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Preface

This book is an attempt to put together a large number of similar problems
that one encounters in different fields of modern quantum physics and that
have common features considering multilevel quantum systems. The main
motivation was to present from the same standpoints various models and
approaches that have been developed in atomic, molecular, condensed matter,
chemical, laser and nuclear physics in various contexts.

The book is based on my lectures in the Moscow Institute of Physics and
Technology, in the Aime Cotton Laboratory of CNRS, and some other courses
that I have delivered during last two decades. It includes the original results
obtained in collaboration with my collegues V. Aquilanti, I. Averbukh, A.
Belousov, M. Blaauboer, E. Borsela, E. Brion, B. Brunetti, C. Brechignac,
P. Cahuzac, F. Carlier, I. Dumer, V. Gershkovich, G. Esadze, G. Garsevan-
ishvili, G. Harel, E. Khokhlov, G. Kurizki, R. Larciprete, I. Murachko, A.
Nesterenko, A. Orlov, S. Pelegrin, P. Pillet, F. Rebentrost, A. Sarfati, E.
Schlag, W. Schleich, F. Vecchiocativi from different scientific centres in the
world and with whom I had the pleasure to work on the dynamical aspects
of the behaviour of complex quantum systems. I express my deep gratitude
to them for their collaboration. The book also contains numerous results of
other authors that have, however, been expounded in different notations con-
sistent with the present text, and that sometimes even rely on an alternative
derivation as compared to the original version.

In preparing the text I decided to add several results both scientific, yet
unpublished, and pedagogical that I feel are necessary for giving the entire
picture of the processes in complex quantum systems. Some of these results,
presented in Chap. 6, have been obtained in collaboration with V. Kravtsov to
whom I express my sincere acknowledgments. I also very much appreciate the
discussions with V. Agranovich, E. Bogomolny, B. Chirikov, T. Gallagher, P.
Golovinskii, M. Fedorov, Y. Fyodorov, C. Jungen, J. Jortner, L. Maksimov,
V. Man’ko, I. Mazets, V. Kac, A. Kazantsev, D. Khmelnitski, A. Kofman,
I. Lerner, E. Nikitin, M. Shapiro, D. Shepelyanski, V. Pokrovskii and A.
Prokhorov on the different aspects of the results presented in the book.

I want to worship the memory of G. Askaryan who has influenced my
choice of profession, showing me the beauty of physics presented in our life.



VI Preface

Finally, I express my profound gratitude to my teachers Alexandr Dyknne
and Nikolay Karlov.

Paris, May 2004 Vladimir Akulin
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1 Complex Systems
and Their Statistical Description

We often meet in physics various quantum systems comprising many quan-
tum levels. One may say that the majority of problems of contemporary
interest are of this type. Statistics is a natural way to describe large systems.
Initially, the statistical approach to individual complex quantum objects had
been formulated in the context of the interpretation of nuclear spectra where
the average positions of the energy levels and their average relative distances
were the principal concern. Later, the effects of complexity related to dis-
order were studied in solid state physics and this gave rise to the theory
of dynamical localization, focused on the structure of wavefunctions. The
rapid development of laser physics, the molecular beam technique, experi-
ments with cold atoms, femtosecond physics, quantum optics and quantum
informatics has formulated a series of theoretical problems centered on the
time evolution of multilevel quantum objects. Analytical description of the
dynamics of multilevel quantum systems, including the results which can be
obtained with the help of the statistical approach, is the main subject of this
book.

The dynamics of multilevel systems is a complicated process, which in-
volves population exchange among many quantum states. Though a few types
of multilevel problems can be solved analytically, the Schrödinger equation
for a multilevel quantum system typically does not posses an exact analytical
solution in terms of elementary or special functions nor in terms of integrals
over a reasonably small number of variables. Therefore the exact solution
implies the numerical integration of the Schrödinger equation. However, the
numerical solution of such problems usually encounters difficulties of three
different kinds. The first one is rather evident: as the number of states in a
system increases, the numerical approach becomes awkward, since it becomes
more and more difficult to handle the increasing amount of information. In
some cases, this difficulty may arise even earlier, when in order to simply find
the matrix elements of the Hamiltonian and to write down the Schrödinger
equation in a finite basis representation, one has to perform complicated mul-
tidimensional integrations. The second difficulty arises due to the influence
of higher-order resonances which may manifest themselves in a hierarchy of
interactions that are different by many orders of magnitude. This makes the
dynamics of a multilevel quantum system considerably different at different
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time-scales. When the influence of the processes developing at exponentially
different time-scales becomes important, the numerical approach fails to se-
lect an appropriate step-size for the computational algorithms.

There is an inevitable difficulty of the third kind. Provided one has ob-
tained a numerical solution for a large multilevel quantum system and now
knows all of the values of the quantum amplitudes for each state and for each
moment of time, how is one to gain insight into this mass of information? How
does one reach a consistent conclusion, address the main task of theoretical
description and find a correspondence law between the input and the output
of the calculations? Evidently, the physically meaningful quantities are just
a few cumulative characteristics of the quantum system. But how can one
identify these characteristics and find comprehensive relations among them?
One may say that here we face a conflict between information and insight:
the more information we have the more difficult it is to derive physically
interesting conclusions.

