch to be used in the outside world.)

186 Chapter 4 Parallel and Serial Input/Output

4. Suppose a 1-bit input device using a 74HC125 (see Figure 4.23) inputs a signal A in
the sign bit of location 0x2000

a. Show a logic diagram of the input device using incompletely specified decoding
and chips from Figure 3.10 to implement the decoder. Decode all necessary address
and control signals (E, R/W, etc.) but do not use chip selects. Assume that the
program uses only addresses 0 to OxFFFF (for RAM), 0x2000 (for this device),
0x6000 to Ox7FFF (for internal I/O), and OxFOOO to OxFFFF (for ROM). Full credit
is given to the design using the least number of chips.

b. A wave form is initially low when your program begins sampling it, then goes
high and then low for the rest of the time. Write a C or C++ function int pwdthQ to
return the width of this positive pulse (in microseconds) as accurately as you can,
assuming the E clock is 8 MHz.

c. What is part b's worst-case pulse-width measuring error, in microseconds?

5. Suppose a 1-bit output device using a 74HC74 (see Figure 3.11) outputs the least
significant bit of location 0x2000. The output is to be a square wave.

a. Show a logic diagram of the output device using completely specified decoding,
using chips from Figure 3.10 to implement the decode. Decode all 16 bits of the
address and appropriate control signals (E, R/W, etc.), but do not use chip selects.
Show all lines connected to +5 V or ground.

b. Write a self-initializing procedure void squr(int n) to generate a square wave with
frequency in HE given in n using delay loops. Assume the E clock is 8 MHz.

c. What is the lowest and highest frequency that part b can generate?

6. An output device having 16 output bits is addressed at location OxD3A2. If a number
2n + 1 is written into this location, the «th 1-bit latch is set, 0 < n < 16, and if a
number 2n is written into this location, the nth 1-bit latch is cleared. Show a logic
diagram of such a system of output latches, whose address decoder is fully specified and
whose latches are in two 74HC259 addressable latches. Use only two 74HC259s, a
74HC04, a 74HC32, a 74HC4078, and a 74HC30. Show all chips and pin numbers.

7. Show the logical design of the decoder for Figure 4.2's readable output port, which
can be read from or written in at location 0x1000. The decoder shown therein should be
implemented with a minimal number of available gates using the chips in Figure 3.10.
Show only the decoder, and not the output register or input tristate driver.

8. Show the logic diagram of a wide expanded-mode 16-bit readable output port at $200.
The program will always read or write 16 bits, and never read or write 8 bits, using this
port. However, do not show pin numbers on the data bus or on the other gates and flip-
flops connected to the data bus (use vector notation to indicate a bus). Give assembler-
language instructions to read this port, write data into it, and increment its value. Give C
or C++ statements to read the data from it, write data into it, or increment it.

Problems 187

9. Write a single assembler-language instruction to write a value $1234 in PORT A and
PORTB, and write another instruction to write a value $1234 in DDRA and DDRB ,

10. Show the logic diagram of two ports, which are both addressed at location 0x8020.
In one, a readable output port, the 7 least significant bits of the output word are readable;
in the other port, an input port, the most significant bit read is input from the outside
world. The address decoder is to be completely specified using a minimum of chips. Use
a 74HC244 for the input port and a 74HC374 for the output port, and two 74HC4078s,
a 74HC04, and a 74HC20 for the decoder. Show all chips and pin numbers and the 6812
address and data bus line numbers and control signals used.

11. Show the logic diagram of a readable set port and a clear port, which are both
addressed at location OxFF22. If a 1 is written in bits 7 to 0, the corresponding port bit
is set, otherwise the data is unchanged; if a 0 is written in bits 15 to 8, port bits 7 to 0
are cleared, otherwise the data is unchanged. Data stored in the port must be available to
the outside world. Reading 16 bits from OxFF22 reads the port bits to data bus lines 7 to
0 only. The program will never read or write 8 bits using this port. The address decoder
is to be completely specified using a minimum of chips. Use a 74HC244 for the input
port, a 74HC08 and a 74HC32 for the set/clear logic, a 74HC374 for the output port,
and a 74HC133, a 74HC04, a 74HC32, and a 74HC4078 for the decoder. Show all chips
and pin numbers and the 6812 address bus, data bus, and control signals used.

12. A 16-bit input port at locations Ox6F3A is connected to a 16-bit serial-in parallel-
out shift register to input, into a 16-bit-wide buffer, bit serial data shifted into the shift
register. Bits are stored in each 16-bit word in the buffer, most significant bit first.

a. Show the logic diagram for this pair of ports using two 74HC244s and a pair of 8-
bit serial-in, parallel-out shift registers that use 74HC164s. The address decoder is to
be completely specified using a minimum of 74HC133s and 74HC4078s.

b. Write a (fastest) assembly-language program for an 8-MHz 'A4 to store these data
into a buffer, using MOVW and DBNE instructions in a DO-loop. How many bits per
second can it collect?

13. Write a templated class Port with function-member checking. In the constructor, if
CHECK is defined, the id must be less than idAD, and in option, if id is idAd,
then the direction must be input, otherwise errors is asserted to warn the user. If
CHECK is not defined, the code is identical to Port's in §4.2.2.

14. Write a templated class Port to access all 12 parallel ports as 8-bit ports, and ports
A and B, C and D, and F and G as 16-bit ports, with function-member checking to check
any possible error at ran time. Use the following enum statement:

enuin {iA, IB, iC, iD, iE, iF, iG, iH, iJ, IS, IT, iAD, iAB, iCD, iFG};

15. Write templated class Bi tPort to access any bit of any parallel port, derived from
Port (problem 14). Its constructor's arguments are p, b, and d, where p is the 8-
bit parallel port, b is a bit number, and d is F (0) for input and T (1) for output.

188 Chapter 4 Parallel and Serial Input/Output

16. Write the shortest possible self-initializing procedure inbuf(char *a, char *p,
int n), using assembly language embedded in C, to input n bytes of data from port
p to a buffer at location a, which, like main () (§4.3.2), is the fastest in execution,
and give the rate at which words can be input to the buffer for this procedure, assuming
an 8-MHz CLK clock. Consider using MOVB with different addressing modes, and DBNE.

17. Design a traffic light controller that uses the power line frequency to time the lights
and immediate operands to control the lights.

a. Show an I/O system logic diagram. A 60-Hz square wave is input in 0x4000 bit 7,
using a 74HC125; and a 74HC374 outputs a 6-bit light pattern to control the lights,
at location 0x4000, as in Figure 4.8. Use incompletely specified decoding, assuming
the program uses only the addresses 0 to Ox7F, 0x4000 (for these ports), and OxFFOO
to OxFFFF, using a minimum of 74HC04s, 74HC30s, and 74HC4078s.

b. Show a C or C++ procedure void dly() that tests the input to delay exactly
1/60 second. Assume the input has become high just before entry to this procedure.

c. Write a C or C++ procedure void main (), using immediate operands to control
the light patterns. Use the program segment in part b to sequence the lights as in
Table 4.1.

18. Write an array interpreter (like a linked-list interpreter) and an array char a [] [] [] []
as in the first main procedure in §4.3.4, to control Figure 4.8's traffic light. For
internal state s and input state x, the array a [s, x) [] entries are next state, output
state sent to PORTA, and time delay. Use a procedure del ay () that delays 1 s. The
main sequence is shown in Table 4.2. A late-night sequence has north-south lanes red
and east-west lanes yellow, both on for 1 s and off for 1 s. A fire truck emergency
sequence is the north-south lanes red while the others are green for 20 s, then the east-
west yellow for 2 s while north-south is still red, after which the north-south are green
and the others are red for 10 s, and then the main or late-night sequence is resumed with
its first line. Transitions to new sequences exhibit no time delay and output the output
state of the sequence being begun. PORTS's input state is either 0 if neither late night
nor emergency occurs, 1 if an emergency occurs, and 2 if it is late at night and no
emergency occurs. The emergency input state can last only one state transition to begin
the emergency sequence. The other input states last as long as the sequences are to be
executed, enum the main sequence states as MO, Ml, M2, and M3, having values 0 to
3; the late-night sequence as NO and Nl, having values 4 and 5; and the emergency
sequence as EO, El, and E2, having values 6,7, and 8.

19. Consider a vending machine controller. Its input port at location 0x1003 has value
0 if no coins are put into the machine, 1 if a nickel, 2 if a dime, 3 if a quarter, and 4 if
the coin return button is pressed. The output port, at location 0x1003, will dispense a
bottle of pop if the number 1 is output, a nickel if 2 is output, a dime if 3 is output, and
a quarter if 4 is output. This vending machine will dispense a bottle of pop if 30 cents
have been entered, will return the amount entered if the coin return button is pressed, and
otherwise will keep track of the remaining amount of money entered (i.e., it will not
return change if greater than 30 cents are put in). All control is done in software.

Problems 189

a. Show the logical design of the I/O hardware, assuming incompletely specified
decoding if the program uses only addresses 0 to 0x80, 0x1003 (for these ports), and
OxFFOO to OxFFFF, and the ports are only 3 bits wide. Use a minimum of 74HC04s
and 74HC20s, and a 74HC244 and a 74HC374 for input and output port chips.

b. Show this controller's tabular and graphical sequential machine. Internal states S =
(zero, five, ten, fifteen, twenty, twenty-five} will be the total accumulated money.
Input states I = {B, N, D, Q, R} represents that no (blank) inputs are given; that a
nickel, a dime, or a quarter are given; or that the coin return button has been pressed.
Output states O = {b, p, n, d, q} will represent the fact that nothing (blank) is done,
or a bottle of pop, a nickel, a dime, or a quarter, respectively, is to be returned. If
multiple outputs are indicated, output a pop first, and go to the state that represents
the amount of change left in the machine, and output the larger coin first. Assume
the coin return button is pressed repeatedly to return all the coins.

c. Show a self-initializing procedure void seqMchty to implement this sequential
machine by a linked-list interpreter, and show the linked list as a three-dimensional
array, using an index as the link. Activate the solenoids for 0.1 s (assume procedure
void delay () causes a 0.1 s delay), and then release the solenoids that dispense the
bottles and the money. Guard against responding to an input and then checking it
again before it has been removed. (Hint: Respond to an input only when it changes
from that input back to the blank input.)

d. As an alternative to part c, show a self-initializing procedure void algor() to
implement this sequential machine using arithmetic and conditional expressions in an
algorithm. Use the same assumptions as in part c. Note the ease or difficulty of
modifying part c's state machine, or the code in part d, when the cost of a soda is
changed to 35 cents (don't jump to conclusions).

20. Design a keyless-entry module (KEM) for a car.

a. The KEM has five SPST switches (A to E); when any is pressed (only one can be
pressed at a time) its corresponding binary number (A is 1, B is 2, C is 3, D is 4, E
is 5) is input in negative logic to PORTB. For instance, if switch E is pressed,
PORTB bits 0 and 2 are asserted low (representing TLT or binary number 5). Show a
logic diagram of an input state encoder that uses a 74HC08 to OR the switch signals
into port input bits (in negative logic) and switches with pull-up resistors.

b. The hardware state decoder of part a was found more costly than a software
solution that inputs each key's signal directly to a PORTB pin (switch A to bit 0, B
to 1, C to 2, D to 3, E to 4). (Do not draw the logic diagram of this new hardware
circuit.) Write char get key () that returns the currently pressed key's value (noKey
returns 0, A returns 1, B is 2, C is 3, D is 4, E is 5) using this new hardware. (Hint:
table-lookup may provide the shortest program, or you can give a shorter one.)

c. The KEM recognizes pressing A C D B , where A means char getkey ()
returns the value 1 (key A) one or more times, followed by one or more Os (noKey).
Give the Mealy sequential machine table that recognizes when the code is entered. Let
the input state A represent that char getkey () returns the value A (1) one or more
times, followed by one or more values noKey (0), etc. Input states B, C, D, and E

190 Chapter 4 Parallel and Serial Input/Output

are similarly defined. Let the internal state a represent that no keys have been
recognized, that an illegal sequence has been input, or that an output pulse has been
sent; b represent that the code A is recognized; c represent that the code AC is
recognized; and d represent that the code A C D is recognized. Output state 1
indicates the whole code is recognized and a pulse should be generated; otherwise, the
output state is 0. Show the Mealy sequential machine table.

d. Write a self-initializing procedure void validate () that produces a 500 ms
positive pulse on PORT A bit 0 when the sequence is recognized, then continues to
check for the sequence, forever. You must use the sequential machine interpreter
model, rather than if-then or case statements. The procedure must store the state
machine in a compact global char vector v [4, 5, 2], which you must show
initialized in C, where the left index applies to the present internal state, the middle
to the input state and the right to the output and next internal state. Use the
/f define statements to make your declaration more readable. Use a for-loop delay,
assuming that constant jv will be defined later to provide the correct pulse length.

21. Using §4.3.5's procedure int check (), write # d e f ine statements to generate
patterns A, B, ... , Z and test vectors unsigned int v[] to test the

a. 74HC32 OR gate. b. 74HC04. c. 74HC10 NAND gate (see Figure 3.10).

d. 74HC138 decoder (see Figure 3.10). Follow this test procedure: for El, E2, and E3
asserted, check for all combinations of A2, Al, AO; then for A2, Al, AO all L (0)
check for all combinations of El, E2, and E3; but do not check one of the patterns
already checked in the first sequence (15 tests, rather than 64).

e. 74HC74 (see Figure 3.11). Follow this test procedure:
1. Assert S, with clock and D low. Check that Q and Q-bar are set.
2. Clock a 0 into both flip-flops. Check if Q and Q-bar are clear.
3. Drop clock with data high. Check to see if both flip-flops remain cleared.
4. Clock a 1 into both flip-flops. Check to see if both flip-flops are set.
5. Clear both flip-flops asserting only R. Check to see if both flip-flops are clear.

22. Write a self-initializing procedure int i n a (a) for Figure 4.15d, similar to
outa (a, d) in §4.4.1, to return the 6818A's time of day, using indirect I/O. It should
emulate Figure 4.15c's read cycle's timing diagram. However, if multiple outputs
change at the same time, change ds first, as second, rw third, and cs last. (Disregard
a possible timing problem, which reads the 68ISA's time when it is changing.)

23. An LCD connects to PORT A as shown in Figure 4.16, but LCD signal Rw
connects to PORTA bit 6 instead of to ground. When Rw and E are T (1) and Rs is F (0),
PORT A bit 7 outputs a busy bit which is T (1) when the LCD is not ready for a new
command, changing to F (0) when a new command can be given. Write the initialization
and output procedures, and procedures to read the busy bit to synchronize writing to the
LCD: char get4 (char a) returns a nibble, char get (char a) returns a byte,
put4(char d, char a) outputs a nibble, and put (char d, char a) outputs a byte
- where d is data and a is the LCD register accessed (if a is 0, Rs is 0, otherwise
Rs is 1).

Problems 191

24. Write self-initializing procedures for the other configurations in Figure 4.18, using
PORTS, but not using the SPI. Assume address a = 0 selects the leftmost '589 or "595,
1 selects the middle '589 or '595, and 2 selects the right '589 or '595.

a. For Figure 4.18a, char serial in (char a; returns a byte input from the ath '589.
b.For Figure 4.18a, void serial in (char *s) puts 3 bytes input from the '589s in s.
c. For Figure 4.18b, void serialIn (char *s) puts 3 bytes input from the '589s in s,
d. For Figure 4.18c, void serialOut(char c, char a) outputs c to the ath '595.
e. For Figure 4.18d, void serialOutfchar c, char a) outputs c to the ath '595.
f. For Figure 4,18d, void serialOut (char *s) outputs 3 bytes from s to the '595s.

25. The program at the end of §4.4.3 outputs a command to and inputs the measured
temperature from the Dallas Semiconductor 1620. This chip has an output Tcom on pin
5, which can be used to control a heater or air conditioner, and registers TH for high and
TL for low temperature limits. Tcom becomes asserted when the measured temperature
exceeds TH and becomes negated when the measured temperature goes below TL. Use
§4.4.3's procedures send and receive, in both parts of this problem.

a, TH is written with the command 0x01 and read with the command Oxal. Write a
procedure int putHi (int t) that outputs t to TH and reads it back, returning 1 if
the value read back is not the same as the value output, and 0 otherwise,

b.TL is written with the command 0x02 and read with the command Oxa2. Write a
procedure int putLowdnt t) that outputs t to TL and reads it back, returning 1
if the value read back is not the same as the value output, and 0 otherwise.

26. Repeat problem 24 using the SPI to shift the data in and out, using §4.4.4's global
variable ports and enwmerated symbolic names. Data are shifted on the rising edge of
SCLK, at 4 MHz, and SCLK is initially high.

27. Write the C or C++ procedure void main () to initialize the SPI for the 'A4's 8-
MHz E clock and output on SCLK, MOSI, and SS, as follows:

a. Use §4.4.4's global variable port names and enumerated symbolic names to shift
on the falling edge of SCLK, at 4 MHz, with SCLK initially high. The SPI outputs
are open collector, and data are shifted least significant bit first.

b. Use a vector char spi [8] ; to access all SPI ports, to shift on the rising edge of
SCLK, at 1 MHz, with SCLK initially high. SPI outputs have reduced power.

c. Use vector char spi [8] ; to access all SPI ports and give #defines equating
SPOCRl, SPOCR2, SPOBR, SPOSR, SPODR, PORTS and DDES; to spi's
elements, to shift on the falling edge of SCLK (initially low) at 250 KHz.

d. Use §4.4.4's struct SPI to access SPI control ports 1 and 2, to shift on the
rising edge of SCLK, with SCLK initially high.

e. Use a pointer spiPtr to §4.4.4's struct SPI to access control ports 1 and 2, to
shift on the rising edge of SCLK, with SCLK initially low.

192 Chapter 4 Parallel and Serial Input/Output

The Motorola M68HC12B32EVB board can implement all the experiments and examples
in this book, except those of Chapter 10. When used without another 6812 board, the
debugger called DBUG_12 will use half of SRAM, permitting the other half to be used for
an experiment.

Interrupts and Alternatives

The computer has to be synchronized with the fast or slow I/O device. The two main
areas of concern are the amount of data that will be input or output and the type of error
conditions that will arise in the I/O system. Given varying amounts of data and different
I/O error conditions, we need to decide the appropriate action to be taken by the
microcomputer program. This is studied in this chapter.

One of the most important problems in I/O systems design is timing. In §4.3.2,
we saw how data can be put into a buffer from an input device. However, we ignored the
problem of synchronizing with the source of the data so that we get a word from the
source when it has a word to give us. I/O systems are often quite a bit slower, and
occasionally a bit faster, than the computer. A typewriter may type a fast 30 characters
per second, but the 6812 can send a character to be typed only once every 266,667
memory cycles. So the computer often waits a long time between outputting successive
characters to be typed. Behold the mighty computer, able to invert a matrix in a single
bound, waiting patiently to complete some tedious I/O operation. On the other hand,
some I/O systems, such as hard disks, are so fast that a microcomputer may not take
data from them fast enough. Recall that the time from when an I/O system requests
service (such as to output a word) until it gets this service (such as having the word
removed) is the latency. If the service is not completed within a maximum latency time,
the data may be overwritten by new data and lost before the computer can store them.

Synchronization is the technique used to supply data to an output device when the
device needs data, to get data from an input device when the device has some data
available, or to respond promptly to an error if ever it occurs. Over ten techniques are
used to match the speed of the I/O device to that of the microprocessor. Real-time
synchronization is conceptually quite simple; in fact we have already written a real-time
program in the previous chapter to synchronize to a traffic light. Gadfly synchronization
requires a bit more hardware, but has advantages in speed and software simplicity. Gadfly
was actually used in synchronizing the SPL Three more-powerful interrupt
synchronization techniques - polled, vectored, and real-time - require more hardware.
Direct-memory access and context switching are faster synchronization mechanisms.
Shuttle, indirect, time-multiplexed, and video memories can be used for very fast I/O
devices. These synchronization techniques are also discussed in this chapter.

193

5

194 Chapter 5 Interrupts and Alternatives

Figure 5.1. Paper-Tape Hardware

We first study the synchronization problem from the I/O device viewpoint,
introducing BUSY/DONE states and terminology. An example of a paper-tape reader.,
illustrating the collection of data from a tape into a buffer, will be used to illustrate the
different approaches to I/O synchronization. Paper tape (see Figure 5.la) is used in
environments like machine shops, whose dust and fumes are hostile to floppy disks.

Data from the data port can be read just as in the previous chapter and will be put
into a buffer, as we now discuss. The pattern of holes across a one-inch-wide paper tape
corresponds to a byte of data; in each position, a hole is a trae value, and the absence of
a hole is a false value. Optical or mechanical sensors over each hole position connected
to the port pins signal an H (T) if the sensor is over a hole. We will read data from
6812's PORTA to realize this collection. At any time, the values of such a pattern of
holes under the paper-tape head can be read by an instruction like d - PORTA. It can be
put in a buffer by a statement like: for (pnt=buffer; pnt<buffer+0x!00; >
* (pn t + +) = PORTA ;. However, in the last chapter we ignored, and in this chapter we
focus on, the problem of getting the data at the right time, when the hardware presents
it. The user can advance the paper manually. In this example, we have to read one byte
of data from the pattern of holes when the sprocket hole sensor finds a sprocket hole.

A simple but general model (a Mealy sequential machine) of the device describes
how a computer synchronizes with an I/O device so it can take data from it or send data
to it. (See Figure 5.2a.) In this model, the device (or, equivalently, its object) has three
states: IDLE, BUSY, and DONE. The device is in the IDLE state when no program is
using it. When a program begins to use the device, the program puts it in the BUSY
state. If the device is IDLE, it is free to be used, and, if BUSY, it is still busy doing its
operation. When the device is through with its operation, it enters the DONE state.
Often, DONE implies the device has some data in an output port that must be read by
the program. The state transition from BUSY to DONE is associated with the
availability of output from the device to the program. When the program reads this data,
it puts the device into IDLE if it doesn't want to do any more operations, or into BUSY
if it wants more operations done. An error condition may also put the device into DONE
and should provide some way for the program to distinguish between a successfully

5 Interrupts and Alternatives i 95

completed operation and an error condition. If the program puts the device into BUSY or
IDLE, it is called, respectively, starting or stopping the device. The device enters
DONE by itself, completing the requested action. When the device is in DONE, the
program can get the results of an operation and check to see if an error has occurred.

The IDLE state indicates the paper-tape reader is not in use. The user starts the
paper-tape reader, putting it into the BUSY state. In that state, he or she pulls the paper
tape until the next pattern is under the read head that reads a word from the tape. When
the sprocket hole is under the tape reader or no paper is left, the reader reads a byte and
enters the DONE state. The computer recognizes that when the reader is in the DONE
state, data from the pattern should be read through the data port and put into the buffer in
the next available location, or else an error condition might exist. Once read, if the
program intends to read the next pattern because more words are needed to fill the buffer,
it puts the reader back into the BUSY state to restart it. If another pattern should not be
read because the buffer is full, the device goes to the IDLE state to stop or to ignore it.
If an error condition is signaled, the device is left in the DONE state so it won't be used
until the error is read and possibly fixed or reported. To read three bytes, the tape reader
might pass through the following states: IDLE, BUSY, DONE, BUSY, DONE, BUSY,
DONE, IDLE, (See Figure 5.2a.) Data are read each time the paper-tape reader goes into
the DONE state. Note that there is a difference between the IDLE state and the DONE
state. In the DONE state, some data in the input port are ready to be read, and the I/O
device is requesting the computer to read them, or an error has rendered the device
unusable; while in the IDLE state, nothing is happening, and nothing need be done,

In some I/O systems that do not return values or error messages back to the
computer, however, DONE is indistinguishable from IDLE, so only two states are
required. Consider a paper-tape punch. IDLE corresponds to when it is not in use. BUSY
corresponds to when the program has put a byte out to it but the byte has not yet been
completely punched. DONE corresponds to when the holes are punched, and another byte
of data can be sent out. In this case, with no error conditions to examine in DONE, the
DONE and IDLE states are indistinguishable, and we can say the device has just two
states: IDLE and BUSY.

Figure 5.2. State Diagram for I/O Devices

196 Chapter 5 Interrupts and Alternatives

Figure 5.2b illustrates that the states can be hierarchically defined. If Figure 5.2a's
BUSY/DONE states are for the arrival of a byte in a serial input device, the overall
BUSY state of Figure 5.2a indicates that within a byte, bits have been requested but not
all have arrived. Within this BUSY state, a lower level BUSY state (Figure 5.2b) is
entered as a bit is requested; when the bit arrives, a lower level DONE state is entered,
Thus, the overall BUSY state for the arrival of a byte is composed of lower-level BUSY
and DONE states for the arrival of bits. The lower level state machine ping-pongs back
and forth between the lower-level BUSY and DONE states until the whole byte has been
serially input, while the higher-level state machine remains BUSY, then the higher-level
DONE state is entered. Similarly, for the arrival of bytes described by the state machine
in Figure 5.2a, there can be a higher-level state machine associated with the buffer into
which the bytes are placed. This state machine is in the BUSY state as long as the buffer
is dedicated for input but not filled with data. This state machine enters its DONE state
when the entire buffer is filled and is ready to be used.

A typical microcomputer having several I/O devices has as many BUSY/DONE
sequential machines, one for each device, and possibly a BUSY/DONE sequential
machine for every buffer being emptied and filled. There exist product machines that can
be used to describe interactions between devices. For instance, if a device has states il,
bl, and dl, and another device has states i2, b2, and d2, then the product machine has
states i1i2, Mb2, Hd2, b1 i2, b1 b2, b1d2, d1 i2, d1 b2, and d1d2, where for
instance ilb2 means that state machine 1 is in the IDLE and state machine 2 is in the
BUSY state. In general, if there are n devices or buffers, there are 3n states in their
product machine. While many synchronization problems can be clearly defined for the
simple state machine rather than the product machine, the product machine can define
problems that occur when two or more devices or buffers interact, such that a condition
arises only when each machine, and therefore the product machine, is in a specific state.

The general synchronization problem is to attend to a device or buffer when it enters
its DONE state, in order to get input data, check for and respond to errors, or initiate an
activity for future work. In this section, we consider real-time and gadfly synchronization
techniques written in simple C and C++ object-oriented procedures.

5.1 Programmed Synchronization

There are several ways a microcomputer can synchronize with a slower I/O device, as
discussed in this section. Two ways, real-time and gadfly synchronization, are
programmed in the main procedure or in procedures it calls, and are studied here.

5.1.1 Real-time Synchronization
Real-time synchronization uses program timing delays to synchronize with the delays
in the I/O system, to either equal or exceed the time a device is in BUSY. See Figure
5.3a. Two cases are (1) using a procedure's inherent delays, and (2) using a wait loop or
other time-consuming statements to "pad" the processor's delay to match or exceed the
I/O device's BUSY state time. If that happens to be the rate at which the paper tape is
pulled, and the procedure is started so as to pick up the first pattern of holes, putting it
into buffer[0] (a preposterous idea), the processor is synchronized with the device.

5.1 Programmed Synchronization 197

To illustrate the second case, we insert a delay loop as we did in the traffic light
application in §4,3.3. We can modify the procedure as follows:

The statically efficient delay loop j = N; while (- - j) ; is empirically adjusted,
by defining constant N, so that the loop executes during the BUSY state, which is
related to the rate at which the paper tape is pulled. A longer delay can be implemented
using nested loops, as in i = Nl; j = N2; while (- - j) while (--i); . If the
procedure is started so as to pick up the first pattern of holes, putting it into
buffer[OJ (a nontrivial challenge), the processor is synchronized with the device.
Because required program-statement timing delays already synchronize the processor to
the tape reader, we are also using real-time synchronization. This program's assembly
language is shown below,

0000086D CEOOOO

00000870 CD1388

00000873 0436FD

00000876 1980

00000878 B754

0000087A 19EE

0000087C 9600

0000087E 6A40

00000880 08

00000881 8E0100

00000884 2DEA

In real-time synchronization, the device has IDLE, BUSY, and DONE states, but
the computer may have no way of reading them from the I/O device. Instead, it starts
operations and keeps track of the expected time for the device to complete the operation.
BUSY/DONE states can be recognized by the program segment being executed in
synchronization with the device state. IDLE is any time before we begin reading the
tape; the delay loop corresponds to BUSY; and DONE is when buffer [i] = PORTA;
is executed. The device is started, and the time it takes to complete its BUSY state is
matched by the time a program takes before it assumes the device is in DONE. While an
exact match in timing is occasionally needed, usually the microcomputer must wait
longer than the I/O device takes to complete its BUSY state. In fact, the program is
usually timed for the longest possible time to complete an I/O operation.

Real-time synchronization is considered bad programming by almost all computer
scientists. Dynamic memories can require refresh cycles, interrupts, and DMA cycles
discussed in §5.4.1, which can occur at unpredictable times. A cache memory supplying
instructions or data can speed up the execution of instructions, thus affecting delays
based on their execution. If timing delays are implemented in high-level languages such

198 Chapter 5 Interrupts and Alternatives

as a whi le loop in C, the delay time can change when a later version of the compiler or
operating system is used. It is difficult to provide a delay of a fixed time by means of
delays inherent in instruction execution. The effort in writing the program may be the
highest because of the difficulty of precisely tailoring the program to provide the required
time delay, as well as being logically correct. This approach is sensitive to errors in the
speed of the I/O system. If some mechanical components are not oiled, the I/O may be
slower than what the program is made to handle. The program is therefore often timed to
handle the worst possible situation and is the least responsive synchronization technique.

However, real-time synchronization requires the least hardware; it can be used with a
basic input or output device, without the need for further hardware. It is a practical
alternative in applications such as the traffic light controller discussed in §4,2.2 or a
microcomputer that is dedicated to control a printer.

5.1,2 Gadfly Synchronization

The sprocket hole input can be sensed in the gadfly synchronization technique to pick
up the data exactly when they are available. The program continually "asks" one or more
devices what they are doing (such as by continually testing the sprocket hole sensor).
This technique is named after the great philosopher, Socrates, who, in the Socratic
method of teaching, kept asking the same question until he got the answer he wanted.
Socrates was called the "gadfly of Athens" because he kept pestering the local politicians
like a pesky little fly until they gave him the answer he wanted (regrettably, they also
gave him some poison to drink). This bothering is usually implemented in a loop,
called a gadfly loop, in which the microcomputer continually inputs the device state of
one or more I/O systems until it detects DONE or an error condition in one of the
systems. See Figure 5.3b. Gadfly synchronization is often called polled synchronization.
However, polling means sampling different people with the same question, not
bothering the same person with the same question. Polling is used in interrupt handlers,
discussed later; in this text, we distinguish between a polling sequence and a gadfly loop.

Figure 5.3. Flow charts for Programmed I/O

5.1 Programmed Synchronization J99

5.1.2.1 MC68HC812A4 Gadfly Synchronization

The 6812 'A4 has very simple key wakeup ports on ports D, H, and J that are very
useful for gadfly and interrupt synchronization. (See Figure 5.4a.) They can also be used
in monitoring keyboards, control switches, and position sensors. Additionally, FOR PT
has a flag register with similar characteristics (§8,3.1). All key wakeup ports detect
falling edges, and PORTJ can detect rising edges on its inputs. Consider PO.RTJbit 7. If
PORTJ bit 7 is an input (DDRJ bit 7 is F) and KPOLJ bit 7 is F, then KWIFJ bit 7 sets
upon a falling edge on PORTJ bit 7 (pin 10); if KPOLJ bit 7 is T, then KWIFJ bit 7
sets upon PORTJ bit 7's rising edge. KWIFJ bit 7 is cleared by writing a 1 into it (it is
a clear port). A gadfly C procedure and its assembly language follows.

void main () {char buffer[0x100]; int i;

{KWIFJ = 0x80; while (KWIFJ >= 0); bufferfi] = PORTA;

0000086D C7

0000086E 87

0000086F 5BOO

00000871 B705

00000873 C680

00000875 5B2B

00000877 962B

00000879 2AFC

0000087B 1980

0000087D B7B4

0000087F 19EE

00000881 9600

00000883 6A40

00000885 08

00000886 8E0100

00000889 2DE8

CLRB

CLRA

STAB

SEX

LDAB

STAB

LDAA

BPL

LEAY

TFR

LEAY

LDAA

STAA

INK

CPX

BLT ;abs = 0873

Figure 5.4. Key Wakeup Ports for the MC68HC812A4

200 Chapter 5 Interrupts and Alternatives

The gadfly loop, while (KWIFJ >= 0) / waits until PORTJ bit 7 input falls,
which is when a sprocket hole is about to pass from under its sensor. Data are picked up
when this loop test fails, when the sprocket hole is still under its sensor.

5.1.2.2 MC68HC912B32 Gadfly Synchronization

The 6812 'B32 doesn't have built-in key wakeup hardware, but a signal such as the
sprocket sensor can be sensed in a simple input, such as PORTS bit 7, for low and high
values, as illustrated in the following program.

Gadfly loops while (PORTB & 0x20); while (i (PORTE & 0x20)) / wait until
PORTS bit 5 input falls and then rises, which is when a sprocket hole is under its
sensor. Data are picked up then, when the sprocket hole is still under its sensor.

5.1.2.3 Gadfly Synchronization Characteristics

The programs above exhibit the IDLE, BUSY, and DONE states. IDLE is any time
before we execute the procedure and DONE is when buffer [i] = PORT A; is executed,
the same as in real-time synchronization. The device is BUSY when executing a gadfly
loop. Gadfly synchronization exhibits lower latency than real-time synchronization,
because the gadfly loop terminates exactly when the device is DONE, while the delay
loop must delay for the worst-case time the device is BUSY. Real-time synchronization
requires no hardware in addition to the basic I/O port, while gadfly synchronization
requires hardware such as a key wakeup flag bit. Both techniques generally loop while
the device is in BUSY, and that can be a long time for slow I/O devices. Interrupts,
discussed later, can free the processor to do other things while it waits for DONE.

5.1.3 Handshaking

In addition to synchronization, a device may require a handshake signal to command the
hardware to execute an operation. For the paper-tape reader, a handshake output bit R
might be used to engage the motor pulling the paper tape; R would be asserted
whenever the program decides to input the next byte. R can be a positive- or negative-
logic-level signal, asserted until the data are input, or a positive- or negative-logic pulse
asserted for about a microsecond. We consider the previous synchronization mechanisms
and the handshake mechanisms in various combinations in subsequent examples. In each
example, we use the paper-tape reader that was introduced earlier.

First, consider a 'B32 or 'A4 real-time paper-tape reader having data input on
PORT A, handshaking on PORTS bit 0, and pulling high momentarily to request data.

5.1 Programmed Synchronization 201

void main() {char buffer [0x100]; int i, j;
DDRB = 1; // arrange to output port bit 0 as a handshake
for(i=0; i<0x100; i++) {

PORTB = 1; PORTB = 0 ; // pulse the handshake signal
j = N; while (--j); buffer [i] = PORTA; II synchronize and read port

Note that, each time data are received, the handshake signal is high for about a
microsecond before the real-time delay and the input operation.

Consider a 'B32 or 'A4 gadfly paper-tape reader that receives data on PORTA . We
use PORTB bit 1 for synchronization, which falls when data can be read, and we use a
handshake signal on PORTB bit 2, which becomes low to request data and returns high
after the data is read. The handshake signal stays low until the data are transferred.

void main() {char buffer[0x100]; int i, j ;
PORTB = DDRB = 4; // arrange to output bit 2 as a handshake, and initialize it high
for (i=0; i<0xl00; i++) {

PORTB = 0; II begin handshake by asserting the signal low
while (! (PORTB & 2)); while (PORTB & 2); buffer[i] = PORTA;
PORTB = 4; II end handshake by negating the signal

Synchronization and handshake can be chosen independently of each other. Consider
an 'A4 gadfly paper-tape reader as previously, synchronized with KWIFJ bit 7.

void main () {char buffer [0x100]; int i, j;
PORTB = 0; DDRB = 4; II the handshake signal is output, and is initially low
for (i = 0 ; i < 0x100;i + +) {

KWIFJ = 0x80; PORTB = 4; II begin handshake by asserting the signal high
while (KWIFJ >= 0); buffer[i] = PORTA; II synchronize, read port
PORTB = 0; II end handshake by negating the signal low

5.1.4 Some Examples of Programmed I/O

We have already shown real-time programming with a traffic light controller, and gadfly
synchronization with the SPI. Here we will provide three more illustrative examples of
programmed I/O: generating infrared remote control signals, inputting magnetic card
reader signals, and generating BSR X-10 signals.

The familiar infrared remote control controls TV sets and other home electronics. A
rather large number of deliberately different control formats are used, so that commands
given to one unit won't be inadvertently obeyed by another. A typical format sends data
least significant bit first. For an F (0), PORTA bit 0 is H (1) for 350 us; for T (1) it is
H (1) for 700 us. See Figure 5.5. An H (1) causes a 555 to generate a 38-KHz square-
wave. See Figure 5.5c. The procedure sendIr sends 11 bits to the infrared LED.

202 Chapter 5 Interrupts and Alternatives

Figure 5.5. Infrared Control

void sendIr(int data) { char i;
for (i = 0, DDRA = 1; i < 11; i + +) {

PORTA 1= 1; if (data & l)wait();
wait() ; PORTA &= ~1; wait(); data >>= 1.

void wait() {int i = N; while (--i) ;} I* N is 350 * 8/3 to wait 350 ns */

Figure 5.6. Magnetic Card Reader

202 Chapter 5 Interrupts and Alternatives

Figure 5.5. Infrared Control

void sendIr(int data) { char i;
for (i = 0, DDRA = 1; i < 11; i + +) {

PORTA 1= 1; if (data & l)wait();
wait() ; PORTA &= ~1; wait(); data >>= 1.

void wait() {int i = N; while (--i) ;} I* N is 350 * 8/3 to wait 350 ns */

Figure 5.6. Magnetic Card Reader

5.1 Programmed Synchronization 203

The also familiar magnetic credit card reader generates a falling-edge clock as it
inputs data bits serially, most significant bit first. See Figure 5.6. The procedure
receiveMagCard receives 16 bits serially, through PORTB bit 0.

int. receiveMagCard () { int i, data;

Figure 5.7. BSRX-10

An X-10 receiver (Figure 5.7a) and controller (Figure 5.7b), originally designed by
BSR Inc., and now distributed by Radio Shack, Sears, and other mail-order houses,
controls lamps and appliances in the home via a signal sent over household 110-V, 60-
Hz power wiring. One or more controllers and modules, each costing about $15, are
plugged into power-wiring sockets, without the need for any other wiring. A controller
sends commands as bursts of 100-KHz signals over the power wiring to the modules
(Figure 5.7d). One bit is sent each half-cycle of the 60-Hz signal. An F (0) bit is no
burst, and a T (1) bit is three 100 KHz bursts evenly spaced in the half cycle. The
TW523 module (Figure 5.7c), uses three optical isolators (opto-isolators), described in
Figure 5.7e. We will use it in §5.2.6.5. Here, we show how to generate a modulated

204 Chapter 5 Interrupts and Alternatives

signal using the capabilities of the 6812, essentially what is done inside the TW523.
The procedure sendBsr sends 16 bits through PORTB bit 0, synchronized to PORTS bit
1 's 60-Hz waveform.

void pulse() { asm{
Idaa #10 ; ten pulses

L1: bset PORTB,#1
MX #5 * 8 / 3

L2: dbne x ,L2
bclr PORTB,#1
Idx #5 * 8 / 3

L3: dbne x, L3
dbne a, Ll
Idx # (8 0 0 0 0 0 0 / (3 6 0 * 3)) - 20 * (5 * 8 / 3) ;

L4: dbne x ,L4
} }

void sendBsr (int data) { int i;
while (PORTB & 2) ; /* make sure we start on an edge */
for (i = 0, DDRB = 1; i < 16; i++) {

while (! (PORTB & 2)) ; /* wait for next 1/2 cycle */
if (data & 0x3000) { pulse(); pulse (); pulse(); } data <<= 1;
while (PORTB & 2) / /* wait for next 1/2 cycle */
if (data & 0x8000) { p u l s e (); pulse(); pulse(); } data <<= 1;

;

sendBsr illustrates some interesting techniques. We wait for either edge of the 60-
Hz square wave because bits are sent each half cycle. The top half and bottom half of
sendBsr differ only in which edge the gadfly loop is waiting for. If a T (1) is sent, then
the procedure pulse is executed three times; if a F (0) is sent, then pulse is not
executed. The procedure pulse illustrates the use of embedded assembly language to
produce 10 cycles of 100-KHz square wave and a small delay, which is written in
assembly language since we are in it.

5.1.5 Object-oriented Classes for Programmed I/O

An object-oriented class SyncPort for real-time and gadfly synchronization mechanisms,
derived from §4.1.2's generic Port class, is presented below. It is generalized to
accommodate the handshake functions of the 6811 StrA and StrB pins and associated
control logic, which are not implemented in hardware in the 6812. There are two parts to
this general synchronization mechanism. In the first, an input signal edge indicates a
device's transition from BUSY to DONE. The second part is an output signal, which can
provide a pulse or a level handshake signal that prods the device to do something. We
present the class and its function members, then we show subroutines it uses to take care
of handshake and synchronization, and finally we show this class's uses.

5.1 Programmed Synchronization 205

template <class T> class SyncPort : public Port<T> {
protected : long syncK, handK;

public:SyncPort(int a, long syncP, long handP, int attr=0, T dir=G):
Port (a, attr, dir) {

orAt (syncK = syncP); if (handP & 0x8000) orAt (handP);
orAtNext (handK = handP); II set direction for output

virtual T get (void) {
storeAt (syncK); II clear flag
handshakeBegin (handK); II change level, or pulse the handshake signal
synchronize (syncK); II delay or gadfly loop
T c = Port<T>: :get(); II get data form input port
handshakeEnd (handK); II change level, or pulse the handshake signal

virtual void put(T c) {
storeAt (syncK); II clear flag
handshakeBegin (handK); II change level, or pulse the handshake signal
synchronize (syncK); II delay or gadfly loop
Port<T>: :put (c) ; II put data to output port
handshakeEnd (handK); II change level, or pulse the handshake signal

To accommodate various synchronization and handshake options, we initialize two
long words, syncK and handK, in SyncPort's constructor; these long words take
advantage of HIWARE's convention for passing a long word as a procedure argument,
which puts the high 16 bits into index register X and the low 16 bits into accumulator
D. The constructor saves its middle two long parameters in long data members syncK
and handK, and passes the other parameters to its base class's constructor.

The handK parameter's high-order 16 bits are generally loaded into X and therefore
contain the address of a handshake port such as PORTA, while the low-order 8 bits are
generally loaded into accumulator B, which will be a bitmask that is stored into, ORed
into, or complemented and ANDed into the port at address X. The bitmask will be all
0s, except that one bit will be 1. The remaining bits of the parameter, which are
generally loaded into accumulator A, are used to control when the handshake signal is
changed; setting the most significant bit put into accumulator A makes the handshake
bit initially high, otherwise it is initially low. Setting the next bit causes a direction
register at an address two locations higher than the handshake port address to be set;
clearing that bit causes a direction register at the next higher address to be set. That bit
should be set when ports A, B, C, D, F, or G are used for the handshake signal, and
cleared for all other ports. The remaining bits are used each time put or get are called.
Setting the bit loaded into accumulator A bit 5 causes the handshake signal to rise,
setting the next bit loaded into accumulator A causes the handshake signal to fall, and
setting the next bit causes the handshake signal to rise before the synchronization

206 Chapter 5 Interrupts and Alternatives

operation is performed. Setting the bit loaded into accumulator A bit 2 causes the
handshake signal to rise, setting the next bit loaded into accumulator A causes the
handshake signal to fall, and setting the least significant bit causes the handshake signal
to rise after the synchronization operation is performed and the data is input or output,
These operations are done by the assembly-language subroutines shown below:

#pragma NO_RETUPN

void orAtNext (long handK) {asm {II to set direction to output
bita #$40 ; if bit 14 is set, increment twice
beq L0 ; for PORTs A to D, and F and G
inx ,* otherwise increment once

L0 : Inx ; In either case, fall through to or At

void or/it (long handK) {asm {
orab 0 , x ; set a bit at the port address
stab 0 , x

#pragma NO_RETURN
void handshakeBegin (long handK) {asm {

Isra ; called before synchronization is done, move middle
Isra ; three bits over to be tested in handshakeEnd
Isra ; to govern handshake before synchronization; fall through

void handshakeEnd (long handK) {asm {
bita #4 ; called before synchronization; bit 2 of third byte controls
beg L1 ; rise
pshb
orab 0 , x ; OR least significant byte with port data
stab 0 , x ; put back
pulb

LI: bita #2
beq L2 ; bit 1 controls fall
pshb
comb ; invert mask bits so 1 clears
andb 0 , x ; AND with port data
stab 0,x ; put back
pulb

L2: bita #1
beq L3 ; bit 0 controls rise
orab 0 , y ; OR with port data
s tab 0 , y ; put back

L3 : ds.b 0 ; terminate

5.1 Programmed Synchronization 207

The long data member syncK controls synchronization for real time, gadfly using
a key wakeup port, gadfly using an input port bit, and time-sharing synchronization,
which will be discussed in §5.3.2, Using it, this class accommodates all the
synchronization techniques except for interrupts using a buffer or queue (and techniques
for very fast devices discussed in §5.4). If the byte loaded into accumulator A is 0xff -
bits 15 to 8 of the constant syncK, then its high 16 bits loaded into X are a key
wakeup port address, such as KWIFJ, and its low byte, loaded into accumulator B, is the
bitmask to test and clear the flag. If the byte loaded into accumulator A is 0xfe or 0xfd,
then the high 16 bits are a synchronization port address, such as PORTA, and the low
byte loaded into accumulator B is the bitmask to test that port. If the byte loaded into
accumulator A is 0xfe, then data transfer waits for a falling edge of the bit that is 1 in
the mask; and if 0xfd, then data transfer waits for a rising edge of this bit. If the byte
loaded into accumulator A is 0xfc, and real-time interrupt synchronization is used (as
will be discussed in §5.3.2) then a sleep procedure is called, with a sleep time that is
the high 16 bits loaded into X. We discuss this further in §5.3.5. Finally, if the byte
loaded into accumulator A is less than 0xfc, then real-time synchronization is used,
delaying approximately n loops where a loop, which consists of a dbne instruction,
executes in 0.375 ns if the 6812 uses an 8-MHz clock; n's high 16 bits are the value in
accumulator D minus 1, and the low 16 bits of n is in X. Conversely, to delay n loop
times, make the constant syncK be [(n << 16) + 0x10000] | (n >> 16), The
following subroutines implement the various synchronization techniques.

void storeAt (1ong syncK) { asm{
ibne a, L1 ; used only for key wakeup synchronization, where a is 0xff
stab 0 , x ; write 1 into the clear port (e.g., KWIFJ), to clear the flag

L1 : ds.b 0

char testAt (long syncK) { asm{
andb 0 , x ,- check for 1 where the mask bit is 1
rts

}

return 0 ; // keep compiler happy
}

void orAt Previous (long syncK) {asm{
orab - 1 , x ; to set the int. enable from the address of the flag port
stab - 1 , x ; to enable key wakeup interrupts

void andAtPrevious (long syncK) {asm {
comb ; to clear int. enable from the address of the flag port
andb - 1 , x ; to disable key wakeup interrupts
stab - l ,x

208 Chapter 5 Interrupts and Alternatives

char testAtPrevious(asm{
andb -1, x ; check for 1 where the mask bit is 1
rts

return 0; // keep compiler happy

void synchronize(long syncK) { asm{
cpd # OxfcO 0; note: X is high 16 bits, D is low 16 bits of syncK
bhi LI
beq L7

LO: dbne x,LO
dbne d,LO
rts

L7 : stx numTicks

branch out for all but real-time delay synchronization
OxfcOOxxxx is to synchronize using sleep ()
real-time synchronization: wait for m to count down
xxxx is counted down first, the dddd is counted down.

; store high 16 bits in a global variable, to pass it to sleep

// sleep (numTicks); return; II insert only if sleep is defined using multimreads
asm{
LI: crnpa #$0xf e ; other than real-time delay, X is location, b is bit pattern

beq L3 ; for aaaaffbb where third byte is Oxff
bhi L5 ; key wakeup gadfly using pattern bb at aaaa

L2 : bitb 0 , x ; wait until flag is set
beq L2
rts

bitb 0 ,x
beq L3
bitb 0,x
bne L4
rts

where third byte is Oxfe
wait for bit to become high
wait for bit to become low

L5:

L6:

bitb 0,x
bne L5
bitb 0,x
beq L6

where third byte is Oxfd
wait for bit to become low
wait for bit to become high

We now redo the examples in §5.1.3 to use the class SyncPort. First, consider
the real-time paper-tape reader having data input on PORT A, using handshake signal on
PORTS bit 0, which is pulsed high momentarily to request data. The constructor's first
argument is the address of the data port, which is aA. Its second argument is the
synchronization parameter loaded into syncK; real-time synchronization requires this to
be the number of loops we desire to execute, rearranged to use the synchronize
procedure shown earlier. We can use the expression ((n « 16) + 0x10000) \ (n
» 1 6) , (iB << 16) developed earlier to generate it. The next argument is the

5.1 Programmed Synchronization 209

handshake parameter loaded into handK;. Its most significant 16 bits are the address of
the parallel port used, port B; its least significant 8 bits are the mask for the bit to be
used for handshake; and the remaining byte designates the way this signal changes. Its
direction register is two locations higher than its data port address, and it is pulsed high
before synchronization, so its least significant 8 bits are binary 10110000 or 0xB0,

define N 100 /* the number of dbne loops to be executed */
SyncPort p(aA, ((N«16) + 0x10000) I (N>>16) , (aB << 16) \ 0xB001) ;

Note that since the class's function members do all the work, the program itself is
trivially simple. Now consider our gadfly paper-tape reader whose data are received on
PORT A, using PORTB bit 1 for synchronization, which pulses low before data can be
read, and whose handshake signal on PORTS bit 2 is normally high, asserted low to
input data, and returned high after the data is read. The constructor's first argument is the
address of the data port which is a A . Its second argument is the synchronization
parameter loaded into syncK;. Gadfly-time synchronization for PORTB bit 1 's rising
edge requires the most significant 16 bits be PORTB's address, its least significant 8 bits
be the mask for bit 1, 0x02, and the other bits be Oxfd. The next argument is the
handshake parameter loaded into handK. Its most significant 16 bits are the address of
the parallel port used, PORTB; its least significant 8 bits are the mask for bit 2, 0x04, to
be used for handshake, and the other byte designates the way this signal changes. Its
direction register is two locations higher than its data port address, it is initially high,
and it becomes low before synchronization and goes high after data are recieved, so it is
binary 11010100 or OxD4. Note that this main is identical to the main procedure for
real-time synchronization because the class's function members do the work.

void main() {char buffer[0x100]; p.get (b, 0x100); }

Finally, consider a gadfly paper-tape reader synchronizing using KWiFjbit 7, and
the same handshake as the previous example used. The constructor's first argument is
the address of the data port, which is again aA. Its second argument is the
synchronization parameter loaded into syncK. Gadfly-time synchronization for key
wakeup J bit 7 requires the most significant 16 bits be KWIFJ'S address, Ox2B; its least
significant 8 bits be the mask for bit 7, 0x80; and the other bits be Oxff. The next
argument, the handshake parameter, is the same as in the previous example. The ma i n
procedure, of course, remains the same as in the other examples. Note how easy it is to
switch from one port to another for data, synchronization, or handshaking.

SyncPort p(aA, Ox2BFF80, (aB « 16) I OxD404) ;

void main () {char buffer[0x100]; p.get (b, 0x100) }

These examples suggest that a library of devices and their associated classes can be
written and debugged in advance, and copied into the application late in the design.
Object-oriented programming separates the I/O software from the main procedure to
make such a substitution cleanly and correctly, without side effects.

210 Chapters Interrupts and Alternatives

5.2 Interrupt Synchronization
In this section, we consider interrupt hardware and software. Interrupt software can be
tricky. At one time, some companies actually have a policy never to use interrupts, but
instead use the gadfly technique. At the other extreme, some designers use interrupts just
because they are readily available in microcomputers like 6812 systems. We advocate
using interrupts when necessary but using simpler techniques whenever possible.

Interrupt techniques can be used to let the I/O system interrupt the processor when it
is DONE, so the processor can be doing useful work until it is interrupted. Also, latency
times resulting from interrupts can be less than latency times resulting from a large
gadfly loop that tests many I/O devices, or a variation of the gadfly approach, whereby
the computer executes a procedure, checks the I/O device, next executes another
procedure, and then checks the devices, and so on - and that can be an important factor
for fast I/O devices. Recall the basic idea of an interrupt from §1.2.3: a program P
currently being executed can be stopped at any point; then a handler program D is
executed to carry out some task requested by the device, and the program P is resumed.
The device must have some logic to determine when it needs to have the processor
execute the D program. P must execute the same way whenever and regardless whether D
is executed. Hardware saves all the information that P needs to resume without error.

We first look at steps in an interrupt. Then we consider interrupt handlers, and the
accommodation of critical sections. In the next subsections, details will be discussed as
the multiple-interrupt case will be studied, using two techniques called polling and
vectored interrupts. These will be simple extensions of the single-interrupt case.

5.2.1 Steps in an Interrupt

We now consider a 6812 microcontroller having just one interrupt, omitting some
details in order to concentrate on the principles of the single interrupt. A complete
subsection is provided to show how a key wakeup interrupt occurs in the 'A4 and
another describes how an IRQ interrupt occurs in the 'B32. You need to read only one of
these subsections appropriate to your equipment. However, if you study both
mechanisms, you can generalize the concept of interrupt handling, which might apply
differently in various machines that you may study and use later in your work.

Figure 5.8. Key Wakeup Interrupt Request Path

5.2 Interrupt Synchronization 211

5.2.1.1 Steps in an Interrupt in the MC68HC812A4

We consider a key wakeup interrupt in the 'A4 microcomputer. To use one of the key
wakeup inputs for interrupt requests, the port's direction bit for that input must be clear,
If the paper tape were pulled though the reader, the sprocket hole signal would be a train
of 256 pulses that falls and then rises each time a hole is under the sensor. A falling
edge causes a key wakeup interrupt. See Figure 5.8. The six-step sequence of actions
leading to an interrupt and servicing it is outlined below.

1. When the external hardware determines it needs service either to move some data into
or out of it or to report an error, we say that the device requests an interrupt. This
occurs in the paper-tape reader when PORTJ bit 7 falls.

2. If the PORTJ bit 7 pin is an input (in DDRJ bit 7) and had been assigned (in KWIEJ
bit 7) to sense interrupts, we say KWIEJ bit 7 interrupts are enabled.

3. If the microprocessor's condition code register's 1 bit is 0 we say the microprocessor
is enabled for all non-XIRQ interrupts. When I is 1, the microprocessor is masked (or
the microprocessor is disabled) for all non-XIRQ interrupts. If a signal from (any)
device is sent to the controller, we say the microprocessor sees a request, or the
request is pending, and an interrupt will occur, as described next. (The bit I is also
controlled by hardware in the next step; also, XIRQ interrupts are handled differently.)

4. Most microcomputers cannot stop in the middle of an instruction. Therefore, if the
microprocessor recognizes an interrupt, it honors an interrupt at the end of the current
instruction. When the 6812 honors a key wakeup J interrupt, it saves the registers and
the program counter on the stack, sets the condition code register I bit, and loads the 16-
bit word at 0xffd0 into the program counter to process this interrupt. Importantly,
condition code bit I is set after the former I was saved on the stack.

5. Location 0xffd0 contains the address of the key wakeup handler. The handler is like a
"subroutine" that performs the work requested by the device. It may move a word
between the device and a buffer, or it may report or fix up an error. One of a handler's
critically important but easy-to-overlook functions is that it must explicitly remove the
cause of the interrupt (by negating the interrupt request) unless the hardware does that for
you automatically. This is done by writing 1 into bit 7 of the KWTFJ port.

6. When it is completed, the handler executes an RTI instruction; this restores the
registers and program counter to resume the program where it left off.

The handler's address must be put in a 16-bit word in high memory where the
interrupt mechanism reads it. Using the HIWARE C++ compiler (similar mechanisms
will have to be used with other compilers), all we need to do is write interrupt 23
before the procedure to be used as the key wakeup port J handler. This convention
inserts the address of the handler into 0xffd0, and further ends the "procedure" with an
RTI , Alternatively, the HIWARE linker can insert the address in high memory. The line

212 Chapter 5 Interrupts and Alternatives

VECTOR ADDRESS 0xFFD0 handler

can be put at the end of the linker's . prm file. It puts the address of the key wakeup J
handler into the word at 0xffd0. In order to use this technique, handler must be a C (not
C++) procedure, preceded by the keyword interrupt so it ends in RTI, and must be
declared extern so the linker will be able to find it. If you are using C++ write

extern "C" {extern interrupt void handler(void)
(... (the body of the handler)... }}

However, this 16-bit word is in EEPROM in the 'A4, which is written using procedures
given in §6.3. For DBUG12, its handler at that address jumps indirectly through an
SRAM location 0xbl0, so for it, execute * (int*) 0xhl0= (int)handler;, or, to use
the interrupt number (23), execute ((int *) 0xh3e} [-23] = (int) handler; instead.

5.2.1.2 Steps in an Interrupt in the MC68HC912B32

We now consider a key wakeup interrupt in the 'B32. If the paper tape were pulled
though the reader, the sprocket hole signal would be a train of 256 pulses, which falls
and then rises each time a hole is under the sensor. This signal is input to the IRQ pin.
A falling edge causes an IRQ interrupt. See Figure 5.9. The six-step sequence of actions
that lead to an interrupt and that service it is outlined as follows.

1. When the external hardware determines it needs either to move some data into it or
out of it or to report an error, we say a device requests an interrupt. This occurs in the
paper-tape reader when the signal on the IRQ pin falls.

2. If INTCR bits 6 and 7 are set, we say IRQ interrupts are enabled (for falling edges).

3. If the microprocessor's condition code register's I bit is 0, we say the microprocessor
is enabled for all non-XIRQ interrupts. When I is 1, the microprocessor is masked (or
the microprocessor is disabled) for all non-XIRQ interrupts. If a signal from (any)
device is sent to the controller, we say the microprocessor sees a request, or the
request is pending, and an interrupt will occur, as described next. (The bit I is also
controlled by hardware in the next step. Also, XIRQ interrupts are handled differently.)

4. Most microcomputers cannot stop in the middle of an instruction. Therefore, if the
microprocessor recognizes an interrupt, it honors an interrupt at the end of the current
instruction. When the 6812 honors an IRQ interrupt, it saves the registers and the
program counter on the stack, sets the condition code register I bit, and loads the 16-bit
word at 0xfff2 into the program counter to process this interrupt. Importantly, condition
code bit I is set after the former I was saved on the stack.

5. Location 0xfff2 contains the address of the IRQ handler. The handler is like a
subroutine that performs the work requested by the device. It may move a word between
the device and a buffer, or it may report or fix up an error. An IRQ handler need not
"remove the source of the interrupt"; this flip-flop clears automatically.

6. When it is completed, the handler executes an RTI instruction; this restores the
registers and program counter to resume the program where it left off.

5.2 Interrupt Synchronization

Figure 5.9. IRQ Interrupt Request Path

In the 'B32, the handler's address must be put in a 16-bit word at 0xfff2 where the
interrupt mechanism reads it. Using the HIWARE C++ compiler (similar mechanisms
will have to be used with other compilers) all we need to do is write interrupt 6
before the procedure to be used as the IRQ handler. This convention inserts the
address of the handler into 0xfff2, and further ends the procedure with an RTI .
Alternatively, the HIWARE linker can insert the address in high memory. The line

VECTOR ADDRESS 0xFFF2 handler

can be put at the end of the linker's .prm file. It puts the address of the IRQ handler into
the word at 0xfff2. To use this technique, handler must be a C (not C++) procedure,
preceded by the keyword interrupt so it ends in RTI, and must be declared extern so the
linker will be able to find it. If you are using C++ write:

extern "C" {extern interrupt void handler(void)
{.., (the body of the handler) ... } }

However, this 16-bit word is in flash memory in the 'B32, which is written using
procedures given in §6.3. For DBUG12, its handler at that address jumps indirectly
through an SRAM location Oxb32, so for it, execute *(int*)0xb32
(int.) handler; or to use the interrupt number (6), execute ((i n t *) Oxb3e) [-6] =
(int) handler/ instead.

5.2.1.3 Properties of Interrupt Synchronization

We stress that as soon as the 6812 honors an interrupt, it sets the I condition code to
prevent repeatedly honoring the same interrupt. If it didn't, the handler's first instruction
would be promptly interrupted - an infinite loop that will fill up the stack. Do not
worry about clearing I because the preceding sequence's step 6 restores the condition
code register, including the I bit, to its value before the interrupt was honored.

214 Chapters Interrupts and Alternatives

The IRQ interrupt request flip-flop is automatically cleared before the handler is
executed. The 'A4 key wakeup interrupt, and most other device interrupts, needs to clear
the source of the interrupt before RTI is executed. For similar devices, if RTI is executed
and the source of the interrupt is not cleared, this same device will promptly interrupt
the processor again and again - hanging up the machine. Before the key wakeup handler
executes RTI or explicitly clears I, it must remove the interrupt source!

An interrupt request takes two steps. A flip-flop triggers if an edge occurs on its
clock input. A switch in series with an input that can set this flag is called an arm; if it
is closed the device is armed, and if opened, the device is disarmed. Any switch
between the flip-flop and the controller is called an enable; if all such switches are
closed the device is enabled and if any is opened, the device is disabled. Arming a
device lets it record a request to request an interrupt, either immediately if it is enabled or
later if it is disabled. Disarming a device prevents honoring an interrupt now or later,
Disable an interrupt to postpone it, if you can't honor it now; but you may honor it
when interrupts are enabled at a later time.

The programs above exhibits the IDLE, BUSY, and DONE states. IDLE is any
time before the procedure executes, and DONE is when an interrupt occurs. The device is
BUSY when waiting for an interrupt. Interrupt exhibits longer (worst-case) latency than
gadfly synchronization because the instruction must be completed, the registers must be
saved on the stack, and a few instructions in the handler must be executed before the
device gets served (by reading data from the port or writing data to the port). The longest
instruction, EMACS, might have just begun execution when an interrupt occurs, which
adds 13 cycles to the latency. Further, if other devices use interrupts, a device's interrupt
can be disabled for a long time while executing the other device's handler. Interrupt
synchronization requires more hardware, such as a line (and pin) for the interrupt request
and a gate (and flip-flop) to enable the interrupt. However, interrupt synchronization can
avoid the loop while the device is in BUSY, and that can be a long time for slow I/O
devices. This can free the processor to do other things while it waits for DONE.

5.2.2 Interrupt Handlers and Critical Sections

Three techniques are generally used in interrupt handlers: altering a global variable,
writing into a buffer, and pushing into a queue. These are illustrated with the paper-tape
example. We then discuss the problem of critical sections and how to manage them.

5.2.2.1 A Handler That Changes a Global Variable

First, we use a global variable char flag, which the main program gadflies upon.
main inhibits interrupts using the SEI instruction, main then clears the buffer's index,
and enables and clears the key wakeup interrupt Interrupts are then enabled, using CLI .
SEI and CLI take care of a critical section, as discussed at the end of this subsection.
flag is cleared. Upon each falling edge, indicating the arrival of another pattern, an
interrupt occurs and flag is incremented. Each time main sees flag nonzero, input
data is transferred into the buffer. Then the key wakeup interrupt is disabled and we exit.

5.2 Interrupt Synchronization 215

The first subsection shows a program whose interrupt handler sets a flag variable in
the *A4. Essentially the same program is written for the 'B32. The reader can study the
one appropriate to his or her hardware, without having to read the other.

For the 'A4

char flag;

interrupt 23 void keylnt () { KWIFJ = 0x80; /* clear key */ flag++; };

void main() { char buffer[10], i;
asm sei /* disable all non-XIRQ interrupts */
KWIEJ = /* enable key wakeup interrupt */
KWIFJ = 0x80; /* clear flag */
asm cli /* enable all non-XIRQ interrupts */
for(DDRA = i = 0; i < 10; i + +) {

flag = 0; /* prepare for next wait for interrupt */
while (flag == 0) ; /* wait for interrupt */
b u f f e r [i] = PORTA; /* store data */

j
KWIEJ &= ~0x80; /* disable key wakeup interrupt only */

The interrupt handler is coded in assembly language as follows.

0000086A C680 LDAB #128

0000086C 5B2B STAB $2B

0000086E 720B40 INC $OB40

00000871 OB RTI

For the 'B32

interrupt 6 void handler() { flag+ + ; };

void main') { char buffer[10];

asm sei /* disable all non-XIRQ interrupts */
DDRA = 0; /* make port A input */
INTCR = 0xc0; /* enable IRQ interrupt on falling edges */
asm cli /* enable all non-XIRQ interrupts */
for (unsigned char i = 0; i < 10; i + +) {

flag = 0; /* prepare for next wait for interrupt */
while(flag == 0) / /* wait for interrupt */
buffer [i] = PORTA ; /* store data */

/
INTCR = 0; /* disable IRQ interrupt only */

216 Chapter 5 Interrupts and Alternatives

The interrupt handler is coded in assembly language as follows.

5.2.2.2 A Handler That Fills or Empties a Buffer

This first technique really just transfers the synchronization from interrupt-based
hardware to gadfly-based software. The second common technique lets the interrupt
handler store data in the buffer, main will set up the buffer as in the first example, but
the handler will fill it. main will wait for the buffer to be filled, gadflying on its index.

main sets up the index to the buffer and a key wakeup request interrupt as in the
previous example. It then waits for the buffer's index to reach its end. We illustrate first
the ' A4 interrupt and then the 'B32 interrupt mechanism.

For the 'A4

PORTJ bit 7's falling edge occurs each time another paper-tape sprocket hole comes
under the reader. This causes the interrupt handler to be entered, which removes the
source of the interrupt and reads the pattern into the next buffer element. When all data
has arrived, the key wakeup interrupt is disabled. This gadfly loop waits for the buffer to
be DONE, rather than for the arrival of each byte, as in the previous example.

unsigned char b u f f e r [1 0] , index;

interrupt 23 handler() {

KWIFJ = 0x80; /* clear flag */ buffer [index++] =PORTA ; I* store data */
if (index = = 10) KWIEJ &= -0x80;

index = 0; /* set buffer pointer to beginning */
KWIEJ = 0x80; KWIFJ = 0x80; /* enable key wakeup int., clear flag */
as/n cli /* enable all non-XIRQ interrupts */
while(index < 10) ; I* wait for buffer to be done */

This interrupt handler is coded in assembly language as follows.

0000086A C680 LDAB #128

0000086C BB2B STAB $2B

0000086E B60B40 LDAA $OB40

00000871 36 PSHA

00000872 42 INCA

5,2 Interrupt Synchronization 217

$OB40

For the 'B32

The 'B32 mechanism is shown next; its assembly language is similar to the above.
IRQ'S falling edge occurs each time another paper-tape sprocket hole comes under the
reader. This causes the interrupt handler to be entered, which reads the pattern into the
next buffer element. When all data has arrived, the key wakeup interrupt is disabled. This
gadfly loop waits for the buffer to be DONE, rather than for the arrival of each byte.

interrupt 6 handler() {
buffer [index+ +]=PORTA; /* Store data */ if (lndex==10) INTCR=0;}

void main () {
asm sei
index = 0;
INTCR = 0xc0;
asm cli
while (index < 10)

/* set buffer pointer to beginning */
/* enable int. */
/* enable all non-XIRQ interrupts */
/* wait for buffer to be done */

This interrupt handler is coded in assembly language as follows.

$OB400000086E B60B40 LDAA
00000871 36 PSHA

00000872 42 INCA

00000873 7AOB40 STAA

00000876 32 PULA
00000877 B705 SEX

00000879 9600 LDAA.
0000087B 6AE20B41 STAA

0000087F B60B40 LDAA

00000882 810A CMPA

00000884 2603 BNE
00000886 79001E CLR

00000889 OB RTI

$OB40

218 Chapter 5 Interrupts and Alternatives

5.2.2.3 A Handler That Uses a Queue for Input

The third technique's interrupt handler pushes data acquired from the input port into a
queue until main pops the data to use it. Since the programs for the 'A4 and 'B32 are
quite similar, we use this opportunity to show how a program can be maintained for two
different applications or environments. This program uses a symbolic name A4 to
compile the program for the 'A4; otherwise, it is compiled for the 'B32. Note how
conditional compilation can be used to simultaneously maintain software for two
different applications or environments. Do not be confused between the queue, which is
a temporary storage place to hold data from the handler to the main program, and the
buffer which eventually stores the data, main just stores data into the buffer, but a
typical program analyzes data, or uses it in some way, as it pops it from the queue.

unsigned char pull() {
if ((size) <= 0) {error = 1; return 0; } if (hot == 5) bot
return(d[bot++]);

}

void push (unsigned char item) {

if ((size++) >= 5) { error = 1; return 0; } if (top == 5) top = 0;

d [top++] = item;

/
unsigned char get () { while (! size) ; return pull(); }

#ifdef A4
interrupt 2.3 handler () {KWIFJ = 0x80; push (PORTA) ; } /* clear flag */
#else
interrupt 6 handler () { push (PORTA); }

#endif

void main() { unsigned char i;

asm sei
i f d e f A4

KWIEJ = 0x80; KWIFJ = 0x80;

#else
INTCR = 0xc0; /* enable irq interrupt */

#endif
asm cli /* set up interrupt */
for (i = 0; (i < 10) && ! error; i + +)

buffer [i] = get (); /* gather data */

/* disable key wakeup interrupt only */

/* disable irq interrupt only */

5.2 Interrupt Synchronization 219

The interrupt handler, for the case where A4 is #defined, is coded as

Q00008F4 C680

000008F6 5B2B

000008F8 D600

OOOOQ8FA 07BD

000008FC OB

LDAB

STAB

LDAB

BSR

RTI

#128

$2B

$00

,-abs = 08B9

While this handler appears to be simpler than the previous example's handler, it calls the
push procedure. Its rather long push procedure is coded in assembly language as

000008B9

000008BA

000008BD

000008BE

000008BF

000008C2

000008C3

000008C5

000008C7

000008C9

000008CC

000008CE

000008D1

000008D3

000008D5

000008D8

000008DB

000008DC

000008DD

000008EO

000008E1

000008E2

000008E4

000008E6

000008EA

000008EB

37

F60805

37

52

7B0805

33

C105

2507

C601

7B0808

201C

F60806

C105

2603

790806

F60806

37

52

7B0806

33

87

B745

E680

6BE20800

32

3D

PSHB

LDAB

PSHB

INCB

STAB

PULB

CMPB

BCS

LDAB

STAB

BRA

LDAB

CMPB

BNE

CLR

LDAB

PSHB

INCB

STAB

PULB

CLRA

TFR

LDAB

STAB

PULA

RTS

$0805

$0805

#5

*+9

#1

$0808

* + 30

$0806

#5

* + 5

$0806

$0806

$0806

D,X

0 , SP

2048, X

abs = 08CE

:abs = 08EA

abs = 08D8

As in the two previous examples, main prepares the same IRQ or key wakeup
interrupt. Then it calls the input procedure to get a byte at a time, and writes each byte
into the buffer. However, in this example, the interrupt handler pushes the data obtained
from PORTA onto the queue, using the push procedure. The get procedure gadflies as
long as the input queue is empty; when the queue is nonempty, ge t pops an item,
returning it to the caller; main then puts this data into its buffer. When the buffer is
filled, main inhibits IRQ or key wakeup interrupts and the main procedure exits.

Observe how long the handler takes to run. As a general objective, we want to
reduce latency time. Handlers disable interrupts throughout their execution, so they
significantly increase worst-case latency for other devices. You should write handlers that

220 Chapter 5 Interrupts and Alternatives

are as fast as possible. Whenever you can do so, perform time-consuming operations in
the main program, rather than the interrupt handler,

As in previous discussions of synchronization methods, we discuss the
BUSY/DONE states of the devices using the interrupt synchronization method. The
paper-tape reader is IDLE until after initialization sets it up and after main disables
interrupts from the paper-tape reader just before it exits. It becomes BUSY after
initialization. DONE is entered when an interrupt occurs and data are moved from
PORTA to the input queue. After data are moved, the device generally returns to BUSY,

5.2.2.4 A Handler That Uses a Queue for Output

The output operation is quite similar to input in all previous cases except for the last
case involving a queue. We leave the other cases as exercises for the reader, but we
consider specifically our running paper-tape punch example because it illustrate2.03.s two
important points about interrupt software. Moreover, this example is carried out for the
IRQ pin, which can be implemented in either the 'B32 or the 'A4.

The device generally causes the IRQ signal to fall if it is prepared to accept output
data. The output interrupt should only be enabled when there is data to be output.
Otherwise, an interrupt will occur and the handler will be entered, but there won't be
anything to do because there won't be any data to output. Frustration!

In interrupt handlers using queues, the size of the output queue indicates whether or
not there is data to be output. If the queue is empty, there is no data to be output and the
output interrupt should be disabled; but if the queue is nonempty, there is data to be
output, and the output interrupt should be enabled. The output interrupt initially is not
enabled, but is enabled in put and disabled in the interrupt handler to follow this rale.
(Observe, by contrast, that input interrupts are always left enabled.) Also a handshake,
PORTS bit 6, is asserted exactly when the queue is nonempty, to advance the tape. We
also have to terminate device use. The termination procedure should wait until the
output queue is empty before it disables interrupts and terminates use of the device.

unsigned char pull()

void push (unsigned char item) {
if ((size++) >== 5) { error = 1; return; } if (top = = 5) top = 0;
d [top++] = iterm;

}

void put(char data) {
while(size >= 5) ; push (data);
if (size = = 1) /* if queue just became nonempty */

{ INTCR = 0xc0; PORTB \ = 0x40; }/* enable interrupt, turn on motor */

5,2 Interrupt Synchronization

/* pull a byte and output it to the port */
/* if queue empties, disable irq interrupts */

void main() { unsigned char i ; asm sei.
DDPA = 0 x f f ; DDRB = 0x40; INTCR = 0; asmcli
for (i = 0; (i < 10) && ! error; i + +) put (buffer [i]) ; /* output data */
whi1e (INTCR) ; /* wait for queue to empty */

}
These procedures show some interrupt handler mechanisms, but these mechanisms

are inefficient because gadflying on a global variable, such as a buffer index or a queue
length, wastes time. Unless the microprocessor can do something else in the meantime,
gadfly synchronization will be simpler, have lower latency, and be easier to debug.

5.2.2.5 Critical Sections

The correct management of critical sections is a very important aspect of interrupt
software. A critical section is part of a procedure that if interrupted can cause incorrect
results. For example, in a queue for an input device like a paper-tape reader, size is
incremented in the handler when an item is pushed, and decremented in a procedure,
called by main, when an element is pulled from the queue. size may be copied from its
memory location to a register like accumulator B, decremented there, and put back. If an
interrupt occurs between the time size is read until it is rewritten and the interrupt
handler's push procedure increments size, then the interrupted program will cancel the
change made by the handler. For instance, if size were initially 3, indicating there are 3
words in the output queue, and the get procedure pulled a word, it would decrement size
to 2. But if, while size is effectively moved to accumulator B, an interrupt occurs and
the interrupt handler saw a request to output a word for that interrupt request, it would
push a word. It would increment the value of size that was in memory, changing it
from 3 to 4. When the interrupted program that was decrementing size is resumed, it
will write the number 2 in the memory variable size. But there are now 3 words in the
queue, not 2. Subsequent queue-size checking will be faulty.

Another critical section occurs when a main program updates a global variable in
parts, such as in the instruction sequence CLR ALPHA followed by CLR ALPHA+1, and the
interrupt handler compares the 16-bit ALPHA with a constant. If the interrupt occurs after
CLR ALPHA but before CLR ALPHA+1, the partially updated 16-bit ALPHA will be
incorrectly compared to the constant in the handler.

The chances of a critical-section fault happening are actually very small. But if you
believe in Murphy's law, such an error will occur at the worst possible time. Therefore,
to write correct programs, you must avoid any possibility of such a critical-section error.

Critical-section errors can be correctly avoided by inhibiting interrupts in main
program segments that change variables that are changed, read, or tested in an interrupt
handler. Before a potential critical section is being executed, the condition code I bit is
cleared; when it is left, the bit is restored to what it was before the critical section was
entered. To set or clear I in a C procedure, assembly-language statements SEI, CLI ,

222 Chapter 5 Interrupts and Alternatives

PPA, or TAP are embedded in C. Alternatively, a meraory-to-memory instruction such as
CLR BETA or INC BETA, where BETA is an 8-bit variable, can avoid the possible critical-
section error, because an instruction cannot be interrupted until it is completed.

The initialization of interrupt hardware and the variables, for instance counters and
pointers for a queue, is often a critical section, although some study and considerable
experience might be required to diagnose this problem. For instance, in the examples
above, the initialization of key wakeup ports might accidentally cause an edge to set a
flag flip-flop. Or the flip-flop might have been left set from prior use. The interrupt will
then occur as soon as interrupts are enabled. But there is no data over the heads of the
paper-tape reader, and garbage is read and entered into the buffer. This is why the
initialization procedure writes 1 into the key flag register, to clear interrupt requests
before interrupts are enabled. (Clearing a flag register with interrupt disabled is
equivalent to having disarmed the device, as discussed earlier. This alternative is therefore
called software disarming of the device.) Because this analysis is usually quite difficult,
for any device using interrupts, we strongly advocate always disabling interrupts before,
and enabling them after, an I/O device is initialized, and software-disarming the device.

5.2.3 Polled Interrupts

For multiple (polled) interrupts, the interrupt handler just finds out which interrupt
request needs service. In this case, when the interrupt occurs, its handler, whose address
is in QxffdO, is executed. It polls the possible interrupts to see which one caused the
interrupt. The polling program checks each possible interrupt, one at a time, in priority
order, highest-priority interrupt request first, until it finds a device that requested
service, executes that request, and clears that interrupt request.

