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Introduction 
Over the years, our computing lifestyles have changed. Today, everyone sees the value of 
the Internet, and our computing lifestyle is becoming more and more dependent on Web-
based services. Personally, I love to shop, get traffic conditions, compare products, buy 
tickets, and read product reviews all via the Internet. 

However, I’m finding that there are still many things I’d like to do using the Internet that aren’t 
possible today. For example, I’d like to find restaurants in my area that serve a particular 
cuisine. Furthermore, I’d like to be able to ask if the restaurant has any seating for, say, 7:00 
p.m. that night. Or if I had my own business, I might like to know which vendor has a 
particular item in stock. If multiple vendors can supply me with the item, I’d like to be able to 
find out which vendor offers the least expensive price for the item or maybe which vendor 
can deliver the item to me the fastest. 

Services like these don’t exist today for two main reasons. The first reason is that no 
standards are in place for integrating all this information. After all, vendors today each have 
their own way of describing what they sell. The emerging standard for describing all types of 
information is Extensible Markup Language (XML). The second reason these services don’t 
exist today is the complexity of developing the code necessary to integrate such services. 

Microsoft has a vision in which selling services is the way of the future—that is, companies 
will offer services and interested users can consume these services. Many services will be 
free; others will be available through a subscription plan, and still others will be charged per 
use. You can think of these services as the execution of some business logic. Here are 
some examples of services: 
§ Validating a credit card purchase 
§ Getting directions from point A to point B 
§ Viewing a restaurant’s menu 
§ Booking a flight on an airline, a hotel room, or a rental car 
§ Updating photos in an online photo album 
§ Merging your calendar and your children’s calendars to plan a family vacation 
§ Paying a bill from a checking account 
§ Tracking a package being shipped to you 

I could go on and on with ideas for services that any company could implement. Without a 
doubt, Microsoft will build some of these services and offer them in the near future. Other 
companies (like yours) will also produce services, some of which might compete with 
Microsoft in a free market. 

So how do we get from where we are today to a world in which all these services are easily 
available? And how do we produce applications—HTML-based or otherwise—that use and 
combine these services to produce rich features for the user? For example, if restaurants 
offered the service of retrieving their menu, an application could be written to query every 
restaurant’s menu, search for a specific cuisine or dish, and then present only those 
restaurants in the user’s own neighborhood in the application. 

 
Note  

To create rich applications like these, businesses must offer a programmatic 
interface to their business logic services. This programmatic interface must 
be callable remotely using a network, like the Internet. This is what the 
Microsoft .NET initiative is all about. Simply stated, the .NET initiative is all 
about connecting information, people, and devices.  

Let me explain it this way: Computers have peripherals—mouse, monitor, keyboard, digital 
cameras, and scanners—connected to them. An operating system, such as Microsoft 



Windows, provides a development platform that abstracts the application’s access to these 
peripherals. You can even think of these peripherals as services, in a way. 

In this new world, the services (or peripherals) are now connected to the Internet. 
Developers want an easy way to access these services. Part of the Microsoft .NET initiative 
is to provide this development platform. The following diagram shows an analogy. On the 
left, Windows is the development platform that abstracts the hardware peripheral differences 
from the application developer. On the right, the Microsoft .NET Framework is the 
development platform that abstracts the XML Web service communication from the 
application developer. 

 

Although a leader in the development and definition of the standards involved in making this 
new world possible, Microsoft doesn’t own any of the standards. Client machines describe a 
server request by creating specially formatted XML and then sending it (typically using 
HTTP) over an intranet or the Internet. Servers know how to parse the XML data, process 
the client’s request, and return the response as XML back to the client. Simple Object 
Access Protocol (SOAP) is the term used to describe the specially formatted XML when it is 
sent using HTTP. 

The following figure shows a bunch of XML Web services all communicating with one 
another using SOAP with its XML payload. The figure also shows clients running 
applications that can talk to Web services and even other clients via SOAP (XML). In 
addition, the figure shows a client getting its results via HTML from a Web server. Here the 
user probably filled out a Web form, which was sent back to the Web server. The Web 
server processed the user’s request (which involved communicating with some Web 
services), and the results are ultimately sent back to the user via a standard HTML page. 



 

In addition, the computers providing the services must be running an operating system that 
is listening for these SOAP requests. Microsoft hopes that this operating system will be 
Windows, but Windows isn’t a requirement. Any operating system that can listen on a 
TCP/IP socket port and read/write bytes to the port is good enough. In the not too distant 
future, mobile phones, pagers, automobiles, microwave ovens, refrigerators, watches, stereo 
equipment, game consoles, and all kinds of other devices will also be able to participate in 
this new world.  

On the client or application side, an operating system must be running that can read/write to 
a socket port to issue service requests. The client’s computer must also be capable of 
supporting whatever features the user’s application desires. If the user’s application wants to 
create a window or a menu, the operating system must provide this functionality or the 
application developer must implement it manually. Of course, Microsoft hopes that people 
will write applications that take advantage of the rich feature set in Windows, but again, 
Windows is a recommendation, not a necessity. 

What I’m trying to say is that this new world will happen whether Microsoft is a part of it or 
not. Microsoft’s .NET initiative is all about making it really easy for developers to create and 
access these services. 

Today, we could all go write our own operating system and create our own custom Web 
servers to listen and manually process SOAP requests if we wanted to, but it’s really hard 
and would take a long time. Microsoft has taken on all this hard work for us, and we can just 
leverage Microsoft’s efforts to greatly simplify our own development efforts. Now we, as 
application developers, can concentrate and focus on our business logic and services, 
leaving all the communication protocols and plumbing to Microsoft (who has a lot of 
developers that just love to do this nitty-gritty stuff). 

What Makes Up the Microsoft .NET Initiative 

I’ve been working with Microsoft and its technologies for many years now. Over the years, 
I’ve seen Microsoft introduce all kinds of new technologies and initiatives: MS-DOS, 
Windows, Windows CE, OLE, COM, ActiveX, COM+, Windows DNA, and so on. When I first 



started hearing about Microsoft’s .NET initiative, I was surprised at how solid Microsoft’s 
story seemed to be. It really seemed to me that they had a vision and a plan and that they 
had rallied the troops to implement the plan. 

I contrast Microsoft’s .NET platform to ActiveX, which was just a new name given to good old 
COM to make it seem more user friendly. ActiveX didn’t mean much (or so many developers 
thought), and the term, along with ActiveX controls, never really took off. I also contrast 
Microsoft’s .NET initiative to Windows DNA (Distributed InterNet Architecture), which was 
another marketing label that Microsoft tacked onto a bunch of already existing technologies. 
But I really believe in the Microsoft .NET initiative, and to prove it, I’ve written this book. So, 
what exactly constitutes the Microsoft .NET initiative? Well, there are several parts to it, and 
I’ll describe each one in the following sections. 

An Underlying Operating System: Windows 

Because these Web services and applications that use Web services run on computers and 
because computers have peripherals, we still need an operating system. Microsoft suggests 
that people use Windows. Specifically, Microsoft is adding XML Web serviceÐspecific 
features to its Windows line of operating systems, and Windows XP and the servers in the 
Windows .NET Server Family will be the versions best suited for this new service-driven 
world.  

Specifically, Windows XP and the Windows .NET Server Family products have integrated 
support for Microsoft .NET Passport XML Web service. Passport is a service that 
authenticates users. Many Web services will require user authentication to access 
information securely. When users log on to a computer running Windows XP or one of the 
servers from the Windows .NET Server Family, they are effectively logging on to every Web 
site and Web service that uses Passport for authentication. This means that users won’t 
have to enter usernames and passwords as they access different Internet sites. As you can 
imagine, Passport is a huge benefit to users: one identity and password for everything you 
do, and you have to enter it only once! 

In addition, Windows XP and the Windows .NET Server Family products have some built-in 
support for loading and executing applications implementing the .NET Framework. Finally, 
Windows XP and the Windows .NET Server Family operating systems have a new, 
extensible instant messaging notification application. This application allows third-party 
vendors (such as Expedia, the United States Postal Service, and many others) to 
communicate with users seamlessly. For example, users can receive automatic notifications 
when their flights are delayed (from Expedia) and when a package is ready to be delivered 
(from the U.S. Postal Service). 

I don’t know about you, but I’ve been hoping for services like these for years—I can’t wait! 

Helpful Products: The .NET Enterprise Servers 

As part of the .NET initiative, Microsoft is providing several products that companies can 
choose to use if their business logic (services) find them useful. Here are some of 
Microsoft’s enterprise server products: 
§ Microsoft Application Center 2000 
§ Microsoft BizTalk Server 2000 
§ Microsoft Commerce Server 2000 
§ Microsoft Exchange 2000 
§ Microsoft Host Integration Server 2000 
§ Microsoft Internet Security and Acceleration (ISA) Server 2000 
§ Microsoft Mobile Information Server 2002 



§ Microsoft SQL Server 2000  

It’s likely that each of these products will eventually have a “.NET” added to its name for 
marketing purposes. But I’m also sure that over time, these products will integrate more 
.NET features into them as Microsoft continues the initiative. 

Microsoft XML Web Services: .NET My Services 

Certainly, Microsoft wants to do more than just provide the underlying technologies that 
allow others to play in this new world. Microsoft wants to play too. So, Microsoft will be 
building its own set of XML Web services: some will be free, and others will require some 
usage fee. Microsoft initially plans to offer the following .NET My Services: 
§ .NET Alerts 
§ .NET ApplicationSettings 
§ .NET Calendar 
§ .NET Categories 
§ .NET Contacts 
§ .NET Devices 
§ .NET Documents 
§ .NET FavoriteWebSites 
§ .NET Inbox 
§ .NET Lists 
§ .NET Locations 
§ .NET Presence 
§ .NET Profile 
§ .NET Services 
§ .NET Wallet 

These consumer-oriented XML Web services are known as Microsoft’s  
“.NET My Services.” You can find out more information about them at  
http://www.Microsoft.com/MyServices/. Over time, Microsoft will add many more consumer 
services and will also be creating business-oriented XML Web services. 

In addition to these public Web services, Microsoft will create internal services for sales data 
and billing. These internal services will be accessible to Microsoft employees only. I 
anticipate that companies will quickly embrace the idea of using Web services on their 
intranets to make internal company information available to employees. The implementation 
of publicly available Internet Web services and applications that consume them will probably 
proceed more slowly. 

The Development Platform: The .NET Framework 

Some of the Microsoft .NET My Services (like Passport) exist today. These services run on 
Windows and are built using technologies such as C/C++, ATL, Win32, COM, and so on. As 
time goes on, these services and new services will ultimately be implemented using newer 
technologies, such as C# (pronounced “C sharp”) and the .NET Framework. 

 
Important  

Even though this entire introduction has been geared toward building 
Internet applications and Web services, the .NET Framework is 
capable of a lot more. All in all, the .NET Framework development 
platform allows developers to build the following kinds of applications: 
XML Web services, Web Forms, Win32 GUI applications, Win32 CUI 
(console UI) applications, services (controlled by the Service Control 
Manager), utilities, and stand-alone components. The material 
presented in this book is applicable to any and all of these application 



presented in this book is applicable to any and all of these application 
types. 

The .NET Framework consists of two parts: the common language runtime (CLR) and the 
Framework Class Library (FCL). The .NET Framework is the part of the initiative that makes 
developing services and applications really easy. And, most important, this is what this book 
is all about: developing applications and XML Web services for the .NET Framework. 

Initially, Microsoft will make the CLR and FCL available in the various versions of Windows, 
including Windows 98, Windows 98 Second Edition, and Windows Me as well as Windows 
NT 4, Windows 2000, and both 32-bit and 64-bit versions of Windows XP and the Windows 
.NET Server Family. A “lite” version of the .NET Framework, called the.NET Compact 
Framework, is also available for PDAs (such as Windows CE and Palm) and appliances 
(small devices). On December 13, 2001, the European Computer Manufacturers Association 
(ECMA) accepted the C# programming language, portions of the CLR, and portions of the 
FCL as standards. It won’t be long before ECMA-compliant versions of these technologies 
appear on a wide variety of operating systems and CPUs.  

 
Note  

Windows XP (both Home Edition and Professional) doesn’t ship with the 
.NET Framework “in the box.” However, the Windows .NET Server Family 
(Windows .NET Web Server, Windows .NET Standard Server, Windows 
.NET Enterprise Server, and Windows .NET Datacenter Server) will include 
the .NET Framework. In fact, this is how the Windows .NET Server Family 
got its name. The next version of Windows (code-named “Longhorn”) will 
include the .NET Framework in all editions. For now, you’ll have to 
redistribute the .NET Framework with your application, and your setup 
program will have to install it. Microsoft does make a .NET Framework 
redistribution file that you’re allowed to freely distribute with your 
application:http://go.microsoft.com/fwlink/?LinkId=5584. 

Almost all programmers are familiar with runtimes and class libraries. I’m sure many of you 
have at least dabbled with the C-runtime library, the standard template library (STL), the 
Microsoft Foundation Class library (MFC), the Active Template Library (ATL), the Visual 
Basic runtime library, or the Java virtual machine. In fact, the Windows operating system 
itself can be thought of as a runtime engine and library. Runtime engines and libraries offer 
services to applications, and we programmers love them because they save us from 
reinventing the same algorithms over and over again. 

The Microsoft .NET Framework allows developers to leverage technologies more than any 
earlier Microsoft development platform did. Specifically, the .NET Framework really delivers 
on code reuse, code specialization, resource management, multilanguage development, 
security, deployment, and administration. While designing this new platform, Microsoft also 
felt it was necessary to improve on some of the deficiencies of the current Windows platform. 
The following list gives you just a small sampling of what the CLR and the FCL provide: 
§ Consistent programming model  Unlike today, where some operating system 

facilities are accessed via dynamic-link library (DLL) functions and other facilities are 
accessed via COM objects, all application services are offered via a common object-
oriented programming model. 

§ Simplified programming model  The CLR seeks to greatly simplify the plumbing and 
arcane constructs required by Win32 and COM. Specifically, the CLR now frees the 
developer from having to understand any of the following concepts: the registry, globally 
unique identifiers (GUIDs), IUnknown, AddRef, Release , HRESULTs, and so on. The 
CLR doesn’t just abstract these concepts away from the developer; these concepts 
simply don’t exist, in any form, in the CLR. Of course, if you want to write a .NET 
Framework application that interoperates with existing, non-.NET code, you must still be 
aware of these concepts.  



§ Run once, run always  All Windows developers are familiar with “DLL hell” versioning 
problems. This situation occurs when components being installed for a new application 
overwrite components of an old application, causing the old application to exhibit 
strange behavior or stop functioning altogether. The architecture of the .NET 
Framework now isolates application components so that an application always loads the 
components that it was built and tested with. If the application runs after installation, 
then the application should always run. This slams shut the gates of “DLL hell.”  

§ Simplified deployment  Today, Windows applications are incredibly difficult to set up 
and deploy. Several files, registry settings, and shortcuts usually need to be created. In 
addition, completely uninstalling an application is nearly impossible. With Windows 
2000, Microsoft introduced a new installation engine that helps with all these issues, but 
it’s still possible that a company authoring a Microsoft installer package might fail to do 
everything correctly. The .NET Framework seeks to banish these issues into history. 
The .NET Framework components (known simply as types) are not referenced by the 
registry. In fact, installing most .NET Framework applications requires no more than 
copying the files to a directory and adding a shortcut to the Start menu, desktop, or 
Quick Launch bar. Uninstalling the application is as simple as deleting the files. 

§ Wide platform reach  When compiling source code for the .NET Framework, the 
compilers produce common intermediate language (CIL) instead of the more traditional 
CPU instructions. At run time, the CLR translates the CIL into native CPU instructions. 
Because the translation to native CPU instructions is done at run time, the translation is 
done for the host CPU. This means that you can deploy your .NET Framework 
application on any machine that has an ECMA-compliant version of the CLR and FCL 
running on it. These machines can be x86, IA64, Alpha, PowerPC, and so on. Users will 
immediately appreciate the value of this broad execution if they ever change their 
computing hardware or operating system. 

§ Programming language integration  COM allows different programming languages 
to interoperate with one another. The .NET Framework allows languages to be 
integrated with one another so that you can use types of another language as if they are 
your own. For example, the CLR makes it possible to create a class in C++ that derives 
from a class implemented in Visual Basic. The CLR allows this because it defines and 
provides a Common Type System (CTS) that all programming languages that target the 
CLR must use. The Common Language Specification (CLS) describes what compiler 
implementers must do in order for their languages to integrate well with other 
languages. Microsoft is itself providing several compilers that produce code targeting 
the runtime: C++ with Managed Extensions, C#, Visual Basic .NET (which now 
subsumes Visual Basic Scripting Edition, or VBScript, and Visual Basic for Applications, 
or VBA), and JScript. In addition, companies other than Microsoft and academic 
institutions are producing compilers for other languages that also target the CLR. 

§ Simplified code reuse  Using the mechanisms described earlier, you can create your 
own classes that offer services to third-party applications. This makes it extremely 
simple to reuse code and also creates a large market for component (type) vendors. 

§ Automatic memory and management (garbage collection) Programming requires 
great skill and discipline, especially when it comes to managing the use of resources 
such as files, memory, screen space, network connections, database resources, and so 
on. One of the most common bugs is neglecting to free one of these resources, 
ultimately causing the application to perform improperly at some unpredictable time. 
The CLR automatically tracks resource usage, guaranteeing that your application never 
leaks resources. In fact, there is no way to explicitly “free” memory. In Chapter 19, 
“Automatic Memory Management (Garbage Collection),” I explain exactly how garbage 
collection works. 

§ Type-safe verification  The CLR can verify that all your code is type-safe. Type safety 
ensures that allocated objects are always accessed in compatible ways. Hence, if a 
method input parameter is declared as accepting a 4-byte value, the CLR will detect 
and trap attempts to access the parameter as an 8-byte value. Similarly, if an object 
occupies 10 bytes in memory, the application can’t coerce the object into a form that will 



allow more than 10 bytes to be read. Type safety also means that execution flow will 
transfer only to well-known locations (that is, method entry points). There is no way to 
construct an arbitrary reference to a memory location and cause code at that location to 
start executing. Together, these measures ensure type safety eliminating many 
common programming errors and classic system attacks (for example, exploiting buffer 
overruns). 

§ Rich debugging support  Because the CLR is used for many programming 
languages, it is now much easier to implement portions of your application using the 
language best suited to a particular task. The CLR fully supports debugging applications 
that cross language boundaries.  

§ Consistent method failure paradigm  One of the most aggravating aspects of 
Windows programming is the inconsistent style that functions use to report failures. 
Some functions return Win32 status codes, some functions return HRESULTs, and 
some functions throw exceptions. In the CLR, all failures are reported via exceptions—
period. Exceptions allow the developer to isolate the failure recovery code from the 
code required to get the work done. This separation greatly simplifies writing, reading, 
and maintaining code. In addition, exceptions work across module and programming 
language boundaries. And, unlike status codes and HRESULTs, exceptions can’t be 
ignored. The CLR also provides built-in stack-walking facilities, making it much easier to 
locate any bugs and failures. 

§ Security  Traditional operating system security provides isolation and access control 
based on user accounts. This model has proven useful, but at its core assumes that all 
code is equally trustworthy. This assumption was justified when all code was installed 
from physical media (for example, CD-ROM) or trusted corporate servers. But with the 
increasing reliance on mobile code such as Web scripts, applications downloaded over 
the Internet, and e-mail attachments, we need ways to control the behavior of 
applications in a more code-centric manner. Code access security provides a means to 
do this. 

§ Interoperability  Microsoft realizes that developers already have an enormous amount 
of existing code and components. Rewriting all this code to take full advantage of the 
.NET Framework platform would be a huge undertaking and would prevent the speedy 
adoption of this platform. So the .NET Framework fully supports the ability for the 
developer to access their existing COM components as well as call Win32 functions in 
existing DLLs. 

Users won’t directly appreciate the CLR and its capabilities, but they will certainly notice the 
quality and features of applications that utilize the CLR. In addition, users and your 
company’s bottom line will appreciate how the CLR allows applications to be developed and 
deployed more rapidly and with less administration than Windows has ever allowed in the 
past. 

The Development Environment: Visual Studio .NET 

The last part of the .NET initiative that I want to mention is Visual Studio .NET. Visual Studio 
.NET is Microsoft’s development environment. Microsoft has been working on it for many 
years and has incorporated a lot of .NET FrameworkÐspecific features into it. Visual Studio 
.NET runs on Windows NT 4, Windows 2000, Windows XP, and the Windows .NET Server 
Family servers, and it will run on future versions of Windows. Of course, the code produced 
by Visual Studio .NET will run on all these Windows platforms plus Windows 98, Windows 
98 Second Edition, and Windows Me. 

Like any good development environment, Visual Studio .NET includes a project manager; a 
source code editor; UI designers; lots of wizards, compilers, linkers, tools, and utilities; 
documentation; and debuggers. It supports building applications for both the 32-bit and 64-
bit Windows platforms as well as for the new .NET Framework platform. Another important 



improvement is that there is now just one integrated development environment for all 
programming languages. 

Microsoft also provides a .NET Framework SDK. This free SDK includes all the language 
compilers, a bunch of tools, and a lot of documentation. Using this SDK, you can develop 
applications for the .NET Framework without using Visual Studio .NET. You’ll just have to 
use your own editor and project management system. You also don’t get drag-and-drop Web 
Forms and Windows Forms building. I use Visual Studio .NET regularly and will refer to it 
throughout this book. However, this book is mostly about programming in general, so Visual 
Studio .NET isn’t required to learn, use, and understand the concepts I present in each 
chapter. 

 
Goal of This Book 

The purpose of this book is to explain how to develop applications for the .NET Framework. 
Specifically, this means that I intend to explain how the CLR works and the facilities it offers. 
I’ll also discuss various parts of the FCL. No book could fully explain the FCL—it contains 
literally thousands of types, and this number is growing at an alarming rate. So, here I’m 
concentrating on the core types that every developer needs to be aware of. And while this 
book isn’t specifically about Windows Forms, XML Web services, Web Forms, and so on, 
the technologies presented in the book are applicable to all these application types. 

With this book, I’m not attempting to teach you any particular programming language. I’m 
assuming that you’re familiar with a programming language such as C++, C#, Visual Basic, 
or Java. I also assume that you’re familiar with object-oriented programming concepts such 
as data abstraction, inheritance, and polymorphism. A good understanding of these 
concepts is critical because all .NET Framework features are offered via an object-oriented 
paradigm. If you’re not familiar with these concepts, I strongly suggest you first find a book 
that teaches these concepts.  

Although I don’t intend to teach basic programming, I will spend time on various 
programming topics that are specific to the .NET Framework. All .NET Framework 
developers must be aware of these topics, which I explain and use throughout this book. 

Finally, because this is a book about the .NET Framework’s common language runtime, it’s 
not about programming in any one specific programming language. However, I provide lots 
of code examples in the book to show how things really work. To remain programming 
language agnostic, the best language for me to use for these examples would be IL 
(intermediate language) assembly language. IL is the only programming language that the 
CLR understands. All language compilers compile source code to IL, which is later 
processed by the CLR. Using IL, you can access every feature offered by the CLR. 

However, using IL assembly language is a pretty low-level way to write programs and isn’t 
an ideal way to demonstrate programming concepts. So I decided to use C# as my 
programming language of choice throughout this entire book. I chose C# because it is the 
language Microsoft designed specifically for developing code for the .NET Framework. If 
you’ve decided not to use C# for your programming projects, that’s OK—I’ll just assume that 
you can read C# even if you’re not programming in it. 

 
System Requirements 

The .NET Framework will install on Windows 98, Windows 98 Second Edition, Windows Me, 
Windows NT 4 (all editions), Windows 2000 (all editions), Windows XP (all editions), and the 
Windows .NET Server Family servers. You can download it from 
http://go.microsoft.com/fwlink/?LinkId=5584. 



The .NET Framework SDK and Visual Studio .NET require Windows NT 4 (all editions), 
Windows 2000 (all editions), Windows XP (all editions), and the servers in the Windows 
.NET Server Family. You can download the .NET Framework SDK from 
http://go.microsoft.com/fwlink/?LinkId=77. You have to buy Visual Studio .NET, of course. 

You can download the code associated with this book from http://www.Wintellect.com. 
 

This Book Has No Mistakes 

This section’s title clearly states what I want to say. But we all know that it is a flat-out lie. My 
editors and I have worked hard to bring you the most accurate, up-to-date, in-depth, easy-to-
read, painless-to-understand, bug-free information. Even with the fantastic team assembled, 
things inevitably slip through the cracks. If you find any mistakes in this book (especially 
bugs), I would greatly appreciate it if you would send the mistakes to me at 
http://www.Wintellect.com. 

 
Support 

Every effort has been made to ensure the accuracy of this book. Microsoft Press provides 
corrections for books through the World Wide Web at the following address: 

http://www.microsoft.com/mspress/support/  

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a 
question or issue that you may have, go to: 

http://www.microsoft.com/mspress/support/search.asp  

If you have comments, questions, or ideas regarding this book, please send them to 
Microsoft Press using either of the following methods: 

Postal Mail: 

Microsoft Press 
Attn: Applied Microsoft .NET Framework Programming Editor 
One Microsoft Way 
Redmond, WA 98052-6399 

E-Mail: 

MSPINPUT@MICROSOFT.COM  

Please note that product support is not offered through the above mail addresses. For 
support information regarding C#, Visual Studio, or the .NET Framework, visit the Microsoft 
Product Standard Support Web site at: 

http://support.microsoft.com  
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Chapter 1: The Architecture of the .NET 
Framework Development Platform 
The Microsoft .NET Framework introduces many new concepts, technologies, and terms. My 
goal in this chapter is to give you an overview of how the .NET Framework is architected, 
introduce you to some of the new technologies the framework includes, and define many of 
the terms you’ll be seeing when you start using it. I’ll also take you through the process of 
building your source code into an application or a set of redistributable components (types) 
and then explain how these components execute. 

Compiling Source Code into Managed Modules 

OK, so you’ve decided to use the .NET Framework as your development platform. Great! 
Your first step is to determine what type of application or component you intend to build. 
Let’s just assume that you’ve completed this minor detail, everything is designed, the 
specifications are written, and you’re ready to start development.  

Now you must decide what programming language to use. This task is usually difficult 
because different languages offer different capabilities. For example, in unmanaged C/C++, 
you have pretty low-level control of the system. You can manage memory exactly the way 
you want to, create threads easily if you need to, and so on. Visual Basic 6, on the other 
hand, allows you to build UI applications very rapidly and makes it easy for you to control 
COM objects and databases.  

The common language runtime (CLR) is just what its name says it is: a runtime that is 
usable by different and varied programming languages. The features of the CLR are 
available to any and all programming languages that target it—period. If the runtime uses 
exceptions to report errors, then all languages get errors reported via exceptions. If the 
runtime allows you to create a thread, then any language can create a thread. 

In fact, at runtime, the CLR has no idea which programming language the developer used for 
the source code. This means that you should choose whatever programming language 
allows you to express your intentions most easily. You can develop your code in any 
programming language you desire as long as the compiler you use to compile your code 
targets the CLR. 

So, if what I say is true, what is the advantage of using one programming language over 
another? Well, I think of compilers as syntax checkers and “correct code” analyzers. They 
examine your source code, ensure that whatever you’ve written makes some sense, and 
then output code that describes your intention. Different programming languages allow you 
to develop using different syntax. Don’t underestimate the value of this choice. For 
mathematical or financial applications, expressing your intentions using APL syntax can 
save many days of development time when compared to expressing the same intention 
using Perl syntax, for example. 

Microsoft is creating several language compilers that target the runtime: C++ with managed 
extensions, C# (pronounced “C sharp”), Visual Basic, JScript, J# (a Java language 
compiler), and an intermediate language (IL) assembler. In addition to Microsoft, several 
other companies are creating compilers that produce code that targets the CLR. I’m aware of 
compilers for Alice, APL, COBOL, Component Pascal, Eiffel, Fortran, Haskell, Mercury, ML, 
Mondrian, Oberon, Perl, Python, RPG, Scheme, and Smalltalk.  

Figure 1-1 shows the process of compiling source code files. As the figure shows, you can 
create source code files using any programming language that supports the CLR. Then you 



use the corresponding compiler to check the syntax and analyze the source code. 
Regardless of which compiler you use, the result is a managed module. A managed module 
is a standard Windows portable executable (PE) file that requires the CLR to execute. In the 
future, other operating systems may use the PE file format as well.  

 
Figure 1-1 : Compiling source code into managed modules  

Table 1-1 describes the parts of a managed module. 

Table 1-1: Parts of a Managed Module  

Part Description 

PE header The standard Windows PE file header, which is similar to the 
Common Object File Format (COFF) header. This header 
indicates the type of file: GUI, CUI, or DLL, and it also has a 
timestamp indicating when the file was built. For modules that 
contain only IL code, the bulk of the information in the PE header 
is ignored. For modules that contain native CPU code, this header 
contains information about the native CPU code. 

CLR header Contains the information (interpreted by the CLR and utilities) that 
makes this a managed module. The header includes the version of 
the CLR required, some flags, the MethodDef metadata token of 
the managed module’s entry point method (Main method), and the 
location/size of the module’s metadata, resources, strong name, 
some flags, and other less interesting stuff. 

Metadata Every managed module contains metadata tables. There are two 
main types of tables: tables that describe the types and members 
defined in your source code and tables that describe the types and 
members referenced by your source code.  

Intermediate 
language (IL) 
code 

Code that the compiler produced as it compiled the source code. 
The CLR later compiles the IL into native CPU instructions.  



Most compilers of the past produced code targeted to a specific CPU architecture, such as 
x86, IA64, Alpha, or PowerPC. All CLR-compliant compilers produce IL code instead. (I’ll go 
into more detail about IL code later in this chapter.) IL code is sometimes referred to as 
managed code because the CLR manages its lifetime and execution.  

In addition to emitting IL, every compiler targeting the CLR is required to emit full metadata 
into every managed module. In brief, metadata is simply a set of data tables that describe 
what is defined in the module, such as types and their members. In addition, metadata also 
has tables indicating what the managed module references, such as imported types and 
their members. Metadata is a superset of older technologies such as type libraries and 
interface definition language (IDL) files. The important thing to note is that CLR metadata is 
far more complete. And, unlike type libraries and IDL, metadata is always associated with 
the file that contains the IL code. In fact, the metadata is always embedded in the same 
EXE/DLL as the code, making it impossible to separate the two. Because the compiler 
produces the metadata and the code at the same time and binds them into the resulting 
managed module, the metadata and the IL code it describes are never out of sync with one 
another. 

Metadata has many uses. Here are some of them: 
§ Metadata removes the need for header and library files when compiling since all the 

information about the referenced types/members is contained in the file that has the IL 
that implements the type/members. Compilers can read metadata directly from 
managed modules. 

§ Visual Studio .NET uses metadata to help you write code. Its IntelliSense feature 
parses metadata to tell you what methods a type offers and what parameters that 
method expects. 

§ The CLR’s code verification process uses metadata to ensure that your code performs 
only “safe” operations. (I’ll discuss verification shortly.) 

§ Metadata allows an object’s fields to be serialized into a memory block, remoted to 
another machine, and then deserialized, re-creating the object and its state on the 
remote machine. 

§ Metadata allows the garbage collector to track the lifetime of objects. For any object, 
the garbage collector can determine the type of the object and, from the metadata, 
know which fields within that object refer to other objects. 

In Chapter 2, I’ll describe metadata in much more detail.  

Microsoft’s C#, Visual Basic, JScript, J#, and the IL Assembler always produce managed 
modules that require the CLR to execute. End-users must have the CLR installed on their 
machine in order to execute any managed modules, in the same way that they must have 
the Microsoft Foundation Class (MFC) library or Visual Basic DLLs installed to run MFC or 
Visual Basic 6 applications. 

By default, Microsoft’s C++ compiler builds unmanaged modules: the EXE or DLL files that 
we’re all familiar with. These modules don’t require the CLR in order to execute. However, 
by specifying a new command-line switch, the C++ compiler can produce managed modules 
that do require the CLR to execute. Of all the Microsoft compilers mentioned, C++ is unique 
in that it is the only language that allows the developer to write both managed and 
unmanaged code and have it emitted into a single module. This can be a great feature 
because it allows developers to write the bulk of their application in managed code (for type 
safety and component interoperability) but continue to access their existing unmanaged C++ 
code. 

 
Combining Managed Modules into Assemblies 



The CLR doesn’t actually work with modules; it works with assemblies . An assembly is an 
abstract concept that can be difficult to grasp initially. First, an assembly is a logical grouping 
of one or more managed modules or resource files. Second, an assembly is the smallest unit 
of reuse, security, and versioning. Depending on the choices you make with your compilers 
or tools, you can produce a single-file or a multifile assembly. 

In Chapter 2, I’ll go over assemblies in great detail, so I don’t want to spend a lot of time on 
them here. All I want to do now is make you aware that there is this extra conceptual notion 
that offers a way to treat a group of files as a single entity. 

Figure 1-2 should help explain what assemblies are about. In this figure, some managed 
modules and resource (or data) files are being processed by a tool. This tool produces a 
single PE file that represents the logical grouping of files. What happens is that this PE file 
contains a block of data called the manifest. The manifest is simply another set of metadata 
tables. These tables describe the files that make up the assembly, the publicly exported 
types implemented by the files in the assembly, and the resource or data files that are 
associated with the assembly.  

 
Figure 1-2 : Combining managed modules into assemblies  

By default, compilers actually do the work of turning the emitted managed module into an 
assembly; that is, the C# compiler emits a managed module that contains a manifest. The 
manifest indicates that the assembly consists of just the one file. So, for projects that have 
just one managed module and no resource (or data) files, the assembly will be the managed 
module and you don’t have any additional steps to perform during your build process. If you 
want to group a set of files into an assembly, you’ll have to be aware of more tools (such as 
the assembly linker, AL.exe) and their command-line options. I’ll explain these tools and 
options in Chapter 2. 

An assembly allows you to decouple the logical and physical notions of a reusable, 
deployable, versionable component. How you partition your code and resources into 
different files is completely up to you. For example, you could put rarely used types or 
resources in separate files that are part of an assembly. The separate files could be 
downloaded from the Web as needed. If the files are never needed, they’re never 
downloaded, saving disk space and reducing installation time. Assemblies allow you to 
break up the deployment of the files while still treating all the files as a single collection. 

An assembly’s modules also include information, including version numbers, about 
referenced assemblies. This information makes an assembly self-describing. In other words, 
the CLR knows everything about what an assembly needs in order to execute. No additional 
information is required in the registry or in Active Directory. Because no additional 
information is needed, deploying assemblies is much easier than deploying unmanaged 
components. 



 
Loading the Common Language Runtime 

Each assembly that you build can be either an executable application or a DLL containing a 
set of types (components) for use by an executable application. Of course, the CLR is 
responsible for managing the execution of code contained within these assemblies. This 
means that the .NET Framework must be installed on the host machine. Microsoft has 
created a redistribution package that you can freely ship to install the .NET Framework on 
your customers’ machines. Eventually, the .NET Framework will be packaged with future 
versions of Windows so that you won’t have to ship it with your assemblies.  

You can tell if the .NET Framework has been installed by looking for the MSCorEE.dll file in 
the %windir%\system32 directory. The existence of this file tells you that the .NET 
Framework is installed. However, several versions of the .NET Framework can be installed 
on a single machine simultaneously. If you want to determine exactly which versions of the 
.NET Framework are installed, examine the subkeys under the following registry key:  

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\pol icy 

When you build an EXE assembly, the compiler/linker emits some special information into 
the resulting assembly’s PE file header and the file’s .text section. When the EXE file is 
invoked, this special information causes the CLR to load and initialize. The CLR then locates 
the application’s entry point method and allows the application to start executing. 

Similarly, if an unmanaged application calls LoadLibrary to load a managed assembly, the 
DLL’s entry point function knows to load the CLR in order to process the code contained 
within the assembly.  

For the most part, you don’t need to know about or understand how the CLR gets loaded. 
For most programmers, this special information allows the application to just run, and there’s 
nothing more to think about. For the curious, however, I’ll spend the remainder of this section 
explaining how a managed EXE or DLL starts the CLR. If you’re not interested in this 
subject, feel free to skip to the next section. Also, if you’re interested in building an 
unmanaged application that hosts the CLR, see Chapter 20.  

Figure 1-3 summarizes how a managed EXE loads and initializes the CLR.  



 
Figure 1-3 : Loading and initializing the CLR  

When the compiler/linker creates an executable assembly, the following 6-byte x86 stub 
function is emitted into the PE file’s .text section:  

JMP _CorExeMain 

Because the _CorExeMain function is imported from Microsoft’s MSCorEE.dll dynamic-link 
library, MSCorEE.dll is referenced in the assembly file’s import (.idata) section. MSCorEE.dll 
stands for Microsoft Component Object Runtime Execution Engine. When the managed EXE 
file is invoked, Windows treats it just like any normal (unmanaged) EXE file: the Windows 
loader loads the file and examines the .idata  section to see that MSCorEE.dll should be 
loaded into the process’s address space. Then the loader obtains the address of the 
_CorExeMain function inside MSCorEE.dll and fixes up the stub function’s JMP instruction 
in the managed EXE file. 

The process’s primary thread begins executing this x86 stub function, which immediately 
jumps to _CorExeMain in MSCorEE.dll. _CorExeMain initializes the CLR and then looks at 
the executable assembly’s CLR header to determine what managed entry point method 
should execute. The IL code for the method is then compiled into native CPU instructions, 
and the CLR jumps to the native code (using the process’s primary thread). At this point, the 
managed application’s code is running.  

The situation is similar for a managed DLL. When building a managed DLL, the 
compiler/linker emits a similar 6-byte x86 stub function in the PE file’s .text section for a DLL 
assembly:  

JMP _CorDl lMain 

The _CorDllMain function is also imported from the MSCorEE.dll, causing the DLL’s .idata  
section to reference MSCorEE.dll. When Windows loads the DLL, it will automatically load 
MSCorEE.dll (if it isn’t already loaded), obtain the address of the _CorDllMain function, and 
fix up the 6-byte x86 JMP stub in the managed DLL. The thread that called LoadLibrary to 
load the managed DLL now jumps to the x86 stub in the managed DLL assembly, which 
immediately jumps to the _CorDllMain function in MSCorEE.dll. _CorDllMain initializes the 



CLR (if it hasn’t already been initialized for the process) and then returns so that the 
application can continue executing as normal.  

These 6-byte x86 stub functions are required to run managed assemblies on Windows 98, 
Windows 98 Standard Edition, Windows Me, Windows NT 4, and Windows 2000 because all 
these operating systems shipped long before the CLR became available. Note that the 6-
byte stub function is specifically for x86 machines. This stub doesn’t work properly if the CLR 
is ported to run on other CPU architectures. Because Windows XP and the Windows .NET 
Server Family support both the x86 and the IA64 CPU architectures, Windows XP and the 
Windows .NET Server Family loader was modified to look specifically for managed 
assemblies. 

On Windows XP and the Windows .NET Server Family, when a managed assembly is 
invoked (typically via CreateProcess or LoadLibrary), the OS loader detects that the file 
contains managed code by examining directory entry 14 in the PE file header. (See 
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR in WinNT.h.) If this directory entry 
exists and is not 0, the loader ignores the file’s import (.idata) section and automatically 
loads MSCorEE.dll into the process’s address space. Once loaded, the OS loader makes 
the process’s thread jump directly to the correct function in MSCorEE.dll. The 6-byte x86 
stub functions are ignored on machines running Windows XP and the Windows .NET Server 
Family. 

One last note on managed PE files: they always use the 32 bit PE file format, not the 64-bit 
PE file format. On 64-bit Windows systems, the OS loader detects the managed 32-bit PE 
file and automatically knows to create a 64-bit address space. 

 
Executing Your Assembly’s Code 

As mentioned earlier, managed modules contain both metadata and intermediate language 
(IL). IL is a CPU-independent machine language created by Microsoft after consultation with 
several external commercial and academic language/compiler writers. IL is much higher 
level than most CPU machine languages. IL understands object types and has instructions 
that create and initialize objects, call virtual methods on objects, and manipulate array 
elements directly. It even has instructions that throw and catch exceptions for error handling. 
You can think of IL as an object-oriented machine language.  

Usually, developers will program in a high-level language, such as C# or Visual Basic. The 
compilers for these high-level languages produce IL. However, like any other machine 
language, IL can be written in assembly language, and Microsoft does provide an IL 
Assembler, ILAsm.exe. Microsoft also provides an IL Disassembler, ILDasm.exe. 

 

IL and Protecting Your Intellectual Property 

Some people are concerned that IL doesn’t offer enough intellectual property protection 
for their algorithms. In other words, they think you could build a managed module and 
someone else could use a tool, such as IL Disassembler, to easily reverse engineer 
exactly what your application’s code does.  

Yes, it’s true that IL code is higher level than most other assembly languages and that, 
in general, reverse engineering IL code is relatively simple. However, when 
implementing an XML Web service or a Web Forms application, your managed module 
resides on your server. Because no one outside your company can access the module, 
no one outside your company can use any tool to see the IL—your intellectual property 
is completely safe.  



If you’re concerned about any of the managed modules that you do distribute, you can 
obtain an obfuscator utility from a third-party vendor. These utilities “scramble” the 
names of all the private symbols in your managed module’s metadata. It will be difficult 
for someone to “unscramble” the names and understand the purpose of each method. 
Note that these obfuscators can only provide a little protection since the IL must be 
available at some point in order for the CLR to process it. 

If you don’t feel that an obfuscator offers the kind of intellectual property protection that 
you desire, you can consider implementing your more sensitive algorithms in some 
unmanaged module that will contain native CPU instructions instead of IL and metadata. 
Then you can use the CLR’s interoperability features to communicate between the 
managed and unmanaged portions of your application. Of course, this assumes that 
you’re not worried about people reverse engineering the native CPU instructions in your 
unmanaged code. 
 

 

Keep in mind that any high-level language will most likely expose only a subset of the 
facilities offered by the CLR. However, using IL assembly language allows a developer 
access to all the CLR’s facilities. So, should your programming language of choice hide a 
facility the CLR offers that you really want to take advantage of, you can choose to write that 
portion of your code in IL assembly or perhaps another programming language that exposes 
the CLR feature you seek.  

The only way for you to know what facilities the CLR offers is to read documentation specific 
to the CLR itself. In this book, I try to concentrate on CLR features and how they are 
exposed or not exposed by the C# language. I suspect that most other books and articles 
will present the CLR via a language perspective and that most developers will come to 
believe that the CLR offers only what the developer’s chosen language exposes. As long as 
your language allows you to accomplish what you’re trying to get done, this blurred 
perspective isn’t a bad thing. 

 
Important  

I think that this ability to switch programming languages easily with rich 
integration between languages is an awesome feature of the CLR. 
Unfortunately, I also believe that developers will often overlook this 
feature. Programming languages such as C# and Visual Basic are 
excellent languages for doing I/O operations. APL is a great language 
for doing advanced engineering or financial calculations. Through the 
CLR, you can write the I/O portions of your application using C# and 
then write the engineering calculations part using APL. The CLR offers 
a level of integration between these languages that is unprecedented 
and really makes mixed-language programming worthy of 
consideration for many development projects. 

Another important point to keep in mind about IL is that it isn’t tied to any specific CPU 
platform. This means that a managed module containing IL can run on any CPU platform as 
long as the operating system running on that CPU platform hosts a version of the CLR. 
Although the initial release of the CLR runs only on 32-bit Windows platforms, developing an 
application using managed IL sets up a developer to be more independent of the underlying 
CPU architecture. 

 

Standardizing the .NET Framework 

In October 2000, Microsoft (along with Intel and Hewlett-Packard as co-sponsors) 
proposed a large subset of the .NET Framework to the ECMA (the European Computer 



Manufacturer’s Association) for the purpose of standardization. The ECMA accepted this 
proposal and created a technical committee (TC39) to oversee the standardization 
process. The technical committee is charged with the following duties: 
§Technical Group 1  Develop a dynamic scripting language standard (ECMAScript). 

Microsoft’s implementation of ECMAScript is JScript. 
§Technical Group 2  Develop a standardized version of the C# programming language. 
§Technical Group 3  Develop a Common Language Infrastructure (CLI) based on a 

subset of the functionality offered by the .NET Framework’s CLR and class library. 
Specifically, the CLI will define a file format, a common type system, an extensible 
metadata system, an intermediate language (IL), and access to the underlying 
platform (P/Invoke). In addition, the CLI will define a factorable (to allow for small 
hardware devices) base class library designed for use by multiple programming 
languages. 

Once the standardization is complete, these standards will be contributed to ISO/IEC 
JTC 1 (Information Technology). At this time, the technical committee will also 
investigate further directions for CLI, C#, and ECMAScript as well as entertain proposals 
for any complementary or additional technology. For more information about ECMA, see 
http://www.ECMA.ch and http://MSDN.Microsoft.com/Net/ECMA. 

With the standardization of the CLI, C#, and ECMAScript, Microsoft won’t “own” any of 
these technologies. Microsoft will simply be one company of many (hopefully) that are 
producing implementations of these technologies. Certainly Microsoft hopes that their 
implementation will be the best in terms of performance and customer-demand-driven 
features. This is what will help sales of Windows, since the Microsoft “best of breed” 
implementation will run only on Windows. However, other companies may implement 
these standards, compete against Microsoft, and possibly win. 
 

 

Even though today’s CPUs can’t execute IL instructions directly, CPUs of the future might 
have this capability. To execute a method, its IL must first be converted to native CPU 
instructions. This is the job of the CLR’s JIT (just-in-time) compiler.  

Figure 1-4 shows what happens the first time a method is called. 



 
Figure 1-4 : Calling a method for the first time  

Just before the Main method executes, the CLR detects all the types that are referenced by 
Main’s code. This causes the CLR to allocate an internal data structure that is used to 
manage access to the referenced type. In Figure 1-4, the Main method refers to a single 
type, Console, causing the CLR to allocate a single internal structure. This internal data 
structure contains an entry for each method defined by the type. Each entry holds the 
address where the method’s implementation can be found. When initializing this structure, 
the CLR sets each entry to an internal, undocumented function contained inside the CLR 
itself. I call this function JITCompiler. 

When Main makes its first call to WriteLine , the JITCompiler function is called. The 
JITCompiler function is responsible for compiling a method’s IL code into native CPU 
instructions. Because the IL is being compiled "just in time," this component of the CLR is 
frequently referred to as a JITter or a JIT compiler.  

When called, the JITCompiler function knows what method is being called and what type 
defines this method. The JITCompiler function then searches the defining assembly’s 
metadata for the called method’s IL. JITCompiler next verifies and compiles the IL code into 
native CPU instructions. The native CPU instructions are saved in a dynamically allocated 
block of memory. Then, JITCompiler goes back to the type’s internal data structure and 
replaces the address of the called method with the address of the block of memory 
containing the native CPU instructions. Finally, JITCompiler jumps to the code in the 
memory block. This code is the implementation of the WriteLine  method (the version that 
takes a String parameter). When this code returns, it returns to the code in Main, which 
continues execution as normal.  

Main now calls WriteLine  a second time. This time, the code for WriteLine  has already 
been verified and compiled. So the call goes directly to the block of memory, skipping the 
JITCompiler function entirely. After the WriteLine  method executes, it returns to Main. 
Figure 1-5 shows what the situation looks like when WriteLine  is called the second time. 

A performance hit is incurred only the first time a method is called. All subsequent calls to 
the method execute at the full speed of the native code: verification and compilation to native 
code are not performed again. 



The JIT compiler stores the native CPU instructions in dynamic memory. This means that 
the compiled code is discarded when the application terminates. So, if you run the 
application again in the future or if you run two instances of the application simultaneously 
(in two different operating system processes), the JIT compiler will have to compile the IL to 
native instructions again.  

For most applications, the performance hit incurred by JIT compiling isn’t significant. Most 
applications tend to call the same methods over and over again. These methods will take the 
performance hit only once while the application executes. It’s also likely that more time is 
spent inside the method than calling the method. 

 
Figure 1-5 : Calling a method for the second time  

You should also be aware that the CLR’s JIT compiler optimizes the native code just as the 
back-end of an unmanaged C++ compiler does. Again, it may take more time to produce the 
optimized code, but the code will execute with much better performance than if it hadn’t been 
optimized. 

For those developers coming from an unmanaged C or C++ background, you’re probably 
thinking about the performance ramifications of all this. After all, unmanaged code is 
compiled for a specific CPU platform and, when invoked, the code can simply execute. In 
this managed environment, compiling the code is accomplished in two phases. First, the 
compiler passes over the source code, doing as much work as possible in producing IL. But 
to execute the code, the IL itself must be compiled into native CPU instructions at run time, 
requiring more memory to be allocated and requiring additional CPU time to do the work. 

Believe me, since I approached the CLR from a C/C++ background myself, I was quite 
skeptical and concerned about this additional overhead. The truth is that this second 
compilation stage that occurs at run time does hurt performance and it does allocate 
dynamic memory. However, Microsoft has done a lot of performance work to keep this 
additional overhead to a minimum.  

If you too are skeptical, you should certainly build some applications and test the 
performance for yourself. In addition, you should run some nontrivial managed applications 



Microsoft or others have produced and measure their performance. I think you’ll be surprised 
at how good the performance actually is. 

In fact, you’ll probably find this hard to believe, but many people (including me) think that 
managed applications could actually outperform unmanaged applications. There are many 
reasons to believe this. For example, when the JIT compiler compiles the IL code into native 
code at run time, the compiler knows more about the execution environment than an 
unmanaged compiler would know. Here are some ways that managed code could 
outperform unmanaged code: 
§ A JIT compiler could detect that the application is running on a Pentium 4 and produce 

native code that takes advantage of any special instructions offered by the Pentium 4. 
Usually, unmanaged applications are compiled for the lowest-common-denominator 
CPU and avoid using special instructions that would give the application a performance 
boost over newer CPUs. 

§ A JIT compiler could detect that a certain test is always false on the machine that it is 
running on. For example, consider a method with code like this: 
§i f  (numberOfCPUs > 1) {  

§   ? 

} 

This code could cause the JIT compiler not to generate any CPU instructions if the host 
machine has only one CPU. In this case, the native code has been fine-tuned for the 
host machine: the code is smaller and executes faster. 

§ The CLR could profile the code’s execution and recompile the IL into native code while 
the application runs. The recompiled code could be reorganized to reduce incorrect 
branch predictions depending on the observed execution patterns. 

These are only a few of the reasons why you should expect future managed code to execute 
better than today’s unmanaged code. As I said, the performance is currently quite good for 
most applications, and it promises to improve as time goes on. 

If your experiments show that the CLR’s JIT compiler doesn’t offer your application the kind 
of performance it requires, you may want to take advantage of the NGen.exe tool that ships 
with the .NET Framework SDK. This tool compiles all an assembly’s IL code into native code 
and saves the resulting native code to a file on disk. At run time, when an assembly is 
loaded, the CLR automatically checks to see whether a precompiled version of the assembly 
also exists, and if it does, the CLR loads the precompiled code so that no compilation at run 
time is required.  

IL and Verification 

IL is stack-based, which means that all its instructions push operands onto an execution 
stack and pop results off the stack. Because IL offers no instructions to manipulate registers, 
compiler developers have an easy time producing IL code; they don’t have to think about 
managing registers, and fewer IL instructions are needed (since none exist for manipulating 
registers). 

IL instructions are also typeless. For example, IL offers an add instruction that adds the last 
two operands pushed on the stack; there are not separate 32-bit and 64-bit add instructions. 
When the add instruction executes, it determines the types of the operands on the stack and 
performs the appropriate operation. 



In my opinion, the biggest benefit of IL isn’t that it abstracts away the underlying CPU. The 
biggest benefit is application robustness. While compiling IL into native CPU instructions, the 
CLR performs a process called verification. Verification examines the high-level IL code and 
ensures that everything it does is “safe.” For example, verification checks that no memory is 
read from without having previously been written to, that every method is called with the 
correct number of parameters and that each parameter is of the correct type, that every 
method’s return value is used properly, that every method has a return statement, and so on. 

The managed module’s metadata includes all the method and type information used by the 
verification process. If the IL code is determined to be “unsafe,” then a 
System.Security.VerifierException exception is thrown, preventing the method from 
executing.  

 

Is Your Code Safe? 

By default, the Microsoft C# and Visual Basic compilers produce safe code. Safe code is 
code that is verifiably safe. However, using the unsafe keyword in C# or other 
languages (such as C++ with Managed Extensions or IL assembly language), it’s 
possible to produce code that can’t be verifiably safe. The code might, in fact, be safe, 
but verification is unable to prove this.  

To ensure that all your managed module’s methods contain verifiably safe IL, you can 
use the PEVerify utility (PEVerify.exe) that ships with the .NET Framework SDK. When 
Microsoft tests their C# and Visual Basic compilers, they run the resulting module 
through PEVerify to ensure that the compiler always produces verifiably safe code. If 
PEVerify detects unsafe code, Microsoft fixes the compiler.  

You may want to consider running PEVerify on your own modules before you package 
and ship them. If PEVerify detects a problem, then there is a bug in the compiler and 
you should report it to Microsoft (or whatever company produces the compiler you’re 
using). If PEVerify doesn’t detect any unverifiable code, you know that your code will run 
without throwing a VerifierException on the end-user’s machine. 

You should be aware that verification requires access to the metadata contained in any 
dependant assemblies. So, when you use PEVerify to check an assembly, it must be 
able to locate and load all referenced assemblies. Because PEVerify uses the CLR to 
locate the dependant assemblies, the assemblies are located using the same binding 
and probing rules that would normally be used when executing the assembly. (I’ll 
discuss these binding and probing rules in Chapters 2 and 3.) 

Note that an administrator can elect to turn off verification (using the Microsoft .NET 
Framework Configuration administrative tool). With verification off, the JIT compiler will 
compile unverifiable IL into native CPU instructions; however, the administrator is taking 
full responsibility for the code’s behavior. 
 

 

In Windows, each process has its own virtual address space. Separate address spaces are 
necessary because you can’t trust the application’s code. It is entirely possible (and 
unfortunately, all too common) that an application will read from or write to an invalid 
memory address. By placing each Windows process in a separate address space, you gain 
robustness: one process can’t adversely affect another process.  

By verifying the managed code, however, you know that the code doesn’t improperly access 
memory that it shouldn’t and you know that the code can’t adversely affect another 



application’s code. This means that you can run multiple managed applications in a single 
Windows virtual address space.  

Because Windows processes require a lot of operating system resources, having many of 
them can hurt performance and limit available resources. Reducing the number of processes 
by running multiple applications in a single OS process can improve performance, require 
fewer resources, and be just as robust. This is another benefit of managed code as 
compared to unmanaged code. 

The CLR does, in fact, offer the ability to execute multiple managed applications in a single 
OS process. Each managed application is called an AppDomain. By default, every managed 
EXE will run in its own, separate address space that has just the one AppDomain. However, 
a process hosting the CLR (such as Internet Information Services [IIS] or a future version of 
SQL Server) can decide to run AppDomains in a single OS process. I’ll devote part of 
Chapter 20 to a discussion of AppDomains. 

 
The .NET Framework Class Library 

Included with the .NET Framework is a set of .NET Framework Class Library (FCL) 
assemblies that contains several thousand type definitions, where each type exposes some 
functionality. All in all, the CLR and the FCL allow developers to build the following kinds of 
applications:  
§ XML Web services  Methods that can be accessed over the Internet very easily. XML 

Web services are, of course, the main thrust of Microsoft’s .NET initiative. 
§ Web Forms  HTML-based applications (Web sites). Typically, Web Forms applications 

will make database queries and Web service calls, combine and filter the returned 
information, and then present that information in a browser using a rich HTML-based 
user interface. Web Forms provides a Visual Basic 6 and Visual InterDev style 
development environment for Web applications written in any CLR language. 

§ Windows Forms  Rich Windows GUI applications. Instead of using a Web Forms 
page to create your application’s UI, you can use the more powerful, higher 
performance functionality offered by the Windows desktop. Windows Forms applications 
can take advantage of controls, menus, and mouse and keyboard events, and they can 
talk directly to the underlying operating system. Like Web Forms applications, Windows 
Forms applications also make database queries and call XML Web services. Windows 
Forms provides a Visual Basic 6Ðlike development environment for GUI applications 
written in any CLR language. 

§ Windows console applications  For applications with very simple UI demands, a 
console application provides a quick and easy way to build an application. Compilers, 
utilities, and tools are typically implemented as console applications.  

§ Windows services  Yes, it is possible to build service applications controllable vi a the 
Windows Service Control Manager (SCM) using the .NET Framework. 

§ Component library  The .NET Framework allows you to build stand-alone 
components (types) that can be easily incorporated into any of the previously mentioned 
application types. 

Because the FCL contains literally thousands of types, a set of related types is presented to 
the developer within a single namespace. For example, the System namespace (which you 
should become most familiar with) contains the Object base type, from which all other types 
ultimately derive. In addition, the System namespace contains types for integers, 
characters, strings, exception handling, and console I/O as well as a bunch of utility types 
that convert safely between data types, format data types, generate random numbers, and 
perform various math functions. All applications will use types from the System namespace. 

To access any of the platform’s features, you need to know which namespace contains the 
types that expose the facilities you’re after. If you want to customize any type’s behavior, you 



can simply derive your own type from the desired FCL type. The object-oriented nature of 
the platform is how the .NET Framework presents a consistent programming paradigm to 
software developers. Also, developers can easily create their own namespaces containing 
their own types. These namespaces and types merge seamlessly into the programming 
paradigm. Compared to Win32 programming paradigms, this new approach greatly 
simplifies software development. 

Most of the namespaces in the FCL present types that can be used for any kind of 
application. Table 1-2 lists some of the more general namespaces and briefly describes what 
the types in that namespace are used for.  

Table 1-2: Some General FCL Namespaces  

Namespace Description of Contents 

System   All the basic types used by every 
application 

System.Collections   Types for managing collections of objects; 
includes the popular collection types, such 
as stacks, queues, hash tables, and so on 

System.Diagnostics   Types to help instrument and debug 
applications 

System.Drawing  Types for manipulating 2-D graphics; 
typically used for Windows Forms 
applications and for creating images that 
are to appear in a Web Forms page 

System.EnterpriseServices   Types for managing transactions, queued 
components, object pooling, JIT 
activation, security, and other features to 
make the use of managed code more 
efficient on the server  

System.Globalization   Types for National Language Support 
(NLS), such as string compares, 
formatting, and calendars 

System.IO   Types for doing stream I/O, walking 
directories and files 



Table 1-2: Some General FCL Namespaces  

Namespace Description of Contents 

System.Management   Types used for managing other computers 
in the enterprise via Windows 
Management Instrumentation (WMI) 

System.Net   Types that allow for network 
communications 

System.Reflection   Types that allow the inspection of 
metadata and late binding to types and 
their members 

System.Resources   Types for manipulating external data 
resources 

System.Runtime.InteropServices   Types that allow managed code to access 
unmanaged OS platform facilities such as 
COM components and functions in Win32 
DLLs 

System.Runtime.Remoting  Types that allow for types to be accessed 
remotely 

System.Runtime.Serialization  Types that allow for instances of objects to 
be persisted and regenerated from a 
stream 

System.Securi ty   Types used for protecting data and 
resources 

System.Text   Types to work with text in different 
encodings, such as ASCII or Unicode  

System.Threading  Types used for asynchronous operations 
and synchronizing access to resources 



Table 1-2: Some General FCL Namespaces  

Namespace Description of Contents 

System.Xml   Types used for processing XML schemas 
and data 

This book is about the CLR and about the general types that interact closely with the CLR 
(which are most of the namespaces listed in Table 1-2). So the content of this book is 
applicable to all .NET Framework programmers, regardless of the type of application they’re 
building. 

In addition to the more general namespaces, the FCL also offers namespaces whose types 
are used for building specific application types. Table 1-3 lists some of the application-
specific namespaces in the FCL. 

Table 1-3: Some Application-Specific FCL Namespaces  

Namespace Application Type 

System.Web.Services   Types used to build XML Web services 

System.Web.UI  Types used to build Web Forms 

System.Windows.Forms   Types used to build Windows GUI applications 

System.ServiceProcess   Types used to build a Windows service 
controllable by the SCM 

I expect many good books will be published that explain how to build specific application 
types (such as Windows services, Web Forms, and Windows Forms). These books will give 
you an excellent start at helping you build your application. I tend to think of these 
application-specific books as helping you learn from the top down because they concentrate 
on the application type and not on the development platform. In this book, I’ll offer 
information that will help you learn from the bottom up. After reading this book and an 
application-specific book, you should be able to easily and proficiently build any kind of .NET 
Framework application you desire. 

 
The Common Type System 

By now, it should be obvi ous to you that the CLR is all about types. Types expose 
functionality to your applications and components. Types are the mechanism by which code 
written in one programming language can talk to code written in a different programming 
language. Because types are at the root of the CLR, Microsoft created a formal 



specification—the Common Type System (CTS)—that describes how types are defined and 
how they behave.  

The CTS specification states that a type can contain zero or more members. In Part III, I’ll 
cover all these members in great detail. For now, I just want to give you a brief introduction 
to them: 
§ Field  A data variable that is part of the object’s state. Fields are identified by their 

name and type. 
§ Method  A function that performs an operation on the object, often changing the 

object’s state. Methods have a name, a signature, and modifiers. The signature 
specifies the calling convention, the number of parameters (and their sequence), the 
types of the parameters, and the type of value returned by the method. 

§ Property  To the caller, this member looks like a field. But to the type implementer, it 
looks like a method (or two). Properties allow an implementer to validate input 
parameters and object state before accessing the value and/or calculate a value only 
when necessary. They also allow a user of the type to have simplified syntax. Finally, 
properties allow you to create read-only or write-only “fields.”  

§ Event  An event allows a notification mechanism between an object and other 
interested objects. For example, a button could offer an event that notifies other objects 
when the button is clicked. 

The CTS also specifies the rules for type visibility and for access to the members of a type. 
For example, marking a type as public (called public) exports the type, making it visible and 
accessible to any assembly. On the other hand, marking a type as assembly (called internal 
in C#) makes the type visible and accessible to code within the same assembly only. Thus, 
the CTS establishes the rules by which assemblies form a boundary of visibility for a type, 
and the CLR enforces the visibility rules. 

Regardless of whether a type is visible to a caller, the type gets to control whether the caller 
has access to its members. The following list shows the valid options for controlling access 
to a method or a field:  
§ Private  The method is callable only by other methods in the same class type. 
§ Family  The method is callable by derived types, regardless of whether they are within 

the same assembly. Note that many languages (such as C++ and C#) refer to family as 
protected. 

§ Family and assembly  The method is callable by derived types, but only if the derived 
type is defined in the same assembly. Many languages (such as C# and Visual Basic) 
don’t offer this access control. Of course, IL Assembly language makes it available. 

§ Assembly  The method is callable by any code in the same assembly. Many 
languages refer to assembly as internal. 

§ Family or assembly  The method is callable by derived types in any assembly. The 
method is also callable by any types in the same assembly. C# refers to family or 
assembly as protected internal.  

§ Public  The method is callable by any code in any assembly. 

In addition, the CTS defines the rules governing type inheritance, virtual functions, object 
lifetime, and so on. These rules have been designed to accommodate the semantics 
expressible in modern-day programming languages. In fact, you won’t even need to learn 
the CTS rules per se since the language you choose will expose its own language syntax 
and type rules in the same way you’re familiar with today and will map the language-specific 
syntax into the “language” of the CLR when it emits the managed module. 

When I first started working with the CLR, I soon realized that it is best to think of the 
language and the behavior of your code as two separate and distinct things. Using C++, you 
can define your own types with their own members. Of course, you could have used C# or 
Visual Basic to define the same type with the same members. Sure, the syntax you use for 



defining this type is different depending on the language you choose, but the behavior of the 
type will be absolutely identical regardless of the language because the CLR’s CTS defines 
the behavior of the type. 

To help clarify this idea, let me give you an example. The CTS supports single inheritance 
only. So, while the C++ language supports types that inherit from multiple base types, the 
CTS can’t accept and operate on any such type. To help the developer, the Visual C++ 
compiler reports an error if it detects that you’re attempting to create managed code that 
includes a type inherited from multiple base types. 

Here’s another CTS rule. All types must (ultimately) inherit from a predefined type: 
System.Object. As you can see, Object is the name of a type defined in the System 
namespace. This Object is the root of all other types and therefore guarantees every type 
instance has a minimum set of behaviors. Specifically, the System.Object type allows you 
to do the following: 
§ Compare two instances for equality 
§ Obtain a hash code for the instance 
§ Query the true type of an instance 
§ Perform a shallow (bitwise) copy of the instance 
§ Obtain a string representation of the instance’s object’s current state 

 
The Common Language Specification 

COM allows objects created in different languages to communicate with one another. On the 
other hand, the CLR now integrates all languages and allows objects created in one 
language to be treated as equal citizens by code written in a completely different language. 
This integration is possible because of the CLR’s standard set of types, self-describing type 
information (metadata), and common execution environment. 

While this language integration is a fantastic goal, the truth of the matter is that programming 
languages are very different from one another. For example, some languages don’t treat 
symbols with case-sensitivity or don’t offer unsigned integers, operator overloading, or 
methods that support a variable number of parameters. 

If you intend to create types that are easily accessible from other programming languages, 
you need to use only features of your programming language that are guaranteed to be 
available in all other languages. To help you with this, Microsoft has defined a Common 
Language Specification (CLS) that details for compiler vendors the minimum set of features 
that their compilers must support if these compilers are to target the CLR. 

The CLR/CTS supports a lot more features than the subset defined by the CLS, so if you 
don’t care about interlanguage operability, you can develop very rich types limited only by 
the language’s feature set. Specifically, the CTS defines rules that externally visible types 
and methods must adhere to if they are to be accessible from any CLR-compliant 
programming language. Note that the CLS rules don’t apply to code that is accessible only 
within the defining assembly. Figure 1-6 summarizes the ideas expressed in this paragraph. 



 
Figure 1-6 : Languages offer a subset of the CLR/CTS and a superset of the CLS (but 
not necessarily the same superset)  

As Figure 1-6 shows, the CLR/CTS offers a set of features. Some languages expose a large 
subset of the CLR/CTS. A programmer willing to write in IL assembly language, for example, 
is able to use all the features the CLR/CTS offers. Most other languages, such as C#, Visual 
Basic, and Fortran, expose a subset of the CLR/CTS features to the programmer. The CLS 
defines the minimum set of features that all languages must support.  

If you’re designing a type in one language and you expect that type to be used by another 
language, you shouldn’t take advantage of any features that are outside the CLS. Doing so 
would mean that your type’s members might not be accessible by programmers writing code 
in other programming languages. 

In the following code, a CLS-compliant type is being defined in C#. However, the type has a 
few non-CLS-compliant constructs causing the C# compiler to complain about the code. 

using System; 

 

/ /  Tel l  compi ler  to check for CLS compl iance 



[assembly:CLSCompl iant( t rue)]  

 

/ /  Errors appear because the class is publ ic 

publ ic  c lass App { 

 

   / /  Error: Return type of ÔApp.Abc()’  is not CLS-compl ian t 

   publ ic  UInt32 Abc() {  return 0; }  

 

   / /  Error: Identi f ier ÔApp.abc()’  dif fering 

   / /  only in case is not CLS-compl ian t 

   publ ic  void   abc()  {  }  

 

   / /  No error:  Method is pr ivate  

   pr ivate UInt32 ABC() { return 0; } 

} 

In this code, the [assembly:CLSCompliant(true)] attribute is applied to the assembly. This 
attribute tells the compiler to ensure that any publicly exposed type doesn’t have any 
construct that would prevent the type from being accessed from any other programming 
language. When this code is compiled, the C# compiler emits two errors. The first error is 
reported because the method Abc returns an unsigned integer; Visual Basic and some other 
languages can’t manipulate unsigned integer values. The second error is because this type 
exposes two public methods that differ only by case: Abc and abc. Visual Basic and some 
other languages can’t call both these methods. 

Interestingly, if you were to delete public from in front of Ôclass App’ and recompile, both 
errors would go away. The reason is that the App type would default to internal and would 
therefore no longer be exposed outside the assembly. For a complete list of CLS rules, refer 
to the "Cross-Language Interoperability" section in the .NET Framework SDK 
documentation.  

Let me distill the CLS rules to something very simple. In the CLR, every member of a type is 
either a field (data) or a method (behavior). This means that every programming language 



must be able to access fields and call methods. Certain fields and certain methods are used 
in special and common ways. To ease programming, languages typically offer additional 
abstractions to make coding these common programming patterns easier. For example, 
languages expose concepts such as enums, arrays, properties, indexers, delegates, events, 
constructors, destructors, operator overloads, conversion operators, and so on. When a 
compiler comes across any of these things in your source code, it must translate these 
constructs into fields and methods so that the CLR and any other programming language 
can access the construct.  

Consider the following type definition, which contains a constructor, a destructor, some 
overloaded operators, a property, an indexer, and an event. Note that the code shown is 
there just to make the code compile; it doesn’t show the correct way to implement a type. 

using System; 

 

class Test { 

   / /  Constructor 

   publ ic Test() {}  

 

   // Destructor 

   ~Test() {} 

 

   / /  Operator overload 

   publ ic  static Boolean operator == (Test t1, Test t2) {  

      return true;  

   } 

   publ ic stat ic Boolean operator != (Test t1, Test t2) { 

      return false;  

   } 

 



   / /  An operator overload 

   public stat ic Test operator + (Test t1, Test t2) { return nul l ;  }  

 

   //  A property 

   publ ic Str ing AProperty {  

      get {  return nul l ;  }  

      set { } 

   } 

 

   / /  An indexer 

   publ ic Str ing this[Int32 x] {   

      get {  return nul l ;  }   

      set { } 

   } 

 

   / /  An event 

   event EventHandler AnEvent;  

} 

When the compiler compiles this code, the result is a type that has a number of fields and 
methods defined in it. You can easily see this using the IL Disassembler tool (ILDasm.exe) 
provided with the .NET Framework SDK to examine the resulting managed module, which is 
shown in Figure 1-7. 



 
Figure 1-7 : ILDasm showing Test type’s fields and methods (obtained from metadata)  

Table 1-4 shows how the programming language constructs got mapped to the equivalent 
CLR fields and methods. 

Table 1-4: Test Type’s Fields and Methods (obtained from metadata)  

Type Member Member Type Equivalent Programming 
Language Construct 

AnEvent  Field Event; the name of the field is 

AnEvent and its type is 

System.EventHandler  

.ctor  
Method Constructor 

Finalize  
Method Destructor  

add_AnEvent  Method 
Event add  accessor method 

get_AProperty  
Method 

Property get accessor method 

get_Item  
Method 

Indexer get accessor method 



Table 1-4: Test Type’s Fields and Methods (obtained from metadata)  

Type Member Member Type Equivalent Programming 
Language Construct 

op_Addition  
Method + operator 

op_Equality  
Method == operator 

op_Inequality  
Method != operator 

remove_AnEvent  Method 
Event remove accessor method 

set_AProperty  
Method 

Property set accessor method 

set_Item  
Method 

Indexer set accessor method 

The additional nodes under the Test type that aren’t mentioned in Table 1-4—.class, 
.custom, AnEvent, AProperty, and Item—identify additional metadata about the type. 
These nodes don’t map to fields or methods; they just offer some additional information 
about the type that the CLR, programming languages, or tools can get access to. For 
example, a tool can see that the Test type offers an event, called AnEvent, which is 
exposed via the two methods (add_AnEvent and remove_AnEvent). 

 
Interoperability with Unmanaged Code 

The .NET Framework offers a ton of advantages over other development platforms. 
However, very few companies can afford to redesign and reimplement all of their existing 
code. Microsoft realizes this and has constructed the CLR so that it offers mechanisms that 
allow an application to consist of both managed and unmanaged parts. Specifically, the CLR 
supports three interoperability scenarios: 
§ Managed code can call an unmanaged function in a DLL   Managed code can 

easily call functions contained in DLLs using a mechanism called P/Invoke (for Platform 
Invoke). After all, many of the types defined in the FCL internally call functions exported 
from Kernel32.dll, User32.dll, and so on. Many programming languages will expose a 
mechanism that makes it easy for managed code to call out to unmanaged functions 
contained in DLLs. For example, a C# or Visual Basic application can call the 
CreateSemaphore  function exported from Kernel32.dll. 

§ Managed code can use an existing COM component (server)  Many companies 
have already implemented a number of unmanaged COM components. Using the type 



library from these components, a managed assembly can be created that describes the 
COM component. Managed code can access the type in the managed assembly just 
like any other managed type. See the TlbImp.exe tool that ships with the .NET 
Framework SDK for more information. At times, you might not have a type library or you 
might want to have more control over what TlbImp.exe produces. In these cases, you 
can manually build a type in source code that the CLR can use to achieve the proper 
interoperability. For example, you could use DirectX COM components from a C# or 
Visual Basic application. 

§ Unmanaged code can use a managed type (server)  A lot of existing unmanaged 
code requires that you supply a COM component for the code to work correctly. It’s 
much easier to implement these components using managed code so that you can 
avoid all the code having to do with reference counting and interfaces. For example, you 
could create an ActiveX control or a shell extension in C# or Visual Basic. See the 
TlbExp.exe and RegAsm.exe tools that ship with the .NET Framework SDK for more 
information.  

In addition to these three scenarios, Microsoft’s Visual C++ compiler (version 13) supports a 
new /clr command-line switch. This switch tells the compiler to emit IL code instead of native 
x86 instructions. If you have a large amount of existing C++ code, you can recompile the 
code using this new compiler switch. The new code will require the CLR to execute, and you 
can now modify the code over time to take advantage of the CLR-specific features. 

The /clr switch can’t compile to IL any methods that contain inline assembly language (via 
the __asm  keyword), accept a variable number of arguments, call setjmp, or contain 
intrinsic routines (such as __enable, __disable, _ReturnAddress, and 
_AddressOfReturnAddress). For a complete list of the constructs that the C++ compiler 
can’t compile into IL, refer to the documentation for the Visual C++ compiler. When the 
compiler can’t compile the method into IL, it compiles the method into x86 so that the 
application still runs. 

Keep in mind that although the IL code produced is managed, the data is not; that is, data 
objects are not allocated from the managed heap and they are not garbage collected. In fact, 
the data types don’t have metadata produced for them, and the types’ method names are 
mangled. 

The following C code calls the standard C runtime library’s printf function and also calls the 
System.Console WriteLine  method. The System.Console type is defined in the FCL. So, 
C/C++ code can use libraries available to C/C++ as well as managed types.  

#include <stdio.h>        / /  For printf  

 

#using <mscor l ib.dl l>     / /  For managed types def ined in th is assembly 

using namespace System;   / /  Easi ly access System namespace types 

 

// Implement a normal  C/C++ main funct ion 

void main()  {  



 

   / /  Cal l  the C runt ime l ibrary’s pr int f  funct ion. 

   pr intf("Displayed by printf . \r\n"); 

 

   / /  Cal l  the FCL’s System.Console’s Wri teLine method. 

   Console::Wri teLine("Displayed by Console::Wri teLine."); 

} 

Compiling this code couldn’t be easier. If this code were in a MgdCApp.cpp file, you’d 
compile it by executing the following line at the command prompt: 

cl /c lr  MgdCApp.cpp 

The result is a MgdCApp.exe assembly file. If you run MgdCApp.exe, you’ll see the following 
output: 

C:\>MgdCApp 

Displayed by pr int f .  

Displayed by Console: :Wri teLine. 

If you use ILDasm.exe to examine this file, you’ll see the output shown in Figure 1-8. 

 
Figure 1-8 : ILDasm showing MgdCApp.exe assembly’s metadata  

In Figure 1-8, you see that ILDasm shows all the global functions and global fields defined 
within the assembly. Obviously, the compiler has generated a lot of stuff automatically. If you 
double-click the Main method, ILDasm will show you the IL code:  



.method publ ic stat ic int32  

        modopt( [mscor l ib]System.Runt ime.Compi lerServices.Cal lConvCdecl)  

        main( )  c i l  managed 

{ 

  .vtentry 1 : 1  

  / /  Code size       28 (0x1c) 

  .maxstack  1  

  IL_0000:  ldsf lda    valuetype  

                       $ArrayType$0x0faed885 Ô?A0x44d29f64.unnamed-g lobal -0 ’  

  IL_0005:  cal l        vararg int32  

     modopt( [mscor l ib]System.Runt ime.Compi lerServices.Cal lConvCdecl)  

     printf( int8  

     modopt([Microsoft .VisualC]Microsoft .VisualC.NoSignSpecif iedModif ier)  

     modopt([Microsoft.VisualC]Microsoft.VisualC.IsConstModif ier)*) 

  IL_000a:  pop 

  IL_000b:  ldsf lda    valuetype  

                       $ArrayType$0x0e6cb2b2 Ô?A0x44d29f64.unnamed-g lobal -1 ’  

  IL_0010:  newobj     instance void [mscorl ib]System.Str ing::.ctor( int8*) 

  IL_0015:  cal l        void [mscorl ib]System.Console::Wri teLine(str ing) 

  IL_001a:  ldc.i4.0  

  IL_001b:  ret 

}  / /  end of method ÔGlobal Funct ions’ : :main 



What we see here isn’t pretty because the compiler generates a lot of special code to make 
all this work. However, from this IL code, you can see that printf and the 
Console.WriteLine  method are both called. 

 



Chapter 2: Building, Packaging, Deploying, and 
Administering Applications and Types 

Overview 

Before we get into the chapters that explain how to develop programs for the Microsoft .NET 
Framework, let’s discuss the steps required to build, package, and deploy your applications 
and their types. In this chapter, I’ll focus on the basics of how to build components that are 
for your application’s sole use. In Chapter 3, I’ll cover the more advanced concepts you’ll 
need to understand, including how to build and use assemblies containing components that 
are to be shared by multiple applications. In both chapters, I’ll also talk about the ways an 
administrator can use information to affect the execution of an application and its types. 

Today, applications consist of several types. (In the .NET Framework, a type is called a 
component, but in this book, I’ll avoid the term component and use type instead.) 
Applications typically consist of types created by you and Microsoft as well as several other 
organizations. If these types are developed using any language that targets the common 
language runtime (CLR), they can all work together seamlessly; a type can even use another 
type as its base class, regardless of what languages the types are developed in. 

In this chapter, I’ll also explain how these types are built and packaged into files for 
deployment. In the process, I’ll take you on a brief historical tour of some of the problems 
that the .NET Framework is solving. 

 
.NET Framework Deployment Goals 

Over the years, Windows has gotten a reputation for being unstable and complicated. This 
reputation, whether deserved or not, is the result of many different factors. First, all 
applications use dynamic-link libraries (DLLs) from Microsoft or other vendors. Because an 
application executes code from various vendors, the developer of any one piece of code 
can’t be 100 percent sure how someone else is going to use it. This situation can potentially 
cause all kinds of trouble, but in practice, problems don’t typically arise from this kind of 
interaction because applications are tested and debugged before they are deployed. 

Users, however, frequently run into problems when one company decides to update its code 
and ships new files to them. These new files are supposed to be “backward compatible” with 
the previous files, but who knows for sure? In fact, when one vendor updates its code, 
retesting and debugging all the already shipped applications to ensure that the changes 
have had no undesirable effect is usually impossible. 

I’m sure that everyone reading this book has experienced some variation of this problem: 
when installing a new application, you discover that it has somehow corrupted an already 
installed application. This predicament is known as “DLL hell.” This type of instability puts 
fear into the hearts and minds of the typical computer user. The end result is that users have 
to carefully consider whether to install new software on their machines. Personally, I’ve 
decided not to try out certain applications for fear of some application I really rely on being 
adversely affected. 

The second reason that has contributed to the reputation of Windows is installation 
complexities. Today, when most applications are installed, they affect all parts of the system. 
For example, installing an application causes files to be copied to various directories, 
updates registry settings, and installs shortcuts links on your desktop, Start menu, and Quick 
Launch toolbar. The problem with this is that the application isn’t isolated as a single entity. 
You can’t easily back up the application since you must copy the application’s files and also 



the relevant parts of the registry. In addition, you can’t easily move the application from one 
machine to another; you must run the installation program again so that all files and registry 
settings are set properly. Finally, you can’t easily uninstall or remove the application without 
having this nasty feeling that some part of the application is still lurking on your machine. 

The third reason has to do with security. When applications are installed, they come with all 
kinds of files, many of them written by different companies. In addition, “Web applications” 
frequently have code that is downloaded over the wire in such a way that users don’t even 
realize that code is being installed on their machine. Today, this code can perform any 
operation, including deleting files or sending e-mail. Users are right to be terrified of installing 
new applications because of the potential damage they can cause. To make users 
comfortable, security must be built into the system so that users can explicitly allow or 
disallow code developed by various companies to access the system resources.  

The .NET Framework addresses the “DLL hell” issue in a big way, as you’ll see as you read 
this chapter and Chapter 3. It also goes a long way toward fixing the problem of having an 
application’s state scattered all over a user’s hard disk. For example, unlike COM, 
components no longer require settings in the registry. Unfortunately, applications still require 
shortcut links, but future versions of Windows may solve this problem. As for security, the 
.NET Framework includes a new security model called code access security. Whereas 
Windows security is based around a user’s identity, code access security is based around an 
assembly’s identity. So a user could decide to trust all assemblies published by Microsoft or 
not to trust any assemblies downloaded from the Internet. As you’ll see, the .NET 
Framework enables users to control their machines, what gets installed, and what runs more 
than Windows ever did. 

 
Building Types into a Module 

In this section, I’ll show you how to turn your source file, containing various types, into a file 
that can be deployed. Let’s start by examining the following simple application: 

public class App { 
   static public void Main(System.String[] args) { 
      System.Console.WriteLine("Hi"); 
   } 
} 

This application defines a type, called App. This type has a single static, public method 
called Main. Inside Main is a reference to another type called System.Console. 
System.Console is a type implemented by Microsoft, and the IL code that implements this 
type’s methods are in the MSCorLib.dll file. So, our application defines a type and also uses 
another company’s type. 

To build this sample application, put the preceding code into a source code file, say App.cs, 
and then execute the following command line: 

csc.exe /out:App.exe /t:exe /r:MSCorLib.dll App.cs 

This command line tells the C# compiler to emit an executable file called App.exe 
(/out:App.exe). The type of file produced is a Win32 console application 
(/t[arget]:exe). 

When the C# compiler processes the source file, it sees that the code references the 
System.Console type’s WriteLine method. At this point, the compiler wants to ensure 
that this type exists somewhere, that it has a WriteLine method, and that it checks that the 
types of the arguments that WriteLine expects match up with what the program is 



supplying. To make the C# compiler happy, you must give it a set of assemblies that it can 
use to resolve references to external types. (I’ll define assemblies shortly, but for now you 
can think of an assembly as a set of one or more DLL files.) In the command line above, I’ve 
included the /r[eference]:MSCorLib.dll switch telling the compiler to look for external 
types in the assembly identified by the MSCorLib.dll file.  

MSCorLib.dll is a special file in that it contains all the core types, such as bytes, integers, 
characters, strings, and so on. In fact, these types are so frequently used that the C# 
compiler automatically references this assembly. In other words, the following command line 
(with the /r switch omitted) gives the same results as the line shown earlier:  

csc.exe /out:App.exe /t:exe App.cs 

Furthermore, because the /out:App.exe and the /t:exe command-line switches also 
match what the C# compiler would choose as defaults, the following command line gives the 
same results too:  

csc.exe App.cs 

If, for some reason, you really don’t want the C# compiler to reference the MSCorLib.dll 
assembly, you can use the /nostdlib switch. For example, the following command line will 
generate an error when compiling the App.cs file since the System.Console type is 
defined in MSCorLib.dll:  

csc.exe /out:App.exe /t:exe /nostdlib App.cs 

Now, let’s take a closer look at the App.exe file produced by the C# compiler. What exactly is 
this file? Well, for starters, it is a standard PE (portable executable) file. This means that a 
machine running 32-bit or 64-bit Windows should be able to load this file and do something 
with it. Windows supports two types of applications, those with a console user interface 
(CUI) and those with graphical user interface (GUI). Because I specified the /t:exe switch, 
the C# compiler produced a CUI application. You’d use the /t:winexe switch to have the 
C# compiler produce a GUI application. 

Now we know what kind of PE file we’ve created. But what exactly is in the App.exe file? A 
managed PE file has four main parts: the PE header, the CLR header, the metadata, and the 
intermediate language (IL). The PE header is the standard information that Windows 
expects. The CLR header is a small block of information that is specific to modules that 
require the CLR (managed modules). The header includes the major and minor version 
number of the metadata that the module was built with, some flags, a MethodDef token 
(described later) indicating the module’s entry point method if this module is a CUI or GUI 
executable, and an optional strong name digital signature (discussed in Chapter 3). Finally, 
the header contains the size and offsets of certain metadata tables contained within the 
module. You can see the exact format of the CLR header by examining the 
IMAGE_COR20_HEADER defined in the CorHdr.h header file.  

The metadata is a block of binary data that consists of several tables. There are three 
categories of tables: definition tables, reference tables, and manifest tables. Table 2-1 
describes some of the more common definition tables that exist in a module’s metadata 
block. 

Table 2-1: Common Definition Metadata Tables  

Metadata 
Definition 
Table Name 

Description 

ModuleDef Always contains one entry that identifies the module. The entry 
includes the module’s filename and extension (without path) and a 



Table 2-1: Common Definition Metadata Tables  

Metadata 
Definition 
Table Name 

Description 

module version ID (in the form of a GUID created by the compiler). 
This allows the file to be renamed while keeping a record of its 
original name. However, renaming a file is strongly discouraged and 
can prevent the CLR from locating an assembly at runtime—don’t do 
this. 

TypeDef Contains one entry for each type defined in the module. Each entry 
includes the type’s name, base type, flags (i.e., public, private, etc.) 
and points to the methods it owns in the MethodDef table, the fields it 
owns in the FieldDef table, the properties it owns in the PropertyDef 
table, and the event it owns in the EventDef table. 

MethodDef Contains one entry for each method defined in the module. Each 
entry includes the method’s name, flags (private, public, virtual, 
abstract, static, final, etc), signature, and offset within the module 
where IL code can be found. Each entry can also refer to a ParamDef 
table entry where more information about the method’s parameters 
can be found. 

FieldDef Contains one entry for every field defined in the module. Each entry 
includes a name, flags (i.e., private, public, etc.), and type. 

ParamDef Contains one entry for each parameter defined in the module. Each 
entry includes a name and flags (in, out, retval, etc). 

PropertyDef Contains one entry for each property defined in the module. Each 
entry includes a name, flags, type, and backing field (which can be 
null). 

EventDef Contains one entry for each event defined in the module. Each entry 
includes a name and flags. 

As a compiler compiles your source code, everything that your code defines causes an entry 
to be created in one of the tables described in Table 2-1. As the compiler compiles the 
source code, it also detects the types, fields, methods, properties, and events that the 
source code references. The metadata includes a set of reference tables that keep a record 
of this stuff. Table 2-2 shows some of the more common reference metadata tables. 

Table 2-2: Common Reference Metadata Tables  

Metadata Reference Table 
Name 

Description 

AssemblyRef Contains one entry for each assembly referenced by the 
module. Each entry includes the information necessary 
to bind to the assembly: the assembly’s name (without 
path and extension), version number, culture, and public 
key token (normally a small hash value, generated from 
the publisher’s public key, identifying the referenced 
assembly’s publisher). Each entry also contains some 
flags and a hash value. This hash value was intended to 
be a checksum of the referenced assembly’s bits. The 
CLR completely ignores this hash value and will probably 



Table 2-2: Common Reference Metadata Tables  

Metadata Reference Table 
Name 

Description 

continue to do so in the future. 

ModuleRef Contains one entry for each PE module that implements 
types referenced by this module. Each entry includes the 
module’s filename and extension (without path). This 
table is used to bind to types that are implemented in 
different modules of the calling assembly’s module. 

TypeRef Contains one entry for each type referenced by the 
module. Each entry includes the type’s name and a 
reference to where the type can be found. If the type is 
implemented within another type, then the reference 
indicates a TypeRef entry. If the type is implemented in 
the same module, then the reference indicates a 
ModuleDef entry. If the type is implemented in another 
module within the calling assembly, then the reference 
indicates a ModuleRef entry. If the type is implemented 
in a different assembly, then the reference indicates an 
AssemblyRef entry. 

MemberRef Contains one entry for each member (fields and 
methods, as well as property and event methods) 
referenced by the module. Each entry includes the 
member’s name and signature, and points to the 
TypeRef entry for the type that defines the member. 

There are many more tables than what I list in Tables 2-1 and 2-2, but I just wanted to give 
you a sense of the kind of information that the compiler emits to produce the metadata 
information. Earlier I mentioned that there is also a set of manifest metadata tables; I’ll 
discuss these a little later in the chapter. 

Various tools allow you to examine the metadata within a managed PE file. My personal 
favorite is ILDasm.exe, the IL disassembler. To see the metadata tables, execute the 
following command line: 

ILDasm /Adv App.exe 

This causes ILDasm.exe to run, loading the App.exe assembly. The /Adv switch tells 
ILDasm to make some "advanced" menu items available. These advanced menu items can 
be found on the View menu. To see the metadata in a nice, human-readable form, select the 
View.MetaInfo.Show! menu item (or press Ctrl+M). This causes the following information to 
appear:  

ScopeName : App.exe 
MVID      : {ED543DFC-44DD-4D14-9849-F7EC1B840BD0} 
=========================================================
== 
Global functions 
——————————————————————————— 
 
Global fields 
——————————————————————————— 



 
Global MemberRefs 
——————————————————————————— 
 
TypeDef #1 
——————————————————————————— 
    TypDefName: App  (02000002) 
    Flags     : [Public] [AutoLayout] [Class] [AnsiClass]  (00100001) 
    Extends   : 01000001 [TypeRef] System.Object 
    Method #1 [ENTRYPOINT] 
    ——————————————————————————— 
        MethodName: Main (06000001) 
        Flags     : [Public] [Static] [HideBySig] [ReuseSlot]  (00000096) 
        RVA       : 0x00002050 
        ImplFlags : [IL] [Managed]  (00000000) 
        CallCnvntn: [DEFAULT] 
        ReturnType: Void 
        1 Arguments 
            Argument #1:  SZArray String 
        1 Parameters 
            (1) ParamToken : (08000001) Name : args flags: [none] (00000000) 
 
    Method #2  
    ——————————————————————————— 
        MethodName: .ctor (06000002) 
        Flags     : [Public] [HideBySig] [ReuseSlot] [SpecialName]  
            [RTSpecialName] [.ctor]  (00001886) 
        RVA       : 0x00002068 
        ImplFlags : [IL] [Managed]  (00000000) 
        CallCnvntn: [DEFAULT] 
        hasThis  
        ReturnType: Void 
        No arguments. 
 
 
TypeRef #1 (01000001) 
——————————————————————————— 
Token:             0x01000001 
ResolutionScope:   0x23000001 
TypeRefName:       System.Object 
    MemberRef #1 
    ——————————————————————————— 
        Member: (0a000003) .ctor:  
        CallCnvntn: [DEFAULT] 
        hasThis  
        ReturnType: Void 



        No arguments. 
 
TypeRef #2 (01000002) 
——————————————————————————— 
Token:             0x01000002 
ResolutionScope:   0x23000001 
TypeRefName:       System.Diagnostics.DebuggableAttribute 
    MemberRef #1 
    ——————————————————————————— 
        Member: (0a000001) .ctor:  
        CallCnvntn: [DEFAULT] 
        hasThis  
        ReturnType: Void 
        2 Arguments 
            Argument #1:  Boolean 
            Argument #2:  Boolean 
 
TypeRef #3 (01000003) 
——————————————————————————— 
Token:             0x01000003 
ResolutionScope:   0x23000001 
TypeRefName:       System.Console 
    MemberRef #1 
    ——————————————————————————— 
        Member: (0a000002) WriteLine:  
        CallCnvntn: [DEFAULT] 
        ReturnType: Void 
        1 Arguments 
            Argument #1:  String 
 
Assembly 
——————————————————————————— 
    Token: 0x20000001 
    Name : App 
    Public Key    : 
    Hash Algorithm : 0x00008004 
    Major Version: 0x00000000 
    Minor Version: 0x00000000 
    Build Number: 0x00000000 
    Revision Number: 0x00000000 
    Locale: <null> 
    Flags : [SideBySideCompatible]  (00000000) 
    CustomAttribute #1 (0c000001) 
    ——————————————————————————— 
        CustomAttribute Type: 0a000001 
        CustomAttributeName: System.Diagnostics.DebuggableAttribute ::  



            instance void .ctor(bool,bool) 
        Length: 6 
        Value : 01 00 00 01 00 00                             >                < 
        ctor args: ( <can not decode> ) 
 
 
AssemblyRef #1 
——————————————————————————— 
    Token: 0x23000001 
    Public Key or Token: b7 7a 5c 56 19 34 e0 89  
    Name: mscorlib 
    Major Version: 0x00000001 
    Minor Version: 0x00000000 
    Build Number: 0x00000c1e 
    Revision Number: 0x00000000 
    Locale: <null> 
    HashValue Blob: 
    Flags: [none] (00000000) 
 
 
User Strings 
——————————————————————————— 
70000001 : ( 2) L"Hi" 

Fortunately, ILDasm processes the metadata tables and combines information where 
appropriate so that you don’t have to parse the raw table information. For example, in the 
dump above, you see that when ILDasm shows a TypeDef entry, the corresponding member 
definition information is shown with it before the first TypeRef entry is displayed. 

You don’t need to fully understand everything you see here. The important thing to 
remember is that App.exe contains a TypeDef whose name is App. This type identifies a 
public class that is derived from System.Object (a type referenced from another 
assembly). The App type also defines two methods: Main and .ctor (a constructor).  

Main is a static, public method whose code is IL (vs. native CPU code, such as x86). Main 
has a void return type and takes a single argument, args, which is an array of String. 
The constructor method (always shown with a name of .ctor) is public and its code is also 
IL. The constructor has a void return type and has no arguments but has a this pointer, 
which refers to the object’s memory that is to be constructed when the method is called. 

I strongly encourage you to experiment using ILDasm. It can show you a wealth of 
information, and the more you understand what you’re seeing, the better you’ll understand 
the common language runtime and its capabilities. As you’ll see, I use ILDasm quite a bit 
more in this book. 

Just for fun, let’s look at some statistics about the App.exe assembly. When you select 
ILDasm’s View.Statistics menu item, the following information is displayed: 

File size             : 3072 
 PE header size       : 512 (496 used)    (16.67%) 
 PE additional info   : 923               (30.05%) 



 Num.of PE sections   : 3 
 CLR header size      : 72                ( 2.34%) 
 CLR meta-data size   : 520               (16.93%) 
 CLR additional info  : 0                 ( 0.00%) 
 CLR method headers   : 24                ( 0.78%) 
 Managed code         : 18                ( 0.59%) 
 Data                 : 828               (26.95%) 
 Unaccounted          : 175               ( 5.70%) 
 
 Num.of PE sections   : 3 
   .text    - 1024 
   .rsrc    - 1024 
   .reloc   - 512 
 
 CLR meta-data size   : 520 
   Module         -    1 (10 bytes) 
   TypeDef        -    2 (28 bytes)     0 interfaces, 0 explicit layout 
   TypeRef        -    3 (18 bytes) 
   MethodDef      -    2 (28 bytes)     0 abstract, 0 native, 2 bodies 
   MemberRef      -    3 (18 bytes) 
   ParamDef       -    1 (6 bytes) 
   CustomAttribute-    1 (6 bytes) 
   Assembly       -    1 (22 bytes) 
   AssemblyRef    -    1 (20 bytes) 
   Strings        -  128 bytes 
   Blobs          -   40 bytes 
   UserStrings    -    8 bytes 
   Guids          -   16 bytes 
   Uncategorized  -  172 bytes 
 
 CLR method headers : 24 
   Num.of method bodies  - 2 
   Num.of fat headers    - 2 
   Num.of tiny headers   - 0 
 
 Managed code : 18 
   Ave method size - 9 

Here you can see the size (in bytes) of the file and the size (in bytes and percentages) of the 
various parts that make up the file. For this very small App.cs application, the PE header and 
the metadata occupy the bulk of the file’s size. In fact, the IL code occupies just 18 bytes. Of 
course, as an application grows, it will reuse most of its types and references to other types 
and assemblies, causing the metadata and header information to shrink considerably as 
compared to the overall size of the file. 

 
Combining Modules to Form an Assembly 



The App.exe file discussed in the previous section is more than just a PE file with metadata; 
it is also an assembly. An assembly is a collection of one or more files containing type 
definitions and resource files. One of the assembly’s files is chosen to hold a manifest. The 
manifest is another set of metadata tables that basically contain the name of the files that 
are part of the assembly. They also describe the assembly’s version, culture, publisher, 
publicly exported types, and all the files that comprise the assembly. 

The CLR operates on assemblies; that is, the CLR always loads the file that contains the 
manifest metadata tables first and then uses the manifest to get the names of the other files 
that are in the assembly. Here are some characteristics of assemblies that you should 
remember: 
§ An assembly defines the reusable types. 
§ An assembly is marked with a version number. 
§ An assembly can have security information associated with it. 

An assembly’s individual files don’t have these attributes—except for the file that contains 
the manifest metadata tables. 

To package, version, secure, and use types, you must place them in modules that are part of 
an assembly. In most cases, an assembly consists of a single file, as the preceding App.exe 
example does. However, an assembly can also consist of multiple files: some PE files with 
metadata and some resource files such as .gif or .jpg files. It might help you to think of an 
assembly as a logical EXE or a DLL.  

I’m sure that many of you reading this are wondering why Microsoft has introduced this new 
assembly concept. The reason is that an assembly allows you to decouple the logical and 
physical notions of reusable types. For example, an assembly can consist of several types. 
You could put the frequently used types in one file and the less frequently used types in 
another file. If your assembly is deployed by downloading it via the Internet, the file with the 
infrequently used types might not ever have to be downloaded to the client if the client never 
accesses the types. For example, an ISV specializing in UI controls might choose to 
implement Active Accessibility types in a separate module (to satisfy Microsoft’s Logo 
requirements). Only users who require the additional accessibility features would require that 
this module be downloaded. 

You configure an application to download assembly files by specifying a codeBase element 
(discussed in Chapter 3) in the application’s configuration file. The codeBase element 
identifies a URL where all of an assembly’s files can be found. When attempting to load an 
assembly’s file, the CLR obtains the codeBase element’s URL and checks the machine’s 
download cache to see if the file is present. If it is, the file is loaded. If the file isn’t in the 
cache, the CLR downloads the file from the URL into the cache. If the file can’t be found, the 
CLR throws a FileNotFoundException exception at runtime. 

I’ve identified three reasons to use multifile assemblies: 
§ You can partition your types among separate files, allowing for files to be incrementally 

downloaded as described in the Internet download scenario. Partitioning the types into 
separate files also allows for partial or piecemeal packaging and deployment for “shrink-
wrapped” scenarios. 

§ You can add resource or data files to your assembly. For example, you could have a 
type that calculates some insurance information. This type might require access to 
some actuarial tables to make its computations. Instead of embedding the actuarial 
tables in your source code, you could use a tool (such as the assembly linker (AL.exe), 
discussed later) so that the data file is considered to be part of the assembly. By the 
way, this data file can be in any format: a text file, a Microsoft Excel spreadsheet, a 
Microsoft Word table, or whatever you like—as long as your application knows how to 
parse the file’s contents. 



§ You can create assemblies consisting of types implemented in different programming 
languages. When you compile C# source code, the compiler produces a module. When 
you compile Visual Basic source code, the compiler produces a separate module. You 
can implement some types in C#, some types in Visual Basic, and other types in other 
languages. You can then use a tool to combine all these modules into a single 
assembly. To developers using the assembly, the assembly just contains a bunch of 
types; developers won’t even know that different programming languages were used. 
By the way, if you prefer, you can run ILDasm.exe on each of the modules to obtain an 
IL source code file. Then you can run ILAsm.exe and pass it all the IL source code files. 
ILAsm.exe will produce a single file containing all the types. This technique requires that 
your source code compiler produces IL-only code, so you can’t use this technique with 
Visual C++, for example.  

 
Important  

To summarize, an assembly is a unit of reuse, versioning, and 
security. It allows you to partition your types and resources into 
separate files so that you and consumers of your assembly get to 
determine which files to package together and deploy. Once the CLR 
loads the file containing the manifest, it can determine which of the 
assembly’s other files contain the types and resources that the 
application is referencing. Anyone consuming the assembly is required 
to know only the name of the file containing the manifest; the file 
partitioning is then abstracted away from the consumer and may 
change in the future without breaking the application’s behavior. 

To build an assembly, you must select one of your PE files to be the keeper of the manifest. 
Or you can create a separate PE file that contains nothing but the manifest. Table 2-3 shows 
the manifest metadata tables that turn a managed module into an assembly.  

Table 2-3: Manifest Metadata Tables  

Manifest Metadata Table Name Description 

AssemblyDef Contains a single entry if this module 
identifies an assembly. The entry includes 
the assembly’s name (without path and 
extension), version (major, minor, build, 
and revision), culture, flags, hash 
algorithm, and the publisher’s public key 
(which can be null). 

FileDef Contains one entry for each PE and 
resource file that is part of the assembly. 
The entry includes the file’s name and 
extension (without path), hash value, and 
flags. If this assembly consists only of its 
own file, the FileDef table has no entries. 

ManifestResourceDef Contains one entry for each resource that 
is part of the assembly. The entry includes 
the resource’s name, flags (public, 
private), and an index into the FileDef table 
indicating the file that contains the 
resource file or stream. If the resource isn’t 
a stand-alone file (such as .jpeg or a .gif), 
the resource is a stream contained within a 
PE file. For an embedded resource, the 
entry also includes an offset indicating the 



Table 2-3: Manifest Metadata Tables  

Manifest Metadata Table Name Description 

start of the resource stream within the PE 
file. 

ExportedTypesDef Contains one entry for each public type 
exported from all the assembly’s PE 
modules. The entry includes the type’s 
name, an index into the FileDef table 
(indicating which of this assembly’s files 
implements the type), and an index into 
the TypeDef table. Note: To save file 
space, types exported from the file 
containing the manifest are not repeated in 
this table because the type information is 
available using the metadata’s TypeDef 
table. 

The existence of a manifest provides a level of indirection between consumers of the 
assembly and the partitioning details of the assembly and makes assemblies self-describing. 
Also, note that the file containing the manifest knows which files are part of the assembly, 
but the individual files themselves aren’t aware that they are part of an assembly.  

 
Note  

The assembly file that contains the manifest also has an AssemblyRef table 
in it. This table contains an entry for all the assemblies referenced by all the 
assembly’s files. This allows tools to open an assembly’s manifest and see 
its set of referenced assemblies without having to open the assembly’s other 
files. Again, the entries in the AssemblyRef table exist to make an assembly 
self-describing. 

The C# compiler produces an assembly when you specify any of the following command-line 
switches: /t[arget]:exe, /t[arget]:winexe, or /t[arget]:library. All these 
switches cause the compiler to generate a single PE file that contains the manifest metadata 
tables. The resulting file is either a CUI executable, a GUI executable, or a DLL, 
respectively. 

In addition to these switches, the C# compiler supports the /t[arget]:module switch. 
This switch tells the compiler to produce a PE file that doesn’t contain the manifest metadata 
tables. The PE file produced is always a DLL PE file, and this file must be added to an 
assembly before the types within it can be accessed. When you use the /t:module switch, 
the C# compiler, by default, names the output file with an extension of .netmodule. 

 
Important  

Unfortunately, the Visual Studio .NET integrated development 
environment (IDE) doesn’t natively support the ability for you to create 
multifile assemblies. If you want to create multifile assemblies, you 
must resort to using command-line tools. 

There are many ways to add a module to an assembly. If you’re using the C# compiler to 
build a PE file with a manifest, you can use the /addmodule switch. To understand how to 
build a multifile assembly, let’s assume that we have two source code files: 
§ RUT.cs, which contains rarely used types 
§ FUT.cs, which contains frequently used types 



Let’s compile the rarely used types into their own module so that users of the assembly 
won’t need to deploy this module if they never access the rarely used types: 

csc /t:module RUT.cs 

This line causes the C# compiler to create a RUT.netmodule file. This file is a standard DLL 
PE file, but, by itself, the CLR can’t load it. 

Next let’s compile the frequently used types into their own module. We’ll make this module 
the keeper of the assembly’s manifest because the types are used so often. In fact, because 
this module will now represent the entire assembly, I’ll change the name of the output file to 
JeffTypes.dll instead of calling it FUT.dll: 

csc /out:JeffTypes.dll /t:library /addmodule:RUT.netmodule FUT.cs 

This line tells the C# compiler to compile the FUT.cs file to produce the JeffTypes.dll file. 
Because /t:library is specified, a DLL PE file containing the manifest metadata tables is 
emitted into the JeffTypes.dll file. The /addmodule:RUT.netmodule switch tells the 
compiler that RUT.netmodule is a file that should be considered part of the assembly. 
Specifically, the /addmodule switch tells the compiler to add the file to the FileDef manifest 
metadata table and to add RUT.netmodule’s publicly exported types to the 
ExportedTypesDef manifest metadata table. 

Once the compiler has finished all its processing, the two files shown in Figure 2-1 are 
created. The module on the right contains the manifest.  

 
Figure 2-1 : A multifile assembly consisting of two managed modules, one with a 
manifest  

The RUT.netmodule file contains the IL code generated by compiling RUT.cs. This file also 
contains metadata tables that describe the types, methods, fields, properties, events, and so 
on that are defined by RUT.cs. The metadata tables also describe the types, methods, and 
so on that are referenced by RUT.cs. The JeffTypes.dll is a separate file. Like 
RUT.netmodule, this file includes the IL code generated by compiling FUT.cs and also 
includes similar definition and reference metadata tables. However, JeffTypes.dll contains 
the additional manifest metadata tables, making JeffTypes.dll an assembly. The additional 
manifest metadata tables describe all the files that make up the assembly (the JeffTypes.dll 
file itself and the RUT.netmodule file). The manifest metadata tables also include all the 
public types exported from JeffTypes.dll and RUT.netmodule. 

 
Note  

In reality, the manifest metadata tables don’t actually include the types that 
are exported from the PE file that contains the manifest. The purpose of this 
optimization is to reduce the number of bytes required by the manifest 



information in the PE file. So statements like, “The manifest metadata tables 
also include all the public types exported from JeffTypes.dll and 
RUT.netmodule” aren’t 100 percent accurate. However, this statement does 
accurately reflect what the manifest is logically exposing. 

Once the JeffTypes.dll assembly is built, you can use ILDasm.exe to examine the 
metadata’s manifest tables to verify that the assembly file does in fact have references to the 
RUT.netmodule file’s types. If you build this project and then use ILDasm.exe to examine the 
metadata, you’ll see the FileDef and ExportedTypesDef tables included in the output. Here’s 
what those tables look like: 

File #1 
——————————————————————————— 
    Token: 0x26000001 
    Name : RUT.netmodule 
    HashValue Blob : 03 d4 09 ef 2d ac d3 4b  64 75 d7 81 cc 8e 88 7d  51  
                     67 e2 5b  
    Flags : [ContainsMetaData]  (00000000) 
 
 
ExportedType #1 
——————————————————————————— 
    Token: 0x27000001 
    Name: ARarelyUsedType 
    Implementation token: 0x26000001 
    TypeDef token: 0x02000002 
    Flags     : [Public] [AutoLayout] [Class] [AnsiClass]  (00100001) 

From this, you can see that RUT.netmodule is a file considered to be part of the assembly. 
From the ExportedType table, you can see that there is a publicly exported type, 
ARarelyUsedType. The implementation token for this type is 0x26000001, which indicates 
that the type’s IL code is contained in the RUT.netmodule file.  

 
Note  

For the curious, metadata tokens are 4-byte values. The high byte indicates 
the type of token (0x01=TypeRef, 0x02=TypeDef, 0x26=FileRef, 
0x27=ExportedType). For the complete list, see the CorTokenType 
enumerated type in the CorHdr.h file included with the .NET Framework 
SDK. The low three bytes of the token simply identify the row in the 
corresponding metadata table. For example, the implementation token 
0x26000001 refers to the first row of the FileRef table. (Rows are numbered 
starting with 1, not 0.) 

Any client code that consumes the JeffTypes.dll assembly’s types must be built using the 
/r[eference]:JeffTypes.dll compiler switch. This switch tells the compiler to load the 
JeffTypes.dll assembly and all the files listed in its FileDef table. The compiler requires that 
all the assembly’s files are installed and accessible. If you were to delete the RUT.netmodule 
file, the C# compiler would produce the following error: "fatal error CS0009: Metadata file 
‘C:\JeffTypes.dll’ could not be opened—’Error importing module ‘rut.netmodule’ of assembly 
‘C:\JeffTypes.dll’—The system cannot find the file specified." This means that to build a new 
assembly, all the files from a referenced assembly must be present. 

As the client code executes, it calls methods. When a method is called for the first time, the 
CLR detects what types the method references. The CLR then attempts to load the 



referenced assembly’s file that contains the manifest. If the type being accessed is in this 
file, the CLR performs its internal bookkeeping, allowing the type to be used. If the manifest 
indicates that the referenced type is in a different file, the CLR attempts to load the 
necessary file, performs its internal bookkeeping, and allows the type to be accessed. The 
CLR loads assembly files only when a method referencing a type is called. This means that 
to run an application, all the files from a referenced assembly do not need to be present. 

Adding Assemblies to a Project Using the Visual Studio .NET 
IDE 

If you’re using the Visual Studio .NET IDE to build your project, you’ll have to add any 
assemblies you want to reference to your project. To do so, open the Solution Explorer 
window, right-click on the project you want to add a reference to, and select the Add 
Reference menu item. This causes the Add Reference dialog box, shown in Figure 2-2, to 
appear.  

 
Figure 2-2 : Add Reference dialog box in Visual Studio .NET  

To have your project reference a managed assembly, select the desired assembly from the 
list. If the assembly you want isn’t in the list, select the Browse button to navigate to the 
desired assembly (file containing a manifest) to add the assembly reference. The COM tab 
on the Add Reference dialog box allows an unmanaged COM server to be accessed from 
within managed source code. The Projects tab allows the current project to reference an 
assembly that is created by another project in the same solution. 

To make your own assemblies appear in the .NET tab’s list, add the following subkey to the 
registry: 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\ 
AssemblyFolders\MyLibName 

MyLibName is a unique name that you create—Visual Studio doesn’t display this name. 
After creating the subkey, change its default string value so that it refers to a directory path 
(such as "C:\Program Files\MyLibPath") containing your assembly’s files. 

Using the Assembly Linker 



Instead of using the C# compiler, you might want to create assemblies using the Assembly 
Linker utility, AL.exe. The Assembly Linker is useful if you want to create an assembly 
consisting of modules built from different compilers (if your compiler doesn’t support the 
equivalent of C#’s /addmodule switch) or perhaps if you just don’t know your assembly 
packaging requirements at build time. You can also use AL.exe to build resource-only 
assemblies (called satellite assemblies, which I’ll talk about again later in the chapter), which 
are typically used for localization purposes.  

The AL.exe utility can produce an EXE or a DLL PE file that contains nothing but a manifest 
describing the types in other modules. To understand how AL.exe works, let’s change the 
way the JeffTypes.dll assembly is built: 

csc /t:module RUT.cs 
csc /t:module FUT.cs 
al  /out:JeffTypes.dll /t:library FUT.netmodule RUT.netmodule 

Figure 2-3 shows the files that result from executing these statements. 

 
Figure 2-3 : A multifile assembly consisting of three managed modules, one with a 
manifest  

In this example, two separate modules, RUT.netmodule and FUT.netmodule, are created 
that are not themselves assemblies (because they don’t contain manifest metadata tables). 
Then a third file is produced: JeffTypes.dll, which is a small DLL PE file (because of the 
/t[arget]:library switch) that contains no IL code but has manifest metadata tables 
indicating that RUT.netmodule and FUT.netmodule are part of the assembly. The resulting 
assembly consists of three files: JeffTypes.dll, RUT.netmodule, and FUT.netmodule. The 
Assembly Linker has no way to combine multiple files into a single file. 

The AL.exe utility can also produce CUI and GUI PE files (using the /t[arget]:exe or 
/t[arget]:winexe command-line switch), but this is very unusual since it would mean 
that you’d have an EXE PE file with just enough IL code in it to call a method in another 



module. The Assembly Linker generates this IL code when you call AL.exe using the /main 
command-line switch.  

csc /t:module /r:JeffTypes.dll App.cs 
al  /out:App.exe /t:exe /main:App.Main app.netmodule 

Here the first line builds the App.cs file into a module. The second line produces a small 
App.exe PE file that contains the manifest metadata tables. In addition, there is a small 
global function emitted by AL.exe because of the /main:App.Main switch. This function, 
__EntryPoint, contains the following IL code:  

.method privatescope static void __EntryPoint() il managed 
{ 
  .entrypoint 
  // Code size       8 (0x8) 
  .maxstack  8 
  IL_0000:  tail. 
  IL_0002:  call       void [.module ’App.mod’]App::Main() 
  IL_0007:  ret 
} // end of method ’Global Functions::__EntryPoint’ 

As you can see, this code simply calls the Main method contained in the App type defined in 
the App.netmodule file. 

The /main switch in AL.exe isn’t that useful because it’s unlikely that you’d ever create an 
assembly for an application where the application’s entry point isn’t in the PE file that 
contains the manifest metadata tables. I mention the switch here only to make you aware of 
its existence. 

Including Resource Files in the Assembly 

When using AL.exe to create an assembly, you can add resource files (non-PE files) to the 
assembly by using the /embed[resource] switch. This switch takes a file (any file) and 
embeds the file’s contents into the resulting PE file.The manifest’s ManifestResourceDef 
table is updated to reflect the existence of the resources. 

AL.exe also supports a /link[resource] switch, which also takes a file containing 
resources. However, the /link[resource] switch updates the manifest’s 
ManifestResourceDef and FileDef tables, indicating that the resource exists and identifying 
which of the assembly’s files contain it. The resource file is not embedded into the assembly 
PE file; it remains separate and must be packaged and deployed with the other assembly 
files. 

Like AL.exe, CSC.exe also allows you to combine resources into an assembly produced by 
the C# compiler. The C# compiler’s /resource switch embeds the specified resource file 
into the resulting assembly PE file, updating the ManifestResourceDef table. The compiler’s 
/linkresource switch adds an entry to the ManifestResourceDef and the FileDef manifest 
tables to refer to a stand-alone resource file. 

One last note about resources: it’s possible to embed standard Win32 resources into an 
assembly. You can do this easily by specifying the pathname of a .res file with the 
/win32res switch when using either AL.exe or CSC.exe. In addition, you can quickly and 
easily embed a standard Win32 icon resource into an assembly file by specifying the 
pathname of an .ico file with the /win32icon switch when using either AL.exe or CSC.exe. 



The typical reason that an icon is embedded is so that Explorer can show an icon for a 
managed executable file. 

 
Assembly Version Resource Information 

When AL.exe or CSC.exe produces a PE file assembly, it also embeds into the PE file a 
standard Win32 Version resource. Users can examine this resource by viewing the file’s 
properties. Figure 2-4 shows the Version page of the JeffTypes.dll Properties dialog box. 

 
Figure 2-4 : Version tab of the JeffTypes.dll Properties dialog box  

In addition, you can use the resource editor in Visual Studio .NET, shown in Figure 2-5, to 
view/modify the version resource fields. 



 
Figure 2-5 : Resource editor in Visual Studio .NET  

When building an assembly, you should set the version resource fields using custom 
attributes that you apply at the assembly level in your source code. Here’s what the code 
that produced the version information in Figure 2-5 looks like: 

using System.Reflection; 
 
// Set the version CompanyName, LegalCopyright & LegalTrademarks fields 
[assembly:AssemblyCompany("The Jeffrey Richter Company")] 
[assembly:AssemblyCopyright("Copyright (c) 2002 Jeffrey Richter")] 
[assembly:AssemblyTrademark( 
   "JeffTypes is a registered trademark of the Richter Company")] 
 
// Set the version ProductName & ProductVersion fields 
[assembly:AssemblyProduct("Jeffrey Richter Type Library")] 
[assembly:AssemblyInformationalVersion("2.0.0.0")] 
 
// Set the version FileVersion, AssemblyVersion,  
// FileDescription, and Comments fields 
[assembly:AssemblyFileVersion("1.0.0.0")] 
[assembly:AssemblyVersion("3.0.0.0")] 
[assembly:AssemblyTitle("Jeff’s type assembly")] 
[assembly:AssemblyDescription("This assembly contains Jeff’s types")] 
 
// Set the culture (discussed later in the "Culture" section) 
[assembly:AssemblyCulture("")] 



Table 2-4 shows the version resource fields and the custom attributes that correspond to 
them. If you’re using AL.exe to build your assembly, you can use command-line switches to 
set this information instead of using the custom attributes. The second column in Table 2-4 
shows the AL.exe command-line switch that corresponds to each version resource field. 
Note that the C# compiler doesn’t offer these command-line switches and that, in general, 
using custom attributes is the preferred way to set this information.  