5,2.3.1 Polled Interrupts in the MC68HC812A4

Consider an 'A4 having two paper-tape readers. The first reader's data and sprocket holes
are on PORTA and PORTJ bit 7, respectively. The second reader's data and sprocket holes
are on PORTS and PORTJ bit 6, respectively. See Figure 5.10. Either interrupt causes
execution of the key wakeup J handler whose address is in 0xffd0.

unsigned char bufferA[10], bufferB [10], indexA, indexB;
interrupt 23 handler() {

if (KWIJ & KWIEJ & 0x80) I* if first flag is set and enabled */
{ KWIFJ = 0x80; bufferA[indexA+ +] = PORTA/;/* honor first int. */

else if (KWIFJ & KWIEJ & 0x40) /* if second flag is set and enabled */
{ KWIFJ = 0x40; bufferB[indexB+ +] = PORTS; >/* honor second int. */

i

void main() { asm sei
KWIEJ = 0xc0; KWIFJ = 0xc0;asm cli /* en. key wakeup int., clear flags */
while ((IndexA < 10) && (indexB < 10)) ; /* wait for either buffer done */
KWIEJ &= -0xc0; /* disable key wakeup interrupts only */

5.2 Interrupt Synchronization

Figure 5.10. MC68HC812A4 Polled Interrupt Request Path

In the previous program, upon a key wakeup J interrupt, it is possible that PORT'J bit 7
or bit 6 saw a rising edge; we don't know. The key wakeup J handler determines whether
input PORTJ bit 7 saw a rising edge, or input PORTJ bit 6 saw a rising edge. Once it
finds a flag bit set, it removes the source by clearing the flag bit and writes data into the
associated buffer. To make the program work sensibly, main terminates when either
buffer is full. This interrupt handler is coded in assembly language as

0000086A

0000086C

0000086E

00000870

00000872

00000875

00000877

00000879

0000087C

0000087D

0000087E

00000881

00000882

00000883

00000885

00000887

0000088B

0000088C

0000088E

00000890

00000892

00000894

00000896

00000898

962B

942A

8480

B705

044517

C680

5B2B

B60B54

36

42

7AOB54

33

87

B745

9600

6AE20B40

OB

962B

942A

8440

2716

C640

5B2B

B60B55

LDAA

ANDA

ANDA

SEX

TBEQ

LDAB

STAB

LDAA

PSHA

INCA

STAA

PULB

CLRA

TFR

LDAA

STAA

RTI

LDAA

ANDA

ANDA

BEQ

LDAB

STAB

LDAA

$2B

$2A

#128

A,X

X,*+26

#128

$2B

$OB54

$OB54

D,X

$00

2880, X

$2B
$2A

#64
*+24

#64
$2B

$OB55

;abs = 088C

;abs = 08AA

224 Chapter 5 Interrupts and Alternatives

0000089B 36 PSHA

0000089C 42 INCA

0000089D 7AOB55 STAA

000008AO 33 PULB

000008A1 87 CLRA

000008A2 B745 TFR

Q00008A4 9601 LDAA

000008A6 6AE20B4A STAA

000008AA OB RTI

Note that the handler checks that the flag has set, and the enable is also set, before
the flag is cleared and data is written into the appropriate buffer. If you only check the
flag bit, it is possible that you will clear the flag bit that you found set, but another flag
bit caused the interrupt, and will cause the interrupt after the handler is exited with RTI.
The flag bit that doesn't have its enable set couldn't cause the interrupt and shouldn't be
serviced. There are even situations where this failing to service the interrupt making the
request can hang up the machine, if the flag that is cleared continues to remain set.
Therefore interrupt polling checks both the flag and the enable. This differs from a gadfly
loop, which tests only the flag. Polling checks different bits than does a gadfly loop.

5.2.3.2 Polled Interrupts in the MC68HC912B32

Consider controlling two paper-tape readers in a 'B32 (Figure 5.11). We implement
external logic to duplicate the 'A4's key wakeup logic. For each paper-tape reader, a
74CH74 flip-flop records when a rising edge occurs from its sprocket hole sensor,
which, through the open drain 74HC01, can assert the IRQ line low. PORTE bits 7 to 5
connect to one reader and PORTE bits 4 to 2 to the other; bits 7 and 4 input the flip-flop
value, bits 6 and 3 are the interrupt enables, and bits 5 and 2 clear the flip-flops.
INTCR bit 6 enables IRQ interrupts. If enabled, either interrupt causes execution of the
handler whose address is in 0xfff2. The handler examines these flip-flops to determine
which paper-tape reader caused the interrupt; it clears its interrupt and reads its data port.

unsigned char bufferA [1 0] , buffers[10], indexA, indexB;

interrupt 6 handler () {
if (PORTE & (PORTE << 1) & 0x80) /* if first FF enabled and set */

{ PORTE &= ~0x20; PORTE 1= 0x20; bufferA[indexA++] = PORTA;}
else if (PORTE & (PORTE << 1) & 0x10) /* if second FF enabled and set */

{ PORTE &= -4; PORTE \= 4; hufferB [indexB+ +] -= PORTB;}

}

void main() { asm sei
INTCR = 0x40; /* enable IRQ int. when low */
PORTE = DDRE = 0x6c; asm cli /* output high to avoid clearing FFs */
while ((indexA < 10) && (indexB < 10)) ; /* wait for either buffer done */
PORTE = 0x24; I* disable tape reader interrupts only */

5.2 Interrupt Synchronization

Figure 5.11. MC68HC912B32 Polled Interrupt Request Path

The last example illustrates the use of an IRQ line with external devices that request
interrupts on either a 'B32 or an 'A4. Each such device has in it a request flip-flop, like
the 74HC74 flip-flop, and an enable gate with open drain transistor, like the 74HC01,
that can pull down the line when the flip-flop is set, a status port that reads the flip-flop
directly, and a means to clear the interrupt request flip-flop. A number of devices can all
be connected to this line. When any one device sets its request flip-flop in it, it pulls
down the IRQ line, thus causing the interrupt handler whose address is in 0xfff2 to be
executed. That handler polls the status registers and services the first device encountered
that requested the interrupt. It clears that device's interrupt request flip-flop and performs
its requested action.

5.2.3.3 Service Routines

In a more complex example, each different interrupt source has its own service routine
that actually services the interrupt. This service routine is a conventional C or C++
procedure that is called from an interrupt handler, which may have local variables and
may call other procedures, to satisfy the needs of the interrupting device. In this book, a
service routine will obey the following convention, which makes it easier to write
interrupt handlers. Each service routine, such as srvcl (), srvc2 (), srvc3 (), and so
forth, will handle one source of interrupt on a device, and each source will have a flag or
interrupt request register that can be individually polled and cleared. If a device has two or
more sources, such as for normal interrupts and for errors, there will be two or more
handlers for that device. Each service routine such as srvcl () will:

1. Test the flag and enable. If either are false, it returns a false value.

2. Otherwise, it performs the required operation, clears the source of the interrupt, and
returns a true value.

The service routines can be tested in a C if condition that ORs the results of these
service routines, as in the following handler having three service routines.

226 Chapter 5 Interrupts and Alternatives

This interrupt handler is coded in assembly language as

00000882 07E6 BSR *-24 ;abs = 086A

00000884 046407 TBNE D,*+10 ;abs = 088E

00000887 07E9 BSR *-21 ;abs = 0872

00000889 046402 TBNE D,*+5 ;abs = 088E

0000088C 07EC BSR *-18 ;abs = 087A

0000088E OB RTI

This statement will call the service routines from left to right in the expression, until
one of them returns a true value. When one does return true, it is not necessary to test
any other service routines because any value ORed with a true value is true, so the
condition must be true and the remaining tests should be skipped. In fact, C and C++
syntax requires that once a true value is found, the other values must not be tested. This
rule for evaluation is not an optional rule for optimization, but is required by the
language, so you can trust its being executed this way.

While this if condition looks very unusual, it produces good code. The highest-
priority service routines are written on the left to be checked first. However, highest-
priority devices can hog the system, preventing servicing of lower priority devices.

5.2.3.4 Round-robin Handlers

An alternative scheme is called a round-robin priority scheme. Here, the polling
program is arranged as an infinite program loop. When the ith interrupt request in the
priority order gets an interrupt and is serviced, the i + 1th interrupt request assumes the
highest priority; so whenever the next interrupt occurs, the polling program starts
checking the i + lth interrupt request first. A round-robin polling handler is shown
below, and its flow chart is given in Figure 5.12. A global variable entry determines
which interrupt request bit to test first. It is set by the last interrupt that was honored, so
that the interrupt request below it will be tested first when the next interrupt occurs.

Figure 5.12. Flow Chart for Round-robin Interrupt Polling

5,2 Interrupt Synchronization 127

interrupt 23 handler () {
L: swi tch (entry) {

case 0: i f (s rvc1 ()) { entry 1; break; }
case 1: if(srvc2()) { entry = 2; break; }
case 2: if(srvc3()) { entry = 0; break; }
entry = 0; goto L;

This interrupt handler is coded in assembly language as

0000088F F60B40

00000892 C102

00000894 222D

00000896 87

00000897 1608CA

0000089A 03

0000089B 2703

0000089D OE1907C9

000008A1 044406

000008A4 C601

000008A6 7BOB40

000008A9 OB

000008AA 07C6

000008AC 044406

000008AF C602

000008B1 7BOB40

000008B4 OB

000008B5 07C3

000008B7 044404

000008BA 790B40

000008BD OB

000008BE 790B40

000008C1 20CC

000008C3 OB

LDAB

CMPB

BHI

CLRA

JSR

DEY

BEQ

BRSET

TBEQ

LDAB

STAB

RTI

BSR

TBEQ

LDAB

STAB

RTI

BSR

TBEQ

CLR

RTI

CLR

BRA,

RTI

$OB40

#2

srvc3 Fv ;abs = 08C3

srvc2 Fv

*+5 ;abs = 08AO

-7,X,#7,*-55 ;abs = 086A

D,* + 9 ;abs = 08AA

#1

$OB40

*-56 ;abs = 0872

D, * + 9 ;abs = 08B5

#2

$OB40

*-59 ;abs = 087A

D,*+7 ;abs = 08BE

$OB40

$OB40

*-50 ;abs = 088F

While a goto statement in this handler looks quite unusual, it also produces good code.
Polling in the same priority order is useful when some interrupt requests clearly need
service faster than others. Democratic round-robin priority is especially useful if some
interrupt request tends to hog the use of the computer by frequently requesting interrupts.

The polling method and priority ordering affect latency. Priority polling provides
shortest latency to the prior device, and longest latency to the least prior device, while
round-robin priority provides average latency to each device. Aside from this, the method
and ordering only affect performance when, in the product state machine, several devices
change from BUSY to DONE in a short time (the latency of the first device to change
state).

228 Chapter 5 Interrupts and Alternatives

5.2.4 Vectored Interrupts

The previous example shows how multiple interrupts can be handled by polling them in
the interrupt handler. Polling may take too much time for some interrupt requests that
need service quickly. The vectored interrupt technique replaces the interrupt handler
software by a hardware mechanism, so that the interrupt request handler is entered almost
as soon as the device requests an interrupt. Table 5.1 gives the interrupt vectors for the
'A4; those of the 'B32 are almost identical, differing only for key wakeup and SCII,

5.2.4.1 Vectored Interrupts in the MC68HC812A4

Again, consider having two paper-tape readers for the 'A4. The first reader's data and
sprocket holes are sensed on PORTA and PORTJ bit 7. The second reader's data is still
sensed on PORTB, but sprocket holes are now on PORTH bit 7. See Figure 5.13. The
first interrupt causes execution of the handler whose address is in 0xffd0, but the second
interrupt causes execution of the handler whose address is in 0xffce. The key wakeup J's
handler's address is in 0xffd0 as usual, but the address of key wakeup H's handler is in
location 0xffce, as shown in Table 5.1. The C program for the 'A4 follows shortly.

Table 5.1. Interrupt Vectors in the 6812

Name

Key wakeup H
Key wakeup J
AtoD
sen
SCIO
SPI serial transfer complete
Pulse accumulator input edge
Pulse accumulator overflow
Timer overflow
Timer channel 7
Timer channel 6
Timer channel 5
Timer channel 4
Timer channel 3
Timer channel 2
Timer channel 1
Timer channel 0
Real-time interrupt
IRQ or key wakeup D
XIRQ
SWI
Unimplemented instruction
COP failure
Clock failure
Reset

Book§ lnt# Interrupt vector DBugl 2 vector

5.2.4.1
5.2.1.1
7.5.3
9.3.5
9.3.5
5.2.5.2
8.3.4
8.3.4
8.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
5.3.1
5.2.1.1
5.2.4.2
5.3.5
5.3.5

6.7

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

OxFFCE.CF
OxFFDO, D1
OxFFD2,D3
OxFFD4,D5
QxFFD6,D7
OxFFD8,D9
OxFFDA,DB
OxFFDC,DD
OxFFDE.DF
OxFFEO.EI
OxFFE2,E3
OXFFE4.E5
OxFFE6,E7
OxFFE8,E9
OxFFEA,EB
OxFFEC,ED
OxFFEE.EF
OxFFFO,F1
OxFFF2,F3
OxFFF4,F5
OxFFF6,F7
OxFFF8,F9
OxFFFA.FB
GxFFFC.FD
GxFFFE.FF

OxBOE.QF
OxB10,11
OxB12,13
0x814,15
OxB16,17
OxB18,19
OxB1A,1B
OxB1C,1D
OxB1E,1F
0x620,21
OxB22,23
0x824,25
OxB26,27
0x828,29
QxB2A,2B
OxB2C,2D
OxB2E,2F
0x830,31
0x832,33
OxB34,35
OxB36,37
OxB38,39
OxB3A,3B
OxB3C,3D
OxB3E,3F

5.2 Interrupt Synchronization 229

Figure 5.13. MC68HC812A4 Vector Interrupt Request Path

The 'A4 exhibits the vector interrupt well; the 'B32 has a pair of separately vectored
interrupts, IRQ and XIRQ. The XIRQ interrupt is not an ideal I/O interrupt because,
without external hardware, it cannot be disabled during critical sections or when the
device is no longer needed. The XIRQ interrupt is designed as a "panic button," which
can be used in debugging to stop execution when a program "goes wild." Nevertheless,
we will illustrate vectored interrupts for 'B32 users, using IRQ and XIRQ. By using
external hardware (Figure 5.14), the disadvantages of XIRQ can be overcome.

When an interrupt is honored in step three (§5.2.1), the 6812 uses an interrupt
vector, which gives the address of the handler, in a manner discussed below. The 6812's
interrupt vectors are in high memory, as shown in Table 5.1.

interrupt 24 void handler2() { KWIFH= 0x80; bu f f e r sB [indexB++] = PORTB ;}

void main () { asm sei
KWIEH = 0x80; KWIFH = 0x80; /* enable key wakeup H, J int., clear flags */
KWIEJ = 0x80,- K I F j = 0x80; asm cli /* enable all non-XIRQ interrupts */
while ((indexA < 10) && (indexB < 10) ; I* wait for either buffer done */
KWIEH &= -0x80; KWIEJ &= -0x80; /* disable key wakeup interrupts only */

Note the similarities between polled and vectored interrupts using key wakeup flags.
Assembler language for these interrupt handlers are essentially a pair of copies of the
assembly language of §5.2.2.2.

A falling edge on PORTJpin 7 causes handler 1 to be executed immediately. A
falling edge on FORTH pin 7 causes handl er2 to be executed immediately. There is no
need for polling. The 6812 "vectors" directly to the handler, reducing latency time.

230 Chapter 5 Interrupts and Alternatives

5.2.4,2 Vectored Interrupts in the MC68HC912B32

A similar program for the 'B32 uses IRQ and XIRQ to handle the two paper-tape readers
through different interrupt vectors. The C program for the 'B32 follows,

unsigned char bufferA[10], buffers[10], indexA, indexB;

interrupt 5 handler1 () // XIRQ handler
{ PORTE &= ~0x20; PORTE 1= 0x20; bufferA [indexA++] = PORTA; }

interrupt. 6 handler2() //IRQhandler
{ PORTE &= ~4; PORTE 1 = 4 ; bufferB [indexB++] = PORTB; }

void main() { asm sei
INTCR = 0xc0; I* enable IRQ interrupts of falling edge */
PORTE = DDRE = 0x64; andcc #0xaf /*avoid clearing FFs, en. both int.*/
while ((indexA < 10) && (indexB < 1 0 }) ; /* wait for either buffer done */
PORTE = 0x24; INTCR = 0; /* disable both tape reader interrupts */

Assembler language for these interrupt handlers is essentially a pair of copies of the
assembly language of §5.2.2,2.

The first reader's data and sprocket holes are sensed on PORTA, but sprocket holes
are now indicated by XIRQ. The second reader's data is still sensed on PORTB, and
sprocket holes are on IRQ. See Figure 5.14. The first interrupt causes execution of the
handler whose address is in Oxfff4; the second interrupt causes execution of the handler
whose address is in 0xfff2, as shown in Table 5.1.

Figure 5.14. MC68HC912B32 Vector Interrupt Request Path

5.2 Interrupt Synchronization 231

5.2.4.3 Vectored Interrupts for Other Devices

As Table 5.1 shows, the 6812 has a lot of interrupt vectors. The two right columns
show the location of the vectors for hardware and Dbugl2. For instance, key wakeup J's
vector is at 0xffd0 and 0xffdl, while for Dbugl2 it is at OxblO and Oxbl 1. The number
to their left is the interrupt number used at the begining of a HIWARE interrupt
handler. For instance, key wakeup J handler is designated interrupt 23. A section
number appears in the second column where more details are given about the device and
its interrupt request. For instance, key wakeup J is described in §5.2.1.

The main point of this section is that by using vectored interrupts, because the
addresses of different handlers are at different locations and there is no software polling
routine to go through, the specific interrupt request handler is executed without the delay
of a polling routine. In effect, the polling routine is executed very quickly in hardware,
and the winning handler is jumped to right after the registers are saved on the stack,

5.2.5 Examples of Interrupt Synchronization

The interrupt is useful in managing asynchronous requests and repetitive tasks. This
section illustrates the use of interrupts in responding to key requests, inputting and
outputting SPI data, and reading bar-code and X-10 signals.

5.2.5.1 Keyboard Handling

The 'A4's key wakeup ports, PORTD, PORTH, and PORTJ, respond well to sensors and
push buttons, beginning procedures whenever such a sensor detects a situation needing
correction or when a button is pressed requesting an action. Key contacts occur
asynchronously, at random and unpredictable times, and are therefore handled by
interrupts. Mechanical switches "bounce." A common debouncing technique is shown
here. Finally, multiple keys have to be scanned; a simple scanning technique is given.
That several sensors or push buttons might request actions in short order, while the
microcontroller is taking care of one of them, is resolved in §5.2.6.

When mechanical switches or sensors close, a metal contact rebounds when it hits a
metal plate, causing multiple closed/open events. If each transition from open to closed
causes an edge, each edge causes an interrupt, and each interrupt initiates an action, then
one physical closure of a switch or sensor may initiate multiple actions. This problem
of contact bounce is mechanically addressed by using bounceless contacts, such as
opto-electronic sensors or mercury-wetted contacts; by electrically debouncing the switch
using analog techniques such as putting a capacitor across it, using digital techniques
such as a set-clear flip-flop, or by computational accounting for multiple bounces. The
most common technique used in microcontrollers is, upon detecting an apparent switch
closure, seeing if it remains closed for 5 ms before recognizing the closure. This delay
permits most switches time to stop bouncing. This wait-and-see technique has some
disadvantages, but provides more than adequate performance at the least cost and
complexity of all the techniques discussed above. An example of this technique is
illustrated for a single switch, a linear select, and a coincident select or matrix keyboard.

232 Chapter 5 Interrupts and Alternatives

Figure 5.15. Keys and Keyboards

The key wakeup hardware of the ' A4 is exceptionally suited to interface to keys and
keyboards. The 'B32, lacking this hardware, can use the IRQ signal, with external diodes
for linear and coincident select keyboards, to interface to keyboards.

Figure 5.15a illustrates a single switch or sensor connected to an 'A4's PORTJ bit
7. This bit can be configured to use an internal pull-up so that if the switch is open, the
pin voltage is high. When the switch is closed, the pin voltage falls, and a falling edge
can generate an interrupt. In this short program, when PORTJ bit 7 sees a falling edge,
it generates a key wakeup J interrupt; after 5 ms, if the switch remains closed and the
input remains low, the handler puts a T (1) on PORTJ bit 7. The constant N is selected
to provide a 5-ms delay, in this and other keyboard examples.

5,2 Interrupt Synchronization 233

Figure 5.15b illustrates a single switch or sensor connected to 'B32's PORTE bit 1,
which is the IRQ signal. This bit has an internal pull-up so that if the switch is open,
the pin voltage is high. When the switch is closed, the pin voltage falls, and a falling
edge can generate an interrupt. In this short program, when PORTE bit 1 sees a falling
edge, it generates an IRQ interrupt; after 5 ms, if the switch remains closed and the input
remains low, the handler puts a T (1) on PORTE bit 2. The program to assert PORTE bit
2 when a key is pressed is shown.

void main () { asm sei /* disable all non-XIRQ interrupts */
INTCR = OxcO; DDRB = 1; asm cli

In an 'A4, a linear select keyboard is, say, 8 switches, each connected between a
PORTJ pin, configured as an input with pull-ups, and ground. See Figure 5.15b.
Assume only one switch will close at any time. When any switch is closed, a falling
edge can generate an interrupt. In the program below, a falling edge on any PORTJ pin
generates a key wakeup J interrupt. In the handler, after 5 ms, if the switch where a
falling edge occurred, remains closed and the input remains low, a procedure is executed,
responsive to the switch; for instance, if PORTJbit 0 falls, pO is executed, and so on.

void interrupt 23 handler() { char key; int i;
key = KWIFJ; /* get edge */ KWIFJ = key; /* remove source(s) of interrupt */
for(i = 0; i < N; i + +) ; /* wait 5 ms */
key &= -PORTJ; /* AND negated port data after 5 ms */
asm c 11 /* permit interrupts: these procedures could execute for a long time */
if(key& 0x01) pO (); if(key& 0x02) pi (); if (key& 0x04) p2 ();
if(key& 0x08) p3 () ; if (key& 0x10) p4(); if (key& 0x20) p5 () ;
if(key& 0x40) p6 (); if(key& 0x80) p7 ();

In a 'B32, a linear select keyboard is, say, 8 switches, each connected between a
PORTS pin, configured as an input with pull-ups, and ground; and through a diode, each
switch can assert IRQ low. See Figure 5.15b. If a switch is closed, a falling edge

234 Chapter 5 Interrupts and Alternatives

generates an IRQ interrupt. After 5 ms, the handler causes a procedure to be executed,
responsive to the switch if it is still closed; for instance, if PORTB bit 0 is low,
procedure p0 is executed, and so on. This procedure does not handle anomalous cases
where one key causes an interrupt and another is low 5 ms later, while the second key
might be bouncing. However, such anomalous cases do not occur often enough to
warrant more sophisticated hardware or software.

void interrupt 6 handler () { char key; int 1;
key = -PORTB; /* get keys*/ for (i = 0; i < N; i + +) ; /* wait 5 ms */
key &= -PORTB; /* AND negated port data after 5 ms */
asm c l i /* permit interrupts: these procedures could execute for a long time */
if (key&0x0Dp0 () ;if(key&0x02)pl () ;if (key&0x04)p2 () ;if(key&0x08) p3 () ;
if(key&OxlQ)p4 () ,- if (key&0x20)p5 () ;if (key&0x40)p6 () ; if (key&0x80)p7 {) ;

}

void maini) { asm sei
PUCR = 2; INTCR = OxcO; DDRB = 0; asm cli

An 'A4 matrix, or coincident select, keyboard is connected as (say eight) rows
of wires and (say eight) columns of wires. A 'B32 matrix keyboard can be connected
similarly to ports A and B, with diodes from the rows to the IRQ pin. See Figure 5.15c.
Although electrically connected in a two-dimensional array, they can be physically
positioned suited to an application such as a terminal keyboard, for instance. In the 'A4,
rows are connected to input PORTJ, having pull-ups. Columns are connected to output
FORTH. The main program initially makes PORTH an output, whose pins are all low.
Then, if any one key is pressed in any row and in any column, a PORTJ input falls and
a key wakeup J interrupt occurs. After being debounced in a manner similar to the linear
select key, the key's row and column number are catenated into a key code, which is
pushed into a queue, to be pulled later. The 'B32 implementation is similar.

void interrupt 23 handler() { char fallingEdge, keys[8] , r, c; int i;
fallingEdge = -KWIFJ; KWIFJ = fallingEdge/* get edge, remove int */
forfi = 0; i < 3; i++) /* scan 8 columns */

{FORTH = ~(1 « i); keys[i] = fallingEdge & -PORTJ; }/* save col. */
for(i = 0; i < N; i + +) ; /* wait 5 ms */
ford = 0; i < 8; i + +){ /* scan 8 columns again */

PORTH = ~(l « i); c = keys[i] & -PORTJ; /* get data for that column */
forf ' j = 0, r = 1; j < 8; j + + , r «= 1;)

{ if (c & r) { push((i « 3) + j); i = j = 8;}}

FORTH = 0; /* all columns low to interrupt if any key is pressed */

void main() { asm sei
KWIEJ = KWIFJ = PULJ = DDRH = 0 x f f ; PORTH = 0;
PULEJ = PUPSJ = 0 x f f ; asm Cli

J

Interrupt Synchronization 235

Figure 5.16. SPI Network

Coincident select uses the same strategy as linear select, but columns are scanned
one at a time, and their first-sampled values are saved in a vector keys . These keys ,
ANDed with the same values scanned 5 ms later, indicate a key closure. If a key is found
low then, its column number concatenated with its row number is a key code that is
pushed onto a queue. The user can later pull the key value from the queue.

5.2.5.2 Interrupts for SPI Systems

The SPI can input and output serial data, as has been discussed in §4.4.4. In this
example (see Figure 5.16), the SPI repetitively inputs and outputs multiple bytes of data
using interrupts. The 6812 MOSI pin feeds a series of '595s, MI so collects from a
series of '589s, SCLK feeds each chip's shift clock, and SS feeds each chip's RCLK and
LD, as discussed in §4.4.3. Global vectors inBuffer and outBuffer hold data
received from the '589s and sent to the '595s respectively, and a global index is used
to access the vector elements in the interrupt handler, main initializes the SPI as before,
but the SPI interrupt enable, SPIE, is set to permit interrupts. SPODR is written to
start the SPI. The shift clock rate is set low to give time for main to do other work.
Each time eight bits have been shifted in and out, an SPI interrupt occurs. An address
register sequence, reading SPIF and SPODR, clears the interrupt and writes SPODR'S
data into inBuffer. Data from outBuffer is written into SPODR, which also starts
the SPI again. If index attains its maximum, it is cleared and the SS pin is pulsed low
twice to transfer each 589's data between shift register and output register, and each
595's data between input register and shift register, main can now read from inBuffer
and write data into outBuffer; the SPI moves this data in and out of the computer,

interrupt 19 void handler () { char dummy;
dummy = SPIF; inBuffer [index] = SPODR; SPODR = outBuffer [index++] ;

{index=0; PORTS &= SS; PORTS != SS; PORTS &= SS; PORTS 1= SS

void main () { asm sei
PORTS' = SS; DDRS = SS + SCLK + MOSI; SP0CRl = SPE + MSTR + SPIE;

SP0CR1 = 4 ; /* low baud rate for more work */ SPODR = 0; /* start */ asm cl

236 Chapter 5 Interrupts and Alternatives

Figure 5.17. Bar Code

5.2.5.3 Histograms and Histories for the MC68HC812A4

Our next example illustrates the use of key wakeup interrupts to measure or record edge
events. A Universal Product Code (UPC) is put on most packages to identify the
package contents, and a bar-code reader is used to scan these codes. See Figure 5.17. A
T (1) is a wide bar, and an F (0) is a narrow bar. The space between bars is the width of
the narrow bar. The width of a wide bar is equal to that of two narrow bars. See
§5.2.6.4. As a reader wipes over the code, bar widths are converted into pulse widths.

The program below stores the widths of a sequence of these pulse in a global vector
pulses, which main will examine and decode. The reader's pulse output is input on
both PORTJ bit 0, which is configured for rising edge interrupts, and PORTB bit 0,
which is configured for falling edge interrupts. The 6812 has a 16-bit free-running
counter TCNT at 0x84, which runs if bit 7 of TSCR at 0x86 is set. The handlers read the
time of an edge from TCNT. Upon a falling edge at the beginning of a bar, in
handler 1, TCNT is saved in start. Upon a rising edge at the end of a bar, in
handler 2, the difference TCNT minus start is saved in pulses. The 'B32 doesn't
have key wakeup hardware. Both the 'A4 and 'B32, however, can use the counter-timer
to do so. Rather than jury-rig an example here for the 'B32, we refer to §8.3.2 to show
how the 'B32 can measure pulse widths. The following program is for the "A4 only.

interrupt 23 void handler 2 ()
miFJ=l;pulses[index+ +]=

void main(){ asm sei
TSCR = 0x80; KWIEH = KWIEJ = PULEJ = KPOLJ = 1; asmdi
do / while (KWIEH) ;

The next example illustrates the use of key wakeup interrupts to measure or record
X-lO-cod&d bit patterns. Recall from §5.1.3 and Figure 5.7d that the X-10 T (1) is three
bursts of 100-KHz signals, and F (0) is no burst of such signals. An amplitude
modulation detector will output T (1) if a burst is present, and F (0) if no burst is
present. Due to noise on the power line or to misalignment, the number of bursts could
be off by one (or more). We count the number of bursts in one-half of the 60-Hz period.
If about zero pulses occur (0 or 1 pulse) then the signal is F (0), but if about three

5.2 Interrupt Synchronization 237

pulses occur (two or more) then the signal is T (1). The detector produces three pulses if
the X-10 code is T (1), or no pulses if it is F (0), and is connected to key wakeup H bit
0; its handler increments pulseCount. The 60-Hz squared-up waveform is connected to
key wakeup J bit 0; its handler writes a T (1) into bits [index] if two or more pulses
arrive, and writes F (0) if one or zero pulses arrive. (As in the previous discussion of X-
10 codes, we strongly recommend that you use the TW523 module that isolates the 110-
V system from your microcontroller and you.

int start, histogram[N] ;

interrupt 24 void handler1() { KWIFH = 1; start = TCNT; }

interrupt 23 void handler2() { unsigned int width;
KIVIFJ = 1; width = TCNT - start;
if (width < N) his togram [width] + + ;
if (histogram [0] == 100) KWIEH = KWIEJ = 0; II "bucket 0" full

void main() { asm sei
TSCR = 0x80; KWIEH = KWIEJ = PULEJ = KPOLJ = 1; asmcli

do ; whi 1 e KWIEH; II wait here until terminated when "bucket 0" full

5.2.6 Object-oriented Classes for Interrupts

Interrupts can be very nicely handled using objects. For input, the class iQFPort (input
queue flag port) and for output, the class OQFPort (output queue flag port), both shown
in subsections below, are derived from Port and use class Queue from §2,3.3 and
subroutines from §5.1.5. We have avoided making either IQFPort or OQFPort a
derived class of Sync Port to reduce target memory requirements.

5.2.6.1 An IQFPort Class

The class IQFPort (input queue flag port) is a simple input class that uses a queue. We
here illustrate this class and consider an application to our familiar paper-tape reader.

The constructor and handshake mechanisms are very similar, and the constructor's
handshake argument and synchronization argument (when key wakeup flags are used)
have the same meaning as for the Sync Port class. However, if the constructor's fourth
argument is nonzero, an object of the Queue class is created. If the low-order 5 bits of
the sixth argument is nonzero, they are used as an interrupt number; and an interrupt
vector is inserted for Dbugl2, taking the fifth argument as the handler address.

238 Chapter 5 Interrupts and Alternatives

public:IQFPort (int a, long syncWord, long handWord, unsignt L i t^
int hR, int attr=0, T dir=0) : Port (a, attr, di O

if (handWord & 0x8000) orAt (handWord);
orAtNext(handK = handWord); orAt(syncK = syncWord);
i f (q S) Q = new Queue<T>(qS); else Q = 0;
i f (i = attr & Oxl f) ((int *)0xb3e)[-i] = hR; I* for dbug!2 */

virtual char service (void) {
if (I (testAt (syncK) & testAt (syncK))) return Q;
Q->push(Port<T>::get()); attr I - Q->error();
if(Q->size==l) handshakeEnd (handK) ;storeAt(syncK);re turn 1;

The interrupt handler service routine reads the port, pushing the result on the queue.
The get function pulls the word. Handshaking isn't usually used with input interrupt,
because data is provided to the device asynchronously, but is provided here such that if
get is executed when the queue is empty, a handshake signal can be pulsed, or asserted
until the interrupt handler responds to put data in the queue, to request data.

A paper-tape reader is a straightforward application of the class iQFPort without
the need for a derived class. This paper-tape reader is shown below. The declaration of the
object sets the data port to be PORTA, using port J bit 7 for synchronization on the
falling edge, and port B bit 2 for handshake, which is asserted low when get is entered,
and negates high after the interrupt brings in the data.

IQFPort<char> p (aA,0x2BFF80, (aB << 16) I 0xD404, 10, (int)handler, 2

Void interrupt 23 handler () { p.service {); }

void main (){ char buffer [0x100] ; p. get (buffer, 0x100); }

The constructor's first parameter is passed to Port's constructor where it identifies
the data port id. The next two parameters inititalize the syncK and handK data
members to control synchronization and handshaking. The constructor's next parameter
gives the queue size unless it is zero. The interrupt service routine service is written
for not only single interrupts but also priority-ordered and round-robin polled interrupts.
It therefore tests the flag and enable ports, returning a value of 1 if the interrupt was
serviced, or a 0 if this device did not request an interrupt.

When an interrupt occurs, handler calls service, which uses device's data
members, service checks the flag and associated enable registers as discussed in
§5.2.3. If this device requested the interrupt, data are read from this object's port and
pushed onto its queue. The main procedure gets data by pulling it from the object's
queue, but if the queue is empty, the get procedure gadflies until it is nonempty.

5,2 Interrupt Synchronization 239

5.2.6.2 An OQFPort Class

For output, the class OQFPort (output queue flag port) illustrates additional
complexities due to turning off interrupts when the output queue is empty. It is derived
from Port and uses class Queue from §2.3.3 and subroutines from §5.1.5. The put
function pushes some data. The interrupt handler service routine pulls data from the
queue, which it writes to the port. Handshaking is often needed, such that if put is
executed when the queue becomes nonempty, a handshake signal can be pulsed, or
asserted until the interrupt handler responds to pull data from the queue.

public : OQFPort (int a, long sW, long hW, unsigned int qS,
int hR, int attr=0, T dir=0) : Port (a, attr, dir) { char i;

orAtNext (handK = handWord) ;
if (handWord & 0x8000) orAt (handWord) ;
or At (syncK = syncWord) ;
if(qS) Q = new Queue<T> (qS) ; else Q = 0;
i f (l = attr & Oxl f) ((int *)0xb3e)[-i] = hR; /* for dbug!2 */

virtual void put(T data) {
while(Q->size>~Q->maxSize);Q->push(value=data)/attrI=Q->error() ;
if(Q->size==l) { handshakeBegin(handK); orAtPrevious(syncK); }

virtual char service (void) {
if(! (testAt(syncK) & test At (syncK))) return 0;
Port<T>: :put (Q->pull ()) ;
iff.' Q->size) { handshakeEnd (handK); andAt Previous (syncK) ;
return 1;

OQFPort (void) { char i;

while(Q->size) ;if(i)handshakeEnd(handK); andAtPrevious(syncK

When put is called, it pushes its argument onto the output queue and enables
interrupts if the queue becomes nonempty. When an interrupt occurs. The handler
calls service which uses device's data members, service checks the flag register
and its associated enable register in the position of the synchronization mask, as in the
discussion of polled interrupts in §5.2.3. If this device requested the interrupt, data is
pulled from the object's output queue and output to its port. If the output queue empties,
the output interrupt is disabled.

240 Chapter 5 Interrupts and Alternatives

5.2.6.3 Polling IQFPort and OQFPort Classes

The classes IQFPort and OQFPort are suited to polled interrupts as described in
§5.2,3. The interrupt handlers, such as handler, are individually written to establish
the polling method and priorities of all the devices that are to be polled, rather like the
constructors individually called for each class. For instance, if objects Ol, O2, and O3
are polled in that priority order for a key J wakeup handler, the following handler is

Then only the constructor declarations or blessings and the interrupt handlers have to be
rewritten if an object is declared or blessed to be of different classes.

5.2.6.4 Bar-code Class

We now expand on our example of a bar-code reader (Figure 5.17) to include decoding
the bar-code frame for an 'A4. Only decimal digits are encoded, each digit being a "two-
of-five" code shown by the vector cnvt. The code for digit i is cnvt [i] . For
instance, the code for digit 0 is 6. A frame, which is a sequence of representations of
digits, is preceded by a start code (110) and followed by a stop code (101). The reader
scans the wand from start to stop, possibly with varying speed. The initial width of a
narrow bar is one-fifth the sum of the widths of the first three pulses, which is equal to
the widths of two wide and one narrow bar. Thereafter, if a narrow bar is detected, its
width is recalculated to be the average of the old and new narrow bar widths. Once five
bars are counted (bitCount is 7), the pattern bits is searched in the constant vector
cnvt for a matching pattern. When a digit is found, get returns it to the user.

class barCode:public IQFPort<int>{int start,narrow; char bitCount,bits;
public:barCode (void) :IQFPort (aH, 0, 0, -1,10, (int)handler, 23) {asm sei

pulPwr(uH); TSCR = 0x80; start = TOVT; bitCount = 0; asm cli

virtual Int get (void) { char bit, i;
do {

int code = IQFPort<int>: .-get () ; /* wait, then pull it */
i f(bitCount==0)narrow=code;else if(bitCount==l)narrow+=code;
else if(bitCount = = 2) { narrow += code; narrow /= 5; }
else {

bits=(bits<<)\ (bit=code>(narrow + (narrow >> 1)));
if (! bit) narrow = (narrow + code) » 1;
i f (bi tcount == 7) { /* if five bars, convert digit, reset count */

for (i =0; i<l 0; i + +) if (cnvt [i] -•== (bi ts&Oxl f)) break;

5.2 Interrupt Synchronization 24!

virtual int service (void) { /* service rtn saves bar widths in input queue */
if (.' (KWIFJ & 1)) return 0; KPOLJ A = 1; KWIFJ = 1 ;
if(KPOLJ & 1) start = TCNT; else Q->push(TCNT - start);
return 1;

5.2.6.5 An X-10 Class

We extend our implementation (§5.1.4) of an X-10 decoder (Figure 5.7), as an object of
class X-10 for the 'A4. X-10 modules are identified by a house code from "A" to "P,"
and a unit code from 1 to 16, by two 16-position rotary switches on the module. A 16-
position rotary switches on the controller selects its house code. In a house, all
controller and module house codes are generally the same, and each X-10 module in the
house is assigned a different unit code. The controller buttons select a unit number and
give commands. For instance, by pressing the buttons "1" and "on," you can turn on
module 1. Pressing the "1" button sends a frame, and pressing the "on" button sends a
frame. Each frame is 22 bits, which is sent twice for reliability; a frame (Figure 5.18c)
consists of a start pattern (Oxe), an 8-bit house code, an 8-bit "second" code, and a 2-bit
type code that is TF (10) or FT (01). Type code FT indicates that the second code is a
unit code, while Type code TF indicates that the second code is a command.

Although two frames are sent over the power line modulated by a 100-KHz carrier,
the TW523's inputs and outputs (Figure 5.18a) transmit just one demodulated frame to
the microcontroller and from the microcontroller, and one bit is transmitted each 60-Hz
half-cycle. The TW523 provides a squared-up 60-Hz wave and a signal. Each side of
Figure 5.7e's opto-isolators have separate ground and +5 V supplies, so 110-V power is
not applied to the 6812. The TW523 module safely isolates power from the computer
and user. X-Ws service routine is entered once every half-cycle, upon either edge of
the 60-Hz squared-up signal on TW523's pin 1. This is connected to PORTJ bit 2,
which is enabled to cause a key wakeup J interrupt. Each time the interrupt is handled,
the KPOLJ bit 1 is inverted to interrupt upon the next rising or falling edge. If a T (1)
occurs, an edge appears on TW523's pin 3's signal, which connects to PORTJ bit 1.
This sets KWIFJ bit 1. This input bit is shifted leftward into a long word InFmme to
collect a 22-bit frame (Figure 5.18c). If, due to a false start, the first four bits found are
not start pattern Oxe, inCount resets to 0. When inCount is 22, a full frame has been
collected; Frame is pushed onto a stack, to be popped by get when the program
requests this value, and inCount is reset to begin looking for a next message.

242 Chapter 5 Interrupts and Alternatives

Figure 5.18. X-10 Frame

Function members get inputs X-10 commands. It pops an input frame from the
queue, and decodes the data to deliver a command to the calling routine. The frame type
is first analyzed. Then the house code bits are extracted, and function member decode
converts it into a binary number. It uses a for loop to implement a linear search of the
conversion vector cnvt (see Figure 5.18b). The ith element of this vector has the code
for house i (house "A" is house binary number 0, house "B" is house binary number 1,
etc.) In Figure 5.18c, the house code Oxa5 is for house Oxf which is house "P." The
function member decode also converts the unit number or the command code. If the
frame type was for a unit, this pattern is the unit number to select that unit, otherwise it
is the command to be given to preselected units. The command values are 2 (on), 4 (all
on), 6 (bright), Oxa (off), Oxc (all off), and Oxe (dim). In Figure 5.18c, 0x66 represents
the command "bright." When the pattern in Figure 5.18c is received, get returns the
value 6 to indicate it is a command to "brighten" the lights (of units previously selected)
in house "P". Function member get returns their values in a struct CMD.

unsigned char inCount; long InFrame, OutFrame;

interrupt 23 void handler(void){
InFrame«=l; if(KWIFJ&4) (InFrame++; if (!inCount)inCount=l;}KPOLJ•A=2;
KWIFJ = 6; /* clear key wakeup flag bits 1 and 2 */
if (inCount=--=4) {if((InFrame&OxfO! = 0xe) inCount=InFrame=0;else in.Count + +
if(inCount == 22){ push(InFrame); inCount = InFrame = 0; }
if(inCount) ; inCount++;
if(OutFrame & 0x8000) PORTJ \= 1; else PORTJ &= ~1; OutFrame « 1;

5.2 Interrupt Synchronization 243

const char cnvt [16] = /* table for get function member to decode bit sequences */
{0x69, Oxa9, 0x59, 0x99, 0x56, 0x96, 0x66, Oxa6, Ox6a, Oxaa, Ox5a, 0x9a, 0x55, 0x95,

Ox65,0xa5 };

typedef struct CMD {char house, unit, command; } CMD;

public: X10 (void) : IQFPort(aH, 0, 0, 10, (int)handler, 23)
{ KWIEJ \= 4; KMIFJ = 6; DDRJ = 1; }

unsigned- char decode (unsigned char code) { unsigned char i;
ford = 0; i <= 16; i + +) if ((code & Oxf) == cnvtfi]) break;
i£(l > 15) error = 1; return i;

}}

void get(CMD &result) { char bits; int i; long Frame;
Frame=pull();if((Frame&3)==1) uni =decode((Frame & 0x3fc) » 2)
else if((Frame&3)==2)command=decode((Frame&0x3fc)»2);else error
house = decode(Frame » 10);
result.unit=unit; result.house=house; result.command=command;

~X10() { KWIEJ &= ~2; } /* disable interrupts */
/ *ptr;

void main (){ CMD j; X10 device; ptr = &device ; device.get(j); }

Function member put constructs a frame and outputs X-10 commands. It waits
until all T (1) bits in Out Frame are shifted out so that it will not stop a pattern that is
being shifted, then it fills the fields of OutFrame with its parameters. The resulting
pattern appears like the pattern in Figure 5.18c. A frame is sent by the key wakeup J
handler by outputting, each 120th second, the most significant bit of OutFrame on
PORT j bit 0, which connects to the TW523's pin 4, and shifting Out Frame left 1 bit.

Both of the preceding examples illustrate that operations on data can be done in the
interrupt handler service routine or in function members get or put. Function
members are a better place to execute complex procedures. The handler should do the
minimum amount of work to reduce latency for devices whose interrupts are deferred.
The bar-code service routine merely saves the pulse width on a queue. The xi 0 service
routine merely collects the frame and pushes the undecoded 22-bit frame onto a queue.
This strategy is used in many of the following examples.

244 Chapter 5 Interrupts and Alternatives

5.3 Time-Sharing

The 6812 has a real-time interrupt (RTI) timer that can cause interrupts every 1.024
ms to every 65.5 ms Its interrupt handler can be used to synchronize I/O transfers to or
from the outside world. In this section, we use it in a simple way and then in a manner
similar to time-sharing, and show examples of time-sharing applications,

5.3.1 Real-time Interrupts

Simple RTI programs use the real-time interrupt enable RTIE, RTICTL bit 7; the real-
time interrupt flag RTIF, FTiFLGbit 7; and RTICTL'S low nibble, real-time interrupt
rate RTR. See Figure 5.19. RTIF is set every 512 ms/RTR, unless RTR is 0. If RTIF
is T (1), and if RTIE is T (1), the interrupt vectors through 0xfff0. RTIF is cleared by
writing 1 into it (it is a clear port).

After each time-out the RTI handler is executed. The handler can directly input or
output data, or it can set a global variable bit, which another program continually checks
(in a gadfly loop), that causes data to be input or output. The handler must remove the
source of this interrupt.

The second technique can be used to implement a more accurate traffic light
controller. The global variable TimeUp is set in the handler. We modify traffic light
controller's main to time out the execution of the interpreter using variable

void main() { unsigned char i,j; asm sei
DDRA = 0x3f; count = 15; RTICTL = RTIE + T65; asm cli
do {

for(i = 0; i < 4; i + +) {
PORTA = tbl [i] [0]; /* output pattern */
count = 15 * tbl[i] [1] ; /* 15 ticks/s */
do ; while (count) ;

Figure 5.19. Periodic Interrupt Device

5,3 Time-Sharing 245

main is generally executing its gadfly while loop, because count is nonzero.
Once each 32,7 ms, the handier decrements count each tick time-out. The while
expression delays approximately tbl [row] [1] seconds. Note that in place of a watt
loop that uses possibly uncertain real-time program delays to time the lights, this
example gadflies on the count variable synchronized to the more accurate RTI clock.
The RTI clock is directly coupled to the crystal oscillator, and its time period is
independent of software variability such as interrupts or changes in versions of the
compiler, as well as hardware irregularities such as DMA and DRAM refreshing. This
real-time interrupt version is thus much more accurate.

This example can be extended to many applications that require synchronization to
very slow external devices. However, the 6812 yet remains tied up in a gadfly loop. In
the next section, we will permit the 6812 to perform other functions while it is waiting
to synchronize to a very slow I/O device.

5.3.2 Mu Hit bread Scheduling

A multithread scheduling technique, which is a primitive form of task scheduling done
in a multitasking, multiuser operating system, would permit some other work to be
done while this routine waits for real-time interrupts. We will generate real-time
interrupts once every tick, where a tick is about l/122th second (8.196 ms), rather than
once every third of a second. This tick time is fairly commonly used because faster tick
times consume too much time switching between threads, while slower tick times make
the threads run erratically in time, in the perception of human users. We maintain three
different threads, where a thread is a part of the program that is independent of other
threads and that can be executed to do useful work. A thread can be executed for one tick,
and then another thread might be executed for one tick, and so on. We can put a thread to
sleep for a number of ticks; the other threads will be able to execute without
competition from a sleeping thread. Rather than gadflying when waiting while an I/O
device is BUSY, after using part of a tick to initiate the I/O operation, we can sleep for
the remaining number of ticks until the I/O operation is completed and the DONE state
is entered. The 6812 can do other useful work during those sleeping ticks; it does not
spend all its time in a gadfly loop.

Multithread uses two simple ideas. First, the processor is tricked when returning
from interrupts into restoring another thread's registers to run it. Second, a simple,
effective way chooses the next thread to be executed: essentially, the thread waiting the
longest to run is chosen to run. These two ideas are discussed now.

The information about a thread is maintained by a struct. Three threads can be
maintained by a struct vector threads [3] . Members of each struct keep track of
its sleepTime, priori ty, and age as well as the location of the thread's stock,

struct THREAD {
volatile int sleepTime; unsigned char priority, age; char * stack;

} threads[3], *thisThread;
char *stackptr, nThreads;

246 Chapter 5 Interrupts and Alternatives

The machine state needed for execution of a thread is frozen when the RTI interrupt
occurs, by saving all its registers on the stack. Several threads will have their registers
saved this way. The RTI handler shown below, which calls the procedure findNext,
saving registers for one thread, may end by restoring these registers, but it may restore
the registers for a different thread than the one that was just saved. That way a different
thread can execute for the next tick.

interrupt 7 void handler() {
asrnsts stackptr

thisThread->stack = stackptr; /* save stack pointer for the int. thread*/
thisThread->age = thisThread->priority; /* update this thread's age */

findNext (); /* determine which thread runs in the next tick time */

stackptr = thisThread->stack; /* restore stk pointer for max age's thread */
asm ids stackptr /* move SP to new thread's saved stack, then return */

void findNext(){ unsigned char i, j; THREAD *p;

for (i = j = 0; i < 3; i + +) { I* try each thread */

p = & threads [i]; /* p is thread pointer */

if (p->sleepTime) /* if sleeping */
{ if (p->sleepTime != 0x f f f f) --p->sleepTime; }

else { /* if not sleeping */
i f(RTIFLG && (p->age .'= Oxff)) p~>age++;
if(p->age >= j) { i = p->age; thisThread=p;} /* find max*/

}

i f (i == (nThreads - 1)) {I* if at end of search */
RTIFLG = RTIF; /* remove interrupt */
if (j = = 0) { /* if no awake threads, restart search after next RTI */

while (! (RTIFLG & RTIF}) ; 1 = 0xff; I* srch all thrds */

The procedure findNext searches all the threads, deciding which thread will be
executed, by its sleepTime, priori ty, and age variables. If sleepTime is nonzero,
sleepTime is decremented each tick; otherwise, a thread will be executed from among
all the nonsleeping threads (sleepTime is 0) . A thread can be made to sleep N
ticks by making sleepTime equal to N. A thread goes to sleep if sleepTime is made
nonzero. Among nonsleeping threads, a thread with the oldest age will be executed.
(sleepTi/ne = Oxffff will be used in the next section.) If no thread is "awake" so

5.3 Time-Sharing 247

that the "oldest age" j remains zero after all threads are examined, a gadfly loop waits
for the next RTI time-out, and the search of the threads is repeated. The age of each
nonexecuting thread is incremented (up to 0xff), but when a thread is executed, its age
is reset to its priority.

The pr ior i ty is essentially age's initial value. Nonsleeping threads share
processing time in some sense "proportional" to their priority values. If all threads have
the same priori ty, they will share processing time equally when they are not
sleeping. If a thread has a much lower priority than all the other threads, it will
execute when all the other threads are sleeping, or will execute very infrequently when
they are not; such a thread is called a background thread. If a thread has a much higher
priority than all the other threads, it will hog processing time; such a thread is called
a high-priority thread.

The sleep procedure that follows gadflies while sleep Time is nonzero until an
RTI interrupt selects another thread to run. When this thread runs again after waiting d
tick times, its sleepTime becomes zero and it will exit the procedure.

while(thisThread->sleepTime);>

A thread is started by the procedure startThread, which sets up the thread's
execution entry point and its priority and age. The hardware stack is initialized to appear
like the thread's stack just as the thread enters the RTI handler. This prepares the
thread to run in the first tick time after being started, just as it will run in later tick
times after it has been interrupted. However, just one thread, thread 0, continues to ran
as it starts other threads. Its stack is not initialized in startThread. Its stack is saved
normally, when it is interrupted by the RTI device.

void startThreaddnt f, unsigned charp,int s) {char *stack,t= nThreads++;
threads ft] . sleepTime=0; threads [t] . age= threads [t] .priority = p;

if (t) { /* except for dummy thread 0, make stack space and initialize it */
threads[t].stack = stack = (char*)malloc(s) + s ~ 9;
stack [0] = 0; * (int *) (stack + 7) = f; /* initialize stack */

The res tart Thread procedure following rewrites the program counter, and other
thread variables, of an existing thread. It can be used after a thread is made to sleep
"permanently" by setting its sleepTime to the maximim value (Oxffff) with no other
way, in order to awaken it to execute other functions.

void restartThreaddnt f, unsigned char p, unsigned char t) {char * stack;
threads[t].sleepTime = 0; threads[t].age = threads[t] .priority - p;
stack = threads [t] .stack; stack [0] = 0; * (int *) (stack + 7) = f;

248 Chapter 5 Interrupts and Alternatives

Threads main1 and main2, listed below, "flash" an LED on PORTA bit 4, at a rate
of V2 Hz and an LED on PORTA bit 3 at 1 Hz, These threads sleep, and awaken to flash
the LEDs from time to time.

void main1 (){ do { PORTA * = 0xi0; sleep (.122); } while (1); }

void main2 () { do { PORTA A = 8; sleep(61); } while(1); }

main initializes RTI with a 8.192 ms period and calls startThreadto initialize
its own thread as thread 0 and to initialize threads 1 and 2. The running thread, thread 0,
calls mainO. The other threads run mainl and main2 when they start executing,
because the addresses of mainl and main2 are on these threads' stacks.

void main() { asm sei
DDRA = 0 x f f ; RITCTL = RTIE + T8;
startThread (0, 0, 0) ; this Thread = &threads[0] / /* start threads */
startThread ((int)mainl, 50, 64); startThread ((int)main2, 50, 64);
*(int *)0xb30 = (int) handler; I* insert dbug 12 vector */ asm cli
ma in 0 (); /* begin executing one of the threads */

5.3.3 Threads for Time-sharing

We now show threads that do some useful work while efficiently synchronizing to slow-
speed devices. We will reexamine the keyboard controller and traffic light controller, and
present a technique to support an alarm clock and a Centronics parallel printer device.

The human operator being a slow-speed device, keyboard scanning can be
synchronized using time-sharing. Using this technique, newly pressed keys can be
recognized even though other keys are pressed. Our earlier keyboard technique (§5.2.5)
assumes that only one key is pressed at a time. If we allow two keys to be pressed
simultaneously - as is often done by proficient keyboard users who press another key
before releasing the first key - the program does not see an edge and does not generate an
interrupt, if the newly pressed key is in the same row. Any technique that correctly
recognizes any newly pressed key, even though n -1 keys are still down, is said to
exhibit n-key rollover. Two-key rollover is a common and useful feature that can be
achieved using our improved technique, but for n greater than 2, one must avoid sneak
paths through the keys. Sneak paths appear when three keys at three corners of a
rectangle are pushed, and the fourth key seems to have been pushed because current can
take a circuitous path through the pressed keys when the fourth key is being sensed.
This can be prevented by putting diodes in series with each switch to block this sneak
path current, but the solution is rather expensive and n-key rollover is not so useful.

A 2-key rollover that uses a queue to record keystrokes, even while a previously
pressed key may have to be recorded or responded to, can be appended to the multimread
scheduler of §5.3.2. By sampling the keys about every 5 ms, a newly pressed key will
be detected even though another key remains pressed. The time-sharing RTI handler
calls the procedure servi ce below, once each tick time.

5.3 Time-Sharing 249

void serviced { char r, c, i; //this service routine is called from handler
for (i --= 0; i < 8; i + +) { /* scan 8 columns after a tick time is over */

PORTA = ~ (l « i) ; I* put a low on just one column */
c = keys[i] & -previousKeys [i] & -PORTS; I* analyze new key */
i f (c) f o r (j = 0, r = 1; j < 8; j++, r «= 1 ;) /* scan the word */

{" if (c & r) { push((i « 3) + j); thread [1] .sleepTime=0; }
previ ousKeys [i] = keys [i] ; /* save older copy of keys to detect an edge */
keys [1] = -PORTS/ /* save port data for next tick time */

At the end of service, a first key pattern is copied to keys . After an 8-ms tick
is executed, handler is again entered, which calls service. The first part of
service is now executed, where the key pattern is compared to the key pattern 8 ms
ago in keys , to determine if the key has been debounced. Moreover, a key pattern from
16 ms back is kept in previousKeys . This enables us to detect a falling edge of a
debounced key. If a key input was high 16 ms ago, low 8 ms ago, and low now, the key
has just been pressed, so push its code onto a queue. When a code is pushed onto the
queue, a thread waiting for the data, thread 1 in this example, is awakened.

We illustrate a thread that uses key inputs. A main1 program, which can substitute
for §5.3.2's main0, main1 or main2, can pull key codes from the queue where the
above procedure service pushes them, main1 sleeps indefinitely until a key is
detected, where service awakens it. As in §5.2.5's linear select example, each key
causes a different procedure to be executed; key code 0 causes p0 () to be executed, etc.

void main1 () {do {
sleep (0x f f f f) ; // sleep until service () awakens thread to process date
switch (Q.pull ()) { II get the key code, execute its associated procedure

case 0: pO () ; break; II there can be 64 such procedures, each of
case i .- pi () ; break; II which is activated by one of the keys

i
} while (1) ; } II loop forever

Clearly this keyboard example is an improvement over the previous keyboard
software. This technique doesn't waste time in a wait loop to get a couple of samples of
the key signals to debounce the switch and establish a leading edge. Instead, it lets other
threads run the computer, using up a tick time to wait and see if the key is still pressed.
It further can handle n-key rollover if diodes are put in series with the switches, mainl
simply awaits key inputs, sleeping forever (thread [1] . sleepTime = Oxffff) . It is
awakened when servi ce gets something for it to do (thread [1] . sleepTime = G) .
This "wait until" scheduling mechanism is used by the Macintosh operating system; it
waits on a next event queue to tell it what to do next.

We next look at our familiar traffic light controller's use of a multithread scheduler.
Compared to the example in §5.3.1, this example puts the thread running the traffic
light to sleep a number of tick times indicated by the time a light is to be left on,

250 Chapter 5 Interrupts and Alternatives

voidmainlO (chari, tbl [4] [2];
DDRA = 0x3 f;
tbl [0] [0] = 0x21 ; tbl [0] [1] =1 6; tbl [1] [0] =0x22; tbl [1] [1] =4 ;
tbl[2] [0]=0x0c; tbl [2] [1] =20; tbl [3] [0] =0x14; tbl [3] [1] =4;
do { for(i=0;i<4; i ++) {

PORTA = tbl [i] [0] ; sleep (tbl [i] [1] * 122) ;

Note that sleeping for a specific number of ticks is a "wait for" elapsed time
scheduling mechanism. You can use it to make a thread wait for a rather long time until
it is next able to do something. While it is waiting, other threads can use the computer
without competition from this thread. However, the scheduler will not be able to
guarantee that the thread will execute when it awakens. When it awakens, it only
competes for time slices, along with all other nonsleeping threads. The one with the
largest age will be given the use of the time slice.

Figure 5.20. Centronics Parallel Printer Port

5.3 Time-Sharing 251

An alarm clock can be implemented using a thread. Numbers corresponding to
events to be executed are stored in a vector procedures, in the order they are to be
executed, and a vector times stores in element i the number of ticks from
procedure [i -1] to procedure [i] . The procedure mainl will execute
, ,i ̂ c^di. * f t \ 1 after times [0] + times [1] + . . . times [k] ticks have occurred.

void main2 () { char i; do {
sieep (times[i]) ;
swi tch (procedures [i + +]) {

case 0:pO ();break;
case l:pl();break;

We illustrate a thread using gadfly and real-time interrupt synchronization for the
Centronics printer example (Figure 5.20). Figure 5.20a shows the Centronics parallel
printer connector. A character is printed by putting its ASCII code on the data lines, and
asserting Stb low for at least 1 us. When the printer accepts the character, it pulses Ack
low (Figure 5.20b). We connect the printer data lines to PORT A, connect Ack to PORTE
bit 1, and connect Stb to PORTE bit 2.

A personal computer mechanical printer usually has a buffer in it and can quickly
put the character in the buffer, but if the buffer is full of data, the printer must wait
milliseconds for a character to be mechanically printed before it has more room and can
store the incoming character in the buffer. Thus, the time from Stb to Ack will be a few
microseconds if the buffer is not full, or a few milliseconds if it is full.

Different response times indicate use of different synchronization mechanisms. Fast
response, when the printer's buffer is not full, indicates gadfly synchronization, but the
slow response, when it is full, indicates real-time interrupt.

We can use both gadfly and real-time interrupt synchronization. After writing data to
PORTA, we produce a negative pulse on PORTE bit 2, which pulses Stb. This should
cause the printer to assert Ack low, to put a falling edge on PORTE bit 1. Recalling that
the printer might respond quickly or slowly, we check PORTE bit 1 right after Stb is
pulsed, in a timed gadfly loop. Interrupts are disabled while this bit is checked, for if
they were enabled, the interrupt handler would be entered before the key wakeup bit
would be checked. If the printer responded quickly and this bit is set, then we re-enable
interrupts and return. Otherwise, because we anticipate a long wait, in the procedure
sleep, the current thread's sleepTime is set to make the thread sleep "forever" when
the next tick occurs and the current tick is wasted using a gadfly loop on sleep-Time,
When the key wakeup interrupt occurs, its handler clears the thread's sleepTime, thus
waking up the thread. Sleeping forever avoids the possibility that decrementing
sleepTime will restart the thread when the printer has not responded. Of course this
will hang up the thread if the printer is not on and does not respond. The user is
supposed to recognize this and fix it.

errupt 6 void handler () {threads [1] . sleepTime=0;}/* awaken mainl's put */

252 Chapter 5 Interrupts and Alternatives

void put (char data) { unsigned char i;
PORTA = data; PORTE &= ~4; PORTE 1=4; asm sei
ford = 0; i < 32; i + +) if (-PORTE & 2) break; I* wait for Ack to fall */
I f (i < 32) { /* if Ack returns within the loop above, we are DONE */

asm cli
return; /* permit interrupts */

sleep (0 x f f f f) ; /* otherwise sleep until interrupt */

void main2() { chari, string [10]; asm sei
DDRE = PORTE = 4; DDRA = 0 x f f ; INTCR = 0xc0;

for (i = 0; i < 10; i + +) put (string [i]) ; INTCR = 0; sleep (Oxffff);

5.3.4 An Efficient Time Scheduler

The previous two sections have introduced a thread scheduler and its use in
synchronizing slow I/O devices. This section refines the scheduler to make it more
useful in microcontrollers having a very small amount of RAM. The key problem with
the previous scheduler is that each thread had its own stack, whose buffers had to be
large enough to accommodate the worst-case growth of its stack. This weakness makes
such a scheduler too inefficient for a microcontroller with a small memory. A second
problem is that once a thread is initialized but is no longer needed, its stack and structure
can't be recovered to run other programs.

To circumvent these difficulties, the program uses a shuffle stack. The thread's
stacks are shuffled when a new thread is selected to run, and the selected thread is put on
top of the hardware stack. Other threads' stacks are shuffled to lower places in the
hardware stack, and they have no space above them to expand. However, when a thread is
run, its stack is on the top of the hardware stack and has room to expand as return
addresses, operands, and local arguments are saved on it and as interrupts occur.

One subtle problem with the shuffle stack is that the stack can move whenever
interrupts are disabled. Therefore, a pointer to a local vector should be recomputed, each
time it is used directly from the stack pointer. Indexes to local vectors should also be
used carefully. Pointers and indexes to local variables may be used in critical sections.

This program is presented in its entirety below, so you can see all of it. The struct
THREAD is the same as used before. Many procedures are essentially identical to those
used before, such as main, mainO, mainl, main2, sleep, and findNext. The procedure
start Thread has no RTS instruction, so it falls through to sleep, which falls
through to the handler. The procedure adjuststack is called from the RTI handler,
which is essentially the same as the previous RTI handler, adjuststack shuffles the
stacks to make the selected thread's stack be the top stack. Its first for loop looks for
the bottom of the selected thread's stack. Its next for loop adjusts the addresses of the
top of each stack. Then the heap, pointed to by free_ptr, is used to temporarily hold
the selected procedure's stack while it is moved in the assembly-language segment.

5.3 Time-Sharing 253

char * stack, *localfkeys [8] ,previousKeys [8] ; Queue<char> Q(10);

struct THREAD {
volatile int sleepTime; unsigned char priority, age, * stack;

} threads [nThreads] , *thisThread;

void findNext(){ unsigned char i, j; THREAD *p;
for(i = j = 0; i < nThreads; i ++) { /* try each thread */

p = & threads [i] ; {/* p is thread pointer */
If (p->sleepTime) I* if sleeping */

if (p->sleepTime!=Oxffff) /* Oxffif means sleep forever */
- -p ->sl eepTime ; /* if not sleeping forever, decrement sleepTime */

;
else { /* if not sleeping */

i f (RTIFLG&& (p->age I = Oxff))p->age+ + ;/* increment age */
if(p->age >= j) {

j = p->age; thisThread = p; /* find max age */

i f f i == (nThreads - 1)) { I* if at end of search */
RTIFLG = RTIF; /* remove interrupt */
if (j == o) { /* if no awake threads (did not change j) */

i = Oxff;/* end for loop by setting loop counter to maximum */
while (! (RTIFLG & RTIF }) //* restart search after next RTI */

void adjusts tacks (){ unsigned char i; int j;
for (i = 0, stack = (char *)ENDSTACK; i < nThreads; i + +)

if((threads[i].stack >
thisThread->stack)&&(threads[i].stack<stack)}

s tack = threads [i] . s tack; /* get lowest */

for (j - stack - thisThread->stack, i = 0; i < nThreads; i++)
if(threads[i].stack < thisThread->stack)

threads [i] .stack += j; I* adjust pointers */

254 Chapter 5 Interrupts and Alternatives

asm{

Idy thisThread ; get pointer to selected thread
Idy STACK, y ; point to low address end of new thread's stack
Idx free_ptr ; get end of heap

Li: movb 1, y+, 1, x+ ; move a byte from the stack to the heap
cpy stack ; at end of new thread's stack area?
bio LI ; no, get more
stx free_ptr ; save high, end of heap

Idx thisThread ; note: Y is at high end of this thread's stack
Idx STACK , x ; point to low end of new thread's stack

L2: movb 1, -x, 1, -y ; move a byte on the stack to close up the gap
cpx local ; all bytes in stack moved?
bne L2
Idx free_ptr ; get end of heap

13: movb l, -x, 1, -y ; move a byte on the heap back onto the stack
cpy local ; all bytes moved from heap to stack?
bne L3
stx free_ptr ; restore heap pointer for malloc

void restartThread(int f, unsigned char t) { char *stack;
threads[t].sleepTime = 0;
threads[t].age = threads[t] .priority;
stack = threads[t].stack;
stack[0] = 0;
* (int *) (stack + 7) = f;

#pragma NO__EXIT
void start-Thread (int f, unsigned char p) {

stack = (char *) thisThread; thisThread = & threads[nThreads+ +];
thisThread->age = thisThread->priority = p;

asm{
cl ra ; this procedure builds the stack for a new thread
clrb ; D is cleared; it becomes the argument for sleep()
Idy stack ; get former thread
beq Ll ; if no former thread, don't save regs; else make stack
Idx 2, sp ; get location of function f to X
leas -6, sp ; make room on stack for former thread's saved D, X, and Y
pshb ; cc register: clear interrupt bits
sts STACK, y ; note: y is loaded at the beginning of this procedure
pshx ; save X as return address for new thread's stack

L1: ds .b 0 ; fall through to sleep, with argument time = 0

5.3 Time-Sharing 255

void keyCheck () { char fallingEdge, r, c, i, j;
for (i = 0; i < 8; i + +) { I* scan 8 columns after a tick time is over */

PORTA = ~(1 << i); I* put a low on just one column */
c = keys [i] & ~prevlousKeys[i] & -PORTS; /* analyze for new key */
i f (c) f o r (j = 0, r = l; j < 8; j++, r «---- l) /* scan the word */

if (c & r) { Q.push((i « 3) + j); threads[1].sieepTime=0;}
previ ousKeys [i] = keys [i]; /* save older copy of keys to detect an edge */
keys [i] = fallingEdge & -PORTB; I* save port data for next tick time */

leas -6, sp ; build stack for thread: make room for saving D, X, and Y
pshc ; condition code register (note: return address is on stack)

interrupt 7 void rtiHandler() {
asm sts local
thisThread->age = thisThread->priority; thisThread->stack = local,
keyCheck () ; I* check keys for any pressed */
findNext () ; /* determine which thread runs in the next tick time */
if (thisThread->stack ! = 1ocal) adjustStacks () ; /* shuffle stacks */

#pragma NO_EXIT
void main() { asm sei

PORTA = DDRA = Oxff; /* use PORTA for testing */
RITCTL = RTIE + T8;/* start real-time interrupt */
s tartThread ((int) mainl , 50) //* fork thread 1 */
startThread ((int)main2f 50) ;/* fork thread 2 */
/* fall through to thread O's procedure */

/* mainO() is put here */

The procedure res tartThread is used to cause an existing sleeping thread, selected
by its second argument, to begin execution of a procedure provided by its first argument.
Whereas the previous examples of mainl, and so on, were infinite loops that did not
return to the calling program, we can now have a procedure mainl that ends by sleeping
forever, without the possibility that an interrupt will awaken it. Such a thread can be
restarted at another location using the procedure res tartThread.

256 Chapter 5 Interrupts and Alternatives

5.3.5 Special Instructions for Time-sharing

The 6812 has two instructions, WAI and STOP, that are used to manage interrupts.
Though we introduced these in §1.2.3, we postponed a serious discussion of them until
now because they are strongly related to interrupts. WAI is an improved kind of wait
loop, and STOP can be a fast gadfly loop. We also have the swi instruction and illegal
instructions; these are considered again now that interrupts have been studied.

WAI waits for an interrupt, in lieu of the infinite loop at the end of main t} in
§5.3.2. A background thread can have a statement asm WAI . Once the WAI instruction
is executed, the 6812 goes to "sleep," to be "awakened" by a reset or by an IRQ or
XIRQ interrupt. However, WAI is optimized to reduce latency time. As soon as WAI is
executed, it pushes all the registers on the stack as if honoring an interrupt. When an
interrupt occurs, it does not have to save these registers. WAI can be used to reduce the
latency to about five memory cycles. WAI stops the 6812 core. Although the
MC68HC812A4 requires only 35 mA of 5-V supply current, WAI reduces this to half the
amount (if the serial interfaces SCI, SPI, and timer are not running).

Another instruction, STOP, stops the oscillator and the entire microcomputer,
reducing the supply current to a mere 300 uA. However, setting the S condition code bit
disables execution of the STOP instruction. A background thread can be written:

If no threads are awake, it will be executed to shut down the microcontroller.
If INTCR (0xle) bit 5 is 1, after STOP , about a millisecond may be needed for the

oscillator to restart so the processor can resume the next operation. Otherwise when the
X condition code bit is set and XIRQ interrupts are therefore disabled, STOP is, in effect,
an optimized gadfly loop. When the XIRQ line becomes asserted low, the stack pointer
is repositioned to effectively remove the saved registers, which takes two clock cycles;
the instruction following the STOP instruction is then executed next.

swi has been discussed in §1.2.3. Here we observe that the condition code interrupt
mask bit I is set exactly as if IRQ or XIRQ lines caused a hardware interrupt.

Many opcodes are not implemented in the 6812 instruction set. To catch bugs in
programs, these unimplemented instructions result in an S Wl-like operation, jumping to
the location specified in OxFFFS and OxFFF9. However, a debugger can use some of
these unimplemented instructions as "hooks." Opcodes from 0x1830 to 0x1839 can
perform functions exi t, compile-time breakpoint, getchar, gets, geidec,
puts, get hex, putchar, and printf. The hook exit stops execution, to resume
at the beginning of the program; compile-time breakpoint stops execution, to
resume after the next instruction; getchar gets a character, gets gets a string,
get dec gets a decimal number, and gethex gets a hexadecimal number from the
host's keyboard. The hook put char puts a character on the screen; puts writes a
string, and printf writes a string with characters, decimal and hexadecimal numbers,
on the display. This last hook merely copies the print £ format string and arguments
from target memory to the personal computer memory, and then outputs using its
p r iu t f procedure. While we did this successfully in a debugger UTBUG that ran on a
Macintosh, it is not available in the HIWARE debugger that we are now using. But that
might change someday.

5,3 Time-Sharing 257

5.3.6 Object-oriented Classes for Time-sharing

Object-oriented programming provides protection for each thread, and also sleep
capability in place of delay or gadfly loops that lets the microcontroller perform useful
work while waiting for an I/O operation. These concepts are covered in this section.

To use objects for programs like §5.3.2's main1 and main.2, we define a class
thread that contains data members sleep Time, age, priority, and stack, used
for time-slicing, as well as functions and data members common to two or more threads,
and we generally define a derived class such as threadl for each thread unless it is
completely identical to another thread. The thread class will have a function main
that will be overridden in each derived class. The function main of class thread1 will
contain the starting procedure for thread 1. The main procedure that is started after reset,
as main of §5.3.2 was started, will call class threadl's constructor, which allocates
its stack and initializes its data members. The real-time interrupt will start each thread's
main function in turn, and when the thread's age is largest, run if for a time tick.

Object-oriented threads provide protection and polymorphism. Each thread has its
own scope of names for function and data members; these can be declared private to
protect them from other threads, and names can be reused. True global variables can be
used to share information among threads and between interrupt handlers and threads.

Object-oriented classes of a thread can use sleepTime in lieu of delay or gadfly
loops, if synchronization parameter bits 15 to 0 are 0xfc00 (sleepTime is loaded with
bits 31 to 16). In the earlier class IQFPort , if the input queue empty, get gadflies on
the queue size until an interrupt pushes some data, then get pulls this data from the
queue. Using a synchronization parameter 0xfffffc00, get instead sleeps indefinitely
until an interrupt pushes some data and wakes it up; then get pulls this data from the
queue. These remarks also apply to the class OQFPort with the function put . A
synchronization parameter 0x20fc00 makes it sleep for 20 tick times, which is assumed
to be the time for the paper-tape punch to output the byte. These objects can be declared.

A class Pipe is useful in linking a thread with another thread in a pipeline. The
following templated class is a simple but effective pipe.

template <class T> class Pipe : public Port<T> {

Queue <T>*Q; public : THREAD * thread;

Pipe (unsigned char size) : Port (0) {Q = new Queue<T> (size) ; }

virtual void put(T data) {

while(Q->size >=• Q->maxSize) s l e e p (0 x f f f f) ;

Q->push (data);

if(thread) thread->sleepTime = 0; thread = 0;

258 Chapter 5 Interrupts and Alternatives

virtual T get(void) { T v;
while (Q->size == 0) { thread -= thisThread; sleep (Oxffff); }
v = Q->pull(); attr 1= Q->error(); return v;

virtual T operator = (T data) { put (data); return data; } It assig.
operator T () { return get (); }; //cast

The procedure mainl, executing in threads [1] , outputs data to the procedure
main2, which inputs it, using objects ppr and ppp, as shown below:

Pipe<char> pipe (10);

void main1 () { char c; do { pipe = c = ppr; } while(1); }

void main2 () { char c; ppp = c = pipe; }

The procedure mainl, executing in threads [1] , "outputs" data to the procedure
main2> executing in threads [2] , where it appears as an "input." (The local variable
c is used to force the use of assignment and cast operators. If it is not used, the
compiler attempts to make one object a copy of the other object.) Since pipe is
declared as a global object, its constructor is called before mainl or main2 are called.
inairil's overloaded assignment operator calls pipe's put function member, and
main2's overloaded cast operator calls Pipe's get function member. The queue
holds main1's output data until main2 is ready to use it. One thread "outputs" to the
pipe, while the other "inputs" from the pipe, as if the pipe were an I/O device. However,
the pipe is merely a queue that holds "output" data until it is "input" to the other thread.

5.4 Fast Synchronization Mechanisms

In the previous section, we discussed the synchronization mechanisms used for slower
I/O devices. There are seven mechanisms used for faster devices. These are direct memory
access, context switching, coprocessing, and shuttle, indirect, time-multiplexed, and
video memory. They are briefly outlined in the last section.

The first two subsections discuss three I/O synchronization techniques that are faster
than interrupts. Direct memory access (DMA) is a well-known technique whereby an
I/O device gets access to memory directly, without having the microprocessor in
between. By this direct path, a word input through a device can be stored in memory, or
a word from memory can be output through a device, on the device's request. It is also
possible for a word in memory to be moved to another place in memory using direct
memory access. The second technique, context switching, is actually a more general
type of DMA. The context of a processor is its set of accumulators and other registers
(as Texas Instruments uses the term) and the instruction set of the processor. To switch
context means to logically disconnect the existing set of registers - bringing in a new
set to be used in their place - or to use a different instruction set, or both. Finally,
memory can be connected to the computer or to the I/O device at different times. These
three techniques are now studied.

5,4 Fast Synchronization Mechanisms 259

5.4.1 Direct Memory Access

One of the fastest ways to input data to a buffer is direct memory access. Compared to
techniques discussed earlier, this technique requires considerably more hardware and is
considerably faster. A DMA channel is the additional logic needed to move data to or
from an I/O device. In DMA, a word is moved from the device to a memory in a DMA
transfer. The device requests transferring a word to or from memory; the microprocessor
CPU, which may be in the middle of an operation, simply stops what it is doing for one
to five memory cycles and releases control of the address and data buses to its memory
by disabling the tristate drivers that drive these buses; the I/O system including the
DMA channel is then expected to use those cycles to transfer words from its input port
to a memory location. Successive words are moved this way into or from a buffer.

The DMA device has a DESTINATION address, a COUNT, and a DONE status bit.
The DESTINATION and COUNT registers are initialized before DMA begins, and are
incremented and decremented, respectively, as each word is moved.

Two DMA techniques are generally available. An internal I/O device or an external
I/O device can use DMA. If an external I/O device wishes to input or output data, it
causes an edge on a pin control signal, which steals a memory cycle to transfer one
word in cycle steal mode, or it asserts a level that halts the microprocessor to transfer
one or more words in burst mode,as long as the level remains asserted. This sequence of
events happens when a DMA request is made to input a byte using cycle stealing.

1. A falling edge occurs on an input pin, signaling the availability of data.

2. In the DMA controller, a request is made and granted, and a memory cycle is
stolen from the processor.

3. The controller signals the I/O device to read a byte from a port.

4. The byte is written into memory using a DESTINATION address.

5. The COUNT value is decremented. If it becomes 0, the DONE status bit is set,
The program gadflies or interrupts on this DONE bit, and resumes when it is set.

There is a two-level BUSY/DONE state associated with DMA, as with any I/O
transfer that fills or empties a buffer, as discussed at the beginning of this chapter. The
low-level BUSY/DONE state is associated with the transfer of single words. BUSY is
when a word is requested from an input device and has not been input, or is sent to an
output device and has not been fully output (the hardware is punching the paper in the
paper-tape example). The high-level BUSY/DONE state is associated with the transfer of
the buffer. BUSY is when the buffer is being written into from an input device and has
not been completely filled, or the buffer is being read from into an input device and has
not been completely emptied. The DMA channel synchronizes to the low-level
BUSY/DONE state to move words into or out of the I/O device. The computer can
synchronize with the high-level BUSY/DONE state in the ways discussed so far. A real--
time synchronization would have the processor do some program or execute a wait loop
until enough time has elapsed for the buffer to be filled or emptied. Gadfly
synchronization was used in the example given above. An interrupt could be used to
indicate that the buffer is full.

260 Chapter 5 Interrupts and Alternatives

I/O used in high-level languages is often buffered or cached. For input, a buffer or
cache is maintained and filled with more data than are needed. In lazy buffer
management, the buffer is filled with data only when some data input is requested, but
more data is put into the buffer than is requested in order to take data from the buffer,
rather than from the input device, when some more data is needed later. In eager buffer
management, the buffer is filled with data before some data input is requested, so that it
will be in the buffer when it is requested. This technique makes the I/O device faster.