Table 2-4: Version Resource Fields and Their Corresponding AL.exe Switches and Custom Attributes  

Version Resource AL.exe Switch Custom Attribute/Comment 

FILEVERSION /fileversion  System.Reflection.AssemblyFileVersionAttribute
FileVersionAttribute  

PRODUCTVERSION /productversion System.Reflection.AssemblyInformationalVersionAttribute

FILEFLAGSMASK (none) Always set to VS_FFI_FILEFLAGSMASK (defined in WinVer.h as 
0x0000003F) 

FILEFLAGS (none) Always 0 

FILEOS (none) Currently always VOS__WINDOWS32  

FILETYPE /target  Set to VFT_APP if /target:exe or /target:winexe is specified; 
set to VFT_DLL if /target:library is specified 

FILESUBTYPE (none) Always set to VFT2_UNKNOWN (This field has no meaning for 
VFT_APP and VFT_DLL.) 

AssemblyVersion /version  System.Reflection.Assembly-VersionAttribute 

Comments /description  System.Reflection.Assembly-DescriptionAttribute

CompanyName /company  System.Reflection.AssemblyCompanyAttribute 

FileDescription /title  System.Reflection.AssemblyTitleAttribute 

FileVersion /version  System.Reflection.AssemblyVersionAttribute 

InternalName /out  Set to the name of the output file specified (without the extension)

LegalCopyright /copyright  System.Reflection.AssemblyCopyrightAttribute 

LegalTrademarks /trademark  System.Reflection.AssemblyTrademarkAttribute 

OriginalFilename /out Set to the name of the output file (without a path) 

PrivateBuild (none) Always blank 

ProductName /product  System.Reflection.AssemblyProductAttribute 

ProductVersion /productversion  System.Reflection.AssemblyInformationalVersionAttribute

SpecialBuild  (none) Always blank 

 
Important  

When you create a new C# project in Visual Studio .NET, an 
AssemblyInfo.cs file is automatically created for you. This file contains 
all the assembly attributes described in this section plus a few 
additional attributes that I’ll cover in Chapter 3. You can simply open 
the AssemblyInfo.cs file and modify your assembly-specific 
information. The file that Visual Studio .NET creates for you has some 
problems that I’ll go over later in this chapter. In a real production 
project, you must modify the contents of this file. 



project, you must modify the contents of this file. 

Version Numbers 

In the previous section, you saw that several version numbers can be applied to an 
assembly. All these version numbers have the same format: each consists of four period-
separated parts, as shown in Table 2-5. 

Table 2-5: Format of Version Numbers  

Part Major 
Number 

Minor 
Number 

Build 
Number 

Revision 
Number 

Example: 2 5 719 2 

Table 2-5 shows an example of a version number: 2.5.719.2. The first two numbers make up 
the “public perception” of the version. The public will think of this example as version 2.5 of 
the assembly. The third number, 719, indicates the build of the assembly. If your company 
builds its assembly every day, you should increment the build number each day as well. The 
last number, 2, indicates the revision of the build. If for some reason your company has to 
build an assembly twice in one day, maybe to resolve a hot bug that is halting other work, 
then the revision number should be incremented.  

Microsoft uses this version-numbering scheme, and it’s simply a recommendation; you’re 
welcome to devise your own number-versioning scheme if you prefer. The only assumption 
the CLR makes is that bigger numbers indicate later versions. 

You’ll notice that an assembly has three version numbers associated with it. This is very 
unfortunate and leads to a lot of confusion. Let me explain each version number’s purpose 
and how it is expected to be used: 
§ AssemblyFileVersion  This version number is stored in the Win32 version resource. 

This number is informational only; the CLR doesn’t examine or care about this version 
number in any way. Typically, you set the major and minor parts to represent the 
version you want the public to see. Then you increment the build and revision parts 
each time a build is performed. Ideally, Microsoft’s tool (such as CSC.exe or AL.exe) 
would automatically update the build and revision numbers for you (based on the 
data/time when the build was performed), but unfortunately they don’t. This version 
number can be seen when using Windows Explorer and is used to determine exactly 
when an assembly file was built. 

§ AssemblyInformationalVersionAttribute  This version number is also stored in the 
Win32 version resource, and again, this number is informational only; the CLR doesn’t 
examine or care about it in any way. This version number exists to indicate the version 
of the product that includes this assembly. For example, Version 2.0 of MyProduct might 
contain several assemblies; one of these assemblies is marked as Version 1.0 since it’s 
a new assembly that didn’t ship in Version 1.0 of MyProduct. Typically, you set the 
major and minor parts of this version number to represent the public version of your 
product. Then you increment the build and revision parts each time you package a 
complete product with all its assemblies. 

§ AssemblyVersion  This version number is stored in the AssemblyDef manifest 
metadata table. The CLR uses this version number when binding to strongly named 
assemblies (discussed in Chapter 3). This number is extremely important and is used to 
uniquely identify an assembly. When starting to develop an assembly, you should set 
the major, minor, build, and revision numbers and shouldn’t change them until you’re 
ready to begin work on the next deployable version of your assembly. When you build 
an assembly, this version number in the referenced assembly is embedded in the 



AssemblyRef table’s entry. This means that an assembly is tightly bound to a specific 
version of a reference assembly.  

 
Important  

The CSC.exe and AL.exe tools support the ability to automatically 
increment the assembly version number with each build. This feature 
is a bug and shouldn’t be used because changing the assembly 
version number will break any assemblies that reference this 
assembly. The AssemblyInfo.cs file that Visual Studio .NET 
automatically creates for you when you create a new project is in error: 
it sets the AssemblyVersion attribute so that its major and minor 
parts are 1.0 and that the build and revision parts are automatically 
updated by the compiler. You should definitely modify this file and 
hard-code all four parts of the assembly version number. 

 
Culture 

Like version numbers, assemblies also have a culture as part of their identity. For example, I 
could have an assembly that is strictly for German, another assembly for Swiss German, 
another assembly for U.S. English, and so on. Cultures are identified via a string that 
contains a primary and a secondary tag (as described in RFC1766). Table 2-6 shows some 
examples. 

Table 2-6: Examples of Assembly Culture Tags  

Primary Tag Secondary Tag Culture 

de (none) German 

de AT Austrian German 

de CH Swiss German 

en (none) English 

en GB British English 

en US U.S. English 

In general, if you create an assembly that contains code, you don’t assign a culture to it. This 
is because code doesn’t usually have any culture-specific assumptions built into it. An 
assembly that isn’t assigned a culture is referred to as being culture neutral. 

If you’re designing an application that has some culture-specific resources to it, Microsoft 
highly recommends that you create one assembly that contains your code and your 
application’s default (or fallback) resources. When building this assembly, don’t specify a 
specific culture. This is the assembly that other assemblies will reference to create and 
manipulate types. 

Now you can create one or more separate assemblies that contain only culture-specific 
resources—no code at all. Assemblies that are marked with a culture are called satellite 
assemblies . For these satellite assemblies, assign a culture that accurately reflects the 
culture of the resources placed in the assembly. You should create one satellite assembly 
for each culture you intend to support. 

You’ll usually use the AL.exe tool to build a satellite assembly. You won’t use a compiler 
because the satellite assembly should have no code contained within it. When using AL.exe, 
you specify the desired culture using the /c[ulture]:text switch, where text is a string 
such as "en-US" representing U.S. English. When you deploy a satellite assembly, you 



should place it in a subdirectory whose name matches the culture text. For example, if the 
application’s base directory is C:\MyApp, then the U.S. English satellite assembly should be 
placed in the C:\MyApp\en-US subdirectory. At runtime, you access a satellite assembly’s 
resources using the System.Resources.ResourceManager class. 

 
Note  

Although discouraged, it is possible to create a satellite assembly that 
contains code. If you prefer, you can specify the culture using the 
System.Reflection.AssemblyCultureAttribute custom attribute 
instead of using AL.exe’s /culture switch, for example, as shown here:  

// Set assembly’s culture to Swiss German 
[assembly:AssemblyCulture("de-CH")] 

Normally, you shouldn’t build an assembly that references a satellite 
assembly. In other words, an assembly’s AssemblyRef entries should all 
refer to culture-neutral assemblies. If you want to access types or members 
contained in a satellite assembly, you should use reflection techniques as 
discussed in Chapter 20. 

 
Simple Application Deployment (Privately Deployed 
Assemblies) 

Throughout this chapter, I’ve explained how you build modules and how you combine those 
modules into an assembly. At this point, I’m ready to package and deploy all the assemblies 
so that users can run the application. 

Assemblies don’t dictate or require any special means of packaging. The easiest way to 
package a set of assemblies is simply to copy all the files directly. For example, you could 
put all the assembly files on a CD-ROM disk and ship it to the user with a batch file setup 
program that just copies the files from the CD to a directory on the user’s hard drive. 
Because the assemblies include all the dependant assembly references and types, the user 
can just run the application and the runtime will look for referenced assemblies in the 
application’s directory. No modifications to the registry or to Active Directory are necessary 
for the application to run. To uninstall the application, just delete all the files—that’s it! 

Of course, you can package and install the assembly files using other mechanisms, such as 
.cab files (typically used for Internet download scenarios to compress files and reduce 
download times). You can also package the assembly files into an MSI file for use by the 
Windows Installer service (MSIExec.exe). Using MSI allows assemblies to be installed on 
demand the first time the CLR attempts to load the assembly. This feature isn’t new to MSI; 
it can perform the same demand-load functionality for unmanaged EXE and DLL files as 
well. 

 
Note  

Using a batch file or some other simple “installation software” will get an 
application onto the user’s machine; however, you’ll need more 
sophisticated installation software to create shortcut links on the user’s 
desktop, Start menu, and Quick Launch toolbar. Also, you can easily back 
up and restore the application or move it from one machine to another, but 
the various shortcut links will require special handling. Future versions of 
Windows may improve this story. 

Assemblies that are deployed to the same directory as the application are called privately 
deployed assemblies because the assembly files aren’t shared with any other application 
(unless it’s also deployed to the same directory). Privately deployed assemblies are a big 
win for developers, end-users, and administrators because they can simply be copied to an 



application’s base directory and the CLR will load them and execute the code in them. In 
addition, an application can be uninstalled by simply deleting the assemblies in its directory. 
This allows simple backup and restore to work as well.  

This simple install/move/uninstall story is possible because each assembly has metadata 
indicating which referenced assembly should be loaded; no registry settings or Active 
Directory settings are required. 

In addition, the referencing assembly scopes every type. This means that an application 
always binds to the exact type that it was built and tested with; the CLR can’t load a different 
assembly that just happens to provide a type with the same name. This is different from 
COM, where types are recorded in the registry, making them available to any application 
running on the machine. 

In Chapter 3, I’ll discuss how to deploy shared assemblies that are accessible by multiple 
applications. 

 
Simple Administrative Control (Configuration) 

The user or the administrator can best determine some aspects of an application’s 
execution. For example, an administrator might decide to move an assembly’s files on the 
user’s hard disk or to override information contained in the assembly’s manifest. Other 
scenarios also exist related to versioning and remoting; I’ll talk about some of these in 
Chapter 3. 

To allow administrative control over an application, a configuration file can be placed in the 
application’s directory. An application’s publisher can create and package this file. The setup 
program would then install this configuration file in the application’s base directory. In 
addition, the machine’s administrator or an end-user could create or modify this file. The 
CLR interprets the content of this file to alter its policies for locating and loading assembly 
files. 

These configuration files contain XML and can be associated with an application or with the 
machine. Using a separate file (vs. registry settings) allows the file to be easily backed up 
and also allows the administrator to copy the application to another machine: just copy the 
necessary files and the administrative policy is copied too.  

In Chapter 3, we’ll explore this configuration file in more detail. But I want to give you a taste 
of it now. Let’s say that the publisher of an application wants its application deployed with the 
JeffTypes assembly files in a different directory than the application’s assembly file. The 
desired directory structure looks like this: 

AppDir directory (contains the application’s assembly files) 
   App.exe 
   App.exe.config (discussed below) 
 
   AuxFiles subdirectory (contains JeffTypes’ assembly files)  
      JeffTypes.dll 
      FUT.netmodule 
      RUT.netmodule 

Since the JeffTypes files are no longer in the application’s base directory, the CLR won’t be 
able to locate and load these files; running the application will cause a 
System.IO.FileNotFoundException exception to be thrown. To fix this, the publisher 
creates an XML configuration file and deploys it to the application’s base directory. The 



name of this file must be the name of the application’s main assembly file with a .config 
extension: App.exe.config, for this example. This configuration file should look like this:  

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
   <runtime> 
      <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
         <probing privatePath="AuxFiles" /> 
      </assemblyBinding> 
   </runtime> 
</configuration> 

Whenever the CLR attempts to locate an assembly file, it always looks in the application’s 
directory first, and if it can’t find the file there, it looks in the AuxFiles subdirectory. You can 
specify multiple semicolon-delimited paths for the probing element’s privatePath attribute. 
Each path is considered relative to the application’s base directory. You can’t specify an 
absolute or a relative path identifying a directory that is outside the application’s base 
directory. The idea is that an application can control its directory and its subdirectories but 
has no control over other directories. 

By the way, you can write code that opens and parses the information contained in a 
configuration file. This allows your application to define settings that an administrator or a 
user can create and persist in the same file as all the application’s other settings. You use 
the classes defined in the System.Configuration namespace to manipulate a 
configuration file at runtime. 

The name and location of this XML configuration is different depending on the application 
type.  

 

Probing for Assembly Files 

When the CLR needs to locate an assembly, it scans several subdirectories. Here is the 
order in which directories are probed for a culture-neutral assembly: 

AppBase\AsmName.dll 
AppBase\AsmName\AsmName.dll 
AppBase\privatePath1\AsmName.dll 
AppBase\privatePath1\AsmName\AsmName.dll 
AppBase\privatePath2\AsmName.dll 
AppBase\privatePath2\AsmName\AsmName.dll 
? 

In the example above, no configuration file would be needed if the JeffTypes assembly 
files were deployed to a subdirectory called JeffTypes since the CLR would 
automatically scan for a subdirectory whose name matches the name of the assembly 
being searched for. 

If the assembly can’t be found in any of the preceding subdirectories, the CLR starts all 
over, using an .exe extension instead of a .dll extension. If the assembly still can’t be 
found, a FileNotFoundException is thrown. 

For satellite assemblies, the same rules are followed except that the assembly is 
expected to be in a subdirectory of the application base directory whose name matches 



the culture. For example, if AsmName.dll has a culture of “en-US” applied to it, the 
following directories are probed: 

AppBase\en-US\AsmName.dll 
AppBase\en-US\AsmName\AsmName.dll 
AppBase\en-US\privatePath1\AsmName.dll 
AppBase\en-US\privatePath1\AsmName\AsmName.dll 
AppBase\en-US\privatePath2\AsmName.dll 
AppBase\en-US\privatePath2\AsmName\AsmName.dll 
? 

Again, if the assembly can’t be found in any of the subdirectories listed here, the CLR 
checks the same set of assemblies looking for an .exe file instead of a .dll file.  
 

 

§ For executable applications (EXEs), the configuration file must be in the application’s 
base directory and it must be the name of the EXE file with “.config” appended to it. 

§ For ASP.NET Web Forms and XML Web service applications, the file must be in the 
Web application’s virtual root directory and is always named Web.config. In addition, 
subdirectories can also contain their own Web.config file and the configuration settings 
are inherited. For example, a Web application located at 
http://www.Wintellect.com/Training would use the settings in the Web.config files 
contained in the virtual root directory and in its Training subdirectory. 

§ For assemblies containing client-side controls hosted by Microsoft Internet Explorer, 
the HTML page must contain a link tag whose rel attribute is set to "Configuration" and 
whose href attribute is set to the URL of the configuration file, which can be given any 
name. Here’s an example: <LINK REL=Configuration 
HREF=http://www.Wintellect.com/Controls.config> For more information see the .NET 
Framework documentation. 

As mentioned at the beginning of this section, configuration settings apply to a particular 
application and to the machine. When you install the .NET Framework, it creates a 
Machine.config file. There is one Machine.config file per version of the CLR you have 
installed on the machine. In the future, it will be possible to have multiple versions of the 
.NET Framework installed on a single machine simultaneously. 

The Machine.config file is located in the following directory: 
C:\WINDOWS\Microsoft.NET\Framework\version\CONFIG 

Of course, C:\WINDOWS identifies your Windows directory, and version is a version number 
identifying a specific version of the .NET Framework. 

Settings in the Machine.config file override settings in an application-specific configuration 
file. An administrator can create a machine-wide policy by modifying a single file. Normally, 
administrators and users should avoid modifying the Machine.config file because this file has 
many settings related to various things, making it much more difficult to navigate. Plus, you 
want the application’s settings to be backed up and restored, and keeping an application’s 
settings in the application-specific configuration file enables this.  

Because editing an XML configuration file is a little unwieldy, Microsoft’s .NET Framework 
team produced a GUI tool to help. The GUI tool is implemented as a Microsoft Management 
Console (MMC) snap-in, which means that it isn’t available when running on a Windows 98, 
Windows 98 Standard Edition, or Windows Me machine. You can find the tool by opening 
Control Panel, selecting Administrative Tools, and then selecting the Microsoft .NET 



Framework Configuration tool. In the window that appears, you can traverse the tree’s nodes 
until you get to the Applications node, as shown in Figure 2-6. 

 
Figure 2-6 : Applications node of the Microsoft .NET Framework 
Configuration tool  

From the Applications node, you can select the Add An Application To Configure link that 
appears in the right-hand pane. This will invoke a wizard that will prompt you for the 
pathname of the executable file you want to create an XML configuration file for. After you’ve 
added an application, you can also use this to alter its configuration file. Figure 2-7 shows 
the tasks that you can perform to an application. 

 
Figure 2-7 : Configuring an application using the Microsoft .NET 
Framework Configuration tool  

I’ll discuss configuration files a bit more in Chapter 3. 
 



Chapter 3: Shared Assemblies 

Overview 

In Chapter 2, I talked about the steps required to build, package, and deploy an assembly. I 
focused on what’s called private deployment, where assemblies are placed in the 
application’s base directory (or a subdirectory thereof) for the application’s sole use. 
Deploying assemblies privately gives a company a large degree of control over the naming, 
versioning, and behavior of the assembly. 

In this chapter, I’ll concentrate on creating assemblies that multiple applications can access. 
The assemblies that ship with the Microsoft .NET Framework are an excellent example of 
globally deployed assemblies because almost all managed applications use types defined by 
Microsoft in the .NET Framework Class Library (FCL). 

As I mentioned in Chapter 2, Windows has a reputation for being unstable. The main reason 
for this reputation is the fact that applications are built and tested using code implemented by 
someone else. After all, when you write an application for Windows, your application is 
calling into code written by Microsoft developers. Also, a large number of companies out 
there make controls that application developers can incorporate into their own applications. 
In fact, the .NET Framework encourages this, and lot more control vendors will likely pop up 
over time. 

As time marches on, Microsoft developers and control developers modify their code: they fix 
bugs, add features, and so on. Eventually, the new code makes its way onto the user’s hard 
disk. The user’s applications that were previously installed and working fine are no longer 
using the same code that the applications were built and tested with. As a result, the 
applications’ behavior is no longer predictable, which contributes to the instability of 
Windows.  

File versioning is a very difficult problem to solve. In fact, I assert that if you take a file and 
change just one bit in the file from a 0 to a 1 or from a 1 to a 0, there’s absolutely no way to 
guarantee that code that used the original file will now work just as well if it uses the new 
version of the file. One of the reasons why this statement is true is that a lot of applications 
exploit bugs—either knowingly or unknowingly. If a later version of a file fixes a bug, the 
application no longer runs as expected. 

So here’s the problem: how do you fix bugs and add features to a file and also guarantee 
that you don’t break some application? I’ve given this question a lot of thought and have 
come to one conclusion: it’s just not possible. But, obviously, this answer isn’t good enough. 
Files will ship with bugs, and developers will always want to add new features. There must 
be a way to distribute new files with the hope that the applications will work just fine. And if 
the application doesn’t work fine, there has to be an easy way to restore the application to its 
“last-known good state.” 

In this chapter, I’ll explain the infrastructure that the .NET Framework has in place to deal 
with versioning problems. Let me warn you: what I’m about to describe is complicated. I’m 
going to talk about a lot of algorithms, rules, and policies that are built into the common 
language runtime (CLR). I’m also going to mention a lot of tools and utilities that the 
application developer must use. This stuff is complicated because, as I’ve mentioned, the 
versioning problem is difficult to address and to solve. 

 
Two Kinds of Assemblies, Two Kinds of Deployment 



The .NET Framework supports two kinds of assemblies: weakly named assemblies and 
strongly named assemblies. 

 
Important  

By the way, you won’t find the term weakly named assembly in any of 
the .NET Framework documentation. Why? Because I made it up. In 
fact, the documentation has no term to identify a weakly named 
assembly. I decided to coin the term so that I can talk about 
assemblies without any ambiguity as to what kind of assembly I’m 
referring to.  

Weakly named assemblies and strongly named assemblies are structurally identical—that is, 
they use the same portable executable (PE) file format, PE header, CLR header, metadata, 
and manifest tables that we examined in Chapter 2. And you use the same tools, such as 
the C# compiler and AL.exe, to build both kinds of assemblies. The real difference between 
weakly named and strongly named assemblies is that a strongly named assembly is signed 
with a publisher’s public/private key pair that uniquely identifies the assembly’s publisher. 
This key pair allows the assembly to be uniquely identified, secured, and versioned, and it 
allows the assembly to be deployed anywhere on the user’s hard disk or even on the 
Internet. This ability to uniquely identify an assembly allows the CLR to enforce certain 
“known to be safe” policies when an application tries to bind to a strongly named assembly. 
This chapter is dedicated to explaining what strongly named assemblies are and what 
policies the CLR applies to them. 

An assembly can be deployed in two ways: privately or globally. A privately deployed 
assembly is an assembly that is deployed in the application’s base directory or one of its 
subdirectories. A weakly named assembly can be deployed only privately. I talked about 
privately deployed assemblies in Chapter 2. A globally deployed assembly is an assembly 
that is deployed into some well-known location that the CLR knows to look in when it’s 
searching for an assembly. A strongly named assembly can be deployed privately or 
globally. I’ll explain how to create and deploy strongly named assemblies in this chapter. 
Table 3-1 summarizes the kinds of assemblies and the ways that they can be deployed. 

Table 3-1: How Weakly and Strongly Named Assemblies Can Be Deployed  

Kind of Assembly Can Be Privately 
Deployed? 

Can Be Globally 
Deployed? 

Weakly named Yes No 

Strongly named Yes Yes 

 
Giving an Assembly a Strong Name 

If multiple applications are going to access an assembly, the assembly must be placed in a 
well-known directory and the CLR must know to look in this directory automatically when a 
reference to the assembly is detected. However, we have a problem: two (or more) 
companies could produce assemblies that have the same filename. Then, if both of these 
assemblies get copied into the same well-known directory, the last one installed wins and all 
the applications that were using the old assembly no longer function as desired. (This is 
exactly why DLL hell exists today in Windows.)  

Obviously, differentiating assemblies simply by using a filename isn’t good enough. The CLR 
needs to support some mechanism that allows assemblies to be uniquely identified. This is 
what the term strongly named assembly refers to. A strongly named assembly consists of 
four attributes that uniquely identify the assembly: a filename (without an extension), a 
version number, a culture identity, and a public key token (a value derived from a public 
key). The following strings identify four completely different assembly files: 



"MyTypes, Version=1.0.8123.0, Culture=neutral, PublicKeyToken=b77a5c5619
34e089" 
 
"MyTypes, Version=1.0.8123.0, Culture="en-
US", PublicKeyToken=b77a5c561934e089" 
 
"MyTypes, Version=2.0.1234.0, Culture=neutral, PublicKeyToken=b77a5c5619
34e089" 
 
"MyTypes, Version=1.0.8123.0, Culture=neutral, PublicKeyToken=b03f5f7f11d
50a3a" 

The first string identifies an assembly file called MyTypes.dll. The company producing the 
assembly is creating version 1.0.8123.0 of this assembly, and nothing in the assembly is 
sensitive to any one culture because Culture is set to neutral. Of course, any company 
could produce a MyTypes.dll assembly that is marked with a version number of 1.0.8123.0 
and a neutral culture. 

There must be a way to distinguish this company’s assembly from another company’s 
assembly that happens to have the same attributes. For several reasons, Microsoft chose to 
use standard public/private key cryptographic technologies instead of any other unique 
identification technique, such as GUIDs, URLs, or URNs. Specifically, cryptographic 
techniques provide a way to check the integrity of the assembly’s bits as they are installed 
on a hard drive, and they also allow permissions to be granted on a per-publisher basis. I’ll 
discuss these techniques more later in this chapter. 

So, a company that wants to uniquely mark its assemblies must acquire a public/private key 
pair. Then the public key can be associated with the assembly. No two companies should 
have the same public/private key pair, and this distinction is what allows two companies to 
create assemblies that have the same name, version, and culture without causing any 
conflict.  

 
Note  

The System.Reflection.AssemblyName class is a helper class that 
makes it easy for you to build an assembly name and to obtain the various 
parts of an assembly’s name. The class offers several public instance 
properties, such as CultureInfo, FullName, KeyPair, Name, and 
Version. The class also offers a few public instance methods, such as 
GetPublicKey, GetPublicKeyToken, SetPublicKey, and 
SetPublicKeyToken. 

In Chapter 2, I showed you how to name an assembly file and how to apply an assembly 
version number and a culture. A weakly named assembly can have assembly version and 
culture attributes embedded in the manifest metadata; however, the CLR always ignores the 
version number and uses only the culture information when it’s probing subdirectories 
looking for the satellite assembly. Because weakly named assemblies are always privately 
deployed, the CLR simply uses the name of the assembly (tacking on a .dll or an .exe 
extension) when searching for the assembly’s file in the application’s base directory or any of 
the subdirectories specified in the XML configuration file’s probing element’s privatePath 
attribute. 

A strongly named assembly has a filename, an assembly version, and a culture. In addition, 
a strongly named assembly is signed with the publisher’s private key. 



The first step in creating a strongly named assembly is to obtain a key by using the Strong 
Name Utility, SN.exe, that ships with the .NET Framework SDK and Visual Studio .NET. This 
utility offers a whole slew of features depending on the command-line switch you specify. 
Note that all SN.exe’s command-line switches are case-sensitive. To generate a 
public/private key pair, you run SN.exe as follows: 

SN Ðk MyCompany.keys 

This line tells SN.exe to create a file called MyCompany.keys. This file will contain the public 
and private key numbers persisted in a binary format. 

Public key numbers are very big. If you want to see them, you can execute this command 
line: 

SN Ðtp MyCompany.keys 

When I execute this line, I get the following output: 
Microsoft (R) .NET Framework Strong Name Utility  Version 1.0.3210.0 
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved. 
 
Public key is 
070200000024000052534132000400000100010031f38d3b2e55454ed52c5d2469
11011be59543 
878d99e7da35c8bca8b714a96010572ca8ad63b9a1ea20f62036d79f250c86bbb3b
85eb52785a8 
7b543a068d9563c9b6db5bbc33898248d8a8cd7476a006b1977ce0c41ba502147d
53e51ce06104 
836dd392b85aac991d36884e20409de4aa362de46bd00ff043e012b57878c981647
e3deec439c5 
087d60e978d972663e7c7b28ab7236aab2ae686bfc7c1eda062d4027bdfed92ef5cc
93d1138047 
20c91abbe5a88ccca87f8b6751cafecee8b17657cdaef038568a9bf59ccefd056d971
f9e839564 
3849384688ebeb6b6b4fda9e8dc95606af700244923c822bafcee7dfe6606580bb12
5277fff941 
4e8add01daacc5189209437cf2df24f5a3b8b463d37f059aa1dca6183460103912f2
5bc5304f01 
4bcecff1bf1f50ca24c57f42eb885ed18834be32317357f33e8809abd1cd820847d3
65b7bf62c6 
f1799fd1f3fa726e355a7eccf111f0f7a64a3d2e8cd83375a523d5fb99eb55c4abf59e
c5ce571c 
c6d4eb0eafa9891e19a94b3a264b64f83fa8dd3dbb3ffbfa2798c0f07c76d624a0d31
f2ac0e536 
80b021356f575ae4bf6f2ed794805ef29723261dcd5faace2f42f821f5b1fb6fad133
1d30c621e 
01187fce0b3067f409239f8b40fca884793b47bade292c1509c1169bb09c96803f27
0bdad9c8a8 
ff8b9a6cf10025b53509b615623accd7a5f90641dd234b6537f7bb6215236639d81
16569755817 
308efaf043a627060191d0072a1eacadcb646ca23c13bef498cff88b3c0f49298446a
caaabe62e 



8b95326fea73ef1783b073 
 
Public key token is 4da24326b8a214c7 

The size of public keys makes them difficult to work with. To make things easier for the 
developer (and for end-users too), public key tokens  were created. A public key token is a 
64-bit hash of the public key. SN.exe’s Ðtp switch shows the public key token that 
corresponds to the complete public key at the end of its output. 

Now that you know how to create a public/private key pair, creating a strongly named 
assembly is simple. You just apply an instance of the 
System.Reflection.AssemblyKeyFileAttribute attribute to your source code:  

[assembly:AssemblyKeyFile("MyCompany.keys")] 

When a compiler sees this attribute in your source code, the compiler opens the specified 
file (MyCompany.Keys), signs the assembly with the private key, and embeds the public key 
in the manifest. Note that you sign only the assembly file that contains the manifest; the 
assembly’s other files can’t be signed explicitly. 

Here’s what it means to sign a file: When you build a strongly named assembly, the 
assembly’s FileDef manifest metadata table includes the list of all the files that make up the 
assembly. As each file’s name is added to the manifest, the file’s contents are hashed and 
this hash value is stored along with the file’s name in the FileDef table. You can override the 
default hash algorithm used with AL.exe’s /algid switch or the assembly level 
System.Reflection.Assembly-AlgIDAttribute custom attribute. By default, a SHA-
1 algorithm is used, and this should be sufficient for almost all applications.  

After the PE file containing the manifest is built, the PE file’s entire contents are hashed, as 
shown in Figure 3-1. The hash algorithm used here is always SHA-1 and can’t be 
overridden. This hash value—typically around 100 or 200 bytes in size—is signed with the 
publisher’s private key, and the resulting RSA digital signature is stored in a reserved section 
(not included in the hash) within the PE file. The CLR header of the PE file is updated to 
reflect where the digital signature is embedded within the file. 

 
Figure 3-1 : Signing an assembly  

The publisher’s public key is also embedded into the AssemblyDef manifest metadata table 
in this PE file. The combination of the filename, the assembly version, the culture, and the 
public key gives this assembly a strong name, which is guaranteed to be unique. There is no 
way that two companies could produce a “Calculus” assembly with the same public key 
(assuming that the companies don’t share this key pair with each other). 



At this point, the assembly and all its files are ready to be packaged and distributed. 

As described in Chapter 2, when you compile your source code, the compiler detects the 
types and members that your code references. You must specify the referenced assemblies 
to the compiler. For the C# compiler, you use the /reference command-line switch. Part of 
the compiler’s job is to emit an AssemblyRef metadata table inside the resulting managed 
module. Each entry in the AssemblyRef metadata table indicates the referenced assembly’s 
name (without path and extension), version number, culture, and public key information.  

 
Important  

Because public keys are such large numbers and a single assembly 
might reference many assemblies, a large percentage of the resulting 
file’s total size would be occupied with public key information. To 
conserve storage space, Microsoft hashes the public key and takes the 
last 8 bytes of the hashed value. This reduced value has been 
determined to be statistically unique and is therefore safe to pass 
around the system. These reduced public key values—known as 
public key tokens—are what are actually stored in an AssemblyRef 
table. In general, developers and end-users will see public key token 
values much more frequently than full public key values. 

Following is the AssemblyRef metadata information for the JeffTypes.dll file that I discussed 
in Chapter 2: 

AssemblyRef #1 
——————————————————————————— 
    Token: 0x23000001 
    Public Key or Token: b7 7a 5c 56 19 34 e0 89  
    Name: mscorlib 
    Major Version: 0x00000001 
    Minor Version: 0x00000000 
    Build Number: 0x00000c1e 
    Revision Number: 0x00000000 
    Locale: <null> 
    HashValue Blob: 3e 10 f3 95 e3 73 0b 33  1a 4a 84 a7 81 76 eb 32  4b 
                   36 4d a5  
    Flags: [none] (00000000) 

From this, you can see that JeffTypes.dll references a type that is contained in an assembly 
matching the following attributes: 

"MSCorLib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561
934e089" 

Unfortunately, ILDasm.exe uses the term Locale when it really should be using Culture 
instead. Microsoft says that they’ll fix the term in a future version of the tool. 

If you look at JeffTypes.dll’s AssemblyDef metadata table, you see the following: 
Assembly 
——————————————————————————— 
    Token: 0x20000001 
    Name : JeffTypes 
    Public Key    : 
    Hash Algorithm : 0x00008004 
    Major Version: 0x00000001 



    Minor Version: 0x00000000 
    Build Number: 0x00000253 
    Revision Number: 0x00005361 
    Locale: <null> 
    Flags : [SideBySideCompatible]  (00000000) 

This is equivalent to the following: 
"JeffTypes, Version=1.0.595.21345, Culture=neutral, 
PublicKeyToken=null" 

In this line, no public key token is specified because in Chapter 2 the JeffTypes.dll assembly 
wasn’t signed with a public key, making it a weakly named assembly.  

If I had used SN.exe to create a key file, added the AssemblyKeyFile-Attribute to the 
source code, and then recompiled, the resulting assembly would be signed. If you’re using 
AL.exe to build the assembly, you specify its /keyfile switch instead of using the 
AssemblyKeyFileAttribute. If I had used ILDasm.exe to explore the new assembly’s 
metadata, the AssemblyDef entry would have bytes appearing after the Public Key field and 
the assembly would be strongly named. By the way, the AssemblyDef entry always stores 
the full public key, not the public key token. The full public key is necessary to ensure that 
the file hasn’t been tampered with. I’ll explain the tamper resistance of strongly named 
assemblies later in this chapter. 

 
The Global Assembly Cache 

Now that you know how to create a strongly named assembly, it’s time to learn how to 
deploy this assembly and how the CLR uses the information to locate and load the 
assembly. 

If an assembly is to be accessed by multiple applications, the assembly must be placed into 
a well-known directory and the CLR must know to look in this directory automatically when a 
reference to the assembly is detected. This well-known location is called the global assembly 
cache (GAC), which can usually be found in the following directory: 

C:\Windows\Assembly\GAC 

The GAC directory is structured: it contains many subdirectories, and an algorithm is used to 
generate the names of these subdirectories. You should never manually copy assembly files 
into the GAC; instead, you should use tools to accomplish this task. These tools know the 
GAC’s internal structure and how to generate the proper subdirectory names. 

While developing and testing, the most common tool for installing a strongly named 
assembly into the GAC is GACUtil.exe. Running this tool without any command-line 
arguments yields the following usage: 

Microsoft (R) .NET Global Assembly Cache Utility. Version 1.0.3415.0 
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved. 
 
Usage: Gacutil <option> [<parameters>] 
 Options: 
  /i 
    Installs an assembly to the global assembly cache. Include the 
    name of the file containing the manifest as a parameter. 
    Example:  /i myDll.dll  



 
  /if 
    Installs an assembly to the global assembly cache and forces 
    overwrite if assembly already exists in cache. Include the 
    name of the file containing the manifest as a parameter. 
    Example:  /if myDll.dll  
 
  /ir 
    Installs an assembly to the global assembly cache with traced 
    reference. Include the name of file containing manifest,  
    reference scheme, ID and description as parameters.  
    Example:  /ir myDll.dll FILEPATH c:\apps\myapp.exe MyApp  
 
  /u[ngen] 
    Uninstalls an assembly. Include the name of the assembly to 
    remove as a parameter. If ngen is specified, the assembly is 
    removed from the cache of ngen’d files, otherwise the assembly 
    is removed from the global assembly cache. 
    Examples:. 
      /ungen myDll 
      /u myDll,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab874e23ab 
 
  /ur 
    Uninstalls an assembly reference. Include the name of the  
    assembly, type of reference, ID and data as parameters.  
    Example:  /ur myDll,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab
874e23ab  
                       FILEPATH c:\apps\myapp.exe MyApp 
 
  /uf 
    Forces uninstall of an assembly by removing all install references.  
    Include the full name of the assembly to remove as a parameter.  
    Assembly will be removed unless referenced by Windows Installer.  
    Example:  /uf myDll,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab
874e23ab  
 
  /l 
    Lists the contents of the global assembly cache. Allows optional 
    assembly name parameter to list matching assemblies only. 
 
  /lr 
    Lists the contents of the global assembly cache with traced  
    reference information. Allows optional assembly name parameter  
    to list matching assemblies only.  
 
  /cdl 



    Deletes the contents of the download cache 
 
  /ldl 
    Lists the contents of the downloaded files cache 
 
  /nologo 
    Suppresses display of the logo banner 
 
  /silent 
    Suppresses display of all output 

As you can see, you can invoke GACUtil.exe specifying the /i switch to install an assembly 
into the GAC, and you can use GACUtil.exe’s /u switch to uninstall an assembly from the 
GAC. Note that you can’t ever place a weakly named assembly into the GAC. If you pass the 
filename of a weakly named assembly to GACUtil.exe, it displays the following error 
message:  

“Failure adding assembly to the cache: Attempt to install an assembly 
without a strong name.” 

 
Note  

By default, the GAC can be manipulated only by a user belonging to the 
Windows Administrators group. GACUtil.exe will fail to install or uninstall an 
assembly if the user invoking the execution of the utility isn’t a member of 
this group.  

Using GACUtil.exe’s /i switch is very convenient for developer testing. However, if you use 
GACUtil.exe to deploy an assembly in a production environment, it’s recommended that you 
use GACUtil.exe’s /ir switch instead and its /ur switch to uninstall the assembly. The /ir 
switch integrates the installation with the Windows install and uninstall engine. Basically, it 
tells the system which application requires the assembly and then ties the application and 
the assembly together. 

 
Note  

If a strongly named assembly is packaged in a cabinet (.cab) file or is 
compressed in some way, the assembly’s file must first be decompressed to 
temporary file(s) before you use GACUtil.exe to install the assembly’s files 
into the GAC. Once the assembly’s files have been installed, the temporary 
file(s) can be deleted. 

The GACUtil.exe tool doesn’t ship with the end-user .NET Framework redistributable 
package. If your application includes some assemblies that you want deployed into the GAC, 
you must use the Windows Installer (MSI) version 2 or later because MSI is the only tool that 
is guaranteed to be on end-user machines and capable of installing assemblies into the 
GAC. (You can determine which version of the Windows Installer is installed by running 
MSIExec.exe.) 

 
Important  

Globally deploying assembly files into the GAC is a form of registering 
the assembly, although the actual Windows registry isn’t affected in 
any way. Installing assemblies into the GAC breaks the goal of simple 
application installation, backup, restore, moving, and uninstall. So 
really, you get only the “simple” story when you avoid global 
deployment and use private deployment exclusively.  

What is the purpose of “registering” an assembly in the GAC? Well, say two companies each 
produce a Calculus assembly consisting of one file: Calculus.dll. Obviously, both these files 



can’t go in the same directory because the last one installed would overwrite the first one, 
surely breaking some application. When you use a tool to install an assembly into the GAC, 
the tool creates subdirectories under the C:\Windows\Assembly\GAC directory and copies 
the assembly files into this subdirectory. 

Normally, no one examines the GAC’s subdirectories, so the structure of the GAC shouldn’t 
really matter to you. As long as the tools and the CLR know the structure, all is good. Just for 
fun, I’ll describe the internal structure of the GAC in the next section. 

When you install the .NET Framework, an Explorer shell extension (ShFusion.dll) is 
installed. This shell extension also knows the structure of the GAC, and it displays the GAC’s 
contents in a nice, user-friendly fashion. When I use Explorer and navigate to my 
C:\Windows\Assembly directory, I see what’s shown in Figure 3-2: the assemblies installed 
into the GAC. Each row shows the assembly’s name, type, version number, culture (if any), 
and public key token. 

 
Figure 3-2 : Using Explorer’s shell extension to see the assemblies installed into the 
GAC  

You can select an entry and click the secondary mouse button to display a context menu. 
The context menu contains Delete and Properties menu items. Obviously, the Delete menu 
item deletes the selected assembly’s files from the GAC and fixes up the GAC’s internal 
structure. Selecting the Properties menu item displays a property dialog box that looks like 
the one shown in Figure 3-3. The Last Modified timestamp indicates when the assembly was 
added to the GAC. Selecting the Version tab reveals the property dialog box shown in Figure 
3-4. 



 
Figure 3-3 : General tab of the System Properties dialog box  



 
Figure 3-4 : Version tab of the System Properties dialog box  

Last but not least, you can drag an assembly file that contains a manifest and drop the file in 
Explorer’s window. When you do this, the shell extension installs the assembly’s files into the 
GAC. For some developers, this is an easier way to install assemblies into the GAC for 
testing instead of using the GACUtil.exe tool. 

The Internal Structure of the GAC 

Simply stated, the purpose of the GAC is to maintain a relationship between a strongly 
named assembly and a subdirectory. Basically, the CLR has an internal function that takes 
an assembly’s name, version, culture, and public key token. This function then returns the 
path of a subdirectory where the specified assembly’s files can be found.  

If you go to a command prompt and change into the C:\Windows\Assembly\GAC directory, 
you’ll see several subdirectories, one for each assembly that has been installed into the 
GAC. Here’s what my GAC directory looks like (with some of the directories deleted to save 
trees): 

Volume in drive C has no label. 
 Volume Serial Number is 94FA-5DE7 
 
 Directory of C:\WINDOWS\assembly\GAC 
 
08/15/2001  05:07 PM    <DIR>          . 
08/15/2001  05:07 PM    <DIR>          .. 
08/15/2001  03:09 PM    <DIR>          Accessibility 
08/15/2001  05:06 PM    <DIR>          ADODB 



07/03/2001  04:54 PM    <DIR>          CRVsPackageLib 
08/15/2001  05:06 PM    <DIR>          Microsoft.ComCtl2 
08/15/2001  05:06 PM    <DIR>          Microsoft.ComctlLib 
08/15/2001  05:05 PM    <DIR>          Microsoft.JScript 
08/15/2001  05:07 PM    <DIR>          Microsoft.mshtml 
08/15/2001  05:06 PM    <DIR>          Microsoft.MSMAPI 
08/15/2001  05:06 PM    <DIR>          Microsoft.MSMask 
08/15/2001  05:07 PM    <DIR>          Microsoft.MSRDC 
08/15/2001  05:07 PM    <DIR>          Microsoft.MSWinsockLib 
08/15/2001  05:07 PM    <DIR>          Microsoft.MSWLess 
08/15/2001  05:07 PM    <DIR>          Microsoft.PicClip 
08/15/2001  05:07 PM    <DIR>          Microsoft.RichTextLib 
08/15/2001  05:06 PM    <DIR>          Microsoft.StdFormat 
08/15/2001  05:07 PM    <DIR>          Microsoft.SysInfoLib 
08/15/2001  05:07 PM    <DIR>          Microsoft.TabDlg 
08/15/2001  05:05 PM    <DIR>          Microsoft.VisualBasic 
08/15/2001  03:09 PM    <DIR>          System 
08/15/2001  03:09 PM    <DIR>          System.Configuration.Install 
08/15/2001  03:09 PM    <DIR>          System.Data 
08/15/2001  03:09 PM    <DIR>          System.Design 
08/15/2001  03:09 PM    <DIR>          System.DirectoryServices 
08/15/2001  03:09 PM    <DIR>          System.Drawing 
08/15/2001  03:09 PM    <DIR>          System.Drawing.Design 
08/15/2001  03:08 PM    <DIR>          System.EnterpriseServices 
08/15/2001  03:09 PM    <DIR>          System.Management 
08/15/2001  03:09 PM    <DIR>          System.Messaging 
08/15/2001  03:09 PM    <DIR>          System.Runtime.Remoting 
08/15/2001  03:08 PM    <DIR>          System.Security 
08/15/2001  03:09 PM    <DIR>          System.ServiceProcess 
08/15/2001  03:09 PM    <DIR>          System.Web 
08/15/2001  03:09 PM    <DIR>          System.Web.RegularExpressions 
08/15/2001  03:09 PM    <DIR>          System.Web.Services 
08/15/2001  03:09 PM    <DIR>          System.Windows.Forms 
08/15/2001  03:09 PM    <DIR>          System.Xml 
               0 File(s)              0 bytes 
              95 Dir(s)  14,798,938,112 bytes free 

If you change into one of these directories, you’ll see one or more additional subdirectories. 
My System directory looks like this: 

Volume in drive C has no label. 
 Volume Serial Number is 94FA-5DE7 
 
 Directory of C:\WINDOWS\assembly\GAC\System 
 
08/15/2001  03:09 PM    <DIR>          . 
08/15/2001  03:09 PM    <DIR>          .. 
08/15/2001  03:09 PM    <DIR>          1.0.3300.0__b77a5c561934e089 



               0 File(s)              0 bytes 
               3 Dir(s)  14,798,929,920 bytes free 

The System directory contains one subdirectory for every System.dll assembly installed on 
the machine. In my case, just one version of the System.dll assembly is installed: 

"System, Version=1.0.3300.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089" 

The attributes are separated by underscore characters and are in the form of 
“(Version)_(Culture)_(PublicKeyToken)”. In this example, there is no culture information, 
making the culture neutral. Inside this subdirectory are the files (such as System.dll) making 
up this strongly named version of the System assembly. 

 
Important  

It should be obvious that the whole point of the GAC is to hold multiple 
versions of an assembly. For example, the GAC can contain version 
1.0.0.0 and version 2.0.0.0 of Calculus.dll. If an application is built and 
tested using version 1.0.0.0 of Calculus.dll, the CLR will load version 
1.0.0.0 of Calculus.dll for that application even though a later version 
of the assembly exists and is installed into the GAC. This is the CLR’s 
default policy in regards to loading assembly versions, and the benefit 
of this policy is that installing a new version of an assembly won’t affect 
an already installed application. You can affect this policy in a number 
of ways, and I’ll discuss them later in this chapter. 

 
Building an Assembly That References a Strongly Named 
Assembly 

Whenever you build an assembly, the assembly will have references to other strongly 
named assemblies. This is true if only because System.Object is defined in MSCorLib.dll. 
However, it’s likely that an assembly will reference types in other strongly named assemblies 
published either by Microsoft, by a third party, or by your own organization. 

In Chapter 2, I showed you how to use CSC.exe’s /reference command-line switch to 
specify the assembly filenames you want to reference. If the filename is a full path, CSC.exe 
loads the specified file and uses its metadata information to build the assembly. If you 
specify a filename without a path, CSC.exe attempts to find the assembly by looking in the 
following directories (in order of their presentation here): 

1. The working directory. 
2. The directory that contains the CLR that the compiler itself is using to produce the 

resulting assembly. MSCorLib.dll is always obtained from this directory. This directory 
has a path similar to the following: 

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3427. 
3. Any directories specified using CSC.exe’s /lib command-line switch. 
4. Any directories specified by the LIB environment variable. 

So if you’re building an assembly that references Microsoft’s System.Drawing.dll, you can 
specify the /reference:System.Drawing.dll switch when invoking CSC.exe. The 
compiler will examine the directories shown earlier and will find the System.Drawing.dll file in 
the directory that contains the CLR that the compiler itself is using to produce the assembly. 
Even though this is the directory where the assembly is found at compile time, this isn’t the 
directory where the assembly will be loaded from at run time. 



You see, when you install the .NET Framework, it installs two copies of Microsoft’s assembly 
files. One set is installed into the CLR directory, and another set is installed into the GAC. 
The files in the CLR directory exist so that you can easily build your assembly. The copies in 
the GAC exist so that they can be loaded at run time. 

The reason that CSC.exe doesn’t look in the GAC for referenced assemblies is because 
you’d have to specify a long, ugly path to the assembly file—something like 
C:\WINDOWS\Assembly\GAC\System.Drawing\1.0.3300.0__b03f5f7f11d50a3a\System.Dra
wing.dll. Alternatively, CSC.exe could allow you to specify a still long but slightly nicer-
looking string, such as “System.Drawing, Version=1.0.3300.0, Culture=neutral, 
PublicKeyToken=b03f5f7f11d50a3a”. Both of these solutions were deemed worse than 
having the assembly files installed twice on the user’s hard drive.  

Before leaving this section, I should also talk about response files. A response file is a text 
file that contains a set of compiler command-line switches. When you execute CSC.exe, the 
compiler opens response files and uses any switches that are specified in them as though 
the switches were passed on the command line. You instruct the compiler to use a response 
file by specifying its name on the command line prepended by an @ sign. For example, you 
could have a response file called MyProject.rsp that contains the following text:  

/out:MyProject.exe 
/target:winexe 

To have CSC.exe use these settings, you’d invoke it as follows: 
csc.exe @MyProject.rsp CodeFile1.cs CodeFile2.cs 

This tells the C# compiler what to name the output file and what kind of target to create. As 
you can see, response files are very convenient because you don’t have to manually 
express the desired command-line arguments each time you want to compile your project. 

The C# compiler supports multiple response files. In addition to the files you explicitly specify 
on the command line, the compiler automatically looks for files called CSC.rsp. When you 
run CSC.exe, it looks in the current directory for a local CSC.rsp file—you should place any 
project-specific settings in this file. The compiler also looks in CSC.exe’s own directory for a 
global CSC.rsp file. Settings that you want applied to all your projects should go in this file. 
The compiler uses the settings in all these response files. If you have conflicting settings in 
the local and global response files, the settings in the local file override the settings in the 
global file. Likewise, any settings explicitly passed on the command line override the settings 
taken from a local response file. 

When you install the .NET Framework, it installs a default global CSC.rsp file. This file 
contains the following switches: 

# This file contains command-line options that the C# 
# command line compiler (CSC) will process as part 
# of every compilation, unless the "/noconfig" option 
# is specified.  
 
# Reference the common Framework libraries 
/r:Accessibility.dll 
/r:Microsoft.Vsa.dll 
/r:System.Configuration.Install.dll 
/r:System.Data.dll 
/r:System.Design.dll 
/r:System.DirectoryServices.dll 



/r:System.dll 
/r:System.Drawing.Design.dll 
/r:System.Drawing.dll 
/r:System.EnterpriseServices.dll 
/r:System.Management.dll 
/r:System.Messaging.dll 
/r:System.Runtime.Remoting.dll 
/r:System.Runtime.Serialization.Formatters.Soap.dll 
/r:System.Security.dll 
/r:System.ServiceProcess.dll 
/r:System.Web.dll 
/r:System.Web.RegularExpressions.dll 
/r:System.Web.Services.dll 
/r:System.Windows.Forms.Dll 
/r:System.XML.dll  

When building a project, the compiler will assume you want to reference all the assemblies 
listed. Don’t worry: an AssemblyRef entry is created only if your source code refers to a type 
or member defined by one of these assemblies. This response file is a big convenience for 
developers: it allows you to use types and namespaces defined in various Microsoft-
published assemblies without having to specify any /reference command-line switches 
when compiling. Of course, you’re welcome to add your own switches to the global CSC.rsp 
file if you want to make your life even easier.  

 
Note  

You can tell the compiler to ignore both local and global CSC.rsp files by 
specifying the /noconfig command-line switch. 

 
Strongly Named Assemblies Are Tamper-Resistant 

Signing a file with a private key ensures that the holder of the corresponding public key 
produced the assembly. When the assembly is installed into the GAC, the system hashes 
the contents of the file containing the manifest and compares the hash value with the RSA 
digital signature value embedded within the PE file (after unsigning it with the public key). If 
the values are identical, the file’s contents haven’t been tampered with and you know that 
you have the public key that corresponds to the publisher’s private key. In addition, the 
system hashes the contents of the assembly’s other files and compares the hash values with 
the hash values stored in the manifest file’s FileDef table. If any of the hash values don’t 
match, at least one of the assembly’s files has been tampered with and the assembly will fail 
to install into the GAC.  

 
Important  

This mechanism ensures only that a file’s contents haven’t been 
tampered with; the mechanism doesn’t allow you to tell who the 
publisher is unless you’re absolutely positive that the publisher 
produced the public key you have and you’re sure that the publisher’s 
private key was never compromised. If the publisher wants to 
associate its identity with the assembly, the publisher must use 
Microsoft’s Authenticode technology in addition. 

When an application needs to bind to an assembly, the CLR uses the referenced assembly’s 
properties (name, version, culture, and public key) to locate the assembly in the GAC. If the 
referenced assembly can be found, its containing subdirectory is returned and the file 
holding the manifest is loaded. Finding the assembly this way assures the caller that the 



assembly loaded at run time came from the same publisher that built the assembly the code 
was compiled against. This assurance comes because the public key token in the 
referencing assembly’s AssemblyRef table corresponds to the public key in the referenced 
assembly’s AssemblyDef table. If the referenced assembly isn’t in the GAC, the CLR looks in 
the application’s base directory and then in any of the private paths identified in the 
application’s configuration file; then, if the application was installed using MSI, the CLR asks 
MSI to locate the assembly. If the assembly can’t be found in any of these locations, the bind 
fails and a System.IO.FileNotFoundException exception is thrown. 

When strongly named assembly files are loaded from a location other than the GAC (via a 
codeBase element in a configuration file), the CLR compares hash values when the 
assembly is loaded. In other words, a hash of the file is performed every time an application 
executes. This performance hit is required to be certain that the assembly file’s content 
hasn’t been tampered with. When the CLR detects mismatched hash values at run time, it 
throws a System.IO.File- LoadException exception. 

 
Delayed Signing 

Earlier in this chapter, I discussed how the SN.exe tool can produce public/private key pairs. 
This tool generates the keys by making calls into the Crypto API provided by Windows. 
These keys can be stored in files or other “storage devices.” For example, large 
organizations (such as Microsoft) will maintain the returned private key in a hardware device 
that stays locked in a safe; only a few people in the company have access to the private key. 
This precaution prevents the private key from being compromised and ensures the key’s 
integrity. The public key is, well, public and freely distributed.  

When you’re ready to package your strongly named assembly, you’ll have to use the secure 
private key to sign it. However, while developing and testing your assembly, gaining access 
to the secure private key can be a hassle. For this reason, the .NET Framework supports 
delayed signing, sometimes referred to as partial signing. 

Delayed signing allows you to build an assembly using only your company’s public key; the 
private key isn’t necessary. Using the public key allows assemblies that reference your 
assembly to embed the correct public key value in their AssemblyRef metadata entries. It 
also allows the assembly to be placed in the GAC’s internal structure appropriately. If you 
don’t sign the file with your company’s private key, you lose all the tampering protection 
afforded to you because the assembly’s files won’t be hashed and a digital signature won’t 
be embedded in the file. This loss of protection shouldn’t be a problem, however, because 
you use delayed signing only while developing your own assembly, not when you’re ready to 
package and deploy the assembly. 

Basically, you get your company’s public key value in a file and pass the filename to 
whatever utility you use to build the assembly. (You can use SN.exe’s Ðp switch to extract a 
public key from a file that contains a public/private key pair.) You must also tell the tool that 
you want the assembly to be delay signed, meaning that you’re not supplying a private key. 
In source code, you can apply the AssemblyKeyFileAttribute and 
DelaySignAttribute attributes to specify these things. If you’re using AL.exe, you can 
specify the /keyf[ile] and /delay[sign] command-line switches. 

When the compiler or AL.exe detects that you’re delay signing an assembly, it will emit the 
assembly’s AssemblyDef manifest entry and this entry will contain the assembly’s public key. 
Again, the presence of the public key allows the assembly to be placed in the GAC. It also 
allows you to build other assemblies that reference this assembly; the referencing 
assemblies will have the correct public key in their AssembyRef metadata table entries. 
When creating the resulting assembly, space is left in the resulting PE file for the RSA digital 



signature. (The utility can determine how much space is necessary from the size of the 
public key.) Note that the file’s contents won’t be hashed at this time either. 

At this point, the resulting assembly doesn’t have a valid signature. Attempting to install the 
assembly into the GAC will fail because a hash of the file’s contents hasn’t been done—the 
file appears to have been tampered with. To install the assembly into the GAC, you must 
prevent the system from verifying the integrity of the assembly’s files. To do this, you use the 
SN.exe utility specifying the ÐVr command-line switch. Executing SN.exe with this switch 
also tells the CLR to skip checking hash values for any of the assembly’s files when loaded 
at run time. 

When you’re finished developing and testing the assembly, you’ll need to officially sign it so 
that you can package and deploy it. To sign the assembly, use the SN.exe utility again, this 
time with the ÐR switch and the name of the file that contains the actual private key. The ÐR 
switch causes SN.exe to hash the file’s contents, sign it with the private key, and embed the 
RSA digital signature in the file where the space for it had previously been reserved. After 
this step, you can deploy the fully signed assembly. You can also turn verification of this 
assembly back on by using SN.exe’s ÐVu or ÐVx command-line switch.  

The following list summarizes the steps discussed in this section to develop your assembly 
by using the delay signing technique: 

1. While developing an assembly, obtain a file that contains only your company’s public 
key and add the following two attributes to your source code: 

2. [assembly:AssemblyKeyFile("MyCompanyPublicKey.keys")] 

[assembly:DelaySign(true)] 
3. After building the assembly, execute the following line so that you can install it in the 

GAC, build other assemblies that reference the assembly, and test the assembly. 
Note that you have to do this only once; it’s not necessary to perform this step each 
time you build your assembly. 

SN.exe ÐVr MyAssembly.dll 
4. When ready to package and deploy the assembly, obtain your company’s private key 

and execute the following line: 

SN.exe -R MyAssembly.dll MyCompanyPrivateKey.keys 
5. To test, turn verification back on by executing the following line: 

SN ÐVu MyAssembly.dll 

At the beginning of this section, I mentioned how organizations will keep their key pairs in a 
hardware device, such as a smart card. To keep these keys secure, you must make sure the 
key values are never persisted in a disk file. Cryptographic service providers (CSPs) offer 
“containers” that abstract the location of these keys. Microsoft, for example, uses a CSP that 
has a container that, when accessed, grabs the private key from a smart card. 

If your public/private key pair is in a CSP container, don’t use the Assembly-
KeyFileAttribute attribute or AL.exe’s /keyf[ile] switch. Instead, use the 
System.Reflection.AssemblyKeyNameAttribute attribute or AL.exe’s /keyn[ame] 
switch. When using SN.exe to add the private key to the delay signed assembly, you specify 
the ÐRc switch instead of the ÐR switch. SN.exe offers additional switches that allow you to 
perform operations with a CSP.  

 
Important  

Delay signing is useful whenever you want to perform some other 
operation to an assembly before you deploy it. For example, because 
an assembly is just a normal Windows PE file, you might want to 
consider rebasing the load address for the file. To do this, you can use 
the normal Rebase.exe tool that ships with the Microsoft Win32 



Platform SDK. You can’t rebase a file after it’s been fully signed 
because the hash values will be incorrect. So, if you want to rebase an 
assembly file or do any other type of post-build operation, you should 
use delay signing, perform the post-build operation, and then run 
SN.exe with the ÐR or ÐRc switch to complete the signing of the 
assembly with all its hashing. 

Here’s the AssemInfo.cs file I use for all my personal projects: 
/****************************************************************
************* 
Module:  AssemInfo.cs 
Notices: Copyright (c) 2002 Jeffrey Richter 
*****************************************************************
************/ 
 
using System.Reflection; 
 
////////////////////////////////////////////////////////////////////////////// 
 
// Set the version CompanyName, LegalCopyright, and LegalTrademarks fields. 
[assembly:AssemblyCompany("The Jeffrey Richter Company")] 
[assembly:AssemblyCopyright("Copyright (c) 2002 Jeffrey Richter")] 
[assembly:AssemblyTrademark( 
   "JeffTypes is a registered trademark of the Richter Company")] 
 
////////////////////////////////////////////////////////////////////////////// 
 
// Set the version ProductName and ProductVersion fields. 
[assembly:AssemblyProduct("Jeffrey Richter Type Library")] 
[assembly:AssemblyInformationalVersion("2.0.0.0")] 
 
////////////////////////////////////////////////////////////////////////////// 
 
// Set the version FileVersion, AssemblyVersion,  
// FileDescription, and Comments fields. 
[assembly:AssemblyFileVersion("1.0.0.0")] 
[assembly:AssemblyVersion("3.0.0.0")] 
[assembly:AssemblyTitle("Jeff’s type assembly")] 
[assembly:AssemblyDescription("This assembly contains Jeff’s types")] 
 
////////////////////////////////////////////////////////////////////////////// 
 
// Set the assembly’s culture (""=neutral). 
[assembly:AssemblyCulture("")] 
 
////////////////////////////////////////////////////////////////////////////// 
 
#if !StronglyNamedAssembly 



 
// Weakly named assemblies are never signed. 
[assembly:AssemblyDelaySign(false)] 
 
#else 
 
// Strongly named assemblies are usually delay signed while building and  
// completely signed using SN.exe’s -R or -Rc switch. 
[assembly:AssemblyDelaySign(true)] 
 
   #if !SignedUsingACryptoServiceProvider 
 
   // Give the name of the file that contains the public/private key pair. 
   // If delay signing, only the public key is used. 
   [assembly:AssemblyKeyFile("MyCompany.keys")] 
 
   // Note: If AssemblyKeyFile and AssemblyKeyName are both specified,  
   // here’s what happens... 
   // 1) If the container exists, the key file is ignored. 
   // 2) If the container doesn’t exist, the keys from the key  
   //    file are copied into the container and the assembly is signed. 
 
   #else 
 
   // Give the name of the cryptographic service provider (CSP) container  
   // that contains the public/private key pair.  
   // If delay signing, only the public key is used. 
   [assembly:AssemblyKeyName("")] 
 
   #endif 
 
#endif 
 
//////////////////////////////// End of File ///////////////////////////////// 

When you create a new project with Visual Studio .NET, it automatically creates a new 
AssemblyInfo.cs file that is almost identical to the set of attributes shown here in my file. I 
prefer my file because my comments better describe what’s going on and how the attributes 
map to the version resource information. In addition, the Visual Studio .NET AssemblyInfo.cs 
file initializes the Assembly-Version attribute incorrectly to "1.0.*", telling CSC.exe to 
generate build and revision version numbers automatically with each build. Having a 
different version for each build of your assembly prevents the CLR from loading your 
assembly when any previously built assemblies that reference an older version number need 
it.  

The Visual Studio .NET AssemblyInfo.cs file also contains the 
System.Reflection.AssemblyConfiguration attribute, which is no longer used 
anywhere by the CLR and should have been removed completely from the .NET Framework. 
Leaving this attribute in the file does nothing but waste space. 



 
Privately Deploying Strongly Named Assemblies 

Installing assemblies into the GAC offers several benefits. The GAC enables many 
applications to share assemblies, reducing physical memory usage on a whole. In addition, 
it’s easy to deploy a new version of the assembly into the GAC and have all applications use 
the new version via a publisher policy (described later in this chapter). The GAC also 
provides side-by-side management for an assembly’s different versions. However, the GAC 
is usually secured so that only an administrator can install an assembly into it. Also, installing 
into the GAC breaks the simple copy deployment story.  

While strongly named assemblies can be installed into the GAC, they certainly don’t have to 
be. In fact, it’s recommended that you deploy assemblies into the GAC only if the assembly 
is intended to be shared by many applications. If an assembly isn’t intended to be shared, it 
should be deployed privately. Deploying privately preserves the “simple” copy install 
deployment story and better isolates the application and its assemblies. Also, the GAC isn’t 
intended to be the new C:\Windows\System32 dumping ground for common files. The 
reason is because new versions of assemblies don’t overwrite each other; they are installed 
side by side, eating up disk space. 

In addition to deploying a strongly named assembly in the GAC or privately, a strongly 
named assembly can be deployed to some arbitrary directory that a small set of applications 
know about. For example, you might be producing three applications, all of which want to 
share a strongly named assembly. Upon installation, you can create three directories: one 
for each application and an additional directory for the assembly you want shared. When you 
install each application into its directory, also install an XML configuration file and have the 
shared assembly’s codeBase element indicate the path of the shared assembly. Now, at 
run time, the CLR will know to look in the strongly named assembly’s directory for the shared 
assembly. For the record, this technique is rarely used and is somewhat discouraged 
because no single application controls when the assembly’s files should be uninstalled.  

 
Note  

The configuration file’s codeBase element actually identifies a URL. This 
URL can refer to any directory on the user’s hard disk or to a Web address. 
In the case of a Web address, the CLR will automatically download the file 
and store it in the user’s download cache (a subdirectory under 
C:\Documents and Settings\UserName\Local Settings\Application 
Data\Assembly. When referenced in the future, the CLR will load the 
assembly from this directory rather than access the URL. An example of a 
configuration file containing a codeBase element is shown later in this 
chapter. 

 
Note  

When a strongly named assembly is installed into the GAC, the system 
ensures that the file containing the manifest hasn’t been tampered with. This 
check occurs only once: at installation time. On the other hand, when a 
strongly named assembly is loaded from a directory other than the GAC, the 
CLR verifies the assembly’s manifest file to ensure that the file’s contents 
have not been tampered with. This additional performance hit occurs every 
time this file is loaded. 

 
Side-by-Side Execution 

The strong versioning story presented here means that an assembly, App.exe, could bind to 
version 2.0.0.0 of a Calculus.dll assembly and version 3.0.0.0 of an AdvMath.dll assembly. 
The AdvMath.dll assembly could in turn bind to version 1.0.0.0 of a Calculus.dll assembly. 
Take a look at Figure 3-5.  



 
Figure 3-5 : An application that requires different versions of the Calculus.dll assembly 
in order to run  

The CLR has the ability to load multiple files with the same name but with different paths into 
a single address space. This is called side-by-side execution, a key component for solving 
the Windows “DLL hell” problem. 

 
Important  

The ability to execute DLLs side by side is awesome because it allows 
you to create new versions of your assembly that don’t have to 
maintain backward compatibility. Not having to maintain backward 
compatibility reduces coding and testing time for a product and allows 
you to get the product to market faster. 

The developer must be aware of this side-by-side mechanism so that subtle bugs don’t 
appear. For example, an assembly could create a named Win32 file-mapping kernel object 
and use the storage provided by this object. Another version of the assembly could also get 
loaded and attempt to create a file-mapping kernel object with the same name. This second 
assembly won’t get new storage but will instead access the same storage allocated by the 
first assembly. If not carefully coded, the two assemblies will stomp all over each other’s 
data and the application will perform unpredictably. 

 
How the Runtime Resolves Type References 

At the beginning of Chapter 2, we saw the following source code: 
public class App { 
   static public void Main(System.String[] args) { 
      System.Console.WriteLine("Hi"); 
   } 
} 

This code is compiled and built into an assembly, say App.exe. When you run this 
application, the CLR loads and initializes. Then the CLR reads the assembly’s CLR header 
looking for the MethodDefToken that identifies the application’s entry point method (Main). 
From the MethodDef metadata table, the offset within the file for the method’s IL code is 



located and JIT-compiled into native code, which includes having the code verified for type 
safety, and the native code starts executing. Following is the IL code for the Main method. 
To obtain this output, I ran ILDasm.exe, selected the View menu’s Show Bytes menu item, 
and double-clicked the Main method in the tree view.  

.method public hidebysig static void  Main(string[] args) cil managed 
// SIG: 00 01 01 1D 0E 
{ 
  .entrypoint 
  // Method begins at RVA 0x2050 
  // Code size       11 (0xb) 
  .maxstack  8 
  IL_0000:  /* 72   | (70)000001       */ ldstr      "Hi" 
  IL_0005:  /* 28   | (0A)000002       */ call       void [mscorlib]System.Console::
WriteLine(string) 
  IL_000a:  /* 2A   |                  */ ret 
} // end of method App::Main 

When JIT-compiling this code, the CLR detects all references to types and members and 
loads their defining assemblies (if not already loaded). As you can see, the IL code above 
has a reference to System.Console.WriteLine. Specifically, the IL call instruction 
references metadata token 0A000002. This token identifies an entry in the MemberRef 
metadata table. The CLR looks up this MemberRef entry and sees that one of its fields 
refers to an entry in a TypeRef table (the System.Console type). From the TypeRef entry, 
the CLR is directed to an AssemblyRef entry: "MSCorLib, Version=1.0.3300.0, 
Culture="neutral", PublicKeyToken=b77a5c561934e089". At this point, the CLR knows 
which assembly it needs. Now the CLR must locate the assembly in order to load it.  

When resolving a referenced type, the CLR can find the type in one of three places: 
§ Same file  Access to a type that is in the same file is determined at compile time 

(sometimes referred to as early bound). The type is loaded out of the file directly, and 
execution continues. 

§ Different file, same assembly  The runtime ensures that the file being referenced is, 
in fact, in the assembly’s FileRef table of the current assembly’s manifest. The runtime 
then looks in the directory where the assembly’s manifest file was loaded. The file is 
loaded, its hash value is checked to ensure the file’s integrity, the type’s member is 
found, and execution continues. 

§ Different file, different assembly  When a referenced type is in a different assembly’s 
file, the runtime loads the file that contains the referenced assembly’s manifest. If this 
file doesn’t contain the type, the appropriate file is loaded. The type’s member is found, 
and execution continues. 

 
Note  

The ModuleDef, ModuleRef, and FileDef metadata tables refer to files using 
the file’s name and its extension. However, the AssemblyRef metadata table 
refers to assemblies by filename, without an extension. When binding to an 
assembly, the system automatically appends .dll and .exe file extensions 
while attempting to locate the file by probing the directories as mentioned in 
the section “Simple Administrative Control (Configuration)” in Chapter 2. 

If any errors occur while resolving a type reference—file can’t be found, file can’t be loaded, 
hash mismatch, and so on—an appropriate exception is thrown.  

In the previous example, the CLR sees that System.Console is implemented in a different 
assembly than the caller. The CLR must search for the assembly and load the PE file that 



contains the assembly’s manifest. The manifest is then scanned to determine the PE file that 
implements the type. If the manifest file contains the referenced type, all is well. If the type is 
in another of the assembly’s files, the CLR loads the other file and scans its metadata to 
locate the type. The CLR then creates its internal data structures to represent the type, and 
the JIT compiler completes the compilation for the Main method. Finally, the Main method 
can start executing. 

Figure 3-6 illustrates how type binding occurs. 

 
Figure 3-6 : Flowchart showing how the CLR uses metadata to locate the proper 
assembly file that defines a type, given IL code that refers to a method or type  

 
Important  

Strictly speaking, the example just described isn’t 100 percent correct. 
For references to methods and types defined in an assembly other 
than MSCorLib.dll, the discussion is correct. However, MSCorLib.dll is 
closely tied to the version of the CLR that’s running. Any assembly that 
references MSCorLib.dll (with the ECMA public key token of 
“b77a5c561934e089”) always binds to the version of MSCorLib.dll that 
is in the same directory that contains the CLR itself. So in the previous 
example, the reference to System.Console’s WriteLine method 
binds to whatever version of MSCorLib.dll matches the version of the 
CLR, regardless of what version of MSCorLib.dll is referenced in the 
assembly’s AssemblyRef metadata table.  

In this section, you saw how the CLR locates an assembly when using default policies. 
However, an administrator or the publisher of an assembly can override the default policy. In 
the next two sections, I’ll describe how to alter the CLR’s default binding policy. 

 
Advanced Administrative Control (Configuration) 

In the section “Simple Administrative Control (Configuration)” in Chapter 2, I gave a brief 
introduction to how an administrator can affect the way the CLR searches and binds to 
assemblies. In that section, I demonstrated how a referenced assembly’s files can be moved 



to a subdirectory of the application’s base directory and how the CLR uses the application’s 
XML configuration file to locate the moved files. 

Having discussed only the probing element’s privatePath attribute in Chapter 2, I’m going 
to discuss the other XML configuration file elements in this section. Following is an XML 
configuration file:  

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
   <runtime> 
      <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
         <probing privatePath="AuxFiles;bin\subdir" /> 
 
         <dependentAssembly> 
 
            <assemblyIdentity name="JeffTypes"  
               publicKeyToken="32ab4ba45e0a69a1" culture="neutral"/> 
 
            <bindingRedirect  
               oldVersion="1.0.0.0" newVersion="2.0.0.0" /> 
 
            <codeBase version="2.0.0.0"  
               href="http://www.Wintellect.com/JeffTypes.dll" /> 
 
         </dependentAssembly> 
 
         <dependentAssembly> 
 
            <assemblyIdentity name="FredTypes"  
               publicKeyToken="1f2e74e897abbcfe" culture="neutral"/> 
 
            <bindingRedirect  
               oldVersion="3.0.0.0-3.5.0.0" newVersion="4.0.0.0" /> 
 
            <publisherPolicy apply="no" /> 
 
         </dependentAssembly> 
 
      </assemblyBinding> 
   </runtime> 
</configuration> 

This XML file gives a wealth of information to the CLR. Here’s what it says: 
§ probing element  Look in the application base directory’s AuxFiles and bin\subdir 

subdirectories when trying to find a weakly named assembly. For strongly named 
assemblies, the CLR looks in the GAC or in the URL specified by the codeBase 
element. The CLR looks in the application’s private paths for a strongly named 
assembly only if no codeBase element is specified. 

§ First dependentAssembly, assemblyIdentity, and bindingRedirect 
elements  When attempting to locate version 1.0.0.0 of the neutral culture JeffTypes 



assembly published by the organization that controls the 32ab4ba45e0a69a1 public 
key token, locate version 2.0.0.0 of the same assembly instead. 

§ codeBase element  When attempting to locate version 2.0.0.0 of the neutral culture 
JeffTypes assembly published by the organization that controls the 
32ab4ba45e0a69a1 public key token, try to find it at the following URL: 
http://www.Wintellect.com/JeffTypes.dll. Although I didn’t mention it in Chapter 2, a 
codeBase element can also be used with weakly named assemblies. In this case, the 
assembly’s version number is ignored and should be omitted from the XML’s codeBase 
element. Also, the codeBase URL must refer to a directory under the application’s base 
directory. 

§ Second dependentAssembly, assemblyIdentity, and bindingRedirect 
elements  When attempting to locate version 3.0.0.0 through version 3.5.0.0 inclusive 
of the neutral culture FredTypes assembly published by the organization that controls 
the 1f2e74e897abbcfe public key token, locate version 4.0.0.0 of the same assembly 
instead. 

§ publisherPolicy element  If the organization that produces the FredTypes 
assembly has deployed a publisher policy file (described in the next section), the CLR 
should ignore this file. 

When compiling a method, the CLR determines the types and members being referenced. 
Using this information, the runtime determines—by looking in the referencing assembly’s 
AssemblyRef table—what assembly was originally referenced when the calling assembly 
was built. The CLR then looks up the assembly in the application’s configuration file and 
applies any version number redirections.  

If the publisherPolicy element’s apply attribute is set to yes—or if the element is 
omitted—the CLR examines the GAC and applies any version number redirections that the 
publisher of the assembly feels is necessary. I’ll talk more about publisher policy in the next 
section. 

The CLR then looks up the assembly in the machine’s Machine.config file and applies any 
version number redirections there. Finally, the CLR knows the version of the assembly that it 
should load, and it attempts to load the assembly from the GAC. If the assembly isn’t in the 
GAC and if there is no codeBase element, the CLR probes for the assembly as I described 
in Chapter 2. If the configuration file that performs the last redirection also contains a 
codeBase element, the CLR attempts to load the assembly from the codeBase element’s 
specified URL. 

Using these configuration files, an administrator can really control what assembly the CLR 
decides to load. If an application is experiencing a bug, the administrator can contact the 
publisher of the errant assembly. The publisher can send the administrator a new assembly 
that the administrator can install. By default, the CLR won’t load this new assembly since the 
already built assemblies don’t reference the new version. However, the administrator can 
modify the application’s XML configuration file to instruct the CLR to load the new assembly. 

If the administrator wants all applications on the machine to pick up the new assembly, the 
administrator can modify the machine’s Machine.config file instead and the CLR will load the 
new assembly whenever an application refers to the old assembly.  

If the new assembly doesn’t fix the original bug, the administrator can delete the binding 
redirection lines from the configuration file and the application will behave as it did before. 
It’s important to note that the system allows the use of an assembly that doesn’t exactly 
match the assembly version recorded in the metadata. This extra flexibility is very handy. 
Later in this chapter, I’ll go into more detail about how an administrator can easily repair an 
application. 



 

The .NET Framework Configuration Tool 

If you don’t like manually editing XML text files—and who does?—you can use the .NET 
Framework Configuration tool, which ships with the .NET Framework. Open Control 
Panel, select Administrative Tools, and then select the Microsoft .NET Framework 
Configuration tool. While in the tool, you can select Configure An Assembly, which 
causes an assembly’s Properties dialog box to pop up. From within this dialog box, you 
can set all of the XML configuration information. Figures 3-7, 3-8, and 3-9 show different 
pages of an assembly’s properties dialog box. 

 
Figure 3-7 : General tab of the System.Drawing Properties dialog box  



 
Figure 3-8 : Binding Policy tab of the System.Drawing Properties dialog 
box  

 
Figure 3-9 : Codebases tab of the System.Drawing Properties dialog 
box  



 
 

Publisher Policy Control 

In the scenario described in the previous section, the publisher of an assembly simply sent a 
new version of the assembly to the administrator, who installed the assembly and manually 
edited the application’s or machine’s XML configuration files. In general, when a publisher 
fixes a bug in an assembly, she would like an easy way to package and distribute the new 
assembly to all the users. But she also needs a way to tell each user’s CLR to use the new 
assembly version instead of the old assembly version. Sure, each user could modify his 
application’s or machine’s XML configuration file, but this is terribly inconvenient and is error-
prone. What the publisher needs is a way to create “policy information” that is installed on 
the user’s computer when the new assembly is installed. In this section, I’ll show how an 
assembly’s publisher can create this policy information. 

Let’s say you’re a publisher of an assembly and that you’ve just created a new version of 
your assembly that fixes some bugs. When you package your new assembly to send out to 
all your users, you should also create an XML configuration file. This configuration file looks 
just like the configuration files we’ve been talking about. Here’s an example file (called 
JeffTypes.config) for the JeffTypes.dll assembly: 

<configuration> 
   <runtime> 
      <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
         <dependentAssembly> 
 
            <assemblyIdentity name="JeffTypes"  
               publicKeyToken="32ab4ba45e0a69a1" culture="neutral"/> 
 
            <bindingRedirect  
               oldVersion="1.0.0.0" newVersion="2.0.0.0" /> 
 
            <codeBase version="2.0.0.0"  
               href="http://www.Wintellect.com/JeffTypes.dll" /> 
 
         </dependentAssembly> 
      </assemblyBinding> 
   </runtime> 
</configuration> 

Of course, a publisher can set policy only for the assemblies that it itself creates. In addition, 
the elements shown here are the only elements that can be specified in a publisher policy 
configuration file; you can’t specify the probing or publisherPolicy elements, for 
example. 

This configuration file tells the CLR to load version 2.0.0.0 of the JeffTypes assembly 
whenever version 1.0.0.0 of the assembly is referenced. Now you, the publisher, can create 
an assembly that contains this publisher policy configuration file. You create the publisher 
policy assembly by running AL.exe as follows: 

AL.exe /out:policy.1.0.JeffTypes.dll  
       /version:1.0.0.0  



       /keyfile:MyCompany.keys 
       /linkresource:JeffTypes.config 

Let me explain the meaning of AL.exe’s command-line switches: 
§ The /out switch  This switch tells AL.exe to create a new PE file, called 

Policy.1.0.MyAsm.dll, which contains nothing but a manifest. The name of this assembly 
is very important. The first part of the name, Policy, tells the CLR that this assembly 
contains publisher policy information. The second and third parts of the name, 1.0, tell 
the CLR that this publisher policy assembly is for any version of the JeffTypes assembly 
that has a major and minor version of 1.0. Publisher policies apply to the major and 
minor version numbers of an assembly only; you can’t create a publisher policy that is 
specific to individual builds or revisions of an assembly. The fourth part of the name, 
JeffTypes, indicates the name of the assembly that this publisher policy corresponds to. 
The fifth and last part of the name, dll, is simply the extension given to the resulting 
assembly file. 

§ The /version switch  This switch identifies the version of the publisher policy 
assembly; this version number has nothing to do with the JeffTypes assembly itself. You 
see, publisher policy assemblies can also be versioned. Today, the publisher might 
create a publisher policy redirecting version 1.0.0.0 of JeffTypes to version 2.0.0.0. In 
the future, the publisher might want to direct version 1.0.0.0 of JeffTypes to version 
2.5.0.0. The CLR uses this version number so that it knows to pick up the latest version 
of the publisher policy assembly. 

§ The /keyfile switch  This switch causes AL.exe to sign the publisher policy 
assembly using the publisher’s public/private key pair. This key pair must also match 
the key pair used for all versions of the JeffTypes assembly. After all, this is how the 
CLR knows that the same publisher created both the JeffTypes assembly and this 
publisher policy file. 

§ The /linkresource switch  This switch tells AL.exe that the XML configuration file 
is to be considered a separate file of the assembly. The resulting assembly consists of 
two files, both of which must be packaged and deployed to the users along with the new 
version of the JeffTypes assembly. By the way, you can’t use AL.exe’s 
/embedresource switch to embed the XML configuration file into the assembly file, 
making a single file assembly, because the CLR requires that the XML file be contained 
in its own, separate file. 

Once this publisher policy assembly is built, it can be packaged together with the new 
JeffTypes.dll assembly file and deployed to users. The publisher policy assembly must be 
installed into the GAC. While the JeffTypes assembly can also be installed into the GAC, it 
doesn’t have to be. It could be deployed into an application’s base directory or some other 
directory identified by a codeBase URL.  

 
Important  

A publisher should create a publisher policy assembly only when 
deploying a bug fix or a service pack version of an assembly. When 
installing an application “out of the box,” no publisher policy 
assemblies should be installed. 

I want to make one last point about publisher policy. Say that a publisher distributes a 
publisher policy assembly and for some reason the new assembly introduces more bugs 
than it fixes. If this happens, the administrator would like to tell the CLR to ignore the 
publisher policy assembly. To have the runtime do this, the administrator can edit the 
application’s configuration file and add the following publisherPolicy element:  

<publisherPolicy apply="no"/> 

This element can be placed in the application’s configuration file so that it applies to all 
assemblies, or it can be placed in the application’s configuration file to have it apply to a 



specific assembly. When the CLR processes the application’s configuration file, it will see 
that the GAC shouldn’t be examined for the publisher policy assembly. So, the CLR will 
continue to operate using the older version of the assembly. Note, however, that the CLR will 
still examine and apply any policy specified in the Machine.config file. 

 
Important  

A publisher policy assembly is a way for a publisher to make a 
statement about the compatibility of different versions of an assembly. 
If a new version of an assembly isn’t intended to be compatible with an 
earlier version, the publisher shouldn’t create a publisher policy 
assembly. In general, use a publisher policy assembly when you build 
a new version of your assembly that fixes a bug. You should test the 
new version of the assembly for backward compatibility. On the other 
hand, if you’re adding new features to your assembly, you should 
consider the assembly to have no relationship to a previous version 
and you shouldn’t ship a publisher policy assembly. In addition, there’s 
no need to do any backward compatibility testing with such an 
assembly. 

 
Repairing a Faulty Application 

When a console or Windows Forms application is running under a user account, the CLR 
keeps a record of the assemblies that the application actually loads; a record isn’t kept for 
ASP.NET Web Forms or XML Web services applications. This assembly load information is 
accumulated in memory and is written to disk when the application terminates. The files that 
contain this information are written to the following directory: 

C:\Documents and Settings\UserName\Local Settings\ 
   Application Data\ApplicationHistory 

UserName identifies the name of the logged-on user. 

If you look in this directory, you’ll see files like this: 
Volume in drive C has no label. 
 Volume Serial Number is 94FA-5DE7 
 
 Directory of C:\Documents and Settings\v-
jeffrr\Local Settings\ApplicationHistory 
 
08/23/2001  10:46 AM    <DIR>          . 
08/23/2001  10:46 AM    <DIR>          .. 
08/22/2001  04:14 PM             1,014 App.exe.c4bc1771.ini 
08/23/2001  10:46 AM             2,845 ConfigWizards.exe.c4c8182.ini 
08/14/2001  05:51 PM             9,815 devenv.exe.49453f8d.ini 
08/22/2001  02:25 PM             3,226 devenv.exe.7dc18209.ini 
08/23/2001  10:46 AM             3,368 mmc.exe.959a7e97.ini 
08/15/2001  03:06 PM             2,248 RegAsm.exe.18b34bd3.ini 
               6 File(s)         22,516 bytes 
               2 Dir(s)  14,698,717,184 bytes free 

Each file identifies a particular application. The hexadecimal number is a hash value 
identifying the file’s path and is needed to distinguish two files with the same name residing 
in different subdirectories. 



As an application runs, the CLR maintains a “snapshot” of the set of assemblies loaded by 
the application. When the application terminates, this information is compared with the 
information in the application’s corresponding .ini file. If the application loaded the same set 
of assemblies that it loaded previously, the information in the .ini file matches the information 
in memory and the in-memory information is discarded. If on the other hand the in-memory 
information differs from the information in the .ini file, the CLR appends the in-memory 
information to the .ini file. By default, the .ini file is able to store up to five snapshots. 

Basically, the CLR is keeping a record of the assemblies that an application used. Now, let’s 
say that you install some new assemblies and maybe some new publisher policy assembly 
gets installed too. A week later, you run an application and all of a sudden, the application 
isn’t performing correctly. What can you do? Historically, in Windows, the best thing to do 
would be to reinstall the failing application and hope that the reinstall doesn’t break some 
other application (which would be likely).  

Fortunately for the end-user, the CLR keeps a historical record of the assemblies that an 
application uses. All you have to do is build an XML configuration file for the application 
where the elements tell the CLR to use the same assemblies that were loaded when the 
application was in a last-known good state. 

To make creating or modifying an application configuration file easy, you can use the .NET 
Framework Configuration tool. Run the tool, right-click on the Application node in the tree 
pane, and select the Fix An Application menu item. This causes the dialog box in Figure 3-
10 to appear. 

 
Figure 3-10 : .NET Application Configuration tool showing all applications that have had 
assembly load information recorded at one time or another  

 
Note  

The .NET Framework Configuration tool is a Microsoft Management 
Console (MMC) snap-in and, therefore, isn’t installed on Windows 98, 
Windows 98 Standard Edition, or Windows Me. However, on these 
operating systems, you can use the .NET Framework Wizards utility to do 
what I describe in this section. You can invoke this tool from the Start menu 
by clicking Program Files, then Administrative Tools, and then .NET 
Framework Wizards.  

The dialog box in Figure 3-10 shows the applications about which the CLR has accumulated 
assembly load information. Basically, an entry appears here for every .ini file in the 



ApplicationHistory subdirectory. Once you select an application, the dialog box in Figure 3-
11 appears. 

 
Figure 3-11 : .NET Application Configuration tool showing the dates when loaded 
assemblies differed  

Each entry in this dialog box represents the set of assemblies that were loaded by the 
application. The user can select a date range during which the application was working 
correctly, and the tool will create or modify the application’s XML configuration file so that the 
CLR will now load the last-known good set of assemblies for the application. The Application 
SafeMode entry ensures that the application loads with the same exact set of assemblies 
that it was built and tested with; it prevents the runtime from redirecting an assembly to a 
different version. 

Changes to the application’s XML configuration file can be identified by surrounding 
comment elements that contain “.NET Application Restore BeginBlock” and “.NET 
Application Restore EndBlock”. The “.NET Application Restore RollBackBlock” contains the 
original XML configuration prior to restoring to a specific snapshot. Here’s an example: 

<configuration> 
   <runtime> 
      <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
         <dependentAssembly> 
 
            <!—.NET Application Restore BeginBlock #1 29437104.-387708080  
                8/24/2001 6:48:25 PM—> 
 
            <assemblyIdentity name="JeffTypes"  
               publicKeyToken="32ab4ba45e0a69a1" culture="neutral" /> 
 
            <bindingRedirect  
               oldVersion="1.0.0.0" newVersion="2.0.0.0" /> 
 
            <publisherPolicy apply="no"/> 
            <!—.NET Application Restore EndBlock #1—> 
 
            <!—.NET Application Restore RollBackBlock #1  



                8/24 2001 6:48:25 PM<assemblyIdentity name="JeffTypes"  
                publicKeyToken="32ab4ba45e0a69a1" culture=""/>—> 
 
         </dependentAssembly> 
      </assemblyBinding> 
   </runtime> 
</configuration> 
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Chapter 4: Type Fundamentals 
In this chapter, I’m going to introduce the information that is fundamental to working with 
types and the common language runtime (CLR). In particular, I’ll discuss the minimum set of 
behaviors that you can expect every type to have. I’ll also describe type safety and the 
various ways you can cast objects from one type to another. Finally, I’ll talk about 
namespaces and assemblies. 

All Types Are Derived from System.Object  

The runtime requires that every object ultimately be derived from the System.Object type. 
This means that the following two type definitions (shown using C#) are identical:  

// Implicitly derive from Object   // Explicitly derive from Object 
class Employee {                   class Employee : System.Object { 
   ?                                  ? 
}                                  } 

Because all object types are ultimately derived from System.Object, you are guaranteed 
that every object of every type has a minimum set of methods. Specifically, the 
System.Object class offers the public instance methods listed in Table 4-1.  

Table 4-1  : Public Methods of System.Object  

Public Method Description 

Equals  Returns true if two objects have the same value. For 
more information about this method, see Chapter 6. 

GetHashCode  Returns a hash code for this object’s value. A type 
should override this method if its objects are to be used 
as a key in a hash table. The method should provide a 
good distribution for its objects. For more information 
about this method, see Chapter 6. 

ToString  By default, returns the full name of the type (this.Get-
Type().FullName.ToString()). However, it is 
common to override this method so that it returns a 
String object containing a string representation of the 
object’s state. For example, the core types, such as 
Boolean and Int32, override this method to return a 
string representation of their values. It is also common to 
override this method for debugging purposes: you can 
call it and get a string showing the values of the object’s 
fields. Note that ToString is expected to be aware of 
the CultureInfo associated with the calling thread. 
Chapter 12 discusses ToString in greater detail. 

GetType  Returns an instance of a Type-derived object that 
identifies the type of this object. The returned Type 
object can be used with the Reflection classes to obtain 
metadata information about the type. Reflection is 
discussed in Chapter 20. The GetType method is 
nonvirtual, which prevents a class from overriding the 
method and lying about its type, violating type safety. 



In addition, types that derive from System.Object have access to the protected methods 
listed in Table 4-2. 

Table 4-2  : Protected Methods of System.Object  

Protected Method Description 

MemberwiseClone  This nonvirtual method creates a new instance of the 
type and sets the new object’s fields to be identical to 
this object’s fields. A reference to the new instance 
is returned. For more information about this method, 
see Chapter 6. 

Finalize  This virtual method is called when the garbage 
collector determines that the object is garbage but 
before the memory for the object is reclaimed. Types 
that require cleanup when collected should override 
this method. I’ll talk about this important method in 
much more detail in Chapter 19. 

The CLR requires that all objects be created using the new operator (which emits the 
newobj IL instruction). The following line shows how to create an Employee object:  

Employee e = new Employee("ConstructorParam1"); 

Here’s what the new operator does: 
1. It allocates memory for the object by allocating the number of bytes required for the 

specified type from the managed heap. 
2. It initializes the object’s overhead members. Every object instance has two additional 

members associated with the instance that the CLR uses to manage the object. The 
first member is the object’s pointer to the type’s method table, and the second 
member is a SyncBlockIndex. 

3. The type’s instance constructor is called, passing it any parameters (the string 
“ConstructorParam1", in the preceding example) specified in the call to new. 
Although most languages compile constructors so that they call the base type’s 
constructor, the CLR doesn’t require this call. 

After new has performed all these operations, it returns a reference to the newly created 
object. In the preceding code example, this reference is saved in the variable e, which is of 
type Employee. 

By the way, the new operator has no complementary delete operator; that is, there is no 
way to explicitly free the memory allocated for an object. The CLR imposes a garbage-
collected environment (described in Chapter 19) that automatically detects when objects are 
no longer being used or accessed and frees the object’s memory automatically. 

 
Casting Between Types 

One of the most important features of the CLR is its type safety. At run time, the CLR always 
knows what type an object is. You can always discover an object’s exact type by calling the 
GetType method. Because this method is nonvirtual, it is impossible for a type to spoof 
another type. For example, the Employee type can’t override the GetType method and 
have it return a type of SpaceShuttle.  

Developers frequently find it necessary to cast an object to various types. The CLR allows 
you to cast an object to its type or to any of its base types. Your programming language of 



choice decides how to expose casting operations to the developer. For example, C# doesn’t 
require any special syntax to cast an object to any of its base types because casts to base 
types are considered safe implicit conversions. However, C# does require that the developer 
explicitly cast an object to any of its derived types since such a cast could fail. The following 
code demonstrates casting to base and derived types: 

// This type is implicitly derived from System.Object. 
class Employee { 
   ? 
} 
 
 
class App { 
   public static void Main() { 
      // No cast needed since new returns an Employee object 
      // and Object is a base type of Employee. 
      Object o = new Employee(); 
 
      // Cast required since Employee is derived from Object. 
      // Other languages (such as Visual Basic) might not require  
      // this cast to compile. 
      Employee e = (Employee) o; 
   } 
} 

This example shows what is necessary for your compiler to compile your code. Now I’ll 
explain what happens at run time. At run time, the CLR checks casting operations to ensure 
that casts are always to the object’s actual type or any of its base types. For example, the 
following code will compile, but at run time, an InvalidCastException exception will be 
thrown:  

class Manager : Employee { 
   ? 
} 
 
 
class App { 
   public static void Main() { 
      // Construct a Manager object and pass it to PromoteEmployee. 
      // A Manager IS-A Object: PromoteEmployee runs OK. 
      Manager m = new Manager(); 
      PromoteEmployee(m); 
 
      // Construct a DateTime object and pass it to PromoteEmployee. 
      // A DateTime is NOT derived from Employee: PromoteEmployee  
      // throws a System.InvalidCastException exception.  
      DateTime newYears = new DateTime(2001, 1, 1); 
      PromoteEmployee(newYears); 
   } 
 



 
   public void PromoteEmployee(Object o) { 
      // At this point, the compiler doesn’t know exactly what 
      // type of object o refers to. So the compiler allows the  
      // code to compile. However, at run time, the CLR does know  
      // what type o refers to (each time the cast is performed) and 
      // it checks whether the object’s type is Employee or any type 
      // that is derived from Employee. 
      Employee e = (Employee) o; 
      ? 
   } 
} 

In the Main method, a Manager object is constructed and passed to Promote-Employee. 
This code compiles and executes because Manager is derived from Object, which is what 
PromoteEmployee expects. Once inside PromoteEmployee, the CLR confirms that o 
refers to an object that is either an Employee or a type that is derived from Employee. 
Because Manager is derived from Employee, the CLR performs the cast and allows 
PromoteEmployee to continue executing. 

After PromoteEmployee returns, Main constructs a DateTime object and passes it to 
PromoteEmployee. Again, DateTime is derived from Object, so the compiler compiles 
the code that calls PromoteEmployee. However, inside PromoteEmployee, the CLR 
checks the cast and detects that o refers to a DateTime object and is therefore not an 
Employee or any type derived from Employee. At this point, the CLR can’t allow the cast 
and throws a System.InvalidCastException exception. 

If the CLR allowed the cast, there would be no type safety and the results would be 
unpredictable, including the possibility of application crashes and security breaches caused 
by the ability of types to easily spoof other types. Type spoofing is the cause of many 
security breaches and compromises an application’s stability and robustness. Type safety is 
therefore an extremely important part of the .NET Framework. 

By the way, the proper way to prototype the PromoteEmployee method would be to have it 
take an Employee instead of an Object as a parameter. I used Object so that I could 
demonstrate how the compilers and the CLR deal with casting. 

Casting with the C# is and as Operators 

C# offers another way to cast using the is operator. The is operator checks whether an 
object is compatible with a given type, and the result of the evaluation is a Boolean: true 
or false. The is operator will never throw an exception. The following code demonstrates:  

System.Object o = new System.Object(); 
System.Boolean b1 = (o is System.Object);  // b1 is true. 
System.Boolean b2 = (o is Employee);       // b2 is false. 

If the object reference is null, the is operator always returns false because there is no 
object available to check its type. 

The is operator is typically used as follows:  
if (o is Employee) { 



   Employee e = (Employee) o; 
   // Use e within the ‘if’ statement. 
} 

In this code, the CLR is actually checking the object’s type twice: the is operator first checks 
to see if o is compatible with the Employee type. If it is, then inside the if statement, the 
CLR again verifies that o refers to an Employee when performing the cast. Because this 
programming paradigm is quite common, C# offers a way to simplify this code and improve 
its performance by providing an as operator:  

Employee e = o as Employee; 
if (e != null) { 
   // Use e within the ‘if’ statement. 
} 

In this code, the CLR checks if o is compatible with the Employee type, and if it is, as 
returns a non-null pointer to the same object. If o is not compatible with the Employee type, 
then the as operator returns null. Notice that the as operator causes the CLR to verify an 
object’s type just once. The if statement simply checks whether or not e is null—this 
check can be performed much more efficiently than verifying an object’s type. 

The as operator works just like casting except the as operator will never throw an exception. 
Instead, if the object can’t be cast, the result is null. You’ll want to check to see whether 
the resulting reference is null, or attempting to use the resulting reference will cause a 
System.NullReferenceException exception to be thrown. The following code 
demonstrates:  

System.Object o = new System.Object();  // Creates a new Object object 
Employee e = o as Employee;             // Casts o to an Employee 
// The cast above fails: no exception is thrown, but e is set to null. 
 
e.ToString();  // Accessing e throws a NullReferenceException. 

To make sure you understand everything just presented, take the following quiz. Assume 
that these two class definitions exist: 

class B { 
   Int32 x; 
} 
 
class D : B { 
   Int32 y; 
} 

Now examine the lines of C# code in Table 4-4. For each line, decide whether the line would 
compile and execute successfully (marked OK below), cause a compile-time error (CTE), or 
cause a run-time error (RTE). 

Table 4-4  : Type-Safety Quiz  

Statement OK CTE RTE 

System.Object 
o1 = new 
System.Object()

ü      



Table 4-4  : Type-Safety Quiz  

Statement OK CTE RTE 

;  

System.Object 
o2 = new B();  

ü      

System.Object 
o3 = new D();  

ü      

System.Object 
o4 = o3;  

ü      

B b1 = new B();  ü      

B b2 = new D();  ü      

D d1 = new D();  ü      

B b3 = new 
System.Object()
;  

  ü    

D d3 = new 
System.Object()
;  

  ü    

B b3 = d1;  ü      

D d2 = b2;    ü    

D d4 = (D) d1;  ü      

D d5 = (D) b2;  ü      

D d6 = (D) b1;      ü  

B b4 = (B) o1;      ü  

B b5 = (D) b2;  ü     

 
Namespaces and Assemblies 

Namespaces allow for the logical grouping of related types, and developers typically use 
them to make it easier to locate a particular type. For example, the System.Collections 
namespace defines a bunch of collection types, and the System.IO namespace defines a 
bunch of types for performing I/O operations. Here’s some code that constructs a 
System.IO.FileStream object and a System.Collections.Queue object:  

class App { 
   static void Main() { 
      System.IO.FileStream fs = new System.IO.FileStream(...); 
      System.Collections.Queue q = new System.Collections.Queue(); 
   } 
} 

As you can see, the code is pretty verbose; it would be nice if there were some shorthand 
way to refer to the FileStream and Queue types to reduce typing. Fortunately, many 



compilers do offer mechanisms to reduce programmer typing. The C# compiler provides this 
mechanism via the using directive, and Visual Basic provides it via the Imports 
statement. The following code is identical to the previous example:  

// Include some namespaces in my C# application: 
using System.IO;           // Try prepending "System.IO." 
using System.Collections;  // Try prepending "System.Collections." 
 
class App { 
   static void Main() { 
      FileStream fs = new FileStream(...); 
      Queue q = new Queue(); 
   } 
} 

To the compiler, a namespace is simply an easy way of making a type’s name longer and 
more likely to be unique by preceding the name with some symbols separated by dots. So 
the compiler interprets the reference to FileStream in this example to mean 
System.IO.FileStream. Similarly, the compiler interprets the reference to Queue to mean 
System.Collections.Queue. 

Using the C# using directive and the Imports statement in Visual Basic is entirely 
optional; you’re always welcome to type out the fully qualified name of a type if you prefer. 
The C# using directive instructs the compiler to "try" prepending different prefixes to a type 
name until a match is found. 

 
Important  

The CLR doesn’t know anything about namespaces. When you access 
a type, the CLR needs to know the full name of the type and which 
assembly contains the definition of the type so that the runtime can 
load the proper assembly, find the type, and manipulate it. 

In the previous code example, the compiler needs to ensure that every type referenced 
exists and that my code is using that type in the correct way: calling methods that exist, 
passing the right number of arguments to these methods, ensuring that the arguments are 
the right type, using the method’s return value correctly, and so on. If the compiler can’t find 
a type with the specified name in the source files or in any referenced assemblies, it tries 
prepending “System.IO.". to the type name and checks if the generated name matches an 
existing type. If the compiler still can’t find a match, it tries prepending 
"System.Collections." to the type’s name. The two using directives shown earlier 
allow me to simply type "FileStream" and "Queue" in my code—the compiler automatically 
expands the references to "System.IO.FileStream" and 
"System.Collections.Queue". I’m sure you can easily imagine how much typing this 
saves.  

When checking for a type’s definition, the compiler must be told which assemblies to 
examine. The complier will scan all the assemblies it knows about, looking for the type’s 
definition. Once the compiler finds the proper assembly, the assembly information and the 
type information is emitted into the resulting managed module’s metadata. To get the 
assembly information, you must pass the assembly that defines any referenced types to the 
compiler. The C# compiler, by default, automatically looks in the MSCorLib.dll assembly 
even if you don’t explicitly tell it to. The MSCorLib.dll assembly contains the definitions of all 
the core .NET Framework Class Library (FCL) types, such as Object, Int32, String, and 
so on. 



 
Note  

When Microsoft first started working on the .NET Framework, MSCorLib.dll 
was an acronym for Microsoft Common Object Runtime Library. Once 
ECMA started to standardize the CLR and parts of the FCL, MSCorLib.dll 
officially became the acronym for Multilanguage Standard Common Object 
Runtime Library. ?  

As you might imagine, there are some potential problems with the way that compilers treat 
namespaces: it’s possible to have two (or more) types with the same name in different 
namespaces. Microsoft strongly recommends that you define unique names for types. 
However, in some cases, it’s simply not possible. The runtime encourages the reuse of 
components. Your application might take advantage of a component that Microsoft created 
and another component that Wintellect created. These two companies might both offer a 
type called Widget—Microsoft’s Widget does one thing, and Wintellect’s Widget does 
something entirely different. In this scenario, you had no control over the naming of the 
types, so you can differentiate between the two widgets by using their fully qualified names 
when referencing them. To reference Microsoft’s Widget, you would use 
Microsoft.Widget, and to reference Wintellect’s Widget, you would use 
Wintellect.Widget.  

In the following code, the reference to Widget is ambiguous and the C# compiler generates 
the following: "error CS0104: ‘Widget’ is an ambiguous reference":  

using Microsoft;  // Try prepending "Microsoft".  
using Wintellect; // Try prepending "Wintellect". 
 
class MyApp { 
   static void Main() { 
      Widget w = new Widget();    // An ambiguous reference 
   } 
} 

To remove the ambiguity, you must explicitly tell the compiler which Wid-get you want to 
create:  

using Microsoft;  // Try prepending "Microsoft." 
using Wintellect; // Try prepending "Wintellect." 
 
class MyApp { 
   static void Main() { 
      Wintellect.Widget w = new Wintellect.Widget(); // Not ambiguous 
   } 
} 

There’s another form of the C# using directive that allows you to create an alias for a single 
type or namespace. This is handy if you have just a few types that you use from a 
namespace and don’t want to pollute the global namespace with all of a namespace’s types. 
The following code demonstrates another way to solve the ambiguity problem shown in the 
preceding code:  

using Microsoft;  // Try prepending "Microsoft".  
using Wintellect; // Try prepending "Wintellect". 
 
// Define WintellectWidget symbol as an alias to Wintellect.Widget 



using WintellectWidget = Wintellect.Widget; 
 
class MyApp { 
   static void Main() { 
      WintellectWidget w = new WintellectWidget(); // No error now 
   } 
} 

These methods of disambiguating a type are useful, but in some scenarios, you need to go 
further. Imagine that the Australian Boomerang Company (ABC) and the Alaskan Boat 
Corporation (ABC) are each creating a type, called BuyProduct, which they intend to ship 
in their respective assemblies. It’s likely that both companies would create a namespace 
called ABC that contains a type called BuyProduct. Anyone who tries to develop an 
application that needs to buy both boomerangs and boats would be in for some trouble 
unless the programming language provides a way to programmatically distinguish between 
the assemblies, not just between the namespaces. 

Unfortunately, the C# using directive only supports namespaces; it doesn’t offer any way to 
specify an assembly. However, in the real world, this problem doesn’t come up very often 
and is rarely an issue. If you’re designing component types that you expect third parties to 
use, you should define these types in a namespace so that compilers can easily 
disambiguate types. In fact, to reduce the likelihood of conflict, you should use your full 
company name (not an acronym) to be your top-level namespace name. Referring to the 
.NET Framework SDK documentation, you can see that Microsoft uses a namespace of 
"Microsoft" for Microsoft-specific types. (See the Microsoft.CSharp, 
Microsoft.VisualBasic, and Microsoft.Win32 namespaces as examples.) 

Creating a namespace is simply a matter of writing a namespace declaration into your code 
as follows (in C#): 

namespace CompanyName {   // CompanyName 
   class A {              // CompanyName.A 
      class B { ... }     // CompanyName.A.B 
   } 
 
   namespace X {          // CompanyName.X 
      class C { ... }     // CompanyName.X.C 
   } 
} 

Some compilers don’t support namespaces at all, and other compilers are free to define 
what “namespace” means to a particular language. In C#, namespaces are implicitly public 
and you can’t change this by using any access modifiers. However, C# does allow you to 
define types within a namespace that are internal (can’t be used outside the assembly) or 
public (can be accessed by any assembly).  

 

How Namespaces and Assemblies Relate 

Be aware that a namespace and an assembly (the file that implements a type) aren’t 
necessarily related. In particular, the various types belonging to a single namespace 
might be implemented in multiple assemblies. For example, the 
System.Collections.ArrayList type is implemented in the MSCorLib.dll 



assembly, and the System.Collections.StringCollection type is implemented 
in the System.dll assembly. In fact, there is no System.Collections.dll assembly. 

A single assembly can house types in different namespaces. For example, the 
System.Int32 and System.Collections.ArrayList types are both in the 
MSCorLib.dll assembly. 

When you look up a type in the .NET Framework SDK documentation, the 
documentation will clearly indicate the namespace that the type belongs to and also 
what assembly the type is implemented in. In the Requirements section in Figure 4-1, 
you can see that the ResXFileRef type belongs in the System.Resources 
namespace but is implemented in the System.Windows.Forms.dll assembly. To compile 
code that references the ResXFileRef type, you’d add a using 
System.Resources; directive to your source code and you’d use the 
/r:System.Windows.dll compiler switch. 

 
Figure 4-1 : Requirements section showing namespace and assembly 
information for a type  

 
 



Chapter 5: Primitive, Reference, and Value 
Types 
In this chapter, I’ll discuss the different kinds of types that you’ll run into as a Microsoft .NET 
Framework developer. It is crucial that all developers be familiar with the different behaviors 
that these types exhibit. When I was first learning the .NET Framework, I didn’t fully 
understand the difference between primitive, reference, and value types. This lack of clarity 
led me to unwittingly introduce subtle bugs and performance issues into my code. By 
explaining the differences between the types here, I’m hoping to save you some of the 
headaches I experienced while getting up to speed. 

Programming Language Primitive Types 

Certain data types are so commonly used that many compilers allow code to manipulate 
them using simplified syntax. For example, you could allocate an integer using the following 
syntax: 

System.Int32 a = new System.Int32(); 

But I’m sure you’d agree that declaring and initializing an integer using this syntax is rather 
cumbersome. Fortunately, many compilers (including C#) allow you to use syntax similar to 
the following instead: 

int a = 0; 

This syntax certainly makes the code more readable, and, of course, the intermediate 
language (IL) generated is identical no matter which syntax is used. Any data types the 
compiler directly supports are called primitive types. Primitive types map directly to types 
existing in the .NET Framework Class Library (FCL). For example, in C#, an int maps 
directly to the System.Int32 type. Because of this, the following four lines of code all 
compile correctly and produce the exact same IL:  

int          a = 0;                   // Most convenient syntax 
System.Int32 a = 0;                   // Convenient syntax 
int          a = new int();           // Inconvenient syntax 
System.Int32 a = new System.Int32();  // Inconvenient syntax 

Table 5-1 shows the FCL types that have corresponding primitives in C#. For the types that 
are compliant with the Common Language Specification (CLS), other languages will offer 
similar primitive types. However, languages aren’t required to offer any support for the non-
CLS-compliant types.  

Table 5-1: FCL Types with Corresponding C# Primitives  

C# Primitive Type FCL Type CLS-
Complia
nt 

Description 

sbyte  System.SByte  No Signed 8-bit value 

byte  System.Byte  Yes Unsigned 8-bit value 

short  System.Int16  Yes Signed 16-bit value 

ushort  System.UInt16  No Unsigned 16-bit value 

int  System.Int32  Yes Signed 32-bit value 



Table 5-1: FCL Types with Corresponding C# Primitives  

C# Primitive Type FCL Type CLS-
Complia
nt 

Description 

uint  System.UInt32  No Unsigned 32-bit value 

long  System.Int64  Yes Signed 64-bit value 

ulong  System.UInt64  No Unsigned 64-bit value 

char  System.Char  Yes 16-bit Unicode 
character (char never 
represents an 8-bit 
value as it would in 
unmanaged C++.) 

float  System.Single  Yes IEEE 32-bit float  

double  System.Double  Yes IEEE 64-bit float  

bool  System.Boolean  Yes A True/False value 

decimal  System.Decimal  Yes A 128-bit high-
precision floating-point 
value commonly used 
for financial 
calculations where 
rounding errors can’t 
be tolerated. Of the 
128 bits, 1 bit 
represents the sign of 
the value, 96 bits 
represent the value 
itself, and 8 bits 
represent the power of 
10 to divide the 96-bit 
value by (can be 
anywhere from 0 to 
28). The remaining 
bits are unused. 

object  System.Object  Yes Base type of all types 

string  System.String  Yes An array of characters 

The C# language specification states, “As a matter of style, use of the keyword is favored 
over use of the complete system type name.” I disagree with the language specification; I 
prefer to use the FCL type names and completely avoid the primitive type names. In fact, I 
wish that compilers didn’t even offer the primitive type names and forced developers to use 
the FCL type names instead. Here are my reasons: 
§ I’ve seen a number of developers confused, not knowing whether to use string or 

String in their code. Because, in C#, the string (a keyword) maps exactly to 
System.String (a FCL type), there is no difference and either can be used. 

§ In C#, long maps to System.Int64, but in a different programming language, long 
could map to an Int16 or Int32. In fact, C++ with Managed Extensions does in fact 
treat long as an Int64. Someone reading source code in one language could easily 



misinterpret the code’s intention if they were used to programming in a different 
programming language. In fact, most languages won’t even treat long as a keyword 
and won’t compile code that uses it. 

§ The FCL has many types with methods that have type names in the method. For 
example, the BinaryReader type offers methods such as ReadBoolean, 
ReadInt32, ReadSingle, and so on, and the System.Convert type offers methods 
such as ToBoolean, ToInt32, ToSingle, and so on. Although it’s legal to write the 
following code, the line with float feels very unnatural to me, and it’s not obvious that 
the line is correct:  
BinaryReader br = new BinaryRead(...); 
float  val = br.ReadSingle();   // OK, but feels unnatural 
Single val = br.ReadSingle();   // OK and feels good 

For all these reasons, I’ll use the FCL type names throughout this book. 

In many programming languages, you would expect the following code to compile and 
execute correctly: 

Int32  i = 5;   // A 32-bit value 
Int64  l = i;   // Implicit cast to a 64-bit value 

However, based on the casting discussion presented in Chapter 4, you wouldn’t expect this 
code to compile. After all, System.Int32 and System.Int64 are different types. Well, 
you’ll be happy to know that the C# compiler does compile this code correctly and it runs as 
expected. Why? 

The reason is that the C# compiler has intimate knowledge of primitive types and applies its 
own special rules when compiling the code. In other words, your compiler of choice 
recognizes common programming patterns and produces the necessary IL to make the 
written code work as expected. Specifically, compilers typically support patterns related to 
casting, literals, and operators, as shown in the following examples.  

First, the compiler is able to perform implicit or explicit casts between primitive types like 
these: 

Int32  i = 5;         // Implicit cast from Int32  to Int32 
Int64  l = i;         // Implicit cast from Int32  to Int64 
Single s = i;         // Implicit cast from Int32  to Single 
Byte   b = (Byte) i;  // Explicit cast from Int32  to Byte 
Int16  v = (Int16) s; // Explicit cast from Single to Int16 

C# allows implicit casts if the conversion is “safe,” that is, no loss of data is possible, such as 
converting an Int32 to an Int64. But C# requires explicit casts if the conversion is 
potentially unsafe. For numeric types, "unsafe" means that you could lose precision or 
magnitude as a result of the conversion. For example, converting from Int32 to Byte 
requires an explicit cast because precision might be lost from large Int32 numbers; 
converting from Single to Int64 requires a cast because Single can represent numbers 
of a larger magnitude than Int64 can. 

Be aware that different compilers can generate different code to handle these cast 
operations. For example, when casting a Single with a value of 6.8 to an Int32, some 
compilers could generate code to put a 6 in the Int32, and others could perform the cast by 
rounding the result up to 7. By the way, C# always truncates the result. For the exact rules 
that C# follows for casting primitive types, see the "Conversions" section in the C# language 
specification. 



 
Note  

If you find yourself working with types that your compiler of choice doesn’t 
support as primitive types, you might be able to use the static methods of 
the System.Convert type to help you cast between objects of different 
types. The Convert type knows how to convert between objects within the 
various core types in the FCL: Boolean, Char, SByte, Byte, Int16, 
UInt16, Int32, UInt32, Int64, UInt64, Single, Double, Decimal, 
DateTime, and String. The Convert type also offers a static 
ChangeType method that allows an object to be converted from one type to 
another arbitrary type as long as the type of the source object implements 
the IConvertible interface and specifically the ToType method. 

In addition to casting, primitive types can be written as literals, as shown here: 
Console.WriteLine(123.ToString() + 456.ToString());  // "123456" 

Also, if you have an expression consisting of literals, the compiler is able to evaluate the 
expression at compile time, improving the application’s performance. 

Boolean found = false;    // Generated code sets found to 0 
Int32 x = 100 + 20 + 3;   // Generated code sets x to 123 
String s = "a " + "bc";   // Generated code sets s to "a bc" 

Finally, the compiler automatically knows how to interpret operators (such as +, -, *, /, %, &, 
^, |, ==, !=, >, <, >=, <=, <<, >>, ~, !, ++, —, and so on) when used in code:  

Int32 x = 100; 
Int32 y = x + 23; 
Boolean lessThanFifty = (y < 50); 

Checked and Unchecked Primitive Type Operations 

Programmers are well aware that many arithmetic operations on primitives could result in an 
overflow: 

Byte b = 100; 
b = (Byte) (b + 200);         // b now contains 44. 

 
Important  

The CLR performs arithmetic operations on 32-bit and 64-bit values 
only. So, b and 200 are first converted to 32-bit values and then added 
together. The result is a 32-bit value that must be cast to a Byte 
before the result can be stored back in the variable b. C# doesn’t 
perform this cast for you implicitly, which is why the Byte cast on the 
second line of the preceding code is required. 

In most programming scenarios, this silent overflow is undesirable and if not detected 
causes the application to behave in strange and unusual ways. In some rare programming 
scenarios (such as calculating a hash value or a checksum), however, this overflow is not 
only acceptable but is also desired. 

Different languages handle overflows in different ways. C and C++ don’t consider overflows 
to be an error and allow the value to wrap; the application continues running with its fingers 
crossed. Visual Basic, on the other hand, always considers overflows as errors and throws 
an exception when it detects an overflow. 



The CLR offers IL instructions that allow the compiler to choose the desired behavior. The 
CLR has an instruction called add that adds two values together. The add instruction 
performs no overflow checking. The CLR also has an instruction called add.ovf that also 
adds two values together. However, add.ovf throws a System.OverflowException 
exception if an overflow occurs. In addition to these two IL instructions for the add operation, 
the CLR also has similar IL instructions for subtraction (sub/sub.ovf), multiplication 
(mul/mul.ovf), and data conversions (conv/conv.ovf).  

C# allows the programmer to decide how overflows should be handled. By default, overflow 
checking is turned off. This means that the compiler generates IL code using the versions of 
the add, subtract, multiply, and conversion instructions that don’t include overflow checking. 
As a result, the code runs fast—but developers must be assured that overflows won’t occur 
or that their code is designed to anticipate these overflows. 