Finally, DMA can be used to synchronize to the high-level BUSY/DONE state; a
kind of DMA2. In larger computers such as an IBM mainframe, such a pair of DMA
channels is called an I/O channel. In an I/O channel, a second DMA that synchronizes
the high-level BUSY/DONE state of the first DMA channel will refill the COUNT,
SOURCE, DESTINATION, and CONTROL of the first DMA channel that moves
words synchronizing to the low-level BUSY/DONE state. Thus, after one buffer is filled
or emptied by the first DMA channel, the second DMA channel sets up the first DMA
channel so the next buffer is set up to be filled or emptied. The second DMA channel's
buffer is conceptually a program called the I/O channel program. This channel itself has
BUSY/DONE states. BUSY occurs when some, but not all, buffers have been moved,
and DONE occurs when all buffers have been moved. How can this BUSY/DONE state
synchronizing the high-level BUSY/DONE states be synchronized itself? Here we go
again. It can be synchronized using real-time, gadfly, interrupt, or DMA
synchronization. However, DMA3 is not very useful; DMA would not be used to reload
the COUNT, SOURCE, DESTINATION, and CONTROL of the second DMA channel.

Direct memory access requires more hardware and may restrict the choice of some
hardware used in I/O systems. The DMA channel must be added to the system, and the
other I/O chips should be selected to cooperate with it. However, the amount of software
can be less than with other techniques because all the software does is initialize some of
the ports and then wait for the data to be moved. The main attraction of DMA is that the
data can be moved during a memory cycle or two anytime, without waiting for the
M68340 to use software to move the data.

5.4.2 Context Switching

An interesting variation to DMA, uniquely attractive because it is inexpensive, is to use
two or more microprocessors on the same address and data buses. See Figure 5.21. One
runs the main program. This one stops when a device requests service, as if a DMA
request were being honored, and another microprocessor starts. When the first stops, it
releases control over the address and data buses, which are common to all the
microprocessors and to memory and I/O, so the second can use them. The second
microprocessor, which then can execute the interrupt request handler, is started more
quickly because the registers in the first are saved merely by freezing them in place rather
than saving them on a stack. The registers in the second could already contain the values
needed by the interrupt request handler, so they would not need to be initialized. DMA
using a DMA chip is restricted to just inputting a word into, or outputting a word from,
a buffer; whereas the second microprocessor can execute any software routine after
obtaining direct memory access from the first microprocessor.

5,4 Fast Synchronization Mechanisms 261

Figure 5.21. Connections for Context Switching

A complex operation is easy to do with context switching. While ordinary DMA
cannot do this operation, context switching is faster than interrupt synchronization
because not only are the registers not saved, but also they remain in the second
processor, so they usually don't have to be initialized each time an interrupt occurs.

Finally, any set of microcomputers having DMA capability can be used in this
manner; the one operating the main program need not be the same model as the one
handling a device. This means you can put a new microprocessor in your old
microcomputer. The old microprocessor is turned on to run programs left over from
earlier days, and the new microprocessor is turned on to execute the new and better
programs. This is an alternative to simulation or emulation in microprogramming. It is
better because the best machine to emulate itself is usually the machine itself. And
putting two microprocessors in the same microcomputer has hardly an impact on the
system's cost.

A coprocessor, such as the floating-point 68881, essentially uses the same concept
as context switching. Whenever the main processor detects a floating-point add that
should be executed in the 68881, it gives up the bus to the coprocessor, which does one
instruction, and then the main processor resumes decoding the next instruction. A one-
instruction context switch makes the main processor and coprocessor appear to be part of
a single processor having both the main processor's and the coprocessor's instructions.
While coprocessors can be designed to handle I/O, they usually handle data computation.

Though this technique is not used often by designers because they are not familiar
with it, it is useful for microcomputers because the added cost for a microprocessor is so
small and the speed and flexibility gained are the equivalent of somewhere between those
attained by true DMA and vectored interrupt, a quality that is often just what is required.

262 Chapter 5 Interrupts and Alternatives

5.4.3 Memory Buffer Synchronization

The last techniques we will consider that synchronize fast I/O devices involve their use
of memory, which is not restricted by memory conflicts with the microprocessor. One
technique uses a completely separate and possibly faster memory, called a shuttle
memory. A variant of it uses an I/O device to access memory, like indirect I/O, and is
called an indirect memory. Another uses the same memory as the microprocessor, but
this memory is fast and can be time-multiplexed, giving time slices to the I/O device.
In a sense, these techniques solve the synchronization problem by avoiding it -- by
decoupling the microprocessor from the I/O via a memory that can be completely
controlled by the I/O device.

Figure 5.22a shows a shuttle memory. The multiplexer connects the 16 address
lines that go into the shuttle buffer and the 16 data lines that connect the buffer to the
microprocessor or the I/O device. The buffer memory is shuttled between the
microprocessor and the I/O device. When the buffer is connected to the I/O device, it has
total and unrestricted use of the shuttle memory buffer whenever I/O operations take
place. The microprocessor can access its primary memory and I/O at this time without
conflict with the I/O's access to its shuttle memory because they are separate from the
shuttle memory used by the I/O device. The multiplexer switches are both in the lower
position at that time. Then, when the microprocessor wishes to get the data in the
shuttle memory, the multiplexer switches are put in the upper position, and the
microprocessor has access to the shuttle memory just as it has to its own primary
memory. The buffer appears in the memory address space of the microprocessor. The
microprocessor can load and store data in the shuttle memory. The synchronization
problem is solved by avoiding it. Synchronization is required as data are moved to and
from the I/O device from and to the shuttle memory; but the buffer memory is wholly
controlled by the I/O device, so that it is not too difficult. The microprocessor can move
data to and from the shuttle memory at leisure. It can even tolerate the delays that result
from handling an interrupt at any time, when it moves data from one location in its
memory to another location in it. There is no need for synchronization in that operation.

We built a parallel computer called TRAC, which used shuttle memories. The
shuttle memories were connected to one processor or another processor. Once connected
to a processor, the shuttle memory behaved like local memory and did not experience
memory contention. Caches were simple to use with this variation of a shared memory.
In I/O devices discussed in this book, the shuttle memory similarly removes the
problem of memory contention from the synchronization problem.

A variation of a shuttle memory uses a parallel I/O device like 6812 ports in place
of the multiplexer. (See Figure 5.22b.) The external port pins of an I/O device connect
to the address and data buses of the memory. The processor writes an address to a parallel
output port and then reads (or writes) the data to (or from) another port to access the
memory. The only way to read or write in the buffer is to send addresses to, and data to
or from, the I/O device, just as we accessed an indirect I/O device in §4.4.1, so we call it
indirect memory. The M6818A's RAM from addresses OxE to Ox3F is an indirect
memory. Indirect buffer memory is completely separate from the microprocessor primary
memory. When the (fast) memory is not controlled by the microprocessor through the
I/O ports, it can be completely controlled by the I/O device, so it can synchronize to fast

5.4 Fast Synchronization Mechanisms 263

I/O devices. Only the memory-mapped parallel I/O device takes up memory space in the
primary memory, whereas the shuttle memory technique has the whole shuttle memory
in the primary memory address space when the processor accesses it. But to access the
buffer memory, you use slow subroutines as you do in indirect I/O.

Indirect memory using the MCM6264D-45 8K-by-8 chip is easily implemented on
the 'A4. Tristate drivers (74HC244s) connect the external device to the memory when
the *A4 is not accessing it, so when they are not used, all 'A4 port bits are made inputs
to allow the 74HC244s to access the memory signals. The 'A4 reads the memory,
following the timing diagram in Figure 5.23a, by making PORT A and PORTS outputs;
making El, G, and R'high, outputting the high byte of the address to PORT A, and the
low byte to PORTS, asserting El low, asserting G low, reading the data from PORTC,
negating El high, and negating G high. Writing, following the timing diagram in
Figure 5.23b, is done by making PORTA and PORTS outputs, making El, G, and w
high, outputting the high byte of the address to PORTA and the low byte to PORTS,
asserting w low, asserting El low, making PORTC output, writing the data to PORTC,
negating El high, and negating w high. The hardware is connected as shown in Figure
5.23c. Only connections to the 'A4 are shown.

Figure 5.22. Fast Synchronization Mechanisms Using Memory Organizations

?64 Chapter 5 Interrupts and Alternatives

Figure 5.23. Indirect Memory Using an MCM6264D-45

5,4 Fast Synchronization Mechanisms 265

char get (int. a) { char data;
DDRA = DDES =0xff; DDRE = El + G + W; PORTA =- a » 8; PORTS = a;

PORTE &=-- -El; PORTE &= ~G; data = PORTC; PORTE 1= El; PORTE i == G;

DDRA = DDRB = DDRE = DDRC = 0; return data;

void put(int a, char data) {
DDRA = DDRB = Oxff; DDRE = El + G + W; PORTA = a » 8; PORTS = a;

PORTE &= ---W; PORTE &= -El; DDRC = Oxff; PORTC = data;

PORTE U- El; PORTE \= W; DDRA = DDRB = DDRE = DDRC = 0;

A very similar mechanism uses the same memory for the primary memory and the
buffer memory, but that memory is twice as fast as is necessary for the processor. (See
Figure 5.23c.) In one processor memory cycle, the memory executes two memory cycles
- one for the processor and one for the I/O device. The multiplexer is switched to the I/O
device (for the first half of the memory cycle) and to the processor (for the last half of
the memory cycle) to time-multiplex the memory. The I/O device always gets one
memory cycle all to itself because the processor only uses the other memory cycle.

The time-multiplexed memory uses the same memory as the microprocessor, but
this memory is twice as fast; the processor gets one time slice and then the I/O device
gets one time slice, in an endless cycle. It is obviously less costly than the shuttle and
indirect memories because a single large memory is used rather than two smaller
memories. Its operation is very similar to DMA. In fact, it is sometimes called
transparent DMA. However, the memory must be twice as fast as the processor, and
the I/O device must synchronize to the processor (CLK) clock in this technique. The
shuttle and indirect memories are more costly; however, a very fast (40-ns cycle time)
memory can be used in the buffer and run asynchronously at full speed when accessed by
the I/O device, and run at about the speed of the CLK clock when the processor accesses
it. All three techniques provide for faster synchronization to the I/O device than the
techniques discussed in the previous subsection. They can transfer data on every memory
cycle without handshaking with the processor to acquire memory or use the processor.
They find considerable use in CRT, hard-disk, and fast-communication I/O devices.

Finally, a video RAM or VRAM (Figure 5.22d) is a dynamic memory in which a
row can be read from DRAM into a shift register, or written into DRAM from a shift
register, in one memory cycle. The shift register can then shift data into or out of an I/O
device. The TMS48C121 is a (128K, 8) DRAM with a (512, 8) shift register, which can
shift data into or out of an I/O device at 30 ns per byte.

One of the main points of this section is that extra hardware can be added to meet
greater synchronization demands met in fast I/O devices. While DMA is popular, it is
actually not the fastest technique because handshaking with the microprocessor and the
cycle time of the main memory slow it down. Shuttle or indirect memories that use fast
static RAMs can be significantly faster than DMA. Moreover, for all of these
techniques, the controlling software can usually be quite slow, and thus can be coded in
C without loss of performance compared to programs coded in assembly language.

266 Chapter 5 Interrupts and Alternatives

5.5 Conclusions

We have discussed over ten alternatives for solving the synchronization problem. Each
has some advantages and some disadvantages. Figure 5.24 summarizes the techniques
presented in this chapter.

Real-time synchronization uses the least hardware and is practical if an inexpensive
microcomputer has nothing to do but time out an I/O operation. However, it can be
difficult to program. Gadfly programs are easier to write, but they require that the
hardware provide an indication of DONE. Also, a computer generally cannot do anything
else when it is in a gadfly loop, so this is as inefficient as real-time synchronization.
Real-time interrupt synchronization provides for long delays, giving up the processor to
other threads or processes. Real-time and real-time interrupt synchronization are
synchronous in that the external timing is determined by processor timing. Gadfly is
asynchronous in that the I/O device's timing is not synchronized to the processor's
timing, but the processor locks onto its timing when data are to be transferred.

The interrupt-polling technique and the vectored interrupt technique require more
hardware to request service from the processor. The 6812 provides for autovectored and
for external vectored interrupts. They are useful when the device needs service in a
shorter time. However, the tendency to use them just because they are available should
be avoided. Although interrupt polling only requires an interrupt bus line from device to
processor, if the gadfly approach is exclusively used, this line invites the mayhem of an
unrecognizable interrupt should a software error rewrite the control port in the device.
Also, the interrupt technique can be used together with the gadfly technique. With the
gadfly technique, the interrupts are all disabled by setting the status port current priority,
as in the OR #Ox700,SR instruction, or by clearing control bit 0 in an M6821 device.
Then the program can loop as it tests the device, without fear of being pulled out by an
interrupt. When utilized together, gadfly is used for careful, individual stepping of an I/O
system; interrupt is used for automatic, rapid feeding of data.

The DMA technique is useful for fast devices that require low latency. This
technique can only store data in a buffer or read data from a buffer. DMA2 (the I/O
channel) can restart a DMA transfer a little bit faster than simple DMA can. A variation
of DMA, context switching, is almost as fast and flexible as the interrupt technique. A
coprocessor uses a similar mechanism, and although it is generally used to execute data
computation, it could be used for I/O. Shuttle, indirect, and time-multiplexed memories
can be used for the fastest devices. What is somewhat surprising is that DMA, which
requires a fair amount of extra and expensive hardware, actually is most desirable for a
rather limited range of synchronization timing. Indirect and shuttle memories can be used
for much faster synchronization, and context switching for slightly slower
synchronization.

5.5 Conclusions 267

4 Real-time Interrupt
Synchronous Real-time Coprocessor Time-Multiplexed

| Slow -4 ^ Fast
Asynchronous Polled ^er™& GadflY DMA Video RAM

J Vectored Interrupt Context Switch Channel

Indirect Memory

Shuttle Memory

Figure 5.24. Synchronization Mechanisms Summarized

We have discussed eight alternatives for solving the synchronization problem. Each
has some advantages and some disadvantages.

Real-time synchronization uses the least hardware and is practical if an inexpensive
microcomputer has nothing to do but time out an I/O operation. However, it can be
difficult to program. Gadfly programs are easier to write but require that the hardware
provide an indication of the DONE state. Also, a computer cannot do anything else
when it is in a gadfly loop, so this is as inefficient as real-time synchronization.

The interrupt-polling technique and the vectored interrupt technique require more
hardware to request service from the processor. They are useful when the device needs
service in a shorter time. However, the tendency to use them just because they are
available should be avoided. Except when the processor has enough interrupt request
lines to handle all interrupts, to provide the device handler's address, vectored interrupt
may require an extra chip, which is a significant cost. Although interrupt polling only
require a bus line from device to processor, if the gadfly approach is exclusively used,
this line invites the mayhem of an unrecognizable interrupt should a software error
rewrite the control register in the device. Also, the interrupt technique can be used
together with the gadfly technique. With the gadfly technique, the interrupts are all
disabled by setting the I condition code, as in the SEI instruction, or by clearing control
bit 0 in the M6821 device. Then the program can loop as it tests the device, without fear
of being pulled out by an interrupt. Commonly, gadfly is used for careful, individual
stepping of an I/O system, and interrupt is useful for automatic and rapid feeding of the
data.

The DMA technique is useful for fast devices that require low latency. This
technique can only store data in a buffer or read data from a buffer. A variation of it,
context switching, is almost as fast and flexible as the interrupt technique. Isolated
memories and time-multiplexed memories can be used for the fastest devices.

Given these various techniques, the designer can pick one that suits the application,
This chapter has shown how simple and flexible these techniques are.

268 Chapter 5 Interrupts and Alternatives

Do You Know These Terms?

See page 36 for instructions.

synchronization
IDLE
BUSY
DONE
starting
stopping
completing
real-time

synchronization
gadfly
gadfly loop
handshake
opto-isolator
signal
interrupt
device requests

an interrupt
interrupts are

enabled
microprocessor is

enabled
microprocessor is

masked
microprocessor

is disabled
non-XIRQ

microprocessor
sees a request

request is pending
honors an interrupt
handler
arm
armed
disarmed
enable
disabled
critical section
software disarming
interrupt handler
polls
priority order
service routine
round-robin
vectored interrupt
interrupt vector
contact bounce
wait-and-see
X-10
linear-select

keyboard
coincident-select

keyboard

Universal Product
Code (UPC)

bar-code reader
real-time interrupt

timer
multithread

scheduling
tick
thread
sleep
sleepTime
priority
age
background thread
high-priority thread
n-key rollover
shuffle stack
WAI
STOP
exit
compile-time

breakpoint
loStreams
pipe
direct memory

access

context switching
context
DMA channel
DMA transfer
release control
steal a memory

cycle
cycle steal mode
burst mode
buffered I/O
cached I/O
cache
lazy buffer

management
eager buffer

management
I/O channel
I/O channel

program
shuttle memory
indirect memory
time-multiplexed

memory
transparent DMA

Problems 269

Problems

Problem 1 is a paragraph correction problem. Seepage 38 for guidelines. Guidelines for
software problems are given on page 86, and for hardware problems, on page 115.

I.* Synchronization is used to coordinate a computer to an input/output device. The
device has BUSY, completion, and DONE states. The BUSY state is when data can be
given to it or taken from it. The device puts itself into the DONE state when it has
completed the action requested by the computer. A paper-tape punch, by analogy to the
paper-tape reader, is in the IDLE state when it is not in use; in the BUSY state when it
is punching a pattern that corresponds to the word that was output just before the DONE
state was entered; and in the DONE state when the pattern has been punched. The BUSY
and IDLE states are indistinguishable in an output device like this one, unless error
conditions are to be recognized (in the IDLE state). An address trigger will generate a
pulse whenever an address is generated. Its output should never be asserted if the E clock
is high. Address triggers are often used to start a device or to indicate completion by the
device.

2. Write a C program that punches paper tape using real-time synchronization.
Analogous to the latter procedure main () in §5.1.1, data are output through PORT A at
a rate determined by the empirically evaluated constant N.

3. Write a hand-coded assembly-language program that punches paper tape using real-
time synchronization. Analogous to the last program in §5.1.1, data are output through
PORTA at a rate determined by the empirically evaluated constant N.

4. Write a main () procedure that punches paper tape using gadfly synchronization.
Analogous to main () in §5.1.2, data are output through PORTA when bit 7 of PORTB
falls, until the next time it falls. Use a key wakeup flag to detect the edge.

5. Write a hand-coded assembly-language program PUNCH that punches paper tape
using gadfly synchronization. Analogous to the last program in §5.1.2, data are output
through PORTA when bit 7 of PORTB falls, until the next time it falls. Use a key
wakeup flag to detect the edge.

6. The LED signal (Figure 5.5a) can be fully generated by the 6812 without using a
555 timer chip; when the output of PORTA bit 0 is H (1) the LED is lit. To send a T (1)
the LED should be pulsed at a rate of 38 KHz for 700 us and be off for 350 us. To send
an F (0) the LED should be pulsed at a rate of 38 KHz for 350 us and be off for 350 us.
Show a self-initializing procedure void sendir (int data) that sends the least
significant 11 bits of argument data through the infrared LED.

7. The BSR X-10 controller signal (Figure 5.7d) can be generated by the 6812
controlling a 555 timer chip (Figure 5.5c); when the output of PORTB bit 0 is H (1) the
555 generates a 100-KHz pulse train on the 110-V line; when this output is low, the

270 Chapter 5 Interrupts and Alternatives

555 does not generate a pulse train. Rewrite the procedure sendBsr to send 16 bits
through PORTS bit 0, synchronized to the 60-Hz waveform input on PORTS bit 1. A T
(1) should be sent as a burst of 100-KHz pulses for 1/1080 second repeated each 1/360
second for 3 bursts after each edge of the 60-Hz waveform. An F (0), by comparison,
should be sent as no burst for 1/120 seconds. Show a self-initializing procedure void
sendBsr (int. data} to send the 16-bit data.

8. Write a derived templated class basicOu tGadfly of class gadfly that, like a bask
output port, saves the last value sent out when put is called, so that when a get
function member is called, it returns this saved value.

9. Write a derived templated class Sync Port 2 of class Sync Port providing a
handshake output bit as well as a key wakeup input bit, using the same port and bit
mapping convention of the input flag bit of SyncPort. Its constructor's argument list
(char id, unsigned char dir, char flagl, char flag2) inputs or outputs 8-
bit or 16-bit data on a port designated by id with direction dir, using input flag port
f lagl , and a 1-bit output port flag2. The new function member added to class
SyncPort2 is the function member void handshake (char c); that outputs the least
significant bit of c to the output bit designated by flag2.

10.* The real-time synchronization technique times the duration of external actions
using the microcomputer E clock as a timing reference and the program counter as a
kind of frequency divider. This technique uses the least amount of hardware because the
program itself contains segments that keep account of the BUSY/DONE state of the
device. The program can be changed easily without upsetting the synchronization
because program segments execute in the same time regardless of the instructions in the
segment. Computer scientists, for no good reason, abhor real-time synchronization, so it
should never be used, even on a microcontroller dedicated to a single control function.
Real-time synchronization cannot be used to synchronize error conditions because we
cannot predict the time of the next error. Gadfly synchronization uses hardware to track
the device state, and the program watches the outputs from this hardware. Therefore
feedback from the device controls I/O operation so it can be completed as soon as
possible. Nevertheless, real-time synchronization is always faster than gadfly
synchronization, because the former is always timed for the minimum time to complete
an action in the device.

11. Write a C program that punches paper tape using interrupt synchronization.
Analogous to the first procedure void main() in §5.2.2, data are output through
PORTA from buffer [0x80] each time an interrupt is generated by an edge on bit ? of
PORTB causing flag to be set in the interrupt handler: interrupt 23 handler () {
KWIFJ = 0x80; flag++ },

12. Write a C program that punches paper tape using interrupt synchronization.
Analogous to the second procedure main () in §5.2.2, data are output through PORTA
from buffer [0x80] each time an interrupt is generated by an edge on bit 7 of PORTS ,

Problems 271

13. Design a hardware breakpoint device. When the expanded mode 'A4's address and
RW signals are determinate, this device compares them against a breakpoint address ha
written in PORTD (high byte) and PORT A (low byte) and a brw bit written in PORTS
bit 0. The address is compared with ba, and the RW signal with brw, by open collector
quad 2-input exclusive NOR gates (74HC266s; see Figure 5.25) whose output is low if
the inputs differ. The 74HC266's outputs are connected in a wire-AND bus with a 4.7-
KO pull-up resistor. If each pair of inputs are equal, the outputs of the gates will be
high, otherwise the outputs will be low. They connect to PORTB bit 1 to generate an
interrupt that stops the program when the address matching the number in the output
ports is generated.

a. Show a complete logic diagram of the system. Show all connections and pins to
74HC gates. However, don't show pin numbers on the 'A4 itself, or +5, or Gnd.

b. Show a self-initializing procedure setBreakpoint (a, rw) to generate a key
wakeup PORTB bit 1 interrupt when the address a is written into if rw is 0, or read
from if rw is 1.

11

Figure 5.25. 74HC266

14. Assume that IRQ is a falling edge-sensitive interrupt handler, because bit 7 of the
port at Ox1E was set. A polling routine like interrupt 23 handl er(){ if (srvcl ()
M srvc2() ii srvc3 ()) ; } needs to check the IRQ pin, which is PORTE bit 6,
after any service procedure such as srvcl () removes its source of the interrupt to repoll
the devices if IRQ remains asserted low. Rewrite handler () to handle such a falling
edge-sensitive IRQ interrupt.

15. Write a round-robin IRQ handler interrupt 23 handler () (§5.2.3) that checks
only PORTJ'S key wakeup interrupt bits. If KWIEJ bit 0 is set so that PORTB bit 0 sees
a rising or falling edge, and KWIFJ bit 0 therefore becomes set (as determined by bit 0
of KPOLJ), the service procedure hO () is executed. The analogous actions occur for the
other bits of PORTB. If PORTB bit 0 did not see an edge, PORTB bit 1 is checked
similarly, and so on. If PORTB bit n had an edge and procedure hn () was executed, 0 <
n < 8, then upon the next PORTB key wakeup interrupt, bit n + 1 is tested first, then
bit n + 2, and so on, where bit 0 is tested after bit 7. In this version of handling key
wakeup interrupts, the service procedures do not return a value and do not clear the
interrupt, but interrupt 23 handler () does clear the interrupt.

272 Chapter 5 Interrupts and Alternatives

16. Compute the difference in worst-case latency between polled interrupts and vectored
interrupts for key wakeup interrupts. Compare the first interrupt 23 handler () in
§5.2.3 to interrupt 23 handler () and interrupt 24 handler () in §5.2.4. Use
§5.2.3's assembly language for the first interrupt 23 handler () handler.

17.* Interrupts permit the computer to perform some useful function while waiting for
a device to become BUSY or for an error condition to arise. Interrupts are always taster
than a simple gadfly loop because they save the state of the machine and restore it, while
the gadfly technique has to loop a long time. When a key wakeup J device requests an
interrupt, if the device is enabled by clearing the corresponding bit of KWIEJ, the flag
flip-flop, which is the corresponding bit of KWIFJ, is set. When this flag flip-flop is
set, the 6812 immediately honors the interrupt, saving the values in all output registers
on the stack and jumping directly to a handler routine. The handler may have just an
RTS instruction to return to the program that was originally running. Vectored
interrupts use external hardware to eliminate the polling routine in the device handler, so
the interrupt handler can be executed immediately. Interrupts, and vectored interrupts in
particular, should be used whenever the latency-time requirement is critically small or
something useful can be done while waiting for an interrupt; otherwise, real-time or
gadfly synchronization should be used.

18.* Key bounce is a problem when the user bangs on a key repeatedly to get
something done. It can be eliminated by a sample-and-hold circuit that takes a
"snapshot" of the signal just once. Software debouncing is rarely done in
microcomputers because it takes too much of the microcomputer's valuable time to
monitor the key. Keyboards are often used on microcomputers because the user may
want to enter different commands, and this is most easily done with a set of keys. Linear
selection is often used for a keyboard that has a lot of keys, like a typewriter. N-key
rollover is a property of keyboards whereby the microcomputer can correctly determine
what keys were pressed and in what order they were pressed, provided that no more than
N keys are pressed at one time. Two-key rollover is commonly used in microcomputer
systems but is rather inadequate for most adept users, who often hold several keys down
at once. The LED seven-segment display is used on many inexpensive microcomputer
systems because it uses very little power. LCDs have to be multiplexed carefully,
because they require AC (square wave) signals, and the difference in RMS voltage
between a clear and an opaque segment is rather small. Therefore we do not multiplex
more than two or three LCDs on the same drive circuitry. A typical keyboard system is
often integrated with a multiplexed display system because the hardware to scan the
keyboard can also be used to scan the display.

19. The coincident select keyboard shown in Figure 5.15c is modified to have 16
columns. The left 8 columns of switches are connected to PORT A as shown, and the
right 8 columns are similarly connected to PORTD. Rewite the matrix or coincident
select handler interrupt 23 handler () in the middle of §5.2.5 to push a low-order
3-bit row concatenated with a higher-order 4-bit column number into the queue, where
FORTH's bits correspond to columns 15 to 8 and PORTD's bits correspond to columns 7
to 0.

Problems 273

20. The coincident select keyboard shown in Figure 5.15c is modified to have 16 rows.
The top 8 rows of switches are connected to PORTB as shown, and the bottom 8 rows
are similarly connected to PORTD. Rewrite the matrix or coincident select handler
interrupt 23 handler () in the middle of §5.2.5 as handlers interrupt 23
handler () and interrupt 6 handler () to push a low-order 4-bit row concatenated
with a higher-order 3-bit column number into the queue, where PORTJ' S bits correspond
to rows 15 to 8 and PORTD'& bits correspond to rows 7 to 0.

21. Write a self-initializing procedure barcode (char *s, char *t, int n) that
gives in s a series of n pulse widths, such as the vector pulses generated by the
interrupt handler in terrup t 23 handl er, and produces an ASCII string of characters
in r. Assume the bar-code reader is uniformly swiped over the whole code, but in either
forward or reverse motion. See Figure 5.17.

22. Write an interrupt synchronized class tapePunch that is a derived class of
intSyncPort, but its constructor blesses an object of class Bit Port (Chapter 4,
problem 15) and its constructor's arguments are the parallel port for data, the port and bit
for key wakeup interrupt and the port and bit for handshaking. It uses an output queue of
10 byte. Then write a procedure main () that selects PORT A as the parallel port for data,
PORTB bit 0 as the bit for key wakeup interrupt, and PORTB bit 6 as the bit for
handshaking. Use the enum statement of Chapter 4's problem 14 for Bit Port 's
argument, and numeric constants, not symbolic names, for the other arguments.

23. Assume that three threads thread[1] , thread[2 1, and thread. [3] have
priorities 5, 3, and 3. Identify which will be executed during each tick time, from time
tO when they are all forked by thread[0], for the next 30 ticks. Give a general rule
for assigning priorities to threads (i.e., give the same priority to thus and such threads,
higher priority to thus and such threads) and give a rough estimate of the amount of
CPU time a thread gets as a function of its priority for two cases: (1) when n threads all
have priority p, and (2) when there are just two threads having priorities pi and p2.

24. Replace procedures mainl () andmain2 () of §5.3.2 with a single procedure
mainl f; so that each thread controls a different traffic light, as is done in §5.3.3, but
both threads execute only one procedure mainl (). The first thread's north and south
lights are red, and the east and west lights are green, for 10 seconds; then the north and
south lights are red, and the east and west lights are yellow, for 2 seconds; then the north
and south lights are green, and the east and west lights are red, for 16 seconds; then the
north and south lights are red, and the east and west lights are yellow, for 2 seconds.
This pattern is stored in global vector char tbll [4] [2] . The second thread's light
pattern is the same as the first, except north and south are exchanged with east and west.
This pattern is stored in global vector char tb!2 [4] [2] . (Hint: main () should check
if thisThread is & threads [1] or & threads [2] , to set a local variable pointer
tbl to global vector tbll or tb!2.

25. Replace procedures mainl () and main2 () of §5.3.2 so that mainl () reads tape
and main2 () punches tape. Initially mainl () goes to sleep; when PORTB bit O's

274 Chapter 5 Interrupts and Alternatives

signal falls mainl () wakes up and reads data from PORT A, pushing it into a queue,
Then mainl () goes to sleep again until another byte arrives. If data are available in the
queue, main2 () pulls a byte into PORTB, asserts PORTB bit 1 for one tick time, and
negates PORTB bit 1 for two tick times. These threads continue working this way
indefinitely. Use §2.2.2's procedures pstop and plbot, and assume the queue doesn't
overflow,

26. Replace procedures mainl () and main2 () of §5.3.2 so that mainl () punches
tape and procedure main2 () sends Morse code for the global null-terminated ASCII
string:

The main. () procedure sets up 8.192 ms ticks (periodic interrupts) and then forks
mainl {) and main2 () . Either mainl () or main2 (} may execute before the other
or might be used without the other, so each should initialize its I/O as if the other
doesn't run, and shouldn't interfere with the other thread's I/O. mainl () causes the
characters in message to be punched on paper tape. The paper-tape punch will energize
solenoids to punch holes if a T (1) bit is in a corresponding PORT A, and to punch a
sprocket hole if a T is in PORTB bit 7; otherwise, if an F (0) is in PORTS bit 7, the
paper tape is pulled forward by a motor (unless tape runs out). The holes are to be
punched for about 16.4 ms and paper tape is to be advanced for about 50 ms After all
characters are punched, mainl () will "kill" itself by sleeping indefinitely as tape runs
out. main.2 () causes the characters in message to be sent on PORTB bit 6 in Morse
code. The Morse code for characters is stored in the global vector in t Morse [2] [128]
where Morse [0] [] is the number n of dots and dashes, and Morse [1] [1 is the
(right-aligned) pattern: a 0 is a dot, a 1 is a dash, and unused bits are 0. Do not write the
vector Morse. A dot is sent by making PORTB bit 6 T (1) for about one second, and a
dash sent by making PORTB bit 6 T (1) for about 3 seconds; there is a one-second F (0)
between dots and dashes in a letter, and a three-second F (0) between letters. After all
characters in message are sent, main2 () will "kill" itself by sleeping indefinitely and
outputting an F (0).

27. The WAI instruction reduces I/O latency and can be used to provide more accurate
synchronization, so that the instructions execute in precise memory cycles after the
interrupt edge has occurred. Rewrite the procedure main () in §5.2.5 immediately under
the declaration int index, start, pulses [256] / to use the 6812 WAI instruction
while awaiting key wakeup interrupts. This improved routine will read the running
counter TCNT at the same time after each key wakeup edge occurs, so the difference
between these read values is a more accurate measure of pulse width.

28. Rewrite main () in §5.3.2 to use the 6812 STOP instruction when all threads
other than thread 0 sleep. This reduces the 'A4's power consumption when no threads
need to be executed. Note: condition code bit s must be cleared to be able to execute
STOP,

Problems ' 275

29. Write a handler handler (), whose address is put into locations 0xfff8-9, that
treats opcodes from 0x1840 as TRAP instructions to implement an operating system. The
procedures systemCall0 (), systemCall 1 (), systemCall 2 (), etc. will perform
various operating system functions. If the opcode is 0x1840, execute systemCall0 ()
and then RTI. If the opcode is 0x1841, execute systemCalll () and then RTI. If the
opcode is 0x1842, execute systemCall2 () and then RTI. And so on. Note that you
need embedded assembly language to read the program counter from the stack, but this
address is the address of the next instruction after the TRAP instruction.

30. Rewrite §5.3.5's Keycheck, to translate key row-columns to ASCII characters;
when control-C (0x4) is received, puts the thread using the device to sleep indefinitely.

31. Repeat problem 25 using ja class pipe object to hold the data moved from maini
to main'2, and use 5.2.6's class IQFPort to read data from the paper-tape reader device.

32.* Direct memory access is a synchronization technique that uses an extra processor
that is able to move words from a device to memory, or vice versa. With an output
device, when the device is able to output another word, it will assert a request to the
DMA chip, which checks its BUSY/DONE state, and, if DONE, it requests that the
microprocessor stop and release its control of R/W and the address and data buses. The
microprocessor will tell the DMA device when it has released control; the DMA device
will output on the data bus and will send a signal to the I/O device to put a signal on the
R/W line and an address on the address bus. A DMA chip itself is an I/O device, whose
BUSY state indicates that a buffer full of data has been moved. The BUSY state then is
an interrupt request. Either gadfly or interrupt synchronization can be used to start a
program when the buffer has been moved.

33. A pair of indirect memories using an MCM6264D-45 will be implemented, where
one is shown in Figure 5.23, so that when one is being accessed by the 'A8, the other is
free to be used for I/O. The first memory is connected as shown in that figure. Show the
logic diagram, including pin numbers, of the connections between the second memory
and the 'A8, which uses PORTA (high 5 bits) and PORTB (low byte) of the address, and

PORTT for data. This memory's enable El is on PORTA bit 7, its output enable G is
on PORTA bit 6, and its write control W is on PORTA bit 5.

34. Complete the logical design of an indirect memory using an MCM6264D-45
(Figure 5.23) for input from a fast 8-bit data source data. Use 74HC590 counters to
supply addresses and a 74HC244 tristate driver to supply data to the MCM6264D-45
when the I/O device needs to write into the memory. When it does so, it pulses control
signal WRITE first low, then high. The 74HC590 counters are written into by pulsing
PORTF bit 7, which is normally high, low, and high when the address to be written into
the counters is in PORTA and PORTB.

a. Show the logic diagram for the complete circuit, but excluding connections
already shown on Figure 5.23.

b. Show a self-initializing procedure void setAddress(a) int a ; that writes the
address into the counter.

276 Chapter 5 Interrupts and Alternatives

Adapt912 is Technological Arts' version of Motorola's 912EVB evaluation board for the
68HC912B32 microcontroller. Offering the same modular hardware design as other
Adapt 12 products, Adapt912 includes Motorola's DBug-12 in on-chip Flash. This gives it
the versatility to function as a standalone development system, a BDM Pod, or even a fin-
ished application (when combined with the user's circuitry on a companion Adapt12
PRO1 Prototyping card).

System Control

The ' A4 has a number of ports that control bus signals, memory management, and the
E clock rate to simplify the implementation of external memories. The 6812 instruction
set also has some instructions related to these functions. While these ports and
instructions are not fundamental to I/O interfacing generally, they are important for the
intelligent use of the powerful'A4. These ports and instructions are discussed herein.

Technical summaries, MC68HC812A4TS/D and MC68HC912B32TS/D, provide a
very good reference for the control ports discussed in this chapter. Rather than duplicate
that document, we will concentrate on some of the more useful features and show
examples of their use. The reader should access Motorola's technical summaries for a
more complete discussion of the use of these ports and of the ports that we do not cover.

6.1 6812 Chip Modes

The 6812 has a MODE port to specify whether single-chip or multiple-chip operation is
to be used, and a PEAR port that specifies whether certain control signals, useful in
multiple-chip mode, are to be made available. These are described in turn.

6.1.1 MODE Control Port

The 6812 has three pairs of modes, single-chip, narrow expanded, and wide expanded, in
two sets of modes, normal and special. They are selected by initially asserting or
negating three inputs, BOND, MODS, and MODA (see Figure 6.1); these values are loaded
into the most significant bits of the MODE port when the 'A4 comes out of reset. The
user can write MODE any time, thereby changing the mode; however other ports
initialized out of reset as a function of the mode are not affected when MODE is written
into. If the most significant bit of the MODE port, SMODN, is clear, the 'A4 is in a
special mode, otherwise it is in a normal mode. If the next two significant bits of the
MODE port, MODE and MODA, are 00, the 6812 is in a single-chip mode; if 01, then it
is in a narrow expanded mode; and if 11, then it is in a wide expanded mode. The 'B32's
expanded modes differ from the 'A4's primarily by using a time-multiplexed bus.

277

6

278 Chapter 6 System Control

Figure 6.1. MC68HC812A4 Mode Port

For the 'A4, in the single-chip mode, the address and data buses and several other control
signals, like the E clock, are externally unavailable, but PORTA through PORTD are
available. In the narrow expanded mode, the 16-bit address bus and an 8-bit data bus are
available in place of PORTA through PORTC, respectively. PORTD is available as a
parallel port. In the wide expanded mode, the 16-bit address bus and a 16-bit data bus are
available in place of PORTA through PORTD.

Figure 6.2. Memory Maps

6.1 6812 Chip Modes 279

For the 'B32, in the single-chip mode, the address and data buses, and several other
control signals, like the E clock, are externally unavailable, but PORTA and PORTB are
available. In the narrow expanded mode, the 16-bit address bus is output on PORTA and
PORTB in the first part of the memory cycle, and the 8-bit data is input or output on
PORTA in the second part of the cycle. In the wide expanded mode, the 16-bit address bus
and 16-bit data bus are time-multiplexed in place of PORTA and PORTB.

Special modes are used for testing, debugging programs, and for downloading data
into EEPROM when the chip is first initialized. Some functions and ports are only
available in special modes; these are primarily used for factory testing, but are available
to sophisticated users to assist in debugging programs running on the 6812.

Figure 6.2 shows single-chip and expanded-mode memory maps for the 'A4 and the
'B32. In all modes, I/O devices are at locations 0 to 0xff, and RAM is between 0x800
and 0xbff and in special modes, a ROM at 0xff00 to 0xffff is used for debugging. In the
'A4, in single-chip modes, EEPROM is at 0xf000 to 0xffff, and in expanded modes, it
is at Ox 1000 to Ox1fff. In the 'B32, EEPROM is at $d00 to $fff, and flash memory is at
0x8000 to $ffff in single-chip modes. However, these locations of RAM, EEPROM,
flash, and I/O devices can be changed, as we discuss in a later section. If two modules
appear to conflict at the same address, the priority is ROM (highest), internal I/O,
RAM, EEPROM, flash (in the 'B32), and external memories and I/O devices (lowest).

The single-chip mode obviously should be used whenever the RAM, EEPROM,
flash, and I/O devices within the 'A4 or 'B32 are adequate for the application. The wide
expanded mode is useful in increasing performance, because each memory cycle can read
or write 16 bits of data, while the narrow expanded mode is useful in reducing cost,
because less expensive memories generally have 1-bit wide or 8-bit wide data pins.

The MODE port can be initialized for special narrow expanded mode as follows:

enum {Sng1Chip, Narrow, Peripheral, Wide, Normal, Special=0, ModeFld=5};

<< ModeF1d;

6.1.2 Port E Assignment

PEAR determines whether a given pin is a PORTE data pin or a control signal pin (see
Figure 6.3). Control signals include the extra interrupt request XIRQ, shared with
PORTE bit 0; interrupt request IRQ, shared with PORTE bit 1; read/write R/W, shared
with PORTE bit 2; LSTRB, shared with PORTE bit 3; and the E clock, shared with
PORTE bit 4. R/W, LSTRB, and the E clock will be discussed in §6,5. Except for the
E clock, a T (1) makes the pin a control function, and an F (0) makes it a PORTE
parallel I/O bit. However, PEAR does not enable or disable IRQ or XIRQ.

The initial value of the PEAR port also depends upon the initial mode that is
determined by SMODN, MODB, and MODA. In normal single chip mode, NECLK is
asserted, making PORTE bit 4 available. In all normal modes, LSTRE and RDWE are
negated, making PORTE bits 3 and 2 available. For all other modes, NECLK is negated,
making the E clock available in place of PORTE bit 4; and LSTRE and RDWE are
asserted, making RD and LSTRB available in place of PORTE bits 3 and 2.

280 Chapter 6 System Control

Figure 6.3. MC68HC812A4 Port E Assignment Register

PEAR must be initialized in expanded modes if the E clock, R/W, or LSTRB are
used in external decoders, before external devices are used. PEAR can be initialized for
expanded wide mode by enabling the use of the E clock, R/W, and LSTRB as follows:

The E clock is enabled by not including the NECLK bit when initializing PEAR . In the
'B32, the bit NDBE replaces the 'A4's bit ARST. Assert NDBE if you do not want the
DBE signal to control bus demultiplexing, or negate it if you want to use PORTE bit 7.

6.2 6812 Memory Map Control

The 'A4 provides signals for external memory and I/O devices through pins that can
alternatively be used as PORTE parallel I/O bits. I/O device, RAM, and EEPROM
locations within the 'A4 or 'B32, and of memory and I/O devices outside the 'A4, are
controlled by ports, which we discuss in turn.

6.2.1 6812 Internal Memory Map Control

The location of RAM, I/O ports, and EEPROM can be repositioned in the 6812
memory map by writing in the ports INITRM, INITRG, and INITEE (see Figure 6.4).
The high-order bits of each register are the high-order bits of the address of the device.

Figure 6.4. MC68HC812A4 Internal Memory Map Control Ports

6.2 6812 Memory Map Control 281

To initialize RAM to be at 0 to Ox3ff and I/O ports at 0x800 to 0xbff, the following
statements can be executed: INITRM = 0; and INITRG = 0x800 >> 8;. Be careful
to use symbolic names after the remapping is done that are different from those used
before the remapping is done.

If executing code in EEPROM, to initialize EEPROM to be at 0x1000 to 0x1fff,
the following procedure can be written into RAM and then executed:

SETEEPROM: LDAA #$11 ; high byte of address + 1
STAA $12 ; put into INITEE
JMP NEWSTART ; go to entry point at new EEPROM location

The least significant bit of INITEE has to be set to enable EEPROM; if it were F (0),
EEPROM is removed from the memory map. The procedure is loaded into RAM and
executed there because the address of EEPROM cannot be changed while executing code
that is in EEPROM.

The 'B32's flash memory can be put in the low half (0 to 0x7fff) or high half
(0x8000 to 0xffff) depending on whether bit 1 of the MISC port at 0x13 is 0 or 1.

6.2.2 MC68HC812A4 Chip Selects

The 'A4 has negative-logic chip selects to enable external memory or I/O devices. Four
of them, CS0, CS1, CS2, CS3, are designed to enable I/O devices; they enable small
ranges of addresses and appear at locations between internal I/O ports and internal RAM
(see Figure 6.5a). Three chip selects, CSD, CSP0, and CSP1, are designed for
memories; they enable larger ranges of addresses and appear at higher addresses in the
memory map (see Figure 6.5b). There are a fair number of alternative mechanisms that
use these chip selects. In this section, we focus on the simpler mechanisms.

Chip selects can be initialized by writing 16-bit constants into int CSCTL and
int SCSTR . These chip select outputs may be used in place of PORTF I/O bits, under
control of CSTL (see Figure 6.6). For instance, if CS0E, CSTL bit 8 is T (1), chip select
0 will be on pin 68 instead of PORTF bit 0.

0 - 0xlff

CS0 0x200 - 0xSff
CS3 0x280 - 0x2ff
CS1 0x300 - 0xSff
CS2 0x380 - 0x3ff

(0x400 - 0x7f f)

0x800 - 0xbff

I/O

(EPAGE)

RAM

0x7000 CSD
to Ox7fff

0x8000
to
Oxbfff

CSP0

CSP1
(all remaining)

a. I/O Device Chip Selects b. Data and Program Memory Chip Selects

Figure 6.5. MC68HC812A4 Chip Select Memory Map

282 Chapter 6 System Control

Figure 6.6. MC68HC812A4 Chip Select Registers

The chip selects have a priority order. If two chip selects are enabled and appear to
conflict at the same address, the priority is: CS3 (highest), CS2, CS1, CS0, CSP0,
CSD, and CSP1 (lowest). This priority order permits some alternative assignments of
addresses. If cs0 is enabled but cs1, CS2, and CS3 are not (e.g. CSCTL is 0x0100),
CS0 is asserted low whenever an address between 0x200 and 0x3ff is generated as an
instruction's effective address. However, if CS0 and CS2 are enabled but cs1 and CS3
are not (e.g., CSCTL is 0x0500), cs0 is asserted low whenever an address between
0x200 and Ox2ff is generated, and CS2 is asserted low whenever an address between
0x300 and 0x3ff is generated. If CS3, CS2, CS1, and CS0 are enabled (C s c T L is
0x0f00), then each enables 128 consecutive locations. If CSPCTL in CSCTL is TF (10),
CSP1 is enabled whenever no other device is enabled. (We do not further describe the
other interesting uses of chip select 3, CS3)

Figure 6.7. Use of Chip Select Lines

6,2 6812 Memory Map Control 283

Chip selects may be used to enable I/O devices or memories, as shown in Figure
6.7, For 6800-style I/O devices having a chip select and a read/write line R/W, the chip's
enable is connected to one of 'A4's chip selects such as cs0, and the chip's R/W is
connected to 'A4's R/W (see §9.3.3). Intel-style I/O devices have read RD, write WR,
and chip select CE pins. The device's RD can be connected to an ' A4 chip select such as
CS0, while WR is connected to another 'A4 chip select such as cs1 (see §10-2.2).
Reading and writing the same register must be done at different addresses; for instance,
reading a device register might be done using one chip select, cs0, by a statement =
* (char *) 0x200;. Writing would be done using a different chip select, CS2, by a
statement *(char *) 0x300 = i;. A statement * (char *) 0x200 + +; or * (char
*) 0x300 + +; wouldn't increment the register, since the port is no longer a readable
output port but is a basic output port and an input port at different locations. If the port
must be a readable output port, external logic is needed to derive the RD and WR signals
from the chip select and R/W signals, such as the decoder in Figure 6.7c. An 8-bit
memory's enable can be connected to a chip select such as CSD, and the memory's R/W
can be connected to the 'A4's R/W; the output enable G can be permanently asserted
because the memory's tristate drivers are disabled when R/W is asserted to write in the
memory. This configuration is shown in Figures 6.7d and 6.12. A 16-bit memory
comprising two 8-bit memories can be connected as shown in Figures 6.7e and 6.14.
The 'A4's R/W signal is attached to both memories' W pin. Each memory chip select E
and output enable G is tied together, and both are asserted as a function of the 'A4
enable CSD, address A0, and low strobe LSTRB. The ' A4 signal A0 is ANDed with
CSD to get E and W for the (right) memory holding odd-numbered locations. Similarly,
the 'A4 signal LSTRB is ANDed with CSD to get E and W for the (left) memory holding
even-numbered locations. In each case mentioned, SSI gates, a decoder, or a PAL can be
used with each chip select to obtain chip selects for multiple devices.

Each chip enable may be stretched under control of two bits of the CSSTR port; for
instance, bits 1 and 0 of CSSTR stretch CS0. If these two bits are FF (00), CS0 is not
stretched, so it is asserted for about 2/3 of an 8-MHz memory clock cycle (80 ns). If they
are FT (01), CS0 is stretched an additional clock cycle, so CS0 is asserted for about 1
2/3 of an 8 MHz memory clock cycle (200 ns). If they are TF or TT, CS0 is stretched
two memory clock cycles (325 ns) or three memory clock cycles (450 ns). Chip select
signals become asserted low when address and R/W become asserted, 40 ns into the
memory cycle, and become negated high within 10 ns after the E clock falls. Note that
after reset, CSSTR is 0x3fff.

For instance, to use CS2 at locations 0x380 to Ox3ff with a 325-ns access time
(which requires a two-cycle stretch), CS3 at locations 0x280 to Ox2ff, with a 450-ns
access time (which requires a three-cycle stretch), and CSP0 everywhere no other device
is selected (to detect any illegal addresses), we execute the following:

enum{ STR0, STR1=2, STR2=4, STR3=8, STRD=10,

CSSTR = (2 << STR2) (3 << STR3);

284 Chapter 6 System Control

6.2.3 MC68HC812A4 Memory Expansion

In many applications, the 64K-byte memory space is inadequate. The 'A4's memory
expansion uses PORTG pins to output higher-order address bits derived from DPAGE,
PPAGE, and EPAGE ports, if DWEN, PWEN, and EWEN have values of T (1) in the
WINDEF port. See Figure 6.8. The corresponding expansion windows described below
are designed for data, program, and "extra" memory expansion.

These pages map a 16-bit internal address, generated by the programmer, into a 22-
bit external address, which appears on the pins. The higher-address bits appear in place
of PORTG bits if corresponding bits of the MXAR port are T (1). If PWEN is T (1), and a
internal address appears in the range 0x8000 to 0xbfff (a 16K-byte range, shown in
Figure 6.9), PPAGE is appended above the low-order 14 bits of the internal address to
obtain the external address. For instance, if the internal address 0x9004 (in binary, 1001
0000 0000 0100) appeared and PPAGE had 0x34 (in binary 0011 0100), then the external
address would be 0x0d1004 (in binary 00 1101 0001 0000 0000 0100). If DWEN is T
(1), and a internal address appears in the range 0x7000 to 0x7fff (a 4K-byte range, shown
in Figure 6.9), two 1s and DPAGE are appended above the low-order 12 bits of the
internal address to obtain the external address. For instance, if the internal address
0x7012 (in binary, 0111 0000 0001 0010) appeared and DPAGE had 0x56 (in binary
0101 0110), then the external address would be 0x356012 (in binary 11 0101 0110 0000
0001 0010). If EWEN is T (1), and a internal address appears in the range 0x400 to 0x7ff
(a 4K-byte range, shown in Figures 6,5a and 6.9), four 1s and EPAGE are appended
above the low-order 10 bits of the internal address to obtain the external address. For
instance, if the internal address 0x0789 (in binary, 0000 0111 1000 1001) appeared and
EPAGE had 0xab (in binary 1010 1011), then the external address would be Ox3eaf89 (in
binary 11 1110 1010 1111 1000 1001).

Figure 6.8. MC68HC812A4 Memory Expansion Ports

6.2 6812 Memory Map Control 285

Figure 6.9. MC68HC812A4 Memory Expansion Mapping

Expansion pages can overlap at the top of the external memory map, but chip
selects can separate data from program and extra pages. Chip selects enable the memories
or devices. CSD is only asserted when a data page is accessed, and CSP0 or CSP1 when
a program page is accessed; CS3 enables the "extra" page in a more complex manner.

Alternatively, if external memory 0x3c0000 to 0x3fffff is only used for "extra"
pages, 0x300000 to 0x3bffff is only used for data pages, and 0 to Ox2fffff is only used
for program pages, then there are no potential duplicate uses of memory, and chip selects
are not needed to separate them out. In this technique, the external decoder would AND
the inverted E clock with high-order address signals rather than use the chip enables.

External memory can be allocated and accessed using these pages. Suppose data is at
external address A[21 to 0], and you wish to read it through a data page. Then put A[19
to 12] into DPAGE and read the address 0x7000 + A[11 to 0]. For instance, external
byte 0x312345 can be read into i by DPAGE = 0x12; i = (char *) 0x7345;.

Recall that the 6812 instruction CALL has a 3-byte subroutine address in external
space. The contents of PPAGE are saved on the stack together with the program counter;
this is essentially a return address in external space. Then the first two bytes are put into
the program counter and the third byte is put in PPAGE ; this is essentially a subroutine
address in external space. The corresponding return instruction, RTC, pops three bytes
back into the PPAGE register and program counter. Note that the left two bits of the
first address byte of the internal address have to be TF (10) to use the program expansion
window; if a program runs in the data expansion window, the left four bits of the
internal address need to be FTTT (0111).

6.2.4 Object-oriented Programming of Memory Expansion

Object-oriented programming realizes a clean way to use expansion memory. Overloaded
cast, assignment, and index operators make n-dimensional arrays stored in expanded
memory as easy to use as 'A4 RAM global variables. The class dataPage shows a
two-dimensional array stored in a data page window to expanded memory. dataPage's
constructor just saves the array base and dimensions. Overloaded operator [] saves the

286 Chapter 6 System Control

index and also saves the previously entered index so that two indexes, for row and
column, are available. Overloaded operators = and cast use the saved indexes in the
private function member ptr, which computes the external memory address, puts the
page number in the DPAGE port, and returns the 6812 internal address. The overloaded
operators = and cast use this internal address to read or write the data in the expansion
memory. This example can be easily modified to use the program or "extra" window,
and can handle one-dimensional vectors or arrays of more than three dimensions.

public;dataPage (long b, int. ra, int ca) {WINDEF| = 0x80;base=b;r=ra;(

irtual T operator = (T data) { return *ptr() = data;

operator T () { return *ptr(); };

virtual dataPage operator [] (char i)
{previousIndex=index; index = i; return *this; }

private : T *ptr(void) { long extAddr;
extAddr = (index + previous Index * c) * sizeof (T) + base;
DPAGE = extAddr >> 12;
return. (T *) ((extAddr & 0 x f f f)

6.3 EEPROM and Flash Memory Programming

We describe the programming of EEPROM words. Memory from 0xF000 to 0xFFFF
are in EEPROM. Though they can be read in one E cycle, they require 10 ms to be
written in. They can be written in or erased by writing bit patterns into the EEPROG
port at 0xF3 (see Figure 6.10). Four modes of erasure or writing into these EEPROM
words are (1) full EEPROM erase, (2) 32-byte erase, (3) 8- or 16-bit word erase, and (4)
8- or 16-bit word write. For mode 2, the EEPROM memory is organized into rows of
32 bytes, whose addresses have the same high-order 11 bits.

EEPROM programming is protected from accidental erasure. The EEMCR port (at
0xf0) has bit 1, PR0TLCK, which must be F (0) to write in the protection port
EEPROT port (at 0xfl), and is writable only once after reset. Each bit of EEPROT
controls a part of EEPROM and must be F (0) to program that part. In the 'A4, bit 6
controls the 2K-byte first half, 0xff00 to 0xf7ff; bit 5 controls the 1K-byte next quarter,
0xf800 to 0xfbff; and bit 4 controls the 512-byte next eighth, 0xfc00 to 0xfdff. In the
'B32, bit 4 controls the low-addressed 256 bytes. In both implementations, if the
EEPROM is located at the top of memory, bit 3 controls the 256-byte next sixteenth,
0xfe00 to 0xfeff; bit 2 controls the 128-byte next thirty-second, 0xff00 to 0xff7f; bit 1
controls the 64-byte next sixty-fourth, 0xff80 to 0xffbf; and bit 0 controls the 64 byte
last sixty-fourth, 0xffc0 to 0xffff, where the interrupt vectors are located.

6.3 EEPROM and Flash Memory Programming

Figure 6.10. MC68HC812A4 EEPROM Control Ports

To program EEPROM, one must have PROTLCK F (0) (it is F after reset), and the
protection bits in EEPROT F (0) (they are T after reset) for the parts to be erased and
reprogrammed. The unprogrammed state of EEPROM bits is T (1). Writing can change
a T into an F, but to return the bit to T, it must be erased. Erasing is done to all of
EEPROM memory (bulk erase), all of an 8-bit or 16-bit word, or all of 32 bytes in a
row. If any bits are to be changed from F to T, the bytes or rows to be reprogrammrned
must be erased before they are written into. Then they can be written; individual bits of
an 8- or 16-bit word can be made F.

The bit patterns written into the EEPROG register have meaning as follows: BYTE
means writing or erasing an 8-bit or 16-bit word at a time, ROW indicates erasing a row
at a time, ERASE indicates erasing, EELAT latches the next address and data that appear
after this bit is set for programming or erasing, and EEPGM applies the programming
voltage. If BYTE is F, ROW is F, and ERASE is T, the entire EEPROM will be erased (a
bulk erase). If BYTE is T and ERASE is T, an 8-bit or 16-bit word will be erased. If
BYTE is T and ERASE is F, an 8-bit or 16-bit word will be written. If BYTE is F, ROW
is T, and ERASE is T, a row of EEPROM will be erased. Erasure or writing takes 10
ms. These modes of erasing or writing into the EEPROM are described as a C program,
shown here:

enurn{T10ms=5000, wordWrite-0x10, wordErase=Oxl4,rowErase-Oxc,bulkErase~4};

void eeProgram(char command, int data, int address) {int i; char saveProt;
saveProt = EEPROT; EEPROT = 0;/* remove protection */
EEPROG = command; /* put parameters into EEPROM control port */
EEPROG += 2; /* assert EELAT to latch data */
* (int *) address = data; /* put data into any word of the EEPROM */
EEPROG+ +; /* turn on erasure voltage */
i == T10ms; do ; while (-i) ;/* wait 10 msec */ EEPROG--;/* turn off vlt */

EEPROG = 0; /* return to read mode */ EEPROT = saveProt; /* reapply prot. */

For erasure, the address must be in the range of the words that will be erased, and data
must be written into the 16-bit word. Any address in the range, and any data, can be
used. To erase and then write a 16-bit word 0x5678 at 0xff34, we can execute as follows:

288 Chapter 6 System Control

Figure 6.11. MC68HC912B32 Flash Control Ports

eeProgram(wordErase, 0x5678, Oxff34);eeProgram(wordWrite,0x5678,Oxff34);

To erase or write an 8-bit rather than a 16-bit word, the preceding procedure eeProgram
need only be changed by substituting char *address for int *address.

The 'B32 has both EEPROM, programmed as discussed above, and flash memory,
whose programming is discussed next. The FEECTL port controls flash memory
programming as the EEPROG port controls EEPROM programming. See Figure 6.11.

The entire flash memory is erased by calling eraseFlash, shown below. Then, a
16-bit word can be programmed by calling writeFlash with a 16-bit data word and an
address in flash memory. Both operations require 12 V applied to the VFP pin, which
should otherwise be at 5 V. Actually, the topmost 2K bytes of flash memory is neither
erased nor written into unless special efforts are made to unlock this area; which
normally contains a bootstrap program to reload memory. The erasing of all of memory
is accomplished by giving up to five "shots" to the memory, each of which takes 111
ms, until the memory is checked and found to be erased. Writing a 16-bit word is
accomplished by giving up to 50 "shots" to the memory, each of which takes 25 us,
until the word is checked and found to be written. For both erasure and writing, the
"shots" are repeated to ensure compete erasure or writing.

#define mc * 8 / 3
enum{ SVFP = 8, ERAS = 4, LAT = 2, ENPE = 1 };
void delay (int count) { while (--count) ; }
void shot (int d0, int d1, int d2)

{ FEECTL]=ENPE;do delay (dl)/while(--d0);FEECTL&=~ENPE;delay (d2);}
char eraseFlashProgram() { char i, j, k;

if(! (FEECTL & SVFP)) return 0; FEECTL = ERAS + LAT;
for (* (int *) Ox8000=j=1; (i=cleared())&& (j<=5) ;j++)

shot (110, 1000 mc, 1000 mc);
if(i) do shot(110, 1000 mc, 1000 mc); while (—j) ;
i = cleared (); FEECTL &= -LAT; return i;

}
unsigned char writeFlashProgram (int data, volatile int *address)
unsigned char i, j, k;

FEECTL = LAT; *address = data;
f o r (j = 1 ; (i=*address!=data) && (j<=50) ; j++)shot(1, 25 mc, 10 mc);
if(! i) do shot(1, 25 mc, 10 mc); whi le(- - j) ;
i = *address == data; FEECTL &= -LAT; return i;

}
char cleared() {for (int *a = (int *) 0x8000; a < (int *)0xf800;)

if(*a++ .'= 0 x f f f f) return 0; return 1;

}
void main()

{if (eraseFlashProgram()) writeFlashProgram(0x1234, (int *) 0x8000);}

6.4 MC68HC812A4 Timing Control 289

Figure 6.12. MC68HC812A4 Clock Control

6.4 MC68HC812A4 Timing Control

This section covers the main clock and the computer operating properly (COP) timing
control. We discuss the main clock controls first, and then the COP controls.

The 'A4 clock period is derived from an oscillator that uses a crystal on its XTAL
and EXTAL pins, an optional phase-locked loop (PLL, §7.4.3), and dividers (see Figure
6.12). The initial clock source is the crystal if PLLS is F (0), otherwise it is the PLL. If
the latter, power must be applied to the PLL by asserting PLLON, and the PLL is
locked if read-only flag LCKF is T (1). This initial clock is divided by BSC to give the
SPI, BDM, and A-to-D clocks, that is in turn divided by two to give the 6812 processor
E clock, and is then divided by MCS to give the serial communication interface SCI,
timer module TIM, real-time interrupt RTI, and COP clocks.

The PLL allows slight adjustments to the clock frequency, in the order of 10-KHz
steps, by selecting the 12-bit loop divider LDV and reference divider RDV values.
However, some care is required to implement a loop filter to achieve acceptable stability.

290 Chapter 6 System Control

The COP can be used to catch a runaway program that, when operating correctly,
will execute in a loop having a known maximum period. The COP mechanism, shown
in Figure 6.12, is enabled if D I S R is F (0) and CR is not 0. When it is enabled, the
COPRST port must be written into with 0x55 and 0xaa within a period specified by CR.
If incorrect data is written, or if the pair of correct data are not written in the prescribed
period, a COP interrupt occurs using the 16-bit vector at 0xfffa. The handler can restart
the program in the loop.

The COP mechanism is enabled after reset to catch a program that runs away right
out of reset. In systems that do not use this COP mechanism, it must be defeated by
clearing COPCTL as soon as possible after reset.

6.5 An External Memory for the MC68HC812A4

In this section we implement an 8K- and a 16K- byte external memory. The address and
data bus and control signal connections are discussed first, then timing is analyzed.

As shown in Figure 6.13, the memory has a chip enable E1, read/write W, output
enable G, a 13-bit address A[12 to 0], and eight data pins D[7 to 0]. Using the narrow
expanded mode, address and data buses are connected to PORTA through PORTO pins.
Data chip select, CSD, enables the memory, and R/W is used to select reading or writing
into it. These connections are almost identical to those that we used for indirect
memory, in §5.4.3 as shown in Figure 5.15c. Indeed, the reader is invited to first
implement the indirect memory, and then implement this expanded memory.

In a write cycle (Figure 5-15b), we assume that the W signal is asserted low before
E1 is asserted low and remains low until E1 rises. To prevent writing in the wrong
word, the E1 signal should not fall until A is determinate and should be low for at least
35 ns, while A is determinate. The data input on the data pins should be stable 20 ns
before the rising edge of E1 and remain determinate until then. These are the
MCM6264D-45's setup and hold times. If these requirements are met, the data input on
the data bus pins will be stored in the bit at the address given by A .

In a read cycle (see Figure 5.15a), the cycle begins when chip enable E1 falls. It
must be low for 45 ns before data is output. Data are available on the data bus pins from
the byte addressed by A, 45 ns after A is determinate, and A must be determinate as
long as data are being output. Data may become indeterminate 15 ns after E1 rises.

We now consider the timing compatibility of this external memory. These are
especially simple if G is connected to ground. To see if the MCM6264D-45 memory is
compatible with the 'A4, we match the 'A4's timing against the memory timing for the
write cycle and then for the read cycle. The key to timing analysis is that the * A4 chip
select (§6.2.2) will be the memory enable. In both cases, adjust the timing scale so both
diagrams have the same dimensions, and slide the 'A4 timing diagram (Figure 3.10) so
the chip select lines up with the memory enable (Figure 3.6). See Figure 6.14.

The timing requirements are concisely explained using intervals. An interval <a,
b>, a < b, is a range of values between a and b. All intervals will be relative to the
falling edge of the E clock. The interval of acceptance of a signal is the interval over
which the signal must be determinate (stable); it is the setup and hold time. For
instance, if a register has a setup time of 10 ns and a hold time of 5 ns, relative to the

6.5 An External Memory for the MC68HC812A4 291

falling edge of E, the interval is <-10, 5> (with reference to the falling edge of E). The
interval of supplying a signal is the interval over which it is guaranteed to be
determinate. For example, if a signal will be determinate 5 ns before, and 5 ns after, the
falling edge of E, then it is determinate for <-5, 5> with reference to the falling edge of
E. For an interval <a, b> to contain an interval <c, d>, every value in <c, d> must be in
<a, b>; therefore a < c and b > d. The interval <-5, 5> does not contain <-10, 5>
because there is at least one value (-7) that is in <-10, 5> but is not in <-5, 5>;
equivalently, -5 is not less than or equal to -10. Generally, for address, data, and control
signals, the supply interval must contain the acceptance interval.

Figure 6.13. An MCM6264D-45 Memory System

292 Chapter 6 System Control

Figure 6.14. Analysis of Memory Timing

6.5 An External Memory for the MC68HC812A4 293

We analyze the write cycle first. The lower bound of the address and control signal
supply interval (Figure 3.10) is the 125-ns cycle time less the first 40 ns that the signal
is indeterminate, and the upper bound is the 25 ns the signal remains determinate into
the next cycle: it is <- (125 - 40), 25> = <-85, 25>. This must contain the address
acceptance interval. For the write cycle, its lower bound is the 35 ns that these signals
must be determinate while the data is written, and its upper bound is 10 because CSD
can rise as late as 10 ns after E falls, and the address must remain determinate as long as
the memory chip's E1 signal is asserted, so it is <- 35, 10>. The address supply interval
clearly contains the address acceptance interval during a write cycle. The 'A4 supplies
determinate data 40 ns after the E clock rises, which is 60 ns before the end of the
memory cycle until 25 ns after it falls; the data supply interval is <-20, 25>. The
memory data acceptance interval is <-20, 10>, so the data supply interval clearly
contains the data acceptance interval during a write cycle. Write cycle timing is verified.

For the read cycle, the data supply interval (from the memory) begins 45 ns after
CSD falls, which is 40 ns into the memory clock cycle, and ends 15 ns after the E clock
falls, so it is <125 - (40 + 45), 15> = <-30, 25>. The data acceptance interval is <-20,
0>. The address supply interval is <-85, 25>, as it was for the write cycle. The address
acceptance interval is <-(45 + 20), 15>. The supply intervals contain the data acceptance
interval. Read cycle timing is therefore verified.

An 8K- by 16-bit memory can be implemented in the wide expanded mode as shown
in Figure 6.16. The A[0] signal negative-logic ANDed with CSD enables the even-
numbered byte locations, and the LSTRB signal negative-logic-ANDed with CSD
enables the odd-numbered byte locations, as discussed in §6.2.2. The timing analysis of
this circuit will be the same as for the narrow expanded mode (Figure 6.13).

If we get into timing problems, several possible solutions can be tried. The
following are the most practical: slow down the processor, lengthen the chip enable, use
a faster memory, or modify the memory enable signal with some extra hardware. For the
first solution, slow down the 'A4's clock to lengthen the cycle so stable data will reach
the 'A4 earlier in its cycle. Use a lower-frequency crystal or use the phase-lock loop
(§6.4). To lengthen I/O memory cycles, stretch the chip selects (§6.2.2). You may use
faster memory - a faster version of the MCM6264D-45. For instance, the MCM6264D-
35 has access times of 35 ns. To utilize external hardware, the MCM6264D-45's E1
signal could be generated with one or more one-shots.

Address Bus

>
1
Q
D

1A

1 74CH374]
1
Q
D

1

k

1
Q
D

1

XJ
k

X

Q
D

k

X

Q
D

k

Common CLK

Q
D

1

k

6812

E

PORTA,

Figure 6.15. MC68HC912B32 Address Demultiplexing

294 Chapter 6 System Control

Figure 6.16. 8K-by-16-Bit-Word Wide Expanded-Mode Memory System

The 'B32 has essentially the same mechanism as the 'A4, except that the buses are
time-multiplexed. The address can be obtained from the multiplexed address-data bus
using a 74HC374, as illustrated in Figure 6.15. Also (negative-logic) DBE should
enable memory and device outputs to the data bus so the device doesn't try to mess up
the address output in a stretched memory cycle (stretching controlled by MISC at Ox 13).

6.6 The 6812 Background Debug Module 295

This section shows a simple example of a complete interfacing design to connect a
memory to a microcomputer. The same principles are used in interfacing I/O registers,
discussed in future chapters, and these may be the object of many design travails.

6.6 The 6812 Background Debug Module

The 6812 has a background debug module (BDM) that communicates over a single wire
(BGND, pin 19). The host is generally a microcontroller that can translate commands
from the user, via a personal computer, to the BDM and send data to and from the BDM

Figure 6.17. Background Debug Module

(see Figure 6.17a). The 'B32 is an excellent microcontroller host. The target is the
microcontroller that is being debugged. Debugging is simplified because the target being
debugged is essentially not used by the debugger; the target can malfunction but the host

Chapter 6 System Control

will work correctly, so the user can determine the malfunction. Also the BDM is used to
program the EEPROM of a single-chip microcontroller when its EEPROM is in an
unknown state, such as when EEPROM has been accidentally overwritten. In this
section, we present the basic ideas of the BDM and show a program that can seed data
and commnds to, and receive data from, the BDM.

The host sends an 8-bit command, followed by zero, one, or two 16-bit operands,
depending on the command. Bits sent most significant bit first are: a T (1), low for a
short time, and an F (0), low for a longer time (Figure 6.17b). Essentially, the BDM
waits for a falling edge, which signifies the start of a bit, then waits until the middle of
the bit time to sample the input. The target's BDM may respond with 16 bits of data,
again sent most significant bit first. The host pulses the BGND line low to give a
falling edge and then tristates its driver; the target waits for the falling edge and responds
with a T (1), pulsing the line high right away, or an F (0), pulsing the line high a little
bit later (Figure 6.17c). Capacitance holds the line low when it is not driven.
Essentially, the host waits until the middle of the bit time to sample the input.
Assembler-language procedures are given below; they will be called from C and therefore
their arguments will be on the stack.

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
void send (int s,
asm{
1dy 2,sp

Isld
xgdx
1dd #1

stab 2
loopl: staa 0
nop

nop

rol 0

xgdx
Isld
xgdx
stab 0
dbne y,loopl
rts

get number of bits to send
get msbit

shift data in x
acca is 0, accb is 1
set DIRA to output on Isb
put out low

pad to 16 cycles per loop
pad to 16 cycles per loop
insert carry into lsb output
shift pattern in d
get next bit, msb first, into carry
shift pattern in x
set output bit to 1
count out 16 bits

6.6 The 6812 Background Debug Module 297

ldy #16

ldd #1

loop: std 0

nop

staa 2

xgdx

rolb

rola

xgdx

lsr 0

dbne y, loop

xgdx

rolb

rola

rts

pick up 16 bits

acca is 0, accb is 1

clear data, set DIRH to output on 1sb

pad to 16 cycles per loop

clear DIRH to input from 1sb

shifted data in d

move previous bit into d

msb first

shifted data in x
carry is input bit
count out 16 bits
shifted data in d
move last bit into d

/* keep C++ happy */

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
void wait () {
asm{
ldd #150/3

loop: dbne d, loop

rts

These assembler-language procedures, out 8 (char c), out 16 (int i), and
receive (), can be used to issue commands alone or from C procedures shown below.
The first byte sent through the BGND pin is a command and is put into a port at 0xfi00
(Figure 6.17d). If the most significant bit is T (1), then the command is executed in
hardware and the target continues to run normally. Such hardware commands can be
executed at any time, even when the target is executing a user program. The remaining
bits indicate if data accompanies the command (DATA) , if the command reads or writes
(R/W) , if the command causes the target to suspend running (BGND) if data is 8 bits
or 16 bits (W/B) , and if memory includes the BDM registers and ROM (BD/U) . An
enum statement is shown, that gives the command byte for operations which can be
executed by the BDM. A single-byte command to cause the target to suspend running is
executed in C as out8 (BACKGROUND) . A command to write 16-bit data d at address a
is executed as write (WRITE_WORD, a, d);. A command to read 16-bit data at address
a is executed as read(READ_WORD, a);. Commands that read and write in the
backround memory map can read or write the memory-mapped registers used by the
background debug module.

298 Chapter 6 System Control

enim {BACKGROUND = 0x90, WRITE_BYTE = 0xc0, WRITE_WORD = Oxc8,
WRITE__BB = Oxc4, WRITE_BW = 0xcc, READ__BYTE = 0xe0,

READ_WORD = Oxe8, READ__BB = 0xe4, READ_BW = 0xec,

GO = 0x08, WRITE_NEXT = 0x42, WRITE_PC = 0x43,
WRITE_D = 0x44, WRITE__X = 0x45, WRITE_Y = 0x46,

WRITE_SP = 0x47, READ_NEXT = 0x62, READ_PC = 0x63,
READ_D = 0x64, READ_X = 0x65, READ_Y = 0x66,
READ_SP = 0x67};

/* use with READ_BYTE, READ_WORD, READ_BB, and READ_BW */

void write(int c, int a, int d) {send(8, c) ; send(16, a) ; send (16, d) ;wait (

I* use with WRITE_BYTE, WRITE_WORD, WRITE_BB, and WRITE_BW */

/* for READ_NEXT, READ_PC, READ_D, READ_X, READ_Y, and READ_SP */

void writereg(char c, int d) { send(8, c); send(16, d); wait(); }

/* for WRITE_NEXT, WRITE_PC, WRITE_D, WRITE_X, WRITE_Y, WRITE_SP */

If the most significant bit of a command is F (0), then the command is executed by
target software, and target execution must be stopped before the command can be
executed. The software is stored in a ROM in the range 0xff00 to 0xfff, which is only in
the memory map when the target is executing background debug commands. Such
commands may not be executed when the target is executing a program being debugged.
In order to suspend operations later, the BDM must first be given a command
write (WRITE_BB, 0 x f f 0 1 , 0x80}; This sets a bit in a BDM port at location 0xff01
that enables operation of the background debug mode. The target suspends operation
when it executes the bgnd instruction, or when the host executes a command
out8 (BACKGROUND) . Then the target can execute software commands having most
significant bit F (0), as shown on the top of Figure 6.17d. In these commands the DATA
and R/W bits are the same as for hardware BDM commands, but the TAGGO field
indicates commands to make the target go, to trace an instruction, or to control the
instruction decoder so that "tagging" can be used with a logic analyzer or with a hardware
breakpoint mechanism. Finally, a field REGN permits selection of specific registers,
D, X, Y, SP. or PC, to be written into or read from.

6.7 The 6812 Reset Handler 299

One of the cutest experiments for the 'A4 is to have it execute the procedures above,
that use only the hardware commands, in its own BDM module. The 'A4 FORTH bit 0
is connected to the 'A4 BGND pin. It is possible to read or write memory, and even to
program EEPROM. However, to execute any software background debug command
using the 6812, a separate 6812 must be used for the host and for the target; the 6812
can't execute both programs simultaneously.

Generally, the host can be any machine, such as the MC68HC912B32. When the
host and target are different machines, the software-based debug commands can be
executed as well as the hardware-based commands.

6.7 The 6812 Reset Handler

In the 6812, RESET must be asserted low after power is first applied and reaches 4.5 V.
Also, if the RESET pin is asserted low at any time, processing stops (a kind of ultimate
interrupt). The RESET line is generally connected to RESET pins on all I/O devices; it
initializes the I/O registers, normally clearing all I/O ports.

When RESET rises again, the 16-bit word at location 0xfffe, 0xffff is put into the
program counter. These locations are normally in read-only memory, for if we didn't
have these locations and programs there before executing the first instruction, we would
have no way to start the machine. (You may laugh at this, but machines proposed even
in learned papers have had this problem - that they can't be started.) A nonvolatile
memory must be enabled to read out the initial value of the program counter and stack
pointer, and must remain available to fetch instructions from it until the bootstrap loads
programs into RAM. In normal single-chip mode, 'A4 reads the contents of 0xfffe and
0xffff from EEPROM, and the address stored therein will be an EEPROM location
between 0xf000 and 0xffff.

However, it may be desirable to effectively remove that nonvolatile memory from
the high end of the memory map after the bootstrap program in it has served its purpose,
so that interrupt vectors can be written in RAM that are made accessible in high
memory. The concept of including a memory or device in the memory map and then
excluding it from the memory map is called phantoming the memory.

The program that is entered handles the initialization ritual after a reset, so we call it
the reset handler. The reset handler configures the 'A4 and many of the I/O devices not
already configured as desired by the RESET signal on their RESET pins and not to be
configured later as part of the program that uses the device. In earlier discussions, we
said that the rituals to be run just after power is applied are all put in this reset handler.

In the 'B32, a reset handler handler () should initialize the stack pointer, bus
mode, and clock ports for the application. For instance, the mode may be changed to
expanded wide mode after being reset and coming up in single-chip mode, and control
signals may be assigned to get the DBE, E clock, R/W, and LSTRB signals in place
of PORTE bits. The COP usually must be disabled. The handler generally initializes
global variables and one or more I/O devices, such as the SCI, and calls the C procedure
main (), which returns to the handler when it is finished. The handler's function for the
rest of the time is to reinitialize devices and memory, and then restart main (), each
time main () returns to it. A 'B32 handler is illustrated below.