One way to get the C# compiler to control overflows is to use the /checked+ command-line 
switch. This switch tells the compiler to generate code using the overflow-checking versions 
of the add, subtract, multiply, and conversion IL instructions. The code executes more slowly 
because the CLR is checking these operations to see whether an overflow will occur. If an 
overflow does occur, the CLR throws an OverflowException exception. You should 
design your application’s code to handle this exception and gracefully recover. 

Rather than have overflow checking turned on or off globally, programmers are much more 
likely to want to decide case by case whether to have overflow checking. C# allows this 
flexibility by offering checked and unchecked operators. Here’s an example. (Assume that 
the compiler is building unchecked code by default.)  

Byte b = 100; 
b = checked((Byte) (b + 200));    // OverflowException is thrown 

In this example, b and 200 are first converted to 32-bit values and are added together; the 
result is 300. Then 300 is converted to a Byte: this generates the OverflowException. If 
the Byte were cast outside the checked operator, the exception wouldn’t occur.  

b = (Byte) checked(b + 200);      // b contains 44; no OverflowException 

In addition to the checked and unchecked operators, C# also offers checked and 
unchecked statements. The statements cause all expressions within a block to be checked 
or unchecked:  

checked {                         // Start of checked block 
   Byte b = 100; 
   b = (Byte) (b + 200);          // This expression is checked for overflow. 
}                                 // End of checked block 

In fact, if you use a checked statement, you can now use the += operator, which simplifies 
the code a bit:  

checked {         // Start of checked block 
   Byte b = 100;  
   b += 200;      // This expression is checked for overflow. 
}                 // End of checked block 

 
Important  

Because the checked operator and statement affect only which 
versions of the add, subtract, multiply, and data conversion IL 
instructions are produced, calling a method within a checked operator 
or statement has no impact on that method. The following code 
demonstrates:  



checked { 
   // Assume SomeMethod tries to load 400 into a Byte. 
   SomeMethod(400);  
   // SomeMethod might or might not throw an 
OverflowException.  
   // It would if SomeMethod were compiled with checked 
instructions. 
} 

Here’s the best way to go about using checked and unchecked: 
§ As you write your code, explicitly use checked around blocks where you want an 

exception thrown if an overflow occurs. In Chapter 18, I’ll show you how to use 
exception handling to gracefully recover from exceptions. 

§ As you write your code, explicitly use unchecked around blocks where you don’t want 
an exception thrown even if an overflow occurs. This would be code where you want 
overflow to occur silently. 

§ For any code that doesn’t use checked or unchecked, the assumption is that you do 
want an exception to occur on overflow when you’re developing and that you don’t want 
checking to occur in released code. 

Now, as you develop your application, turn on the compiler’s /checked+ switch for debug 
builds. Your application will run more slowly because the system will be checking for 
overflows on any code that you didn’t explicitly mark as checked or unchecked. If an 
exception occurs, you’ll easily detect it and be able to fix the bug in your code. For the 
release build of your application, use the compiler’s /checked- switch so that the code runs 
fast and exceptions won’t be generated.  

 
Important  

The System.Decimal type is a very special type. Although many 
programming languages (C# and Visual Basic included) consider 
Decimal a primitive type, the CLR does not. This means that the CLR 
doesn’t have IL instructions that know how to manipulate a Decimal 
value. If you look up the Decimal type in the .NET Framework 
documentation, you’ll see that it has public, static methods called Add, 
Subtract, Multiply, Divide, and so on. In addition, the Decimal 
type provides operator overload methods for +, -, *, /, and so on. 

When you compile code using Decimal values, the compiler 
generates code to call Decimal’s members to perform the actual 
operation. This means that manipulating Decimal values is slower 
than manipulating CLR primitive values. Also, because there are no IL 
instructions for manipulating Decimal values, the checked and 
unchecked operators, statements, and compiler command-line 
options have no effect. Operations on Decimal values always throw 
an OverflowException if the operation can’t be performed safely. 

 
Reference Types and Values Types 

The CLR supports two kinds of types: reference types and value types. Of the two, you’ll run 
into reference types much more often. Reference types are always allocated from the 
managed heap, and the C# new operator returns the memory address of the object—the 
memory address refers to the object’s bits. You need to bear in mind some performance 
considerations when you’re working with reference types. First consider these facts: 



§ The memory must be allocated from the managed heap. 
§ Each object allocated on the heap has some additional overhead members associated 

with it that must be initialized. 
§ Allocating an object from the managed heap could force a garbage collection to occur. 

If every type were a reference type, an application’s performance would suffer greatly. 
Imagine how poor performance would be if every time you used an Int32 value, a memory 
allocation occurred! To improve performance for simple, frequently used types, the CLR 
offers "lightweight" types called value types. Value type instances are usually allocated on a 
thread’s stack (although they can also be embedded in a reference type object). The 
variable representing the instance doesn’t contain a pointer to an instance; the variable 
contains the fields of the instance itself. Because the variable contains the instance’s fields, 
a pointer doesn’t have to be dereferenced to manipulate the instance. Value type instances 
don’t come under the control of the garbage collector, thus reducing pressure in the 
managed heap and reducing the number of collections an application requires over its 
lifetime.  

The .NET Framework Reference documentation clearly indicates which types are reference 
types and which are value types. When looking up a type in the documentation, any type 
called a class is a reference type. For example, the System.Object class, the 
System.Exception class, the System.IO.FileStream class, and the System.Random 
class are all reference types. On the other hand, the documentation refers to each value 
type as a structure or an enumeration. For example, the System.Int32 structure, the 
System.Boolean structure, the System.Decimal structure, the System.TimeSpan 
structure, the System.DayOfWeek enumeration, the System.IO.FileAttributes 
enumeration, and the System.-Drawing.FontStyle enumeration are all value types. 

If you look more closely at the documentation, you’ll notice that all the structures are 
immediately derived from the System.ValueType type. System.ValueType is itself 
immediately derived from the System.Object type. By definition, all value types must be 
derived from ValueType. 

 
Note  

All enumerations are derived from System.Enum, which is itself derived 
from System.ValueType. The CLR and all programming languages give 
enumerations special treatment. For more information about enumerated 
types, refer to Chapter 13. 

Even though you can’t choose a base type when defining your own value type, a value type 
can implement one or more interfaces if you choose. In addition, the CLR doesn’t allow a 
value type to be used as a base type for any other reference type or value type. So, for 
example, it’s not possible to define any new types using Boolean, Char, Int32, Uint64, 
Single, Double, Decimal, and so on as base types.  

 
Important  

For many developers (such as unmanaged C/C++ developers), 
reference types and value types will seem strange at first. In 
unmanaged C/C++, you declare a type and then the code that uses 
the type gets to decide if an instance of the type should be allocated 
on the thread’s stack or in the application’s heap. In managed code, 
the developer defining the type indicates where instances of the type 
are allocated; the developer using the type has no control over this. 

The following code and Figure 5-1 demonstrate how reference types and value types differ: 



 
Figure 5-1 : Memory layout differences between reference and value types  

// Reference type (because of Ôclass’) 

class  SomeRef { public Int32 x; } 

 

// Value type (because of Ôstruct’) 

struct SomeVal { public Int32 x; } 

 

static void ValueTypeDemo() { 

   SomeRef r1 = new SomeRef();   // Allocated in heap 

   SomeVal v1 = new SomeVal();   // Allocated on stack 

   r1.x = 5;                     // Pointer dereference 

   v1.x = 5;                     // Changed on stack 

   Console.WriteLine(r1.x);      // Displays "5" 

   Console.WriteLine(v1.x);      // Also displays "5" 

   // The left side of Figure 5-1 reflects the situation 

   // after the lines above have executed. 

  

   SomeRef r2 = r1;              // Copies reference (pointer) only 

   SomeVal v2 = v1;              // Allocate on stack & copies members 

   r1.x = 8;                     // Changes r1.x and r2.x 



   v1.x = 9;                     // Changes v1.x, not v2.x 

   Console.WriteLine(r1.x);      // Displays "8" 

   Console.WriteLine(r2.x);      // Displays "8" 

   Console.WriteLine(v1.x);      // Displays "9" 

   Console.WriteLine(v2.x);      // Displays "5" 

   // The right side of Figure 5-1 reflects the situation  

   // after ALL the lines above have executed. 

} 

In this code, the SomeVal type is declared using struct instead of the more common 
class. In C#, types declared using struct are value types, and types declared using 
class are reference types. As you can see, the behavior of reference types and value types 
differ quite a bit. As you use types in your code, you must be aware of whether the type is a 
reference type or a value type because it can greatly affect how you express your intentions 
in the code.  

 
Note  

Other languages can have different syntax for describing value types versus 
reference types. For example, C++ with Managed Extensions uses the 
__value modifier. 

In the preceding code, you saw this line: 
SomeVal v1 = new SomeVal();   // Allocated on stack 

The way this line is written makes it look like a SomeVal instance will be allocated on the 
managed heap. However, the C# compiler knows that SomeVal is a value type and 
produces code that allocates the SomeVal instance on the thread’s stack. C# also ensures 
that all the fields in the value type instance are zeroed. 

The preceding line could have been written like this instead: 
SomeVal v1;   // Allocated on stack 

This line also produces IL that allocates the instance on the thread’s stack and zeroes the 
fields. The only difference is that C# “thinks” the instance initialized if you use the new 
operator. The following code will make this point clear:  

// These two lines compile because C# thinks that  
// v1’s fields have been initialized to 0. 
SomeVal v1 = new SomeVal(); 
Int32 a = v1.x; 
 
// These two lines don’t compile because C# doesn’t think that  
// v1’s fields have been initialized to 0. 
SomeVal v1; 
Int32 a = v1.x;  // error CS0170: Use of possibly unassigned field Ôx’ 



When designing your own types, consider carefully whether to define your types as value 
types instead of reference types. In some situations, value types can give better 
performance. In particular, you should declare a type as a value type if all the following 
statements are true: 
§ The type acts like a primitive type. 
§ The type doesn’t need to inherit from any other type. 
§ The type won’t have any other types derived from it. 
§ Instances of the type aren’t frequently passed as method parameters. By default, 

parameters are passed by value, which causes the fields in value type instances to be 
copied, frequently hurting performance. 

§ Instances of the type aren’t frequently returned from methods. Again, a method that 
returns a value type causes the fields in the instance to be copied into memory 
allocated by the caller when the method returns, hurting performance. 

§ Instances of the type aren’t frequently used in collections such as ArrayList, 
Hashtable, and so on. Classes that manage a set of generic objects require that value 
type instances be boxed. Boxing causes additional memory to be allocated, and 
additional memory copy operations hurt performance. (I’ll explain boxing and unboxing 
in more detail in the next section.) 

The main advantage of value types is that they’re not allocated in the managed heap. Of 
course, value types have several limitations of their own when compared to reference types. 
Here are some of the ways in which value types and reference types differ: 
§ Value type objects have two representations: an unboxed form and a boxed form 

(discussed in the next section). Reference types are always in a boxed form.  
§ Value types are derived from System.ValueType. This type offers the same 

methods as defined by System.Object. However, System.ValueType overrides the 
Equals method so that it returns true if the values of the two object’s fields match. In 
addition, System.ValueType overrides the GetHashCode method so that it produces 
a hash code value using an algorithm that takes into account the values in the object’s 
instance fields. When defining your own value types, you should override and provide 
explicit implementations for the Equals and GetHashCode methods. I’ll cover the 
Equals and GetHashCode methods in Chapter 6. 

§ Because you can’t declare a new value type or a new reference type using a value 
type as a base class, you shouldn’t introduce any new virtual methods into a value type. 
No methods can be abstract, and all methods are implicitly sealed (can’t be overridden). 

§ Reference type variables contain the memory address of objects in the heap. By 
default, when a reference type variable is created, it is initialized to null, indicating that 
the reference type variable doesn’t currently point to a valid object. Attempting to use a 
null reference type variable causes a NullReferenceException exception to be 
thrown. By contrast, value type variables always contain a value of the underlying type, 
and all members of the value type are initialized to 0. It’s not possible to generate a 
NullReferenceException exception when accessing a value type. 

§ When you assign a value type variable to another value type variable, a field-by-field 
copy is made. When you assign a reference type variable to another reference type 
variable, only the memory address is copied. 

§ Because of the previous point, two or more reference type variables can refer to a 
single object in the heap, allowing operations on one variable to affect the object 
referenced by the other variable. On the other hand, value type variables each have 
their own copy of the “object’s” data, and it’s not possible for operations on one value 
type variable to affect another. 

§ Because unboxed value types aren’t allocated on the heap, the storage allocated for 
them is freed as soon as the method that defines an instance of the type is no longer 
active. This means that a value type instance doesn’t receive a notification (via a 
Finalize method) when its memory is reclaimed. 



 
Note  

In fact, it would be quite odd to define a value type with a Final-ize 
method since the method would be called only on boxed instances. For this 
reason, many compilers (including C# and Visual Basic) don’t allow you to 
define Finalize methods on value types. Although the CLR allows a value 
type to define a Finalize method, the CLR won’t call this method when a 
boxed instance of the value type is garbage collected.  

 

How the CLR Controls the Layout of a Type’s Fields 

To improve performance, the CLR is capable of arranging the fields of a type any way it 
chooses. For example, the CLR might reorder fields in memory so that object references 
are grouped together and data fields are properly aligned and packed. However, when 
you define a type, you can tell the CLR whether it must keep the type’s fields in the 
same order the developer specified them or whether it can reorder as it sees fit. 

You tell the CLR what to do by applying the System.Runtime.-
InteropServices.StructLayoutAttribute attribute on the class or structure 
you’re defining. To this attribute’s constructor, you can pass LayoutKind.Auto to have 
the CLR arrange the fields or LayoutKind.Sequential to have the CLR preserve 
your field layout. If you don’t explicitly specify the StructLayoutAttribute on a type 
that you’re defining, your compiler selects whatever layout it thinks best. 

You should be aware that Microsoft’s C# compiler selects LayoutKind.Auto for 
reference types (classes) and LayoutKind.Sequential for value types (structures). It 
is obvious that the C# compiler team feels that structures are commonly used when 
interoperating with unmanaged code, and for this to work, the fields must stay in the 
order defined by the programmer. However, if you’re creating a value type that has 
nothing to do with interoperability with unmanaged code, you probably want to override 
the C# compiler’s default. Here’s an example:  

using System; 
using System.Runtime.InteropService; 
 
// Let the CLR arrange the fields to improve performance for this 
// value type. 
[StructLayout(LayoutKind.Auto)]   
struct Point { 
   Int32 x, y; 
} 

 
Boxing and Unboxing Value Types 

Value types are lighter weight than reference types because they are not allocated in the 
managed heap, not garbage collected, and not referred to by pointers. However, in many 
cases, you must get a reference to an instance of a value type. For example, let’s say that 
you wanted to create an ArrayList object (a type defined in the System.Collections 
namespace) to hold a set of Point structures. The code might look like this:  

// Declare a value type. 
struct Point { 
   public Int32 x, y; 
} 



 
class App { 
   static void Main() { 
      ArrayList a = new ArrayList(); 
      Point p;            // Allocate a Point (not in the heap). 
      for (Int32 i = 0; i < 10; i++) { 
         p.x = p.y = i;   // Initialize the members in the value type. 
         a.Add(p);        // Box the value type and add the 
                          // reference to the array. 
      } 
      ? 
   } 
} 

With each iteration of the loop, a Point value type’s fields are initialized. Then the Point is 
stored in the ArrayList. But let’s think about this for a moment. What is actually being 
stored in the ArrayList? Is it the Point structure, the address of the Point structure, or 
something else entirely? To get the answer, you must look up ArrayList’s Add method 
and see what type its parameter is defined as. In this case, the Add method is prototyped as 
follows:  

public virtual void Add(Object value); 

From this, you can plainly see that Add takes an Object as a parameter, indicating that Add 
requires a reference (or pointer) to an object on the managed heap as a parameter. But in 
the preceding code, I’m passing p a Point value type. For this code to work, the Point 
value type must be converted into a true heap-managed object and a reference to this object 
must be obtained.  

It’s possible to convert a value type to a reference type using a mechanism called boxing. 
Internally, here’s what happens when an instance of a value type is boxed: 

1. Memory is allocated from the managed heap. The amount of memory allocated is the 
size the value type requires plus any additional overhead to consider this value type 
to be a true object. The additional overhead includes a method table pointer and a 
SyncBlockIndex. 

2. The value type’s fields are copied to the newly allocated heap memory. 
3. The address of the object is returned. This address is now a reference to an object; the 

value type is now a reference type. 

Some language compilers, like C#, automatically produce the IL code necessary to box a 
value type instance, but you still need to understand what’s going on under the covers so 
that you’re aware of code size and performance issues. 

In the preceding code, the C# compiler detected that I was passing a value type to a method 
that requires a reference type, and it automatically emitted code to box the object. So at run 
time, the fields currently residing in the Point value type (p) are copied into the newly 
allocated Point object. The address of the boxed Point object (now a reference type) is 
returned and is then passed to the Add method. The Point object will remain in the heap 
until it is garbage collected. The Point value type variable (p) can be reused or freed since 
the ArrayList never knows anything about it. Note that the lifetime of the boxed value type 
extends beyond the lifetime of the unboxed value type. 



Many languages designed for the CLR (for example, C# and Visual Basic) automatically emit 
the code necessary to box value types into reference types when necessary. However, 
some languages (such as C++ with Managed Extensions) require that the programmer write 
code to explicitly box value types when necessary. 

Now that you know how boxing works, let’s talk about unboxing. Let’s say that in another 
piece of code you want to grab the first element out of the ArrayList:  

Point p = (Point) a[0]; 

Here you’re taking the reference (or pointer) contained in element 0 of the ArrayList and 
trying to put it into a Point value type, p. For this to work, all the fields contained in the 
boxed Point object must be copied into the value type variable, p, which is on the thread’s 
stack. The CLR accomplishes this copying in two steps. First the address of the Point fields 
in the boxed Point object is obtained. This process is called unboxing. Then the values of 
these fields are copied from the heap to the stack-base value type instance. 

Unboxing is not the exact opposite of boxing. The unboxing operation is much less costly 
than boxing. Unboxing is really just the operation of obtaining a pointer to the raw value type 
(data fields) contained within an object. So, unlike boxing, unboxing doesn’t involve the 
copying of any bytes in memory. However, an unboxing operation is typically followed by 
copying the fields, making these two operations the exact opposite of a boxing operation. 

Obviously, boxing and unbox/copy operations hurt your application’s performance in terms of 
both speed and memory, so you should be aware of when the compiler generates code to 
perform these operations automatically and try to write code that minimizes this code 
generation.  

Internally, here’s exactly what happens when a reference type is unboxed: 
1. If the reference is null, a NullReferenceException is thrown. 
2. If the reference doesn’t refer to an object that is a boxed value of the desired value 

type, an InvalidCastException exception is thrown. 
3. A pointer to the value type contained inside the object is returned. The value type that 

this pointer refers to doesn’t know anything about the usual overhead associated with 
a true object: a method table pointer and a SyncBlockIndex. In effect, the pointer 
refers to the unboxed portion in the boxed object. 

The second item means that the following code will not work as you might expect: 
static void Main() { 
   Int32  x = 5; 
   Object o = x;         // Box x; o refers to the boxed object 
   Int16  y = (Int16) o; // Throws an InvalidCastException 
} 

Logically, it makes sense to take the boxed Int32 that o refers to and cast it to an Int16. 
However, when unboxing an object, the cast must be to the unboxed type—Int32 in this 
case. Here’s the correct way to write this code:  

static void Main() { 
   Int32  x = 5; 
   Object o = x;                // Box x; o refers to the boxed object 
   Int16  y = (Int16)(Int32) o; // Unbox to the correct type and cast 
} 



Even though, strictly speaking, an unboxing operation doesn’t copy any fields, it is frequently 
followed immediately by a field copy, which does copy the fields from the heap to the stack. 
In fact, in C#, an unbox operation is always followed by a field copy. Let’s take a look at 
some C# code demonstrating that unbox and copy operations always work together: 

static void Main() { 
   Point p; 
   p.x = p.y = 1; 
   Object o = p;   // Boxes p; o refers to the boxed object 
 
   p = (Point) o;  // Unboxes o AND copies fields from object to stack 
} 

On the last line, the C# compiler emits an IL instruction to unbox o (get the address of the 
fields in the object) and another IL instruction to copy the fields from the heap to the stack-
based variable p. 

Now look at this code: 
static void Main() { 
   Point p; 
   p.x = p.y = 1; 
   Object o = p;   // Boxes p; o refers to the boxed object 
 
   // Change Point’s x field to 2 
   p = (Point) o;  // Unboxes o AND copies fields from object to stack 
   p.x = 2; 
   o = p 
} 

The code at the bottom of this fragment just wants to change Point’s x field from 1 to 2. To 
do this, an unbox operation must be performed, followed by a field copy, followed by 
changing the field (on the stack), followed by a boxing operation (which creates a whole new 
object in the managed heap). Hopefully, you see the impact that boxing and 
unboxing/copying operations have on your application’s performance. 

Some languages, like C++ with Managed Extensions, allow you to unbox a boxed value type 
without copying the fields. Unboxing returns the address of the unboxed portion of a boxed 
object (ignoring the object’s method table pointer and SyncBlockIndex overhead). You can 
now use this pointer to manipulate the unboxed instance’s fields (which happen to be in a 
boxed object on the heap). For example, the previous code would be much more efficient if 
written in C++ with Managed Extensions because you could change the value of Point’s x 
field within the already boxed Point object. This would avoid both allocating a new object 
on the heap and copying all the fields twice! 

 
Important  

If you’re the least bit concerned about your application’s performance, 
you must be aware of when the compiler produces the code that 
performs these operations. Some languages, such as C++ with 
Managed Extensions, require the programmer to explicitly write code 
to box and unbox value types. C++ with Managed Extensions offers 
the __box operator and dynamic_cast operator to do boxing and 
unboxing operations, respectively. This requirement makes the 
developer’s job harder because he must write the necessary code; on 
the plus side, though, the developer will know exactly when boxing and 



unboxing operations are occurring. However, many languages (such 
as C# and Visual Basic) will automatically emit the IL code necessary 
to box and unbox value types. Although this built-in functionality makes 
the code look nicer and eases the burden on the developer, it also 
means that it’s not obvious to the developer when boxing and 
unboxing operations are occurring. 

Let’s look at a few more examples that demonstrate boxing and unboxing: 
public static void Main() { 
   Int32  v = 5;            // Create an unboxed value type variable. 
   Object o = v;            // o refers to a boxed Int32 containing 5. 
   v = 123;                 // Changes the unboxed value to 123 
 
   Console.WriteLine(v + ", " + (Int32) o);    // Displays "123, 5" 
} 

In this code, can you guess how many boxing operations occur? You might be surprised to 
discover that the answer is three! Let’s analyze the code carefully to really understand 
what’s going on. To help you understand, I’ve included the IL code generated for the Main 
method shown in the preceding code. I’ve commented the code so that you can easily see 
the individual operations.  

.method private hidebysig static void Main() cil managed 
{ 
  .entrypoint 
  // Code size       46 (0x2e) 
  .maxstack  3 
  .locals ([0] int32 v, 
           [1] object o) 
 
  // Load 5 into v. 
  IL_0000:  ldc.i4.5 
  IL_0001:  stloc.0 
 
  // Box v, and store the reference pointer in o. 
  IL_0002:  ldloc.0 
  IL_0003:  box        [mscorlib]System.Int32 
  IL_0008:  stloc.1 
 
  // Load 123 into v. 
  IL_0009:  ldc.i4.s   123 
  IL_000b:  stloc.0 
 
  // Box v, and leave the pointer on the stack for Concat. 
  IL_000c:  ldloc.0 
  IL_000d:  box        [mscorlib]System.Int32 
 
  // Load the string on the stack for Concat. 
  IL_0012:  ldstr      ", " 
 



  // Unbox o: Get the pointer to the Int32’s field on the stack. 
  IL_0017:  ldloc.1 
  IL_0018:  unbox      [mscorlib]System.Int32 
 
  // Copy the bytes from the boxed Int32 to the stack. 
  IL_001d:  ldind.i4 
 
  // Box the Int32, and leave the pointer on the stack for Concat. 
  IL_001e:  box        [mscorlib]System.Int32 
 
  // Call Concat 
  IL_0023:  call       string [mscorlib]System.String::Concat(object, 
                                                              object, 
                                                              object) 
 
  // The string returned from Concat is passed to WriteLine. 
  IL_0028:  call       void [mscorlib]System.Console::WriteLine(string) 
  IL_002d:  ret 
} // End of method App::Main 

First an Int32 unboxed value type (v) is created and initialized to 5. Then an Object 
reference type (o) is created, and it wants to point to v. But because reference types must 
always point to objects in the heap, C# generated the proper IL code to box v and store the 
address of the boxed "copy" of v in o. Now the value 123 is placed into the unboxed value 
type v; this has no effect on the boxed Int32 value, which keeps its value of 5.  

Next is the call to the WriteLine method. WriteLine wants a String object passed to it, 
but there is no string object. Instead, these three items are available: an unboxed Int32 
value type (v), a String (which is a reference type), and a reference to a boxed Int32 
value type (o) that is being cast to an unboxed Int32. These must somehow be combined 
to create a String. 

To create a String, the C# compiler generates code that calls the String object’s static 
Concat method. There are several overloaded versions of the Concat method; all of them 
perform identically—the only difference is in the number of parameters. Because a string is 
being created from the concatenation of three items, the compiler chooses the following 
version of the Concat method:  

public static String Concat(Object arg0, Object arg1, Object arg2); 

For the first parameter, arg0, v is passed. But v is an unboxed value parameter and arg0 
is an Object, so v must be boxed and the address to the boxed v is passed for arg0. For 
the arg1 parameter, the "," string is passed as a reference to a String object. Finally, for 
the arg2 parameter, o (a reference to an Object) is cast to an Int32, creating a 
temporary instance of an Int32 value type on the IL evaluation stack that receives a copy of 
the unboxed version of the value currently referred to by o. This temporary Int32 value type 
must be boxed again with the memory address being passed for Concat’s arg2 parameter. 

The Concat method calls each of the specified object’s ToString methods and 
concatenates each object’s string representation. The String object returned from Concat 
is then passed to WriteLine to show the final result. 



I should point out that the generated IL code is more efficient if the call to WriteLine is 
written as follows:  

Console.WriteLine(v + ", " + o);    // Displays "123, 5" 

This line is identical to the earlier version except that I’ve removed the (Int32) cast that 
preceded the variable o. This code is more efficient because o is already a reference type to 
an Object and its address can simply be passed to the Concat method. So, removing the 
cast saved three operations: an unbox, a field-by-field copy, and a box. You can easily see 
this savings by rebuilding the application and examining the generated IL code:  

.method private hidebysig static void Main() cil managed 
{ 
  .entrypoint 
  // Code size       35 (0x23) 
  .maxstack  3 
  .locals ([0] int32 v, 
           [1] object o) 
 
  // Load 5 into v. 
  IL_0000:  ldc.i4.5 
  IL_0001:  stloc.0 
 
  // Box v, and store the reference pointer in o. 
  IL_0002:  ldloc.0 
  IL_0003:  box        [mscorlib]System.Int32 
  IL_0008:  stloc.1 
 
  // Load 123 into v. 
  IL_0009:  ldc.i4.s   123 
  IL_000b:  stloc.0 
 
  // Box v, and leave the pointer on the stack for Concat. 
  IL_000c:  ldloc.0 
  IL_000d:  box        [mscorlib]System.Int32 
 
  // Load the string on the stack for Concat. 
  IL_0012:  ldstr      ", " 
 
  // Load the address of the boxed Int32 on the stack for Concat. 
  IL_0017:  ldloc.1 
 
  // Call Concat. 
  IL_0018:  call       string [mscorlib]System.String::Concat(object, 
                                                              object, 
                                                              object) 
 
  // The string returned from Concat is passed to WriteLine. 
  IL_001d:  call       void [mscorlib]System.Console::WriteLine(string) 
  IL_0022:  ret 



} // end of method App::Main 

A quick comparison of the IL for these two versions of the Main method shows that the 
version without the (Int32) cast is 11 bytes smaller than the version with the cast. The 
extra unbox/box steps in the first version are obviously generating more code. An even 
bigger concern, however, is that the extra boxing step allocates an additional object from the 
managed heap that must be garbage collected in the future. Certainly, both versions give 
identical results and the difference in speed isn’t noticeable, but if you have extra, 
unnecessary boxing operations occurring in a loop, the performance and memory usage of 
your application would be seriously affected.  

You can improve the previous code even more by calling WriteLine like this:  
Console.WriteLine(v.ToString() + ", " + o);    // Displays "123, 5" 

Now ToString is called on the unboxed value type v and a String is returned. String 
objects are already reference types and can simply be passed to the Concat method 
without requiring any boxing. 

Let’s look at yet another example that demonstrates boxing and unboxing: 
public static void Main() { 
   Int32 v = 5;                // Create an unboxed value type variable. 
   Object o = v;               // o refers to the boxed version of v. 
 
   v = 123;                    // Changes the unboxed value type to 123 
   Console.WriteLine(v);       // Displays "123" 
 
   v = (Int32) o;              // Unboxes o into v 
   Console.WriteLine(v);       // Displays "5" 
} 

How many boxing operations do you count in this code? The answer is one. The reason that 
there is only one boxing operation is that the System.Console class defines a WriteLine 
method that accepts an Int32 as a parameter:  

public static void WriteLine(Int32 value); 

In the two calls to WriteLine above, the variable v, an Int32 unboxed value type, is 
passed by value. Now, it may be that WriteLine will box this Int32 internally, but you 
have no control over that. The important thing is that you’ve done the best you could and 
have eliminated the boxing from your own code.  

If you take a close look at the FCL, you’ll notice many overloaded methods that differ based 
on their value type parameters. For example, the System.Console type offers several 
overloaded versions of the WriteLine method:  

public static void WriteLine(Boolean); 
public static void WriteLine(Char); 
public static void WriteLine(Int32); 
public static void WriteLine(UInt32); 
public static void WriteLine(Int64); 
public static void WriteLine(UInt64); 
public static void WriteLine(Single); 
public static void WriteLine(Double); 



public static void WriteLine(Decimal); 

You’ll also find a similar set of overloaded methods for System.Console’s Write method, 
System.IO.BinaryWriter’s Write method, System.IO.TextWriter’s Write and 
WriteLine methods, System.Runtime.Serialization.SerializationInfo’s 
AddValue method, System.Text.StringBuilder’s Append and Insert methods, and 
so on. All these methods offer overloaded versions for the sole purpose of reducing the 
number of boxing operations for the common value types. 

One last point about boxing: if you know that the code you’re writing is going to cause the 
compiler to box a single value type repeatedly, your code will be smaller and faster if you 
manually box the value type. Here’s an example: 

using System; 
 
class App { 
   static void Main() { 
      Int32 v = 5;   // Create an unboxed value type variable. 
 
#if INEFFICIENT 
      // When compiling the following line, v is boxed  
      // three times, wasting time and memory. 
      Console.WriteLine("{0}, {1}, {2}", v, v, v); 
#else 
      // The lines below have the same result, execute 
      // much faster, and use less memory. 
      Object o = v;  // Manually box v (just once). 
 
      // No boxing occurs to compile the following line. 
      Console.WriteLine("{0}, {1}, {2}", o, o, o); 
#endif 
   } 
} 

If this code is compiled with the INEFFICIENT symbol defined, the compiler will generate 
code to box v three times, causing three objects to be allocated from the heap! This is 
extremely wasteful since each object will have exactly the same contents: 5. If the code is 
compiled without the INEFFICIENT symbol defined, v is boxed just once, so only one 
object is allocated from the heap. Then, in the call to Console.WriteLine, the reference 
to the single boxed object is passed three times. This second version executes much faster 
and allocates less memory from the heap.  

In these examples, it’s fairly easy to recognize when an instance of a value type requires 
boxing. Basically, if you want a reference to an instance of a value type, the instance must 
be boxed. Usually this happens because you have a value type and you want to pass it to a 
method that requires a reference type. However, this situation isn’t the only one in which 
you’ll need to box an instance of a value type. 

Recall that unboxed value types are lighter-weight types than reference types for two 
reasons: 
§ They are not allocated on the managed heap. 



§ They don’t have the additional overhead members that every object on the heap has: a 
method table pointer and a SyncBlockIndex.  

Because unboxed value types don’t have a SyncBlockIndex, you can’t have multiple threads 
synchronize their access to the instance using the methods of the 
System.Threading.Monitor type. Because unboxed value types don’t have a method 
table pointer, you can’t call inherited implementations of virtual methods using an unboxed 
instance of the value type. In addition, casting an unboxed instance of a value type to one of 
the type’s interfaces requires that the instance be boxed because interfaces are always 
reference types. (I’ll talk about interfaces in Chapter 15.) The following code demonstrates:  

using System; 
 
struct Point : ICloneable { 
   public Int32 x, y; 
 
   // Override ToString method inherited from System.ValueType 
   public override String ToString() {  
      return String.Format("({0}, {1})", x, y); 
   }  
 
   // Implementation of ICloneable’s Clone method 
   public Object Clone() { 
      return MemberwiseClone(); 
   } 
} 
 
class App { 
   static void Main() { 
      // Create an instance of the Point value type on the stack. 
      Point p; 
 
      // Initialize the instance’s fields. 
      p.x = 10; 
      p.y = 20; 
 
      // p does NOT get boxed to call ToString. 
      Console.WriteLine(p.ToString()); 
 
      // p DOES get boxed to call GetType. 
      Console.WriteLine(p.GetType()); 
 
      // p does NOT get boxed to call Clone. 
      // Clone returns an object that is unboxed, 
      // and its fields are copied into p2. 
      Point p2 = (Point) p.Clone(); 
 
      // p2 DOES get boxed, and the reference is placed in c. 
      ICloneable c = p2; 



 
      // c does NOT get boxed because it is already boxed. 
      // Clone returns a reference to an object that is saved in o. 
      Object o = c.Clone(); 
 
      // o is unboxed, and fields are copied into p. 
      p = (Point) o; 
   } 
} 

This code demonstrates several scenarios related to boxing and unboxing: 
§ Calling ToString  In the call to ToString, p doesn’t have to be boxed. At first, you’d 

think that p would have to be boxed because ToString is a method that is inherited 
from the base type, System.ValueType. Normally, to call an inherited method, you’d 
need to have a pointer to the type’s method table—and because p is an unboxed value 
type, there’s no reference to Point’s method table. However, the C# compiler sees that 
Point overrides the ToString method, and it emits code that calls ToString directly. 
The compiler knows that polymorphism can’t come into play here since Point is a 
value type and value types can’t be used as the base type for any other type. 

§ Calling GetType  In the call to GetType, p does have to be boxed. The reason is that 
the Point type doesn’t implement GetType; it is inherited from System.ValueType. 
So to call GetType, you must have a pointer to Point’s method table, which can be 
obtained only by boxing p.  

§ Calling Clone (first time)  In the first call to Clone, p doesn’t have to be boxed 
because Point implements the Clone method and the compiler can just call it directly. 
Note that Clone returns an Object, which is a reference to a boxed Point object on 
the heap. This object must be unboxed and its fields copied to the unboxed value type 
p2. 

§ Casting to ICloneable  When casting p to a variable that is of an interface type, p 
must be boxed because interfaces are reference types by definition. So, p2 is boxed 
and the pointer to this boxed object is stored in the variable c. 

§ Calling Clone (second time)  In the second call to Clone, no boxing occurs and the 
Clone method is called on the already boxed object residing in the heap. Clone 
creates a new object on the heap and returns a reference to this new object. This 
reference is saved in o (a reference type). 

§ Casting to Point  When casting o to a Point, the object on the heap referred to by o 
is unboxed and its fields are copied from the heap to p, an instance of the Point type 
residing on the stack. 

I realize that all this information about reference types, values types, and boxing might be 
overwhelming at first. However, a solid understanding of these concepts is critical to any 
.NET Framework developer’s long-term success. Trust me: having a solid grasp of these 
concepts will allow you to build efficient applications faster and easier. 

 



Chapter 6: Common Object Operations 
In this chapter, I’ll describe how to properly implement the operations that all objects must 
exhibit. Specifically, I’ll talk about object equality, identity, hash codes, and cloning. 

Object Equality and Identity 

The System.Object type offers a virtual method, named Equals, whose purpose is to 
return true if two objects have the same "value". The .NET Framework Class Library (FCL) 
includes many methods, such as System.Array’s IndexOf method and 
System.Collections.ArrayList’s Contains method, that internally call Equals. 
Because Equals is defined by Object and because every type is ultimately derived from 
Object, every instance of every type offers the Equals method. For types that don’t 
explicitly override Equals, the implementation provided by Object (or the nearest base 
class that overrides Equals) is inherited. The following code shows how System.Object’s 
Equals method is essentially implemented:  

class Object { 
   public virtual Boolean Equals(Object obj) { 
 
      // If both references point to the same  
      // object, they must be equal. 
      if (this == obj) return(true); 
 
      // Assume that the objects are not equal. 
      return(false); 
   } 
   ? 
} 

As you can see, this method takes the simplest approach possible: if the two references 
being compared point to the same object, true is returned; in any other case, false is 
returned. If you define your own types and you want to compare their fields for equality, 
Object’s default implementation won’t be sufficient for you; you must override Equals and 
provide your own implementation. 

When you implement your own Equals method, you must ensure that it adheres to the four 
properties of equality: 
§ Equals must be reflexive; that is, x.Equals(x) must return true. 
§ Equals must be symmetric; that is, x.Equals(y) must return the same value as 

y.Equals(x). 
§ Equals must be transitive; that is, if x.Equals(y) returns true and y.Equals(z) 

returns true, then x.Equals(z) must also return true. 
§ Equals must be consistent. Provided that there are no changes in the two values 

being compared, Equals should consistently return true or false. 

If your implementation of Equals fails to adhere to all these rules, your application will 
behave in strange and unpredictable ways. 

Unfortunately, implementing your own version of Equals isn’t as easy and straightforward 
as you might expect. You must do a number of operations correctly, and, depending on the 



type you’re defining, the operations are slightly different. Fortunately, there are only three 
different ways to implement Equals. Let’s look at each pattern individually. 

Implementing Equals for a Reference Type Whose Base 
Classes Don’t Override Object’s Equals  

The following code shows how to implement Equals for a type that directly inherits 
Object’s Equals implementation:  

// This is a reference type (because of ’class’). 
class MyRefType : BaseType { 
   RefType refobj;   // This field is a reference type. 
   ValType valobj;   // This field is a value type. 
 
   public override Boolean Equals(Object obj) { 
      // Because ’this’ isn’t null, if obj is null,  
      // then the objects can’t be equal. 
      if (obj == null) return false; 
 
      // If the objects are of different types, they can’t be equal. 
      if (this.GetType() != obj.GetType()) return false; 
 
      // Cast obj to this type to access fields. NOTE: This cast can’t 
      // fail because you know that objects are of the same type. 
      MyRefType other = (MyRefType) obj; 
 
      // To compare reference fields, do this: 
      if (!Object.Equals(refobj, other.refobj)) return false; 
 
      // To compare value fields, do this:  
      if (!valobj.Equals(other.valobj)) return false; 
 
      return true;   // Objects are equal. 
   } 
 
   // Optional overloads of the == and != operators 
   public static Boolean operator==(MyRefType o1, MyRefType o2) { 
      if (o1 == null) return false; 
      return o1.Equals(o2); 
   } 
 
   public static Boolean operator!=(MyRefType o1, MyRefType o2) { 
      return !(o1 == o2); 
   } 
} 

This version of Equals starts out by comparing obj against null. If the object being 
compared is not null, then the types of the two objects are compared. If the objects are of 



different types, then they can’t be equal. If both objects are the same type, then you cast 
obj to MyRefType, which can’t possibly throw an exception because you know that both 
objects are of the same type. Finally, the fields in both objects are compared, and true is 
returned if all fields are equal.  

You must be very careful when comparing the individual fields. The preceding code shows 
two different ways to compare the fields based on what types of fields you’re using. 
§ Comparing reference type fields  To compare reference type fields, you should call 

Object’s static Equals method. Object’s static Equals method is just a little helper 
method that returns true if two reference objects are equal. Here’s how Object’s 
static Equals method is implemented internally:  
public static Boolean Equals(Object objA, Object objB) { 
   // If objA and objB refer to the same object, return true. 
   if (objA == objB) return true; 
 
   // If objA or objB is null, they can’t be equal, so return false. 
   if ((objA == null) || (objB == null)) return false; 
 
   // Ask objA if objB is equal to it, and return the result. 
   return objA.Equals(objB); 
} 

§ You use this method to compare reference type fields because it’s legal for them to 
have a value of null. Certainly, calling refobj.Equals(other.refobj) will throw 
a NullReferenceException if refobj is null. Object’s static Equals helper 
method performs the proper checks against null for you. 

§ Comparing value type fields  To compare value type fields, you should call the field 
type’s Equals method to have it compare the two fields. You shouldn’t call Object’s 
static Equals method because value types can never be null and calling the static 
Equals method would box both value type objects. 

Implementing Equals for a Reference Type When One or More 
of Its Base Classes Overrides Object’s Equals  

The following code shows how to implement Equals for a type that inherits an 
implementation of Equals other than the one Object provides:  

// This is a reference type (because of ’class’). 
class MyRefType : BaseType { 
   RefType refobj;   // This field is a reference type. 
   ValType valobj;   // This field is a value type. 
 
   public override Boolean Equals(Object obj) { 
      // Let the base type compare its fields. 
      if (!base.Equals(obj)) return false; 
 
      // All the code from here down is identical to 
      // that shown in the previous version. 
 
      // Because ’this’ isn’t null, if obj is null,  
      // then the objects can’t be equal. 



      // NOTE: This line can be deleted if you trust that 
      // the base type implemented Equals correctly. 
      if (obj == null) return false; 
 
      // If the objects are of different types, they can’t be equal. 
      // NOTE: This line can be deleted if you trust that 
      // the base type implemented Equals correctly. 
      if (this.GetType() != obj.GetType()) return false; 
 
      // Cast obj to this type to access fields. NOTE: This cast 
      // can’t fail because you know that objects are of the same type. 
      MyRefType other = (MyRefType) obj; 
 
      // To compare reference fields, do this: 
      if (!Object.Equals(refobj, other.refobj)) return false; 
 
      // To compare value fields, do this: 
      if (!valobj.Equals(other.valobj)) return false; 
 
      return true;   // Objects are equal. 
   } 
 
   // Optional overloads of the == and != operators 
   public static Boolean operator==(MyRefType o1, MyRefType o2) { 
      if (o1 == null) return false; 
      return o1.Equals(o2); 
   } 
 
   public static Boolean operator!=(MyRefType o1, MyRefType o2) { 
      return !(o1 == o2); 
   } 
} 

This code is practically identical to the code shown in the previous section. The only 
difference is that this version allows its base type to compare its fields too. If the base type 
doesn’t think the objects are equal, then they can’t be equal.  

It is very important that you do not call base.Equals if this would result in calling the 
Equals method provided by System.Object. The reason is that Object’s Equals 
method returns true only if the references point to the same object. If the references don’t 
point to the same object, then false will be returned and your Equals method will always 
return false! 

Certainly, if you’re defining a type that is directly derived from Object, you should 
implement Equals as shown in the previous section. If you’re defining a type that isn’t 
directly derived from Object, you must first determine if that type (or any of its base types, 
except Object) provides an implementation of Equals. If any of the base types provide an 
implementation of Equals, then call base.Equals as shown in this section. 



Implementing Equals for a Value Type 

As I mentioned in Chapter 5, all value types are derived from System.ValueType. 
ValueType overrides the implementation of Equals offered by System.Object. 
Internally, System.ValueType’s Equals method uses reflection (covered in Chapter 20) 
to get the type’s instance fields and compares the fields of both objects to see if they have 
equal values. This process is very slow, but it’s a reasonably good default implementation 
that all value types will inherit. However, it does mean that reference types inherit an 
implementation of Equals that is really identity and that value types inherit an 
implementation of Equals that is value equality.  

For value types that don’t explicitly override Equals, the implementation provided by 
ValueType is inherited. The following code shows how System.-ValueType’s Equals 
method is essentially implemented:  

class ValueType { 
   public override Boolean Equals(Object obj) { 
 
      // Because ’this’ isn’t null, if obj is null,  
      // then the objects can’t be equal. 
      if (obj == null) return false; 
 
      // Get the type of ’this’ object. 
      Type thisType = this.GetType(); 
 
      // If ’this’ and ’obj’ are different types, they can’t be equal. 
      if (thisType != obj.GetType()) return false; 
 
      // Get the set of public and private instance 
      // fields associated with this type. 
      FieldInfo[] fields = thisType.GetFields(BindingFlags.Public | 
         BindingFlags.NonPublic | BindingFlags.Instance); 
 
      // Compare each instance field for equality.  
      for (Int32 i = 0; i < fields.Length; i++) { 
 
         // Get the value of the field from both objects. 
         Object thisValue = fields[i].GetValue(this); 
         Object thatValue = fields[i].GetValue(obj); 
 
         // If the values aren’t equal, the objects aren’t equal. 
         if (!Object.Equals(thisValue, thatValue)) return false; 
      } 
 
      // All the field values are equal, and the objects are equal. 
      return true; 
   } 
   ? 
} 



Even though ValueType offers a pretty good implementation for Equals that would work 
for most value types that you define, you should still provide your own implementation of 
Equals. The reason is that your implementation will perform significantly faster and will be 
able to avoid extra boxing operations.  

The following code shows how to implement Equals for a value type:  
// This is a value type (because of ’struct’). 
struct MyValType { 
   RefType refobj;   // This field is a reference type. 
   ValType valobj;   // This field is a value type. 
 
   public override Boolean Equals(Object obj) { 
      // If obj is not your type, then the objects can’t be equal. 
      if (!(obj is MyValType)) return false; 
 
      // Call the type-safe overload of Equals to do the work. 
      return this.Equals((MyValType) obj); 
   } 
 
   // Implement a strongly typed version of Equals. 
   public Boolean Equals(MyValType obj) { 
      // To compare reference fields, do this: 
      if (!Object.Equals(this.refobj, obj.refobj)) return false; 
 
      // To compare value fields, do this: 
      if (!this.valobj.Equals(obj.valobj)) return false; 
 
      return true;   // Objects are equal. 
   } 
 
   // Optionally overload operator== 
   public static Boolean operator==(MyValType v1, MyValType v2) { 
      return (v1.Equals(v2)); 
   } 
 
   // Optionally overload operator!= 
   public static Boolean operator!=(MyValType v1, MyValType v2) { 
      return !(v1 == v2); 
   } 
} 

For value types, the type should define a strongly typed version of Equals. This version 
takes the defining type as a parameter, giving you type safety and avoiding extra boxing 
operations. You should also provide strongly typed operator overloads for the == and != 
operators. The following code demonstrates how to test two value types for equality:  

MyValType v1, v2; 
 
// The following line calls the strongly typed version of 



// Equals (no boxing occurs). 
if (v1.Equals(v2)) { ... } 
 
// The following line calls the version of 
// Equals that takes an object (4 is boxed). 
if (v1.Equals(4)) { ... } 
 
// The following doesn’t compile because operator==  
// doesn’t take a MyValType and an Int32. 
if (v1 == 4) { ... } 
 
// The following compiles, and no boxing occurs. 
if (v1 == v2) { ... } 

Inside the strongly typed Equals method, the code compares the fields in exactly the same 
way that you’d compare them for reference types. Keep in mind that the code doesn’t do any 
casting, doesn’t compare the two instances to see if they’re the same type, and doesn’t call 
the base type’s Equals method. These operations aren’t necessary because the method’s 
parameter already ensures that the instances are of the same type. Also, because all value 
types are immediately derived from System.ValueType, you know that your base type has 
no fields of its own that need to be compared.  

You’ll notice in the Equals method that takes an Object that I used the is operator to 
check the type of obj. I used is instead of GetType because calling GetType on an 
instance of a value type requires that the instance be boxed. I demonstrated this in the 
"Boxing and Unboxing Value Types" section in Chapter 5. 

Summary of Implementing Equals and the ==/!= Operators 

In this section, I summarize how to implement equality for your own types: 
§ Compiler primitive types  Your compiler will provide implementations of the == and 

!= operators for types that it considers primitives. For example, the C# compiler knows 
how to compare Object, Boolean, Char, Int16, Uint16, Int32, Uint32, Int64, 
Uint64, Single, Double, Decimal, and so on for equality. In addition, these types 
provide implementations of Equals, so you can call this method as well as use 
operators. 

§ Reference types  For reference types you define, override the Equals method and in 
the method do all the work necessary to compare object states and return. If your type 
doesn’t inherit Object’s Equals method, call the base type’s Equals method. If you 
want to, overload the == and != operators and have them call the Equals method to 
do the actual work of comparing the fields. 

§ Value types  For your value types, define a type-safe version of Equals that does all 
the work necessary to compare object states and return. Implement the type unsafe 
version of Equals by having it call the type-safe Equals internally. You also should 
provide overloads of the == and != operators that call the type-safe Equals method 
internally. 

Identity 



The purpose of a type’s Equals method is to compare two instances of the type and return 
true if the instances have equivalent states or values. However, it’s sometimes useful to 
see whether two references refer to the same, identical object. To do this, System.Object 
offers a static method called ReferenceEquals, which is implemented as follows:  

class Object { 
   public static Boolean ReferenceEquals(Object objA, Object objB) { 
      return (objA == objB); 
   } 
} 

As you can plainly see, ReferenceEquals simply uses the == operator to compare the two 
references. This works because of rules contained within the C# compiler. When the C# 
compiler sees that two references of type Object are being compared using the == 
operator, the compiler generates IL code that checks whether the two variables contain the 
same reference. 

If you’re writing C# code, you could use the == operator instead of calling Object’s 
ReferenceEquals method if you prefer. However, you must be very careful. The == 
operator is guaranteed to check identity only if the variables on both sides of the == operator 
are of the System.Object type. If a variable isn’t of the Object type and if that variable’s 
type has overloaded the == operator, the C# compiler will produce code to call the 
overloaded operator’s method instead. So, for clarity and to ensure that your code always 
works as expected, don’t use the == operator to check for identity; instead, you should use 
Object’s static ReferenceEquals method. Here’s some code demonstrating how to use 
ReferenceEquals:  

static void Main() { 
   // Construct a reference type object. 
   RefType r1 = new RefType(); 
 
   // Make another variable point to the reference object. 
   RefType r2 = r1; 
 
   // Do r1 and r2 point to the same object? 
   Console.WriteLine(Object.ReferenceEquals(r1, r2));  // "True" 
 
   // Construct another reference type object. 
   r2 = new RefType(); 
 
   // Do r1 and r2 point to the same object? 
   Console.WriteLine(Object.ReferenceEquals(r1, r2));  // "False" 
 
   // Create an instance of a value type. 
   Int32 x = 5; 
 
   // Do x and x point to the same object? 
   Console.WriteLine(Object.ReferenceEquals(x, x));    // "False" 
   // "False" is displayed because x is boxed twice 
   // into two different objects. 
} 



 
Object Hash Codes 

The designers of the FCL decided that it would be incredibly useful if any instance of any 
object could be placed into a hash table collection. To this end, System.Object provides a 
virtual GetHashCode method so that an Int32 hash code can be obtained for any and all 
objects. 

If you define a type and override the Equals method, you should also override the 
GetHashCode method. In fact, Microsoft’s C# compiler emits a warning if you define a type 
that overrides just one of these methods. For example, compiling the following type yields 
this warning: "warning CS0659: ‘App’ overrides Object.Equals(object o) but does not 
override Object.GetHashCode()."  

class App { 
   public override Boolean Equals(Object obj) { ... } 
} 

The reason why a type must define both Equals and GetHashCode is that the 
implementation of the System.Collections.Hashtable type requires that any two 
objects that are equal must have the same hash code value. So if you override Equals, you 
should override GetHashCode to ensure that the algorithm you use for calculating equality 
corresponds to the algorithm you use for calculating the object’s hash code. 

Basically, when you add a key/value pair to a Hashtable object, a hash code for the key 
object is obtained first. This hash code indicates what "bucket" the key/value pair should be 
stored in. When the Hashtable object needs to look up a key, it gets the hash code for the 
specified key object. This code identifies the "bucket" that is now searched looking for a 
stored key object that is equal to the specified key object. Using this algorithm of storing and 
looking up keys means that if you change a key object that is in a Hashtable, the 
Hashtable will no longer be able to find the object. If you intend to change a key object in a 
hash table, you should first remove the original object/value pair, next modify the key object, 
and then add the new key object/value pair back into the hash table. 

Defining a GetHashCode method can be easy and straightforward. But, depending on your 
data types and the distribution of data, it can be tricky to come up with a hashing algorithm 
that returns a well-distributed range of values. Here’s a simple example that will probably 
work just fine for Point objects:  

class Point { 
   Int32 x, y; 
   public override Int32 GetHashCode() { 
      return x ^ y;  // x XOR’d with y 
   } 
   ? 
} 

When selecting an algorithm for calculating hash codes for instances of your type, try to 
follow these guidelines:  
§ Use an algorithm that gives a good random distribution for the best performance of the 

hash table. 
§ Your algorithm can also call the base type’s GetHashCode method, including its return 

value in your own algorithm. However, you don’t generally want to call Object’s or 



ValueType’s GetHashCode method because the implementation in either method 
doesn’t lend itself to high-performance hashing algorithms. 

§ Your algorithm should use at least one instance field. 
§ Ideally, the fields you use in your algorithm should be immutable; that is, the fields 

should be initialized when the object is constructed and they should never again change 
during the object’s lifetime. 

§ Your algorithm should execute as quickly as possible. 
§ Objects with the same value should return the same code. For example, two String 

objects with the same text should return the same hash code value. 

System.Object’s implementation of the GetHashCode method doesn’t know anything 
about its derived type and any fields that are in the type. For this reason, Object’s 
GetHashCode method returns a number that is guaranteed to uniquely identify the object 
within the AppDomain; this number is guaranteed not to change for the lifetime of the object. 
After the object is garbage collected, however, its unique number can be reused as the hash 
code for a new object.  

System.ValueType’s implementation of GetHashCode uses reflection and returns the 
hash code of the first instance field defined in the type. This is a naive implementation that 
might be good for some value types, but I still recommend that you implement 
GetHashCode yourself. Even if your hash code algorithm returns the hash code for the first 
instance field, your implementation will be faster than ValueType’s implementation. Here’s 
what ValueType’s implementation of GetHashCode looks like:  

class ValueType { 
   public override Int32 GetHashCode() { 
 
      // Get this type’s public/private instance fields. 
      FieldInfo[] fields = this.GetType().GetFields( 
         BindingFlags.Instance |  
         BindingFlags.Public   | BindingFlags.NonPublic); 
 
      if (fields.Length > 0) { 
         // Return the hash code for the first non-null field. 
         for (Int32 i = 0; i < fields.Length; i++) { 
            Object obj = field[i].GetValue(this); 
            if (obj != null) return obj.GetHashCode(); 
         } 
      } 
 
      // No non-null fields exist; return a unique value for the type. 
      // NOTE: GetMethodTablePtrAsInt is an internal, undocumented method 
      return GetMethodTablePtrAsInt(this); 
   } 
} 

If you’re implementing your own hash table collection for some reason or you’re 
implementing any piece of code where you’ll be calling GetHashCode, you should never 
persist hash code values. The reason is that hash code values are subject to change. For 
example, a future version of a type might use a different algorithm for calculating the object’s 
hash code. 

 



Object Cloning 

At times, you want to take an existing object and make a copy of it. For example, you might 
want to make a copy of an Int32, a String, an ArrayList, a Delegate, or some other 
object. For some types, however, cloning an object instance doesn’t make sense. For 
example, it doesn’t make sense to clone a System.Threading.Thread object since 
creating another Thread object and copying its fields doesn’t create a new thread. Also, for 
some types, when an instance is constructed, the object is added to a linked list or some 
other data structure. Simple object cloning would corrupt the semantics of the type.  

A class must decide whether or not it allows instances of itself to be cloned. If a class wants 
instances of itself to be cloneable, the class should implement the ICloneable interface, 
which is defined as follows. (I’ll talk about interfaces in depth in Chapter 15.)  

public interface ICloneable { 
   Object Clone(); 
} 

This interface defines just one method, Clone. Your implementation of Clone is supposed 
to construct a new instance of the type and initialize the new object’s state so that it is 
identical to the original object. The ICloneable interface doesn’t explicitly state whether 
Clone should make a shallow copy of its fields or a deep copy. So you must decide for 
yourself what makes the most sense for your type and then clearly document what your 
Clone implementation does. 

 
Note  

For those of you who are unfamiliar with the term, a shallow copy is when 
the values in an object’s fields are copied but what the fields refer to is not 
copied. For example, if an object has a field that refers to a string and you 
make a shallow copy of the object, then you have two objects that refer to 
the same string. On the other hand, a deep copy is when you make a copy 
of what an object’s fields refer to. So if you made a deep copy of an object 
that has a field that refers to a string, you’d be creating a new object and a 
new string—the new object would refer to the new string. The important 
thing to note about a deep copy is that the original and the new object share 
nothing; modifying one object has no effect on the other object.  

Many developers implement Clone so that it makes a shallow copy. If you want a shallow 
copy made for your type, implement your type’s Clone method by calling 
System.Object’s protected MemberwiseClone method, as demonstrated here:  

class MyType : ICloneable { 
   public Object Clone() { 
      return MemberwiseClone(); 
   } 
} 

Internally, Object’s MemberwiseClone method allocates memory for a new object. The 
new object’s type matches the type of the object referred to by the this reference. 
MemberwiseClone then iterates through all the instance fields for the type (and its base 
types) and copies the bits from the original object to the new object. Note that no constructor 
is called for the new object—its state will simply match that of the original object. 

Alternatively, you can implement the Clone method entirely yourself, and you don’t have to 
call Object’s MemberwiseClone method. Here’s an example:  

class MyType : ICloneable { 



   ArrayList set; 
 
   // Private constructor called by Clone 
   private MyType(ArrayList set) {  
      // Refer to a deep copy of the set passed. 
      this.set = set.Clone();  
   } 
 
   public Object Clone() { 
      // Construct a new MyType object, passing it the 
      // set used by the original object. 
      return new MyType(set); 
   } 
} 

You might have realized that the discussion in this section has been geared toward 
reference types. I concentrated on reference types because instances of value types always 
support making shallow copies of themselves. After all, the system has to be able to copy a 
value type’s bytes when boxing it. The following code demonstrates the cloning of value 
types: 

static void Main() { 
   Int32  x = 5; 
   Int32  y = x;  // Copy the bytes from x to y. 
   Object o = x;  // Boxing x copies the bytes from x to the heap. 
   y = (Int32) o; // Unbox o, and copy bytes from the heap to y. 
} 

Of course, if you’re defining a value type and you’d like your type to support deep cloning, 
then you should have the value type implement the ICloneable interface as shown earlier. 
(Don’t call MemberwiseClone, but rather, allocate a new object and implement your deep 
copy semantics.) 
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Chapter 7: Type Members and Their 
Accessibility 
In Part II, I focused on types and what operations are guaranteed to exist on all instances of 
any type. I also explained the different types that you can create: reference types and value 
types. In this chapter and the subsequent ones in this part, I’ll show how to design types 
using the different kinds of members that can be defined within a type. In Chapters 8 through 
11, I’ll discuss the various members in detail. 

Type Members 

A type can define zero or more of the following members: 
§ Constants (Chapter 8)  A constant is a symbol that identifies a never-changing data 

value. These symbols are typically used to make code more readable and maintainable. 
Constants are always associated with a type, not an instance of a type. In a sense, 
constants are always static. 

§ Fields (Chapter 8)  A field represents a read-only or read/write data value. A field can 
be static, in which case the field is considered part of the type’s state. A field can also 
be instance (nonstatic), in which case it’s considered part of an object’s state. I strongly 
encourage you to make fields private so that the state of the type or object can’t be 
corrupted by code outside of the defining type.  

§ Instance constructors (Chapter 9)  An instance constructor is a method used to 
initialize a new object’s instance fields to a good initial state. 

§ Type constructors (Chapter 9)  A type constructor is a method used to initialize a 
type’s static fields to a good initial state. 

§ Methods (Chapter 9)  A method is a function that performs operations that change or 
query the state of a type (static method) or an object (instance method). Methods 
typically read and write to the fields of the type or object. 

§ Operator overloads (Chapter 9)  An operator overload is a method that defines how 
an object should be manipulated when certain operators are applied to the object. 
Because not all programming languages support operator overloading, operator 
overload methods are not part of the Common Language Specification (CLS). 

§ Conversion operators (Chapter 9)  A conversion operator is a method that defines 
how to implicitly or explicitly cast or convert an object from one type to another type. As 
with operator overload methods, not all programming languages support conversion 
operators, so they’re not part of the CLS. 

§ Properties (Chapter 10)  A property is a method that allows a simple, fieldlike syntax 
for setting or querying part of the logical state of a type or object while ensuring that the 
state doesn’t become corrupt. 

§ Events (Chapter 11)  A static event is a mechanism that allows a type to send a 
notification to a listening type or a listening object. An instance (nonstatic) event is a 
mechanism that allows an object to send a notification to a listening type or a listening 
object. Events are usually fired in response to a state change occurring in the type or 
object offering the event. An event consists of two methods that allow types or objects 
(“listeners”) to register and unregister interest in the “event.” In addition to the two 
methods, events typically use a delegate field to maintain the set of registered listeners. 

§ Types  A type can define other types nested within it. This approach is typically used 
to break a large, complex type down into smaller building blocks to simplify the 
implementation. 

Again, the purpose of this chapter isn’t to describe these various members in detail but to set 
the stage and explain what these various members all have in common.  



Regardless of the programming language you’re using, the corresponding compiler must 
process your source code and produce metadata for each kind of member in the preceding 
list and IL code for each method member. The format of the metadata is identical regardless 
of the source programming language you use, and this feature is what makes the CLR a 
common language runtime. The metadata is the common information that all languages 
produce and consume, enabling code in one programming language to seamlessly access 
code written in a completely different programming language.  

This common metadata format is also used by the CLR, which determines how constants, 
fields, constructors, methods, properties, and events all behave at run time. Simply stated, 
metadata is the key to the whole Microsoft .NET Framework development platform; it 
enables the seamless integration of languages, types, and objects. 

The following C# code shows a type definition that contains an example of all the possible 
members. The code shown here will compile (with warnings), but it isn’t representative of a 
type that you’d normally create: most of the methods do nothing of any real value. Right 
now, I just want to show you how the compiler translates this type and its members into 
metadata. Once again, I’ll discuss the individual members in the next few chapters. 

using System; 
 
class SomeType {                                                    1 
 
   // Nested class 
   class SomeNestedType { }                                         2 
 
   // Constant, read-only, and static read/write field 
   const    Int32 SomeConstant       = 1;                           3 
   readonly Int32 SomeReadOnlyField  = 2;                           4 
   static   Int32 SomeReadWriteField = 3;                           5 
 
   // Type constructor 
   static SomeType() { }                                            6 
 
   // Instance constructors 
   public SomeType() { }                                            7 
   public SomeType(Int32 x) { }                                     8 
    
 
   // Static and instance methods 
    
   String InstanceMethod() { return null; }                         9 
   static void Main() {}                                           10 
 
   // Instance property 
   Int32 SomeProp {                                                11 
      get { return 0;  }                                           12 
      set { }                                                      13 
   } 
 
   // Instance index property 



   public Int32 this[String s] {                                   14 
      get { return 0; }                                            15 
      set { }                                                      16 
   } 
 
   // Instance event 
   event EventHandler SomeEvent;                                   17 
} 

If you were to compile the type just defined and examine the metadata in ILDasm.exe, you’d 
see the output shown in Figure 7-1.  

 
Figure 7-1: ILDasm.exe output showing metadata from preceding code  

Notice that all the members defined in the source code cause the compiler to emit some 
metadata. In fact, some of the members (the event, 17) cause the compiler to generate 
additional members (a field and two methods) as well as additional metadata. I don’t expect 
you to fully understand what you’re seeing here now. But as you read the next few chapters, 
I encourage you to look back to this example to see how the member is defined and what 
effect that has on the metadata produced by the compiler. 

Accessibility Modifiers and Predefined Attributes 

In this section, I’ll summarize the accessibility modifiers and predefined attributes that can be 
placed on types, fields, and methods (including properties and events). The accessibility 
modifiers indicate which types and members can be legally referenced from code. The 
predefined attributes fine-tune this accessibility and allow you to change a member’s 
semantics.  

The CLR defines the set of possible accessibility modifiers, but each programming language 
chooses the syntax and term it wants to use to expose the modifier to developers. For 
example, the CLR uses the term Assembly to indicate that a member is accessible to any 
code within the same assembly. However, C# and Visual Basic call it internal and 
Friend, respectively. 

Table 7-1 shows the accessibility modifiers that can be applied to a type, field, or method. 
Private is the most restrictive, and Public is the least restrictive. 

Table 7-1: Accessibility Modifiers for Types, Fields, or Methods  



CLR 
Term 

C# Term Visual Basic Term Description 

Private private  Private  Accessible 
only by 
methods in 
the defining 
type 

Family protected  Protected  Accessible 
only by 
methods in 
this type or 
one of its 
derived 
types 
without 
regard to 
assembly 

Family 
and 
Assembly 

(not supported) (not supported) Accessible 
only by 
methods in 
this type 
and by 
derived 
types in the 
defining 
assembly 

Assembly internal  Friend  Accessible 
only by 
methods in 
the defining 
assembly 

Family or 
Assembly 

protected internal  Protected Friend  Accessible 
only by 
methods in 
this type, 
any derived 
type, or any 
type defined 
in the 
defining 
assembly 

Public public  Public  Accessible 
to all 
methods in 
all 
assemblies 

When designing a type or a member, you can select only one accessibility modifier. So, for 
example, you can’t mark a method as both Assembly and Public. Nested types (which are 
considered members) can be marked with any of the six accessibility modifiers. However, 
unnested types can be marked only with Public or Assembly accessibility because the other 



accessibility modifiers just don’t make sense. If an unnested type isn’t explicitly marked, C# 
and Visual Basic both default to Assembly (internal/Friend).  

In addition to the accessibility modifiers, types and members can also be marked with some 
predefined attributes. The CLR defines the set of predefined attributes, but each 
programming language might choose different names for these attributes. 

Type Predefined Attributes 

Table 7-2 shows the predefined attributes that can be applied to a type. 

Table 7-2: Predefined Attributes for Types  

CLR Term C# Term Visual Basic Term Description 

Abstract abstract  MustInherit  The type 
can’t be 
instantiated. 
The type can 
be used as a 
base type for 
another type. 
If the derived 
type is not 
abstract, 
instances of it 
can be 
constructed. 

Sealed sealed  NotInheritable  The type 
can’t be used 
as a base 
type. 

The CLR allows types to be marked as Abstract or as Sealed but not both. I think this 
restriction is unfortunate because a number of types don’t allow instances of themselves to 
be created and can’t be used as a base type.  

For example, it doesn’t make sense to construct an instance of the Console or Math type 
because these types contain only static methods. It also doesn’t make sense to use either of 
these types as a base type for defining a new type. I think it would be nice to mark these 
types as Abstract (no instances can be created) and as Sealed (can’t be used as a base 
type).  

Because the CLR doesn’t support this marking, if you are designing your own type that 
contains only static members, then you should mark the type as Sealed and define a private 
parameterless constructor that is never called. Defining the private constructor stops the C# 
compiler from automatically producing a public, parameterless constructor. Because code 
outside the type can’t access a constructor, no instances of the type can be created. 

Field Predefined Attributes 

Table 7-3 shows the predefined attributes that can be applied to a field. 

Table 7-3: Predefined Attributes for Fields  



CLR Term C# Term Visual Basic Term Description 

Static static  Shared  The field is part 
of the type’s 
state as 
opposed to 
being part of an 
object’s state. 

InitOnly readonly  ReadOnly  The field can 
be written to 
only by code 
contained in a 
constructor 
method. 

The CLR allows fields to be marked as Static, InitOnly, or both Static and InitOnly. Note that 
constants (discussed in Chapter 8) are always considered Static and can’t be marked with 
InitOnly. 

Method Predefined Attributes 

Table 7-4 shows the predefined attributes that can be applied to a method. 

Table 7-4: Predefined Attributes for Methods  

CLR Term C# Term Visual Basic Term Description 

Static static  Shared  Method is 
associated 
with the type 
itself, not an 
instance of 
the type. 
Static 
methods 
can’t access 
instance 
fields or 
methods 
defined within 
the type 
because the 
static method 
isn’t aware of 
any object. 

Instance (default) (default) Method is 
associated 
with an 
instance of 
the type, not 
the type 
itself. The 
method can 
access 



Table 7-4: Predefined Attributes for Methods  

CLR Term C# Term Visual Basic Term Description 

instance 
fields and 
methods as 
well as static 
fields and 
methods. 

Virtual virtual  Overridable  Most-derived 
method is 
called even if 
object is cast 
to a base 
type. Applies 
only to 
instance 
(nonstatic) 
methods. 

Newslot new  Shadows  Method 
should not 
override a 
virtual 
method 
defined by its 
base type; 
the method 
hides the 
inherited 
method. 
Applies only 
to virtual 
methods. 

Override override  Overrides  Explicitly 
indicates that 
the method is 
overriding a 
virtual 
method 
defined by its 
base type. 
Applies only 
to virtual 
methods. 

Abstract abstract  MustOverride  Indicates that 
a deriving 
type must 
implement a 
method with 
a signature 
matching this 
abstract 



Table 7-4: Predefined Attributes for Methods  

CLR Term C# Term Visual Basic Term Description 

method. A 
type with an 
abstract 
method is an 
abstract type. 
Applies only 
to virtual 
methods. 

Final sealed  NotOverridable  A derived 
type can’t 
override this 
method. 
Applies only 
to virtual 
methods. 

In Chapter 9, I’ll describe some of these attributes in detail. Any polymorphic instance 
method can be marked as either Abstract or Final but not both. Marking a virtual method as 
Final means that no more derived types can override the method—but this is an uncommon 
thing to want to do.  

When compiling code, the language compiler is responsible for checking that the code is 
referencing types and members correctly. If the code references some type or member 
incorrectly, the language compiler has the responsibility of emitting the appropriate error 
message. In addition, the JIT compiler ensures that references to fields and methods are 
legal when compiling IL code into native CPU instructions. For example, if the verifier detects 
code that is improperly attempting to access a private field or method, the JIT compiler 
throws a FieldAccessException exception or a MethodAccessException exception, 
respectively. Verifying the IL code ensures that the accessibility modifiers and predefined 
attributes are properly honored at run time, even if a language compiler chose to ignore 
them and generated an otherwise-valid assembly. 



Chapter 8: Constants and Fields 
In this chapter, I’ll show you how to add data members to a type. Specifically, we’ll look at 
constants and fields. 

Constants 

A constant is a symbol that has a never-changing value. When defining a constant symbol, 
its value must be determinable at compile time. The compiler then saves the constant’s 
value in the module’s metadata. This means that you can define a constant only for types 
that your compiler considers as primitive types. Another point to remember is that constants 
are always considered part of a type, not part of an instance; this is fine since a constant’s 
value never changes. 

 
Note  

In C#, the following types are primitives and can be used to define 
constants: Boolean, Char, Byte, SByte, Decimal, Int16, UInt16, 
Int32, UInt32, Int64, UInt64, Single, Double, and String.  

When using a constant symbol, compilers look up the symbol in the metadata of the module 
that defines the constant, extract the constant’s value, and embed the value in the emitted IL 
code. Because a constant’s value is embedded directly in code, constants don’t require any 
memory allocated for them at run time. In addition, you can’t get the address of a constant 
and you can’t pass a constant by reference. These constraints also mean that constants 
don’t have a good cross-module versioning story, so you should use them only when you 
know that the value of a symbol will never change. (Defining MaxInt32 as 32767 is a good 
example.) Let me demonstrate exactly what I mean. First take the following code and 
compile it into a DLL assembly:  

using System; 
 
public class Component { 
   // NOTE: C# doesn’t allow you to specify static for constants 
   // because constants are always implicitly static. 
   public const Int32 MaxEntriesInList = 50; 
} 

Then use the following code to build an application: 
using System; 
 
class App { 
   static void Main() { 
      Console.WriteLine("Max entries supported in list: "  
         + Component.MaxEntriesInList); 
   } 
} 

You’ll notice that this application code references the MaxEntriesInList constant. When 
the compiler builds the application code, it sees that MaxEntriesInList is a constant 
literal with a value of 50 and embeds the Int32 value of 50 right inside the application’s IL 
code. In fact, after building the application code, the DLL assembly isn’t even loaded at run 
time and can be deleted from the disk. 



This example should make the versioning problem obvious to you. If the developer changes 
the MaxEntriesInList constant to 1000 and rebuilds the DLL assembly, the application 
code is not affected. For the application to pick up the new value, it would have to be 
recompiled as well. You can’t use constants if you need to have a value in one module 
picked up by another module at run time (instead of compile time). Instead, you can use 
read-only fields, which I’ll discuss next. 

 

Fields 

A field is a data member that holds an instance of a value type or a reference to a reference 
type. The CLR supports both type (static) and instance (nonstatic) fields. For type fields, the 
dynamic memory to hold the field is allocated when the type is loaded into an AppDomain 
(see Chapter 20), which typically happens the first time any method that references the type 
is JIT compiled. For instance fields, the dynamic memory to hold the field is allocated when 
an instance of the type is constructed. 

Because fields are stored in dynamic memory, their value can be obtained at run time only. 
Fields also solve the versioning problem that exists with constants. In addition, a field can be 
of any data type, so you don’t have to restrict yourself to your compiler’s built-in primitive 
types (as you do for constants).  

The CLR supports read-only fields and read/write fields. Most fields are read/write fields, 
meaning that the field’s value might change multiple times as the code executes. However, 
read-only fields can be written to only within a constructor method (which is called only once, 
when an object is first created). Compilers and verification ensure that read-only fields are 
not written to by any method other than a constructor. 

Let’s take the example from the “Constants” section and fix the versioning problem by using 
a static read-only field. Here’s the new version of the DLL assembly’s code: 

using System; 
 
public class Component { 
   // The static is required to associate the field with the type. 
   public static readonly Int32 MaxEntriesInList = 50; 
} 

This is the only change you have to make; the application code doesn’t have to change at 
all, although you must rebuild it to see the new behavior. Now, when the application’s Main 
method runs, the CLR will load the DLL assembly (so this assembly is now required at run 
time) and grab the value of the MaxEntriesInList field out of the dynamic memory that 
was allocated for it. Of course, the value will be 50. 

Let’s say that the developer of the DLL assembly changes the 50 to 1000 and rebuilds the 
assembly. When the application code is reexecuted, it will automatically pick up the new 
value: 1000. In this case, the application code doesn’t have to be rebuilt—it just works 
(although its performance is adversely affected). A caveat: this scenario assumes that the 
new version of the DLL assembly is not strongly named or that the versioning policy of the 
application is such that the CLR loads this new version.  

The preceding example shows how to define a read-only static field that is associated with 
the type itself. You can also define read/write static fields and read-only and read/write 
instance fields, as shown here: 

public class SomeType { 



   // This is a static read-only field; its value is calculated and 
   // stored in memory when this class is initialized at run time. 
   public static readonly Random random = new Random(); 
 
   // This is a static read/write field. 
   static Int32 numberOfWrites = 0; 
 
   // This is an instance read-only field. 
   public String readonly pathName = "Untitled"; 
 
   // This is an instance read/write field. 
   public FileStream fs; 
 
   public SomeType(String pathName) { 
      // This line changes a read-only field.  
      // This is OK because the code is in a constructor. 
      this.pathName = pathName; 
   } 
 
   public String DoSomething() { 
      // This line reads and writes to the static read/write field. 
      numberOfWrites = numberOfWrites + 1; 
 
      // This line reads the read-only instance field. 
      return pathName; 
   } 
} 

In this code, many of the fields are initialized inline. C# allows you to use this convenient 
inline initialization syntax to initialize a type’s constants, read/write, and read-only fields. As 
you’ll see in Chapter 9, C# treats initializing a field inline as shorthand syntax for initializing 
the field in a constructor. 



Chapter 9: Methods 
In this chapter, I’ll talk about the different kinds of methods a type can define and the various 
issues related to methods. Specifically, I’ll show you how to define constructor methods 
(both instance and type), operator overload methods, and conversion operator methods (for 
implicit and explicit casting). In addition, I’ll cover how to pass parameters by reference to a 
method and how to define methods that accept a variable number of parameters. Finally, I’ll 
explain the virtual method versioning mechanism that exists to stop the potential for 
application instability when a base class’s programming interface has changed. 

Instance Constructors 

Constructors are methods that allow an instance of a type to be initialized to a good state. 
For code to be verifiable, the common language runtime (CLR) requires that every class 
(reference type) have at least one constructor defined within it. (This constructor can be 
private if you want to prevent code outside your class from creating any instances of the 
class.) When creating an instance of a reference type, memory is allocated for the instance, 
the object’s overhead fields (method table pointer and SyncBlockIndex) are initialized, and 
the type’s instance constructor is called to set the initial state of the object. 

When constructing a reference type object, the memory allocated for the object is always 
zeroed out before the type’s instance constructor is called. Any fields that the constructor 
doesn’t explicitly overwrite are guaranteed to have a value of 0 or null. 

By default, many compilers (including C#) define a public, parameterless constructor (often 
called a default constructor) for reference types when you don’t explicitly define your own 
constructor. For example, the following type has a public, parameterless constructor, 
allowing any code that can access the type to construct an instance of the type. 

class SomeType { 
   // C# automatically defines a default public, parameterless constructor. 
} 

The preceding type is identical to the following type definition: 
class SomeType { 
   public SomeType() { } 
} 

A type can define several instance constructors. Each constructor must have a different 
signature, and each can have different accessibility. For verifiable code, a class’s instance 
constructor must call its base class’s constructor before accessing any of the inherited fields 
of the base class. Many compilers, including C#, generate the call to the base class’s 
constructor automatically, so you typically don’t have to worry or think about this at all. 
Ultimately, System.Object’s public, parameterless constructor gets called. This 
constructor does nothing—it simply returns.  

In a few situations, an instance of a type can be created without an instance constructor 
being called. In particular, calling Object’s MemberwiseClone method allocates memory, 
initializes the object’s overhead fields, and then copies the source object’s bytes to the new 
object. Also, a constructor is usually not called when deserializing an object. 

C# offers a simple syntax that allows the initialization of fields when a reference type object 
is constructed: 

class SomeType { 



   Int32 x = 5; 
} 

When a SomeType object is constructed, its x field will be initialized to 5. How does this 
happen? Well, if you examine the intermediate language (IL) for SomeType’s constructor 
method (also called .ctor), you’ll see the code in Figure 9-1. 

 
Figure 9-1 : The IL code for SomeType’s constructor method  

In Figure 9-1, you see that SomeType’s constructor contains code to store a 5 into x and 
then calls the base class’s constructor. In other words, the C# compiler allows the 
convenient syntax that lets you initialize the instance fields inline and translates this to code 
in the constructor method to perform the initialization. This means that you should be aware 
of code explosion. Imagine the following class:  

class SomeType { 
   Int32  x = 5; 
   String s = "Hi there"; 
   Double d = 3.14159; 
   Byte   b; 
 
   // Here are some constructors.  
   public SomeType()         { ... } 
   public SomeType(Int32 x)  { ... } 
   public SomeType(String s) { ...; d = 10; } 
} 

When the compiler generates code for the three constructor methods, the beginning of each 
method includes the code to initialize x, s, and d. After this initialization code, the compiler 
appends to the method the code that appears in the constructor methods. For example, the 
code generated for the constructor that takes a String parameter includes the code to 
initialize x, s, and d and then overwrites d with the value 10. Note that b is guaranteed to be 
initialized to 0 even though no code exists to explicitly initialize it. 

Because there are three constructors in the preceding class, the compiler generates the 
code to initialize x, s, and d three times—once per constructor. If you have several initialized 
instance fields and a lot of overloaded constructor methods, you should consider defining the 
fields without the initialization, creating a single constructor that performs the common 
initialization, and having each constructor explicitly call the common initialization constructor. 
This approach will reduce the size of the generated code.  

class SomeType { 
   // No code here to explicitly initialize the fields 



   Int32  x; 
   String s; 
   Double d; 
   Byte   b; 
 
   // This constructor must be called by all the other constructors. 
   // This constructor contains the code to initialize the fields. 
   public SomeType() { 
      x = 5; 
      s = "Hi There!";    
      d = 3.14159; 
   } 
 
   // This constructor calls the default constructor first. 
   public SomeType(Int32 x) : this() { 
      this.x = x; 
   } 
 
   // This constructor calls the default constructor first. 
   public SomeType(String s) : this() { 
      this.s = s; 
   } 
} 

Value type constructors work quite differently from reference type constructors. First, the 
CLR doesn’t require value types to have any constructor methods defined within them. In 
fact, many compilers (including C#) don’t give value types default parameterless 
constructors. The reason for the difference is that value types can be implicitly created. 
Examine the following code: 

struct Point {  
   public Int32 x, y;  
} 
class Rectangle {  
   public Point topLeft, bottomRight;  
} 

To construct a Rectangle, the new operator must be used and a constructor must be 
specified. In this case, the constructor automatically generated by the C# compiler is called. 
When memory is allocated for the Rectangle, the memory includes the two instances of 
the Point value type. For performance reasons, the CLR doesn’t attempt to call a 
constructor for each value type contained within the reference type. But as I mentioned 
earlier, the fields of the value types are initialized to 0/null. 

The CLR does allow you to define constructors on value types. The only way that these 
constructors will execute is if you write code to explicitly call one of them, as in Rectangle’s 
constructor shown here:  

struct Point {  
   public Int32 x, y;  
 



   public Point(Int32 x, Int32 y) { 
      this.x = x; 
      this.y = y; 
   } 
} 
 
class Rectangle {  
   public Point topLeft, bottomRight;  
 
   public Rectangle() { 
      // In C#, new on a value type just lets the constructor  
      // initialize the already allocated value type’s memory. 
      topLeft     = new Point(1, 2); 
      bottomRight = new Point(100, 200); 
   } 
} 

A value type’s instance constructor is executed only when explicitly called. So if 
Rectangle’s constructor didn’t initialize its topLeft and bottomRight fields using the 
new operator to call Point’s constructor, the x and y fields in both Point fields would be 0. 

In the Point value type defined earlier, no default parameterless constructor is defined. 
However, let’s rewrite that code as follows:  

struct Point {  
   public Int32 x, y;  
 
   public Point() { 
      x = y = 5; 
   } 
} 
 
class Rectangle {  
   public Point topLeft, bottomRight;  
 
   public Rectangle() { 
   } 
} 

Now when a new Rectangle is constructed, what do you think the x and y fields in the two 
Point fields, topLeft and bottomRight, would be initialized to: 0 or 5? (Hint: This is trick 
question.) 

Many developers (especially those with a C++ background) would expect the C# compiler to 
emit code in Rectangle’s constructor that automatically calls Point’s default 
parameterless constructor for the Rectangle’s two fields. However, to improve the run-time 
performance of the application, the C# compiler doesn’t automatically emit this code. In fact, 
many compilers will never emit code to call a value type’s default constructor automatically, 
even if the value type offers a parameterless constructor. To have a value type’s 
parameterless constructor execute, the developer must add explicit code to call a value 
type’s constructor. 



Based on the information in the preceding paragraph, you should expect the x and y fields in 
Rectangle’s two Point fields to be initialized to 0 in the code shown earlier because there 
are no explicit calls to Point’s constructor anywhere in the code. 

However, I did say that my original question was a trick question. The “trick” part is that C# 
doesn’t allow a value type to define a parameterless constructor. So the previous code won’t 
actually compile. The C# compiler produces the following error when attempting to compile 
that code: “error CS0568: Structs cannot contain explicit parameterless constructors.” 

C# purposely disallows value types to define parameterless constructors to remove any 
confusion a developer might have about when that constructor gets called. If the constructor 
can’t be defined, the compiler can never generate code to call it automatically. Without a 
parameterless constructor, a value type’s fields are always initialized to 0/null.  

 
Note  

Strictly speaking, value type fields are guaranteed to be 0/null when the 
value type is a field nested within a reference type. However, stack-based 
value type fields are not guaranteed to be 0/null. For verifiability, any 
stack-based value type field must be written to prior to being read. If code 
could read a value type’s field prior to writing to the field, a security breach is 
possible. C# and other compilers that produce verifiable code ensure that all 
stack-based value types have their fields zeroed out or at least written to 
before being read so that a verification exception won’t be thrown at run 
time. For the most part, this means that you can assume that your value 
types have their fields initialized to 0 and you can completely ignore 
everything in this note. 

Keep in mind that although C# doesn’t allow value types with parameterless constructors, 
the CLR does. So if the unobvious behavior described earlier doesn’t bother you, you can 
use another programming language (such as IL assembly language) to define your value 
type with a parameterless constructor. 

Because C# doesn’t allow value types with parameterless constructors, compiling the 
following type produces the following: “error CS0573: ‘SomeType.x’: cannot have instance 
field initializers in structs.” 

struct SomeValType { 
   Int32 x = 5; 
} 

In addition, because verifiable code requires that every field of a value type be written to 
prior to any field being read, any constructors that you do have for a value type must 
initialize all the type’s fields. The following type defines a constructor for the value type but 
fails to initialize all the fields: 

struct SomeValType { 
   Int32 x, y; 
 
   // C# allows value types to have constructors that take parameters. 
   public SomeValType(Int32 x) { 
      this.x = x;    
      // Notice that y is not initialized here. 
   } 
} 



When compiling this type, the C# compiler produces the following: “error CS0171: Field 
‘SomeValType.y’ must be fully assigned before control leaves the constructor.” To fix the 
problem, assign a value (usually 0) to y in the constructor.  

 
Important  

In C#, your source code defines a constructor method via a method 
whose name matches the name of the type itself. When the C# 
compiler compiles the source code, it detects the constructor method 
and adds an entry to the module’s method definition metadata table. In 
the table entry, the name of the constructor method is always .ctor. 
In Visual Basic source code, the developer defines a constructor by 
creating a method called New. This means that in Visual Basic, a 
developer can define a method (that is not a constructor method) 
whose name matches the name of the type. However, you should 
avoid this practice because the methods won’t be callable from other 
programming languages directly. You can call the methods using 
reflection, though, as discussed in Chapter 20. 

 

Type Constructors 

In addition to instance constructors, the CLR also supports type constructors (also known as 
static constructors , class constructors , or type initializers). A type constructor can be applied 
to interfaces (although C# doesn’t allow this), reference types, and value types. Just as 
instance constructors are used to set the initial state of an instance of a type, type 
constructors are used to set the initial state of a type. By default, types don’t have a type 
constructor defined within them. If a type has a type constructor, it can have no more than 
one. In addition, type constructors never have parameters. In C#, here’s how to define a 
reference type and a value type that have type constructors: 

class SomeRefType { 
   static SomeRefType() { 
      // This executes the first time a SomeRefType is accessed. 
   } 
} 
 
struct SomeValType { 
   // C# does allow value types to define parameterless type constructors. 
   static SomeValType() { 
      // This executes the first time a SomeValType is accessed. 
   } 
} 

You’ll notice that you define type constructors just as you would parameterless instance 
constructors except that you must mark them as static. Also, type constructors should 
always be private; C# makes them private for you automatically. In fact, if you explicitly mark 
a type constructor as private (or anything else) in your source code, the C# compiler issues 
the following error: "error CS0515: ‘SomeValType.SomeValType()’: access modifiers are not 
allowed on static constructors." 

Type constructors should be private to prevent any developer-written code from calling them; 
the CLR is always capable of calling a type constructor. In addition, the CLR exercises 
freedom as to when it decides to call the type constructor. The CLR calls a type constructor 
at either of the following times: 



§ Just before the first instance of the type is created or just before the first access to a 
noninherited field or member of the class is accessed. This is called precise semantics 
because the CLR will call the type constructor at exactly the right time. 

§ Sometime before the first access of a noninherited static field. This is called before-
field-init semantics because the CLR guarantees only that the static constructor will run 
sometime before the static field is accessed; it could run much earlier. 

By default, compilers choose which of these semantics makes the most sense for the type 
you’re defining and informs the CLR of this choice by setting the beforefieldinit 
metadata flag. Once executed, the type constructor will never be called again for the lifetime 
of that AppDomain (or process if the assembly is loaded in a domain-neutral fashion). 
Because the CLR is responsible for calling type constructors, you should always avoid 
writing any code that requires type constructors to be called in a specific order. 

The CLR guarantees only that a type constructor has started execution—it can’t guarantee 
that the type constructor has completed execution. This behavior was necessary to avoid 
deadlocks in the unusual case when two type constructors reference each other. 

Finally, if a type constructor throws an unhandled exception, the CLR considers the type to 
be unusable. Attempting to access any fields or methods of the type will cause a 
System.TypeInitializationException to be thrown.  

The code in a type constructor has access only to a type’s static fields, and its usual purpose 
is to initialize those fields. As it does with instance fields, C# offers a simple syntax that 
allows you to initialize a type’s static fields: 

class SomeType { 
   static Int32 x = 5; 
} 

When this code is built, the compiler automatically generates a type constructor for 
SomeType. It’s as if the source code had originally been written as follows:  

class SomeType { 
   static Int32 x; 
   static SomeType() { x = 5; } 
} 

Using ILDasm.exe, it’s easy to verify what the compiler actually produced by examining the 
IL for the type constructor, shown in Figure 9-2. Type constructor methods are always called 
.cctor (for class constructor) in a method definition metadata table. 

 
Figure 9-2 : The IL code for SomeType’s type constructor method  

In Figure 9-2, you see that the .cctor method is private and static. In addition, notice that 
the code in the method does in fact load a 5 into the static field x. 



Type constructors shouldn’t call a base type’s type constructor. Such a call isn’t necessary 
because none of a type’s static fields are shared or inherited from its base type. 

 
Note  

Some languages, like Java, expect that accessing a type causes its type 
constructor and all of its base type’s type constructors to be called. In 
addition, interfaces implemented by the types must also have their type 
constructors called. The CLR doesn’t offer this semantic. However, the CLR 
does offer compilers and developers the ability to provide this semantic via 
the RunClassConstructor method offered by the System.Run-
time.CompilerServices.RuntimeHelpers type. Any language that 
requires this semantic would have its compiler emit code into a type’s type 
constructor that calls this method for all base types and interfaces. When 
attempting to call a type constructor, the CLR knows if the type constructor 
has executed previously and, if it has, doesn’t call it again. 

Finally, assume that you have this code: 
class SomeType { 
   static Int32 x = 5; 
 
   static SomeType() { 
      x = 10; 
   } 
} 

In this case, the C# compiler generates a single type constructor method. This constructor 
first initializes x to 5 and then initializes x to 10. In other words, when the compiler 
generates IL code for the type constructor, it first emits the code required to initialize the 
static fields followed by the explicit code contained in your type constructor method. Emitting 
the code in this order is exactly the way it works for instance constructors too. 

 
Important  

Occasionally, developers ask me if there’s a way to get some code to 
execute when a type is unloaded. You should first know that types are 
unloaded only when the AppDomain shuts down. When the 
AppDomain shuts down, the object that identifies the type becomes 
unreachable and the garbage collector reclaims the type object’s 
memory. This behavior leads many developers to believe that they 
could add a static Finalize method to the type, which will 
automatically get called when the type is unloaded. Unfortunately, the 
CLR doesn’t support static Finalize methods. All is not lost, 
however. If you want some code to execute when an AppDomain 
shuts down, you can register a callback method with the 
System.AppDomain type’s DomainUnload event. 

 
Operator Overload Methods 

Some programming languages allow a type to define how operators should manipulate 
instances of the type. For example, a lot of types (such as System.String) overload the 
equality (==) and inequality (!=) operators. The CLR doesn’t know anything about operator 
overloading because it doesn’t even know what an operator is. Your programming language 
defines what each operator symbol means and what code should be generated when these 
special symbols appear. 



For example, in C#, applying the + symbol to primitive numbers causes the compiler to 
generate code that adds the two numbers together. When the + symbol is applied to strings, 
the C# compiler generates code that concatenates the two strings together. For inequality, 
C# uses the != symbol, while Visual Basic uses the <> symbol. Finally, the ^ symbol means 
exclusive OR (XOR) in C#, but it means exponent in Visual Basic.  

Although the CLR doesn’t know anything about operators, it does specify how languages 
should expose operator overloads so that they can be readily consumed by code written in a 
different programming language. Each programming language gets to decide for itself 
whether it will support operator overloads and, if it does, the syntax for expressing and using 
them. As far as the CLR is concerned, operator overloads are simply methods. 

Your programming language of choice chooses whether or not to support operator 
overloading and what the syntax looks like. When you compile your source code, the 
compiler produces a method that identifies the behavior of the operator. For example, say 
that you define a class like this (in C#): 

class Complex { 
   public static Complex operator+(Complex c1, Complex c2) { ... } 
} 

The compiler emits a method definition for a method called op_Addition; the method 
definition entry also has the specialname flag set, indicating that this is a "special" method. 
When language compilers (including the C# compiler) see a + operator specified in source 
code, they look to see if one of the operand’s types defines a specialname method called 
op_Addition whose parameters are compatible with the operand’s types. If this method 
exists, the compiler emits code to call this method. If no such method exists, a compilation 
error occurs. 

Table 9-1 shows the set of standard C# operator symbols and the corresponding 
recommended method name that compilers should emit and consume. I’ll explain the table’s 
third column in the next section.  

Table 9-1: C# Operators and Their CLS-Compliant Method Names  

C# Operator 
Symbol 

Special Method Name Suggested CLS-
Compliant Method 
Name 

+  op_UnaryPlus  Plus  

- op_UnaryNegation Negate  

~  op_OnesComplement OnesComplement  

++ op_Increment Increment  

— op_Decrement Decrement  

(none) op_True  IsTrue { get; }  

(none) op_False  IsFalse { get; 
}  

+ op_Addition  Add  

+=  op_AdditionAssignment  Add  

- op_Subtraction  Subtract  



Table 9-1: C# Operators and Their CLS-Compliant Method Names  

C# Operator 
Symbol 

Special Method Name Suggested CLS-
Compliant Method 
Name 

-= op_SubtractionAssignment  Subtract  

* op_Multiply  Multiply  

*= op_MultiplicationAssignment  Multiply  

/ op_Division  Divide  

/= op_DivisionAssignment  Divide  

% op_Modulus  Mod  

%= op_ModulusAssignment  Mod  

 ̂ op_ExclusiveOr  Xor  

=̂ op_ExclusiveOrAssignment  Xor  

& op_BitwiseAnd  BitwiseAnd  

&= op_BitwiseAndAssignment  BitwiseAnd  

| op_BitwiseOr  BitwiseOr  

|= op_BitwiseOrAssignment  BitwiseOr  

&& op_LogicalAnd  And  

|| op_LogicalOr  Or  

! op_LogicalNot  Not  

<< op_LeftShift  LeftShift  

<<= op_LeftShiftAssignment  LeftShift  

>> op_RightShift  RightShift  

>>= op_RightShiftAssignment  RightShift  

(none) op_UnsignedRightShiftAssignment  RightShift  

== op_Equality  Equals  

!= op_Inequality  Compare  

< op_LessThan  Compare  

> op_GreaterThan  Compare  

<= op_LessThanOrEqual  Compare  

>= op_GreaterThanOrEqual  Compare  

=  op_Assign  Assign  

 
Important  

If you examine the core .NET Framework Class Library (FCL) types 
(Int32, Int64, UInt32, and so on), you’ll see that they don’t define 



any operator overload methods. The reason they don’t is that the CLR 
offers IL instructions to directly manipulate instances of these types. If 
the types were to offer methods and if compilers were to emit code to 
call these methods, a run-time performance cost would be associated 
with the method call. Plus, the method would ultimately have to 
execute some IL instructions to perform the expected operation 
anyway. This is the reason why the core FCL types don’t define any 
operator overload methods. Here’s what this means to you: if the 
programming language you’re using doesn’t support one of the core 
FCL types, you won’t be able to perform any operations on instances 
of that type. This certainly applies to Visual Basic and its lack of 
support for the unsigned integer types. 

Operators and Programming Language Interoperability 

Operator overloading can be a very useful tool, allowing developers to express their 
thoughts with succinct code. However, not all programming languages support operator 
overloading. (For example, Visual Basic and Java don’t.) So when a Visual Basic developer 
applies the + operator to a type that Visual Basic doesn’t consider to be a primitive, the 
compiler generates an error and won’t compile the code. So here’s the problem that needs 
to be solved: How can a developer using a language that doesn’t support operator 
overloading call the operator methods defined by a type that was written in a language that 
supports operator overloading? 

Visual Basic doesn’t offer special syntax that allows a type to define an overload for the + 
operator. In addition, Visual Basic doesn’t know how to translate code using a + symbol to 
call the op_Addition method. However, Visual Basic (like all languages) does support the 
ability to call a type’s methods. So in Visual Basic, you can call an op_Addition method 
that was generated by a type built with the C# compiler. 

Given that information, you’d likely believe that you could also define a type in Visual Basic 
that offers an op_Addition method that would be callable by C# code using the + 
operator. However, you’d be wrong. When the C# compiler detects the + operator, it looks 
for an op_Addition method that has the specialname metadata flag associated with it so 
that the compiler knows for sure that the op_Addition method is intended to be an 
operator overload method. Because the op_Addition method produced by Visual Basic 
won’t have the specialname flag associated with it, the C# compiler will produce a 
compilation error. Of course, code in any language can explicitly call a method that just 
happens to be named op_Addition; but the compilers won’t translate a usage of the + 
symbol to call this method.  

The following source code files summarize this discussion. The first one is a Visual Basic 
type (defined in a library) that offers an op_Addition method. Again, the code isn’t 
implemented correctly, but it compiles and demonstrates what I’ve been talking about.  

Imports System 
 
Public Class VBType 
 
   ‘ Define an op_Addition method that adds two VBType objects together. 
   ‘ This is NOT a true overload of the + operator because the Visual Basic 
   ’ compiler won’t associate the specialname metadata flag with this method. 
   Public Shared Function op_Addition(a as VBType, b as VBType) As VBType 



      return Nothing 
   End Function 
End Class 

The second one is a C# application that adds two instances of VBType:  
using System; 
 
public class CSharpApp { 
   public static void Main() { 
 
      // Construct an instance of VBType. 
      VBType vb = new VBType(); 
 
      // When not commented out, the following line produces a  
      // compiler error because VBType’s op_Addition method is missing 
      // the specialname metadata flag.  
      // vb = vb + vb; 
 
      // The following line compiles and runs; it just doesn’t look nice. 
      vb = VBType.op_Addition(vb, vb); 
   } 
} 

As you can see from the preceding code, the C# code can’t use the + symbol to add two 
VBType objects together. However, it can add the objects together by explicitly calling 
VBType’s op_Addition method.  

Now let’s reverse the example and build a Visual Basic application that uses a C# type. 
Here’s a C# type (defined in a library) that offers an overload of the + operator:  

using System; 
 
public class CSharpType { 
 
   // Overload the + operator 
   public static CSharpType operator+(CSharpType a, CSharpType b) { 
      return null; 
   } 
} 

And here’s a Visual Basic application that adds two instances of the CSharpType:  
Imports System 
 
Public Class VBApp 
   Public Shared Sub Main() 
 
      ‘ Construct an instance of the CSharpType. 
      Dim cs as new CSharpType() 
 



      ‘ When uncommented, the following line produces a  
      ‘ compiler error because Visual Basic doesn’t know how to translate  
      ‘ the + symbol to call CSharpType’s op_Addition method. 
      ‘ cs = cs + cs 
 
      ‘ The following line compiles and runs; it just doesn’t look nice. 
      cs = CSharpType.op_Addition(cs, cs) 
   End Sub 
End Class 

Here the Visual Basic code can’t use the + symbol to add two CSharpType objects together 
because Visual Basic doesn’t know to translate the + symbol to call the op_Addition 
method. However, the Visual Basic code can add the objects together by explicitly calling 
CSharpType’s op_Addition method (even though this method has the specialname 
metadata flag associated with it). 

 

Jeff’s Opinion About Microsoft’s Operator Method Name Rules 

I’m sure that all these rules about when you can and can’t call an operator overload 
method seem very confusing and overly complicated. If compilers that supported 
operator overloading just didn’t emit the specialname metadata flag, the rules would 
be a lot simpler and programmers would have an easier time working with types that 
offer operator overload methods. Languages that support operator overloading would 
support the operator symbol syntax, and all languages would support calling the various 
op_ methods explicitly. I can’t come up with any reason why Microsoft made this so 
difficult, and I hope they’ll loosen these rules with future versions of their compilers. 

For a type that defines operator overload methods, Microsoft recommends that the type 
also define friendlier public instance methods that call the operator overload methods 
internally. For example, a public friendly named method, called Add, should be defined 
by a type that overloads the op_Addition or op_AdditionAssignment method. The 
third column in Table 9-1 lists the recommended friendly name for each operator. So the 
Complex type shown earlier should be defined like this:  

class Complex { 
   public static Complex operator+(Complex c1, Complex c2) { ... } 
   public Complex Add(Complex c) { return(this + c); } 
} 

Certainly, code written in any programming language can call any of the friendly 
operator methods, such as Add. Microsoft’s guideline that types offer these friendly 
method names complicates the story even more. I feel that this additional complication is 
unnecessary and that calling these friendly named methods would cause an additional 
performance hit unless the JIT compiler is able to inline the code in the friendly named 
method. Inlining the code would cause the JIT compiler to optimize the code, removing 
the additional method call and boosting run-time performance. 

 

Conversion Operator Methods 

Occasionally, you need to convert an object from one type to an object of a different type. 
For example, I’m sure you’ve had to convert a Byte to an Int32 at some point in your life. 



When the source type and the target type are a compiler’s primitive types, the compiler 
knows how to emit the necessary code to convert the object. 

However, if neither type is one of the compiler’s primitive types, the compiler won’t know how 
to perform the conversion. For example, imagine that the FCL included a Rational data 
type. It might be convenient to convert an Int32 object or a Single object to a Rational 
object. Moreover, it also might be nice to convert a Rational object to an Int32 or a 
Single object. 

To make these conversions, the Rational type should define public constructors that take 
a single parameter: an instance of the type that you’re converting from. You should also 
define public instance ToXxx methods that take no parameters (just like the very popular 
ToString method). Each method will convert an instance of the defining type to the Xxx 
type. Here’s how to correctly define conversion constructors and methods for a Rational 
type:  

class Rational { 
   // Constructs a Rational from an Int32 

   public Rational(Int32 numerator) { ... } 
 

   // Constructs a Rational from a Single 
   public Rational(Single value) { ... } 

 
   // Converts a Rational to an Int32 

   public Int32 ToInt32() { ... } 
 

   // Converts a Rational to a Single  
   public Single ToSingle() { ... } 

} 

By invoking these constructors and methods, a developer using any programming language 
can convert an Int32 or a Single object to a Rational object and convert a Rational 
object to an Int32 or a Single object. The ability to do these conversions can be quite 
handy, and when designing a type, you should seriously consider what conversion 
constructors and methods make sense for your type.  

In the previous section, I discussed how some programming languages offer operator 
overloading. Well, some programming languages (like C#) also offer conversion operator 
overloading. Conversion operators are methods that convert an object from one type to 
another type. You define a conversion operator method using special syntax. The following 
code adds four conversion operator methods to the Rational type:  

class Rational { 
   // Constructs a Rational from an Int32 

   public Rational(Int32 numerator) { ... } 
 

   // Constructs a Rational from a Single 
   public Rational(Single value) { ... } 

 



   // Converts a Rational to an Int32 
   public Int32 ToInt32() { ... } 

 
   // Converts a Rational to a Single  

   public Single ToSingle() { ... } 
 

 
   // Implicitly constructs and returns a Rational from an Int32 

   public static implicit operator Rational(Int32 numerator) {  
      return new Rational(numerator); 

   } 
 

   // Implicitly constructs and returns a Rational from a Single 
   public static implicit operator Rational(Single value) {  

      return new Rational(value); 
   } 

 
   // Explicitly returns an Int32 from a Rational 

   public static explicit operator Int32(Rational r) {  
      return r.ToInt32();  

   } 
 

   // Explicitly returns a Single from a Rational 
   public static explicit operator Single(Rational r) {  

      return r.ToSingle(); 
   } 

} 

Like operator overload methods, conversion operator methods must also be public and 
static. For conversion operator methods, you must also indicate whether a compiler can 
emit code to call a conversion operator method implicitly or whether the source code must 
explicitly indicate when the compiler is to emit code to call a conversion operator method. In 
C#, you use the implicit keyword to indicate to the compiler that an explicit cast doesn’t 
have to appear in the source code in order to emit code that calls the method. The 
explicit keyword allows the compiler to call the method only when an explicit cast exists 
in the source code.  

After the implicit or explicit keyword, you tell the compiler that the method is a 
conversion operator by specifying the operator keyword. After the operator keyword, 
you specify the type that an object is being cast to; in the parentheses, you specify the type 
that an object is being cast from. 

Defining the conversion operators in the preceding Rational type allows you to write code 
like this (in C#):  

class App { 



   static void Main() { 
      Rational r1 = 5;         // Implicit cast from Int32 to 
Rational 
      Rational r2 = 2.5;       // Implicit cast from Single to 
Rational 
 

      Int32  x = (Int32)  r1;  // Explicit cast from Rational to 
Int32 
      Single s = (Single) r1;  // Explicit cast from Rational to 
Single 
   } 

} 

Under the covers, the C# compiler detects the casts (type conversions) in the code and 
internally generates IL code that calls the conversion operator methods defined by the 
Rational type. But what are the names of these methods? Well, compiling the Rational 
type and examining its metadata shows that the compiler produces one method for each 
conversion operator defined. For the Rational type, the metadata for the four conversion 
operator methods looks like this:  

public static Rational op_Implicit(Int32 numerator) 
public static Rational op_Implicit(Single value) 

public static Int32    op_Explicit(Rational r) 
public static Single   op_Explicit(Rational r) 

As you can see, methods that convert an object from one type to another are always named 
op_Implicit or op_Explicit. You should define an implicit conversion operator only 
when precision or magnitude isn’t lost during a conversion, such as when converting an 
Int32 to a Rational. However, you should define an explicit conversion operator if 
precision or magnitude is lost during the conversion, as when converting a Rational object 
to an Int32.  

 
Important  

The two op_Explicit methods take the same parameter, a 
Rational. However, the methods differ by their return value, an 
Int32 and a Single. This is an example of two methods that differ 
only by their return type. The CLR fully supports the ability for a type to 
define multiple methods that differ only by return type. However, very 
few languages expose this ability. As you’re probably aware, C++, C#, 
Visual Basic, and Java are all examples of languages that don’t 
support the definition of multiple methods that differ only by their return 
type. A few languages (such as IL assembly language) allow the 
developer to explicitly select which of these methods to call. Of course, 
IL assembly language programmers shouldn’t take advantage of this 
ability because the methods they define can’t be callable from other 
programming languages. Even though C# doesn’t expose this ability to 
the C# programmer, the compiler does take advantage of this ability 
internally when a type defines conversion operator methods. 

C# has full support for conversion operators. When it detects code where you’re using an 
object of one type and an object of a different type is expected, the compiler searches for an 
implicit conversion operator method capable of performing the conversion and generates 



code to call that method. If an implicit conversion operator method exists, the compiler emits 
a call to it in the resulting IL code. 

If the compiler sees source code that is explicitly casting an object from one type to another 
type, the compiler searches for an implicit or explicit conversion operator method. If one 
exists, the compiler emits the call to the method. If the compiler can’t find an appropriate 
conversion operator method, it issues an error and doesn’t compile the code. 

To really understand operator overload methods and conversion operator methods, I 
strongly encourage you to use the System.Decimal type as a role model. Decimal 
defines several constructors that allow you to convert objects from various types to a 
Decimal. It also offers several ToXxx methods that let you convert a Decimal object to 
another type. Finally, the type defines several conversion operators and operator overload 
methods as well. 

 

Passing Parameters by Reference to a Method 

By default, the CLR assumes that all method parameters are passed by value. When 
reference type objects are passed, the reference (or pointer) to the object is passed (by 
value) to the method. This means that the method can modify the object and the caller will 
see the change. For value type instances, a copy of the instance is passed to the method. 
This means that the method gets its own private copy of the value type and the instance in 
the caller isn’t affected.  

 
Important  

In a method, you must know whether each parameter passed is a 
reference type or a value type because the code you write to 
manipulate the parameter could be markedly different. 

The CLR allows you to pass parameters by reference instead of by value. In C#, you do this 
by using the out and ref keywords. Both keywords tell the C# compiler to emit metadata 
indicating that this designated parameter is passed by reference, and the compiler uses this 
to generate code to pass the address of the parameter rather than the parameter itself. 

The difference between the two keywords has to do with which method is responsible for 
initializing the object being referred to. If a method’s parameter is marked with out, the 
caller isn’t expected to have initialized the object prior to calling the method. The called 
method can’t read from the value, and the called method must write to the value before 
returning. If a method’s parameter is marked with ref, the caller must initialize the 
parameter’s value prior to calling the method. The called method can read from the value 
and/or write to the value. 

Reference and value types behave very differently with out and ref. Let’s look at using out 
and ref with value types first:  

class App { 
   static void Main() { 

      Int32 x; 
      SetVal(out x);         // x doesn’t have to be initialized. 

      Console.WriteLine(x);  // Displays "10" 
   } 

 
   static void SetVal(out Int32 v) { 



      v = 10;  // This method must initialize v. 
   } 

} 

In this code, x is declared on the thread’s stack. The address of x is then passed to SetVal. 
SetVal’s v is a pointer to an Int32 value type. Inside SetVal, the Int32 that v points to 
is changed to 10. When SetVal returns, x has a value of 10 and "10" is displayed on the 
console. Using out with value types is efficient because it prevents instances of the value 
type’s fields from being copied when making method calls. 

Now let’s look at an example that uses ref instead of out:  

class App { 
   static void Main() { 

      Int32 x = 5; 
      AddVal(ref x);        // x must be initialized. 

      Console.WriteLine(x); // Displays "15" 
   } 

 
   static void AddVal(ref Int32 v) { 

      v += 10;  // This method can use the initialize value in v. 
   } 

} 

In this code, x is declared on the thread’s stack and is initialized to 5. The address of x is 
then passed to AddVal. AddVal’s v is a pointer to an Int32 value type. Inside AddVal, the 
Int32 that v points to is required to have a value already. So, AddVal can use the initial 
value in any expression it desires. AddVal can also change the value and the new value will 
be "returned" back to the caller. In this example, AddVal adds 10 to the initial value. When 
AddVal returns, Main’s x will contain "15", which is what gets displayed in the console. 

To summarize, from an IL or a CLR perspective, out and ref do exactly the same thing: 
they both cause a pointer to the instance to be passed. The difference is that the compiler 
helps ensure that your code is correct. The following code that attempts to pass an 
uninitialized value to a method expecting a ref parameter produces a compilation error:  

class App { 
   static void Main() { 

      Int32 x;              // x is not initialized. 
 

      // The following line fails to compile, producing  
      // error CS0165: Use of unassigned local variable ‘x’. 

      AddVal(ref x); 
 

      Console.WriteLine(x); // Displays "15" 
   } 

 



   static void AddVal(ref Int32 v) { 
      v += 10;  // This method can use the initialized value in 
v. 
   } 
} 

 
Important  

I’m frequently asked why C# requires that a call to a method must 
specify out or ref. After all, the compiler knows whether the method 
being called requires out or ref and should be able to compile the 
code correctly. It turns out that the compiler can indeed do the right 
thing automatically. However, the designers of the C# language felt 
that the caller should explicitly state its intention. This way, at the call 
site, it’s obvious that the method being called is expected to change 
the value of the variable being passed. 

In addition, the CLR allows you to overload methods based on their 
use of out and ref parameters. For example, in C#, the following 
code is legal and compiles just fine:  

class Point { 
   static void Add(Point p) { ... } 

   static void Add(ref Point p) { ... } 
} 

It’s not legal to overload methods that differ only by out and ref 
because the JIT compiled code for the methods would be identical. So 
I couldn’t define the following method in the preceding Point type: 

   static void Add(out Point p) { ... } 

Using out and ref with value types gives you the same behavior that you already get when 
passing reference types by value. With value types, out and ref allow a method to 
manipulate a single value type instance. The caller must allocate the memory for the 
instance, and the callee manipulates that memory. With reference types, the caller allocates 
memory for a pointer to a reference object and the callee manipulates this pointer. Because 
of this behavior, using out and ref with reference types is useful only when the method is 
going to "return" a reference to an object that it knows about. The following code 
demonstrates:  

class App { 

   static public void Main() { 
       FileStream fs; 

 
       // Open the first file to be processed. 

       StartProcessingFiles(out fs); 
 

       // Continue while there are more files to process. 
       for (; fs != null; ContinueProcessingFiles(ref fs)) { 

 
          // Process a file. 



          fs.Read(...); 
       } 

   } 
 

   static void StartProcessingFiles(out FileStream fs) { 
      fs = new FileStream(...); 

   } 
 

   static void ContinueProcessingFiles(ref FileStream fs) { 
      fs.Close();  // Close the last file worked on. 

 
      // Open the next file, or if no more files, return null.  

      if (noMoreFilesToProcess) fs = null; 
      else fs = new FileStream (...); 

   } 
} 

As you can see, the big difference with this code is that the methods that have out or ref 
reference type parameters are constructing an object and the pointer to the new object is 
returned to the caller. You’ll also notice that the ContinueProcessingFiles method can 
manipulate the object being passed into it before returning a new object. This is possible 
because the parameter is marked with the ref keyword.  

You can simplify the preceding code a bit, as shown here: 

class App { 
   static public void Main() { 

   FileStream fs = null;   // Initialized to null (required) 

 
   // Open the first file to be processed. 

   ProcessFiles(ref fs); 
 

   // Continue while there are more files to process. 
   for (; fs != null; ProcessFiles(ref fs)) { 

 
      // Process a file. 

      fs.Read(...); 
   } 

} 
 

   void ProcessingFiles(ref FileStream fs) { 
      // Close the previous file if one was open. 



      if (fs != null) fs.Close();  // Close the last file worked 
on. 
 

      // Open the next file, or if no more files, return null.  
      if (noMoreFilesToProcess) fs = null; 

      else fs = new FileStream (...); 
   } 

} 

Here’s another example that demonstrates how to use the ref keyword to implement a 
method that swaps two reference types:  

static public void Swap(ref Object a, ref Object b) { 

   Object t = b; 
   b = a; 

   a = t; 
} 

To swap references to two String objects, you’d probably think that you could write code 
like this:  

static public void SomeMethod() { 

   String s1 = "Jeffrey"; 
   String s2 = "Richter"; 

   ? 
   Swap(ref s1, ref s2); 

   Console.WriteLine(s1);  // Displays "Richter" 
   Console.WriteLine(s2);  // Displays "Jeffrey" 

} 

However, this code won’t compile. The problem is that variables passed by reference to a 
method must be the same type. In other words, Swap expects two references to an Object 
type, not two references to a String type. To swap the two String references, you must 
do this:  

static public void SomeMethod() { 

   String s1 = "Jeffrey"; 
   String s2 = "Richter"; 

   ? 
   // Variables that are passed by reference  

   // must match what the method expects. 
   Object o1 = s1, o2 = s2; 

   Swap(ref o1, ref o2); 
 

   // Now cast the objects back to strings. 
   s1 = (String) o1; 



   s2 = (String) o2; 
    

   Console.WriteLine(s1);  // Displays "Richter" 
   Console.WriteLine(s2);  // Displays "Jeffrey" 

} 

This version of SomeMethod does compile and execute as expected. The reason why the 
parameters passed must match the parameters expected by the method is to ensure that 
type safety is preserved. The following code, which thankfully won’t compile, shows how 
type safety could be compromised.  

class SomeType { 

   public Int32 val; 
} 

 
class App { 

   static void Main() { 
      SomeType st; 

 
      // The following line generates error CS1503: Argument ‘1’:  

      // cannot convert from ‘ref SomeType’ to ‘ref object’. 
      GetAnObject(out st); 

 
      Console.WriteLine(st.val); 

  } 
 

   void GetAnObject(out Object o) { 
      o = new String(‘X’, 100); 

   } 
} 

In this code, Main clearly expects GetAnObject to return a SomeType object. However, 
because GetAnObject’s signature indicates a reference to an Object, GetAnObject is 
free to initialize o to an object of any type. In this example, when GetAnObject returned to 
Main, st would refer to a String, which is clearly not a SomeType object, and the call to 
Console.WriteLine would certainly fail. Fortunately, the C# compiler won’t compile the 
preceding code because st is a reference to SomeType but GetAnObject requires a 
reference to an Object. 

 
Passing a Variable Number of Parameters to a Method 

It’s sometimes convenient for the developer to define a method that can accept a variable 
number of parameters. For example, the System.String type offers methods allowing an 
arbitrary number of strings to be concatenated together and methods allowing the caller to 
specify a set of strings that are to be formatted together.  



To declare a method that accepts a variable number of arguments, you declare the method 
as follows: 

static Int32 Add(params Int32[] values) { 
   // NOTE: it is possible to pass this  

   // array to other methods if you want to. 
 