300 Chapter 6 System Control

volatile unsigned int PEARMODE@) 0x0A, CSCTL@Ox3C;
volatile unsigned char COPCTL@0xl6;

enum, { Special = 0,Wide=Ox60,RDWRE=Ox0400, LSTRE = 0x0800, NDBE = 0x8000};

extern void main (void) ;
interrupt 0 void handler() {

do { asm 1ds #0xc00 /* set the stack pointer */
PEARMODE=Special + Wide + RDWRE + LSTRE; /* init PEAR, MODE*/
COPCTL = 0; /* disable the COP monitor; initialize global variables here */
main (); asm SEI /* disable interrupts after returning from main */

} w h i l e (1) ;

In the 'A4, a reset handler handler () should initialize the stack pointer and then
configure memory map and clock ports for the application. For instance, the mode may
be changed to expanded wide mode after being reset and coming up in single-chip mode,
and control signals may be assigned to get the E clock, R/W, and LSTRB signals, in
place of PORTE bits. The chip selects may be assigned in place of PORTF bits. If
memory expansion is needed, PORTG bits may be reassigned as high-order address bits.
The COP usually must be disabled. Finally, one or more I/O devices, such as the SCI,
must be initialized. Then this reset handler calls up the C procedure handler (), which
can return to the handler when it is finished. Before it does so, the handler will generally
clear and initialize global variables so that each time handler () is executed, it has
consistent starting data. The handler's function for the rest of the time is to reinitialize
devices and memory, and then restart handler(), each time handler() returns to it.

interrupt 0 void handler() {
do { asm 1ds #0xc00 /* set the stack pointer */

MODE = Special + Wide; I* switch to special wide bus */
PEAR = RDWRE + LSTRE; I* R/W, LSTRB and the E clock for decoders */
CSCTL = CSP1E | CS2E \ CS3E; /* enable chip selects */
CSSTR = (2 << STR2) | (2 << STR3); /* set chip select stretch cycles */
COPCTL = 0; /* disable the COP monitor; initialize global variables here */
main (); asm SEI /* disable interrupts after returning from main */

} while (1) ;

The handler may also run diagnostic programs to check the microprocessor,
memory, or I/O devices; clear all or part of memory; or initialize some variables. This
handler might be a bootstrap program whose purpose is to load into memory and then
execute the program that follows, or an operating system to manage memory and time
resources for a microcomputer.

6,8 Conclusions 301

6.8 Conclusions

The 'A4 has considerable flexibility in configuring its memory and timing. We have
seen how the 'A4's buses can be expanded, how the internal memories and ports can be
remapped, how control signals and chip selects can be used for external devices, and how
memory can be expanded. We saw how EEPROM can be programmed and how the E
clock can be controlled. Then we saw applications of these concepts, including the
design of an external memory and the writing of a reset handler. We also covered the
background debug module and showed how to send and receive packets from it.

For more concrete information on the 'A4, consult the MC68HC812A4TS/D. In
particular, §7 describes the EEPROM, §8 describes memory mapping and chip selects,
§11 describes clock control, and §12 describes the phase-locked loop. As noted earlier,
we have not attempted to duplicate the diagrams and discussions in that book because we
assume you will refer to it while reading this book; and, since we present an alternative
view of the subject, you can use either or both views.

You should now be familiar with memory and clock configuration in general and
with the 'A4 memory and clock control ports in particular. Selecting configurations of
the 'A4 memory and clock, and writing software to initialize and use them, should be
well within your grasp.

Do You Know These Terms?

See page 36 for instructions.

internal address computer operating module reset handler
real address properly host bootstrap program
dataPage background debug phantoming operating system

302 Chapter 6 System Control

Problems

Problem 1 is a paragraph correction problem. Seepage 38 for guidelines. Guidelines for
software problems are given on page 86, and for hardware problems, on page 115.

1. Write a program main that sets the 'A4 in the normal wide expanded mode and
makes available the E clock and R/W signals but does not make available the LSTRB.

2. Show a program main that puts the I/O ports at 0xf000-0xflff and RAM at Ox'f900ff,
0xf9ff, and disables EEPROM. This might be useful if a 64K-byte memory is externally
connected, and EEPROM is phantomed after it is initially used to configure I/O devices
and load the external memory. Where can this procedure be run from?

3. Show the logic diagram of a group of eight 8-bit basic output ports at location 0x200
to 0x207, respectively. Use chip select 0 to enable a 74HC138, which in turn enables
one of eight 74HC374 registers (show only two of them). Show a statement that
initializes the CSTL port for this application. Assume that the 'A4 has been configured
for normal expanded narrow mode and that there are no other external devices or
memories.

4. Show the logic diagram of a group of eight 16-bit input ports at locations 0x200 to
Ox20f, contiguously, for the normal expanded wide mode. Use chip select 0 to enable a
74HC138, whose output in turn enables two of the sixteen 74HC244 tristate drivers
(show only two pairs of them). Show a statement that initializes CSTL for this
application. Assume there are no other external devices or memories.

5. Show the logic diagram of a group of four 16-bit basic output ports at locations
0x200-0x201, 0x280-0x281, 0x300-0x301, and 0x380-0x381, respectively. Show only
the chip select connections, not the data bus connections. Use chip selects 0 to 3 tc
enable two of eight 74HC374 registers. Show a statement that initializes the CSTL port
for this application. Assume that the 'A4 has been configured for normal expanded wide
mode and that there are no other external devices or memories.

6. Show the logic diagram of a group of four 8-bit input ports at location 0x200,
0x280, 0x300, and 0x380, respectively. Show only the chip select connections, not the
data bus connections. Use chip selects 0 to 3 to enable four 74HC244 tristate drivers.
Show a statement initializing CSTL for this application. Assume that the 'A4 has been
configured for normal narrow expanded mode.

7. Use an external Dallas Semiconductor DS1650Y/AB 512K SRAM for a DPAGE
expansion window for a normal narrow expanded mode ' A4. The SRAM CE is connected
to CSD, its W pin is connected to the 'A4 R/W pin, and its OE is asserted low. The
SRAM data bus is connected to the ' A4 narrow expanded-mode bus, and its address pins
are connected to equivalent 'A4 address pins, but 'A4's unused address pins are made
available for PORTG parallel port bits.

"Problems 303

a. Show the logic diagram. The 32-pin DS1250Y/AB has the same "lower" pins as
the MCM6264D-45 (Figure 6.13): the first's pins 4 to 27 are the second's pins 2 to
25; the first's pins 1 to 3 are address lines 18, 14, and 16, and its pins 28 to 32 are
A13, W,A17, A15, and Vcc.

b. Show a procedure main () that configures the MODE, PEAR, CSCTL, WINDEF,
and MXAR ports, and writes 0x1234 into internal memory locations 0x56788 and
0x56789.

8. Use a pair of external MCM6246 512-K-by-8-bit SRAMs for a 1-MB DPAGE
expansion window for a normal expanded wide mode 'A4. Both SRAM E pins are
connected to CSD, and both SRAM G pins are asserted low. The "left" SRAM's W pin
is connected to the 'A4 R/W pin ANDed with A0, and the "right" SRAM's W pin is
connected to the 'A4 R/W pin ANDed with LSTRB, where ANDing is in negative
logic. The SRAM data bus is connected to the 'A4 wide expanded-mode bus and its
address pins are connected to equivalent 'A4 address pins plus one, but 'A4's unused
address pins are made available for PORTG data bits.

a. Show the logic diagram. Any SRAM's address pins are interchangeable. The 36-
pin MCM6246 has address pins 1 to 5, 14 to 18, 20 to 24, and 32 to 35. Any
SRAM's data pins are interchangeable. Its data pins are 7, 8, 11, 12, 25, 26, 29, and
30. The MCM6246's chip enable E is pin 6, its W is pin 13, its G is pin 31, its Vcc
are pins 9 and 27, and its Vss are pins 10 and 28. Its pins 19 and 36 are not
connected. Use vector notation on pins to describe the buses more compactly.

b. Show a procedure void main () that configures the MODE, PEAR, CSCTL,
WINDEF, and MXAR ports, and that writes 0x1234 into internal memory locations
0x56788 and 0x56789.

9. Design an external M29F800A3 l-MB-by-8 flash memory to be used for a 1-MB
PPAGE expansion window for a normal narrow expanded mode ' A4. We assume that the
flash memory is written into elsewhere, and here is only read. The flash E pin is
connected to CSP1, its W is connected to R/W, and its OE pin is asserted low. The
flash data bus is connected to the ' A4 narrow expanded-mode bus, and its address pins are
connected to similar 'A4 address pins, but 'A4's unused address pins are made available
for PORTG parallel port bits. Reading the flash requires stretching the E clock for 1
cycle.

a. Show the logic diagram. The 48-pin M29F800A3's address A[19 to 0] are pins
16, 17, 48, 1 to 8, 18 to 25, and 45. Its data D[7 to 0] are pins 29, 31, 33, 35, 38,
40, 42, and 44. Its W is pin 11, its E is pin 26. Pins 46 and 27, write protect 14,
BYTE 47, and OE pin 28, are grounded, and pins RP 12 and 37 are connected to +5
V. Data pins 30, 32, 34, 36, 39, 41, and 43, and pins 9, 10, 13, and 15 are not
connected.

b. Show a procedure void main () that configures the MODE, PEAR, CSCTL,
CSSTR, WINDEF, and MXAR ports and CALLs a subroutine, using embedded
assembler language that begins at internal address 0x56788.

304 Chapter 6 System Control

10. Design an external M29F800A3 512K-by-16 flash memory for a 1-MB PPAGE
normal wide expanded-mode expansion window. Assume that the flash memory is
written into elsewhere, and here it is only read. The flash's E pin is connected to CSP1,
its W is connected to R/W, and its OE pin is asserted low. Its data bus is connected to
the "A4 wide expanded-mode bus and its address pins are connected to similar ' A4 address
pins, but 'A4's unused address pins are made available for PORTG parallel port bits.
Reading the flash requires stretching the E clock for one cycle.

a. Show the logic diagram. The 48-pin M29F800A3's address A[19 to 1] are pins
16, 17, 48, 1 to 8, and 18 to 25. Its D[15 to 0] are pins 45, 43, 41, 39, 36, 34, 32,
30, 29, 31, 33, 35, 38, 40, 42, and 44. Its W is pin 11 and its E is pin 26. Pins 46,
27, write protect 14, and OE pin 28, are grounded, and pins RP 12, BYTE 47, and 37
are connected to +5v. Pins 9, 10, 13, and RY/BY 15 are not connected.

b. Show a procedure void main () that configures the MODE, PEAR, CSCTL,
CSSTR, WINDEF, and MXAR ports, and CALLs a subroutine, using embedded
assembler language, that begins at internal address 0x56788.

11. The Intel-family bus has negative-logic RDand WR control variables instead of the
6812's R/W signal and E clock. When the Intel processor asserts RD low, it has put a
stable address on the address bus; memory should read the word at this address. When the
Intel processor asserts WR low, it has put stable data on the data bus and a stable address
on the address bus; memory should write the data at the address it gave. Show the logic
diagram of a decoder, using a minimum number of gates.

12. Rewrite the templated class dataPage of §6.2.4 to permit the programmer to treat
scalars, vectors, and two- and three-dimensional arrays in the data expansion window like
conventional memory variables. Use a procedure char*vAllocate(int i) to allocate
i bytes of internal memory space, which returns a internal memory location to be used
for the variable. For instance, if when we declare dataPage <char> a; vAllocate(l)
returns Ox4ff9c, then i = a reads internal memory location 0x4ff9c, using DPAGE, and
a = i; writes i into internal memory location 0x4ff9c, using DPAGE. Thus if when we
declare dataPage <int> a(2, 3, 4); vAllocate (48) returns 0x4ff00, then i =
a[l][2][3]; reads internal memory locations Ox4ffl7 and Ox4ffl8, using DPAGE, and
a[l][2][3] - i; writes i into internal memory location 0x4ffl7 and Ox4ffl8, using
DPAGE,

13. Write a templated class extra Page that accesses data through the extra page
window using port EPAGE, which

a. permits the programmer to use the constructor and access two-dimensional arrays
as in §6.2.4.

b. permits the programmer to call the constructor and to access scalars, vectors, two-
dimensional arrays, and three-dimensional arrays, as in problem 12.

Problems 305

14. Write a templated class EEProm that accesses EEPROM variables the same as
variables in conventional memory. For example, if char array a is located at 0xff90,
i = a [3] 14J reads EEPROM location Oxff9c, and a [3] [4] = i; erases location
Qxff9c if that location has an F (0) where / has a T (1), and then writes i into location
0xff9c if i is different from the contents of 0xff9c. Inside your class function members,
to program EEPROM, call §6.3's procedure eeProgram, which is copied into RAM.
Write the class and its members to

a. permit the programmer to call the constructor and access two-dimensional arrays
as in §6.2.4,

b. permit the programmer to call the constructor and to access scalars, vectors, and
two-, and three-dimensional arrays, as in problem 12. Use a procedure char
*eAllocate (int i) to allocate i bytes of EEPROM memory space, which
returns an EEPROM location to be used for the variable.

15. Write a C statement to change the 'A4 clock timing.

a. the E clock is 2 MHz, and the clock provided to the counter/timer, RTI, and SCI,
before their prescalars divide the clock down, is 2 MHz.

b. the E clock is 8 MHz, and the clock provided to the counter/timer, RTI, and SCI,
before their prescalars divide the clock down, is 2 MHz.

16. Write a C procedure main that uses a target's background debug module to access
its data. Use the procedures written in assembler language and in C, and the I/O ports
that are shown in §6.5 to access the data in the target's SRAM.

a. writes 0x12 into location 0x800 in an 'A4

b. reads location 0x800 into local char variable c in an 'A4

17. Write a procedure main () that writes 0x12 into location 0xff80 in a target, using
its background debug module to write the data. Assume the 'A4 is in single-chip mode,
and use the procedure written in assembler language and in C, and the I/O ports, that are
shown in §6.6, to write in the EEPROM programming control ports, erase the
EEPROM byte and then write the data in EEPROM. Use symbolic names #defined in
§6.5 and §6.6 to make your answer more self-documenting.

18. Write a reset handler void _startup() for single-chip mode that initializes the
stack pointer to the high end of SRAM, disables the COP monitor, clears the 0x133
bytes of low SRAM, writes 0x11bd in 0x810, and calls main () . After returning from
main (), it disables interrupts and repeats this handler.

19. Write a reset handler void _startup () for narrow expanded mode that initializes
the stack pointer to the high end of SRAM, disables the COP monitor, enables E and
R/W and chip selects CSO and CS1, outputs all high-order address bits, clears the
0x133 bytes of low SRAM, writes 0x11bd in 0x810, and calls main () . After returning
from main (), it disables interrupts and repeats this handler.

306 Chapter 6 System Control

This inexpensive Axiom PB68HC12A4 board is well suited to senior design, and other
prototyping projects. Its wire-wrap pins can be reliably connected to external wire-wrap
sockets and connectors.

Analog Interfacing

Analog circuits are commonly used to interconnect the I/O device and the "outside
world." This chapter will focus on such circuits as are commonly used in
microcomputer I/O systems. In this chapter, we will assume you have only a basic
knowledge of physics, including mechanics and basic electrical properties. While many
of you have far more, some, who have been working as programmers, may not. This
chapter especially aims to provide an adequate background for studying I/O systems.

Before analog components are discussed, some basic notions of analog signals
should be reviewed. In an analog signal, voltage or current levels convey information
by real number values, like 3.1263 V, rather than by H or L values. A sinusoidal
alternating current (AC) signal voltage (or current) has the form v = A sin(P +
2nFt) as a function of time t, where the amplitude A, the phase P, and the

frequency F can carry information. The period is 1 / F . (See Figure 7. la.) One of the
most useful techniques in analog system analysis is to decompose any periodic (that is,
repetitive) waveform into a sum of sinusoidal signals, thus determining how the
system transmits each component signal. The bandwidth of the system is the range of
frequencies that it transmits faithfully (not decreasing the signal by a factor of .707 of
what it should be). A square wave, shown in Figure 7.1b, may also be used in analog
signals. Amplitude, phase, and frequency have the same meaning as in sinusoidal
waveforms.

-*• -. h1/F1
t~*

a. Sine Wave b. Square Wave

Figure 7.1. Waveforms of Alternating Voltage Signals

307

308 Chapter 7 Analog Interfacing

Two kinds of analog signals are important. These correspond to AM and FM radio.
In this chapter, we consider analog signals whose amplitude carries the value, whether
the signal is direct current or alternating current, as AM radios carry the sound. In the
next chapter, we consider analog signals whose frequency or phase carries the value of
the signal, as FM radios carry the sound. Amplitude analog signals are more pervasive
in interface design. It is hard to find examples of interface hardware that do not have
some analog circuitry (we had to search long and hard to find some decent problems for
Chapter 3 that did not have analog circuits in them). It is even hard to discuss frequency
analog circuits without first discussing amplitude analog circuits. So we study amplitude
analog circuits in this chapter and frequency analog circuits in Chapter 8.

Analog signals are converted to digital signals by analog-to-digital converters (A-
to-D converters), and digital signals are converted to analog by digital-to-analog
converters (D-to-A converters) such that the digital signal – usually a binary number or
a binary-coded decimal number - corresponds in numerical value to the analog signal
level. Analog signals are also converted to a single digital bit (H or L) by a comparator,
and digital signals control analog signals by means of analog switches. The frequency
of an AC signal can be converted to or from a voltage by voltage-to-frequency
converters (V-to-F converters) or by frequency-to-voltage converters (F-to-V
converters). Finally, analog signals are generated by transducers that change other
measurements into voltages or currents, such as temperature-to-voltage transducers, and
are amplified and modified by operational amplifiers (OP AMPs).

A basic theme of this chapter is that many functions can be done using digital or
analog hardware, or using software. The smart designer determines the best technique
from among many alternatives to implement a particular function. Thus, the designer
should know a little about analog circuitry. On the one hand, a basic understanding of
the operation and use of analog circuits is essential in making intelligent
hardware/software trade-offs and is quite useful even for programmers who write code to
interface to such devices. So we want to include the required material in this chapter. On
the other hand, to use them well, one can devote an entire year's study to these devices.
We have to refrain from covering that much detail. Therefore, our aim is to give enough
detail so readers can make good hardware/software trade-offs in the design of
microprocessor analog systems and to encourage those who seek more detail to read
some of the many excellent books devoted to the topic of analog signal processing.

In the following sections, we will discuss conversion of physical quantities to
voltages and from voltages, the basics of operational amplifiers and their use in signal
conditioning and keyboard/display systems, digital-to-analog conversion, analog-to-
digital conversion, and data acquisition systems. Much of the material is hardware
oriented and qualitative. However, to make the discussion concrete, we discuss in some
detail the use of the popular CAS 140 operational amplifier and the 4066 and 4051
analog switches. Some practical construction information will be introduced as well.
The reader might wish to try out some of the examples to understand firmly these
principles.

This chapter should provide enough background on the analog part of a typical
microcomputer I/O system so the reader is aware of the capabilities and limitations of
analog components used in I/O and can write programs that can accommodate them.

7.1 Input and Output Transducers 309

7.1 Input and Output Transducers

A transducer changes a physical quantity, like temperature, to or from another quantity,
often a voltage. Such a transducer enables a microcomputer that can measure or produce
a voltage or an AC wave to measure or control other physical quantities. Each physical
property - position, radiant energy, temperature, and pressure - will be discussed in turn,
and for each we will examine the transducers that change electrical signals into these
properties and then those that change the properties into electrical signals.

7.1.1 Positional Transducers

About 90% of the physical quantities measured are positional. The position may be
linear (distance) or angular (degrees of a circle or number of rotations of a shaft). Of
course, linear position can be converted to angular position by a rack-and-pinion gear
arrangement. Also, recall that position, speed, and acceleration are related by differential
equations: if one can be measured at several precise times, the others can be determined.

A microcomputer controls position by means of solenoids or motors. A solenoid
is an electromagnet with an iron plunger. As current through the electromagnet is
increased, an increased force pulls the plunger into its middle. The solenoid usually acts
against a spring. When current is not applied to the solenoid, the spring pulls the
plunger from the middle of the solenoid; and when current is applied, the plunger is
pulled into the solenoid. Solenoids are designed to be operated with either direct current
or alternating current, and are usually specified for a maximum voltage (which implies a
maximum current) that can be applied and for the pulling force that is produced when
this maximum voltage (current) is applied. A direct-current motor has a pair of input
terminals and a rotating shaft. The (angular) speed of the shaft is proportional to the
voltage applied to the terminals (when the motor is running without being loaded) and
the (angular) force or torque is proportional to the current. A stepping motor looks like
a motor, but actually works like a collection of solenoids. When one of the solenoids
gets current, it pulls the shaft into a given (angular) position. When another solenoid
gets current, it pulls the shaft into another position. By spacing these solenoids evenly
around the stepping motor and by giving each solenoid its current in order, the shaft can
be rotated a precise amount each time the next solenoid is given its current. Hence the
term stepping motor. The universal motor can be given either direct current or
alternating current power. Most home appliances use these inexpensive motors. Their
speed, however, is very much dependent on the force required to turn the load. Shaded
pole motors require alternating current, and the shaft speed is proportional to the
frequency of the AC power rather than the voltage. The torque is proportional to the
current. These inexpensive motors often appear in electric clocks, timers, and fans.
Induction motors are usually larger-power AC motors, and their speed is proportional to
frequency like the shaded pole motor. Finally, the hysteresis synchronous motor is an
AC motor whose speed is accurately synchronized to the frequency of the AC power.
These are used to control the speed of high-fidelity turntables and tape decks.

310 Chapter 7 Analog Interfacing

Figure 7.2. Position Transducers

In inexpensive systems, linear position or angular position is usually converted into
a resistance, which determines a voltage level in a voltage divider circuit, or a frequency
of some kind of RC oscillator. A potentiometer converts angular position to resistance.
(See Figure 7.2a.) A slide potentiometer converts linear position to resistance. Both
transducers are inexpensive but are prone to inaccuracy as the wiper arm in the
potentiometer wears down the resistor or as a coat of dirt or oil builds upon the resistor.
Also, these transducers are sensitive to vibration. Overall accuracy is limited to about
3 %. Minute position displacements can be measured by piezoelectric crystal, such as in
commercial strain gauges. A crystal phonograph cartridge uses the same mechanism.
(See Figure 7.2b.) Angular position of a disk can be converted directly into a digital
signal by shaft encoders, which use mechanical wipers or photodetectors to read a track
on the disk, the tracks being laid out so that the wipers or detectors read a digital word
corresponding to the angle of rotation 0 of the disk. (See Figure 7.2c.) Also, a pair of
wipers or detectors can sense the teeth of a gear or gearlike disk, so they can count the

7.1 Input and Output Transducers 311

teeth as the gear turns. (See Figure 7.2d.) Two wipers are needed to determine both the
motion and the direction of motion of the teeth. Finally, the most accurate and reliable
position transducer is the linear variable displacement transformer. (See Figure 7.2e.)
This device is a transformer having a primary winding and two secondary windings and a
movable slug. As the slug moves, the two secondary windings of the transformer
producing V1 and V2 get more or less alternating current from the primary winding, and
the relative phase of the sine waves output from the windings changes. Either the
voltage level of the sine wave or the relative phase difference between the sine waves
may be used to sense the position of the slug. The linear variable displacement
transformer is the most accurate device for measuring linear distances because it is not
affected by dirt, wear, or vibration as are other devices; however, it is the most
expensive. Angular position can be measured by a control transformer using the same
kind of technique. (See Figure 7.2f.) This device's rotor has a primary coil and secondary
windings are in the housing, which is held stationary, surrounding the rotor. The angular
position of such a device's rotor determines the amount and phase of a sine wave that is
picked up by the secondaries of the transformer.

Velocity and acceleration can be determined by measuring position using one of the
aforementioned transducers above and then differentiating the values in software or using
an electrical circuit that differentiates the voltage. Also, a direct-current tachometer is a
direct-current generator. Being an inverse of a DC motor, its output voltage is
proportional to the rotational speed of the shaft. An AC tachometer is an AC motor run
as a generator; its output frequency is proportional to the (angular) speed of its shaft.
Finally, acceleration can also be measured by producing a force F as a mass m is
accelerated at rate a (F = ma; , then letting the force act against a spring and measuring
the displacement of the spring. This type of device, an accelerometer, can convert the
acceleration into a position using mechanical techniques, thereby measuring acceleration
at the output of the transducer. This is an alternative to measuring position, then using
software to differentiate the values to determine acceleration. Conversely, an
accelerometer can be used to measure acceleration, which can be integrated by a software
program to derive velocity, or integrated twice to get position. This is the basis of an
inertial guidance system. The above examples show that functions can be done by means
of mechanical, electrical hardware, or software, or a combination of the three.

7.1.2 Radiant Energy Transducers

Radiant energy - light and infrared - can be produced or controlled by a microprocessor
using lamps, light-emitting diodes (LEDs), and liquid crystal displays (LCDs). The
terms used for light and infrared radiant energy are those used for radio waves. In a
continuous wave (CW) or pulse-coded mode (PCM), the radiant energy is either on
(high) or off (low). In an amplitude-modulated mode (AM), the amplitude of the
radiation varies with a signal that carries analog information. In frequency-modulated
mode (FM), the frequency varies with an analog signal. The common incandescent lamp
is lit by applying a voltage across its terminals. The radiant energy is mostly uniformly
distributed over the light spectrum and includes infrared energy. Gas-discharge lamps and
fluorescent lamps work in a similar fashion but require current-limiting resistors in

312 Chapter 7 Analog Interfacing

series with the lamp and usually need higher voltages. Their radiant energy is confined to
specific wavelengths that are determined by the material in the lamp. While these are
sometimes used with microprocessors, their relatively high voltage and current
requirements, and the electrical noise generated by gas discharge lamps and fluorescent
lamps, limit their usefulness. More popular are the LEDs and LCDs. An LED is
basically a diode that will emit light if about 10 mA are sent through it. The light is
generated in specific wavelengths: red and infrared are the easiest to generate; but green,
yellow, and orange are also widely available. Current passing through an LED drops
about 1.7 to 2.3 V, depending on the diode material. LEDs are often used in displays to
indicate some output from a microcomputer and are also used in communications
systems to carry information. Inexpensive LEDs can be pulse modulated at better than
10 KHz, and special ones can work at around 1 GHz. An LCD is electrically a capacitor
that is clear if the RMS voltage across it is less than about a volt and opaque if more
than about two volts; it consumes very little power. The voltage across an LCD must
be AC, however, because DC will polarize and destroy the material in the LCD.
Usually, one terminal has a square-wave signal. If the other terminal has a square-wave
signal in phase with the first, the display is clear, and if it has a square-wave signal out
of phase with the first, the display is opaque.

Radiant energy is often measured in industrial control systems. A photodetector
converts the amplitude to a voltage or resistance for a given bandwidth of the very high
frequency sine wave carrier. Often this bandwidth covers part of the visible spectrum
and/or part of the infrared spectrum. The photomultiplier can measure energy down to
the photon - the smallest unit of radiation - and has an amplification of about one
million. However, it requires a regulated high voltage power supply. The photodiode is
a semiconductor photodetector able to handle signals carried on the amplitude of the
radiant energy around 10 MHz. The current through the diode is linearly proportional to
the radiation if the voltage drop across it is kept small. This is done by external
circuitry. However, it is inefficient because a unit of radiant energy produces only 0.001
units of electrical energy. A photodiode might be used in a communication linkage to
carry a signal on a light beam because of its high bandwidth and ease of use with
integrated circuits. If the diode is built into a transistor, a phototmnsistor is made that
relates about one unit of electrical energy to one unit of radiant energy, but the signal
carried on the amplitude is reproduced up to about 100 KHz. Finally, a photoresistor is
a device whose resistance varies with the intensity of the light shone upon it. While this
device is also temperature sensitive, has poor frequency response, and is quite nonlinear,
it can be used to isolate a triac, as we discuss later.

Photodiodes, phototransistors, photoresistors, and other detectors are often used with
LEDs or lamps to sense the position of objects or to isolate an external system from the
microcomputer. Photodetectors are commonly used with an LED light source to detect
the presence or absence of an object between the light source and the photodetector. To
sense the pattern on the disk under the contacts, a shaft encoder or tooth counter can use
this kind of sensor in place of a mechanical contact. Similar techniques place an LED
and a phototransistor inside an integrated circuit package, called an opto-isolator, to
isolate the circuitry driving the LED from the circuitry connected to the detector so that
they can be kilovolts apart and so that electrical noise in the driver circuitry is not
transmitted to the detector circuitry.

7.1 Input and Output Transducers 313

Temperature is controlled by means of heaters or air conditioners. To control the
temperature of a small component, such as a crystal, the component is put in an oven,
which has a resistive heater and is fairly well insulated. As more current is passed
through the heater, it produces more heat; as less current is passed, the natural loss of
heat through the insulated walls brings down the temperature. The temperature of a large
room or building is controlled by means of a furnace or air conditioner, of course. Since
these usually require AC power at high currents and voltages, the microcomputer has to
control a large AC current. An interesting problem in controlling air conditioners is due
to the back pressure built up in them. If the air conditioner has just been running, is
then turned off and is quickly turned on, the motor in it will stall because it cannot
overcome the back pressure in it. So in controlling an air conditioner, if it is turned off,
it must not be turned on for an interval of time that is long enough for the back pressure
to drop off.

Temperature is often sensed in a microprocessor system. Very high temperatures are
measured indirectly, by measuring the infrared radiation they emit. Temperatures in the
range -250°C to +1000°C can be measured by a thermocouple, which is a pair of
dissimilar metals (iron and constantan, for instance), where the voltage developed
between the metals is around 0.04 mV times the temperature. Note that such a low-level
signal requires careful handling and amplification before it can be used in a
microprocessor system. The most popular technique for measuring temperatures around
room temperature is to put a constant current through a diode (or the diode in the emitter
junction of a bipolar transistor) and measure the voltage across it. The output voltage is
typically 2.2 mV times the temperature in degrees kelvin (°K). This voltage level
requires some amplification before conversion to digital values is possible. Provided the
current through the diode is held constant (by a constant current source), the transducer is
accurate to within 0.1 °K. While a common diode or transistor can be used, a number of
integrated circuits have been developed that combine a transistor and constant current
source and amplifier. One of these (AD590) has just two pins, and regulates the current
through it to be 1 uA times the temperature in kelvin. Converting to and then
transmitting a current has the following advantage: the voltage drops in wires whose
sensor is a long distance from the microprocessor, or in switches that may have
unknown resistance, and thus does not affect the current. The current is converted to a
voltage simply by passing it through a resistor. Finally, temperature can be sensed by a
temperature sensitive resistor called a thermistor. Thermistors are quite nonlinear and
have poor frequency responses, but relatively large changes in resistance result from
changes in temperature.

7.1.3 Other Transducers

Pressure can be produced as a by-product of an activity controlled by a microcomputer.
For instance, if a microcomputer controls the position of a valve, it can also control the
flow of liquid into a system, which changes the pressure in the system. Pressure is
sometimes measured. Usually, variations in pressure produce changes in the position of
a diaphragm, so the position of the diaphragm is measured. While this can be
implemented with separate components, a complete system using a Sensym chip in the
LX1800 series of chips (formerly a National Semiconductor series) can measure absolute

314 Chapter 7 Analog Interfacing

or relative pressure to within 1% accuracy. These marvelous devices contain the
diaphragm, strain gauge position sensor, compensation circuits for temperature, and
output amplifier on a hybrid integrated circuit. Finally, weight is normally measured by
the force that gravity generates. The weighing device, called a load cell, is essentially a
piston. Objects are weighed by putting them on top of the piston, and the pressure of
the fluid inside the piston is measured.

Other properties - including chemical composition and concentration, the pH of
liquids, and so on - are sometimes measured by transducers. However, a discussion of
these transducers goes beyond the scope of this introductory survey.

7.2 Basic Analog Processing Components

Basic analog devices include power amplifiers, operational amplifiers, analog switches,
and the timer module. These will be discussed in this section. The first subsection
discusses transistors and SCRs, the next discusses OP AMPs and analog switches in
general, and the last discusses practical OP AMPs and analog switches.

7.2.1 Transistors and Silicon Controlled Rectifiers

To convert a voltage or current to some other property like position or temperature, an
amplifier is needed to provide enough power to run a motor or a heater. We briefly
survey the common power amplifier devices often used with microcomputers. These
include power transistors, darlington transistors, and VFETs for control of DC devices;
(motors, heaters, and so on) and SCRs and triacs for control of AC devices.

The (bipolar) transistor is a device that has terminals called the collector, base, and
emitter. (See Figure 7.3a.) The collector current Ic is a constant (called the beta) times
the base current Ib. The power transistor can be obtained in various capacities, able to
handle up to 100 A, and up to 1000 V. These are most commonly used for control of
DC devices. A darlington transistor has a pair of simple transistors connected internally
so it appears to be a single transistor with very high beta. (See Figure 7.3b.) Power
darlington transistors require less base current Ib to drive a given load, so they are often
used with microprocessor I/O chips that have limited current output. Field-effect
transistors (FETs) can be used in place of the more conventional (bipolar) transistor. In
an FET, the current flowing from drain to source is proportional to the voltage from
gate to source. Very little current flows into the gate, which is essentially a capacitor
with a small leakage current. (See Figure 7.3c.) However, a vertical field-effect
transistor (VFET) is faster than a standard FET and can withstand larger voltages (about
200 V) between drain and source. The VFET is therefore a superb output amplifier that
is most compatible with microcomputers. Suffice to say that for this survey, a power
transistor, a darlington, or a VFET is usually required to drive a DC device like a motor,
heater, or lamp.

7,2 Basic Analog Processing Components 315

Figure 7.3. Power Output Devices

An AC device like an AC motor uses a silicon controlled rectifier (SCR) or a triac
to amplify the voltage or control signal output from a microcomputer. The SCR has
anode, cathode, and gate terminals, as in Figure 7.3d. When sufficient current L (about
50 mA) flows into the gate through the anode, the device looks like a diode, passing
positive current from anode to cathode but inhibiting flow from cathode to anode. That
is why it is called a controlled rectifier, since a rectifier is an older name for a diode.
Moreover, the SCR has memory; once turned on, it remains on, regardless of the current
through the gate, until the current through the anode tries to reverse itself and is thus
turned off. The gate controls only half a cycle, since it is always turned off for the half
cycle when current tries to but cannot go from cathode to anode; and it is turned on only
when the gate is given enough current and the current will then flow from anode to
cathode. To correct this deficiency, a pair of SCRs are effectively connected "back to
back" to form a triac. (See Figure 7.3e.) The power current flows through main terminal
1 (MTl) and main terminal 2 (MT2) under the control of the current Ig through the gate
and MTl. If the gate current is higher than about 50 mA either into or out of the gate,
MTl appears shorted to MT2 and continues appearing as such regardless of the current
through the gate until the current through MTl and MT2 passes through 0. Otherwise,
MTl and MT2 appear disconnected. SCRs and triacs handle currents from 0.5 A up to
1000 A and can control voltages beyond 800 V.

SCRs and triacs control motors, heaters, and the like by controlling the percentage
of a cycle or the number of cycles in which full power is applied to them. The types of
control are discussed next in terms of triacs, but they also apply to SCRs.

316 Chapter 7 Analog Interfacing

Figure 7.4. Triac Control Techniques

In on/off control, also called bang-bang control, the triac applies either full power
or no power to the motor. To do this, either full current or no current is applied to the
gate. A simple variation of this technique applies gate current from MT2 through a
resistor, so that if the resistance is low, when voltage on MT2 builds up, current flows
through the resistor to turn on the triac. (See Figure 7.4a.) As soon as it is turned on,
however, the voltage on MT2 disappears. Thus, the current through the resistor stops as
soon as it has done its work. This reduces the power dissipated in the resistor. If the
resistance is large, no current flows through the gate, so the triac is off. The resistor can
be a photoresistor, coupled to an incandescent lamp or an LED in an optocoupler. When
the LED or lamp is lit, the photoresistor has a low resistance, which turns the triac on.
Otherwise, the resistance is high and the triac is off. This configuration is particularly
suited to on/off control of large AC loads by means of triacs.

A simple variation is called integral cycle control. Here, the triac is turned on for
n out of every m half-cycles. Figure 7.4b shows n = 2, m = 3. The gate current is
turned on at the beginning of each half-cycle when the triac is on, A final variation is
called proportional cycle control. A pulse generator of some kind is commonly used to
send a current pulse through the gate at a precise time in each half-cycle. (See Figure
7.4c.) For a fraction F of each half-cycle, the triac is turned on. (See Figure 7.4d.) Full
power is applied to the device for the last Fth of the cycle. Roughly speaking, the
device gets power proportional to the fraction F . A pulse transformer is often used to
isolate the controller from the high voltages in the triac circuitry. (See Figure 7.4c.) The
controller provides a short (5-us) voltage pulse across the primary winding (shown on
the left) of the transformer, which provides a current pulse to the triac to turn it on. The
controller has to provide this pulse at the same time in each half-cycle. If the pulse is
earlier, more current flows through the triac and more power goes to the load.

7.2 Basic Analog Processing Components 317

On/off control is used where the microprocessor simply turns a device on or off. A
traffic light would be controlled like this. Bang-bang control is commonly used in
heating systems. You set your thermostat to 70°F. If the temperature is below 70°F,
the heater is turned on fully; and, if above 70°F, the heater is completely off. Integral
cycle control is useful in electric ranges, for instance, to provide some control over the
amount of heating. Finally, variable-duty cycle control is common in controlling
lighting and power tools, since the other types of control would cause the light to flicker
perceptibly or the tool to chatter. However, this type of control generates a lot of
electrical noise whenever the triac is turned on fully in the middle of a half-cycle. This
kind of noise interferes with the microcomputer and any communications linkages to and
from it. So variable-duty cycle control is normally used when the other forms generate
too much flicker or chatter.

7.2.2 Basic Linear Integrated Circuits

The basic module used to process analog signals is the operational amplifier, or OP
AMP. It is used in several important configurations, which we will discuss here. We
will then discuss the analog switch, which allows convenient microprocessor control of
analog signals, and consider several important applications of this switch.

The OP AMP has two inputs, labled + and -, and an output. (See Figure 7.5.) The
output voltage signal vout is related to the signals v+ on the + input and v- on the -
input by the expression

Vout = A (V+ - V-)

where A is a rather large number, such as 100,000. The OP AMP is in the linear mode
if the output voltage is within the range of the positive and negative supply voltages,
otherwise it is in the saturated mode of operation. Clearly, to be in the linear mode, v+
has to be quite near V–.

The first use of the OP AMP is the inverting amplifier. Here, the + input is
essentially connected to ground, so v+ is 0, and feedback is used to force v- to 0 V,
so the OP AMP is in the linear mode. In Figure 7.5a, if vin increases by one volt,
then v- will increase by a small amount, so the output Vout will decrease 100,000
times this amount, large enough to force v- back to 0. In fact, Vout will have to be

in order to force v- to 0. The amplification of this circuit, the ratio Vout /V in , is
exactly Rf/Rin and can be selected by the designer as needed. In a slight modification of
this circuit, one or more inputs having signals Vin1, Vin2,. . . can be connected by
means of resistors Rinl, Rin2, ... (as in Figure 7.5b) and the output voltage is then

Vout = - { [(Rf/Rinl) Vinl] + [(Rf/Rin2) Vin2] + . . . }

in a circuit called a summing amplifier.

318 Chapter 7 Analog inter!acini

Figure 7.5. Operational Amplifier Circuits

7,2 Basic Analog Processing Components 319

Another classical use of an OP AMP is integration of a signal. A capacitor has the
relation of current through it, i, to voltage across it, v, as follows:

where Cf is the capacitance. In Figure 7.5c, if Vin increases by one volt, then Vout
will have to change by one volt per second so the current through the capacitor can
offset the current through Hi to force v- to 0. Generally, the relationship is

r'1 / (Ri x Cf)] Vin dt
J to

where V c f i is the voltage across the capacitor at the time we began integrating the
input signal.

In these three techniques, the voltage v- is forced to 0. v- is called a virtual
ground. Of course, it cannot really be connected to ground or no current would be
available for the OP AMP v~ input. However, complex circuits, such as amplifiers,
integrators, differentiators, and active filters, are analyzed using circuit analysis
techniques, assuming that v- is effectively grounded.

A different use of the OP AMP puts the incoming signal on the + input and uses
feedback to try to force v- to the same voltage as V+. The voltage follower (shown in
Figure 7.5d) does this by connecting v- to Vout. The noninverting amplifier uses
the same principle (as shown in Figure 7.5e) and satisfies the relationship

Vout = [1 + (Rf / Rin)]Vin

and the output voltage has the same polarity as the input voltage. Combining the ideas
underlying the summing amplifier with those of the noninverting amplifier, we have the
differential amplifier (shown in Figure 7.5f). One or more inputs such as Vin1 are
connected via resistors like Rin1 to the + input of the OP AMP, and one or more
inputs such as Vin 2 are connected via resistors such as Rin2 to the - input of the OP
AMP. The output is then

Rfl I Rf2 \
where K1 = (1 + I and

Rinl + Rfl \

In this circuit, if more than one input vin is connected to the + OP AMP input via a
resistor Rin, it appears like the term for vinl adding its contribution to Vout; and if
connected to the - input, it subtracts its contribution to Vout like the term for Vin2.

A final saturation mode technique used in the OP AMP depends on the finite output
range it has. The comparator has the connections shown in Figure 7.5g. Here, the
output is a high logical signal, H, if Vin > Vref, else it is L. The comparator can be
reversed, so that Vref is on the + input and Fin is on the - input.

320 Chapter 7 Analog Interfacing

Figure 7.6. Analog Switches

Then Vout is high if Vin < Vref. Also, Vref can be derived from a voltage
divider:

Vref = Vp R2 / (Rl + R2)

where Vp is an accurate voltage. Finally, feedback can be made to change the effective
Vref a little. Using this variation, the comparator can be insensitive to small changes
in vin due to noise. By connecting the output to v+ (as shown in Figure 7.5h) the
effective Vref can be changed so it is higher when the output is H than when the
output is L. Then the output remains H or L even when the input varies a bit. Suppose,
for instance, that the input is low and the output is high. When the input exceeds the
higher reference, the output goes low. The output remains low until the input drops
below the lower reference. When the input drops below the lower reference and the
output goes high, the input has to exceed the higher reference again before the output
can go low, and so on. This stubborn-like mechanism is called hysteresis and is the
basis of the Schmitt trigger gate used to ignore noise in digital systems.

The analog switch is implemented with field-effect transistors. It has a control C
and two terminals T1 and T2. (See Figure 7.6a.) If C is high, T1 is connected to T2 and
the switch is said to be on, else they are disconnected and the switch is off. Some
number, say, eight, of such switches can be connected at the T1 terminal, and a decoder
with 3-bit address A can be on a chip. The Ath switch can be turned on by the decoder,
the others being turned off. This chip then behaves like an eight-position rotary switch
that is controlled by the address input. (See Figure 7.6b.) This kind of chip is an analog
multiplexer. Single analog switches and analog multiplexers are valuable as ways to
control analog signals from a microcomputer.

The final important device is the timer. A timer outputs a periodic signal whose
period is proportional to the value of a resistor and a capacitor connected to it. (Often,
the period can be adjusted by a control voltage, but the voltage-to-frequency converter is
generally better.) The timer allows resistor-based transducers to generate AC signals,
where the information is carried by the frequency (period). Such signals are easy to
handle and measure, as we will see in the next chapter.

7.2 Basic Analog Processing Components 32!

Table 7.1. Characteristics of the CA3140

7.2.3 Practical Linear Integrated Circuits

We now consider an operational amplifier, the CA3140, which is particularly suitable
for microprocessors. It has low-current CMOS inputs and bipolar transistor outputs able
to supply significant current. Its characteristics are listed in Table 7.1.

In this book, Vs + is the positive supply voltage and Vs - is the negative supply
voltage. The first two table entries indicate that the total supply voltage may not be
greater than 36 V nor less than 4 V. Two very common connections are the dual
supply, where Vs+ is exactly the negative of Vs- (for example, Vs+ = +15 V, Vs- =
-15 V), and the single supply, where either Vs+ or Vs- is 0 (for example, Vs+ = 5 V,
Vs- = 0 V). A ±15-V dual supply is useful when almost maximum output voltage
range is needed, and a single +5-V supply is useful when the only power supply is the
one supplying 5 V to the logic part of the system. A good OP AMP for microcomputer
applications should be capable of operating in either of the preceding cases. Clearly,

322 Chapter 7 Analog Interfacing

both connections are within the specifications listed in the first two rows of Table 7.1
for the CAS 140. To make the information in the table more concrete, we will consider
its significance for a single-ended +5-V supply application. The reader is invited to
consider the significance of these parameters for a ±15-V dual-supply application.

The next four entries indicate the range of input voltages. The maximum and
minimum values of the positive signal input v+ and the negative signal input V
should not be exceeded or the OP AMP may be destroyed, For example, if Vs + is 5V
and Vs - is 0 V, then neither v+ nor v- should have a voltage higher than 13 V, nor
lower than -0.5 V. The full range of voltages can be used in the saturated mode of
operation. This OP AMP has adequate capabilities using a +5-V single supply for
comparator applications. However, if the linear mode of operation is used, v+ and V-
should be kept within the maximum and minimum common-mode voltages. For our
previous example, using the same supply voltages, v+ and v- should be kept within
2.5 V and -0.5 V for operation in the linear mode. Note that inputs above 2.5 V will
pull the OP AMP out of the linear mode, and this can be a problem for voltage-
follower, noninverting amplifiers or for differential amplifiers. However, since the
common-mode voltage range includes both positive and negative voltages around 0 V,
inverting amplifiers, summers, and integrators can be built using a single +5-V supply.
This is a very attractive feature of an OP AMP like the CA3140.

The next five lines of Table 7.1 show the input characteristics that cause errors. The
v+ and V– inputs appear to be a resistor, a capacitor, and a current source, all in
parallel. The equivalent input resistance, 1 TO, is very high, This high input resistance
means that a voltage follower or noninverting amplifier can have such high input
resistance, which is especially important for measuring the minute current output from
some transducers like pH probes and photodetectors. Moreover, it means that quite large
resistors (100 KO) and quite small capacitors (0.01 pF) can be used in the circuits
discussed earlier, without the OP AMP's loading down the circuit. Especially when the
rest of the system is so miniaturized, larger capacitors are ungainly and costly. The input
capacitance, 4 pF, is very low but can become significant at high frequencies. The
current source can cause some error but is quite high in this OP AMP, and the error can
often be ignored. v+ and v- have some current flowing from them, which is less than
2 pA according to Table 7.1. If the v+ input is just grounded but the V- input is
connected by a 1-MO resistor to ground, this input current causes 2 jaV extra, which is
multiplied by the amplification (100,000) to produce an error of 0.2 mV in i our . The
error due to input current can be minimized by making equal the resistances that connect
the V+ and v- inputs to ground. In Figure 7.5a, a resistance equal to Kin in parallel
with Rf can be connected between the + input and ground, just to cancel the effect of
the input current on the output voltage. However, this particular OP AMP has such tow
input current that the error is usually not significant, and the V+ input is grounded.

The offset voltage is the net voltage that might be effectively applied to either V +
or V-, even when they are grounded. The offset current is the current that can be
effectively applied to either input, even when they are disconnected. These offsets have
to be counterbalanced to get zero-output voltage when the input is zero. An offset
adjustment is available on OP AMPs like the 3140 to cancel the offset voltage and
current,

The next five entries describe the output of the OP AMP. The output resistance is
the effective resistance in series with the output of the amplifier considered as a perfect

7,2 Basic Analog Processing Components 323

voltage source. In this case, it is 60 O. A high output resistance limits the OP AMP's
ability to apply full power to low resistance loads, such as speakers. However, the
effective output resistance of an amplifier is substantially decreased by feedback. The
output voltage can swing over a range of from 2 to 0.13 V, if the power supply Vs+ is
5 V and Vs - is 0 V. This means that for linear operation the amplifier can support
about a 1,8-V peak-to-peak output signal, but this signal has to be centered around 1.07
V. Note that the output range is a serious limitation for a comparator whose output
drives a digital input, because a high signal is usually any voltage above 2.7 V. An
external (10-KO) pull-up resistor, from the output to +5 V, can be used such that
whenever the OP AMP is not pulling the output low, the output is pulled up to nearly
5 V. The output can source (supply) 10 mA and can sink (absorb) 1 mA to the next
stage. It can supply quite a bit of current to a transistor or a sensitive gate triac because
these devices require current from the output of the OP AMP. However, this OP AMP's
ability to sink only 1 mA restricts its use to low-power (CMOS, LSTTL,
microprocessor HCMOS) digital inputs; and it cannot sink 1.6 mA reliably as is
required to input signals to conventional TTL gates.

Recall that the bandwidth of an amplifier is the range of frequencies over which the
gain is at least 1//2 times the maximum gain. If the bandwidth of an amplifier is
100,000 Hz, then any small-signal sine wave whose frequency is between direct current
and 100,000 Hz will be correctly amplified. Moreover, any complex periodic waveform
can be decomposed into a sum of sine waves. To correctly amplify the waveform, all the
component sine waves must be amplified correctly. (The phase delays also must be
matched for all components.) Generally, a square wave of frequency F will be reproduced
fairly accurately if the amplifier bandwidth is at least 10 F.

For most OP AMPs, the bandwidth decreases as the gain increases, so the product is
constant. In the 3140, this constant is 3.7 MHz. That means that if the circuit
amplification is 1, the bandwidth is 3.7 MHz. For an OP AMP (shown in Figure 7.5a)
with an amplification of 10, the bandwidth is 370 KHz. The bandwidth is an important
limitation on the OP AMP's ability to amplify small high-frequency signals. The slew
rate is the maximum rate at which the output can change (due to a sudden change on the
input). The slew rate usually limits the effective bandwidth of large signals less than the
available bandwidth of small signals, because the output cannot change fast enough.
This OP AMP has a very good slew rate; the output can change at a rate of 7 V in 1 us.
The transient response is the time delay between a sudden change in the input and the
corresponding change in the output. A related parameter, the settling time, is the time
it takes for the output to reach the desired voltage. It is not specified in Table 7.1
because it depends on the external component configuration and on what we mean by
reaching the desired voltage. The transient response and settling time can be of concern
to a programmer who must compensate for such delays. In circuits where a digital device
interfaces with an OP AMP, the slew rate and transient response may be the limiting
factor on the use of an OP AMP.

Finally, the power requirements of the device are given. It dissipates about 8 mW
when operated using a single 5-V supply, taking 1.6 mA from the power supply under
normal conditions. It takes about 6 mA and dissipates about 180 mW when operated
from dual ±15-V supplies. This parameter determines how big the power supply has to
be to supply this device and can be significant when little power is available.

324 Chapter 7 Analog Interfacing

Figure 7.7. A Practical Voltage Follower

Figure 7.7 shows the pin connections for a CA3140 and some practical
considerations in using it for a dual-supply voltage follower. To avoid noise input and
unwanted oscillation, 0.1-uF capacitors, called bypass capacitors, are connected between
the Vs + pin and ground and between the Vs - pin and ground. The connection should be
made as close to the pin as possible. Wherever practical, every OP AMP should be
bypassed in this manner. The 10-KO potentiometer between pins 1 and 8 is used to
counterbalance the voltage offset. The inputs (to the whole circuit, not the OP AMP) are
connected momentarily to ground, and this potentiometer is adjusted to output 0 V.
Although the voltage follower needs no resistors (as in Figure 7.5d), resistors are put in
the feedback loop and the input to prevent excessive currents from flowing when the OP
AMP is driven out of its linear mode of operation. Since the inputs have very high
resistance in normal operation, these resistors have no effect in that mode. However,
they should be put in if the OP AMP can enter a saturation mode of operation. Note that
if the power to this OP AMP is off and a signal is applied to the input, excessive
current can flow unless these resistances are put in because that operation will be in the
saturated mode.

Some other considerations are offered. When handling devices with such high input
resistances, tools, soldering irons, and hands should be connected via a large (15-MQ)
resistance to ground. Such a device should never be inserted or removed from a socket
when power is on, and signals should not be applied to inputs (unless a series resistor is
used, as in the voltage follower recently described) when power is off. Especially if high
(1 -MO) resistances are used, keep them clean, keep the leads short, and separate the
components on the input of an OP AMP as far as possible from the output circuitry. A
sheet of metal connected to ground provides some isolation from electrical noise, and all
components and wires should be close to this ground plane. However, the ground
reference points for such high-gain OP AMPs should be connected at one single point,
running separate wires from this point to each ground point, to avoid so-called ground
loops. If this advice is ignored, the OP AMP may become an oscillator because the
minute voltages developed across the small but finite resistance of a ground wire could
be fed back into an input of the OP AMP.

7.2 Basic Analog Processing Components

Figure 7.8. Practical Analog Switches

We now turn to some practical aspects of using CMOS analog switches. The
analog switch is almost perfect: its bandwidth is about 40 MHz; when closed it is
almost a short circuit, and when open it is almost an open circuit. We now focus on the
meaning of "almost." Look at Figure 7.8, which shows the 4066 and the 4051.

We consider the problem of supplying control signals that are compatible with the
voltage levels on the terminals of the switch. The maximum Vs + minus Vs - voltage
across the 4066 is 15V. Sometimes, a dual ±7.5-V supply is used. If so, the control
signals on pins 5, 6, 12, and 13 must be around -7.5 V to be considered low enough to
open the corresponding switch, and around +7.5 V to be considered high enough to close
the switch. Control signals from a microcomputer are normally in the range of 0 to 5• V
and must be translated to control the switch. However, the 4051 has some level
translation ability. The logic signals to address and enable the switches are referenced to
Vs + and pin 8, so a high signal is close to Vs+ and a low signal is close to the voltage
level on pin 8. However, the analog levels on the switch's terminals can be between
Vs+ and Vs-, which is on pin 7. Commonly, Vs+ is +5 V, pin 8 is grounded, and
Vs- is -5 V, to directly use control signals from a microcomputer yet provide some
range of analog voltages on the terminals.

When a switch is closed, it appears as a small resistance, about 80 O for the 4066
or about 120 O for the 4051. This resistance is not exactly linear, varying over a range
of 2 to 1. The resistance is more linear if (Vs + minus Vs -) is as large as possible.
However, if used with external resistances around 10 KO in series with the switch, less
than 0.5 percent distortion is introduced by the nonlinear resistance of the 4066, even for
(Vs+ minus Vs) = 5 V.

326 Chapter 7 Analog Interfacing

Figure 7.9. 555 Timer

When the switch is off, each terminal appears to be a small current source, about
100 nA for the 4066 and about 500 nA per analog switch in the 4051. This small
current increases substantially with temperature and can be a serious source of error if the
associated circuitry has very high resistance. To minimize it, we sometimes see a heat
sink (a metal attachment to a transistor or integrated circuit to dissipate the heat) on an
analog switch, and it is sometimes placed away from heat-producing components.
Finally, a substantial amount of unwanted current flows from the power supply to the
terminals if the voltage from a terminal to vs - is greater than 0.6 V and positive
current flows from pin 3 of the 4051, or from pins 2, 3, 9, or 10 in the 4066. One
should ensure that positive current flows into these pins or that the voltage drop across
the switch is never more than 0.6 V. In summary, the 4066 has a bit better performance,
lower "on" resistance and lower "off current, and may be used individually; but the 4051
incorporates eight switches into one chip and translates the control signal level from 0
to 5 V to control signals between ±5 V.

Finally, we discuss the timer module. The ubiquitous 555 is the most popular and
least expensive timer. (See Figure 7.9a for the circuit that generates repetitive signals.)
In Figure 7.9b we see a graph that gives the period of the signal as a function of the
resistance, which is the value R1 + 2R2 in Figure 7.9a, and the capacitance, which is
the value of Cl.

7.3 OP AMP and Analog Switch Signal Conditioning

OP AMPs and analog switches are often used with microcomputers to condition analog
signals before converting them to digital signals, to control analog signals used for other
purposes, or to clean up or modify analog signals generated by D/A converters. The four

7.3 OP AMP and Analog Switch Signal Conditioning 327

main aspects of conditioning a signal are the filtering of frequency components, the
selection of inputs, the amplification or scaling of input levels, and the nonlinear
modification of signal voltages. These are now considered in turn.

7.3.1 Filters

Recall that any periodic waveform can be considered a sum of sine waves. Frequency
filtering is commonly done when the signal of interest is accompanied by unwanted
noise, and most of the noise is at frequencies other than those of the signal's sine wave
components. If the signal frequencies are low and the noise frequencies are high, a low-
pass filter is used. (See the amplitude-versus-frequency characteristic of a low-pass filter
in Figure 7.10a and the circuit diagram in Figure 7.10b.) Intuitively, capacitor C1 tends
to integrate the signal, smoothing out the high-frequency components, and capacitor C2
further shorts out the high-frequency components to ground. Some D/A conversion
techniques generate high-frequency noise, so a low-pass filter is commonly used to
remove the noise from the signal. If the signal frequencies are higher than the noise
frequencies, a high-pass filter is used to reject the noise and pass the signal. (See Figure
7. l0c for the amplification characteristics and Figure 7. l0d for a high-pass filter circuit.)
Intuitively, we also see that the capacitors pass the high-frequency components,
bypassing the low-frequency components through the resistors. A signal from a light
pen on a CRT gets a short pulse every time the electron beam inside the CRT writes
over the dot in front of the light pen. The signal has high-frequency components, while
the noise - mostly a steady level due to ambient light - is lower in frequency. A high-
pass filter passes the signal and rejects the noise. Finally, a bandpass filter can reject
both higher- and lower-frequency components, passing only components whose
frequencies are between the lower and upper limits of the band, and a notch filter can
reject frequencies within the upper and lower limits of a band. (See Figures 7. l0e
through 7.10h for the amplification characteristics and circuit diagrams of these filters.)

Compound filters can be used to reject various frequencies and emphasize other
frequency components. Two techniques can be used: in one, the output from one filter
feeds the input to the next filter to cascade them in a chain configuration; and in the
other, the signal is fed to both filters and the outputs are added by a summing amplifier
in a parallel configuration. For instance, a bandpass filter can be made from a low-pass
filter that rejects components whose frequency is above the band, cascaded into a high-
pass filter that rejects components whose frequency is below the band. A notch filter can
be made by summing the outputs of parallel high-pass and low-pass filters. Compound
filters can be used to more sharply attenuate the signals whose frequencies are above the
low-pass band or below the high-pass band. The best way to cascade n low-pass filters
to more sharply attenuate high-frequency components and thus get a 2 nth-order filter is
a nice mathematical study, and three types of filters have been shown mathematically
optimal in one sense or another. The butterworth filter has the flattest amplification-
versus-frequency curve in the low-frequency band where we pass the signal in a low-pass
filter. However, the phase delays are quite different for different components. A square
wave comes out with a few notches and humps. The bessel filter has the most linear
relationship between frequency and phase delay and is especially useful for processing

328 Chapter 7 Analog Interfacing

signals whose information is carried, in part, by the phase of its components and its
pulse edges and shapes. The chebyshev filter is characterized by a designer-specified
irregularity in the amplification-versus-frequency curve in the low-frequency band and
maximum rejection just outside this band in a low-pass filter. All these filters look
alike, but differ in the precise values of the components. These precise values can be
obtained from tables, using simple transformations on the values in the tables, or by
means of commonly available computer programs. Finally, while the preceding
discussion concentrated on low-pass filters, the same terms and concepts apply to high-
pass filters. And high-pass filters can be cascaded with low-pass filters to get bandpass
filters or paralleled to get notch filters.

Figure 7.10. Some Filters

7.3 OP AMP and Analog Switch Signal Conditioning

Figure 7.11. Selecting Inputs for a Stereo Preamplifier

7.3.2 Selection of Inputs and Control of Gain

The selection of inputs and distribution of outputs is normally accomplished by means
of analog switches under the control of a microcomputer parallel output port. The
individual analog switches of a 4066 can be controlled, each by a bit from an output
port, to obtain maximum flexibility throughout the system being controlled.
Alternatively, the 4051 can select from one of eight inputs, or distribute to one of eight
outputs, using 3 bits from a parallel output port.

Microcomputers are appearing in almost every electronic product. They are useful in
a stereo system, for example, because the listener can program a selection of music for a
day or more. The microcomputer acts as a very flexible "alarm clock." Analog switches
can be used to control the selection and conditioning of analog signals in the
preamplifier. We now discuss an example of the use of 4051 switches for selection of
inputs to a stereo preamplifier. (See Figure 7.11.)

This preamplifier has four sources (FM radio, CD, cassette tape, and auxiliary), and
each source has two channels (for example, CD A and CD B). All signals are no larger
than 1.5V peak-to-peak and are as close to that range as possible. The 4 bits from the
output port control the two switches such that the high-order 2 bits are the high-order

330 Chapter 7 Analog Interfacing

bits of the addresses of both switches, but the lowest-order bit is the low bit of the
address of one of the switches, and the next lowest-order bit is the low address bit of the
other switch. The 2 high-order bits select the source: FF selects the tuner, FT selects the
CD, TF selects the tape input, and TT selects the auxilliary input. The 2 low-order bits
select the mode: FF puts the A channel into both speakers, FT puts the A input channel
into the A speaker and B input channel into the B speaker (stereo), TF puts the A input
into the B speaker and the B input into the A speaker (reverse stereo), and TT puts the B
input into both speakers. To select the CD inputs in the stereo mode, the program
would put the value 0x5 into the output register.

We note some fine points of the hardware circuit in Figure 7.11. Using a single +5
V supply both for the analog switches and the OP AMP makes level conversion of the
control signals unnecessary. To achieve this, the direct current component of the analog
signal must be biased by adding a constant to it. The OP AMP has its + input
connected to a voltage midway between the limits of the input and output voltage of the
CA3140 to keep it in its linear mode of operation. The inputs are connected through
capacitors to shift the input signal so it is between 0.2 V and 2.5 V.

The analog signal often has to be conditioned either by amplifying or scaling down
its magnitude. This is often required because to get maximum accuracy, A-to-D
converters require a voltage range as wide as possible without exceeding the range of the
converter; and D-to-A converters produce an output in a fixed range that may have to be
amplified or reduced before it is sent out of the system. Two techniques for scaling down
a signal are discussed first, then a technique for amplifying a weak signal with a
computer-selected amplification is discussed. The first technique for scaling down a
signal is not unlike the selection of inputs discussed earlier; the scale factor is selected
by a switch. The second technique uses a fast switch to sample the input at a given duty
cycle. We will discuss examples of these techniques now. Then we explain how the
amplification of a weak signal can be controlled by a computer.

Consider a mechanism for reducing an analog signal by a factor controlled by an
output port of a microcomputer. This mechanism might be used on a microcomputer-
controlled digital meter to select the range of the voltmeter. Suppose an input voltage in
the range of 0 to 500 V is to be reduced to a voltage in the range of 0 to 0.5 V for use in
the next stage of the meter. (See Figure 7.12a.)

The 4051 selects one of the resistors, connecting it to ground. That resistor
becomes part of the voltage divider that reduces the input voltage to within the range
needed by the next stage. The other resistors not selected by the 4051 are effectively
connected to very large resistors (turned-off analog switches), so they disappear from the
circuit. The voltages across all the switches are kept within 0.6 V because the computer
will select the appropriate resistor to divide the input voltage so that the next stage gets
a voltage within its range. Thus, the analog switch is not corrupted by unwanted current
flow, as we worried about in the last section. This technique can be used to reduce the
magnitude of incoming analog signals under the control of a microcomputer.

Another very useful technique is to open and close a switch at a very fast rate, about
ten times the maximum frequency of the analog signal being processed. (See Figure
7.12b.) If the analog switch is closed, the amplification is unity. If open, the
amplification is 0; if open 50% of the time, the amplification is one-half. The
microcomputer can control the duty cycle of the switch (the percentage of the time the

7,3 OP AMP and Analog Switch Signal Conditioning 331

Figure 7.12. Computer Control of Amplification

switch is closed) to control the scaling of the analog signal. The output of this switch
has a fair amount of high-frequency noise, which can be eliminated by passing it
through a low-pass filter. Since an analog switch can operate well at 10 MHz, making
the control signal frequency as high as possible eases the requirements on the low-pass
filter. A simple way to control the duty cycle is to use an n-bit binary counter, a
comparator fed from an output port, and a set/clear flip-flop. The counter should be
clocked fast enough so that it completes its 2**n-count cycle in about ten times the
maximum frequency of the analog signal, because that will determine the switch control
frequency. When the counter passes 0, the flip-flop is set. When the value in the counter
is equal to the value in the output register, as determined by the comparator, the flip-flop
is cleared. Its output controls the switch, so the duty cycle of the switch is proportional
to the number in the output register. A single counter can be used with a number of
comparators, flip-flops, and switches to control several analog signals. For instance, an
octave filter used in sophisticated stereo systems. Each octave has a band-pass amplifier
so that the listener can compensate for excessive or deficient amplification in its
reproduction. Ten comparators, flip-flops, and switches can control the amplification of
each octave from a microcomputer. This would enable a microcomputer to automatically
calibrate a stereo system by adjusting the amplification of each octave as tones are
generated and responses are measured under its control.

332 Chapter 7 Analog Interfacing

Audio integrated circuits generally use the two techniques just discussed. You may
not realize that they are being used. You can build these circuits using analog switches
to understand how they work, and to experiment with different values of resistance, or
chopping frequency, to see how they affect distortion or frequency response.

Two other techniques useful for scaling an analog signal deserve mention. A field-
effect transistor (FET) behaves like a fairly linear resistor, provided the voltage across it,
from drain to source, is not too high. The resistance is proportional to the voltage from
gate to drain. Alternatively, the resistance of a light-sensitive FET is proportional to the
light shone on it. Used in an opto-isolator, a light-sensitive FET can be used as any
resistor in a voltage divider or an operational amplifier circuit, (See Figure 7.12c.)
Finally, some operational amplifiers (like the CA3180) have a pin whose voltage
controls the amplification. These devices can be controlled by a microcomputer sending
out a voltage to adjust the light of the opto-isolator FET or by the gain of a suitable
operational amplifier. Finally, signal level can be determined and used to adjust the
amplification of these devices automatically, in an automatic gain control (AGC)
circuit. An AGC circuit sometimes adjusts a filter's input voltage to prevent saturation.

Amplification (greater than 1) must be done with an OP AMP but can be controlled
with analog switches. By effectively connecting or disconnecting a resistor R1 in
parallel with another resistor R2, the resistance can be changed from R2 to (R1 x
R2) / (Rl + R2). The two resistors in an inverting amplifier can be switched by this
method to alter the gain. (Consider Figure 7.12d.) If control signals C1 and C2 are HL,
the amplification is 1; if LL, the amplification is 2; if HH, 4; and if LH, 8. A second
stage, cascaded onto this one, could be built to have amplification 1, 16, 256, or (a
rather high) 4096, and so on. The computer can select the amplification by setting these
control signals to the analog switches. Amplification ratios lower than 2 provide closer
control and can be obtained by appropriate resistors in the circuit.

7.3.3 Nonlinear Amplification

Nonlinear modification of analog signals is the final type of signal conditioning. A
number of fascinating circuits have been advanced to multiply or divide one analog
signal by another, or to output the square root, log, or sine of an analog signal. But
unless the signal is too fast, hardware/software trade-offs usually favor microcomputer
processing of the signal. Three special cases often favor analog signal conditioning:
absolute value, logarithmic function, and sample and hold. (See Figure 7.13.)

A diode is capable of extracting the absolute value of a waveform, and this is the
basis of the AM radio detector. An accurate absolute value function is sometimes very
useful if, for example, an input voltage whose range is over ± IV is to be measured by
an analog-to-digital converter that can only measure positive signals and perhaps has
only a single-ended 5-V supply. Figure 7.13a puts the diode into the feedback loop of an
OP AMP to increase the linearity of the absolute value function. For positive inputs,
the diode disconnects the OP AMP so the output is connected to the input via the
feedback resistor R2. For negative inputs, the OP AMP simply inverts the input to get
the output. Using a CA3140, this circuit can derive the absolute value of sine waves
even beyond 100 KHz.

7.3 OP AMP and Analog Switch Signal Conditioning

Figure 7.13. Nonlinear Signal Conditioning

The logarithm of an input voltage is sometimes obtained using analog signal
conditioners, because audio levels, light levels, and so on are logarithmically related to
voltages measured by transducers. Conditioning the analog signal by a logarithmic
function drastically compresses the range of signal that must be converted by an analog-
to-digital converter. The transistor's emitter current i is related to its emitter voltage V
by the exponential law

where a is a constant. It can be put into a feedback circuit of an OP AMP to derive a
logarithmic function signal conditioner. (See Figure 7.13b.) The output Vout is related
to the input Vin by

Vout = A log(Vin/B)

where A and B are constants that depend on the resistor in the circuit and on the
transistor and its temperature.

The saniple-and-hold circuit is the last of the nonlinear signal conditioners of
particular use in microcomputer systems. Sometimes used by itself to sample an input
signal at a precise time, it is also an important building block in digital-to-analog
converters, covered in §7.4.1, and in multiple-output data acquisition systems (Figure
7.13c). The input signal passes through an analog switch; when it is on, the voltage on
the capacitor quickly approaches the input voltage. When off, the capacitor voltage
remains steady. The voltage follower makes the output voltage equal to the voltage
across the capacitor without leaking its voltage, even though the output may have to
supply considerable current to the device it feeds. Turning the switch on causes this
circuit to sample the input. A microcomputer output register can control the switch to
sample an incoming waveform at a precise time so the output voltage from the sample-
and-hold circuit can be converted to a digital value.

334 Chapter 7 Analog Interfacing

7.4 Converters

We often convert analog signals into digital signals, or analog amplitude signals into
analog frequency signals, and vice versa. The first subsection describes the digital-to-
analog converters that are commonly available for microcomputer I/O systems. The next
subsection describes analog-to-digital converters. Though they seem to be more common
than digital-to-analog converters, we discuss them later because some analog-to-digital
converters use digital-to-analog converters inside them. Finally, the frequency-to-voitage
and voltage-to-frequency converters are discussed.

The following are some important concepts that cover the various converters. In
general, the analog input is either sampled, using a sample-and-hold circuit or its
equivalent, or integrated, using an integrator circuit or its equivalent. Analog output is
either produced in samples or is output from an integrator. Integration smooths out the
signal, reducing noise, but limits the upper-frequency signal components. Sampling
provides a "snapshot" of the data and also of the noise. In sampling converters, another
problem is caused by high frequencies. The sampling rate is obviously the rate at which
the data samples are taken. The Nyquist rate is one-half the sampling rate. Components
of the signal that have a higher frequency than the Nyquist rate "beat against" the
frequency of the sampling rate in the same manner as radio frequency signals are "beat
against" the frequency of a local oscillator in a radio, generating alias frequency
components. For example, if a component has a frequency equal to the sampling rate, it
will appear as a direct-current component. To eliminate the generation of these alias
components, a low-pass filter is used to eliminate all frequencies above the Nyquist rate.

7.4.1 Digital-to-Analog Converters

Three basic digital-to-analog converters (D-to-As) are introduced now: the summing
amplifier, the ladder, and the exponential superposition D-to-As. The summing amplifier
converter most readily shows the basic principle behind all D-to-A converters, which is
that each digital bit contributes a weighted portion of the output voltage if the bit is
true, and the output is the sum of the portions. The ladder converters are easier to build
because the resistors in a ladder network can be trimmed precisely without much effort.
Ladder networks for these D-to-A converters are readily available, quite fast, and
inexpensive. The exponential superposition converter is quite a bit slower and less
accurate but doesn't need precision components, so it would be very useful in
microcomputer-based toys or appliance controllers. A convenient package of 6-bit D-to-
A converters, the MC144110, is considered at the subsection's end.

The summing amplifier can be used in a D-to-A converter, as in Figure 7.14a.
Keeping in mind that the output voltage is

Vout = – Rf (V1/Rl + V2/R2 + ... ;

if V1 = V2 = , . . = IV, and Ri is either infinity (an open switch) or a power of 2
times Rf (if the corresponding switch is closed), then the output voltage is

7,4 Converters 335

Vout = C1/2 + C2/4 + C3/8 + ...

where ci is 1 if the switch in series with the ith resistor is closed; otherwise it is 0.
An output device can be used to control the switches, so the ith most significant bit
controls the ith switch. Then the binary number in the output register, considered as a
fraction, is converted into a voltage at the output of the summing amplifier. Moreover,
if the reference input voltage is made n V rather than 1 V, the output is the fraction
specified by the output register times n V. n can be fixed at a convenient value, like
10 V, to scale the converter. Usually, a D-to-A converter is scaled to a level, so for the
largest output value the summing amplifier is nearly, but not quite, saturated, to
minimize errors due to noise and to offset voltages and currents. Alternatively, if n is
itself an analog signal, it is multiplied by the digital value in the output register. This
D-to-A converter is thus a multiplying D-to-A converter, and can be used as a digitally
controlled voltage divider - an alternative to the range switch and duty-cycle control
techniques for amplification control.

Although conceptually neat, the above converter requires using from 8 to J2
precision resistors of different values, which can be difficult to match in the 2-to-l ratios
needed. An alternative circuit, an R-2R ladder network, can be used in a D-to-A
converter that uses precision resistors, all of which have values R or 2R O. This
network can be used as a voltage divider or a current divider; the former is conceptually
simpler but the latter is more commonly used. (See Figure 7.14b for a diagram of a
current ladder D-to-A converter.) A pair of analog switches for each "2R" resistor connect
the resistor either into the negative input to the OP AMP or to ground, depending on
whether the control variable is high or low, respectively. The current through these
switches, from left to right, varies in proportion to 1/2, l/4, 1/8, . . ., as can be verified
by simple circuit analysis. If the ith control variable is true, a current proportional to
2**-/ is introduced into the negative input of the OP AMP, which must be
counterbalanced by a negative current through Rf to keep the negative input at virtual
ground, so the output voltage proportional to 2**-i is generated. The components for
each input i are added, so the output is proportional to the value of the binary number
whose bits control the switches. Like the previous D-to-A converter, this can be scaled
by appropriately selecting the voltage Vin and can be used as a digitally controlled
amplification device. It, too, is a multiplying D-to-A converter.

A program for outputting a voltage by means of either a summing or an R-2R D-
to-A converter is very simple. One merely stores the number to be converted onto an
output register that is connected to the converter.

A ladder network for a converter can be obtained as an integrated circuit for 6 to 12
bits of accuracy. The chip contains the switches and the resistors for the circuit. The
output settles to the desired voltage level in less than one microsecond in a typical
converter, so the programmer usually does not have to worry about settling time.

The last converter in Figure 7.14 uses a sample-and-hold circuit to sample a voltage
that is the sum of exponential voltages corresponding to bits of the digital word being
converted. The circuit, in Figure 7.14c, is simplicity itself. We first offer some
observations on an exponential waveform and the superposition principle. Consider an
exponential waveform as shown in Figure 7.14d. Note that for such a signal there is a
time T (not the time constant of the network, though) at which the signal is 1/2 the
initial value of the signal. And at times 2T, 3T, 4T, and so on, the signal level is !/4,

336 Chapter 7 Analog Interfacing

1/8, 1/16 of the initial value, and so on. Furthermore, in a linear circuit, the actual
voltage can be computed from the sum of the voltages of each waveform. This is called
superposition. Now if a sample-and-hold circuit samples a voltage that is a sum of
exponential voltages, an exponential waveform that was started T time units before will
contribute l/2 its initial value; one that was started 2T time units before will contribute
1/4 its initial value; one started 3T units before will contribute 1/8 its initial value; and
so on. These waveforms are generated by asserting control variable P with the shifted
bit, as the least significant bits are shifted out each T time units. Thus, the exponential
waveforms from left to right in Figure 7.14d are generated or not; the sampled voltage
will or will not have a component of 1/8, 1/4, 1/2, etc. The control variable 5 is asserted
to sample the waveform after all bits have been shifted out. The sampled voltage is the
desired output of the D-to-A converter. The output can be scaled by selecting an
appropriate current source. Some care must be taken to make this A-to-D converter a
good multiplying converter because dynamically changing the input current level will
alter its accuracy. Nevertheless, this mechanism is essentially the mechanism used in the
Crystal Semiconductor CS4330, having 18 bits of accuracy, and the Crystal
Semiconductor CS4332, having 24 bits of accuracy.

The Crystal Semiconductor CS4330 is an inexpensive 50-KHz (max), 18-bit D-to-
A converter for stereo CD players (see Figure 7.15b). Its serial interface requires but two
pins, which is easier to opto-isolate if the analog voltage must be on a different ground
system than the microcomputer. A MC74HC4040 counter chip derives a 4-MHz MCLK
and a 16-KHz LRCK from the 'A4 expanded bus mode E clock (or an external 8-MHz

Figure 7.14. D-to-A Converters

7.4 Converters 337

clock). A reference 1-MHz SCLK is derived inside the CS4330 from the MCLK (see
Figure 7.15a), but this SCLK reference is not externally available. A signal with the
same period is on the MC74HC4040's pin 6. Some 18-bit 2's complement data are
shifted from SDATA, msb first, onto each falling edge of SCLK. The last 18 bits are
applied, when LRCK rises, to the left D-to-A converter, and when it falls, to the right
D-to-A converter. The C procedure DtoA (char hi; int low; unsigned char
count) sends to the CS4330 the two least significant bits of hi, and all 16 bits in
low, repetitively for count conversion periods. Note that the 18-bit data in PORT and
accumulator D are shifted out 1 bit per ps. Outputs Right and Left can be OP AMP or
analog comparator inputs. The CS4330 has excellent linearity; however its zero-value
offset and maximum voltage are somewhat variable, and it requires the 'A4's full
attention. But these limitations can be removed (see problems at the end of the chapter).

Figure 7.15. The Crystal Semiconductor CS4330

338 Chapter 7 Analog Interfacing

DtoA(char hi, int low, unsigned char count) { char compare;
do { DIRJ = 3; KWIFJ = 0x80; PORTJ = hi;

Idx #$17 ; $lb waste first 14 SCLK clock cycles
dbne x,12
nop ;padd
1dd 5, sp ; operand "low" gives low 16 bits of voltage
Idx #17 ; output 18 bits, but last is left not shifted
1sld ; move up low-order bits
rol PORTJ ; move up high-order 2 bits and output
dbne x, 13 ; count down to shift all 18 bits
brclr KWIFJ, 0x80,14 ; wait for flag on LRCK edge
Idab PORTJ ; get input in bit 6 from analog comparator
stab 0, sp ; return value (for A-to-D converters)

KPOLJ A = 0x80; /* look for other edge */}
while (--count) ;/* for each requested conversion */ return (compare>,>6)

7.4.2 Analog-to-Digital Converters

Six analog-to-digital converters (A-to-Ds) are introduced herein. These have different
costs, accuracies, and speeds. We discuss them in approximate order of decreasing speed
and cost. The parallel and pipeline converters are fastest, followed by the delta and
successive-approximation converters and the ramp converters.

The parallel A-to-D converter uses comparators to determine the input voltage and
can be made to operate almost as fast as the comparators. One avoids using too many
comparators because they are expensive, so this converter's accuracy is limited by the
number of its comparators. Figure 7.16a illustrates a typical 3-bit converter that has, for
ease of discussion, a range of 0 to 7 V. The resistor divider network establishes reference
voltages for each comparator, from top to bottom, of 0, 1, 2, . . . , 7 V. If the input
voltage vin is between i - 1 and / V, the i bottom comparators output a true value.
A priority encoder module encodes this set of values to a binary number that is the most
prior true input address, which is i.

A variation of the parallel converter, an n-bit pipeline converter, consists of n
identical stages of a comparator and differential amplifier (see Figure 7.16b and Figure
7.16c). In a typical stage illustrated in Figure 7.16b, the signal Vin is sent to the
input, and the output Vout of the differential amplifier on the right of the stage is then
sent to the input of the next stage to the right. Suppose the voltage range is Vmax. The
output of the comparator on the left of the stage is either Vmax if the v+ input is
higher than the v- input of the comparator or it is 0 V. If the input is above half
Vmax, then half Vmax is subtracted from the input and then doubled - otherwise the
input is just doubled - in the differential amplifier that feeds the output Vout. If a
steady signal is fed into the input, vin, then as the signal flows through the stages,

7.4 Converters 339

Figure 7.16. A-to-D Converters

340 Chapter 7 Analog Interfacing

bits from the most significant bit are obtained from each stage; they are true if half
Vmax was subtracted, otherwise they are false. Moreover, the conversion is actually
done as the leading edge of the analog signal flows through each stage. It is possible,
then, to begin the next conversion when the first stage has settled, even though later
stages may yet be settling. It is rather like oil flowing through a pipeline - it can have
an incredibly fast conversion rate.

Successive-approximation, delta, and ramp converters can be implemented with the
hardware illustrated in Figure 7.16d. The programs differ for each method. For delta or
servo conversion, a D-to-A converter outputs a voltage Vcomp that is compared to
Vin. It Vcomp > Vin, then Vcomp diminishes; otherwise Vcomp increases by a
small amount. Assuming Vin changes more slowly than Vcomp can change, Vcomp
should "track" Vin in the manner of a feedback control or servo system. By analogy to
communications systems, the digital output changes by delta increments, as in delta
modulation systems. Figure 7.16e shows a delta converter's Vin tracking Vcomp.

A successive-approximation converter uses the same circuit but requires a divide-
and-conquer program. We observe the same technique in long division. Suppose the
input is in the range 0 to Vmax. The D-to-A converter is so loaded as to output
Vmax/2. If the comparator senses Vin > Vmax/2, then the D-to-A converter is set to
output Vmax x 3/4, otherwise it is set to output Vmax/4 . Note that this is done by
either adding or subtracting vmax/4 from the current output, depending on the result of
comparing this output with Vin. In successive trials, Vmax/8, then V m a x / 1 6 ,
Vmax/32, . . . are added or subtracted from the value output to the D-to-A converter.
The comparison voltage Vre f approaches Vin, as shown in Figure 7.16f.

A ramp A-to-D converter can use the same circuit as in Figure 7.16d or a simpler
circuit as in Figure 7.16h. Simply, in Figure 7.16d, the comparator voltage Vcomp is
initialized to 0 by clearing location 0x8000, then is gradually increased by incrementing
0x8000 until Vcomp > Vin is sensed by the comparator. (See Figure 7.16g.) The
circuit illustrated in Figure 7.16h uses a dual-slope converter that is shown in Figure
7.16i. The output voltage from the integrator, sensed by the comparator, is initially
cleared by closing only switch S1. Then, by closing only S2 for a specific time T, the
reference voltage Vref is integrated, charging the capacitor in the integrator. Lastly
only S3 is closed, so that the voltage Vin is integrated to discharge the capacitor. The
time to discharge the capacitor is proportional to Vin. Moreover, the time is
proportional to the average value of Vin over the time it is integrated, which nicely
reduces noise we don't want to measure; and the accuracy of the converter does not
depend on the values of the components (except Vref), so this converter is inexpensive.
However, it is the slowest converter. It finds great use, nevertheless, in digital
voltmeters, multimeters, and panel meters, because it can achieve about 12 bits (3 1/2
digits) of accuracy at low cost, and it is faster than the eye watching the display.

7.4.3 Voltage Conversion to or from Frequency

A frequency-to-voltage converter (FVC) outputs a voltage that is proportional to the
input frequency. For high frequencies, an FM detector is a good FVC. Several integrated
circuits are available for detecting FM signals. For a broad range of frequencies, a phase-

7,4 Converters 341

locked loop can be used. The error voltage used to lock the oscillator in it to the
frequency of the incoming signal is proportional to the difference between the frequency
to which the oscillator is tuned and the frequency of the incoming signal. For audio
frequencies, a common technique is to trigger a one-shot with the leading edge of the
input signal. The output is a constant-width and constant-height pulse train, where
pulses occur with the same frequency as the input signal. (See Figure 7.17a.) A low-
pass filter outputs a signal proportional to the area under the pulses, which is in turn
proportional to the frequency. The LM3905, a one-shot (monostable) with built-in
voltage reference and an output transistor that is capable of producing output pulses of
precise height, is especially suited to FVC. (See Figure 7.17b.) Another way to convert
frequency to voltage is to use an automobile tachometer integrated circuit; it senses
spark pulses whose frequency is proportional to engine speed, and it outputs an analog
level to a meter to display the engine speed. This technique can be used with subaudio
frequencies since it is designed to measure low-rate spark pulse trains. Frequency-to-
voltage converters have the advantage that information is carried by the frequency of a
signal on a single wire, which can be easily opto-isolated, and is immune to noise and
degradation due to losses in long wires from microcomputer to output. However, the
signal they carry has to pass through a low-pass filter, so its maximum frequency must
be much lower than that of the carrier which is being converted to the voltage.

The final converter of interest is the voltage-to-frequency converter. It generates a
square wave whose frequency or period is proportional to the input voltage Vin. (See
Figure 7.18a.) Internally, Vin is integrated, until the integrated voltage reaches a
reference voltage V r e f , when the integrated voltage is cleared. An output pulse,
occurring as the integrator is cleared, has a frequency that is proportional to the input
Vin. If desired, this can be fed to a toggle flip-flop to square the signal as its period is
doubled. By reversing the role of the reference and input voltage so the reference voltage
is integrated and compared to the input voltage, the period of the output is proportional
to the voltage Vin. So this makes a voltage-to-period converter. But noise on Vin is
not averaged out in this technique. Other circuits are used for VFCs, but the principles
are similar to those discussed here. VFCs can be quite accurate and reasonably fast; the
Teledyne 9400 (see Figure 7.18b) accurately converts voltage-to-frequency to about 13
bits of accuracy and remains equally accurate after two cycles have occurred on the output
wave. That means the converter is faster for higher voltages, since they result in higher
frequencies, than for lower voltages. Used in an integrating mode, moreover, the VFC
can reduce noise the way the dual-ramp converter does. The VFC is of particular value
where the microprocessor has a built-in counter to measure frequency, especially since
the frequency carrying signal is easy to handle, being carried on only one wire.

The phase-locked loop (PLL) is used to generate higher frequencies than can be
achieved by a microcomputer using a counter/timer (see Figure 7.19). They are
fundamentally a voltage-to-frequency converter (voltage-controlled oscillator) and a
frequency-to-voltage converter (phase comparator). In addition there are usually frequency
dividers (counters), A PLL can be used in the 6812 to generate the E clock (§6.4),
Figure 7.19a shows the digital part and Figure 7.19b shows the analog part of a PLL
that can generate almost any frequency within a wide range. PLLs are used, with a
prescaler, for FM radios and television sets.

342 Chapter 7 Analog Interfacing

Figure 7.18. Voltage-to-Frequency Conversion

7.4 Converters 343

Figure 7.19a diagrams one of several chips that use a serial input for the digital
logic of a PLL. Serial input is desirable to save pins because the frequency of the
oscillator is not changed that often and does not have to change promptly. The chip
contains two down-counters: one divides the variable frequency of a signal Fin on pin 9
by N, where N is a 14-bit number sent from the computer; while the other divides a
reference frequency of a signal generated by an oscillator on pin 17 by R, where R is
chosen by the levels on pins 2, 1, and 18. The number N is shifted in, using the
techniques discussed in §4.4. Actually, the low-order 14 bits of the 16 bits shifted in
(most significant bit first) are N; the high-order 2 bits are output as signals on pins 13
and 14, which are two open collector output bits for external use. The average voltage
on the phase detector output PD (pin 6) is raised if the variable frequency divided by N
is less than the reference frequency divided by R, and it is lowered if the variable
frequency divided by N is greater than the reference frequency divided by R. Other
outputs 0r, 0v, and lock-detect LD can be used in more advanced PLLs.

Figure 7.19b is the analog part of the PLL. The chip contains two variable-
frequency oscillators (VCOs). We describe the upper one here. The capacitor Cext
between pins 12 and 13 sets the nominal frequency of the oscillator - about (500/Cext)
MHz, where Cext is in pF. The frequency of the output on pin 10 is proportional to the
voltage on pin 1. The range control Rng on pin 14 sets the sensitivity; the larger Rng
voltage makes oscillator frequency changes more sensitive to input voltage changes. The
enable E must be low for the output to oscillate.

Figure 7.19c shows a simple application. Some new chips require unusual clock
frequencies. For example, we found a very interesting voice-output chip needing a
3.123-MHz crystal, but could not find the crystal. The PLL just mentioned could be
used to generate frequencies in the range of 1 to 8 MHz in place of a crystal. It is a
feedback control system of the kind described in §6.6.3 that uses voltage analog and
frequency analog signals. The 145155 compares a frequency on input Fin to one
generated by the Oscln input, and outputs a voltage on PD that is proportional to the
difference. This voltage, passed through a low-pass filter, is put into FCnt of the
74LS124 VCO to generate a frequency Fin. When stable, the voltage PD is just the
right voltage to generate the frequency Fin that is R/N times the frequency of the signal
Oscln. In this example, Oscln is generated from the 2-MHz E clock of the
MC68HC11A8, and R is set to 8192 = 213. To set up the oscillator at frequency F, the
connection from pin 6 of the 145155 to pin 1 of the 74LS124 is broken, a voltage of
2.5 V is put on pin 1, the VCO capacitor Cext is set to cause oscillations at about the
desired frequency F, and then a number N = (F/2MHz) * 8192 is shifted into the
145155 so that the output PD is about 2.5 V. Then the broken connection is put back.
The output signal should have frequency F. The design of the low-pass filter is quite
involved: whole books are available on this topic. In the preceding circuit, the resistor
connected to output PD determines the frequency of oscillation of the locking error, and
the resistor connected to the 10-juF capacitor determines its damping; these can be
twiddled to get acceptable results. This technique is useful in generating high frequencies
up to about 15-MHz. Note that the frequency can be changed (over a 2:1 range) by
changing the number in the shift register, so the pitch of the voice-output chip can be
altered to get a more natural speech.

344 Chapter 7 Analog Interfacing

Figure 7.19. Phase-locked Loop

7.5 Data Acquisition Systems

A data acquisition system (DAS) consists of switches, a D-to-A converter, and signal
conditioning circuits so that several inputs can be measured and several outputs can be
supplied under the control of a microcomputer. In the first subsection, we consider the
basic idea of a data acquisition subsystem; then, we consider the MC145040 A-to-D
converter that is the input part of a data acquisition system, and the A-to-D port on the
'A4. The final subsection considers how these data acquisition systems can be used in
control systems.

7,5 Data Acquisition Systems 345

Figure 7.20. Data Acquisition System

7.5.1 Basic Operation of a Data Acquisition System

A DAS can be purchased as a printed circuit board, or even as a hybrid integrated circuit
module. Such a DAS would be better to use than the system we discuss, but we
introduce the latter to show how such a system works and to bring together the various
concepts from previous sections. Finally, in this section we will show how a DAS can
be used to implement a digital filter or feedback control system.

The DAS described in this section is diagramed in Figure 7.20. From left to right,
an analog switch selects from among eight inputs an input for the comparator. This is
used to measure the input voltages. The D-to-A converter is used, with the comparator,
for prompting the A-to-D converter to measure the inputs and for supplying the output
voltages. The analog switch and voltage followers on the right impel sample-and-hold
circuits, which act like analog flip-flops, to store the output voltages after they have
been set by the microcomputer. In the following discussion, location 0x8000 will be an
output register to the D-to-A converter, and location 0x8001 will be an input whose
sign bit is true if Vin (selected by the analog switch) is greater than Vcomp. Location
0x8002 will be a readable output port that addresses both the analog switches. If, for
instance, 3 is put in this register, then input 3 is sent to the comparator (as Vin), and
the output of the D-to-A converter is made available to the sample-and-hold circuit that
supplies output 3. Finally, the analog switch is enabled by an address trigger. If the
microcomputer addresses location 0x8003, as it does in two memory cycles when
executing an instruction like INC 0x8003, then the address decoder will provide a 250-
ns pulse which will enable the analog switch for that time. Recall that when enabled,
the addressed input is connected to the output of the switch, but when not enabled, all
inputs and the output are not connected.

The DAS is controlled by a program, shown soon, that will be called as a
subroutine whenever the inputs are to be measured and the outputs are to be adjusted.
Eight output values are stored in a table TBL so that TBL[0] is converted to a voltage on

346 Chapter 7 Analog Interfacing

output 0; TBL[1] on output 1; and so on. TBL is loaded with the desired values just
before this subroutine is called. After returning from the subroutine, the eight inputs are,
to keep things simple, converted and stored in the same table. TBL[0] will store the
number equal to the voltage on input 0; TBL[1], that equal to the voltage on input 1;
and so on.

The output register that selects inputs and outputs is initialized by the first three
lines to select the last input or output, and the index register is initialized to access the
last row of the table TBL. Thereafter, in the loop, a number is read from the table to the
D-to-A converter via output register 0x8000, and then the output analog switch is
enabled for two consecutive memory cycles by executing the instruction INC 0x8003.
The address trigger technique discussed in §4.1.1 is used here. This instruction should
read the word at 0x8003, increment it, and write the result there. But no output register
or RAM word is at this location, so nothing is actually done by the microprocessor.
However, location 0x8003 is accessed twice. This enables the analog switch twice. At
that time, the output of the D-to-A converter is sampled by the sample-and-hold circuit
that feeds output 7, since the analog switch addresses the bottom position. The voltage
output from the D-to-A converter is now sampled, and will remain on this output until
it is changed when this subroutine is called again. Thus, the sample and hold behaves
rather like an analog storage register. Next, a successive approximation subroutine like
that discussed in the previous section is called. The subroutine converts the bottom
input, since output register 0x8002 is 7, to a digital value that is left in accumulator A,
This value is then stored in the bottom row of the table TBL. The index register and the
contents of output register 0x8002 are decremented to output row 6 of TBL to the sixth
output, and they put the value of the sixth input into row 6 of TBL in the next iteration
of the loop. When all rows are output and input, this subroutine is left. The above
routine can be made more useful by using two tables, one for outputs and one for
inputs; however, we do not show this here because more code would be needed, but no
new important ideas would be demonstrated.

7.5.2 The MC145040 A-to-D Converter

Two very convenient ways to measure analog voltages in the 6812 microcomputer are
with the 145040 chip or with the A-to-D converter in the 6812 itself. Both of these are
similar to a data acquisition system in that they use an analog multiplexor (mux) to
select a number of inputs for the converter.

A serial interface is desirable for an A-to-D converter because it uses fewer pins than
a parallel interface and thus can be easily isolated using opto-isolators. The MC 145040
is one of the better serial interface A-to-D converters. See Figure 7.21.

Data are shifted into and out of the 145040 at the same time, using the exchange
technique discussed in §4.4.3. During bit movement, CS must be low and should rise
after all bits are moved because that edge transfers the data to the mux address register
and begins the conversion. An input address is sent first (to select input i,i = 0 to 11.
send i « 4, msb first), and each bit is clocked in on the rising edge of SClk,
Conversion is done with the A-to-D Clk using the successive approximation technique,
with Vref as the maximum and VAG as the minimim reference voltage. If the address

7.5 Data Acquisition Systems 347

is 0xB, then a voltage (Vref + VAG) /2 is input, and should convert to a value of
0x80; this can be used for a check. Wait 32 A-to-D Clk pulse cycles, and then input the
8-bit digital value, msb first, that was converted from the /th analog input. Data is sent
from the chip on the falling edge of SClk. The "address" for the next conversion can be
sent out while the data from the previous conversion are being read in, in an exchange
operation.

Figure 7.21. Serial Interface A-to-D Converter

7.5.3 The MC68HC812A4 A-to-D Converter

The 'A4 has an onboard A-to-D converter, which, unless PORTAD pins are needed for
some other application, can be used for measurement of analog voltages. Figure 7.22
shows the block diagram of this subsystem. Using VRH (pin 85) as high-reference
voltage and VRL (pin 86) as low-reference voltage, the analog voltages on inputs PADO
(pin 87) to PAD7 (pin 94) can be converted to 8-bit digital values and put into registers
ADRO to ADR 7, Initially, ADPU must be set to apply power to this subsystem (100 ps
are needed for the voltages to become stable). The conversion is begun when ATDCTLS
is written into, and the mode of conversion is dictated by the value put into it.
ATDCTLS'S low-order four bits, c. If c is less than 8, these bits determine which
input pin voltages are converted. Essentially, if c is 5, then pin PORTAD bit 5's
voltage is put into port ADRS. Values of c > 8 can be used for testing: if c = 0xC,
VRH is converted; if c = 0xD, VRL is converted; and if c = 0xE, VRH/2 is converted.
If S8CM is T (1), eight conversions are done; otherwise, four are done. If SCAN is T (1).
the inputs are sampled continuously; otherwise they are sampled just once after

348 Chapter 7 Analog Interfacing

conversions have begun. We discuss the effect of MULT when S8CM is T (1) and C <
8. If MULT is 0, the voltage on PORT AD bit / is sampled eight times and put in each
ADRO .. . ADR?, but if MULT is 1, the voltage PORTAD bit 0 to PORTAD bit 7 is
put into ADRO . . . ADR7. If cc is 5, then PORTAD bit 5 is being converted and is
about to be loaded into port ADR5. Each time ADRJ is reloaded, CCFJ is set, and CCFJ
is cleared when this port is read.

Figure 7.22. A-to-D Subsystem of the MC68HC812A4

Assuming VRH is 5 V and VRL is ground, the following procedure continuously
converts the voltage (times 256/5) on PORTAD bit 0 into i; it obtains the average of
eight samples. Conversion of eight separate pin voltages is left as an exercise.

enum { ADPU = 0x80, S8CM = 0x40, SCAN = 0x20, MULT = 0x10 > ;

void mainO { int i;

ATDCTL2 = ADPU; ATDCTL5 = S8CM + SCAN; i = 1; while (--i);

do {

do ; while (< (ATDSTAT & 0x8000)) ;

i = (ADRO+ADR1+ADR2+ADR3+ADR4+ADR5+ADR6+ADR7) » 3;

} while(1);

7.5 Data Acquisition Systems 349

7.5.4 Object-oriented Programming of Converters

Object-oriented programming is well-suited to analog I/O. In this section we consider a
class for the 6812 A-to-D device. If control ports S8CM, SCAN, and MULT are T, then
voltages on PORT AD bits 0 to 7 are continuously converted and put into ports at 0x70 to
Ox7e. Ail that is needed to read these ports is the class Port. For instance, object
AtoDO can be declared as in Port<char> AtoD0 (0x70); to read the voltage on
PORTAD bit 0. However, the get function member reads the voltage, which may be a
voltage that has already been read by get, rather than a new voltage after conversion has
been done. To synchronize the A-to-D device, to wait for conversion to take place, a
derived class should incorporate gadfly or interrupt synchronization on a conversion
complete flag. The class AtoD12 shown below gadflies on the flags in ATDSTAT.

enurn { ADPU = 0x80, S8CM = 0x40, SCAN = 0x20, MULT = 0x10 } ;

class AtoD : public Port-consigned char> { unsigned char mask;

public : AtoD (char id) : Port (0x71 + (id « 1)) { int i;
m,ask - 1 « id;
iff / (ATDCTL2 & ADPU)) { /* if A-tO-D IS off */

ATDCTL2 = ADPU; /* turn On A-tO-D */

ATDCTLS = SSCM + SCAN + MULT,- /* initialize control */
for (i = 0; i<2000; i + +) ;/* wait for A-to-D to turn on fully */

virtual unsigned char get (void)
{while (! (ATDSTAT & mask)); return Port<unsigned char> : : get () ; }

virtual int option (int c = 0, int mask = 0) { // safe way to access regs
ifi'c == 0) return Port: -.option (0, m) ; if(!(c & 0x20)) return 0;
else if(c & 8) {((char *)0x60)[c & 7] = d; return 0; }
else return ((char *)0x60)[c & 7];

void main() { AtoD device (0); char i; 1 = device.get (); }

The constructor's argument id is a device number; 0 indicates that PORTAD bit 0
is being measured. The constructor calls Port's constructor with port address 0x70 •*
fid « 1) so that for id = 0, inherited: : get () reads ADRO. The constructor

also makes data member mask have a T bit in the id bit position. The constructor
then checks if the A-to-D converter is on because an earlier invocation of this
constructor turned it on; if it is off the constructor turns it on and waits for its power to
stabilize. The get function member gadflies on the id bit of ATDSTAT, a conversion-
complete flag such as CCFO, which becomes set when PORTAD bit id is converted.
Reading ATDSTAT followed by reading ADRO clears CCFO, ATDSTAT bit 0; reading
ATDSTAT followed by reading ADRI clears CCFI , ATDSTAT bit 1; etc. Thus we can be
sure that get will not return the same reading twice, but will wait for a conversion to
give a new value each time it is called.

350 Chapter 7 Analog Interfacing

7.5.5 Applications in Control Systems

The DAS in §7.5.1 or the A-to-D converters in §7.5.2 and the D-to-A MC144110
converter in §7.4.1 can be used in control systems. The three main applications are the
collection and generation of analog data, and feedback control.

The microcomputer is admirably suited for collecting analog data. The DAS and
subroutine recently discussed can collect a sample of up to eight analog inputs. The
collected data could be stored in a table, transmitted across a data link, or operated on.
The programs for these operations should be simple enough, thus they are not spelled
out here. However, it should be stressed that data collection using microcomputers has a
unique advantage over simpler techniques: its software can execute functions on the
incoming data. In particular, functions can, as we discuss, correct errors in the
measurement apparatus.

Suppose the incoming data actually has value x, but the measurement apparatus
reports the value as y = F (x) . The function F can be empirically obtained by
inputting known values of x, then reading the values of y. Suppose F is an
invertible function and the inverse function is G; then x = G (y) . Software can read y
from the measurement apparatus, then compute G (y) to get the accurate value of x.

A number of techniques can be used to evaluate some arbitrary function G (y) ,
such as might be obtained for correcting errors. The well-known Taylor series expansion
is sometimes useful; but to evaluate such a polynomial may take a long time and
accumulate a lot of rounding error. A better technique is to evaluate G (y) as a continued
fraction G (y) = A / B + G ' (y) , where G ' (y) is either y or a continued fraction.
The most suitable for microcomputers, however, is the spline technique. Just as a
complex curve is often drafted by drawing sections of it with a French curve, the
complex function G(y) is approximated by sections of simpler functions (called
splines) like parabolas. (See Figure 7.23.) Given a value y, we determine which
section of G (y) it is in, to choose which spline to evaluate. We do this by comparing
y against the values yi that separate the splines. A fast way is to test y against the
middle yi ; then, if y < yi, check y against the yi one-quarter of the way across the
scale. Otherwise, check against the yi three-quarters of the way; and so on in the same
manner as the successive approximation technique for A-to-D conversion. Once the
section is determined, evaluate the function by evaluating the spline. If the spline is a
parabola, then x ^ A y**2 + B y + c for some constants A, B, and C. The values
yi for the boundaries and the constants A, B, and c can be stored in a table. Software
for searching this table to select the correct spline and for evaluating the spline is quite
simple and fast on a microcomputer.

Analog signals can be converted to digital values, then filtered using digital
techniques, rather than filtered using OP AMPs, as discussed earlier in this chapter. The
following is a discussion of digital filtering as a feedback control technique.

In a manner similar to that just discussed, if analog values are to be output from a
microcomputer, errors in the output apparatus may be corrected in software. If the true
output value is y but x is sent to the output, the output is actually y = F (x) ; then
if F is invertible and G is the inverse of x [x = G (y)], the microcomputer can
evaluate G(y) and send this value to the output system. The program that evaluates

fy) compensates ahead of time for the error to be made in the output apparatus.

7.5 Data Acquisition Systems 351

Parabola 0

o
u
x

Figure 7.23. The Spline Technique

A test system might be designed using the preceding techniques to output some
analog voltages to the object being tested and then measure the voltages it returns.
While these systems are important, the feedback control system is even more important
and interesting. Figure 7.24 shows the classic model of the feedback control system. The
entire system has a stimulus x (or a set of stimuli considered as a vector) as input, and
an output z (or a set of outputs, a vector z). The system that outputs z is called the
plant. The plant usually has some deficiencies. To correct these, a feedback system is
implemented (as diagramed in Figure 7.24), which may be built around a microcomputer
and DAS. The output of this system, an error signal, is added to the stimulus signal x,
and the sum of these signals is applied to the plant. Feedback-control systems like this
have been successfully used to correct for deficiencies in the plant, thus providing stable
control over the output z.

Three techniques have been widely used for feedback control systems; the
proportional integral differential, the linear filter, and the multi-input-output controllers.

The simplest and most popular controller is called the proportional integral
differential (PID) controller. Its form is easy to implement on a microcomputer. The
output of the feedback system u is a weighted sum of the current input to the feedback
E, the integrated value of E, and the differential value of E:

U = A E + B I E f t) dt + C d(E(t))/dt

Figure 7.24. Feedback Control

352 Chapter 7 Analog Interfacing

Integration is nicely approximated in a microcomputer by adding each input value to
a number in memory each time the inputs are sampled. If the feedback control system is
working correctly, the inputs will be positive and negative, so this running sum will
tend to 0. The differential is simply approximated by subtracting the current value of the
input from its last value.

A more general kind of controller can be implemented as a digital version of a filter,
(As a filter, it can be used to correct errors in analog measurement and output systems,
as we previously discussed.) A digital filter is defined by a Z-transform.

D(z) = U(z) = AO + Al Z**-l + A2 Z**-2 + . . . + An Z**~n
E (z) 1 + Bl Z**-l + B2 Z** 2 + ... + Bri Z**-n

This expression is evaluated in a microcomputer as follows. Call the input at time
k Ek and the output at time k uk. Then the output uk at any given time is just the
weighted sum of the inputs and outputs of the n prior times:

Uk = A0 Ek + Al Ek-1 + ... + An Ek-n - Bl Uk-1 - ... - Bn Uk-n

The program should keep the vectors A, B, E, and U. Each time it updates the most
recent output value Uk, it can shift all values of E and u back one place to get the
output uk at the next time k.

A particularly suitable technique is the multi-input/multi-output controller, which
has a mathematical definition as follows. Let E be an (z'-variable) input and U be a (/-
variable) output, and S be an (n-variable) state vector, stored in a table in memory. A,
B, C, and D are matrixes having suitable dimensions. Then the controller is defined by
matrix multiplication equations:

S=AS+BE

U=CS+DE

These equations can be implemented by subroutines that perform matrix multiplication
and vector addition, together with the subroutine that exercises the DAS to get the input
vector X and to output the values of Z.

These techniques show how simply a microcomputer with a DAS can, with
programs to correct for nonlinear errors or to digitally filter the data or with one of
several feedback controllers, implement multiple-input analog measurement systems or
multiple sources of analog output voltages. All we have to do is determine the
coefficients for the aforementioned formulas. That is not a trivial problem, but it is
treated in many excellent texts on control theory. Our only intent in this chapter was to
show that once a desired control system has been defined, it can be implemented easily
in a microcomputer.

7.6 Conclusions

In this chapter, we studied transducers and analog devices, A-to-D and D-to-A converters,
and data acquisition systems. A good designer must be aware of the analog devices and
circuits and must be aware of the advantages of the different ways to implement some
functions in analog or digital hardware, or in software.

7.6 Conclusions 353

You should now be ready to use analog circuits in microcomputers. We now turn
our attention to frequency analog signals, and then to communications systems and
storage and display systems that use frequency analog signals.

Do You Know These Terms?

See page 36 for instructions.

sinusoidal
alternating
current

amplitude
phase
frequency
period
periodic

waveform
bandwidth
analog-to-digital

converter
digital-to-analog

converter
comparator
analog switch
voltage-to-

frequency
converter

frequency-to-
voltage
converter

transducer
operational

amplifier
solenoid
motor
direct-current

motor
stepping motor
universal motor
shaded-pole motor
induction motor
hysteresis

synchronous
motor

potentiometer
slide

potentiometer

strain gauge
shaft encoder
linear variable

displacement
transformer

control
transformer

direct-current
tachometer

accelerometer
light-emitting

diode (LED)
liquid crystal

display (LCD)
photodetector
photomultiplier
photodiode
phototransistor
photoresistor
opto-isolator
oven
thermocouple
thermistor
load cell
bipolar transistor
transistor
beta
power transistor
darlington

transistor
field-effect

transistor
vertical field-

effect transistor
silicon control

rectifier (SCR)
on-off control
bang-bang control
integral cycle control

proportional cycle
control

linear mode
saturated mode
inverting

amplifier
feedback
amplification
summing

amplifier
virtual ground
voltage follower
noninverting

amplifier
differential

amplifier
hysteresis
Schmitt trigger
analog

multiplexer
timer
dual supply
single supply
common-mode

voltage
offset adjustment
settling time
bypass capacitor
ground plane
ground loop
heat sink
low-pass filter
high-pass filter
bandpass filter
notch filter
cascade
parallel
nth order filter

butterworth filter
bessel filter
chebyshev filter
biased
automatic gain

control (AGC)
sample
sampling rate
Nyquist rate
alias
multiplying D-

to-A converter
R-2R ladder
parallel A-to-D

converter
pipeline converter
delta converter
servo converter
successive

approximation
converter

ramp A-to-D converter
dual-slope

converter
data acquisition

system
spline
plant
feedback system
proportional

integral
differential
(PID) controller

digital filter
Z-transform
multi-input/multi-

output
controller

354 Chapter 7 Analog Interfacing

Problems

Problems 1, 5, 13, and 22 are paragraph correction problems. See page 38 for
guidelines. Guidelines for software problems are given on page 86, and for hardware
problems, on page 115.

1.* A transducer changes physical properties such as distance to or from voltages or
frequencies. The most accurate position measurements can be made using a
potentiometer. Acceleration can be measured by measuring distance at several specific
times and integrating the results in software. A light-emitting diode is clear when no
voltage appears across it and is opaque when a voltage appears across it. The
photoresistor generates a current proportional to the light that shines on it, but it is
nonlinear. Very high temperatures are best measured with a diode, whose output voltage
is 2.2 V/°K. Pressure is generally measured by converting pressure to heat and then
measuring the temperature.

2. A stepping motor has three windings and the power signals for them are called A, B,
and C. These are singulary (only one is asserted at a time) and the stepping motor is
made to go clockwise by making PORTA bits 2 to 0 run in the sequence TFF FTP FFT
TFF ... and counterclockwise by making them run in the sequence FFT FTP TFF FFT
.... When the next pattern is output in either sequence, the stepping motor rotates 7 l/2°
in the direction indicated by the sequence.

a. Write a C procedure main () to initialize the ports, and a procedure movecw ()
that will cause the stepping motor to rotate 7 l/2° clockwise, and moveccw() that
will cause the stepping motor to rotate 7 J/2° counterclockwise.

b. Write a C procedure rotate () to rotate the motor at one rotation per second
clockwise. Use the procedure in part a to move 7 l/2° clockwise, and use real-time
synchronization.

c. Assume the most significant bit of PORTA inputs true when the motor has
moved an object to a terminal (most counterclockwise) position; otherwise the bit is
false. Write C procedures main () which moves the motor to its terminal position,
and move (int p) to position the object p positions clockwise from the terminal
position. Position p can be more than 48 to give the motor a full revolution. The
motor is given each pattern, such as TFF, FTP, or FFT, etc. for 10 ms, using real-
time synchronization. (This is basically the mechanism used to position the head on a
floppy disk.)

3, A gear has a tooth every 10° of rotation, the teeth are 5° wide, and two wiper
contacts are 2° apart. The contacts output a low signal when they touch a tooth.

Problems 355

a. Write a (Mealy) sequential machine description of the state transitions, where the
internal states are the signal pair on the contacts, LL, LH, HL, and HH, and the input
states are CW for moving clockwise, CCW for moving counterclockwise; and NULL
for no movement. The leftmost contact value of the pair corresponds to the more
counterclockwise of the two wiper contacts as they appear close together.

b. Declare global variables, and write an initialization in C procedure main() and
interrupt handler cckj(); that will keep track of the position of the gear. The more
counterclockwise of the two contacts is connected to PORTJ bit 0 and is to cause a
key wakeup interrupt each time the signal falls, and the other contact can be read as
PORTJ bit 1. The position of the gear, in 36ths of a revolution, will be kept as an
int position, positive numbers indicating clockwise rotation. (When the machine
is turned on, we will just assume that the position of the gear is defined as 0.)

4. A home thermostat will control a furnace and an air conditioner, based on the home
temperature. The temperature in °C can be read from an A/D input at 0x70. The furnace
and air conditioner are controlled by PORTA bits 0 and 1, such that writing 0 in bit 0
turns off the air conditioner, writing 1 there turns it on, writing 0 in bit 1 turns off the
furnace, and writing 1 there turns it on. Suppose the desired temperature is stored at
global variable set Temp. Write a C procedure main () to control the furnace and air
conditioner to adjust the home temperature to this value. If the temperature is 3° cooler
than it, turn on the furnace (fully), but turn it off when the temperature is 1° lower than
it (because residual heat will cause the temperature to rise after the furnace is off); if the
temperature is 3° higher, turn on the air conditioner (fully), but if the air conditioner
was on within the last two minutes, do not turn it on (because the back pressure in the
compressor has to dissipate or the motor will stall when it is turned on). Turn off the air
conditioner when the desired temperature is reached. Use real-time synchronization, using
an empirically defined constant N to effect the delay.

5.* Bipolar transistors have very high input impedances and are commonly used to
measure bipolar (AC) voltages. The VFET or darlington transistor is a good output
amplifier for a microcomputer for controlling mechanical motion. SCRs can be used to
control AC. A single SCR alone can control both positive and negative cycles of an AC
power signal. Proportional cycle control is most attractive for microcomputer systems
because it provides the most precise control over the amount of power applied to the
load. Proportional cycle control is commonly used to control the heat of an electric
range. An operational amplifier has two inputs, and it outputs a voltage that is a large
number times the difference between the voltages on the inputs, as long as the OP AMP
is in the saturated mode. To sample the incoming voltage, an integrator uses a capacitor
on the input to an OP AMP. A comparator is an OP AMP used in the saturated mode.
A modern OP AMP such as the CA3140 has very high input impedance, which is
useful in microcomputer I/O systems because it allows the use of small capacitors and
permits the sensing of minute currents from transducers such as pH measurement
devices. The analog switch allows one to switch a digital signal after it has been
compared to an analog signal. The timer is a useful device that is most commonly used
to convert a voltage into a frequency.

356 Chapter 7 Analog Interfacing

6. For each of the circuits in Figure 7.25, show the output voltage Vo as a function of
V1, V2, ... (and the initial value of vo for circuit c):

Figure 7.25. Some OP AMP Circuits

7. §7.2.3 discussed in detail the limits of input voltages and other parameters for +5-V
single-supply use of the CA3140. Discuss all the limits and parameters that are different
and give their values for ±15-V dual-supply use of this same OP AMP.

8. Show all connections in the logic diagram for a 555 timer and eight resistors that can
be put into the timing-resistor position (R2 in Figure 7.9a) using a 4051 analog
multiplexor controlled by PORTA . Do not show pin numbers.

9. Show all connections and values of all components in a diagram of an amplifier
whose gain is controlled by an output port. The (4-bit) unsigned binary number N in
the register sets the gain to -N, Use a CA3140 OP AMP, 4066 analog switch, and
resistors in the range of 100 KO to 10 MO. Do not show pin numbers.

10. Show all connections and values of all components in a diagram for a circuit that
uses two CAS140 OP AMPs to output the absolute value on vabs and the (logical)
sign on SGN of an input voltage vin. Do not show pin numbers.

Problems 357

11. A 555 timer and a binary counter are to be used to generate a square wave as
determined by 6812 PORTA. The low-order three bits L of PORT A generate a square
wave from the 555 with period P = 2** (L / 8) by selecting different capacitors, and
the next more significant 3 bits N select a tap from the binary counter so the output
period is 2^ x p. Show a logic diagram using some 74HC161, 4051, and 555 chips,
Do not show values of resistors or capacitors. Show pin numbers on the 555 only,

12. A 555 timer and a binary counter are to be used to generate a pulse as determined by
the 6812's PORTA. The low-order four bits L of PORTA select different capacitors, and
the next-more-significant 3 bits N select different resistors so that the the output period
is 2N x 2L/8. Show a logic diagram using some 4051 and 555 chips. Do not show
values of resistors or capacitors. Show pin numbers on the 555 only.

13.* Filters are used to remove noise from the signal being measured or output. A
high-pass filter has capacitors connected to ground and to the output to short out the
low-frequency components and integrate them out of the signal. A light pen develops a
signal that corresponds to the average brightness of the CRT screen, so a high-pass filter
is commonly used to eliminate the noise, which is a higher-frequency "signal." A
butterworth filter is often used in digital systems because it delays all frequency
components about the same, so that square waves do not develop humps or grooves.
Analog switches are useful for selecting inputs and for nonlinear signal conditioning.
One of the ways a microcomputer can control the loss of a signal is to chop it at a fixed
frequency so that it is chopped off for a proportion of each cycle that corresponds to the
loss. Three nonlinear functions that are often performed in analog hardware are absolute
value, logarithm, and sample and hold. The logarithm function is often used before an
A-to-D converter because microcomputers have difficulty multiplying, and
multiplication can be performed by adding the logarithm.

14. Show a diagram of a summing D-to-A converter (like that in Figure 7.14a) that
outputs the value of a 4-bit 2's complement number, stored in PORTA bits 3 to 0, in v
(for example, 1100 puts out -4 V). Use a voltage reference of 1 V, a CA314Q OP AMP,
and 4066 analog switches; and use resistors in the range 100-KO to 10-MO. Show all
pins and component values, and show also the bypass capacitors so that the circuit can
be built from your diagram.

15. A D-to-A converter uses the Crystal Semiconductor CS 4330 and 74HC4040 (see
§7.4.1), but also allows the 'A4 to do some other work while an interrupt handler feeds
data to be output to the CS 4330. It uses all of PORTA, bits 1 and 0 of PORTJ, one
74HC589 shift register, and some other logic. A byte that is to be shifted is put in
PORTA and another byte has been put in the 74HC589's input register. A 74HC138
decoder attached to the 74HC4040 causes these bytes to be shifted forward bytewise into
the 74HC589's shift register, and it can cause a key wakeup interrupt through PORTJ
bit 0. The 'A4 E clock causes the shift register's bits to be shifted out, msb first, at 8
MHz. Pulsing PORTJ bit 1 will also cause data in PORTA to be loaded into the
74HC589's input register (a diode and resistor can be used to provide this alternative way
to load the 74HC589's input register).

358 Chapter 7 Analog Interfacing

a. Show the logic diagram of the entire converter device, except what is already
shown in Figure 7.15b, showing pin numbers, resistor values, and other component
names.

b. Show an interrupt handler cckj, written entirely in assembler language, that
will output 3 consecutive bytes pointed to by global char *ptr; to the CS 4330,
moving this pointer ahead 3 bytes. Write comments indicating when each byte is
loaded into either the 74HC589's input register or its shift register.

c. Write a C procedure main () that plays a tune, and whose digital samples are
stored in a global vector char tune [6000] /, by setting up pointer ptr of part b,
starting the converter device, and stopping it when the tune has been played.

16. Write a C procedure main () that uses the D-to-A converter of problem 15 to
convert from A to D. For each case below assume the 18-bit converted left-channel value
is put in global char value[3] ; with 1sb in v a l u e [2] , and an input on-PORTA bit
2 is 1 if the external input voltage being converted is higher than the left D-to-A
converter output.

a. Use delta conversion.

b. Use successive approximation conversion.

17. Write a C procedure main () that configures the MC145155 (§7.4.3) to divide the
input frequency by 0x1234. Its E (pin 12) is connected to PORTS bit 7, its D (pin 11) is
connected to PORTS bit 5, and its C pin(10) is connected to PORTS bit 6.

18. Write a C procedure main () to read all 11 inputs of the MC145040 into global
vector char data [12]. The serial interface has Din connected to PORTS bit 4, SClk
to PORTS bit 6, CS to PORTS bit 7, and Dout to PORTS bit 5. (See §7.5.2.)

19. Write a C procedure main <) to input the voltage on pin PAD bit 2 for eight
consecutive samples, putting the sampled values in ADRO to ADR7.

20. Problem 4 of this chapter assumed the temperature was available at 0x70 (assuming
I/O is from 0 to 0xlFF), where it is applied as a voltage on PORTAD pin 4. Write an
initialization ritual to implement this in the 'A4.

21. Write a C procedure spline (int d) to evaluate a spline as specified by an n row
table s truct{ int yi, A, B, c} t [n] . The table has a row for each parabola, a
column for the lower limit yi on the interval where that parabola is to be used, and
three columns for the constants A, B, and c, from left to right in the table, for the
coefficients of the parabola (G(y) = A y 2 + B y + c). The parabolas are in
successive rows of the table in order of increasing values of yi, so the ith parabola
should be evaluated by your routine if the input y is between yi in that row and yi
in the row above it. Assume the last parabola covers the highest value of d to be
evaluated.

Problems 359

22. Write a digital filter z () equivalent to the Z-transform (3 - 2 Z'1)/ (1 + 4 Z !).
Evaluate the filter function repetitively on the input, read at 0x200, so that the filtered
output is fed out the output at location 0x300. Use 8-bit signed numbers throughout,

23.* The sampling converters have a Nyquist rate, which is the rate at which they
sample the analog signal. A high-pass filter is commonly used to remove frequencies
below this Nyquist rate to prevent alias signals from appearing. D-to-A converters
include the ladder networks, commonly available on integrated circuits, and exponential
superposition converters, which are exceptionally accurate yet very cheap. D-to-A
converters, such as the successive-approximation converter, are able to sample the input
signal quite rapidly; but parallel and pipeline converters are the fastest, using more
hardware to achieve the greater speed. A frequency-to-voltage converter is based on a very
accurate one-shot that is triggered at the rate of the input frequency, and whose output is
filtered through a low-pass filter to recover the voltage. A tachometer is a good voltage-
to-frequency converter, but is limited to low frequencies. A data acquisition system uses
sample-and-hold circuits to sample the input signals and uses a D-to-A converter to
develop the output voltages and a reference voltage for an A-to-D converter. The A-to-D
converter can use delta, ramp, or successive-approximation programs to measure input
voltages.

360 Chapter 7 Analog Interfacing

The Motorola M68HC12A4EVB board can implement all the experiments including those
of Chapter 10. The wire-wrap area shows a shift-register that implements the device dia-
grammed in Figure 10.6.

8

Counters and Timers

The counter/timer is one of the most flexible parts of a single-chip microcomputer. It
can generate a square wave. The square wave can be used to generate sine waves, or any
periodic wave. Sine waves can be used in telephone systems (touch-tone), and signals to
the user (bleeps). The counter/timer can be used to generate single-shot pulses. These
can control motors, solenoids, or lights to give precisely timed pulses that are
independent of the timing errors to which the real-time programmed microprocessor is
susceptible, such as dynamic memory and DMA cycle steals, and interrupts. The
counter/timer can itself provide interrupts to coordinate a program, to effect an
instruction step, or to effect a real-time clock. To effect an instruction step, the timer is
set up as the monitor is left so that it allows one instruction to be executed in the user
program before the interrupt returns control to the monitor. The monitor is used to
examine or modify memory or registers, then the monitor is left and the next instruction
in the user program is executed, and so on. Or a real-time clock can be effected if the
timer interrupts every millisecond. The device can be used to count the number of events
(falling edges of a signal input to the device), and thus the number of events in a fixed
interval of time (the frequency). It is also capable of measuring pulse width and period.
Several things can be converted to the period of a signal: voltage can be converted using
the voltage-to-frequency converter's integrated circuits, and resistance or capacitance can
be converted to the period of a waveform using a linear timer integrated circuit like the
ubiquitous 555. We also observe that a single signal can be easily isolated using optical
isolators, so the voltage of the system being measured can be kept from the
microcomputer and the user. The 'A4 counter/timer was designed for these purposes.

The counter/timer is the principal component, then, in interfacing to frequency
analog signals. These signals, like FM radio signals, are easier to handle than amplitude
analog signals and are comparatively free of noise. We observe that, at the time of
writing, amplitude analog signals are pervasively used in interface circuits; but we
believe that frequency (or phase) analog signals will become equally important.

The primary objective of this chapter is to explain the principles of using the
counter/timer device. To make these principles concrete, the "A4 counter/timer system is
introduced. A further objective of this chapter is to emphasize a fundamental principle of
top-down design. A counter/timer in a microcomputer is so fascinating that the designer

361

362 Chapter 8 Counters and Timers

may decide to use it before examining alternative hardware and software techniques. This
is bottom-up design: I've got this marvelous counter in my microcomputer, now where
can I use it? As we pointed out in §4.3.5, this is rather like the once-popular TV
character, Carnac the Magnificent, who answers a question sealed in an envelope before
he knows the question. Bottom-up design is especially evident whenever a new and
powerful integrated circuit, like the 'A4, appears on the market. This design approach
generally leads to bad designs. So we emphasize the need to examine alternatives, and we
discuss some of the alternatives to using this counter/timer subsystem. This chapter
should acquaint you with the hardware and software of the counter/timer in the ' A4 and
with alternative techniques using a simple parallel I/O port and more hardware, or a
parallel I/O port and more software. Upon finishing the chapter, you should be able to
connect a counter/timer in a microcomputer like the 'A4 and write software to generate
square waves or pulses, or to measure the frequency or period of a periodic wave or the
pulse width of a pulse. With these techniques, you should be able to interface to I/O
systems that generate or use periodic signals or pulses, or to interface through voltage-
to-frequency or frequency-to-voltage converters to analog I/O systems.

8.1 The MC68BC812A4 Counter/Timer Subsystem

We introduce the block diagram of the ' A4 basic counter/timer subsystem in this section
for further reference in this chapter. (See Figure 8.1.) The subsystem has the main
counter and the control ports for enabling the counter/timer components. We also discuss
PORTT parallel port bits and their controls.

Counter/timer control ports are shown in Figure 8.1. The counter TCNT is enabled
when TEN, bit 7 of TSCR, is T (1) and can be read at any time. It can be incremented at
a rate determined by §6.4 (Figure 6,10), which can be the E clock rate, or at that
frequency divided by 2PR, where PR are the 3 least significant bits of TMSK2.

TOF, which is bit 7 of TFLG2, is set when the 16-bit counter TCNT has an
overflow. This bit can be tested in a gadfly loop, or if TOI, bit 7 of TMSK2, is also set,
it causes an interrupt vectored through 0xFFDE, DF. The gadfly loop exit routine or the
interrupt handler can increment a software counter to extend the number of bits beyond
the 16 bits of the hardware counter. A TFLG2 bit must be cleared before it can be
sensed again; it is cleared by writing a T (1) into it (it is a clear port).

For each bit position, PORTT can be a parallel I/O port, whose direction is specified
by the corresponding bit in DDRT-; however, if a bit is assigned to be an output compare
bit (§8.2.1), the corresponding direction port bit is ignored. The PORTT bits can be
given pull-ups if TPU, which is TMSK2 bit 5, is T (1), and their output power can be
reduced if TDRB, which is TMSK2 bit 4, is T (1).

Under control of each bit of TIOS, each PORTT bit may be assigned to be an
output compare, discussed in §8.2.1, or an input capture, discussed in §8.3.1. In
addition, bit 7 has extra capabilities including those of a vector output compare,
discussed in §8.2.7, and a pulse accumulator, discussed in §8.3.4.

8.2 Signal Generation 363

Figure 8.1. The Counter/Timer Subsystem

8.2 Signal Generation

We want to cover the generation of square waves and pulses for external hardware first
because you can implement these examples as experiments and see results on the output
pins. Later, we look at frequency-measurement techniques, which can be studied using a
microcomputer to generate the signals using techniques introduced in this section. We
can also generate interrupts for the microcomputer that can be used to time operations,
which include the timing of output signals. This section covers the generation of signals
with the 'A4 counter/timer and 'B32 pulse-width modulator devices. We describe the
hardware used in generating either square waves or pulses. The generation of square
waves and subsequent generation of arbitrary repetitive waveforms in the 'A4 will be
considered in the next subsection. The next subsection covers 'B32 techniques for pulse-
width modulation. We then illustrate the generation of touch-tone signals. The next
subsection covers the techniques for pulse generation. Another subsection shows how to
generate interrupts, which are used to implement real-time clocks. Finally, we discuss
special pulse-generation capabilities of bit 7's device and object-oriented programming.

364 Chapter 8 Counters and Timers

8.2.1 Output Compare Logic

Signal generation uses eight identical output compare devices, one of which (bit 7) is
further modified as described in §8.2.7. The term output compare comes from the
notion that a fixed number in a port is compared to the running counter; when a compare
is sensed, an output operation is done. Figure 8.2a shows output compare ports. Figure
8.2b shows the hardware associated with bit 0, which we use in most of our examples.

Figure 8.2. Output Compare Logic

8.2 Signal Generation 365

A programmer uses the output compare 0 device by loading the TCO port with a
"time" at which an output operation is to occur. When TCW'S "time" equals the "time"
in the TCO, the output operation will take place. The operation is specified by 2 least
significant bits in the 16-bit TCTLO port. If FF (00), no change takes place; if FT (01),
the output is toggled; if TF (10), the output is cleared; if TT (11), the output is set to 1.
The comparison match also sets TPLGl bit 0, which can be tested by a gadfly loop, and
if TMSKI bit 0 is set, an interrupt is vectored through OxFFEE, EF. The output
operation also takes place if a 1 (T) is written into CFORC bit 0, as if TCNT matched
TCO, but TFLGI is not changed and an interrupt is not generated.

8.2.2 The Counter/Timer Square-Wave Generator

A very economical way to generate a square wave is by means of a software loop that
outputs alternate ones and zeros to an output port. The only hardware needed is a single
1-bit output port, say, PORTT bit 0. The following program shows how simple this
operation is:

void main() { int i;
DDRT = 1; /* set direction to output */
do f

PORTT A = 1,- /* flip output data */
i = N; while (i--) ; /* delay loop */

The outer loop complements PORTT bit 0 each time it is executed. A delay loop is
executed a number of times empirically determined to obtain the desired frequency.

This simple approach is often indicated because of its low cost. However, it has
some basic limitations. The minimum period (maximum frequency) is limited to the
microcomputer clock period divided by two times the time to execute the outer loop.
This time depends on the compiler. However, the program can be written in assembly
language to get more precise timing. You can control the period by supplying the
appropriate value of N, which is determined empirically. Other values can be selected by
putting instructions with the appropriate execution time inside the loop to stretch it out.
However, a different routine is needed for each desired value of the period. An alternative
routine to handle arbitrary period values would be rather hard to implement. Moreover, if
the microcomputer is interrupted while in this loop, or direct memory access or dynamic
memory refresh occurs, the timing will be upset. Finally, the microcomputer is unable
to do any other useful work while executing the routine to output a square wave.
Nevertheless, this approach is recommended wherever a square wave with fixed or a small
number of period times is needed, and no interrupts, direct memory access, dynamic
memory refresh, or running of other programs are done while generating the square wave.

The ' A4 counter/timer system can generate a square wave. The square wave period P
(divided by 2 because there are 2 half-cycles in a period, then multiplied by 8 because the
clock is 8 MHz) is the number N in the program. Gadfly synchronization is used. Its

366 Chapter 8 Counters and Timers

minimum period is longer than for the single parallel output port example discussed
before it. We do not recommend it, but it leads to the interrupt approach discussed next

void main () {
TSCR = 0x80; TIOS = 1; /* bit 0 is out. cmp */ TCTLO = 1; /* tggle */
TOO = N + TCNT; /* half-period */
do{

while (! (TFLGI & 1)) ; I* wait until flag is set */
TFLGI = l; /* clear flag */ TCO += N; /* set for next half-period */

The interrupt-based routine is shown below. The value N is the same as it was for
gadfly synchronization. While the interrupt minimum period is longer than the previous
approaches, the microcomputer is free to do other work when it uses this approach.

interrupt 8 void handler (){ TFLGI = 1; /* clear flag */ TCO += N; }

The analysis of these methods shows that the 'A4 counter/timer system using
interrupts may be best for generating square waves with periods above 6.75 us (N = 27),
since the processor is free to do other things while waiting for an interrupt. A simple
parallel output port may be used for assembly-language-coded generation of square waves
(periods > 2 us) if the processor is doing nothing else, but digital hardware oscillators
and counters may be needed for square waves with shorter periods.

8.2.3 The MC68HC912B32 PWM Signal Generator

The 'B32 has a pulse width modulation (PWM) device, which is well-suited to generate
repetitive digital signals, such as square waves, whose periods can be from 250 ns to
over a minute. Unlike the output compare device, once PWM ports are loaded, the wave
form is produced without the need for software to reload registers or exercise control. The
'B32's PWM Ports can be declared as follows:

volatile char PWCLK @0x40, PWPOL @0x41, PWEN @0x42, PWPRES@Ox43,

PWSCALO@Ox44, PWSCNTO@Ox45, PWSCALl@Ox46, PWSCNTl@Ox47,

PWCNTO@Ox48, PWCNTl@Ox49, PWCNT2@Ox4a, PWCNT3@Ox4b,

PWPERO@Ox4c, PWPERl@Ox4d,PWPER2@Ox4e, PWPER3@Ox4f,

PWDTYO@Ox50, PWDTYl@Ox51, PWDTY2@Ox52, PWDTY3@Ox53,

PWCTL @0x54, PWTST @0x55, PORTP @0x56, DDRP @0x57;

8.2 Signal Generation 367

The PWM has four channels and many modes of operation; herein we first describe
left-aligned channel 0 pulses that use 8-bit counters. Then we describe left-aligned
channel 0 and 1 pulses that use 16-bit counters. The device's 8-bit ports are shown in
Figure 8.3a. Pairs of these ports, used for 16-bit counters, are shown in Figure 8.3b.

Left-aligned channel 0 pulses are low for PWDTYO+I clock periods and repeat every
PWPERO + I clock periods. If k is 1, channel O's PWM clock is the E clock divided by
21 * 2 * j, otherwise the clock is the E clock divided by 2*, where i is bits 5 to 3
of PWCLK, and j is PWSCALO, and k is PWPOL bit 4.

Figure 8.3. Pulse-Width Module Ports

368 Chapter 8 Counters and Timers

The following main procedure shows the use of channel 0 to generate a rather high
frequency square wave. It is low for three E clock cycles, and high for one clock cycle.

PWDTYO = 2; /* duty cycle: low for three E clock cycle */
PWPERO = 3; I* period: four E clock cycles */
PWEN = l; /* enable channel 0 */
do ; vfhi led) ,• /* pulses high 125 ns */

The prescaler, contolled by PWCLK bits 5 to 3, can divide down the E clock. The
resulting pulse is high for 128 E clock cycles and low for 384 E clock cycles.

void main. () {
PWCLK = 0x38; /* use clock which is E / 128 = 16 us */
PWDTYO = 2; PWPERO = 3; PWEN = 1; do ; while (1); /* high 16 US */

If PWPOL bit 4 is 1, the prescaler, contolled by PWSCAL 0 can also be used to divide
down the E clock. The resulting pulse is high for 256 x 128 E clock cycles, and low for
three times this time.

void main () {
PWCLK = 0x38; PWPOL = 0x10; PWSCALO = 0x80; /* E / (256*128) */

PWDTYO = 2; PWPERO = 3; PWEN = 1; do ; while (1) ; /* high 4.096 HIS */

If PWCLK bit 5 is 1, PWPERO and PWPERI are combined into PWPERO l and
PWDTYO and PWDTYI are combined into PWDTYOI to provide 16-bit period and pulse
width control. The following program produces a pulse that is high for 65 ms, and low
for three times this time.

void main () {
PWCLK = 0x78; /* clock with 16 us, join channel 0 and 1 */
PWDTYOI = Ox2FFF; PWPER01 = Ox3FFF; /* uses channel 1 clock */

= 3; do ; while(l); /* pulse high 65,536 ms on channel 0 */

Such 16-bit period and pulse-width ports can be scaled, as shown below. This
program produces a pulse that is high for 16.77 s, and low for three times this time.

void main () {
PWCLK = 0x78; PWPOL = 0x20; /* chl clock controls prescaler */
PWSCALO = 0x80; PWDTYOI = 0x2FFF; PWPER01 = Ox3FFF;

PWEN = 3; do ; while (1) ; /* pulse high 16.77 s high on channel 0 */

8.2 Signal Generation

Table 8.1. PWM Channel Ports

Channel

enable: PWEN bit

i = PWCLKbits

j ~ contents of:

k = mpOL bit

0

0

5 to 3

PWSCALO

4

1

1

5 to 3

PWSCALO

5

2

2

2toO

PWSCALl

6

3

3

2toO

PWSCALl

7

If k is 1, PWM clock is E/f 2* x 2 x j), otherwise it is E/ (21)

Table 8.1 shows contol ports for other PWM channels. Note that channels 0 and 1
share prescaler ports and can be coupled to implement 16 bit PWDTYOI and PWPEROI
ports. Similarly channels 2 and 3 share prescaler ports and can be coupled to implement
16-bit duty-cycle and period ports.

The period and pulse width can be independently changed, provided the period is
greater than the pulse width. For instance, in controlling an automobile fuel injector, the
period can be adjusted to the engine speed, and the duty cycle to the amount of fuel
injected. In another example, for pulse-width modulated communication channels, the
period can be fixed to the time to send a bit, and the duty cycle can be loaded with
different values, sending short or long pulses, to communicate a 0 (F) or 1 (T) signal.

8.2.4 A Touch-tone Signal Generator

We now consider an application of this oscillator with respect to the production of
touch-tone signals. A touch-tone signal is a pair of sine waves having frequencies that
represent the digits used in dialing a telephone. A touch-tone generator can generate these
signals so that the microcomputer can dial up on the telephone, and it can generate such
tones to be sent via radio remote control or to be stored on cassette tape. In a top-down
design, one must consider all the relevant alternatives. One possibility is integrated
circuits that output touch-tone signals in response to keyboard contact closings, but
these would require the microcomputer to act like the keyboard to such a chip. Another
is analog switches in place of the keys that can be controlled by an output port. (A few
other alternatives are also possible.) However, the number of chips needed in any
alternative would be at least two, if not more. So we next consider generating a square
wave with 2N times the frequency of the sine waves that make up the touch-tone signal,
using an N-stage Johnson counter to generate the sine wave.

A touch-tone signal consists of two sine waves transmitted simultaneously over
the phone. The following table shows the tones required for each digit that can be sent.
Table 8.2a shows the mapping of digits to frequencies shown in Table 8.2b, and Table
8.2b shows the frequencies in Hz and the corresponding values to be put in 'B32's PWM
ports, or to be added to the 'A4's output compare device to generate the desired
frequencies, as they will be used later in the example. Thus, to send the digit 5, send two
superimposed sine waves with frequencies 770 Hz and 1336 Hz.

370 Chapter 8 Counters and Timers

Table 8.2. Touch-tone Codes

Digit

0
i
2
3
4
5
6
7
8
9

Coding

R4,C2
Rl , Cl
R1,C2
R1,C3
R2,C1
R2,C2
R2,C3
R3,C1
R3 , C2
R3,C3

Code

Rl
R2
R3
R4

Cl
C2
C3
C4

Hertz

6.97
770
852
941

1209
1336
1477
1633

Counter

717
1649

587
531

414

374

339
306

a. Codes for Digits b. Frequencies for Codes

A Johnson counter is almost ideal for generating a sine wave. It is actually just a
shift register whose output is inverted, then shifted back into it. (See Figure 8.4.) A 4-
bit Johnson counter would have the following sequence of values in the flip-flops:

As described in Don Lancaster's marvelous little book, The CMOS Cookbook,
these counters can be used to generate sine waves simply by connecting resistors of
value 22 KO to the first and third stages, and of 30 KO to the second stage, of the shift
register. (See Figure 8.4.) Although the wave will look like a stair-step approximation
to a sine, it is free of the lower harmonics and can be filtered if necessary. Moreover,
using more-accurate values of resistors and a longer shift register, it is possible to
eliminate as much of the low-order harmonics as desired before filtering. In this case, if
we want a sine wave with frequency F, we clock the shift register with a "Johnson
counter clock" whose period should be 1 / (8 x F).

Now we consider ways to implement Johnson counter clocks whose frequencies are
each one of four values. A real-time-programmed software solution would require two
microcomputers since a whole microcomputer is dedicated to outputting just one square
wave. Instead, a rather complex program just might be possible; or a table could be read
out to supply the right sequences, but a different table is needed for each frequency, so
each table would be quite long. The digital and analog hardware solutions require more
than two chips, so we consider the 'B32's PWM device, and the 6812 counter/timer
device, using interrupts. The Johnson counter clocks have periods of 5.5 to 13 KHz,
well within the range of the 16-bit PWM and the counter/timer device using interrupts.

8.2 Signal Generation 37!

Figure 8.4. A Touch-tone Generator

In the 'B32, the PWM device is best suited to generate two Johnson counter clocks. In
the ' A4, two Johnson counter clocks can be implemented using two of the counter/timer
devices, which use interrupts to restart the output compare hardware.

In the 'B32, because the periods are longer than 256 E clock cycles, channels 0 and
1 are coupled to produce one Johnson counter clock, and channels 2 and 3 are coupled to
produce the other clock. The program below emits the code for the number d = 5 . A
vector tb10 converts 5 into the indexes of the second table to generate R2 and C2. This
vector implements Table 8.2a. The vector tb11 generates the half-period values to be
put into PWDTYO1 and PWDTY23 , whose doubled values are put in PWPEKOI and
PWPERO1 . A high-level language like C++ easily translates values using a vector.

const unsigned char tbl0[10] -
{0x35, 4, 5, 6, 0x14, 0x15, 0x16, 0x24, 0x25, 0x26} ;

const int tbll[8] = {717,649,587,531,414,374,339,306};

void main() { char i = tblOfdj;
PWCLK = OxcO; /* join channel 0 and 1, and join channel 2 and 3 */
PWPEROi = (PWDTYOI = tbllfi & Oxf]) « l; /* generate Johnson ctr elk */
PWPFJR23 = (PWDTY23 = tbll[(i » 4) & Oxf]) « i;/* generate 2nd elk */
PWEN = Oxf; /* enable all PWM channels */ do / while (1) /

372 Chapter 8 Counters and Timers

The 'A4 counter/timer system generates a Johnson clock in the same way. The
values, stored in global vector tbl 1, are added to the compare registers each time there
is an interrupt, main and two interrupt handlers, handlerl and handler2, send a
touch-tone code as shown below. Initialization is used to begin generating a pattern for a
number in global char d, and the two handlers are used to respond to interrupts for the
two square-wave generators. Timer devices 0 and 1 are used. Device 0 is set up exactly as
in the previous example and device 1 is set up as is device 0.

const unsigned char tblOflO] =
{0x35, 4, 5, 6, 0x14, 0x15, 0x16, 0x24, 0x25, 0x26} ;

const int tbll[8] = {717,649,587,531,414,374,339,306};

Tl; char d = 5;

void main() { char i;
i = tblO[d];TO=tbll[i&Oxf]«2;Tl = tbll[(i»4)&Oxf] « 2; asm sei
TSCR = 0x80; TIOS = 3; TCTLO = 1; TCO = TO + TCNT;
TCI = Tl + TCNT; TMSKl = 3; /* enable int */ asm cli
do ; while(1);

interrupt 9 void handler2 () { TFLG1 = 2; TCI += N; }

Two devices are used to generate the two sine waves required by the touch-tone
signal. The external connections are shown in Figure 8.4. On the left, the italic signal
names and pin numbers correspond to the 'B32; the other names and pin numbers
correspond to the 'A4. Note that the CLEAR control on the shift register is connected to
the microcomputer RESET bus line to ensure that the shift register does not have some
unusual pattern in it after power is applied. The output signal is simply the sum of the
sine waves produced by two shift registers, obtained from the resistors' common points.

A slight variation of this technique can be used to generate any periodic waveform.
The square wave can be used to increment a counter that supplies an address to a read-
only memory. It can output words to a D-to-A converter and can store the desired pattern
to be developed. Thus, generating a square wave can generate other periodic waves.
Finally, as discussed in §7.4.2, a square wave can be integrated to get a ramp signal, and
this can be shaped by nonlinear analog techniques. Also, as in music generation, a
periodic signal can be shaped by attenuating it under control of an output port to apply
attack and decay characteristics in a music synthesizer.

The 'B32 PWM and the 'A4 counter/timer are valuable tools. The PWM generates
square waves easier than the 'A4 counter/timer does, as can be seen from the preceding
examples. Either can generate other periodic waves using Johnson counters or read-only
memories and D-to-A converters. However, the designer must not assume that this chip,
or any counter/timer chip, is so much better than any other generator. He or she must
consider all approaches and pick the best one for a specific application.

8,2 Signal Generation 373

8.2.5 The Pulse Generator

Like the square-wave generator, a pulse generator has many uses. The device normally
outputs a false value, but outputs a true value for a specified time after it actually is
triggered. It can be triggered by software or by an external signal. And, as with the
square-wave generator, there are software and hardware techniques to implement it The
software technique to supply a pulse triggered by software merely outputs a true, waits
the required time, and then outputs a false value. To react to an external signal, the
external signal can be sensed in a gadfly loop or can generate an interrupt so that the
pulse is generated when the signal arrives. A program to generate a pulse follows.

void main () { int i;
DDRT •= l; /* set direction to output */
PORTT i = l; /* set output data */
ford = 0; i < N; i ++) ; /* delay loop */
PORTT &= ~l; /* clear output data */

But like the software square-wave generator, the software pulse generator is susceptible
to timing errors due to interrupts, direct memory access, and dynamic memory refresh
cycles. A 555 timer can act like a pulse generator, triggered by a microcomputer or an
external signal; and the length of the pulse, determined by the value of a resistor and a
capacitor, can be controlled by selecting the resistor by means of an analog switch
controlled from an output port. One-shot integrated circuits can be controlled in a like
manner. Finally, the 'A4 counter/timer system can be used to generate pulses when the
computer starts them (or they can be started by an external signal and then sensed by the
computer, as discussed later), and the pulse length can be computer controlled, as we
now discuss. First, gadfly synchronization is used to generate a pulse, then interrupts are
used. In both programs, care is exercised lest the timer inadvertently cause an input
compare, CFORC cause a rising edge, and the falling edge occur after device 0 times out.

TIOS = 1; /* bit 0 is output compare */
/* prevent timer from interfering */
/* set device 0 to clear */
/* cause it to clear now */

do the following when pulse is to start */
/* set device 0 to toggle */
/* cause it to set now */
/* set device 0 to clear */
/* pulse width */
/* clear flag */

i 1)) ; /* wait until flag is set */

The interrupt-based routine is shown below. While this minimum pulse width is
longer than that for previous approaches, the 6812 is free to do other work.

374 Chapter 8 Counters and Timers

interrupt 8 void handler (){ TMSKl = 0; /* disable interrupt *//

void main() { int i; asm sei

TSCR = 0x80; TIOS = 1; TCO = TCNT; TCTLO = 2; CFORC = 1;

I* do the following when pulse is to start */
TCTLO = 1; CFORC = 1; TCTLO = 2; TCO = N + TCNT;

TMSKI = TFLGI = 1; /* enable interrupt, clear flag */ asm cli
ford = 0; i < Oxffff; i + +) ; asm sei

The 'A4 counter/timer system provides significant advantages. The pulse width is
precisely timed to within a memory cycle time, which is usually 125 ns, and this time
is not affected by processor interrupts, dynamic memory refresh requests, or other subtle
problems that affect the timing of real-time programs. Moreover, the program has to put
a compare value into the output compare register sometime after the last time the output
changed and before the time the next output changes, rather than precisely at the time the
output must change. This is quite useful in automobile engine control, where the pulse
width controls the amount of gasoline injected into the engine, the spark timing, and
other key factors in running the engine. A counter/timer system, with up to eight output
compare devices, is sufficient to control an engine so the microcomputer can measure
input signals and compute the values of the pulse widths for the timers. In fact, the ' A4
is especially suited for the vast automobile industry.

8.2.6 A Rotary Dialer

Pulses are used for many things, such as a telephone that uses a rotary dialer. A relay
connected in series with the dialer contacts will be pulsed to dial the number. The
telephone standards require the relay to be closed for at least 40 ms and then opened for at
least 60 ms for each pulse, and the number of pulses corresponds to the number being
dialed; 600 ms are needed between each number being dialed. We consider a software
approach using a single-bit output (PORTT bit 0) to control the relay, using the
counter/timer system as a pulse generator, and using additional digital or analog
hardware. Each designer has individual preferences. In fact, we really wanted to use the
counter/timer system. But unless the pulse generation and timing are done by the
counter/timer system so that the microcomputer can do something else, the program is
actually less efficient than a simpler approach using real-time synchronization.
Therefore, we swallow our pride and implement the dialer using real-time programming.
We will show an 'A4 counter/timer-based pulse generator in a later example, where it is
coupled to an edge detector. The program below outputs a pulse signal for the digit in
global variable d. Afis the loop counter for a 1-ms delay.

8.2 Signal Generation 375

main dials a number by outputting a T (1) value to PORTT bit 0 for 20 ms, then
an F (0) for 20 ms, and so on for each pulse, del is then called for a 600-ms delay to
provide the spacing between digits, as required by the telephone company.

This example gives us an opportunity to relate one of the truly great stories in
electronics - the invention of the dial telephone. It seems that in the 1880s Almond B.
Strowger, one of two undertakers in a very small town, couldn't get much business. His
competitor's wife was the telephone operator for the town. When someone suffered a
death in the family, they called up to get an undertaker. The wife naturally recommended
her husband, diverting callers from our poor friend Almond. Necessity is the mother of
invention. With a celluloid shirt collar and some pins, he contrived a mechanism that
could be operated by the caller, using a stepping relay mechanism that would connect the
caller to the desired telephone, so that calls for his business would not go through his
competitor's wife. It worked so well that it became the standard mechanism for making
calls all over the world. Even today, about a quarter of all telephones use this "step-by-
step" or Strowger system.

8.2.7 Real-time Clock and Trace Mechanism

Using a configuration almost identical to that used for a pulse generator, a device can be
used as an accurate delay, as a real-time clock, or as a trace-mode interrupt. In this
section we will cover these applications, as well as an example using a real-time alarm
clock that illustrates how precise timing can be achieved.

Gadfly synchronization can be used to wait a precise amount of time. There is no
effect on the output port signal because device 0's TCTLO bits are FF (00). The program
below will do the "next operation" after a time determined by w has elapsed.

void main. () {
TSCR == 0x80; TIOS = 1; TCTLO = 0; TFLG1 = 1; TCO = N + TCNT;

whi] e (! (TFLGl & 1)) ; /* gadfly until flag is set */ /* do "next operation" */

When generating pulses using interrupts, TFLGI is set when an output compare
occurs. This can be used to set an interrupt if the corresponding TMSKI bit is also set. A
global variable can be set in the handler, and main, gadflying on this variable, can do
the "next operation" after the global variable changes.

void main() { asm sei

TSCR -= 0x80; TIOS = 1; TCTLO = 0;

TCO = N +• TCNT; /* delay */ TMSK1= TFLGl =1; /* rmv int. flag */ asm cli

do ; while(! f l a g) ; /* wait for interrupt */ /* do "next operation" */

interrupt 8 void handler () {flag=l;TMSKl = 0;l* set global flag, disable device

376 Chapter 8 Counters and Timers

This interrupt mechanism can be used for executing a tracing instruction. In §1.2.3
we explained that a monitor is a program used to help you debug programs. The
monitor, in the handler, is left by an RTI instruction. To "trace" a user program, we can
leave the monitor to execute just one instruction, then reenter the monitor to see what
happened. Just before we leave the monitor, we add TCNT to a number N and write the
result TCO , after which we execute RTI. jv will be chosen to give the user program just
enough time to execute just one instruction; then an interrupt will occur and the
monitor, in the handler, will be reentered to display the changes wrought by the
executed instruction.

interrupt 8 void handler (){ /* first display 6812 registers, memory etc. */
TFLG1 = l; I* clear device's flag port */
TCO - N + TCNT; /* delay just long enough to execute 1 instruction */

void main () {
asm sei

TSCR = 0x80; TIOS = TMSK1 = TFLGl = 1; TCTLO = 0;
TCO ~ jv + TCNT; asm cli /* now execute program being debugged */

The counter/timer real-time interrupt mechanism can be used, in place of real-time
interrupts, to implement time-sharing as discussed in §5.3. Code in §5.3.1's handler
would be put into the timer's handler. Instead of being restricted to the real-time
interrupt 's fixed and awkward periods, such as 1.024 ms, counter/timer real-time
interrupts can select any period to within 125 ns, such as 10.000 ms.

The counter/timer chip is seen to be a valuable component for generation of pulses.
But don't forget to consider the alternatives to this chip. Another could be better.

8.2.8 Output Compare 7

The special output compare 7 device can affect any or all the output pins at the same
time. Bit 7 of CFORC, TFLGI , and TMSKI work the same as the other output compare
devices, but when an output comparison match is detected, the bits of data OC7D are
forced into the output flip-flops wherever mask OC7M is T (1). If a change results from
another output compare module when a change results from this module, this module
takes priority and the other change is ignored. (Note that this means device 7 cannot be
used for output compare operations described in §8.2.1 and §8.2.2.) Also, PORTTbit 7
(pin 112) is an input/output bit also used by the pulse accumulator, discussed in §8.3.4.

8.2 Signal Generation 377

vou

Vi

V>

16}iS

24 [iS

SMS 8»S

time

Figure 8.5. Timing of Some Pulses

We wish to generate three waveforms (see Figure 8.5) to control something, which
is very nicely handled by the 'A4 counter/timer system. This technique is limited to 8
ms between transitions; longer times can be obtained using the timer prescaler. The
program achieves this pulse sequence using gadfly synchronization. Output Vj_ is to be
generated by output compare device i . Note that devices 0, 1,2, and 7 are configured
for output compare. Figure 8.6 shows output compare 7 ports. The devices' outputs are
initialized by writing 0x80 in CFORC. We first set up output compare 7's data register,
OC7D, to give the signals levels at time to, which occurs when CFORC is written into.
The numbers in the compare registers are set up to output the signals at the time the
changes are required. Constant N is 64000, set for a delay of 8 ms.

void main () {
TSCR = 0x80; TIOS = 0x87; TCTLO = 0; TFLG1 = 0x80; OC7M = 7;

OC7D = 2; CFORC = 0x80/ /* set up initial conditions on ports 0, 1, 2 */
/* execute the following when the pulse sequence is to be output */
OC7D = 1; TC7 = N + TCNT; CFORC = 0x80; /* time t0 */
TFLG1 = 0x80; while(!(TFLG1 & 0x80)) ; OC7D = 5; TC7 += N;

TFLG1 = 0x80; while(! (TFLG1 & 0x80)) ; OC7D = 0; TCI += 2V/
TFLG1 = 0x80; while<!(TFLG1 & 0x80)) ; OC7D = 2; TC7 += N;

Figure 8.6. Output Compare 7 Ports

378 Chapter 8 Counters and Timers

Some remarks on this program are offered. Compared to using a parallel port and
real-time programming, this approach is much more precise. The real-time programming
technique transfers data to the output pins when the program executes the statement
PORTT = d; which is subject to any number of timing errors, such as interrupts,
DMA, dynamic memory refreshing, and so on. The data in oc7n are transferred to the
output pins on a precise count of TCNT, while the program just puts data into OCID
sometime before it is needed.

8.2.9 Object-oriented Square-wave and Pulse Generation

Object-oriented programming simplifies generation of square waves and pulses. We
demonstrate a class squareWave below. Note the use of a destructor to stop output. We
also illustrate a technique to use objects in a manner that allows them to be assigned to
counter/timer devices when the object is declared or blessed. This is relatively easy when
all devices are polled after an interrupt. It is complicated by the use of separate vectors
that allows vectoring of different devices to different handlers. To get around this
problem, the devices are made elements of a vector of objects. The interrupt handler is
largely written in assembly language so as to convert the interrupt vector into a value of
local variable i that is used as an index to select the device objects. The byte Ox8f is the
opcode for the CPS # instruction; it is used to skip two bytes, which another interrupt
vector accesses to put a different value in accumulator B, which becomes the variable i.

interrupt 8 void handler(){ int i;
asm{

Idab #0
dc.b 0x8f
Idab #1
dc.b 0x8f
Idab #2
dc.b 0x8f
Idab #3
dc.b 0x8 f
Idab #4
dc.b 0x8f
Idab #5
dc.b 0x8f
Idab #6
dc.b 0x8f
Idab #7
clra
pshd

8.2 Signal Generation 379

The constructor is passed a channel number called id, from 0 to 7, and a frequency.
The channel number selects the port and installs the interrupt vector so as to enter
handler above at a location that will load accumulator B with the channel number.

class squareWave : public Port<int> { char id, mask; int halfPeriod;
public:s(juareWave (char id, int frequency) :Port (0x90 + (id « 1)) {

asm sei
TSCP = 0x80; TIOS \ = mask = 1 << (this->id = id);
TCTLO= (TCTLO& ~(3<<(id <<!))) I (1 « (id << 1)) ;/* toggle */
TMSK1 =mask;l* enable interrupt for device id */ put (frequency); asm cli

A class Pulse is shown below. The put function member causes an output
transition to high, and the service routine, entered after the output goes low, disables its
interrupt. In this class, each handler is vectored to, and calls the service routine with, the
appropriate object. The service routine uses the object data members mask and id2 to
clear the interrupt.

interrupt 8 void handler0 () { devices[0]->service(); }
interrupt 9 void handler1 () { devices [1]->service (); }
Interrupt 10 void handler2(){ devices [2] ~>service (); }
interrupt 11 void handlei 3 () { devices [3]->service (); }
interrupt 12 void handler 4 () { devices [4] ->service() ; }
interrupt 13 void handlers (){ devices [5]->service (); }
interrupt 14 void handlers () { devices[6]->service(); }

class Pulse : public Port<int> { char mask, id, id2;
public: Pulse (unsigned char id) : Port (0x90 + (id << 1)) {

asm sei
TSCR = 0x80; TIOS != mask = 1 « (this->id = id);
TCTLO=TCTLO <J ~(1 « (id2 = id « 1)) \ (2 « id2);CFORC = mask;
TMSKI = mask; /* enable interrupt for device id */
*(int *)(0xb2e+(ld « 1)) = ((int)handler0) +7 * id; asmcli

380 Chapter 8 Counters and Timers

virtual void put (int data) {
asm sei
TCTLO 1= 3 « id2; CFORC = mask;/* set bit id*/
TC[id] = data + TCNT; TCTLO &= ~(1 « id2) ;
TMSKI = TFLGI = mask; /* clear and enable device id interrupt */ asm cli

void service(void) {TMSKI &= -mask; TCTLO &= ~(3 « id2);

Pulse *devices[8];

void main()
(devices[0]=new Pulse(0);devices[0]~>put(5);devices[0]->~Pulse();}

The reader is invited to write a class negPulse for negative pulse generation. We
finally demonstrate a class psg below. The constructor's mask argument determines
which PORTT bits the output sequence is put on. These bits, together with bit 7, are
assigned to an output compare function. put passes length n and vectors bits[n] and
time[n]. Elements time[i] are the time in E clock cycles from the /-first interrupt to
the ith interrupt. Device 7's interrupt occurs time[i] clock cycles after the last
interrupt, and outputs bit pattern bits[i] when the period timefi] has elapsed.

class pSq : public Port<int> { int *time; char *bits, size;
public : pSq(char mask) : Port(0x9e){

TSCR = 0x80; TIOS I= (OC7M = mask) ! 0x80;
* (int *)0xb20 = ((int)handler); /* for DBugl2 */ asm cli

virtual void put(int *time, char *bits, char size) { asm sei
this->time = time; this->bits=bits;this->size = size;
OC7D = *bits++; TC7 = TCNT + *time++;
if (--size) TMSKI I =TFLGl--=Ox80; /* clear, en. device 7 int. */ asm cli

void service(void) {
TFLGI = 0x80; OC7D = *bits++; TC7 += *time++;
if((--size}<= 0) TMSKl&=Ox7F; /* if no more sequence, disable int */

interrupt 15 void handler () { device. service (); }

pSg device(7) ;
^define SIZE 5
int times [SIZE] = { 10, 20, 30, 40, 50 }; char bits [SIZE] = { 1,2,4,3,6 };

void main () { device, put (times, bits, SIZE); }

8.3 Frequency and Period Measurement 381

8.3 Frequency and Period Measurement

Converse to generating square waves or pulses, one may need to measure the frequency
or period of a square wave or repetitive signal, or the width of a pulse. Many important
outputs carry information by their frequency: tachometers, photodetectors, piezoelectric
pressure transducers. The voltage-to-frequency converter's integrated circuit can change
voltages to frequencies economically and with high accuracy. The period of output from
a timer chip like the 555 timer is proportional to the resistance and capacitance used in
its timing circuit. Therefore, a by-product of measuring period is that one can easily
obtain measurements of resistance or capacitance. But, for high frequencies, frequency is
easier and faster to measure, while for low frequencies, period is easier and faster. The
6812 is quite capable, if necessary, of inverting the value using its IDIV and FDIV
instructions. For nonrepetitive waveforms, pulse-width measurement is very useful,
Also, the time between two events can be measured by using the events to set, then
clear, a flip-flop. The pulse width of the output of this flip-flop can be measured.
Sometimes the microcomputer has to keep track of the total number of events of some
kind. The event is translated into the rising or falling edge of a signal, and the number of
edges is then recorded. Note that the number of events per second is the frequency. Thus,
events are counted in the same way as frequency is measured, but the time is not
restricted to any specific value.

in this section, we first study the measurement of period and pulse width. We also
consider the recording of timing of edges, and gadfly and interrupt sensing of edges. Later
we discuss the counting of events and the measurement of frequency.