   Int32 sum = 0; 
   for (Int32 x = 0; x < values.Length; x++)  

      sum += values[x]; 
   return sum; 

} 

Everything in this method should look very familiar to you except for the params keyword 
that is applied to the last parameter of the method signature. Ignoring the params keyword 
for the moment, it’s obvious that this method accepts an array of Int32 values and iterates 
over the array, adding up all the values. The resulting sum is returned to the caller. 

Obviously, code can call this method as follows: 

static void Main() { 

   // Displays "15" 
   Console.WriteLine(Add(new Int32[] { 1, 2, 3, 4, 5 } )); 

} 

It’s clear that the array can easily be initialized with an arbitrary number of elements and 
then passed off to Add for processing. Although the preceding code would compile and work 
correctly, it is a little ugly. As developers, we would certainly prefer to have written the call to 
Add as follows:  

static void Main() { 

   // Displays "15" 
   Console.WriteLine(Add(1, 2, 3, 4, 5)); 

} 

You’ll be happy to know that we can do this because of the params keyword. The params 
keyword tells the compiler to apply an instance of the System.Param-ArrayAttribute 
custom attribute (which I’ll discuss in Chapter 16) to the parameter. Because the params 
keyword is just shorthand for this attribute, the Add method’s prototype could have been 
defined like this:  

static Int32 Add([ParamArray] Int32[] values) { 

   ? 
} 

When the C# compiler detects a call to a method, the compiler checks all the methods with 
the specified name, where no parameter has the ParamArray attribute applied. If a method 
exists that can accept the call, the compiler generates the code necessary to call the 
method. However, if the compiler can’t find a match, it looks for methods that have a 
ParamArray attribute to see whether the call can be satisfied. If the compiler finds a match, 



it emits code that constructs an array and populates its elements before emitting the code 
that calls the selected method.  

In the previous example, no Add method is defined that takes five Int32-compatible 
arguments; however, the compiler sees that the source code has a call to Add that is being 
passed a list of Int32 values and that there is an Add method whose array-of-Int32 
parameter is marked with the ParamArray attribute. So the compiler considers this a match 
and generates code that coerces the parameters into an Int32 array and then calls the Add 
method. The end result is that you can write the code easily passing a bunch of parameters 
to Add, but the compiler generates code as though you’d written the first version that 
explicitly constructs and initializes the array. 

Only the last parameter to a method can be marked with the params keyword 
(ParamArrayAttribute). This parameter must also identify a single-dimension array of 
any type. It’s legal to pass null or a reference to an array of 0 entries as the last parameter 
to the method. The following call to Add compiles fine, runs fine, and produces a resulting 
sum of 0 (as expected):  

static void Main() { 
   // Displays "0" 

   Console.WriteLine(Add()); 
} 

So far, all the examples have shown how to write a method that takes an arbitrary number of 
Int32 parameters. How would you write a method that takes an arbitrary number of 
parameters where the parameters could be any type? The answer is very simple: just modify 
the method’s prototype so that it takes an Object[] instead of an Int32[]. Here’s a 
method that displays the Type of every object passed to it:  

class App { 

   static void Main() { 
      DisplayTypes(new Object(), new Random(), "Jeff", 5); 

   } 
 

   static void DisplayTypes(params Object[] objects) { 
      foreach (Object o in objects)  

         Console.WriteLine(o.GetType()); 
   } 

} 

Running this code yields the following output: 

System.Object 

System.Random 
System.String 

System.Int32 

 

How Virtual Methods Are Called 



Methods represent code that performs some operation on the type (static methods) or an 
instance of the type (nonstatic methods). All methods have a name, a signature, and a return 
value. A type can have multiple methods with the same name as long as each method has a 
different set of parameters or a different return value. So it’s possible to define two methods 
with the same name and same parameters as long as the methods have a different return 
type. However, except for IL assembly language, I’m not aware of any language that takes 
advantage of this “feature”; most languages require that methods differ by parameters and 
ignore a method’s return type when determining uniqueness. 

By examining metadata, the CLR can determine whether a nonstatic method is a virtual or 
nonvirtual method. However, the CLR doesn’t use this information when calling a method. 
Instead, the CLR offers two IL instructions for calling a method: call and callvirt. The 
call IL instruction calls a method based on the type of the reference, and the callvirt IL 
instruction calls a method based on the type of the object referred to. When compiling your 
source code, the compiler knows whether or not you’re calling a virtual method and emits the 
proper call or callvirt IL instruction. This means that it’s possible to call a virtual 
method nonvirtually, an approach that is commonly used when your code calls a virtual 
method defined in your type’s base class, as shown here:  

class SomeClass { 
   // ToString is a virtual method defined in the base class: 
Object. 
   public override String ToString() { 
 

      // Compiler uses the ‘call’ IL instruction to call 
      // Object’s ToString method nonvirtually. 

 
      // If the compiler were to use ‘callvirt’ instead of 
‘call’, this 
      // method would call itself recursively until the stack 
overflowed. 
      return base.ToString(); 

   } 
} 

Compilers also typically emit the call IL instruction when calling a virtual method using a 
reference to a sealed type. Emitting call instead of callvirt improves performance 
because the CLR doesn’t have to check the actual type of the object being referenced. In 
addition, for value types (which are always sealed), using call prevents the boxing of the 
value type, which reduces memory and CPU usage. 

Regardless of whether call or callvirt is used to call an instance method, all instance 
methods always receive a hidden this pointer as the method’s first parameter. The this 
pointer refers to the object being operated on. 

 

Virtual Method Versioning 

Back in the old days, a single company was responsible for all the code that made up an 
application. Today, many different companies often contribute parts to help construct 
another company’s application. For example, lots of applications today use components 



created by other companies—in fact, the COM(+) and .NET technologies encourage this 
practice. When applications consist of many parts created and distributed by different 
companies, many versioning issues come up. 

I talked about some of these versioning issues in Chapter 3 when I explained strongly 
named assemblies and discussed how an administrator can ensure that an application binds 
to the assemblies that it was built and tested with. However, other versioning issues cause 
source code compatibility problems. For example, you must be very careful when adding or 
modifying members of a type if that type is used as a base type. Let’s look at some 
examples. 

CompanyA has designed the following type, Phone:  

namespace CompanyA { 

   class Phone { 
      public void Dial() { 

         Console.WriteLine("Phone.Dial"); 
         // Do work to dial the phone here. 

      } 
   } 

} 

Now imagine that CompanyB defines another type, BetterPhone, which uses CompanyA’s 
Phone type as its base:  

namespace CompanyB { 
   class BetterPhone : CompanyA.Phone { 

      public void Dial() {  
         Console.WriteLine("BetterPhone.Dial"); 

         EstablishConnection(); 
         base.Dial(); 

      } 
 

      protected virtual void EstablishConnection() { 
         Console.WriteLine("BetterPhone.EstablishConnection"); 

         // Do work to establish the connection. 
      } 

   } 
} 

When CompanyB attempts to compile its code, the C# compiler issues the following 
warning: “warning CS0108: The keyword new is required on ‘BetterPhone.Dial()’ because it 
hides inherited member ‘Phone.Dial()’.” This warning is notifying the developer that 
BetterPhone is defining a Dial method, which will hide the Dial method defined in 
Phone. This new method could change the semantic meaning of Dial (as defined by 
CompanyA when it originally created the Dial method).  



It’s a very nice feature of the compiler to warn you of this potential semantic mismatch. The 
compiler also tells you how to remove the warning by adding the new keyword before the 
definition of Dial in the BetterPhone class. Here’s the fixed BetterPhone class:  

namespace CompanyB { 

   class BetterPhone : CompanyA.Phone { 
 

      // This Dial method has nothing to do with Phone’s Dial 
method. 
      new public void Dial() {  

         Console.WriteLine("BetterPhone.Dial"); 
         EstablishConnection(); 

         base.Dial(); 
      } 

 
      protected virtual void EstablishConnection() { 

         Console.WriteLine("BetterPhone.EstablishConnection"); 

         // Do work to establish the connection. 
      } 

   } 
} 

At this point, CompanyB can use BetterPhone in its application. Here’s some sample code 
that CompanyB might write:  

class App { 
   static void Main() { 

      CompanyB.BetterPhone phone = new CompanyB.BetterPhone(); 
      phone.Dial(); 

   } 
} 

When this code runs, the following output is displayed: 

BetterPhone.Dial 
BetterPhone.EstablishConnection 

Phone.Dial 

This output shows that CompanyB is getting the behavior it desires. The call to Dial is 
calling the new Dial method defined by BetterPhone, which calls the virtual 
EstablishConnection method and then calls the Phone base type’s Dial method. 

Now let’s imagine that several companies have decided to use CompanyA’s Phone type. 
Let’s further imagine that these other companies have decided that the ability to establish a 
connection in the Dial method is a really useful feature. This feedback is given to 
CompanyA, who now goes and revises its Phone class:  

namespace CompanyA { 

   class Phone { 



      public void Dial() { 
         Console.WriteLine("Phone.Dial"); 

         EstablishConnection(); 
         // Do work to dial the phone here. 

      } 
 

      protected virtual void EstablishConnection() { 
         Console.WriteLine("Phone.EstablishConnection"); 

         // Do work to establish the connection. 
      } 

   } 
} 

Now when CompanyB compiles its BetterPhone type (derived from this new version of 
CompanyA’s Phone), the compiler issues this warning: "warning CS0114: 
‘BetterPhone.EstablishConnection()’ hides inherited member ‘Phone.EstablishConnection()’. 
To make the current member override that implementation, add the override keyword. 
Otherwise, add the new keyword."  

The compiler is alerting you to the fact that both Phone and BetterPhone offer an 
EstablishConnection method and that the semantics of both might not be identical: 
simply recompiling BetterPhone can no longer give the same behavior as it did when 
using the first version of the Phone type. 

If CompanyB decides that the EstablishConnection methods are not semantically 
identical in both types, then CompanyB can tell the compiler that the Dial and 
EstablishConnection methods defined in BetterPhone are the "correct" methods to 
use and that they have no relationship with the Dial and Establish-Connection 
methods defined in the Phone base type. CompanyB informs the compiler by keeping new 
on the Dial method and by adding new to the Establish-Connection method:  

namespace CompanyB { 
   class BetterPhone : CompanyA.Phone { 

 
      // Keep ‘new’ to mark this method as having no  

      // relationship to the base type’s Dial method. 
      new public void Dial() {  

         Console.WriteLine("BetterPhone.Dial"); 

         EstablishConnection(); 
         base.Dial(); 

      } 
 

      // Add ‘new’ to mark this method as having no 
      // relationship to the base type’s EstablishConnection 
method. 
      new protected virtual void EstablishConnection() { 



         Console.WriteLine("BetterPhone.EstablishConnection"); 
         // Do work to establish the connection. 

      } 
   } 

} 

In this code, the new keyword tells the compiler to emit metadata, making it clear to the CLR 
that BetterPhone’s Dial and EstablishConnection methods are intended to be 
treated as new functions that are introduced by the BetterPhone type. The CLR will know 
that there is no relationship between Phone’s and BetterPhone’s methods. 

 
Note  

Without the new keyword, the developer of BetterPhone couldn’t use the 
method names Dial and EstablishConnection. This would most likely 
cause a ripple effect of changes throughout the entire source code base, 
breaking source and binary compatibility. This type of pervasive change is 
usually undesirable, especially in any moderate to large project. However, if 
changing the method name causes only moderate updates in the source 
code, you should change the name of the methods so that the two different 
meanings of Dial and EstablishConnection don’t confuse other 
developers. 

When the same application code (in the Main method) executes, the output is as follows:  

BetterPhone.Dial 

BetterPhone.EstablishConnection 
Phone.Dial 

Phone.EstablishConnection 

This output shows that Main’s call to Dial calls the new Dial method defined by 
BetterPhone. Dial then calls the virtual EstablishConnection method that is also 
defined by BetterPhone. When BetterPhone’s EstablishConnection method 
returns, Phone’s Dial method is called. Phone’s Dial method calls Establish-
Connection, but because BetterPhone’s EstablishConnection is marked with new, 
BetterPhone’s EstablishConnection method isn’t considered an override of Phone’s 
virtual EstablishConnection method. As a result, Phone’s Dial method calls Phone’s 
EstablishConnection method—this is the desired behavior.  

Alternatively, CompanyB could have gotten the new version of CompanyA’s Phone type and 
decided that Phone’s semantics of Dial and EstablishConnection are exactly what it’s 
been looking for. In this case, CompanyB would modify its BetterPhone type by removing 
its Dial method entirely. In addition, because CompanyB now wants to tell the compiler that 
BetterPhone’s EstablishConnection method is related to Phone’s 
EstablishConnection method, the new keyword must be removed. Simply removing the 
new keyword isn’t enough, though, because now the compiler can’t tell exactly what the 
intention is of BetterPhone’s EstablishConnection method. To express his intent 
exactly, the CompanyB developer must also change BetterPhone’s 
EstablishConnection method from virtual to override. The following code shows 
the new version of BetterPhone:  

namespace CompanyB { 
   class BetterPhone : CompanyA.Phone { 

 



      // Delete the Dial method (inherit Dial from base). 
 

      // Remove ‘new’ and change ‘virtual’ to ‘override’ to  
      // mark this method as having a relationship to the base  

      // type’s EstablishConnection method. 
      protected override void EstablishConnection() { 

         Console.WriteLine("BetterPhone.EstablishConnection"); 
         // Do work to establish the connection. 

      } 
   } 

} 

Now when the same application code (in the Main method) executes, the output is as 
follows:  

Phone.Dial 

BetterPhone.EstablishConnection 

This output shows that Main’s call to Dial calls the Dial method defined by Phone and 
inherited by BetterPhone. Then when Phone’s Dial method calls the virtual 
EstablishConnection method, BetterPhone’s EstablishConnection method is 
called because it overrides the virtual EstablishConnection method defined by Phone. 



Chapter 10: Properties 
In this chapter, I’ll talk about properties. Properties allow source code to call a method using 
a simplified syntax. The common language runtime (CLR) offers two kinds of properties: 
parameterless properties, which are called properties, and parameterful properties, which 
are called different names by different programming languages. For example, C# calls 
parameterful properties indexers, and Visual Basic calls them default properties. 

Parameterless Properties 

Many types define state information that can be retrieved or altered. Frequently, this state 
information is implemented as field members of the type. For example, here’s a type 
definition that contains two fields: 

public class Employee { 
   public String Name;  // The employee’s name 

   public Int32  Age;   // The employee’s age 
} 

If you were to create an instance of this type, you could easily get or set any of this state 
information with code similar to the following: 

Employee e = new Employee(); 

e.Name = "Jeffrey Richter"; // Set the employee’s Name.  
e.Age  = 35;                // Set the employee’s Age. 

 
Console.WriteLine(e.Name);    // Displays "Jeffrey Richter"  

Querying and setting an object’s state information in the way I just demonstrated is very 
common. However, I would argue that the preceding code should never be implemented as 
it’s shown. One of the covenants of object-oriented design and programming is data 
encapsulation. Data encapsulation means that your type’s fields should never be publicly 
exposed because it’s too easy to write code that improperly uses the fields, corrupting the 
object’s state. For example, a developer could easily corrupt an Employee object with code 
like this:  

e.Age = -5; // How could someone be Ð5 years old? 

There are additional reasons for encapsulating access to a type’s data field. For example, 
you might want access to a field to execute some side effect, cache some value, or lazily 
create some internal object. You might also want access to the field to be thread safe. Or 
perhaps the field is a logical field whose value isn’t represented by bytes in memory but 
whose value is instead calculated using some algorithm. 

For any of these reasons, when designing a type, I strongly suggest that all your fields be 
private or at least protected—never public. Then, to allow a user of your type to get or set 
state information, you expose methods for that specific purpose. Methods that wrap access 
to a field are typically called accessor methods. These accessor methods can optionally 
perform sanity checking and ensure that the object’s state is never corrupted. For example, 
I’d rewrite the previous class as follows: 

public class Employee { 

   private String Name;    // Field is now private 
   private Int32  Age;     // Field is now private 



 
   public String GetName() { 

      return(Name); 
   } 

 
   public void SetName(String value) { 

      Name = value; 
   } 

 
   public Int32 GetAge() { 

      return(Age); 
   } 

 
   public void SetAge(Int32 value) { 

      if (value < 0) 
         throw new ArgumentOutOfRangeException( 

            "Age must be greater than or equal to 0"); 
      Age = value; 

   } 
} 

Although this is a simple example, you should still be able to see the enormous benefit you 
get from encapsulating the data fields. You should also be able to see how easy it is to make 
read-only or write-only properties: just don’t implement one of the accessor methods. 

Encapsulating the data as shown earlier has two disadvantages. First, you have to write 
more code because you now have to implement additional methods. Second, users of the 
type must now call methods rather than simply refer to a single field name. 

e.SetAge(35);    // Updates the age 

e.SetAge(-5);    // Throws ArgumentOutOfRangeException  

Personally, I think these disadvantages are quite minor. Nevertheless, the CLR offers a 
mechanism, properties, that alleviates the first disadvantage a little and removes the second 
disadvantage entirely. 

The class shown here uses properties and is functionally identical to the class shown earlier: 

public class Employee { 
   private String _Name; // Prepending ’_’ avoids name conflict. 

   private Int32  _Age;  // Prepending ’_’ avoids name conflict. 
 

   public String Name { 
      get { return(_Name); } 

      set { _Name = value; } // The ’value’ keyword always identi
fies 



                             // the new value. 
   } 

 
   public Int32 Age { 

      get { return(_Age); } 
      set { 

         if (value < 0)    // The ’value’ keyword always identifi
es the 
                           // new value. 

            throw new ArgumentOutOfRangeException( 
               "Age must be greater than or equal to 0"); 

         _Age = value; 
      } 

   } 
} 

As you can see, properties complicate the definition of the type slightly, but the fact that they 
allow you to write your code as follows more than compensates for the extra work: 

e.Age = 35;    // Updates the age 
e.Age = -5;    // Throws ArgumentOutOfRangeException 

You can think of properties as smart fields: fields with additional logic behind them. The CLR 
supports static, instance, and virtual properties. In addition, properties can be marked with 
any accessibility modifier (discussed in Chapter 7) and defined within an interface 
(discussed in Chapter 15).  

Each property has a name and a type (which can’t be void). It isn’t possible to overload 
properties (that is, have two properties with the same name if their types are different). When 
you define a property, you typically specify both a get and a set method. However, you can 
leave out the set method to define a read-only property or leave out the get method to 
define a write-only property. 

It’s also quite common for the property’s get/set methods to manipulate a private field 
defined within the type. This field is commonly referred to as the backing field. The get and 
set methods don’t have to access a backing field, however. For example, the 
System.Threading.Thread type offers a Priority property that communicates directly 
with the operating system; the Thread object doesn’t maintain a field for a thread’s priority. 
Another example of properties without backing fields are those read-only properties 
calculated at run time—for example, the length of a zero-terminated array or the area of a 
rectangle when you have its height and width. 

When you define a property, the compiler emits up to three things into the resulting managed 
module: 
§ A method representing the property’s get accessor method. This is emitted only if you 

define a get accessor for the property. 
§ A method representing the property’s set accessor method. This is emitted only if you 

define a set accessor for the property. 
§ A property definition in the managed module’s metadata. This is always emitted. 



Refer back to the Employee type shown earlier. As the compiler compiles this type, it comes 
across the Name and Age properties. Because both properties have get and set accessor 
methods, the compiler emits four method definitions into the Employee type. It’s as though 
the original source were written as follows:  

public class Employee { 
   private String _Name; // Prepending ’_’ avoids name conflict. 

   private Int32  _Age;  // Prepending ’_’ avoids name conflict. 
 

   public String get_Name(){  
      return _Name;   

   } 
   public void   set_Name(String value) { 

      _Name = value; // The ’value’ always identifies the new val
ue. 

   } 
 

   public Int32 get_Age() { 
      return _Age; 

   } 
 

   public void  set_Age(Int32 value) { 
      if (value < 0)    // The ’value’ always identifies the new 
value. 
         throw new ArgumentOutOfRangeException( 
            "Age must be greater than or equal to 0"); 

         _Age = value; 
      } 

   } 
} 

The compiler automatically generates names for these methods by prepending get_ or 
set_ to the property name specified by the developer.  

C# has built-in support for properties. When the C# compiler sees code that’s trying to get or 
set a property, the compiler actually emits a call to one of these methods. If you’re using a 
programming language that doesn’t directly support properties, you can still access 
properties by calling the desired accessor method. The effect is exactly the same; it’s just 
that the source code doesn’t look as pretty. 

In addition to emitting the accessor methods, compilers also emit a property definition entry 
into the managed module’s metadata for each property defined in the source code. This 
entry contains some flags and the type of the property, and it refers to the get and set 
accessor methods. This information exists simply to draw an association between the 
abstract concept of a "property" and its accessor methods. Compilers and other tools can 
use this metadata, which can be obtained by using the 



System.Reflection.PropertyInfo class. The CLR doesn’t use this metadata 
information, though, and requires only the accessor methods at run time. 

You should use properties only for operations that execute quickly because the syntax to 
access a property is identical to the syntax for accessing a field. Code with this syntax 
traditionally doesn’t take long to execute; use methods for operations that require more 
execution time. For example, calculating the area of a rectangle is fast, so it would make 
sense to use a read-only property. But calculating the number of elements in a linked-list 
collection might be quite slow, so you might want to use a method instead of a read-only 
property. 

For simple get and set accessor methods, the JIT compiler inlines the code so that there’s 
no run-time performance hit as a result of using properties rather than fields. Inlining is when 
the code for a method (or accessor method, in this case) is compiled directly in the method 
that is making the call. This removes the overhead associated with making a call at run time 
at the expense of making the compiled method’s code bigger. Because property accessor 
methods typically contain very little code, inlining them can make code smaller and can 
make it execute faster. 

 

Parameterful Properties 

In the previous section, the get accessor methods for the properties accepted no 
parameters. For this reason, I called these properties parameterless properties. These 
properties are easy to understand because they have the feel of accessing a field. In 
addition to these fieldlike properties, the CLR also supports what I call parameterful 
properties, whose get access methods accept one or more parameters. Different 
programming languages expose parameterful properties in different ways. Also, languages 
use different terms to refer to parameterful properties: C# calls them indexers, Visual Basic 
calls them default properties, and C++ with Managed Extensions calls them index properties. 
In this section, I’ll focus on how C# exposes its indexers using parameterful properties. 

In C#, parameterful properties (indexers) are exposed using an arraylike syntax. In other 
words, you can think of an indexer as a way for the C# developer to overload the [] 
operator. Here’s an example of a BitArray type that allows arraylike syntax to index into 
the set of bits maintained by an instance of the type:  

public class BitArray { 
   // Private array of bytes that hold the bits 

   private Byte[] byteArray; 
   private Int32 numBits; 

 
   // Constructor that allocates the byte array and sets all bits
 to 0 
   public BitArray(Int32 numBits) { 
      // Validate arguments first. 

      if (numBits <= 0) 
         throw new ArgumentOutOfRangeException("numBits must be >
 0"); 
 
      // Save the number of bits. 



      this.numBits = numBits; 
 

      // Allocate the bytes for the bit array. 
      byteArray = new Byte[(numBits + 7) / 8]; 

   } 
 

   // This is the indexer. 
   public Boolean this[Int32 bitPos] { 

 
      // This is the index property’s get accessor method. 

      get { 
         // Validate arguments first 

         if ((bitPos < 0) || (bitPos >= numBits)) 
            throw new IndexOutOfRangeException(); 

 
         // Return the state of the indexed bit. 

         return (byteArray[bitPos / 8] & (1 << (bitPos % 8))) != 
0); 
      } 

 
      // This is the index property’s set accessor method. 

      set { 
         if ((bitPos < 0) || (bitPos >= numBits)) 

            throw new IndexOutOfRangeException(); 
 

         if (value) { 
            // Turn the indexed bit on. 

            byteArray[bitPos / 8] = (Byte) 
               (byteArray[bitPos / 8] | (1 << (bitPos % 8))); 

         } else { 
            // Turn the indexed bit off. 

            byteArray[bitPos / 8] = (Byte)  
               (byteArray[bitPos / 8] & ~(1 << (bitPos % 8))); 

         } 
      } 

   } 
} 

Using the BitArray type’s indexer is incredibly simple:  

// Allocate a BitArray that can hold 14 bits. 
BitArray ba = new BitArray(14); 



 
// Turn all the even-
numbered bits on by calling the set accessor. 
for (Int32 x = 0; x < 14; x++) { 
   ba[x] = (x % 2 == 0); 

} 
 

// Show the state of all the bits by calling the get accessor. 
foreach (Int32 x = 0; x < 14; x++) { 

   Console.WriteLine("Bit " + x + " is " + (ba[x] ? "On" : "Off")
); 
} 

In the BitArray example, the indexer takes one Int32 parameter, bitPos. All indexers 
must have at least one parameter, but they can have more. These parameters (as well as 
the return type) can be of any type. 

It’s quite common to create an indexer that takes an Object as a parameter to look up 
values in an associative array. In fact, the System.Collections.-Hashtable type offers 
an indexer that takes a key (of type Object) and returns the value associated with the key 
(also of type Object). Unlike parameterless properties, a type can offer multiple, overloaded 
indexers as long as their signatures differ.  

Like a parameterless property’s set accessor method, an indexer’s set accessor method 
also contains a hidden parameter, called value in C#. This parameter indicates the new 
value desired for the "indexed element." 

The CLR doesn’t differentiate parameterless properties and parameterful properties; to the 
CLR, each is simply a pair of methods defined within a type. As mentioned earlier, different 
programming languages require different syntax to create and use parameterful properties. 
The fact that C# requires this[...] as the syntax for expressing an indexer was purely a 
choice made by the C# team. What this choice means is that C# allows indexers to be 
defined only on instances of objects. C# doesn’t offer syntax allowing a developer to define a 
static indexer property, although the CLR does support static parameterful properties.  

Because the CLR treats parameterful properties just as it does parameterless properties, the 
compiler emits the same three items into the resulting managed module: 
§ A method representing the parameterful property’s get accessor method. This is 

emitted only if you define a get accessor for the property. 
§ A method representing the parameterful property’s set accessor method. This is 

emitted only if you define a set accessor for the property. 
§ A property definition in the managed module’s metadata, which is always emitted. 

There’s no special parameterful property metadata definition table because, to the CLR, 
parameterful properties are just properties. 

For the BitArray type shown earlier, the compiler compiles the indexer as though the 
original source code were written as follows:  

public class BitArray { 

   ? 
   // This is the indexer’s get accessor method. 



   public Boolean get_Item(Int32 bitPos) { ... } 
 

   // This is the indexer’s set accessor method. 
   public void    set_Item(Int32 bitPos, Boolean value)  { ... } 

} 

The compiler automatically generates names for these methods by prepending get_ or 
set_ to Item. Because the C# syntax for an indexer doesn’t allow the developer to specify 
a name, the C# compiler team had to choose a name to use for the accessor methods and 
they chose Item. A single type can define multiple indexers as long as the indexers all take 
different parameter sets. 

When examining the .NET Framework Reference documentation, you can tell if a type offers 
an indexer by looking for a property named Item. For example, the 
System.Collections.SortedList type offers a public instance property named Item; 
this property is SortedList’s indexer.  

When you program in C#, you never see the name of Item, so you don’t normally care that 
the compiler has chosen this name for you. However, if you’re designing an indexer for a 
type that other programming languages will be accessing, you might want to change the 
name given to your indexer’s get and set accessor methods. C# allows you to rename 
these methods by applying the System.Runtime.CompilerServices.IndexerName 
custom attribute to the indexer. The following code demonstrates:  

public class BitArray { 
   ? 

   [System.Runtime.CompilerServices.IndexerName("Bit")] 
   public Boolean this[Int32 bitPos] { 

      ? 
   } 

} 

Now the compiler will emit methods called get_Bit and set_Bit instead of 
get_Item and set_Item. 

Here’s some Visual Basic code that demonstrates how to access this C# indexer: 

‘ Construct an instance of the SomeType type. 
Dim ba as new BitArray(10) 

   ? 
‘ Visual Basic uses () instead of [] to specify array elements. 

Console.WriteLine(ba(2))       ’ Displays True or False 
 

‘ Visual Basic also allows you to access the indexer by its name. 
Console.WriteLine(cs.Bit(2))   ’ Displays same as previous line 

In some programming languages, the IndexerName attribute allows you to define multiple 
indexers with the same signature because each can have a different name. However, C# 
won’t allow you to do this because its syntax doesn’t refer to the indexer by name; the 
compiler wouldn’t know which indexer you were referring to. Attempting to compile the 



following C# source code causes the compiler to generate the following: "error CS0111: 
Class ‘SomeType’ already defines a member called ‘this’ with the same parameter types."  

using System; 
using System.Runtime.CompilerServices; 

 
public class SomeType { 

 
   // Define a get_Item accessor method. 

   public Int32 this[Boolean b] { 
      get { return 0; }     

   } 
 

   // Define a get_Jeff accessor method. 
   [IndexerName("Jeff")] 

   public String this[Boolean b] { 
      get { return ""; } 

   } 
} 

You can clearly see that C# thinks of indexers as a way to overload the [] operator, and this 
operator can’t be used to disambiguate parameterful properties with different method names. 

By the way, the System.String type is an example of a type that changed the name of its 
indexer. The name of String’s indexer is Chars instead of Item. This property allows you 
to get the individual characters within a string. For programming languages that don’t use [] 
operator syntax to access this property, Chars was decided to be a more meaningful name.  

 

Selecting the Primary Parameterful Property  

C#’s limitations with respect to indexers begs the following questions: What if a type is 
defined in a programming language that does allow the developer to define several 
parameterful properties? How can this type be consumed from C#? The answer is that a 
type must select one of the parameterful property method names to be the default 
property by applying an instance of 
System.Reflection.DefaultMemberAttribute to the class itself. For the record, 
DefaultMemberAttribute can be applied to a class, a structure, or an interface. In 
C#, when you compile a type that defines a parameterful property, the C# compiler 
automatically applies an instance of DefaultMemberAttribute to the defining type. 
This attribute’s constructor specifies the name that is to be used for the type’s default 
parameterful property. 

So, in C#, if you define a type that has a parameterful property and you don’t specify the 
IndexerName attribute, the defining type will have a DefaultMember attribute 
indicating Item. If you apply the IndexerName attribute to a parameterful property, the 
defining type will have a DefaultMember attribute indicating the string name specified 
in the IndexerName attribute. Remember, C# won’t compile the code if it contains 
parameterful properties with different names. 



For a language that supports several parameterful properties, one of the property 
method names must be selected and identified by the type’s DefaultMember attribute. 
This is the only parameterful property that C# will be able to access. 
 

 

When the C# compiler sees code that is trying to get or set an indexer, the compiler actually 
emits a call to one of these methods. Some programming languages might not support 
parameterful properties. To access a parameterful property from one of these languages, 
you must call the desired accessor method explicitly.  

To the CLR, there’s no difference between paramterless properties and parameterful 
properties, so you use the same System.Reflection.PropertyInfo class to find the 
association between a parameterful property and its accessor methods. The JIT compiler is 
also free to inline an accessor method’s code into the calling method’s code. 



Chapter 11: Events 

Overview 

In this chapter, I’ll talk about the last kind of member that a type can define: events. A type 
that defines an event member allows the type (or instances of the type) to notify other 
objects that something special has happened. For example, the Button class defines an 
event called Click. When a Button object is clicked, sev-eral objects in the application 
might want to receive a notification and perform some action. Events are type members that 
allow for this interaction. Specifically, defining an event member means that a type is offering 
three capabilities:  
§ The capability for objects to register their interest in the event 
§ The capability for objects to unregister their interest in the event 
§ The capability for the object defining the event to maintain the set of registered objects 

and to notify these objects when something special happens 

The CLR’s eventing model is based on delegates. A delegate is a type-safe way to invoke a 
callback method. In this chapter, I’ll be using delegates, but I won’t fully explain the ins and 
outs of them until Chapter 17. 

To help you fully understand the way events work within the CLR, I’ll start by defining a 
scenario where events are useful. Suppose you want to design an e-mail application. When 
an e-mail message arrives, the user might like the message to be forwarded to a fax 
machine or a pager. In architecting this application, let’s say that you’ll first design a type, 
called MailManager, that receives the incoming e-mail messages. MailManager will 
expose an event, called MailMsg. Other types (such as Fax and Pager) might register 
interest in this event. When MailManager receives a new e-mail message, it will fire the 
event, distributing the message to each of the registered objects. Each object can process 
the message any way it desires.  

When the application initializes, let’s instantiate just one instance of MailManager—the 
application can then instantiate any number of Fax and Pager types. Figure 11-1 shows 
how the application initializes and what happens when a new e-mail message arrives. 



 
Figure 11-1 : Architecting an application to use events  

Here’s how the application illustrated in Figure 11-1 works. The application initializes by 
constructing an instance of MailManager. MailManager offers a MailMsg event. When 
the Fax and Pager objects are constructed, they register themselves with MailManager’s 
MailMsg event so that MailManager knows to notify the Fax and Pager objects when 
new e-mail messages arrive. Now, when MailManager receives a new e-mail message 
(sometime in the future), it will fire the MailMsg event, giving all the registered objects an 
opportunity to process the new message any way they want. 

 
Designing a Type That Exposes an Event 

Let’s look at the type definition for MailManager to really understand all the steps you must 
take to properly define an event member using Microsoft’s recommended design pattern:  

class MailManager { 

   // The MailMsgEventArgs type is defined within the MailManager 
type. 
   public class MailMsgEventArgs : EventArgs { 

 
      // 1. Type defining information passed to receivers of the 
event 
      public MailMsgEventArgs( 

         String from, String to, String subject, String body) { 
 

         this.from    = from; 
         this.to      = to; 

         this.subject = subject; 
         this.body    = body; 



      } 
 

      public readonly String from, to, subject, body; 
   } 

 
   // 2. Delegate type defining the prototype of the callback 
method 
   //    that receivers must implement 
   public delegate void MailMsgEventHandler( 

      Object sender, MailMsgEventArgs args); 
 

   // 3. The event itself 
   public event MailMsgEventHandler MailMsg; 

 
   // 4. Protected, virtual method responsible for notifying 
registered 
   //    objects of the event 
   protected virtual void OnMailMsg(MailMsgEventArgs e) { 

 
      // Has any objects registered interest with the event?  

      if (MailMsg != null) { 
 

         // Yes—notify all the objects in the delegate linked 
list. 

         MailMsg(this, e); 
      } 

   } 
 

   // 5. Method that translates the input into the desired event. 
   //    This method is called when a new e-mail message arrives. 

   public void SimulateArrivingMsg(String from, String to, 
      String subject, String body) { 

 
      // Construct an object to hold the information you want 

      // to pass to the receivers of the notification. 
      MailMsgEventArgs e =  

         new MailMsgEventArgs(from, to, subject, body); 
 

      // Call the virtual method notifying the object that the 
event 



      // occurred. If no derived type overrides this method, the 
object 
      // will notify all the registered listeners. 

      OnMailMsg(e); 
   } 

} 

All the work related to implementing this architecture is the responsibility of the developer 
who is designing the MailManager type. The developer must define the following items: 

1. Define a type that will hold any additional information that should be sent to 
receivers of the event notification  By convention, types that hold event information 
are derived from System.EventArgs, and the name of the type should end with 
EventArgs. In this example, the MailMsgEventArgs type has fields identifying 
who sent the message (from), who is receiving the message (to), the subject of the 
message (subject), and the message text itself (body). 

 
Note  The EventArgs type is defined in the .NET Framework Class 

Library (FCL) and looks like this:  

2. [Serializable] 
3. public class EventArgs { 

4.    public static readonly EventArgs Empty = new 
EventArgs(); 

5.    public EventArgs() {  } 

6. } 

7. As you can see, this type is nothing to write home about. It simply serves as a base 
type from which other types can derive. Many events don’t have any additional 
information to pass on. For example, when a Button notifies its registered receivers 
that the button has been clicked, just invoking the callback method is enough 
information. When you’re defining an event that doesn’t have any additional data to 
pass on, just use EventArgs.Empty rather than constructing a new EventArgs 
object.  

8. Define a delegate type specifying the prototype of the method that will be called 
when the event fires  By convention, the name of the delegate should end with 
EventHandler. Also by convention, the prototype should have a void return value 
and take two parameters (although some event handlers in the FCL, such as 
System.ResolveEventHandler, violate this convention). The first parameter is an 
Object that refers to the object sending the notification, and the second parameter is 
an EventArgs-derived type containing any additional information that receivers of 
the notification require. 

If you’re defining an event that has no additional information that you want to pass to 
receivers of the event, you don’t have to define a new delegate; you can use the 
FCL’s System.EventHandler delegate and pass EventArgs.Empty for the 
second parameter. The prototype of EventHandler is as follows:  

public delegate void EventHandler(Object sender, EventArgs 
e);  

9. Define an event  In this example, MailMsg is the name of the event. This event is of 
the MailMsgEventHandler type, meaning that all receivers of the event notification 
must supply a callback method whose prototype matches that of the 
MailMsgEventHandler delegate. 



10.  Define a protected, virtual method responsible for notifying registered objects 
of the event  The OnMailMsg method is called when a new e-mail message arrives. 
This method receives an initialized MailMsgEventArgs object containing additional 
information about the event. This method should first check to see whether any 
objects have registered interest in the event, and if they have, fire the event. 

A type that uses MailManager as a base type is free to override the OnMailMsg 
method. This capability gives the derived type control over the firing of the event. The 
derived type can handle the new e-mail message in any way it sees fit. Usually, a 
derived type calls the base type’s OnMailMsg method so that the registered object 
receives the notification. However, the derived type might decide not to have the 
event forwarded on. 

11.  Define a method that translates the input into the desired event  Your type must 
have some method that takes some input and translates it into the firing of an event. 
In this example, the SimulateArrivingMsg method is called to indicate that a new 
e-mail message has arrived into MailManager. SimulateArrivingMsg accepts 
information about the message and constructs a new MailMsgEventArgs object, 
passing the message information to its constructor. MailManager’s own virtual 
OnMailMsg method is then called to formally notify the MailManager object of the 
new e-mail message. Normally, this causes the event to be fired, notifying all the 
registered objects. (As mentioned before, a type using MailManager as a base type 
can override this behavior.)  

Let’s now take a closer look at what it really means to define the MailMsg event. When the 
compiler examines the source code, the compiler comes across the line that defines the 
event:  

public event MailMsgEventHandler MailMsg;  

The C# compiler translates this single line of source code into the following three constructs: 

// 1. A PRIVATE delegate field that is initialized to null  
private MailMsgEventHandler MailMsg = null; 

 
// 2. A PUBLIC add_* method  

//    Allows objects to register interest in the event. 
[MethodImplAttribute(MethodImplOptions.Synchronized)] 

public void add_MailMsg(MailMsgEventHandler handler) { 
   MailMsg = (MailMsgEventHandler)  

      Delegate.Combine(MailMsg, handler); 

} 
 

// 3. A PUBLIC remove_* method 
//    Allows objects to unregister interest in the event. 

[MethodImplAttribute(MethodImplOptions.Synchronized)] 
public void remove_MailMsg(MailMsgEventHandler handler) { 

   MailMsg = (MailMsgEventHandler) 
      Delegate.Remove(MailMsg, handler); 

} 



The first construct is simply a field of the appropriate delegate type. This field is a reference 
to the head of a linked list of delegates that want to be notified of this event. This field is 
initialized to null, meaning that no listeners have registered interest in the event. When an 
object registers interest in the event, this field refers to an instance of the 
MailMsgEventHandler delegate. Each MailMsgEventHandler delegate instance has a 
pointer to yet another MailMsgEventHandler delegate or to null to mark the end of the 
linked list. When a listener registers interest in an event, the listener is simply adding an 
instance of the delegate type to the linked list. Obviously, unregistering means removing the 
delegate from the linked list.  

You’ll notice that the delegate field, MailMsg in this example, is always private even though 
the original line of source code defines the event as public. The reason for making the 
delegate field private is to prevent code outside the defining type from manipulating it 
improperly. If the field were public, any code could assign to the field, wiping out all the 
delegates that have registered interest in the event. 

The second construct the C# compiler generates is a method that allows other objects to 
register their interest in the event. The C# compiler automatically names this function by 
prepending add_ to the event’s name (MailMsg). The C# compiler automatically generates 
the code that is inside this method. The code always calls System.Delegate’s static 
Combine method, which adds the instance of a delegate to the linked list of delegates and 
returns the new head of the linked list. 

The third and final construct the C# compiler generates is a method that allows an object to 
unregister its interest in the event. Again, the C# compiler automatically names this function 
by prepending remove_ to the event’s name (MailMsg). The code inside this method 
always calls Delegate’s static Remove method, which removes the instance of a delegate 
from the linked list of delegates and returns the new head of the linked list. 

You should also notice that both the add and remove methods have a 
MethodImplAttribute attribute applied to them. More specifically, these methods are 
marked as synchronized, making them thread safe: multiple listeners can register or 
unregister themselves with the event at the same time without corrupting the linked list. 

In this example, the add and remove methods are public. The reason they are public is that 
the original line of source code declared the event to be public. If the event had been 
declared protected, the add and remove methods generated by the compiler would also 
have been declared protected. So, when you define an event in a type, the accessibility of 
the event determines what code can register and unregister interest in the event, but only 
the type itself can ever access the delegate field directly. 

In addition to emitting the preceding three constructs, compilers also emit an event definition 
entry into the managed module’s metadata. This entry contains some flags and the 
underlying delegate type, and it refers to the add and remove accessor methods. This 
information exists simply to draw an association between the abstract concept of an "event" 
and its accessor methods. Compilers and other tools can use this metadata, and certainly, 
this information can be obtained by using the System.Reflection.EventInfo class. 
However, the CLR itself doesn’t use this metadata information and requires only the 
accessor methods at run time. 

 

Designing a Type That Listens for an Event 



The hard work is definitely behind you at this point. In this section, I’ll show you how to 
define a type that uses an event provided by another type. Let’s start off by examining the 
code for the Fax type:  

class Fax { 

   // Pass the MailManager object to the constructor. 
   public Fax(MailManager mm) { 

 
      // Construct an instance of the MailMsgEventHandler  

      // delegate that refers to the FaxMsg callback method. 
      // Register the callback with MailManager’s MailMsg event. 

      mm.MailMsg += new MailManager.MailMsgEventHandler(FaxMsg); 
   } 

 
   // This is the method that MailManager will call to  

   // notify the Fax object that a new e-mail message has 
arrived. 
   private void FaxMsg( 

      Object sender, MailManager.MailMsgEventArgs e) { 
 

      // The ‘sender’ identifies the MailManager in case  
      // you want to communicate back to it. 

 
      // The ‘e’ identifies the additional event information  

      // that the MailManager wants to provide. 
 

      // Normally, the code here would fax the e-mail message. 
This test 
      // implementation displays the information on the console. 

      Console.WriteLine("Faxing mail message:"); 
      Console.WriteLine( 

         "   To: {0}\n   From: {1}\n   Subject: {2}\n   Body: 
{3}\n", 

         e.from, e.to, e.subject, e.body); 
   } 

 
   public void Unregister(MailManager mm) { 

 
      // Construct an instance of the MailMsgEventHandler  

      // delegate that refers to the FaxMsg callback method. 
      MailManager.MailMsgEventHandler callback =  

         new MailManager.MailMsgEventHandler(FaxMsg); 



 
      // Unregister with MailManager’s MailMsg event. 

      mm.MailMsg -= callback; 
   } 

} 

When the e-mail application initializes, it would first construct a MailManager object and 
save the reference to this object in a variable. Then the application would construct a Fax 
object, passing the reference to the MailManager object as a parameter. In the Fax 
constructor, a new MailManager.MailMsgEventHandler delegate object is constructed. 
This new delegate object is a wrapper around the Fax type’s FaxMsg method. You’ll notice 
that the FaxMsg method returns void and takes the same two parameters as defined by the 
MailManager’s MailMsgEventHandler delegate—this is required for the code to 
compile. 

After constructing the delegate, the Fax object registers its interest in MailManager’s 
MailMsg event using C#’s += operator:  

mm.MailMsg += new MailManager.MailMsgEventHandler(FaxMsg);  

Because the C# compiler has built-in support for events, the compiler translates the use of 
the += operator into the following line of code to add the object’s interest in the event:  

mm.add_MailMsg(new MailManager.MailMsgEventHandler(FaxMsg)); 

Even if you’re using a programming language that doesn’t directly support events, you can 
still register a delegate with the event by calling the add accessor method explicitly. The 
effect is identical; it’s just that the source code doesn’t look as pretty. It’s the add method 
that registers the delegate with the event by adding it to the event’s linked list of delegates. 

When MailManager fires the event, the Fax object’s FaxMsg method gets called. The 
method is passed a reference to the MailManager object. Most of the time, this parameter 
is ignored, but it can be used if the Fax object wants to access fields or methods of the 
MailManager object in response to the event notification. The second parameter is a 
reference to a MailMsgEventArgs object. This object contains any additional information 
that MailManager thought would be useful to event receivers. 

From the MailMsgEventArgs object, the FaxMsg method has easy access to the 
message’s sender, the message’s recipient, the message’s subject, and the message’s text. 
In a real Fax object, this information would be faxed to somewhere. In this example, the 
information is simply displayed in the console window. 

When an object is no longer interested in receiving event notifications, it should unregister its 
interest. For example, the Fax object would unregister its interest in the MailMsg event if 
the user no longer wanted her e-mail forwarded to a fax. As long as an object stays 
registered with another object’s event, the object can’t be garbage collected. If your type 
implements IDisposable’s Dispose method, disposing of the object should cause it to 
unregister interest in all events. (See Chapter 19 for more information about IDisposable.)  

Code that demonstrates how to unregister for an event is shown in Fax’s Unregister 
method. This method is practically identical to the code shown in the Fax type’s constructor. 
The only difference is that this code uses -= instead of +=. When the C# compiler sees code 
using the -= operator to unregister a delegate with an event, the compiler emits a call to the 
event’s remove method:  



mm.remove_MailMsg(callback}; 

As with the += operator, even if you’re using a programming language that doesn’t directly 
support events, you can still unregister a delegate with the event by calling the remove 
accessor method explicitly. The remove method unregisters the delegate from the event by 
scanning the linked list for a delegate that wraps the same method as the callback passed 
in. If a match is found, the existing delegate is removed from the event’s linked list of 
delegates. If a match isn’t found, no error occurs and the linked list is unaltered. 

By the way, C# requires that your code use the += and -= operators to add and remove 
delegates from the linked list. If you try to call the add or remove method explicitly, the C# 
compiler produces a "cannot explicitly call operator or accessor" error. 

The MailManager sample application (which can be downloaded from 
http://www.wintellect.com) shows all the source code for the MailManager type, the Fax 
type, and the Pager type. You’ll notice that the Pager type is implemented quite similarly to 
the Fax type. 

 

Explicitly Controlling Event Registration 

Sometimes the add and remove methods the compiler generates are not ideal. For 
example, if you’re adding and removing delegates frequently and you know that your 
application is single threaded, the overhead of synchronizing access to the object that owns 
the delegate can really hurt your application’s performance. 

A more common reason for implementing add and remove is if your type defines many 
events. I’ll cover this scenario specifically in the next section, "Designing a Type That 
Defines Lots of Events."  

Fortunately, C# and many other compilers allow the developer to create explicit 
implementations of the add and remove accessor methods. The following example shows 
how you could modify MailManager. This new version provides explicit implementation of 
the add and remove methods.  

class MailManager { 

   // 1. Type-defining information passed to receivers of the 
event 

   public class MailMsgEventArgs : EventArgs { ... } 
 

   // 2. Delegate type defining the prototype of the callback 
method 
   //    that receivers must implement 

   public delegate void MailMsgEventHandler( 
      Object sender, MailMsgEventArgs args); 

 
   // 3a. Explicitly define a private delegate linked list field. 

   private MailMsgEventHandler mailMsgEventHandlerDelegate; 
 

   // 3b. Explicitly define an event and its accessor methods. 



   public event MailMsgEventHandler MailMsg { 
 

      // Add handler (passed as ‘value’) to the delegate linked 
list. 
      add { 

         mailMsgEventHandlerDelegate = (MailMsgEventHandler)  
            Delegate.Combine(mailMsgEventHandlerDelegate, value); 

      } 
 

      // Remove handler (passed as ‘value’) from the delegate 
linked list. 
      remove { 

         mailMsgEventHandlerDelegate = (MailMsgEventHandler) 
            Delegate.Remove(mailMsgEventHandlerDelegate, value); 

      } 
   } 

 
   // 4. Protected, virtual method responsible for  

   //    notifying registered objects of the event 
   protected virtual void OnMailMsg(MailMsgEventArgs e) { 

 
      // Have any objects registered interest with the event?  

      if (mailMsgEventHandlerDelegate != null) { 
 

         // Yes—notify all the objects in the delegate linked 
list. 

         mailMsgEventHandlerDelegate(this, e); 
      } 

   } 
 

   // 5. Method that translates the input into the desired event. 
   //    This method is called when a new e-mail message arrives. 

   public void SimulateArrivingMsg(String from, String to, 
      String subject, String body) { ... } 

} 

In this new version of MailManager, steps 1, 2, and 5 have required no modification. They 
are exactly the same as shown in the earlier example. However, step 3 has been broken up 
into two steps (3a and 3b), and step 4 has also had a slight modification. Let’s discuss these 
changes.  

3a Explicitly define a private field that is a reference to a delegate 
linked list  In the original event syntax, the C# compiler automatically 



defined a private field for you. Using this new event syntax, the developer 
must not only explicitly supply implementations for the add and remove 
accessor methods but also explicitly supply the field. 

3b Explicitly define an event and its accessor methods  The field 
defined in step 3a is just a field (a reference to a MailMsgEventHandler 
delegate). There’s nothing that makes this field an event. The new event 
syntax is actually what defines an event within the type. The code in the add 
and remove blocks provides the implementation for the accessor methods. 
Notice that each method accepts a hidden parameter, called value, which 
is of the MailMsgEventHandler type. Inside, these methods implement 
the code necessary to add or remove a MailMsgEventHandler delegate 
from the linked list. Unlike properties, which can have a get accessor 
method, a set accessor method, or both, events must always have both 
add and remove accessor methods. 

The explicit implementations shown in the preceding example have exactly 
the same behavior as the methods that the C# compiler would have 
provided except that the MethodImplAttribute is omitted. In fact, you 
can still use the += and -= operators in your source code and the compiler 
will know to emit calls to the explicit methods. The accessor methods are no 
longer thread safe, but their performance is better. Of course, you should 
remove the MethodImplAttribute only if you know for sure that just one 
thread at a time will be accessing the event’s delegate. 

4 Define a protected, virtual method responsible for notifying 
registered objects of the event  Semantically, the OnMailMsg method is 
identical to the previous version. The only difference is that the name of the 
event has been replaced with the name of the delegate field. 

 

Designing a Type That Defines Lots of Events 

In the previous section, I described a scenario in which you might want to explicitly provide 
add and remove accessor methods for an event. However, when you’re explicitly 
implementing the accessor methods yourself, you can get a bit more creative with their 
implementation. Let’s see how explicitly implementing these methods can reduce the 
memory usage of an application. 

The System.Windows.Forms.Control type defines about 60 events. If the Control 
type implemented the events by allowing the compiler to implicitly generate the add and 
remove accessor methods and delegate fields, then every Control object would have 60 
delegate fields in it just for the events! Because objects never register interest in most of 
these events, an enormous amount of memory is wasted for each object created from a 
Control-derived type. By the way, the System.Web.UI.Control type also uses the 
following technique to reduce the memory wasted by unused events.  

By explicitly implementing the event’s add and remove methods creatively, you can greatly 
reduce the amount of space wasted by each object. In this section, I’ll show you how to 
define a type that exposes many events efficiently. 

The basic idea is that each object will maintain a collection (usually a hash table) of 
event/delegate pairs. When a new object is constructed, this collection is empty. When 
interest in an event is registered, the type of event is looked up in the collection. If the event 



is there, the new delegate is combined with the linked list of delegates for this event. If the 
event isn’t identified in the collection, the event is added with the delegate. 

When the event needs to fire, the event is looked up in the collection. If the collection doesn’t 
have an entry for the event, then nothing has registered interest in the event and no 
delegates are called back. If the event is in the collection, then the delegate linked list 
associated with the event is invoked. 

The following code demonstrates the recommended design pattern that should be used to 
design a type that defines lots of events: 

class TypeWithLotsOfEvents { 

 
   // 1. Define a protected instance field that references a 
collection. 
   //    The collection manages a set of Event/Delegate pairs. 

   //    NOTE: The EventHandlerSet type is not part of the FCL. 
   //    It is my own type, and I describe it later in this 
chapter. 
   protected EventHandlerSet eventSet =  
     EventHandlerSet.Synchronized(new EventHandlerSet()); 

 
    

   // 2.  Define the members necessary for the Foo event. 
   // 2a. Construct a static, read-only object to identify this 
event. 
   //     Each object has its own hash code for looking up this  
   //     event’s delegate linked list in the object’s 
collection. 
   protected static readonly Object fooEventKey = new Object(); 
 

   // 2b. Define the EventArgs-derived type for this event. 
   public class FooEventArgs : EventArgs {} 

 
   // 2c. Define the delegate prototype for this event. 

   public delegate void FooEventHandler(Object sender, 
FooEventArgs e); 

 
   // 2d. Define the event’s accessor methods that add/remove the 

   //     delegate from the collection.  
   public event FooEventHandler Foo { 

      add    { eventSet.AddHandler(fooEventKey, value); } 
      remove { eventSet.RemoveHandler(fooEventKey, value); } 

   } 
 



   // 2e. Define the protected, virtual On method for this event. 
   protected virtual void OnFoo(FooEventArgs e) { 

      eventSet.Fire(fooEventKey, this, e); 
   } 

 
   // 2f. Define the method that translates input to this event. 

   public void SimulateFoo() { 
      OnFoo(new FooEventArgs()); 

   } 
 

   // 3.  Define the members necessary for the Bar event. 
   // 3a. Construct a static, read-only object to identify this 
event. 
   //     Each object has its own hash code for looking up this  
   //     event’s delegate linked list in the object’s 
collection. 
   protected static readonly Object barEventKey = new Object();   
 

   // 3b. Define the EventArgs-derived type for this event. 
   public class BarEventArgs : EventArgs {} 

 
   // 3c. Define the delegate prototype for this event. 

   public delegate void BarEventHandler(Object sender, 
BarEventArgs e); 

 
   // 3d. Define the event’s accessor methods that add/remove the 

   //     delegate from the collection.  
   public event BarEventHandler Bar { 

      add    { eventSet.AddHandler(barEventKey, value); } 
      remove { eventSet.RemoveHandler(barEventKey, value); } 

   } 
 

   // 3e. Define the protected, virtual On method for this event. 
   protected virtual void OnBar(BarEventArgs e) { 

      eventSet.Fire(barEventKey, this, e); 
   } 

 
   // 3f. Define the method that translates input to this event. 

   public void SimulateBar() { 
      OnBar(new BarEventArgs()); 

   } 



} 

Implementing this design pattern is the responsibility of the developer who is designing the 
type that defines the events; the developer using the type has no idea how the events are 
implemented internally. Now I’ll walk you through the steps in the preceding code:  

1. Define a protected instance field that references a collection  Each instance of this 
type will maintain its own set of registered event listeners using this collection. The 
collection is usually implemented via a hash table to provide for fast lookup of an 
event. Each entry in the collection has a key (usually of type System.Object) that 
uniquely identifies the event type and a value that identifies the head of a delegate 
linked list representing the methods that should be called back when the event fires. 
This field should be protected so that derived types can use the collection for any 
additional events they want to define. In the preceding code, I’m using an 
EventHandlerSet collection. This is a collection type that I’ve defined. Internally, 
the EventHandlerSet type uses a System.Collections.Hashtable. The 
EventHandlerSet type has some additional members that make it well suited to 
working with events and delegates. I’ll explain the EventHandlerSet type later in 
this chapter. 

2. Define the members necessary for an event the type wants to expose   For each 
event that you want the type to expose, you must define a set of members. These 
members are described in steps 2a through 2f. You’ll notice that no instance data 
fields are used—they are what would have caused the wasted memory. 

a. Construct a static, read-only object to identify this event  There must be some 
way to uniquely identify each event in the collection. Because I’m using a hash table, 
I just need a unique key, which can be generated from an object’s hash code. All 
instances of the type can share this unique key, so I obtain the key by constructing an 
Object and saving the reference to it in a static, read-only field. This technique 
conserves memory only if you expect users of the type to construct several instances 
of it. If users construct only a single instance of the type, this technique will actually 
use more memory; in this case, you shouldn’t use it. Although in my example, I’ve 
defined the static field to be protected so that derived types can use it, you can just as 
easily define this field as private instead. 

b. Define the EventArgs-derived type that will hold any additional information 
that should be sent to receivers of the event notification I discussed this type and 
its usage earlier in this chapter. If the event has no special information to pass on, 
you can simply use the System.EventArgs type defined in the FCL instead of 
defining a type of your own. In my example, I’ve defined the type for demonstration 
purposes and therefore didn’t define any fields within the type. 

c. Define a delegate type specifying the prototype of the method that will be 
called when the event fires I discussed this delegate type and its usage earlier in 
this chapter. In my example, because the FooEventArgs type doesn’t have any 
fields in it, I don’t need to define a special delegate type. If your event doesn’t have 
any special information that it needs to send to the listeners, you can also avoid 
defining your own delegate type and just use the System.EventHandler delegate 
type defined in the FCL.  

d. Explicitly define an event and its accessor methods This is the interesting part 
of this technique. In this step, you explicitly define your own add and remove 
accessor methods for each event you want your type to expose. In my example, the 
add and remove methods call the EventHandlerSet’s AddHandler and 
RemoveHandler methods, respectively. EventHandlerSet’s AddHandler 
method scans the collection to see whether a key of fooEventKey already exists. If 



the key doesn’t exist, it is added to the hash table and the key’s value indicates the 
delegate that should be called. If the key already exists, the value (the new delegate) 
is combined to the already existing delegate’s linked list. RemoveHandler does the 
opposite operation. (Again, I’ll talk about the EventHandlerSet type later in this 
chapter.) In my example, all access to the EventHandlerSet collection is thread 
safe, so I don’t specify the MethodImplAttribute attribute on the event’s add and 
remove accessor methods. 

e. Define a protected, virtual method responsible for notifying registered 
objects of the event The OnFoo method is called whenever the "Foo event" occurs 
to the object. In my example, this method calls the EventHandlerSet’s Fire 
method. This method takes the object whose hash code identifies the key to look up 
in the collection. The Fire method then scans the collection for the key; if it finds the 
key, it invokes the associated delegate linked list, passing this (the object firing the 
event) and an EventArgs-derived object identifying any additional information to the 
listeners. You’ll see exactly how EventHandlerSet’s Fire method is implemented 
later. 

f. Define a method that translates the input into the desired event I talked about 
this method and its usage earlier in the chapter. In my example, the SimulateFoo 
method is called to simulate that a "Foo event" has occurred. All the method does is 
fire the event, passing it any additional information about the event. 

3. Define the members necessary for an event the type wants to expose   This step is 
just a repeat of steps 2a through 2f for each additional event you want your type to 
expose. In my example, my type exposes two events, Foo and Bar. Steps 3a 
through 3f are for the Bar event. 

 

Designing the EventHandlerSet Type 

The code shown earlier makes extensive use of an EventHandlerSet type. As I 
mentioned, this type isn’t in the FCL; I defined it. Here’s the source code for this type:  

public class EventHandlerSet : IDisposable { 
 

   // The private hash table collection used to maintain  
   // the event key/delegate value pairs 

   private Hashtable events = new Hashtable(); 
 

 
   // An index property that gets/sets the delegate associated 

   // with the passed event object’s hash code key 
   public virtual Delegate this[Object eventKey] { 

      // Returns null if object is not in set 
      get { return (Delegate) events[eventKey]; } 

      set { events[eventKey] = value; } 
   } 

 
    



   // Adds/Combines a delegate for the indicated event hash code 
key 
   public virtual void AddHandler(Object eventKey, Delegate 
handler) { 
      events[eventKey] =  
         Delegate.Combine((Delegate) events[eventKey], handler); 

   } 
 

   // Removes a delegate for the indicated event hash code key 
   public virtual void RemoveHandler( 

      Object eventKey, Delegate handler) { 
 

      events[eventKey] =  
         Delegate.Remove((Delegate) events[eventKey], handler); 

   } 
 

 
   // Fires the delegate for the indicated event hash code key 

   public virtual void Fire(Object eventKey, 
      Object sender, EventArgs e) { 

 
      Delegate d = (Delegate) events[eventKey]; 

      if (d != null) d.DynamicInvoke(new Object[] { sender, e }); 
   } 

 
 

   // Disposing this object allows the memory used by the hash 
table  

   // to be reclaimed at the next garbage collection, preventing 
   // generation promotion. 

   public void Dispose() { events = null; } 
    

 
   // This static method returns a thread-safe wrapper around the 

   // specified EventHandlerSet object. 
   public static EventHandlerSet Synchronized( 

      EventHandlerSet eventHandlerSet) { 
 

      if (eventHandlerSet == null)  
         throw new ArgumentNullException("eventHandlerSet"); 

      return new SynchronizedEventHandlerSet(eventHandlerSet); 



   } 
     

 
   // This class provides a thread-safe wrapper over a simple 
EventHandlerSet 
   private class SynchronizedEventHandlerSet : EventHandlerSet { 
 

      // The reference to the thread-unsafe object 
      private EventHandlerSet eventHandlerSet; 

 
      // Construct a thread-safe wrapper over the thread-unsafe 
object. 
      public SynchronizedEventHandlerSet( 
         EventHandlerSet eventHandlerSet) { 

         this.eventHandlerSet = eventHandlerSet; 
         Dispose();  // Let the base type’s hash table object be 
freed. 
      } 
 

      // Thread-safe indexer property 
      public override Delegate this[Object eventKey] { 

         [MethodImpl(MethodImplOptions.Synchronized)] 
         get { return eventHandlerSet[eventKey]; } 

 

         [MethodImpl(MethodImplOptions.Synchronized)] 
         set { eventHandlerSet[eventKey] = value; } 

      } 
 

      // Thread-safe AddHandler method 
      [MethodImpl(MethodImplOptions.Synchronized)] 

      public override void AddHandler( 
         Object eventKey, Delegate handler) { 

         eventHandlerSet.AddHandler(eventKey, handler); 
      } 

 
 

      // Thread-safe RemoveHandler method 
      [MethodImpl(MethodImplOptions.Synchronized)] 

      public override void RemoveHandler( 
         Object eventKey, Delegate handler) { 

         eventHandlerSet.RemoveHandler(eventKey, handler); 



      } 
 

 
      // Thread-safe Fire method 

      [MethodImpl(MethodImplOptions.Synchronized)] 
      public override void Fire( 

         Object eventKey, Object sender, EventArgs e) { 
         eventHandlerSet.Fire(eventKey, sender, e); 

      } 
   } 

} 

The implementation of the EventHandlerSet type is pretty straightforward; it’s mostly just 
a bunch of manipulations on a hash table. However, there is one thing worth mentioning 
about the Fire method. This method is responsible for firing all the delegates in the chain, 
and it determines which delegate object to use from the events hash table. Because the 
hash table can contain several different delegate types, it is impossible to construct a type-
safe call to the delegate at compile time. So, I call the System.Delegate type’s 
DynamicInvoke method, passing it the callback method’s parameters as an array of 
objects. Internally, DynamicInvoke will check the type safety of the parameters with the 
callback method being called and call the method. If there is a type mismatch, then 
DynamicInvoke will throw an exception.  

 
Note  

The FCL defines a type, System.ComponentModel.Event-
HandlerList, that does essentially the same thing as my 
EventHandlerSet type. The System.Windows.Forms.Control and 
System.Web.UI.Control types use the EventHandlerList type 
internally to maintain their sparse set of events. You’re certainly welcome to 
use the FCL’s EventHandlerList type if you’d like. The difference 
between the EventHandlerList type and my EventHandlerSet type is 
that EventHandlerList uses a linked list instead of a hash table. This 
means that accessing elements managed by the EventHandlerList is 
slower than using my EventHandlerSet. In addition, the 
EventHandlerList doesn’t offer any thread-safe way to access the 
collection; you would have to implement your own thread-safe wrapper 
around the EventHandlerList collection if you need this. 
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Chapter 12: Working with Text 
In this chapter, I’ll explain the mechanics of working with individual characters and strings in 
the Microsoft .NET Framework. I’ll start by talking about the System.Char structure and the 
various ways that you can manipulate a character. Then I’ll go over the more useful 
System.String class, which allows you to work with immutable strings. (Once created, 
immutable strings can’t be modified in any way.) After examining strings, I’ll show you how to 
perform various operations efficiently to build a string dynamically via the System.Text.-
StringBuilder class. With the string basics out of the way, I’ll then describe how to format 
objects into strings and how to efficiently persist or transmit strings using various encodings. 

Characters 

In the .NET Framework, characters are always represented in 16-bit Unicode code values, 
easing the development of global applications. A character is represented with an instance 
of the System.Char structure (a value type). The System.Char type is pretty simple. It 
offers two public read-only constant fields: MinValue, defined as 0x0000, and MaxValue, 
defined as 0xFFFF. 

Given an instance of a Char, you can call the static GetUnicodeCategory method, which 
returns a value of the System.Globalization.UnicodeCategory enumerated type. 
This value indicates whether the character is a control character, a currency symbol, a 
lowercase letter, an uppercase letter, a punctuation character, a math symbol, and so on (as 
defined by the Unicode 3.0 standard). To ease developing, the Char type also offers several 
static methods, such as IsDigit, IsLetter, IsWhiteSpace, IsUpper, IsLower, 
IsPunctuation, IsLetter-OrDigit, IsControl, IsNumber, IsSeparator, 
IsSurrogate, and IsSymbol. All these methods call GetUnicodeCategory internally 
and simply return true or false. Note that all these methods take either a single character 
for a parameter or a String and the index of a character within the String as parameters.  

In addition, you can convert a single character to its lowercase or uppercase equivalent by 
calling the static ToLower or ToUpper method. The call to one of these methods converts 
the character using the culture information associated with the calling thread (which the 
methods obtain internally by querying System.Threading.Thread’s static 
CurrentCulture property); or you can specify a particular culture by passing an instance 
of a System.Globalization.-CultureInfo class to these methods. ToLower and 
ToUpper require culture information because letter casing is a culture-dependent operation. 
For example, Turkish considers the uppercase of U+0069 (LATIN SMALL LETTER I) to be 
U+0130 (LATIN CAPITAL LETTER I WITH DOT ABOVE), whereas other cultures consider 
the result to be U+0049 (LATIN CAPITAL LETTER I). 

In addition to these static methods, the Char type also offers a few instance methods of its 
own. The Equals method returns true if two Char instances represent the same 16-bit 
Unicode code point. The CompareTo method (defined by the IComparable interface) 
returns a comparison of two code points; this comparison is not culture-sensitive. Chapter 15 
explains how the IComparable interface and its CompareTo method work. The ToString 
method returns a String consisting of a single character. The opposite of ToString is 
Parse, which takes a single-character String and returns the character. 

The last method, GetNumericValue, returns the numeric equivalent of a character. The 
following code demonstrates:  

using System; 



 
class App { 

   static void Main() { 
      Double d; 

 
      // ’\u0033’ is the "digit 3" 

      d = Char.GetNumericValue(‘\u0033’); // ’3’ would work too 
      Console.WriteLine(d.ToString());    // Displays "3" 

 
      // ’\u00bc’ is the "vulgar fraction one quarter (‘ù’)" 

      d = Char.GetNumericValue(‘\u00bc’); 
      Console.WriteLine(d.ToString());    // Displays "0.25" 

 
      // ’A’ is the "Latin capital letter A" 

      d = Char.GetNumericValue(‘A’); 
      Console.WriteLine(d.ToString());    // Displays "-1" 

   } 
} 

Finally, three techniques allow you to convert between various numeric types to Char 
instances and vice versa. The techniques are listed here in order of preference:  
§ Casting  The easiest way to convert a Char to a numeric value such as an Int32 is 

simply by casting. Of the three techniques, this is the most efficient because the 
compiler emits intermediate language (IL) instructions to do the conversion and no 
methods have to be called. In addition, some languages (such as C#) allow you to 
indicate whether the conversion should be done using checked or unchecked code 
(discussed in Chapter 5). This lets you decide whether you’d like a 
System.OverflowException thrown when converting a value causes a loss of data. 
The only downside of this technique is that your compiler must treat the desired numeric 
type as a primitive. So, in Visual Basic, for example, you can’t use this technique to 
convert a Char to a UInt16 (or vice versa) because Visual Basic doesn’t consider 
UInt16 a primitive type. 

§ Use the Convert type  The System.Convert type offers several static methods that 
know how to convert a Char to a numeric type and vice versa. All these methods 
perform the conversion as a checked operation, causing an OverflowException to 
be thrown should the conversion result in the loss of data. 

§ Use the IConvertible interface   The Char type and all the numeric types in the 
.NET Framework Class Library (FCL) implement the IConvertible interface. This 
interface defines methods such as ToUInt16 and ToChar. This technique performs 
least effectively of the three because calling an interface method on a value type 
requires that the instance be boxed—Char and all the numeric types are value types. 
IConvertible’s methods throw exceptions if the type can’t be converted (such as 
converting a Char to a Boolean) or if the conversion results in a loss of data. Note that 
many types (including the FCL’s Char and numeric types) implement IConvertible’s 
methods as explicit interface member implementations (described in Chapter 15). This 
means that you explicitly have to cast the instance to an IConvertible before you 
can call any of the interface’s methods.  



The following code demonstrates how to use these three techniques. 

using System; 

 
class App { 

   static void Main() { 
      Char  c; 

      Int32 n; 
 

      // Convert number <-> character using C# casting 
      c = (Char) 65; 

      Console.WriteLine(c);                  // Displays "A" 
 

      n = (Int32) c; 
      Console.WriteLine(n);                  // Displays "65" 

 
      c = unchecked((Char) (65536 + 65)); 

      Console.WriteLine(c);                  // Displays "A" 
 

 
 

      // Convert number <-> character using Convert 
      c = Convert.ToChar(65); 

      Console.WriteLine(c);                  // Displays "A" 
 

      n = Convert.ToInt32(c); 
      Console.WriteLine(n);                  // Displays "65"  

 
 

      // This demonstrates Convert’s range checking 
      try { 

         c = Convert.ToChar(70000);          // Too big for 16 bi
ts 

         Console.WriteLine(c);               // Doesn’t execute 
      } 

      catch (OverflowException) { 
         Console.WriteLine("Can’t convert 70000 to a Char."); 

      } 
 

 
      // Convert number <-> character using IConvertible 



      c = ((IConvertible) 65).ToChar(null); 
      Console.WriteLine(c);                  // Displays "A" 

 
      n = ((IConvertible) c).ToInt32(null); 

      Console.WriteLine(n);                  // Displays "65" 
   } 

} 

 

The System.String Type 

Certainly, one of the most used types in any application is System.String. A String 
represents an immutable ordered set of characters. The String type is derived immediately 
from Object, making it a reference type. (No string ever lives on a thread’s stack.) The 
String type also implements several interfaces (IComparable, ICloneable, 
IConvertible, and IEnumerable). 

Constructing Strings 

Many programming languages (including C#) consider String to be a primitive type—that 
is, the compiler lets you express literal strings directly in their source code. The compiler 
places these literal strings in the module’s metadata, and they are accessed at run time 
using a mechanism called string interning (which I’ll talk about later in this chapter). 

In C#, you can’t use the new operator to construct a String object:  

using System; 
 

class App { 
   static void Main() { 

      String s = new String("Hi there.");  // <— Error 
   } 

} 

Instead, you must use the following special and simplified syntax: 

using System; 
 

class App { 
   static void Main() { 

      String s = "Hi there."; 
   } 

} 

If you were to compile this code and examine its IL (using ILDasm.exe), you’d see the 
following: 

.method private hidebysig static void  Main() cil managed 

{ 



  .entrypoint 
  // Code size       7 (0x7) 

  .maxstack  1 
  .locals (string V_0) 

  IL_0000:  ldstr      "Hi there." 
  IL_0005:  stloc.0 

  IL_0006:  ret 
} // end of method App::Main 

The IL instruction that constructs a new instance of an object is newobj. However, no 
newobj instruction appears in the IL code example. Instead, you see the special ldstr 
(load string) IL instruction that constructs a String object using a literal string obtained from 
metadata. This shows you that the CLR does, in fact, have a special way of constructing 
String objects.  

In rare cases, you might need a String object that isn’t constructed from a literal string 
contained in metadata. To accomplish this, you would use C#’s new operator and call one of 
the constructors provided by the String type. The constructors that take Char* or SByte* 
parameters were designed to be callable from code written using C++ with Managed 
Extensions. These constructors create a String object, initializing the string from an array 
of Char instances or signed bytes. The other constructors don’t have any pointer 
parameters and can be called from any managed programming language. 

C# offers some special syntax that helps you enter literal strings into the source code. For 
special characters, such as new lines, carriage returns, and backspaces, C# uses the 
escape mechanism familiar to C/C++ developers: 

// String containing carriage-return and newline characters 

String s = "Hi\r\nthere."; 

 
Important  

Although the preceding example hard-codes carriage-return and 
newline characters into the string, I don’t recommend this practice. 
Instead, the System.Environment type defines a read-only 
NewLine property that returns a string consisting of these characters 
when your application is running on Windows. However, the NewLine 
property is platform sensitive, and it returns the appropriate string 
required to obtain a newline by the underlying platform. So, for 
example, if the common language runtime (CLR) is ported to a UNIX 
system, the NewLine property would return a string consisting of just a 
single character "\n". Here’s the proper way to define the previous 
string so that it works correctly on any platform:  

String s = "Hi" + Environment.NewLine + "there."; 

You can concatenate several strings to form a single string using C#’s + operator as follows:  

// Three literal strings concatenated to form a single literal st
ring 
String s = "Hi" + " " + "there."; 

In this code, because all the strings are literal strings, the compiler concatenates them at 
compile time and ends up placing just one string, “Hi there.”, in the module’s metadata. 
Using the + operator on nonliteral strings performs the concatenation at run time. To 



concatenate several strings together at run time, don’t use the + operator because it creates 
multiple string objects in the garbage collected heap. Instead, use the 
System.Text.StringBuilder type (which I’ll explain later in this chapter). 

Finally, C# also offers a special way to declare a string in which all characters between 
quotes are considered part of the string. These special declarations are called verbatim 
strings and are typically used when specifying the path of a file or directory or when working 
with regular expressions. Here’s an example: 

// Specifying the pathname of an application  

String file = "C:\\Windows\\System32\\Notepad.exe"; 
 

// Specifying the pathname of an application using a verbatim str
ing 
String file = @"C:\Windows\System32\Notepad.exe"; 

These two code lines produce identical results. However, the @ symbol before the string on 
the second line tells the compiler that the string is a verbatim string. In effect, this tells the 
compiler to treat backslash characters as backslash characters instead of escape 
characters, making the path much more readable. 

Now that you’ve seen how to construct a string, let’s talk about some of the operations you 
can perform on String objects. 

Strings Are Immutable 

The most important thing to know about a String object is that it is immutable; that is, once 
created, a string can never get longer, get shorter, or have any of its characters changed. 
Having immutable strings offers several benefits. First, it allows you to perform operations on 
a string without actually changing the string:  

if (s.ToLower().SubString(10, 20).EndsWith("exe")) { 

   ? 
} 

Here, ToLower returns a new string; it doesn’t modify the characters of the string s. 
SubString operates on the string returned by ToLower and also returns a new string, 
which is then examined by EndsWith. The two temporary strings created by ToLower and 
SubString are not referenced long by the application code, and the garbage collector will 
reclaim their memory at the next collection. These short-lived objects are very quick to 
collect, and it’s usually not worth investing time in your algorithm in an attempt to improve 
performance.  

Having immutable strings also means that there are no thread synchronization issues when 
manipulating a string. In addition, it’s possible for two String references to refer to the 
same string object instead of different string objects if the strings are identical. This can 
reduce the number of strings in the system, conserving memory usage, and it is what string 
interning (discussed later in the chapter) is all about. 

For performance reasons, the String type is tightly integrated with the CLR. Specifically, 
the CLR knows the exact layout of the fields defined within the String type, and the CLR 
accesses these fields directly. This performance and direct access come at a small 
development cost: the String class is sealed. If you were able to define your own type, 



using String as a base type, you could add your own fields, which would break the 
assumptions the CLR makes. In addition, you could break some assumptions that the CLR 
has made about String objects being immutable. 

Comparing Strings 

Comparing is probably the most common operation performed on strings. Fortunately, the 
String type offers several static and instance methods that allow you to compare strings in 
very useful ways. Table 12-1 summarizes these methods.  

Table 12-1: Methods for Comparing Strings  

Member Member 
Type 

Description 

Compare  Static 
method 

Returns how two strings should be 
sorted with respect to each other. 
Unlike the CompareTo method, this 
method gives you control over the 
culture used (via a CultureInfo 
object) and case sensitivity. If you 
need more advanced string 
comparison functionality, see the 
discussion of the CompareInfo class 
later in this section. 

CompareTo  Instance 
method 

Returns how two strings should be 
sorted with respect to each other. 
Note that this method always uses the 
CultureInfo object associated with 
the calling thread. 

StartsWith/EndsWith  Instance 
method 

Returns true if the string starts/ends 
with the specified string. The 
comparison is always case sensitive 
and uses the CultureInfo object 
associated with the calling thread. To 
perform the same operations with 
case insensitivity, use 
CompareInfo’s IsPrefix and 
IsSuffix methods. 

CompareOrdinal  Static 
method 

Returns true if two strings have the 
same set of characters. Unlike the 
other compare methods, this method 
simply compares the code values of 
the characters in the string; it doesn’t 
do a culturally aware comparison, and 
the comparison is always case 
sensitive. This method is faster than 
the other compare methods, but it 
shouldn’t be used for sorting strings 
that are destined to be shown to a 
user since the resulting set of strings 
might not be ordered the way a user 
would expect. For example, 



Table 12-1: Methods for Comparing Strings  

Member Member 
Type 

Description 

CompareOrdinal will sort "a" after 
"A" since the code value of "a" is a 
larger value than the code value for 
"A". 

Equals  Static and 
instance 
methods 

Returns true if two strings have the 
same set of characters. Internally, 
Equals calls String’s static 
CompareOrdinal method. The static 
Equals method first checks whether 
the two references refer to the same 
object; if they do, it returns true 
instead of comparing the string’s 
individual characters. Comparing 
references first improves performance 
greatly when using the interned string 
mechanism, which I’ll describe 
shortly. 

GetHashCode  Instance 
method 

Returns a hash code for the string. 

In addition to these methods, the String type provides overloads of the == and != 
operators. Internally, these operator methods are implemented by calling String’s static 
Equals method.  

There are two reasons to compare two strings with each other. The first is to determine 
whether the two strings represent essentially the same string. The second is to sort the 
strings, usually for presentation to a user. To determine whether two strings are equal, you 
can use the CompareOrdinal method. This method is fast because it compares only the 
code values in the strings. However, some strings are logically equal even though they might 
not have the same code values. 

To determine whether these two strings are equal, you should call the Compare method 
instead. Internally, this method uses culture-specific sorting tables (as defined by the 
Unicode 3.1 standard) that are part of the .NET Framework itself. Because these tables are 
included in the .NET Framework, all versions of the .NET Framework (regardless of 
underlying operating system platform) will compare and sort the strings in the same way. 
When comparing two strings for equality, you can have the Compare method perform a 
case-sensitive or case-insensitive comparison depending on your application’s needs. 

 
Important  

When comparing strings or converting strings to uppercase or 
lowercase, you should usually use InvariantCulture. For 
example, use InvariantCulture when comparing and converting 
pathnames and filenames, registry keys and values, reflection strings, 
XML tags and XML attribute names, and any other programmatic 
strings. In fact, you should use a noninvariant culture only when you’re 
comparing and converting strings that are to be displayed to the user 
in a linguistically correct manner. And, of course, the culture you use 
should match the user’s chosen language and optionally the user’s 
country. 



The following code demonstrates the difference between calling Compare-Ordinal and 
Compare:  

using System; 

using System.Globalization; 
 

class App { 
   static void Main() { 

      String s1 = "Strass", s2 = "Stra§"; 
      Int32 x; 

 
      // CompareOrdinal returns nonzero: strings have different v
alues. 
      x = String.CompareOrdinal(s1, s2); 
      Console.WriteLine("CompareOrdinal: ’{0}’ {2} ’{1}’", s1, s2
,  
         (x == 0) ? "equals" : "does not equal"); 
 

      // Compare returns zero: strings have the same value. 
      x = new CultureInfo("de-DE").CompareInfo.Compare(s1, s2); 

      Console.WriteLine("Compare: ’{0}’ {2} ’{1}’", s1, s2,  
         (x == 0) ? "equals" : "does not equal"); 

   } 
} 

Building and running this code produces the following output: 

CompareOrdinal: ’Strass’ does not equal ’Stra§’ 
Compare: ’Strass’ equals ’Stra§’ 

You’d also use the Compare method to sort strings. However, you should always have 
Compare perform case-sensitive comparisons when comparing strings for sorting. The 
reason is that two strings that differ only by case are considered equal, and as you sort the 
strings in a list, the order of the "equal" strings could be different each time you run the 
application; this could confuse the user. 

Internally, String’s Compare method obtains the CurrentCulture associated with the 
calling thread and then reads the CurrentCulture’s CompareInfo property. This 
property returns a reference to a System.Globalization.CompareInfo object. 
Because a CompareInfo object encapsulates a culture’s character comparison tables, 
there’s only one CompareInfo object per culture. 

String’s Compare method simply determines the culture’s CompareInfo object and then 
calls the object’s Compare method. String’s Compare method allows you to specify a 
case-sensitive or case-insensitive comparison. However, CompareInfo’s Compare method 
exposes richer control over the comparison, which is required for some applications. These 
applications will have to obtain a reference to the desired culture’s CompareInfo object and 
call its Compare method directly. 



Specifically, some overloads of CompareInfo’s Compare method take a 
CompareOptions enumerated type, which defines the following symbols: IgnoreCase, 
IgnoreKanaType, IgnoreNonSpace, IgnoreSymbols, IgnoreWidth, None, Ordinal, 
and StringSort. For a complete description of these symbols, consult the .NET 
Framework documentation. 

The following code demonstrates how culture plays an important part when sorting strings: 

using System; 

using System.Text; 
using System.Windows.Forms; 

using System.Globalization; 
using System.Threading; 

 
class App { 

   static void Main() { 
      StringBuilder sb = new StringBuilder(); 

      String[] sign = new String[] { "<", "=", ">" }; 
      Int32 x; 

 
      // The following code demonstrates how strings compare  

      // differently for different cultures. 
      String s1 = "cotŽ", s2 = "c™te"; 

 
      // Sorting strings for French in France 

      x = new CultureInfo("fr-FR").CompareInfo.Compare(s1, s2); 
      sb.AppendFormat("fr-FR Compare: {0} {2} {1}",  

         s1, s2, sign[x + 1]); 
      sb.Append(Environment.NewLine); 

 
      // Sorting strings for Japanese in Japan 

      x = new CultureInfo("ja-JP").CompareInfo.Compare(s1, s2); 
      sb.AppendFormat("ja-JP Compare: {0} {2} {1}",  

         s1, s2, sign[x + 1]); 
      sb.Append(Environment.NewLine); 

 
      // Sorting strings for the thread’s culture 

      x = Thread.CurrentThread.CurrentCulture.CompareInfo. 
         Compare(s1, s2); 

      sb.AppendFormat("{0} Compare: {1} {3} {2}",  
         Thread.CurrentThread.CurrentCulture.Name,  

         s1, s2, sign[x + 1]); 
      sb.Append(Environment.NewLine); 



      sb.Append(Environment.NewLine); 
 

      // The following code demonstrates how to use 
      // CompareInfo.Compare’s advanced options with two Japanese 

      // strings. These strings represent the word "shinkansen" 
      // (the name for the Japanese high-speed train) in both 

      // hiragana and katakana. 
      s1 = "!?#?$?";  // ("\u3057\u3093\u304B\u3093\u305b\u3093") 

      s2 = "%=>=<=";  // ("\uff7c\uff9d\uff76\uff9d\uff7e\uff9d") 
 

      // Here’s the result of a default comparison. 
      x = String.Compare(s1, s2, true, new CultureInfo("ja-JP")); 

      sb.AppendFormat("Simple ja-JP Compare: {0} {2} {1}",  
         s1, s2, sign[x + 1]); 

      sb.Append(Environment.NewLine); 
 

      // Here’s the result of a comparison that ignores Kana type
. 
      CompareInfo ci = CompareInfo.GetCompareInfo("ja-JP"); 

      x = ci.Compare(s1, s2, CompareOptions.IgnoreKanaType); 
      sb.AppendFormat("Advanced ja-JP Compare: {0} {2} {1}",  

         s1, s2, sign[x + 1]); 
 

      MessageBox.Show(sb.ToString(), "StringSorting Results"); 
   } 

} 

Building and running this code produces the output shown in Figure 12-1. 

 
Figure 12-1: StringSorting results  

 



Japanese Characters 

To see Japanese characters in the source code and in the message box, Windows must 
have the East Asian Language files installed (which use approximately 230 MB of disk 
space). To install these files, open the Regional And Language Options dialog box 
(shown in Figure 12-2) in Control Panel, select the Languages tab, check the Install 
Files For East Asian Languages check box, and press OK. This causes Windows to 
install the East Asian language fonts and Input Method Editor (IME) files. 

 
Figure 12-2: Installing East Asian Language files using the Regional And Language 
Options Control Panel dialog box  

Also, the source code file can’t be saved in ANSI; I used UTF-8, which the Visual Studio 
.NET editor and Microsoft’s C# compiler handle just fine. 
 

 

In addition to Compare, the CompareInfo class offers IndexOf, IsLastIndexOf, 
IsPrefix, and IsSuffix methods. Because all these methods offer overloads that take a 
CompareOptions enumeration value as a parameter, they give you more control than the 
corresponding methods defined by the String class. 

String Interning 

As I said in the preceding section, comparing strings is a common operation for many 
applications—it’s also a task that can hurt performance significantly. The reason for the 



performance hit is that string comparisons require that each character in the string be 
checked, one by one, until two characters are determined to be different. To compare a 
string to see whether it contains the value “Hello”, a loop must compare two characters five 
times. In addition, if you have several instances of the string “Hello” in memory, you’re 
wasting memory because strings are immutable. You’ll use memory much more efficiently if 
there is just one “Hello” string in memory and all references to the “Hello” string point to a 
single object. 

If your application frequently compares strings for equality or if you expect to have many 
string objects with the same value, you can enhance performance substantially if you take 
advantage of the string interning mechanism in the CLR. To understand how the string 
interning mechanism works, examine the following code: 

String s = "Hello"; 

Console.WriteLine(Object.ReferenceEquals("Hello", s)); 

Do you think this code displays “True” or “False”? Many people expect “False”. After all, 
there are two “Hello” string objects and ReferenceEquals returns true only if the two 
references passed to it point to the same object. Build and run this code, however, and you’ll 
see that "True" is displayed. Let’s see why. 

When the CLR initializes, it creates an internal hash table in which the keys are strings and 
the values are references to string objects in the managed heap. Initially, the table is empty 
(of course). When the JIT compiler compiles this method, it looks up each literal string in the 
hash table. The compiler looks for the first “Hello” string and because it doesn’t find one, 
constructs a new String object in the managed heap (that refers to this string) and adds 
the "Hello" String and a reference to the object into the hash table. Then the JIT compiler 
looks up the second "Hello" string in the hash table. It finds this string, so nothing happens. 
Because there are no more literal strings in the code, the code can now execute. 

When the code executes, it needs a reference to the “Hello” string. The CLR looks up “Hello” 
in the hash table, finds it, and returns a reference to the previously created String object. 
This reference is saved in the variable s. For the second line of code, the CLR again looks 
up "Hello" in the hash table and finds it. The reference to the same String object is passed 
along with s to Object’s static ReferenceEquals method, which returns true. 

All literal strings embedded in the source code are always added to the internal hash table 
when a method referencing the strings is JIT compiled. But what about strings that are 
dynamically constructed at run time? What do you expect the following code to display? 

String s1 = "Hello"; 
String s2 = "Hel"; 

String s3 = s2 + "lo"; 
Console.WriteLine(Object.ReferenceEquals(s1, s3)); 

Console.WriteLine(s1.Equals(s3)); 

In this code, the string referred to by s2 ("Hel"), and the literal string, "lo", are concatenated. 
The result is a newly constructed string object, referred to by s3, that resides on the 
managed heap. 

This dynamically created string does contain “Hello”, but the string isn’t added to the internal 
hash table. Therefore, ReferenceEquals returns false because the two references point 
to different string objects. However, the call to Equals produces a result of true because 
the strings do, in fact, represent the same set of characters. Obvi ously, ReferenceEquals 



performs much better than Equals, and an application’s performance is greatly improved if 
all the string comparisons simply compare references instead of characters. Plus, an 
application requires fewer objects in the heap if there’s a way to collapse dynamic strings 
with the same set of characters down to single objects in the heap. 

Fortunately, the String type offers two static methods that allow you to do this:  

public static String Intern(String str); 

public static String IsInterned(String str); 

The first method, Intern, takes a String and looks it up in the internal hash table. If the 
string exists, a reference to the already existing String object is returned. If the application 
no longer holds a reference to the original String object, the garbage collector is able to 
free the memory of that string. The preceding code can now be rewritten using Intern as 
follows:  

String s1 = "Hello"; 

String s2 = "Hel"; 
String s3 = s2 + "lo"; 

s3 = String.Intern(s3); 
Console.WriteLine(Object.ReferenceEquals(s1, s3)); 

Console.WriteLine(s1.Equals(s3)); 

Now ReferenceEquals returns a value of true and the comparison is much faster. In 
addition, the String object that s3 originally referred to is now free to be garbage collected. 
This code actually executes slower than the previous version because of the work that 
String’s Intern method must perform. You should intern strings only if you intend to 
compare a string multiple times in your application. Otherwise, you’ll hurt performance 
instead of improve it.  

Note that the garbage collector can’t free the strings the internal hash table refers to 
because the hash table holds the reference to those String objects. String objects 
referred to by the internal hash table can’t be freed until there are no AppDomains in the 
process that refer to the string object. Also note that string interning occurs on a per-process 
basis, meaning that a single string object can be accessed from multiple AppDomains, 
conserving memory usage. The capability of multiple AppDomains to access a single string 
also improves performance since strings never have to be marshaled across AppDomains 
within a single process; just the reference is marshaled. 

As I mentioned earlier, the String type also offers a static IsInterned method. Like the 
Intern method, the IsInterned method takes a String and looks it up in the internal 
hash table. If the string is in the hash table, IsInterned returns a reference to the interned 
string object. If the string isn’t in the hash table, however, IsInterned returns null; it 
doesn’t add the string to the hash table. 

The C# compiler uses the IsInterned method to allow switch/case statements to work 
efficiently on strings. For example, you can write the following C# code:  

using System; 

 
class App { 

   static void Main() { 
      Lookup("Jeff", "Richter"); 



      Lookup("Fred", "Flintstone"); 
   } 

 
   static void Lookup(String firstName, String lastName) { 

      switch (firstName + " " + lastName) { 
         case "Jeff Richter": 

            Console.WriteLine("Jeff"); 
            break; 

 
         default: 

            Console.WriteLine("Unknown"); 
            break; 

      } 
   } 

} 

I compiled this code and used ILDasm.exe to examine the IL, which follows. I’ve inserted 
comments to fully explain what’s going on. 

.method private hidebysig static void  Lookup(string firstName, 

                                              string lastName) ci
l managed 
{ 

  // Code size       53 (0x35) 
  .maxstack  3 

  .locals (object V_0) 
 

  // Concatenate firstName, " ", and lastName into a new String. 
  IL_0000:  ldarg.0 

  IL_0001:  ldstr      " " 
  IL_0006:  ldarg.1 

  IL_0007:  call       string [mscorlib]System.String::Concat(str
ing, 
                                                              str
ing, 
                                                              str
ing) 
 
  // Duplicate the reference to the concatenated string. 

  IL_000c:  dup 
 

  // Store a reference to the string in a temporary stack variabl
e. 



  IL_000d:  stloc.0 
 

  // If Concat returns null, branch to IL_002a. 
  IL_000e:  brfalse.s  IL_002a 

 
  // See if the concatenated string is in the internal hash table
. 
  IL_0010:  ldloc.0 
  IL_0011:  call string [mscorlib]System.String::IsInterned(strin
g) 
 
  // Overwrite the temporary variable with a reference to the int
erned 
  // string. Note that null indicates the string wasn’t in the ha
sh table. 

  IL_0016:  stloc.0 
 

  // Compare the reference of the interned ’switch’ string with a 
  // reference to the interned "Jeff Richter" string. 

  IL_0017:  ldloc.0 
  IL_0018:  ldstr      "Jeff Richter" 

 
  // If references refer to different String objects, branch to I
L_002a. 
  IL_001d:  bne.un.s   IL_002a 
 

  // The references do match; display "Jeff" to the console and r
eturn. 
  IL_001f:  ldstr      "Jeff" 

  IL_0024:  call       void [mscorlib]System.Console::WriteLine(s
tring) 
  IL_0029:  ret 

 
  // Display "Unknown" to the console and return. 

  IL_002a:  ldstr      "Unknown" 
  IL_002f:  call       void [mscorlib]System.Console::WriteLine(s
tring) 
  IL_0034:  ret 

} // end of method App::Lookup 

The important thing to notice in this code is that the IL code calls IsInterned, passing the 
string specified in the switch statement. If IsInterned returns null, the string can’t 
match any of the case strings, causing the default code to execute: "Unknown" is 
displayed to the user. However, if IsInterned sees that the switch string does exist in 



the internal hash table, it returns a reference to the hash table’s String object. The address 
of the interned string is then compared with the addresses of the interned literal strings 
specified by each case statement. Comparing the addresses is much faster than comparing 
all the characters in each string, and the code determines very quickly which case 
statement to execute. 

String Pooling 

When compiling source code, your compiler must process each literal string and emit the 
string into the managed module’s metadata. If the same literal string appears several times 
in your source code, then emitting all these strings into the metadata will bloat the size of the 
resulting file. 

To remove this bloat, many compilers (include the C# compiler) write the literal string into the 
module’s metadata only once. All code that references the string will be modified to refer to 
the one string in the metadata. This ability of a compiler to merge multiple occurrences of a 
single string into a single instance can reduce the size of a module substantially. This 
process is nothing new—C/C++ compilers have been doing it for years. (Microsoft’s C/C++ 
compiler calls this string pooling.) Even so, string pooling is another way to improve the 
performance of strings and just one more piece of knowledge you should have in your 
repertoire. 

Examining a String’s Characters 

Although comparing strings is useful for sorting them or for detecting equality, sometimes 
you just need to examine the characters within a string. The String type offers several 
methods to help you do this. Table 12-2 summarizes these methods. 

Table 12-2: Methods for Examining String Characters  

Member Member Type Description 

Length  Instance read-only 
property 

Returns the number of 
characters in the string 

Chars  Instance read-only 
indexer property 

Returns the character at 
the specified index within 
the string 

GetEnumerator  Instance method Returns an IEnumerator 
that can be used to iterate 
over all the characters in 
the string 

ToCharArray  Instance method Returns a Char[ ] that 
contains a portion of the 
string 

IndexOf/LastIndexOf  Instance methods Returns the index of the 
first/last character/string 
matching a specified value 

IndexOfAny/LastIndexOfAny  Instance methods Returns the index of the 
first/last character 
matching an array of 
specified characters 



In reality, a System.Char represents a single 16-bit Unicode code value that doesn’t 
necessarily equate to an abstract Unicode character. For example, some abstract Unicode 
characters are a combination of two code values. When combined, the U+0625 (Arabic letter 
Alef with Hamza below) and U+0650 (Arabic Kasra) characters form a single abstract 
character. 

In addition, some Unicode abstract characters require more than a 16-bit value to represent 
them. These characters are represented using two 16-bit code values. The first code value is 
called the high surrogate, and the second code value is called the low surrogate. High 
surrogates have a value between U+D800 and U+DBFF, and low surrogates have a value 
between U+DC00 and U+DFFF. The use of surrogates allows Unicode to express more than 
a million different characters. 

Surrogate characters are rarely used in the United States and Europe but are frequently 
used in East Asia. To properly work with abstract Unicode characters, you should use the 
System.Globalization.StringInfo type. You can call this type’s static 
GetTextElementEnumerator method to acquire a 
System.Globalization.TextElementEnumerator object that allows you to 
enumerate through all the abstract Unicode characters contained in the string. 

Alternatively, you could call StringInfo’s static ParseCombiningCharacters method 
to obtain an array of Int32 values. The length of the array indicates how many abstract 
Unicode characters are contained in the string. Each element of the array identifies an index 
into the string where the first code value for the abstract Unicode character can be found.  

The following code demonstrates how to properly use the StringInfo’s 
GetTextElementEnumerator and ParseCombiningCharacters methods to 
manipulate a string’s abstract Unicode characters:  

using System; 

using System.Text; 
using System.Windows.Forms; 

using System.Globalization; 
 

class App { 
   static void Main() { 

      // The following string contains combining characters.  
      String s = "a\u0304\u0308bc\u0327"; 

      EnumTextElements(s); 
      EnumTextElementIndexes(s); 

   } 
 

   static void EnumTextElements(String s) { 
      StringBuilder sb = new StringBuilder(); 

 
      TextElementEnumerator charEnum =  

         StringInfo.GetTextElementEnumerator(s); 
      while (charEnum.MoveNext()) { 



         sb.AppendFormat( 
            "Character at index {0} is ’{1}’{2}", 

            charEnum.ElementIndex, charEnum.GetTextElement(), 
            Environment.NewLine); 

      } 
      MessageBox.Show(sb.ToString(),  

         "Result of GetTextElementEnumerator"); 
   } 

 
   static void EnumTextElementIndexes(String s) { 

      StringBuilder sb = new StringBuilder(); 
 

      Int32[] textElemIndex = StringInfo.ParseCombiningCharacters
(s); 
      for (Int32 i = 0; i < textElemIndex.Length; i++) { 

         sb.AppendFormat( 
            "Character {0} starts at index {1}{2}",  

            i, textElemIndex[i], Environment.NewLine); 
      } 

      MessageBox.Show(sb.ToString(),  
         "Result of ParseCombiningCharacters"); 

   } 
} 

Building and running this code produces the message boxes shown in Figures 12-3 and 12-
4. 

 
Figure 12-3: Result of GetTextElementEnumerator  



 
Figure 12-4: Result of ParseCombiningCharacters  

 
Note  

To see the message box text in Figure 12-3 correctly, I had to open the 
Windows Display Properties dialog box and change the font used by 
message box text to Lucida Sans Unicode because this font contains glyphs 
for these combining characters. This is also why I don’t have the code 
display the results to the console. 

In this example, I’m calling StringInfo’s static GetTextElementEnumerator method. I 
pass a String to this method and it returns a TextElementEnumerator object. I can now 
use this enumerator object as I would any other enumerator object. The 
TextElementEnumerator object also offers a read-only ElementIndex property that 
returns the index of the code value in the original string where the character begins and a 
GetTextElement method that returns a string consisting of all the code values necessary 
to make up the character. 

In addition, StringInfo provides a static ParseCombiningCharacters method that 
parses a string and returns an array of Int32s. Each element in the returned array is an 
index of a code-point unit that is the start of an abstract character. The .NET Framework 
SDK documentation shows an example of how to call this method. Note that the 
StringInfo class defines a public constructor, but this is a bug; there’s never a reason to 
construct an instance of a StringInfo. 

Other String Operations 

The String type also offers methods that allow you to copy a string or parts of it. Table 12-
3 summarizes these methods. 

Table 12-3: Methods for Copying Strings  

Member Type Method Description 

Clone  Instance  Returns a reference to the 
same object (this). This is 
OK because String objects 
are immutable. This method 
implements String’s 
ICloneable interface. 

Copy  Static  Returns a new string that is a 
duplicate of the specified 
string. This method is rarely 



Table 12-3: Methods for Copying Strings  

Member Type Method Description 

used and exists to help 
applications that treat strings 
as tokens. Normally, strings 
with the same set of 
characters are interned to a 
single string. This method 
creates a new string object 
so that the references 
(pointers) are different even 
though the strings contain the 
same characters. 

CopyTo  Instance  Copies a portion of the 
string’s characters to an array 
of characters. 

SubString  Instance  Returns a new string 
representing a portion of the 
original string. 

ToString  Instance  Returns a reference to the 
same object (this). 

In addition to these methods, String offers many static and instance methods that 
manipulate a string, such as Insert, Remove, PadLeft, Replace, Split, Join, 
ToLower, ToUpper, Trim, Concat, Format, and so on. Again, the important thing to 
remember about all these methods is that they return new string objects; because strings are 
immutable, once they’re created, they can’t be modified in any way. 

 

Dynamically Constructing a String Efficiently 

Because the String type represents an immutable string, the FCL provides another type, 
System.Text.StringBuilder, which allows you to perform dynamic operations with 
strings and characters to create a String. Think of StringBuilder as a fancy constructor 
to create a String that can be used with the rest of the framework. In general, you should 
design methods that take String parameters, not StringBuilder parameters, unless 
you define a method that returns a string dynamically constructed by the method itself.  

Internally, a StringBuilder object has a field that refers to an array of Char structures. 
StringBuilder’s members allow you to manipulate this character array, effectively 
shrinking the string or changing the characters in the string. If you grow the string past the 
allocated array of characters, the StringBuilder automatically allocates a new, larger 
array, copies the characters, and starts using the new array. The previous array is garbage 
collected. 

When finished using the StringBuilder object to construct your string, "convert" the 
StringBuilder’s character array into a String simply by calling the StringBuilder’s 
ToString method. Internally, this method just returns a reference to the string field 
maintained inside the StringBuilder. This makes the StringBuilder’s ToString 
method very fast because the array of characters isn’t copied. 



The String returned from StringBuilder’s ToString method must be immutable. So if 
you ever call a method that attempts to modify the string field maintained by the 
StringBuilder, the StringBuilder’s methods know that ToString was called on it 
and they internally create and use a new character array, allowing you to perform 
manipulations without affecting the string returned by the previous call to ToString. 

Constructing a StringBuilder Object 

Unlike with the String class, the CLR has no special knowledge of the StringBuilder 
class. In addition, most languages (including C#) don’t consider the StringBuilder class 
to be a primitive type. You construct a StringBuilder object as you would any other 
nonprimitive type:  

StringBuilder sb = new StringBuilder(...); 

The StringBuilder type offers many constructors. The job of each constructor is to 
allocate and initialize the three internal fields maintained by each StringBuilder object: 
§ Maximum capacity  An Int32 field that specifies the maximum number of characters 

that can be placed in the string. The default is Int32.MaxValue (2 billion). It’s unusual 
to change this value. However, you might specify a smaller maximum capacity to 
ensure that you never create a string over a certain length. Once constructed, a 
String- 
Builder’s maximum capacity field can’t be changed. 

§ Capacity  An Int32 field indicating the size of the character array field being 
maintained by the StringBuilder. The default is 16. If you have some idea how 
many characters you’ll place in the StringBuilder, you should use this number to set 
the capacity when constructing the StringBuilder object. 

§ When appending characters to the character array, the StringBuilder detects 
whether the array is trying to grow beyond the array’s capacity. If it is, the 
StringBuilder automatically doubles the capacity field, allocates a new array (the 
size of the new capacity), and copies the characters from the original array into the new 
array. The original array will be garbage collected in the future. Dynamically growing the 
array hurts performance; avoid this by setting a good initial capacity.  

§ Character array  An array of Char structures that maintains the set of characters in 
the "string." The number of characters is always less than or equal to the capacity and 
maximum capacity fields. You can use the StringBuilder’s Length property to 
obtain the number of characters used in the array. The Length is always less than or 
equal to the StringBuilder’s capacity field. When constructing a StringBuilder, 
you can pass a String to initialize the character array. If you don’t specify a string, the 
array initially contains no characters—that is, the Length property returns 0. 

StringBuilder’s Members 

Unlike a String, a StringBuilder represents a mutable string. This means that most of 
StringBuilder’s members change the contents in the array of characters and don’t cause 
new objects to be allocated in the managed heap. A String-Builder allocates a new 
object on only two occasions: 
§ You dynamically build a string that is longer than the capacity you’ve set. 
§ You attempt to modify the array after StringBuilder’s ToString method has been 

called. 

You should also be aware that in the interest of faster performance, StringBuilder’s 
methods are not thread safe. This is usually fine since it’s unusual for multiple threads to 



access a single StringBuilder object. If your application requires thread-safe 
manipulation of a StringBuilder object, you must explicitly add the thread 
synchronization code.  

Table 12-4 summarizes StringBuilder’s members. 

Table 12-4: StringBuilder’s Members  

Member Member Type Description 

MaxCapacity  Read-only 
property 

Returns the largest number of 
characters that can be placed in 
the string. 

Capacity  Read/write 
property 

Gets or sets the size of the 
character array. Trying to set the 
capacity smaller than the string’s 
length throws an 
ArgumentOutOf-
RangeException exception. 

EnsureCapacity  Method  Guarantees that the character 
array is at least the size specified 
to this method. If the value passed 
is larger than the 
StringBuilder’s current 
capacity, the current capacity gets 
bigger. If the current capacity is 
already bigger than the value 
passed to this method, no change 
occurs. 

Length  Read-only 
property 

Returns the number of characters 
in the “string.” This will likely be 
smaller than the character array’s 
current capacity. 

ToString  Method The parameterless version of this 
method returns a String 
representing the 
StringBuilder’s character array 
field. This method is efficient 
because it doesn’t create a new 
String object. Any attempt to 
modify the StringBuilder’s 
array causes the StringBuilder 
to allocate and use a new array 
(initializing it from the old array). 
The version of ToString that 
takes startIndex and length 
parameters creates a new String 
object representing the desired 
portion of the StringBuilder’s 
string. 

Chars  Read/write Gets or sets the character at the 
specified ndexer index into the 



Table 12-4: StringBuilder’s Members  

Member Member Type Description 

character array. In C#, this is an 
roperty indexer (parameterful 
property) that you access using 
array syntax ([ ]). 

AppendInsert  Method Appends or inserts a single object 
into the character array, growing 
the array if necessary. The object 
is converted to a string using the 
general format and the culture 
associated with the calling thread. 

AppendFormat  Method Appends the specified objects into 
the character array, growing the 
array if necessary. The objects are 
converted to strings using the 
formatting and culture information 
provided by the caller. 
AppendFormat is one of the most 
common methods used with 
StringBuilder objects. 

Replace  Method Replaces one character with 
another or one string with another 
from within the character array. 

Remove  Method Removes a range of characters 
from the character array. 

Equals  Method Returns true only if both 
StringBuilder objects have the 
same maximum capacity, capacity, 
and characters in the array. 

One important thing to note about StringBuilder’s methods is that most of them return a 
reference to the same StringBuilder object. This allows a convenient syntax to chain 
several operations together:  

StringBuilder sb = new StringBuilder(); 

String s = sb.AppendFormat("{0} {1}", "Jeffrey", "Richter"). 
   Replace(‘ ’, ’-’).Remove(4, 3).ToString(); 

Console.WriteLine(s);  // "Jeff-Richter" 

You’ll notice that the String and StringBuilder classes don’t have full method parity; 
that is, String has ToLower, ToUpper, EndsWiths, PadLeft, Trim, and so on. The 
StringBuilder class doesn’t offer any of these methods. On the other hand, the 
StringBuilder class offers a richer Replace method that allows you to replace 
characters or strings in a portion of the string (not the whole string). It’s unfortunate that 
there isn’t complete parity between these two classes because now you must convert 
between String and StringBuilder to accomplish certain tasks. For example, to build 
up a string, convert all characters to uppercase, and then insert a string requires code like 
this:  



// Construct a StringBuilder to do string manipulations. 
StringBuilder sb = new StringBuilder(); 

 
// Perform some string manipulations using the StringBuilder. 

sb.AppendFormat("{0} {1}", "Jeffrey", "Richter").Replace(" ", "-
"); 
 

// Convert the StringBuilder to a String in  
// order to uppercase all the characters. 

String s = sb.ToString().ToUpper(); 
 

// Clear the StringBuilder (allocates a new Char array). 
sb.Length = 0; 

 
// Load the uppercase String into the StringBuilder,  

// and do more manipulations. 
sb.Append(s).Insert(8, "Marc-"); 

 
// Convert the StringBuilder back to a String.  

s = sb.ToString(); 
 

// Display the String to the user. 
Console.WriteLine(s);  // "JEFFREY-Marc-RICHTER" 

It’s inconvenient to have to write this code just because StringBuilder doesn’t offer all 
the operations that String does. In the future, I hope that Microsoft will add more string 
operation methods to StringBuilder to make it a more complete class. 

 
Obtaining a String Representation for an Object 

You frequently need to obtain a string representation for an object. Usually this is necessary 
when you want to display a numeric type (such as Byte, Int32, Single, and so on) or a 
DateTime object to the user. Because the .NET Framework is an object-oriented platform, 
every type is responsible for providing code that converts an instance’s "value" to a string 
equivalent. When designing how types should accomplish this, the designers of the FCL 
decided to devise a pattern that would be used consistently throughout. In this section, I’ll 
describe this pattern. 

You can obtain a string representation for any object by calling the ToString method. A 
public, parameterless ToString method is defined by System.Object and is therefore 
callable using an instance of any type. Semantically, ToString returns a string representing 
the object’s current value, and this string should be formatted for the calling thread’s current 
culture; that is, the string representation of a number should use the proper decimal 
separator, digit grouping symbol, and so on associated with the culture assigned to the 
calling thread. 



System.Object’s implementation of ToString simply returns the full name of the object’s 
type. This value isn’t particularly useful but is a reasonable default for the many types that 
can’t offer a sensible string. For example, what should a string representation of a 
FileStream or a Hashtable object look like? 

All types that want to offer a reasonable way to obtain a string representing the current value 
of the object should override the ToString method. For all base types built into the FCL 
(Byte, Int32, UInt64, Double, and so on), Microsoft has already overridden these types’ 
ToString method and implemented it to return a culturally aware string. 

Specific Formats and Cultures 

The parameterless ToString method has two problems. First, the caller has no control over 
the formatting of the string. For example, an application might want to format a number into a 
currency string or a decimal string, or a percent string or a hexadecimal string. Second, the 
caller can’t choose to format a string using a specific culture. This second problem is more 
troublesome for server-side application code than for client-side code. On rare occasions, an 
application needs to format a string using a culture different from the culture associated with 
the calling thread. To have more control over string formatting, you need a version of the 
ToString method that allows you to specify specific formatting and culture information. 

Types that want to offer the caller a choice in formatting and culture implement the 
System.IFormattable interface:  

public interface IFormattable { 

   String ToString(String format, IFormatProvider formatProvider)
; 
} 

In the FCL, all the base types (Byte, SByte, Int16/UInt16, Int32/UInt32, 
Int64/UInt64, Single, Double, Decimal, and DateTime) implement this interface. In 
addition, some other types, like GUID, also implement it. Finally, every enumerated type 
automatically implements the IFormattable interface to obtain a meaningful string symbol 
from the numeric value stored in an instance of an enumerated type. 

IFormattable’s ToString method takes two parameters. The first, format, is a string 
that tells the method how the object should be formatted. ToString’s second parameter, 
formatProvider, is an instance of a type that implements the 
System.IFormatProvider interface. This type supplies specific culture information to the 
ToString method. I’ll discuss how shortly. 

The type implementing the IFormattable interface’s ToString method determines which 
format strings it’s going to recognize. If you pass a format string that the type doesn’t 
recognize, the type should throw a System.FormatException exception. 

Many of the types that Microsoft has defined in the FCL recognize several formats. For 
example, the DateTime type supports "d" for short date, "D" for long date, "g" for general, 
"M" for month/day, "s" for sortable, "T" for time, "u" for universal time in ISO 8601 format, "U" 
for universal time in long date format, "Y" for year/month, and more. All enumerated types 
support "G" for general, "F" for flags, "D" decimal, and "X" for hexadecimal. I’ll cover 
formatting enumerated types in more detail in Chapter 13.  

Also, all the built-in numeric types support “C” for currency, “D” for decimal, “E” for scientific 
(exponential), “F” for fixed-point, “G” for general, “N” for number, “P” for percent, “R” for 



round-trip, and “X” for hexadecimal. In fact, the numeric types also support picture format 
strings just in case the simple format strings don’t offer you exactly what you’re looking for. 
Picture format strings contain special characters that tell the type’s ToString method 
exactly how many digits to show, exactly where to place a decimal separator, exactly how 
many digits to place after the decimal separator, and so on. For complete information about 
format strings, see "Formatting Strings" in the .NET Framework SDK. 

Calling ToString passing null for the format string is identical to calling ToString and 
passing "G" for the format string. In other words, objects format themselves using the 
"General format" by default. When implementing a type, choose a format that you think will 
be the most commonly used format; this format is the "General format." By the way, the 
ToString method that takes no parameters assumes that the caller wants the general 
format. 

So now that format strings are out of the way, let’s turn to culture information. By default, 
strings are formatted using the culture information associated with the calling thread. The 
parameterless ToString method certainly does this, and so does IFormattable’s 
ToString if you pass null for the formatProvider parameter. 

Culture-sensitive information applies when you’re formatting numbers (including currency, 
integers, floating point, and percentages), dates, and times. A type that represents a GUID 
has a ToString method that just returns a string representing the GUID’s value. There’s no 
need to consider the thread’s current culture when generating the GUID’s string. 

When formatting a number, the ToString method sees what you’ve passed for the 
formatProvider parameter. If null is passed, then ToString determines the culture 
associated with the calling thread by reading the System.Threading.-
Thread.CurrentThread.CurrentCulture property. This property returns an instance 
of the System.Globalization.CultureInfo type. 

Using this object, ToString reads its NumberFormat or DateTimeFormat property, 
depending on whether a number or date/time is being formatted. These properties return an 
instance of System.Globalization.NumberFormatInfo or 
System.Globalization.DateTimeFormatInfo, respectively. The 
NumberFormatInfo type defines a bunch of properties, such as 
CurrencyDecimalSeparator, CurrencySymbol, NegativeSign, 
NumberGroupSeparator, and PercentSymbol. Likewise, the DateTimeFormatInfo 
type defines an assortment of properties, such as Calendar, DateSeparator, DayNames, 
LongDatePattern, ShortTimePattern, and TimeSeparator. ToString reads these 
properties when constructing and formatting a string. 

When calling IFormattable’s ToString method, instead of passing null, you can pass 
a reference to an object whose type implements the IFormatProvider interface:  

public interface IFormatProvider { 

   Object GetFormat(Type formatType); 
} 

Here’s the basic idea behind the IFormatProvider interface: when a type implements this 
interface, it is saying that an instance of the type knows how to provide culture-specific 
formatting information and that the culture information associated with the calling thread 
should be ignored. 



The System.Globalization.CultureInfo type is one of the very few types defined in 
the FCL that implements the IFormatProvider interface. If you want to format a string for, 
say, Vietnam, you’d construct a CultureInfo object and pass that object in as 
ToString’s formatProvider parameter. The following code obtains a string 
representation of a Decimal numeric value formatted as currency appropriate for Vietnam:  

Decimal price = 123.54M; 
String s = price.ToString("C", new CultureInfo("vi-VN")); 

System.Windows.Forms.MessageBox.Show(s); 

If you build and run this code, the message box shown in Figure 12-5 appears.  

 
Figure 12-5: Numeric value formatted correctly to represent Vietnamese currency  

Internally, Decimal’s ToString method sees that the formatProvider argument is not 
null and calls the object’s GetFormat method as follows:  

NumberFormatInfo nfi = (NumberFormatInfo)  

   formatProvider.GetFormat(typeof(NumberFormatInfo)); 

This is how ToString asks the (CultureInfo) object for the appropriate number 
formatting information. Number types (like Decimal) ask for only number formatting 
information. But other types (like DateTime) could call GetFormat like this:  

DateTimeFormatInfo dtfi = (DateTimeFormatInfo)  

   formatProvider.GetFormat(typeof(DateTimeFormatInfo)); 

Actually, since GetFormat’s parameter can identify any type, the method is flexible enough 
to allow any type of format information to be requested. The types in version 1 of the .NET 
Framework call GetFormat asking only for number or date/time information; in the future, 
other kinds of formatting information could be requested. 

By the way, if you want to obtain a string for an object that isn’t formatted for any particular 
culture, you should call System.Globalization.CultureInfo’s static 
InvariantCulture property and pass the object returned as ToString’s 
formatProvider parameter:  



Decimal price = 123.54M; 
String s = price.ToString("C", CultureInfo.InvariantCulture); 

System.Windows.Forms.MessageBox.Show(s); 

If you build and run this code, the message box shown in Figure 12-6 appears. Notice the 
first character in the resulting string: Û. This is the international sign for currency (U+00A4). 

 
Figure 12-6: Numeric value formatted to represent a culture-neutral currency  

Normally, you wouldn’t display a string formatted using the invariant culture to a user. 
Typically, you’d just save this string in a data file so that it could be parsed later. Basically, 
the invariant culture allows you to pass understandable strings from culture to culture. 