8.3.1 The Input Capture Mechanism and Period Measurement

The software approach to period measurement is simpler than the software approach to
frequency measurement. A counter is cleared, then the input signal is sensed in a gadfly
loop until a falling edge occurs. Then the main loop is entered. Each time the loop is
executed, the counter is incremented and the input value is saved. The loop is left when
the input value from the last execution of the loop is true and the input value in this
execution of the loop is false - that is, on the next falling edge. The counter then
contains a number N, and the period is TV times the time taken to execute the loop.
The analog hardware approach uses a voltage-to-frequency converter, in which the input
voltage and the reference voltage are interchanged (see §7.4.3 for details). The digital
hardware approach uses a reference clock to increment a counter. The counter is cleared
on the falling edge of the input signal and stops counting (or is examined) on the next
falling edge of the input signal. Some reflection on these techniques shows that in each
case the frequency measurement technique is used, but the roles of the reference frequency
and the input frequency are interchanged.

Recall that the popular 555 timer integrated circuit can generate a digital signal with
period.? = A + B (Ra + 2 Rb) c, where A and B are constants, Ra and Rb are the
resistors and c is the capacitor (as diagrammed in Figure 6.9.) The resistor Rb can be a
volume control or joystick with which the computer may want to sense the wiper's
position, or it may be a photoresistor or thermistor. In fact, under the control of a
parallel output port and an analog multiplexor, the computer can insert any of a number

382 Chapter 8 Counters and Timers

Figure 8.7. Input Capture

of resistors in place of Rb, so that the selected resistor's value can determine the signal's
period and the period can be measured by a counter/timer. This is a good way to "read"
into the microcomputer the potentiometers on a stereo console, a game, or a toy.

The term input capture denotes that when an edge occurs, the running counter is
"captured" into a register. Figure 8.7 shows these input capture ports and devices.

Eight input capture devices are provided, so eight waveforms can be measured at the
same time (see Figure 8.7a). Input capture device 0 is diagrammed in Figure 8.7b. An
edge is selected by the two least significant bits of the 16-bit port TCTLE. If they are FF
(00), no capture occurs; if FT (01), capture occurs on a rising edge; if TF (10), capture

8.3 Frequency and Period Measurement 383

occurs on a falling edge; and if TT (11), capture occurs on both edges. A transfer causes
the current value of TCNT to be copied into TOO, and sets TFLGI bit 0. This bit can be
sampled in a gadfly loop, or if TMSKI bit 0 is set, setting TFLGI bit 0 causes an
interrupt vectored through OxFFEE and OxFFEF.

The period of a waveform can very simply be measured by reading the input capture
register after two consecutive transfers. The following program main shows a gadfly
technique for doing this (assuming the period is less than 216 clock cycles).

void main . () { int period;
TSCR = 0x80; /* enable counter/timer */
TCTLE = 0x4000; /* device 7 input capture: capt rise edge */

TFLGl = 0x80; while (! (TFLGl&OxSO)) ; period=TC7; /* get time of 1st */
TFLGI •= 0x80; whi le (.' (TFLGI & 0x80)) ;/* wait for another rising edge */
peri od = TC7-peri od; /* subtract this time from time of 1st transition */

8.3.2 Pulse-width Measurement

The pulse width of a signal is the time from a rising edge to the next falling edge (that
is, as the width of a positive pulse). A negative pulse width is the time from a falling
edge to the next rising edge. You may question why we might want to measure pulse
width when we can already measure period, or vice versa. Usually the signal being
measured is an analog signal, and this is converted to a digital signal by a comparator.
Observe that the analog signal's slanting edges generally result in different digital signals
depending on the comparator's threshold. Normally however, the period is independent of
the comparator's threshold, so it should be measured. For nonrepetitive wave forms
where the period cannot be measured, the pulse width of the waveform is measured.

As usual, there are software, analog and digital hardware, and counter/timer
techniques for pulse width measurement. Except for the analog hardware approach, they
are all similar to the techniques for period measurement. Generally, in the software
approach the time is measured when the input signal falls and is again measured when
that signal rises. After the pulse is over, the pulse width is the difference in times.

Pulse width is measured by a counter/timer in a manner similar to period
measurement. (Again we assume the counter doesn't overflow.) The only difference is
that we must change the edge of the second reading of the input capture register to
determine the time from a leading edge to the next falling edge.

void main() { int pulseWidth;
TSCR = 0x80; TCTLE = 0x4000; /* device 7 input capture: capture rise edge */
TFLGI = 0x80; whil e (! (TFLGI & 0x80)) ; pulseWidth=TC7;/* get rising edge */
TCTLE = 0x8000;

TFLGI = 0x80; while(!(TFLGI & 0x80)) ; pulseWidth =- TC7 - pulseWidth;

In §9.3.1, we will study the universal asynchronous receiver-transmitter (UART),
which is used to communicate over a serial link. The UART clock signal is 16 times

384 Chapter 8 Counters and Timers

this baud rate; a counter/timer device, configured as a square-wave generator, can generate
the UART clock (although special chips are also available for it). An input capture
device is also suited to automatic determination of the bit rate and setting of the clock
rate, using pulse-width measurement, The sender should send the capital U character -
ASCII code 0x55 - repetitively. Each time it is sent, it generates five pulses (or six
pulses if the parity is set even). The pulse width can be measured using the
counter/timer, then multiplied by 16 to establish the UART clock, to be used by the
device that generates a square wave.

Pulse-width measurement provides a key to determine the codes used by a remote
control for a TV or stereo. An infrared detector outputs pulses to PORTT bit 0. The
command may be encoded in the positive pulse widths, negative pulse widths, periods,
or counts of pulses. To establish the nature of the coding, we collect some data called a
histogram, a vector of counts. The element histogram [i] is the number of times the
pulse width was between i * range and (1 + 1) * range. In the following
program main, range is set to 30. If the period is 0 to 29, histogram[0] is
incremented; if the period is 30 to 59, histogram[l] is incremented; and so on.
Examining the histogram, we get an idea of what is a T (1) and what is an F (0).

int i, j, histogram [10];
void main () (TSCR - 0x80; TIOS &= ~1; TCTLE = 1; I* bit 0 input capture */

for(i = 0; i < 100; i++) { /* get 100 samples */
TCTLE = 1; TFLG1 = 1; while(I(TFLG1 & 1)) ; j = TCO;
TCTLE = 2; TFLG1 = 1; while(!(TFLG1 & 1)) ; j = TCO - j;
i f (j < 300) histogramij / 30]++;

Suppose many pulses are around either 50 or 120 clock cycles. We then define a T (1) as
a period of 120 and an F (0) as a period of 50 (a midpoint threshold is 85); the program
main below will collect Ts and Fs into vector history to determine patterns that are
emitted by the remote control. Pressing the key "0" and obtaining its history, we can
examine history to determine how to recognize the code for the key "0" is pressed.
Pressing the key "1" and obtaining its history, we can examine history to
determine how to recognize when the key "1" is pressed, and so on. This way, we can
build an infrared remote receiver or duplicate an infrared remote transmitter.

void main () {
TSCR = 0x80; TIOS &= ~l; TCTLE = 1; /* make bit 0 input capture */
for(i = 0; i < 160; i + +) { /* get 160 samples */

TCTLE = 1; TFLG1 = 1; while(!(TFLG1 & 1)) ; j = TCO;

TCTLE =2; TFLG1 = 1; while(!(TFLG1 & 1)) ; j = TCO - j;

history [i >> 4] «= 1; if(j > 85) history [i >> 4] + + ;
i.

8.3 Frequency and Period Measurement 385

8.3.3 Triac Control

The counter/timer edge interrupt can be used, like the key wakeup interrupt, to initiate an
action when an edge of a signal arrives. Moreover the input capture port provides a
precise reference when the edge occurred. This can be used to proportionately control a
triac (see Figure 7.4). Device 0 detects either the rising or falling edge of a squared-up
60-Hz power line signal. Device 1 produces a rising edge off time clock cycles after
each such edge; its interrupt handler negates this signal after a few microseconds. This
pulses the triac gate to turn it on off time clock cycles into each 60-Hz half-cycle.

interrupt 8 void handler 1 (){
TCI = TCO + off time; /* set device 1 time to cause rising edge and int. */
TMSKI i- 2; TFLG1 = l; I* enable device 1 interrupt, clear its request */

interrupt 9 void handler2(){
TMSKI &= ~2; /* disable device 1 interrupt */
CFORC =• 2; /* output was just asserted; now negate output */

void main () {
TSCR = 0x80; TFLG1 = TMSKI = 1; TIOS = 2; /* device 1 is output COmp */
TCTLO = 4; I* timer device 1 toggles each interrupt or CFORC application */
TCTLE = 3,- /* timer device 0 captures on both edges */ asm cli
do ; wtiile(l) ;

Up to eight triacs can be individually controlled using similar techniques on all the
timer devices, if a pair of key wakeup J devices are used: one set to detect rising and the
other falling edges of the 60-Hz square wave.

8.3.4 Pulse Accumulation and Frequency Measurement

As with the square-wave generator and pulse generator, frequency measurement can be
done in the 6812 by software using a simple input port, by digital hardware read by a
parallel input port, by an analog technique, and by using a counter/timer system. The
designer should consider all techniques for frequency and period measurement. We'll
mainly discuss how the counter/timer device is used to measure frequency or period,
before which we'll consider the other approaches. However, there is no need to study the
software approach because the 'A4's counter/timer devices are so easy to use and
available that they make this awkward approach merely an academic exercise.

A digital hardware approach would use one or more counter ICs that can be cascaded
to make up a counter of sufficient width. A parallel I/O register can be used to clear the

386 Chapter 8 Counters and Timers

counter and then read the counter output word, say, one second later. The counter can
count input transitions from low to high between these two times. A note of caution: if
the width is greater than 16 bits, then two or more words will be read at different times
and the counter could be incremented between successive reads. The count should be
examined with this in mind. For instance, a 24-bit counter should be read and read again.
If the readings of the upper bytes differ, the reading should be considered erroneous and
should be tried again. An analog approach would be to convert the frequency to a
voltage, then measure the voltage by an analog-to-digital converter. An FM demodulator,
a frequency-to-voltage converter, or a tachometer can convert high frequencies, audio
frequencies, or subaudio frequencies to a voltage.

Finally, we focus on the use of a counter/timer system for frequency measurement
or event counting. The input capture mechanism can be used; see Figure 8.7. Consider
interrupts; one edge-detect interrupt handler can count the number of an input signal's
high-to-low transitions. That is, each edge causes an interrupt, and the handler
increments a global variable count. The fixed interval of time can be measured out by
another counter in the chip or by real-time programming. After this is over, if the
interval of time is a second, count is the frequency. If the interval of time is a fraction
of a second, count is a submultiple of the frequency.

The counting can be done most effectively by the pulse accumulator in the 6812
(see Figure 8.8). This subsystem uses a 16-bit pulse accumulator counter PACNT,
pulse accumulator control PACTL, and pulse accumulator flag PAFLG.

For the pulse counter to change, PAEN, bit 6 of PACTL must be set. PAMODE, bits
5 and 4 of PAEN, determine what is counted. If they are FF (00), then falling edges on
the signal on the input PORTT bit 7 cause the counter to increment; if FT (01), then
rising edges of that input cause the counter to increment. If those control bits are TF
(10), then as long as the PORTT bit 7 input is high, the counter is incremented each 8
jus; and if those bits are TT (11), then as long as the PORTT bit 7 input is low, the
counter is incremented each 8 us (assuming a 2-MHz E clock). PAOVF, PAFLG bit 1,
indicates that the counter has overflowed and PAIF, bit 0, that the counter has
incremented; they are cleared by writing a 1 into them. If the corresponding bits are set
in PACTL, interrupts will occur via 0xFFDC,DD (for overflow) and 0xFFDA,DB (for
incrementing). This subsystem is very flexible and can be used to count events and
measure frequency or pulse width, as shown in problems at this chapter's end. Here we
concentrate on event counting and frequency measurement.

Figure 8.8. The Pulse Accumulator

8.3 Frequency and Period Measurement 387

To count events that correspond to falling edges, set bits 5 and 4 of PACTL to FF
(00). Then, each time an event occurs, the pulse counter is incremented. When it
overflows, an interrupt can be used to count overflows, thus extending the range of the
counter to 24 or more bits. To measure frequency, we count events in a fixed time
interval, such as 1 s. Alternatively, we count the number of events in a fraction of a
second. Device 6 is used to measure the time delay. The resulting number in the pulse
accumulator, PACNT, is a submultiple of the frequency.

void ma.in () { int frequency;

TSCR = 0x80; TIOS = 0x40;

TCTLO 0x1000; /* enable timer 7 to wait 1/128 seconds */
PACNT = 0; /* clear counter */ TFLGI = 0x40; /* clear timer flag */
PACTL ---- 0x40; /* enable pulse accumulator, count falling edges */
TC6 = TCNT + N; /* let pulse accumulator measure 1/128 second */
whil e (i (TFLGI & 0x40)) ; /* gadfly until flag is set */
PACTL = 0; /* disable pulse accumulator */
frequency = PACNT « 7; /* read count (frequency) */

8.3.5 Object-oriented Period, Pulse-width, and Frequency
Measurements

Object-oriented programming can be used to measure period, pulse width, or frequency.
We first present the class to measure positive or negative pulse width, or period. This
class uses gadfly synchronization; the reader is invited to write a class using interrupts.

::lass width-.public Fort<long>{char id,mode, mask;unsigned long result;
void setMode(unsigned char m){

{TCTLE = (TCTLE & ~ (3 « (id << !)))! (m << (id << 1));}
public : width (char id, char mode) : Port (0x90 + (id << 1))

{TSCR=0x80; TIOS &= ~ (mask=l« (this->id=id)) ; this->mode=mode; }

virtual long get(void){unsigned Int lastTime;int hiByte;long result;
iff (mode == PULSE) I I (mode == PERIOD)) setMode(1);
else setMode(2);
TFLGI = mask = 1 « (this->id = id);/* clear flag */
while(! (TFLGI & mask)) ,- /* wait for edge */
lastTime = * (unsigned int *)port; I* get time of edge */
if(mode==NEGPULSE) setMode(1); else if(mode==PULSE) setMode(2);
TFLGI = mask; /* clear flag */
MByte^O; while (! (TFLGI & mask)) if (TFLG2) {TFLG2=0x80;hiByte+ + ; }
result=* (unsigned int *)port+(hiByte<<16)-lastTime; return result:,

388 Chapter 8 Counters and Timers

long i;

void main() { width device (0, PULSE); i = device.get (); }

The last gadfly loop in width's function member get keeps track of timer
overflow. If TOF is asserted (Figure 8.1) so that TFLG2 is nonzero, then hi Byte is
incremented. This value hiByte is shifted 16 bits and added to the returned width.

Frequency can be measured continuously with the class frequency shown below.
Upon each timer 6 interrupt, which occurs every 1/128 second, PACNT is saved in
value and PACNT is cleared, value is the last pulse count obtained by this handler.
The function member get gadflies on flag to be sure a new measurement has been
made, and then returns value multiplied by 128.

#def ine N 62500
class frequency : public Port<long> { int value; char flag;

public : frequency() : Port(0xa2) { asm sei
TSCR = 0x80; TC6 = TCNT; TIOS I = 0x40; PACTL = 0x40;
TFLGl\=Ox40; TMSK1 = 0x40; TCTLO = (TCTLO & -Oxcff) I 0x1000;
TC6 += N; flag = 0; * (int *)0xb22 = ((int)handler); asm cli

virtual long get (void) {while (! flag) ;flag=0; return (long) (value«7); }

void service (void)
{ TFLG1 = 0x40; value = PACNT; PACNT = 0; TC6 + = N; flag+ + ;}

};

frequency device;

void main () { int i; i = device.get (); }

interrupt 14 void handler () { device. service (); }

8.4 Conclusions

Frequency- or phase-analog signals are often generated naturally, by an AC tachometer,
for instance. They may be used directly, for example, in firing a triac. Even when the
signal is first an amplitude analog signal, conversion to frequency-analog or phase-
analog signals simplifies the noise isolation and voltage-level isolation between
transducer and microcomputer. Moreover, several hardware and software techniques,
including those that use a counter/timer like the 'A4 counter/timer system, can be used
to measure or generate frequency-analog signals.

The counter/timer is a very useful and attractive I/O device for measuring or
generating frequency- or phase- analog signals. It is useful in generating square waves,
pulses, and timing interrupts; it can measure events, frequency, period, and pulse width;
and it can monitor period or pulse width to interrupt the computer if too long a value is

8,4 Conclusions 389

noticed. It is very attractive because a single wire sends the signal to or from the
counter/timer. To the chip designer, it means that an I/O device can be put on a chip or
inside a microcomputer chip without using a lot of pins. While counters take up a
eontrivial amount of area on the chip, that area is comparatively cheap, while pins are in
much shorter supply. Moreover, to the system designer, a single wire is easy to isolate
with an optical isolator, to prevent the voltages of the system under test from getting to
the microcomputer and the user, as well as to isolate noise generated in that system and
prevent it from getting into the microcomputer.

The 'A4 counter/timer system was introduced to illustrate the discussion of the
counter/timer device. This chapter prepares us for similar techniques in communication
devices in Chapter 9, and for secondary storage chips, covered in Chapter 10.

For more concrete information on the 'A4, consult the MC68HC812A4TS/D. In
particular, §13 describes the programmable timer and pulse accumulator. As noted
earlier, we have not attempted to duplicate the diagrams and discussions in that book
because we assume you will refer to it, while reading this book; and, since we present an
alternative view of the subject, you can use either or both views.

You should now be familiar with the counter/timer in general and with the 'A4
counter/timer system in particular. Connecting the pins of the 'A4 counter/timer system,
and writing software to initialize and use it, should be well within your grasp. Moreover,
you now have enough information to consider alternatives to this system and chip and to
recognize whenever alternatives are superior to the counter/timer.

Do You Know These Terms?

See page 36 for instructions.

counter/timer touch-tone signal input capture pulse width
output compare pulse id histogram
pulse-width modulator

(PWM)

390 Chapter 8 Counters and Timers

Problems

Problem 1 is a paragraph correction problem. See page 38 for guidelines. Guidelines for
software problems are given on page 86, and for hardware problems, on page 115.
Problems involving the 6812 counter/timer will all assume that I/O registers are at 0 to
OxlFF, using an 8-MHz E clock unless otherwise indicated. All global variables
needed for the handler should be shown, and main () procedures should initialize the
counter/timer assuming I/O control ports have unknown initial values.

1.* Communication using the frequency or phase is attractive because it can be
accomplished using lower bandwidth channels than amplitude analog communication,
and such signals can be generated or measured by microcomputers with counter/timer
devices in them or counter/timer integrated circuits. These combination chips appear
because the counter/timer does not require much surface area on a chip and the transistors
needed to build counter/timers need not be as good as those needed for A-to-D converters,
so the inclusion of such a function on another chip does not raise the cost. Moreover,
many functions require counting and timing. Pulses from a pulse generator can generate
tones, and Johnson counters can generate a staircase approximation of a sine wave that is
useful for touch-tone dialing. Pulses can be used to control automobiles, and interrupts
from the timer can be used to implement real-time clocks. Frequency measurements can
be used with a voltage-to-frequency converter to measure amplitude analog signals, and
they can be used to measure intervals of time between two events. Period measurements
are an alternative to frequency measurements, and one can always be obtained from the
other by division; frequency measurement is preferable if the frequency is low because
this will give more accuracy than period measurement. The 6812 counter/timer should be
used for these different generation and measurement functions if the software approach is
susceptible to errors due to interrupt handling, DMA, or dynamic memory refresh. But
digital hardware or analog hardware approaches, such as the phase-locked loop, may be
needed if the microcomputer software or counter/timer approach is too slow.

2. Write a self-initializing procedure square (int. i) . The desired frequency I,
converted to a period, is less than 216.

a. Write a shortest C procedure divide (int *dvdad,int *dvsad, int *qutad,
in t *remad, int signd), using embedded assembly language, that divides a 32-
bit number (i.e. a long) pointed to by dvdad by a long pointed to by dvsad
putting the quotient in a long pointed to by gut ad if qu tad is nonzero, and the
remainder in a long pointed to by reinad if remad is nonzero. If signd is zero,
divide unsigned; otherwise divide signed. Use a procedure negat (1) int *i; that
you write using embedded assembly language, to negate the 32-bit data pointed to by
i, and use subg from Chapter 1, problem 30, part b.

b. Write square using gadfly synchronization on device 3. Use part a's procedures.

c. Write an interrupt square-wave generator C procedure square (in t i) that uses
device 3 to generate the square wave on PORTTbit 3. Use part a's procedures.

Problems 391

3. Repeat problem 2 for sguare (int i,int 3'). The desired frequency is (i « 16}
+ j. Converted to a period, it can be greater than 216. (Hint: consider toggling, as well
as setting and clearing the output, upon output compare, to time out 216 clock cycles.)

4. Write a routine to generate a touch-tone dial sequence, calling up a self-initializing
procedure dial () that is like main () in §8.2.3. The called number is in vector:

Each tone is on for 50 ms, and there is a mute period of 45 ms between tones. (These are
the minimum times specified by the telephone industry.) Use devices 0 and 1 to generate
sine waves and device 4 to time the delays.

5. A music synthesizer has 16 voices and is to be built with 'A4 counter/timer device 2
and PORTJ, a (256,8) PROM, a 74LS161, and an 8-bit D-to-A converter. PORTT bit
2's output compare clocks the 74LS161, which provides the low-order 4 bits of the
PROM's address so that each voice is generated by 16 samples of the repetitive
waveform. The low-order 4 bits of PORTJ provide the PROM's high-order address to
select a voice. The output from the PROM is an 8-bit 2's complement number, which is
converted to a voltage between -128/128 and +127/128 volts by the D-to-A converter.

a. Show a block diagram of the system. Do not show pin numbers, but do identify
the pins and lines with meaningful, unambiguous labels.

b. Write a self-initializing procedure sound (unsigned char octave, unsigned
char .note, unsigned char voice, unsigned, char length) . The 'A4
counter/timer, with no prescaling, generates a tone clock on PORTT bit 2, using
interrupts, and times the length of the note using timer device 5, using gadfly
synchronization. The first two arguments are octave (the lowest octave is represented
by zero) and note (A is represented by zero, Bb is 1, B is 2, . . . , Ab is OxB). Low
A is 27.5 Hz and is represented by zero and zero. The frequency of each note is 12/2
times the frequency of the next lower note. The last two arguments are voice, which
will be input to the PROM, and length, which is the length of the note, in l/l6ths
(1/4 seconds). (Hint: look up int vector cnvt, shown in part c, to generate the
lowest octave's frequency, then shift it right to derive the required values for the
output compare port.)

c. Show the vector, in t cnvt [13] for the program in part b, using #defines.

6. Write a self-initializing procedure pulse (int w) to generate a pulse of width w for
E clock cycles.

a. Generate a positive pulse on PORTT bit 2. Assume the bit is initialized low.

b. Generate a negative pulse on PORTT bit 2. Assume the bit is initialized high.

7. Write a self-initializing procedure pulse (iint i, int. 3') to generate a positive
pulse of width (i « 16) + j on PORTT bit 2. (Hint: you need to switch between
toggling, setting, and clearing the output as you handle the high and low 16-bit parts of
the pulse width.) a. Use gadfly synchronization, b. Use interrupt synchronization.

392 Chapter 8 Counters and Timers

8. The main () procedure in §8.2.5 will dial a number on a conventional step-and-repeat
telephone, but will tie up the computer while it is dialing the number. Write main ()
procedure and an interrupt handler for the 6812 device 4 that will cause an interrupt every
5 ms. The most significant bit of PORTJ is given a value 1 to close the relay in series
with the dial contacts. A digit "0" is represented by the number 10. Use global variables
to keep track of what part of the sequence of numbers, what part of the number, and what
part of the pulse has been output.

a. Write the handler to output just one number, in global variable in t number.

b. Write the handler to output the seven numbers in the vector char numbers [7],
as in problem 4.

9. An "alarm clock" can start a procedure at a specified time, using counter/timer device
2. Write a main () procedure and a handler interpreting a table of times that the alarm is
supposed to "go off," so that when this happens a program corresponding to the alarm
will be called from main () . If no procedure is to be executed, main () calls a
procedure dummy () {}. Suppose that a table of 10 "alarms" is stored:

Struct{ int TH, TL, GO } alarm [1 0] ;

where TH is the 2 high-order bytes, TL is the 2 low-order bytes of a time interval in E
clock cycles, between the time the "alarm" went off for row i -1 (or the beginning if i
is 0) and the time it will go off for row i, and GO is the address of a subroutine to be
started when that interval is over. Each such subroutine ends with an RTS, after it causes
main () to call dummy () repetitively.

10. Write a gadfly-synchronized, self-initializing, procedure sequence (} to sequence
three output signals using the output compare device 7. Outputs on PORTT bits 7, 6,
and 5 are initially 0, 1, and 0, respectively. When PORT A bit 0 falls, bit 7 rises, and 20
usec later, bit 6 falls. After another 30 fjs, bits 5 and bit 6 rise together, and after yet
another 40 jus, bit 6 falls.

11. An X-10 home remote control can use a remote keyboard that communicates to it
using ultrasonic signals, which avoids the need to connect the computer to the power
line in any way. We would like to control the remote stations by sending to the
command device the ultrasonic signals that would have been sent by the remote
keyboard. Write a self-initializing procedure ultra (data, address) char data,
address; that generates ultrasonic signals used for sending commands via PORTJ bit 0
to an ultrasonic transmitter, which then transmits to the receiver in the X-10 control
device. A true bit is sent for 8 ms - 4 ms of 40-KHz square wave followed by 4-ms
mute output - and a false is sent for 4 ms - 1.2 ms of a 40-KHz square wave followed
by 2.8-ms mute output. A command to send a data bit d which is the least significant
bit of data to a remote station identified as a, the four least significant bits of
address, is sent as follows: A true bit is sent; then a 4-bit remote station number a
is sent, most significant bit first; data bit d is sent; then the complement of a and d
are sent in the same order; and then 16 ms of a 40-KHz square wave are sent. Use real-
time synchronization to time out the sending of bits of the command.

Problems 393

12. Write a class negPulse whose put (int data) member function generates a
negative pulse of width data E clock cycles.

13. Frequency can be determined by the pulse accumulator, or by measuring pulse width
using an input capture device and getting the inverse using the divide procedure of
problem 2 part a. The former gives better accuracy for high frequencies, and the latter for
low frequencies. Suppose a square wave is simultaneously input to the pulse
accumulator and device 7 (on PORTT bit 7). Write a self-initializing procedure fregf '
and interrupt handlers for the pulse accumulator overflow and for device 7 and an
initialization in fregO to wait for the measurement from both the period and
frequency handlers, waiting exactly 0.01 seconds using a gadfly loop on device 2; then
return the most accurate frequency reading from the procedure freq ().

14. Period can be determined using an input capture device, or by measuring frequency
using the pulse accumulator and getting the inverse using problem 2 part a's divide
procedure. Write a self-initializing procedure peri od () and interrupt handlers, as in
problem 13, to accumulate pulses, within 1/128 seconds, or capture input edges, so that
peri od () returns the most accurate period measurement, in E clock cycles.

15. Write a C self-initializing procedure pulse () to measure pulse width using the
pulse accumulator device. Assume the procedure is entered while the input is low. Set up
the device to count E clock cycles, divided by 64, for an entire time while the input is
T. Note that you can gadfly on PORTT input bit 7. Return PACNT, which is the pulse
width in 125-us units.

16. FOR TH bit 0 is connected to a signal that pulses low at the moment that the 60-Hz
power line signal passes through 0. All eight timer devices are connected to pulse
transformers that fire eight triacs to implement proportional phase control of eight
lamps. Show a C procedure main (), interrupt handlers, and a global vector char
d.[8] that set up and maintain these devices so that they output a waveform whose
falling edge fires triac i at time d [i] degrees, 0 s d[i] < 177, in each half-cycle.

17. Design a voltmeter using an optically isolated voltage-to-frequency converter.
a. Show a diagram of the complete system, giving enough detail that the system
could be built from it. Use the Teledyne 9400 (Figure 7.18b), a 4N33 opto-isolator
to isolate the voltage sensor from the microcomputer, and the 6812 pulse
accumulator to measure the frequency.

b. Write a self-initializing procedure voltmeter () to measure the frequency so that
the voltage at the input of the hardware in part a, in millivolts, is returned. Measure
frequency, using the pulse accumulator, for 1 s using gadfly synchronization on
device 5. Assume a frequency of 32768 Hz represents 5 V, and 0 represents 0 V. Use
the di vi de procedure of problem 2 part a to scale the result.

18. An AM tuner has a local oscillator which is tuned to a frequency that is 455 KHz
higher than the frequency of a station that is tuned in; so that the "beat frequency" is the
intermediate frequency amplified by the radio. Write a self-initializing procedure AW () to

394 Chapter 8 Counters and Timers

measure the frequency, using the pulse accumulator, for 1 ms utilizing gadfly
synchronization on device 6, so that if the pulse accumulator input has the local
oscillator frequency, the program will output the frequency of the station being received
in kilohertz.

19. Design a capacitance meter. A capacitor of unknown value c is put in the timing
circuit of a 555 timer, c being lower than 0.01 juF.

a. Show the hardware, pin numbers, and component values to build such a meter,
using the pulse accumulator device.

b. Write a self-initializing procedure capac () that returns the capacitance in pF.

20. Design a phase meter for audio frequencies, using an 'A4. VI and V2 are periodic
waveforms that have the same period, which is less than 8 ms. The phase of V2 with
respect to V1 is the number of degrees (of a circle) that periodic wave V2 follows V1.
V1 and V2 are converted into square waves having the same phase and period,
counter/timer device 0 will obtain the time of a rising edge of the squared-up V1, and
device 1 will obtain the time of the rising edge of the squared-up V2. Write a self-
initializing procedure phase () to output the phase between VI and V2 in degrees. Use
gadfly synchronization, Chapter 2's problem 14, and problem 2a's divide procedure.

21. Design a TV sync signal generator using real-time, gadfly, and interrupt
synchronization with devices 1 and 2 of an 'A4. Device 1's output is the horizontal sync
pulse, which is 4 us high, 60 jus low, repetitively. Device 2's output is the vertical sync
pulse, which is high for 26, and low for 244, horizontal sync pulses. Device 1 should
use gadfly synchronization to wait for the 4 us that vertical sync is high, but interrupt
synchronization should be used to time the other signal edges. In order to start both sync
pulses together, a small amount of real-time synchronization should be used. Show an
initialization procedure sync () and interrupt handlers to configure the 'A4 to generate
these signals.

22. Write a class width that uses interrupt rather than gadfly synchronization. After
each first edge occurs in the device's handler, a service routine member of this class saves
the time in a data member int lastTime. Between edges, timer overflows are counted
in the handler by a different service routine member of this class, which increments an
int value hi Coun t to keep track of the high-order 16 bits of the interval of time. After
each second edge occurrence, the device's first service routine member calculates the
desired period or positive or negative pulse width, and pushes the result into an input
queue, to be pulled by the get function member. Explain a timing problem: how can
you distinguish if the timer overflow indicated by a TFLG2 flag occurs just after or just
before the input capture, so that you can determine the high-order part of the pulse width
in hi By t el

23. Design a logic analyzer, using the 'A4, to record and display the bus activity of a
target computer. The logic analyzer stores the target computer's address, data, and control
signals in a memory, and displays these values that occurred shortly before or after the

Problems 395

nth time it recognizes a predetermined pattern on the target computer's buses. A logic
analyzer has timer/counters to allow times occurrences of the pattern address
recognized by the comparator to occur, and then allow delay clock cycles before a time
TTI occurs. PORT A and PORTB hold the high byte and low byte of the comparator
address, as well as the address to the indirect memory in problem 34 of Chapter 5. If the
indirect memory holds M words, the M patterns, which appeared on the buses before
time Tf, are displayed by the logic analyzer. The user can select times to be 0 and
de I ay to be 0, if Tf is to be the time the pattern occurred first; but the user can use
another number times if the first times occurrences are to be ignored, as when the
pattern appears inside a for loop, or another number delay if the delay words read
after the comparator detects a match. Also (M - delay) words before the comparator
detects a match are to be stored in memory and displayed by the logic analyzer. Indirect
memory, of which the M word by one byte logical design is shown in problem 5.34,
stores each consecutive word read on the target computer's address, control, and data
buses, as long as a control signal on PORT bit 0 is asserted high. The *A4 counter/timer
can be used to count occurrences and delays. The comparator feeds counter/timer device 7
rather than PORTJ bit O's key wakeup interrupt hardware. The pulse accumulator
overflow interrupt sets up output compare device 5, whose interrupt handler clears the
indirect memory control signal on PORTA bit 0 to stop writing in the indirect memory.

a. Show a block diagram of such a logic analyzer. Include the memory, its address
counter, the comparator, the target computer, and port connections to the ' A4.

b. Write a procedure logicAnalyzerdnt address, int count, int delay)
that sets up the logic analyzer, and interrupt handlers. (Some other mechanism reads
out the data and displays it later.)

396 Chapter 8 Counters and Timers

A memory expansion card, Adapts 12 MX1, plugs onto the rear of Adapt 812, offering the
user up to 512K of Flash and 512K of SRAM. A real-time clock/calendar and battery back-
up for the SRAM is included, as well as a prototyping area for the user's own application
circuitry. A versatile dual-slot backplane/adapter couples the memory card to the micro-
controller card so that the entire assembly can be plugged into a solderless breadboard.

9

Communications Systems

The microcomputer has many uses in communications systems, and a communications
system is often a significant part of a microcomputer. This chapter examines techniques
for digital communications of computer data.

Attention is focused on a microcomputer's communications subsystem - the part
that interfaces slower I/O devices like typewriters and printers to the microcomputer.
This is often a universal asynchronous receiver-transmitter (UART). Because of their
popularity in this application, UARTs have been used for a variety of communications
functions, including remote-control and multiple-computer intercommunications.
However, their use is limited to communicating short (1-byte) messages at slow rates
(less than 1000 bytes per second). The synchronous data link control (SDLC) is suitable
for sending longer messages (about 1000 bytes) at faster rates (about 1,000,000 bits per
second), such as for sending data between computers or between computers and fast I/O
devices. The IEEE-488 bus, for microcomputer control of instruments like digital
voltmeters and frequency generators, and the SCSI bus, for communication to and from
intelligent peripherals, send a byte at a time rather than a bit at a time.

The overall principles of communications systems, including the ideas of levels and
protocols, are introduced in the first section. The signal transmission medium is
discussed next, covering some typical problems and techniques communications
engineers encountered in moving data. The UART and related devices that use the same
communications mechanisms are fundamental to I/O interface design. So, we spend quite
a bit of time on these devices, imparting basic information about their hardware and
software. They will probably find use in most of your designs for communicating with
teletypes or teletype-like terminals, keyboards, and CRTs, as well as for simple remote
control. Finally, we look at the more complex communications interfaces used between
large mainframe computers to control test and measurement equipment in the laboratory
and to connect intelligent I/O.

Communications terminology is rather involved, with roots in the (comparatively
ancient) telephone industry and in the computer industry, and some terms stemming
uniquely from digital communications. Communications design is almost a completely
different discipline from microcomputer design. Moreover, one kind of system, such as
one using UARTs, uses quite different terminology than that used to describe another,
similar system, such as one using SDLC links. While it is important to be able to talk

397

398 Chapter 9 Communications Systems

to communications system designers and learn their terminology, we are limited in what
we can do in one short chapter. We will as much as possible use terminology associated
with the so-called X.25 protocol, even for discussing UARTs, because we want to
economize on the number of terms that we must introduce, and the X.25 protocol
appears to be the most promising protocol likely to be used with minicomputers and
microprocessors. However, you should be prepared to do some translating when you
converse with a communications engineer.

On completing this chapter, you should have a working knowledge of UART
communications links. You should be able to use the 6812 SCI module, connect a
UART or an ACIA to a microcomputer, and connect a UART or an Ml4469 to a
remote-control station so it can be controlled through the 6812 SCI module, ACIA, or
UART. You should understand the basic general strategies of communications systems,
and the UART, SDLC, IEEE-488, and SCSI bus protocols in particular, knowing when
and where they should be used.

9.1 Communications Principles

In looking at the overall picture, we will first consider the ideas of peer-to-peer
interfaces, progressing from the lowest-level to the higher-level interfaces, examining
the kinds of problems faced at each level.

Data movement is coordinated in different senses at different levels of abstraction,
and by different kinds of mechanisms. At each level, the communication appears to take
place between peers, which are identifiable entities at that level. However, even though
the communication is defined between these peers as if they did indeed communicate to
each other, they actually communicate indirectly through peers at the next lower level.
(See Figure 9.1.)

Peer-to-Peer Interface

End-to-End End-to-End

^ _ ^
Network ̂ - ^ Network Level 4

^ _
Link ^ - ^ Link Level 3

Physical ^— -^ Physical Level 2

Actual Interface Level 1

Figure 9.1. Peer-to-Peer Communication in Different Levels

9,1 Communications Principles 399

Consider this analogy. The president of company X wants to talk to the president of
company Y. This is called end-to-end communication. The job is delegated to the
president's secretary, who calls up the secretary of the other president. This is referred to
as network control. The secretary doesn't try to holler to the other secretary but dials the
other secretary on the telephone. The telephone is analogous to the link-control level.
But even the telephone "delegates" the communication process to the electronics and the
electrical circuits that make the connection at the telephone exchange. This is the
physical-control level End-to-end communication is done between user (high-level)
programs. User programs send information to each other like the presidents in the
analogy. Network control is done at the operating system level. Like the secretary, this
software must know where the communications object is and how to reach this object.
Link control is done by I/O interface software and is responsible for setting up and
disconnecting the link so the message can be sent. Physical control actually moves the
data. In the design of I/O systems, we are primarily concerned with link control and
secondarily with physical control.

The peer-to-peer interfaces are defined without specifying the interface to the next
lower level. This is done for the same reasons that computer architecture is separated
from computer organization and realization, as we explained in §1.1.1. It permits the
next lower level to be replaced by another version at that level without affecting the
higher level. This is like having one of the presidents get a new secretary: the presidents
can still talk to each other in the same way, even though communication at the next
lower level may be substantially changed.

We now discuss some of the issues at each of the levels. At the lowest level, the
main issue is the medium, and a secondary issue is the multiplexing of several channels
on one link. The technique used to synchronize the transmission of bits may be partly in
the physical-interface level and partly in the link-control level.

The medium that carries a bit of information is of great concern to the
communications engineer. Most systems would probably use voltage level to
distinguish between true and false signals. In other systems, mechanical motion carries
information, or radio or light beams in free space or in optical fibers carry information.
Even when the carrier is electric, the signal can be carried by current rather than voltage,
or by presence or absence of a particular frequency component. The signal can be
conveyed on two frequencies: a true is sent as one frequency, while a false is sent as
another frequency (frequency shift keying). More than one signal can be sent over the
same medium. In frequency multiplexing, n messages are sent, each by the presence or
absence of one of n different frequency components (or keying between n different pairs
of frequencies). In time multiplexing, n messages can be sent, each one in a time slot
every nth time slot. A frequency band or a time slot that carries a complete signal,
enabling communication between two entities at the link-control level, is called a
channel. Each channel, considered by itself, may be simplex if data can move in one
direction only, half-duplex if data can move in either direction but in only one direction
at a time, or full-duplex if data can move in both directions simultaneously.

Usually, a bit of information is sent on a channel over a time period, the bit time
period, and this is the same time for each bit. The baud rate is the inverse of this bit
time period (or the shortest period if different periods are used). The bit rate, in contrast,
is the rate of transfer of information, as defined in information theory. For simplicity in
this discussion, the bit rate is the number of user information bits sent per time unit.

400 Chapter 9 Communications Systems

while the baud rate is the total number of bits - including user information,
synchronization, and error-checking bits - per time unit.

In general, a clock is a regular occurrence of a pulse, or even of a code word, used to
control the movement of bits. If such a (regular) clock appears in the channel in some
direct way, the system is synchronous, otherwise it is asynchronous. In a synchronous
system, the clock can be sent on a separate line, as the clock is sent inside a computer to
synchronize the transmission of data. The clock can also be sent on the same wire as the
data - every other bit being a clock pulse and the other bits being data - in the so-called
Manchester code. Circuitry such as a phase-locked loop detects the clock, and further
circuitry uses this reconstructed clock to extract the data. Finally, in an asynchronous
link, the clock can be generated by the receiver in hopes that the clock matches the clock
used by the sender.

Link control is concerned with how data is moved as bits, as groups of bits, and as
complete messages that are sent by the next-higher-level peer-to-peer interface. Link
control is usually implemented by I/O device chips.

At the bit level, individual bits are transmitted; at the frame level, a group of bits
called a frame or packet is transmitted; and at the message level, sequences of frames,
called messages, are exchanged. Generally, at the frame level, means are provided for
detection and correction of errors in the data being sent, since the communication channel
is often noisy. Also, because the frame is sent as a single entity, it can have means for
synchronization. A frame, then, is some data packaged or framed and sent as a unit under
control of a communications hardware/software system. The end-to-end user often wishes
to send more data - a sequence of frames - as a single unit of data. The user's unit of
data is known as the message.

At each level, a coordination mechanism, called a protocol, is used. A protocol is a
set of conventions that coordinate the transmission and receipt of bits, frames, and
messages. Its primary functions in the link-control level are the synchronization of
messages and the detection or correction of errors. This term protocol suggests a strict
code of etiquette and precedence countries agree to follow in diplomatic exchange, so the
term aptly describes a communication mechanism whereby sender and receiver operate
under some mutually acceptable assumptions but do not need to be managed by some
greater authority like a central program. Extra bits are needed to maintain the protocol.
Since these bits must be sent for a given data rate in bits per second, the baud rate must
increase as more extra bits are sent. The protocol should keep efficiency high by using as
few as possible of these extra bits. Note that a clock is a particularly simple protocol: a
regularly occurring pulse or code word. An important special case, the handshake
protocol, is an agreement whereby when information is sent to the receiver, it sends
back an acknowledgment that the data is received either in good condition or has some
error. Note, however, that a clock or a protocol applies to a level, so a given system can
have a bit clock and two different protocols - a frame protocol and a message protocol.

A collection of individual protocols, each at a different level, is called a stack.
Don't confuse this stack with the stack data structure described in §1.2.1, §1.2.3, and
§2.1. This stack defines the overall protocol at all levels of interest to the discussion.

The third level of peer-to-peer interface is the network level. It is concerned about
relationships between a large community of computers and the requirements necessary so
that they can communicate to each other without getting into trouble.

9.2 Signal Transmission 401

The structure of a communications system includes the physical interconnections
among stations, as well as the flow of information. Usually modeled as a graph whose
nodes are stations and whose links are communications paths, the structure may be a
loop, tree graph, or a rectangular grid (or sophisticated graph like a banyan network).

A path taken by some data through several nodes is called store and forward if each
node stores the data for a brief time, then transmits it to the next node as new data may
be coming into that first node; otherwise, if data pass through intermediate nodes
instantaneously (being delayed only by gate and line propagation), the path is called a
circuit, from telephone terminology. If such a path is half-duplex, it is sometimes
called a bus because it looks like a bus in a computer system.

Finally, the communications system is governed by different techniques. This
aspect relates to the operating system of the system of computers, which indirectly
controls the generation and transmission of data much as a government establishes
policies that regulate trade between countries. A simple aspect of governance is whether
the decision to transmit data is centralized or distributed. A system is centralized if a
special station makes all decisions about which stations may transmit data; it is
decentralized or distributed if each station determines whether to send data, based on
information in its locale. A centralized system is often called a master/slave system,
with the special station the "master" and the other stations its "slaves." Other aspects of
governance concern the degree to which one station knows what another station is doing,
or whether and how one station can share the computational load of another.

9.2 Signal Transmission

The signal is transmitted through wires or light pipes at the physical level. This section
discusses the characteristics of three of the most important linkages. Voltage or current
amplitude logical signals, discussed first, are used to interconnect terminals and
computers that are close to each other. The digital signal can be sent by transmitting it
at different frequencies for a true and for a false signal (frequency shift keying). This is
discussed in the next subsection.

9.2.1 Voltage and Current Linkages

In this section, we discuss the line driver and line receiver pair, the 20-mA current loop,
and the RS-232 standard.

Standard high-current TTL or LSTTL drivers can be used over relatively short
distances, as the IEEE-488 standard uses them for a bus to instruments located in a
laboratory. However, slight changes in the ground voltage reference or a volt or so of
noise on the link can cause a lot of noise in such links. A differential line is a pair of
wires, in which the variable in positive logic is on one wire and in negative logic on the
other wire. If one is high, the other is low. The receiver uses an analog comparator to
determine which of the two wires has the higher voltage, and outputs a standard TTL
signal appropriately. If a noise voltage is induced, both wires should pick up the same

402 Chapter 9 Communications Systems

Figure 9.2. Drivers and Receivers

noise so the differential is not affected and the receiver gets the correct signal. Similarly,
imperfect grounding and signal ringing affect the signal on both wires and their effect is
cancelled by the voltage comparator. A number of driver and receiver integrated circuits
are designed for differential lines, but some require voltages other than +5, which may
not be used elsewhere in the system. An integrated circuit suitable for driving and
receiving signals on a half-duplex line, using a single 5-V supply, is the SN75119,

9,2 Signal Transmission 403

shown in Figure 9.2a. If driver enable DE (pin 7) is high, then the signal on IN (pin 1)
is put on line LA (pin 3) and its complement is put on line LB (pin 2); otherwise the
pins LA and LB appear to be (essentially) open circuits. If receiver enable RE (pin 5) is
high, then the output OUT (pin 6) is low if the voltage on LA is less than that on LB,
or high if the voltage on LA is greater than that on LB; if RE is low, OUT is
(essentially) an open circuit. The RS-442 standard (RS means "recommended standard")
uses basically this differential line, but a driver such as the Am26LS30 has means to
control the slew rate of the output signal.

The 20-mA current loop is often used to interface to teletypes or teletype-like
terminals. A pair of wires connect driver and receiver so as to implement an electrical
loop through both. A true corresponds to about 20 mA flowing through the loop, and a
false corresponds to no current or to 20 mA flowing through the loop in the reverse
direction (for "neutral working" or "polar working" loops, respectively). A current, rather
than a voltage, is used because it can be interrupted by a switch in a keyboard and can be
sensed anywhere in the loop. A current is also used in older equipment because the 20-
mA current loop was used to drive a solenoid, and a solenoid is better controlled by a
current than a voltage to get faster rise times. The current is set at 20 mA because the arc
caused by this current will keep the switch contacts clean.

A 20-mA current loop has some problems. A loop consists of a current source in
series with a switch to break the circuit, which in turn is in series with a sensor to sense
the current. Whereas the switch and sensor are obviously in two different stations in the
circuit, the current source can be in either station. A station with a current source is
called active, while one without is passive. If two passive stations, one with a switch
and the other with a sensor, are connected, nothing will be communicated. If two active
stations are connected, the current sources might cancel each other or destroy each other.
Therefore, one station must be active while the other is passive, and one must be a
switch and the other must be a sensor. While this is all very straightforward, it is an
invitation to trouble. Also, note that the voltage levels are undefined. Most 20-mA
current loops work with voltages like +5 or -12 or both, which are available in most
communications systems; but some, designed for long-distance communication, utilize
"telegraph hardware" with voltages in excess of 80 V. Therefore, one does not connect
two 20-mA current loop stations together without checking the voltage levels and
capabilities. Finally, these circuits generate a fair amount of electrical noise, which gets
into other signals, especially lower-level signals, and the switch in such a circuit
generates noise that is often filtered by the sensor. This noise is at frequencies used by
1200-baud lines, so this filter can't be used in other places in a communications
subsystem. The circuitry for a 20-mA current loop can be built with an opto-isolator, as
shown in Figure 9.2b. If the current through the LED is about 20 mA, the
phototransistor appears to be a short circuit; if the current is about 0 mA, it is an open
circuit and the output is high. The diode across the LED is there to prevent an incorrect
current from destroying the LED.

An interface standard developed by the Electronic Industries Association (EIA) and
other interested parties has evolved into the RS-232C (recommended standard 232 version
C). A similar standard is available in Europe, developed by the Comite Consultatif
Internationale de Telegraphie et Telephonie (CCITT), and is called the CCITT V.24
standard. These standards are supposed to be simple and effective, so that any driver

404 Chapter 9 Communications Systems

Table 9.1. RS-232 Pin Connections for D25P and D25S Connectors

conforming to it can be connected to any receiver conforming to it, covering the voltage
levels used for the signals as well as the pin assignments and dimensions of the plugs.
Basically, a false variable is represented by any voltage from +15 to +5 V, and a true by
any voltage from -5 to -15 V (negative logic is used), A number of specifications
concerning driver and receiver currents and impedances can be met by simply using
integrated circuit drivers and receivers that are designed for this interface - RS-232 drivers
and RS-232 receivers. The MC1488 is a popular quad RS-232 line driver, and the
MCI489 is a popular receiver. (See Figure 9.2c.) The driver requires +12 V on pin 14
and -12 V on pin 1. Otherwise, it looks like a standard quad TTL NAND gate whose
outputs are RS-232 levels. The four receiver gates have a pin called response control
(pins 2, 5, 9, and 12). Consider one of the gates, where pin 1 is the input and pin 3 is
the output. Pin 2 can be left unconnected. It can be connected through a 33-KO resistor
to the negative supply voltage (pin 1) to raise the threshold voltage a bit. Or it can be
connected through a capacitor to ground, thus filtering the incoming signal. This
controls the behavior of that gate. The other gates can be similarly controlled. The
MCI45406 is a chip that combines three transmitter and three receiver gates in one chip
(Figure 9.2e); and the MAX232 (Figure 9.2f), made by MAXIM, has two transmitters
and two receivers, and a charge-pump circuit that generates ±10 V needed for the
transmitter from the 5-V supply used by the microcomputer. (This marvelous circuit is
just what is needed in many applications, but some MAX232 chips have a small
problem: if the 5-V supply turns on too fast, the charge pump fails to start; put a small

9,2 Signal Transmission 405

- 10 O - resistor in series with the 5-V pin and put a large — 100 pF - capacitor from
that pin to ground.)

The RS-232 interface standard also specifies the sockets and pin assignments. The
DB25P is a 25-pin subminiature plug, and the DB25S is the corresponding socket; both
conform to the standard. The pin assignments are shown in Table 9.1. For simple
applications, only pins 2 (transmit data), 3 (receive data), and 7 (signal ground) need be
connected; but a remote station may need to make pins 5 (clear to send), 6 (data set
ready), and 8 (data carrier detect) 12 V to indicate that the link is in working order, if
these signals are tested by the microcomputer. These can be wired to -12 V in a terminal
when they are not carrying status signals back to the microcomputer.

9.2.2 Frequency Shift-Keyed Links Using Modems

To send data over the telephone, a modem converts the signals to frequencies that can be
transmitted in the audio frequency range. The most common modem, the Bell 103,
permits full-duplex transmission at 300 baud. Transmission is originated by one of the
modems, referred to as the originate modem, and is sent to the other modem, referred to
as the answer modem. The originate modem sends true (mark) signals as a 1270-Hz sine
wave and false (space) signals as a 1070-Hz sine wave. Of course, the answer modem
receives a true as a 1270-Hz sine wave and a false as a 1070-Hz sine wave. The answer
modem sends a true (mark) as a 2225-Hz sine wave and a false (space) as a 2025-Hz sine
wave. Note that the true signal is higher in frequency than the false signal, and the
answer modem sends the higher pair of frequencies.

Some modems are originate only. They can only originate a call and can only send
1070- or 1270-Hz signals and receive only 2025- or 2225-Hz signals. Most inexpensive
modems intended for use in terminals are originate only. The computer may have an
answer-only modem with the opposite characteristics. If you want to be able to send data
between two computers, one of them has to be an originate modem. So an
answer/originate modem might be used on a computer if it is expected to receive and also
send calls. Whether the modem is originate-only, answer-only, or answer/originate, it is
fully capable of sending and receiving data simultaneously in full-duplex mode. The
originate and answer modes determine only which pair of frequencies can be sent and
received, and therefore whether the modem is capable of actually initiating the call.

Modems have filters to reject the signal they are sending and pass the signals they
are receiving. Usually, bessel filters are used because the phase shift must be kept
uniform for all components or the wave will become distorted. Sixth-order and higher
filters are common to pass the received and reject the transmitted signal and the noise,
because the transmitted signal is usually quite a bit stronger than the received signal, and
because reliability of the channel is greatly enhanced by filtering out most of the noise.
The need for two filters substantially increases the cost of answer/originate modems.

The module that connects the telephone line to the computer is called a data
coupler, and there is one that connects to the originator of a call and another that
connects to the answerer. The data coupler isolates the modem from the telephone line to
prevent lightning from going to the modem and to control the signal level, using an
automatic gain control; but the data coupler does not convert the signal or filter it. The
data coupler has three control/status signals. Answer phone ANS is a control command

406 Chapter 9 Communications Systems

that has the same effect on the telephone line as when a person picks up the handset to
start a call or answer the phone. Switch hook SH is a status signal that indicates that
the telephone handset is on a hook, if you will, so it will receive and transmit signals to
the modem. Switch hook may also be controlled by the microcomputer. Finally, ring
indicator RI is a status signal that indicates the phone is ringing.

Aside from the fact that data are sent using frequency analog signals over a
telephone, there is not much to say about the channel. However, the way an originate
modem establishes a channel to an answer modem and the way the call is terminated is
interesting. We now discuss how the Motorola M6860 modem originates a call and
answers a call. Calling a modem from another, maintaining the connection, and
terminating the connection involve handshaking signals data terminal ready DTR and
clear to send CTS in both originate and answer modems. (See Figure 9.3a for a diagram
showing these handshaking signals.) If a modem is connected to an RS-232C line, as it
often is, data terminal ready can be connected to request to send (pin 4) and clear to send
can be connected to the clear to send (pin 5) or the data set ready (pin 6), whichever is
used by the computer. Figure 9.3b shows the sequence of operations in the modems and
on the telephone line, showing how a call is originated and answered by the Motorola
M6860 modem chip.

The top line of Figure 9.3b shows the handshaking signals seen by the originator,
the next line shows signals seen by the originator modem, the center line shows the
telephone line signals, the next line shows signals seen by the answer modem, and the
bottom line shows the handshaking signals seen by the answerer. As indicated, the
originator asserts the switch-hook signal. This might be asserted by putting the
telephone handset on the modem hook or by an output device that asserts this signal.
This causes the command ANS (answer phone) to become asserted, which normally
enables the data coupler electronics to transmit signals. The telephone is now used to
dial up the answerer (17 seconds is allowed for dialing up the answerer). The answering
modem receives a command RI (ring indicator) from the telephone, indicating that the
phone is ringing. It then asserts the ANS signal to answer the phone, enabling the data
coupler to amplify the signal. The answerer puts a true signal, 2225 Hz, on the line. The
originator watches for that signal. When it is present for 450 ms, the originator will
send its true signal, a 1270-Hz sine wave. The answerer is watching for this signal.
When it is present for 450 ms, the answerer asserts the CTS command and is able to
begin sending data. The originator meanwhile asserts CTS after the 2225-Hz signal has
been present for 750 ms. When both modems have asserted CTS, full-duplex
communication can be carried out.

Some answer modems will automatically terminate the call. To terminate the call,
send more than 300 ms of false (space) 1070 Hz. This is called a break and is done by
your terminal when you press the "break" key. The answer modem will then hang up the
phone (negate ANS) and wait for another call. Other modems do not have this automatic
space disconnect; they terminate the call whenever neither a high nor a low frequency is
received in 17s. This occurs when the telephone line goes dead or the other modem
stops sending any signal. In such systems, the "break" key and low frequency sent when
it is pressed can be used as an attention signal rather than a disconnect signal.

9.2 Signal Transmission 407

Figure 9.3. Originating a Call on a Modem

9.2.3 Infrared Links

Another scheme to transmit serial data is to send it on an infrared carrier, according to the
IRDA Serial Infrared Physical Layer Specification. A logic 0 (F) is sent as emission of
infrared light for 3/i6 of a bit time, followed by 13/16 of a bit time of darkness. A logic 1
(T) is sent as a bit time of darkness. Data are sent by driving current through an infrared
diode, and data are received by having the infrared light shine on a phototransistor, much
as in an opto-isloator. The main advantage of this scheme is that the two
communicating devices need not have any electical connections between them, so there
is significantly less danger of electrical shock and noise.

408 Chapter 9 Communications Systems

9.3 UART Link Protocol

By far the most common technique for transmitting data is that used by the universal
asynchronous receiver-transmitter (UART). This simple protocol is discussed in this
section. Software generation of UART signals, discussed first, is quite simple and helps
to show how they are sent. The UART-like chip - the ACIA - designed for the 6812
family is covered in the next subsection. A special remote-control chip that uses the
UART protocol is discussed in the next subsection, then the UART chip is discussed. A
system inside the 6812 that is capable of UART signal generation and reception, the
serial communications interface (SCI), is discussed last because it has several useful but
nonstandard extensions to the UART protocol.

9.3.1 UART Transmission and Reception by Software

As noted earlier, the UART is a module (integrated circuit) that supports a frame
protocol to send up to eight bit frames (characters). We call this the UART protocol.
However, the UART protocol can be supported entirely under software control, without
the use of a UART chip or its equivalent. A study of this software is not only a good
exercise in hardware/software trade-offs, but is an easy way to teach the protocol; the
software approach also is a practical way to implement communication in a minimum-
cost microcomputer. However, we do warn the reader that most communication is done
with UART chips or their equivalent, and low-cost microprocessors such as the 6812
already have a built-in "UART" on the microprocessor chip itself, which is the SCI.

The UART frame format is shown in Figure 9.4. (The UART protocol is contained
within the UART frame format.) When a frame is not being sent, the signal is high.
When a signal is to be sent, a start bit, a low, is sent for one bit time. The frame, from
5 to 8 bits long, is then sent 1 bit per bit time, least significant bit first. A parity bit
may then be sent and may be generated so that the parity of the whole frame is always
even (or always odd). To generate even parity, if the frame itself had an even number of
1s already, a low parity bit is sent, otherwise a high bit is sent. Finally, one or more
stop bits are sent. A stop bit is high, and is indistinguishable from the high signal that
is sent when no frame is being transmitted. In other words, if the frame has n stop bits
(n = 1, 1 1/2, or 2), this means the next frame must wait that long after the last frame
bit or parity bit of the previous message has been sent before it can begin sending its
start bit. However, it can wait longer than that.

Figure 9.4. Frame Format for UART Signals

9.3 UART Link Protocol 409

In addition to the format above, the protocol has some rules for sampling data and
for error correction. A clock, used in the receiver, is 16 times the bit rate, and a counter,
incremented each clock time, is used to sample the incoming data. (The same clock is
used in the transmitter to generate the outgoing data.) The counter is started when the
input signal falls, at the beginning of a frame. After 8 clock periods, presumably in the
middle of the start bit, the input is sampled. It should be low. If it is high, the falling
edge that started the counter must be due to some noise pulse, so the receiver returns to
examine the input for the leading edge of a start bit. If this test passes, the input is
sampled after every 16 clock periods, presumably in the middle of each bit time. The data
bits sampled are reassembled in parallel. The parity bit, if one is used, is then sampled
and checked. Then the stop bits are checked.

The following are definitions of error conditions. If the parity bit is supposed to be
even, but a frame with odd parity is received, a parity error is indicated. This indicates
that one of the frame bits or the parity bit was changed due to noise. Note that two errors
will make the parity appear correct - but two wrongs don't make a right. Parity detection
cannot detect all errors. Even so, most errors are single-bit errors, so most errors are
detetected. If a stop bit is expected, but a low signal is received, the frame has a framing
error. This usually indicates that the receiver is using the wrong clock rate, either
because the user selected the wrong rate or because the receiver oscillator is out of
calibration. However, this condition can arise if the transmitter is faulty, sending frames
before the stop bits have been timed out, or if more than one transmitter are on a link
and one sends before another's stop bits are completely sent. Finally, most UART
devices use a buffer to store the incoming word, so the computer can pick up this word
at leisure rather than at the precise time that it has been shifted in. This technique is
called double buffering. But if the buffer is not read before another frame arrives needing
to fill the same buffer, the first frame is destroyed. This error condition is called an
overrun error. It usually indicates that the computer didn't empty the receiver buffer
before a subsequent message arrived.

The UART communication technique is based on the following principle. If the
frame is short enough, a receiver clock can be quite a bit out of synchronization with the
transmitter clock and still sample the data somewhere within the bit time when the data
are correct. For example, if a frame has 10 bits and the counter is reset at the leading
edge of the frame's start bit, the receiver clock could be 5% faster or 5% slower than the
transmitter clock and still, without error, pick up all the bits up to the last bit of the
frame. It will sample the first bit 5% early or 5% late, the second 10%, the third 15%,
and the last 50%. This means the clock does not have to be sent with the data. The
receiver can generate a clock to within 5% of the transmitter clock without much
difficulty. However, this technique would not work for long frames, because the
accumulated error due to incorrectly matching the clocks of the transmitter and receiver
would eventually cause a bit to be missampled. To prevent this, the clocks would have
to be matched too precisely. Other techniques become more economical for longer
frames.

A C procedure suart to generate a signal compatible with the UART protocol is
quite simple. The procedure is shown below and its description follows. It uses the same
pins (PORTS bits 2 and 3) that will be used later with the SCI1 examples.

410 Chapter 9 Communications Systems

void SUart(char c) { unsigned char i, parity;
DDRS = TxDl; parity = PORTS = 0 ; delay (N);
ford = 8; i > 0; i--) {

i f (c S c l) { PORTS = TxDl; parity+ + ; }
else PORTS = 0; c »= 1; delay (N);

i

if(parity & 1) PORTS = TxDl; else PORTS = 0;
delay (N); PORTS = TxDl; delay (N) ; del ay (N) ;

void main(){ char c = RUart (); SUart(c);}

In the above procedure we use the following delay procedure, whose argument is
the time delay. Let ivbe the parameter that delays for the time to send one bit.

void delay (int t) { while (--t); }

The start bit is output from the least significant bit of c, and a delay subroutine is
called to delay one bit time. Then the bits are written to the output port so that the least
significant bit is sent out the serial channel, and parity is updated with the exclusive-OR
of parity and data so that the least significant bit is the parity of the data sent. This is
repeated for 8 data bits. Then the parity bit is output, and the stop bit is output.
Appropriate delays are inserted between each bit that is sent serially.

A C procedure RUart to receive a UART frame is also quite simple. Again, the
subroutine is shown and its description follows it.

char RUart (){ unsigned char i, parity, c;
do {while(PORTS & RxDl) ; delay(N/2); } while (PORTS & RxDl);
parity = c = 0; delay (N);
for(i = 8; i > 0; i--)

{ if (PORTS & RxDl) { c \= 0x80; parity+ + ;} c »= 1; delay (N);}
if (PORT'S & RxDl) parity++; if (parity & 1) {/* report parity error */;/
delay (N); i f (! (PORTS & RxDl)) {I* report framing error *//;
delay (N); if (! (PORTS & RxDl)) { /* report framing error */;}
return c;

The while loop waits for the input to go low, and the do while loop confirms that it
is still low after half a bit time (using the procedure delay to delay half a bit time).
Then, after a delay of a bit time, the least significant bit is picked up, and is exclusive-
ORed with the computed parity bit. For eight steps, another bit is picked up, the parity
is updated, and a bit delay is wasted. Then the transmitted parity bit is combined with the
computed parity bit to determine if a parity error occurred, and the stop bits are checked.

Both of the preceding C procedures are simple enough to follow. They can be done
in software without much penalty because the microprocessor is usually doing nothing
while frames are being input or output. In an equivalent hardware alternative, essentially
the same algorithms are executed inside the UART chip or an equivalent chip like the
ACIA. The hardware alternative is especially valuable where the microcomputer can do
something else as the hardware tends to transmitting and receiving the frames, or when it

9.3 UART Link Protocol 411

might be sending a frame at the same time it might be receiving another frame (in a full-
duplex link or in a ring of simplex links). In other cases, the advantages of the hardware
and software approaches are about equal: the availability of cheap, simple UART chips
favors the hardware approach, while the simplicity of the program favors the software
approach. The best design must be picked with care and depends very much on the
application's characteristics.

9.3.2 The UART

The UART chip is designed to transmit and/or receive signals that comply with the
UART protocol (by definition). This protocol allows several variations (in baud rate,
parity bit, and stop bit selection). The particular variation is selected by strapping
different pins on the chip to high or to low. The UART can be used inside a
microcomputer to communicate with a teletype or a typewriter, which was its original
use, or with the typewriter's electronic equivalent, such as a CRT display. It can also be
used in other remote stations in security systems, in stereo systems controlled from a
microcomputer, and so on. Several integrated circuit companies make UARTs, which are
all very similar. We will study one that has a single-supply voltage and a self-contained
oscillator to generate the clock for the UART, the Intersil IM6403. See Figure 9.5.

Figure 9.5. Block Diagram of a UART (IM6403)

412 Chapter 9 Communications Systems

The UART contains a transmitter and a receiver that run independently, for the most
part, but share a common control that selects the baud rate and other variations for both
transmitter and receiver. We discuss the common control first, then the transmitter, and
then the receiver. The baud rate is selected by the crystal connected to pins 17 and 40 and
by the divide control DIV on pin 2. If DIV is high, the oscillator frequency is divided by
16; if low, by 211. If the crystal is a cheap TV crystal (3.5795 MHz) and DIV is low,
the baud rate is close to 110, which is commonly used for teletypes. When master reset
MR, on pin 21, is high, it resets the chip; normally, it is grounded. The other control
bits are input on pins 39 to 35 and are stored in a latch inside the chip. The latch stores
the inputs when pin 34 is high. This pin can be held high to defeat the storage
mechanism, so the pin levels control the chip directly. Pin 36 selects the number of stop
bits: low selects 1 stop bit, high selects 2 (except for an anomaly of little interest). If
pin 35 is high, no parity bit is generated or checked; otherwise, pin 39 selects even
parity if high and odd parity if low. Pins 37 and 38 select the number of data bits per
frame; the number is 5 plus the binary number on these pins. The user generally
determines the values needed on these pins from the protocol he or she is using, and
connects them to high or low. However, these inputs can be tied to the data bus of a
computer, and pin 34 can be asserted to load the control latch to effect an output register;
in the reset handler, the computer can then set the control values under software control.

The operation of the transmitter and receiver is compactly and simply explained in
the data sheets of the 6403, which are paraphrased here. The transmitter has a buffer
register, which is loaded from the signals on pins 33 (msb) to 26 (lsb) when transmitter
buffer register load TBRL (pin 23) rises. If n < 8 bits are sent, the rightmost n bits on
these pins are sent. Normally, these pins are tied to the data bus to make the buffer look
like an output register, and TBRL is asserted when the register is to be loaded. When this
buffer is empty and can be loaded, transmitter buffer register empty TBRE (pin 22) is
high; when full, it is low. (SFD, pin 16, must be low to read out TBRE.) The computer
may check this pin to determine if it is safe to load the buffer register. It behaves as a
BUSY bit in the classical I/O mechanism. The data in the buffer are automatically loaded
into the transmitter shift register to be sent out as transmitter register output TRO (pin
25) with associated start, parity, and stop bits as selected by the control inputs. As long
as the shift register is shifting out part of a frame, transmitter register empty TRE (pin
24) is low. Figure 9.6 shows a typical transmission, in which two frames are sent out.
The second word is put into the buffer even as the first frame is being shifted out in this
double-buffered system. It is automatically loaded into the shift register as soon as the
first frame has been sent.

The receiver shifts data into a receiver shift register. When a frame has been shifted
in, the data are put in the receiver buffer. If fewer than 8 bits are transmitted in a frame,
the data are right-justified. This data can be read from pins 5 to 12, when receive register
disable RRD (pin 4) is asserted low. Normally these pins are attached to a data bus, and
RRD is used to enable the tristate drivers when the read buffer register is to be read as an
input register. If RRD is strapped low, then the data in the read buffer are continuously
available on pins 5 to 12. When the read buffer contains valid data, the data ready DR
signal (pin 19) is high, and the error indicators are set. (DR can only be read when SFD
on pin 16 is high.) The DR signal is an indication that the receiver is DONE, in the
classic I/O mechanism, and requests the program to read the data from the receiver buffer

9.3 UART Link Protocol 413

and read the error indicators if appropriate. The error indicators are reloaded after each
frame is received, so they always indicate the status of the last frame that was received.
The error indicators, TBRE, and DR can be read from pins 15, 14, 13, 22, and 19 when
SFD (pin 16) is asserted low, and indicate an overrun error, a framing error, a parity
error, an empty transmitter buffer, and a full receiver buffer, respectively, if high. The
error and buffer status indicators can be read as another input register by connecting pins
22. 19, and 15 to 13 to the data bus, and asserting SFD when this register is selected; or,
if SFD is strapped low, the error and buffer status indicators can be read directly from
those pins. When the data are read, the user should reset the DR indicator by asserting
data ready reset DRR (pin 18) high. If this is not done, when the next frame arrives and
is loaded into the buffer register, an overrun error is indicated.

The UART can be used in a microcomputer system. The control bits (pins 35 to 39)
and the transmitter buffer inputs (pins 26 to 33) can be inputs, and the buffer status and
error indicators (pins 22 and 19, and 15 to 13) and receive data buffer outputs (pins 5 to
12) can be outputs. All the inputs and outputs can be attached to the data bus. TBRL.
SBS, SFD, and RRD (pins 23, 36, 16, and 4) are connected to an address decoder so that
the program can write in the control register or transmitter buffer register, or read from
the error indicators or the read buffer register. The TBRE signal (pin 22) is used as a
BUSY bit for the transmitter; and the DR signal (pin 19) is used as a DONE bit for the
receiver. When the UART is used in a gadfly technique,which can be extended to
interrupt or even DMA techniques, the program initializes the UART by writing the
appropriate control bits into the control register. To send data using the gadfly approach,
the program checks to see if TBRE is high and waits for it to go high if it is not When
it is high, the program can load data into the transmitter buffer. Loading data into the
buffer will automatically cause the data to be sent out. If the program is expecting data
from the receiver in the gadfly technique, it waits for DR to become high. When it is,
the program reads data from the receiver buffer register and asserts DRR to tell the
UART that the buffer is now empty. This makes DR low until the next frame arrives.

The UART can be used without a computer in a remote station that is implemented
with hardware. Control bits can be strapped high or low, and CRL (pin 34) can be
strapped high to constantly load these values into the control register. Data to be
collected can be put on pins 33 to 27. Whenever the hardware wants to send the data, it
asserts TBRL (pin 23) low for a short time, and the data get sent. The hardware can
examine TBRE (pin 22) to be sure that the transmitter buffer is empty before loading it,
but if the timing works out such that the buffer will always be empty, there is no need
to check this value. It is pretty easy to send data in that case. Data, input serially, are
made available and are stable on pins 5 to 12. Each time a new frame is completely
shifted in, the data are transferred in parallel into the buffer. RRD (pin 4) would be
strapped low to constantly output this data in a hardware system. When DR becomes
high, new data have arrived, which might signal the hardware to do something with the
data. The hardware should then assert DRR high to clear DR. (DR can feed a delay into
DRR to reset itself.) The buffer status and error indicators can be constantly output if
SFD (pin 16) is strapped low, and the outputs can feed LEDs, for instance, to indicate an
error. However, in a simple system when the hardware does not have to do anything
special with the data except output them, it can ignore DR and ignore resetting it via
asserting DRR. In this case, the receiver is very simple to use in a remote station.

414 Chapter 9 Communications Systems

TBRL

TBRE

TRE

TRO

U

U

U

L

II 1 Ml 1

U

n
n

II I HIM

u
n

n
MUM II III

r
HIM

Figure 9.6. Transmitter Signals

9.3.3 The ACIA

The asynchronous communications interface adapter (AC/A) is a UART that has been
specially tailored for use as an external chip for the 6812 microcomputer in normal
expanded narrow mode. This section covers the ACIA's highlights. A complete
description is available in the ACIA data sheet. The ACIA is designed for the Motorola
microcomputer. It can also be used in other microcomputers, and other microcomputer
manufacturers have special chips like the ACIA for their systems. The ACIA is different
from a UART like the IM6403 in the following ways. To save pins, a bit of the
transmitter buffer input, a bit of the receiver buffer output, a bit of the control register,
and a bit of the buffer and error status register output are internally connected and then
connected to a single pin on this chip. Thus, only 8 pins are used to connect to the data
bus. An external clock is needed to set the baud rate, and the transmitter can have a
different clock than the receiver. Also, because this chip is designed to connect to a
modem, discussed in the next section, it has three pins to control the modem so that the
program can control it. Finally, it has a status register with interrupt request logic so
that the 6812 can easily examine it in its interrupt handler. (A diagram of the ACIA is
shown in Figure 9.7; for simplicity, the system is configured so that this chip is
addressed at locations 0x200 and 0x201.)

The transmitter, with its buffer and shift register, and the receiver and its shift
register, operate just as in the UART. They are addressed in the same location because
the transmitter buffer is write-only, while the receiver buffer is read-only. Once the
control register is set up, a word is transmitted simply by writing it in location 0x201,
and an incoming word is picked up by reading it from location 0x201.

The 'A4 is configured in narrow extended bus mode to provide data and address
buses, E, RW, and CSO. Review §6.4 to determine how to slow the E clock to satisfy
the 2-MHz MC68B50's bus timing, and how to provide the data, address, and control
signals. As discussed in §8.2.2, timer device 0 provides its transmit and receive clocks
for 1200 baud; they are 19.2 KHz (52.08 us or 52 E clock cycles per interrupt). We want
to send 8 data bits, even parity, and 1 stop bit. No interrupts are generated, and RTS is
low. Consult Table 9.2; bits 7 to 5 should be F (0) to disable interrupts and set RTS
low; bits 4 to 2 should be TTF (110) to select 8 data bits, even parity, and 1 stop bit;
and bits 1 and 0 should be FT (01) to divide the clock rate, 153.6 KHz, by 16, to deliver
1200 baud. The control word should be 0x19. The instructive pattern OxC5 is

9.3 UART Link Protocol 41.5

repetitively output to the data port to immediately refill the buffer every time it is
empty. (If the buffer is already full, writing another word into it causes that data to be
lost. Normally the program checks a status bit to be sure this buffer is empty before
filling it. But in this case, there is no harm in constantly writing the same word into the
data port.) The output TxD should appear on an oscilloscope, as in Figure 9.8.

Table 9.2. ACIA Control and Status Bits

void main () { char *acia = (char *) 0x200; as;ncli
CLKCTL = 2 « 2; /* E clock is 2 MHz; high or low for 250 ns */
MODE ---- (Special + Narrow) « ModeFld; /* select 6812 mode */
PEAR RDWRE; /* enable port E alternate functions: RW, E */
CSCTL=: CSOE; /* enable chip select 0 */ asm sei
TSCR = 0x80; TIOS = 1; TCTLO = 1; TOO = N + TCNT;

TMSKI = l; I* enable interrupt for device 0 */ asm cl I
aci a = 0x03 / / 11 to bits 1,0 of ACIA cntrl port to reset it*/
acia = 0x19; / ACIA cntrl.: 8 data, even parity, 1 stop */
do a cl a [1] = OxC5; while (1) ; /*data to ACIA transmitter output buffer port*/

416 Chapter 9 Communications Systems

Figure 9.7. The ACIA

9.3 UART Link Protocol 417

Parity Bit

Figure 9.8. Output of a Test Program

The MC68B50's status bits can be read from location 0x200. (See Table 9.2.)
RDRF (bit 0) is true if the receiver buffer is full. TDRE (bit 1) is true if the transmitter
buffer is empty. Bits 2 and 3 indicate the signals from a modem, DCD and CTS, that
normally indicate the data carrier is present and the channel is clear to send. FE, OVRN,
and PE, (bits 4, 5, and 6) are the framing, overrun, and parity error indicators. IRQ (bit
7) is a composite interrupt request bit, which is true if the interrupt enable, control bit 7,
is true and any one or several of the status bits 0, 2, 4, 5, or 6 are true or if control bits
6 and 5 are FT (01) and status bit 1 is true.

9.3.4 The M14469

The Ml4469 is a UART specially designed for a remote station. We give a short
description here and a full description in its data sheet. A CMOS chip, the Ml4469 can
use an unregulated supply whose voltage can vary between 4.5 and 18V, and it uses
very little current. It features a self-contained oscillator and an address comparator that
permits the selection of a station when multiple stations are on the same link. A UART
protocol is supported in which the frame has even parity and 1 stop bit. The baud rate is
determined by the crystal (or ceramic resonator) connected between pins 1 and 2, or by an
external oscillator that can drive pin 1. The oscillator frequency is divided by 64 to set
the baud rate. A diagram of the M14469 is shown in Figure 9.9.