In the FCL, just three types implement the IFormatProvider interface. The first is 
CultureInfo, which I’ve already explained. The other two are NumberFormatInfo and 
DateTimeFormatInfo. When GetFormat is called on a NumberFormatInfo object, the 
method checks whether the type being requested is a NumberFormatInfo. If it is, this is 
returned; if it’s not, null is returned. Similarly, calling GetFormat on a 
DateTimeFormatInfo object returns this if a DateTime-FormatInfo is requested and 
null if it’s not. These two types implement this interface simply as a programming 
convenience.  

When trying to obtain a string representation of an object, the caller commonly specifies a 
format and uses the culture associated with the calling thread. For this reason, you often call 
ToString, passing a string for the format parameter and null for the formatProvider 
parameter. To make calling ToString easier for you, many types offer several overloads of 
the ToString method. For example, the Decimal type offers four different ToString 
methods:  

// This version calls ToString(null, null). 
// Meaning: General format, thread’s culture information 

String ToString(); 
 



// This version is where the actual implementation of ToString go
es. 
// This version implements IFormattable’s ToString method. 

// Meaning: Caller-specified format and culture information 
String ToString(String format, IFormatProvider formatProvider); 

 
// This version simply calls ToString(format, null). 

// Meaning: Caller-specified format, thread’s culture information 
String ToString(String format); 

 
// This version simply calls ToString(null, formatProvider). 

// Meaning: General format, caller-specified culture information 
String ToString(IFormatProvider formatProvider); 

Formatting Multiple Objects into a Single String 

So far, I’ve explained how an individual type formats its own objects. At times, however, you 
want to construct strings that consist of many formatted objects. For example, the following 
string has a date, a person’s name, and an age: 

String s = String.Format("On {0}, {1} is {2} years old.",  
   DateTime.Now, "Wallace", 35); 

Console.WriteLine(s); 

If you build and run this code on January 23, 2002, at 4:37 P.M., you’ll see the following line 
of output: 

On 1/23/2002 4:37:37 PM, Wallace is 35 years old. 

String’s static Format method takes a format string that identifies replaceable parameters 
using numbers in braces. The format string used in this example tells the Format method to 
replace "{0}" with the first parameter after the format string (the current date/time), replace 
"{1}" with the second parameter after the format string ("Wallace"), and replace "{2}" with the 
third parameter after the format string (35).  

Internally, the Format method calls each object’s ToString method to obtain a string 
representation for the object. Then the returned strings are all appended and the complete, 
final string is returned. This is all fine and good, but it means that all the objects are 
formatted using their general format and the calling thread’s culture information. 

You can have more control when formatting an object if you specify format information within 
braces. For example, the following code is identical to the previous example except that I’ve 
added formatting information to replaceable parameters 0 and 2: 

String s = String.Format("On {0:D}, {1} is {2:E} years old.",  
   DateTime.Now, "Wallace", 35); 

Console.WriteLine(s); 

If you build and run this code on January 23, 2002, at 4:37 P.M., you’ll see the following line 
of output: 



On Wednesday, January 23, 2002, Wallace is 3.500000E+001 years ol
d. 

When the Format method parses the format string, it sees that replaceable parameter 0 
should have its IFormattable interface’s ToString method passing "D" and null for its 
two parameters. Likewise, Format calls replaceable parameter 2’s IFormattable 
ToString method, passing "E" and null. If the type doesn’t implement the 
IFormattable interface, then Format calls its parameterless ToString method and the 
general format is appended into the resulting string. 

The String class offers several overloads of the static Format method. One version takes 
an object that implements the IFormatProvider interface so that you can format all the 
replaceable parameters using caller-specified culture information. Obviously, Format calls 
each object’s ToString method, passing it whatever IFormatProvider object was 
passed to Format. 

If you’re using StringBuilder instead of String to construct a string, you can call 
StringBuilder’s AppendFormat method. This method works exactly like String’s 
Format method except that it formats a string and appends to the StringBuilder’s 
character array. Like String’s Format, AppendString takes a format string, and there’s a 
version that takes an IFormatProvider. 

System.Console offers Write and WriteLine methods that also take format strings and 
replaceable parameters. However, there are no overloads of Console’s Write and 
WriteLine methods that allow you to pass an IFormatProvider. If you want to format a 
string for a specific culture, you have to call String’s Format method, first passing the 
desired IFormatProvider object and then passing the resulting string to Console’s 
Write or WriteLine method. This shouldn’t be a big deal since, as I said earlier, it’s rare 
for client-side code to format a string using a culture other than the one associated with the 
calling thread. 

Providing Your Own Custom Formatter 

By now it should be clear that the formatting capabilities in the .NET Framework were 
designed to offer you a great deal of flexibility and control. However, we’re not quite done. 
It’s possible for you to define a method that StringBuilder’s AppendFormat method will 
call whenever any object is being formatted into a string. In other words, instead of calling 
ToString for each object, AppendFormat can call a function that you define, allowing you 
to format any or all of the objects any way you want. What I’m about to describe works only 
when calling StringBuilder’s AppendFormat method. String’s Format method 
doesn’t support this mechanism. 

Let me explain this mechanism by way of an example. Let’s say that you’re formatting HTML 
text that a user will view in an Internet browser. You want all Int32 values to display in bold. 
To accomplish this, every time an Int32 value is formatted into a String, you want to 
surround the string with HTML bold tags: <B> and </B>. The following code demonstrates 
how easy it is to do this:  

using System; 

using System.Text; 
using System.Globalization; 

using System.Threading; 



 
 

class BoldInt32s : IFormatProvider, ICustomFormatter { 
   public Object GetFormat(Type formatType) { 

      if (formatType == typeof(ICustomFormatter)) return this; 
      return Thread.CurrentThread.CurrentCulture.GetFormat(format
Type); 
   } 
 

   public String Format(String format, Object arg,  
      IFormatProvider formatProvider) { 

 
      String s; 

      IFormattable formattable = arg as IFormattable; 
 

      if (formattable == null) s = arg.ToString(); 
      else s = formattable.ToString(format, formatProvider); 

 
      if (arg.GetType() == typeof(Int32)) 

         return "<B>" + s + "</B>"; 
      return s; 

   } 
} 

 
 

class App { 
   static void Main() { 

   
      StringBuilder sb = new StringBuilder(); 

      sb.AppendFormat(new BoldInt32s(), "{0} {1} {2:M}",  
         "Jeff", 123, DateTime.Now); 

      Console.WriteLine(sb); 
   } 

} 

When you compile and run this code, it displays the following output: 

Jeff <B>123</B> January 23 

In Main, I’m constructing an empty StringBuilder and then appending a formatted string 
into it. When I call AppendFormat, the first parameter is an instance of the BoldInt32s 
class. This class implements the IFormatProvider interface that I discussed earlier. In 
addition, this class implements the ICustomFormatter interface:  



public interface ICustomFormatter { 
   String Format(String format, Object arg,  

      IFormatProvider formatProvider); 
} 

This interface’s Format method is called whenever StringBuilder’s AppendFormat 
needs to obtain a string for an object. You can do some pretty clever things inside this 
method that give you a great deal of control over string formatting. Let’s look inside the 
AppendFormat method to see exactly how it works. The following pseudocode shows how 
AppendFormat does its stuff:  

public StringBuilder AppendFormat(IFormatProvider formatProvider, 

   String format, params Object[] args) { 
 

   // If an IFormatProvider was passed, find out 
   // whether it offers an ICustomFormatter object. 

   ICustomFormatter cf = null; 
   if (formatProvider != null)  

      cf = (ICustomFormatter)  
         formatProvider.GetFormat(typeof(ICustomFormatter)); 

 
   // Keep appending literal characters (not shown in this pseudo
code) 
   // and replaceable parameters to the StringBuilder’s character
 array.  
   while (MoreReplaceableArgumentsToAppend) { 

      String argStr;   // Formatted argument string to append 
 

      // If a custom formatter is available, let it format the ar
gument. 

      if (cf != null)  
         argStr = cf.Format(argFormat, argObj, formatProvider); 

 
      // If there is no custom formatter or if it didn’t format  

      // the argument, try something else. 
      if (argStr == null) { 

 
         // Does the argument’s type support rich formatting? 

         IFormattable formattable = arg as IFormattable; 
         if (formattable != null) { 

            // Yes; pass the format string and provider to  
            // the type’s IFormattable ToString method. 

            argStr = formattable.ToString(argFormat, formatProvid
er); 



         else { 
            // No; get the general format using  

            // the thread’s culture information. 
            if (arg != null) argStr = arg.ToString(); 

            else s = String.Empty; 
         } 

      } 
       

      // Append argStr’s characters to the character array field 
member. 
      ... 

   } 
   return this; 

} 

When Main calls AppendFormat, AppendFormat calls my format provider’s GetFormat 
method, passing it the ICustomFormatter type. The GetFormat method defined in my 
BoldInt32s type sees that the ICustomFormatter is being requested and returns a 
reference to its own object. If any other type is requested of GetFormat, I call the 
GetFormat method using the CultureInfo object associated with the calling thread.  

Whenever AppendFormat needs to format a replaceable parameter, it calls 
ICustomFormatter’s Format method. In my example, this calls the Format method 
defined by my BoldInt32s type. In my Format method, I check whether the object being 
formatted supports rich formatting via the IFormattable interface. If the object doesn’t, 
then I call the simple, parameterless ToString method to format the object. If the object 
doesn’t support IFormattable, then I call the rich ToString method, passing it the format 
string and the format provider. 

Now that I have the formatted string, I check whether the object is an Int32 type, and if it is, 
I wrap the formatting string in <B> and </B> HTML tags and return the new string. If the 
object is not an Int32, then I simply return the formatted string without any further 
processing. 

 

Parsing a String to Obtain an Object 

In the preceding section, I explained how to take an object and obtain a string representation 
of that object. In this section, I’ll talk about the opposite: how to take a string and obtain an 
object representation of it. Obtaining an object from a string isn’t a very common operation, 
but it does occasionally come in handy. Microsoft felt it necessary to formalize a mechanism 
by which strings can be parsed into objects. 

Any type that can parse a string offers a public, static method called Parse. This method 
takes a String and returns an instance of the type; in a way, Parse acts like a constructor. 
In the FCL, a Parse method exists on all the numeric types as well as for DateTime, 
TimeSpan, and a few other types (like the SQL data types). 

Let’s look at how to parse a string into a number type. All the numeric types (Byte, SByte, 
Int16/UInt16, Int32/UInt32, Int64/UInt64, Single, Double, and Decimal) offer at 



least one Parse method. Here I’ll show you just the Parse method defined by the Int32 
type. (The Parse methods for the other numeric types are identical.)  

public static Int32 Parse(String s, NumberStyles style,  

   IFormatProvider provider); 

Just from looking at the prototype, you should be able to guess exactly how this method 
works. The String parameter, s, identifies a string representation of a number you want 
parsed into an Int32 object. The System.Globalization.- 
NumberStyles parameter, style, is a set of bit flags that identify characters that Parse 
should expect to find in the string. And the IFormatProvider parameter, provider, 
identifies an object that the Parse method can use to obtain culture-specific information as 
discussed earlier in this chapter. 

For example, the following code causes Parse to throw a System.Format- 
Exception exception because the string being parsed contains a leading space:  

Int32 x = Int32.Parse(" 123", NumberStyles.None, null); 

To allow Parse to skip over the leading space, change the style parameter as follows:  

Int32 x = Int32.Parse(" 123", NumberStyles.AllowLeadingWhite, nul
l); 

Table 12-5 shows the bit symbols that the NumberStyles type defines. 

Table 12-5: Bit Symbols Defined by the NumberStyles Type  

Symbol Value Description 

None  0x00000000 None of the special characters 
represented by any of the bits in the 
remaining rows in this table are allowed in 
the string. 

AllowLeadingWhite  0x00000001 The string can contain leading/trailing 
white-space characters (identified by the 
following Unicode code points: 0x0009, 
0x000A, 0x000B, 0x000C, 0x000D, and 
0x0020). 

AllowTrailingWhite  0x00000002   

AllowLeadingSign  0x00000004 The string can contain a valid 
leading/trailing sign character. 
NumberFormatInfo’s PositiveSign 
and NegativeSign properties determine 
valid leading-sign characters. 

AllowTrailingSign  0x00000008   

AllowParentheses  0x00000010 The string can contain parentheses. 

AllowDecimalPoint  0x00000020 The string can contain a valid decimal-
separator character. 
NumberFormatInfo’s 
NumberDecimalSeparator and 
CurrencyDecimalSeparator propertie
s determine valid decimal-separator 



Table 12-5: Bit Symbols Defined by the NumberStyles Type  

Symbol Value Description 

characters. 

AllowThousands  0x00000040 The string can contain a valid grouping-
separator character. 
NumberFormatInfo’s 
NumberGroupSeparator and 
CurrencyGroupSeparator properties 
determine valid grouping-separator 
characters. NumberFormatInfo’s 
NumberGroupSizes and 
CurrencyGroupSizes properties 
determine the number of digits in the 
group. 

AllowExponent  0x00000080 The string can contain a number 
expressed in exponent format: 
{e|E} [{+|-}] n  
where n is a number. 

AllowCurrencySymbol  0x00000100 The string can contain a valid currency 
symbol, which NumberFormatInfo’s 
CurrencySymbol property determines. 

AllowHexSpecifier  0x00000200 The string can contain hex digits (0Ð9, 
AÐF), and the string is considered to be a 
hex value. 

In addition to the bit symbols in Table 12-5, the NumberStyles enumerated type also 
defines some symbols that represent common combinations of the individual bits. Table 12-6 
shows these. 

Table 12-6: Symbols for NumberStyles’s Bit Combinations  

Symbol Bit Set 

Integer  AllowLeadingWhite | AllowTrailingWhite |    

AllowLeadingSign  

Number  AllowLeadingWhite | AllowTrailingWhite |    

AllowLeadingSign  | AllowTrailingSign  |   

AllowDecimalPoint | AllowThousands  

Float  AllowLeadingWhite | AllowTrailingWhite  |   

AllowLeadingSign  | AllowDecimalPoint   |   

AllowExponent  

Currency  AllowLeadingWhite | AllowTrailingWhite  |   

AllowLeadingSign  | AllowTrailingSign   |   

AllowParentheses  | AllowDecimalPoint   |   

AllowThousands    | AllowCurrencySymbol  

HexNumber  AllowLeadingWhite | AllowTrailingWhite  |   



Table 12-6: Symbols for NumberStyles’s Bit Combinations  

Symbol Bit Set 

AllowHexSpecifier  

Any  AllowLeadingWhite | AllowTrailingWhite  |   

AllowLeadingSign  | AllowTrailingSign   |   

AllowParentheses  | AllowDecimalPoint   |   

AllowThousands    | AllowCurrencySymbol |   

AllowExponent  

Here’s a code fragment showing how to parse a hexadecimal number: 

Int32 x = Int32.Parse("1A", NumberStyles.HexNumber, null); 

Console.WriteLine(x);  // Displays "26" 

This Parse method accepts three parameters. For convenience, many types offer additional 
overloads of Parse so that you don’t have to pass as many arguments. For example, Int32 
offers four overloads of the Parse method:  

// Passes NumberStyles.Integer for style  
// and null for provider parameters. 

public static Int32 Parse(String s); 
 

// Passes null for the provider parameter. 
public static Int32 Parse(String s, NumberStyles style); 

 
// Passes NumberStyles.Integer for the style parameter. 

public static Int32 Parse(String s, IFormatProvider provider) { 
 

// This is the method I’ve been talking about in this section. 
public static int Parse(String s, NumberStyles style,  

   IFormatProvider provider); 

The DateTime type also offers a Parse method:  

public static DateTime Parse(String s,  

   IFormatProvider provider, DateTimeStyles styles); 

This method works just like the Parse method defined on the number types except that 
DateTime’s Parse method takes a set of bit flags defined by the DateTimeStyles 
enumerated type instead of the NumberStyles enumerated types. Table 12-7 shows the bit 
symbols that the DateTimeStyles type defines. 

Table 12-7: Bit Symbols Defined by the DateTimeStyles Type  

Symbol Value Description 

None  0x00000000 None of the special 
characters represented 



Table 12-7: Bit Symbols Defined by the DateTimeStyles Type  

Symbol Value Description 

by the bits in the 
remaining rows in this 
table are allowed in the 
string. 

AllowLeadingWhite  0x00000001 The string can contain 
leading/trailing/inner 
white-space 
characters(identified by 
the following Unicode 
code points: 0x0009, 
0x000A, 0x000B, 
0x000C, 0x000D, and 
0x0020). 

AllowTrailingWhite  0x00000002   

AllowInnerWhite  0x00000004   

NoCurrentDateDefault  0x00000008 When parsing a string 
that contains only a time 
(no date), set the date to 
January 1, 0001 instead 
of the current date. 

AdjustToUniversal  0x00000010 When parsing a string 
that contains a time-
zone specifier (“GMT”, 
“Z”, “+xxxx”, “ xxxx”), 
adjust the parsed time 
base to Greenwich Mean 
Time. 

In addition to these bit symbols, the DateTimeStyles enumerated type also defines an 
AllowWhiteSpaces symbol that represents all the White symbols OR’d together 
(AllowLeadingWhite | AllowInnerWhite | AllowTrailingWhite). 

For convenience, the DateTime type offers three overloads of the Parse method:  

// null for formatProvider and DateTimeStyles.None 

public static DateTime Parse(String s); 
 

// DateTimeStyles.None 
public static DateTime Parse(String s, IFormatProvider provider); 

 
// This is the method I’ve been talking about in this section. 

public static DateTime Parse(String s,  
   IFormatProvider provider, DateTimeStyles styles); 

Parsing dates and times is complex. Many developers have found DateTime’s Parse 
method too forgiving in that it sometimes parses strings that don’t contain dates or times. For 



this reason, the DateTime type also offers a ParseExact method that accepts a picture 
format string that indicates exactly how the date/time string is formatted and how it should be 
parsed. For more information about picture format strings, see the DateTimeFormatInfo 
class in the .NET Framework SDK. 

 
Encodings: Converting Between Characters and Bytes 

In Win32, programmers all too frequently have to write code to convert Unicode characters 
and strings to Multi-Byte Character Set (MBCS) characters and strings. I’ve certainly written 
my share of this code, and it’s very tedious to write and error prone to use. In the CLR, all 
characters are represented as 16-bit Unicode code values and all strings are composed of 
16-bit Unicode code values. This makes working with characters and strings easy at run 
time. 

At times, however, you want to save strings to a file or transmit them over a network. If the 
strings consist mostly of characters readable by English-speaking people, then saving or 
transmitting a set of 16-bit values isn’t very efficient because half of the bytes written would 
contain zeros. Instead, it would be more efficient to encode the 16-bit values into a 
compressed array of bytes and then decode the array of bytes back into an array of 16-bit 
values. 

Encodings also allow a managed application to interact with strings created by non-Unicode 
systems. For example, if you want to produce a file readable by an application running on a 
Japanese version of Windows 95, you have to save the Unicode text using the Shift-JIS 
(code page 932) encoding. Likewise, you’d use a Shift-JIS encoding to read a text file 
produced on a Japanese Windows 95 system into the CLR. 

Encoding is typically done when you want to send a string to a file or network stream using 
the System.IO.BinaryWriter or System.IO.StreamWriter type. Decoding is 
typically done when you want to read a string from a file or network stream using the 
System.IO.BinaryReader or System.IO.StreamReader type. If you don’t explicitly 
select an encoding, all these types default to using UTF-8. (UTF stands for Unicode 
Transformation Format.) However, at times, you might want to encode or decode a string.  

Fortunately, the FCL offers some types to make character encoding and decoding easy. The 
two most frequently used encodings are UTF-16 and UTF-8. 
§ UTF-16 encodes each 16-bit character as 2 bytes. It doesn’t affect the characters at 

all, and no compression occurs—its performance is excellent. UTF-16 encoding is also 
referred to as Unicode encoding. Also note that UTF-16 can be used to convert from 
little endian to big endian and vice versa. 

§ UTF-8 encodes some characters as 1 byte, some characters as 2 bytes, some 
characters as 3 bytes, and some characters as 4 bytes. Characters with a value below 
0x0080 are compressed to 1 byte, which works very well for characters used in the 
United States. Characters between 0x0080 and 0x07FF are converted to 2 bytes, which 
works well for European and Middle Eastern languages. Characters of 0x0800 and 
above are converted to 3 bytes, which works well for East Asian languages. Finally, 
surrogate character pairs are written out as 4 bytes. UTF-8 is an extremely popular 
encoding, but it’s less useful than UTF-16 if you encode many characters with values of 
0x0800 or above. 

Although the UTF-16 and UTF-8 encodings are by far the most common, the FCL also 
supports some encodings that are used less frequently: 
§ UTF-7 encoding is typically used with older systems that work with characters that can 

be expressed using 7-bit values. You should avoid this encoding because it usually 



ends up expanding the data rather than compressing it. The Unicode Consortium has 
deprecated this encoding starting with the Unicode 3.0 standard. 

§ ASCII encodes the 16-bit characters into ASCII characters; that is, any 16-bit character 
with a value less than 0x0080 is converted to a single byte. Any character with a value 
greater than 0x007F can’t be converted, and the character’s value is lost. For strings 
consisting of characters in the ASCII range (0x00 to 0x7F), this encoding compresses 
the data in half and is very fast (because the high byte is just chopped off). This 
encoding isn’t good if you have characters outside the ASCII range because the 
character’s values are lost.  

Finally, the FCL also allows you to encode 16-bit characters to an arbitrary code page. Like 
the ASCII encoding, encoding to a code page is dangerous because any character whose 
value can’t be expressed in the specified code page is lost. You should always use UTF-16 
or UTF-8 encoding unless you must work with some legacy files or applications that already 
use one of the other encodings. 

When you need to encode or decode a set of characters, you should obtain an instance of a 
class derived from System.Text.Encoding. Encoding is an abstract base class that 
offers several static properties, each of which returns an instance of an Encoding-derived 
class. (Each encoding class is basically a wrapper around the WideCharToMultiByte and 
MultiByteToWideChar Win32 functions that you might be familiar with.) 

Here’s an example that encodes and decodes characters using UTF-8: 

using System; 
using System.Text; 

 
class App { 

   static void Main() { 
      // This is the string I’m going to encode. 

      String s = "Hi there."; 
 

      // Obtain an Encoding-derived object that knows how  
      // to encode/decode using UTF-8. 

      Encoding encodingUTF8 = System.Text.Encoding.UTF8; 
 

      // Encode a string into an array of bytes. 
      Byte[] encodedBytes = encodingUTF8.GetBytes(s); 

 
      // Show the encoded byte values. 

      Console.WriteLine("Encoded bytes: " +  
         BitConverter.ToString(encodedBytes)); 

 
      // Decode the byte array back to a string. 

      String decodedString = encodingUTF8.GetString(encodedBytes)
; 
 



      // Show the decoded string. 
      Console.WriteLine("Decoded string: " + decodedString); 

   } 
} 

This code yields the following output: 

Encoded bytes: 48-69-20-74-68-65-72-65-2E 

Decoded string: Hi there. 

In addition to the UTF8 static property, the Encoding class also offers the following static 
properties: Unicode, BigEndianUnicode, UTF7, ASCII, and Default. The Default 
property returns an object that knows how to encode/decode using the user’s code page as 
specified using the Regional and Language Options Control Panel Applet in Windows. (See 
the GetACP Win32 function for more information.) However, using the Default property is 
discouraged. 

In addition to these properties, Encoding also offers a static GetEncoding method that 
allows you to specify a code page (by integer or by string) and returns an object that can 
encode/decode using the specified code page. You can call GetEncoding passing "Shift-
JIS" or 932, for example. 

When you first request an encoding object, the Encoding class’s property or GetEncoding 
method constructs a single object for the requested encoding and returns this object. If an 
already requested encoding object is requested in the future, the encoding class simply 
returns the object it previously constructed; it doesn’t construct a new object for each 
request. This efficiency reduces the number of objects in the system and puts less pressure 
in the garbage-collected heap. 

Instead of calling one of Encoding’s static properties or its GetEncoding method, you 
could also construct an instance of one of the following classes: 
System.Text.UnicodeEncoding, System.Text.UTF8Encoding, System.Text.-
UTF7Encoding, or System.Text.ASCIIEncoding. However, keep in mind that 
constructing any of these classes creates new objects in the managed heap, which hurts 
performance. 

Three of these classes, UnicodeEncoding, UTF8Encoding, and UTF7Encoding, offer 
multiple constructors allowing you more control over the encoding and byte order marks 
(BOMs). You might want to explicitly construct instances of these encoding types when 
working with a BinaryWriter or a StreamWriter. The ASCIIEncoding class has only 
a single constructor and therefore doesn’t offer any more control over the encoding. If you 
need an ASCIIEncoding object, always obtain it by querying Encoding’s ASCII property; 
never construct an instance of the ASCIIEncoding class yourself. 

Once you have an Encoding-derived object, you can convert an array of characters to an 
array of bytes by calling the GetBytes method. (Several overloads of this method exist.) To 
convert an array of bytes to an array of characters, call the GetChars method or the more 
useful GetString method. (Several overloads exist for both these methods.) The preceding 
code demonstrated calls to the GetBytes and GetString methods. 

Although not that useful, all Encoding-derived types offer a GetByteCount method that 
obtains the number of bytes necessary to encode a set of characters without actually 
encoding. You could use this method to allocate an array of bytes. There’s also a 
GetCharCount method that returns the number of characters that would be decoded 



without actually decoding. These methods are useful if you’re trying to save memory and 
reuse an array.  

The GetByteCount/GetCharCount methods aren’t that fast because they must analyze 
the array of characters/bytes in order to return an accurate result. If you prefer speed to an 
exact result, you can call the GetMaxByteCount or GetMaxChar-Count method instead. 
Both methods take an integer specifying the number of characters or number of bytes and 
return a worst-case value. 

Each Encoding-derived object offers a set of public read-only properties that you can query 
to obtain detailed information about the encoding. Table 12-8 briefly describes these 
properties. 

Table 12-8: Properties of Encoding-Derived Classes  

Property Type Description 

EncodingName  String  Returns the encoding’s 
human-readable name. 

CodePage  Int32  Returns the encoding’s code 
page. 

WindowsCodePage  Int32  Returns the encoding’s closest 
Windows code page. 

WebName  String  Returns the IANA-registered 
name. (IANA stands for 
Internet Assigned Numbers 
Authority.) For more 
information, go to 
http://www.iana.org. 

HeaderName  String  Returns mail agent header 
tag. 

BodyName  String  Returns mail agent body tag. 

IsBrowserDisplay  Boolean  Returns true if browser 
clients can use encoding for 
display purposes. 

IsBrowserSave  Boolean  Returns true if browser 
clients can use encoding for 
saving purposes. 

IsMailNewsDisplay  Boolean  Returns true if mail and 
news clients can use encoding 
for display purposes. 

IsMailNewsSave  Boolean  Returns true if mail and 
news clients can use encoding 
for saving purposes. 

To illustrate the properties and their meanings, I wrote the following program that displays 
these properties for several different encodings: 

using System; 
using System.Text; 



 
class App { 

   static void Main() { 
      Show(Encoding.Unicode); 

      Show(Encoding.BigEndianUnicode); 
      Show(Encoding.UTF8); 

      Show(Encoding.UTF7); 
      Show(Encoding.ASCII); 

      Show(Encoding.Default); 
      Show(Encoding.GetEncoding(0));   // Same as Default 

      Console.WriteLine(); 
      Console.WriteLine("Below are some specific code pages:"); 

      Show(Encoding.GetEncoding(437)); 
      Show(Encoding.GetEncoding(28595)); 

      Show(Encoding.GetEncoding(57008)); 
      Show(Encoding.GetEncoding(54936)); 

      Show(Encoding.GetEncoding(874)); 
   } 

 
 

   static void Show(Encoding e) { 
      Console.WriteLine( 

         "{1}{0}" + 
         "\tCodePage={2}, WindowsCodePage={3}{0}" + 

         "\tWebName={4}, HeaderName={5}, BodyName={6}{0}" + 
         "\tIsBrowserDisplay={7}, IsBrowserSave={8}{0}" + 

         "\tIsMailNewsDisplay={9}, IsMailNewsSave={10}{0}", 
         Environment.NewLine, 

         e.EncodingName,  
         e.CodePage, e.WindowsCodePage,  

         e.WebName, e.HeaderName, e.BodyName, 
         e.IsBrowserDisplay, e.IsBrowserSave,  

         e.IsMailNewsDisplay, e.IsMailNewsSave); 
   } 

} 

Running this program yields the following output: 

Unicode 
    CodePage=1200, WindowsCodePage=1200 

    WebName=utf-16, HeaderName=utf-16, BodyName=utf-16 
    IsBrowserDisplay=False, IsBrowserSave=True 



    IsMailNewsDisplay=False, IsMailNewsSave=False 
 

Unicode (Big-Endian) 
    CodePage=1201, WindowsCodePage=1200 

    WebName=unicodeFFFE, HeaderName=unicodeFFFE, BodyName=unicode
FFFE 
    IsBrowserDisplay=False, IsBrowserSave=False 

    IsMailNewsDisplay=False, IsMailNewsSave=False 
 

Unicode (UTF-8) 
    CodePage=65001, WindowsCodePage=1200 

    WebName=utf-8, HeaderName=utf-8, BodyName=utf-8 
    IsBrowserDisplay=True, IsBrowserSave=True 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

Unicode (UTF-7) 
    CodePage=65000, WindowsCodePage=1200 

    WebName=utf-7, HeaderName=utf-7, BodyName=utf-7 
    IsBrowserDisplay=False, IsBrowserSave=False 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

US-ASCII 
    CodePage=20127, WindowsCodePage=1252 

    WebName=us-ascii, HeaderName=us-ascii, BodyName=us-ascii 
    IsBrowserDisplay=False, IsBrowserSave=False 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

Western European (Windows) 
    CodePage=1252, WindowsCodePage=1252 

    WebName=Windows-1252, HeaderName=Windows-1252, BodyName=iso-
8859-1 
    IsBrowserDisplay=True, IsBrowserSave=True 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

Western European (Windows) 
    CodePage=1252, WindowsCodePage=1252 

    WebName=Windows-1252, HeaderName=Windows-1252, BodyName=iso-
8859-1 

    IsBrowserDisplay=True, IsBrowserSave=True 
    IsMailNewsDisplay=True, IsMailNewsSave=True 

 



 
Below are some specific code pages: 

OEM United States 
    CodePage=437, WindowsCodePage=1252 

    WebName=IBM437, HeaderName=IBM437, BodyName=IBM437 
    IsBrowserDisplay=False, IsBrowserSave=False 

    IsMailNewsDisplay=False, IsMailNewsSave=False 
 

Cyrillic (ISO) 
    CodePage=28595, WindowsCodePage=1251 

    WebName=iso-8859-5, HeaderName=iso-8859-5, BodyName=iso-8859-
5 
    IsBrowserDisplay=True, IsBrowserSave=True 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

ISCII Kannada 
    CodePage=57008, WindowsCodePage=57008 

    WebName=x-iscii-ka, HeaderName=x-iscii-ka, BodyName=x-iscii-
ka 
    IsBrowserDisplay=False, IsBrowserSave=False 

    IsMailNewsDisplay=False, IsMailNewsSave=False 
 

Chinese Simplified (GB18030) 
    CodePage=54936, WindowsCodePage=936 

    WebName=GB18030, HeaderName=GB18030, BodyName=GB18030 
    IsBrowserDisplay=True, IsBrowserSave=True 

    IsMailNewsDisplay=True, IsMailNewsSave=True 
 

Thai (Windows) 
    CodePage=874, WindowsCodePage=874 

    WebName=windows-874, HeaderName=windows-
874, BodyName=windows-874 

    IsBrowserDisplay=True, IsBrowserSave=True 
    IsMailNewsDisplay=True, IsMailNewsSave=True 

Table 12-9 completes the discussion of the methods offered by all Encoding-derived 
classes. 

Table 12-9: Methods of the Encoding-Derived Classes  

Method Description 

GetPreamble  Returns an array of bytes indicating what should be 
written to a stream before writing any encoded bytes. 
Frequently, these bytes are referred to as the byte order 



Table 12-9: Methods of the Encoding-Derived Classes  

Method Description 

mark (BOM) byte. When you start reading from a stream, 
the BOM bytes automatically help detect what encoding 
was used when the stream was written so that the 
correct decoder can be used. For most Encoding-
derived classes, this method returns an array of 0 
bytes—that is, no preamble bytes. A UTF8Encoding 
object can be explicitly constructed so that this method 
returns a 3-byte array of 0xEF, 0xBB, 0xBF. A 
UnicodeEncoding object can be explicitly constructed 
so that this method returns a 2-byte array of 0xFE, 0xFF 
for big endian encoding or a 2-byte array of 0xFF, 0xFE 
for little endian encoding. 

Convert  Converts an array of bytes specified in a source 
encoding to an array of bytes specified by a destination 
encoding. Internally, this static method calls the source 
encoding object’s GetChars method and passes the 
result to the destination encoding object’s GetBytes 
method. The resulting byte array is returned to the caller. 

Equals  Returns true if two Encoding-derived objects 
represent the same code page and preamble setting. 

GetHashCode  Returns the encoding object’s code page. 

Encoding/Decoding Streams of Characters and Bytes 

Imagine that you’re reading a UTF-16 encoded string via a 
System.Net.Sockets.NetworkStream object. The bytes will very likely stream in as 
chunks of data. In other words, you might first read 5 bytes from the stream, followed by 7 
bytes. In UTF-16, each character consists of 2 bytes. So calling Encoding’s GetString 
method passing the first array of 5 bytes will return a string consisting of just two characters. 
If you later call GetString passing in the next 7 bytes that come in from the stream, 
GetString will return a string consisting of three characters and all the code points will 
have the wrong values! 

This data corruption problem occurs because none of the Encoding-derived classes 
maintains any state in between calls to their methods. If you’ll be encoding or decoding 
characters/bytes in chunks, you must do some additional work so that state is maintained 
between calls, preventing any loss of data. 

To decode chunks of bytes, you should obtain a reference to an Encoding-derived object 
(as described in the previous section) and call its GetDecoder method. This method returns 
a reference to a newly constructed object whose type is derived from the 
System.Text.Decoder class. Like the Encoding class, the Decoder class is an abstract 
base class. If you look in the .NET Framework SDK documentation, you won’t find any 
classes that represent concrete implementations of the Decoder class. However, the FCL 
does define a bunch of Decoder-derived classes, such as UTF8Decoder. These classes 
are all internal to the FCL, but the GetDecoder method can construct instances of these 
classes and return them to your application code. 



All Decoder-derived classes offer two methods: GetChars and GetCharCount. 
Obviously, these methods are used for decoding and work similarly to Encoding’s 
GetChars and GetCharCount methods, discussed earlier. When you call one of these 
methods, it decodes the byte array as much as possible. If the byte array doesn’t contain 
enough bytes to complete a character, the leftover bytes are saved inside the decoder 
object. The next time you call one of these methods, the decoder object uses the leftover 
bytes plus the new byte array passed to it—this ensures that the chunks of data are decoded 
properly. Decoder objects are very useful when reading bytes from a stream. 

An Encoding-derived type can be used for stateless encoding and decoding. However, a 
Decoder-derived type can be used only for decoding. If you want to encode strings in 
chunks, call GetEncoder instead of calling the Encoding object’s GetDecoder method. 
GetEncoder returns a newly constructed object whose type is derived from the 
System.Text.Encoder class, which is also an abstract base class. Again, the .NET 
Framework SDK documentation doesn’t contain any classes representing concrete 
implementations of the Encoder class. However, the FCL does define some Encoder-
derived classes, such as UTF8Encoder. As with the Decoder-derived classes, these 
classes are all internal to the FCL, but the GetEncoder method can construct instances of 
these classes and return them to your application code. 

All Encoder-derived classes offer two methods: GetBytes and GetByteCount. On each 
call, the Encoder-derived object maintains any leftover state information so that you can 
encode data in chunks. 

Base-64 String Encoding and Decoding 

Today, the UTF-16 and UTF-8 encodings are becoming quite popular. Also gaining in 
popularity is the ability to encode a sequence of bytes to a base-64 string. The FCL does 
offer methods to do base-64 encoding and decoding, and you might expect that this would 
be accomplished via an Encoding-derived type. However, for some reason, base-64 
encoding and decoding is done using some static methods offered by the System.Convert 
type. 

To encode a base-64 string as an array of bytes, you call Convert’s static 
FromBase64String or FromBase64CharArray method. Likewise, to decode an array of 
bytes as a base-64 string, you call Convert’s static ToBase64String or 
ToBase64CharArray method. The following code demonstrates how to use some of these 
methods:  

using System; 

 
class App { 

   static void Main() { 
      // Get a set of 10 randomly generated bytes. 

      Byte[] bytes = new Byte[10]; 
      new Random().NextBytes(bytes); 

 
      // Display the bytes. 

      Console.WriteLine(BitConverter.ToString(bytes)); 
 



      // Decode the bytes into a base-
64 string, and show the string. 
      String s = Convert.ToBase64String(bytes); 

      Console.WriteLine(s); 
 

      // Encode the base-
64 string back to bytes, and show the bytes. 
      bytes = Convert.FromBase64String(s); 

      Console.WriteLine(BitConverter.ToString(bytes)); 
   } 

} 

Compiling this code and running the executable produces the following output. (Your output 
might vary from mine because of the randomly generated bytes.) 

34-24-99-7A-66-BF-D1-5F-41-1C 

NCSZema/0V9BHA== 
34-24-99-7A-66-BF-D1-5F-41-1C 



Chapter 13: Enumerated Types and Bit Flags 
In this chapter, I’ll discuss enumerated types and bit flags. Since Windows has used these 
constructs for so many years, I’m sure that many of you are already familiar with how to use 
enumerated types and bit flags. However, the common language runtime (CLR) and the 
.NET Framework Class Library (FCL) work together to make enumerated types and bit flags 
real object-oriented types that offer cool new features that I suspect most developers aren’t 
familiar with. It’s amazing to me how these new features, which are the focus of this chapter, 
make developing application code so much easier. 

Enumerated Types 

An enumerated type is a type that defines a set of symbolic names and value pairs. For 
example, the Color type shown here defines a set of symbols, with each symbol identifying 
a single color:  

enum Color { 
   Red,         // Assigned a value of 0 

   Green,       // Assigned a value of 1 
   Blue,        // Assigned a value of 2 

   Orange       // Assigned a value of 3 
} 

Of course, programmers can always write a program using 0 to represent Red, 1 to 
represent Green, and so on. However, programmers shouldn’t hard-code numbers into their 
code and should use an enumerated type instead, for at least two reasons: 
§ Enumerated types make the program much easier to write, read, and maintain. With 

enumerated types, the symbolic name is used throughout the code and the programmer 
doesn’t have to mentally map that Red is 0 or that 0 means Red. Also, should a 
symbol’s numeric value change, the code can simply be recompiled without requiring 
any changes to the source code. In addition, documentation tools and other utilities, 
such as a debugger, can show meaningful symbolic names to the programmer.  

§ Enumerated types are strongly typed. For example, the compiler will report an error if I 
attempt to pass Color.Orange as a value to a method requiring a Fruit enumerated 
type as a parameter. 

In the CLR, enumerated types are more than just symbols that the compiler cares about. 
Enumerated types are treated as first-class citizens in the type system, which allows for very 
powerful operations that simply can’t be done with enumerated types in other environments 
(such as in unmanaged C++, for example). 

Every enumerated type inherits directly from System.Enum, which inherits from 
System.ValueType, which in turn inherits from System.Object. So, enumerated types 
are value types (described in Chapter 5) and can be represented in unboxed and boxed 
forms. However, unlike other value types, an enumerated type can’t define any methods, 
properties, or events. 

When an enumerated type is compiled, the C# compiler turns each symbol into a constant 
field of the type. For example, the compiler treats the Color enumeration shown earlier as if 
you had written code similar to the following:  

struct Color : System.Enum { 

   public const Color Red    = (Color) 0; 



   public const Color Green  = (Color) 1; 
   public const Color Blue   = (Color) 2; 

   public const Color Orange = (Color) 3; 
} 

The C# compiler won’t actually compile this code, but this example does give you an idea of 
what’s happening internally. Basically, an enumerated type is just a structure that has a 
bunch of constant fields defined in it. The fields are emitted to the module’s metadata and 
can be accessed via reflection. This means that you can get all the symbols and their values 
associated with an enumerated type at run time. It also means that you can convert a string 
symbol into its equivalent numeric value.  

 
Important  

Symbols defined by an enumerated type are constant values. This 
means that compilers convert code that references an enumerated 
type’s symbol to a numeric value at compile time. Once this occurs, no 
reference to the enumerated type exists in metadata and the assembly 
that defines the enumerated type doesn’t have to be available at run 
time. If you have code that references the enumerated type—rather 
than just having references to symbols defined by the type—the 
assembly that defines the enumerated type will be required at run time. 
Some versioning issues arise because enumerated type symbols are 
constants instead of read-only values. I explained these issues in 
Chapter 8. 

To simplify these operations and make it so that you don’t have to be familiar with reflection, 
the System.Enum base type offers several static methods and instance methods that 
expose the special operations that can be performed on an instance of an enumerated type. 
I’ll discuss some of these operations next. 

For example, the Enum type has a static method called GetUnderlyingType:  

static Type GetUnderlyingType(Type enumType); 

This method returns the core type used to hold an enumerated type’s value. Every 
enumerated type has an underlying type, which can be byte, sbyte, short, ushort, int 
(the most common and what C# chooses by default), uint, long, or ulong. Of course, 
these C# primitive types correspond to FCL types. However, the C# compiler requires that 
you specify a primitive type here; using a base class type (like Int32) generates an error. 
The following code shows how to declare an enumerated type with an underlying type of 
byte (System.Byte) by using C#:  

enum Color : byte { 
   Red, 

   Green, 
   Blue, 

   Orange 
} 

With the Color enumerated type defined in this way, the following code shows what 
GetUnderlyingType will return:  

// The following line displays "System.Byte". 

Console.WriteLine(Enum.GetUnderlyingType(typeof(Color))); 



Given an instance of an enumerated type, it’s possible to map that value to one of four string 
representations by using the System.Enum.ToString method:  

Color c = Color.Blue; 
Console.WriteLine(c.ToString());    // "Blue" (General format) 

Console.WriteLine(c.ToString("G")); // "Blue" (General format) 
Console.WriteLine(c.ToString("D")); // "2"    (Decimal format) 

Console.WriteLine(c.ToString("X")); // "2"    (heX format) 

Internally, the ToString method calls System.Enum’s static Format method:  

public static String Format(Type enumType, 

   Object value, String format);  

Generally, I prefer to call the ToString method because it requires less code and it’s easier 
to call. But using Format has one advantage over ToString. For-mat lets you pass a 
numeric value for the value parameter; you don’t have to have an instance of the 
enumerated type. For example, the following code will display "Blue":  

// The following line displays "Blue". 

Console.WriteLine(Enum.Format(typeof(Color), 2, "G")) 

 
Note  

It’s possible to declare an enumerated type that has multiple symbols all 
with the same numeric value. When converting a numeric value to a symbol, 
Enum’s methods return one of the symbols. However, there’s no guarantee 
as to which symbol name is returned. Also, if no symbol is defined for the 
numeric value you’re looking up, a string containing the numeric value is 
returned.  

It’s also possible to create an array that contains one element for each symbolic name in an 
enumerated type. You use System.Enum’s static GetValues method:  

static Array GetValues(Type enumType); 

Using this method along with the ToString method, you can display all of an enumerated 
type’s symbolic and numeric values, like so:  

Color[] colors = (Color[]) Enum.GetValues(typeof(Color)); 
Console.WriteLine("Number of symbols defined: " + colors.Length); 

Console.WriteLine("Value\tSymbol\n——\t———"); 
foreach (Color c in colors) { 

   // Display each symbol in Decimal and General format. 
   Console.WriteLine("{0,5:D}\t{1:G}", c, c); 

} 

The previous code produces the following output: 

Number of symbols defined: 4 

Value   Symbol 
 ——--   ——— 

    0   Red 
    1   Green 



    2   Blue 
    3   Orange 

This discussion shows some of the cool operations that can be performed on enumerated 
types. I suspect the ToString method with the general format will be used quite frequently 
to show symbolic names in a program’s user interface, as long as the strings don’t need to 
be localized (since enumerated types offer no support for localization). In addition to the 
GetValues method, the Enum type also offers the following two static methods that return 
an enumerated type’s symbols:  

// Returns a String representation for the numeric value 

public static String   GetName(Type enumType, Object value); 
 

// Returns an array of Strings: one per symbol defined in the enu
m 
public static String[] GetNames(Type enumType);  

I’ve discussed a lot of methods that you can use to look up an enumerated type’s symbol. 
But you also need a method that can look up a symbol’s equivalent value, an operation that 
could be used to convert a symbol that a user enters into a text box, for example. Converting 
a symbol to an instance of an enumerated type is easily accomplished using Enum’s static 
Parse method:  

public static Object Parse(Type enumType,  

   String value, Boolean ignoreCase); 

Here’s some code demonstrating how to use this method: 

// Because Orange is defined as 3, ’c’ is initialized to 3. 

Color c = (Color) Enum.Parse(typeof(Color), "orange", true); 
 

// Because Brown isn’t defined, an ArgumentException is thrown. 
Color c = (Color) Enum.Parse(typeof(Color), "Brown", false); 

 
// Creates an instance of the Color enum with a value of 1 

Color c = (Color) Enum.Parse(typeof(Color), "1", false); 
 

// Creates an instance of the Color enum with a value of 23 
Color c = (Color) Enum.Parse(typeof(Color), "23", false); 

for an enumerated type: 

// Displays "True" because Color defines Green as 1 

Console.WriteLine(Enum.IsDefined(typeof(Color), 1)); 
 

// Displays "True" because Color defines Red as 0 
Console.WriteLine(Enum.IsDefined(typeof(Color), "Red")); 

 
// Displays "False" because a case-sensitive check is performed  



Console.WriteLine(Enum.IsDefined(typeof(Color), "red")); 
 

// Displays "False" because Color doesn’t have a symbol of value 
10 
Console.WriteLine(Enum.IsDefined(typeof(Color), 10)); 

The IsDefined method is frequently used to do parameter validation. Here’s an example:  

public void SetColor(Color c) { 
   if (!Enum.IsDefined(typeof(Color), c)) { 

      throw(new ArgumentOutOfRangeException("c", "Not a valid Col
or")); 
   } 

   ? 
} 

The parameter validation is useful because someone could call SetColor like this:  

SetColor((Color) 547); 

Because no symbol has a corresponding value of 547, the SetColor method will throw an 
ArgumentOutOfRangeException exception, indicating which parameter was invalid and 
why. 

Finally, the System.Enum type offers a set of static ToObject methods that convert an 
instance of a Byte, SByte, Int16, UInt16, Int32, UInt32, Int64, or UInt64 to an 
instance of an enumerated type. 

Enumerated types are always used in conjunction with some other type. Typically, they’re 
used for the type’s method parameters, properties, and fields. A common question that 
arises is whether to define the enumerated type nested within the type that requires it or 
whether to define the enumerated type at the same level as the type that requires it. If you 
examine the FCL, you’ll see that usually an enumerated type is defined at the same level as 
the class that requires it. The reason is simply to make the developer’s life a little easier by 
reducing the amount of typing required. So, you should define your enumerated type at the 
same level unless you’re concerned about name conflicts. 

 
Bit Flags 

Programmers frequently work with sets of bit flags. When you call the System.IO.File 
type’s GetAttributes method, it returns an instance of a FileAttributes type. A 
FileAttributes type is an instance of an Int32-based enumerated type, where each bit 
reflects a single attribute of the file. The FileAttributes type is defined in the FCL as 
follows:  

[Flags, Serializable] 
public enum FileAttributes { 

   ReadOnly          = 0x0001, 
   Hidden            = 0x0002, 

   System            = 0x0004, 
   Directory         = 0x0010, 



   Archive           = 0x0020, 
   Device            - 0x0040, 

   Normal            = 0x0080, 
   Temporary         = 0x0100, 

   SparseFile        = 0x0200, 
   ReparsePoint      = 0x0400, 

   Compressed        = 0x0800, 
   Offline           = 0x1000, 

   NotContentIndexed = 0x2000, 
   Encrypted         = 0x4000 

} 

To determine whether a file is hidden, you would execute code like this: 

String file = @"C:\Boot.ini"; 
FileAttributes attributes = File.GetAttributes(file); 

Console.WriteLine("Is {0} hidden? {1}", file,  
   (attributes & FileAttributes.Hidden) != 0); 

And here’s code demonstrating how to change a file’s attributes to read-only and hidden: 

File.SetAttributes(@"C:\Boot.ini",  
   FileAttributes.ReadOnly | FileAttributes.Hidden);  

As the FileAttributes type shows, it’s common to use enumerated types to express the 
set of bit flags that can be combined. However, although enumerated types and bit flags are 
similar, they don’t have exactly the same semantics. For example, enumerated types 
represent single numeric values, and bit flags represent a set of flags, some of which are on 
and some of which are off. 

When defining an enumerated type that is to be used to identify bit flags, you should, of 
course, explicitly assign to each of the symbols numeric values that map to individual bits. 
It’s also highly recommended that you apply the System.FlagsAttribute custom 
attribute type to the enumerated type, as shown here:  

[Flags]     
// The C# compiler allows either "Flags" or "FlagsAttribute". 
enum Actions { 

   Read   = 0x0001, 
   Write  = 0x0002, 

   Delete = 0x0004, 
   Query  = 0x0008, 

   Sync   = 0x0010  
} 

Because Actions is an enumerated type, you can use all the methods described in the 
previous section when working with bit flag enumerated types. However, it would be nice if 
some of those functions behaved a little differently. For example, let’s say you had the 
following code:  



Actions actions = Actions.Read | Actions.Write; // 0x0003 
Console.WriteLine(actions.ToString());          // "Read, Write"  

When ToString is called, it attempts to translate the numeric value into its symbolic 
equivalent. The numeric value is 0x0003, which has no symbolic equivalent. However, the 
ToString method detects the existence of the [Flags] attribute on the Actions type, 
and ToString now treats the numeric value not as a single value but as a set of bit flags. 
Because the 0x0001 and 0x0002 bits are set, ToString generates the following string: 
"Read, Write". If you remove the [Flags] attribute from the Actions type, ToString 
would produce the following string: "3". 

I discussed the ToString method in the previous section, and I showed that it offered three 
ways to format the output: "G" (general), "D" (decimal), and "X" (hex). When you’re 
formatting an instance of an enumerated type by using the general format, the type is first 
checked to see whether the [Flags] attribute is applied to it. If this attribute is not applied, 
a symbol matching the numeric value is looked up and returned. If the [Flags] attribute is 
applied, a symbol matching each 1 bit is looked up and concatenated to a string; each 
symbol is separated by a comma. 

If you prefer, you could define the Actions type without the [Flags] attribute and still get 
the correct string by using the "F" format:  

// [Flags]     // Commented out now 
enum Actions { 

   Read   = 0x0001, 
   Write  = 0x0002, 

   Delete = 0x0004, 
   Query  = 0x0008, 

   Sync   = 0x0010  
} 

 
Actions actions = Actions.Read | Actions.Write; // 0x0003 

Console.WriteLine(actions.ToString("F"));       // "Read, Write"  

As I mentioned in the previous section, the ToString method actually calls 
System.Enum’s static Format method internally. This means that you can use the "F" 
format when calling the static Format method. If the numeric value contains 1 bit with no 
matching symbols, the returned string will contain just a decimal number and none of the 
symbols will appear in the string. 

Note that the symbols you define in your enumerated type don’t have to be pure powers of 2. 
For example, the Actions type could define a symbol called All with a value of 0x001F. If 
an instance of the Actions type has a value of 0x001F, formatting the instance will produce 
a string that contains "All". The other symbol strings won’t appear. 

So far, I’ve discussed how to convert numeric values into a string of flags. It’s also possible 
to convert a string of comma-delimited symbols into a numeric value by calling Enum’s static 
Parse method. Here’s some code demonstrating how to use this method:  

// Because Query is defined as 8, ’a’ is initialized to 8. 
Actions a = (Actions) Enum.Parse(typeof(Actions), "Query", true); 



 
// Because Query and Read are defined, ’a’ is initialized to 9. 

Actions a = (Actions) Enum.Parse(typeof(Actions), "Query,Read", f
alse); 
 

// Creates an instance of the Actions enum with a value of 28 
Actions a = (Actions) Enum.Parse(typeof(Actions), "28", false); 

Console.WriteLine(a.ToString());  // "Delete, Query, Sync" 
 

// Creates an instance of the Actions enum with a value of 333 
Actions a = (Actions) Enum.Parse(typeof(Actions), "333", false); 

Console.WriteLine(a.ToString());  // "333" 

Again, when Parse is called, it checks whether the [Flags] custom attribute has been 
applied to the enumerated type. If the attribute exists, Parse splits the string into individual 
symbols, looks up each symbol, and bitwise-ORs the corresponding numeric value into the 
resulting instance of the enumerated type. See Chapter 16 for more information about 
custom attributes.  

The [Flags] attribute affects how ToString, Format, and Parse behave. Compilers are 
also encouraged to look for this attribute and ensure that the enumerated type is being 
manipulated as a set of bit flags. For example, a compiler could allow only bit operations on 
the bit flag enumerated type and disallow other arithmetic operations, such as multiplication 
and division. The C# compiler ignores the [Flags] attribute completely; anything you can 
do with an enumerated type you can do with a bit flag enumerated type. 

When using a Visual Studio .NET form designer, you can use a property window to make 
various settings at design time. If some of these settings are enumerated types, the form 
designer checks whether the [Flags] attribute is applied to the type and displays the 
possible values accordingly. 



Chapter 14: Arrays 

Overview 

Arrays are mechanisms that allow you to treat several items as a single collection. The 
Microsoft .NET common language runtime (CLR) supports single-dimension arrays, 
multidimension arrays, and jagged arrays (that is, arrays of arrays). All array types are 
implicitly derived from System.Array, which itself is derived from System.Object. This 
means that arrays are always reference types that are allocated on the managed heap and 
that your application’s variable contains a reference to the array and not the array itself. The 
following code makes this clearer:  

Int32[] myIntegers;          // Declares a reference to an array 

myIntegers = new Int32[100]; // Creates an array of 100 Int32s 

On the first line, myIntegers is a variable that’s capable of pointing to a single-dimension 
array of Int32s. Initially, myIntegers will be set to null because I haven’t allocated an 
array. The second line of code allocates an array of 100 Int32 values; all the Int32s are 
initialized to 0. Even though Int32s are value types, the memory block large enough to hold 
these values is allocated from the managed heap. The memory block contains 100 unboxed 
Int32 values. The address of this memory block is returned and saved in the variable 
myIntegers. 

You can also create arrays of reference types: 

Control[] myControls;         // Declares a reference to an array 
myControls = new Control[50]; // Creates an array of 50 Control 
references 

On the first line, myControls is a variable capable of pointing to a single-dimension array of 
Control references. Initially, myControls will be set to null because I haven’t allocated 
an array. The second line allocates an array of 50 Control references; all of these 
references are initialized to null. Because Control is a reference type, creating the array 
creates only references; the actual objects aren’t created at this time. The address of this 
memory block is returned and saved in the variable myControls.  

Figure 14-1 shows how arrays of value types and arrays of reference types look in the 
managed heap. 

 
Figure 14-1 : Arrays of value and reference types in the managed heap  



In the figure, the Controls array shows the result after the following lines have executed:  

myControls[1] = new Button(); 
myControls[2] = new TextBox(); 

myControls[3] = myControls[2];  // Two elements refer to the same 
object. 
myControls[46] = new DataGrid(); 

myControls[48] = new ComboBox(); 
myControls[49] = new Button(); 

Common Language Specification (CLS) compliance requires that all arrays be zero-based. 
This allows a method written in C# to create an array and pass the array’s reference to code 
written in another language, such as Microsoft Visual Basic. In addition, because zero-based 
arrays are, by far, the most common arrays, Microsoft has spent a lot of time optimizing their 
performance. However, the CLR does support non-zero-based arrays even though their use 
is discouraged. For those of you who don’t care about performance or cross-language 
portability, I’ll demonstrate how to create and use non-zero-based arrays later in this section.  

Notice in Figure 14-1 that each array has some additional overhead information associated 
with it. This information contains the rank of the array (number of dimensions), the lower 
bounds for each dimension of the array (almost always 0), and the length of each dimension. 
The overhead also contains the type of each element in the array. Shortly, I’ll mention the 
methods that allow you to query this overhead information. 

So far, I’ve shown examples demonstrating how to create single-dimension arrays. When 
possible, you should stick with single-dimension, zero-based arrays, sometimes referred to 
as SZ arrays, or vectors. Vectors give the best performance because you can use specific IL 
instructions—such as newarr, ldelem, ldelema, ldlen, and stelem—to manipulate 
them. However, if you prefer to work with multidimension arrays, you can. Here are some 
examples of multidimension arrays:  

// Create a two-dimension array of Doubles. 
Double[,] myDoubles = new Double[10, 20]; 

 

// Create a three-dimension array of String references. 
String[,,] myStrings = new String[5, 3, 10]; 

The CLR also supports jagged arrays. Zero-based, single-dimension jagged arrays have the 
same performance as normal vectors. However, accessing the elements of a jagged array 
means that two or more array accesses must occur. Note that jagged arrays are not CLS-
compliant—because the CLS doesn’t allow a System.Array object to be an element of an 
array—and can’t be passed between code written in different programming languages. 
Fortunately, C# supports jagged arrays. Here are some examples of how to create an array 
of polygons, where each polygon consists of an array of Point instances:  

// Create a single-dimension array of Point arrays. 
Point[][] myPolygons = new Point[3][]; 

 
// myPolygons[0] refers to an array of 10 Point instances. 

myPolygons[0] = new Point[10];  
 

// myPolygons[1] refers to an array of 20 Point instances. 



myPolygons[1] = new Point[20]; 
 

// myPolygons[2] refers to an array of 30 Point instances. 
myPolygons[2] = new Point[30]; 

 
// Display the Points in the first polygon. 

for (Int32 x = 0, l = myPolygons[0].Length; x < l; x++)  
   Console.WriteLine(myPolygons[0][x]); 

 
Note  

The CLR verifies that an index into an array is valid. In other words, you 
can’t create an array with 100 elements in it (numbered 0 through 99) and 
then try to access the element at index 100 or –5. Doing so will cause a 
System.IndexOutOfRangeException exception to be thrown. Allowing 
access to memory outside the range of an array would be a breach of type 
safety and a potential security hole, and the CLR doesn’t allow verifiable 
code to do this. Usually, the performance associated with index checking is 
insubstantial because the JIT (just-in-time) compiler normally checks array 
bounds once before a loop executes instead of at each loop iteration. 
However, if you’re still concerned about the performance hit of the CLR’s 
index checks, you can use unsafe code in C# to access the array. The "Fast 
Array Access" section later in this chapter demonstrates how to do this. 

 

All Arrays Are Implicitly Derived from System.Array  

The System.Array type offers several static and instance members. Because all arrays 
are implicitly derived from System.Array, these members can be used to manipulate 
arrays of value types or reference types. Also note that Array implements several 
interfaces: ICloneable, IEnumerable, ICollection, and IList. These interfaces 
allow arrays to be conveniently used in many different scenarios.  

Table 14-1 summarizes the methods offered by System.Array and the interfaces that it 
implements.  

Table 14-1: Members of System.Array  

Member Member Type Description 

Rank  Read-only 
instance 
property 

Returns the number of dimensions 
in the array. 

GetLength  Instance 
method 

Returns the number of elements in 
the specified dimension of the array. 

Length  Read-only 
instance 
property 

Returns the total number of 
elements in the array. 

GetLowerBound  Instance 
method 

Returns the lower bound of the 
specified dimension. This is almost 
always 0. 

GetUpperBound  Instance Returns the upper bound of the 



Table 14-1: Members of System.Array  

Member Member Type Description 

method specified dimension. This is almost 
always the number of elements in 
the dimension minus 1. 

IsReadOnly  Read-only 
instance 
property 

Indicates whether the array is read-
only. For arrays, this is always 
false. 

IsSynchronized  Read-only 
instance 
property 

Indicates whether the array access 
is thread-safe. For arrays, this is 
always false. 

SyncRoot  Read-only 
instance 
property 

Retrieves an object that can be used 
to synchronize access to the array. 
For arrays, this is always a 
reference to the array itself. 

IsFixedSize  Read-only 
instance 
property 

Indicates whether the array is a fixed 
size. For arrays, this is always true. 

GetValue  Instance 
method 

Returns a reference to the element 
located at the specified position in 
the array. If the array contains value 
types, the return value refers to a 
boxed copy of the element. This 
rarely used method is required only 
when you don’t know at design time 
the number of dimensions in an 
array. 

SetValue  Instance 
method 

Sets the element located at the 
specified position in the array. This 
rarely used method is required only 
when you don’t know at design time 
the number of dimensions in an 
array. 

GetEnumerator  Instance 
method 

Returns an IEnumerator for the 
array. This allows using C#’s 
foreach statement (or an 
equivalent in another language). For 
multidimension arrays, the 
enumerator iterates through all the 
elements, with the right-most 
dimension changing the fastest. 

Sort  Static method Sorts the elements in one array, in 
two arrays, or in a section of an 
array. The array element type must 
imple-ment the IComparer 
interface or must pass an object 
whose type implements the 
IComparer interface. 



Table 14-1: Members of System.Array  

Member Member Type Description 

BinarySearch  Static method Searches the specified array for the 
specified element using a binary 
search algorithm. This method 
assumes that the array’s elements 
are sorted. The array element type 
must implement the IComparer 
interface. You usually use the Sort 
method before calling 
BinarySearch. 

IndexOf  Static method Returns the index of the first 
occurrence of a value in a one-
dimension array or in a portion of it. 

LastIndexOf  Static method Returns the index of the last 
occurrence of a value in a one-
dimension array or in a portion of it. 

Reverse  Static method Reverses the order of the elements 
in the specified one-dimension array 
or in a portion of it. 

Clone  Instance 
method 

Creates a new array that’s a shallow 
copy of the source array. 

CopyTo  Instance 
method 

Copies elements from one array to 
another array. 

Copy  Static method Copies a section of one array to 
another array, performing any 
appropriate casting required. 

Clear  Static method Sets a range of elements in the 
array to 0 or to a null object 
reference. 

CreateInstance  Static method Creates an instance of an array. 
This rarely used method allows you 
to dynamically (at run time) define 
arrays of any type, rank, and 
bounds. 

Initialize  Instance 
method 

Calls the default constructor for each 
element in an array of value types. 
This method does nothing if the 
elements in the array are reference 
types. C# doesn’t allow you to define 
default constructors for value types, 
so this method has no use for arrays 
of C# structures. This method is 
primarily for compiler vendors. 

 

Casting Arrays 



For arrays with reference type elements, the CLR allows you to implicitly cast the source 
array’s element type to a target type. For the cast to succeed, both array types must have 
the same number of dimensions, and an implicit or explicit conversion from the source 
element type to the target element type must exist. The CLR doesn’t allow the casting of 
arrays with value type elements to any other type. (However, by using the Array.Copy 
method, you can create a new array that has the desired effect.) The following code 
demonstrates how array casting works:  

// Create a two-dimension FileStream array. 
FileStream[,] fs2dim = new FileStream[5, 10]; 

 
// Implicit cast to a two-dimension Object array 

Object[,] o2dim = fs2dim; 
 

// Can’t cast from 2-dimension array to one-dimension array 
// Compiler error CS0030: Cannot convert type ‘object[*,*]’ to  

// ‘System.IO.Stream[]’ 
Stream[] s1dim = (Stream[]) o2dim; 

 
// Explicit cast to two-dimension Stream array 

Stream[,] s2dim = (Stream[,]) o2dim; 
 

// Explicit cast to two-dimension Type array  
// Compiles but throws InvalidCastException at run time 

Type[,] t2dim = (Type[,]) o2dim; 
 

// Create a one-dimension Int32 array (value types). 
Int32[] i1dim = new Int32[5]; 

 
// Can’t cast from array of value types to anything else 

// Compiler error CS0030: Cannot convert type ‘int[]’ to 
‘object[]’ 
Object[] o1dim = (Object[]) i1dim; 

 
// Array.Copy creates a new array, coercing each element in the 
source  
// array to the desired type in the destination array. 
// The following code creates an array of references to boxed 
Int32s. 
Object[] o1dim = new Object[i1dim.Length]; 
Array.Copy(i1dim, o1dim, i1dim.Length); 

The Array.Copy method is not just a method that copies elements from one array to 
another fast. The Copy method is also capable of converting each array element as it is 



copied if conversion is required. The Copy method is capable of performing the following 
conversions. 
§ Boxing value type elements to reference type elements, such as when copying an 

Int32[] to an Object[]  
§ Unboxing reference type elements to value type elements, such as when copying an 

Object[] to an Int32[]  
§ Widening CLR primitive value types, such as when copying an Int32[] to a 

Double[]  

Here’s another example showing the usefulness of Copy:  

// Define a value type that implements an interface. 

struct MyValueType : ICloneable {  
   ? 

} 
 

 
class App { 

   static void Main() { 
      // Create an array of 100 value types. 

      MyValueType[] src = new MyValueType[100]; 
 

      // Create an array of ICloneable references. 
      ICloneable[] dest = new ICloneable[src.Length]; 

 
      // Initialize an array of ICloneable elements to refer to 
boxed  
      // versions of elements in the source array. 
      Array.Copy(src, dest, src.Length); 

   } 
} 

As you might imagine, the .NET Framework Class Library (FCL) takes advantage of Array’s 
Copy method quite frequently. 

 

Passing and Returning Arrays 

Arrays are always passed by reference to a method. Because the CLR doesn’t support the 
notion of constant parameters, the method is able to modify the elements in the array. If you 
don’t want to allow this, you must make a copy of the array and pass the copy into the 
method. Note that the Array.Copy method performs a shallow copy and, therefore, if the 
array’s elements are reference types, the new array refers to the already existing objects. 

To obtain a deep copy, you might want to clone the individual elements, but this requires that 
each object’s type implements the ICloneable interface. Alternatively, you could serialize 
each object to a System.IO.MemoryStream and then immediately deserialize the memory 



stream to construct a new object. Depending on the object’s types, the performance of these 
operations can be prohibitive, and not all types are serializable either.  

Similarly, some methods return a reference to an array. If the method constructs and 
initializes the array, returning a reference to the array is fine. But if the method wants to 
return a reference to an internal array maintained by a field, you must decide whether you 
want the method’s caller to have direct access to this array. If you do, just return the array’s 
reference. But most often you won’t want the method’s caller to have such access, so the 
method should construct a new array and call Array.Copy, returning a reference to the 
new array. Again, you might want to clone each of the objects before returning the array 
reference. 

If you define a method that is to return a reference to an array and if that array has no 
elements in it, your method can return either null or a reference to an array with zero 
elements in it. When you’re implementing this kind of method, Microsoft strongly 
recommends that you implement the method by having it return a zero-length array because 
doing so simplifies the code that a developer calling the method must write. For example, 
this easy-to-understand code runs correctly even if there are no appointments to iterate over:  

// This code is easier to write and understand.  

Appointment[] appointments = GetAppointmentsForToday(); 
for (Int32 a = 0, n = appointments.Length; a < n; a++) { 

   ? 
} 

The following code also runs correctly if there are no appointments to iterate over. However, 
this code is slightly more difficult to write and understand: 

// This code is harder to write and understand. 

Appointment[] appointments = GetAppointmentsForToday(); 
if (appointments != null) { 

   for (Int32 a = 0, n = appointments.Length; a < n; a++) { 
      ? 

   } 
} 

If you design your methods so that they return arrays with zero elements instead of null, 
callers of your methods will have an easier time working with them. By the way, you should 
do the same for fields. If your type has a field that’s a reference to an array, you should 
always have the field refer to an array even if the array has no elements in it. Allowing the 
field to be null will just make your type harder to use. 

 

Creating Arrays That Have a Nonzero Lower Bound 

Earlier I mentioned that it’s possible to create and work with arrays that have nonzero lower 
bounds. You can dynamically create your own arrays by calling Array’s static 
CreateInstance method. Several overloads of this method exist, but they all allow you to 
specify the type of the elements in the array, the number of dimensions in the array, the 
lower bounds of each dimension, and the number of elements in each dimension. 
CreateInstance allocates memory for the array, saves the parameter information in the 
overhead portion of the array’s memory block, and returns a reference to the array. You can 



cast the reference returned from CreateInstance to a variable so that it’s easier for you to 
access the elements in the array. 

Here’s some code that demonstrates how to dynamically create a two-dimension array of 
System.Decimal values. The first dimension represents calendar years and goes from 
1995 to 2004 inclusive. The second dimension represents quarters and goes from 1 to 4 
inclusive.  

// I want a two-dimension array [1995..2004][1..4]. 
Int32[] lowerBounds = { 1995, 1 }; 

Int32[] lengths     = {   10, 4 }; 
Decimal[,] quarterlyRevenue = (Decimal[,])  

   Array.CreateInstance(typeof(Decimal), lengths, lowerBounds); 

The following code iterates over all the elements in the dynamic array. I could have hard-
coded the array’s bounds into the code, which would have given better performance, but I 
decided to use some of System.Array’s GetLowerBound and GetUpperBound methods 
for demonstration purposes.  

Int32 firstYear = quarterlyRevenue.GetLowerBound(0); 

Int32 lastYear  = quarterlyRevenue.GetUpperBound(0); 
Console.WriteLine("{0,4}  {1,9}  {2,9}  {3,9}  {4,9}", 

   "Year", "Q1", "Q2", "Q3", "Q4"); 
 

for (Int32 year = firstYear; year <= lastYear; year++) { 
   Console.Write(year + "  "); 

 
   for (Int32 quarter = quarterlyRevenue.GetLowerBound(1);  

      quarter <= quarterlyRevenue.GetUpperBound(1); quarter++) { 
 

      Console.Write("{0,9:C}  ", quarterlyRevenue[year, 
quarter]); 
   } 

   Console.WriteLine(); 
} 

 

Fast Array Access 

Each time an element of an array is accessed, the CLR ensures that the index is within the 
array’s bounds. This prevents you from accessing memory that is outside of the array, which 
would potentially corrupt other objects. If an invalid index is used to access an array 
element, the CLR throws a System.IndexOut-OfRangeException exception. 

As you might expect, the CLR’s index checking comes at a performance cost. If you have 
confidence in your code and if you don’t mind resorting to nonverifiable (unsafe) code, you 
can access an array without having the CLR perform its index checking. The following C# 
code demonstrates this approach: 

using System; 



 
class App { 

   unsafe static void Main() { 
 

      // Construct an array consisting of five Int32 elements.  
      Int32[] arr = new Int32[] { 1, 2, 3, 4, 5 }; 

 
      // Obtain a pointer to the array’s 0th element. 

      fixed (Int32* element = &arr[0]) { 
 

         // Iterate through each element in the array. 
         // NOTE: The following code has a bug! 

         for (Int32 x = 0, n = arr.Length; x <= n; x++) { 
            Console.WriteLine(element[x]); 

         } 
      } 

   } 
} 

To compile this code, enter the following at the command line (assuming the source is 
contained in a file named UnsafeArrayAccess.cs): 

csc.exe /unsafe UnsafeArrayAccess.cs 

After you build this small application, running it produces the following results: 

1 
2 

3 
4 

5 
0 

Although you’d expect only five values to appear, six values actually appear because of a 
bug in the source code. In the for loop, the test expression should be x < n, not x <= n. 
You must be very careful when using unsafe code! 

By the way, if you use ILDasm.exe to examine the intermediate language (IL) for Main, 
you’ll see the following, which I’ve commented:  

.method private hidebysig static void  Main() cil managed 
{ 

  .entrypoint 
  // Code size       58 (0x3a) 

  .maxstack  3 
  .locals ([0] int32[] arr, 



           [1] int32& pinned element, 
           [2] int32 x, 

           [3] int32 n) 
 

  // Construct an array of five Int32 elements. 
  IL_0000:  ldc.i4.5 

  IL_0001:  newarr     [mscorlib]System.Int32 
 

  // Initialize the array’s elements with values stored in metada
ta. 
  IL_0006:  dup 

  IL_0007:  ldtoken    field valuetype 
    ’<PrivateImplementationDetails>‘/’$$struct0x6000001-1' 

    ’<PrivateImplementationDetails>‘::’$$method0x6000001-1' 
  IL_000c:  call        

    void [mscorlib]System.Runtime.CompilerServices.RuntimeHelpers
:: 
      InitializeArray(class [mscorlib]System.Array, 

      valuetype [mscorlib]System.RuntimeFieldHandle) 
 

  // Save the reference to the array in the arr variable. 
  IL_0011:  stloc.0 

 
  // Get the address of arr’s 0th element and save it in element. 

  IL_0012:  ldloc.0 
  IL_0013:  ldc.i4.0 

  IL_0014:  ldelema    [mscorlib]System.Int32 
  IL_0019:  stloc.1 

 
  // Initialize x to 0. 

  IL_001a:  ldc.i4.0 
  IL_001b:  stloc.2 

 
  // Initialize n to the length of arr. 

  IL_001c:  ldloc.0 
  IL_001d:  ldlen 

  IL_001e:  conv.i4 
  IL_001f:  stloc.3 

 
  // Branch to the for loop’s test. 

  IL_0020:  br.s       IL_0032 



 
  // Calculate element + (4 * x) — 4 is the number of bytes in an 
Int32. 
  IL_0022:  ldloc.1 
  IL_0023:  conv.i 

  IL_0024:  ldc.i4.4 
  IL_0025:  ldloc.2 

  IL_0026:  mul 
  IL_0027:  add 

 
  // Pass the value at this address to Console.WriteLine. 

  IL_0028:  ldind.i4 
  IL_0029:  call       void 
[mscorlib]System.Console::WriteLine(int32) 
 
  // Add 1 to x. 

  IL_002e:  ldloc.2 
  IL_002f:  ldc.i4.1 

  IL_0030:  add 
  IL_0031:  stloc.2 

 
  // for loop test: loop again if x <= n. 

  IL_0032:  ldloc.2 
  IL_0033:  ldloc.3 

  IL_0034:  ble.s      IL_0022 
 

  // End of loop: Put null in element (for safety). 
  IL_0036:  ldc.i4.0 

  IL_0037:  conv.u 
  IL_0038:  stloc.1 

 
  // Return from Main. 

  IL_0039:  ret 
} // end of method App::Main 

For comparison, here’s a version that doesn’t use unsafe code: 

using System; 
 

class App { 
   static void Main() { 

 



      Int32[] arr = new Int32[] { 1, 2, 3, 4, 5 }; 
 

      for (Int32 x = 0, n = arr.Length; x <= n; x++) { 
         Console.WriteLine(arr[x]); 

      } 
   } 

} 

If you build this and use ILDasm.exe to examine the IL code, you’ll see the following: 

.method private hidebysig static void  Main() cil managed 
{ 

  .entrypoint 
  // Code size       43 (0x2b) 

  .maxstack  3 
  .locals init ([0] int32[] arr, 

           [1] int32 x, 
           [2] int32 n) 

 
  // Construct an array of five Int32 elements. 

  IL_0000:  ldc.i4.5 
  IL_0001:  newarr     [mscorlib]System.Int32 

 
  // Initialize the array’s elements with values stored in metada
ta. 
  IL_0006:  dup 

  IL_0007:  ldtoken    field valuetype 
    ’<PrivateImplementationDetails>‘/’$$struct0x6000001-1' 

    ’<PrivateImplementationDetails>‘::’$$method0x6000001-1' 
  IL_000c:  call 

    void [mscorlib]System.Runtime.CompilerServices.RuntimeHelpers
:: 
      InitializeArray(class [mscorlib]System.Array, 

      valuetype [mscorlib]System.RuntimeFieldHandle) 
  // Save the reference to the array in the arr variable. 

  IL_0011:  stloc.0 
 

  // Initialize x to 0 
  IL_0012:  ldc.i4.0 

  IL_0013:  stloc.1 
 

  // Initialize n to the length of arr. 



  IL_0014:  ldloc.0 
  IL_0015:  ldlen 

  IL_0016:  conv.i4 
  IL_0017:  stloc.2 

 
  // Branch to the for loop’s test. 

  IL_0018:  br.s       IL_0026 
 

  // Pass the element in arr[x] to Console.WriteLine. 
  IL_001a:  ldloc.0 

  IL_001b:  ldloc.1 
  IL_001c:  ldelem.i4 

  IL_001d:  call       void 
[mscorlib]System.Console::WriteLine(int32) 
 

  // Add 1 to x. 
  IL_0022:  ldloc.1 

  IL_0023:  ldc.i4.1 
  IL_0024:  add 

  IL_0025:  stloc.1 
 

  // for loop test: loop again if x < n. 
  IL_0026:  ldloc.1 

  IL_0027:  ldloc.2 
  IL_0028:  ble.s      IL_001a 

 
  // Return from Main. 

  IL_002a:  ret 
} // End of method App::Main 

It’s true that there’s less IL code in the type-safe version. However, it’s the type-safe 
version’s ldelem instruction that causes the CLR to do index checking. The unsafe version 
uses the ldind.i4 instruction, which simply obtains a 4-byte value from a memory 
address. Note that this unsafe array manipulation technique is usable with arrays whose 
elements are SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64, Char, 
Single, Double, Decimal, Boolean, an enumerated type, or a value type structure 
whose fields are any of the aforementioned types. 

 

Redimensioning an Array 

Array’s static CreateInstance method allows you to dynamically construct an array 
when you don’t know at compile time the types of elements that the array is to maintain. The 
method is also useful when you don’t know at compile time how many dimensions the array 



is to have and the bounds of those dimensions. In the section "Creating Arrays That Have a 
Nonzero Lower Bound," I demonstrated how to dynamically construct an array by using 
arbitrary bounds. You can also use the CreateInstance method to redimension an 
arbitrary array, like so:  

using System; 
 

class App { 
 

   static void Main() { 
      // Construct an array of three elements. 

      Int32[] arr = new Int32[] { 1 , 2, 3 }; 
 

      // Display all the elements in the array. 
      foreach (Int32 x in arr)  

         Console.Write(x + " "); 
      Console.WriteLine(); 

 
      // Redimension the array so that it contains five elements. 

      arr = (Int32[]) Redim(arr, 5); 
 

      // Display all the elements in the array. 
      foreach (Int32 x in arr)  

         Console.Write(x + " "); 
      Console.WriteLine(); 

 
      // Redimension the array so that it now contains two 
elements. 
      arr = (Int32[]) Redim(arr, 2); 
 

      // Display all the elements in the array. 
      foreach (Int32 x in arr)  

         Console.Write(x + " "); 
   } 

 
 

   public static Array Redim(Array origArray, Int32 desiredSize) 
{ 
 

      // Determine the types of each element. 
      Type t = origArray.GetType().GetElementType(); 

 



      // Construct a new array with the desired number of 
elements. 
      // The array’s type must match the original array’s type. 

      Array newArray = Array.CreateInstance(t, desiredSize); 
 

      // Copy the elements from the original array into the new 
array. 
      Array.Copy(origArray, 0,  

         newArray, 0, Math.Min(origArray.Length, desiredSize)); 
 

      // Return the new array. 
      return newArray; 

   } 
} 

If you build and run this application, you’ll see the following output: 

1 2 3 
1 2 3 0 0 

1 2 



Chapter 15: Interfaces 
In this chapter, I’ll explain how interfaces identify functionality that can be tacked onto a type. 
I’ll then show you how a type can implement an interface to offer this well-defined 
functionality, allowing the type to be used in various scenarios easily. Finally, I’ll demonstrate 
useful techniques for avoiding problems when you use interfaces—namely, duplication of 
member names and compromised compile-time type safety. 

Interfaces and Inheritance 

When programming, it’s useful to think of an object as being of multiple types because the 
type of an object describes its capabilities and behavior. For example, you could design a 
SortedList type that maintains a set of objects in a sorted order. You could add any 
System.Object-derived type into the SortedList as long as the type supported the 
ability to compare itself to another type. 

In a sense, the SortedList would like to accept only types that are derived from a 
hypothetical System.Comparable type. But many existing types aren’t derived from 
System.Comparable. You can’t add objects of these types to a Sorted-List, and a 
SortedList type becomes much less useful as a result. 

Ideally, you’d want to take an existing System.Object-derived type and sometimes treat it 
as though it were a System.Comparable-derived type. The ability to treat an object as 
being of multiple types is frequently referred to as multiple inheritance. The common 
language runtime (CLR) supports single implementation inheritance and multiple interface 
inheritance.  

The CLR allows a type to inherit from only one other type, which has System.Object as its 
root base type. This type of inheritance is called implementation inheritance because the 
derived type inherits all the behavior and capabilities of its base type: the derived type 
behaves exactly like the base type. Once the base type is inherited, however, the derived 
type can override the base type’s behavior. This overriding of the base type’s behavior 
(implementation) makes the new, derived type unique. 

Interface inheritance means that a type inherits the method signatures of its interfaces but 
not their implementations. When a type inherits an interface, it is promising to provide its 
own implementations for the methods; if the type doesn’t implement the interface’s methods, 
the type is considered abstract and it won’t be possible to construct an instance of the type. 

Interfaces don’t derive from any System.Object-derived type. An interface is simply an 
abstract type that consists of a set of virtual methods, each with its own name, parameters, 
and return type. Interface methods can’t contain any implementation; hence, interface types 
are incomplete (abstract). Note that interfaces can also define events, parameterless 
properties, and parameterful properties (indexers in C#) because all of these are just syntax 
shorthands that map to methods anyway. The CLR also allows an interface to contain static 
methods, static fields, constants, and static constructors. However, a CLS-compliant 
interface must not have any of these static members because some programming languages 
aren’t able to define or access them. In fact, C# prevents an interface from defining any 
static members. In addition, the CLR doesn’t allow an interface to contain any instance fields 
or instance constructors. 

Here are the definitions of four interfaces that are defined in the .NET Framework Class 
Library (FCL): 

public interface System.IComparable { 



   Int32 CompareTo(Object object); 
} 

 
 

public interface System.Collections.IEnumerable { 
   IEnumerator GetEnumerator(); 

} 
 

 
public interface System.Collections.IEnumerator { 

   Boolean MoveNext(); 
   void Reset(); 

 
   Object Current { get; }  // Read-only property 

} 
 

 
public interface System.Collections.ICollection : IEnumerable { 

   void CopyTo(Array array, Int32 index); 
 

   Int32   Count          { get; } // Read-only property 
   Boolean IsSynchronized { get; } // Read-only property 

   Object  SyncRoot       { get; } // Read-only property 
} 

By convention, the name of an interface type is prefixed with an uppercase I. An interface 
definition can be marked with modifiers—such as public, protected, internal, and 
private—in the same way that a class or structure can be marked. Of course, public is 
used more than 99 percent of the time. These modifiers control the visibility of the interface 
definition and indicate which referents can see it. 

 
Important  

Nonstatic members of an interface are always considered public and 
virtual. This can’t be changed. However, in C#, if you implement an 
interface method in a type and omit the virtual keyword, the method 
is considered virtual and sealed—a type derived from the 
implementing type can’t override the method. 

Although an interface can’t inherit another type’s implementation, it can “inherit” the contract 
of other interfaces (as in the case of ICollection having IEnumerable as a base). In 
fact, an interface can include the contract of multiple interfaces. When a type "inherits" an 
interface, that type must implement all the methods defined by the interface and all the 
methods defined by any of the interface’s "inherited" contracts as well. For example, any 
type that implements the ICollection interface must provide implementations for the 
CopyTo, Count, IsSynchronized, and SyncRoot members. In addition, the type must 
also provide an implementation for IEnumerable’s GetEnumerator method. 



The System.ICloneable interface is defined (in MSCorLib.dll) as follows:  

public interface ICloneable { 
   Object Clone(); 

} 

The following code shows how to define a type that implements this interface and also 
shows code that clones an object: 

using System; 

 
// Point is derived from System.Object and implements ICloneable.
  
public sealed class Point : ICloneable { 
   public Int32 x, y; 

 
   public Point(Int32 x, Int32 y) { 

      this.x = x; 
      this.y = y; 

   } 
  

   public override Boolean Equals(Object o) { 
      Point other = o as Point; 

      if (other == null) return false; 
      return (x == this.x) && (y == this.y); 

   } 
 

   // This is the implementation for ICloneable’s Clone. 
   public Object Clone() { return MemberwiseClone(); } 

} 
 

class App { 
   static public void Main() { 

      Point p1 = new Point(1, 2); 
 

      // Create another Point with the same values. 
      Point p2 = (Point) p1.Clone(); 

 
      // p1 and p2 refer to two different objects: False is displ
ayed. 
      Console.WriteLine(Object.ReferenceEquals(p1, p2)); 
 

      // p1 and p2 have the same value: True is displayed. 



      Console.WriteLine(p1.Equals(p2)); 
   } 

} 

As mentioned earlier, a type must inherit one type (even if it’s System.Object, as in the 
preceding example). In addition, a type can implement zero or more interfaces. The FCL’s 
System.String type, for example, inherits System.Object’s implementation and 
implements the IComparable, ICloneable, IConvertible,  
and IEnumerable interfaces. This means that the String type isn’t required to implement 
the methods its Object base type offers. If the String type chooses not to implement 
Object’s methods explicitly, then it simply inherits Object’s methods. However, the 
String type must implement the methods declared in all the interfaces; if it didn’t, it would 
be an incomplete (abstract) type.  

At the beginning of this section, I said that interfaces let you treat a single object as though it 
were of different types. Any type that implements interfaces allows its objects to be treated 
as any of its interfaces. See the following code for an example: 

// Create a String object. 

String s = "Jeffrey"; 
// Using s, I can call any method defined in 

// String, Object, IComparable, ICloneable, IConvertible, IEnumer
able. 
 

// Make an IComparable variable that references s. 
IComparable comparable = s; 

// Using comparable, I can call any method declared by IComparabl
e only. 
 

// Make an ICloneable variable that references s. 
ICloneable cloneable = s; 

// Using cloneable, I can call any method declared by ICloneable 
only. 

 
// Make an IEnumerable variable that references s. 

IEnumerable enumerable = (IEnumerable) cloneable;  
// You can cast a variable from one interface to another as long 
as    
// the object’s type implements both interfaces. 

In this code, it doesn’t matter which variable I use; I’m always affecting the String object 
identified by s. However, the variable’s type indicates the legal actions that I can perform on 
that string object. 

Let’s return to the SortedList discussion. It’s now possible to place a String object into 
the SortedList because it implements the IComparable interface. The only minor issue 
is that the String type is required to implement the CompareTo method (in 



IComparable), which needs to compare two Objects and return a value indicating which 
Object should come first. 

IComparable’s CompareTo method takes an Object parameter, not a String 
parameter. Any type implementing the CompareTo method must define the method so that 
its signature matches that of the interface’s method. In the method, the code can do any 
casting necessary to perform the expected behavior. I’ll address this "shortcoming" of 
interfaces in the upcoming section "Explicit Interface Member Implementations." 

A SortedList type can successfully manage objects of any type (String, DateTime, 
Int32—whatever) as long as the types implement the IComparable interface.  

 
Important  

Like a reference type, a value type can implement zero or more 
interfaces. However, when you cast an instance of a value type to an 
interface type, the value type instance must be boxed. This is because 
interfaces are always considered reference types, and the methods 
they define are always virtual. Recall that unboxed value types 
don’t have a pointer to the type’s method table. Boxing the value type 
allows the CLR to look up the type’s method table so that the virtual 
method can be called. 

I often hear the question, “Should I design a base type or an interface?” The answer isn’t 
always clear-cut. Here are some guidelines that might help you: 
§ IS-A vs. CAN-DO relationship  A type can inherit only one implementation. If the 

derived type can’t claim an IS-A relationship with the base type, then don’t use a base 
type; use an interface. Interfaces imply a CAN-DO relationship. If the CAN-DO 
functionality feels like it belongs with various object types, use an interface. 

§ Ease of use   It’s easier for you, as a developer, to define a new type derived from a 
base type than to create an interface. The base type can provide a lot of functionality, 
so the derived type probably needs only relatively small modifications to its behavior. If 
you supply an interface, the new type must implement all the members. 

§ Consistent implementation  No matter how well an interface contract is documented, 
it’s very unlikely that everyone will implement the contract 100 percent correctly. In fact, 
COM suffers from this very problem, which is why some COM objects work correctly 
only with Microsoft Word or with Microsoft Internet Explorer. By providing a base type 
with a good default implementation, you start off using a type that works and is well 
tested; you can then modify whatever parts need changing. 

§ Versioning  If you add a method to the base type, the derived type inherits the new 
member’s default implementation for free. In fact, the user’s source code doesn’t even 
have to be recompiled. Adding a new member to an interface forces the user of the 
interface to modify the source code before recompiling.  

In the FCL, the classes related to streaming data use an implementation inheritance design. 
The System.IO.Stream class is an abstract base class. It provides a bunch of methods, 
such as Read and Write. Other classes—System.IO.-FileStream, 
System.IO.MemoryStream, and System.Net.Sockets.NetworkStream—are derived 
from Stream. Microsoft chose an IS-A relationship between each of these three classes and 
the Stream class because it made implementing the concrete classes easier. For example, 
the derived classes need to implement only synchronous I/O operations; they inherit the 
ability to perform asynchronous I/O operations from the Stream base class. 

Admittedly, choosing to use inheritance for the stream classes isn’t entirely clear-cut; the 
Stream base class actually provides very little implementation. However, if you consider the 
Windows Forms control classes, where Button, CheckBox, ListBox, and all the other 
controls are derived from System.Windows.Forms.Control, it’s easy to imagine all the 



code that Control implements, which the various control classes simply inherit to function 
correctly. 

By contrast, Microsoft designed the FCL collections to be interface based. The 
System.Collections namespace defines several collection-related interfaces: 
IEnumerable, ICollection, IList, and IDictionary. Then Microsoft provided a 
number of concrete classes, such as ArrayList, Hashtable, Queue, SortedList, and 
so on, that implement combinations of these interfaces. Here the designers chose a CAN-
DO relationship between the classes and the interfaces because the implementations of 
these various collection classes are radically different from one another. In other words, 
there isn’t a lot of sharable code between an Array-List, a Hashtable, and a Queue. 

The operations that all these collection classes offer are, nevertheless, pretty consistent. For 
example, they all maintain a set of elements that can be enumerated, and they all allow 
adding and removing of elements. This consistency is the reason that making the collection 
classes interface based makes a lot of sense. If you have a reference to an object whose 
type implements the IList interface, you can write code to add elements, remove 
elements, and search for an element without having to know exactly what type of collection 
you’re working with. This is a very powerful mechanism. 

 
Designing an Application That Supports Plug-In Components 

When you’re building extensible applications, interfaces should be the centerpiece. 
Suppose, for example, that you’re writing an application and you want others to be able to 
create types that your application can load and use seamlessly. Here’s the way to design 
this application. 
§ Create an assembly that defines an interface whose methods are used as the 

communication mechanism between the application and the plug-in components. When 
defining the parameters and return values for the interface methods, try to use other 
interfaces or types defined in MSCorLib.dll. If you want to pass and return your own 
data types, define them in this assembly too. Once you settle on your interface 
definitions, give this assembly a strong name (discussed in Chapter 3) and then 
package and deploy it to your partners and users. Consider this assembly immutable—
that is, don’t change its contents. 

 
Note  

You can use types defined in MSCorLib.dll because the CLR always loads 
the version of MSCorLib.dll that matches the version of the CLR itself. Also, 
only a single version of MSCorLib.dll is ever loaded into a process. In other 
words, different versions of MSCorLib.dll never load side by side (as 
described in Chapter 3). As a result, you won’t have any type version 
mismatches and your application will require less memory. 

§ Create a separate assembly containing your application’s types. This assembly will, 
obviously, reference the interface and types defined in the first assembly. Feel free to 
modify the code in this assembly to your heart’s content. Because the plug-in 
developers won’t reference this assembly, you can put out a new version of it every 
hour if you want to and not affect any of the plug-in developers. 

§ The plug-in developers will, of course, define their own types in their own assembly. 
Their assembly will also reference the types in your interface assembly. The plug-in 
developers are also able to put out a new version of their assembly as often as they’d 
like, and the application will be able to consume the plug-in types without any problem 
whatsoever. 

This small section contains some very important information. When using types across 
assemblies, you need to be concerned with assembly versioning issues. Take your time, and 



isolate the types that you use for communication across assembly boundaries into their own 
assembly. Avoid mutating or changing these type definitions—and don’t change the version 
number of the assembly. 

Also, avoid defining a type whose base type is defined in another assembly, even though the 
.NET Framework Design Guidelines encourage this; it’s the wrong thing to do, because 
assemblies will be tied to specific versions of other assemblies. As a consequence of the 
CLR’s side-by-side support, you’ll end up pulling several different versions of an assembly 
into a single AppDomain. This can cause significant memory usage and severely hurt 
performance. It might also prevent—or at least make difficult—communication between the 
assemblies. 

In addition, most compilers don’t let you reference multiple versions of a specific assembly 
when building a managed module. This limitation can make it difficult for code to take 
advantage of new features (offered by a newer version of an assembly) and still 
communicate (via required types in an older version of an assembly). 

 

Changing Fields in a Boxed Value Type Using Interfaces 

Let’s have some fun and see how well you understand value types, boxing, and unboxing. 
Examine the following code, and see whether you can figure out what it displays on the 
console: 

using System; 

 
// Point is a value type. 

struct Point { 
   public Int32 x, y; 

 
   public void Change(Int32 x, Int32 y) { 

      this.x = x; this.y = y; 
   } 

 
   public override String ToString() { 

      return String.Format("({0}, {1})", x, y); 
   } 

} 
 

class App { 
   static void Main() { 

      Point p = new Point(); 
 

      p.x = p.y = 1; 
      Console.WriteLine(p);  // Displays (1, 1) 

 
      p.Change(2, 2); 



      Console.WriteLine(p);  // Displays (2, 2) 
 

      Object o = p; 
      Console.WriteLine(o);  // Displays (2, 2) 

 
      ((Point) o).Change(3, 3); // Changes temporary Point on sta
ck! 
      Console.WriteLine(o);  // Displays (2, 2) 
   } 

} 

Very simply, Main creates an instance of a Point value type on its stack and then changes 
its x and y fields to 1. The first call to WriteLine calls ToString on the unboxed Point, 
and "(1, 1)" is displayed, as expected. Then, p is used to call the Change method, which 
changes the values of p’s x and y fields on the stack to 2. The second call to WriteLine 
displays "(2, 2)", as expected.  

Now, p is boxed, and o refers to the boxed Point object. The third call to WriteLine again 
shows "(2, 2)", which is also expected. Finally, I want to call the Change method to update 
the fields in the boxed Point object. However, Object (the type of the variable o) doesn’t 
know anything about the Change method, so I must first cast o to a Point. Casting o to a 
Point unboxes o and copies the fields in the boxed Point to a temporary Point on the 
thread’s stack. The x and y fields of this temporary point are changed to 3 and 3, but the 
boxed Point isn’t affected by this call to Change. When WriteLine is called the second 
time, "(2, 2)" is displayed again. Many developers do not expect this. 

Some languages, such as C++ with Managed Extensions, let you change the fields in a 
boxed value type, but C# does not. However, you can fool C# into allowing this by using an 
interface. The following code is a modified version of the previous code: 

using System; 
 

// Interface defining a Change method 
interface IChangeBoxedPoint { 

   void Change(Int32 x, Int32 y); 
} 

 
 

// Make the value type implement the interface. 
struct Point : IChangeBoxedPoint { 

   public Int32 x, y; 
 

   public void Change(Int32 x, Int32 y) { 
      this.x = x; this.y = y; 

   } 
 



   public override String ToString() { 
      return String.Format("({0}, {1})", x, y); 

   } 
} 

 
 

class App { 
   static void Main() { 

      Point p = new Point(); 
 

      p.x = p.y = 1; 
      Console.WriteLine(p);  // Displays (1, 1) 

 
      p.Change(2, 2); 

      Console.WriteLine(p);  // Displays (2, 2) 
 

      Object o = p; 
      Console.WriteLine(o);  // Displays (2, 2) 

 
      ((Point) o).Change(3, 3); // Changes temporary Point on sta
ck! 
      Console.WriteLine(o);  // Displays (2, 2) 
 

      // Boxes p, changes the boxed object and discards it 
      ((IChangeBoxedPoint) p).Change(4, 4); 

      Console.WriteLine(p);  // Displays (2, 2) 
 

      // Changes the boxed object and shows it 
      ((IChangeBoxedPoint) o).Change(5, 5); 

      Console.WriteLine(o);  // Displays (5, 5) 
   } 

} 

This code is almost identical to the previous version. The main difference is that the Change 
method is defined by the IChangeBoxedPoint interface, and the Point type now 
implements this interface. Inside Main, the first four calls to WriteLine are the same and 
produce the same results I had before (as expected). However, I’ve added two more 
examples at the end of Main.  

In the first example, the unboxed Point, p, is cast to an IChangeBoxedPoint. This cast 
causes the value in p to be boxed. Change is called on the boxed value, which does change 
its x and y fields to 4 and 4, but after Change returns, the boxed object is immediately ready 



to be garbage collected. So the fifth call to WriteLine displays "(2, 2)"—many developers 
won’t expect this result. 

In the last example, the boxed Point referred to by o is cast to an IChangeBoxedPoint. 
No boxing is necessary here because o is already a boxed Point. Then Change is called, 
which does change the boxed Point’s x and y fields. The interface method Change has 
allowed me to change the fields in a boxed Point object! Now, when WriteLine is called, 
it displays "(5, 5)", as expected. 

The purpose of this whole example is to demonstrate how an interface method is able to 
modify the fields of a boxed value type. In C#, this isn’t possible without using an interface 
method.  

 
Important  

A number of developers reviewed the chapters of this book. After 
reading through some of my code samples (such as the preceding 
one), these reviewers would tell me that they’ve sworn off value types. 
I must say that these little value type nuances have cost me days of 
debugging time, which is why I spend time pointing them out in this 
book. I hope you’ll remember some of these nuances and that you’ll be 
prepared for them if and when they strike you and your code. 
Certainly, you shouldn’t be scared of value types. They are useful 
types, and they have their place. After all, a program needs a little 
Int32 love now and then. Just keep in mind that value types and 
reference types have very different behaviors, depending on how 
they’re used. In fact, you should take the preceding code and declare 
the Point as a class instead of a struct to appreciate the results. 

 

Implementing Multiple Interfaces That Have the Same Method 

Defining a type that implements an interface is usually easy and straightforward. You simply 
implement methods in the type that match the methods and signatures defined by the 
interface. You do have to remember to make the methods public, but there’s nothing special 
about the code in the implementation of an interface method. And calling an interface-
defined method is easy; you can just call the method as if it were any other method defined 
by the type. 

Occasionally, you might find yourself defining a type that implements multiple interfaces that 
define methods with the same name and signature. For example, imagine that there are two 
interfaces defined as follows: 

public interface IWindow { 

   Object GetMenu(); 
} 

 
public interface IRestaurant { 

   Object GetMenu(); 
} 

Let’s say that you want to define a type that implements both these interfaces. You’d have to 
implement the type’s method as follows: 

// This type is derived from System.Object and  
// implements the IWindow and IRestaurant interfaces. 



public class GiuseppePizzaria : IWindow, IRestaurant { 
 

   // This is the implementation for IWindow’s GetMenu method. 
   Object IWindow.GetMenu() { ... } 

 
   // This is the implementation for IRestaurant’s GetMenu 
method. 
   Object IRestaurant.GetMenu() { ... } 
 

   // This is a GetMenu method that has nothing to do with an 
interface. 
   public Object GetMenu() { ... } 

} 

Because this type must implement multiple and separate GetMenu methods, you need to tell 
the C# compiler which GetMenu method contains the implementation for a particular 
interface. In C#, you qualify the method name by preceding it with the name of the interface 
itself. So, in the previous example, the IWindow.GetMenu method signals to the compiler 
that this method contains the implementation for IWindow’s GetMenu method. Similarly, the 
IRestaurant.GetMenu method signals that this method contains the implementation for 
IRestaurant’s GetMenu method. The unqualified GetMenu method simply identifies a 
method that the type defines; this method isn’t related to any interface. 

Note that the interface methods are not declared as public. The reason they’re not is that 
these methods lead a double life: sometimes they’re public, and sometimes they’re private. 
The following code will make this distinction clear to you:  

static void SomeMethod() { 

   // Construct an instance of the type. 
   GuiseppePizzaria gp = new GuiseppePizzaria(); 

 
   Object menu; 

 
   // Call the type’s public GetMenu method. 

   // Using a reference to a GuiseppePizzaria, the  
   // interface methods are private and can’t be called.  

   menu = gp.GetMenu()); 
 

   // Call IWindow’s GetMenu method. 
   // Using a reference to an IWindow, IWindow’s GetMenu 

   // method is the ONLY method that can be called. 
   menu = ((IWindow) gp).GetMenu(); 

 
   // Call IRestaurant’s GetMenu method. 

   // Using a reference to an IRestaurant, IRestaurant’s GetMenu 



   // method is the ONLY method that can be called. 
   menu = ((IRestaurant) gp).GetMenu(); 

} 

When you define an interface method in a type using an interface-qualified name, the 
method is considered private and can’t be called using a variable that is a reference to the 
type itself. However, when you cast the reference to a specific interface, the only methods 
that are callable are the methods defined by that interface. So, when the gp variable is cast 
to an IWindow, the only method callable is IWindow’s GetMenu method. Likewise for the 
IRestaurant interface. 

As I said, a type very rarely implements multiple interfaces that define the same method, so 
you rarely need to do what I’ve done in the preceding code. However, this technique of 
qualifying a method with an interface name is interesting and has other uses. In fact, I’ll 
focus on this technique again in the next section. 

 

Explicit Interface Member Implementations 

Interfaces are great because they define a standard way for types to communicate with each 
other. However, this flexibility comes at the cost of compile-time type safety because most 
interface methods accept parameters of type System.-Object or return a value whose 
type is System.Object. Look at the very common IComparable interface:  

public interface IComparable { 

   Int32 CompareTo(Object other); 
} 

This interface defines one method that accepts a parameter of type System.Object. If I 
define my own type that implements this interface, the type definition might look like this:  

struct SomeValueType : IComparable { 

   private Int32 x; 
   public SomeValueType(Int32 x) { this.x = x; } 

   public Int32 CompareTo(Object other) { 
      return(x - ((SomeValueType) other).x); 

   } 
} 

Using SomeValueType, I can now write the following code:  

static void Main() { 

   SomeValueType v = new SomeValueType(0); 
   Object o = new Object(); 

   Int32 n = v.CompareTo(o); 
} 

In this code, I’m comparing apples and oranges. OK, I’m really comparing Some-
ValueTypes and Objects, but you see that this code doesn’t make a lot of sense because 
Object doesn’t have an x field. The compiler can’t detect the flaw in the logic, however, and 



it produces code—no warnings or errors are generated. But at run time, when CompareTo is 
called, an InvalidCastException is thrown when other is cast to SomeValueType. 

As always, developers prefer compile-time errors to run-time errors, and the CLR offers a 
feature called explicit interface member implementations that makes compile-time type 
checking possible. Let’s modify SomeValueType to use an explicit interface member 
implementation:  

struct SomeValueType : IComparable { 
   private Int32 x; 

   public SomeValueType(Int32 x) { this.x = x; } 
 

   public Int32 CompareTo(SomeValueType other) { 
      return(x - other.x); 

   } 
 

   // NOTE: No public/private used on the next line 
   Int32 IComparable.CompareTo(Object other) { 

      return CompareTo((SomeValueType) other); 
   } 

} 

Notice several things about this new version. First, it now has two CompareTo methods. The 
first CompareTo method no longer takes an Object as a parameter; it now takes a 
SomeValueType instead. Because this parameter has changed, the code that casts other 
to SomeValueType is no longer necessary and has been removed. The resulting code is 
easier to maintain and is also type-safe at compile time. The following code demonstrates:  

SomeValueType v1 = new SomeValueType(1); 

SomeValueType v2 = new SomeValueType(2); 
Int32 n; 

 
n = v1.CompareTo(new Object()); // Compile-time error  

n = v1.CompareTo(v2);           // Calls CompareTo 

Changing the first CompareTo method so that it’s type-safe means that Some-ValueType 
no longer adheres to the contract placed on it by implementing the IComparable interface. 
So SomeValueType must implement a CompareTo method that satisfies the 
IComparable contract. This is the job of the second IComparable.-CompareTo method, 
which is an explicit interface member implementation.  

This IComparable.CompareTo method returns an Int32 and accepts a 
System.Object, just like the method the IComparable interface defines. However, you 
need to keep in mind three characteristics of this CompareTo method. First, the name of the 
method is qualified with the name of the interface: IComparable.CompareTo. This is very 
important. Basically, the interface name tells the CLR that IComparable.CompareTo 
should be called only when using a reference to an IComparable object. To understand 
this constraint clearly, examine the following code:  

SomeValueType v1 = new SomeValueType(1); 



SomeValueType v2 = new SomeValueType(2); 
Int32 n; 

 
n = v1.CompareTo(v2);           // Calls CompareTo 

n = v2.CompareTo(v1);           // Calls CompareTo 
 

// NOTE: Getting an IComparable reference forces v1 to be boxed. 
IComparable comparable = (IComparable) v1; 

 
// NOTE: This calls IComparable.CompareTo, which takes an Object 
as 
// a parameter. This forces v2 to be boxed. 
n = comparable.CompareTo(v2); 

Second, IComparable.CompareTo is implemented by calling the other CompareTo 
method after casting other to a SomeValueType. This means that the existing code can 
be leveraged. 

Finally, notice that the IComparable.CompareTo method isn’t prefixed with a public or 
private access modifier. In fact, the C# compiler produces one of the following errors if a 
public or private access modifier is added:  

error CS0106: The modifier ’public’ is not valid for this item 

error CS0106: The modifier ’private’ is not valid for this item 

The fact that IComparable.CompareTo can’t have a public or private access modifier 
tells you a lot about explicit interface method implementations. When you’re working with an 
instance of a SomeValueType, the IComparable.CompareTo method is private; it’s not 
possible to call this method. Using v1 or v2 from the preceding code, the only CompareTo 
method that is accessible is the type-safe version that takes a SomeValueType parameter. 

When you have a reference to an IComparable object, however, the 
IComparable.CompareTo method is public. In fact, it’s the only method accessible 
because an IComparable reference variable can be used to call methods from the 
IComparable interface only. So the IComparable.CompareTo explicit interface member 
implementation is sometimes private and sometime public—that’s why the compiler doesn’t 
allow you to explicitly provide access modifiers for it. 

The purpose of explicit interface member implementations is to provide for more type safety 
during application development. Although my example uses a value type, this mechanism 
can also be applied to reference types to improve their type safety. In addition to improving 
type safety, another beneficial side effect occurs when an explicit interface member 
implementation is provided on a value type, which SomeValueType happens to be. 

Because IComparable’s CompareTo method takes an Object as a parameter, you can 
pass a value type for this parameter, but it must be boxed. As you know, boxing allocates 
memory from the heap, copies fields, and hurts performance, so avoid it whenever possible. 
Fortunately, explicit interface member implementations allow you to get rid of unwanted 
boxing operations. To understand how, examine the following code:  

public static void Main() { 



   SomeValueType v1 = new SomeValueType(1); 
   SomeValueType v2 = new SomeValueType(2); 

   Int32 n; 
 

   n = v1.CompareTo(v2);                  // No boxing 
   n = ((IComparable) v1).CompareTo(v2)); // Boxes v1 and v2 

} 

In this code, the first call to CompareTo calls the fully type-safe CompareTo method. 
Because this method isn’t part of an interface and because it takes a SomeValueType as a 
parameter, it can simply be called on the unboxed instance v1. In addition, v2 doesn’t have 
to be boxed and can be passed directly to the method. 

On the second call to CompareTo, I first cast v1 to an IComparable. This  
boxes v1 and returns an IComparable reference, which I then use to call 
IComparable.CompareTo. This version of CompareTo is the explicit interface method 
implementation, which takes a System.Object as a parameter. So v2 must be boxed 
before IComparable.CompareTo can be called. Two boxing operations have occurred! 

Explicit interface method implementations are frequently used when implementing interfaces 
such as ICloneable, IComparable, ICollection, IList, and IDictionary. They let 
you create type-safe versions of these interface’s methods, and they enable you to reduce 
boxing operations for value types.  

 

Be Careful with Explicit Interface Method Implementations 

When examining the methods for a type in the .NET Framework reference 
documentation, explicit interface method implementations do not appear. Their absence 
has confused many developers. For example, if you look up the System.Int32 type in 
the reference documentation, you’ll see that Int32 implements the IConvertible 
interface. However, if you look at the "Int32 Members" help page, you won’t see any of 
IConvertible’s methods (ToBoolean, ToByte, ToChar, ToSingle, and so on) 
listed. Why? 

When the .NET Framework was in beta, Microsoft noticed that the Int32 type offered 
around 20 methods and they were afraid that developers would quickly become 
overwhelmed when looking at the documentation for a "simple Int32 type." So 
Microsoft decided not to show explicit interface method implementations in the 
documentation to keep the documentation less cluttered. Then, of course, they had to 
change some of the type’s methods to explicit interface method implementations so that 
these methods wouldn’t appear. For the Int32 type, they chose to make the methods 
that implement the IConvertible interface explicit interface method implementations. 
Because IConvertible defines 15 methods, the documentation for the Int32 type 
now shows only 5 methods. This certainly makes the help look less cluttered and makes 
the Int32 type look much more like a "simple type." 

However, I’ve run into many developers who have just been confused by this decision. 
They see that the Int32 type implements IConvertible, but the documentation 
doesn’t reflect that these methods exist. And to make matters even worse, you can’t call 
an IConvertible method on an Int32 directly. For example, the following method 
won’t compile:  



static void Main() { 
   Int32 x = 5; 

   Single s = x.ToSingle(null); 
} 

When compiling this method, the C# compiler produces the following: “error CS0117: 
‘int’ does not contain a definition for ‘ToSingle’.” This error message confuses the 
developer even more because it’s clearly stating that the Int32 type doesn’t define a 
ToSingle method when, in fact, it does.  

To call ToSingle on an Int32, you must first cast the Int32 to an IConvertible, 
as shown in the following method:  

static void Main() { 
   Int32 x = 5; 

   Single s = ((IConvertible) x).ToSingle(null); 
} 

Requiring this cast isn’t obvious at all, and many developers won’t figure this out on their 
own. But an even more troublesome problem exists: casting the Int32 value type to an 
IConvertible also boxes the value type, wasting memory and hurting performance. 

Was all this really necessary just to reduce documentation clutter? I don’t think so. In my 
opinion, Microsoft should have left the documentation alone—it would have been 
accurate, complete, and less confusing, and the resulting code would be obvious and 
easier to write, and it would execute efficiently. Remember, my example here talks about 
the Int32 type and how it implements IConvertible methods. But Microsoft chose to 
"hide documentation" for many types that implement various interfaces.  

This discussion clearly shows you that explicit interface implementation methods should 
be used with great care. When many developers first learn about explicit interface 
implementation methods, they think they’re cool and they start using them whenever 
possible. Don’t do this! Explicit interface implementation methods are useful in some 
circumstances but you should avoid them whenever possible since they make using a 
type much less obvious. 



Chapter 16: Custom Attributes 
In this chapter, I’ll discuss one of the most innovative features that the Microsoft .NET 
Framework has to offer: custom attributes . Custom attributes allow anyone (not just 
Microsoft) to define information that can be applied to almost any metadata table entry. This 
extensible metadata information can be queried at run time to dynamically alter the way 
code executes. As you use the various .NET Framework technologies (Windows Forms, 
Web Forms, XML Web services, and so on), you’ll see that they all take advantage of 
custom attributes, allowing developers to express their intentions in code very easily. A solid 
understanding of custom attributes is necessary for any .NET Framework developer. 

Using Custom Attributes 

Attributes, such as public, private, static, and so on, can be applied to types and 
members. I think we’d all agree on the usefulness of applying attributes, but wouldn’t it be 
even more useful if we could define our own attributes? For example, what if I could define a 
type and somehow indicate that the type can be remoted via serialization? Or maybe I could 
apply an attribute to a method to indicate that certain security permissions must be granted 
before the method can execute. 

Of course, creating and applying user-defined attributes to types and methods would be 
great and convenient, but it would require the compiler to be aware of these attributes so 
that it would emit the attribute information into the resulting metadata. Because compiler 
vendors usually prefer not to release the source code for their compiler, Microsoft came up 
with another way to allow user-defined attributes. This mechanism, called custom attributes , 
is an incredibly powerful mechanism that’s useful at both application design time and run 
time. Anyone can define and use custom attributes, and all compilers that target the 
common language runtime (CLR) must be designed to recognize custom attributes and emit 
them into the resulting metadata.  

The first thing you should realize about custom attributes is that they’re just a way to 
associate additional information with a target. The compiler emits this additional information 
into the managed module’s metadata. Most attributes have no meaning for the compiler; the 
compiler simply detects the attributes in the source code and emits the corresponding 
metadata.  

The .NET Framework Class Library (FCL) ships with many predefined attributes. For 
example, the System.FlagsAttribute attribute causes an enumerated type to act like a 
set of bit flags, the System.SerializableAttribute attribute allows a type’s fields to be 
serialized and deserialized (typically used for remoting of a method’s arguments and return 
value), several security-related attributes enable a method to ensure that it has a required 
privilege granted before attempting some particular kind of access, lots of interoperability-
related attributes serve to allow managed code to call unmanaged code, and so on. 

Following is some C# code with many attributes applied to it. It’s not important to understand 
what this code does. I just want you to see what attributes look like. 

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Auto)] 
class OSVERSIONINFO {  

   public OSVERSIONINFO() { 
      OSVersionInfoSize = (UInt32) Marshal.SizeOf(this); 

   } 
 



   public UInt32 OSVersionInfoSize = 0; 
   public UInt32 MajorVersion      = 0;  

   public UInt32 MinorVersion      = 0;  
   public UInt32 BuildNumber       = 0;  

   public Uint32 PlatformId        = 0; 
 

   [MarshalAs(UnmanagedType.ByValTStr, SizeConst=128)] 
   public String CSDVersion        = null; 

} 
 

class MyClass { 
   [DllImport("Kernel32", CharSet=CharSet.Auto, 
SetLastError=true)] 
   public static extern Boolean GetVersionEx( 
      [In, Out] OSVERSIONINFO ver); 

} 

In C#, you apply a custom attribute to a target by placing the attribute in square brackets 
immediately before the target. So, in this case, the StructLayout attribute is applied to the 
OSVERSIONINFO class, the MarshalAs attribute is applied to the CSDVersion field, the 
DllImport attribute is applied to the GetVersionEx method, and the In and Out 
attributes are applied to GetVersionEx’s ver parameter. Every programming language 
defines the syntax that a developer must use in order to apply a custom attribute to a target. 
Microsoft Visual Basic, for example, requires angle brackets (<, >) instead of square 
brackets.  

The CLR allows attributes to be applied to just about anything that can be represented in a 
file’s metadata. Most commonly, attributes are applied to entries in the following definition 
tables: TypeDef (class, struct, enum, interfaces, and delegates), MethodDef (including 
constructors), ParamDef, FieldDef, PropertyDef, EventDef, AssemblyDef, and ModuleDef. 
Although it’s rare, attributes can also be applied to entries in reference tables, such as 
AssemblyRef, ModuleRef, TypeRef, and MemberRef. Finally, custom attributes can be 
applied to other pieces of metadata—such as security permissions, exported types, and 
resources. 

Although the CLR allows custom attributes to be applied to any of these entities, most 
programming languages allow attributes to be applied only to entries in the various definition 
metadata tables. This is certainly true of Microsoft’s C# compiler. Specifically, C# allows you 
to apply an attribute only to source code that defines any of the following targets: assembly, 
module, type, field, method, method parameter, method return value, property, and event. 

When you’re applying an attribute, C# allows you to specify a prefix specifically indicating 
what target the attribute applies to. The following code shows all the possible prefixes. In 
many cases, if you leave out the prefix, the compiler can still determine what target an 
attribute applies to, as shown in the previous example. However, explicitly specifying a prefix 
removes all ambiguity. 

using System; 

 
[assembly: MyAttribute(1)]    // Applied to the assembly 



[module:   MyAttribute(2)]    // Applied to the module 
 

[type:     MyAttribute(3)]    // Applied to the type 
class SomeType { 

 
   [property: MyAttribute(4)] // Applied to the property 

   public String SomeProp { get { return null; } } 
 

   [event: MyAttribute(5)]    // Applied to the event 
   public event EventHandler SomeEvent; 

 
   [field: MyAttribute(6)]    // Applied to the field 

   public Int32 SomeField = 0; 
 

   [return: MyAttribute(7)]   // Applied to the return value 
   [method: MyAttribute(8)]   // Applied to the method 

   public Int32 SomeMethod( 
      [param: MyAttribute(9)] // Applied to the parameter 

      Int32 SomeParam) { return SomeParam; } 
} 

Now that you know how to apply a custom attribute, let’s find out what an attribute really is. A 
custom attribute is simply an instance of a type. For Common Language Specification (CLS) 
compliance, custom attribute types must be derived, directly or indirectly, from 
System.Attribute. C# allows only CLS-compliant attributes. By examining the .NET 
Framework SDK documentation, you’ll see that the following types (from the earlier 
example) are defined: StructLayoutAttribute, MarshalAsAttribute, 
DllImportAttribute, InAttribute, and OutAttribute. All these types happen to be 
defined in the System.Runtime.InteropService namespace, but attribute types can be 
defined in any namespace. Upon further examination, you’ll notice that all these types are 
derived from System.Attribute, as all CLS-compliant attribute types must be. 

As I mentioned, an attribute is an instance of a type. The type must have a public constructor 
to create an instance of it. So, when you apply an attribute to a target, the syntax is similar to 
that for calling one of the type’s instance constructors. In addition, a language might permit 
some special syntax that allows you to set any public fields or properties associated with the 
attribute type. Let’s look at an example. Recall the application of the DllImport attribute as 
it was applied to the GetVersionEx method earlier:  

[DllImport("Kernel32", CharSet=CharSet.Auto, SetLastError=true)] 

The syntax of this line should look pretty strange to you because you could never use syntax 
like this when calling a constructor. If you examine the DllImportAttribute type in the 
documentation, you’ll see that its constructor requires a single String parameter. In this 
example, "Kernel32" is being passed for this parameter. A constructor’s parameters are 
called positional parameters and are mandatory: the parameter must be specified when the 
attribute is applied. 



What are the other two “parameters”? This special syntax allows you to set any public fields 
or properties of the DllImportAttribute object after the object is constructed. In this 
example, when the DllImportAttribute object is constructed and "Kernel32" is passed 
to the constructor, the object’s public instance fields, CharSet and SetLastError, are set 
to CharSet.Auto and true, respectively. The "parameters" that set fields or properties are 
called named parameters and are optional: the parameters don’t have to be specified when 
you’re applying an instance of the attribute. A little later on, I’ll explain what causes an 
instance of the DllImportAttribute type to actually be constructed.  

Also note that it’s possible to apply multiple attributes to a single target. For example, the 
GetVersionEx method’s ver parameter has both the In and Out attributes applied to it. 
When applying multiple attributes to a single target, be aware that the order of attributes has 
no significance. Also, in C# each attribute can be enclosed in square brackets or multiple 
attributes can be comma-separated within a single set of square brackets. The Attribute 
suffix is optional, and if the attribute type’s constructor takes no parameters, the parentheses 
are optional. The following lines behave identically and demonstrate all the possible ways of 
applying multiple attributes:  

[Serializable][Flags] 
[Serializable, Flags] 

[FlagsAttribute, SerializableAttribute] 
[FlagsAttribute()][Serializable()] 

 

Defining Your Own Attribute 

You know that an attribute is a type derived from System.Attribute, and you also know 
how to apply an attribute. Let’s now look at how to define your own custom attributes. Say 
that you’re the Microsoft employee responsible for adding the bit flag support to enumerated 
types. To accomplish this, the first thing you have to do is define a FlagsAttribute type:  

namespace System { 

   public class FlagsAttribute : System.Attribute { 

      public FlagsAttribute() { 
      } 

   } 
} 

Notice that the FlagsAttribute type inherits from Attribute; this is what makes the 
FlagsAttribute type a CLS-compliant custom attribute. In addition, all nonabstract 
attributes must have public accessibility, and by convention all attribute type names should 
end with "Attribute". Finally, all nonabstract attributes must contain at least one public 
constructor. The simple FlagsAttribute constructor takes no parameters and does 
absolutely nothing. 

So far, instances of the FlagsAttribute class can be applied to any target, but really this 
attribute should be applied to enumerated types only. It doesn’t make sense to apply the 
attribute to a property or a method. To tell the compiler where this attribute can legally be 
applied, you apply an instance of the System.AttributeUsageAttribute class to the 
attribute type. Here’s the new code:  

namespace System { 

   [AttributeUsage(AttributeTargets.Enum, Inherited = false)] 



   public class FlagsAttribute : System.Attribute { 
      public FlagsAttribute() { 

      } 
   } 

} 

In this new version, I’ve applied an instance of AttributeUsageAttribute to the 
attribute. After all, the attribute type is just a class and a class can have attributes applied to 
it. The AttributeUsageAttribute attribute is a simple type that allows you to indicate to 
a compiler where your custom attribute can legally be applied. All compilers have built-in 
support for this attribute and generate errors when a user-defined custom attribute is applied 
to an invalid target. In this example, the AttributeUsage attribute indicates that instances 
of the Flags attribute can be applied to enumerated type targets only. 

Because all attributes are just types, you can easily understand the 
AttributeUsageAttribute type. Here’s what the FCL source code for the type looks 
like:  

[AttributeUsage(AttributeTargets.Class, Inherited = false)] 

[Serializable] 
public sealed class AttributeUsageAttribute : Attribute { 

   internal AttributeTargets m_attributeTarget = 
AttributeTargets.All; 
   internal Boolean          m_allowMultiple   = false;  

   internal Boolean          m_inherited       = true; 
 

   public AttributeUsageAttribute(AttributeTargets validOn) { 
      m_attributeTarget = validOn; 

   } 
 

   public AttributeTargets ValidOn { 
      get { return m_attributeTarget; } 

   } 
 

   public Boolean AllowMultiple { 
      get { return m_allowMultiple;  } 

      set { m_allowMultiple = value; } 
   } 

 
   public Boolean Inherited { 

      get { return m_inherited;  } 
      set { m_inherited = value; } 

   } 
} 



As you can see, the AttributeUsageAttribute type has a constructor that allows you to 
pass bit flags indicating where your attribute can legally be applied. The 
System.AttributeTargets enumerated type is defined in the FCL as follows:  

[Flags, Serializable] 

public enum AttributeTargets { 
   Assembly      = 0x0001, 

   Module        = 0x0002, 
   Class         = 0x0004, 

   Struct        = 0x0008, 
   Enum          = 0x0010, 

   Constructor   = 0x0020, 
   Method        = 0x0040, 

   Property      = 0x0080, 
   Field         = 0x0100, 

   Event         = 0x0200, 
   Interface     = 0x0400, 

   Parameter     = 0x0800, 
   Delegate      = 0x1000, 

   ReturnValue   = 0x2000, 
   All           = Assembly    | Module    | Class    | Struct | 
Enum  |  
                   Constructor | Method    | Property | Field  | 
Event |  
                   Interface   | Parameter | Delegate | 
ReturnValue 
} 

The AttributeUsageAttribute class offers two additional public properties that can 
optionally be set when the attribute is applied to an attribute type: AllowMultiple and 
Inherited. 

For most attributes, it makes no sense to apply them to a single target more than once. For 
example, nothing is gained by applying the Flags or Serializable attributes more than 
once to a single target. In fact, if you tried to compile the code below, the compiler would 
report the following: "error CS0579: Duplicate ‘Flags’ attribute":  

[Flags][Flags] 
enum Color { 

   Red 
} 

For a few attributes, however, it does make sense to apply the attribute multiple times to a 
single target. In the FCL, the ConditionalAttribute attribute class and lots of 
permission attribute classes (such as EnvironmentPermissionAttribute, 
FileIOPermissionAttribute, ReflectionPermissionAttribute, Registry-
PermissionAttribute, and so on) allow multiple instances of themselves to be applied to 



a single target. If you don’t explicitly set AllowMultiple, your attribute will get the default 
behavior, which allows it to be applied no more than once to a selected target. 

AttributeUsageAttribute’s other property, Inherited, indicates whether the purpose 
of the attribute should be considered to apply to derived classes or derived methods. Of all 
the attributes defined by the FCL, less than five have the Inherited property set to true. 
The following code demonstrates what it means for an attribute to be inherited:  

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, 
   Inherited=true)] 

class TastyAttribute : Attribute { 
} 

 
[Tasty][Serializable] 

public class SomeType { 
 

   [Tasty] public virtual void DoSomething() { } 
} 

 
public class AnotherType : SomeType { 

   public override void DoSomething() { } 
} 

In this code, AnotherType and its DoSomething method are both considered Tasty 
because Tasty attributes are marked as inherited. However, AnotherType is not 
serializable because the FCL’s SerializableAttribute type is marked as a 
noninherited attribute.  

Be aware that the .NET Framework only considers targets of classes, methods, properties, 
events, and parameters to be inheritable. So when you’re defining an attribute type, you 
should set Inherited to true only if your targets include any of these targets. Note that 
inherited attributes do not cause additional metadata to be emitted for the derived types into 
the managed module. I’ll say more about this a little later in the section "Detecting the Use of 
a Custom Attribute." 

 
Note  

If you define your own attribute class and forget to apply an 
AttributeUsage attribute to your class, the compiler and the CLR will 
assume that your attribute can be applied to all targets, can be applied only 
once to a single target, and is inherited. These assumptions mimic the 
default field values in the AttributeUsageAttribute type. 

 

Attribute Constructor and Field/Property Data Types 

When defining your own custom attribute type, you can define a constructor that takes 
parameters that a developer applying an instance of your attribute type must specify. In 
addition, you can define nonstatic, public fields and properties in your type that identify 
settings a developer applying an instance of your attribute type can optionally specify.  



When defining an attribute type’s instance constructor, fields, and properties, you must 
restrict yourself to a small subset of data types. Specifically, the legal set of data types is 
limited to any of the following: Boolean, Char, Byte, SByte, Int16, UInt16, Int32, 
UInt32, Int64, UInt64, Single, Double, String, Type, Ob-ject, or an enumerated 
type. In addition, you can use a single-dimension, zero-based array of any of these types. 

When applying an attribute, you must pass a compile-time constant expression that matches 
the type defined by the attribute class. Wherever the attribute class defines a Type 
parameter, Type field, or Type property, you must use C#’s typeof operator as shown in 
the following code. Wherever the attribute class defines an Object parameter, Object 
field, or Object property, you can pass an Int32, a String, or any other constant 
expression. If the constant expression represents a value type, the value type will be boxed 
at run time when an instance of the attribute is constructed.  

Here’s an example of an attribute and an application of it: 

[AttributeUsage(AttributeTargets.All)] 

class SomeAttribute : Attribute { 
   public SomeAttribute(String name, Object o, Type[] types) { 

      // ‘name’  refers to a String. 
      // ‘o’     refers to one of the legal types (boxing if 
necessary). 
      // ‘types’ refers to a 1-dimension, 0-based array of Types. 
      ? 

   } 
} 

 
[Some("Jeff", Color.Red, new Type[] { typeof(Math), 
typeof(Console) })] 
public class SomeType { 
   ... 

} 

Logically, when a compiler detects a custom attribute applied to a target, the compiler 
constructs an instance of the attribute type by calling its constructor, passing it any specified 
parameters. Then the compiler initializes any public fields and properties that have also been 
specified. Now that the custom attribute object is initialized, the compiler serializes the object 
out to the target’s metadata table entry.  

 
Important  

I’ve found that this is the best way for developers to think of custom 
attributes: instances of types that have been serialized to a byte 
stream that resides in metadata. Later, at run time, an instance of the 
type can be constructed by deserializing the bytes contained in the 
metadata. 

 
Note  

Each parameter is written out with a 1-byte type ID followed by the value. 
After “serializing” the constructor’s parameters, the compiler emits each of 
the specified field and property values by writing out the field/property name 
followed by a 1-byte type ID and then the value. For arrays, the count of 
elements is saved first, followed by each individual element. 



 
Detecting the Use of a Custom Attribute 

Defining an attribute type is useless by itself. Sure, you could define attribute types all you 
want and apply them all you want; but this would just cause additional metadata to be written 
out to the managed module—the behavior of your application code wouldn’t change. 

In Chapter 13, you saw that applying the Flags attribute to an enumerated type altered the 
behavior of System.Enum’s ToString, Format, and Parse methods. The reason these 
methods behave differently is that they check at run time whether the enumerated type 
they’re operating on has the Flags attribute metadata associated with it. Code can look for 
the presence of attributes using a technology called reflection. I’ll give some brief 
demonstrations of reflection here, but I’ll discuss it fully in Chapter 20. 

If you were the Microsoft employee responsible for implementing Enum’s Format method, 
you would implement it like this:  

public static String Format(Type enumType, Object value, String 
format) { 
 

   // Does the enumerated type have an instance of 
   // the FlagsAttribute type applied to it?  

   if (enumType.IsDefined(typeof(FlagsAttribute), false)) { 
      // Yes; execute code treating value as a bit flag 
enumerated type. 
      ? 
   } else { 

      // No;  execute code treating value as a normal enumerated 
type. 
      ? 

   } 
   ? 

} 

This code calls Type’s IsDefined method, effectively asking the system to look up the 
metadata for the enumerated type and see whether an instance of the FlagsAttribute 
type is associated with it. If IsDefined returns true, then an instance of 
FlagsAttribute is associated with the enumerated type and the Format method knows 
to treat the value as though it contained a set of bit flags. If Is-Defined returns false, 
then Format treats the value as a normal enumerated type. 

So if you define your own attribute types, you must also implement some code that checks 
for the existence of an instance of your attribute type (on some target) and then executes 
some alternate code path. This is what makes custom attributes so useful! 

The FCL offers many ways to check for the existence of an attribute. If you’re checking for 
the existence of an attribute via a System.Type object, you can use the IsDefined 
method as shown earlier. However, sometimes you want to check for an attribute on a target 
other than a type, such as an assembly, a module, or a method. For this discussion, let’s 
concentrate on the methods defined by the System.Attribute type. You’ll recall that all 
CLS-compliant attributes are derived from System.Attribute and this type defines three 



static methods for retrieving the attributes associated with a target: IsDefined, 
GetCustomAttributes, and GetCustomAttribute. Each of these functions has 
several overloaded versions. For example, each method has a version that works on type 
members (classes, structs, enums, interfaces, delegates, constructors, methods, properties, 
fields, events, and return types), parameters, modules, and assemblies. There are also 
versions that allow you to tell the system to walk up the derivation hierarchy to include 
inherited attributes in the results. Table 16-1 briefly describes what each method does. 

If you just want to see whether an attribute has been applied to a target, you should call 
IsDefined because it’s much faster than the other two methods. However, you know that 
when an attribute is applied to a target, you can specify parameters to the attribute’s 
constructor and you can also optionally set fields and properties. Using IsDefined won’t 
construct an attribute object, call its constructor, or set its fields and properties.  

If you want to construct an attribute object, you must call either GetCustomAttributes or 
GetCustomAttribute. Every time one of these methods is called, it constructs instances 
of the specified attribute type and sets each instance’s fields and properties based on the 
values specified in the source code. These methods return references to fully constructed 
instances of the applied attribute types. 

When you call any of these methods, internally, they must scan the managed module’s 
metadata, performing string comparisons to locate the specified custom attribute class. 
Obviously, these operations take time. If you’re performance conscious, you should consider 
caching the result of calling these methods rather than calling them repeatedly asking for the 
same information.  

Table 16-1: System.Attribute’s Methods That Reflect over Metadata Looking for 
Instances of CLS-Compliant Custom Attributes  

Method Description 

IsDefined  Returns true if there is at least one instance of the 
specified Attribute-derived type associated with the 
target. This method is fast because it doesn’t construct 
(deserialize) any instances of the attribute type. 

GetCustomAttributes  Returns an array where each element is an instance of 
the specified attribute type that was applied to the 
target. Each instance is constructed (deserialized) 
using the parameters, fields, and properties specified 
during compilation. If the target has no instances of 
the specified attribute type, then an empty array is 
returned. This method is typically used with attributes 
that have AllowMultiple set to true. 

GetCustomAttribute  Returns an instance of the specified attribute type that 
was applied to the target. The instance is constructed 
(deserialized) using the parameters, fields, and 
properties specified during compilation. If the target 
has no instances of the specified attribute type, then 
null is returned. If the target has multiple instances 
of the specified attribute applied to it, then a 
System.Reflection.AmbiguousMatchExceptio
n exception is thrown. This method is typically used 
with attributes that have AllowMultiple set to 
false. 



The System.Reflection namespace defines several types that allow you to examine the 
contents of a module’s metadata: Assembly, Module, Enum, ParameterInfo, 
MemberInfo, Type, MethodInfo, ConstructorInfo, FieldInfo, EventInfo, 
PropertyInfo, and their respective *Builder types. All these types also offer 
IsDefined and GetCustomAttributes methods. Only System.Attribute offers the 
very convenient GetCustomAttribute method. 

The version of GetCustomAttributes defined by the reflection types returns an array of 
Object types (Object[]) instead of an array of Attribute types (Attribute[]). This is 
because the reflection types are able to return objects of non-CLS-compliant attribute types. 
You shouldn’t be concerned about this inconsistency because non-CLS-compliant attributes 
are incredibly rare. In fact, in all the time I’ve been working with the .NET Framework, I’ve 
never even seen one.  

 
Note  

Be aware that the methods on the reflection types only consider attributes 
on classes and methods to be inheritable; that is, if you call IsDefined or 
GetCustomAttributes using an EventInfo, a PropertyInfo, or a 
ParameterInfo, the inherit parameter is ignored and assumed to be 
false. Only the Attribute type’s methods honor the inherit parameter 
for events, properties, and parameters.  

There’s just one more thing that you should be aware of: When you pass a type to 
IsDefined, GetCustomAttribute, or GetCustomAttributes, these methods search 
for the application of the attribute type you specify or any attribute type derived from the 
specified type. If your code is looking for a specific attribute type, you should perform an 
additional check on the returned value to ensure that what these methods returned is the 
exact type you’re looking for. You might also want to consider defining your attribute type to 
be sealed to reduce potential confusion and eliminate this extra check. I must admit, all the 
attribute types I’ve ever seen inherit directly from System.Attribute so I’ve never run into 
this problem personally.  

Here’s some sample code that gets all the methods defined within a type and displays the 
attributes applied to each method. The code is for demonstration purposes; normally, you 
wouldn’t apply these particular custom attributes to these targets as I’ve done here. 

using System; 

using System.Diagnostics; 
using System.Reflection; 

 
[assembly:CLSCompliant(true)] 

 
[Serializable] 

[DefaultMemberAttribute("Main")] 
class App { 

   [Conditional("Debug")][Conditional("Release")] 
   public void DoSomething() {} 

 
   public App() { 

   } 
 



   [CLSCompliant(true)] 
   [STAThread] 

   public static void Main() { 
      // Display the type’s name. 

      Console.WriteLine("Attributes applied to: {0}", 
typeof(App)); 
 

      // Get and show the set of attributes applied to this type. 
      ShowAttributes(typeof(App).GetCustomAttributes(false)); 

 
      // Get the set of methods associated with the type. 

      MemberInfo[] members = typeof(App).FindMembers( 
         MemberTypes.Constructor | MemberTypes.Method,  

         BindingFlags.DeclaredOnly | BindingFlags.Instance |  
         BindingFlags.Public  | BindingFlags.Static,  

         Type.FilterName, "*"); 
 

      foreach (MemberInfo member in members) { 
         // Display the type’s member name. 

         Console.WriteLine("Attributes applied to: {0}", 
member.Name); 
 

         // Get and show the set of attributes applied to this 
member. 

         ShowAttributes(member.GetCustomAttributes(false)); 
      } 

   } 
 

   public static void ShowAttributes(Object[] attributes) { 
      foreach (Object attribute in attributes) { 

         // Display the type of each applied attribute. 
         Console.Write("   {0}", attribute.GetType().ToString()); 

         if (attribute is ConditionalAttribute) 
            Console.Write("  ({0})",  

               ((ConditionalAttribute) 
attribute).ConditionString); 
 

         if (attribute is CLSCompliantAttribute) 
            Console.Write("  ({0})",  

               ((CLSCompliantAttribute) attribute).IsCompliant); 
 



         Console.WriteLine(); 
      } 

 
      if (attributes.Length == 0) 

         Console.WriteLine("   No attributes applied to this 
target."); 
 

      Console.WriteLine(); 
   } 

} 

Building and running this application yields the following output:  

Attributes applied to: App 
   System.Reflection.DefaultMemberAttribute 

 
Attributes applied to: DoSomething 

   System.Diagnostics.ConditionalAttribute  (Release) 
   System.Diagnostics.ConditionalAttribute  (Debug) 

 

Attributes applied to: Main 
   System.CLSCompliantAttribute  (True) 

   System.STAThreadAttribute 
 

Attributes applied to: ShowAttributes 
   No attributes applied to this target. 

 
Attributes applied to: .ctor 

   No attributes applied to this target.  

 

Matching Two Attribute Instances Against Each Other 

Now that your code knows how to check to see whether an instance of an attribute is applied 
to a target, it might want to check the fields of the attribute to see what values they have. 
One way to do this is to write code that checks the values of the type’s fields. However, your 
attribute type could also override System.Attribute’s Match method. Then your code 
could construct an instance of the attribute type and call Match to compare it to the instance 
that was applied to the target. The following code demonstrates.  

using System; 

 
[Flags] 

public enum Accounts { 
   Savings   = 0x0001, 



   Checking  = 0x0002, 
   Brokerage = 0x0004 

} 
 

[AttributeUsage(AttributeTargets.Class)] 
public class AccountsAttribute : Attribute { 

 
   private Accounts accounts; 

 
   public AccountsAttribute(Accounts accounts) { 

      this.accounts = accounts; 
   } 

   public override Boolean Match(object obj) { 
      // If the base class implements Match and the base class 

      // is not Attribute, then uncomment the following line. 
      // if (!base.Match(obj)) return false; 

 
      // Because ‘this’ isn’t null, if obj is null, then the 

      // objects can’t match. 
      // NOTE: You can delete this line if you trust that 

      // the base type implemented Match correctly. 
      if (obj == null) return false; 

 
      // If the objects are of different types, they can’t match. 

      // NOTE: You can delete this line if you trust that 
      // the base type implemented Match correctly. 

      if (this.GetType() != obj.GetType()) return false; 
 

      // Cast obj to your type to access fields.  
      // NOTE: This cast can’t fail because you know that objects 

      // are of the same type. 
      AccountsAttribute other = (AccountsAttribute) obj; 

 
      // Compare the fields as you see fit. 

      // This example checks whether ‘this’ accounts is a subset  
      // of other’s accounts. 

      if ((other.accounts & accounts) != accounts) return false; 
 

      return true;   // Objects match 
   } 



 
   public override Boolean Equals(object obj) { 

      // If the base class implements Equals and the base class 
      // is not Object, then uncomment the following line. 

      // if (!base.Equals(obj)) return false; 
 

      // Because ‘this’ isn’t null, if obj is null, then the  
      // objects can’t be equal. 

      // NOTE: You can delete this line if you trust that 
      // the base type implemented Equals correctly. 

      if (obj == null) return false; 
 

      // If the objects are of different types, they can’t be 
equal. 
      // NOTE: You can delete this line if you trust that 

      // the base type implemented Equals correctly. 
      if (this.GetType() != obj.GetType()) return false; 

 
      // Cast obj to your type to access fields.  

      // NOTE: This cast can’t fail because you know that objects 
      // are of the same type. 

      AccountsAttribute other = (AccountsAttribute) obj; 
 

      // Compare the fields to see whether they have the same 
value. 
      // This example checks whether ‘this’ accounts is the same 

      // as other’s accounts. 
      if (other.accounts != accounts) return false; 

 
      return true;   // Objects are equal. 

   } 
 

   // Override GetHashCode because Equals is overloaded. 
   public override Int32 GetHashCode() { 

      return (Int32) accounts; 
   } 

} 
 

[Accounts(Accounts.Savings)] 
class ChildAccount { } 

 



[Accounts(Accounts.Savings | Accounts.Checking | 
Accounts.Brokerage)] 
class AdultAccount { } 

 
class App { 

   static void Main() { 
      CanWriteCheck(new ChildAccount()); 

      CanWriteCheck(new AdultAccount()); 
 

      // This just demonstrates that the method works correctly 
on a 
      // type that doesn’t have any AccountsAttribute attributes  

      // applied to it. 
      CanWriteCheck(new App()); 

   } 
 

   public static void CanWriteCheck(Object obj) { 
 

      // Construct an instance of the attribute type, and 
initialize it 
      // to what you’re explicitly looking for. 

      Attribute checking = new 
AccountsAttribute(Accounts.Checking); 

       
      // Construct the attribute instance that was applied to the 
type. 
      Attribute validAccounts = Attribute.GetCustomAttribute( 
         obj.GetType(), typeof(AccountsAttribute), false); 

 
      // If the attribute was applied to the type AND the  

      // attribute specifies the "Checking" account, write  
      // a check from this object. 

      if ((validAccounts != null) && 
checking.Match(validAccounts)) { 
         Console.WriteLine("{0} types can write checks.",  

            obj.GetType()); 
      } else { 

         Console.WriteLine("{0} types can NOT write checks.",  
            obj.GetType()); 

      } 
   } 

} 



Building and running this application yields the following output:  

ChildAccount types can NOT write checks. 

AdultAccount types can write checks. 
App types can NOT write checks. 

You’ll notice that the code for Match is almost identical to the code for Equals (discussed in 
Chapter 6); that is, in both, you must cast carefully and you must remember to call the base 
type’s Match method if appropriate. If you define a custom attribute and you don’t override 
the Match method, you’ll inherit the implementation of Attribute’s Match method. This 
implementation simply calls Equals. 

 
Pseudo-Custom Attributes 

Certain Microsoft-defined attributes are used so frequently that emitting the full attribute 
information into the metadata would increase the size of the managed module significantly. 
These attributes get special treatment at compile time and are emitted into the metadata as 
bits. The CLR and the FCL know how to look in the metadata specifically for these pseudo-
custom attributes. Examine the following code: 

[Serializable] 

class SomeType { 
   ? 

} 

The FCL does offer a System.SerializableAttribute type, and an instance of this 
type is being applied to SomeType. Because the Serializable attribute is common, it is 
compiled into the metadata as a bit: the full metadata for an instance of the Serializable 
attribute won’t be emitted to the metadata. This is why these attributes are called pseudo-
custom attributes: they look like regular attributes and you apply them in source code just as 
you do regular attributes, but they are persisted in a super-compressed way (as a bit). 

The important point to remember about pseudo-custom attributes is that you can’t detect 
their presence at run time in the same way you detect the presence of regular custom 
attributes. In a previous code example, I applied the Serializable and 
DefaultMemberAttribute attributes to the App type. However, when the application 
runs, only the DefaultMemberAttribute is displayed. Methods such as IsDefined, 
GetCustomAttributes, and GetCustomAttribute don’t work with pseudo-custom 
attributes. 

Ideally, the .NET Framework team would have hidden the fact that pseudo-custom attributes 
are handled differently than regular attributes. And in future versions of the .NET Framework, 
they might. You can employ other means to detect the use of these pseudo-custom 
attributes. For example, System.Type offers read-only properties such as 
IsSerializable, IsAutoLayout, IsExplicitLayout, IsLayoutSequential, and 
more. And System.Reflection.FieldInfo offers read-only properties such as 
IsNotSerialized. However, for most pseudo-custom attributes, there are no types or 
methods defined in the FCL that allow you to detect the presence of a pseudo-custom 
attribute. (By the way, there is a way to detect pseudo-custom attributes if you resort to 
unmanaged code and access the CLR’s COM interface directly.)  

Here’s a list of the .NET FrameworkÐdefined pseudo-custom attributes: 
§ System.NonSerializedAttribute  



§ System.SerializableAttribute  
§ System.Diagnostics.DebuggableAttribute  
§ System.Runtime.CompilerServices.MethodImplAttribute  
§ System.Runtime.InteropServices.DllImportAttribute  
§ System.Runtime.InteropServices.InAttribute  
§ System.Runtime.InteropServices.ComImportAttribute  
§ System.Runtime.InteropServices.FieldOffsetAttribute  
§ System.Runtime.InteropServices.GuidAttribute  
§ System.Runtime.InteropServices.InterfaceTypeAttribute  
§ System.Runtime.InteropServices.OptionalAttribute  
§ System.Runtime.InteropServices.OutAttribute  
§ System.Runtime.InteropServices.PreserveSigAttribute  
§ System.Runtime.InteropServices.StructLayoutAttribute  
§ System.Runtime.InteropServices.MarshalAsAttribute  



Chapter 17: Delegates 
In this chapter, I talk about callback functions. Callback functions are an extremely useful 
programming mechanism that has been around for years. The Microsoft .NET Framework 
exposes a callback function mechanism using delegates. Unlike callback mechanisms used 
in other platforms, such as unmanaged C++, delegates offer much more functionality. For 
example, delegates ensure that the callback method is type-safe (in keeping with one of the 
most important goals of the common language runtime). Delegates also integrate the ability 
to call multiple methods serially and support the calling of static methods as well as instance 
methods. 

A First Look at Delegates 

The C runtime’s qsort function takes a callback function to sort elements within an array. In 
Microsoft Windows, callback functions are required for window procedures, hook 
procedures, asynchronous procedure calls, and more. In the .NET Framework, callback 
methods are used for a whole slew of things. For example, you can register callback 
methods to get a variety of notifications, such as unhandled exceptions, window state 
changes, menu item selections, file system changes, and completed asynchronous 
operations. 

In unmanaged C/C++, the address of a function is just a memory address. This address 
doesn’t carry along any additional information, such as the number of parameters the 
function expects, the types of these parameters, the function’s return value type, and the 
function’s calling convention. In short, unmanaged C/C++ callback functions are not type-
safe.  

In the .NET Framework, callback functions are just as useful and pervasive as in 
unmanaged Windows programming. However, the .NET Framework provides a type-safe 
mechanism called delegates. I’ll start off the discussion of delegates by showing you how to 
use them. The following code demonstrates how to declare, create, and use delegates. 

using System; 

using System.Windows.Forms; 
using System.IO; 

 
class Set { 

   private Object[] items; 
 

   public Set(Int32 numItems) { 
      items = new Object[numItems]; 

      for (Int32 i = 0; i < numItems; i++) 
         items[i] = i; 

   } 
 

   // Define a Feedback type.  
   // NOTE: This type is nested within the Set class. 

   public delegate void Feedback( 
      Object value, Int32 item, Int32 numItems); 



 
   public void ProcessItems(Feedback feedback) { 

      for (Int32 item = 0; item < items.Length; item++) { 
         if (feedback != null) { 

            // If any callbacks are specified, call them. 
            feedback(items[item], item + 1, items.Length); 

         } 
      } 

   } 
} 

 
 

class App { 
   static void Main() { 

      StaticCallbacks(); 
      InstanceCallbacks(); 

   } 
 

 
   static void StaticCallbacks() { 

      // Create a set with five items in it. 
      Set setOfItems = new Set(5); 

 
      // Process the items, but give no feedback. 

      setOfItems.ProcessItems(null); 
      Console.WriteLine(); 

      // Process the items, and give feedback to the console. 
      setOfItems.ProcessItems(new Set.Feedback(App.FeedbackToCons
ole)); 
      Console.WriteLine(); 
 

      // Process the items, and give feedback to a message box. 
      setOfItems.ProcessItems(new Set.Feedback(App.FeedbackToMsgB
ox)); 
      Console.WriteLine(); 
 

      // Process the items, and give feedback to the  
      // console AND to a message box. 

      Set.Feedback fb = null; 
      fb += new Set.Feedback(App.FeedbackToConsole); 

      fb += new Set.Feedback(App.FeedbackToMsgBox); 



      setOfItems.ProcessItems(fb); 
      Console.WriteLine(); 

   } 
 

   static void FeedbackToConsole( 
      Object value, Int32 item, Int32 numItems) { 

      Console.WriteLine("Processing item {0} of {1}: {2}.",  
         item, numItems, value); 

   } 
 

   static void FeedbackToMsgBox( 
      Object value, Int32 item, Int32 numItems) { 

      MessageBox.Show(String.Format("Processing item {0} of {1}: 
{2}.", 
         item, numItems, value)); 

   } 
 

 
   static void InstanceCallbacks() { 

      // Create a set with five items in it. 
      Set setOfItems = new Set(5); 

 
      // Process the items, and give feedback to a file. 

      App appobj = new App(); 
      setOfItems.ProcessItems(new Set.Feedback(appobj.FeedbackToF
ile)); 
      Console.WriteLine(); 
   } 

 
   void FeedbackToFile( 

      Object value, Int32 item, Int32 numItems) { 
 

      StreamWriter sw = new StreamWriter("Status", true); 
      sw.WriteLine("Processing item {0} of {1}: {2}.",  

         item, numItems, value); 
      sw.Close(); 

   } 
} 

Now I’ll describe what this code is doing. At the top, notice the Set class. Pretend that this 
class contains a set of items that will be processed individually. When you create a Set 



object, you pass the number of items it should manage to its constructor. The constructor 
then creates an array of Objects and initializes each object to an integer value. 

The Set class also defines a public delegate: Feedback. The delegate indicates the 
signature of a callback method. In this example, a Feedback delegate identifies a method 
that takes three parameters (an Object and two Int32s) and returns void. In a way, a 
delegate is very much like an unmanaged C/C++ typedef that represents the address of a 
function. 

The Set class also defines a public method named ProcessItems. This method takes one 
parameter, feedback, which is a reference to a Feedback delegate object. 
ProcessItems iterates through all the elements of the array, and for each element, the 
callback method (specified by the feedback variable) is called. This callback method is 
passed the value of the item being processed, the item number, and the total number of 
items in the array. The callback method can process each item any way it chooses. 

 
Using Delegates to Call Back Static Methods 

Now that you understand how the Set type is designed and how it works, let’s see how to 
use delegates to call back static methods. The StaticCallbacks method that appears in 
the previous code sample is the focus of this section. 

The StaticCallbacks method begins by constructing a Set object, telling it to create an 
array of five objects. Then ProcessItems is called, passing it null for its feedback 
parameter. ProcessItems represents a method that performs some action for every item 
managed by the Set. Because the feedback parameter is null in this example, each item 
is processed without calling any callback methods. 

For the second call to ProcessItems, a new Set.Feedback delegate object is 
constructed. This delegate object is a wrapper around a method, allowing that method to be 
called back indirectly via the wrapper. To the Feedback type’s constructor, the name of a 
static method, App.FeedbackToConsole in this example, is passed; this indicates the 
method to be wrapped. The reference returned from the new operator is then passed to 
ProcessItems. Now, when ProcessItems executes, it will call the App type’s static 
FeedbackToConsole method for each item in the set. FeedbackToConsole simply writes 
a string to the console indicating the item being processed and the item’s value.  

 
Note  

The FeedbackToConsole method is defined as private inside the App 
type, but the Set type’s ProcessItems method is able to call App’s private 
method. No security problem results here because App’s code explicitly 
decided to return a delegate wrapper over a private method. 

The third call to ProcessItems is almost identical to the second call. The only difference is 
that the Feedback delegate object wraps the static App.FeedbackToMsgBox method. 
FeedbackToMsgBox builds a string indicating the item being processed and the item’s 
value. This string is then displayed in a message box. 

The fourth and final call to ProcessItems demonstrates how delegates can be linked 
together to form a chain. In this example, a reference variable to a Feedback delegate 
object, fb, is created and initialized to null. This variable points to the head of a linked list 
of delegates. A value of null indicates that there are no nodes in the linked list. Then a 
Feedback delegate object that wraps a call to App’s FeedbackToConsole method is 



constructed. The C# += operator is used to append this object to the linked list referred to by 
fb. The fb variable now refers to the head of the linked list. 

Finally, another Feedback delegate object is constructed that wraps a call to App’s 
FeedbackToMsgBox method. Again, the C# += operator is used to append this object to 
the linked list and fb is updated to refer to the new head of the linked list. Now, when 
ProcessItems is called, it is passed the head of the linked list of Feedback delegates. 
Inside ProcessItems, the line of code that calls the callback method actually ends up 
calling all the callback methods wrapped by the delegate objects in the linked list. In other 
words, for each item being iterated, FeedbackToConsole will be called immediately 
followed by FeedbackToMsgBox. I’ll explain exactly how a delegate chain works later in this 
chapter. 

Everything in this example is type-safe. For instance, when constructing a Feedback 
delegate object, the compiler ensures that App’s FeedbackToConsole and 
FeedbackToMsgBox methods have the exact prototype as defined by the Feed- 
back delegate; that is, both methods must take three parameters (Object and two Int32s) 
and both methods must have the same return type (void). What would have happened if 
FeedbackToConsole had been prototyped like this?  

void FeedbackToConsole(Object, Int32, Int32, String s) { 

   ? 
} 

The C# compiler wouldn’t compile the code and would issue the following error: “error 
CS0123: The signature of method ‘App.FeedbackToConsole()’ does not match this delegate 
type”. 

 

Using Delegates to Call Back Instance Methods 

In the code example near the beginning of the chapter, I explained how to use delegates to 
call static methods. You can also use delegates to call instance methods for a specific 
object. To understand how calling back an instance method works, look at the 
InstanceCallbacks method from the code shown earlier:  

static void InstanceCallbacks() { 

   // Create a set with five items in it. 
   Set setOfItems = new Set(5); 

 
   // Process the items, and give feedback to a file. 

   App appobj = new App(); 
   setOfItems.ProcessItems(new Set.Feedback(appobj.FeedbackToFile
)); 
   Console.WriteLine(); 

} 

Notice that an App object is constructed after the Set object is constructed. This App object 
doesn’t have any fields or properties associated with it; I created it merely for demonstration 
purposes. When the new Feedback delegate object is constructed, its constructor is passed 
appobj.FeedbackToFile. This causes the delegate to wrap a reference to the 
FeedbackToFile method, which is an instance method (not a static method). When this 



instance method is called, the object appobj refers to is the object being operated on 
(passed as the hidden this parameter). 

The FeedbackToFile method works like the FeedbackToConsole and 
FeedbackToMsgBox methods except that it opens a file and appends the processing item 
string to the end of the file. 

Again, the purpose of this example is to demonstrate that delegates can wrap calls to 
instance methods as well as static methods. For instance methods, the delegate needs to 
know the instance of the object that the method is going to operate on. 

 

Demystifying Delegates 

On the surface, delegates seem easy to use: you define them using C#’s delegate 
keyword, you construct instances of them using the familiar new operator, and you invoke 
the callback using familiar "method call" syntax (except instead of a method name, you use 
the variable that refers to the delegate object). 

However, what’s really going on is quite a bit more complex than what the earlier examples 
illustrate. The compilers and the common language runtime (CLR) do a lot of behind-the-
scenes processing to hide the complexity. In this section, I’ll focus on how the compiler and 
the CLR work together to implement delegates. Having this knowledge will improve your 
understanding of delegates and will teach you how to use them efficiently and effectively. I’ll 
also touch on some additional features that delegates make available. 

Let’s start by reexamining this line of code: 

public delegate void Feedback( 
   Object value, Int32 item, Int32 numItems); 

When it sees this line, the compiler actually defines a complete class definition that looks 
something like this: 

public class Feedback : System.MulticastDelegate { 
   // Constructor 

   public Feedback(Object target, Int32 methodPtr); 
 

   // Method with same prototype as specified by the source code 
   public void virtual Invoke( 

      Object value, Int32 item, Int32 numItems); 
 

   // Methods allowing the callback to be called asynchronously 
   public virtual IAsyncResult BeginInvoke( 

      Object value, Int32 item, Int32 numItems,  
      AsyncCallback callback, Object object); 

   public virtual void EndInvoke(IAsyncResult result); 
} 

The class defined by the compiler has four methods: a constructor, Invoke, BeginInvoke, 
and EndInvoke. In this chapter, I’ll concentrate on the constructor and Invoke methods. 



In fact, you can verify that the compiler did indeed generate this class automatically by 
examining the resulting module with ILDasm.exe, as shown in Figure 17-1. 

 
Figure 17-1 : ILDasm.exe showing the metadata produced by the compiler for the 
delegate  

In this example, the compiler has defined a class called Feedback that is derived from the 
System.MulticastDelegate type defined in the .NET Framework Class Library (FCL). 
(All delegate types are derived from MulticastDelegate.) The class is public because 
the delegate is declared as public in the source code. If the source code had indicated 
private or protected, the Feedback class the compiler generated would also be private 
or protected, respectively. You should be aware that delegate types can be defined within a 
class (as in the example, Feedback is defined within the Set class) or at global scope. 
Basically, because delegates are classes, a delegate can be defined anywhere a class can 
be defined. 

Because all delegate types are derived from MulticastDelegate, they inherit 
MulticastDelegate’s fields, properties, and methods. Of all these members, three 
private fields are probably most significant. Table 17-1 describes these fields. 

Table 17-1: MulticastDelegate’s Significant Private Fields  

Field Type Description 

_target  System.Object  Refers to the object 
that should be 
operated on when 
the callback 
method is called. 
This field is used 
for instance 
method callbacks. 

_methodPtr  System.Int32  An internal integer 
that the CLR uses 
to identify the 
method that is to 
be called back. 

_prev  System.MulticastDelegate  Refers to another 
delegate object. 
This field is usually 
null. 



Notice that all delegates have a constructor that takes two parameters: a reference to an 
object and an integer that refers to the callback method. However, if you examine the source 
code, you’ll see that I’m passing in values such as App.FeedbackToConsole or 
appobj.FeedbackToFile. All your sensibilities tell you that this code shouldn’t compile!  

However, the compiler knows that a delegate is being constructed and parses the source 
code to determine which object and method are being referred to. A reference to the object 
is passed for the target parameter, and a special Int32 value (obtained from a 
MethodDef or MethodRef metadata token) that identifies the method is passed for the 
methodPtr parameter. For static methods, null is passed for the target parameter. 
Inside the constructor, these two parameters are saved in their corresponding private fields. 

In addition, the constructor sets the _prev field to null. This _prev field is used to create a 
linked list of MulticastDelegate objects. I’ll ignore this field for now but cover it in detail 
later in the chapter, in the section "Delegate Chains." 

So, each delegate object is really a wrapper around a method and an object to be operated 
on when the method is called. The MulticastDelegate class defines two read-only public 
instance properties: Target and Method. Given a reference to a delegate object, you can 
query these properties. The Target property returns a reference to the object that will be 
operated on if the method is called back. If the method is a static method, Target returns 
null. The Method property returns a System.Reflection.MethodInfo object that 
identifies the callback method. 

You could use this information in several ways. For example, you could check to see 
whether a delegate object refers to an instance method of a specific type: 

Boolean DelegateRefersToInstanceMethodOfType( 
   MulticastDelegate d, Type type) { 

 
   return((d.Target != null) && d.Target.GetType() == type); 

} 

You could also write code to check whether the callback method has a specific name (such 
as FeedbackToMsgBox):  

Boolean DelegateRefersToMethodOfName( 
   MulticastDelegate d, String methodName) { 

 
   return(d.Method.Name == methodName); 

} 

Now that you know how delegate objects are constructed, let’s talk about how the callback 
method is invoked. For convenience, I’ve repeated the code to Set’s ProcessItems here:  

public void ProcessItems(Feedback feedback) { 

   for (Int32 item = 0; item < items.Length; item++) { 
      if (feedback != null) { 

         // If any callbacks are specified, call them. 
         feedback(items[item], item, items.Length); 

      } 



   } 
} 

Just below the comment is the line of code that invokes the callback method. It might seem 
as if I’m calling a function named feedback and passing it three parameters. However, 
there is no function called feedback. Again, because it knows that feedback is a variable 
that refers to a delegate object, the compiler generates code to call the delegate object’s 
Invoke method. In other words, the compiler sees this:  

feedback(items[item], item, items.Length); 

But the compiler generates code as though the source code said this: 

feedback.Invoke(items[item], item, items.Length); 

You can verify that the compiler produces code to call the delegate type’s In-voke method 
by using ILDasm.exe to examine the code for the ProcessItems method. Figure 17-2 
shows the intermediate language (IL) for the Set type’s ProcessItems method. The boxed 
lines in the figure indicate the instruction that calls Set.Feedback’s Invoke method. 

If you were to modify the source code to call Invoke explicitly, the C# compiler would 
complain and produce the following: "error CS1533: Invoke cannot be called directly on a 
delegate". C# doesn’t allow you to call Invoke explicitly; however, a different compiler might 
require that Invoke be called to execute the callback method. In fact, Visual Basic requires 
that you explicitly call Invoke. 

You’ll recall that the compiler defined the Invoke method when it defined the Feedback 
class. When Invoke is called, it uses the private _target and _methodPtr fields to call 
the desired method on the specified object. Note that the signature of the Invoke method 
matches the signature of the delegate; that is, because the Feedback delegate takes three 
parameters and returns void, the Invoke method takes the same three parameters and 
also returns void. 

 
Figure 17-2 : ILDasm.exe proves that the compiler emitted a call to the Set.Feedback 
delegate type’s Invoke method 



 

Some Delegate History: System.Delegate and 
System.MulticastDelegate  

Even though the FCL defines the System.MulticastDelegate class, 
MulticastDelegate is actually derived from the System.Delegate class (also defined 
in the FCL), which itself is derived from System.Object. When originally designing the 
.NET Framework, Microsoft engineers felt the need to provide two different types of 
delegates: single-cast and multicast. MulticastDelegate-derived types would represent 
delegate objects that could be chained together, and Delegate-derived types would 
represent objects that could not be chained together. The System.Delegate type was 
designed as the base type, and this class implemented all the functionality necessary to call 
back a wrapped method. The MulticastDelegate class was derived from the Delegate 
class and added the ability to create a linked list (or chain) of MulticastDelegate objects. 

When compiling source code, a compiler would check the delegate’s signature and select 
the more appropriate of the two classes for the compiler-generated delegate type’s base 
class. For the curious, methods with a signature that indicated a non-void return value 
would be derived from System.Delegate, and methods with a void return value would be 
derived from System.MulticastDelegate. This made sense because you can get the 
return value only from the last method called in a linked-list chain. 

During the beta testing of the .NET Framework, it became clear that having the two different 
base types greatly confused developers. In addition, designing delegates this way placed 
arbitrary limitations on them. For example, many methods have return values that you can 
ignore in many situations. Because these methods would have a non-void return value, 
they wouldn’t be derived from the MulticastDelegate class, preventing them from being 
combined into a linked list.  

To reduce developer confusion, Microsoft’s engineers wanted to merge the Delegate and 
MulticastDelegate classes together into a single class that allowed any delegate object 
to participate in a linked-list chain. All compilers would generate delegate classes deriving 
from this one class. This change would reduce complexity and effort for the .NET Framework 
team, the CLR team, the compiler team, and for developers out in the field who are using 
delegates. 

Unfortunately, the idea of merging the Delegate and MulticastDelegate classes came 
along a bit late in the .NET Framework development cycle, and Microsoft was concerned 
about the potential bugs and testing hit that would occur if these changes were made. So in 
version 1 of the .NET Framework, these classes haven’t been merged; in a future version of 
the .NET Framework, I expect that these two classes will be merged into a single class. 

Although Microsoft chose to delay the merging of these two classes in the FCL, they were 
able to modify all the Microsoft compilers. All the Microsoft compilers now generate delegate 
types derived from the MulticastDelegate class all the time. So when I said earlier in 
this chapter that all delegate types are derived from MulticastDelegate, I wasn’t lying. 
Because of this change to the compiler, all instances of delegate types can be combined into 
a linked-list chain regardless of the callback method’s return value. 

You might be thinking, “Why do I need to know about all this?” Well, here’s why: As you start 
working more and more with delegates, you’ll undoubtedly run across both the Delegate 
and MulticastDelegate types in the .NET Framework SDK documentation. I want you to 
understand the relationship between these two classes. In addition, even though all delegate 
types you create have MulticastDelegate as a base class, you’ll occasionally 



manipulate your types using methods defined by the Delegate class instead of the 
MulticastDelegate class. For example, the Delegate class has static methods called 
Combine and Remove. (I explain what these methods do later.) The signatures for both 
these methods indicate that they take Delegate parameters. Because your delegate type is 
derived from MulticastDelegate, which is derived from Delegate, instances of your 
delegate type can be passed to the Combine and Remove methods. 

 

Comparing Delegates for Equality 

The Delegate base class overrides Object’s virtual Equals method. The 
MulticastDelegate type inherits Delegate’s implementation of Equals. Delegate’s 
implementation of Equals compares two delegate objects to see whether their _target 
and _methodPtr fields refer to the same object and method. If these two fields match, then 
Equals returns true; if they don’t match, Equals returns false. The following code 
demonstrates:  

// Construct two delegate objects that refer to the same target/m
ethod. 
Feedback fb1 = new Feedback(FeedbackToConsole); 

Feedback fb2 = new Feedback(FeedbackToConsole); 
 

// Even though fb1 and fb2 refer to two different objects, intern
ally 

// they both refer to the same callback target/method. 
Console.WriteLine(fb1.Equals(fb2));   // Displays "True" 

In addition, both the Delegate and MulticastDelegate types provide overloads for the 
equality (==) and inequality (!=) operators. You can use these operators instead of calling 
the Equals method. The following code’s behavior is identical to that of the preceding code:  

// Construct two delegate objects that refer to the same target/m
ethod. 
Feedback fb1 = new Feedback(FeedbackToConsole); 

Feedback fb2 = new Feedback(FeedbackToConsole); 
 

// Even though fb1 and fb2 refer to two different objects, intern
ally 
// they both refer to the same callback target/method. 

Console.WriteLine(fb1 == fb2);   // Displays "True" 

Understanding how to compare delegates for equality is important when you try to 
manipulate delegate chains, a topic I’ll talk about next. 

 

Delegate Chains 

By themselves, delegates are incredibly useful. But add in their support for chaining, and 
delegates become even more useful. I’ve already mentioned that each 
MulticastDelegate object has a private field, called _prev. This field holds a reference 
to another MulticastDelegate object; that is, every object of type MulticastDelegate 



(or any type derived from MulticastDelegate) has a reference to another 
MulticastDelegate-derived object. This field allows delegate objects to be part of a 
linked list. 

The Delegate class defines three static methods that you can use to manipulate a linked-
list chain of delegate objects.  

class System.Delegate { 
   // Combines the chains represented by head and tail; head is r
eturned. 
   // NOTE: head will be the last delegate called. 
   public static Delegate Combine(Delegate tail, Delegate head); 

 
   // Creates a chain represented by the array of delegates. 

   // NOTE: entry 0 is the head and will be the last delegate cal
led. 
   public static Delegate Combine(Delegate[] delegateArray); 

 
   // Removes a delegate matching value’s Target/Method from the 
chain. 
   // The new head is returned and will be the last delegate call
ed. 

   public static Delegate Remove(Delegate source, Delegate value)
; 
} 

When you construct a new delegate object, the object’s _prev field is set to null, indicating 
that no other objects are in the linked list. To combine two delegates into a linked list, you 
call one of Delegate’s static Combine methods:  

Feedback fb1 = new Feedback(FeedbackToConsole); 

Feedback fb2 = new Feedback(FeedbackToMsgBox); 
Feedback fbChain = (Feedback) Delegate.Combine(fb1, fb2); 

// The left side of Figure 17-3 shows what the  
// chain looks like after this code executes. 

 
App appobj = new App(); 

Feedback fb3 = new Feedback(appobj.FeedbackToStream); 
fbChain = (Feedback) Delegate.Combine(fbChain, fb3); 

// The right side of Figure 17-3 shows what the 
// chain looks like after all the code executes. 

Figure 17-3 shows what the internal representation of delegate chains looks like. 



 
Figure 17-3 : Internal representation of delegate chains  

You’ll notice that the Delegate type offers another version of the Combine method that 
takes an array of Delegate references. Using this version of Com-bine, you could rewrite 
the preceding code as follows:  

Feedback[] fbArray = new Feedback[3]; 
fbArray[0] = new Feedback(FeedbackToConsole); 

fbArray[1] = new Feedback(FeedbackToMsgBox); 
App appobj = new App(); 

fbArray[2] = new Feedback(appobj.FeedbackToStream); 
 

Feedback fbChain = Delegate.Combine(fbArray); 
// The right side of Figure 17-3 shows what the 

// chain looks like after all the code executes. 

When a delegate is invoked, the compiler generates a call to the delegate type’s Invoke 
method (as discussed earlier in this chapter). To refresh your memory, my earlier example 
declared a Feedback delegate as follows:  

public delegate void Feedback( 

   Object value, Int32 item, Int32 numItems); 

This caused the compiler to generate a Feedback class that contains an Invoke method 
that looks like this (in pseudocode):  

class Feedback : MulticastDelegate { 

   public void virtual Invoke( 
      Object value, Int32 item, Int32 numItems) { 

 
      // If there are any delegates in the chain that 

      // should be called first, call them recursively. 
      if (_prev != null) _prev.Invoke(value, item, numItems); 

 
      // Call the callback method on the specified target object. 



     _target.methodPtr(value, item, numItems); 
   } 

} 

As you can see, invoking a delegate object causes its previous delegate to be invoked first. 
When the previous delegate returns, its return value is discarded. After calling its previous 
delegate, the delegate can then invoke the callback target/method that it wraps. The 
following code demonstrates. 

Feedback fb1 = new Feedback(FeedbackToConsole); 
Feedback fb2 = new Feedback(FeedbackToMsgBox); 

Feedback fbChain = (Feedback) Delegate.Combine(fb1, fb2); 
// At this point, fbChain refers to a delegate that calls  

// FeedbackToMsgBox, this delegate refers to another delegate tha
t  
// calls FeedbackToConsole, and this delegate refers to null. 

 
// Now let’s invoke the head delegate, which internally invokes 

// its previous delegate and so on. 
if (fbChain != null) fbChain(null, 0, 10); 

// NOTE: In the preceding line, fbChain will never be null, but c
hecking a  

// delegate reference against null before attempting to invoke it
 is a 
// very good habit to get into. 

So far, I’ve shown examples where my delegate type, Feedback, is defined as having a 
void return value. However, I could have defined my Feedback delegate as follows:  

public delegate Int32 Feedback( 

   Object value, Int32 item, Int32 numItems); 

If I had, its Invoke method would have internally looked like this (again, in pseudocode):  

class Feedback : MulticastDelegate { 

   public Int32 virtual Invoke( 
      Object value, Int32 item, Int32 numItems) { 

 
      // If there are any delegates in the chain that 

      // should be called first, call them. 
      if (_prev != null) _prev.Invoke(value, item, numItems); 

 
      // Call the callback method on the specified target object. 

     return _target.methodPtr(value, item, numItems); 
   } 

} 



When the head of the delegate chain is invoked, it calls any previous delegate in the chain. 
However, notice that the previous delegate’s return value is discarded. Your application code 
will receive the return value only from the delegate that is at the head of the chain (the last 
callback method called). 

 
Note  

Once constructed, delegate objects are considered to be immutable; that is, 
delegate objects always have their _prev fields set to null and this never 
changes. When you Combine a delegate object to a chain, internally, 
Combine constructs a new delegate object that has the same _target and 
_methodPtr fields as the source object but the _prev field is set to the old 
head of the chain. The address of the new delegate object is returned from 
Combine.  

This behavior is demonstrated in the following lines of code: 

Feedback fb = new Feedback(FeedbackToConsole); 
Feedback fbChain = (Feedback) Delegate.Combine(fb, fb); 

// fbChain refers to a chain of two delegate objects. 
// One of the objects is identical to the object referred 

// to by fb. The other object was constructed by Combine.  
// This object’s _prev field refers to fb, and Combine  

// returns the reference to this new object. 
 

// Do fb and fbChain refer to the same object? "False" 
Console.WriteLine(Object.ReferenceEquals(fb, fbChain); 

 
// Do fb and fbChain refer to the same callback  

// target/method? "True" 
Console.WriteLine(fb.Equals(fbChain)); 

Now that you know how to build delegate chains, let’s look at how to remove a delegate from 
a chain. To remove a delegate from a linked list, you call the Delegate type’s static 
Remove method:  

Feedback fb1 = new Feedback(FeedbackToConsole); 

Feedback fb2 = new Feedback(FeedbackToMsgBox); 
Feedback fbChain = (Feedback) Delegate.Combine(fb1, fb2); 

// fbChain refers to a chain of two delegates. 

 
// Invoke the chain: two methods are called. 

if (fbChain != null) fbChain(null, 0, 10); 
 

 
fbChain = (Feedback) 

   Delegate.Remove(fbChain, new Feedback(FeedbackToMsgBox)); 
// fbChain refers to a chain with one delegate. 



 
// Invoke the chain: one method is called. 

if (fbChain != null) fbChain(null, 0, 10); 
 

fbChain = (Feedback) 
   Delegate.Remove(fbChain, new Feedback(FeedbackToConsole)); 

// fbChain refers to a chain of 0 delegates. (fbChain is null.) 
 

// Invoke the chain: 0 methods are called. 
if (fbChain != null) fbChain(null, 0, 10); 

// Now you see why I’ve been comparing fbChain to null all this t
ime! 

This code first builds a chain by constructing two delegate objects and then combining them 
into a linked list by calling the Combine method. The Remove method is then called. 
Remove’s first parameter refers to the head of the delegate object chain, and the second 
parameter refers to the delegate object that is to be removed from the chain. I know it seems 
strange to construct a new delegate object in order to remove it from the chain. To fully 
understand why this is necessary requires some additional explanation. 

In the call to Remove, I’m constructing a new delegate object. This delegate object has its 
_target and _methodPtr fields initialized appropriately, and the _prev field is set to 
null. The Remove method scans the chain (referred to by fbChain), checking whether any 
of the delegate objects in the chain are equal to the new delegate object. Remember that the 
overridden Equals method implemented by the Delegate class compares the _target 
and _methodPtr fields only and ignores the _prev field. 

If a match is found, the Remove method removes the located delegate object from the chain 
by fixing up the previous delegate object’s _prev field. Re-move returns the head of the new 
chain. If a match is not found, Remove does nothing (no exception is thrown) and returns the 
same value that was passed for its first parameter. 

Note that each call to Remove eliminates only one object from the chain, as the following 
code demonstrates:  

Feedback fb = new Feedback(FeedbackToConsole); 
Feedback fbChain = (Feedback) Delegate.Combine(fb, fb); 

// fbChain refers to a chain of two delegates. 
 

// Invoke the chain: FeedbackToConsole is called twice. 
if (fbChain != null) fbChain(...); 

 
// Remove one of the callbacks from the chain. 

fbChain = (Feedback) Delegate.Remove(fbChain, fb); 
 

// Invoke the chain: FeedbackToConsole is called once. 
if (fbChain != null) fbChain(...); 



 
// Remove one of the callbacks from the chain. 

fbChain = (Feedback) Delegate.Remove(fbChain, fb); 
 

// Invoke the chain: 0 methods are called. 
if (fbChain != null) fbChain(...); 

 
C#’s Support for Delegate Chains 

To make things easier for C# developers, the C# compiler automatically provides overloads 
of the += and -= operators for instances of delegate types. These operators call 
Delegate.Combine and Delegate.Remove, respectively. Using these operators 
simplifies the building of delegate chains. The following C# code shows how using the C# 
operators simplify the code to combine and remove delegate objects from a chain:  

Feedback fb = new Feedback(FeedbackToConsole); 

App appobj = new App(); 
fb += new Feedback(appobj.FeedbackToStream); 

 
// Invoke the chain: FeedbackToStream and FeedbackToConsole are c
alled. 
if (fb != null) fb(...); 

 
// Remove one of the callbacks from the chain. 

fb -= new Feedback(FeedbackToConsole); 
 

// Invoke the chain: FeedbackToStream is called. 
if (fb != null) fb(...); 

 
// Remove the last callback from the chain. 

fb -= new Feedback(appobj.FeedbackToStream); 
 

// Invoke the chain: 0 methods are called. 
if (fb != null) fb(...); 

Internally, the compiler translates all uses of += on delegates to calls to Delegate’s 
Combine method. Likewise, all uses of the -= operator on delegate objects translate to calls 
to the Remove method. In fact, you can build the code I’ve just shown and look at its IL using 
ILDasm.exe. This will confirm that the C# compiler did in fact replace all += and -= operators 
with calls to the Delegate type’s static Combine and Remove methods, respectively. 

 
Having More Control over Invoking a Delegate Chain 

At this point, you understand how to build a linked-list chain of delegate objects and how to 
invoke all the objects in that chain. All items in the linked-list chain are invoked because the 



delegate type’s Invoke method includes code to call the previous delegate (if one exists). 
This is obviously a very simple algorithm. And although this simple algorithm is good enough 
for a lot of scenarios, it has many limitations. 

For example, the return values of the callback methods are all discarded except for the last 
one. Using this simple algorithm, there’s no way to get the return values for all the callback 
methods called. But this isn’t the only limitation. What happens if one of the invoked 
delegates throws an exception or blocks for a very long time? Because the algorithm 
invoked each delegate in the chain serially, a “problem” with one of the delegate objects 
stops all the other delegates in the chain from getting called. Clearly, this algorithm isn’t 
robust. 

For those scenarios in which this algorithm is insufficient, the MulticastDelegate class 
offers an instance method, GetInvocationList, that you can use to call each delegate in 
a chain explicitly, using any algorithm that meets your needs:  

public class MulticastDelegate { 
   // Creates a delegate array; each item is a clone from the cha
in. 
   // NOTE: entry 0 is the tail, which would normally be called f
irst. 
   public virtual Delegate[] GetInvocationList(); 

} 

The GetInvocationList method operates on a reference to a delegate chain and returns 
an array of references to delegate objects. Internally, GetInvocationList walks the 
specified chain and creates a clone of each object in the chain, appending the clone to the 
array. Each clone has its _prev field set to null, so each object is isolated and doesn’t 
refer to a chain of any other objects.  

You can easily write an algorithm that explicitly calls each object in the array. The following 
code demonstrates: 

using System; 

using System.Text; 
 

// Define a Light component. 
class Light { 

   // This method returns the light’s status. 
   public String SwitchPosition() { 

      return "The light is off";  
   } 

} 
 

// Define a Fan component. 
class Fan {  

   // This method returns the fan’s status. 
   public String Speed() { 

      throw new Exception("The fan broke due to overheating");  



   } 
} 

 
// Define a Speaker component. 

class Speaker { 
   // This method returns the speaker’s status. 

   public String Volume() { 
      return "The volume is loud";  

   } 
} 

 
class App { 

 
   // Definition of delegate that allows querying a component’s s
tatus 
   delegate String GetStatus(); 
 

   static void Main() { 
      // Declare an empty delegate chain. 

      GetStatus getStatus = null; 
 

      // Construct the three components, and add their status met
hods  
      // to the delegate chain. 

      getStatus += new GetStatus(new Light().SwitchPosition); 
      getStatus += new GetStatus(new Fan().Speed); 

      getStatus += new GetStatus(new Speaker().Volume); 
 

      // Show consolidated status report reflecting  
      // the condition of the three components. 

      Console.WriteLine(GetComponentStatusReport(getStatus)); 
   } 

 
   // Method that queries several components and returns a status
 report 
   static String GetComponentStatusReport(GetStatus status) { 

 
      // If the chain is empty, there’s nothing to do. 

      if (status == null) return null; 
 

      // Use this to build the status report. 



      StringBuilder report = new StringBuilder(); 
 

      // Get an array where each element is a delegate from the c
hain. 
      Delegate[] arrayOfDelegates = status.GetInvocationList(); 

 
      // Iterate over each delegate in the array.  

      foreach (GetStatus getStatus in arrayOfDelegates) { 
 

         try { 
            // Get a component’s status string, and append it to 
the report. 
            report.AppendFormat("{0}{1}{1}",  
               getStatus(), Environment.NewLine); 

         } 
         catch (Exception e) { 

            // Generate an error entry in the report for this com
ponent. 
            Object component = getStatus.Target; 

            report.AppendFormat( 
               "Failed to get status from {1}{2}{0}   Error: {3}{
0}{0}", 
               Environment.NewLine, 

               ((component == null) ? "" : component.GetType() + 
"."), 
               getStatus.Method.Name, e.Message); 

         } 
      } 

 
      // Return the consolidated report to the caller. 

      return report.ToString(); 
   } 

} 
 

When you build and run this code, the following output appears: 

The light is off 

 
Failed to get status from Fan.Speed 

   Error: The fan broke due to overheating 
 

The volume is loud 



 
Delegates and Reflection 

So far in this chapter, the use of delegates has required that the developer know up front the 
prototype of the method that is to be called back. For example, if feedback is a variable 
that references a Feedback delegate, then to invoke the delegate, the code would look like 
this:  

feedback(items[item], item, items.Length); 

As you can see, the developer must know when coding how many parameters the callback 
method requires and the types of those parameters. Fortunately, the developer almost 
always has this information and so writing code like the preceding isn’t a problem. 

In some rare scenarios, however, the developer doesn’t have this information at compile 
time. I showed an example of this in Chapter 11 when I discussed the EventHandlerSet 
type. In this example, a hash table maintained a set of different delegate types. At run time, 
to fire an event, one of the delegates was looked up in the hash table and invoked. At 
compile time, it wasn’t possible to know exactly which delegate would be called and which 
parameters were necessary to pass to the delegate’s callback method.  

Fortunately, System.Delegate offers a few methods that allow you to create and invoke a 
delegate when you just don’t have all the necessary information about the delegate at 
compile time. Here are the methods that Delegate defines:  

public class Delegate { 

   // Construct a delType delegate wrapping the specified methodI
nfo. 
   public static Delegate CreateDelegate(Type delType, 

      MethodInfo mi);  
 

   // Construct a delType delegate wrapping a type’s static metho
d.  

   public static Delegate CreateDelegate(Type delType, 
      Type type, String methodName); 

 
   // Construct a delType delegate wrapping an object’s instance 
method. 
   public static Delegate CreateDelegate(Type delegateType,  
      Object obj, String methodName); 

 
   // Construct a delType delegate wrapping an object’s instance 
method. 
   public static Delegate CreateDelegate(Type delegateType,  
      Object obj, String methodName, Boolean ignoreCase); 

 
   public Object DynamicInvoke(Object[] args); 

} 



All the CreateDelegate methods here construct a new object of a Delegate-derived type 
identified by the first parameter, delType. The remaining parameters to CreateDelegate 
determine the callback method that the Delegate-derived object is to wrap. You can 
specify a MethodInfo (discussed in Chapter 20), a type’s static method by String, or an 
object’s instance method by String. 

The Delegate’s instance DynamicInvoke method allows you to invoke a delegate 
object’s callback method, passing a set of parameters that you determine at run time. When 
you call DynamicInvoke, it internally ensures that the parameters you pass are compatible 
with the parameters that the callback method expects. If they’re compatible, the callback 
method is called. If they’re not, then an exception is thrown. DynamicInvoke returns the 
object that the callback method returned.  

The following code shows how to use these methods: 

using System; 

using System.Reflection; 
using System.IO; 

 
// Here are some different delegate definitions. 

delegate Object TwoInt32s(Int32  n1, Int32  n2); 
delegate Object OneString(String s1); 

 
 

class App { 
   static void Main(String[] args) { 

      if (args.Length < 2) { 
         String fileName  =  

            Path.GetFileNameWithoutExtension( 
               Assembly.GetEntryAssembly().CodeBase); 

         Console.WriteLine("Usage:"); 
         Console.WriteLine("{0} delType methodName [Param1] [Para
m2]", 
            fileName); 
         Console.WriteLine("   where delType must be TwoInt32s or
 OneString"); 
         Console.WriteLine("   if delType is TwoInt32s, " + 

            "methodName must be Add or Subtract"); 
         Console.WriteLine("   if delType is OneString, " + 

            "methodName must be NumChars or Reverse"); 
         Console.WriteLine(); 

         Console.WriteLine("Examples:"); 
         Console.WriteLine("   {0} TwoInt32s Add 123 321", fileNa
me); 
         Console.WriteLine("   {0} TwoInt32s Subtract 123 321", f
ileName); 



         Console.WriteLine("   {0} OneString NumChars \"Hello the
re\"", 
            fileName); 

         Console.WriteLine("   {0} OneString Reverse  \"Hello the
re\"", 
            fileName); 

         return; 
      } 

      Type delType = Type.GetType(args[0]); 
      if (delType == null) { 

         Console.WriteLine("Invalid delType argument: " + args[0]
); 
         return; 

      } 
 

      Delegate d; 
      try { 

         d = Delegate.CreateDelegate(delType, typeof(App), args[1
]); 

      } 
      catch (ArgumentException) { 

         Console.WriteLine("Invalid methodName argument: " + args
[1]); 
         return; 

      } 
 

      Object[] callbackArgs = new Object[args.Length - 2]; 
      if (d.GetType() == typeof(TwoInt32s)) { 

         try { 
            for (Int32 a = 2; a < args.Length; a++)  

               callbackArgs[a - 2] = Int32.Parse(args[a]); 
         } 

         catch (FormatException) { 
            Console.WriteLine("Parameters must be integers."); 

            return; 
         } 

      } 
       

      if (d.GetType() == typeof(OneString)) { 
         Array.Copy(args, 2, callbackArgs, 0, callbackArgs.Length
); 
      } 



 
      try { 

         Object result = d.DynamicInvoke(callbackArgs); 
         Console.WriteLine("Result = " + result); 

      } 
      catch (TargetParameterCountException) { 

         Console.WriteLine("Incorrect number of parameters specif
ied."); 
      } 

   } 
 

 
   // This is the callback method that takes two Int32 parameters
. 
   static Object Add(Int32 n1, Int32 n2) {  
      return n1 + n2; 

   } 
   static Object Subtract(Int32 n1, Int32 n2) {  

      return n1 - n2; 
   } 

 
   // This is the callback method that takes one String parameter
. 
   static Object NumChars(String s1) {  

      return s1.Length; 
   } 

 
   static Object Reverse(String s1) {  

      Char[] chars = s1.ToCharArray(); 
      Array.Reverse(chars); 

      return new String(chars); 
   } 

}  
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Chapter 18: Exceptions 

Overview 

In this chapter, I’ll talk about a powerful mechanism that allows you to write more 
maintainable and robust code: exception handling. Here are just a few of the benefits offered 
by exception handling: 
§ The ability to keep cleanup code in a localized location, and the assurance that 

this cleanup code will execute   By moving cleanup code out of an application’s main 
logic to a localized location, the application is easier to write, understand, and maintain. 
The assurance that the cleanup code runs means that the application is more likely to 
remain in a consistent state. For example, files will get closed when the code writing to 
the file can no longer continue what it’s doing for whatever reason. 

§ The ability to keep code that deals with exceptional situations in a central 
place   A line of code can fail for many reasons: arithmetic overflow, stack overflow, out-
of-memory status, an out-of-range argument, an out-of-range index into an array, and 
an attempt to access a resource (such as a file) after it has been closed, to name a few. 
Without using exception handling, it’s very difficult, if not impossible, to write code that 
gracefully detects and recovers from such failures. Sprinkling the code to detect these 
potential failures into your application’s main logic makes the code difficult to write, 
understand, and maintain. In addition, having code that checks for these potential 
failures would be a huge performance hit on an application. 

Using exception handling, you don’t need to write code to detect these potential failures. 
Instead, you can simply write your code assuming that the failures won’t occur. This 
certainly makes the code easier to write, understand, and maintain. In addition, the code 
runs fast. Then you put all your recovery code in a central location. Only if a failure 
occurs does the exception handling mechanism step in to execute your recovery code.  

§ The ability to locate and fix bugs in the code   When a failure occurs, the common 
language runtime (CLR) walks up the thread’s call stack, looking for code capable of 
handling the exception. If no code handles the exception, you receive a notification of 
this “unhandled exception.” You can then easily locate the source code that issued the 
failure, determine why the failure happened, and modify the source code to fix the bug. 
This means that bugs will be detected during development and testing of an application 
and fixed prior to the application’s deployment. Once deployed, the application will be 
more robust, improving the end-user’s experience. 

When used properly, exception handling is a great tool that eases the burden on software 
developers. However, if you use it improperly, exception handling can bring much sorrow 
and pain by hiding serious problems in the code or by misinforming you of the actual 
problem. The bulk of this chapter is dedicated to explaining how to use exception handling 
properly. 

 
The Evolution of Exception Handling 

When designing the Win32 API and COM, Microsoft decided not to use exceptions to notify 
callers of problems. Instead, most Win32 functions return FALSE to indicate that something 
is wrong and then the caller calls GetLastError to find the violation. On the other hand, 
COM methods return an HRESULT. If the high bit is 1, an assumption was violated and the 
remaining bits represent a value to help you determine the cause of the violation. 

Microsoft avoided using exceptions with Win32 and COM APIs for many reasons: 
§ Most developers are not familiar with exception handling. 



§ Many programming languages, including C and early versions of C++, don’t support 
exceptions. 

§ Some developers feel that exceptions are difficult to use and understand, and 
Microsoft didn’t want to force exceptions down every programmer’s throat. (Personally, I 
feel the benefit of exceptions far outweighs the “exception handling learning curve.”)  

§ Exception handling can hurt the performance of an application. In some situations, 
exception handling doesn’t perform as well as simply returning an error code. However, 
if exceptions are rarely thrown, this overhead isn’t noticeable. Again, I feel that the 
benefit of exceptions outweighs the slight performance hit that sometimes occurs. I also 
believe that when exception handling is used correctly throughout an application, 
performance can improve. I’ll address performance later in this chapter. In addition, 
exceptions in managed code are far less expensive than in some systems, such as 
C++. 

The old ways of reporting violations are too limiting because all the caller gets back is a 32-
bit number. If the number is the code for an invalid argument, the caller doesn’t know which 
argument is invalid. And if the number is the code for a division by zero, the caller doesn’t 
know exactly which line of code caused the division by zero and can’t fix the code easily. 
Developing software is hard enough without losing important information about problems! If 
the application code detects a problem, you want all the information possible about the 
problem so that you can put a proper remedy in place as quickly and easily as possible. 

The exception handling mechanism offers several advantages over a 32-bit number. An 
exception includes a string description so that you know exactly which argument is causing 
the problem. The string might also include additional information giving guidance for 
improving the code. And an exception includes a stack trace so that you know which path 
the application took that caused the exception. 

Another advantage is that exceptions don’t have to be caught or detected at the place they 
occur. This simplifies coding substantially because you don’t have to associate error 
detection and correction code with every statement or method call that might fail. 

Closely related to the previous advantage is perhaps the biggest benefit of all: an exception 
can’t easily be ignored. If a Win32 function is called and returns a failure code, it’s all too 
easy for the caller to ignore the return code, assume that the function worked as expected, 
and allow the application to continue running as if all is fine. However, when a method 
throws an exception, it’s indicating that the method couldn’t work as expected. If the 
application doesn’t catch the exception, the CLR terminates the application. To some, this 
behavior might seem radical and severe. However, I think it’s the right thing to do. 

If a method is called and an exception is thrown, it’s not OK for the application to continue 
running. The rest of the application assumes that the previous operations all completed as 
expected. If this isn’t the case, the application will continue running but with unpredictable 
results. For example, if the user’s data in the application is corrupt, this data shouldn’t 
continue to be manipulated. With the Win32 and COM 32-bit numbers, the possibility of the 
application running with unpredictable results is all too strong. With exceptions, it’s not 
possible. 

All the methods defined by types in the Microsoft .NET Framework throw exceptions to 
indicate that an assumption was violated; no 32-bit status values are returned. So, all 
programmers must have a full understanding of exceptions and how to handle them in their 
code. Microsoft made a great decision here! Using exception handling in your code is 
straightforward and allows you to write code that’s easy to implement, easy to read, and 
easy to maintain. In addition, exception handling allows you to write robust code that’s 
capable of recovering from any application situation. Used correctly, exception handling can 
prevent application crashes and keep your users happy. 



 
The Mechanics of Exception Handling 

In this section, I’ll introduce the mechanics and C# constructs for using exception handling, 
but it’s not my intention to explain them in great detail. The purpose of this chapter is to offer 
useful guidelines for when and how to use exception handling in your code. If you want more 
information about the mechanics and language constructs for using exception handling, see 
the .NET Framework documentation and your programming language reference. Also, the 
.NET Framework exception handling mechanism is built using the structured exception 
handling (SEH) mechanism offered by Windows. SEH has been discussed in many 
resources, including my own book, Programming Applications for Microsoft Windows, (4th 
ed., Microsoft Press, 1999), which contains three chapters devoted to SEH.  

The following C# code shows a standard usage of the exception handling mechanism. This 
code gives you an idea of what exception handling blocks look like and what their purpose 
is. In the subsections after the code, I’ll formally describe the try, catch, and finally 
blocks and their purpose and provi de some notes about their use.  

void SomeMethod() { 

 
   try { 

      // Inside the try block is where you put code requiring  
      // graceful recovery or common cleanup operations. 

   } 
   catch (InvalidCastException) { 

      // Inside this catch block is where you put code that recov
ers 
      // from an InvalidCastException (or any exception type deri
ved  
      // from InvalidCastException). 

   } 
   catch (NullReferenceException) { 

      // Inside this catch block is where you put code that recov
ers 
      // from a NullReferenceException (or any exception type der
ived  
      // from NullReferenceException). 
   } 

   catch (Exception e) { 
      // Inside this catch block is where you put code that recov
ers 
      // from any CLS-compliant exception. 
 

      // When catching a CLS-
compliant exception, you usually rethrow 

      // the exception. I explain rethrowing later in this chapte
r. 



      throw; 
   } 

   catch { 
      // Inside this catch block is where you put code that recov
ers 
      // from any exception, CLS-compliant or not. 
 

      // When catching any exception, you usually rethrow 
      // the exception. I explain rethrowing later in this chapte
r. 
      throw; 
   } 

   finally { 
      // Inside the finally block is where you put code that 

      // cleans up any operations started within the try block. 
      // The code in this block ALWAYS executes, regardless of  

      // whether an exception is thrown. 
   } 

   // Code below the finally block executes if no exception is th
rown  
   // within the try block or if a catch block catches the except
ion  
   // and doesn’t throw or rethrow an exception. 

} 

This code demonstrates one possible way to use exception handling blocks. Don’t let the 
code scare you—most methods have simply a try block matched with a single finally 
block or a try block matched with a single catch block. It’s unusual to have as many 
catch blocks as in this example. I put them there for illustration purposes. 

The try Block 

A try block contains code that requires common cleanup or exception recovery operations. 
The cleanup code should be placed in a single finally block. A try block can also 
contain code that might potentially throw an exception. The exception recovery code should 
be placed in one or more catch blocks. You create one catch block for each kind of event 
you think the application can recover from. A try block must be associated with at least one 
catch or finally block; it makes no sense to have a try block that stands by itself. 

The catch Block 

A catch block contains code to execute in response to an exception. A try block can have 
zero or more catch blocks associated with it. If the code in a try block doesn’t cause an 
exception to be thrown, the CLR never executes any code contained within any of its catch 
blocks. The thread skips over all the catch blocks and executes the code in the finally 



block (if one exists). After the code in the finally block executes, execution continues with 
the statement following the finally block. 

The parenthetical expression appearing after the catch keyword is called an exception 
filter. The exception filter is a type representing an exceptional situation that the developer 
anticipated and can recover from. In C#, the type in a catch filter must be 
System.Exception or a type derived from System.Exception. For example, the 
previous code contains catch blocks ready to handle an InvalidCastException (or any 
exception derived from it), a NullReferenceException (or any exception derived from it), 
or any Exception (any type of Common Language Specification [CLS]Ðcompliant 
exception at all). 

Note that catch blocks are searched from top to bottom; place the more specific exceptions 
(types whose base class is farther from System.Object) at the top. In fact, the C# compiler 
generates an error if more specific catch blocks appear closer to the bottom because the 
catch block would be unreachable. 

If an exception is thrown by code executing within the try block (or any method called from 
within the try block), the CLR starts searching for catch blocks whose filter recognizes the 
thrown exception. If none of the catch filters accepts the exception, the CLR continues 
searching up the call stack looking for a catch filter that will accept the exception. If after 
reaching the top of the call stack no catch block is interested in handling the exception, an 
unhandled exception results. I’ll talk more about unhandled exceptions later in this chapter. 

Once it locates an exception filter capable of handling the exception, the CLR executes the 
code in all finally blocks, starting from the try block whose code threw the exception 
and stopping with the catch filter that matched the exception. Note that any finally block 
associated with the catch block that matched the exception is not executed yet. The code 
in this finally block won’t execute until after the code in the handling catch block has 
executed.  

 
Important  

C# can throw only CLS-compliant exceptions—that is, an exception type derived 
from System.Exception. However, the CLR allows any type of object to be 
thrown. C# offers a special type of catch block that allows you to catch non-CLS-
compliant exceptions:  

catch {   // Notice no exception filter is specified here.
   // Execute some recovery code here. 

   ? 
   throw; // Rethrow the exception to let other code 

          // know what happened. 
} 

Because you can’t catch an object in this catch block, you can’t get any 
information about the exception. About the only thing you can do is execute some 
recovery code and then rethrow the exception. By the way, this catch block will 
also catch any CLS-compliant exceptions. 

For the record, the .NET Framework Class Library (FCL) never throws any non-
CLS-compliant exceptions, and in fact, I’ve never seen any managed code throw a 
non-CLS-compliant exception. Of course, if you program in intermediate language 
(IL) assembly language, you could throw a non-CLS-compliant exception (such as 
an Int32). C++ with Managed Extensions also allows the developer to throw non-



CLS-compliant exceptions. Obviously, any code you write should throw CLS-
compliant exceptions only since many managed programming languages don’t 
offer a high degree of support for non-CLS-compliant exception types.  

In C#, a catch filter can specify an exception variable. When an exception is caught, this 
variable refers to the System.Exception-derived object that was thrown. The catch 
block’s code can reference this variable to access information specific to the exception (such 
as the stack trace leading up to the exception). Although it’s possible to modify this object, 
you shouldn’t; consider the object to be read-only. I’ll explain the Exception type and what 
you can do with it later in this chapter. 

After all the code in finally blocks has executed, the code in the handling catch block 
executes. This code typically performs some operations to recover from the exception. At the 
end of the catch block, you have three choices: 
§ Rethrow the same exception, notifying code higher up the call stack of the exception.  
§ Throw a different exception, giving richer exception information to code higher up the 

call stack. 
§ Let the thread fall out the bottom of the catch block. 

Later in this chapter, I’ll offer some guidelines for when you should use each of these 
techniques. 

If you choose either of the first two techniques, you’re throwing an exception and the CLR 
behaves just like it did before: it walks up the call stack looking for a catch filter interested in 
recovering from the exception. If you pick the last technique, when the thread falls out the 
bottom of the catch block, it immediately starts executing code contained in the finally 
block, if one exists. After all the code in the finally block executes, the thread drops out of 
the finally block and starts executing the statements immediately following the finally 
block. If no finally block exists, the thread continues execution at the statement following 
the last catch block. 

The finally Block 

A finally block contains code that’s guaranteed to execute. Typically, the code in a 
finally block performs the cleanup operations required by actions taken in the try block. 
For example, if you open a file in a try block, put the code to close the file in a finally 
block:  

void ReadData(String pathname) { 
 

   FileStream fs = null; 
   try { 

      fs = new FileStream(pathname, FileMode.Open); 
      // Process the data in the file. 

      ? 
   } 

   catch (OverflowException) { 
      // Inside this catch block is where you put code that recov
ers 
      // from an OverflowException (or any exception type derived
  



      // from OverflowException). 
      ? 

   } 
   finally { 

      // Make sure that the file gets closed. 
      if (fs != null) fs.Close(); 

   } 
} 

If the code in the try block executes without throwing an exception, the file is guaranteed to 
be closed. If the code in the try block does throw an exception, the code in the finally 
block still executes and the file is guaranteed to be closed, regardless of whether or not the 
exception is caught. It’s improper to put the statement to close the file after the finally 
block; the statement wouldn’t execute if an exception were thrown and not caught, leaving 
the file open. 

A try block doesn’t have to have a finally block associated with it at all; sometimes the 
code in a try block just doesn’t require any cleanup code. However, if you do have a 
finally block, it must appear after any and all catch blocks, and a try block can have no 
more than one finally block associated with it.  

When the thread reaches the end of the code contained in a finally block, the thread 
simply falls out the bottom of the block and starts executing the statements immediately 
following the finally block. Remember that the code in the finally block is cleanup 
code. This code should execute only what is necessary to undo operations initiated in the 
try block. Avoid putting code that might throw an exception in a finally block. However, 
if an exception is thrown within a finally block, the world doesn’t come to an end—the 
application isn’t terminated, and the exception mechanism continues to work as though the 
exception were thrown after the finally block. 

 

What Exactly Is an Exception? 

Over the years, I’ve run into many developers who think that an exception identifies 
something that rarely happens: “an exceptional event.” I always ask them to define 
“exceptional event.” They respond, “You know, something you don’t expect to happen.” Then 
they add, “If you’re reading bytes from a file, eventually you’ll reach the end of the file. So 
because you expect this, an exception shouldn’t be raised when you reach the end of the 
file. Instead, the Read method should return some special value when the end of the file is 
reached." 

Here’s my response: “I have an application that needs to read a 20-byte data structure from 
a file. However, for some reason, the file contains only 10 bytes. In this case, I’m not 
expecting to reach the end of the file while reading. But because I’ll reach the end of the file 
prematurely, I’d expect an exception to be thrown. Wouldn’t you?” In fact, most files contain 
structured data. It’s rare that applications read bytes from a file and process them one at a 
time until the end of the file is reached. For this reason, I think it makes more sense to have 
the Read method always throw an exception when attempting to read past the end of a file.  

 
Important  

Many developers are misguided by the term exception handling. These 
developers believe that the word exception is related to how frequently 
something happens. For example, a developer designing a file Read 



method is likely to say the following: "When reading from a file, you will 
eventually reach the end of its data. Since reaching the end will always 
happen, I’ll design my Read method so that it reports the end by 
returning a special value; I won’t have it throw an exception." The 
problem with this statement is that it is being made by the developer 
designing the Read method, not by the developer calling the Read 
method. 

When designing the Read method, it is impossible for the developer to 
know all the possible situations in which the method gets called. 
Therefore, the developer can’t possibly know how often the caller of 
the Read method will attempt to read past the end of the file. In fact, 
since most files contain structured data, attempting to read past the 
end of a file is something that rarely happens. 

Another common misconception is that an “exception” identifies an 
“error”. The term error implies that the programmer did something 
wrong. However, again, it isn’t possible for the developer designing the 
Read method to know when the caller has called the method 
incorrectly for the application. Only the developer calling the method 
can determine this, and therefore only the caller can decide if the 
results of the call indicate an "error." So you should avoid thinking, "I’ll 
throw an exception here in my code to report an error." In fact, 
because exceptions don’t necessarily indicate errors, I’ve avoided 
using the term error handling throughout this entire chapter (except for 
this sentence, of course). 

The preceding note explained what exception does not mean. Now I’ll describe what it does 
mean. An exception is the violation of a programmatic interface’s implicit assumptions. For 
example, when designing a type, you first imagine the various situations for how the type will 
be used. Then you define the fields, properties, methods, events, and so on for the type. The 
way you define these members (property data types, method parameters, return values, and 
so forth) becomes the programmatic interface to your type. 

The interface you define carries with it some implicit assumptions. An exception occurs when 
an assumption made by your programming interface is violated. 

Look at the following class definition: 

public class Account { 
   public static void Transfer(Account from, Account to, Decimal 
amount) { 
      ? 
   } 

} 

The Transfer method accepts two Account objects and a Decimal value that identifies 
an amount of money to transfer between accounts. When calling the Trans-fer method, 
some obvious assumptions are implied: the from argument refers to a valid Account, and 
the account has enough money in it to subtract the specified amount. Also, it isn’t clear from 
this prototype whether amount must be a positive value or if amount can be negative. In 
addition, what happens if the from argument and the to argument refer to the same 
account? Is it "legal" to transfer money to and from the same account? Also, what if the 



amount argument is outside a specific range set by the class designer? Is it "legal" to 
transfer an amount of 0? 

The answers to the questions posed in the preceding paragraph are baked into Transfer’s 
implementation by the developer of the Account class. Ideally, the developer designing this 
class will clearly document all these assumptions so that developers using the class can 
implement the calling code in the most efficient way possible and so that few surprises occur 
at run time. Unfortunately, developers usually find that documentation lacks a description of 
all the implicit assumptions, causing developers to discover their violations at run time. 
Hopefully, all these violations will be detected and corrected during the application’s test 
cycle so that no violations occur after the application is deployed and running in the hands of 
users. 

How does a method notify its caller that one of its assumptions has been violated? It throws 
an exception. After all, an exception is simply a violation of a programming interface’s 
assumptions. 

The next point I want you to understand is that violating a programming interface’s 
assumption isn’t necessarily a bad thing. In fact, it can be a good thing because exception 
handling allows you to catch the exception and gracefully continue execution. 

When designing a type, first imagine how the type is going to be most commonly used; then 
design your interface to work well with this usage. Also think about the implicit assumptions 
that your interface is introducing and throw exceptions when any assumption is violated. If 
your type is going to be used in lots of different situations, designing an interface that meets 
all the possible scenarios will be impossible. In this case, you must simply try your best and 
get feedback from users that you can take into account when designing the next version of 
your type’s interface.  

 

Implied Assumptions Developers Almost Never Think About 

When accessing any method, developers make several assumptions—assumptions that 
we hardly ever think about. When we call a method, we assume that there is enough 
stack space; we assume that there is enough memory for the method’s IL code to be JIT 
compiled into native code; and we assume that no bug will occur within the CLR itself 
when attempting the call. Although it happens rarely, these assumptions are sometimes 
violated. 

As you write code to catch and deal with exceptions, keep in mind that these 
assumptions can be violated at any time, causing the CLR itself to throw a 
System.StackOverflowException, a System.OutOfMemoryException, or a 
System.ExecutionEngineException exception, respectively. For example, imagine 
the following method:  

void InfiniteLoop() { 

   while (true) ;  
} 

The loop in the preceding method could execute successfully 1000 times, but on the 
1001st time an exception could be thrown. If the CLR needs to perform a garbage 
collection, it could hijack the calling thread (discussed in Chapter 19) and make it call an 
internal function, thereby causing a StackOverflowException to be thrown. 

These three exceptions are unlike most others because they’re usually thrown when the 
CLR is in a catastrophic situation and can’t recover gracefully. Depending on the 



circumstance that causes one of these exceptions, your code might not be able to catch 
it and your finally blocks might not execute. The following list describes what 
happens when one of these special exceptions is thrown: 
§OutOfMemoryException  This exception is thrown when you try to new up an object 

and the garbage collector can’t find any free memory. In this case, your application 
code can successfully catch this exception, and finally blocks will execute. This 
exception is also thrown when the CLR needs some internal memory and none is 
available. In this case, the CLR displays a message to the console and the process 
is immediately terminated: your application won’t be able to catch this exception, 
and your finally blocks won’t execute. Since the CLR can’t recover gracefully 
when it runs out of memory internally, you should be careful when creating a server 
application using the .NET Framework. In particular, you should have a separate 
watchdog process that respawns the server automatically if it determines that the 
server has just terminated.  

§StackOverflowException  The CLR throws this exception when the thread has 
used all its stack space. Your application can catch this exception, but finally 
blocks won’t execute since they would require additional stack space and none is 
available. Also, while a catch block might catch this exception (to log some 
information to help debugging), it should never swallow this exception. The reason 
is that the application is in an undefined state now because its finally blocks 
didn’t execute. Any catch block that catches StackOverflowException should 
rethrow it—let the CLR terminate the process. If the stack overflow occurs within the 
CLR itself, your application code won’t be able to catch the 
StackOverflowException exception and none of your finally blocks will 
execute. In this case, the CLR will connect a debugger to the process or, if no 
debugger is installed, just kill the process. 

§ExecutionEngineException  The CLR throws this exception when it detects that 
its internal data structures are corrupted or if it detects some bug in itself. When the 
CLR throws this exception, it will connect a debugger to the process; if no debugger 
is installed, it just kills the process. No catch blocks or finally blocks will be 
processed when this exception is thrown. 

By the way, some other thread could always call System.Threading.Thread’s 
Abort method, forcing a System.Threading.ThreadAbortException exception to 
be thrown in a thread. This is another example demonstrating that an exception can get 
thrown at any time.  
 

 

As you develop an application, you might try using a type whose interface isn’t ideal for your 
situation thereby violating the type’s assumptions frequently. Again, this isn’t a bad thing 
because you can catch the exceptions and continue gracefully. For example, you might write 
an application that builds an index of all files on the user’s drives. To build this index, you 
must open each file and parse its contents. However, some of the files you try to access 
might be secured, preventing the file from being opened. In this example, the application 
should expect lots of System.Security.SecurityException exceptions to be thrown. 
Don’t think that exceptions always indicate a mistake (or an error) on your part—exceptions 
might be thrown frequently in your application because of the way your application needs to 
use the types designed by a different developer. Your code can just catch these exceptions 
and recover from them as appropriate so that your application continues running. However, 
be aware that a performance penalty occurs while the system searches for a catch filter 
capable of handling the exception. The fewer exceptions an application throws, the faster it 
runs. 

 



The System.Exception Class 

The common language runtime (CLR) allows an instance of any type to be thrown for an 
exception—from an Int32 to a String and beyond. However, Microsoft decided against 
forcing all programming languages to throw and catch exceptions of any type. So Microsoft 
defined the System.Exception type and decreed that all CLS-compliant programming 
languages must be able to throw and catch exceptions whose type is derived from this type. 
Exception types that are derived from System.Exception are said to be CLS-compliant. 
C# and many other languages allow your code to throw only CLS-compliant exceptions. 

The System.Exception type is a very simple type that contains the properties described 
in Table 18-1.  

Table 18-1: Properties of the System.Exception Type  

Property Access Type Description 

Message  Read-only String  Contains helpful text 
indicating why the 
exception was thrown. 
The message should be 
localized because a user 
might see this message if 
the application code 
doesn’t catch the 
exception or if the 
application code does 
catch the exception in 
order to log it. 

Source  Read/write String  Contains the name of the 
assembly that generated 
the exception. 

StackTrace  Read-only String  Contains the names and 
signatures of methods 
called that led up to the 
exception being thrown. 
This property is very 
useful for debugging. 

TargetSite  Read-only MethodBase  Contains the method that 
threw the exception. 

HelpLink  Read-only String  Contains a URL (such as 
file://C:\MyApp\Help.htm
#-MyExceptionHelp) to 
documentation that can 
help a user understand 
the exception. 

InnerException  Read-only Exception  Indicates the previous 
exception if the current 
exception was raised 
while handling an 
exception. This field is 
usually null. The 
Exception type also 



Table 18-1: Properties of the System.Exception Type  

Property Access Type Description 

offers a public 
GetBaseException 
method that traverses 
the linked list of inner 
exceptions and returns 
the originally thrown 
exception. 

HResult  Read/write Int32  This protected property is 
used only for scenarios 
in which managed code 
and unmanaged COM 
code are interoperating. 

 

FCL-Defined Exception Classes 

The .NET Framework Class Library defines many exception types (all ultimately derived 
from System.Exception). The following hierarchy shows the exception types defined in 
the MSCorLib.dll assembly; other assemblies define even more exception types. (The 
application used to obtain this hierarchy is shown in Chapter 20.)  

System.Exception 
   System.ApplicationException 

      System.Reflection.InvalidFilterCriteriaException 
      System.Reflection.TargetException 

      System.Reflection.TargetInvocationException 
      System.Reflection.TargetParameterCountException 

   System.IO.IsolatedStorage.IsolatedStorageException 
   System.SystemException 

      System.AppDomainUnloadedException 
      System.ArgumentException 

         System.ArgumentNullException 
         System.ArgumentOutOfRangeException 

         System.DuplicateWaitObjectException 
      System.ArithmeticException 

         System.DivideByZeroException 
         System.NotFiniteNumberException 

         System.OverflowException 
      System.ArrayTypeMismatchException 

      System.BadImageFormatException 
      System.CannotUnloadAppDomainException 

      System.ContextMarshalException 
      System.ExecutionEngineException 



      System.FormatException 
         System.Reflection.CustomAttributeFormatException 

      System.IndexOutOfRangeException 
      System.InvalidCastException 

      System.InvalidOperationException 
         System.ObjectDisposedException 

      System.InvalidProgramException 
      System.IO.IOException 

         System.IO.DirectoryNotFoundException 
         System.IO.EndOfStreamException 

         System.IO.FileLoadException 
         System.IO.FileNotFoundException 

         System.IO.PathTooLongException 
      System.MemberAccessException 

         System.FieldAccessException 
         System.MethodAccessException 

         System.MissingMemberException 
            System.MissingFieldException 

            System.MissingMethodException 
      System.MulticastNotSupportedException 

      System.NotImplementedException 
      System.NotSupportedException 

         System.PlatformNotSupportedException 
      System.NullReferenceException 

      System.OutOfMemoryException 
      System.RankException 

      System.Reflection.AmbiguousMatchException 
      System.Reflection.ReflectionTypeLoadException 

      System.Resources.MissingManifestResourceException 
      System.Runtime.InteropServices.ExternalException 

         System.Runtime.InteropServices.COMException 
         System.Runtime.InteropServices.SEHException 

      System.Runtime.InteropServices.InvalidComObjectException 
      System.Runtime.InteropServices.InvalidOleVariantTypeExcepti
on 
      System.Runtime.InteropServices.MarshalDirectiveException 
      System.Runtime.InteropServices.SafeArrayRankMismatchExcepti
on 
      System.Runtime.InteropServices.SafeArrayTypeMismatchExcepti
on 

      System.Runtime.Remoting.RemotingException 



         System.Runtime.Remoting.RemotingTimeoutException 
      System.Runtime.Remoting.ServerException 

      System.Runtime.Serialization.SerializationException 
      System.Security.Cryptography.CryptographicException 

         System.Security.Cryptography.CryptographicUnexpectedOper
ationException 
   System.Security.Policy.PolicyException 

      System.Security.SecurityException 
      System.Security.VerificationException 

      System.Security.XmlSyntaxException 
      System.StackOverflowException 

      System.Threading.SynchronizationLockException 
      System.Threading.ThreadAbortException 

      System.Threading.ThreadInterruptedException 
      System.Threading.ThreadStateException 

      System.TypeInitializationException 
      System.TypeLoadException 

         System.DllNotFoundException 
         System.EntryPointNotFoundException 

      System.TypeUnloadedException 
      System.UnauthorizedAccessException 

Microsoft’s idea was that Exception would be the base type for all exceptions and that two 
other types, System.SystemException and System.ApplicationException, would 
be derived from Exception.  

The CLR throws types derived from SystemException. Most of the exceptions derived 
from SystemException (such as DivideByZeroException, 
InvalidCastException, and IndexOutOfRangeException) signal nonfatal situations 
that an application might be able to recover from. However, some of the exceptions, such as 
StackOverflowException, are considered fatal. An application shouldn’t attempt to 
recover from these exceptions because it’s extremely unlikely that recovery would be 
successful. 

In addition, methods defined by FCL types are also supposed to throw exceptions derived 
from SystemException. For example, all FCL methods validate their arguments before 
attempting to perform any operations. If an argument doesn’t live up to the method’s implicit 
assumptions, an ArgumentNullException, ArgumentOutOfRangeException, or 
DuplicateWaitObjectException exception is thrown. All these exceptions are derived 
from ArgumentException; this allows an application to catch ArgumentException as a 
convenient way to catch any of the specific argument exception types. 

Microsoft’s idea for the ApplicationException type was that it would be a base type 
reserved solely for an application’s use; that is, Microsoft wouldn’t use 
ApplicationException as the base type for any of its own exception types. 

If you examine the exception type hierarchy, you’ll see that Microsoft’s developers didn’t 
exactly follow Microsoft’s guidelines. The FCL defines some reflection-related exception 



types derived from ApplicationException. In addition, some exception types, such as 
IsolatedStorageException, are derived directly from Exception instead of 
SystemException. 

You might think that these “bugs” are bad. However, before you make that judgment, you 
should wonder about the value of having all the CLR/FCL exception types derived from 
SystemException and all your application exception types derived from 
ApplicationException. Once you start thinking about exception hierarchies, it doesn’t 
take long before you realize that the sole benefit of a hierarchy is to allow code to catch a 
related set of exception types easily. In other words, it’s easier to write code that catches an 
ArithmeticException than it is to catch all the exception types derived from it: 
DivideByZeroException, NotFiniteNumberException, and OverflowException. 

Now, would you ever want to catch all exceptions derived from SystemException versus 
all exceptions derived from ApplicationException? I don’t think so. On the other hand, 
there are times when you’ll want to know if any exception is thrown, and you can gain this 
knowledge easily by catching System.Exception. So it does make sense that all 
exception types are derived from Exception; it also makes sense that 
DirectoryNotFoundException, EndOfStreamException, FileLoadException, 
and FileNotFoundException are derived from IOException. However, I don’t think 
there is any value in having the SystemException and ApplicationException base 
types in the exception hierarchy. In fact, I think having them is just confusing. 

Also, I think that the two special exceptions, ExecutionEngineException and 
StackOverflowException, should be in a special hierarchy because they are unlike any 
other exceptions. Only the CLR itself—never the application code—should be able to throw 
one of these exceptions because an application can’t recover gracefully from any of them. 

 

Defining Your Own Exception Class 

When implementing your methods, you might come across scenarios in which you want to 
throw an exception. For example, I recommend that your nonprivate methods always 
validate their arguments, and if any argument doesn’t live up to your method’s implicit 
assumptions, an exception should be thrown. In this case, I recommend that you throw one 
of the exception classes already defined in the FCL: ArgumentNullException, 
ArgumentOutOfRangeException, or DuplicateWaitObjectException. 

I strongly suggest that you throw a specific exception class, a class that has no other classes 
derived from it. For example, don’t throw an ArgumentException because it’s too vague, 
it could mean any of its three derived types, and it doesn’t provide as much information as 
possible to its catchers. You should never throw Exception, ApplicationException, or 
SystemException. 

 
Note  

Throwing an instance of an exception class that you’ve defined provides 
your catch code with the capability to know exactly what happened and to 
recover in any way it sees fit. 

Now let’s say that you’re defining a method that’s passed a reference to an object whose 
type must implement the ICloneable and IComparable interfaces. You might implement 
the method like this:  

class SomeType { 
   public void SomeMethod(Object o) { 



      if (!((o is ICloneable) && (o is IComparable))) 
         throw new MissingInterfaceException(...); 

 
      // Code that operates on o goes here. 

      ? 
   } 

} 

Because the FCL doesn’t define an appropriate exception type, you must define the 
MissingInterfaceException type yourself. Note that by convention the name of an 
exception type should end with "Exception". When defining this type, you must decide what 
its base type will be. Should you choose Exception, ArgumentException, or a different 
type entirely? I’ve spent months thinking about this question, but unfortunately, I can’t come 
up with a good rule of thumb to offer you, and here’s why. 

If you derive MissingInterfaceException from ArgumentException, any existing 
code that’s already catching ArgumentException will catch your new exception, too. In 
some ways this is a feature, and in some ways this is a bug. It’s a feature because any code 
that wants to catch any kind of argument exception (via ArgumentException) now 
catches this new kind of argument exception (MissingInterfaceException) 
automatically. It’s a bug because a MissingInterfaceException identifies a new event 
that wasn’t anticipated when code was written to catch an ArgumentException. When you 
define the MissingInterfaceException type, you might think it’s so similar to an 
ArgumentException that it should be handled the same way. However, this unanticipated 
relationship might cause unpredictable behavior. 

On the other hand, if you derive MissingInterfaceException directly from Exception, 
the code throws a new type that the application couldn’t have known about. Most likely, this 
will become an unhandled exception that causes the application to terminate. I could easily 
consider this desired behavior because an implicit assumption was violated and the 
application never considered a remedy for it. Catching this new exception, swallowing it, and 
continuing execution might cause the application to run with unpredictable results. 

Answering questions like these is one of the reasons that application design is more of an art 
form than a science. When defining a new exception type, carefully consider how application 
code will catch your type (or base types of your type), and then choose a base type that has 
the least negative effect on your callers. 

When defining your own exception types, feel free to define your own subhierarchies, if 
applicable to what you’re doing. You can define them directly from Exception or from some 
other base type. Again, just make sure that where you’re putting the subhierarchy makes 
some sense for your callers. As a general rule, hierarchies should be broad and shallow: 
exception types should be derived from a type close to Exception and should typically be 
no more than two or three levels deep. If you define an exception type that’s not going to be 
the base of other exception types, then mark the type as sealed.  

The Exception base type defines three public constructors: 
§ A parameterless (default) constructor that creates an instance of the type and sets all 

fields and properties to default values. 
§ A constructor taking a String that creates an instance of the type and sets a specific 

message. 
§ A constructor taking a String and an instance of an Exception-derived type that 

creates an instance of the type and sets a specific message and an inner exception. 



Unfortunately, there are a lot of Exception-derived types in the FCL that don’t have 
this constructor. Microsoft will rectify this oversight in a future version of the .NET 
Framework. 

When defining your own exception type, your type should implement a set of three matching 
constructors and call the base type’s corresponding constructor. 

Of course, your exception type will inherit all the fields and properties defined by 
Exception. In addition, you might add fields and properties of your own. For example, the 
System.ArgumentException exception adds a String property called ParamName. The 
ArgumentException type also defines new constructors (in addition to the three public 
constructors) that take an extra String as a parameter so that the ParamName property 
can be initialized to identify the name of the parameter that violated the method’s implicit 
assumptions. 

When an ArgumentException is caught, the ParamName property can be read to 
determine exactly which parameter caused the problem. Let me tell you, this is incredibly 
handy when you’re trying to debug an application! If you do add fields to your exception type, 
make sure you define some constructors that allow the fields to be initialized.  

Exception types should always be serializable so that the exception object can be marshaled 
across an AppDomain or a machine boundary and rethrown in the client’s code. Making an 
exception type serializable also allows it to persist in a log or a database. To make your 
exception type serializable, you must apply the [Serializable] custom attribute to the 
type, and if the type defines any fields of its own, you must also implement the 
ISerializable interface along with its GetObjectData method and special protected 
constructor, both of which take SerializationInfo and StreamingContext 
parameters. The following code shows how to properly define your own exception type:  

using System; 

using System.IO; 
using System.Runtime.Serialization; 

using System.Runtime.Serialization.Formatters.Soap; 
 

// Allow instances of DiskFullException to be serialized. 
[Serializable] 

sealed class DiskFullException : Exception, ISerializable { 
   // The three public constructors 

   public DiskFullException()  
      : base() {  // Call base constructor. 

   } 
 

   public DiskFullException(String message)  
      : base(message) { // Call base constructor. 

   } 
 

 
   public DiskFullException(String message, Exception innerExcept
ion)  



      : base(message, innerException) {   // Call base constructo
r. 
   } 

 
   // Define a private field. 

   private String diskpath; 
 

   // Define a read-only property that returns the field. 
   public String DiskPath { get { return diskpath; } } 

 
   // Override the public Message property so that the  

   // field is included in the message. 
   public override String Message { 

      get { 
         String msg = base.Message; 

         if (diskpath != null)  
            msg += Environment.NewLine + "Disk Path: " + diskpath
; 
         return msg; 
      } 

   } 
 

   // Because at least one field is defined, define the 
   // special deserialization constructor. Because this 

   // class is sealed, this constructor is private. If this 
   // class is not sealed, this constructor should be protected. 

   private DiskFullException(SerializationInfo info,  
      StreamingContext context)  

      : base(info, context) { // Let the base deserialize its fie
lds. 

 
      // Deserialize each field. 

      diskpath = info.GetString("DiskPath"); 
   } 

 
   // Because at least one field is defined,  

   // define the serialization method. 
   void ISerializable.GetObjectData(SerializationInfo info, 

      StreamingContext context) { 
      // Serialize each field. 

      info.AddValue("DiskPath", diskpath); 



 
      // Let the base type serialize its fields. 

      base.GetObjectData(info, context); 
   } 

 
   // Define additional constructors that set the field. 

   public DiskFullException(String message, String diskpath)  
      : this(message) { // Call another constructor. 

      this.diskpath = diskpath; 
   } 

 
   public DiskFullException(String message, String diskpath,  

      Exception innerException)  
      : this(message, innerException) {   // Call another constru
ctor. 
      this.diskpath = diskpath; 
   } 

} 
 

 
// The following code tests the serialization of the exception. 

class App { 
   static void Main() { 

 
      // Construct a DiskFullException object, and serialize it. 

      DiskFullException e =  
         new DiskFullException("The disk volume is full", @"C:\")
; 
      FileStream fs = new FileStream(@"Test", FileMode.Create); 
      IFormatter f = new SoapFormatter(); 

      f.Serialize(fs, e); 
      fs.Close(); 

 
      // Deserialize the DiskFullException object, and check its 
fields. 
      fs = new FileStream(@"Test", FileMode.Open); 

      e = (DiskFullException) f.Deserialize(fs); 
      fs.Close(); 

      Console.WriteLine("Type: {1}{0}DiskPath: {2}{0}Message: {3}
", 



         Environment.NewLine, e.GetType(), e.DiskPath, e.Message)
; 
   } 

} 

 

How to Use Exceptions Properly 

Understanding the exception mechanism is certainly important; equally important is 
understanding how to use exceptions wisely. All too often I see library developers catching 
all kinds of exceptions, preventing the application developer from knowing that a problem 
occurred. In this section, I offer some guidelines that all developers should be aware of when 
using exceptions.  

 
Important  

If you’re a class library developer, developing types that will be used 
by other developers, take these guidelines very seriously. You have a 
huge responsibility: you’re trying to design the type’s interface so that 
its implicit assumptions make sense for a wide variety of applications. 
Remember that you don’t have intimate knowledge of the code you’re 
calling (via delegates, virtual methods, or interface methods). And you 
don’t know what code is calling you. It’s not feasible to anticipate every 
situation in which your type will be used, so don’t make any policy 
decisions. Your code must not decide what is an error; let the caller 
make this decision. Follow the guidelines in this chapter, or application 
developers will have a difficult time using the types in your class 
library. 

If you’re an application developer, define whatever policy you think is 
appropriate. Following the design guidelines in this chapter will help 
you discover problems in your code sooner, allowing you to fix them 
and make your application more robust. However, feel free to diverge 
from these guidelines after careful consideration. You get to set the 
policy. For example, application code can get more aggressive about 
catching exceptions. 

You Can’t Have Too Many finally Blocks 

I think finally blocks are awesome! They allow you to specify a block of code that’s 
guaranteed to execute no matter what kind of exception the thread throws You should use 
finally blocks to clean up from any operation that successfully started before returning to 
your caller or continuing to execute code following the finally block. You also frequently 
use finally blocks to explicitly dispose of any objects to avoid resource leaking. Here’s an 
example that has all cleanup code (closing the file) in a finally block:  

class SomeType { 

   void SomeMethod() { 
 

      // Open a file. 
      FileStream fs = new FileStream(@"C:\ReadMe.txt", FileMode.O
pen); 
      try { 
         // Display 100 divided by the first byte in the file. 



         Console.WriteLine(100 / fs.ReadByte()); 
      } 

      finally { 
         // Put cleanup code in a finally block to ensure that  

         // the file gets closed regardless of whether or not an  
         // exception occurs (for example, the first byte was 0). 

         fs.Close(); 
      } 

   } 
} 

Ensuring that cleanup code always executes is so important that many programming 
languages offer constructs that make coding easier. For example, the C# language provides 
the lock and using statements. (I’ll touch on using statements again in Chapter 19.) 
These statements provide the developer with a simple syntax that causes the compiler to 
automatically generate try and finally blocks, where the finally block contains the 
cleanup code. For example, the following C# code takes advantage of the using statement. 
This code is shorter than the code shown in the previous example, but the code the compiler 
generates is identical to the code generated in the previous example.  

class SomeType { 

   void SomeMethod() { 
 

      // Open a file. 
      using (FileStream fs =  

         new FileStream(@"C:\ReadMe.txt", FileMode.Open)) { 
 

         // Display 100 divided by the first byte in the file. 
         Console.WriteLine(100 / fs.ReadByte()); 

      } 
   } 

} 

Don’t Catch Everything 

A common mistake is to use catch blocks too often and to use them improperly. When you 
catch an exception, you’re stating that you expected this exception, you understand why it 
occurred, and you know how to deal with it. In other words, you’re defining a policy for the 
application. All too often, I see code like this:  

catch (Exception) {  
   ?  

} 

This code indicates that it was expecting any and all exceptions and knows how to recover 
from any and all situations. How can this possibly be? A type that’s part of a class library 
should never catch all exceptions because there is no way for the type to know exactly how 



the application intends to respond to an exception. In addition, the type will frequently call 
out to application code via a delegate or a virtual method. If the application code throws an 
exception, another part of the application is probably expecting to catch this exception. The 
exception should filter its way up the call stack and let the application code handle the 
exception as it sees fit. 

You might identify specific places in your code where you want to catch everything that can 
go wrong and gracefully recover. The temptation is to add a catch block that catches 
System.Exception. As an illustration of what not to do, consider the virtual Equals 
method (defined by System.Object). This method should return false if two objects don’t 
have the same logical value. So if some code tries to compare an Apple to an Orange, 
Equals should return false. Here’s how you might (incorrectly) implement Apple’s 
Equals method:  

sealed class Apple : Object { 

   Color c = Color.Red;   // The color of the apple 
 

   public override Boolean Equals(Object o) { 
      Boolean equal = false;  // Assume objects aren’t equal. 

 
      try { 

         // Cast o to an Apple. 
         Apple a = (Apple) o; 

 
         // Compare the fields of ’this’ and a. 

         // If any fields aren’t equal, leave the try block. 

         if (this.c != a.c) goto leave; 
 

         // If all fields have the same value, they’re equal. 
         equal = true; 

 
         // Leave the try block. NOTE: C# doesn’t offer a 

         // leave keyword, so you have to goto a label. 
         leave:; 

      } 
      catch (Exception) { 

      } 
      return equal; 

   } 
} 

Inspecting this code, you see that attempting to cast o to an Apple might cause the CLR to 
throw an InvalidCastException exception. In fact, this is the only real exception I can 
imagine the method throwing. Because the InvalidCastException is the only exception 
you expect, you might feel that it’s OK to catch Exception as shown in the code. In fact, 



you might think that it’s OK to catch Exception even if anything else were to throw an 
exception. After all, Equals should return true or false. 

However, you shouldn’t catch Exception here because a StackOverflowException or 
OutOfMemoryException exception could be thrown at any time. Because of the way the 
previous code is written, Equals would catch either of these two exceptions and simply 
return false to its caller. Equals is now hiding these fatal problems and allowing the 
application to continue running with unpredictable results. This situation is certainly not 
desired! To fix the code, catch InvalidCastException instead of Exception. An 
InvalidCastException is the only exception that this code knows how to recover from 
gracefully; all other exceptions are not anticipated by Equals and should be allowed to 
propagate out of the method. 

Gracefully Recovering from an Exception 

Sometimes you call a method knowing in advance some of the exceptions that the method 
might throw. Because you expect these exceptions, you might want to have some code that 
allows your application to recover gracefully from the situation and continue running. Here’s 
an example in pseudocode. 

public String CalculateSpreadsheetCell(Int32 row, Int32 column) { 

   String result; 
   try { 

      result = /* Code to calculate value of a spreadsheet’s cell
 */ 
   } 

   catch (DivideByZeroException) { 
      result = "Can’t show value: Divide by zero"; 

   } 
   return result; 

} 

This pseudocode calculates the contents of a cell in a spreadsheet and returns a string 
representing the value back to the caller so that the caller can display the string in the 
application’s window. However, a cell’s contents might be the result of dividing one cell by 
another cell. If the cell containing the denominator contains 0, the CLR will throw a 
DivideByZeroException exception. In this case, the method catches this specific 
exception and returns a special string that will be displayed to the user. 

When you catch specific exceptions, fully understand the circumstances that cause the 
exception to be thrown and know what exception types are derived from the exception type 
you’re catching. Don’t catch and handle System.Exception because it’s not feasible for 
you to know all the possible exceptions that could be thrown within your try block 
(especially if you consider OutOfMemoryException, OverflowException, 
StackOverflowException, or even ExecutionEngineException, to name a few). 

Backing Out of a Partially Completed Operation When an 
Unrecoverable Exception Occurs 



Usually methods call several other methods to perform a single abstract operation. Some of 
the individual methods might complete successfully, and some might not. For example, a 
method that transfers money from one account to another account might first add money to 
one account and then subtract money from the second account. If the first operation 
completes successfully but the second operations fails (for any reason), the money must be 
subtracted from the first account so that the accounts balance. 

Here is another, perhaps more meaningful, example: Let’s say that you’re serializing a set of 
objects to a disk file. After serializing 10 objects, an exception is thrown. (Perhaps the disk is 
full or the next object to be serialized isn’t marked with the Serializable custom 
attribute.) At this point, the exception should filter up to the caller, but what about the state of 
the disk file? The file is now corrupt because it contains a partially serialized object graph. It 
would be great if the application could back out of the partially completed operation so that 
the file would be in the state it was before any objects were serialized into it. The following 
code demonstrates the correct way to implement this:  

public void SerializeObjectGraph(FileStream fs,  

   IFormatter formatter, Object rootObj) { 
 

   // Save the current position of the file. 
   Int64 beforeSerialization = fs.Position;  

 
   try { 

      // Attempt to serialize the object graph to the file. 
      formatter.Serialize(fs, rootObj); 

   } 
   catch {  // Catch all CLS and non-CLS exceptions. 

      // If ANYTHING goes wrong, reset the file back to a good st
ate. 
      fs.Position = beforeSerialization; 

 
      // Truncate the file. 

      fs.SetLength(fs.Position); 
 

      // NOTE: The preceding code isn’t in a finally block becaus
e 

      // the stream should be reset only when serialization fails
.  
 