Figure 9.9. The Ml4469

418 Chapter 9 Communications Systems

The receiver is a standard UART receiver with an address comparator, A 7-bit address
is sent as the low-order 7 bits of an 8-bit word, the most significant bit being true. The
station has a 7-bit address, which is selected by strapping pins 10 to 4 low if a 0 bit is
needed, or leaving them open if a 1 bit is needed in the address (these pins have an
internal pull-up resistor to make them high if they are not connected). If the incoming
address is equal to the station address, the valid address pulse VAP (pin 31) is made high
momentarily, and the station is said to be selected. A 7-bit data word is sent as the low-
order 7 bits of a word, the most significant bit being false. A station that has been
selected will put any data word into its receiver buffer when the word is completely
shifted in, and make a command strobe CS (pin 32) high momentarily just after this
happens. Error status is not available on a pin, but if a parity or framing error is
detected, an address will not select a station, data will not be transferred to the receiver
buffer, and VAP or CS will not be pulsed.

Note that a typical message will consist of a frame with an address (most significant
bit [MSB] true) followed by zero or more frames with data, MSB false. A single address
frame can be used to trigger a remote station to do something, by asserting VAP in it
when the address is recognized; or a message with an address frame followed by a number
of data frames will cause the data to be stored in the receiver buffer each time a data frame
arrives, and will pulse CS to command something to be done with the data.

The transmitter is a conventional UART transmitter modified to send out 16 bits of
data in two consecutive frames if SEND is made high when VAL or CS is asserted (or
within 8 data bit time units after that) and if it is not currently transmitting a pair of
frames. Sixteen bits are sent from the signals on pins 11 to 18 and 29 to 22 by
transferring the data on pins 11 to 18 directly into the transmitter shift register, and
simultaneously transferring the data on pins 29 to 22 into the transmitter buffer. The
data in the shift register are sent out (pin 11 data first) in the first UART frame, and the
data in the buffer (pin 29 data first) are sent out immediately after that in the next frame.
The data appear on the transmitter output TRO (pin 21) in negative logic. This output is
in negative logic so that it can drive a transistor, which inverts the signal to power the
link out of the station.

The chip is designed for both full and half-duplex, with some special provisions for
the latter application. In full-duplex applications, a master (likely an ACIA in a
microcomputer) sends to all the slave stations (several Ml4469s) on one line (ACIA
TxD output to RI input of each slave), while all the slave stations send to the master on
another line (slave TRO output into transistor base; transistor collectors in each slave
tied together, in a wire AND bus line, to RxD input of ACIA), so that the master can be
sending to a slave at the same time that a slave is sending to the master. In this case,
VAP can be connected to SEND to send back the two frames as quickly as possible after
a station is selected. The master should take care it does not send two address frames, one
right after another, so that two slaves will send overlapping frames back. In the half-
duplex mode, a single bus line is used between master and all slaves so that the master
can send data to the slaves or the slaves can send data to the master, but not at the same
time. TxD and RxD in the master, and RI and the transistor collector in each slave,
would be connected to this single line. In this application, SEND should be connected to
CS so the slave that is selected will wait for an address frame and a data frame to be sent
over the line from the master, before the slave returns its two frames. The master should
wait for both frames to be returned before it sends more data on the same line.

9.3 UART Link Protocol 419

To ensure the data have been received, handshaking is often used; and to permit
handshaking, the M14469 is designed to prevent difficulties in the half-duplex mode. The
slave can be implemented so that the first frame it returns has its own station address.
When the master sends a message, it can wait for the slave to respond with a frame
having the address of the slave. If that frame is returned, the message must have been
received without error and the slave must be active (as opposed to being shut off). This
is a simple handshake protocol. However, if it is used in the half-duplex mode, we don't
want the return frame to be received by the same slave and for it to recognize its own
address again to trigger itself, nor do we want the return message stored in the receiver
buffer. Therefore, this chip is designed so that it deselects the receiver as soon as it
begins transmitting a frame. And the frame being transmitted should be a data frame
(most significant bit false) to prevent the address decoder from matching it, even though
the frame really contains an address. This provision makes handshaking in a half-duplex
mode possible. Note that the chip is designed that way; these peculiarities are also
apparent in the full-duplex mode.

Before the end of this section, we present a short program that shows how the ACIA
can communicate to several Ml4469s over a full-duplex line. The object of the program
is to select station 3, send a word of data to it, and receive a word of data from it. An
M14469 is configured as station 3 by wiring pins 10 to 4 and pins 17 to 11 to represent
the number 3. The data to be sent back from this station is connected to pins 23 to 29,
Handshaking is used, so the transmission on the link will look as follows: the master
will send the slave's address and 7 bits of data to the slave on the line from master to
slave; then the slave will return its address and 7 bits of data on the other line.

The following program sets up an ACIA to send 8 bits of data, even parity, and 1
stop bit per frame, and to divide the clock by 64. The gadfly technique uses a subroutine
WTBRE, shown at the bottom of the program, to wait until the transmitter buffer is
empty, and then outputs the word in accumulator A to it. Initially, accumulator A has
0x5A, which is some data for station 3. The address is sent first, then the data. Then the
receiver is checked for an incoming frame. While checking for the returned frame, the
index register is used to keep track of elapsed time. The contents of this frame are
compared with the address that was sent out. If too much time elapses before the frame
returns, or if it contains the wrong address, the program exits to report the error.
Otherwise, the data in the next frame are left in accumulator B, and this routine is left.

The C program Remote sets up an ACIA to send 8 bits of data, even parity, and
one stop bit per frame, and to divide the clock by 64. This is accomplished by putting 3
and then Oxl A into the control port. The address (0x83) is sent first, then the data. Then
the receiver is checked for an incoming frame. Meanwhile, a counter, initialized high
enough to wait for any reasonable response, is decremented to check if there is no
response. The contents of this frame are compared with the address that was sent out. If
too much time elapses before the frame returns, or if it contains the wrong address, the
program exits to report the error. Otherwise, the data picked up from the ACIA that was
sent in the next frame after the address are returned.

^define N 52 /* for 1200 baud */

interrupt: 8 void handler () { TFLG1 = 1; TCi

420 Chapter 9 Communications Systems

int Remote (char c, int. *acia) { int i, parity;
CLKCTL = 2 « 2; MODE = (Special + Narrow) « ModeFld;
PEAR = RDWRE; CSCTL = CSOE; asm sei
TSCR=Ox80; TIOS=1; TCTLO=1; TMSK1=1; TCG = N + TCNT; asm cli
*acia = 3; *acia = Oxla; acia[l] = 0x83;
while((*acia & 2) == 0); acia[l] = c; i = 33000;
wh i 1 e ((* a ci a & 1) = = 0) i f ((i - -) == 0) {/* report error */};
if (a c i a [1] != 0x83) {/* report error */ / /
while((*acia & 1)==0); return (acia [1]) ;

9.3.5 The Serial Communication Interface System in the 6812

The 'A 12 has a pair of UART-like systems in it called the serial communication
interfaces (SCIO and SCI1). We describe the SCIO device shown in Figure 9.10; the
SCIO device is used by the debugger DBug-12. We describe its data, baud-rate generator,
control and status ports. Then we will show how the SCI can be used in a gadfly-, and
an interrupt-synchronization interface.

As with the ACIA, the SCI has, at the same port address, a pair of data registers that
are connected to shift registers. Eight bits of the data written at SCODRL (Oxc7) are put
into the shift register and shifted out, as in the ACIA, and 8 bits of the data shifted into
the receive shift register can be read at SCODRL (Oxc7).

The clock rate is established by the 12-bit SCOBD port (OxcO). The number put in
this port is the clock going to the SCI (Figure 6.10) divided by 16 times the desired baud
rate. For example, to get 9600 baud, put 52 into the SCOBD port.

The 16-bit control port, SCOCR, at Oxc2, has parity enable PE and parity type PT
to establish the parity, transmitter interrupt enable TIE and receiver interrupt enable
RIE to enable interrupts, and transmitter enable TE and receiver enable RE to enable
the device. The 16-bit status port at Oxc4 indicates what is happening in the transmitter
and receiver. TDRE is T (1) if the transmit data register is empty; it is set when data are
moved from the data register to the shift register, and is cleared by a read of the status
port followed by a write into the data port. The remaining status bits are for the receiver.
RDRF is T (1) if the receive data register is full because a frame has been received.
Receive-error conditions are indicated by OR, set when the receiver overruns (that is, a
word has to be moved from the input shift register before the previously input word is
read from the data register), FE, T (1) if there is a framing error (that is, a stop bit is
expected but the line is low; and PE, T (1) if there is a parity error.

In main, the SCI is intitialize for gadfly synchronization of 9600 baud and 8 data
bits without parity. Reading status and data registers twice clears the RDRF flag. The
put procedure gadflies on transmitter data register empty (TDRE); when it is empty,
put outputs its argument. The get procedure gadflies on the receive data register full
(RDRF); when the receive register is full, get returns the data in data port SCODRL .

9.3 UART Link Protocol

Figure 9.10. 6812 Serial Communication Interface

void main () { char i;
SCOBD = 52; /*9600 baud*/ scOCR = TE + RE; /* enable Xmt, Rev devices */
i^SCOSR; i=SCODR; i=SCOSR; i = SCODR;l* clrRDRF */ put {0x55) ; i .-. get f,

422 Chapter 9 Communications Systems

Interrupt synchronization uses queues (§2.2.2) to permit simultaneous input and
output of data, which may be asynchronous with the program. SCIO initialization
includes enabling SCIO receiver interrupts, which are handled by handler. To output
data in pu t, gadfly on oSz until the output queue has room, then push the data. If the
output queue changes from empty to nonempty, enable the transmitter interrupt. To
input date from ge t, gadfly on i Sz until the input queue has data, then pull that data.
handler checks status port SCOSR for receive data or transmitter buffer empty. If the
transmitter buffer is empty and the output queue has data, data is pulled from the output
queue and is written to the data port. If the output queue becomes empty, disable the
transmitter interrupt. If the receive buffer is full, push its data into the input queue.

volatile int SCOBD@OxcO, SCOCR@Oxc2, SCOSR@Oxc4, SCODR@Oxc6,
SClBD@Oxc8, SC'lCR@Oxca, SClSR&Oxcc, SClDRQOxce;

interrupt 20 void handler() { int status;
if((status=SCOSR)&TDRE&(SCOCR « 8)) /* if tms int en, TDRE flag set */

{ iff OSz) SCODR = oPullO; iff ! oSz) SCOCR &= -TIE; }
if(status&RDRF) { i Push (SCODR); } /*if RDRF flag set, push received data*/

void main() { char i; asm SEI
SCOBD = 52; SCOCR = TE + RE + RIB,- /* enable Rcv interrupt */
i = SCOSR + SCODR; i = SCOSR + SCODR; asm CLI

put (0x55); i = get();

9.3 UART Link Protocol 423

The overwhelming advantage of the SCI system is that it is contained entirely
within the 6812 chip. It is therefore free with the computer. Gadfly synchronization is
very simple. Interrupt synchronization provides much more power, and is also very easy.

9.3.6 Object-oriented Interfacing to the SCI

We illustrate object-oriented programming of the SCI with a simple gadfly class S' < • / ,
an interrupt class scii, a hardware handshake scih, and a software handshake o<. ,.
interrupt class. Each example demonstrates increased complexity. The simple >-.v
class merely implements §9.3.5's gadfly synchronization procedures. We define ^ j <,
control, status, and data to use Port's vector port to access the ports. The
function member option permits reading and writing the device's control and status
ports to gain full use of the device, but if an object is redirected, calling option will
neither cause the compiler to have an error nor crash the run-time application.

virtual int. option (int c = 0, int mask = 0) {
i f f ' c == 0) return Port::option (0, m);
else if(!(c & 0x10)) return 0;
else if(c <= 0x13)) {((int *)port)[c & 3} = d; return 0; }
else return ((int *)port)[c & 3] ;

scii, shown next, implements the procedures in §9.3.5 for interrupt
synchronization (using #define and enum statements from it), but it takes advantage
of §2.3.3's Queue class. It uses overloaded operators from §4.4.5 and §5.3.5 to
implement loStreams, it correctly keeps track of receiver errors, and its destructor
properly disables device SCIO's interrupts after its output queue is empty.

424 Chapter 9 Communications Systems

public : SCIi (char id):Port(OxcO+(id « 3)) { char dmy; asm sei
Ou tQ=new Queue<char> (10) ; InQ=new Queue<char> (10) ;/* create Qs */
baud=52; control=TE+RE+RIE; /* initialize SCIl's control registers */
dmy=status; dmy=theData; dmy=status; dmy=theData; asm cli

virtual void put (int d) {
while (OutQ->size>=OutQ->maxSize);// wait output queue room
OutQ->push(d);if(OutQ->size==l)control I =TIE;

void service(void){ int i;
if ((i^status) &RDRF) {II here if receive register full (save status in i)

InQ->push (*port) ; errors I =InQ->error () I (i&Oxf) ;

i f (i&control&TDRE) { II here if transmitter interrupt enbld, TDRE fig set
if(OutQ->size) *port=OutQ->pull () ;
i f (Ou tQ->size==0) con. trol&=~TIE;

virtual int option (int c = 0, int mask - 0) {
if(c]== 0) return Port:: option (0, m) ;
else if(!(c & 0x10)) return 0;
else if(c <= 0x13)) {((int. *)port)[c&3) = d; return 0; }
else return ((int. *)port) [c & 3) ;

-SCii () {while (OutQ->size);control = 0;/* disable interrupts when empty */ }

} *S;

9.3 UART Link Protocol 425

Class scih, derived from scii, uses hardware handshaking, request to send
(RTS), herein PORTS bit 4, is asserted by this microcontroller if its input queue has
room, and negated if there isn't enough room, clear to send (CTS), herein PORTS bit 5,
is asserted by another microcontroller and received by this microcontroller if there is
room in the other microcontroller's input queue and negated if there isn't enough room.

Because the SCI may have data when CTS becomes negated, RTS is negated when
the input queue still has a little room. A constant THRESHOLD is defined so as to provide
enough room in the input queue to absorb all of the SCII device's registers' data.

The input portion of the interrupt handler negates RTS if the input queue is
essentially full (actually if the queue has a few bytes available for more data), get asserts
RTS if the input queue sufficiently empties so there will be room in the input queue to
handle an influx of data that might be sent before RTS is negated.

CTS is checked at least once in the put function member, and it is checked
repetitively while put is waiting for the output queue to have some room in it, so that
if CTS becomes asserted, the transmitter interrupt is enabled, and if negated, the
transmitter interrupt is disabled. Note that the transmitter interrupt can be enabled again,
even if it already is enabled, but that won't hurt anything. The output portion of the
interrupt handler also disables the transmitter interrupt if CTS is found to be negated.

virtual void put (char d) {II this function overrides SCI2's put function
do { If(PORTS & CTS) control 1= TIE; else control &= -TIE; ;

whi1e(OutQ~>size >- OutQ->maxSize);
OutQ->push(d) ;

virtual int get(void) {
lf(InQ~>size == (InQ->maxSize - THRESHOLD)) PORTS \= RTS;
return SCI2::get (); II use SCI2's get function to pull byte from queue

virtual void service(void){ short i;
i f ((i = status) & RDRF) { II input handler

'(i & control & TORE) { II output handler
i f((OutQ->size)&&(PORTS&CTS)) SCI2: :put(OutQ->pul1(});

if((OutQ->size == 0)1 I! (PORTS & CTS)) control &= -TIE;

426 Chapter 9 Communications Systems

The class scish, derived from scii, uses software handshaking. An ASCII
character XON (Oxll) will be sent by this microcontroller if there is room in its input
queue and another ASCII character XOFF (0x13) will be sent by this microcontroller if
there isn't enough room. These characters may be received from another microcontroller.

Because SCII registers may have data when XOFF is sent, as in the previous class,
a constant T is defined so as to provide enough room in the input queue to absorb all of
the SCII device's outstanding data. XON or XOFF are sent by putting them in a data
member Msg, which is 0 if no special signal is to be sent. If Msg is nonzero, the
transmitter interrupt is enabled, and Msg is sent in place of any output queue data. This
decreases the delay time from when the input queue state change requires sending an
XON or XOFF until the sender reacts by enabling or disabling its transmitter interrupt.

The input interrupt handler generates XOFF if the input queue is essentially full
(actually if the queue has a few bytes available for more data), get generates XON if the
input queue empties enough so there will be room in the input queue.

The receipt of XON and XOFF characters indicated the same as the CTS signal. As
XON or XOFF arrive, they set or clear a data member CTS, which will emulate the
CTS signal used in the class scih; data member CTS is checked as CTS was there.

class SCI4:public SCI2{friend void ccsciO(void), ccscil(void);char Msg, CT£
public : SCI4 (char id) : SCl2(id) { Msg = 0; CTS = 1;}
virtual void put (char d) {//this function overrides SCI2's put function

do {if(CTS) control 1= TIE; else control &= -TIE; }
while(OutQ->size >= OutQ->maxSize);
OutQ->push(d);

virtual int get(void) {
if(InQ->size==(InQ->maxSize-T)) {Msg=XON; controll= TIE; }
return sci2: :get () ; / / use SCO's get function to pull byte from queue

virtual void service () {int i; char c;//this handler replaces SIC2's handler
i f ((i = status; & RDRF) { II input handler

i f ((c = S C I 2 : : g e t ()) = = X O N) CTS=1; else if(c==XOFF) CTS=0;
else {InQ->push(c);
if(InQ~>size==(InQ->maxSize-T))Msg=XOFF; control \= TIE;}
errors 1= InQ->error() \ (i & Oxf);

if(i & control & TORE) { II output handler
if (Msg) { SCI 2: -.put (Msg) ; Msg = 0; }
else lf((OutQ->size) && CTS) SCI2: :put(OutQ->pull());

lf((OutQ->size == 0) II .' CTS) control &= -TIE;

9,4 Other Protocols 427

9.4 Other Protocols

Besides the UART protocol, the two most important protocols are the synchronous bit-
oriented protocols that include the SDLC, HDLC, and ADCCP, the X-25, the IEEE-488
bus protocol, and the smart computer system interface (SCSI) protocol.

These are important protocols. We fully expect that many if not most of your
interfaces will be designed around these protocols. If you are designing an I/O device to
be used with a large mainframe computer, you will probably have to interface to it using
a synchronous bit-oriented protocol. If you are designing a laboratory instrument, you
will probably interface to a minicomputer using the IEEE-488 protocol, so that the
minicomputer can remotely control your instrument. We will survey the key ideas of
these protocols in this section. The first subsection describes bit-oriented protocols. The
second subsection discusses the 488 bus. The final subsection covers the SCSI interface.

9.4.1 Synchronous Bit-oriented Protocols

Synchronous protocols are able to move a lot of data at a high rate. They are primarily
used to communicate between remote job entry (RJE) terminals (which have facilities
to handle line printers, card readers, and plotters) and computers, and between computers
and computers. The basic idea of a synchronous protocol is that a clock is sent either on
a separate wire or along with the data in the Manchester coding scheme. Since a clock is
sent with the data, there is little cause to fear that the receiver clock will eventually get
out of sync after a lot of bits have been sent, so we are not restricted to short frames as
we are in the UART. Once the receiver is synchronized, we will try to keep it in
synchronism with the transmitter, and we can send long frames without sending extra
control pulses, which are needed to resynchronize the receiver and which reduce the
efficiency of the channel.

Asynchronous protocols, like the UART protocol discussed in the last section, are
more useful if small amounts of data are generated at random times, such as by a
computer terminal. Synchronous protocols would anyway have to get all receivers into
synchronism with the transmitter when a new transmitter gets control of the channel, so
their efficiency would be poor for short, random messages. Synchronous protocols are
more useful when a lot of data is sent at once because they do not require the overhead
every few bits, such as start and stop bits, that asynchronous protocols need. Bit-oriented
synchronous protocols were developed as a result of weaknesses in byte- or character-
oriented synchronous protocols when they were used in sending a lot of data at once.

The precurser to the bit-oriented protocol is the binary synchronous Bisync
protocol, which is primarily character oriented and is extended to handle arbitrary binary
data. This protocol can be used with the ASCII character set. The 32 nonprinting ASCII
characters include some that are used with the Bisync protocol to send sequences of
characters. SYN (ASCII 0x16) is sent whenever nothing else is to be sent. It is a null
character used to keep the receiver(s) synchronized to the transmitter. This character can
be used to establish which bit in a stream of bits is the beginning of a character. Two
Bisync protocols are used; one for sending character text, and the other for sending binary
data such as machine code programs, binary numbers, and bit data.

428 Chapter 9 Communications Systems

Figure 9.11. Synchronous Formats

Character text is sent as follows (see Figure 9.1 la): A header can be sent, beginning
with character SOH (ASCII 0x01); its purpose and format are user defined. An arbitrary
number of text characters are sent after character STX (ASCII 0x02), and is terminated by
character ETX (ASCII 0x03). After the ETX character, a kind of checksum are sent.

To allow any data - such as a machine code program - including characters that
happen to be identical to the character ETX, to be sent, a character OLE (ASCII 0x10) is
sent before the characters STX and ETX. A byte count is established in some fashion. It
may be fixed, so that all frames contain the same number of words; it may be sent in the
header; or it may be sent in the first word or first two words of the text itself. Whatever
scheme is used to establish this byte count, it serves to disable the recognition of
DLE/ETX characters that terminate the frame so that such patterns can be sent without
confusing the receiver. This is called the transparent mode because the bits sent as text
are transparent to the receiver controller and can be any pattern.

Bisync uses error correction or error detection and retry. The end of text is followed
by a kind of checksum, which varies in differing Bisync protocols. One good error
detection technique is to exclusive-OR the bytes that were sent, byte by byte. If
characters have a parity bit, that bit can identify which byte is incorrect. The checksum
is a parity byte that is computed "at 90 degrees" from the parity bits and can identify the
column that has an error. If you know the column and the row, you know which bit is
wrong, so you can correct it. Another Bisync protocol uses a cyclic redundancy check
(CRC) that is based on the mathematical theory of error-correcting codes. The error-
detecting "polynomial" X**16 + X**15 + X**2 + 1, called the CRC-16 polynomial, is
one of several good polynomials for detecting errors. The CRC check feeds the data sent
out of the transmitter through a shift register that shifts bits from the 15th stage towards
the Oth stage. The shift register is cleared, and the data bits to be transmitted are
exclusive-ORed with the bit being shifted out of the Oth stage and then is exclusive-
ORed with this bit into some of the bits being shifted in the register at the inputs to the
15th, 13th, and Oth stages. The original data and the contents of the shift register (called
the CRC check bits) are transmitted to the receiver. The receiver puts the received data,
including the CRC check bits, through the same hardware at its end. When done, the
hardware should produce a 0 in the shift register. If it doesn't, an error (CRC error) has
occurred. Upon its noting a CRC error, the bisync protocol requests that the frame be
resent. If the frame is good, an ACK (ASCII 0x06) is sent; but if an error is detected, a
NAK (ASCII 0x15) is sent from the receiver back to the sender. If the sender gets an
ACK, it can send the next frame; but if it gets a NAK, it resends the current frame.

9,4 Other Protocols 429

Though developed for communication between a computer and a single RJE station,
Bisync has been expanded to include multidrop. Several RJE stations are connected to a
host computer on a half-duplex line (bus). The host is a master. It controls all transfers
between it and the RJE stations. The master polls the stations periodically, just as we
polled I/O devices after an interrupt, to see if any of them want service. In polling, the
master sends a short packet to each station, so that each station can send back a short
message as the master waits for the returned messages.

The Bisync protocol has some serious shortcomings. It is set up for and is therefore
limited to half-duplex transmission. After each frame is sent, you have to wait for the
receiver to send back an acknowledge or a negative acknowledge. This causes the
computer to stutter while it waits for a message to be acknowledged. These
shortcomings are improved in bit-oriented protocols. Features used for polling and
multidrop connections are improved. And the information is bit-oriented to efficiently
handle characters, machine code programs, or variable width data.

The first significant synchronous bit-oriented protocol was the synchronous data
link control (SDLC) protocol developed by IBM. The American National Standards
Institute, ANSI, developed a similar protocol, ADCCP, and the CCITT developed a third
protocol, HDLC. They are all quite similar at the link-control and physical levels, which
we are studying. We will take a look at the SDLC link, the oldest and simplest of the
bit-oriented protocols.

The basic SDLC frame is shown in Figure 9.1 Ib. If no data are sent, either a true
bit is continually sent (idle condition) or a/lag pattern, Ox7E (FTTTTTTF), is sent.
The frame itself begins with a flag pattern and ends with a flag pattern, with no flag
patterns inside. The flag pattern that ends one frame can be the same flag pattern that
starts the next frame.

The frame can be guaranteed free of flag patterns by a five T's detector and F
inserter. If the transmitter sees that five T's have been sent, it sends an F regardless of
whether the next bit is going to be a T or an F. That way, the data FFTFFTTTTTTTF
is sent as FFTFFTTTTTFTTF, and the data FFTFFTTTTTFTF is sent as
FFTFFTTTTTFFTF, free of a flag pattern. The receiver looks for 5 T's. If the next bit
is F, it is simply discarded. If the received bit pattern were FFTFFTTTTTFTTF, the F
after the five T's is discarded to give FFTFFTTTTTTTF, and if FFTFFTTTTTFFTF is
received, we get FFTFFTTTTTFTF. But if the received bit pattern were FTTTTTTF the
receiver would recognize the flag pattern and end the frame.

The frame consists of an 8-bit station number address, for which the frame is sent,
followed by 8 control bits. Any number of information bits are sent next, from 0 to as
many as can be expected to be received comparatively free of errors or as many as can fit
in the buffers in the transmitter and receiver. The CRC check bits are sent next. The
address, control, information, and CRC check bits are free of flag patterns as a result of
the five T's detection and F insertion discussed above.

The control bits identify the frame as an information frame, supervisory, or
nonsequenced frame. The information frame is the normal frame for sending a lot of data
in the information field. The control field of an information frame has a 3-bit number
w. The transmitter can send up to 8 frames, with different values of N, before
handshaking is necessary to verify that the frames have arrived in the receiver. Like the
ACK and NAK characters in Bisync, supervisory frames are used for retry after error. The

430 Chapter 9 Communications Systems

receiver can send back the number N of a frame that has an error, requesting that it be
resent, or it can send another kind of supervisory frame with Nto indicate that all frames
up to N have been received correctly. If the receiver happens to be sending other data
back to the transmitter, it can send this number N in another field in the information
frame it sends back to the transmitter of the original message to confirm receipt of all
frames up to the wth frame, rather than sending an acknowledge supervisory frame. This
feature improves efficiency, since most frames will be correctly received.

The SDLC link can be used with multidrop (bus) networks, as well as with a ring
network. The ring network permits a single main, primary station to communicate with
up to 255 other secondary stations. Communication is full-duplex, since the primary
can send to the secondary over part of the loop, while the secondary sends other data to
the primary on the remainder of the loop. The SDLC has features for the primary to poll
the secondary stations and for the transmitting station to abort a frame.

The SDLC link and the other bit-oriented protocols provide significant
improvements over the character-oriented Bisync protocols. Full-duplex communication,
allowing up to 8 frames to be sent before they are acknowledged, permits more efficient
communication. The communication is inherently transparent, because of the five T's
detection feature, and can handle variable length bit data efficiently. It is an excellent
protocol for moving large frames of data at a high rate of speed.

The X. 25 protocol is a three-level protocol established by the CCITT for high-
volume data transmission. The physical and link levels are set up for the HDLC
protocol, a variation of the SDLC bit-oriented protocol; but synchronous character-
oriented protocols can be used so that the industry can grow into the X.25 protocol
without scrapping everything. This protocol, moreover, specifies the network level as
well. It is oriented to packet switching. Packet switching permits frames of a message to
wander through a network on different paths. This dynamic allocation of links to
messages permits more efficient use of the links, increases security (since a thief would
have to watch the whole network to get the entire message), and enhances reliability. It
looks like the communication protocol of the future. While we do not cover it in our
discussion of I/O device design, we have been using its terminology throughout this
chapter as much as possible.

9.4.2 MC68HC912B32 BDLC Device

In an automobile, thousands of yards of wire connect the dashboard, sensors,
microcontrollers, and actuators. A single high-speed communication line could replace
most of these wires, at a significant cost savings. The Society of Automotive Engineers
defined the byte data link communications protocol (BDLC) as SAE1850, to
communicate among an automobile's tens of microcontrollers and associated systems.

Along the same lines as the SDLC, the BDLC message (Figure 9.12a) consists of a
start of frame (SOF), a header containing control information, a data field, and a CRC
check. The receiver may immediately send an in-frame response such as that in Figure
9.12b. The device's ports are exhibited in Figure 9.13. These are defined in C as follows:

volatile char BCRl&OxfS, BSVR@Oxf9, BCR2@Oxfa, BDR@Oxfb, BARDQOxfc,
DLC5CR@Oxfd, PORTDLC@Oxfe, DDRDLC0 Oxff;

9.4 Other Protocols 43!

Figure 9.12. BDLC Formats

The program below illustrates sending a 10-byte vector out and receiving this 10-
byte frame into vector in in the same 'B32. Digital loopback mode circulates the bit
stream within the 'B32. Ordinarily, the BDCL device is able to send and receive BDLC
frames through an analog interface chip, the MCxxxx; without this chip, the sending and
receiving of data generates badSymbol errors. Our program's initialization turns on the
BDLC by setting bit 2 of the DLCSCR port; it enables digital loopback by setting bit 6
of BCR2, and it enables the receiver by setting bit 7, and interrupts, by setting bit 1 of
BCR1. The frame is sent by calling a subroutine rdrf, which writes the first byte into
the BDR port. Thereafter, interrupts are used to send the remaining bytes using
subroutine rdrf, and receive bytes using subroutine tdre. Additionally, interrupts can
be called to handle various error conditions. To quickly resolve all these interrupts, but
not use a large number of interrupt vectors, the BDLC device provides a status port
BSVR,which identifies the cause of the interrupt; in the handler, it is used in assembler
language to index into a vector transfer to jump to the service subroutine.

void error(char c){ flag = c; do; while(1); }
void noOp(void) {} void receiveEOF(void) {}
void receivelFR(void err or (2) ; BCR2 = 0x4 O;/* digital loopback, for testing */ }
void rdrf(void;{in[ilndex++]=BDR; if(ilndex>=10){flag++; DLCSCR=BCR1=0;}}
void tdre(void) {BDR=out [olndex+ +] ; if (o!ndex>=10)BCR2\ = 8 ;/* transmit EOF */ }
void arbitrationLoss(void) {error(5);} void crcError(void) {error(6);}
void badSymbol(void) {error(7);} void wakeup(void) {error(8);}

; beginning of procedure vector
; only D can be added to X, used indirectly
; BSVR supplies operation to be done, times 4
; modify to integer length
; call the subroutine

432 Chapter 9 Communications Systems

Figure 9.13. BDLC Ports

{ char dummy; asm sei
= 4; /* turn on bdlc */

BCR2 = 0x40; I* digital loopback, used only for testing */
BCRI = 0x72; /* enable Rcvr, set clock rate to 1 MHz, enable interrupt */
dummy = BSVR; dummy = BDR; asm cli
tdre (); /* send first byte */ whi 1 e (flag == 0) ; I* wait for last byte */

9.4.3 IEEE-488 Bus Standard

The need to control instruments like voltmeters and signal generators in the laboratory or
factory from a computer has led to another kind of protocol, an asynchronous byte-
oriented protocol. One of the earliest such protocols was the CAMAC protocol
developed by French nuclear scientists for their instruments. Hewlett-Packard, a major
instrument manufacturer, developed a similar standard that was adopted by the IEEE and
called the IEEE-488 standard. Although Hewlett-Packard owns patents on the handshake

9,4 Other Protocols 433

methods of this protocol, it has made the rights available on request to most instrument
manufacturers, and the IEEE-488 bus standard has been available on most sophisticated
instruments, minicomputers, and microcomputers.

Communications to test equipment has some challenging problems. The
communications link may be strung out in a different way each time a different
experiment is run or a different test is performed. The lengths of the lines can vary. The
instruments themselves do not have as much computational power as a large mainframe
machine, or even a terminal, so the communications link has to do some work for them
such as waiting to be sure that they have picked up the data. A number of instruments
may have to be told to do something together, such as simultaneously generating and
measuring signals, so they can't be told one at a time when to execute their operation.
These characteristics lead to a different protocol for instrumentation buses.

The IEEE-488 bus is fully specified at the physical and link levels. A 16-pin
connector, somewhat like the RS-232 connector, is prescribed by the standard, as are the
functions of the 16 signals and 8 ground pins. The sixteen signal lines include a 9-bit

Figure 9.14. IEEE-488 Bus Handshaking Cycle

434 Chapter 9 Communications Systems

parallel data bus, three handshaking lines, and five control lines. The control lines
include one that behaves like the system reset line in the 6812 microcomputer. Others
are used to get attention and perform other bus management functions. But the heart of
the bus standard is the asynchronous protocol used to transmit data on the bus.

An asynchronous bus protocol uses a kind of expandable clock signal, which can be
automatically stretched when the bus is longer or shortened if the bus is shorter. During
this process the "clock" is sent from the station transmitting the data to the station that
receives the data on one line, then sent back to the transmitter on another line. The
transmitter waits for the return signal before it begins another transmission. If the bus is
lengthened, so are the delays of this clock signal. The IEEE-488 bus uses this principle a
couple of times to reliably move a word on a 9-bit bus from a transmitter to a receiver.
(See Figure 9.12.)

The handshake cycle is like a clock cycle. Each time a word is to be moved, the bus
goes through a handshake cycle to move the word, as shown in Figure 9.12, The cycle
involves negative-logic data available (DAV), sent by the transmitter of the data, and
positive-logic ready for data (RFD) and positive-logic data accepted (DAC), sent by the
receiver of the data.

If the receiver is able to take data, it has already asserted RFD high. When the
transmitter wants to send a data word, it first puts the word on the bus, and then begins
the handshake cycle. It checks for the RFD signal. If it is asserted at the transmitter, the
transmitter asserts DAV low to indicate the data are available. This is step 1 in Figures
9.14a and 9.14b. When the receiver sees DAV asserted, it negates RFD low in step 2
because it is no longer ready for data. When the processor picks up the data from the
interface, the receiver asserts DAC high to indicate data are accepted. This is step 3.
When the transmitter sees DAC asserted, it negates DAV high in step 4 because it will
soon stop sending data on the data bus. When the receiver sees DAV negated, it negates
DAC in step 5. The data are removed sometime after the DAV has become negated.
When it is ready to accept new data, it asserts RFD high in step 6 to begin a new
handshake cycle.

The IEEE-488 bus (Figure 9-14) is designed for busing data to and from
instruments. First, the bus is asynchronous. If the receiver is far away and the data will
take a long time to get to it, the DAV signal will also take a long time, and the other
handshake signals will be similarly delayed. Thus, long cables are automatically
accounted for by the handshake mechanism. Second, the instrument at the receiver may
be slow or just busy when the data arrive. DAC is asserted as soon as the data get into
the interface, to inform the transmitter that they got there; but RFD is asserted as soon
as the instrument gets the data from the interface, so the interface won't get an overrun
error that a UART can get. Third, although only one station transmits a word in any
handshake cycle, a number of stations can be transmitters at one time or another. Fourth,
the same word can be sent to more than one receiver, and the handshaking should be able
to make sure all receivers get the word. These last two problems are solved using open
collector bus lines for DAV, RFD, and DAC. DAC, sent by the transmitter, is negative
logic so the line is wire-OR. That way, if any transmitter wants to send data, it can short
the line low to assert DAV. RFD and DAC, on the other hand, are positive logic
signals, so the line is a wire-AND bus. RFD is high only if all receivers are ready for
data, and DAC is high only when all receivers have accepted data.

9,4 Other Protocols 435

I/O

REQ

ACK

Data

\
\ / \ /

\ / \ /

< from Target v / ' r- i -i- i \From indicator

Time ^

Figure 9.15. SCSI Timing

The IEEE-488 bus is well suited to remote control of instrumentation and is
becoming available on many of the instruments being designed at this time. You will
probably see a lot of the IEEE-488 bus in your design experiences.

9.4.4 The Small Computer System Interface (SCSI)

The microcomputer has made the intelligent I/O device economical. In a lot of systems
today, a personal computer communicates with a printer that has a microcomputer to
control it, or a disk that has its own microcomputer. Communications between a
personal computer and the intelligent I/O device can be improved with an interface
protocol specially designed for this application. The small computer system interface
(SCSI) is designed for communications between personal computers and intelligent I/O
devices. Many systems that you build may fit this specification and thus may use an
SCSI interface.

The asynchronous protocol is quite similar to the IEEE-488 bus, having a 9-bit (8
data plus parity) parallel bus, a handshake protocol involving a direction signal (I/O), a
request (REQ), and an acknowledge (ACK). (See Figure 9.13.) (There are also six other
control signals, and the interface uses a 50-pin connector.) Up to eight bus controllers
can be on an SCSI bus, and they may be initiators (e.g., microcontrollers) or targets
(e.g., disk drives). A priority circuit assures that two initiators will not use the SCSI
bus at the same time. After an initiator acquires the bus, a command stage is entered.
The 310-byte command packet selects a target controller and is capable of specifying the
reading or writing of up to 256 bytes of data on up to a 1024-GB disk. After the
command packet is sent, data are transferred between the initiator and target.

Each command or data byte is transferred using the IO, REQ, and ACK signals. IO
is low when the initiator wishes to write a command or data into the target, and high
when it wants to read data from the target. If the initiator is sending data or a command,
it begins a transfer by putting the eight-bit data or command and its parity bit on the

436 Chapter 9 Communications Systems

nine-bit parallel bus; if the initiator is receiving data, it omits this step. The initiator
then drops REQ low. If the target is to receive the data, it picks up the data and drops
ACK low. If the target is to send the data, it puts the data on the bus and drops ACK
low. When the initiator sees ACK low, if it is receiving data, it picks up the data from
the data bus and raises REQ. When the target sees REQ high, it raises ACK high so the
next transfer can take place. Up to 1.5 MB/s can be transferred on an SCSI bus this way,
according to the original SCSI standard, but faster SCSI buses have been implemented
and standardized.

9.5 Conclusions

Communications systems are among the most important I/O systems in a
microcomputer. The microcomputer communicates with keyboards, displays, and
typewriters, as well as with remote-control stations and other microcomputers, using the
UART protocol. The microcomputer can be in a large computer system and have to
communicate with other parts of the system using the SDLC protocol. It may be in a
laboratory and have to communicate with instrumentation on an IEEE-488 bus. It may
have to talk with other systems in a different protocol.

If you would like additional reading, we recommend the excellent Technical Aspects
of Data Communication, by John McNamara. It embodies an exceptional amount of
practical information, especially at the physical level, and also covers many of the
widely used protocols. Motorola offers some fine applications notes on the SDLC
protocol and its 6854 chip, such as MC6S54 ADLC, An Introduction to Data
Communication, by M. Neumann. For the IEEE-488 protocol using the 68488 chip,
the applications note Getting Aboard the 488-1975 Bus is very informative. These
applications notes are well written and take you from where this book leaves off to
where you can design systems using these protocols.

For more concrete information on the 68HC11, please consult the MC68HCHA8
HCMOS Single-Chip Microcomputer (ADI 1207). In particular, §5 describes the serial
communication interface. As noted earlier, we have not attempted to duplicate the
diagrams and discussions in that book because we assume you will refer to it while
reading this book, and since we present an alternative view of the subject, you can use
either or both views.

This chapter covered the main concepts of communications systems at the physical
and link-control levels. You should be aware of these concepts so you can understand the
problems and capabilities of specialists in this field. You should be able to handle the
UART protocol - the simplest and most widely used protocol - and its variations, and
you also should be able to use the SCI system in the 6812 and the ACIA chip, as well
as the UART, in hardware designs. You should be able to write initialization rituals,
interrupt handlers, and gadfly routines to input or output data using such hardware.
Hardware and software tools like these should serve most of your design needs and
prepare you for designing with the SDLC, IEEE-488, or SCSI interface protocol
systems.

9.5 Conclusions 437

Do You Know These Terms?

See page 36 for instructions.

levels of abstraction
peers
end-to-end

communication
network control
link control level
physical-control

level
operating-system

level
medium
frequency shift

keying
frequency multiplexing
time multiplexing
channel
simplex
half-duplex
full-duplex
bit time period
baud rate
bit rate
synchronous
asynchronous
Manchester

code

bit level
frame level
message level
protocol
handshake protocol
stack
structure
store and forward
circuit
governed
centralized
distributed
master slave

system
differential line
RS-442
standard
active
passive
modem
originate modem
answer modem
data coupler
answer phone

(ANS)
switch hook (SH)

ring indicator (RI)
data terminal ready

(DTR)
clear to send (CTS)
break
universal

asynchronous
receiver
transmitter
(.UART)

UART protocol
start bit
stop bit
parity error
framing error
double buffering
overrun error
asynchronous

communications
interface adapter
(ACIA)

selected
hardware handshake
software handshake
remote job entry

(RJE)

Bisync
transparent mode
cyclic redundancy

check
synchronous data

link control
(SDLC)

flag pattern
information frame
supervisory
nonsequenced

frame
primary station
secondary station
X.25 protocol
data available

(DAY)
ready for data

(RFD)
data accepted

(DAC)
small computer

system interface
(SCSI)

initiators
targets

438 Chapter 9 Communications Systems

Problems

Problem 1 is a paragraph correction problem. See page 38 for guidelines. Guidelines for
software problems are given on page 86, and for hardware problems, on page 115.
Special guidelines for problems using the 6812 counter/timer modules are presented on
page 390.

1,* To avoid any ambiguity, the peer-to-peer interfaces in communications systems are
specified in terms of all lower level interfaces. The physical level, which is at the lowest
level, is concerned with the transmission of signals such as voltage levels, with
multiplexing schemes, and with the clocking of data if the clock must be sent with the
data or on a separate line. The baud rate is the number of bytes of user data that can be
sent per second. A channel is a data path between entities at the link-control level. It is
half-duplex if every other bit is a data bit and the remainder are clock bits. Protocols are
conventions used to manage the transmission and reception of data at the link-control
level and to negotiate for and direct communications at the network level. A handshake
protocol is one in which congratulations are extended whenever a frame is correctly sent,
but the receiver is silent if the data don't appear to be correct. A store-and-forward
network is one that sends frames, called packets, from node to node and stores a frame in
a node before negotiating to send it to the next node closer to its destination. The bus is
a particularly common half-duplex, store-and-foreward network.

2. Design a 1-bit input/output port using the SN75119 differential transceiver that is
connected to a full-duplex differential line. Reading PORTA bit 7 will read the input data,
and data written in bit 6 will pass through the transmitter for 8 cycles (1 jus) after the
'A4 writes in the output register. Use PORTA bit 5 to enable the transmitter.

a. Show the logic diagram of this device. Do not show pin numbers.

b. Show a self-initializing procedure send (char d) that outputs the least
significant bit of d.

3. Design a differential line transmitter using two CAS 140s. Both lines should be driven
with OP AMP low-impedance outputs at ±5 V. Design a matching differential line
receiver using a CA3140. In both designs, show pin numbers and power supply values.

4. Design an RS-232C level translator to drive an RS-232C line from a TTL level
using a CA3140. Design a level translator to provide a TTL-level output from an RS-
232C line using a CA3140. In both designs, show all pin numbers and power supply
values.

5. A null modem is a simple module permitting one computer's RS-232C plug to
connect to another computer's RS-232C plug that has the same pin connections.
Suppose the computer uses only transmitted and received data, request to send, data set
ready, and signal ground. Show socket connections in the null modem that can correctly
interconnect the two computers so that each looks like a terminal to the other.

Problems 439

6, The 6812 counter/timer device 0, configured as an output compare using interrupts,
and the Johnson counter of Figure 8.3, can generate modem frequencies. Device 1 as an
input capture using gadfly, after appropriate filtering, can detect modem frequencies.
Using device 2, time can be monitored using two global variables int ticks,
checks;, which are incremented in cct2 () every 5 ms. The first, ticks, is used to
time out 17 s, and the second, checks, is used to check the reception time of each
signal. ANS is PORT A bit 7 and SH is PORT A bit 6. A signal will be acceptable if its
period is within 5% for the required time. Show self-initializing gadfly procedures that
will implement the handshaking sequence of Figure 9.3:

a. int. answer(), in the answer modem, called after answer modem's
microcontroller is dialed up and data terminal is ready. The procedure returns the CTS
value,

b. int originate () in the originate modem's microcontroller called after data
terminal is ready. The procedure returns the CTS value. This procedure should call the
procedure dial () , which was written for Chapter 8, problem 4, to dial char
numbers [7] ,

7. Use the 6812 SPI to implement a modified Pierce loop, which is an inter-
microcontroller circular shift register, with, say, 8 bits of the shift register in each
microcontroller. One microcontroller, the master, supplies the Pierce loop clock, the
others are slaves. Frames circulate in the shift register synchronously and continuously.
A simplified frame consists of a 3-bit source address (most significant bits), a 3-bit
destination address (middle bits), and a 2-bit data field (least significant bits). When a
frame is available to be used, the source and destination address are made TTT (111); no
microcontroller sends to itself. Any microcontroller sends data to another by putting its
addresses and data into such an available frame. When the frame shifts by its destination
microcontroller, its data are saved there in global char da tain. When a frame shifts
by its source, it is rewritten as "available" again.

a. Show the logical design of a system using the SPI module to shift the data
among three 'A4s, denoted microcontrollers 0 to 2. Show signal names but not pin
numbers. Assume master microcontroller 0 supplies the SPI clock. The clock and
slave selects are tied in common, but MISO and MOSI form a ring.

b. Write the initialization in main (), procedures send (char address, char
data), receive (), and interrupt handler ccspi () so that main () outputs the
message 3 to destination 1; receives incoming data into local variable i; and sends
the message 0 to destination 1 - to be used in the master microcontroller 0.

c. Write the initialization in main (), procedures send (char address, char
data), receive (), and interrupt handler ccspi () so that main () outputs the
message 1 to destination 0, receives incoming data into local variable i, and sends
the message 2 to destination 0 - to be used in either slave microcontroller 1 or 2,

440 Chapter 9 Communications Systems

8. Write a program to output 9600-baud UART signals, having 8 data, no parity, and 1
stop bit, using 6812 counter/timer device 0. char global variable Uartout holds
output data, and outsi ts holds the output bit count. Write main () to initialize the
counter/timer, output 0x55, and turn off the device. Output should be general so that it
can be repetitively done. Write cctO () to interrupt each bit time, to send Uartout.

9. Write a program to input 9600-baud UART signals, having 8 data, no parity, and 1
stop bit, using 6812 counter/timer devices 0 and I. char global variable uartin holds
completely shifted input data, inBits holds the input bit count, shift-Register holds
bits shifted in, and flag is set when data have arrived. Write main {) to initialize the
counter/timer, print an input byte in hexadecimal, and terminate the use of the device.
Input should be general so that it can be repetitively done. Write cctO () to detect rising
and falling edges that indicate the widths, and therefore the bit values, of input data,
which should be shifted into uartin. cctO () should also detect each start bit and
enable device 1 when it has been found. Write cctl () to interrupt at the time of the
middle of the stop bit to complete received data in uartin, set flag, and disable its
interrupt. Hint: call a service () procedure from either handler to shift input bits.

10. Show all loading of the status port to initialize the ACIA for the following.

a. 8 data bits, 2 stop bits, divide clock by 1, all interrupts disabled, RTS high

b. 7 data bits, even parity, 2 stop bits, divide clock by 16, only receiver interrupt
enabled, RTS low

c. 8 data bits, 1 stop bit, divide clock by 16, only transmitter interrupt enabled

d. 7 data bits, even parity, 1 stop bit, divide clock by 64, all interrupts enabled

e. 7 data bits, even parity, 2 stop bits, clock divide by 1, interrupts disabled, RTS
low

11. Write a simple ACIA word-oriented teletype handler, using the gadfly
synchronization technique. The ACIA is at 0x200 (control) and 0x201 (data), using
'A4's CSO to enable the ACIA pin CS2 as shown in Figure 9.7b.

a. Write the initialization routine for parts b and c. Use 7 data, odd parity, and 2 stop
bits, and divide the clock by 16 to get 1200 baud. The 'A4 E clock is set to 2 MHz
so that the 68B50 timing specifications are met. The 'A4 counter/timer device 0
provides the transmit and receive clocks to the ACIA.

b. Write a procedure put (char c) to output the character c. If the device is busy,
wait input until the word can be output.

c. Write a procedure char get () / to return a character read from the ACIA. If no
character has arrived yet, wait in get until it comes.

Problems 441

12. Write an ACIA background teletype handler to feed characters to a slow teletype
using interrupt synchronization, so you can continue working with the computer as the
printing is being done. A OxlOO-byte queue contains characters yet to be printed. Part b
will fill queue when your program is ready to print something, but the interrupt
handler in part c will pull words from the queue as they are sent through the ACIA. The
'A4 E clock is set to 2 MHz so that the MC68B50 timing specifications are met, The
'A4 counter/timer device 0 clocks to the ACIA to provide 1200-baud rates.

a. Write main () to initialize the 'A4 and ACIA at locations 0x200 and 0x201 for 7
data, even parity, and 1 stop bit, dividing the clock by 16.

b. Write a procedure put (char *s, char n) that will, starting at address s,
output n words by first pushing them on the queue (if the queue is not full) so they
can be output by the handler in part c. If the queue is full, wait in pu t until it has
room for all words. Write the code to push data into the queue in put without
calling a subroutine to push the data.

c. Write handler ccirq () that will pull a word from the queue and output it, but if
the queue is empty it will output a SYNC character (0x16). Write the code to pull
data from the queue in the handler without calling a subroutine to pull the data.

13. Show a logic diagram of an I/O device using an IM6403 connected to an ' A4. Use
'A4 chip selects CSO to CSS to write data to be sent at 0x200, read data that was
received at 0x280, and write control at 0x300. The OE, FE, PE, DR, and TBRE status
bits can be read at location 0x380 as bits 0 to 4 respectively. Connect control and status
so that the lower-numbered pins on the IM6403 are connected to lower-numbered data
bits for each I/O word, and use the lower-number data bits if fewer than 8 bits are to be
connected. Show signal names of all pin connections to the 'A4, and the signal names
and the numbers of pins on the IM6403.

14. Show the logic diagram of a remote station that uses an IM6403 UART and a
74HC259 addressable latch so that when the number I + 2N is sent, latch N is loaded
with the bit I. Be careful about the timing of DR and DRR signals, and with the G
clock for the 74HC259. Show only signal names, and not pin numbers.

15. A stereo can be remotely controlled using an M14469. Show the logic diagrams,
including pin numbers, HCMOS circuits, and component values, for the following.

a. A single volume control, whose volume is set by sending a 7-bit unsigned binary
number to the M14469 with address 0x01, using the duty-cycle control technique
(Figure 7.12b). Use comparator 74HC684, counter 74HC4024, and SSI chips.

b. A source and mode selector, whose source and mode are set by sending a 4-bit
code to the Ml4469 with address 0x02. Use the select hardware in Figure 7.11.

442 Chapter 9 Communications Systems

16. Show initialization rituals in ma i n () to initialize the 6812 SCI module (using an
8-MHz E clock) for the following.

a. 8 data bits, 1 stop bit, 9600 baud, all interrupts disabled, receiver and transmitter
enabled

b. 9 data bits, 1 stop bit, 300 baud, only receiver interrupt enabled, receiver and
transmitter enabled

c. 8 data bits, 1 stop bit, 9600 baud, all interrupts disabled, transmitter only enabled,
send break

d. As in part a, but with interrupt (wake up) when the line is idle

e. As in part a, where the E clock is set to 2 MHz

17. Write an SCI device 1 background teletype handler to feed characters to a slow
teletype using interrupt synchronization, so you can continue working with the
computer as the printing is being done. A OxlOO-byte queue contains characters yet to
be printed. Part b will fill queue when your program is ready to print something, but
part c's interrupt handler pulls words from the queue as they are sent through the SCI.

a. Write main () to initialize SCI device 1 for 8 data, no parity, and 1 stop bit, and
1200 baud (the 'A4 has an 8-MHz E clock). Only the transmitter is enabled.

b. Write a procedure put (char *s, char n) that will, starting at address s,
output n words by first pushing them on the queue (if the queue is not full) so they
can be output by the handler in part c. If the queue is full, wait in pu t until it has
room for all words. Write the code to push data into the queue in put (; without
calling a subroutine to push the data.

c. Write handler ccscil () that will pull a word from the queue and output it, but
if the queue is empty it will output a NULL character (0). Write the code to pull data
from the queue in the handler without calling a subroutine to pull the data.

18. An MC68B50 on the 'A4 is wired to the 'A4's SCI device 1. The ACIA at
locations 0x200 and 0x201 and the SCI are initialized for 8 data, no parity, and 1 stop
bit, at 1200 baud. The ACIA clock is generated by 'A4 counter/timer device 0 using
interrupts. The 'A4 E clock is set to 2 MHz so that the 68B50 timing specifications are
met. Write the main() procedure, that initializes all the devices, and then, using gadfly
synchronization but without using any subroutines, sends 0x55 out the ACIA's
transmitter, which is connected to the SCI's receiver. main() then moves this data from
the SCI's reciever to its transmitter, which is connected to the ACIA receiver, main ()
then reads the data from the ACIA receiver into a local variable c. In each case, the
status register is checked before data are moved into or out of the data register.

Problems 443

19. Implement a Newhall loop, using interrupt synchronization on SCI device 1, This
loop is a ring of microcontrollers where each module's TxDl is connected to the next
module's RxDl, to circulate messages. The message's first byte's most significant
nibble is a module address to which the message is to be sent, and its least significant
nibble is a count of the number of data bytes left in the message, which is less than
0x10. If the message address is this module's address, input data are stored into an input
buffer, otherwise input data are pushed onto a 16-byte queue. Transmitter interrupts are
enabled only when the queue is nonempty or output buffer data is to be sent. Upon a
transmitter interrupt, if the queue is nonempty, a byte is pulled and output. Otherwise,
the output buffer data is sent. If neither data are to be sent, transmitter interrupts are
disabled. Write main () to initialize the SCI, send a 4-byte message 1, 2, 3, 4 in the
16-byte output buffer to module 12, wait until all data are moved, and disable SCI device
1. Write ccsci l () to buffer an input message with address 5, and move other messages
through it around the loop. If no data are sent through the module, the handler will send
the module's outgoing message, push and pull statements should be written into the
handler code rather than implemented in separate subroutines.

20. Write gadfly-synchronized C procedures main (), put (char *v) and get (char
*v) to send and receive 9-frame, 9-bit frames, with even parity rows and columns, at
4800 baud, and perform single-bit error correction using the 2-dimensional parity
protocol, main () initializes SCI device 1, and sends and then receives these 9-frame, 9-
bit frames. This protocol sends 8 bytes of data by sending even parity for each byte and,
after the data are sent, by sending the exclusive-OR of the eight data bytes, in even
parity, get corrects any single error by observing which byte and bit has a parity error.

21. Write a real-time C procedure main () to initialize the devices and output the
stream of data bits in char b u f f e r [0x100], most significant bit of lowest-addressed
word first, checking for five T's and inserting F, as in the SDLC protocol. Send the data
at 100 baud, gadfly ing on timer device 0 to time the bits. The clock is sent on PORT A
bit 0, and data are sent on PORTA bit 1 (to be determinate when the clock rises).

22. Write a gadfly routine to handshake on the IEEE-488 bus. Data can be read or
written in PORTA, and DAV, RFD, and DAC are PORTS bits 2 to 0, respectively.

a. Show a C procedure send (char i) to initialize the ports, send i, and perform
the handshake for a transmitter (talker).

b. Show a C procedure receive () to initialize the ports, perform the handshake,
and return the received word (listener).

23. Write a gadfly C procedure to initialize the ports and handshake on the SCSI bus.
Eight-bit data can be read or written in PORTA (ignore parity), and I/O, REQ, and ACK
are PORTS bits 2 to 0, respectively. When not in use, all control lines should be high.

a. Show ini tiateS (char c) to send c from an initiator through its SCSI device.

b. Show char targetR (); to return the SCSI device's data in a target.

c. Show targets (char c) to send c from a target through its SCSI device.

d. Show ini tiateRO to return the SCSI device's data in an initiator.

444 Chapter 9 Communication Systems

The Axiom PB68HC12A4 board is fitted with female harmonica plugs and a prototyping
area for a laboratory developed for this book. Experiments can be quickly connected by
pushing 22-gauge wire into the harmonica plugs and prototyping areas.

10

Display and Storage Systems

The previous chapter discussed the techniques by which microcomputers can
communicate with other computers. They may also have to communicate with humans,
using LCD displays covered in Chapter 4 or using more complex CRT displays. We
now cover CRT display technology. Also, a microcomputer may have to store data on a
magnetic tape or disk. This stored data can be used by the microcomputer later, or it may
be moved to another computer. Thus, on an abstract level, a magnetic storage medium
can be an alternative to an electronic communications link.

This chapter covers both the CRT display and the magnetic storage device. We
discuss display systems first and then storage systems. In display systems, we will use a
single-chip 6812, with only an additional transistor and its resistors, to implement a
primitive device. We follow this with a small but realistic bitmap display. In storage
systems, we use a special chip, the Western Digital WD37C65C, to implement a very
useful floppy disk controller. First using the surprisingly powerful 6812 alone lets us
show the principles of these devices and allows you the opportunity to experiment with
them without much expense. However, the bitmap display and special-purpose floppy
disk controller are quite easy to use and to design into real systems.

In this chapter, we spend quite a bit of time on the details of video and disk formats.
We also present some rather larger system designs and refer to earlier discussions for
many concepts. We have somewhat less space for the important notion of top-down
design than in previous chapters because the design alternatives for CRT and disk
systems are a bit too unwieldly to include in this short chapter. They are important
nevertheless and are covered in some of the problems at the end of the chapter.

Upon completing this final chapter, you should have gained enough information to
understand the format of the black-and-white NTSC television signal and implement a
single-chip or a bitmap CRT display. You should have gained enough information to
understand the floppy disk and you should be able to use a floppy disk controller chip to
record and play back data for a microcomputer, or use it to move data to, or form it from
or to, another computer. Moreover, you will see a number of fairly complete designs
similar to those you will build.

445

446 Chapter 10 Display and Storage Systems

10,1 Display Systems

A microcomputer may be used in an intelligent terminal or in a personal computer. Such
systems require a display. Any microcomputer requiring the display of more than the
hundred or so digits an LED or LCD is able to handle can use a CRT display.

This section describes the concepts of CRT display systems. We present the format
of the NTSC black-and-white signal and then show a program that enables the 6812 to
display a checkerboard block on a white screen. We then illustrate a useful bitmap
display and show object-oriented functions for elementary graphics applications.

10.1.1 NTSC Television Signals

A National Television System Committee (NTSC) signal is used in the United States
and Canada for all commercial television. A computer display system consists of the
cathode-ray tube (CRT) and its drive electronics - essentially a specialized TV set - and
hardware and software able to send pulses to time the electron beam, which is a stream of
bits to make the TV screen black or white at different points. Figure 10.1 diagrams the
front of a TV screen. An electron beam, generated by a hot cathode and controlled by a
grid, is deflected by electromagnets in the back of the CRT and made to move from left
side to right and from top to bottom across the face of the CRT. More electrons produce
a whiter spot. The traversal of the beam across the face is called a raster line. The set of
raster lines that "paint" the screen from top to bottom is a field. NTSC signals use two
fields, one slightly offset from the other, as shown in Figure 10.la, to completely paint
a picture frame.

Figure 10.1. The Raster-Scan Display Used in Television

In NTSC signals, a frame takes J/30 second and a field takes 1/60 second. The raster
line takes 1/15,750 second, a field has 262 l/2 raster lines and a frame has 525 raster lines.
As the beam moves from side to side and from top to bottom, the electron beam is
controlled to light up the screen in a pattern. A pixel is the smallest controllable dot on
the screen. As illustrated by Figure lO.lb, a clear circle represents a pixel having no
light, and a dark circle (black for field 1 and gray for field 2) shows a lighted pixel.

10.1 Display Systems 447

Figure 10.2. Character Display

Figure lO.lb shows how H is written in both fields of a frame. ASCII characters
will be painted in a 7- by 12-pixel rectangle, 80 characters per line (Figure 10.2).

The NTSC-composite-video signal is an analog signal, diagrammed in Figure
10.3a. The displayed signal is an analog signal where a maximum voltage (about lh V)
produces a white dot, a lower voltage (3/8 V) produces gray, and an even lower voltage
(i/4 V) produces a black dot. The part of the signal corresponding to the time when the
electron beam is moved to the left side (horizontal retrace) or to the top (vertical
retrace) occurs between the displayed parts. At these times, horizontal sync and
vertical sync pulses appear as lower voltage (0 V) or "blacker-than-black" pulses. See
Figures 10.3b. A CRT uses a sync separator circuit to extract these pulses so it can
derive the horizontal and vertical sync pulses, which are used to time the beam
deflections on the screen. This signal is called the composite video signal because it has
the video signal and the sync signals composed onto one signal. If this signal is to be
sent over the air, it is modulated onto a radio frequency (r.f.) carrier (such as channel 2).
Alternatively, the separate video, horizontal, and vertical sync signals can be sent over
different wires to the CRT system, so they do not need to be separated; this gives the
best resolution, such as is needed in 1024-by-1024 pixel CRT displays in engineering
workstations. The composite video is used in character displays that have 80 characters
per line. The r.f. modulated signals are used in games and home computers intended to be
connected to unmodified home TV sets, but are only capable of 51 characters per line.

The frequency of the vertical sync pulses, which corresponds to the time of a field,
is generally fixed at 60 Hz, to prevent AC hum from making the screen image have bars
run across it, as in inexpensive TVs. It is also about the lowest frequency at which the
human eye does not detect flicker. American computer CRTs often use this vertical sync
frequency. The horizontal sync frequency in computer CRTs is usually about 15,750 Hz,
as specified by the NTSC standard, but may be a bit faster to permit more lines on the
screen yet keep the vertical sync frequency at 60 Hz. The magnetic beam deflection on
the CRT is tuned to a specific frequency, and the electronics must provide horizontal
sync pulses at this frequency, or the picture will be nonlinear. The pulse widths of these
horizontal and vertical pulses are specified by the electronics that drive the CRT. Thus,
the CRT controller must be set up to give a specific horizontal and vertical frequency and
pulse width, as specified by the CRT electronics.

448 Chapter 10 Display and Storage Systems

15,750-Hz
Rate

1 Raster Line
= 63.5 jis

a. Video Signal and Sync Levels

White

Light Gray

Dark Gray

Black

Blacker than Black

525 Raster Lines
^ 60-Hz Rate = ^1 ^* 60-Hz Rate = ^

262 1/2 Raster Lines 262 1/2 Raster Lines

U LI li II . . . U II li U li U LI . . .U LI li U

I
. Horizontal Sync

J Vertical Svnc

900 MS b. Vertical and Horizontal Sync Signals

Figure 10.3. The Composite Video Signal

10.1.2 A 6812 SPI Display

We are fortunate that the 6812 has a built-in counter and shift register able to generate
the synchronization pulses and the bit stream to implement a primitive CRT display.
The 6812 output compare timers, described in Chapter 7, are capable of generating the
vertical and horizontal sync pulses; and the serial peripheral interface (SPI), introduced in
Chapter 4, has the capability of generating a CRT display having poor, but useful,
resolution. The upcoming C procedure main() should produce a picture as shown in
Figure 10.4, using the simple hardware diagrammed in Figure 10.5 with a single-chip
6812. It is quite useful for explaining the principles of CRT display systems, since it
uses familiar 6812 peripherals. It might be useful for multicomputer systems as a
diagnostic display available on each microcomputer. We have found it helpful in testing
some bargain-priced CRTs when we did not have specifications on the permissible range
of horizontal and vertical sync pulse widths and frequencies. This little program lets us
easily test these systems to generate the specifications. We now describe how that built-
in CRT generator in the 6812 can produce a CRT display.

A combined sync signal is generated that is the exclusive-OR of the vertical and
horizontal sync signals. The CRT's sync separator outputs its high-frequency component
to the horizontal oscillator and a low-frequency component to the vertical oscillator. By
inverting the horizontal sync signal during vertical retrace, the signal's low-frequency
component has a pulse during this period. The high-frequency output of the sync
separator continues to synchronize the horizontal oscillator during vertical retrace, while
the low-frequency component synchronizes the vertical oscillator during vertical retrace.

10.1 Display Systems 449

Figure 10.4. Screen Display Figure 10.5. Circuit Used for TV Generation

Figure 10.5 shows a simple circuit for the generation of composite video. If your
CRT requires separated video and sync signals, the combined sync can be taken directly
from pin 105, and the data from pin 102, and the circuit diagrammed in Figure 10.5 is
not needed. The program is just two modified interrupt-based square-wave generator
programs, as described in §8.2.2, with an SPI routine. An output compare 0 interrupt
occurs upon each horizontal sync pulse, flipping the output signal and executing ccto.
Since the pulse width is quite short, this handler toggles the output back to high by
writing T (1) into CFORC bit 0. The vertical sync pulse is implemented by cctl,
which uses CFORC to invert the output on bit 0 at the beginning and end of the vertical
sync pulse. Using a primitive character generator an element of char pattern [12] is
put into SPIs data port, which is shifted out as the video signal. This program produces
a checkerboard box in the middle of the screen, shown in Figure 10.4.

#de f ine Hw 21 /* horizontal pulse width, ps * 2 */

#define H p 1 2 2 / * horizontal period, (a s * 2 * / # ^ d e f i n e V w Hp*13 / * vertical pulse width, u s * 2 * /

#def ine Vp Hp*262+ (Hp/2) +Vw I* vertical period, us * 2 */
#define HPOS 10 /* horizontal location of square */
#def ine VPOS 260 /* vertical location of square */

interrupt 8 void handlerl () { II horizontal sync pulse generator
TCO += HW; TFLGI=I; lineNo + = 2; II interlaced display, output every other line
if((lineNo>VPOS)&&(lineNo<=(VPOS+12))) dLine = lineNo - VPOS;

do ; wh i 1 e ((TFLG1 &1)= = 0) ; TFLG1 = 1; TCO + = Hp Hw; II wait for pulse end
}

in terrup t 9 void handl er2 () {II vertical sync pulse generator

450 Chapter 10 Display and Storage Systems

void main() { char d; asms
SPOCR1 = SPE + MSTR; SPOBR = 0;DDRS = MOSI + SCLK; /* 4 MHz clk */

PORTS = dLine = 0; TSCR = 0x80; TMSK2 = 2; /* 2 MHz Timer CLK */
TFLG1 = TMSK1 = TIOS = 3; TCTLO = 5;

TCI = TOO = TCNT + 0x20; iff .' (PORTS & 1)) CFORC = 1; asm CLI

do {

i f (dLine) { dLine = 0; II wait til next line to be displayed
for(d = 0; d < HPOS; d++) ; II waste time to get to the square's column
SPODR = pat tern[dLine-1] ; while(!(SPOSR & SPIF)) ; d = SPODR;

}
asm WAI /* stack registers, start immediately when horizontal sync times out */
} while(1);

The WAI instruction at the end of the do while (1) loop removes jitter from the
display. WAI saves the registers and waits for any interrupt; the handler is entered exactly
when an output compare matches the timer. Without WAI, the screen image would
appear torn and would "dance" around because the interrupt would start on completion of
the current instruction, in any of several cycles after an output compare occurred, and this
would result in a mismatch between the timing of the sync signal and the data signal.

For a 7-by-12 pixel character form with 1 pixel between characters, data is shifted at
4 Mbits/s, so about 20 characters can be put on a line. The image is interlaced, so 40
lines of characters appear on the screen. While the pattern we used is a checkerboard, a
different pattern can be written for each letter, and the pattern can be chosen by the
ASCII representation of the letter. Thus, characters in words can be written across the
screen to implement a useful display. Lines can also be drawn, to draw rectangles and
other geometric figures. However, character and line shape is less than satisfactory. The
problem is that the SPI's shift rate is too slow to generate the finer pixels needed to
represent letters more satisfactorily. This problem is solved by using an external shift
register in place of the SPI, as we will do in the next section. What is mildly surprising,
though, is that the 6812, with very little external hardware, has the ability to generate
CRT signals. Motorola can therefore claim that the 6812 has a built-in CRT controller.

10.1.3 A Bitmapped Display

A more realistic bitmapped display can be achieved using an external 16-bit shift register
in place of the SPI. The program can write 16 bits every 8 memory cycles into its shift
register so it can output a bit every 31.25 ns. This is eight times the resolution provided
the system in §10.1.2. So we can get 80 characters per line. An external (8K, 16)
SRAM, whose access time is less than 70 ns, holds the image of the screen. This speed
is used to read the memory in one memory cycle without extending the cycle. The
SRAM's size is sufficient to hold a bit image for about 2/3 of the screen. The 'A4
counter/timer system provides sync pulses. The sync signal generation technique is
fundamentally the same as is used in the previous example.

10.1 Display Systems 451

Figure 10.6. Display Hardware

Figure 10.6 shows the shift-register hardware that replaces the SPI shift register in
the previous example. We used a Motorola HC12A4EVB evaluation board to implement
the memory, but its chip select and RAM jumpers were altered to use CSPO for its
SRAM. Alternatively, we could use the 8K-by- 16-bit memory shown in Figure 6-14.

The C program is essentially the same as that used in §10.1.2, except that an
assembly-language program outputs 16-bit words from memory through the shift
register to send bits to the display. Note that the expanded wide mode is set up, with
access to the RW and LSTRB signals for the SRAM, chip select 0 is used with the shift
register, and chip select PO is used with the SRAM. The counter/timer is set up and its
interrupts are handled in the same way as in the previous example, except that a display
area of 512-by-256 pixels is provided. A white 2-pixel-wide border is then drawn around
a blank screen. In the next section, an object-oriented class is illustrated that will write
geometric figures and characters in the display area provided by this hardware and
program. The program, beginning with its declarations, follows:

volatile char TIOS@Ox80,CFORC@Ox31, TSCR@Ox86, TCTLO@Ox88, TMSKl@Ox8c,

TMSK2@Ox8d, TFLGl@Ox8e, TFLG2@Ox3f, PORTS &0xd6, DDRS@Oxd7;

^define Hw 21 I* horizontal pulse width, us * 2 */
#define Hp 122 /* horizontal period, us * 2 */
#def ine Vw Hp*l3 /* vertical pulse width, us * 2 */
#define Vp Hp*262+ (Hp/2) +Vw /* vertical period, us * 2 */

452 Chapter 10 Display and Storage Systems

tide fine HPOS 10 /* horizontal location of square */
tidefine VPOS 260 /* vertical location of square */
#define TOP 128 /* top scan line of screen where display begins */
#def ine WIDTH 64 /* horizontal width, in bytes */
#define HWIDTH 32 /* horizontal width, in 1.6-bit words */
#define HEIGHT 256 /* vertical height, in scan lines */

msigned char Vs, /* vertical sync state: 0 in vertical sync, 1 outside vertical sync */
Fr, /* frame number: 0 or 1 */ dLine; /* if 1, display line */

in t 1 ineNo, /* line number to be displayed */ *dPtr; /* data pointer to frame buffer */

interrupt 8 void handler 1 () {// horizontal sync pulse generator
TCO += Hw; TFLG1 = 1;

if {(lineNo > TOP) && (1ineNo <= (TOP + HEIGHT))) dLine = 1;
do ; while((TFLG1 & 1) == 0); TFLG1 = 1; TCO += Hp - Hw;

interrupt 9 void handler2 () {//vertical sync pulse generator
-•'•= l) {

TCI += (Vp - Vw) ;

i f (F r A = 1) { lineNo = 1; dPtr = (int *)0x8000; }
else { lineNo = 0; dPtr = (int *)(0x8000 + WIDTH);

void main() { int i; asm sei
PEARMODE = RDWRE + LSTRE + Wide + Normal;
CSCTL = CSOE + CSPOE; CSSTR = 0; TSCR = 0x80; TMSK2 = 2; /* ink "A4 */
for(i = 0, dPtr= (int *) 0x8000; i<HWIDTH*HEIGHT;i + +) dPtr[i]=0; /* clr sen */
ford = 0; i < HWIDTH; i++) /* draw top, bottom border */

dPtr[i]=dPtr[i + HWIDTH] =dPtr[i + HEIGHT * HWIDTH - HWIDTH] =
dPtr[i + HEIGHT * HWIDTH - 2 * HWIDTH] = Oxffff;

for(1=2,dPtr=(int *) Ox7fff;i<(HEIGHT-2);i + +) dPtr[i*HWIDTH]=Ox3cO;

TCO = TCI = 100 + TCNT; TCTLO = 5; TFLG1 = TMSK1 = TIOS = 3;
i f (! (PORTS & 1)) CFORC = l; asm cli /* if hor sync is not high, force high */
do {

if(dLine) {
dLine = 0;

asm{
run: idx dPtr ; get current buffer pointer

idy #0x200 ; destination address, shift register port
Idd #32 ; WIDTH/2

10.1 Display Systems 453

, y; move a 16-bit word
; repeat for line9 JL \slJ\sfAV J.WJ. AlliV

; skip over next line (written in next frame)
; replace current buffer pointer

asm wcii /* stack registers, start immediately when horizontal sync times out */
> whi 1 e (1) ; /* loop forever */

10.1.4 An Object-oriented Display

The previous section's program displays the bitmapped image stored in the frame buffer,
an 8K-by-16 SRAM at 0x8000. In this section, we illustrate an object-oriented class
display that can draw geometric figures and characters in this frame buffer. Its function
members should be called to draw images after the border is drawn and display area is
cleared, but before interrupts are enabled.

unsigned char patternA[8] = (0x10, 0x28, 0x44,0x82, OxFE, 0x82,0x82, 0x82};
int points[161 = {0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100,

0x80, 0x40, 0x20, 0x10, 8, 4, 2,1};
enum{ WIDTH = 100, HWIDTH = 50, HEIGHT = 200};

class display/' int *dPtr;

public: display (void) { dPtr = (int *) 0x8000; }/* constructor */

virtual void line (int h,int v, int dh, int dv, int n) //only for some dh, dv
{ while (n —) point (h + = dh, v += dv) ; }

virtual void put (unsigned char *pattern, int h, int v) {

unsigned char row; int index, *p;

iff (h<0) I I (h>= ((WIDTH-1) *8)) I I (v<0) I I (v>= (HEIGHT-8)) } return;

index = (int) dPtr+ (h » 3) + (v * WIDTH) ; II need to force char indexing
for (row = 0, p = (int *) index; row < 8; row+ + , p += HWIDTH) {

*p 1= pattern [row] « (8 - (h & 7));

454 Chapter 10 Display and Storage Systems

void main() { char i;
display *S = new display; S->point (1, 2) ;S~>line (1, 2, 3, 4, b
<y->triangle(l, 2); S->put (patternA,

The class's constructor merely sets dPtr to the location of the frame buffer. The
function member point(int h, int v) sets a bit to display a point at horizontal row
h and vertical pixel column v, provided the point is inside the display area. The vertical
coordinate, and the horizontal coordinate's high-order bits, determine which 16-bit word
in the buffer is to be changed, and the horizontal coordinate's low-order bits determine
which bit in that word is to be changed. This function member sets the bit chosen by the
function's parameters; other variations of it can clear or complement the indicated bit.

The function member void line (int h, int v, int dh, int dv, int n)
draws an rc-point line from point (h, v). Each time a pixel is drawn, it adds dh to
h and dvto v. This simple algorithm is only suitable for lines where increment dh
or increment dv is 1, and the other increment is between -2 and +2. It can draw a
rectangle (see problem 8) and some triangles. The Bresenham algorithm is commonly
used for general line drawing (see problem 9). The basic algorithm works only for the
octant in which both dh and dv are positive, and dh is greater than dv. As points are
drawn in consecutive columns, the algorithm keeps track of an error e whose sign
indicates whether a point should be drawn in the same row as the last point, or the next
higher-numbered row. The calculation of e is based on the line's differential equation,
and is explained by most textbooks on computer graphics. The general algorithm
determines which octant a line is in, and calls the function member that implements the
basic algorithm, with operands interchanged or negated as needed, so that the basic
algorithm operates in its preferred octant. A variation of this algorithm can draw ellipses
and circles. The function member triangle (int h, int v; draws a triangle with
upper left vertex at (h, v). A more general triangle can be drawn using the Bresenham
line drawing algorithm (see problem 10).

The function member wcliar ("char *pattern, int h, int v) writes a character
whose pattern is defined by the vector pa t tern (such as pa tternA above) so its upper
left pixel is at h, v. If the character is entirely within the display area, the pattern is
ORed into the buffer a row at a time, at a 16-bit word offset determined by v and the
high-order bits of h, using a shift offset determined by the low-order bits of h. This
function member wchar is suited only for characters whose maximum width is 8
pixels. A slightly more general function member wchar can draw characters whose
maximum width is 16 pixels (see problem 11). Calling wchar with different character
patterns and offsets can write words on the screen (see problem 12). A more general
function member could write null-terminated strings of characters on the screen, keeping
track of the position of the last drawn character as a data member so that the calling
routine need not pass this parameter to the function member.

The routines for drawing lines and characters are described here as object-oriented
function members for a class display. While this example doesn't seem to warrant the
use of object-oriented programming, a simple extension of this class will utilize object-
oriented capabilities. Consider the display of multiple separate windows, each of which

10.2 Storage Systems 455

occupies a separate portion of the buffer and therefore of the screen. The class constructor
can have an origin that initializes data member dPtr, and a horizontal and vertical
range of pixels as arguments; points and characters within that range can be drawn using
the offset indicated by dPtr. Overlapping windows are drawn from the furthest to the
nearest windows, and later drawn windows overwrite the earlier drawn windows. Each
window has its own horizontal and vertical axis, and when a window is moved, by
modifying dPtr, all the line and text items are drawn relative to the new origin.

This class of graphics objects can be significantly improved and extended. Rather
than drawing each window from furthest to nearest, portions of windows that will be
overwritten can be clipped. The windows can be linked in a hierarchy so that if a parent
window is moved its offspring will move. This class of graphics objects is essentially
what is used in the Macintosh and Microsoft Windows operating systems. Graphics is
one of the most common applications of object-oriented programming.

10.2 Storage Systems

Most microcomputers require either a communications system to move data into and out
of them or a storage system to get data from or to save data in. The latter, called
secondary storage, generally uses some form of magnetic medium. Floppy disk systems
have become so cheap that they are likely to be used in many microcontrollers. This
section describes techniques for data storage on floppy disks. We discuss a floppy disk
format, then we will use a Western Digital WD37C65C chip, which is particularly easy
to interface to the 6812, to show a floppy disk interface and an object-oriented class to
read and write files in a 3 W PC disk.