      // Let the caller(s) know what happened by 
      // rethrowing the SAME exception. 

      throw; 
   } 

} 

To properly back out of the partially completed operation, write code that catches all 
exceptions. Yes, catch all exceptions here because you don’t care what kind of error 



occurred; you need to put your data structures back into a consistent state. After you’ve 
caught and handled the exception, don’t swallow it—let the caller know that the exception 
occurred. You do this by rethrowing the same exception. In fact, C# and many other 
languages make this easy. Just use C#’s throw keyword without specifying anything after 
throw, as shown in the previous code. 

Notice that the catch block in the previous example doesn’t specify any exception type 
because I want to catch non-CLS-compliant exceptions and CLS-compliant exceptions. 
Fortunately, C# lets me do this easily by just not specifying any exception type and by 
making the throw statement rethrow whatever object is caught. 

Hiding an Implementation Detail 

In some situations, you might find it useful to catch one exception and rethrow a different 
exception. Here’s an example: 

public Int32 SomeMethod(Int32 x){ 
   try { 

      return 100 / x; 
   } 

   catch (DivideByZeroException e) { 
      throw new ArgumentOutOfRangeException("x", x, "x can’t be 0
", e); 
   } 
} 

When SomeMethod is called, the caller passes in an Int32 value and the method returns 
100 divided by this value. Upon entry into the method, code could check to see whether x is 
0, and if it is, throw an ArgumentOutOfRangeException exception at that point. 
However, this check would be performed every time, and because there is an implicit 
assumption that x is rarely 0, the check would cause a performance hit. So, this method 
assumes that x is not 0 and attempts to divide 100. Now, if x does happen to be 0, then the 
specific DivideByZeroException exception is caught and is rethrown as an 
ArgumentOutOfRangeException exception. Note that the DivideByZeroException 
exception is set as the ArgumentOutOfRangeException’s InnerException property 
via the constructor’s fourth argument.  

 
Important  

In this discussion, I’ve shown how to catch an exception and throw a 
different exception. When you use this technique, the new exception 
should have its inner exception property refer to the original exception. 
The preceding code demonstrates how you should do this correctly. 
Unfortunately, that code won’t compile. The problem is that many of 
the FCL exception types don’t offer constructors that take an 
innerException parameter. These missing constructors are bugs 
that Microsoft says they will correct in future versions of the .NET 
Framework. Personally, I’ve found these bugs to be quite frustrating, 
and there is no workaround because the Exception type offers no 
way to set an inner exception. 

This technique results in catches similar to those discussed in the earlier section “Gracefully 
Recovering from an Exception.” You catch specific exceptions, you fully understand the 



circumstances that cause the exception to be thrown, and you know what exception types 
are derived from the exception type you’re catching. 

Again, class library developers shouldn’t catch System.Exception and the like. Doing so 
means that you’re converting all exception types into a single exception type. It discards all 
meaningful information (the type of the exception) and throws a single exception type that 
doesn’t contain any useful information about what really happened. Without this information, 
it’s much harder for code higher up the call stack to catch and handle a specific exception. 
Give the code higher up the call stack a chance to catch System.Exception or some 
other exception that’s a base type for more specific exceptions. 

Basically, the only time to catch an exception and rethrow a different exception is to improve 
the meaning of a method’s abstraction. Also, the new exception type you throw should be a 
specific exception (an exception that’s not used as the base type of any other exception 
type). Imagine a PhoneBook type that defines a method that looks up a phone number from 
a name, shown in the following pseudocode:  

class PhoneBook { 
   String pathname;  // pathname for file containing the address 
book 
 

   // Other methods go here. 
 

   public String GetPhoneNumber(String name) { 
      String phone; 

      FileStream fs = null; 
      try { 

         fs = new FileStream(pathname, FileMode.Open); 
         (Code to read from fs until name is found) 

         phone = /* the phone # found */ 
      } 

      catch (FileNotFoundException e) { 
         // Throw a different exception containing the name, and 

         // set the originating exception as the inner exception. 
         throw new NameNotFoundException(name, e); 

      } 
      catch (IOException e) { 

         // Throw a different exception containing the name, and 
         // set the originating exception as the inner exception. 

         throw new NameNotFoundException(name, e); 
      } 

      finally { 
         if (fs != null) fs.Close(); 

      } 
      return phone; 



   } 
} 

The phonebook data is obtained from a file (versus a network connection or database). 
However, the user of the PhoneBook type doesn’t know this. So if the file isn’t found or can’t 
be read for any reason, the caller would see a FileNotFoundException or 
IOException, which wouldn’t be anticipated. In other words, the file’s existence and ability 
to be read is part of the method’s implied assumptions. However, there is no way that the 
caller could have guessed this. So the GetPhoneNumber method catches these two 
exception types and throws a new NameNotFoundException.  

Throwing an exception still lets the caller know that an implied assumption was violated, and 
the NameNotFoundException type gives the caller an abstracted view of the implied 
assumption that was violated. Setting the inner exception to FileNotFoundException or 
IOException is important so that the real cause of the exception isn’t lost; knowing what 
caused the exception could be useful to the developer of the PhoneBook type. 

Now let’s say that the PhoneBook type was implemented a little differently. Assume that the 
type offers a public PhoneBookPathname property that allows the user to set or get the 
pathname of the file in which to look up a phone number. Because the user is aware that the 
phone book data comes from a file, I would modify the GetPhoneNumber method so that it 
doesn’t catch any exceptions; instead, I let whatever exception is thrown propagate out of 
the method. Note that I’m not changing any parameters of the GetPhoneNumber method 
but I am changing how it’s abstracted to users of the PhoneBook type. 

Again, let me emphasize that class library developers should follow all the design guidelines 
mentioned here very carefully. As I said earlier, an application developer, however, should 
always be able to define whatever policy he or she thinks is appropriate. Following the 
design guidelines in this chapter will probably help you discover problems in your code 
sooner, allowing you to fix them and make your application more robust. Application 
developers should feel free to diverge from these guidelines after careful consideration. They 
get to set any policy they think is best; the application code can get more aggressive about 
catching exceptions, for example. 

 
What’s Wrong with the FCL 

In this chapter, I’ve given you my recommendations for working with exceptions. These 
recommendations are based on conversations with many developers and my own 
experience writing code for many years. In the previous section, I mentioned that many of 
the FCL exception types are missing a constructor that allows the inner exception to be set. 
This is just one type of bug in the FCL. Unfortunately, the FCL contains many more bugs 
related to exception handling. In this section, my intent is to make you aware of these bugs 
so that you won’t waste as much time as I have trying to figure out what’s going on when 
your code doesn’t work quite as you expect. 

Microsoft hasn’t followed a lot of the guidelines that I describe in this chapter. In fact, quite a 
bit of Microsoft’s code violates Microsoft’s own guidelines, a situation that can make working 
with the FCL difficult at times. The problem is exacerbated by the fact that the FCL 
documentation doesn’t always describe what exceptions a developer can expect or how to 
recover from them. 

The first problem is that Microsoft’s FCL code is peppered with the following constructs: 

catch { ... } 



 
catch (Exception) { ... } 

 
catch (ApplicationException) { ... } 

As I explained previously, these constructs catch and swallow exceptions that shouldn’t be 
caught and swallowed by a class library.  

Here’s an example: the System.IO.Directory and System.IO.File types have static 
Exists methods. Both methods return true or false depending on whether the path 
argument identifies a directory/file that exists on the user’s disk drive. If anything goes wrong 
inside these methods, the methods catch Exception and return false to their caller. The 
caller has no way to tell whether the exception occurred because the file doesn’t exist or 
whether the caller doesn’t have sufficient access to the directory or file. Also, if a 
StackOverflowException or an OutOfMemoryException is thrown, then false is 
also returned! 

The second problem is that Microsoft’s FCL code frequently catches an exception and 
throws a new exception. As explained previously, this can be useful if the new exception 
provides necessary information, but the FCL often hides what actually happened from the 
application developer. 

For example, the System.Array type’s Sort method sorts an array of objects by calling 
each object’s CompareTo method. If the CompareTo method throws an exception (any 
exception), the Sort method catches it and throws a new InvalidOperationException. 
This is terrible! It means that your code could throw an exception that your code can never 
catch. There’s no reason for Array’s Sort method to do this. By the way, Array’s 
BinarySearch method also catches any and all exceptions and throws a new 
InvalidOperationException, which is equally as troublesome. 

The third problem with the FCL is the way it handles reflection (a topic I’ll discuss more in 
Chapter 20). If you obtain a MethodInfo for a method and call its Invoke method, the 
method being invoked could throw an exception. Unfortunately, the MethodInfo’s Invoke 
method catches any and all exceptions and throws a new 
System.Reflection.TargetInvocationException. For this reason, you can’t catch 
the actual exception thrown by the method you invoked. 

Another example of this third problem is that the FCL code frequently catches one exception 
and throws a new System.Exception. Again, useful information is lost because the caller 
must now catch Exception and then figure out what really went wrong. 

Here’s another problem with the FCL code: the System.Windows.Forms.DataGrid 
control has a public CurrentCell property. If your code tries to set the value in the current 
cell and an exception is thrown, the DataGrid control catches all Exception-derived 
exceptions and displays a message box! I couldn’t believe this when I discovered it. Not only 
can you not catch the exception, but the user is also confronted with a message box that 
your application can’t control. 

I’ve run into these and other problems the hard way: writing code to handle what I expected, 
discovering that my code didn’t work right, and then finding out that the FCL code had been 
swallowing my exceptions. It’s my fervent hope that Microsoft will examine the FCL source 
code and correct it so that it follows the design guidelines set out in this chapter. 



Experience is the best way to learn which FCL methods will cause you problems. The only 
real workaround is to define exception types that the FCL code can’t catch.  

You might reasonably conclude that you should define and throw non-CLS-compliant 
exceptions, which the FCL code rarely catches. However, I don’t recommend this for several 
reasons: 
§ Programmers working in other languages might not be able to catch non-CLS-

compliant exceptions. 
§ C# and many other languages don’t let you throw non-CLS-compliant exceptions. 
§ C# and many other languages can catch non-CLS-compliant exceptions, but they don’t 

let you get any information about the exception. You can’t tell what type the exception 
is, nor can you get a stack trace or helpful string message. 

Even if you did use non-CLS-compliant exceptions, there’s no guarantee that the FCL won’t 
catch them and swallow them or throw a new exception type in its place. Unfortunately, there 
is no satisfactory remedy until Microsoft fixes the FCL exception handling code. 

 

Performance Considerations 

The developer community actively debates the performance of exception handling. My 
experience is that the benefit of exception handling far outweighs any performance 
penalties. In this section, I’ll address some of the performance issues related to exception 
handling. 

It’s difficult to compare performance between exception handling and the more conventional 
means of reporting exceptions (HRESULTs, special return codes, and so forth). If you write 
code to check the return value of every method call and filter the return value up to your own 
callers, your application’s performance will be seriously affected. But performance aside, the 
amount of additional coding you must do and the potential for mistakes is incredibly high. 
Exception handling is a much better alternative. 

Unmanaged C++ compilers must generate code that tracks which objects have been 
constructed successfully. The compiler must also generate code that, when an exception is 
caught, calls the destructor for each of the successfully constructed objects. It’s great that 
the compiler takes on this burden, but it generates a lot of bookkeeping code in your 
application, adversely affecting code size and execution time.  

On the other hand, managed compilers have it much easier because managed objects are 
allocated in the managed heap, which is monitored by the garbage collector (GC). If an 
object is successfully constructed and an exception is thrown, the GC will eventually 
deallocate the object. Compilers don’t need to emit any bookkeeping code to track which 
objects are constructed successfully and to ensure that a destructor is called (especially 
because managed objects are destroyed at a nondeterministic time). Compared to 
unmanaged C++, this means that less code is generated by the compiler and less code has 
to execute at run time: your application’s performance is better. 

Over the years, I’ve used exception handling in different languages, different operating 
systems, and different CPU architectures. In each case, exception handling is implemented 
differently. Each implementation has its pros and cons with respect to performance. Some 
implementations compile exception handling constructs directly into a method, while other 
implementations store information related to exception handling in a data table associated 
with the method—this table is accessed only if an exception is thrown. Some compilers can’t 
inline methods that contain exception handlers, and some compilers won’t enregister 
variables if the method contains exception handlers. 



The point is that you can’t determine how much additional overhead using exception 
handling adds to an application. In the managed world, it’s even more difficult to tell because 
your assembly’s code can run on any platform that supports the .NET Framework. So the 
code produced by the JIT compiler to manage exception handling when your assembly is 
running on an x86 machine will be very different than the code produced by the JIT compiler 
when your code is running on an IA64 processor or the code produced by the .NET Compact 
Framework’s JIT compiler. 

Actually, I’ve been able to test some of my own code with a few different JIT compilers that 
Microsoft has internally, and the difference in performance that I’ve observed has been quite 
dramatic and surprising. The point is that you must test your code on the various platforms 
that you expect your users to run on and make changes accordingly. Again, I wouldn’t worry 
about the performance of using exception handling; as I’ve said, the benefits far outweigh 
any negative performance impact. 

If you’re interested in seeing how exception handling impacts the performance of your code, 
you can use PerfMon.exe or the System Monitor ActiveX control that comes with Windows 
NT 4, Windows 2000, Windows XP, and the Windows .NET Server product family. The 
screen in Figure 18-1 shows the exception-related counters that get installed when the .NET 
Framework is installed. 

 
Figure 18-1 : PerfMon.exe showing the .NET CLR exception counters  

Here’s what each counter means: 
§ # Of Exceps Thrown  Displays the total number of exceptions thrown since the 

application started. These include both .NET exceptions and unmanaged exceptions 
that get converted into .NET exceptions. For example, a null pointer reference exception 
in unmanaged code would get rethrown in managed code as a .NET 
System.NullReferenceException exception; this counter includes both handled 
and unhandled exceptions. Exceptions that are rethrown would get counted again. 

§ # Of Exceps Thrown/Sec  Displays the number of exceptions thrown per second. 
These include both .NET exceptions and unmanaged exceptions that get converted into 



.NET exceptions. For example, a null pointer reference exception in unmanaged code 
would get re-thrown in managed code as a .NET 
System.NullReferenceException exception; this counter includes both handled 
and unhandled exceptions. This counter was designed as an indicator of potential 
performance problems caused by a large (>100s) number of exceptions being thrown. 
This counter isn’t an average over time; rather, it displays the difference between the 
values observed in the last two samples divided by the duration of the sample interval. 

§ # Of Filters/Sec  Displays the number of .NET exception filters executed per second. 
An exception filter evaluates whether or not an exception should be handled. This 
counter tracks the rate of exception filters evaluated, regardless of whether or not the 
exception was handled. As with the preceding counter, this counter isn’t an average 
over time; rather, it displays the difference between the values observed in the last two 
samples divided by the duration of the sample interval.  

§ # Of Finallys/Sec  Displays the number of finally blocks executed per second. A 
finally block is guaranteed to be executed regardless of how the try block was 
exited. Only the finally blocks that are executed for an exception are counted; this 
counter doesn’t count finally blocks on normal code paths. Again, this counter isn’t 
an average over time; it displays the difference between the values observed in the last 
two samples divided by the duration of the sample interval. 

§ Throw To Catch Depth/Sec  Displays the number of stack frames traversed from the 
frame that threw the .NET exception to the frame that handled the exception per 
second. This counter resets to 0 when an exception handler is entered, so nested 
exceptions would show the handler-to-handler stack depth. Again, this counter isn’t an 
average over time; it displays the difference between the values observed in the last two 
samples divided by the duration of the sample interval. 

 

Catch Filters 

When an exception is thrown, the CLR walks up the call stack looking at each catch block’s 
catch filter—the exception type in a catch block’s parentheses. The following code shows a 
try block with three catch blocks.  

public void SomeMethod() { 
   try { 

      // Do something in here. 
   } 

   catch (NullReferenceException e) { 
      // Handle a null reference exception. 

   } 
   catch (InvalidCastException e) { 

      // Handle an Invalid cast exception. 
   } 

   catch {  // In C#, this filter catches everything. 
      // Handle any kind of exception. 

   } 
} 

When compiling this code, the compiler emits a tiny “catch filter funclet” for each catch 
block contained inside the SomeMethod method. When an exception is thrown, the CLR 



calls the NullReferenceException funclet and passes it the object that identifies the 
thrown exception. The catch filter funclet checks whether the type of the object is a 
NullReferenceException or a type derived from NullReferenceException. If there 
isn’t a match, then the catch filter funclet returns a special value telling the CLR to continue 
searching. In my example, the InvalidCastException funclet is asked next, followed by 
the "catch all" filter funclet. If the "catch all" catch block didn’t exist, then the CLR would 
continue walking up the call stack.  

When a catch filter funclet recognizes the thrown object’s type, it returns a special value to 
inform the CLR. The CLR executes all the finally blocks necessary to unwind and clean 
up the started operations farther down the call stack. Then the CLR passes execution to the 
code contained inside the catch block. 

In C# and many other languages designed for the .NET Framework, a catch filter is simply a 
data type. The catch filter funclet matches the thrown object’s type against the filter’s 
specified type. However, the CLR supports more complex catch filters. Microsoft Visual 
Basic, C++ with Managed Extensions, and IL assembly language are the only languages 
that I’m aware of that allow more complex catch filters. Here is some contrived Visual Basic 
code that demonstrates a complex catch filter: 

Imports System 
Public Module MainMod 

 
Function HundredDivX(x as Int32) As String 

   Try 
      x = 100 / x 

      HundredDivX = x.ToString() 
 

      Dim a as Object 
      Console.WriteLine(a.ToString()) 

 
   Catch e as Exception When x = 0 

      HundredDivX = "Problem: x was 0" 
 

   Catch e as Exception 
      HundredDivX = "Problem: I don’t know what the problem is" 

 
   End Try 

End Function 
 

 
Sub Main() 

   Console.WriteLine(HundredDivX(0)) 
   Console.WriteLine(HundredDivX(2)) 

End Sub 
 



End Module 

When you compile and execute this code, you get the following output: 

Problem: x was 0 
Problem: I don’t know what the problem is 

Here’s what’s happening. Main begins executing and calls HundredDivX, passing it 0. 
Inside HundredDivX, 100 is divided by 0, which causes the CLR to throw an 
OverflowException. (An OverflowException is thrown instead of a 
DivideByZeroException because Visual Basic treats the 100 as an 8-byte real number 
instead of an integer.) 

When the exception is thrown, the CLR calls the first catch filter funclet (generated by the 
compiler) corresponding to the first Catch block. This complex catch filter funclet checks 
whether the OverflowException object is derived from Exception. Because it is, the 
filter then asks if x is 0, by way of the Visual Basic When statement. Because this is also 
true, the catch filter funclet returns a value telling the CLR that it wants to handle the 
exception. The CLR now unwinds the stack by executing any Finally blocks farther down 
the call stack. In this example, there aren’t any. Once all the Finally blocks have 
executed, execution passes to the code inside the handling Catch block. The return string is 
set to "Problem: x was 0"; the thread falls out of the Catch block and then out of the Try 
block; lastly, the thread returns from the method. 

Now back inside Main, HundredDivX is called again, but this time 2 is passed. Inside 
HundredDivX, 100 is divided by 2, which sets x to 50 without causing an exception to be 
thrown. But then, a, a reference to a System.Object, is declared and initialized to 
Nothing. Attempting to call ToString causes the CLR to throw a 
NullReferenceException exception. The first catch filter funclet examines the type and 
sees a match. But because x is now 50 (not 0), the catch filter funclet tells the CLR to 
continue searching. 

The CLR checks the second catch filter. Because NullReferenceException is derived 
from Exception and because this second catch filter has no When statement associated 
with it, the filter funclet returns a special value telling the CLR that it will handle the 
exception. Again, the CLR unwinds any Finally blocks that might exist and then passes 
execution to the code inside the active Catch block. This block sets the return string to 
"Problem: I don’t know what the problem is". The thread now falls out of the Catch block, 
then out of the Try block, and then returns from the method. 

You should take away two important points from this section: 
§ The CLR supports complex filters, but many languages don’t. If you’re working in a 

language that doesn’t support complex filters but you want to use one, write that part of 
your code in Visual Basic, IL assembly, or some other language that supports it. 
Because code in the various programming languages integrates seamlessly, this is a 
viable solution. 

§ Notice from the previous code example how the CLR manages an exception. First, the 
CLR locates a catch filter that accepts the exception. Then the CLR unwinds the call 
stack by calling Finally blocks. Finally, the CLR passes execution to the code 
contained inside the handling Catch block. 

 

Unhandled Exceptions 



As explained in the previous section, when an exception is thrown, the CLR starts searching 
for a catch filter interested in handling the exception. If no catch filter accepts the exception 
object, an unhandled exception occurs. An unhandled exception identifies a situation that the 
application didn’t anticipate. 

When developing an application, you should set a policy for dealing with unhandled 
exceptions. In addition, it’s quite common to have one policy for debug versions of your 
application and a different policy for release versions. Normally, in a debug version, you 
want the debugger to start and attach itself to your application so that you can find out 
exactly what went wrong and correct the code. 

For a release version, the unhandled exception is occurring while the user is using the 
application. The user probably doesn’t have the knowledge (or the source code) to debug 
the application. So the best thing to do is log some information about the unhandled 
exception and allow the application to recover as gracefully as possible. For a client-side 
application, a graceful recovery might mean trying to save the user’s data and terminating 
the application. For a server-side application, it might mean aborting the current client’s 
request and preparing for a new client request—normally, an unhandled exception in a 
server-side application shouldn’t terminate the server. 

 
Note  

Class library developers shouldn’t consider setting a policy for unhandled 
exceptions. The application developer should have complete control over 
defining and implementing this policy. 

Personally, I like what the Microsoft Office XP applications do when they experience an 
unhandled exception—even though they’re not .NET Framework applications. They save the 
document that the user was currently editing and then display a dialog box notifying the user 
that a problem occurred. Figure 18-2 shows such a dialog box for Microsoft PowerPoint. 

 
Figure 18-2 : Microsoft PowerPoint showing its Unhandled Exception dialog box  

The Send Error Report button allows the user to send an error report to Microsoft over the 
Internet. The Recover My Work And Restart Microsoft PowerPoint check box offers the user 
the option to relaunch the application (after clicking the Send Error Report or Don’t Send 
button). If the application is relaunched, it automatically reloads the document that was being 
edited. If the machine has a debugger installed, the Debug button appears in the dialog box, 
allowing the user to debug the application. Later in this chapter, I’ll discuss how an 
application can set up a policy similar to Office XP’s policy of handling unhandled 
exceptions. 



Here’s another example of a policy that deals with an unhandled exception: When making a 
request of a remote object or remote service, a thread (from a thread pool) is awakened to 
handle the client’s request. The server’s code is executed in a try block that has a catch 
block associated with it that catches all exceptions. If this catch block catches an exception, 
the information about the exception (including a stack trace) is sent back to the client as the 
server’s response. This is possible because the exception type is serializable, as described 
in the "Defining Your Own Exception Class" section earlier in this chapter. 

When the client code detects that an exception was returned from the server, it deserializes 
the exception object and throws it. This allows the client code to catch an exception thrown 
by the server—very cool indeed! It effectively hides the AppDomain, process, or machine 
boundary and allows the client code to believe that the remote call was made locally. 

When thinking about unhandled exceptions, you should know what kind of thread you’re 
dealing with. There are five kinds of threads:  
§ Main thread  The thread that executes a console (CUI) or Windows Forms (GUI) 

application’s Main method is a managed main thread. 
§ Manual threads  Application code can explicitly create threads by constructing a 

System.Threading.Thread object. 
§ Pool threads  A lot of features in the .NET Framework take advantage of the thread 

pool that’s built into the CLR. Thread pool threads typically execute code started by 
methods of the System.Threading.ThreadPool class or the 
System.Threading.Timer class. In addition, methods that expose the CLR’s 
asynchronous programming model (such as a delegate’s BeginInvoke and 
EndInvoke methods) typically complete using a thread pool thread. 

§ Finalizer thread  The managed heap has a thread dedicated to executing an object’s 
Finalize method when a garbage collection determines the object to be unreachable. 

§ Unmanaged threads  Some threads are created without the knowledge of the CLR. 
Using P/Invoke or COM interoperability, these unmanaged threads can transition into 
the CLR to execute managed code. Because the CLR itself doesn’t create these 
threads, any unhandled exceptions are thrown outside the CLR and the unmanaged 
thread code can handle these unhandled exceptions any way it desires; the CLR 
doesn’t get involved. 

For all five kinds of threads, you can implement an unhandled exception policy using code 
similar to the following: 

using System; 
using System.Diagnostics; 

using System.Windows.Forms; 
 

class App { 
   static void Main() { 

      // Register the MgdUEFilter callback method with the AppDom
ain 
      // so that it gets called when an unhandled exception occur
s. 
      AppDomain.CurrentDomain.UnhandledException +=  

         new UnhandledExceptionEventHandler(MgdUEPolicy); 
 

      // The rest of the application code goes here. 



      try { 
         // Simulate an exception here for testing purposes: 

         Object o = null; 
         o.GetType();  // throws a NullReferenceException 

      } 
      finally { 

         Console.WriteLine("In finally"); 
      } 

   } 
 

/////////////////////////////////////////////////////////////////
///////////// 
 

   // The following method is called when an unhandled exception 
is 
   // encountered. 

   static void MgdUEPolicy(object sender, UnhandledExceptionEvent
Args e) { 
      // This string contains the information to display or log. 

      String info; 
 

      // Initialize the contents of the string. 
      Exception ex = e.ExceptionObject as Exception; 

      if (ex != null) { 

         // An unhandled CLS-compliant exception was thrown. 
         // Do whatever: you can access the fields of Exception. 

         // (Message, StackTrace, HelpLink, InnerException, etc.) 
         info = ex.ToString(); 

      } else { 
         // An unhandled non-CLS-compliant exception was thrown. 

         // Do whatever: all you can call are the methods defined
 by Object. 
         // (ToString, GetType, etc.) 

         info = String.Format("Non-CLS-
Compliant exception: Type={0}, String={1}", 
            e.ExceptionObject.GetType(), e.ExceptionObject.ToStri
ng()); 
      } 
 

      #if DEBUG 
 

      // For debug builds of the application, launch the debugger 



      // to understand what happened and to fix it. 
      if (!e.IsTerminating) { 

         // Unhandled exception occurred in a thread pool or fina
lizer thread. 
         Debugger.Launch(); 

 
      } else { 

 
         // Unhandled exception occurred in a managed thread. 

         // By default, the CLR will automatically attach a debug
ger, but 
         // you can force it with the following line: 

         Debugger.Launch(); 
      } 

 
      #else 

 
      // For release builds of the application, display or log th
e  
      // exception so that the user can report it back to you. 
      if (!e.IsTerminating) { 

         // Unhandled exception occurred in a thread pool or fina
lizer thread. 

         // For thread pool or finalizer threads, you might just 
log the  
         // exception and not display the problem to the user. Ho
wever, each  
         // application should do whatever makes the most sense f
or it. 
 

      } else { 
 

         // Unhandled exception occurred in a managed thread 
         // The CLR is going to kill the application; you should 
display  
         // and/or log the exception. 

         String msg = String.Format("{0} has encountered a proble
m and " + 
            "needs to close. We are sorry for the inconvenience.\
n\n" + 
            "Please tell {1} about this problem.\n" + 
            "We have created an error report that you can send to
 " + 



            "help us improve {0}. " + 
            "We will treat this report as confidential and anonym
ous.\n\n" + 
            "Would you like to send the report?", 
            "(AppName)", "(CompanyName)"); 

 
         if (MessageBox.Show(msg, "(AppName)", 

             MessageBoxButtons.YesNo) == DialogResult.Yes) { 
            // The user has chosen to send the error report to yo
u. 
            // Send yourself the contents of the info variable an
d any  
            // additional information you think you’d find useful
 to help you 
            // correct this problem. 

 
            // For testing purposes only, I’ll display info here: 

            MessageBox.Show(info, "Error Report"); 
         } 

      } 
 

      #endif 
   } 

} 

During application initialization (in the Main method), this code constructs a 
System.UnhandledExceptionEventHandler delegate as a wrapper around the static 
MgdUEPolicy method; this delegate is then registered with the UnhandledException 
event offered by the System.AppDomain type. Whenever a thread has an unhandled 
exception, the CLR will invoke the MgdUEPolicy method. If an unmanaged thread has an 
unhandled exception that was thrown by unmanaged code, the CLR won’t invoke the 
MgdUEPolicy method. 

For a release build of the application, the code in the MgdUEPolicy method should display 
or log the unhandled exception information (including the stack trace) so that this information 
can be sent back to the company developing the application. The code could also try to send 
the exception information over the Internet back to the company (similar to what Office XP 
applications do) so that the users don’t have to spend their own time reporting the problem. 
The company can then revise their source code so that the next version of the application 
properly anticipates this exception and responds to it appropriately. For a debug build of the 
application, the debugger should start up and attach itself to the process so that the 
developer can determine the reason of the exception and correct the code.  

The callback method is considered a catch filter; that is, no deeper catch filter accepted the 
exception and therefore no finally blocks have executed yet. Also note that the callback 
receives a System.UnhandledExceptionEventArgs object. This object has two public, 
read-only properties, ExceptionObject (of type System.Object) and IsTerminating 
(of type System.Boolean). ExceptionObject identifies the exception object that was 



thrown. Note that the type of ExceptionObject is Object, not Exception. The reason is 
that the object thrown might not be CLS-compliant. 

The IsTerminating property tells you if the CLR would terminate the application because 
of this unhandled exception. Normally, for manual threads, pool threads, and the finalizer 
thread, the CLR swallows any unhandled exceptions and either kills the thread, returns the 
thread to the pool, or moves on to call the Finalize method of the next object. If an 
unhandled exception occurs in any of these kinds of threads, the IsTerminating property 
will be false. Should an application’s main thread or an unmanaged thread have an 
unhandled exception, IsTerminating will be true. 

If you want to debug your application when an unhandled exception occurs in a 
nonterminating thread, you should place a call to System.Diagnostics.Debugger type’s 
static Launch method inside the MgdUEPolicy method. The sample code demonstrates 
this. 

For a main thread or an unmanaged thread, the system offers to either connect a debugger 
to the AppDomain or terminate the process. This is why the IsTerminating property will 
be true. 

Controlling What the CLR Does When an Unhandled Exception 
Occurs 

When a managed thread has an unhandled exception, the CLR examines some settings to 
determine whether it should launch a debugger. To make this determination, the CLR 
checks the following registry subkey for the DbgJITDebugLaunchSetting value: 
HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework 

If this value exists, its value must be one of those listed in Table 18-2.  

Table 18-2: Possible Values of DbgJITDebugLaunchSetting  

Value Description 

0 Display a dialog box asking the user whether he would like to debug 
the process. If the user chooses not to debug the process, the CLR 
fires the AppDomain’s UnhandledException event and then, 
if the exception occurred in the main thread or in an unmanaged 
thread, terminates the process along with all the AppDomains in it. If 
no callback methods have registered with AppDomain’s 
UnhandledException event and if the process is a CUI 
application, the CLR displays the stack trace to the console. If the user 
chooses to debug the application, the CLR spawns a debugger, which 
will attach itself to the AppDomain. The CLR determines the command 
line used to spawn the debugger by examining the 
DbgManagedDebugger registry value contained in the save 
registry subkey. 

1 In this case, no dialog box is displayed to the user. The CLR fires the 
AppDomain’s UnhandledException event and then, if the 
exception occurred in the main thread or in an unmanaged thread, 
terminates the process along with all the AppDomains in it. If no 
callback methods have registered with AppDomain’s 
UnhandledException event and if the process is a CUI 



Table 18-2: Possible Values of DbgJITDebugLaunchSetting  

Value Description 

application, the CLR displays the stack trace to the console. 

2 In this case, no dialog box is displayed to the user and AppDomain’s 
UnhandledException event doesn’t fire. Instead, the CLR just 
spawns the debugger attaching it to the application. 

By default, the CLR terminates the application or offers to spawn a debugger only for an 
application’s main thread or for an unmanaged thread. For manual threads, pool threads, or 
finalizer threads, the CLR just swallows the exception and allows the thread to continue 
running—it doesn’t terminate the process. 

To help with debugging, you might want to know when an unhandled exception occurs in 
any thread. To get this information, just set the top three bytes of the 
DbgJITDebugLaunchSetting registry value to 0xFFFFFF. Use 0, 1, or 2 from Table 18-2 
for the bottom-most byte. 

 
Note  

In my opinion, Microsoft should check the registry value only if no callback 
method is registered with AppDomain’s UnhandledException event. 
Currently, when an unhandled exception occurs, the CLR examines the 
bottom-most byte of the DbgJITDebugLaunchSetting registry value. If 
this byte contains 0 or 2, the user is presented with the CLR’s dialog box or 
the debugger just starts running—this happens even if the application has 
registered a callback method with AppDomain’s UnhandledException 
event. In the future, I’d like to see the CLR consider an exception unhandled 
only if no method is registered with AppDomain’s UnhandledException 
event. 

Unhandled Exceptions and Windows Forms 

In a Windows Forms application, the System.Windows.Forms.Application class has a 
static Run method that’s responsible for the thread’s message loop. This loop dispatches 
window messages to a private method defined by the 
System.Windows.Forms.NativeWindow type. This method simply sets up a try/catch 
block and inside the try block, the protected WndProc method is called. 

If a System.Exception-derived unhandled exception occurs while processing a window 
message, the catch block calls the window type’s virtual OnThreadException method 
(passing it the exception object). System.Windows.Forms.Control type’s 
implementation of OnThreadException ends up calling Application’s 
OnThreadException. By default, this method displays a dialog box like the one shown in 
Figure 18-3. 



 
Figure 18-3 : An unhandled exception in a window procedure causes Windows Forms 
to display this dialog box.  

This dialog box appears when a window procedure has an unhandled CLS-compliant 
exception, notifying the user that an unhandled exception has occurred and giving the user 
the option of ignoring the window message and continuing to run or killing (quitting) the 
application. If the user ignores the exception, the application will continue running, but it has 
probably been corrupted and will behave unpredictably at this point. If the application 
processes a data file, the user should save the work to a new file. 

Then the user should exit the application and restart it. Once restarted, the user should load 
the new file and check it to make sure it’s not corrupted. If it is corrupted, then any new work 
would have been lost but the user can go back to the original file and make the changes 
again. If the new file seems OK, then the user can continue editing it and at some point 
delete the original file or keep it as a backup. 

You can override the built-in dialog box by defining a method that matches the 
System.Threading.ThreadExceptionEventHandler delegate (defined in the 
System.dll assembly) and then registering your method with the Application type’s static 
ThreadException event.  

 
Note  

I think it’s sad that this event didn’t mimic the names and behavior of 
AppDomain’s UnhandledException event; that is, Application’s event 
should have been called UnhandledException instead of 
ThreadException and it should have used the 
UnhandledExceptionEventHandler delegate instead. 

You might have realized by now that Windows Forms deals only with CLS-compliant 
exceptions; non-CLS-compliant exceptions continue to propagate outside the thread’s 
message loop and up the call stack. So if you want to display or log both CLS-compliant and 
non-CLS-compliant exceptions, you must define two callback methods and register one with 
the Application type’s ThreadException event and register the other with AppDomain 
type’s UnhandledException event. 

As I explained, the behavior of NativeWindow’s internal method is to catch all CLS-
compliant exceptions and display a dialog box or call any callback method that you’ve 
registered with the ThreadException event. However, some situations can change this 
default behavior. First, if a debugger is attached to your Windows Forms application, any 
unhandled exception thrown from a window procedure isn’t caught and the exception is 



allowed to propagate up the call stack. Second, if a JIT debugger is installed and if the 
jitDebugging configuration setting is specified in the application’s XML .config file, then 
again, the exception isn’t caught and the exception is allowed to propagate up the call stack. 

Unhandled Exceptions and ASP.NET Web Forms 

ASP.NET executes any of your Web Forms code inside its own try block. If your code 
throws an unhandled exception, ASP.NET catches the exception and determines how to 
handle it. ASP.NET offers a few mechanisms that you can use to receive a notification when 
an unhandled exception occurs. First, you can define a callback method that will get called 
when a particular Web page experiences an unhandled exception. You register the callback 
method using the Error event offered by the System.Web.UI.TemplateControl class; 
this class is the base class of the System.Web.UI.Page and 
System.Web.UI.UserControl classes. 

In addition to allowing you to receive notifications of unhandled exceptions for a specific 
page, ASP.NET also lets you register a callback method that will receive notifications of 
unhandled exceptions on any page in your Web Forms application. You register the 
application-wide callback method using the Error event offered by the 
System.Web.HTTPApplication class. You typically add this code to your Global.asax 
file. 

ASP.NET also offers tracing options that dump stack traces for unhandled exceptions out to 
a Web page to help you detect problems and correct your code. For more details on 
ASP.NET and exceptions, consult the .NET Framework SDK documentation. 

Unhandled Exceptions and ASP.NET XML Web Services 

For ASP.NET XML Web services, the unhandled exception story is easy. When your XML 
Web service’s method throws an unhandled exception, ASP.NET catches the exception and 
throws a new System.Web.Services.Protocols.SoapException object. A 
SoapException object is serialized into XML, representing a SOAP fault. This SOAP fault 
XML can be parsed and understood by any machine acting as an XML Web service client. 
This allows for XML Web service client/server interoperability. 

If the client is a .NET Framework client, the SOAP fault XML is deserialized into a 
SoapException object and this new object is thrown in the client’s thread. The client code 
can now catch this exception and proceed any way it chooses. 

 
Exception Stack Traces 

As I mentioned earlier, the System.Exception type offers a public, read-only 
StackTrace property. An exception filter or a catch block can read this property to obtain 
the stack trace indicating what events occurred up to the exception. This information can be 
extremely valuable when you’re trying to detect the cause of an exception so that you can 
correct your code. In this section, I’ll discuss some issues related to the stack trace that 
aren’t immediately obvious. 

The Exception type’s StackTrace property is magical. When you access this property, 
you’re actually calling into code in the CLR; the property doesn’t simply return a string. When 
you construct a new object of an Exception-derived type, the StackTrace property is 



initialized to null. If you were to read the property, you wouldn’t get back a stack trace; you 
would get back null. 

When an exception is thrown, the CLR internally records where the throw instruction 
occurred. When a catch filter accepts the exception, the CLR records where the exception 
was caught. If, inside a catch block, you now access the thrown exception object’s 
StackTrace property, the code that implements the property calls into the CLR, which 
builds a string identifying all the methods between the place where the exception was thrown 
and the filter that caught the exception. Note that a catch filter can’t access the stack 
information because it’s not built until after a catch filter accepts the exception.  

 
Important  

When you throw an exception, the CLR resets the starting point for the exception; that is, the 
CLR remembers only the location where the most recent exception object was thrown. The 
following code throws the same exception object that it caught and causes the CLR to reset 
its starting point for the exception: 

void SomeMethod() { 

   try { ... } 
   catch (Exception e) { 

      ? 
      throw e;  // CLR thinks this is where exception originated.

   } 
} 

In contrast, if you rethrow an exception object, the CLR doesn’t reset the stack’s starting 
point. The following code rethrows the same exception object that it caught, causing the CLR 
to not reset its starting point for the exception: 

void SomeMethod() { 
   try { ... } 

   catch (Exception e) { 
      ¤ 

      throw;  // This has no effect on where the CLR thinks 
              // the exception originated.  

   } 
} 

In fact, the only difference between these two code fragments is what the CLR thinks is the 
original location where the exception was thrown. 

The string returned from the StackTrace property doesn’t include any of the methods in 
the call stack that are above the point where the catch filter accepted the exception object. If 
you want the complete stack trace from the top of the thread to the exception handler, you 
can call System.Environment’s static StackTrace method and merge the two strings.  

 
Note  

The FCL also offers a System.Diagnostics.StackTrace type that 
defines some properties and methods that allow a developer to 
programmatically manipulate a stack trace and the frames that make up the 
stack trace. You can construct a StackTrace object using several different 
constructors. Some constructors build a StackTrace object representing 
the frames from the top of the thread to the point where the object is 



constructed. Other constructors initialize the frames of the StackTrace 
object using an Exception-derived object. Calling Environment’s static 
StackTrace property internally constructs a StackTrace object by calling 
the constructor that takes a single Boolean parameter; true is passed for 
this parameter. Environment then builds a string from the StackTrace 
object’s frames. 

If the CLR can find debug symbols for your assemblies, then the string returned by 
Exception’s StackTrace property or Environment’s StackTrace property will include 
source code file pathnames and line numbers. This information is incredibly useful for 
debugging. Unfortunately, the System.Diagnostics.StackTrace- type’s ToString 
method doesn’t support source code file pathnames and line numbers. I hope this bug will 
be fixed in a future version of the .NET Framework. 

Whenever you obtain a stack trace, you might find that some methods in the call stack don’t 
appear in the stack trace. The reason for their absence is that the JIT compiler can inline 
methods to avoid the overhead of calling and returning from a separate method. Many 
compilers (including the C# compiler), offer a /debug command-line switch. When this 
switch is turned on, these compilers embed information into the resulting assembly that tells 
the JIT compiler not to inline any of the assembly’s methods so that stack traces are more 
complete and meaningful to the developer debugging the code.  

 
Note  

The JIT compiler examines the 
System.Diagnostics.DebuggableAttribute custom attribute applied 
to the assembly. Your compiler of choice normally applies this attribute 
automatically. If this attribute has true specified for the 
DebuggableAttribute constructor’s isJITOptimizerDisabled 
parameter, then the JIT compiler won’t inline the assembly’s methods. Using 
the C# compiler’s /debug switch sets this parameter to true. By applying 
the System.Runtime.CompilerServices.MethodImplAttribute 
custom attribute to a method, you can forbid the JIT compiler from inlining 
the method for both debug and release builds. The following method 
definition shows how to forbid the method from being inlined:  

using System.Runtime.CompilerServices; 

? 
class SomeType { 

 
   [MethodImpl(MethodImplOptions.NoInlining)] 

   public void SomeMethod() {  

      ? 
   } 

} 

Remoting Stack Traces 

If a client makes a request of a server and the server code throws an exception, the 
exception object can be marshaled back to the client and rethrown in the client’s thread. This 
capability is cool because the client code can simply react to the server-thrown exception the 
same way that it would react to a client-thrown exception. But what about the stack trace? 



Well, the full stack trace is also marshaled back to the client. If the client were to examine 
the stack trace, the trace would contain all the frames from where the exception was thrown 
(on the server) to where the exception was caught (on the client). This is another neat 
capability: developers building distributed applications can easily detect where problems 
occur and fix them regardless of whether the problem occurred on the client or the server. 

Here is how the server’s stack trace gets marshaled back to the client. When an 
Exception-derived object is serialized, the stack trace information is serialized as a string. 
When the object is deserialized, the new Exception-derived object saves the string in a 
private field. From now on, when you request the StackTrace property on this new object, 
the string returned contains the stack from the point where the exception is caught to the 
point where the new exception object was thrown. Appended to this string is the string from 
the internal field. In other words, the string returned from the StackTrace property contains 
the complete trace from where the server originally threw the exception to the point where 
the client catches the exception. 

 
Debugging Exceptions 

The Microsoft Visual Studio .NET debugger offers special support for exceptions. To access 
this support, choose the Debug.Exceptions menu item and you’ll see the dialog box shown 
in Figure 18-4. 

 
Figure 18-4 : Visual Studio .NET Exceptions dialog box showing the different kinds of 
exceptions  

This dialog box shows the different kinds of exceptions that Visual Studio is aware of: 
§ C++ Exceptions  For working with unmanaged C++ exceptions. 
§ Common Language Runtime Exceptions  For working with managed exceptions, the 

focus of this chapter. 



§ Native Run-Time Checks  For working with a new feature offered by the unmanaged 
Microsoft Visual C++ compiler. Only useful when you’re compiling the code with the 
/RTC compiler switch. 

§ Win32 Exceptions  For working with Windows unmanaged 32-bit exception codes.  

For Common Language Runtime Exceptions, expanding the corresponding branch in the 
dialog box, as in Figure 18-5, shows the set of namespaces that the Visual Studio debugger 
is aware of. 

 
Figure 18-5 : Visual Studio .NET Exceptions dialog box showing CLR exceptions by 
namespace  

If you expand a namespace, you’ll see all the System.Exception-derived types defined 
within that namespace. For example, Figure 18-6 shows what you’ll see if you open the 
System namespace. 



 
Figure 18-6 : Visual Studio .NET Exceptions dialog box showing CLR exceptions 
defined in the System namespace  

After selecting an exception type, you can tell the debugger what you want it to do as soon 
as the exception is thrown: 
§ Break Into The Debugger  Tells the debugger to notify you as soon as the exception 

is thrown. The CLR hasn’t tried to walk up the call stack yet looking for any catch filters. 
This option is useful if you want to debug your code that catches and handles an 
exception. 

§ Continue  Tells the debugger not to notify you as soon as the exception is thrown. The 
CLR will walk up the call stack looking for a catch filter that accepts the exception. If a 
catch block handles the exception, the debugger will never notify you that the 
exception occurred. This option is the most common one to select because a handled 
exception indicates that the application anticipated the situation and dealt with it; the 
application continues running normally. If no exception filter accepts the exception 
object, an unhandled exception occurs. In this case, the debugger will notify you of the 
unhandled exception even if the Continue option is selected.  

§ Use Parent Setting  Tells the debugger to use the setting associated with the parent 
node in the tree. In my opinion, this setting is meaningless as is. It’s unlikely that you’d 
ever want to choose Break Into The Debugger or Continue for all exception types in a 
namespace. What Microsoft should have done was show the exception type hierarchy, 
not the namespace hierarchy. If this dialog box showed the exception type hierarchy, 
this setting would make some sense: I could choose a setting for 
ArgumentException, and the exception types derived from it 
(ArgumentNullException, ArgumentOutOfRangeException, and 
DuplicateWaitObjectException) could inherit this setting. This way I could break 
into the debugger whenever any of these related exception types were thrown. 

At the bottom of the dialog box in Figure 18-6, you can tell the debugger how to behave 
when an unhandled exception is encountered. Here are the options: 
§ Break Into The Debugger  Tells the debugger to notify you that an unhandled 

exception occurred and allows you to debug the application code. For managed 



application, this is by far the most useful option. In fact, this is the only option I’d ever 
choose. 

§ Continue  For managed applications, tells the debugger to let the application die. In 
other words, the debugger won’t present you a notification of the unhandled exception; 
the application will just terminate. When debugging a managed application, this option is 
useless because you’re typically debugging the application in order to fix unhandled 
exceptions, not to ignore them. However, if you’re debugging a script code (in Internet 
Explorer or some other HTML host), then the script code stops executing, the error is 
reported to the host, and the host can keep running. 

§ Use Parent Setting  Tells the debugger to use the setting associated with the parent 
node in the tree. Again, because the tree shows the namespace hierarchy instead of the 
type hierarchy, this option isn’t that useful. 

If you define your own exception types, you can add them to this dialog box by selecting the 
Common Language Runtime Exceptions node and clicking the Add button. This causes the 
dialog box in Figure 18-7 to appear. 

 
Figure 18-7 : Making Visual Studio .NET aware of your own exception type  

In this dialog box, you can enter the fully qualified name of your own exception type. Note 
that the type you enter doesn’t have to be a type derived from System.Exception; non-
CLS-compliant types are fully supported. If you have two or more types with the same name 
but in different assemblies, there is no way to distinguish the types from one another. 
Fortunately, this situation rarely happens. 

If your assembly defines several exception types, you must add them one at a time. In the 
future, I’d like to see this dialog box allow me to browse for an assembly and automatically 
import all Exception-derived types into Visual Studio’s debugger. Each type could then be 
identified by assembly as well, which would fix the problem of having two types with the 
same name in different assemblies. 

In addition, it might be nice if this dialog box also allowed me to individually select types not 
derived from Exception so that I could add any non-CLS-compliant exceptions that I might 
define. However, non-CLS-compliant exception types are strongly discouraged, so this isn’t 
a must-have feature. 

Telling Visual Studio What Kind of Code to Debug 

When using Visual Studio to debug an application, you must tell the debugger what kind of 
code you want to debug. When you attach the Visual Studio debugger to a process, it 
displays the dialog box shown in Figure 18-8. 



 
Figure 18-8 : Attaching Visual Studio .NET’s debugger to a process  

Now let me explain what it means to debug the different kinds of code:  
§ Common Language Runtime  Allows you to debug managed code. The debugger 

shows managed symbols and stack traces. If this option isn’t checked, the debugger 
won’t show any symbols for managed code, making it very tedious to step through 
managed code. 

§ Microsoft T-SQL  Allows you to debug T-SQL procedures stored in a SQL server 
database. 

§ Native  Allows you to debug unmanaged code. The debugger shows unmanaged 
symbols and stack traces. If your managed application uses unmanaged code but you 
don’t need to debug the unmanaged code, you should make sure that this option isn’t 
checked. With this option off, single-stepping through the managed portion of your code 
will be much faster and unmanaged threads aren’t suspended when a breakpoint is hit. 
If a thread is executing unmanaged code, it continues to run. 

With this option turned on, detaching the debugger from the process is possible only on 
Windows XP and Windows .NET Server platforms. With this option turned off, the 
debugger can detach from a process on any Windows platform. 

§ Script  Allows you to debug scripting code executing within a host such as Internet 
Explorer. 

The only time you should check both Common Language Runtime and Native is when you’re 
debugging the portions of your code that interoperate between managed and unmanaged 
code (P/Invoke and COM interoperability). Doing both managed and unmanaged debugging 
causes single-stepping to be quite slow. In addition, the debugger can’t be detached 
regardless of the version of Windows you’re running.  

You should also be aware that the debugger sometimes loses control of the application 
when stepping over a managed/unmanaged transition. In other words, you might try to single 
step over a transition and the thread might just start running (or possibly hang). Most of the 
time, stepping over these transitions works fine, but occasionally it doesn’t. The loss of 
control occurs because of decisions made in the CLR team to favor performance over 
“accurate debugging.” 



For a Visual Studio project, you can also indicate what kinds of code you want to debug. You 
do this by displaying the property page dialog box for the project. Figure 18-9 shows the 
property page for a C# console application project. Because the project is a C# project, 
Visual Studio assumes that you always want to debug managed code. Using this dialog box, 
I could enable unmanaged debugging and/or SQL debugging. 

 
Figure 18-9 : Selecting the kind of code I want to debug for my project  

 



Chapter 19: Automatic Memory Management 
(Garbage Collection) 
In this chapter, I’ll discuss how managed applications construct new objects, how the 
managed heap controls the lifetime of these objects, and how the memory for these objects 
gets reclaimed. In short, I’ll explain how the .NET Framework’s garbage collector works and 
various performance issues related to it. 

Understanding the Basics of Working in a Garbage-Collected 
Platform 

Every program uses resources of one sort or another, be they files, memory buffers, screen 
space, network connections, database resources, and so on. In fact, in an object-oriented 
environment, every type identifies some resource available for a program’s use. To use any 
of these resources requires that memory be allocated to represent the type. The following 
steps are required to access a resource: 

1. Allocate memory for the type that represents the resource by calling the intermediate 
language’s newobj instruction, which is emitted when you use the new operator in 
C#, Microsoft Visual Basic, and other programming languages. 

2. Initialize the memory to set the initial state of the resource and to make the resource 
usable. The type’s constructor is responsible for setting this initial state. 

3. Use the resource by accessing the type’s members (repeating as necessary). 
4. Tear down the state of a resource to clean up. I’ll address this topic in the section “The 

Dispose Pattern: Forcing an Object to Clean Up” later in this chapter. 
5. Free the memory. The garbage collector is solely responsible for this step.  

This seemingly simple paradigm has been one of the major sources of programming errors. 
How many times have programmers forgotten to free memory when it is no longer needed? 
How many times have programmers attempted to use memory after it had already been 
freed? 

These two application bugs are worse than most others because you usually can’t predict 
the consequences or the timing of them. For other bugs, when you see your application 
misbehaving, you just fix the problem. But these two bugs cause resource leaks (memory 
consumption) and object corruption (destabilization), making the application perform 
unpredictably—and at unpredictable times. In fact, there are many tools (such as the 
Microsoft Windows Task Manager, the System Monitor ActiveX Control, NuMega 
BoundsChecker from Compuware, and Rational’s Purify) specifically designed to help 
developers locate these types of bugs. 

Proper resource management is very difficult and quite tedious. It distracts developers from 
concentrating on the real problems they’re trying to solve. It would be wonderful if some 
mechanism existed that simplified the mind-numbing memory management task for 
developers. Fortunately, there is: garbage collection. 

Garbage collection completely absolves the developer from having to track memory usage 
and know when to free memory. However, the garbage collector doesn’t know anything 
about the resource represented by the type in memory, which means that a garbage 
collector can’t know how to perform step 4 in the preceding list: tear down the state of a 
resource to clean up. To get a resource to clean up properly, the developer must write code 
that knows how to properly clean up a resource. The developer writes this code in 
Finalize, Dispose, and Close methods, as described later in this chapter. However, as 
you’ll see, the garbage collector can offer some assistance here too, allowing developers to 
skip step 4 in many circumstances. 



Also, most types, such as Int32, Point, Rectangle, String, ArrayList, and 
SerializationInfo, represent resources that don’t require any special cleanup. For 
example, a Point resource can be completely cleaned up simply by destroying its x and y 
fields maintained in the object’s memory. 

On the other hand, a type that represents (or wraps) an unmanaged (operating system) 
resource, such as a file, a database connection, a socket, a mutex, a bitmap, an icon, and so 
on, always requires the execution of some cleanup code when the object is to be destroyed. 
In this chapter, I’ll explain how to properly define types that require explicit cleaning up, and 
I’ll also show you how to properly use types that offer this explicit cleanup. For now, let’s 
examine how memory is allocated and how resources are initialized.  

The common language runtime (CLR) requires that all resources be allocated from a heap 
called the managed heap. This heap is similar to a C-runtime heap except that you never 
free objects from the managed heap—objects are automatically freed when the application 
no longer needs them. This, of course, raises the question, “How does the managed heap 
know when the application is no longer using an object?” I’ll address this question shortly. 

Several garbage collection algorithms are in practice today. Each algorithm is fine-tuned for 
a particular environment to provide the best performance. In this chapter, I’ll concentrate on 
the garbage collection algorithm used by the Microsoft .NET Framework’s CLR. Let’s start 
off with the basic concepts. 

When a process is initialized, the CLR reserves a contiguous region of address space that 
initially contains no backing storage. This address space region is the managed heap. The 
heap also maintains a pointer, which I’ll call NextObjPtr. This pointer indicates where the 
next object is to be allocated within the heap. Initially, NextObjPtr is set to the base 
address of the reserved address space region. 

The newobj intermediate language (IL) instruction creates an object. Many languages 
(including C# and Visual Basic) offer a new operator, which causes the compiler to emit a 
newobj instruction into the method’s IL code. The newobj instruction causes the CLR to 
perform the following steps: 

1. Calculate the number of bytes required for the type’s (and all its base type’s) fields. 
2. Add the bytes required for an object’s overhead. Each object has two overhead fields: 

a method table pointer and a SyncBlockIndex. On a 32-bit system, each of these 
fields requires 32 bits, adding 8 bytes to each object. On a 64-bit system, each is 64 
bits, adding 16 bytes to each object. 

3. The CLR then checks that the bytes required to allocate the object are available in the 
reserved region (committing storage if necessary). If the object fits, it is allocated at 
the address pointed to by NextObjPtr. The type’s constructor is called (passing 
NextObjPtr for the this parameter), and the newobj IL instruction (or the new 
operator) returns the address of the object. Just before the address is returned, 
NextObjPtr is advanced past the object and indicates the address where the next 
object will be placed in the heap. 

Figure 19-1 shows a managed heap consisting of three objects: A, B, and C. If a new object 
were to be allocated, it would be placed where NextObjPtr points (immediately after object 
C). 



 
Figure 19-1 : Newly initialized managed heap with three objects 
constructed in it  

By contrast, let’s look at how the C-runtime heap allocates memory. In a C-runtime heap, 
allocating memory for an object requires walking through a linked list of data structures. 
Once a large enough block is found, that block is split and pointers in the linked-list nodes 
are modified to keep everything intact. For the managed heap, allocating an object simply 
means adding a value to a pointer—this is blazingly fast by comparison. In fact, allocating an 
object from the managed heap is nearly as fast as allocating memory from a thread’s stack! 
In addition, most heaps (like the C-runtime heap) allocate objects wherever they find free 
space. Therefore, if I create several objects consecutively, it’s quite possible that these 
objects will be separated by megabytes of address space. In the managed heap, however, 
allocating several objects consecutively ensures that the objects are contiguous in memory. 

In many applications, objects allocated around the same time tend to have strong 
relationships to each other and are frequently accessed around the same time. For example, 
it’s very common to allocate a FileStream object immediately followed by a 
BinaryWriter object. Then the application would use the BinaryWriter object, which 
internally uses the FileStream object. In a garbage-collected environment, new objects 
are allocated contiguously in memory, providing performance gains resulting from locality of 
reference. Specifically, this means that your process’s working set will be smaller, and it’s 
also likely that the objects your method is using can all reside in the CPU’s cache. Your 
application will access these objects with phenomenal speed because the CPU will be able 
to perform most of its manipulations without having cache misses forcing RAM access. 

So far, it sounds like the managed heap is far superior to the C-runtime heap because of its 
simplicity of implementation and speed. But there’s one little detail you should know about 
before getting too excited. The managed heap gains these advantages because it makes 
one really big assumption: that address space and storage are infinite. Obviously, this 
assumption is ridiculous, and the managed heap must employ a mechanism that allows it to 
make this assumption. This mechanism is the garbage collector. Here’s how it works. 

When an application calls the new operator to create an object, there might not be enough 
address space left in the region to allocate to the object. The heap detects this lack of space 
by adding the bytes the object requires to the address in NextObjPtr. If the resulting value 
is beyond the end of the address space region, the heap is full and a garbage collection 
must be performed.  

 
Important  

What I’ve just said is an oversimplification. In reality, a garbage 
collection occurs when generation 0 is full. Some garbage collectors 
use generations, a mechanism whose sole purpose is to improve 
performance. The idea is that newly created objects are part of a 
young generation, and objects created early in the application’s 
lifecycle are in an old generation. Separating objects into generations 
can allow the garbage collector to collect specific generations instead 
of collecting all the objects in the managed heap. I’ll explain 
generations in more detail later in this chapter. Until then, it’s easiest 
for you to think that a garbage collection occurs when the heap is full. 

 



The Garbage Collection Algorithm 

The garbage collector checks to see whether there are any objects in the heap that are no 
longer being used by the application. If such objects exist, the memory used by these 
objects can be reclaimed. (If no more memory is available in the heap, then new throws an 
OutOfMemoryException exception.) How does the garbage collector know whether or not 
the application is using an object? As you might imagine, this isn’t a simple question to 
answer. 

Every application has a set of roots. A single root is a storage location containing a memory 
pointer to a reference type. This pointer either refers to an object in the managed heap or is 
set to null. For example, all global or static reference type variables are considered roots. 
In addition, any reference type local variable or parameter variable on a thread’s stack is 
also considered a root. Finally, within a method, a CPU register that refers to a reference 
type object is also considered a root. 

When the JIT compiler compiles a method’s IL, in addition to producing the native CPU 
code, the JIT compiler also creates an internal table. Logically, each entry in the table 
indicates a range of byte offsets in the method’s native CPU instructions, and for each 
range, a set of memory addresses (or CPU registers) that contain roots. For example, the 
table could logically look like Table 19-1.  

Table 19-1: Sample of a JIT CompilerÐProduced Table Showing Mapping of Native 
Code Offsets to a Method’s Roots  

Starting Byte Offset Ending Byte Offset Roots 

0x00000000 0x00000020 this, arg1, arg2, ECX, 
EDX  

0x00000021 0x00000122 this, arg2, fs, EBX  

0x00000123 0x00000145 fs  

If a garbage collection were to start while code was executing between offset 0x00000021 
and 0x00000122 in the method, then the garbage collector would know that the objects 
referred to by the this parameter, arg2 parameter, fs local variable, and the EBX register 
were all roots and refer to objects in the heap that shouldn’t be considered garbage. In 
addition, the garbage collector can walk up the thread’s call stack and determine the roots 
for all the calling methods by examining each method’s internal table. The garbage collector 
uses other means to obtain the set of roots stored in global and static reference type 
variables. 

 
Note  

In Table 19-1, notice that the method’s arg1 argument isn’t referred to after 
the CPU instruction at offset 0x00000020. This means that the object arg1 
refers to can be collected anytime after this instruction executes (assuming 
that there are no other roots in the application that also refer to this object). 
In other words, as soon as an object becomes unreachable, it is a candidate 
for collection—objects aren’t guaranteed to live throughout a method’s 
lifetime. 

However, when an application is running under a debugger or when an 
assembly contains the System.Diagnostics.DebuggableAttribute 
attribute with its constructor’s isJITOptimizerDisabled parameter set 
to true, the JIT compiler extends the life of all variables (value type and 
reference type) until the end of their scope, which is usually the end of the 



method. (By the way, Microsoft’s C# compiler offers a /debug command-
line switch that adds the DebuggableAttribute attribute to the assembly, 
setting the isJITOptimizerDisabled parameter to true.) This 
extension prevents a garbage collection from collecting reference objects 
while executing the code in the scope and is useful when you’re debugging 
your code. It would be very odd if you called an object’s method, got the 
wrong result, and then couldn’t even look at the object!  

When the garbage collector starts running, it makes the assumption that all objects in the 
heap are garbage. In other words, it assumes that none of the application’s roots refer to any 
objects in the heap. The garbage collector then starts walking the roots, building a graph of 
all reachable objects. For example, the garbage collector might locate a global variable that 
points to an object in the heap. Figure 19-2 shows a heap with several allocated objects 
where the application’s roots refer directly to objects A, C, D, and F. All these objects 
become part of the graph. When adding object D, the garbage collector notices that this 
object refers to object H and also adds object H to the graph. The garbage collector 
continues to walk through all reachable objects recursively. 

 
Figure 19-2 : Managed heap before a collection  

Once this part of the graph is complete, the garbage collector checks the next root and walks 
the objects again. As the garbage collector walks from object to object, if it attempts to add 
an object to the graph that it previously added, it can stop walking down that path. This 
behavior serves two purposes. First, performance is enhanced significantly because the 
garbage collector doesn’t walk through a set of objects more than once. Second, infinite 
loops are prevented should you have any circular linked lists of objects. 

Once all the roots have been checked, the garbage collector’s graph contains the set of all 
objects that are somehow reachable from the application’s roots; any objects that aren’t in 
the graph aren’t accessible by the application and are therefore garbage. The garbage 
collector now traverses the heap linearly looking for contiguous blocks of garbage objects 
(now considered free space). If small blocks are found, the garbage collector leaves the 
blocks alone.  

If large free contiguous blocks are found, however, the garbage collector shifts the 
nongarbage objects down in memory (using the standard memcpy function that you’ve 
known for years) to compact the heap. Naturally, moving the objects in memory invalidates 
all pointers to the objects. So the garbage collector must modify the application’s roots so 
that the roots point to the objects’ new locations. In addition, if any object contains a pointer 
to another object, the garbage collector is responsible for correcting these pointers as well. 
After the heap memory is compacted, the managed heap’s NextObjPtr pointer is set to 
point just after the last nongarbage object. Figure 19-3 shows the managed heap after a 
collection. 



 
Figure 19-3 : Managed heap after a collection  

As you can see, a garbage collection generates a considerable performance hit, which is the 
major downside of using a managed heap. But keep in mind that garbage collections occur 
only when generation 0 is full, and until then, the managed heap is significantly faster than a 
C-runtime heap. Finally, the CLR’s garbage collector offers some optimizations that greatly 
improve the performance of garbage collection. I’ll discuss these optimizations later in this 
chapter, in the “Generations” and “Other Garbage Collector Performance Issues” sections. 

As a programmer, you should take away a couple important points from this discussion. To 
start, you no longer have to implement any code that manages the lifetime of objects your 
application uses. And notice how the two bugs described at the beginning of this chapter no 
longer exist. First, it’s not possible to leak objects because any object not accessible from 
your application’s roots can be collected at some point. Second, it’s not possible to access 
an object that is freed because the object won’t be freed if it is reachable, and if it’s not 
reachable, your application has no way to access it.  

The following code demonstrates how objects are allocated and managed: 

class App { 
   static void Main() { 

 
      // ArrayList object created in heap, a is now a root. 

      ArrayList a = new ArrayList(); 
 

      // Create 10000 objects in the heap. 
      for (Int32 x = 0; x < 10000; x++) { 

         a.Add(new Object());   // Object created in heap 
      } 

 
      // Right now, a is a root (on the thread’s stack). So a is  

      // reachable and the 10000 objects it refers to are reachab
le. 
      Console.WriteLine(a.Length); 

 
      // After a.Length returns, a isn’t referred to in the code 
and is no 
      // longer a root. If another thread were to start a garbage
 collection 



      // before the result of a.Length were passed to WriteLine, 
the 10001 
      // objects would have their memory reclaimed. 

 
      Console.WriteLine("End of method"); 

   } 
} 

 
Note  

If garbage collection is so great, you might be wondering why it isn’t in ANSI 
C++. The reason is that a garbage collector must be able to identify an 
application’s roots and must also be able to find all object pointers. The 
problem with unmanaged C++ is that it allows casting a pointer from one 
type to another, and there’s no way to know what a pointer refers to. In the 
CLR, the managed heap always knows the actual type of an object and 
uses the metadata information to determine which members of an object 
refer to other objects. 

 

Finalization 

At this point, you should have a basic understanding of garbage collection and the managed 
heap, including how the garbage collector reclaims an object’s memory. Fortunately for us, 
most types only need memory to operate. For example, the Int32, Point, Rectangle, 
String, and ArrayList types are really just types that manipulate bytes in memory. 
However, some types require more than just memory to be useful.  

The System.IO.FileStream type, for example, needs to open a file and save the file’s 
handle. Then the type’s Read and Write methods use this handle to manipulate the file. 
Similarly, the System.Threading.Mutex type opens a Windows mutex kernel object and 
saves its handle, using it when the Mutex’s methods are called. 

Any type that wraps an unmanaged resource, such as a file, network connection, socket, 
mutex, and so on, must support finalization. Finalization allows a resource to gracefully clean 
up after itself when it is being collected. Basically, the type implements a method named 
Finalize. When the garbage collector determines that an object is garbage, it calls the 
object’s Finalize method (if it exists). The Finalize method is usually implemented to 
call CloseHandle, passing in the handle of the unmanaged resource. Because 
FileStream defines a Finalize method, every FileStream object is guaranteed to 
have its unmanaged resource freed when the managed object is freed. If a type that wraps 
an unmanaged resource fails to define a Finalize method, the unmanaged resource won’t 
be closed and will be a resource leak that exists until the process terminates, at which point, 
the operating system will reclaim the unmanaged resources.  

The following OSHandle type demonstrates how to define a type that wraps an unmanaged 
resource. When the garbage collector determines that the object is garbage, it calls the 
Finalize method, which in turn calls the Win32 CloseHandle function, ensuring that the 
unmanaged resource is freed. The OSHandle class can also be used for any unmanaged 
resource that is freed by calling CloseHandle. If you’re working with some unmanaged 
resource that requires a different function to clean it up, you’d have to modify the Finalize 
method accordingly.  

public sealed class OSHandle { 
 



   // This field holds the Win32 handle of the unmanaged resource
. 
   private IntPtr handle; 

 
   // This constructor initializes the handle. 

   public OSHandle(IntPtr handle) {  
      this.handle = handle;  

   } 
 

   // When garbage collected, the Finalize method, which  
   // will close the unmanaged resource’s handle, is called. 

   protected override void Finalize() {  
      try { 

         CloseHandle(handle); 
      } 

      finally { 
         base.Finalize(); 

      } 
   } 

 
   // Public method returns the value of the wrapped handle 

   public IntPtr ToHandle() { return handle; } 
 

   // Public implicit cast operator returns the value of the wrap
ped handle 
   public static implicit operator IntPtr(OSHandle osHandle) { 

      return osHandle.ToHandle(); 
   } 

 
   // Private method called to free the unmanaged resource 

   [System.Runtime.InteropServices.DllImport("Kernel32")] 
   private extern static Boolean CloseHandle(IntPtr handle); 

} 

When an OSHandle object is garbage collected, the garbage collector will call its Finalize 
method. This method will perform any required cleanup operations and then call the base 
type’s Finalize method so that it has a chance to perform any cleanup that the base type 
finds necessary. The call to the base type’s Finalize method is inside a finally block. 
This ensures that it gets called even if OSHandle’s cleanup code throws an exception for 
some reason. In this example, System.Object’s Finalize method gets called. Object’s 
Finalize method does nothing except return, so you could omit the exception handling 
code and the call to base.Finalize from the preceding code to improve performance 
without losing any "correctness." 



The C# compiler won’t actually compile the previous source code. The C# compiler team 
found that many developers code their Finalize methods improperly. Specifically, many 
developers forget to use exception handling and also forget to call the base type’s 
Finalize method. To make things easier for the developer, C# offers special syntax to 
define a Finalize method. The following C# code is identical to the preceding code except 
that it will compile because it uses C#’s special syntax to define the Finalize method.  

public sealed class OSHandle { 
 

   // This field holds the Win32 handle of the unmanaged resource
. 
   private IntPtr handle; 

 
   // This constructor initializes the handle. 

   public OSHandle(IntPtr handle) {  
      this.handle = handle;  

   } 
 

   // When garbage collected, the destructor (Finalize) method, w
hich  
   // will close the unmanaged resource’s handle, is called. 

   ~OSHandle() {  
      CloseHandle(handle); 

   } 
 

   // Public method  returns the value of the wrapped handle 
   public IntPtr ToHandle() { return handle; } 

 
   // Public implicit cast operator returns the value of the wrap
ped handle 
   public static implicit operator IntPtr(OSHandle osHandle) { 

      return osHandle.ToHandle(); 
   } 

 
   // Private method called to free the unmanaged resource 

   [System.Runtime.InteropServices.DllImport("Kernel32")] 
   private extern static Boolean CloseHandle(IntPtr handle); 

} 

If you were to compile this code and examine the resulting assembly with ILDasm.exe, you’d 
see that the C# compiler did, in fact, emit a method named Finalize into the module’s 
metadata. If you examined the Finalize method’s IL code, you’d also see that the call to 
CloseHandle was emitted into a try block and that a call to base.Finalize was emitted 
into a finally block. 



To create an instance of the OSHandle object, you’d first have to call a Win32 function that 
returns a handle to an unmanaged resource, such as CreateFile, CreateMutex, 
CreateSemaphore, CreateEvent, socket, CreateFileMapping, and so on. Then 
you’d use C#’s new operator to construct an instance of OSHandle, passing the Win32 
handle to the constructor. 

Sometime in the future, the garbage collector will determine that this object is garbage. 
When that happens, the garbage collector will see that the type has a Finalize method 
and will call the method, allowing CloseHandle to close the unmanaged resource. 
Sometime after Finalize returns, the memory occupied in the managed heap by the 
OSHandle object will be reclaimed.  

 
Important  

If you’re familiar with C++, you’ll notice that the special syntax that C# 
requires for defining a Finalize method looks just like the syntax 
you’d use to define a C++ destructor. In fact, the C# Programming 
Language Specification even calls this method a destructor. However, 
a Finalize method doesn’t work at all like an unmanaged C++ 
destructor.  

I think it was a mistake for the C# compiler team to mimic the C++ 
destructor syntax and to call this method a destructor. Using the 
unmanaged C++ nomenclature has been incredibly confusing to C++ 
programmers who are now adopting C# and the .NET Framework. 
These developers mistakenly believe that using the C# destructor 
syntax means that the type’s objects will be deterministically 
destructed, just as they would be in C++. However, the CLR doesn’t 
support deterministic destruction and therefore C# can’t provide this 
mechanism. In fact, no programming language that supports the CLR 
can offer this. Even if you define a managed type using Microsoft’s 
C++ with Managed Extensions, defining a “destructor” method causes 
the compiler to emit a Finalize method that gets called only when a 
garbage collection occurs. 

Don’t let a language’s destructor syntax fool you—a Finalize 
method gets called only when a garbage collection occurs; it won’t get 
called when a method exits or at the point when the object goes out of 
scope.  

When designing a type, it’s best if you avoid using a Finalize method, for several reasons: 
§ Finalizable objects get promoted to older generations, which increases memory 

pressure and prevents the object’s memory from being collected at the time when the 
garbage collector determines the object is garbage. In addition, all objects referred to 
directly or indirectly by this object get promoted as well. (I’ll talk about generations and 
promotions later in this chapter.) 

§ Finalizable objects take longer to allocate because pointers to them must be placed on 
the finalization list (which I’ll discuss in the “Finalization Internals” section a little later). 

§ Forcing the garbage collector to execute a Finalize method can hurt performance 
significantly. Remember, each object is finalized. So if I have an array of 10,000 objects, 
each object must have its Finalize method called. 

§ A finalizable object can refer to other (finalizable and nonfinalizable) objects, 
prolonging their lifetime unnecessarily. In fact, you might want to consider breaking a 
type into two different types: a lightweight type with a Finalize method that doesn’t 
refer to any other objects (just like the OSHandle type shown earlier) and a separate 
type without a Finalize method that does refer to other objects. 



§ You have no control over when the Finalize method will execute. The object might 
hold on to resources until the next time the garbage collector runs. 

§ The CLR doesn’t make any guarantees as to the order in which Finalize methods 
are called. For example, let’s say an object contains a pointer to another object, which 
I’ll call the inner object. The garbage collector has detected that both objects are 
garbage. Let’s further say that the inner object’s Finalize method gets called first. 
Now, the outer object’s Finalize method is allowed to access the inner object and call 
methods on it, but the inner object has been finalized and the results can be 
unpredictable. For this reason, Microsoft strongly recommends that Finalize methods 
do not access any inner, member objects. The dispose pattern, which I’ll cover later in 
this chapter, offers a way to clean up an object where this restriction doesn’t apply. 

If you determine that your type must implement a Finalize method, then make sure that 
the code executes as quickly as possible. Avoid all actions that would block the Finalize 
method, including any thread synchronization operations. Also, if you let any exceptions 
escape the Finalize method, the CLR swallows the exception and continues calling other 
objects’ Finalize methods. 

 
Note  

By far, the most common reason to implement a Finalize method is to 
free an unmanaged resource that the object itself owns. In fact, during 
finalization, you should avoid writing code that accesses other managed 
objects or managed static methods. You should avoid accessing other 
managed objects because the object’s type can implement a Finalize 
method, which might get called first, putting the object in an unpredictable 
state. You should avoid calling any managed static methods because these 
methods can internally access objects that have been finalized, first causing 
the behavior of the static method to be unpredictable.  

Finalize methods can also be used for other purposes. Here’s a class that causes the 
computer to beep every time the garbage collector performs a collection.  

public sealed class GCBeep { 

   ~GCBeep() { 
      // We’re being finalized, beep. 

      MessageBeep(-1); 
 

      // If the AppDomain isn’t unloading, create a new object 
      // that will get finalized at the next collection. 

      // I’ll discuss IsFinalizingForUnload in the next section. 
      if (!AppDomain.CurrentDomain.IsFinalizingForUnload()) 

         new GCBeep(); 
   } 

 
   [System.Runtime.InteropServices.DllImport("User32.dll")] 

   private extern static Boolean MessageBeep(Int32 uType); 
} 

To use this class, you just need to construct one instance of the class. Then whenever a 
garbage collection occurs, the object’s Finalize method is called, which calls 
MessageBeep and constructs a new GCBeep object. This new GCBeep object will have its 



Finalize method called when the next garbage collection occurs. Here’s a sample 
program that demonstrates the GCBeep class:  

class App { 

   static void Main() { 
      // Constructing a single GCBeep object causes a beep to 

      // occur every time a garbage collection starts. 
      new GCBeep(); 

 
      // Construct a lot of 100-byte objects. 

      for (Int32 x = 0; x < 10000; x++) {  
         Console.WriteLine(x); 

         Byte[] b = new Byte[100]; 
      } 

   } 
} 

Also be aware that a type’s Finalize method is called even if the type’s instance 
constructor throws an exception. So your Finalize method shouldn’t assume that the 
object is in a good, consistent state. The following code demonstrates.  

class TempFile { 

   String filename = null; 
   public FileStream fs; 

 
   public TempFile(String filename) { 

      // The following line might throw an exception. 
      fs = new FileStream(filename, FileMode.Create); 

 
      // Save the name of this file. 

      this.filename = filename; 
   } 

 
   ~TempFile() { 

      // The right thing to do here is to test filename 
      // against null because you can’t be sure that  

      // filename was initialized in the constructor. 
      if (filename != null)  

         File.Delete(filename); 
   } 

} 

Alternatively, you could write the code as follows instead. 

class TempFile { 



   String filename; 
   public FileStream fs; 

 
   public TempFile(String filename) { 

      try { 
         // The following line might throw an exception. 

         fs = new FileStream(filename, FileMode.Create); 
 

         // Save the name of this file. 
         this.filename = filename; 

      } 
      catch { 

         // If anything goes wrong, tell the garbage collector 
         // not to call the Finalize method. I’ll discuss 

         // SuppressFinalize later in this chapter. 
         GC.SuppressFinalize(this); 

 
         // Let the caller know something failed. 

         throw; 
      } 

   } 
 

   ~TempFile() { 
      // No if statement is necessary now because this code 

      // executes only if the constructor ran successfully. 
      File.Delete(filename); 

   } 
} 

What Causes Finalize Methods to Get Called 

Four events cause an object to have its Finalize method called: 
§ Generation 0 is full  This event is by far the most common way for Finalize 

methods to be called because it occurs naturally as the application code runs, allocating 
new objects. 

§ Code explicitly calls System.GC’s static Collect method  Code can explicitly 
request that the CLR perform a collection. Although Microsoft strongly discourages such 
requests, at times it might make sense for an application to force a collection. (I’ll talk 
about this later in the chapter.) 

§ The CLR is unloading an AppDomain  When an AppDomain unloads, the CLR 
considers nothing in the AppDomain to be a root and calls the Finalize method for all 
objects that were created in the AppDomain. I’ll discuss AppDomains in Chapter 20. 



§ The CLR is shutting down  When a process is gracefully terminating, it tries to shut 
down the CLR gracefully as well. At this point, the CLR considers nothing in the process 
to be a root and calls the Finalize method for all objects in the managed heap. 

The CLR uses a special, dedicated thread to call Finalize methods. For the first, second, 
and third events, if a Finalize method enters an infinite loop, this special thread is blocked 
and no more Finalize methods can be called. This is a very bad situation because the 
application will never be able to reclaim the memory occupied by finalizable objects—the 
application will leak memory for as long as it runs. 

For the fourth event, each Finalize method is given approximately 2 seconds to return. If 
a Finalize method doesn’t return within 2 seconds, the CLR just kills the process—no 
more Finalize methods are called. Also, if it takes more than 40 seconds to call all 
objects’ Finalize methods, then again, the CLR just kills the process. 

 
Note  

These timeout values were correct at the time I wrote this text, but Microsoft 
might change them in the future. 

Code in a Finalize method can construct new objects. If this happens during CLR 
shutdown, the CLR continues collecting objects and calling their Finalize methods until no 
more objects exist or until the 40 seconds have expired.  

Recall the GCBeep type presented earlier in this chapter. If a GCBeep object is being 
finalized because of the first or second event, a new GCBeep object is constructed. This is 
OK because the application continues to run, assuming that more collections will occur in the 
future. However, if a GCBeep object is being finalized because of the third or fourth event, a 
new GCBeep object shouldn’t be constructed because this object would be created while the 
AppDomain was unloading or the CLR was shutting down. If these new objects were 
created, the CLR would have a bunch of useless work to do because it would continue to 
call Finalize methods. 

To prevent the construction of new GCBeep objects, GCBeep’s Finalize method contains 
a call to AppDomain’s IsFinalizingForUnload method. This method returns true if the 
object’s Finalize method is being called because of the AppDomain unloading. This 
solution works for AppDomain unloading, but what about CLR shutdown? 

To know whether the CLR is shutting down, Microsoft added the HasShutdownStarted 
read-only property to the System.Environment class. GCBeep’s Finalize method 
should be reading this property and shouldn’t be constructing a new object when the 
property returns true. Unfortunately, GCBeep’s Finalize method doesn’t do this. Why 
not? The reason GCBeep’s Finalize method doesn’t read this property is that the property 
is inaccessible! A Microsoft developer made a mistake and implemented the property as an 
instance property, but the Environment class has only a private constructor, preventing 
you from creating an instance of it. So there’s no way to access this property—what a bad 
bug! I hope Microsoft will fix this in a future version of the .NET Framework Class Library 
(FCL). 

There is no real workaround for this problem. GCBeep’s Finalize method does construct 
new objects during CLR shutdown. The new objects are continuously finalized, and after 40 
seconds, the CLR gives up and terminates the process. 

Finalization Internals 



On the surface, finalization seems pretty straightforward: you create an object; when the 
object is collected, the object’s Finalize method is called. But once you dig in, finalization 
is more complicated than this. 

When an application creates a new object, the new operator allocates the memory from the 
heap. If the object’s type defines a Finalize method, a pointer to the object is placed on 
the finalization list just before the type’s instance constructor is called. The finalization list is 
an internal data structure controlled by the garbage collector. Each entry in the list points to 
an object that should have its Finalize method called before the object’s memory can be 
reclaimed.  

Figure 19-4 shows a heap containing several objects. Some of these objects are reachable 
from the application’s roots, and some are not. When objects C, E, F, I, and J were created, 
the system detected that these objects’ types defined Finalize methods and added 
pointers to these objects to the finalization list. 

 
Figure 19-4 : The managed heap showing pointers in its finalization list  

 
Note  

Even though System.Object defines a Finalize method, the CLR 
knows to ignore it; that is, when constructing an instance of a type, if the 
type’s Finalize method is the one inherited from System.Object, the 
object isn’t considered finalizable. One of the derived types must override 
Object’s Finalize method. 

When a garbage collection occurs, objects B, E, G, H, I, and J are determined to be 
garbage. The garbage collector scans the finalization list looking for pointers to these 
objects. When a pointer is found, the pointer is removed from the finalization list and 
appended to the freachable queue. The freachable queue (pronounced “F-reachable”) is 
another of the garbage collector’s internal data structures. Each pointer in the freachable 
queue identifies an object that is ready to have its Finalize method called. After the 
collection, the managed heap looks like Figure 19-5. 



 
Figure 19-5 : The managed heap showing pointers that moved from the finalization 
list to the freachable queue  

In this figure, you see that the memory occupied by objects B, G, and H has been reclaimed 
because these objects didn’t have a Finalize method that needed to be called. However, 
the memory occupied by objects E, I, and J couldn’t be reclaimed because their Finalize 
methods haven’t been called yet. 

A special high-priority CLR thread is dedicated to calling Finalize methods. A dedicated 
thread is used to avoid potential thread synchronization situations that could arise if one of 
the application’s threads was used instead. When the freachable queue is empty (the usual 
case), this thread sleeps. But when entries appear, this thread wakes, removes each entry 
from the queue, and calls each object’s Finalize method. Because of the way this thread 
works, you shouldn’t execute any code in a Finalize method that makes any assumptions 
about the thread that’s executing the code. For example, avoid accessing thread local 
storage in the Finalize method. 

The interaction between the finalization list and the freachable queue is fascinating. First I’ll 
tell you how the freachable queue got its name. Well, the “f” is obvious and stands for 
“finalization”: every entry in the freachable queue should have its Finalize method called. 
But the "reachable" part of the name means that the objects are reachable. To put it another 
way, the freachable queue is considered a root just as global and static variables are roots. 
So if an object is on the freachable queue, the object is reachable and is not garbage.  

In short, when an object isn’t reachable, the garbage collector considers the object garbage. 
Then when the garbage collector moves an object’s entry from the finalization list to the 
freachable queue, the object is no longer considered garbage and its memory can’t be 
reclaimed. At this point, the garbage collector has finished identifying garbage. Some of the 
objects identified as garbage have been reclassified as not garbage: in a sense, the object 
has become resurrected. The garbage collector compacts the reclaimable memory, and the 
special CLR thread empties the freachable queue, executing each object’s Finalize 
method. 

The next time the garbage collector is invoked, it sees that the finalized objects are truly 
garbage because the application’s roots don’t point to it and the freachable queue no longer 
points to it. The memory for the object is simply reclaimed. The important point to get from all 
of this is that two garbage collections are required to reclaim memory used by objects that 
require finalization. In reality, more than two collections might be necessary because the 
objects get promoted to another generation (which I’ll explain later). Figure 19-6 shows what 
the managed heap looks like after the second garbage collection. 



 
Figure 19-6 : Status of managed heap after second garbage collection  

 

The Dispose Pattern: Forcing an Object to Clean Up 

The Finalize method is incredibly useful because it ensures that unmanaged resources 
aren’t leaked when managed objects have their memory reclaimed. However, the problem 
with the Finalize method is that you have no guarantee when it will be called, and 
because it isn’t a public method, a user of the class can’t call it explicitly.  

The capability to deterministically dispose of or close an object is frequently useful when 
you’re working with unmanaged resources such as mutexes and bitmaps; this capability is 
even more useful when you’re working with files and database connections. For example, 
you might want to open a database connection, query some records, and close the database 
connection—you don’t want the database connection to stay open until the next garbage 
collection occurs, especially because the next garbage collection could occur hours or even 
days after you retrieve the database records. 

Types that offer the capability to be deterministically disposed of or closed implement what is 
known as the dispose pattern. The dispose pattern defines conventions that a developer 
should adhere to when defining a type that wants to offer explicit cleanup to a user of the 
type. In addition, if a type implements the dispose pattern, a developer using the type knows 
exactly how to explicitly dispose of the object when it’s no longer needed. 

 
Note  

Any type that defines a Finalize method should also implement the 
dispose pattern as described in this section so that users of the type have a 
lot of control. However, a type can implement the dispose pattern and not 
define a Finalize method. For example, the System.IO.BinaryWriter 
class falls into this category. I’ll explain the reason for this exception in the 
section "An Interesting Dependency Issue" later in this chapter. 

Earlier, I showed you the OSHandle type. That version of the code implemented a 
Finalize method, so the unmanaged resource that the object wrapped was closed when 
the object was collected. However, a developer using an OSHandle object had no way to 
explicitly close the unmanaged resource—the unmanaged resource got closed only when 
the object got garbage collected.  

The following code shows a new and better version of the OSHandle class. This new 
version implements the well-defined dispose pattern.  

using System; 
 



// Implementing the IDisposable interface signals users of 
// this class that it offers the dispose pattern. 

public sealed class OSHandle : IDisposable { 
 

   // This field holds the Win32 handle of the unmanaged resource
. 
   private IntPtr handle; 

 
   // This constructor initializes the handle. 

   public OSHandle(IntPtr handle) {  
      this.handle = handle;  

   } 
 

   // When garbage collected, this Finalize method, which  
   // will close the unmanaged resource’s handle, is called. 

   ~OSHandle() {  
      Dispose(false);  

   } 
 

   // This public method can be called to deterministically 
   // close the unmanaged resource’s handle. 

   public void Dispose() {  
      // Because the object is explicitly cleaned up, stop the 

      // garbage collector from calling the Finalize method. 
      GC.SuppressFinalize(this);  

 
      // Call the method that actually does the cleanup. 

      Dispose(true);  
   } 

 
   // This public method can be called instead of Dispose. 

   public void Close() {  
      Dispose(); 

   } 
 

   // The common method that does the actual cleanup. 
   // Finalize, Dispose, and Close call this method. 

   // Because this class is sealed, this method is private. 
   // If this class weren’t sealed, this method wouldn’t be prote
cted. 
   private void Dispose(Boolean disposing) { 



      // Synchronize threads calling Dispose/Close simultaneously
. 
      lock (this) { 

         if (disposing) { 
            // The object is being explicitly disposed of/closed,
 not  
            // finalized. It is therefore safe for code in this i
f  
            // statement to access fields that reference other  

            // objects because the Finalize method of these other
 objects  

            // hasn’t yet been called. 
 

            // For the OSHandle class, there is nothing to do in 
here. 
         } 

 
         // The object is being disposed of/closed or finalized. 

         if (IsValid) { 
            // If the handle is valid, close the unmanaged resour
ce. 
            // NOTE: Replace CloseHandle with whatever function i
s  
            // necessary to close/free your unmanaged resource. 

            CloseHandle(handle); 
 

            // Set the handle field to some sentinel value. This 
precaution 

            // prevents the possibility of calling CloseHandle tw
ice. 
            handle = InvalidHandle; 

         } 
      } 

   } 
 

   // Public property to return the value of an invalid handle. 
   // NOTE: Make this property return an invalid value for  

   // whatever unmanaged resource you’re using. 
   public IntPtr  InvalidHandle { get { return IntPtr.Zero; } } 

 
   // Public method to return the value of the wrapped handle 

   public IntPtr ToHandle() { return handle; } 
 



   // Public implicit cast operator returns the value of the wrap
ped handle 
   public static implicit operator IntPtr(OSHandle osHandle) { 

      return osHandle.ToHandle(); 
   } 

 
  

   // Public properties to return whether the wrapped handle is v
alid. 
   public Boolean IsValid   { get { return (handle != InvalidHand
le); }  } 
   public Boolean IsInvalid { get { return !IsValid; } } 
 

   // Private method called to free the unmanaged resource. 
   [System.Runtime.InteropServices.DllImport("Kernel32")] 

   private extern static Boolean CloseHandle(IntPtr handle); 
} 

This OSHandle code is hardly trivial: a lot of code is necessary to support the dispose 
pattern, and this class just wraps a simple unmanaged resource. The good news is that this 
class is almost all you’ll ever need; that is, if you’re designing a type that wraps an 
unmanaged resource, you can pretty much take the OSHandle code and copy it directly into 
your own project as is. In fact, it would be great if Microsoft had incorporated this class into 
the FCL itself. 

Now let me explain what all this code does. First, the OSHandle type implements the 
System.IDisposable interface. This interface is defined in the FCL as follows:  

public interface IDisposable { 

   void Dispose(); 
} 

Any type that implements this interface is stating that it adheres to the dispose pattern. 
Simply put, this means that the type offers a public, parameterless Dispose method that 
can be explicitly called to free the resource wrapped by the object. Note that the memory for 
the object itself is not freed from the managed heap’s memory; the garbage collector is still 
responsible for freeing the object’s memory, and there’s no telling exactly when this will 
happen.  

 
Note  

You might notice that this OSHandle type also offers a public Close 
method. This method simply calls Dispose. Some classes that offer the 
dispose pattern also offer a Close method for convenience; but the dispose 
pattern doesn’t require this method. For example, the 
System.IO.FileStream class offers the dispose pattern, and this class 
also offers a Close method. Programmers find it more natural to "close" a 
file rather than "dispose of" a file. However, the 
System.Threading.Timer class doesn’t offer a Close method even 
though it adheres to the dispose pattern. 



The parameterless Dispose and Close methods should both be public and nonvirtual. 
However, because the Dispose method is implementing a method of an interface, the 
method is virtual by default. So the best you can do is seal the Dispose method. 
Fortunately, when you implement an interface method in C#, the compiler defaults the virtual 
method to public and sealed. But if you’re using a different programming language, you 
should ensure that Dispose is sealed. 

So now you know three ways to clean up an OSHandle object: a programmer can write 
code to call Dispose, a programmer can write code to call Close, or the garbage collector 
can call the object’s Finalize method. The cleanup code is the same no matter which 
option you choose, so it’s placed in a separate, private, nonvirtual method, which is also 
called Dispose; but this Dispose method takes a Boolean parameter, disposing. 

This Dispose method is where you put all the cleanup code. In the OSHandle example, the 
method simply calls the Win32 CloseHandle function and changes the handle field to an 
invalid value. Setting the field to an invalid value ensures that the handle isn’t closed multiple 
times; because the parameterless Dispose and Close methods are public, application 
code could call them multiple times. And because these methods can be called by multiple 
threads simultaneously, the Boolean Dispose method uses C#’s lock statement to ensure 
that the code in the method is thread-safe. 

When an object’s Finalize method is called, the Dispose method’s disposing 
parameter is false. This tells the Dispose method that it shouldn’t execute any code that 
references other managed objects. Imagine that the CLR is shutting down, and inside a 
Finalize method, you attempt to write to a FileStream. This might not work because the 
FileStream might have already had its Finalize method called. 

On the other hand, when Dispose or Close is called, the Dispose method’s disposing 
parameter will be set to true. This indicates that the object is being explicitly disposed of, 
not finalized. In this case, the Dispose method is allowed to execute code that references 
another object (such as a FileStream); because you have control over the program’s logic, 
you know that the FileStream object is still open. 

By the way, if the OSHandle class were not sealed, the Boolean Dispose method would be 
implemented as a protected virtual method instead of a private nonvirtual method. Any class 
that derives from OSHandle would implement the Boolean Dispose method only; it 
wouldn’t implement the parameterless Dispose or Close method, and it wouldn’t 
implement a Finalize method. The derived class would simply inherit the implementation 
of all these methods.  

 
Important  

You need to be aware of some versioning issues here. If, in version 1, 
a base type doesn’t implement the IDisposable interface, it can 
never implement this interface in a later version. If the base type were 
to add the IDisposable interface in the future, all the derived types 
wouldn’t know to call the base type’s methods and the base type 
wouldn’t get a chance to clean itself up properly. Likewise, if, in version 
1, a base type implements the IDisposable interface, it can never 
remove this interface in a later version because the derived type would 
be trying to call methods that no longer existed in the base type.  

In fact, if the derived class didn’t have any cleanup to do itself, it wouldn’t have to do 
anything with respect to the dispose pattern. But if the derived class did need to do some 
cleanup, it would just override the virtual Boolean Dispose method. In this method, you 
would write code to do the necessary explicit cleanup and then call the base class’s Boolean 



Dispose method. Here’s an example of a class that overrides the OSHandle class 
(assuming that OSHandle isn’t sealed):  

class SomeType : OSHandle { 

   // This field holds the Win32 handle of the unmanaged resource
. 
   private IntPtr handle; 

 
   protected override void Dispose(Boolean disposing) { 

      // Synchronize threads calling Dispose/Close simultaneously
. 
      lock (this) { 

         try { 
            if (disposing) { 

               // The object is being explicitly disposed of/clos
ed, not  
               // finalized. It is therefore safe for code in thi
s if  
               // statement to access fields that reference other
  

               // objects because the Finalize method of these ot
her  
               // objects hasn’t been called. 

 
               // For this class, there is nothing to do in here. 

            } 
 

            // The object is being disposed of/closed or finalize
d. 
            if (IsValid) { 

               // If the handle is valid, close the unmanaged res
ource. 
               // NOTE: Replace CloseHandle with whatever functio
n is  
               // necessary to close/free your unmanaged resource
. 
               CloseHandle(handle); 
 

               // Set the handle field to some sentinel value. Th
is precaution 
               // prevents the possibility of calling CloseHandle
 twice. 
               handle = InvalidHandle; 
            } 

         } 



         finally { 
            // Let the base class do its cleanup. 

            base.Dispose(disposing); 
         } 

      } 
   } 

} 

Another noteworthy part of this code is the call to GC’s static Suppress-Finalize method 
inside the parameterless Dispose method. You see, if code using an OSHandle object 
explicitly calls Dispose or Close, the object’s Finalize method should not execute. For if 
Finalize didn’t execute, CloseHandle would be called multiple times. The call to GC’s 
SuppressFinalize turns on a bit flag associated with the object referred to by this. 
When this flag is on, the CLR knows not to move this object’s pointer from the finalization list 
to the freachable queue, preventing the object’s Finalize method from being called. When 
the garbage collector determines the object to be garbage, its memory is simply reclaimed. 

Using a Type That Implements the Dispose Pattern 

Now that you know how a type implements the dispose pattern, let’s take a look at how a 
developer uses a type that offers the dispose pattern. Instead of talking about the OSHandle 
class, let’s talk about the more common System.IO.FileStream class. The FileStream 
class offers the ability to open a file, read bytes from the file, write bytes to the file, and close 
the file. Internally, the FileStream class is implemented identically to the OSHandle class 
except that its constructor calls the Win32 CreateFile function and the result is saved in 
the private handle field. The FileStream class also offers several additional properties 
(such as Length, Position, CanRead, Handle, and so on) and methods (such as Read, 
Write, Flush, and so on).  

Let’s say you want to write some code that creates a temporary file, writes some bytes to the 
file, and then deletes the file. You might start writing the code like this: 

using System; 
using System.IO; 

 
class App { 

   static void Main() { 
      // Create the bytes to write to the temporary file. 

      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 
 

      // Create the temporary file. 
      FileStream fs = new FileStream("Temp.dat", FileMode.Create)
; 
 
      // Write the bytes to the temporary file. 

      fs.Write(bytesToWrite, 0, bytesToWrite.Length); 
 



      // Delete the temporary file. 
      File.Delete("Temp.dat");  // Throws an IOException 

   } 
} 

Unfortunately, if you build and run this code, it might work, but most likely it won’t. The 
problem is that the call to File’s static Delete method requests that Windows delete a file 
that is open. And so, Delete throws a System.IO.IOException exception with the 
following string message: "The process cannot access the file "Temp.dat" because it is being 
used by another process." 

Be aware that in some cases, the file might actually get deleted! If, somehow, another thread 
caused a garbage collection to start after the call to Write and before the call to Delete, 
the FileStream object would get its Finalize method called, which would close the file 
and allow Delete to work. The likelihood of this situation is extremely rare, however, and 
the previous code will fail more than 99 percent of the time. 

Fortunately, the FileStream class implements the dispose pattern, allowing me to modify 
the source code to explicitly close the file. Here’s the corrected source code:  

using System; 
using System.IO; 

 
class App { 

   static void Main() { 
      // Create the bytes to write to the temporary file. 

      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 
 

      // Create the temporary file. 
      FileStream fs = new FileStream("Temp.dat", FileMode.Create)
; 
 

      // Write the bytes to the temporary file. 
      fs.Write(bytesToWrite, 0, bytesToWrite.Length); 

 
      // Explicitly close the file when done writing to it. 

      ((IDisposable) fs).Dispose(); 
 

      // Delete the temporary file. 
      File.Delete("Temp.dat");  // This always works now. 

   } 
} 

The only difference here is that I’ve added a call to FileStream’s Dispose method. The 
Dispose method calls the Boolean Dispose method, which calls CloseHandle: Windows 
closes the file. Now, when File’s Delete method is called, Windows sees that the file isn’t 
open and successfully deletes it.  



Note that the FileStream object still exists in the managed heap, so you could still call 
methods on the object. Eventually, the garbage collector will run and the FileStream 
object will be determined to be garbage. At this point, the garbage collector would normally 
call its Finalize method, but because the Dispose method called GC’s 
SuppressFinalize method, the Finalize method won’t be called—the object’s memory 
will just be reclaimed. 

 
Note  

The previous code casts the fs variable to an IDisposable before calling 
Dispose. Most classes that implement the dispose pattern won’t require 
this cast. However, for a FileStream object, the cast is required because 
Microsoft’s developers implemented the Dispose method as an explicit 
interface method implementation (as described in Chapter 15). I felt that this 
was a poor decision because it just makes things more complex without 
adding any value. In general, you should use explicit interface method 
implementations only when you have multiple methods with the same name. 
Because Dispose and Close are different method names, I think that they 
should be publicly available and that no casting should be required.  

Because the FileStream class also offers a public Close method, the earlier code could 
be written as follows with identical results:  

using System; 
using System.IO; 

 
class App { 

   static void Main() { 
      // Create the bytes to write to the temporary file. 

      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 
 

      // Create the temporary file. 
      FileStream fs = new FileStream("Temp.dat", FileMode.Create)
; 
 
      // Write the bytes to the temporary file. 

      fs.Write(bytesToWrite, 0, bytesToWrite.Length); 
 

      // Explicitly close the file when done writing to it. 
      fs.Close(); 

 
      // Delete the temporary file. 

      File.Delete("Temp.dat");  // This always works now. 
   } 

} 

 
Note  

Again, remember that the Close method isn’t officially part of the dispose 
pattern: some types will offer it and some won’t.  



Keep in mind that calling Dispose or Close simply gives the programmer a way to force 
the object to do its cleanup at a deterministic time; these methods have no control over the 
lifetime of the memory used by the object in the managed heap. This means that you can 
still call methods on the object even though it has been cleaned up. The following code calls 
the Write method after the file is closed, attempting to write more bytes to the file. 
Obviously, the bytes can’t be written, and when the code executes, the second call to the 
Write method throws a System.ObjectDisposedException exception with the 
following string message: "Cannot access a closed file."  

using System; 

using System.IO; 
 

class App { 
   static void Main() { 

      // Create the bytes to write to the temporary file. 
      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 

 
      // Create the temporary file. 

      FileStream fs = new FileStream("Temp.dat", FileMode.Create)
; 
 

      // Write the bytes to the temporary file. 
      fs.Write(bytesToWrite, 0, bytesToWrite.Length); 

 
      // Explicitly close the file when done writing to it. 

      fs.Close(); 
 

      // Try to write to the file after closing it. 
      // The following line throws an ObjectDisposedException. 

      fs.Write(bytesToWrite, 0, bytesToWrite.Length); 
 

      // Delete the temporary file. 
      File.Delete("Temp.dat");  // This always works now. 

   } 
} 

No memory corruption has occurred here because the memory for the FileStream object 
still exists; it’s just that the object can’t successfully execute its methods after it is explicitly 
disposed. 

 
Important  

When defining your own type that implements the dispose pattern, be 
sure to write code in all your methods to throw a 
System.ObjectDisposedException exception if the object has 
been explicitly cleaned up. The Dispose and Close methods should 
never throw an ObjectDisposedException exception if called 
multiple times, though; these methods should just return (as shown 



earlier in the OSHandle type).  

 
Important  

In general, I strongly discourage the use of calling a Dispose or 
Close method. The reason is that the CLR’s garbage collector is well 
written and you should let it do its job. The garbage collector knows 
when an object is no longer accessible from application code, and only 
then will it collect the object. When application code calls Dispose or 
Close, it is effectively saying that it knows when the application no 
longer has a need for the object. For many applications, it is 
impossible to know for sure when an object is no longer required.  

For example, if you have code that constructs a new object and you 
then pass a reference to this object to another method, the other 
method could save a reference to the object in some internal field 
variable (a root). There is no way for the calling method to know that 
this has happened. Sure, the calling method can call Dispose or 
Close, but later, some other code might try to access the object, 
causing ObjectDisposedException exceptions to be thrown.  

I recommend that you call Dispose or Close at a place in your code 
where you know you must clean up the resource (as in the case of 
attempting to delete an open file) or at a place where you know it is 
safe and you want to improve performance by preventing object 
promotion so that the Finalize method can run. 

C#’s using Statement 

The previous code examples show how to explicitly call a type’s Dispose or Close method. 
If you decide to call either of these methods explicitly, I highly recommend that you place the 
call in an exception handling finally block. This way, the cleanup code is guaranteed to 
execute. So it would be better to write the previous code example as follows:  

using System; 

using System.IO; 
 

class App { 
   static void Main() { 

      // Create the bytes to write to the temporary file. 
      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 

 
      // Create the temporary file. 

      FileStream fs = null; 
      try { 

         fs = new FileStream("Temp.dat", FileMode.Create); 
 

         // Write the bytes to the temporary file. 
         fs.Write(bytesToWrite, 0, bytesToWrite.Length); 

      } 



      finally { 
         // Explicitly close the file when done writing to it. 

         if (fs != null)  
            ((IDisposable) fs).Dispose(); 

      } 
 

      // Delete the temporary file. 
      File.Delete("Temp.dat");  // This always works now. 

   } 
} 

Adding the exception handling code is the right thing to do, and you must have the diligence 
to do it. If you’re using C#, you can take advantage of C#’s using statement, which offers a 
simplified syntax that produces code identical to that just shown. Here’s how the preceding 
code would be rewritten using C#’s using statement:  

using System; 
using System.IO; 

 
class App { 

   static void Main() { 
      // Create the bytes to write to the temporary file. 

      Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 }; 
 

      // Create the temporary file. 
      using (FileStream fs =  

         new FileStream("Temp.dat", FileMode.Create)) { 
 

         // Write the bytes to the temporary file. 
         fs.Write(bytesToWrite, 0, bytesToWrite.Length); 

      } 
 

      // Delete the temporary file. 
      File.Delete("Temp.dat");  // This always works now. 

   } 
} 

In the using statement, you initialize an object and save its reference in a variable. Then 
you access the variable via code contained inside using’s braces. When you compile this 
code, the compiler automatically emits the try block and the finally block. Inside the 
finally block, the compiler emits code to cast the object to an IDisposable and calls 
the Dispose method. Obviously, the using statement is usable only with types that 
implement the IDisposable interface.  

 
Note  

C#’s using statement supports the capability to initialize multiple variables 



as long as the variables are all of the same type. It also supports the 
capability to just use an already initialized variable. For more information 
about this topic, see the C# Programmer’s Reference. 

I’m not aware of any other programming language that offers a similar convenient syntax for 
using types that implement the dispose pattern. In other programming languages, you must 
manually code the try and finally exception handling frames. 

 
Important  

As I stated at the end of the previous section, you should call Dispose 
or Close only in situations where you need the object to be cleaned 
up before the next statement executes. For this reason, you should 
use C#’s using statement cautiously. I’ve seen many developers use 
C#’s using statement liberally, only to find out later that they have 
been explicitly cleaning up objects too early, causing another part of 
their application to throw ObjectDisposedException exceptions. 

An Interesting Dependency Issue 

The System.IO.FileStream type allows the user to open a file for reading and writing. To 
improve performance, the type’s implementation makes use of a memory buffer. Only when 
the buffer fills does the type flush the contents of the buffer to the file. A FileStream 
supports the writing of bytes only. If you want to write more complex data types (such as an 
Int32, a Double, a String, and so on), you can use a System.IO.BinaryWriter as 
demonstrated in the following code:  

FileStream fs = new FileStream("DataFile.dat", FileMode.Create); 
BinaryWriter bw = new BinaryWriter(fs); 

bw.Write("Hi there"); 
 

// The following call to Close is what you should do. 
bw.Close();    

// NOTE: BinaryWriter.Close closes the FileStream. The FileStream 
// shouldn’t be explicitly closed in this scenario. 

Notice that the BinaryWriter’s constructor takes a reference to a FileStream object as 
a parameter. Internally, the BinaryWriter object saves the FileStream’s reference. 
When you write to a BinaryWriter object, it internally buffers the data in its own memory 
buffer. When the buffer is full, the BinaryWriter object writes the data to the 
FileStream. 

When you’re done writing data via the BinaryWriter object, you should call Dispose or 
Close. (Because the BinaryWriter type implements the dispose pattern, you can also 
use it with C#’s using statement.) Both of these methods do exactly the same thing: cause 
the BinaryWriter object to flush its data to the FileStream object and close the 
FileStream object. When the FileStream object is closed, it flushes its buffer to disk just 
prior to calling the Win32 CloseHandle function.  

 
Note  

You don’t have to explicitly call Dispose or Close on the FileStream 
object because the BinaryWriter calls it for you. However, if you do call 
Dispose/Close explicitly, the FileStream will see that the object has 
already been cleaned up—the methods do nothing and just return. 



What do you think would happen if there was no code that explicitly called Dispose or 
Close? Well, at some point, the garbage collector would correctly detect that the objects 
were garbage and finalize them. But the garbage collector doesn’t guarantee the order in 
which the Finalize methods are called. So if the FileStream got finalized first, it would 
close the file. Then when the BinaryWriter got finalized, it would attempt to write data to 
the closed file, throwing an exception. If, on the other hand, the BinaryWriter got finalized 
first, the data would be safely written to the file. 

How was Microsoft to solve this problem? Making the garbage collector finalize objects in a 
specific order would have been impossible because objects could contain references to each 
other and there would be no way for the garbage collector to correctly guess the order in 
which to finalize these objects. Here is Microsoft’s solution: the BinaryWriter type doesn’t 
implement a Finalize method. This means that if you forget to explicitly close the 
BinaryWriter object, data is guaranteed to be lost. Microsoft expects developers to see 
this consistent loss of data and fix the code by inserting an explicit call to Close/Dispose. 

 
Weak References 

When a root points to an object, the object can’t be collected because the application’s code 
can reach the object. When a root points to an object, a strong reference to the object is said 
to exist. However, the garbage collector also supports weak references. Weak references 
allow the garbage collector to collect the object but also allow the application to access the 
object. It all comes down to timing.  

If only weak references to an object exist and the garbage collector runs, the object is 
collected, and when the application later attempts to access the object, the access will fail. 
On the other hand, to access a weakly referenced object, the application must obtain a 
strong reference to the object. If the application obtains this strong reference before the 
garbage collector collects the object, the garbage collector can’t collect the object because a 
strong reference to the object exists. 

Confused? Let’s examine some code to clarify what all this really means: 

void SomeMethod() { 

   // Create a strong reference to a new Object. 
   Object o = new Object(); 

 
   // Create a strong reference to a short WeakReference object. 

   // The WeakReference object tracks the Object’s lifetime. 
   WeakReference wr = new WeakReference(o); 

 
   o = null;   // Remove the strong reference to the object. 

 
   o = wr.Target; 

   if (o == null) { 
      // A garbage collection occurred and Object’s memory was re
claimed. 
   } else { 



      // A garbage collection did not occur and I can successfull
y  
      // access the Object using o. 

   } 
} 

Why might you want to use weak references? Well, some data structures are easy to create 
but require a lot of memory. For example, you might have an application that needs to know 
all the directories and files on the user’s hard drive. You can easily build a tree that reflects 
this information, and as your application runs, refer to the tree in memory instead of 
accessing the user’s hard disk. This greatly improves the performance of your application. 

The problem is that the tree could be extremely large, requiring quite a bit of memory. If the 
user starts accessing a different part of your application, the tree might no longer be 
necessary but be wasting valuable memory nonetheless. You could give up the reference to 
the tree’s root object, but if the user switches back to the first part of your application, you’ll 
need to reconstruct the tree again. A weak reference allows you to handle this scenario 
easily and efficiently.  

When the user switches away from the first part of the application, you can create a weak 
reference to the tree’s root object and give up all strong references. If the other 
subcomponent’s memory load is low, the garbage collector won’t reclaim the tree’s objects. 
When the user switches back to the first component, the application attempts to obtain a 
strong reference to the tree’s root object. If successful, the application doesn’t have to 
traverse the user’s hard drive again. 

The System.WeakReference type offers two public constructors:  

public WeakReference(Object target); 

public WeakReference(Object target, Boolean trackResurrection);  

The target parameter identifies the object that the WeakReference object should track. 
The trackResurrection parameter indicates whether the WeakReference object should 
track the object after its Finalize method has been called. Usually, false is passed for 
the trackResurrection parameter, and the first constructor creates a WeakReference 
that doesn’t track resurrection. 

For convenience, a WeakReference that doesn’t track resurrection is called a short weak 
reference; a WeakReference that does track resurrection is called a long weak reference. If 
an object’s type doesn’t offer a Finalize method, short and long weak references behave 
identically. I strongly recommend that you avoid using long weak references. Long weak 
references allow you to resurrect an object after it has been finalized and the state of the 
object is unpredictable. 

Once you’ve created a weak reference to an object, you usually set the strong reference to 
the object to null. If any strong reference remains, the garbage collector will be unable to 
collect the object. 

To use the object again, you must turn the weak reference into a strong reference. You 
accomplish this by simply querying the WeakReference object’s Target property and 
assigning the result to one of your application’s roots. If the Target property returns null, 
the object was collected. If the property doesn’t return null, the root is a strong reference to 
the object and the code can manipulate the object. As long as the strong reference exists, 
the object can’t be collected. 



Weak Reference Internals 

From the preceding discussion, it should be obvious that WeakReference objects don’t 
behave like other object types. Normally, if your application has a root that refers to an object 
and that object refers to another object, both objects are reachable and the garbage collector 
can’t reclaim the memory either object is using. However, if your application has a root that 
refers to a WeakReference object, the object referred to by the WeakReference object 
isn’t considered reachable and can be collected. 

To fully understand how weak references work, let’s look inside the managed heap again. 
The managed heap contains two internal data structures whose sole purpose is to manage 
weak references: the short weak reference table and the long weak reference table. These 
two tables simply contain pointers to objects allocated within the managed heap.  

Initially, both tables are empty. When you create a WeakReference object, an object isn’t 
allocated from the managed heap. Instead, an empty slot in one of the weak reference 
tables is located; short weak references use the short weak reference table, and long weak 
references use the long weak reference table. 

Once an empty slot is found, the value in the slot is set to the address of the object you want 
to track—the object’s pointer is passed to the WeakReference’s constructor. The value 
returned from the new operator is the address of the slot in the weak reference table. 
Obviously, the two weak reference tables aren’t considered part of an application’s roots or 
the garbage collector wouldn’t be able to reclaim the objects the tables point to. 

Here’s what happens when the garbage collector runs: 
1. The garbage collector builds a graph of all the reachable objects. I already explained 

how the garbage collector does this. 
2. The garbage collector scans the short weak reference table. If a pointer in the table 

refers to an object that isn’t part of the graph, then the pointer identifies an 
unreachable object and the slot in the short weak reference table is set to null. 

3. The garbage collector scans the finalization list. If a pointer in the list refers to an 
object that isn’t part of the graph, then the pointer identifies an unreachable object 
and the pointer is moved from the finalization list to the freachable queue. At this 
point, the object is added to the graph because the object is now considered 
reachable. 

4. The garbage collector scans the long weak reference table. If a pointer in the table 
refers to an object that isn’t part of the graph (which now contains the objects pointed 
to by entries in the freachable queue), then the pointer identifies an unreachable 
object and the slot is set to null. 

5. The garbage collector compacts the memory, squeezing out the holes left by the 
unreachable objects. Note that the garbage collector sometimes decides not to 
compact memory if it determines that the amount of fragmentation isn’t worth the time 
to compact. 

Once you understand the logic behind how the garbage collector works, it’s easy to 
understand how weak references work. Querying the WeakReference’s Target property 
causes the system to return the value in the appropriate weak reference table’s slot. If null 
is in the slot, the object was collected. 

A short weak reference doesn’t track resurrection. This means that the garbage collector 
sets the pointer to null in the short weak reference table as soon as the garbage collector 
has determined the object to be unreachable. If the object has a Finalize method, the 
method hasn’t been called yet, so the object still exists. If the application accesses the 



WeakReference object’s Target property, then null will be returned even though the 
object still exists. 

A long weak reference tracks resurrection. This means that the garbage collector sets the 
pointer to null in the long weak reference table when the object’s storage is reclaimable. If 
the object has a Finalize method, the Finalize method has been called and the object 
was not resurrected. 

 

Resurrection 

I’m sure you’d agree that finalization is fascinating. And there’s even more to it than what I’ve 
already described. You’ll notice that when an object requiring finalization is considered dead, 
the garbage collector forces the object back to life so that its Finalize method can be 
called. Then after its Finalize method is called, the object is permanently dead. To 
summarize: an object requiring finalization dies, lives, and then dies again. This very 
interesting phenomenon is called resurrection. Resurrection, as its name implies, allows an 
object to come back from the dead. 

The act of preparing to call an object’s Finalize method is a form of resurrection. When 
the garbage collector places a reference to the object on the freachable queue, the object is 
reachable from a root and has come back to life. Eventually, the object’s Finalize method 
is called, no roots point to the object, and the object is dead forever after. But what if an 
object’s Finalize method executed code that placed a pointer to the object in a global or 
static variable, as demonstrated in the following code?  

class SomeType { 

   ~SomeType() { 
      Application.ObjHolder = this;  

   } 
} 

 
class Application { 

   public static Object ObjHolder;    // Defaults to null 
   : 

} 

In this case, when the object’s Finalize method executes, a reference to the object is 
placed in a root and the object is reachable from the application’s code. This object is now 
resurrected, and the garbage collector won’t consider the object to be garbage. The 
application is free to use the object—but you must remember that the object has been 
finalized, so using it can cause unpredictable results. Also keep in mind that if SomeType 
contained fields that referenced other objects (either directly or indirectly), all objects would 
be resurrected because they are all reachable from the application’s roots. However, be 
aware that some of these other objects might also have had their Finalize method called.  

 
Note  

Any type you define might at some point be resurrected out of your control; 
that is, an object of your type might have members accessed after your 
Finalize method has been called. In an ideal world, you might consider 
adding code that checks to see whether your Finalize method has 
already executed and handle the member access gracefully, perhaps by 
throwing an appropriate exception. In practice, however, you’d have to write 



a lot of very tedious code, and I’m not aware of any type that has been 
implemented to handle this situation gracefully. 

If some other piece of code sets Application.ObjHolder to null, the object is 
unreachable. Eventually, the garbage collector will consider the object to be garbage and will 
reclaim the object’s storage. The object’s Finalize method won’t be called because no 
pointer to the object exists on the finalization list. 

As cool as resurrection sounds, there are very few good uses of it, and you should really 
avoid using it if possible. When developers do use resurrection, they usually want the object 
to gracefully clean itself up every time the object dies. To make this possible, the GC type 
offers a static method named ReRegisterForFinalize, which takes a single parameter: 
a reference to an object. The following code is a better version of the code shown earlier:  

class SomeType { 

   ~SomeType() { 
      Application.ObjHolder = this;  

      GC.ReRegisterForFinalize(this); 
   } 

} 

When the Finalize method is called, it resurrects the object by making a root refer to the 
object. The Finalize method then calls ReRegisterForFinalize, which appends the 
address of the specified object (this) to the end of the finalization list. When the garbage 
collector detects that this object is unreachable (sometime in the future), it will move the 
object’s pointer to the freachable queue and the Finalize method will get called again. 