10.2.1 Floppy Disk Format

We now describe the 3]/2" double-density floppy disk format. Data can be stored on the
disk using either of two popular formats. Figure 10.7 shows how a bit and a byte of data
can be stored on a disk, using FM (single density) and MFM (double-density) formats.
The FM format is just Manchester coding, as introduced in §9.1. Figure 10.7a shows a
bit cell, and Figure 10.7c shows a byte of data, in the FM format. Every 8 us there is a
clock pulse. If a 1 is sent, a pulse is put in between the clock pulses, and if a 0 is sent,
no pulse is put between the clock pulses. MFM format provides half the bit cell size as
FM format; it does this by using minimal spacing between pulses in the disk medium:
MFM format has at most one pulse per bit cell. It is thus called double-density storage.
The idea is that a 1 cell, which has a pulse in it, doesn't need a clock pulse, and a 0 cell
only needs a clock pulse if the previous cell is also a 0 cell. Figure 10.7b shows a byte
of data in the MFM format. High density merely doubles the density for the MFM
format. For the remainder of this section, we discuss the high-density MFM format.
Every 2 us there is a data bit. If a 1 is sent, a pulse is put near the end of the bit time; if
a 0 is sent after a 1, no pulse is put between the clock pulses; and if a 0 is sent after a 0,
a pulse appears early in the bit time. Note that data must be read or written at the rate of
1 byte per 16 us, which is 128 memory cycles for the 'A4 using a 16-MHz crystal.

456 Chapter 10 Display and Storage Systems

Figure 10.7. Bit and Byte Storage for FM and MFM Encoding

Data read from the disk are separated by a phase-locked loop (PLL), which
synchronizes to the bit cell rather like a flywheel. Once the bit cell is locked on to, the
data bits can be extracted from the input analog signal. The PLL must be designed to
lock into the bit cells within 48 bit cell times.

A disk drive may have one or more disks, stacked pancake-style, and each disk may
have one or two surfaces. Figure 10.8a shows a surface of a disk; a track is shown, and
tracks are numbered - track 0 on the extreme outside, and track i + 1 next toward the
center to track /. The track-spacing density is the number of tracks per inch and is
generally 48 or 96 tracks per inch. Floppy disks have diameters of 8", 5 l/4", or 3 1/2",
and these typically have 77, 35, and 80 tracks, respectively. Although disks exist that
have a head on each track, generally disks have a single head per surface - used to both
read and write the data on that surface - which is moved by a stepper motor to a track
that is to be read or written. In a multiple-surface disk, the same tracks are accessed on
each surface by a comblike mechanism holding the read-write head for each surface; the
collection of tracks accessed at the same time is called a cylinder. We soon describe an
example of a single-sided 3 1/2" disk's track format. Other disk formats are similar.

Relative to later discussions of the operation of the floppy disk controller, timing of
head movements significantly affects the disk system's performance. The step rate is the
rate at which the stepping motor can be pulsed to move the head from track i to track
i + 1 (step in) or to track i - 1 (step out). There is also a settling time, which is
the time needed to allow the mechanical parts to stop bouncing (see contact bounce in
Chapter 5). Floppy disk drives have stepping rates from 2 to 30 ms and settling times of

10.2 Storage Systems 457

about 30 ms. If a drive has a 3-ms stepping rate and a 30-ms settling time, the time to
move from track i to track j is 3 * I i - j\ + 30 ms. The average time to
position from track 0 to a random track is the time to move over half of the (80) tracks
of the disk. There is some additional time needed to get to the data on the track, as will
be discussed. Thus, on the average, about 80 ms would be used to move the head, and no
data is transferred during that time.

The problem with a disk is that, to record data, a head must be energized, and the
process of energizing or deenergizing a head erases the data below the head. The track is
thus organized with fill areas where data are not stored and where the head may be
energized to begin, or deenergized to end, writing, and the data between these fill areas,
called (disk) sectors, are written in their entirety if they are written at all. A disk's
indivisible storage objects thus are sectors. Figure 10.8b shows the breakdown of a
typical track in terms of sectors and the breakdown of a sector in terms of its ID pattern
and data. (Later, we discuss a "logical sector"; when we need to distinguish a logical
sector from what we describe here, we call this a "disk sector".) There is an index hole
on the disk (Figure lO.8a) that defines a track's beginning; it is sensed by an optical
switch that provides an index pulse when the hole passes by the switch. The track first
contains a 60-byte fill pattern. (Each fill pattern is Ox4E.) There are then 18 disk sectors
on each track. The remainder of the track is filled with the fill pattern.

With respect to the timing of disk accesses, after the head moves to the right track,
it may have to wait 1/2 revolution of the disk, on the average, before it finds a track it
would like to read or write. Since a floppy disk rotates at 10 revolutions per second, the
average wait would be 50 ms. If several sectors are to be read together, the time needed to
move from one track to another can be eliminated if the data are on the same track, and
the time needed to get to the right sector can be eliminated if the sectors are located one
after another. We will think of sectors as if they were consecutively numbered from 0
(the logical sector number [LSN]), and we will position consecutively numbered sectors
on the same track, so consecutively numbered sectors can be read as fast as possible.
Actually, two consecutively read disk sectors should have some other sectors between
them because the computer has to process the data read and determine what to do next
before it is ready to read another sector. The number of disk sectors actually physically
between two "consecutively numbered" logical sectors is called the interleave factor, and
is generally about four.

We need to know which disk sector is passing under the head as the disk rotates,
since sectors may be put in some different order, as just described, and we would also
like to be able to verify that we are on the right track after the head has been moved.
When the read head begins to read data (it may begin reading anywhere on a track), it will
examine this address in an ID pattern to find out where it is.

There is a small problem identifying the beginning of an ID pattern or a data field
when the head makes contact with the surface and begins to read the data on a track. To
solve this, there is a special pattern whose presence is indicated by the deletion of some
of the clock pulses that would have been there when data are recorded in MFM format,
and there are identifying patterns called the ID address mark and data address mark. The
special pattern, shown in Figure 10.9, is said to have a data pattern of OxAl and a
missing clock pulse between bits 4 and 5. The ID address mark OxFE is used to locate
the beginning of an ID pattern on a track. The data address mark similarly identifies the
beginning of data in the sector, but is OxFB rather than OxFE.

458 Chapter 10 Display and Storage Systems

Figure 10.8. Organization of Sectors and Tracks on a Disk Surface

The ID pattern consists of a 1-byte ID address mark (OxFE); a track number, side
number, sector number and sector length (each is 1 byte and is coded in binary); and a 2-
byte CRC check. The track number, beginning with track 0 (outermost), and the sector
number, beginning with either sector 0 (zero-origin indexing) or 1 (one-origin indexing),
are stored in 2 of the bytes. A simple method of mapping the logical sector number into
a track and zero-origin indexing disk sector number is to divide the logical sector number
by the number of sectors per track: the quotient is the track number, and the remainder is
the sector number. The side number for a single-surface drive is 0, the sector length for a
256-byte sector is 1, and the sector length for a 512-byte sector is 2.

A sector is composed of a pattern of 12 Os and 3 bytes of OxAl (in which a clock
pulse is missing), followed by an ID pattern as just described, a 22-byte fill, and another
pattern of 12 Os, followed by 3 bytes of OxAl (in which a clock pulse is missing). The
512 bytes of data are then stored. The ID pattern and the data in a sector have some error
detection information called a CRC, discussed in §9.4.1, to ensure reliable reading of the
data. The track may have a total capacity of about 13K bytes, called the unformatted
capacity of the track, but because so much of the disk is needed for fill, ID, and CRC,
the formatted capacity of a track (the available data) may be reduced to 9216 bytes.

10.2 Storage Systems 459

Figure 10.9. A Special Byte (Data = OxAl, Clock Pulse Missing Between Bits 4 and 5)

The format of a disk is the structure just described, disregarding the content of the
data field. To format a disk is to write this structure. Later, when data are written, only
the data part of the sector, together with its data address mark and CRC check, are
written. The ID pattern is not rewritten. If it is altered, data cannot be read or written
because the controller will be unable to find the sector's id part to locate the sector.

10.2.2 The Western Digital 37C65C Floppy Disk Controller

We now examine a hardware/software system for reading and writing a double-sided high-
density (HD) 3 1/2" floppy disk using the Western Digital WD37C65C chip (the '65C).
We first catalog pin connections and ports in the organization of the chip. Then we list
the status ports and functions that the controller executes. In the next section, we will
present and describe the software used to control the chip. See Figure lO.lOa.

The 34-pin cable connects the controller chip to the drive. Grounded odd-numbered
pins reduce noise pickup, and all signals are in negative logic. Motor controls MOT1
and MOT2 are asserted true (grounded) to make the motor run continuously in this
example, although the '65C has means to control the motor. Output Step causes the
drive's stepper motor to move to another cylinder, and Dire specifies in which direction
to move the head. DS1 selects drive 1, DS2 selects drive 2, and Hs selects the head used.
Wd is the write data, and We is the write enable. Input Rdd is the read data, write protect
Wp is asserted if a disk tab is positioned to prevent writing in the disk, TrOO is the track
0 signal, and Ix is the index pulse signal; inputs use a pull-up resistor.

Positive-logic PORTE signals communicate to the '65C control and status pins. Bit
4 resets the '65C, bit 3 senses a '65C operation completion, and bit 2 (TC) terminates
counting, to stop an operation.

The '65C's organization has five ports, of which two read ports and two write ports
are used herein (Figure 10.1 Ob). The control port's two least significant bits specify disk
density. The master status port has a request bit (Req), a data direction bit (Out), an
execution phase bit (Exec), and five busy bits indicating the status of the control chip
and up to four drives. The data port transfers data into and out of the '65C, and also sends
commands into the device (as listed in Figure lO.lOd). The '65C gets more detailed
status from the chip by reading status bytes StO, Stl, St2, and St3 (see Figure lO.lOc).

460 Chapter 10 Display and Storage Systems

Figure 10.10. The Western Digital WD37C65C

10.2 Storage Systems 461

Figure 10.10. Continued

To simplify the interconnection hardware, as discussed in §6.2.2, reading uses CSO
(addressed 0x200 to Ox2ff) and writing uses CS1 (0x300 to Ox3ff). The low-order address
bits are negative logic enables for the master status and data registers, and control ports.
So, to read master status, read Ox20c, and to read from the data port, read Ox20d; to write
to the data port, write Ox30d, and to write control, write Ox30b (Figure lO.lOb).

The '65C commands read and write sectors and perform auxilliary operations. (See
Figure lO.lOd.) The user may wish to read one or more bytes from the disk. Since it is
only possible to read whole sectors, the sector or sectors that the data are at are read, and
the data are extracted once the sectors are read. To read a sector, the user must seek the
track first, then read the desired sector. The two commands, seek cylinder and read
sector, are given to the floppy disk controller. Seek cylinder puts the read/write head in
the disk drive over the desired cylinder, and the read sector command causes the data from
a sector on the track to be read into primary memory. If the read/write head is definitely
over the right cylinder, the seek command may be omitted. Also, in some floppy disk
controllers having intelligence in them, the user only gives a read command regardless of
where the read/write head is and an implied seek may be automatically generated as a
result, without the user giving it, if the head is in the wrong place.

The user may wish to write one or more bytes into the disk. To write a sector, the
commands to seek cylinder and write sector are given as for the read operations above.
Good programs often read a sector each time right after it is written to be sure there are
no errors in writing the sector. A disk can be formatted by executing the format
command on each track. Finally, when a disk is being initialized, the position of the
read/write head must be moved to track 0 (zeroed) to later establish how to move it to a
desired track. This operation is called restoring or recalibrating the drive.

The '65C has additional commands. Specify writes the step rate, head load, and
head unload times to initialize the '65C; read id will read the first valid id sector found

462 Chapter 10 Display and Storage Systems

on the track; sense drive will indicate the drive's status, and sense status, often used
after an interrupt or a gadfly loop, will indicate the cause of the interrupt or termination
of the loop. We will develop procedures to execute these functions and write an object-
oriented class to handle these operations, as we did for other I/O devices.

10.2.3 Floppy Disk Interfacing Procedures

This section illustrates some simple software that implements the '65C commands
discussed in the previous section. We begin with the innermost procedures used to write
commands and to read status from the '65C. We then illustrate the initialization
procedure for the controller chip, drive, and disk in the drive. Finally, we discuss
procedures to read and write a sector on the disk.

This device uses a handshake protocol to issue commands and gamer status
information. This protocol checks the master status register, and inputs and outputs
through the data port. We give these declarations for the ports, for the connections and
for the map in Figure 10.10. Comments indicate the use of the variables.

volatile char mStatus@Ox20c, rData@Ox20c, control@0x30b, wData@Ox30d;

The innermost procedure w writes command bytes into the '65C, and the procedure
r reads status bytes from the '65C.

void wfchar c) {while ((mStatus & OxcO)!= 0x80) ; wData = c; }/* write data */

char r () { while ((mStatus & OxcO) ! = OxcO) ; return rData;}/* read data */

Before reading or writing, we gadfly on master status register bit 7. The '65C's
microcontroller sets this bit when it is ready to move data through its data port.

The software will use error message numbers to report errors in a manner that
assists the user in locating and fixing errors. These error numbers are declared as follows:

enum{illOp= 1, chpErr, drvError,
dskErr, addrErr, seekErr, rdErr, wrErr, wrProtErr, eofErr};

The initialization of the '65C and drive hardware is shown in the procedure init65
below. This procedure initializes the 'A4, resets the '65C, recalibrates the drive, and
reads the ID of the disk in the drive. The '] A4 is configured to access the '65C. We need
an 8-bit data bus to connect the '65C, and we need CSO and CS1 to enable the '65C's
Rd and Wr pins. We set DDRE to output PORTE control signals RESET and TC, then
we pulse RESET high, then initialize RESET to L and TC to H. Compare each of the
following program segment with the sequences shown in Figure lO.lOd. The specify
command sets up the '65C, and the recalibrate command sets up the drive hardware. The
sense interrupt status command is used after recalibrate, and will later be used after each
seek operation, and the sense drive status command is used to verify the success of each
operation. The last program segment, which reads a sector ID, uses global variables
introduced after this procedure is described, so it will be discussed later.

10.2 Storage Systems 463

Char init.65(char drive, char step, unsigned char unload, char load) {int i;
MODE = (Narrow + Normal) « ModeFld; CSCTL = CSOE+CS1E; CSSTR=0;
DDRE = PORTE = 0x14; PORTE = 4; /* positive logic reset of 65 */
w(3); w(((-step) « 4) I (unload » 4)) ; w(load I 1); /* specify */
w(4); w(drive & 7); i = r (); /* sense drive status */
if((i & OxaO) != 0x20) return error = chpErr;

w (7) ; w(drive & 3); I* recalibrate (restore) */
while (! (PORTE & 8)) ; /* gadfly on drive being in execution mode */

w (8) ; i = r () ; C = r (); /* sense interrupt status */
if(i i- 0x20) return error = drvError;

controi=0; w(0x4a); w(0); while(!(PORTE&8)) ; check();
if((S[0] & OxcO) 1= 0) return error = dskErr;
return 0;

}

Procedures that operate on sectors use global data declared below. The variables c,
H, and R are the first three bytes in an ID sector field of a sector of the disk (Figure
10.8b). c is the cylinder number, which is the same as the track number. H, 0 or 1,
indicates which head is used. R is the disk sector number to be accessed, seek, called
by read and write, is passed a logical sector number (discussed in §10.2.1) and
computes c, H and R. In disks formatted for the IBM PC, and used in the next section,
sector numbers on a track begin with one rather than zero (one-origin indexing). Four
status bytes ST[4] are read from the controller (Figurel0.9c); error is nonzero when
an error occurs, veri fy is 1 if we will read after writing a sector to verify it was saved.
Input data is put or output data is taken from buffer B (spacer places B to be read in
a memory dump at a 16-byte boundary, at location 0x810).

char C, //cylinder
H, II head
R, II sector number on track
ST[4], //status
error, // nonzero indicates error
verify = i, II TRUE means will verify
spacer [7], B[512]; II buffer for sectors

The seek procedure, called up at the beginning of the get and put procedures,
converts the logical sector number to head, track, and disk sector numbers for the disk
controller. It checks that the sector number is within range (a double-sided 80-track disk,
with 18 sectors per track, has 2880 sectors), and then, dividing by the number of sectors
per track, essentially obtains the disk sector number (remainder) and a combined head-
cylinder number (quotient). Recall that in IBM disks, disk sector numbers begin with 1,
so the remainder is incremented to get the disk sector number. The head-cylinder number
is divided by two to get the disk cylinder number c (quotient) and the head H
(remainder). The '65C is given a seek command and the status register siO] is
examined to determine if the seek was successful. If the drive is already on the desired
track, seek completes quickly, but this command can take milliseconds to execute.

464 Chapter 10 Display and Storage Systems

char seek(int sectorNumber) {
i f (sec torNumber>2880) return error =addrErr;/* check sector out of range */
R = (sectorNumber%18) +1 ; I* get sector # (PC disks use one-origin indexing) */
c= sectorNumber/ '18; /* get combined head-cylinder number, temporarily in C */
H = c & l; c »= l ,- /* separate into cylinder C (high bits) and head (Isb) */
w (Oxf) ; w (H « 2) ; w(C) ; /* give command to seek cylinder */
while (l (PORTE & 8)) ; /* gadfly on drive-seeking cylinder */
w (8) ; ST[0] = r () ; /* get interrupt status */
i f ((r () !=C) I I ((ST[0]&Oxf8) / = 0x20)) return err or =seekErr,-/* check err */
return 0;

Procedures get and pu t input (read) a sector and output (write) a sector. Procedures
check and setup are used in these methods to factor out some common code from
them, setup writes the first eight parameters of a read or write command, check
reads out the status information of the command's result phase.

void setup (char and)
{ w(cmd);w(H « 2) ;w(C) ;w(H) ;w(R) ;w(2) ;w(18) ;w(0xlb) ;w(0xff) ; }

char check () {
if((ST[0] = r()) & 0x80) { error = illOp; return 0; }
ST[1] = r(); ST[2] = r () ; C = r () ; H = r () ; R = r(); N = r () ;

return (ST[1] & 0x7 f) M (ST[2] & 0x33);
}

The procedure get reads a sector. It calls seejt, which computes c, H, and R, and
executes a seeA: command. First, during a command phase, nine bytes are written to
the data port using the setup procedure. The command 0x46 requests reading an MFM
sector. Then the surface, which is the head and drive number, is sent. The cylinder, head,
sector, and size bytes are sent exactly as they should appear in the sector's ID (Figure
I0.8b), and the last sector, format gap size, and data length are sent to complete the
command phase. The execution phase reads each byte of the sector's data. Asserting TC
(PORTE bit 4) terminates this phase. Finally, the result phase uses the check
procedure to read each byte of the result. The status ports S[0] to s[2] are read, then
the sector's cylinder, head, sector, and size bytes are read back exactly as they appeared in
the sector's id (Figure 10.8b), so software can verify that the right sector was read.

char get(int sector, register char *buffer) { int i; char *end;
if (error \ I seek (sector)) return l;end=buffer+ (1=512) ;PORTE=0;setup(Ox46)
do {

while (i (mStatus&OxSO)) ;if(! (mStatus&Ox20)) break; *buffer++-rData;
} while (--i);
PORTE =4;

if (check () \ \ (buffer ! = end)) return error = rdErr; return 0;
}

The procedure main () below reads the first sector of a file that stores the floppy
disk program's source code, which is logical sector 57.

10,2 Storage Systems 465

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0810 23 64 65 66 69 6E 65 20 55 54 42 55 47 OD 23 69 #define UTBUG.ti

0820 6E 63 6C 75 64 65 20 3C 36 38 31 32 2E 68 3E OD nclude <6812.h>.

0830 23 69 6E 63 6C 75 64 65 20 22 44 69 73 6B 2E 68 #include "Disk.h

Figure 10.11. File Dump

voidmain(){ init65(0, 3, 240, 16); get (57, B) ; }

The seek procedure calculates the cylinder number as 1, the head as 1, and the sector
number as 4. Then a dump (Figure 10. 1 1) shows the data in logical sector 57.

Similarly, the put procedure writes a sector, and if verify is nonzero, the sector
that was just written is read again using the get method to verify that it is properly
stored and can likely be read later without errors. Rather than actually using get to
verify the sector as in this example, which destroys B, a procedure exactly like get can
be used, except that it writes read data into a dummy local variable. The CRC check
verifies success. But reading the sector in the veri fy step slows down the writing of
sectors because a sector is written and a whole disk revolution later the same sector is
read. Verification is indispensable when the data being written might be lost forever if it
is not written correctly. But there are times when this verify step should be omitted.
When copying a whole disk, by clearing the verify data member, this verify step is
omitted to speed up writing of sectors. The destination disk is first fully written, without
verifying each sector, and then each sector on the disk is read just to verify it.

char put (int sector, register char *buffer){ int i;
if (error I I seek (sector)) return 1; i = 512;
PORTE = 0; setup (0x45);

do {
while (! (mStatus&OxSO)) ;if(! (mS ta tus & 0x20)) break; wData=*buffer++;

} while (--i);
PORTE = 4;
if (i\ I check ()) {if (ST[l]&2)re turn error =wrPro tErr; return error = wrErr; }
if (verify) if (get (sector, B)) return error = wrErr;
return 0;

We deferred a discussion of ini t6"5's read id command, which reads any valid
ID sector. It uses the same status reporting mechanism that get and put to check the
disk in the drive for readability.

From these examples, the reader should see that movement of data to or from the
'65C always uses handshaking, such as gadflying on some master status bits. The read
sector (also read id, write sector, and format) commands go through three
phases: command, in which control values are sent to the chip; execution in which data
are read or written; and result in which status is read from the chip. Other operations
(sense drive, sense status) have only a command and a result phase, and the
remainder (specify, recalibra te, and seek) have only a command phase.

466 Chapter 10 Display and Storage Systems

Figure 10.12. PC Disk Organization

The example above can be significantly improved. For instance, it used gadfly
synchronization; by connecting '65C's interrupt request to a PORTJ bit rather than
PORTE bit 3, a key wakeup interrupt at the end of a seek could permit other programs to
ran while a long seek is in progress. See problem 27 at the end of the chapter.

10.2.4 Personal Computer Disk Data Organization

Each operating system organizes its disks differently; herein we briefly describe the
organization of the popular IBM PC 3 1/2" HD disk, which we formatted on a Macintosh
for a PC. Important data on logical sector 0, called the boot sector, are listed in Figure
10.12a. Key logical sectors are arranged as in Figure 10.12b.

The boot sector, which is logical sector 0, or disk sector 1 in track 0 using head 0,
is shown in Figure 10.12a. Besides storing a boot program that loads and starts an
operating system, this sector stores parameters that can be used to unambiguously read
the disk. Figure 10.13 shows a dump of the boot sector of the disk we are using. You
can examine it to locate Figure 10.12a's parameters discussed following Figure 10.13.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0810 EB 34 90 50 43 58 20 32 2E 30 20 00 02 01 01 00 .4.PCX 2.0

0820 02 EO 00 40 OB FO 09 00 12 00 02 00 00 00 00 00 ...@

Figure 10.13. Dump of a Boot Sector

10.2 Storage Systems 467

A cluster is a fixed number of sectors (one in this case) that are allocated or
deallocated as a unit. The two bytes at location Oxb indicate the number of bytes per
sector, and the byte at location Oxd indicates the number of sectors per cluster. The two
bytes at location Oxe indicate the number of sectors, starting at sector 0, that store these
parameters and the boot program used to install an operating system; in this case it is
one. The number of FATs is two, so that a duplicate is available if one is corrupted
when there is a disk crash. Any 32-byte entry in a directory, the root directory being in
logical sectors 19 to 32, describes one file listed in the directory, as illustrated in Figure
10.14a. (Other directories are subdirectories.) The number of root directory entries, each
of which is 32 bytes (Figure 10.14a), is always a multiple of 16 to use up an integral
number of sectors, and here is 224. The number of logical sectors on the disk is stored in
two bytes at 0x13. Figure 10.14b shows how thefile allocation table (FAT), stored in
logical sectors 1 to 9 and duplicated in logical sectors 10 to 18 to aid in file recovery
after a disk crash, is associated with sectors storing data in the file. The number of
sectors in each FAT is in the two bytes at location 0x16, and the number of sectors in
each track is in the two bytes at location 0x18. The number of heads, or surfaces, is in
the two bytes at location Oxa. The number of hidden sectors is in the two bytes at
location Oxlc. The boot program is stored after location Oxle.

Incidentally, each two-byte value, and all multibyte values stored on the disk, are in
the Intel format: least significant byte first. For instance, the number of bytes per sector
may be 0x12 at location Oxb and 0 at Oxe. The value is not 0x1200, but rather 0x0012.

Boot sector parameters unambiguously determine the root directory's beginning
logical sector. If the boot-record length at location Oxb is 1, the number of FATs stored
in 0x10 is 2, and the number of sectors per FAT stored in 0x16 is 9, then the root
directory begins at 1 + (2 * 9) = 19. Each 32-byte directory entry, shown in Figure
10.14a, begins with an 8-character name and a 3-character extension, each in ASCII, and
each entry's location Ox la stores a two-byte "data area logical sector number" (DALSN).

Figure 10.14. PC File Organization

468 Chapter 10 Display and Storage Systems

After the boot sector is loaded into buffer B, key locations needed in locating the
file are computed by the following program segment.

void getFat (} { int fat, dir, entries;
fat = B[0xe] + (B[0xf] « 8) / /* get boot record size, this is LSN of FAT */
dir = fat+ (B [0x10] * (B [0x16] + (B [0x17] « 8))) / /* is base of directory */
entries = B[0xll] + (B[Oxl2J « 8); /* is # directory entries */
base=dir+ (entries»4) -2; /* is base of data sectors ("2" is discussed later)*/

./

To read the first byte of a file having a given name, compare the desired name with
each directory entry name until there is a match. Our disk's root directory dump is shown
in Figure 10.15. The file name DISK.C is in the seventh entry. This file's beginning
DALSN is in the two bytes in this entry's location Ox la, and its value is Ox la or 26. Its
length is 0x00001770 bytes.

After the first directory sector is loaded into buffer B, it can be searched to get the
starting first DALSN and length using the following program segment. This program
segment will only search a root directory with fewer than 32 files. Problem 24 expands
this program segment to a 14-sector root directory.

void Search (char fileName[]){ int i, j, k, length;
for (.1. = 0 ; i <5l 2 ; i + = 32) { /* should search 14 sectors; here we search 1 sector */
for(j = k = 0; j < 11; j++)

i f ((B [i + j] & Oxff) .' = (fileNametj] & Oxff)) { k = 1; break; }

}
if(k == 0) { firstDALSN = B[l + Oxla] I (B[i + Oxlb] « 8); }
length^B [i + Oxlc] ! (B[i + 0xld]«8) \ (B[i + 0xle]«16) I (B[i + 0xlf] « 24) ;

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0810 46 49 4E 44 45 52 20 20 44 41 54 22 00 00 00 00 FINDER DAT"

0820 00 00 00 00 00 00 3C 77 15 23 02 00 B8 02 00 00 <w.#

0830 44 45 53 4B 54 4F 50 20 20 20 20 22 00 00 00 00 DESKTOP
0840 00 00 00 00 00 00 41 77 15 23 00 00 00 00 00 00 Aw. #......

0850 53 61 6D 70 6C 65 20 20 20 20 20 28 00 00 00 00 Sample (....

0860 00 00 00 00 00 00 D4 76 15 23 00 00 00 00 00 00 v.#

0870 52 45 53 4F 55 52 43 45 46 52 4B 12 00 00 00 00 RESOURCEFRK

0880 00 00 00 00 00 00 D5 76 15 23 03 00 00 00 00 00 v.#

0890 46 49 4C 45 49 44 20 20 44 41 54 22 00 00 00 00 FILEID DAT"....
08AO 00 00 00 00 00 00 9B A4 26 23 05 00 80 00 00 00 &#
08BO E5 44 45 53 4B 54 4F 50 46 4F 4C 10 00 00 00 00 .DESKTOPFOL

08CO 00 00 00 00 00 00 97 A4 26 23 06 00 00 00 00 00 &#

08DO 44 49 53 4B 20 20 20 20 43 20 20 20 00 00 00 00 DISK C ____

08EO 00 00 00 00 00 00 54 2F 26 23 1A 00 70 17 00 00 T/&#..p...

08FO E5 52 41 53 48 20 20 20 20 20 20 10 00 00 00 00 .RASH
0900 00 00 00 00 00 00 99 A4 26 23 08 00 00 00 00 00 &#......

Figure 10.15. Dump of a Directory

10.2 Storage Systems 469

Since the data area follows the root directory (Figure 10.12b), its logical sector
number is essentially the logical sector number of the beginning of the directory,
computed previously, added to the length of the directory in sectors. The 2-byte value in
boot sector location 11 is the number of directory entries; this divided by 16 gives the
number of sectors in the root directory. In our example the data-area base is sector 31, If
our directory search located a file whose DALSN is 26, then the beginning of the file is
in logical sector 31 + 26 = 57. The first 512 bytes of the file are stored therein.

Each consecutive logical sector is associated with a consecutive 12-bit DALSN in
the FAT and its duplicate (Figure 10.16). Each sector's corresponding FAT entry gives
the DALSN of the file's next consecutive sector, or gives a value greater than Oxff7
when the file doesn't have a next sector. This is effectively a linked list used to find the
remainder of the file. The total number of valid bytes in the file is the four-byte number
at the end of the directory entry for the file; it must be less than the file's number of
DALSN entries times 512. DALSNs herein are 12-bit binary numbers in Intel format;
for every three consecutive bytes in the FAT, such as 0x12 0x34 0x56, there are two
DALSNs, 0x412 and 0x356. Peculiarly, each FAT's first three bytes are OxfO Oxff Oxff,
and the first DALSN is numbered 2. This initial 3-byte pattern has an advantage of
ensuring that the sector being examined is actually the beginning of the FAT.
Correspondingly, because the first two FAT entries do not correspond to logical sectors
in the data area, the DALSNs are converted to LSNs by adding the base address, which is
the address of the beginning of the data area less two sectors. This is accommodated in
the calculation of base in the program segment earlier in this section. We suspect that
small PC disks had a boot and a directory sector that were included in the "data area/' and
this FAT "signature" pattern was kept, as larger disks had larger boot files and root
directories, to retain this convenient distinctive pattern for verification purposes.

The file DISK.C is stored beginning at DALSN 0x0la = 26. The next segment of
the file is determined by the "left half of the 13th triple-byte entry in dump bytes 0x837
to 0x839. The value of this left half is OxOlb. The next segment of the file is determined
by the "right half of the 13th triple-byte entry in dump bytes 0x837 to 0x839. The
value of this right half is OxOlc. Our file's DALSNs are OxOla, OxOlb, OxOlc, OxOld,
0x+0le, 0x0If, 0x020, 0x021, 0x022, 0x023, 0x024, and 0x025. These can be dumped to
examine the contents of the file.

After a file's firstDALSN is determined by the directory search and the first FAT
sector is loaded into buffer B, LSNs for the file can be stored in int list [6 4] . This
program segment is able to build the list of LSNs if all the disk's DALSNs are held in
only the first sector. Problem 26 expands this program segment to a 9-sector FAT.
These program segments are built into the object-oriented class in the next section,

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0810 FO FF FF 07 FO FF OB FO FF 00 FO FF 00 00 00 00

0820 CO 00 OD EO 00 OF 00 01 11 20 01 13 40 01 15 60 @..

0830 01 17 80 01 FF OF 00 IB CO 01 ID EO 01 IF 00 02

0840 21 20 02 23 40 02 25 FO FF FF OF 00 00 00 00 00 ! .#§.%

Figure 10.16. Dump of an Initial FAT Sector

470 Chapter 10 Display and Storage Systems

void FindSector(){ int i, j, curDALSN, list [10] ;
for(i = 0,curDALSN=firstDALSN; (curDALSN < OxffO) && (i < 64); i+ +) {

list[i] = curDALSN + base; j= (curDALSN » 1) * 3;
if(curDALSN & 1)

curDALSN=(((B[j+l]»4) & Oxf) I (B[j+2]«4)) & Oxfff;
else curDALSN = (B[j] I ((B[j + 1] « 8) & Oxf00)) & Oxfff;

10.2.5 Object-oriented Disk I/O

Object-oriented programming encapsulates data members for a file so that multiple files
can be easily read from or rewritten in the same procedure. We consider files that are only
read from, or only rewritten, to simplify the functions. The class file below is made a
derived class of Port<char> so that bytes can be read or written by the put and get
function members and overloaded assignment, cast, «, and » operators. The
constructor executes the program segments of the previous section, leaving the list of
LSNs for the file in the data member list [64]. Procedures init65, get, and put
from §10.2.3 are also called in this class. Subsequent member functions use the list
prepared by the constructor to read a sector into a data member buffer B in preparation
for reading each 512 bytes, or write a sector into B into sectors after each 512 bytes are
written into it. The destructor writes out B into the last sector if it is partially rewritten.

enum{ rd = 1, wr} ;

class Drive { char C, H, R, N, ST[4]; public : int errors;

Drive(char drive, char step, unsigned char unload, char load){int i;
PEAKMODE = Narrow + Normal; CSCTL = CSOE + CS1E; CSSTR = 0;
DDRE = PORTE = Oxl 4; PORTE = 4; I* positive logic reset of '65 */

w(3) ;w(((-step)«4) I (unload»4)) ; w(load\l); /* specify */
w(4); w(drive & 7); i = r(); /* sense drive status */
if((i & OxaO) != 0x20) { errors = chpErr; return; } errors = 0;

w(7); w(drive & 3); /* recalibrate (restore) */
while (! (PORTE & 8)) ; /* gadfly on drive being in execution mode */

w (8) ; i = r(); c = r (); /* sense interrupt status */
if (i .'=- 0x20) { errors = drvErr; return; }

control = 0;w(0x4a) ;w(0) ;while(! (PORTE & 8)) ;check() //* readid */
i f ((S T [0] & OxcO) .'= 0) errors = dskErr;
return;

i

void w(char c) { while ((mStatus&OxcO) ! =0x80} ;wData=c; } /* write data*/

char r() {while ((mStatus&OxcO) !=OxcO) ; return rData; } /* read data */

10.2 Storage Systems 471

void setup (char cmd)
{w(cmd) ;w(H « 2) ;w(C) ;w(H) ;w(R) ;w(2) ;w(18) ;w(0xlb) ;w(0xff) ;

char check () {
if((ST[0] = r()) & 0x80) { errors = illQp; return 0; }
ST[1] = r(); ST[2] = r(); C = r(); H = r(); R = r(); N = r () ;

return (ST[1] & 0x7 f) II (ST[2] & 0x33);
}

char seek(int sectorNumber) {
if (sectorNumber>2 880) return errors = a ddrErr; /* sect out of rng ? */
R= (sectorNumber%18) +1; /* get sector # (one-origin indexing) */
c=: sectorNumber /l 8; /* get cylinder-head number, temporarily in C */
H=C & l; c »= l ; /* separate info cylinder C (high bits) and head (Isb) */
w(Oxf); w(H « 2); w(C) ; /* give command to seek cylinder */
while (! (PORTE & 8)) ; /* gadfly on drive seeking cylinder */
w(8) ; ST[0] = r () ; /* get interrupt status */
if((r() !=C) I I ((ST[0]&Oxf8) I = 0x20)) return errors=seekErr;
return 0;

}

char get (int. sector, register char *buffer) { int i; char *end;
if (errors \ I seek (sector)) return l;end=buffer+ (i=512) ;PORTE=0;
setup (0x46) ;
do {

while (I (mStatus & 0x80)) ;
if (I (mStatus & 0x20)) break;
*buffer++ = rData;

} while (--i) ;
PORTE = 4;
if(check()\ I (buffer .'= end)) return errors = rdErr; return 0;

}

char put. (int sector, register char *buffer, char verify) { int i;
if (errors II seek (sector)) return 1; i = 512;
PORTE = 0; setup (0x45) ;
do {

while (! (mStatus&Ox80)) ;
if (I (mStatus&Ox20)) break;
wDa ta= *buffer+ + ;

} while (--i) ;
PORTE = 4;
if(i I I check ())

{if (ST[1]&2) return errors=wrProtErr; return error s=wr Err ;}
if (verify&&get (sector, buffer)) return errors=wrErr;
return 0;

472 Chapter 10 Display and Storage Systems

class File : public Port<char>{ char B[512] , mode; Drive &D;

unsigned int curDALSN, firstDALSN, base, fat, dir, entries, list [64] ;
long length, position; public : int errors; char verify;

File (char *fileName, Drive &D, char mode) .-Port (0x200) { int i, j, k;
errors = position = 0; verify = 1; this->D = D;

II locate fat and read directory
i f (D. get (0, B)) return; /* read boot sector */
fat=B[Oxe]+(B[Oxf] « 8) / /* get boot record size; it is LSN of FAT */
dir=fa t+ (B[0xl 0] * (B[0xl 6] + (B[0xl 7] «8))) ; /* is directory base */
entries = B[0xll] + (B[Oxl2J « 8) ,- /* is # directory entries */
base=dir+ (entries»4) -2; I* data sector base ("2" is discussed later)*/

// search directory for file name
i f (D. get (dir, B)) return; /* read directory */
ford = 0; i < 512; i += 32) { /* search one sector of directory */

for(j = k = 0; j < 11; j + +)
if((B[i +j]&0xff) ! = (fi 1 eName [j]&0xff)) {k=l / break; }

if(k==0) {firstDALSN=B[i + Oxla] I (B[i + 0xlb]«8) ; break; }
i

length = B[i + Oxlc] I (B[i + Oxld] « 8);

II get list of sectors
if (D. get (fat, B)) return; /* read FAT */
f or (1 = 0, cur DALSN= firstDALSN; (curDALSN<OxffO)&&(i < 64) ; i + + }{

list[i] = curDALSN + base; j= (curDALSN 1) * 3;
if (curDALSN & 1)

curDALSN=(((B[j + l]»4)&0xf) I (B[j+ 2]«4)) & Oxfff;

else curDALSN=(B[j]\ ((B [j + 1]«8) & OxfOO)) &0xfff;

virtual char get (void) { //input
if(!(mode&&rd)\\(position>(length~l))) { error s=l; return; }
if ((position & Oxlff) == 0) D. get (list [position » 9], B) ;
return B[((posi tion+ +) & O x l f f)] ;

virtual void put(char data) {// output

if(! (mode&&wr)I I (position>=length)){errors=l; return; }
B[((position+ +) & Oxlff)] = data;

if((posi tion&Oxlff) = = 0)D.put (listf (posi tion»9) ~1] ,B, veri fy)
};

void seek (long position) { II seek a location in the file

10,3 Conclusions 473

if (position >= length) {errors = 1; return; }
if ((mode == wr) && ((position & Oxlff) == 0))

D.put (list [(position » 9) - 1] , B, verify);
this->position = position; D. get (list[position » 9], B}

File &operator = (File &f); //copyfile
{ do put (f.get ()) ;while ('. (errors \ =f. errors)) /return *this; }

-File () { if(posi tion&Oxlff)D.put (list[posi tion»9] ,B,1); .///destructor

Dri ve dl (0,3,240,16) ; II delate the object; call the constructor to initialize the disk

void main () {
Fi le fl("Fl " ,dl, wr) , f 2 ("F2 " , dl , rd) ,-// delare objects to open files
f l = f2; //copy fi les
fl,~File; f 2. -File; II close the files

This class can be used to read or write data from several files, as the following
program illustrates. This program copies file Fl to file F2.

f.i le fl ("Fl ") , f2("F2 ") ; II delare the objects; call the constructor to open the files
voi d main () (do fl=f2 ; whi le('.fl. error) ; ~f 1 () ; ~f 2 () ; } II copy til end of file err

The object-oriented disk access class file makes the disk appear like any other I/O
device described in this book. Using device independence, a disk can be substituted for
another I/O device at run time. Using I/O independence, a disk can be substituted for
another I/O device at compile time. Objects encapsulate all the data and functions needed
to access a disk, so that two or more files can be accessed in the same program. These
objects have many of the advantages of operating-system device drivers, but with much
lower overhead. These capabilities illustrate the advantages of object-oriented I/O,

10.3 Conclusions

This chapter introduced two common interfaces: CRT display and secondary storage.
These rather complete case studies give a reasonably full example of common interface
designs. They also embody the techniques you have studied in earlier chapters. Besides
presenting these important interfaces, this chapter serves to complete the book by
showing how the techniques in the other chapters will find extensive application in
almost any interface design.

For further reading on floppy disks, we strongly recommend the data sheets for the
'65C from Western Digital. Harold Stone's "Microcomputer Interfacing" has additional
general information on the analog aspects of storage devices. These can be consulted for
further examples and inspiration.

474 Chapter 10 Display and Storage Systems

This text has been fun for us. Microcomputers like the 6812 are such powerful tools
that it challenges the mind to dream up ways to use them well. We sincerely hope you
have enjoyed reading about and experimenting with the 6812 microcomputer.

Do You Know These Terms?

See page 36 for instructions.

National
Television
System
Committee
(NTSC)

raster line
frame
pixel
NTSC composite

video signal
horizontal retrace
vertical retrace
horizontal sync
vertical sync
sync separator

Bresenham
algorithm

window
clipped
secondary storage
surface
track
cylinder
step rate
settling time
fill
sector
index hole
index pulse

logical sector
number (LSN)

interleave factor
unformatted

capacity
formatted capacity
format
seek
read sector
implied seek
write sector
restoring
recalibrating the

drive

specify
read id
sense drive
sense status
command phase
execution phase
result phase
verify
boot sector
cluster
directory
root directory
file allocation

table (FAT)

Problems 475

Problems 1 and 13 are paragraph correction problems. See page 38 for guidelines.
Guidelines for software problems are given on page 86, and for hardware problems, on
page 715.

1.* A TV screen is a series of fields; and in the NTCS format, a field takes l /30 second.
There are about 500 raster lines in a field, with each line scanning from top to bottom of
the screen, and each raster line takes about 60 us. Sync pulses are incorporated into the
composite video signal as gray-level signals, and these are used to synchronize the
horizontal and vertical oscillators that cause the electron beam to scan the screen. CRT
controllers use either character or graphics display modes at any time. The former can use
an independent mode, where the CRT gets characters from the primary memory of the
processor using DMA; or the shared mode, where the processor writes into a separate
display memory only during the horizontal retrace periods.

2. Rewrite char pattern [12] in §10.1.2 to display

a. a solid black 8-by-12 square

b. an 8-by-12 black-outlined white square; the outline is 1 pixel wide

c. a horizontal line two pixels high across the top of the 8-by-12 black square

d. a vertical line two pixels wide on the left of the 8-by-12 black square

e. a letter A on the top eight lines of the 8-by-12 black square, with the right
column blank, with four blank lines on the bottom of the 8-by-12 black square

3. Rewrite #defines in §10.1.2 to display the square (giving approximate values ±10%)

a. at the top left corner of the screen b. at the top right corner of the screen

c. at the bottom left corner of the screen d. at the bottom right corner of the screen

4. Rewrite the program in §10.1.2 that outputs the same TV picture as in Figure 10.4,
using gadfly synchronization rather than interrupt synchronization, to implement
horizontal- and vertical- sync pulses. Use the same counter and SPI modules.

5. Write a C procedure border () that will draw a border that is four pixels wide
around §10.1.3's display, rather than two pixels wide, and fill the display with gray
rather than black. Use §10.1.3's constants, such as HEIGHT, HWIDTH, and WIDTH.

6. When displaying on a low-bandwidth CRT, so that horizontal and vertical lines have
equal brightness, the video signal should be "chopped" by ANDing it with the shift
clock because horizontal lines have more low-frequency signal than vertical lines. The
74HC132's remaining NAND gate can "chop" the video signal, requiring two hardware
changes and changes in the accompanying software to display the same white border on
black background as in §10.1.3. Write a paragraph accurately describing these changes.

476 Chapter 10 Display and Storage Systems

7. The program in §10.1.3 displays 256 lines of 512 pixels per line. By displaying the
same line in both fields, for instance, so that location 0x8000 appears on the top left of
the first scan line of the first field and again on the top left of the first scan line of the
second field, our (8K, 16) SRAM can display a 496-by-512 screen image. Show the
program needed to display this 496-by-512 screen, wherein each memory location is
displayed twice, in the same relative location of each field.

8. Write a function member rectangle (int h, int v, int w, int ht) for § 10.1.4's
class screen to draw a rectangle whose top left corner is at row v, column h; and
whose width is wand height is h, using the function member line given in §10.1.4.

9. The function member line (int h,int v, int dh,int dv,int n) for §10.1.4's
class screen can only draw lines where either dh or dv is 1, and the other, dh or
dv, is between -2 and +2. Use the Bresenham algorithm.

a. Write a function member linel (int hi, int vl,int h2,int v2,int dh,
int dv) where dh = h2 - hi, dv = v2 - vl, dh > dvanddh > 0, to draw
a continuous line from row vl, column hi to row v2, column h2.

b. Write function member linetodnt hi, int vl, int h.2, int v2) to draw a
continuous line from row vl column hi to row v2 column h2 . Write a
modification of part a's linel, with a fifth argument reverse, so that if
reverse is 0, linel calls point with unsubstituted h and v; if 1, linel calls
point exchanging h and v; if 2, linel calls point negating h/ and if 3,
linel calls point exchanging hand the negative ofh.

10. Write a function member triangle (int hi, int vl, int h2, int v2, int
h3, int v3) using problem 9's line to, that will draw a triangle with a vertex in row
vl column hi, in row v2 column h3, and in row v3 column h3.

11. Write function member wchariint *a,int h,int v) for §10.1.4's class
screen to draw a character whose pattern is pointed to by a, with top left corner at
row v, column h, and with width up to 16 pixels wide and 16 pixels tall. Use only
in t variables and pointers in your solution. Also write a vector to draw the letter 'A'.

12. Write a program main() to write MISSISSIPPI in the middle of the screen. Show
vectors patternM, pattern!, patterns, andpatternP, analogous to §10.1.4's
vector patternA, to draw the letters M, I, S, and P in a 7-pixel-wide and 8-pixel-high,
font. Write main () to bless a pointer SON to an object of the class screen, and write
"MISSISSIPPI" in the middle line and around the middle column of the display area.

13.* A surface of a typical floppy disk is divided into concentric rings called sectors, and
each sector is divided into segments. A sector may be read or written as a whole, but
individual bytes in it may not be read or written. The format of a sector has only some
Os, a OxAl flag pattern, a data-address mark, the data, and a CRC check; counters are
used to keep track of the track and sector. To read (write) a sector, it is necessary to first
give a command to seek the track, then give a command to read (write) the sector.

Problems 477

14. Trace the pattern for the following bytes: 0x80, 0x55, Oxcc, Oxca, Oxl (assume the
bit previous to this byte is a 0).

a. Use FM encoding. b. Use MFM encoding.

15. Show timing diagrams of the middle special byte OxAl in Figure 10.9 and relevant
parts of the beginning and end of the previous and following special bytes as they shift
through a byte-size window. Show that the shifting byte appears to match the required
pattern exactly once, which defines the byte boundary.

16. Determine how many total bits are in a sector, and how long does it take to read it.

17. The operations register OR is written when LDOR, attached to address line A3, is
asserted and WR is asserted.

a. At which locations is this operations register and only this register written into?

b. OR bit 4, output in negative logic on pin 33, runs drive O's motor. Similarly,
OR bit 5 on pin 34 runs drive 1's motor. Show drive-cable connections so that
asserting OR bit 4 runs drive O's motor, and asserting OR bit 5 runs drive 1 's motor.

18. For the logic diagram shown in Figure 10.10, determine which addresses can be
used to uniquely select the ports. Identify all addresses in which the following can be
done,

a. Read the master status register. b. Read the data register.
c. Write the data register. d. Write the control register.

19. Deleted data has a different delete data mark $FD in place of Figure 10.8's data mark
$FB, and a sector with this mark is skipped when reading data. Write this mark by the
command wri te deleted da ta (command Oxc) if the sector has defective media. Such
a deleted sector can still be read using the command read deleted data (command
0x9). Otherwise, commands to write and read deleted data are the same as the commands
write data (command 0x7) and read data (command code 0x6). Show pictoral
descriptions that can be added to Figure lO.lOd to describe these two commands.

20. Write a multithread scheduled procedure seek and a handler cckj for the '65C IRQ
pin attached to PORTJ bit 0. When a seek cylinder operation is begun (see the Centronics
printer, §5.3.3), if the '65C asserts IRQ within 12 (as, seek exits, but otherwise seek
puts the thread to sleep. When this operation is complete, a key wakeup interrupt
executes handler cckj to awaken the sleeping thread. Assume thread 1 is used.

21. Write procedures that try five times to read or write a sector, until the sector is read
or written correctly. When writing, if verify is 1, verify the written sector without
destroying B. After the second attempt, and if the head is not on cylinder 0, move the
head to the next lower cylinder, then read or write the sector. After the fourth attempt,
and if the head is not on cylinder 80, similarly move it out a cylinder and back in.
"Jiggling" the head this way facilitates reading or writing a misaligned cylinder.

478 Chapter 10 Display and Storage Systems

a. Write a get procedure to read a sector, b. Write a put procedure to write a sector.

22. Write a procedure format (int c, char h) to format cylinder c on side h of
drive 0. Before this procedure is executed, the drive should have been initialized using
i nit 65, but at the beginning of this procedure, a seek cylinder command is given.
Note that errors will occur, during initialization and seeking, which should be ignored.
To format a track for a HD disk, the '65C is given the command Ox4d, a byte containing
the head (bit 2) and drive number (bits 1 and 0), the number N of bytes per sector, the
number of sectors per track, a gap width, and the byte used to fill the data portion of each
sector. For an HD disk, N is 2, there are 18 sectors per track, the gap width is 0x54, and
the data portion of each sector is filled with 0x46. The execution phase waits for the
index pulse, then formats an entire track, and then asserts IRQ. While the '65C formats
the track, the 'A4 writes each sector's bytes C, H, R, and N into the '65C's data port as
in the write sector command. That is, for the 18 sectors, write 72 bytes. Your
procedure should write the track with an interleave factor of four. The status phase
returns the status bytes ST[0], ST[1], and ST[2], which should be checked for errors, and
four bytes (C, H, R, and N) that are not used in this case. Use §10.2.3's variables.

23. In Figure 10.15, determine the DALSN and length of the following files.

a. FINDER.DAT b. DESKTOP c. RESOURCE.FRK

24. Write a program segment to search a 14-sector root directory, analogous to the
program segment following Figure 10.15.

25. From Figure 10.16, determine the next (hex) DALSN when the current DALSN is

a. 2. b. 3. c. 4. d. Oxb. e. Oxc. f. Oxd.

26. Write a program segment to construct the file's DALSN list from a 9-sector
FAT, analogous to the program segment following Figure 10.16. Note that DALSNs of
consecutive sectors in a file are not necessarily consecutive, and may even be
nonmonotonic (they may skip around). Take care to handle the special case where a
three-byte sequence containing two DALSNs overlaps a sector boundary.

27. Write a function member seek (long a) for class file to position the read or
write in posi tion a so the next byte read by char get () or written by put (char)
is the ath byte of the file. If a sector needs to be output to save bytes written before
seek is executed, do so, and then read in the sector in which byte a appears.

28. The class file can be modified to permit either reading of data in the file, writing
of data in the file, or reading and writing of data in the same file (called updating the
file); however, we must be careful about putting back sectors that may have been
partially over-written when we read the data, and about putting a sector into the buffer
before writing a byte into it, in case we will read bytes from this sector later.

Problems 479

a. Write a function member char get () for class file that will output the next
byte of the file (at location posi tiers), but if this requires reading in another sector,
the sector previously stored in the buffer is written back.

b. Write a function member put (char c) for class f i le that will write c into
the next byte of the file (at location posi tiori), but if this requires writing into
another sector, that sector is read into the buffer.

c. Explain why an object of class f i le should be declared or blessed with
"permissions" read-only, write-only, or update to make the file both readable and
writeable at the same time. In particular, comment on how long reading or writing
can take, in the worst case, for each example. How can our class f i 1 e be modified
to permit this capability to be declared in the constructor and used in the function
members?

480 Chapter 10 Display and Storage Systems

The Adapts 12 is connected to an M68HC12B32EVB board which is configured in POD
mode, which in turn connects to a PC. We used this configuration to download and debug
using HIWAVE, using the ASCIIMON target interface.

Appendix
Using the HIWARE CD-ROM

This appendix helps you use the accompanying CD-ROM to simulate your programs,
and to download and debug them on EVB Boards and other target microcontrollers.

A-l Loading HIWARE Software
Open the CD ROM, check "installation", and choose the Motorola HC12 target. If you
have 60 Megabytes of disk space, load all parts of the tool chain.

A-2 Running the Simulator
You can use the software on the CD-ROM to simulate your programs on a PC running
Windows 95 or later, or Windows NT 5.0 or later, without using any extra hardware.
Using Acrobat Reader 3.0 or later, run the \hiware\docu\hcl2\demol2.pdf file. This file
provides a tutorial guide on how to load and run the compiler, linker, and simulator.
Following this guide, compile, link, and simulate the program Fibo.c.

A very simple way to experiment with other programs is to modify the file Fibo.c.
Using any text editor, such as NOTEPAD, rewrite the Fib.c file with a program that you
wish to study. Compile, link, and simulate the modified program Fib.c. You can rewrite
Fibo.c each time you wish to study a new program. You can use more sophisticated
techniques, but this simple technique can get you started with minimal effort.

A-3 Running Examples from This Book
Note that the folder EXAMPLES on the CD-ROM has files in it such as Ei2.txt.

These files contain examples from this text book, which you can copy-and-paste into
Fibo.c, so that you can run these examples on the Hiwave simulator. The file Ei2.txt
contains all the examples in Chapter 2 of this textbook, and the file Ei4.txt contains all
the examples in Chapter 4 of this textbook, and so on. Copy this folder into your hard
disk; most conveniently, put it into your HIWARE folder.

A-4 Downloading to a 'B32 Board
You can use the HIWARE software to download and debug Fibo.c. on the Motorola
M68HC12B32EVB board (abbreviated the 'B32 board) as your target. Begin by
simulating Fibo.c. on the Hiwave simulator, as described above. After you are
comfortable with the simulator's operation, follow the procedures described in the
\hiware\docu\hcl2\manual\MWb2.pdffile. You should always apply the 5V power after
ail connections are made, and you should never change a connector while power is
applied to the 'B32 board.

481

482 Appendix 1 Using the HIWARE CD-ROM

A-5 POD-Mode BDM Interface

You can run HIWARE on a PC running Windows 95 or later, or Windows NT 5.0 or
later, using the Motorola M68HC12B32EVB board in its POD mode, to connect a
different target, such as an Technological Arts Adapt-812 board, or an Axiom
PB68HC12A4 board, (called the target) to run experiments.

This technique utilizes the state-of-the-art background debug module BDM in your
target, providing a debugger that runs in the M68HC12B32EVB board (called the POD)
that is isolated from the target. If the target is not fully functional, the POD still
functions and can help you debug the target. This technique also provides additional
functionality to Hiwave, such as the ability to profile and analyze coverage. However,
since more things can go wrong with a PC, a POD, and a target, than with just a PC, or
a PC and a target M68HC12B32EVB, we recommend using this technique after you have
had experience with the two simpler techniques described above.

Begin by runnin Fibo.c. on the Hiwave simulator, and then running Fibo.c. on the
'B32 board, as described above. After you are comfortable with the simulator's and 'B32
board's operation, reconnect the W3 to its 0 position and W4 to its 1 position to
configure the board for POD mode, and reset the POD. Select the Asciimon target. Load
Fibo.abs. You should be able to dupliciate what you did in the simulator and 'B32 board,
running it on the Adapt-812 or PB68HC12A4 board.

You can use the Motorola SPI module, a more powerful BDI debugger, in place of
the POD. Other similar BDI interface modules, but not all, are also compatible with
Hiwave. Other target microcontrollers can be run using the POD or similar board.

A-5 Techniques for HIWARE Tools

We have had some experiences with HIWARE tools, which might help you use them
more efficiently. We add a note here on our suggestions, to help you with this powerful
software.

A problem with the current version is that when you change project files, the
compiler/Iinker/hiwave debugger may read or write the wrong files, or fail to find the
files it needs. We found that by shutting down all HIWARE programs, and starting them
up again, the problem goes away. But you do not have to restart the computer. If you
have verified that the paths to the files are correct, but you are unable to access them
through the compiler/Iinker/hiwave debugger, then try restarting all HIWARE programs
"from scratch". The same remedy is suggested when the Hiwave simulator or debugger
fails to execute single-step commands, or breakpoints, correctly.

When dealing with different environments such as your own PC running Windows
95, workstations running Windows NT, and a PC running Windows 98 in the
laboratory, keep separate complete project folders for each environment, and copy the
source code from one to another folder. That way, you will spend less time readjusting
the paths to your programs and HIWARE's applications when you switch platforms.

We hope that the CD-ROM supplied through HIWARE makes your reading of this
book much more profitable and enjoyable. We have found it to be most helpful in
debugging our examples and problem solutions.

INDEX
#define 70
2-nth order filter 327
2-key rollover 248

A-to-D converter 308
accelerometer 311
access 3
accumulator 12
ACIA414
active 403
actual parameter 66
actual parameter name 96
add with carry 19
address calculation 7
address decoder 109
address map 108
address register output 131
address trigger 130
address trigger sequence 130
addressing mode 6
AGC 332
age 246
alias 334
allocate 28, 48
allocator 74
amplification 317
amplitude 307
analog multiplexer 320
analog switch 308
analog-to-digital converter 308
answer modem 405
answer phone 406
architecture 2
argument 15, 66
arithmetic instruction 18
arm 214
array 58
ASCII code 59
assembler 4
assembler directive 28
assembly-language instruction 4
assert a variable 94
asynchronous 400
asynchronous communications interface adapter

414
autodecrement addressing 14
automatic gain control 332

background debug module 295
balanced stack 15
bandpass filter 327
bandwidth 307
bang-bang control 316
bar code 236

bar-code reader 236
base class 76
basic output port 123
baud rate 399
BDLC 33, 430
behaviorally equivalent 95
benchmark 8
bessel filter 327
beta 314
biased 330
binary code 4
binary tree 62
bipolar transistor 314
Bisync 427
bit 3
bit field 58
bit level 400
bit rate 399
bit time period 399
bit-bang 162
bless object 131
blessing 76
block 152
block diagram 31
boot sector 466
bootstrap program 300
bottom-up design 73
branch 15
break 51,406
breakpoint 27
Bresenham algorithm 454
buffer 64, 97
buffered I/O 260
bug 6
burst mode 247
bus 97
bus driver 97
buss 97
BUSY 194
BUSY/DONE state 194
butterworth filter 327
bypass capacitor 97, 324
byte 3
byte data link communications 33, 430

cache 260
cached I/O 260
call by name 66
call by reference 66
call by result 66
call by value 66, 68
cardinality 57
carry bit 18
cascade 327
case 5 3
cast 47

483

484 Index

centralized 401
Centronics printer 251
channel 399
character string 59
chebyshev filter 328
chip enable 102
circuit 401
clear port 129
clear to send 406
clip 455
clock 95
clocked flip-flop 100
cluster 466
coincident select keyboard 234
column major order 59
command phase 464
common mode 322
comparator 308
compare instruction 20
compiler 4
complement a variable 95
complementary metal oxide

semiconductor 96
complete decoding 111
completing 195
computer operating properly 289
conditional branch 25
configure 141
constructor 74
contact bounce 231
context switch 259
control instruction 6, 23
control memory 7
control port 141
control transformer 311
controller 3
coordinated 398
coprocessor 26 i
copy name 96
counter 101
CRC 428
critical section 221
cycle steal mode 247
cyclic redundancy check 428
cylinder 456

D edge-triggered flip-flop 100
D flip-flop 100
D master slave flip-flop 100
D-to-A converter 308
darlington transistor 314
data accepted 434

data acquisition system 344
data available 434
data coupler 406
data member 73
data operator 3
data structure 55
data terminal ready 406
data transfer 7
data transfer order 7
deallocate 48
deallocator 74
declaration of a parameter 47
declaration of a variable 47
decode cycle 7
define constant 30
define statement 56
define storage 29
delta converter 340
deque 64
derived class 76
destructor 74
determinate 94
device 122
device driver 131
device handler 27
device independence 131
device requests an interrupt 210, 212
differential amplifier 319
differential line 401
digital filter 351
digital-to-analog converter 308
direct addressing 11
direct I/O 162
direct memory access 258
direct-current motor 309
direct-current tachometer 311
direction port 141
directory 467
disable 214
disable microprocessor 211, 212
disarm 214
displacement 12
distributed 401
DMA channel 259
DMA transfer 259
do while statement 54
DONE 194
double buffering 409
double-indexed addressing 14
DRAM 3
dual in-line package 96
dual supply 321

485

dual-slope converter 340
dynamic efficiency 9
dynamic logic 99
dynamic RAM 3

E clock 106
eager buffer management 260
edit instruction 22
EEPROM 3
effective address 5
electrically erasable programmable read-only

memory 3
element 152
enable 98, 214
enable interrupt 211, 212
enable microprocessor 211, 212
encapsulated 73
end-to-end communication 399
enum statement 56
EPROM 3
equate 29
equivalent signal 95
erasable programmable read-only memory 3
execute cycle 7
execution phase 464
expanded bus mode 33
expansion program page 26
external address 284

factor 77
false 94
family 96
fan-in 97
fan-out 97
feedback 317
feedback system plant 351
fetch 3
fetch cycle 7
fetch-execute cycle 7
field-effect transistor 314
file-allocation table (FAT) 467
fill 457
flag pattern 429
flash memory 3, 33
for statement 54
formal parameter 66, 96
format 459, 462
formatted capacity 458
frame 446
frame level 400
framing error 409
frequency 307

frequency multiplexing 399
frequency shift keying 399
frequency-to-voltage converter
full duplex 399
function member 73
function-member checking 136

gadfly 198
gadfly loop 198
gate 97
governed 401
ground loop 324
ground plane 324

half duplex 399
half-carry bit 18
handler 211, 212
handling an interrupt 27
handshake 200
handshake protocol 400
hardware interrupt 27
heat sink 326
hexadecimal notation 4
high 94
high-level language 4
high-pass filter 327
histogram 384
hold time 101
honor an interrupt 211, 213
horizontal retrace 447
horizontal sync 447
host 295
Huffman code 61
hysteresis 320
hysteresis synchronous motor 309

I/O channel 260
I/O channel program 260
I/O device 122
I/O interrupt 27
I/O redirection 131
IDLE 194
immediate addressing 13
implementation 2
implied addressing 12
implied seek 461
incomplete decoding 111
index addressing 14
index hole 457
index pulse 457
index register 14
indexable deque 64

486 Index

indirect address 15
indirect I/O 162
indirect memory 262
induction motor 309
information frame 429
information hiding 80
information structure 55
inheritance 77
initialization ritual 141
initialize 30
initiator 435
input capture 382
input instruction 122
input port 95, 122
input state 150
input/output 3
integral cycle control 316
interleave factor 457
internal address 284
interpreter 149
interrupt 210
interrupt handler 27
interrupt inhibit bit 18
interrupt mask bit 18
interrupt service routine 27
inverting amplifier 317
isolated I/O 122

jump 6
jump to subroutine 15, 26

large-scale integrated circuit
latch 101
latency time 27
lazy buffer management 260
LCD 311
LED 311
levels of abstraction 398
light-emitting diode 311
linear mode 317
linear variable displacement transformer 311
linear-select keyboard 233
link control 399
link variable 95
linked list 58
linked-list structure 152
liquid crystal display 311
list 58
loadS
load cell 314
local data 15
location counter 28

lock 123
logic diagram 96
logic instruction 21
logic timer 148
logical operator 50
logical sector number 457
low 94
low storbe 106
low-pass filter 327
low-power Schottky 96

machine code 4
machine state 27
macro 8, 70
Manchester code 400
mask microprocessor 211, 212
master/slave 401
matrix keyboard 234
Mealy sequential machine 150
medium 399
medium-scale integrated circuit 96
memorize 5
memorize cycle 7
memory access time 102
memory clock 7
memory cycle 7, 102, 106
memory cycle time 102
memory map 35
memory variable 95
memory-mapped I/O 23, 122
message level 400
microcomputer 9
microcontroller 9
microinstruction 7
microprocessor 9
microprogramming 7
mnemonic 4
modem 405
module 95
monitor 27
motor 309
move instruction 17
multi-input-multi-output controller 352
multiplying D-to-A converter 335
multithread scheduling 245

n-rekey rollover 248
narrow mode 106
National Television System Committee 446
negate a variable 94
negative bit 18
negative logic 95

Index 487

nesting of subroutine 15
network control 399
new 76
next internal state 150
noninverting amplifier 319
no-operation 24
nonsequenced frame 429
notch filter 327
NTSC 446
NTSC composite video signal 447
Nyquist rate 334

object 73
object driver 135
offset 14
offset adjustment 322
one-shot 101
on/off control 316
OP AMP 317
opcode 7
open collector gate 98
operating system 300
operational amplifier 317
operator overloading 81
opto-isolator 203, 312
organization 2
origin 28
originate modem 405
output compare 364
output instruction 122
output port 95, 122
output state 150
oven 313
overflow bit 18
overflow error 64
overriding 77
overrun error 409

page 14
page addressing 13
page relative addressing 15
page zero 14
PAL 102
parallel 327
parallel A-to-D converter 338
parameter 66
parity error 409
passive 403
peer 398
peer-to-peer interlace 398
pending request 211, 213
period 307

periodic waveform 307
personal computer 9
phantoming 299
phase 307
photodetector 312
photodiode312
photomultiplier 312
photoresistor 312
phototransistor 312
physical control 399
pipe 257
pipeline converter 338
pixel 446
pointer addressing 14
pointer register 14
poll 222
polymorphism 78
pop bottom element 64
pop top element 64
port 122
position independence 24
positive logic 95
potentiometer 310
power transistor 314
PPAGE 26
precision 57
present internal state 150
primary 430
primary memory 3
priority 246
priority order 222
private 80
procedure 46
program counter 3
program sequence 6
programmable array logic 102
programmable read-only memory 3, 102
PROM 3, 102
proportional cycle control 316
proportional integral differential controller 351
protected 80
protocol 400
prototype 69
public 80
pull 14
pull bottom element 64
pull top element 64
pull-up resistor 98
pulse width 383
pulse-width modulation 366
pulse-width modulator 33
push 14

488 Index

push bottom element 64
push top element 64
PWM 33, 366

queue 65

R-2R ladder 335
R/W 106
RAM 102
ramp converter 340
random-access memory 3,102
raster line 446
read address trigger 130
read cycle 106
read enable 102
read id 462
read sector 461
read-only memory 3
read/not write 102
readlwrite 106
readable output port 124
ready for data 434
real-time interrupt timer 244
real-time synchronization 196
realization 2
recalibrate 462
recall cycle 7
recalling 5
recursion 28
reentrant 28
register 83, 101
register addressing 12
relational operator 50
remote job entry 427
request an interrupt 211, 212
reset handler 299
restore 462
result phase 464
return from interrupt 27
return from subroutine 15, 26
return statement 68
ring indicator 406
ROM 3
root class 76
root directory 467
round-robin 226
row-majororder59
RS-442 standard 403

sample 333
sampling rate 334
saturated mode 317

Schmitt trigger 320
screen the part 108
SCSI 435
SDLC 429
secondary 430
secondary storage 455
sector 457
seek cylinder 461
sense drive 462
sense status 462
sequential machine 150
service routine 225
servo converter 340
set port 129
settling time 323, 457
setup time 101
shaded pole motor 309
shadowed output 126
shaft encoder 310
shift register 101
shuffle stack 252
shuttle memory 262
signal 94
silicon controlled rectifier 315
simplex 399
single supply 321
single-chip microcomputer 9
single-chip mode 32
sinusoidal alternating current 307
sixteen's complement 24
sleep 245
sleepTime 246
slide potentiometer 310
small computer system interface 435
small-scale integrated circuit 96
software disarming 222
solenoid 309
source-code upward compatible 4
specify 462
spline 350
SRAM 3
stack 14, 65, 400
stack buffer 14
stack overflow 15
stack pointer 14
stack underflow 15
start bit 408
starting 195
statement 47
static 83
static efficiency 9
static RAM 3

489

steal a memory cycle 259
step rate 457
stepping motor 309
STOP 256
stop bit 408
stop disable bit 18
stopping 195
storage structure 55
store 5
store and forward 401
strain gauge 310
string 59
struct 58
structure 58, 401
structured programming 72
Stub] 36
subclass 76
subroutine 8, 26
subtract with carry 20
successive-approximation converter 340
summing amplifier 317
supervisory frame 429
surface 456
switch hook 406
symbolic address 5
sync separator 447
synchronization 193
synchronous 95, 121, 400
synchronous data link control 429

table 59
target 296, 435
template 152
template class 80
thermistor 313
thermocouple 313
thin-quad flat pack 96
thread 245
tick 245
time multiplexing 399
lime-multiplexed memory 262
timer 320
top-down design 12
(ouch-tone signal 369
track 456
transducer 309
transistor 114
transparent DMA 265
transparent mode 428
triac 315
Cristate bus 98
instate enable 98

tristate gate 98
true 94
type 96
type name 96
typedef statement 58

UART protocol 408
underflow error 64
unformatted capacity 458
universal asynchronous receiver-transmitter 408
universal motor 309
universal product code 236
upward compatible 4

variable 94
vector 57
vectored interrupt 228
verify instance 465
vertical field-effect transistor 314
vertical retrace 447
vertical sync 447
very large scale integrated circuit 96
video RAM 265
virtual 78
virtual ground 319
void 69
volatile 139
voltage follower 319
voltage-to-frequency converter 308, 341
von Neumann computer 2
VRAM 265

WAI 256
wait-and-see 231
while statement 53
wide mode 106
window 454
wire-OR 98
word 3, 102
word width 102
write-address trigger 130
write cycle 106
write enable 102
write sector 462

X-10 203, 237
X.25 430

Z-transform 351
zero bit 18
zero-origin indexing 57

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT")
CANNOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD "AS IS" WITHOUT
WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF
PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE OPTICAL DISK(S)
ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND
FAULTY WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF
NINETY (90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHAS-
ER'S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY
LIMITED TO EITHER REPLACEMENT OF THE DISK(S) OR REFUND OF THE PUR–
CHASE PRICE, AT AP'S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED
IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER
FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO
THE CONTENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILI-
TY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE DISK MUST BE POSTAGE PRE-
PAID AND MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE DISK, YOUR
MAILING ADDRESS AND TELEPHONE NUMBER, AND PROOF OF DATE OF PUR-
CHASE AND PURCHASE PRICE. SEND SUCH REQUESTS, STATING THE NATURE OF
THE PROBLEM, TO ACADEMIC PRESS CUSTOMER SERVICE, 6277 SEA HARBOR
DRIVE, ORLANDO, FL 32887, 1-800-321-5068. AP SHALL HAVE NO OBLIGATION TO
REFUND THE PURCHASE PRICE OR TO REPLACE A DISK BASED ON CLAIMS OF
DEFECTS IN THE NATURE OR OPERATION OF THE PRODUCT.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRAN-
TY LASTS, NOR EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGE, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY
TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY
ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE
UNITED STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS
AMENDED. ANY FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE
WITH THE UNITED STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGU-
LATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND
NOT THE RESPONSIBILITY OF AP.

	Contents
	Preface
	List of Figures
	List of Tables
	Acknowledgments
	About the Author
	1 Microcomputer Architecture
	1.1 An Introduction to the Microcomputer
	1.1.1 Computer Architecture
	1.1.2 The Instruction
	1.1.3 Microcomputers

	1.2 The 6812 Instruction Set
	1.2.1 6812 Addressing Modes
	1.2.2 6812 Data Operator Instructions
	1.2.3 6812 Control Instructions

	1.3 Assembly-Language Directives
	1.4 Organization of 6812 Microcontrollers
	1.4.1 Notation for Block Diagrams
	1.4.2 6812 Microcontroller I/O and Memory Organization
	1.4.3 The MC68HC812A4 and MC68HC912B32 Memory Maps

	1.5 Conclusions
	1 Problems

	2 Programming Microcomputers
	2.1 Introduction to C
	2.2 Data Structures
	2.2.1 Indexable Data Structures
	2.2.2 Sequential Data Structures

	2.3 Writing Clear C Programs
	2.3.1 C Procedures and Their Arguments
	2.3.2 Programming Style
	2.3.3 Object-Oriented Programming
	2.3.4 Optimizing C Programs Using Declarations
	2.3.5 Optimizing C Programs with Assembly Language

	2.4 Conclusions
	2 Problems

	3 Bus Hardware and Signals
	3.1 Digital Hardware
	3.1.1 Modules and Signals
	3.1.2 Drivers, Registers, and Memories

	3.2 Address and Control Signals in 6812 Microcontrollers
	3.2.1 Address and Control Timing
	3.2.2 Address and Control Signal Decoding

	3.3 Conclusions
	3 Problems

	4. Parallel and Serial Input/Output
	4.1 I/O Devices and Ports
	4.1.1 Generic Port Architecture
	4.1.2 Generic Port Classes
	4.1.3 Debugging Tools

	4.2 6812 Parallel Ports
	4.2.1 MC68HC812A4 Port Architecture
	4.2.2 MC68HC912B32 Port Architecture
	4.2.3 Programming of PORTA
	4.2.4 A Class for Ports with Direction Control

	4.3 Input/Output Software
	4.3.1 A Wire
	4.3.2 A Movie
	4.3.3 A Traffic Light Controller
	4.3.4 A Sequential Machine
	4.3.5 An IC Tester
	4.3.6 Object-oriented Vector Functions and Interpreters

	4.4 Input/Output Indirection
	4.4.1 Indirect Input/Output
	4.4.2 LCD Interfacing
	4.4.3 Synchronous Serial Input/Output
	4.4.4 The 6812 SPI Module
	4.4.5 Accessing Devices Using Vectors and structs
	4.4.6 Indirect and Serial I/O Objects

	4.5 A Designer's Selection of I/O Ports and Software
	4.6 Conclusions
	4 Problems

	5 Interrupts and Alternatives
	5.1 Programmed Synchronization
	5.1.1 Real-time Synchronization
	5.1.2 Gadfly Synchronization
	5.1.3 Handshaking
	5.1.4 Some Examples of Programmed I/O
	5.1.5 Object-oriented Classes for Programmed I/O

	5.2 Interrupt Synchronization
	5.2.1 Steps in an Interrupt
	5.2.2 Interrupt Handlers and Critical Sections
	5.2.3 Polled Interrupts
	5.2.4 Vectored Interrupts
	5.2.5 Examples of Interrupt Synchronization
	5.2.6 Object-oriented Classes for Interrupts

	5.3 Time-Sharing
	5.3.1 Real-time Interrupts
	5.3.2 Multithread Scheduling
	5.3.3 Threads for Time-sharing
	5.3.4 An Efficient Time Schedular
	5.3.5 Special Instructions for Time-sharing
	5.3.6 Object-oriented Classes for Time-sharing

	5.4 Fast Synchronization Mechanisms
	5.4.1 Direct Memory Access
	5.4.2 Context Switching
	5.4.3 Memory Buffer Synchronization

	5.5 Conclusions
	5 Problems

	6 System Control
	6.1 6812 Chip Modes
	6.1.1 MODE Control Port
	6.1.2 Port E Assignment

	6.2 6812 Memory Map Control
	6.2.1 Internal Memory Map Control
	6.2.2 MC68HC812A4 Chip Selects
	6.2.3 MC68HC812A4 Memory Expansion
	6.2.4 Object-oriented Programming of Memory Expansion

	6.3 EEPROM and Flash Memory Programming
	6.4 MC68HC812A4 Timing Control
	6.5 An External Memory for the MC68HC812A4
	6.6 The 6812 Background Debug Module
	6.7 6812 Reset Handler
	6.8 Conclusions
	6 Problems

	7 Analog Interfacing
	7.1 Input and Output Transducers
	7.1.1 Positional Transducers
	7.1.2 Radiant Energy Transducers
	7.1.3 Other Transducers

	7.2 Basic Analog Processing Components
	7.2.1 Transistors and Silicon Controlled Rectifiers
	7.2.2 Basic Linear Integrated Circuits
	7.2.3 Practical Linear Integrated Circuits

	7.3 OP AMP and Analog Switch Signal Conditioning
	7.3.1 Filters
	7.3.2 Selection of Inputs and Control of Gain
	7.3.3 Nonlinear Amplification

	7.4 Converters
	7.4.1 Digital-to-Analog Converters
	7.4.2 Analog-to-Digital Converters
	7.4.3 Voltage Conversion to or from Frequency

	7.5 Data Acquisition Systems
	7.5.1 Basic Operation of a Data Acquisition System
	7.5.2 The MC145040 A-to-D Converter
	7.5.3 The MC68HC812A4 A-to-D Converter
	7.5.4 Object-oriented Programming of Converters
	7.5.5 Applications in Control Systems

	7.6 Conclusions
	7 Problems

	8 Counters and Timers
	8.1 The MC68HC812A4 Counter/Timer Subsystem
	8.2 Signal Generation
	8.2.1 Output Compare Logic
	8.2.2 The Counter/Timer Square-Wave Generator
	8.2.3 The MC68HC912B32 PWM Signal Generator
	8.2.4 A Touch-tone Signal Generator
	8.2.5 The Pulse Generator
	8.2.6 A Rotary Dialer
	8.2.7 Real-Time Clock and Trace Mechanism
	8.2.8 Output Compare 7
	8.2.9 Object-oriented Square-wave and Pulse Generation

	8.3 Frequency and Period Measurement
	8.3.1 The Input Capture Mechanism and Period Measurement
	8.3.2 Pulse-width Measurement
	8.3.3 Triac Control
	8.3.4 Pulse Accumulation and Frequency Measurement
	8.3.5 Object-oriented Period, Pulse-width, and Frequency Measurements

	8.4 Conclusions
	8 Problems

	9. Communications Systems
	9.1 Communications Principles
	9.2 Signal Transmission
	9.2.1 Voltage and Current Linkages
	9.2.2 Frequency Shift-Keyed Links Using Modems
	9.2.3 Infrared Links

	9.3 UART Link Protocol
	9.3.1 UART Transmission and Reception by Software
	9.3.2 The UART
	9.3.3 The ACIA
	9.3.4 The M14469
	9.3.5 The Serial Communication Interface System in the 6812
	9.3.6 Object-oriented Interfacing to the SCI

	9.4 Other Protocols
	9.4.1 Synchronous Bit-oriented Protocols
	9.4.2 MC68HC912B32 BDLC Device
	9.4.3 IEEE-488 Bus Standard
	9.4.4 The Small Computer System Interface (SCSI)

	9.5 Conclusions
	9 Problems

	10. Display and Storage Systems
	10.1 Display Systems
	10.1.1 NTSC Television Signals
	10.1.2 A 6812 SPI Display
	10.1.3 A Bitmapped Display
	10.1.4 An Object-oriented Display

	10.2 Storage Systems
	10.2.1 Floppy Disk Format
	10.2.2. The Western Digital 37C65C Floppy Disk Controller
	10.2.3. Floppy Disk Interfacing Procedures
	10.2.4 Personal Computer Disk Data Organization
	10.2.5 Object-oriented Disk I/O

	10.3 Conclusions
	Problems

	Appendix. Using the HIWAVE CD-ROM
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