This example shows how to create an object that constantly resurrects itself and never 
dies—but you don’t usually want objects to do this. It’s far more common to conditionally set 
a root to reference the object inside the Finalize method.  

 
Note  

Make sure that you call ReRegisterForFinalize no more than once per 
resurrection or the object will have its Finalize method called multiple 
times. The reason is that each call to ReRegisterForFinalize appends 
a new entry to the end of the finalization list. When an object is determined 
to be garbage, all these entries move from the finalization list to the 
freachable queue, calling the object’s Finalize method multiple times. 

Designing an Object Pool Using Resurrection 

Here’s a great scenario that really shows the value of resurrection. Let’s say that you want to 
create a pool of Expensive objects. These objects are expensive because they take a lot of 
time to construct. For performance reasons, the application is going to construct a bunch of 
Expensive objects during startup and then reuse them over and over again during the 
lifetime of the application. 

The code to manage a pool of Expensive objects would look like this:  

using System; 
using System.Collections; 

 
// Instances of this class are expensive to construct. 



class Expensive { 
 

   // This static ArrayList contains references 
   // to the objects available in the pool.  

   static Stack pool = new Stack(); 
 

 
   // This static method returns an object from the pool. 

   public static Expensive GetObjectFromPool() { 
      // Get a reference to an object in the pool, and  

      // remove the object from the pool. 
      return (Expensive) pool.Pop(); 

   } 
 

 
   // This static method is called when the application shuts dow
n, 
   // to kill the pool of objects. 
   public static void ShutdownThePool() { 

 
      // This will stop finalized objects from  

      // adding themselves back into the pool. 
      pool = null; 

   } 
 

 
   // This constructor creates an object and adds it to the pool. 

   public Expensive() { 
      // It takes a long time to construct this object. 

      : 
 

      // After the object is constructed, it adds itself to the p
ool. 
      pool.Push(this); 

   } 
 

   // Finalize is called when the application no longer needs thi
s object. 

   ~Expensive() { 
 

      // If the application isn’t shutting down,  



      // add the object back into the pool. 
      if (pool != null) { 

 
         // Call ReRegisterForFinalize so that the object will  

         // get added back to the pool after subsequent uses. 
         GC.ReRegisterForFinalize(this); 

 
         // Add the object back into the pool. 

         pool.Push(this); 
   } 

} 
 

class App { 
   static void Main() { 

      // Populate the pool with a bunch of Expensive objects. 
      for (Int32 i = 0; i < 10; i++) 

         new Expensive(); 
      : 

 
      // When you need an object, grab one out of the pool. 

      Expensive e = Expensive.GetObjectFromPool(); 
      // The application can now use e. 

      : 
 

      // To shut down the application cleanly, shut down the pool
. 
      Expensive.ShutdownThePool(); 

   } 
} 

The Expensive type has a private static System.Collections.Stack object, which is 
used to manage the available objects in the pool. In Main, a loop constructs 10 Expensive 
objects. As each one is constructed, it adds itself to the pool. Expensive’s static pool field 
is a root and refers to the set of Expensive objects—none of which can be collected.  

When the application needs to work with an object, it calls Expensive’s static 
GetObjectFromPool method. This method returns a reference to an object in the pool and 
removes the reference from the Stack. The application can now use the object. 

At some point in the future, the application will no longer hold a reference to the object and a 
garbage collection will occur, causing the Expensive object to be finalized. When the 
object’s Finalize method is called, it adds the reference to the object back into the pool, 
resurrecting the object and preventing the garbage collector from reclaiming the object’s 
memory. In addition, the Finalize method calls GC’s ReRegisterForFinalize method, 



passing it a reference to the object. At some point in the future, this object will be given to 
the application again. Sometime later, the application will give up its reference to the object 
and the garbage collector will collect it again. Because ReRegisterForFinalize was 
called, the Finalize method will again execute and add the object back into the pool so 
that it can be used again. 

Just before Main exits, it calls Expensive’s static ShutdownThePool method, which sets 
the pool field to null. When the application shuts down, the CLR calls the Finalize 
methods for all the objects remaining in the heap. When these objects are finalized, you 
don’t want to call ReRegisterForFinalize because doing so would create an infinite 
loop (that the CLR would forcibly terminate after 40 seconds). So when the application is 
shutting down, Expensive’s Finalize method checks the pool field. If this field is null, 
the objects aren’t reregistered for finalization and they’re not added back into the pool—they 
are allowed to die and have their memory reclaimed. 

As you can see, resurrection offers a very easy and efficient way to implement object 
pooling. 

 

Generations 

As I mentioned near the beginning of the chapter, generations is a mechanism within the 
CLR garbage collector that’s sole reason for being is to improve an application’s 
performance. A generational garbage collector (also known as an ephemeral garbage 
collector, though I don’t use this latter term in this book) makes the following assumptions: 
§ The newer an object is, the shorter its lifetime will be. 
§ The older an object is, the longer its lifetime will be. 
§ Collecting a portion of the heap is faster than collecting the whole heap. 

Numerous studies have demonstrated the validity of these assumptions for a very large set 
of existing applications, and these assumptions have influenced how the garbage collector is 
implemented. In this section, I’ll describe how generations work.  

When initialized, the managed heap contains no objects. Objects added to the heap are said 
to be in generation 0. Stated simply, objects in generation 0 are newly constructed objects 
that the garbage collector has never examined. Figure 19-7 shows a newly started 
application that has had five objects allocated (A through E). After a while, objects C and E 
become unreachable. 

 
Figure 19-7 : A newly initialized heap containing some objects; all in generation 0. No 
collections have occurred yet.  

When the CLR initializes, it selects a threshold size for generation 0, say, 256 KB. (The 
exact size is subject to change.) So if allocating a new object causes generation 0 to surpass 
its threshold, a garbage collection must start. Let’s say that objects A through E occupy 256 
KB. When object F is allocated, a garbage collection must start. The garbage collector will 
determine that objects C and E are garbage and will compact object D so that it is adjacent 
to object B. The objects that survive the garbage collection (objects A, B, and D) are said to 
be in generation 1. Objects in generation 1 have been examined by the garbage collector 
once. The heap now looks like Figure 19-8. 



[Click To expand] 

 
Figure 19-8 : After one collection: generation 0 survivors are promoted to generation 1; 
generation 0 is empty.  

After a garbage collection, generation 0 contains no objects. As always, new objects will be 
allocated in generation 0. Figure 19-9 shows the application running and allocating objects F 
through K. In addition, while the application was running, objects B, H, and J became 
unreachable and should have their memory reclaimed at some point. 

 
Figure 19-9 : New objects are allocated in generation 0; generation 1 has some 
garbage.  

Now let’s say that attempting to allocate object L would put generation 0 over its 256-KB 
threshold. Because generation 0 has reached its threshold, a garbage collection must start. 
When starting a garbage collection, the garbage collector must decide which generations to 
examine. Earlier, I said that when the CLR initializes, it selects a threshold for generation 0. 
Well, it also selects a threshold for generation 1. Let’s say that the threshold selected for 
generation 1 is 2 MB. 

When starting a garbage collection, the garbage collector also sees how much memory is 
occupied by generation 1. In this case, generation 1 occupies much less than 2 MB, so the 
garbage collector examines only the objects in generation 0. Look again at the assumptions 
that a generational garbage collector makes. The first assumption is that newly created 
objects have a short lifetime. So generation 0 is likely to have a lot of garbage in it, and 
collecting generation 0 will therefore reclaim a lot of memory. The garbage collector will just 
ignore the objects in generation 1, which will speed up the garbage collection process. 

Obviously, ignoring the objects in generation 1 improves the performance of the garbage 
collector. However, the garbage collector improves performance more because it doesn’t 
traverse every object in the managed heap. If a root or an object refers to an object in an old 
generation, the garbage collector can ignore any of the older objects’ inner references, 
decreasing the amount of time required to build the graph of reachable objects. Of course, 
it’s possible that an old object refers to a new object. To ensure that these “old” objects are 
examined, the garbage collector uses a mechanism internal to the JIT compiler that sets a 
bit when an object’s reference field changes. This support lets the garbage collector know 
which old objects (if any) have been written to since the last collection. Only old objects that 
have had fields changed need to be examined to see whether they refer to any new objects 
in generation 0. 

 
Note  

Microsoft’s performance tests show that it takes less than 1 millisecond on a 
200-MHz Pentium to perform a garbage collection of generation 0. 
Microsoft’s goal is to have garbage collections take no more time than an 
ordinary page fault. 

A generational garbage collector also assumes that objects that have lived a long time will 
continue to live. So it’s likely that the objects in generation 1 will continue to be reachable 
from the application. Therefore, if the garbage collector were to examine the objects in 
generation 1, it probably wouldn’t find a lot of garbage and it wouldn’t be able to reclaim 



much memory. So collecting generation 1 is likely to be a waste of time. If any garbage 
happens to be in generation 1, it just stays there. The heap now looks like Figure 19-10. 

[Click To expand] 

 
Figure 19-10 : After two collections: generation 0 survivors are promoted to generation 
1 (growing the size of generation 1); generation 0 is empty.  

As you can see, all the generation 0 objects that survived the collection are now part of 
generation 1. Because the garbage collector didn’t examine generation 1, object B didn’t 
have its memory reclaimed even though it was unreachable at the time of the last garbage 
collection. Again, after a collection, generation 0 contains no objects and is where new 
objects will be placed. In fact, let’s say that the application continues running and allocates 
objects L through O. And while running, the application stops using objects G, L, and M, 
making them all unreachable. The heap now looks like Figure 19-11. 

 
Figure 19-11 : New objects are allocated in generation 0; generation 1 has more 
garbage.  

Let’s say that allocating object P causes generation 0 to pass its threshold, causing a 
garbage collection to occur. Because the memory occupied by all the objects in generation 1 
is less than 2 MB, the garbage collector again decides to collect only generation 0, ignoring 
the unreachable objects in generation 1 (objects B and G). After the collection, the heap 
looks like Figure 19-12. 

[Click To expand] 

 
Figure 19-12 : After three collections: generation 0 survivors are promoted to generation 
1 (growing the size of generation 1 again); generation 0 is empty.  

In Figure 19-12, you see that generation 1 keeps growing slowly. In fact, let’s say that 
generation 1 has now grown to the point where all the objects in it occupy 2 MB of memory. 
At this point, the application continues running (because a garbage collection just finished) 
and starts allocating objects P through S, which fill generation 0 up to its threshold. The heap 
now looks like Figure 19-13. 

 
Figure 19-13 : New objects are allocated in generation 0; generation 1 has more 
garbage.  

When the application attempts to allocate object T, generation 0 is full and a garbage 
collection must start. This time, however, the garbage collector sees that the objects in 



generation 1 are occupying so much memory that generation 1’s 2-MB threshold has been 
reached. Over the several generation 0 collections, it’s likely that a number of objects in 
generation 1 have become unreachable (as in our example). So this time, the garbage 
collector decides to examine all the objects in generation 1 and generation 0. After both 
generations have been garbage collected, the heap now looks like Figure 19-14. 

[Click To expand] 

 
Figure 19-14 : After four collections: generation 1 survivors are promoted to generation 
2, generation 0 survivors are promoted to generation 1, and generation 0 is empty.  

Like before, any objects that were in generation 0 that survived the garbage collection are 
now in generation 1; any objects that were in generation 1 that survived the collection are 
now in generation 2. As always, generation 0 is empty immediately after a garbage collection 
and is where new objects will be allocated. Objects in generation 2 are objects that the 
garbage collector has examined at least twice. There might have been several collections, 
but the objects in generation 1 are examined only when generation 1 reaches its threshold, 
which usually requires several garbage collections of generation 0. 

The managed heap supports only three generations: generation 0, generation 1, and 
generation 2; there is no generation 3. When the CLR initializes, it selects thresholds for all 
three generations. As I mentioned earlier, the threshold for generation 0 is about 256 KB, 
and the threshold for generation 1 is about 2 MB. The threshold for generation 2 is around 
10 MB. Again, the threshold sizes are selected to improve performance. The larger the 
threshold, the less frequently a garbage collection will occur. And again, the performance 
improvement comes because of the initial assumptions: new objects have short lifetimes, 
and older objects are likely to live longer.  

The CLR’s garbage collector is a self-tuning collector. This means that the garbage collector 
learns about your application’s behavior whenever it performs a garbage collection. For 
example, if your application constructs a lot of objects and uses them for a very short period 
of time, it’s possible that garbage collecting generation 0 will reclaim a lot of memory. In fact, 
it’s possible that the memory for all objects in generation 0 can be reclaimed. 

If the garbage collector sees that there are very few surviving objects after collecting 
generation 0, it might decide to reduce the threshold of generation 0 from 256 KB to 128 KB. 
This reduction in the allotted space will mean that garbage collections occur more frequently 
but will require less work for the garbage collector, so your process’s working set won’t grow 
much. In fact, if all objects in generation 0 are garbage, then a garbage collection doesn’t 
have to compact any memory; it can simply set NextObjPtr back to the beginning of 
generation 0 and the garbage collection is done. This is a fast way to reclaim memory! 

 
Note  

The garbage collector works extremely well with ASP.NET Web Forms and 
XML Web service applications. For ASP.NET applications, a client request 
comes in, a bunch of new objects are constructed, the objects perform work 
on the client’s behalf, and the result is sent back to the client. At this point, 
all the objects used to satisfy the client’s request are garbage. In other 
words, each ASP.NET application request causes a lot of garbage to be 
created. Because these objects are unreachable almost immediately after 
they’re created, each garbage collection reclaims a lot of memory. This 
keeps the process’s working set very low, and the garbage collector’s 
performance is phenomenal. 



On the other hand, if the garbage collector collects generation 0 and sees that there are a lot 
of surviving objects, not a lot of memory was reclaimed in the garbage collection. In this 
case, the garbage collector will grow generation 0’s threshold to something like 512 KB. 
Now, fewer collections will occur, but when they do, a lot more memory should be reclaimed. 

Throughout this discussion, I’ve been talking about how the garbage collector dynamically 
modifies generation 0’s threshold after every collection. But the garbage collector also 
modifies the thresholds of generation 1 and generation 2 using similar heuristics. When 
these generations get garbage collected, the garbage collector again sees how much 
memory is reclaimed and how many objects survive. Based on the garbage collector’s 
findings, it might grow or shrink the thresholds of these generations as well to improve the 
overall performance of the application. 

 

Programmatic Control of the Garbage Collector 

The System.GC type allows your application some direct control over the garbage collector. 
For starters, you can query the maximum generation supported by the managed heap by 
reading the GC.MaxGeneration property. Currently, this property always returns 2. 

You can also force the garbage collector to perform a garbage collection by calling one of 
the following two static methods: 

void GC.Collect(Int32 Generation) 

void GC.Collect() 

The first method allows you to specify which generation to collect. You can pass any integer 
from 0 to GC.MaxGeneration inclusive. Passing 0 causes generation 0 to be collected, 
passing 1 causes generations 1 and 0 to be collected, and passing 2 causes generations 2, 
1, and 0 to be collected. The version of the Collect method that takes no parameters 
forces a full collection of all generations and is equivalent to calling  

GC.Collect(GC.MaxGeneration); 

Under most circumstances, you should avoid calling any of the Collect methods; it’s best 
just to let the garbage collector run on its own accord and fine-tune its generation thresholds 
based on actual application behavior. However, if you’re writing a CUI or GUI application, 
your application code "owns" the process and the CLR in that process. For these application 
types, you might want to force a garbage collection to occur at certain times. 

For example, it might make sense for your application to force a full garbage collection of all 
generations after the user saves a data file. I’d also imagine Internet browsers performing a 
full collection each time a page is unloaded. You might also want to force a garbage 
collection when your application is performing other lengthy operations. The basic idea here 
is to hide the time required by a collection when your application is doing something that’s 
already time-consuming. In the three scenarios described, the user will never feel a garbage 
collection because the time is overshadowed by the other work the application is doing. 

The GC type also offers a WaitForPendingFinalizers method. This method simply 
suspends the calling thread until the thread processing the freachable queue has emptied 
the queue, calling each object’s Finalize method. In most applications, it’s unlikely that 
you’ll ever have to call this method. Occasionally, though, I’ve seen code like this:  

GC.Collect(); 

GC.WaitForPendingFinalizers(); 
GC.Collect(); 



This code forces a garbage collection. When the collection is complete, the memory for 
objects that don’t require finalization is reclaimed. But the objects that do require finalization 
can’t have their memory reclaimed yet. After the first call to Collect returns, the special, 
dedicated finalization thread is calling Finalize methods asynchronously. The call to 
WaitForPendingFinalizers puts the application’s thread to sleep until all Finalize 
methods have been called. When WaitForPendingFinalizers has returned, all the 
finalized objects are now truly garbage. At this point, the second call to Collect forces 
another garbage collection, which reclaims all the memory that was occupied by the now 
finalized objects. 

Finally, the GC class offers two static methods that allow you to determine which generation 
an object is currently in:  

Int32 GetGeneration(Object obj) 

Int32 GetGeneration(WeakReference wr)  

The first version of GetGeneration takes an object reference as a parameter, and the 
second version takes a WeakReference reference as a parameter. The value returned will 
be between 0 and GC.MaxGeneration inclusively. 

The following code will help you understand how generations work. The code also 
demonstrates the use of the GC methods just discussed.  

using System; 

 
class GenObj { 

   ~GenObj() { 
      Console.WriteLine("In Finalize method"); 

   } 
} 

 
 

class App { 
   static void Main() { 

      Console.WriteLine("Maximum generations: " + GC.MaxGeneratio
n); 
 

      // Create a new BaseObj in the heap. 
      Object o = new GenObj(); 

 
      // Because this object is newly created, it is in generatio
n 0. 
      Console.WriteLine("Gen " + GC.GetGeneration(o)); // 0 

 
      // Performing a garbage collection promotes the object’s ge
neration. 
      GC.Collect(); 
      Console.WriteLine("Gen " + GC.GetGeneration(o)); // 1 



 
      GC.Collect(); 

      Console.WriteLine("Gen " + GC.GetGeneration(o)); // 2 
 

      GC.Collect(); 
      Console.WriteLine("Gen " + GC.GetGeneration(o)); // 2 (max) 

 
 

      o = null; // Destroy the strong reference to this object. 
 

      Console.WriteLine("Collecting Gen 0"); 
      GC.Collect(0);                    // Collect generation 0. 

      GC.WaitForPendingFinalizers();    // Finalize is NOT called
. 
 

      Console.WriteLine("Collecting Gen 1"); 
      GC.Collect(1);                    // Collect generation 1. 

      GC.WaitForPendingFinalizers();    // Finalize is NOT called
. 
 

      Console.WriteLine("Collecting Gen 2"); 
      GC.Collect(2);                    // Same as Collect() 

      GC.WaitForPendingFinalizers();    // Finalize IS called. 
   } 

} 

Building and running this code yields the following output: 

Maximum generations: 2 

Gen 0 
Gen 1 

Gen 2 
Gen 2 

Collecting Gen 0 
Collecting Gen 1 

Collecting Gen 2 
In Finalize method 

 
Other Garbage Collector Performance Issues 

Earlier in this chapter, I explained the garbage collection algorithm. However, I made a big 
assumption during that discussion: that only one thread is running. In the real world, it’s likely 
that multiple threads will be accessing the managed heap or at least manipulating objects 



allocated within the managed heap. When one thread sparks a garbage collection, other 
threads must not access any objects (including object references on its own stack) because 
the garbage collector is likely to move these objects, changing their memory locations.  

So when the garbage collector wants to start a garbage collection, all threads executing 
managed code must be suspended. The CLR has a few different mechanisms that it uses to 
safely suspend threads so that a garbage collection can be done. The reason there are 
multiple mechanisms is to keep threads running as long as possible and to reduce overhead 
as much as possible. I don’t want to get into all the details here, but suffice it to say that 
Microsoft has done a lot of work to reduce the overhead involved with doing a garbage 
collection. And Microsoft will continue to modify these mechanisms over time to ensure 
efficient garbage collections in the future. 

When the CLR wants to start a garbage collection, it immediately suspends all threads in the 
process that have ever executed managed code. The CLR then examines each thread’s 
instruction pointer to determine where the thread is executing. The instruction pointer 
address is then compared with the JIT compiler—produced tables in an effort to determine 
what code the thread is executing. 

If the thread’s instruction pointer is at an offset identified by a table, the thread is said to 
have reached a safe point. A safe point is a place where it’s OK to suspend the thread until a 
garbage collection completes. If the thread’s instruction pointer isn’t at an offset identified by 
an internal method table, then the thread isn’t at a safe point and the CLR can’t perform a 
garbage collection. In this case, the CLR hijacks the thread: the CLR modifies the thread’s 
stack so that the return address points to a special function implemented inside the CLR. 
The thread is then resumed. When the currently executing method returns, this special 
function will execute, suspending the thread. 

However, the thread might not return from its method for quite some time. So after the 
thread resumes execution, the CLR waits about 250 milliseconds for the thread to be 
hijacked. After this time, the CLR suspends the thread again and checks its instruction 
pointer. If the thread has reached a safe point, the garbage collection can start. If the thread 
still hasn’t reached a safe point, the CLR checks to see whether another method has been 
called; if one has, the CLR modifies the stack again so that the thread is hijacked when it 
returns from the most recently executing method. Then the CLR resumes the thread and 
waits another few milliseconds before trying again. 

When all the threads have reached a safe point or have been hijacked, the garbage 
collection can begin. When the garbage collection is completed, all threads are resumed and 
the application continues running. The hijacked threads return to the method that originally 
called them. 

 
Note  

This algorithm has one small twist. If the CLR suspends a thread and 
detects that the thread is executing unmanaged code, the thread’s return 
address is hijacked and the thread is allowed to resume execution. 
However, in this case, the garbage collection is allowed to start even though 
the thread is still executing. This isn’t a problem because unmanaged code 
isn’t accessing objects on the managed heap unless the objects are pinned. 
A pinned object is one that the garbage collector isn’t allowed to move in 
memory. If a thread currently executing unmanaged code returns to 
managed code, the thread is hijacked and is suspended until the garbage 
collection has completed. 

In addition to the mechanisms mentioned earlier (generations, safe points, and hijacking), 
the garbage collector offers some additional mechanisms that improve the performance of 
object allocations and collections. 



Synchronization-Free Allocations 

On a multiprocessor system running the workstation (MSCorWks.dll) or server 
(MSCorSvr.dll) version of the execution engine, generation 0 of the managed heap is 
partitioned into multiple memory arenas, one arena per thread. This allows multiple threads 
to make allocations simultaneously so that exclusive access to the heap isn’t required. 

Scalable Parallel Collections 

On a multiprocessor system running the server version of the execution engine 
(MSCorSvr.dll), the managed heap is split into several sections, one per CPU. When a 
garbage collection is initiated, the garbage collector has one thread per CPU; each thread 
collects its own section in parallel with the other threads. Parallel collections work well for 
server applications where the worker threads tend to exhibit uniform behavior. The 
workstation version of the execution engine (MSCorWks.dll) doesn’t support this feature. 

Concurrent Collections 

On a multiprocessor system running the workstation version of the execution engine 
(MSCorWks.dll), the garbage collector has an additional background thread that collects 
objects concurrently, while the application runs. When a thread allocates an object that 
pushes generation 0 over its threshold, the garbage collector first suspends all threads and 
then determines which generations to collect. If the garbage collector needs to collect 
generation 0 or 1, then it proceeds as normal. However, if generation 2 needs collecting, the 
size of generation 0 grows beyond its threshold to allocate the new object and the 
application’s threads are resumed. 

While the application threads are running, the garbage collector has a normal priority 
background thread that builds the graph of unreachable objects. This thread competes for 
CPU time with the application’s threads, causing the application’s tasks to execute more 
slowly; however, the concurrent collector runs only on multiprocessor systems, so you 
shouldn’t see much of a degradation. Once the graph is built, the garbage collector 
suspends all threads again and decides whether or not to compact memory. If the garbage 
collector decides to compact memory, then memory is compacted, root references are fixed 
up, and the application’s threads are resumed—this garbage collection takes less time than 
usual because the graph of unreachable objects has already been built. However, the 
garbage collector might decide not to compact memory; in fact, the garbage collector favors 
this approach. If you have a lot of free memory, the garbage collector won’t compact the 
heap; this improves performance but grows your application’s working set. When using the 
concurrent garbage collector, you’ll typically find that your application is consuming more 
memory than it would compared with the nonconcurrent garbage collection. 

To summarize, concurrent collection makes for a better interactive experience for users and 
is therefore best for interactive CUI or GUI applications. For some applications, however, 
concurrent collection will actually hurt performance and will cause more memory to be used. 
When testing your application, you should experiment with and without concurrent collection 
and see which approach gives the best performance and memory usage for your application.  

You can tell the CLR not to use the concurrent collector by creating a configuration file (as 
discussed in Chapters 2 and 3) that contains a gcConcurrent element for the application. 
Here’s an example of a configuration file:  

<configuration> 

   <runtime> 



      <gcConcurrent enabled="false"/> 
   </runtime> 

</configuration> 

You can also use the Microsoft .NET Framework Configuration administrative tool to create 
an application configuration file containing the gcConcurrent element. To do this, open 
Control Panel, select Administrative Tools, and then invoke the Microsoft .NET Framework 
Configuration tool. In the tool, go to the Applications node in the left-hand tree pane and add 
an application or select an existing application. Then right-click on the application and select 
Properties. The dialog box shown in Figure 19-15 will appear. 

 
Figure 19-15 : Configuring an application to use the concurrent garbage collector 
using the Microsoft .NET Framework Configuration administrative tool  

The radio buttons under the Garbage Collection Mode selection set the gcConcurrent 
element’s enabled attribute to true or false, respectively. 

Large Objects 

There is one more performance improvement that you might want to be aware of. Any 
objects that are 85,000 bytes or more in size are considered to be large objects. Large 
objects are allocated from a special large object heap. Objects in this heap are finalized and 
freed just like the small objects I’ve been talking about. However, large objects are never 
compacted because it would waste too much CPU time shifting 85,000 byte blocks of 
memory down in the heap. 



Large objects are always considered part of generation 2, so you should create large objects 
only for resources that you need to keep alive for a long time. Allocating short-lived large 
objects will cause generation 2 to be collected more frequently, which will hurt performance. 

All of these mechanisms are transparent to your application code. To you, the developer, it 
appears as if there is just one managed heap; these mechanisms exist simply to improve 
application performance. 

 

Monitoring Garbage Collections 

When you install the .NET Framework, it installs a set of performance counters that offer a 
lot of real-time statistics about the CLR’s operations. These statistics are visible via the 
PerfMon.exe tool or the System Monitor ActiveX control that ships with Windows. The 
easiest way to access the System Monitor control is to run PerfMon.exe and select the + 
toolbar button, which causes the Add Counters dialog box shown in Figure 19-6 to appear. 

 
Figure 19-16 : PerfMon.exe showing the .NET CLR memory counters  

To monitor the CLR’s garbage collector, select the .NET CLR Memory performance object. 
Then select a specific application from the instance list box. Finally, select the set of 
counters that you’re interested in monitoring and press the Add button followed by the Close 
button. At this point, the System Monitor will graph the selected real-time statistics. For an 
explanation of a particular counter, select the desired counter and press the Explain button. 

 



Chapter 20: CLR Hosting, AppDomains, and 
Reflection 
In this chapter, I’ll discuss three main topics that really show off the incredible value provided 
by the Microsoft .NET Framework. In particular, I’ll explain how many of Microsoft’s existing 
application and server products intend to leverage the common language runtime (CLR) in 
the future. You’ll see that your investment in learning the .NET Framework today will 
certainly pay off down the line. I’ll also talk about AppDomains, a mechanism offered by the 
CLR to reduce memory usage and improve system performance. And finally, I’ll discuss 
reflection, a mechanism that allows you to design dynamically extensible applications that 
your types or another party’s types can easily enhance. 

Metadata: The Cornerstone of the .NET Framework 

By now, it should be obvious to you that metadata is the cornerstone technology of the .NET 
Framework development platform. Metadata describes a type’s fields along with its methods. 
Metadata is what allows a type developed in one programming language to be consumed by 
code developed in a completely different programming language. In addition, the garbage 
collector uses metadata to determine what objects are reachable; the metadata indicates 
what other objects an object can refer to. Development tools, such as Microsoft Visual 
Studio’s editor, use metadata to provide IntelliSense and other help-related assistance. And, 
of course, metadata is used to serialize and deserialize objects so that they can be persisted 
to disk or sent over the network. In fact, this ability to use metadata to easily serialize and 
deserialize objects over the wire is what makes building XML Web services with the .NET 
Framework child’s play.  

Throughout this book, I’ve been using the ILDasm.exe tool that ships with the .NET 
Framework SDK. This tool parses the metadata contained inside a managed module or 
assembly and shows the metadata information in human readable format. The act of 
examining metadata is called reflection; in other words, ILDasm.exe reflects over the 
module’s or assembly’s metadata and shows the results to the user. 

Reflection is an incredibly powerful tool for developers. Reflection allows developers to build 
dynamically extensible applications. For example, anyone can produce a type and package 
it in an assembly. However, if that type follows certain rules, the Visual Studio .NET 
Windows Forms and Web Forms designers can integrate the type (component) into the 
designers. Visual Studio can add the type to the Toolbox window, and when an instance of 
the type is dropped on a form, the Properties window will show the properties that are 
exposed by the type. This rich level of integration and the ease with which it’s produced are 
unparalleled in earlier technologies such as Win32 and COM. In this chapter, I’ll demonstrate 
how to use reflection to accomplish this level of integration. 

A method can use reflection to alter its behavior based on facts learned about another piece 
of code. You saw an example of this in Chapter 13. If an enumerated type has an instance of 
the System.FlagsAttribute applied to it, then calling ToString on an instance of the 
enumerated type causes the value to be treated as a bit flag instead of a single numeric 
value. In fact, reflection is really what custom attributes are all about. 

Using reflection, a method can alter its behavior based on its caller. For example, it’s 
possible to implement a method that performs a certain operation when called from code in 
the same assembly. The same method could perform slightly different operations when 
called from code outside the assembly. The possibilities are endless. 



Before getting too deep into reflection, you need to become familiar with CLR hosting and 
AppDomains. So I’ll spend some time addressing these topics before delving back into 
reflection to explain how all this fits together. 

 

CLR Hosting 

The .NET Framework runs on top of Microsoft Windows. This means that the .NET 
Framework must be built using technologies that Windows understands. For starters, all 
managed module and assembly files must use the Windows portable executable (PE) file 
format and be either a Windows EXE file or a dynamic-link library (DLL).  

When developing the CLR, Microsoft implemented it as a COM server contained inside a 
DLL; that is, Microsoft defined a standard COM interface for the CLR and assigned GUIDs to 
this interface and the COM server. When you install the .NET Framework, the COM server 
representing the CLR is registered in the Windows registry just like any other COM server. If 
you want more information about this topic, refer to the MSCorEE.h C++ header file that 
ships with the .NET Framework SDK. This header file defines the GUIDs and the 
unmanaged ICorRuntimeHost interface definition. 

Any Windows application can host the CLR. However, you shouldn’t create an instance of 
the CLR COM server by calling CoCreateInstance; instead, your unmanaged host 
should call the CorBindToRuntimeEx function (prototyped in MSCorEE.h). The 
CorBindToRuntimeEx function is implemented in the MSCorEE.dll, which is usually found 
in the C:\Windows\System32 directory. This DLL is called the shim, and its job is to 
determine which version of the CLR to create; the shim DLL doesn’t contain the CLR COM 
server itself. 

You see, version 1.0 of the .NET Framework comes with two versions of the CLR COM 
server. The MSCorWks.dll file contains the workstation version; this version is tuned to offer 
better performance in single-processor, workstation environments. The MSCorSvr.dll file 
contains the server version, which is tuned to offer better performance in multiprocessor, 
server environments. In the future, Microsoft will be producing new versions of the CLR, and 
these can be installed on a user’s hard disk as well. 

When CorBindToRuntimeEx is called, its parameters allow the host to specify which 
version of the CLR it would like to create. The version information indicates workstation vs. 
server as well as a version number. CorBindToRuntimeEx uses the specified version 
information and gathers some additional information of its own (such as how many CPUs are 
installed in the machine and which versions of the CLR are installed) to decide which version 
of the CLR to load—the shim might not load the version that the host requested. 

By default, the shim examines the managed executable file and extracts the information 
indicating what version of the CLR the application was built and tested with. However, an 
application can override the default by placing entries in its XML configuration file (as 
described in Chapters 2 and 3). The following sample XML configuration file shows how an 
application can tell the shim to load a particular CLR version: 

<configuration> 
   <startup> 

      <requiredRuntime version="v1.0.0.0" safemode="true"/> 
   </startup> 

</configuration> 



After examining this information, the shim loads the corresponding CLR version. If 
safemode is set to false (the default), the shim loads the most recently installed version of 
the CLR that is compatible with the version the application wants.  

Microsoft determines which versions of the CLR are compatible with other versions by 
creating some registry settings. You can see the CLR version policy settings by examining 
the values under the following registry subkey: 

HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework\Policy 

You should never modify any of the values under this registry subkey; when you install a 
new version of the .NET Framework, the setup program will modify these settings based on 
Microsoft’s compatibility testing.  

The CorBindToRuntimeEx function returns a pointer to an unmanaged 
ICorRuntimeHost interface (also defined in MSCorEE.h). The hosting application can call 
methods defined by this interface to initialize the CLR. The host can also call methods telling 
the CLR what assembly to load and what method to start executing. The section "Loading 
the Common Language Runtime" on page 9 in Chapter 1 explains how all this works for 
managed console and Windows Forms applications. 

 

AppDomains 

When the CLR COM server is loaded into a Windows process, it initializes. Part of this 
initialization is to create the managed heap that all reference objects get allocated in and 
garbage collected from. In addition, the CLR creates a thread pool usable by any of the 
managed types whose assemblies are loaded into the process. While initializing, the CLR 
also creates an AppDomain. An AppDomain is a logical container for a set of assemblies. 
The first AppDomain created when the CLR initializes is called the default AppDomain; this 
AppDomain is destroyed only when the Windows process terminates. 

 
Note  

In version 1 of the .NET Framework, no more than one CLR COM server 
object can exist in a Windows process, and this CLR COM server object 
can’t be destroyed until the hosting process terminates; that is, 
CorBindToRuntimeEx creates an instance of a CLR COM server and 
returns a pointer to an ICorRuntimeHost interface. Calling the AddRef 
and Release methods on this interface has no effect. In addition, a single 
host process can create only one instance of a CLR COM server. If a single 
host process calls CorBindToRuntimeEx multiple times, the same 
ICorRuntimeHost pointer is returned every time.  

In addition to the default AppDomain, a host can instruct the CLR to create additional 
AppDomains. Moreover, code in a managed assembly can also tell the CLR to create 
additional AppDomains. Three characteristics of AppDomains make them useful: 
§ AppDomains are isolated from one another  An AppDomain can’t see the objects 

created by a different AppDomain. This enforces a clean separation because code in 
one AppDomain can’t have a direct reference to an object created in a different 
AppDomain. This isolation allows AppDomains to easily be unloaded from a process. 

§ AppDomains can be unloaded  The CLR doesn’t support the ability to unload a 
single assembly. However, you can tell the CLR to unload an AppDomain and all the 
assemblies currently contained in it. 

§ AppDomains can be individually secured and configured  When created, an 
AppDomain can have evidence applied to it. Evidence is a security-related feature that 
determines the maximum rights granted to assemblies running in the AppDomain. More 
common, however, is that an AppDomain will have a security policy applied to it using 



AppDomain’s SetAppDomainPolicy method. In addition, the 
System.AppDomainSetup class allows you to set and query an AppDomain’s 
settings. These configuration settings are used to fine-tune how the CLR locates and 
loads assemblies. These settings include the following: 
§ ApplicationName  A friendly string name used to identify an AppDomain. 
§ ApplicationBase   A directory where the CLR will look to locate assemblies. 
§ PrivateBinPath  A set of directories where the CLR will look to locate weakly 

named assemblies. 
§ ConfigurationFile  The pathname of a configuration file containing rules that 

the CLR will use to locate assemblies. The file also contains remoting settings, 
Web applications settings, and more. 

§ LoaderOptimization  A flag telling the CLR whether to treat loaded 
assemblies as domain neutral or single-domain.  

 
Important  It would be dangerous to run multiple unmanaged applications in 

a single process. The reason is that the different applications have 
access to each other’s data and code, making it all too easy for 
one application to corrupt the other application. However, this isn’t 
a concern with managed code because the managed IL code is 
type-safe and the IL code is verified. This makes it impossible for 
code in one AppDomain to corrupt code in another AppDomain. 
Of course, an administrator could turn off verification and allow the 
managed code to make calls to unmanaged functions. If an 
administrator does this, all bets are off and AppDomain corruption 
is entirely possible. 

Figure 20-1 shows a single Windows process that has one CLR COM server running in it. 
This CLR is managing two AppDomains. Each AppDomain has its own loader heap, which 
maintains a record of which types have been accessed since the AppDomain was created. 
Each type in the loader heap has a method table, and each entry in the method table points 
to JIT-compiled x86 code if that method has been executed at least once.  

In addition, each AppDomain has some assemblies loaded into it. AppDomain #1 (the 
default AppDomain) has three assemblies: MyApp.exe, TypeLib.dll, and System.dll. The 
TypeLib.dll assembly consists of three modules: TypeLib.dll (which contains the manifest), 
FUT.netmodule, and RUT.netmodule. AppDomain #2 has three single-module assemblies 
loaded into it: Wintellect.dll, System.dll, and Microsoft.dll.  

By default, an assembly is loaded once per AppDomain; that is, the System.dll assembly is 
actually loaded into both AppDomain #1 and AppDomain #2. This means that the 
information about the System.dll assembly is reconstructed in each AppDomain’s loader 
heap. Even the JIT-compiled code for the methods defined by System.dll’s types exists twice 
in this process’s address space. The advantage of this is that an AppDomain can be 
completely unloaded from the process without affecting any other AppDomain. 

Some assemblies are expected to be used by several AppDomains. The best example is 
MSCorLib.dll, which is a single-module assembly created by Microsoft. This assembly 
contains System.Object, System.Int32, and all the other types that are so integral to 
the .NET Framework. This assembly is automatically loaded when the CLR initializes, and all 
AppDomains share the types in this assembly. To reduce resource usage, MSCorLib.dll is 
loaded in an AppDomain-neutral fashion; that is, the CLR maintains a special loader heap 
for assemblies that are loaded in a domain-neutral fashion. Assemblies loaded this way can’t 
be unloaded until the process terminates. 



 
Figure 20-1 : A single Windows process hosting the CLR and two AppDomains  

Accessing Objects Across AppDomain Boundaries 

Code in one AppDomain can communicate with types and objects contained in another 
AppDomain. However, the access to these types and objects is only through well-defined 
mechanisms. Most types are marshaled by value across AppDomain boundaries. In other 
words, if an object is constructed in one AppDomain and a reference to this object is passed 
to another AppDomain, the CLR must first serialize the object’s fields into a block of 
memory. This block of memory is then passed to the other AppDomain, which deserializes 
the block to produce a new object. The destination AppDomain uses the reference to this 
new object. The destination AppDomain has no access to the original AppDomain’s object. 
For objects to be remoted by value, the object’s type must have the 
System.Serializable custom attribute applied to it.  

 
Note  

Deserializing an object causes the CLR to load the type’s assembly if 
necessary. If the CLR can’t locate the assembly using the destination 
AppDomain’s policies (for example, the AppDomain can have a different 
AppBase directory), the object can’t be deserialized and an exception will be 
thrown. 

Types that are derived from System.MarshalByRefObject can also be accessed across 
AppDomain boundaries. However, access to the object is accomplished by reference rather 
than by value. Let’s say that an AppDomain has an object created in it whose type is derived 
from MarshalByRefObject. When a reference to this object is passed to a destination 
AppDomain, the CLR actually creates an instance of a proxy type in the destination 
AppDomain, and a reference to this proxy object is what code in the destination AppDomain 
will use. The original object and its fields remain in the original AppDomain. The proxy object 
is a wrapper that knows how to call instance methods on the original object in the original 
AppDomain. Again, the destination doesn’t have direct access to the original AppDomain’s 
object. 



Obviously, accessing objects across AppDomain boundaries has some performance costs 
associated with it. When possible, you should avoid manipulating objects across AppDomain 
boundaries. 

A one-to-one correspondence doesn’t exist between threads and AppDomains. When a 
thread in one AppDomain calls a method in another AppDomain, the thread transitions 
between the two AppDomains. This means that method calls across AppDomain boundaries 
are executed synchronously. However, at any given time, a thread is considered to be in just 
one AppDomain. You can call System.Threading.Thread’s static GetDomain method to 
obtain a reference to the System.AppDomain object to identify the AppDomain that the 
thread is currently executing in. 

When unloading an AppDomain, the CLR knows which threads are in the AppDomain, and 
the CLR forces a ThreadAbortException exception in the threads so that they unwind 
out of the AppDomain. Once the threads have left the AppDomain, the CLR can invalidate all 
proxy objects that refer to objects in the unloaded AppDomain. At this point, any calls to 
methods using an invalid proxy will cause a System.AppDomainUnloadedException 
exception to be thrown because the original object no longer exists. 

The AppDomainRunner sample application discussed in this chapter’s “Explicitly Unloading 
Assemblies: Unloading an AppDomain” section demonstrates how to marshal an object by 
reference across an AppDomain boundary. 

AppDomain Events 

I want to briefly mention that each AppDomain exposes a number of events that can be 
incredibly useful. Table 20-1 lists the events that your code can register interest in. 

Table 20-1: AppDomain Events  

Event Name Description 

AssemblyLoad  This event is fired every time the CLR loads an 
assembly into the AppDomain. The handler receives 
a System.Reflection.Assembly object 
identifying the loaded assembly. 

DomainUnload  This event is fired just before the AppDomain is 
unloading. This event isn’t fired when the process 
containing the AppDomain is terminating. 

ProcessExit  This event is fired just before the process 
terminates. This event is fired only for the default 
AppDomain; any other AppDomain that registers 
interest in this event won’t receive a notification.  

UnhandledException  This event is fired when an unhandled exception 
occurs in an AppDomain. This event is covered in 
Chapter 18. 

AssemblyResolve  This event is fired when the CLR can’t locate an 
assembly required by the AppDomain. The handler 
receives a string identifying the name of the missing 
assembly. 

ResourceResolve  This event is fired when the CLR can’t locate a 
resource required by the AppDomain. The handler 



Table 20-1: AppDomain Events  

Event Name Description 

receives a string identifying the name of the missing 
resource. 

TypeResolve  This event is fired when the CLR can’t locate a type 
required in one of the AppDomain’s assemblies. The 
handler receives a string identifying the name of the 
missing type and can tell the CLR what type to use 
by returning a reference to a Type object. 
Frequently, the handler decides what Type object to 
return based on the client’s location or operating 
system. 

Applications and How They Host the CLR and Manage 
AppDomains 

So far, I’ve talked about hosts and how they load the CLR, AppDomains, and how the host 
can tell the CLR to create and unload AppDomains. To make the discussion more concrete, 
I thought I’d describe some common hosting and AppDomain scenarios. In particular, I’ll 
explain to you how different application types host the CLR and how they manage 
AppDomains. 

Console and Windows Forms Applications 

When invoking a managed console or Windows Forms application, the shim examines the 
CLR header information contained in the application’s assembly. The header information 
indicates what version of the CLR was used to build and test the application. The shim uses 
this information to determine which CLR COM server to create. After the CLR loads and 
initializes, it again examines the assembly’s CLR header to determine which method is the 
application’s entry point (Main). The CLR invokes this method, and the application is now up 
and running. 

As the code runs, it accesses other types. When referencing a type contained in another 
assembly, the CLR locates the necessary assembly and loads it into the same AppDomain. 
Any additionally referenced assemblies also load into the same AppDomain. When the 
application’s Main method returns, the default AppDomain unloads and the Windows 
process terminates. 

 
Note  

By the way, you can call System.Environment’s static Exit method if 
you want to shut down the Windows process, including all its AppDomains. 
Exit is the most graceful way of terminating a process because it first calls 
the Finalize methods of all the objects on the managed heap and then 
releases all the unmanaged COM objects held by the CLR. Finally, Exit 
calls the Win32 ExitProcess function. 

It’s possible for a console or Windows Forms application to tell the CLR to create additional 
AppDomains in the process’s address space. However, these application types rarely ever 
use or require multiple AppDomains. 

ASP.NET Web Forms and XML Web Services Applications 



ASP.NET is an ISAPI DLL (implemented in ASPNet_ISAPI.dll). When a client requests a 
URL handled by the ASP.NET ISAPI DLL, ASP.NET creates what is called a worker process 
(ASPNet_wp.exe). A worker process is a Windows process that hosts a CLR COM server.  

When a client makes a request of a Web application, ASP.NET determines if this is the first 
time a request has been made. If it is, ASP.NET tells the CLR to create a new AppDomain 
for this Web application; each Web application is identified by its virtual root directory. 
ASP.NET then tells the CLR to load the assembly that contains the type exposed by the 
Web application into this new AppDomain, creates an instance of this type, and starts calling 
methods in it to satisfy the client’s Web request. If the code references more types, the CLR 
will load the required assemblies into the Web application’s AppDomain. By the way, 
strongly named assemblies (such as System.Web.dll) are loaded in a domain-neutral 
fashion to conserve operating system resources. 

When future clients make requests of an already running Web application, ASP.NET doesn’t 
create a new AppDomain; instead, it just uses the existing AppDomain, creates a new 
instance of the Web application’s type, and starts calling methods. The methods will already 
be JIT compiled into native code, so the performance of processing all subsequent client 
requests is excellent. 

If a client makes a request of a different Web application, ASP.NET tells the CLR to create a 
new AppDomain. This new AppDomain is typically created inside the same worker process 
as the other AppDomains. This means that many Web applications run in a single Windows 
process, which improves the efficiency of the system overall. Again, the assemblies required 
by the different Web application are loaded into its own AppDomain. 

Microsoft Internet Explorer 

When you install the .NET Framework, it installs a MIME filter (MSCorIE.dll) that gets 
hooked into Internet Explorer versions 5.01 and later. This MIME filter handles downloaded 
content marked with a MIME type of “application/octet-stream” or “application/x-
msdownload”. When the MIME filter detects a managed assembly being downloaded, it calls 
the CorBindToRuntimeEx function to create a CLR COM server; this makes Internet 
Explorer’s process a host. 

The MIME filter is in control of the CLR and ensures that all assemblies from one Web site 
are loaded into their own AppDomain. This allows an administrator to treat assemblies 
downloaded from different Web sites in different ways, say, trusting assemblies from one 
Web site but not those from another. This also allows assemblies used by one Web 
application to be unloaded when the user surfs to a different Web application. 

“Yukon” 

The next version of Microsoft SQL Server (code-named “Yukon”) is an unmanaged 
application because most of its code is still written in unmanaged C++. During initialization, 
however, “Yukon” will create a CLR COM server. “Yukon” allows stored procedures to be 
written in any managed programming language (C#, Visual Basic, Smalltalk, and so on). 
These stored procedures will run in their own AppDomain that has special evidence applied 
to it prohibiting the stored procedures from adversely affecting the database server. “Yukon” 
can instruct the CLR to load just the desired assembly and to call methods in that assembly 
that will execute under the necessary security restrictions.  

This functionality is absolutely incredible! It means that developers will be able to write 
stored procedures in the programming language of their choice. The stored procedure can 
use strongly typed data objects in its code. The code will also be JIT compiled into native 



code when executed, instead of interpreted. And developers can take advantage of any 
types defined in the .NET Framework Class Library (FCL) or in any other assembly to help 
them. The result is that our job becomes much easier and our applications perform much 
better. What more could a developer ask for?! 

In the future, productivity applications such as word processors and spreadsheets will also 
allow users to write macros in any programming language they choose. These macros will 
have access to all the assemblies and types that work with the CLR. They will be compiled, 
so they will execute fast, and, most important, these macros will run in a secure AppDomain 
so that users don’t get hit with any unwanted surprises. 

 

The Gist of Reflection 

As you know, metadata is a bunch of tables. When you build an assembly or a module, the 
compiler you’re using creates a type definition table, a field definition table, a method 
definition table, and so on. The FCL’s System.Reflection namespace contains several 
types that allow you to write code that reflects over (or parses) these metadata tables. In 
effect, the types in this namespace offer an object model over the metadata contained in an 
assembly or a module.  

Using these object model types, you can easily enumerate all the types in a type definition 
metadata table. Then for each type, you can obtain its base type, what interfaces it 
implements, and what flags are associated with the type. Additional types in the 
System.Reflection namespace allow you to query the type’s fields, methods, properties, 
and events by parsing the corresponding metadata tables. You can also discover any 
custom attributes (covered in Chapter 16) that have been applied to any of the metadata 
entities. With this information, you could build a tool very similar to Microsoft’s ILDasm.exe.  

 
Important  

The types in the System.Reflection namespace allow you to query 
definition metadata tables. No types are offered that allow you to query 
reference metadata tables. Nor do the reflection types offer the 
capability to read a method’s IL code. The ILDasm.exe tool parses the 
file’s bytes directly to obtain this information. Fortunately, the file 
format for managed modules and assemblies is public. In fact, this file 
format is being standardized by the ECMA technical committee. So if 
you’re writing an application that wants to query reference metadata 
tables or get the IL bytes from a managed method, you’ll have to write 
code that manually parses the file’s format because reflection doesn’t 
offer you this capability. 

In addition, some definition metadata information isn’t obtainable via 
reflection. For example, there’s no way to determine the default value 
for optional arguments (a feature offered in Visual Basic but not in C#). 
Microsoft will address these “holes” in the reflection types in future 
versions of the .NET Framework. 

Finally, you should be aware that some of the reflection types and 
some of the members defined by these types are designed specifically 
for use by developers who are producing compilers for the CLR. 
Application developers don’t typically use these types and members. 
The .NET Framework documentation doesn’t explicitly point out which 
of these types and members are for compiler developers rather than 
application developers, but if you realize that not all reflection types 
and their members are for everyone, the documentation can be less 
confusing. 



In reality, very few applications will have the need to use the reflection types. Reflection is 
typically used for class libraries that need to understand a type’s definition in order to provide 
some rich functionality. For example, the FCL’s serialization mechanism uses reflection to 
determine what fields a type defines. The serialization formatter can then obtain the values 
of these fields and write them into a byte stream for sending across the Internet. Similarly, 
Visual Studio’s designers use reflection to determine which properties should be shown to 
developers when laying out controls on their Web Forms or Windows Forms at design time. 

Reflection is also used when an application needs to load a specific type from a specific 
assembly at run time to accomplish some task. For example, an application might ask the 
user to provide the name of an assembly and a type. The application could then explicitly 
load the assembly, construct an instance of the type, and call methods on the type. This 
usage is conceptually similar to calling Win32’s LoadLibrary and GetProcAddress 
functions. Binding to types and calling methods in this way is frequently referred to as late 
binding. (Early binding is when the types and methods an application uses are determined at 
compile time.) 

The remainder of this chapter contains sample applications, all of which use reflection. Each 
application demonstrates a different use of reflection and addresses topics that you’ll need to 
know about to use reflection effectively and efficiently. 

 

Reflecting Over an Assembly’s Types 

Reflection is frequently used to determine what types an assembly defines. The Reflector 
sample code (which can be downloaded from http://www.Wintellect.com/) demonstrates how 
to do this: 

using System; 
using System.Reflection; 

 
class App { 

   static void Main() { 
      Assembly assem = Assembly.GetExecutingAssembly(); 

      Reflector.ReflectOnAssembly(assem); 
   } 

} 
 

public class Reflector { 
   public static void ReflectOnAssembly(Assembly assem) { 

      WriteLine(0, "Assembly: {0}", assem); 
 

      // Find Modules 
      foreach (Module m in assem.GetModules()) { 

         WriteLine(1, "Module: {0}", m); 
 

         // Find Types 
         foreach (Type t in m.GetTypes()) { 



            WriteLine(2, "Type: {0}", t); 
 

            // Find Members 
            foreach (MemberInfo mi in t.GetMembers()) 

               WriteLine(3, "{0}: {1}", mi.MemberType, mi); 
         } 

      } 
   } 

 
   private static void WriteLine(Int32 indent, String format,  

      params Object[] args) { 
 

      Console.WriteLine(new String(‘ ’, 3 * indent) + format, arg
s); 
   } 

} 
 

class SomeType { 
   public class InnerType {} 

   public Int32 SomeField = 0; 
   private static String goo = null; 

 
   private void SomeMethod() { }  

    
   private TimeSpan SomeProperty { 

      get { return new TimeSpan(); } 
      set { }  

   } 
    

   public static event System.Threading.ThreadStart SomeEvent; 
 

   private void NoCompilerWarnings() { 
      // This code is here just to make the compiler warnings go 
away. 
      SomeEvent.ToString(); 
      goo.ToString();  

   } 
} 

In Main, the application calls System.Reflection.Assembly’s static 
GetExecutingAssembly method. This method determines which assembly contains the 
method that’s making the call and returns a reference to this Assembly object. This 



reference is then passed to the Reflector type’s static ReflectOnAssembly method. 
This method displays the full name of the assembly and then calls GetModules, which 
returns an array of System.Reflection.Module classes. Each element in the array 
identifies a module that is part of the assembly.  

A loop then enumerates over each module in the assembly. In the loop, the module’s name 
is displayed and then GetTypes is called. GetTypes returns an array of System.Type 
elements; each element identifies a type defined within the assembly’s module. A loop then 
iterates over each type. In this loop, the type’s name is displayed and then GetMembers is 
called. This method returns an array of System.Reflection.MemberInfo elements, 
where each element identifies a member (constructor, method, field, property, event, or 
nested type) of the type. 

In the Reflector application, the SomeType type exists purely for demonstration purposes. 
This type defines a bunch of different members showing what you can expect when 
reflecting over metadata. If you build and run the Reflector application, you’ll see the 
following output:  

Assembly: Reflector, Version=0.0.0.0, Culture=neutral, PublicKeyT
oken=null 
   Module: Reflector.exe 
      Type: App 

         Method: Int32 GetHashCode() 
         Method: Boolean Equals(System.Object) 

         Method: System.String ToString() 
         Method: System.Type GetType() 

         Constructor: Void .ctor() 
      Type: Reflector 

         Method: Int32 GetHashCode() 
         Method: Boolean Equals(System.Object) 

         Method: System.String ToString() 
         Method: Void ReflectOnAssembly(System.Reflection.Assembl
y) 
         Method: System.Type GetType() 
         Constructor: Void .ctor() 

      Type: SomeType 
         Field: Int32 SomeField 

         Method: Int32 GetHashCode() 
         Method: Boolean Equals(System.Object) 

         Method: System.String ToString() 
         Method: Void add_SomeEvent(System.Threading.ThreadStart) 

         Method: Void remove_SomeEvent(System.Threading.ThreadSta
rt) 
         Method: System.Type GetType() 

         Constructor: Void .ctor() 
         Event: System.Threading.ThreadStart SomeEvent 



         NestedType: SomeType+InnerType 
      Type: SomeType+InnerType 

         Method: Int32 GetHashCode() 
         Method: Boolean Equals(System.Object) 

         Method: System.String ToString() 
         Method: System.Type GetType() 

         Constructor: Void .ctor() 

Here you see that the assembly is called Reflector, it has a version of 0.0.0.0 and has no 
specific culture associated with it. In addition, notice that there is no public key token 
associated with the assembly, making this a weakly named assembly instead of a strongly 
named assembly. This assembly consists of just one module: Reflector.exe. This module 
defines four types: App, Reflector, SomeType, and SomeType+InnerType (SomeType’s 
nested type). For each type, you see the members defined by the type. Because SomeType 
defines a variety of members, its members are the most interesting.  

You’ll notice that only publicly defined members are shown in the preceding output. I’ll 
explain how to obtain all the public and nonpublic members when I get to binding flags 
(coming up shortly). 

 

Reflecting Over an AppDomain’s Assemblies 

The Reflector sample is a good introduction to reflection because it shows how to reflect 
over an assembly’s metadata. At times, however, you might want to reflect over all the 
assemblies contained within an AppDomain. To demonstrate how to reflect over all the 
assemblies in an AppDomain, I took the Reflector sample application and made a small 
change to the Main method. Here’s the new Main method (nothing else has changed):  

static void Main() { 

   foreach (Assembly assem in  
      AppDomain.CurrentDomain.GetAssemblies()) { 

 
      Reflector.ReflectOnAssembly(assem); 

   } 
} 

In this version of Main, System.AppDomain’s static CurrentDomain property is called. 
This property returns a reference to an AppDomain object that identifies the AppDomain 
containing the calling code. Then the AppDomain object’s GetAssemblies method is 
called, which returns an array of System.Reflection.Assembly elements—one element 
for each assembly loaded into the AppDomain at the time GetAssemblies is called.  

At this point, a loop iterates over the array of assemblies, calling Reflector’s static 
ReflectOnAssembly method for each one. This version of the Reflector application shows 
all the assemblies in the AppDomain, all the modules that make up each assembly, all the 
types defined by each module, and all the members defined by each type. 

If you build and run this version of the Reflector sample application, you’ll see that two 
assemblies are shown in the output: MSCorLib.dll and Reflector.exe. Because MSCorLib.dll 



defines over 1400 types, the output produced by this application is much too long to reprint 
in this book. 

 
Reflecting Over a Type’s Members: Binding 

In the second version of the Reflector application, a type’s members are obtained by calling 
the Type object’s GetMembers method. Type actually offers two versions of the 
GetMembers method. The first overload takes no parameters. This version returns the 
type’s publicly defined static and instance members only. The second overload of 
GetMembers takes a single parameter: an instance of a 
System.Reflection.BindingFlags enumerated type. Table 20-2 shows the relevant 
symbols defined by the BindingFlags enumerated type.  

Table 20-2: Search Symbols Defined by the BindingFlags Enumerated Type  

Symbol Value Description 

Default  0x00 A placeholder for no flags specified. Use 
this flag when you don’t want to specify 
any of the flags in the remainder of this 
table.  

IgnoreCase  0x01 Search using case-insensitivity. 

DeclaredOnly  0x02 Only search members on the declared 
type. (Ignore inherited members.) 

Instance  0x04 Search instance members. 

Static  0x08 Search static members. 

Public  0x10 Search public members. 

NonPublic  0x20 Search nonpublic members. 

FlattenHierarchy  0x40 Search static members defined by base 
types.  

Earlier, I pointed out that Reflector’s output doesn’t include a type’s private members. You 
can specify exactly which members the GetMembers method should return by passing the 
desired BindingFlags when calling this method. 

To reflect over the nonpublic members of a type, I’ve modified the original Reflector sample 
application again. In this version, I’ve now told GetMembers to return all public and 
nonpublic, and static and instance members that are declared by the type itself. Any 
members inherited from a base type are not displayed. Here’s what the new code to call 
GetMembers looks like (nothing else in the source code has changed):  

BindingFlags bf = BindingFlags.DeclaredOnly |  
   BindingFlags.NonPublic | BindingFlags.Public |  

   BindingFlags.Instance  | BindingFlags.Static; 
 

foreach (MemberInfo mi in t.GetMembers(bf)) 
   WriteLine(3, "{0}: {1}", mi.MemberType, mi);  



Here, bf is initialized to a set of flags, indicating that I want to iterate over the type’s public 
and nonpublic, and static and instance members. Furthermore, the DeclaredOnly flag 
indicates that I only want to iterate over the members that the type defines—not any of the 
members that the type inherits. Once bf is initialized, it is passed to the GetMembers 
method, which now knows exactly what members I’m interested in processing. 

After making the above change to the Reflector source code, building and running the new 
version of this application yields the following output: 

Assembly: Reflector, Version=0.0.0.0, Culture=neutral, PublicKeyT
oken=null 
   Module: Reflector.exe 
      Type: App 

         Method: Void Main() 
         Constructor: Void .ctor() 

      Type: Reflector 
         Method: Void ReflectOnAssembly(System.Reflection.Assembl
y) 
         Method: Void WriteLine(Int32, System.String, System.Obje
ct[]) 
         Constructor: Void .ctor() 
      Type: SomeType 

         Field: Int32 SomeField 
         Field: System.String goo 

         Field: System.Threading.ThreadStart SomeEvent 
         Method: Void SomeMethod() 

         Method: System.TimeSpan get_SomeProperty() 
         Method: Void set_SomeProperty(System.TimeSpan) 

         Method: Void add_SomeEvent(System.Threading.ThreadStart) 
         Method: Void remove_SomeEvent(System.Threading.ThreadSta
rt) 
         Method: Void NoCompilerWarnings() 
         Constructor: Void .cctor() 

         Constructor: Void .ctor() 
         Property: System.TimeSpan SomeProperty 

         Event: System.Threading.ThreadStart SomeEvent 
         NestedType: SomeType+InnerType 

      Type: SomeType+InnerType 
         Constructor: Void .ctor() 

 

Explicitly Loading Assemblies 

So far, I’ve shown you how to reflect on the assemblies that are loaded into an AppDomain. 
Knowing how to do this is useful, but you must remember that the CLR decides when to load 
an assembly: the first time a method is called, the CLR examines the method’s IL code to 



see what types are referenced. The CLR then loads all the assemblies that define the 
referenced types. If a required assembly is already available in the AppDomain, the CLR 
knows not to load the assembly again. 

But let’s say you want to write an application that counts the number of types that implement 
a particular interface. To accomplish this, you’d have to implement a method that references 
at least one type in each assembly you want loaded. Then you’d have to call this method to 
force the CLR to load all the assemblies that define these types. Once the assemblies are 
loaded, you can use the reflection methods already discussed.  

This isn’t the most ideal way to write this application. Instead, you’d like to have a way to 
explicitly load assemblies into your AppDomain so that you can reflect over their types. The 
technique I’m about to describe is similar to using Win32’s LoadLibrary function.  

The System.Reflection.Assembly type offers three static methods that allow you to 
explicitly load an assembly: Load, LoadFrom, and LoadWithPartialName. (Each method 
offers several overloaded versions.) Of the three methods, I highly recommend that you use 
Load whenever possible and avoid LoadFrom and LoadWithPartialName.  

The Load method takes an assembly identity and loads it. By assembly identity, I mean an 
assembly name, a version, a culture, and a public key token, if the assembly is strongly 
named. If the assembly is weakly named, the identity is just the name of the assembly 
(without a file extension). Load uses the same algorithm that the CLR uses to implicitly load 
an assembly. If a strongly named assembly is specified, Load causes the CLR to apply 
policy to the assembly and look for the assembly in the global assembly cache (GAC) 
followed by the application’s base directory and private path directories. If you call Load 
passing a weakly named assembly, Load doesn’t apply policy to the assembly and the CLR 
won’t look in the GAC for the assembly. In either case, if the specified assembly can’t be 
found, a System.IO.FileNotFoundException exception is thrown. 

Assembly’s static LoadFrom method works differently. When calling LoadFrom, you pass 
the pathname of an assembly file (including the file’s extension) and the CLR will load the 
exact assembly file you specify. The string that you pass to LoadFrom can’t contain any 
strong-name information; that is, the string can’t include version, culture, or public key 
information. The CLR doesn’t apply any policy to the file you specify, and the CLR doesn’t 
search for the file. If the file doesn’t exist at the specified path, a 
System.IO.FileNotFoundException exception is thrown. 

The last static method that loads an assembly is LoadWithPartialName. You should 
never use this method because an application won’t know for sure what version of an 
assembly it is loading. The method exists only to help some customers who were using 
some behavior offered by the .NET Framework during its beta cycle; this behavior was later 
removed because of its unpredictability.  

For those of you who care, here’s how LoadWithPartialName works. When calling this 
method, you pass an assembly identity, which includes the assembly’s name (without file 
extension), and you can optionally pass version, culture, and public key token information. 
When calling LoadWithPartialName, the CLR first checks the application’s XML 
configuration file looking for a qualifyAssembly element. If this element exists, it tells the 
CLR how to map a partial assembly identity to a fully qualified assembly identity—the CLR 
will now use its normal rules to locate the assembly. If no qualifyAssembly element 
exists, the CLR searches in the AppBase and private bin path directories looking for an 
assembly with the specified name. If a matching assembly is found, the assembly is loaded.  



If no matching assembly is found, the CLR looks in the GAC using the portions of the 
assembly’s identity specified by the caller. If the culture or public key information wasn’t 
specified, the behavior of LoadWithPartialName is undefined and you’re not guaranteed 
to load any particular assembly. However, if only the version wasn’t specified, 
LoadWithPartialName loads the assembly from GAC that has the highest version 
number.  

 
Important  

Some developers notice that System.AppDomain offers a Load 
method. Unlike Assembly’s static Load method, AppDomain’s Load 
method is an instance method that allows you to load an assembly into 
the specified AppDomain. This method was designed to be called by 
unmanaged code, and it allows a host to inject an assembly into a 
specific AppDomain. Managed code developers generally shouldn’t 
call this method. Here’s why. 

When AppDomain’s Load method is called, you pass it a string that 
identifies an assembly. The method then applies policy and searches 
the normal places—the user’s disk or codebase references—looking 
for the assembly. Recall that an AppDomain has settings associated 
with it that tell the CLR how to look for assemblies. To load this 
assembly, the CLR will use the settings associated with the specified 
AppDomain, not the calling AppDomain.  

However, AppDomain’s Load method returns a reference to an 
assembly. Because the System.Assembly class isn’t derived from 
System.MarshalByRefObject, the assembly object must be 
marshaled by value back to the calling AppDomain. But the CLR will 
now use the calling AppDomain’s settings to locate the assembly and 
load it. If the assembly can’t be found using the calling AppDomain’s 
policy and search locations, a FileNotFoundException exception 
is thrown. This behavior is usually undesirable and is the reason you 
should avoid AppDomain’s Load method. 

Loading Assemblies as “Data Files” 

Imagine a user has installed some utility application on her hard drive. The utility consists of 
two assemblies: SomeTool.exe (the main application’s assembly file) and Component.dll (an 
assembly file containing some components that SomeTool.exe uses). These two assemblies 
are installed as follows: 

C:\SomeTool\SomeTool.exe 
C:\SomeTool\Component.dll 

Let’s further suppose that the user has an assembly that she wants to process using 
SomeTool.exe. The assembly file to be processed happens to be named Component.dll and 
resides in the following location: 

C:\Component.dll 

Now, let’s say that the user executes the following command line: 

C:\>C:\SomeTool\SomeTool.exe C:\Component.dll 

SomeTool.exe’s Main method starts running and calls Assembly.LoadFrom, passing the 
command-line argument indicating the assembly that the tool is to process. The CLR loads 
the C:\Component.dll assembly. Now let’s say that Main calls some other method that 



references an object defined in the C:\SomeTool\Component.dll assembly. What do you 
think should happen? Should the CLR realize that an assembly named Component.dll is 
already loaded in the AppDomain and just use this assembly? Or should the CLR realize 
that the C:\Component.dll assembly file was loaded "as a data file" and wouldn’t normally 
have been loaded into the AppDomain? 

The CLR can’t assume that the Component.dll file loaded from C:\ is the same 
Component.dll file that is in C:\SomeTool because the two assembly files can define 
completely different types and methods. You’ll be glad to hear that the CLR does the right 
thing here: it loads C:\SomeTool\Component.dll into the AppDomain, and the code in 
SomeTool.exe will access types and methods defined in the correct assembly. 

Here’s how this works. Internally, when Assembly’s LoadFrom method is called, the CLR 
opens the specified file and extracts the assembly’s version, culture, and public key token 
information from the file’s metadata. Then the CLR internally calls Load, passing all this 
information. Load applies all the policy information and searches for the assembly. If a 
matching assembly is found, the CLR compares the full pathname of the assembly file 
specified by LoadFrom with the full pathname of the assembly file found by Load. If the 
pathnames are the same, the assembly is considered to be a normal part of the application. 
If the pathnames are different or if Load doesn’t find a matching file, the assembly is 
considered a "data file" and isn’t considered a normal part of the application. 

When the CLR needs to find a dependency of an assembly loaded via LoadFrom, the CLR 
goes through the regular probing logic, and if it can’t find the dependant assembly in any of 
those locations, it looks in the directory where the referring assembly was found (and in any 
subdirectory whose name matches that of the dependant assembly). 

Earlier, I mentioned that you should always use Load and avoid using LoadFrom whenever 
possible. One reason is that LoadFrom is much slower than Load because it calls Load 
internally, which has to apply policy and scan several disk locations. Another reason is that 
an assembly loaded with LoadFrom is treated like a "data file," and if your AppDomain does 
load two identical assembly files from different paths, you’re wasting a lot of memory and 
also hurting run-time performance. Calling Load ensures that performance is as good as it 
can be and that an assembly isn’t loaded more than once into an AppDomain.  

Whenever you’re about to place a call to LoadFrom, think about your application and try to 
figure out a way to change it so that Load will work instead. Of course, there will be times 
when Load simply won’t do and using LoadFrom is necessary (such as in the 
SomeTool.exe example). Certainly, if you can’t use Load, use LoadFrom instead—just be 
careful.  

Building a Hierarchy of Exception-Derived Types 

The ExceptionTree sample application (source code shown below) displays all classes that 
are ultimately derived from System.Exception. However, I wanted to examine types in 
several assemblies to produce this tree. To accomplish this, the application must explicitly 
load all the assemblies whose types I want to consider. This is the job of the application’s 
LoadAssemblies method. After loading all the assemblies, the application gets an array of 
all the AppDomain’s assemblies. Then I get an array for all types defined in each assembly.  

For each type, I check its base type by querying Type’s BaseType property. If the Type 
returned is System.Exception, this type is an exception type. If the Type returned is 
System.Object, the type isn’t an exception type. If the Type returned isn’t either of these 
types, I check the base type’s type recursively until I find Exception or Object. 



The following code is for the ExceptionTree application. The output from this application is 
shown in Chapter 18 (page 408), so I won’t display it here. 

using System; 
using System.Text; 

using System.Reflection; 
using System.Collections; 

 
class App { 

   static void Main() { 
      // Explicitly load the assemblies that I want to reflect ov
er. 
      LoadAssemblies(); 
 

      // Initialize the counters and the exception type list. 
      Int32 totalTypes = 0, totalExceptionTypes = 0; 

      ArrayList exceptionTree = new ArrayList(); 
 

      // Iterate through all assemblies loaded in this AppDomain. 
      foreach (Assembly a in AppDomain.CurrentDomain.GetAssemblie
s()) { 
 
         // Iterate through all types defined in this assembly. 

         foreach (Type t in a.GetTypes()) {  
 

            totalTypes++; 
 

            // Ignore type if not a public class. 
            if (!t.IsClass || !t.IsPublic) continue; 

 
            // Build a string of the type’s derivation hierarchy. 

            StringBuilder typeHierarchy =  
               new StringBuilder(t.FullName, 5000); 

 
            // Assume that the type isn’t an Exception-
derived type. 
            Boolean derivedFromException = false; 

 
            // See if System.Exception is a base type of this typ
e. 
            Type baseType = t.BaseType; 
            while ((baseType != null) && !derivedFromException) { 



               // Append the base type to the end of the string. 
               typeHierarchy.Append("-" + baseType); 

 
               derivedFromException =  

                  (baseType == typeof(System.Exception)); 
               baseType = baseType.BaseType; 

            } 
 

            // No more bases and not Exception-
derived, so try next type. 
            if (!derivedFromException) continue; 

 
            // I found an Exception-derived type. 

            totalExceptionTypes++; 
 

            // For this Exception-derived type, reverse the order 
            // of the types in the hierarchy. 

            String[] h = typeHierarchy.ToString().Split(‘-’); 
            Array.Reverse(h); 

 
            // Build a new string with the hierarchy in order 

            // from Exception -> Exception-derived type. 
            // Add the string to the list of Exception types. 

            exceptionTree.Add(String.Join("-", h, 1, h.Length -
 1)); 
         } 

      } 
 

      // Sort the Exception types together in order of their hier
archy. 

      exceptionTree.Sort(); 
 

      // Display the Exception tree. 
      foreach (String s in exceptionTree) { 

         // For this Exception type, split its base types apart. 
         String[] x = s.Split(‘-’); 

 
         // Indent based on the number of base types,  

         // and then show the most derived type. 
         Console.WriteLine( 

            new String(‘ ’, 3 * x.Length) + x[x.Length - 1]); 



      } 
 

      // Show the final status of the types considered. 
      Console.WriteLine("\n—> Of {0} types, {1} are " + 

         "derived from System.Exception.",  
         totalTypes, totalExceptionTypes); 

      Console.ReadLine(); 
   } 

 
   static void LoadAssemblies() { 

      String[] assemblies = { 
         "System,                        PublicKeyToken={0}", 

         "System.Data,                   PublicKeyToken={0}", 
         "System.Design,                 PublicKeyToken={1}", 

         "System.DirectoryServices,      PublicKeyToken={1}", 
         "System.Drawing,                PublicKeyToken={1}", 

         "System.Drawing.Design,         PublicKeyToken={1}", 
         "System.EnterpriseServices,     PublicKeyToken={1}", 

         "System.Management,             PublicKeyToken={1}", 
         "System.Messaging,              PublicKeyToken={1}", 

         "System.Runtime.Remoting,       PublicKeyToken={0}", 
         "System.Security,               PublicKeyToken={1}", 

         "System.ServiceProcess,         PublicKeyToken={1}", 
         "System.Web,                    PublicKeyToken={1}", 

         "System.Web.RegularExpressions, PublicKeyToken={1}", 
         "System.Web.Services,           PublicKeyToken={1}", 

         "System.Windows.Forms,          PublicKeyToken={0}", 
         "System.Xml,                    PublicKeyToken={0}", 

      }; 
 

      String EcmaPublicKeyToken = "b77a5c561934e089"; 
      String MSPublicKeyToken   = "b03f5f7f11d50a3a"; 

 
      // Get the version of the assembly containing System.Object
. 
      // I’ll assume the same version for all the other assemblie
s. 
      Version version =  

         typeof(System.Object).Assembly.GetName().Version; 
 



      // Explicitly load the assemblies that I want to reflect ov
er. 
      foreach (String a in assemblies) { 

         String AssemblyIdentity =  
            String.Format(a, EcmaPublicKeyToken, MSPublicKeyToken
) +  
            ", Culture=neutral, Version=" + version; 
 

         Assembly.Load(AssemblyIdentity); 
      } 

   } 
} 

 

Explicitly Unloading Assemblies: Unloading an AppDomain 

The CLR doesn’t support the ability to unload an assembly. Instead, you can unload an 
AppDomain, which causes all the assemblies contained within it to be unloaded. Unloading 
an AppDomain is very easy: you just call AppDomain’s static Unload method, passing it a 
reference to the AppDomain you want unloaded.  

 
Note  

As I mentioned previously, assemblies that are loaded in a domain-neutral 
fashion can never be unloaded from an AppDomain. To “unload” these 
assemblies, the process must be terminated. 

The AppDomainRunner sample application demonstrates how to create a new AppDomain, 
use a type in it, and then unload the AppDomain along with all its assemblies. The code also 
shows how to define a type that can be marshaled by reference across AppDomain 
boundaries. Finally, it shows what happens if you attempt to access a marshal-by-reference 
object that used to exist in an AppDomain that’s been unloaded. 

using System; 
using System.Reflection; 

using System.Threading; 
 

class App { 
   static void Main() { 

      // Create a new AppDomain. 
      AppDomain ad =  

         AppDomain.CreateDomain("MyNewAppDomain", null, null); 
 

      // Create a new MarshalByRef object in the new AppDomain. 
      MarshalByRefType mbrt = (MarshalByRefType)  

         ad.CreateInstanceAndUnwrap( 
            Assembly.GetCallingAssembly().FullName,  

            "MarshalByRefType"); 



 
      // Call a method on this object. The proxy remotes 

      // the call to the other AppDomain. 
      mbrt.SomeMethod(Thread.GetDomain().FriendlyName); 

 
      // I’m done using the other AppDomain, so 

      // I’ll unload it and all its assemblies. 
      AppDomain.Unload(ad); 

 
      // Try to call a method on the other AppDomain’s object.  

      // The object was destroyed when the AppDomain was unloaded
,  
      // so an exception is thrown. 

      try { 
         mbrt.SomeMethod(Thread.GetDomain().FriendlyName); 

 
         // The following line should NOT be displayed. 

         Console.WriteLine( 
            "Called SomeMethod on object in other AppDomain.\n" +
  
            "This shouldn’t happen."); 
      }  

      catch (AppDomainUnloadedException) { 
         // I’ll catch the exception here, and the 

         // following line should be displayed. 
         Console.WriteLine( 

            "Fail to call SomeMethod on object in other AppDomain
.\n" +  

            "This should happen."); 
      } 

 
      Console.ReadLine(); 

   } 
} 

 
 

// This type is derived from MarshalByRefObject. 
class MarshalByRefType : MarshalByRefObject { 

 
   // This instance method can be called via a proxy. 

   public void SomeMethod(String sourceAppDomain) { 



 
      // Display the name of the calling AppDomain and my AppDoma
in. 
      // NOTE: The application’s thread has transitioned between 
AppDomains. 
      Console.WriteLine( 

         "Code from the ’{0}’ AppDomain\n" + 
         "called into the ’{1}’ AppDomain.", 

         sourceAppDomain, Thread.GetDomain().FriendlyName); 
   } 

} 

If you build and run this application, you’ll see the following output:  

Code from the ’AppDomainRunner.exe’ AppDomain 

called into the ’MyNewAppDomain’ AppDomain. 
Fail to call SomeMethod on object in other AppDomain. 

This should happen. 

 

Obtaining a Reference to a System.Type Object 

Reflection is most commonly used to learn about types or to manipulate objects using 
information that is typically known only at run time, not at compile time. Obviously, this 
dynamic exploring and manipulation of types and objects comes at a performance hit, so you 
should use it sparingly. In addition, a compiler can’t help you locate and fix programming 
errors related to type safety when you’re using reflection.  

The System.Type type is your starting point for doing type and object manipulations. 
System.Type is an abstract base type derived from System.Reflection.MemberInfo 
(because a Type can be a member of another type). The FCL provides a few types that are 
derived from System.Type: System.RuntimeType, 
System.Reflection.TypeDelegator, some types defined in the 
System.Reflection.Emit namespace, EnumBuilder, and TypeBuilder. Aside from 
the few classes in the FCL, Microsoft doesn’t expect to define any other types that derive 
from Type. 

 
Note  

The TypeDelegator class allows code to dynamically subclass a Type by 
encapsulating the Type, allowing you to override some of the functionality 
while having the original Type handle most of the work. In general, the 
TypeDelegator type isn’t useful. In fact, Microsoft isn’t aware of anyone 
actually using the TypeDelegator type for anything. 

Of all these types, the System.RuntimeType is by far the most interesting. RuntimeType 
is a type that is internal to the FCL, which means that you won’t find it documented in the 
.NET Framework documentation. The first time a type is accessed in an AppDomain, the 
CLR constructs an instance of a RuntimeType and initializes the object’s fields to reflect 
(pun intended) information about the type. 

Recall that System.Object defines a method named GetType. When you call this 
method, the CLR determines the specified object’s type and returns a reference to its 



RuntimeType object. Because there is only one RuntimeType object per type in an 
AppDomain, you can use equality and inequality operators to see whether two objects are of 
the same type:  

Boolean AreObjectsTheSameType(Object o1, Object o2) { 

   return o1.GetType() == o2.GetType(); 
} 

In addition to calling Object’s GetType method, the FCL offers several more ways to 
obtain a Type object: 
§ The System.Type type offers several overloaded versions of a static GetType 

method. All versions of this method take a String. The string must specify the full 
name of the type (including its namespace), and compiler primitive types (such as C#’s 
int, string, bool, and so on) aren’t allowed. If the string is simply the name of a 
type, the method checks the calling assembly to see whether it defines a type of the 
specified name. If it does, a reference to the appropriate RuntimeType object is 
returned.  

If the calling assembly doesn’t define the specified type, the types defined by 
MSCorLib.dll are checked. If a type with a matching name still can’t be found, null is 
returned or a System.TypeLoadException exception is thrown, depending on 
which GetType method you call and what parameters you pass to it. The .NET 
Framework documentation fully explains this method. 

You can pass an assembly qualified type string, such as “System.Int32, mscorlib, 
Version=1.0.2411.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”, to 
GetType. In this case, GetType will look for the type in the specified assembly (loading 
the assembly if necessary). 

§ The System.Type type offers the following instance methods: GetNestedType and 
GetNestedTypes. 

§ The System.Reflection.Assembly type offers the following instance methods: 
GetType, GetTypes, and GetExportedTypes. 

§ The System.Reflection.Module type offers the following instance methods: 
GetType, GetTypes, and FindTypes. 

Many programming languages also offer an operator that allows you to obtain a Type object 
from a type name. When possible, you should use this operator to obtain a reference to a 
Type instead of using any of the methods in the preceding list because the operator 
generally produces faster code. In C#, the operator is called typeof. The following code 
demonstrates how to use it:  

static void SomeMethod() { 

   Type t = typeof(MyType); 
   Console.WriteLine(t.ToString());   // Displays "MyType" 

} 

I compiled this code and obtained its IL code using ILDasm.exe. I’ll explain what’s going on 
in the annotated IL code here: 

.method private hidebysig static void  SomeMethod() cil managed { 

  // Code size       23 (0x17) 
  .maxstack  1 

  .locals ([0] class [mscorlib]System.Type t) 



 
  // Look up the MyType metadata token, and place a "handle" to 

  // the internal data structure on the stack. 
  IL_0000:  ldtoken    MyType 

 
  // Look up the RuntimeTypeHandle, and put a reference to  

  // the corresponding RuntimeType object on the stack. 
  IL_0005:  call       class [mscorlib]System.Type  

      [mscorlib]System.Type::GetTypeFromHandle( 
         valuetype [mscorlib]System.RuntimeTypeHandle) 

 
  // Save the RuntimeType reference in the local variable t. 

  IL_000a:  stloc.0 
 

  // Load the reference in t on the stack. 
  IL_000b:  ldloc.0 

 
  // Call the RuntimeType object’s ToString method. 

  IL_000c:  callvirt   instance string[mscorlib]System.Type::ToSt
ring() 
 

  // Pass the String to Console.WriteLine. 
  IL_0011:  call       void [mscorlib]System.Console::WriteLine(s
tring) 
 
  // Return from the method. 

  IL_0016:  ret 
} // End of method App::Foo 

The ldtoken IL instruction has a metadata token specified as an operand. The ldtoken 
instruction causes the CLR to look for the internal data structure representing the specified 
metadata token. If an internal data structure for this metadata token doesn’t exist, the CLR 
will create it on the fly. A "handle" to this internal structure, represented as a 
System.RuntimeTypeHandle (a value type), is then pushed on the virtual stack. This 
"handle" is really the memory address of the internal data structure, but you should never 
access these internal structures directly.  

Now System.Type’s static GetTypeFromHandle method is called. This method takes the 
"handle" and returns a reference to the RuntimeType object for the type. The rest of the IL 
code just saves the RuntimeTime reference in the variable t and then calls ToString on 
t; the resulting string is passed to Console.WriteLine and the method then returns.  

 
Note  

The ldtoken IL instruction allows you to specify a metadata token 
representing an entry in the type definition/reference table, the method 
definition/reference table, or the field definition/reference table. Keep in mind 



that C#’s typeof operator accepts only the name of a type defined in the 
module or a type referenced in another module; you can’t specify a field or 
method name.  

It’s extremely rare that you’d ever need to obtain a “handle” for a field or 
method, which is why most compilers won’t offer operators that emit an 
ldtoken instruction that has a field or method metadata token. Field and 
method "handles" are most useful to compiler writers, not to application 
developers. If you’re interested in field handles, however, see the 
System.RuntimeFieldHandle type and 
System.Reflection.FieldInfo’s static GetFieldFromHandle 
method and instance Handle property. For method handles, see the 
System.RuntimeMethodHandle type and 
System.Reflection.MethodBase’s static GetMethodFromHandle 
method and instance MethodHandle property. 

Once you have a reference to a Type object, you can query many of the type’s properties to 
learn more about it. Most of the properties, such as IsPublic, IsSealed, IsAbstract, 
IsClass, IsValueType, and so on, indicate flags associated with the type. Other 
properties, such as Assembly, AssemblyQualifiedName, FullName, Module, and so 
on, return the name of the type’s defining assembly or module and the full name of the type. 
You can also query the BaseType property to obtain the type’s base type, and a slew of 
methods will give you even more information about the type. 

The .NET Framework documentation describes all the methods and properties that Type 
exposes. Be aware that there are a lot of them. For example, the Type type offers about 45 
public instance properties. This doesn’t even include the methods and fields that Type also 
defines. I’ll be covering some of these methods in the next section.  

 
Note  

By the way, if you need to obtain a Type object that identifies a reference to 
a type, you can call one of the GetType methods, passing the name of the 
type suffixed with an ampersand, as demonstrated in the following code:  

using System; 

using System.Reflection; 
 

class App { 
   static void Main() { 

      // Get the array of SomeMethod’s parameters. 
      ParameterInfo[] p =  

         typeof(App).GetMethod("SomeMethod").GetParameters(); 
 

      // Get a reference to a type that identifies a String refer
ence. 
      Type stringRefType = Type.GetType("System.String&"); 

 
      // Is SomeMethod’s first parameter a String reference? 

      Console.WriteLine(p[0].ParameterType == stringRefType);  
      // "True" 



   } 
 

   // You get identical results if ’ref’ is changed to ’out’ here
: 
   public void SomeMethod(ref String s) { 

      s = null; 
   } 

} 

 

Reflecting Over a Type’s Members 

Fields, constructors, methods, properties, events, and nested types can all be defined as 
members within a type. The FCL contains a type called 
System.Reflection.MemberInfo. The various versions of the Reflector sample 
application discussed earlier in this chapter used this type to demonstrate how to discover 
what members a type defines. Table 20-3 shows several properties and methods offered by 
the MemberInfo type. These properties and methods are common to all type members. 

Most of the properties mentioned in Table 20-3 are self-explanatory. However, developers 
frequently confuse the DeclaringType and ReflectedType properties. To fully 
understand these properties, let’s define the following type:  

class MyType { 
   public override String ToString() { return "Hi"; } 

} 

What would happen if the following line of code executed?  

MemberInfo[] members = typeof(MyType).GetMembers(); 

Table 20-3: Properties and Methods Common to All MemberInfo-Derived Types  

Member Name Member Type Description 

Name  String property Returns a String 
representing the 
member. 

MemberType  MemberTypes (enum) 
property 

Returns the kind of 
member (field, 
constructor, method, 
property, event, type 
(non-nested type), or 
nested type). 

DeclaringType  Type property Returns the Type 
that defines the 
member. 

ReflectedType  Type property Returns the Type 
that was used to 
obtain this member. 

GetCustomAttributes  Method returning  Returns an array in 



Table 20-3: Properties and Methods Common to All MemberInfo-Derived Types  

Member Name Member Type Description 
Object[]  which each element 

identifies an instance 
of a custom attribute 
applied to this 
member. Custom 
attributes can be 
applied to any 
member. 

IsDefined  Method returning  
Boolean  

Returns true if one 
and only one 
instance of the 
specified custom 
attribute is applied to 
the member. 

The members variable is a reference to an array in which each element identifies a public 
member defined by MyType and any of its base types, such as System.Object. If you 
were to query the DeclaringType property for the MemberInfo element identifying the 
ToString method, you’d see MyType returned because MyType declares or defines a 
ToString method. On the other hand, if you were to query the DeclaringType property 
for the MemberInfo element identifying the Equals method, you’d see System.Object 
returned because Equals is declared by System.Object, not by MyType.  

The ReflectedType property always returns MyType because this was the type specified 
when GetMembers was called to perform the reflection. If you look up the MemberInfo 
type in the .NET Framework documentation, you’ll see that it is a class derived immediately 
from System.Object. Figure 20-2 shows the hierarchy of the reflection types. 

 
Figure 20-2 : Hierarchy of the reflection types  



 
Note  

Don’t forget that System.Type is derived from MemberInfo and therefore, 
Type also offers all the properties shown in Table 20-3.  

Each element of the array returned by calling GetMembers is a reference to one of the 
concrete types in this hierarchy. While Type’s GetMembers method returns all the type’s 
members, Type also offers methods that return specific member types. For example, Type 
offers GetNestedTypes, GetFields, GetConstructors, GetMethods, 
GetProperties, and GetEvents. These methods all return arrays where each element is 
a Type, FieldInfo, ConstructorInfo, MethodInfo, PropertyInfo, or EventInfo, 
respectively. 

Figure 20-3 summarizes the types used by an application to walk reflection’s object model. 
From an AppDomain, you can discover the assemblies loaded into it. From an assembly, 
you can discover the modules that make it up. From an assembly or a module, you can 
discover the types that it defines. From a type, you can discover its nested types, fields, 
constructors, methods, properties, and events. 

 
Figure 20-3 : Types an application uses to walk reflection’s object model  

Creating an Instance of a Type 

Once you have a reference to a Type-derived object, you might want to create an instance 
of this type. The FCL offers several mechanisms to accomplish this. 
§ System.Activator’s CreateInstance methods  This class offers several 

overloads of a static CreateInstance method. When you call this method, you can 
pass either a reference to a Type object or a String that identifies the type of object 
you want to create. The versions that take a type are simpler. You get to pass a set of 
arguments to the type’s constructor and the method returns a reference to the new 
object. 

The versions of this method in which you specify the desired type with a string are a bit 
more complex. First, you must also specify a string identifying the assembly that defines 
the type. Second, these methods allow you to construct a remote object if you have 
remoting options configured properly. Third, these versions don’t return a reference to 
the new object. Instead, they return a System.Runtime.Remoting.ObjectHandle 
(which is derived from System.MarshalByRefObject). 

An ObjectHandle is a type that allows an object created in one AppDomain to be 
passed around to other AppDomains without forcing the assembly that defines the type 



to be loaded into these AppDomains. When you’re ready to access the object, you call 
ObjectHandle’s Unwrap method. Only when Unwrap is called does the assembly 
that contains the type’s metadata get loaded. If the assembly can’t get loaded, Unwrap 
throws a System.Runtime.Remoting.RemotingException exception. Note that 
Unwrap must be called before the object’s lifetime expires; this is 5 minutes by default. 

§ System.Activator’s CreateInstanceFrom methods  The Activator class 
also offers a set of static CreateInstanceFrom methods. These methods behave just 
like the CreateInstance method except that you must always specify the type and its 
assembly via string parameters. The assembly is loaded into the calling AppDomain 
using Assembly’s LoadFrom method (instead of Load). Because none of these 
methods takes a Type parameter, all the CreateInstanceFrom methods return a 
reference to an ObjectHandle, which must be unwrapped.  

§ System.AppDomain’s methods  The AppDomain type offers four instance methods 
that construct an instance of a type: CreateInstance, 
CreateInstanceAndUnwrap, CreateIntanceFrom, and 
CreateInstanceFromAndUnwrap. These methods work just like Activator’s 
methods except that methods are instance methods allowing you to specify which 
AppDomain the object should be constructed in. The methods that end with Unwrap 
exist for convenience so that you don’t have to make an additional method call. 

§ System.Type’s InvokeMember instance method  Using a reference to a Type 
object, you can call the InvokeMember method. This method locates a constructor 
matching the parameters you pass and constructs the type. The type is always created 
in the calling AppDomain and a reference to the new object is returned. I’ll discuss this 
method in more detail later in this chapter. 

§ System.Reflection.ConstructorInfo’s Invoke instance method Using a 
reference to a Type object, you can bind to a particular constructor and obtain a 
reference to the constructor’s ConstructorInfo object. Then you can use the 
reference to the ConstructorInfo object to call its Invoke method. The type is 
always created in the calling AppDomain and a reference to the new object is returned. 
I’ll also discuss this method in more detail later in this chapter.  

 
Note  

The CLR doesn’t require that value types define any constructors. However, 
this is a problem because all the mechanisms in the preceding list construct 
an object by calling its constructor. To fix this problem, Microsoft “enhanced” 
some of Activator’s CreateInstance methods so that they can create 
an instance of a value type without calling a constructor. If you want to 
create an instance of a value type without calling a constructor, you must 
call the version of the CreateInstance method that takes a single Type 
parameter or the version that takes Type and Boolean parameters.  

The mechanisms just listed allow you to create an object for all types except for arrays 
(System.Array-derived types) and delegates (System.MulticastDelegate-derived 
types).  

To create an array, you should call Array’s static CreateInstance method (several 
overloaded versions exist). The first parameter to all versions of CreateInstance is a 
reference to the Type of elements you want in the array. CreateInstance’s other 
parameters allow you to specify various combinations of dimensions and bounds. 

To create a delegate, you should call Delegate’s static CreateDelegate method (several 
overloads exist). The first parameter to all versions of CreateDelegate is a reference to 
the Type of delegate you want to create. CreateDelegate’s other parameters allow you to 
specify which instance method of an object or which static method of a type the delegate 
should wrap. 



Calling a Type’s Method 

The easiest way to call a method is to use Type’s InvokeMember method. This method is 
quite powerful in that it lets you do lots of stuff. There are several overloaded versions of 
InvokeMember. I’ll discuss the one that has the most parameters; the other overloads 
simply pick defaults for certain parameters, making them easier to call.  

class Type { 

   public Object InvokeMember( 
      String name,               // Name of member 

      BindingFlags invokeAttr,   // How to look up members 
      Binder binder,             // How to match members and argu
ments 
      Object target,             // Object to invoke member on 
      Object[] args,             // Arguments to pass to method 

      CultureInfo culture);      // Culture used by some binders 
   : 

} 

When you call InvokeMember, it looks at the type’s members for a match. If no match is 
found, a System.MissingMethodExcpetion exception is thrown. If a match is found, 
InvokeMember calls the method. Whatever the method returns is what InvokeMember 
returns back to you. If the method has a return type of void, InvokeMember returns null. 
If the method you call throws an exception, InvokeMember catches the exception and 
throws a new System.Reflection.TargetInvocationException exception. The 
TargetInvocationException object’s InnerException property will contain the 
actual exception that the invoked method threw. Personally, I don’t like this behavior. I’d 
prefer it if InvokeMember didn’t wrap the exception and just allowed it to come through. 

Internally, InvokeMember performs two operations. First, it must select the appropriate 
member to be called—this is known as binding. Second, it must actually invoke the 
member—this is known as invoking. 

When you call InvokeMember, you pass a string as the name parameter, indicating the 
name of the member you want InvokeMember to bind to. However, the type might offer 
several members with a particular name. After all, there might be several overloaded 
versions of a method, or a method and a field might have the same name. Of course, 
InvokeMember must bind to a single member before it can invoke it. All the parameters 
passed to InvokeMember (except for the target parameter) are used to help 
InvokeMember decide which member to bind to. Let’s take a closer look at these 
parameters. 

The binder parameter identifies an object whose type is derived from the abstract 
System.Reflection.Binder type. A Binder-derived type is a type that encapsulates 
the rules for how InvokeMember should select a single member. The Binder base type 
defines abstract virtual methods such as BindToField, BindToMethod, ChangeType, 
ReorderArgumentArray, SelectMethod, and SelectProperty. Internally, 
InvokeMember calls these methods using the Binder object passed via InvokeMember’s 
binder parameter. 



Microsoft has defined an internal (undocumented) concrete type, called DefaultBinder, 
which is derived from Binder. This DefaultBinder type ships with the FCL, and Microsoft 
expects that almost everyone will use this binder. When you pass null to InvokeMember’s 
binder parameter, it will use the DefaultBinder. Type offers a public read-only property, 
DefaultBinder, that you can query to obtain a reference to a DefaultBinder object 
should you want one for some reason. 

If you’re concerned about DefaultBinder’s rules, you must define your own Binder-
derived type and pass an instance of this type via InvokeMember’s binder parameter. 
Sample source code for a simple Binder-derived type can be obtained by downloading the 
code associated with this book from http://www.Wintellect.com/. 

When a binder object has its methods called, the methods will be passed parameters to help 
the binder make a decision. Certainly, the binder is passed the name of the member that is 
being looked for. In addition, the binder’s methods are passed the specified BindingFlags 
as well as the types of all the parameters that need to be passed to the member being 
invoked. 

Earlier in this chapter, I showed a table (Table 20-2) that described the following 
BindingFlags: Default, IgnoreCase, DeclaredOnly, Instance, Static, Public, 
NonPublic, and FlattenHierarchy. The presence of these flags tells the binder which 
members to include in the search.  

In addition to these flags, the binder examines the number of arguments passed via 
InvokeMember’s args parameter. The number of arguments limits the set of possible 
matches even further. The binder then examines the types of the arguments to limit the set 
even more. However, when it comes to the argument’s types, the binder applies some 
automatic type conversions to make things a bit more flexible. For example, a type can 
define a method that takes a single Int64 parameter. If you call InvokeMember and for the 
args parameter pass a reference to an array containing an Int32 value, the 
DefaultBinder considers this a match. When invoking the method, the Int32 value will 
be converted to an Int64 value. The DefaultBinder supports the conversions listed in 
Table 20-4. 

Table 20-4: Conversions That DefaultBinder Supports  

Source Type Target Type 

Any type Its base type 

Any type The interface it implements 

Char  UInt16, UInt32, Int32, UInt64, Int64, Single, Double  

Byte  Char, UInt16, Int16, UInt32, Int32, UInt64, Int64, 
Single, Double  

SByte  Int16, Int32, Int64, Single, Double  

UInt16  UInt32, Int32, UInt64, Int64, Single, Double  

Int16  Int32, Int64, Single, Double  

UInt32  UInt64, Int64, Single, Double  

Int32  Int64, Single, Double  

UInt64  Single, Double  



Table 20-4: Conversions That DefaultBinder Supports  

Source Type Target Type 

Int64  Single, Double  

Single  Double  

Nonreference By reference 

There are two more BindingFlags that you can use to fine-tune the DefaultBinder’s 
behavior. These are described in Table 20-5.  

Table 20-5: BindingFlags Used with DefaultBinder  

Symbol Value Description 

ExactBinding  0x010000 The binder will look for a member 
whose parameters match the types 
of the arguments passed. This flag 
can be used only with the 
DefaultBinder type because a 
custom binder would be 
implemented to select the 
appropriate member. Note that 
binders are free to ignore this flag. In 
fact, when the 
DefaultBinder type doesn’t find a 
match, it doesn’t fail; it considers a 
match where the passed parameter 
can be coerced to a compatible type 
without loss of precision. 

OptionalParamBinding  0x040000 The binder will consider any member 
whose count of parameters matches 
the number of arguments passed. 
This flag is useful when there are 
members whose parameters have 
default values and for methods that 
take a variable number of 
arguments. Only Type’s 
InvokeMember method honors this 
flag. 

InvokeMember’s last parameter, culture, is also used for binding. However, the 
DefaultBinder type completely ignores this parameter. If you define your own binder, you 
could use the culture parameter to help with argument type conversions. For example, the 
caller could pass a String argument with a value of "1,23". The binder could examine this 
string, parse it using the specified culture, and convert the argument’s type to a Single 
(if the culture is "de-DE") or continue to consider the argument a String (if the culture is 
"en-US"). 

At this point, I’ve gone through all InvokeMember’s parameters related to binding. The one 
parameter I haven’t discussed yet is target. This parameter is a reference to the object 
whose method you want to call. If you want to call a Type’s static method, you should pass 
null for this parameter.  



The InvokeMember method is a very powerful method. It allows you to call a method (as 
I’ve been discussing), construct an instance of a type (basically by calling a constructor 
method), and get or set a field. You tell InvokeMember which of these actions you want to 
perform by specifying one of the BindingFlags in Table 20-6. 

Table 20-6: BindingFlags Used with InvokeMember  

Symbol Value Description 

InvokeMethod  0x0100 Tells InvokeMember to call a method 

CreateInstance  0x0200 Tells InvokeMember to create a new 
object and call its constructor 

GetField  0x0400 Tells InvokeMember to get a field’s 
values 

SetField  0x0800 Tells InvokeMember to set a field’s 
value 

GetProperty  0x1000 Tells InvokeMember to call a 
property’s get accessor method 

SetProperty  0x2000 Tells InvokeMember to call a 
property’s set accessor method 

For the most part, the flags in Table 20-6 are mutually exclusive—you must pick one and 
only one when calling InvokeMember. However, you can specify both GetField and 
GetProperty, in which case InvokeMember searches for a matching field first and then 
for a matching property if it doesn’t find a matching field. Likewise, SetField and 
SetProperty can both be specified and are matched the same way. The binder uses these 
flags to narrow down the set of possible matches. If you specify the 
BindingFlags.CreateInstance flag, the binder knows that it can select only a 
constructor method.  

 
Important  

With what I’ve told you so far, it would seem that reflection makes it 
easy to bind to a nonpublic member and invoke the member, allowing 
application code a way to access private members that a compiler 
would normally prohibit the code from accessing. However, reflection 
uses code access security to ensure that its power isn’t abused or 
exploited.  

When you call a method to bind to a member, the method first checks 
to see whether the member you’re trying to bind to would be visible to 
you at compile time. If it would be, the bind is successful. If the 
member wouldn’t normally be accessible to you, the method demands 
the System.Security.Permissions.ReflectionPermission 
permission, checking to see whether the 
System.Security.Permissions.ReflectionPermissionFlag
s’s TypeInformation bit is set. If this flag is set, the method will bind 
to the member. If the demand fails, a 
System.Security.SecurityException exception is thrown. 

When you call a method to invoke a member, the member performs 
the same kind of check that it would when binding to a member. But 
this time, it checks whether the ReflectionPermission has 
ReflectionPermission Flag’s MemberAccess bit set. If the bit is 



set, the member is invoked; otherwise, a SecurityException 
exception is thrown. 

Bind Once, Invoke Multiple Times 

Type’s InvokeMember method gives you access to all a type’s members. However, you 
should be aware that every time you call InvokeMember, it must bind to a particular 
member and then invoke it. Having the binder select the right member each time you want to 
invoke a member is time-consuming, and if you do it a lot, your application’s performance 
will suffer. So if you plan on accessing a member frequently, you’re better off binding to the 
desired member once and then accessing that member as often as you want. 

You bind to a member (without invoking it) by calling one of the following Type’s methods: 
GetFields, GetConstructors, GetMethods, GetProperties, GetEvents methods, 
or any similar method. All these methods return references to objects whose type offers 
methods to access the specific member directly. Table 20-7 summarizes the types and what 
methods you call to access the member. 

Table 20-7: Types Used to Bind to a Member  

Type Member Description 

FieldInfo  Call GetValue to get a field’s value. Call SetValue to 
set a field’s value. 

ConstructorInfo  Call Invoke to construct an instance of the type. 

MethodInfo  Call Invoke to call a method of the type. 

PropertyInfo  Call GetValue to call a property’s get accessor 
method. Call SetValue to call a property’s set 
accessor method. 

EventInfo  Call AddEventHandler to call an event’s add 
accessor method. Call RemoveEventHandler to call 
an event’s remove accessor method. 

The PropertyInfo type represents a property’s metadata information only (as discussed 
in Chapter 10); that is, PropertyInfo offers CanRead, CanWrite, and PropertyType 
read-only properties. These properties indicate whether a property is readable or writeable 
and what data type the property is. PropertyInfo has a GetAccessors method that 
returns an array of MethodInfo elements: one for the get accessor method (if it exists), and 
one for the set accessor method (if it exists). Of more value are PropertyInfo’s 
GetGetMethod and GetSetMethod methods, each of which returns just one MethodInfo 
object. PropertyInfo’s GetValue and SetValue methods exist for convenience; 
internally, they get the appropriate MethodInfo and call it.  

The EventInfo type represents an event’s metadata information only (as discussed in 
Chapter 11). The EventInfo type offers an EventHandlerType read-only property that 
returns the Type of the event’s underlying delegate. The EventInfo also has 
GetAddMethod and GetRemoveMethod methods, which return the appropriate 
MethodInfo. EventInfo’s AddEventHandler and RemoveEventHandler methods 
exist for convenience; internally, they get the appropriate MethodInfo and call it. 



When you call one of the methods listed in the right column of Table 20-7, you’re not binding 
to a member; you’re just invoking the member. You can call any of these methods multiple 
times, and because binding isn’t necessary, the performance will be pretty good. 

You might notice that ConstructorInfo’s Invoke, MethodInfo’s Invoke, and 
PropertyInfo’s GetValue and SetValue methods offer overloaded versions that take a 
reference to a Binder-derived object and some BindingFlags. This would lead you to 
believe that these methods bind to a member. However, they don’t.  

When calling any of these methods, the Binder-derived object is used to perform type 
conversions such as converting an Int32 argument to an Int64 so that the already 
selected method can be called. As for the BindingFlags parameter, the only flag that can 
be passed here is BindingFlags.SuppressChangeType. Like the ExactBinding flag, 
binders are free to ignore this flag. However, DefaultBinder doesn’t ignore this flag. 
When DefaultBinder sees this flag, it won’t convert any arguments. If you use this flag 
and the arguments passed don’t match the arguments expected by the method, an 
ArgumentException exception is thrown.  

Usually when you use the BindingFlags.ExactBinding flag to bind to a member you’ll 
specify the BindingFlags.SuppressChangeType flag to invoke the member. If you don’t 
use these two flags in tandem, it’s unlikely that invoking the member will be successful 
unless the arguments you pass happen to be exactly what the method expects. By the way, 
if you call MemberInfo’s InvokeMethod to bind and invoke a member, you’ll probably 
want to specify both or neither of the two binding flags. 

The following sample application demonstrates the various ways to use reflection to access 
a type’s members. The code shows how to use Type’s InvokeMember to both bind and 
invoke a member. It also shows how to bind to a member, invoking it later.  

// Comment out the following line to test, 

// bind, and invoke as separate steps. 
#define BindAndInvokeTogether 

 
using System; 

using System.Reflection; 
using System.Threading; 

 
// This class is used to demonstrate reflection. It has a 

// a field, a constructor, a method, a property, and an event. 
class SomeType { 

   Int32 someField; 
   public SomeType(ref Int32 x) { x *= 2; } 

   public override String ToString() { return someField.ToString(
); } 
   public Int32 SomeProp { 

      get { return someField; } 
      set {  

         if (value < 1)  



            throw new ArgumentOutOfRangeException( 
               "value", value, "value must be > 0"); 

         someField = value; 
      } 

   } 
   public event ThreadStart SomeEvent; 

   private void NoCompilerWarnings() { 
      SomeEvent.ToString(); 

   } 
} 

 
class App { 

   static void Main() { 
      Type t = typeof(SomeType); 

      BindingFlags bf = BindingFlags.DeclaredOnly |  
         BindingFlags.Public | BindingFlags.NonPublic |  

         BindingFlags.Instance; 
 

      #if BindAndInvokeTogether 
 

      // Construct an instance of the Type. 
      Object[] args = new Object[] { 12 };  // Constructor argume
nts 
      Console.WriteLine("x before constructor called: " + args[0]
); 
      Object obj = t.InvokeMember(null,  

         bf | BindingFlags.CreateInstance, null, null, args); 
      Console.WriteLine("Type: " + obj.GetType().ToString()); 

      Console.WriteLine("x after constructor returns: " + args[0]
); 

 
      // Read and write to a field. 

      t.InvokeMember("someField",  
         bf | BindingFlags.SetField, null, obj, new Object[] { 5 
}); 
      Int32 v = (Int32) t.InvokeMember("someField",  
         bf | BindingFlags.GetField, null, obj, null); 

      Console.WriteLine("someField: " + v); 
 

      // Call a method. 
      String s = (String) t.InvokeMember("ToString",  



         bf | BindingFlags.InvokeMethod, null, obj, null); 
      Console.WriteLine("ToString: " + s); 

 
      // Read and write a property. 

      try { 
         t.InvokeMember("SomeProp",  

            bf | BindingFlags.SetProperty, null, obj, new Object[
] { 0 }); 
      }  

      catch (TargetInvocationException e) { 
         if (e.InnerException.GetType() !=  

            typeof(ArgumentOutOfRangeException))  
            throw; 

         Console.WriteLine("Property set catch."); 
      } 

      t.InvokeMember("SomeProp",  
         bf | BindingFlags.SetProperty, null, obj, new Object[] {
 2 }); 
      v = (Int32) t.InvokeMember("SomeProp",  
         bf | BindingFlags.GetProperty, null, obj, null); 

      Console.WriteLine("SomeProp: " + v); 
 

      // NOTE: InvokeMember doesn’t support events. 
 

      #else 
 

      // Construct an instance. 
      ConstructorInfo ctor = t.GetConstructor( 

         new Type[] { Type.GetType("System.Int32&") }); 
      Object[] args = new Object[] { 12 };  // Constructor argume
nts 
      Console.WriteLine("x before constructor called: " + args[0]
); 
      Object obj = ctor.Invoke(args); 
      Console.WriteLine("Type: " + obj.GetType().ToString()); 

      Console.WriteLine("x after constructor returns: " + args[0]
); 
 

      // Read and write to a field. 
      FieldInfo fi = obj.GetType().GetField("someField", bf); 

      fi.SetValue(obj, 33); 



      Console.WriteLine("someField: " + fi.GetValue(obj)); 
 

      // Call a method. 
      MethodInfo mi = obj.GetType().GetMethod("ToString", bf); 

      String s = (String) mi.Invoke(obj, null); 
      Console.WriteLine("ToString: " + s); 

 
      // Read and write a property. 

      PropertyInfo pi =  
         obj.GetType().GetProperty("SomeProp", typeof(Int32)); 

      foreach (MethodInfo m in pi.GetAccessors()) 
         Console.WriteLine(m); 

      try { 
         pi.SetValue(obj, 0, null); 

      }  
      catch (TargetInvocationException e) { 

         if (e.InnerException.GetType() !=  
            typeof(ArgumentOutOfRangeException))  

            throw; 
         Console.WriteLine("Property set catch."); 

      } 
      pi.SetValue(obj, 2, null); 

      Console.WriteLine("SomeProp: " + pi.GetValue(obj, null)); 
 

      // Add and remove a delegate from the event. 
      EventInfo ei = obj.GetType().GetEvent("SomeEvent", bf); 

      Console.WriteLine("AddMethod: "        + ei.GetAddMethod())
; 
      Console.WriteLine("RemoveMethod: "     + ei.GetRemoveMethod
()); 
      Console.WriteLine("EventHandlerType: " + ei.EventHandlerTyp
e); 

 
      ThreadStart ts = new ThreadStart(Main); 

      ei.AddEventHandler(obj, ts); 
      ei.RemoveEventHandler(obj, ts); 

 
      #endif 

   } 
} 



If you build and run this code with BindAndInvokeTogether defined, you’ll see the 
following output:  

x before constructor called: 12 
Type: SomeType 

x after constructor returns: 24 
someField: 5 

ToString: 5 
Property set catch. 

SomeProp: 2 

Notice that SomeType’s constructor takes an Int32 reference as its only parameter. The 
previous code shows how to call this constructor and how to examine the modified Int32 
value after the constructor returns.  

If you build and run the previous code without BindAndInvokeTogether defined, you’ll 
see the following output:  

x before constructor called: 12 

Type: SomeType 
x after constructor returns: 24 

someField: 33 
ToString: 33 

Void set_SomeProp(Int32) 
Int32 get_SomeProp() 

Property set catch. 
SomeProp: 2 

AddMethod: Void add_SomeEvent(System.Threading.ThreadStart) 
RemoveMethod: Void remove_SomeEvent(System.Threading.ThreadStart) 

EventHandlerType: System.Threading.ThreadStart 

 

Reflecting Over a Type’s Interfaces 

To obtain the set of interfaces that a type inherits, you can call Type’s FindInterfaces, 
GetInterface, or GetInterfaces method. All these methods return Type objects that 
represent an interface. Note that these methods only check interfaces that the type directly 
inherits; these methods won’t return interfaces that an interface inherits. To determine an 
interface’s base interface, you must call one of these methods again using the interface type 
and so on to walk the interface inheritance tree. 

Determining which members of a type implement a particular interface is a little complicated 
because multiple interface definitions can all define the same method. For example, the 
IBookRetailer and IMusicRetailer interfaces might both define a method named 
Purchase. To get the MethodInfo objects for a specific interface, you call Type’s 
GetInterfaceMap instance method. This method returns an instance of a 
System.Reflection.InterfaceMapping (a value type). The InterfaceMapping 
type defines the four public fields listed in Table 20-8. 

Table 20-8: Public Fields Defined by the InterfaceMapping Type  



Field Name Data Type Description 

TargetType  Type  This is the type that was used 
to call 
GetInterfaceMapping. 

InterfaceType  Type  This is the type of the interface 
passed to 
GetInterfaceMapping. 

InterfaceMethods  MethodInfo[]  An array in which each 
element exposes information 
about an interface’s method. 

TargetMethods  MethodInfo[]  An array in which each 
element exposes information 
about the method that the type 
defines to implement the 
corresponding interface’s 
method. 

The InterfaceMethods and TargetMethods arrays run parallel to each other; that is, 
InterfaceMethods[0] identifies a MethodInfo object that reflects information about the 
member as defined in the interface. TargetMethods[0] identifies a MethodInfo object 
that reflects information about the interface’s member as defined by the Type.  

using System; 

using System.Reflection; 
 

// Define two interfaces for testing. 
public interface IBookRetailer : IDisposable {  

   void Purchase(); 
   void ApplyDiscount(); 

} 
public interface IMusicRetailer { 

   void Purchase(); 
} 

 
// This class implements two interfaces defined by this  

// assembly and one interface defined by another assembly. 
class MyRetailer : IBookRetailer, IMusicRetailer { 

   public void Purchase() { } 
   public void Dispose()  { } 

   void IBookRetailer.Purchase()  { } 
   public void ApplyDiscount() {} 

   void IMusicRetailer.Purchase() { } 
} 

 



class App { 
   static void Main() { 

      // Find the interfaces implemented by MyRetailer where 
      // the interface is defined in your own assembly. This 

      // is accomplished using a delegate to a filter method 
      // that you create and pass to FindInterfaces. 

      Type t = typeof(MyRetailer); 
      Type[] interfaces = t.FindInterfaces( 

         new TypeFilter(App.TypeFilter),  
         Assembly.GetCallingAssembly().GetName()); 

      Console.WriteLine("MyRetailer implements the following " + 
         "interfaces (defined in this assembly):"); 

 
      // Show information about each interface. 

      foreach (Type i in interfaces) { 
         Console.WriteLine("\nInterface: " + i); 

 
         // Get the type methods that map to the interface’s meth
ods. 
         InterfaceMapping map = t.GetInterfaceMap(i); 
 

         for (Int32 m = 0; m < map.InterfaceMethods.Length; m++) 
{ 
            // Display the interface method name and which type  

            // method implements the interface method. 
            Console.WriteLine("   {0} is implemented by {1}",  

               map.InterfaceMethods[m], map.TargetMethods[m]); 
         } 

      } 
   } 

 
   // This filter delegate method takes a type and an object, per
forms 
   // some check, and returns true if the type is to be included  

   // in the array of returned types. 
   static Boolean TypeFilter(Type t, Object filterCriteria) { 

      // Return true if the interface is defined in the same  
      // assembly identified by filterCriteria. 

      return t.Assembly.GetName().ToString() == 
         filterCriteria.ToString(); 

   } 



} 

 

Reflection Performance 

In general, using reflection to invoke a method or access a field or property is slow, for 
several reasons: 
§ Binding causes many string comparisons to be performed while looking for the desired 

member. 
§ Passing arguments requires that an array be constructed and that the array’s elements 

be initialized. Internally, invoking a method requires that the arguments be extracted 
from the array and placed on the stack. 

§ The CLR must check that the parameters being passed to a method are of the correct 
number and type. 

§ The CLR ensures that the caller has the proper security permission to access the 
member. 

For all these reasons, it’s best to avoid using reflection to access a member. If you’re writing 
an application that will dynamically locate and construct types, you should take one of the 
following approaches: 
§ Have the types derive from a base type that is known at compile time. At run time, 

construct an instance of the type, place the reference in a variable that is of the base 
type (casting if your language requires it), and call virtual methods defined by the base 
type. 

§ Have the type implement an interface that is known at compile time. At run time, 
construct an instance of the type, place the reference in a variable that is of the 
interface type (casting if your language requires it), and call the methods defined by the 
interface. I prefer this technique over the base type technique because the base type 
technique doesn’t allow the developer to choose the base type that works best in a 
particular situation.  

§ Have the type implement a method whose name and prototype match a delegate that 
is known at compile time. At run time, construct an instance of the type and then 
construct an instance of the delegate type using the object and the name of the method. 
Then call the method via the delegate as you desire. This technique is the most work of 
the three and quickly becomes a lot more work if you need to call more than one of the 
type’s methods. Also, calling a method via a delegate is slower than calling a type’s 
method or an interface method directly.  

When you use any of these three techniques, I strongly suggest that the base type, 
interface, or delegate type be defined in its own assembly. This will reduce versioning 
issues. For more information about how to do this, see the section “Designing an Application 
That Supports Plug-in Components” on page 331 of Chapter 15. 
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