Complexity and the Ensemble Average

A natural question arises when an increasing number of states in a system
renders the numerical treatment inefficient; do we really need to know all of
the details of the dynamics of a multilevel quantum system as an output of
the calculations, or should we rather look for its general properties by con-
sidering ensembles of many similar complex quantum objects? The general
properties do not depend on all of the tiny details of the particular real-
ization, but only on a small number of “crude” characteristics of quantum
systems. We therefore arrive at the idea of the ensemble average, which af-
ter E.Wigner, became the key tool of analysis of complex quantum systems.
This is in complete analogy with the thermodynamic approach, which sum-
marizes general properties of macroscopically identical systems by ignoring
their microscopic differences.

Historically, the random matrix approach to complex quantum systems
and the philosophy of ensemble averages associated with this approach were
first suggested by E.Wigner for the analysis of the spectra of complex nuclei.
In fact, little is known about systems of many interacting nucleons except
some general properties such as symmetry with respect to time inversion,
permutations of the particles, and other transformations in phase space. De-
tailed information relating to the structure of the wavefunctions is hidden
in the complexity of the system. Nature affords no opportunity to obtain
such detailed information and thus provide insight into this structure in a
reasonably simple way. The natural approach of mathematical formalization
of our unavoidable ignorance is to assume that all matrix elements of the
Hamiltonian Hi,j are random numbers that satisfy just a small number of
general symmetry conditions such as

Hi,j = Hj,i or Hi,j = H∗
j,i, (1.1)
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for real or complex-valued Hamiltonians, respectively. In traditional calcu-
lations, the first step is the determination of the eigenvalues of the Hamil-
tonians. The logical generalization of this concept to the case of a complex
system is to employ the distribution function of the eigenvalues. Three prin-
cipal statistical distributions are usually considered in the analysis of the
spectral properties of complex nuclei and their comparison to experimental
data: (1) distribution of the eigenvalues, namely the mean density of states
g(E) ≡ ∆1(E); (2) distribution of the energy spacing between nearest neigh-
bors ∆2(En − En−1); and (3) the statistics of the deviations ∆3(En − nḡ) of
the energy levels En from the positions ḡn suggested by the mean local den-
sity of states ḡ. These universal characteristics are usually employed in other
fields of physics whenever the quantum system in consideration possesses a
complex spectrum.

The idea to employ the ensemble average for the description of complex
quantum systems gave rise to a large branch of contemporary theoretical
physics and related mathematics, that investigates eigenvalue statistics and
the properties of the eigenfunctions of complex Hamiltonians. This approach
has been successfully adopted in many areas of nuclear physics, in solid state
physics, in spectroscopy, and the theory of quantum chaos. In atomic, molecu-
lar, and laser physics, a series of theoretical problems has also been formulated
where the time evolution of a complex quantum object is the main interest.
The frequency domains of the latter range from seconds for cold atoms to
femtoseconds for intramolecular physics. The large number of quantum states
participating in the dynamical processes allows one to use the ensemble av-
erage idea for the analysis of the behavior of these systems as well. However,
the main physical characteristics to be found for these systems, such as the
net population of a group of levels or the time dependence of optical polar-
ization, differ essentially from the quantities that one calculates in nuclear
or in solid state physics, where the emphasis is usually upon the statistics of
eigenstates or on the typical spatial structure of eigenfunctions.

We should clearly understand the basic assumptions underlying the sta-
tistical approach, in order to avoid possible misunderstandings concerning
the question of what we can and what we cannot pretend to describe with
the help of this method. The essence of the ensemble average idea is the fol-
lowing: we are interested in properties that are not sensitive to the details
or to the particular realization of a system, and therefore we consider en-
sembles of many systems that are different in the tiny details but have the
same “crude” characteristics. We calculate the physical quantities of interest
for each of these systems and take the average over the ensemble. In this
way we find the common properties, while individual features of the systems
are washed out. We note that technically there is no need to perform the
average after the calculations of physical quantities of interest for each of the
systems. On the contrary, it is much more convenient to do it at an earlier
stage, before the summation of the all-order perturbation series, for example.
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This usually leads to a considerable simplification of the calculations, that
can therefore often be performed analytically.

The choice of ensemble is the most delicate matter of this approach. It
mainly relies on our physical intuition. We have to decide a priori which
details are important and which are not important for the “crude” properties
of systems, and then we have to construct the corresponding ensemble. If,
after the average, the mean value of the quantity of interest is not zero and
its dispersion vanishes, one can say that this quantity is indeed “crude” and
moreover the ensemble is chosen properly.

Statistical Ensembles

In our consideration we employ a relatively general model of quantum sys-
tems, for which the Hamiltonian is not a completely random matrix but
consists of two parts: one, Ĥ0, is regular and the other, the perturbation V̂ ,
is random. The matrix of the random part belongs to the so-called Gaussian
unitary ensemble where both the real and the imaginary parts of the Her-
mitian matrix elements obey Gaussian statistics, that is they are normally
distributed around the zero mean value. We shall not give here any proofs
that this is the case for each particular problem, but just note that this nat-
ural assumption is in the spirit of the central limit theorem of statistics. We
also note that this assumption usually allows us to obtain exact analytical
expressions for many physical quantities of interest. Therefore this model
may serve as a guide for qualitative understanding of the properties of other
multilevel systems, for which the applicability of the statistical assumption is
questionable, but the exact analytical solution is not available. Though later
on we will be mainly concerned with the case where Ĥ0 is regular and only V̂
is random, while all of the physical properties of the complex system result
from the interplay of these two parts, here we briefly present the main clas-
sical results of random matrix theory that ignore the regular part and treat
the Hamiltonian Ĥ = Ĥ0 + V̂ of a complex system as a completely random
matrix.

Apart from the Gaussian unitary ensemble Hi,j = H∗
j,i, two other stan-

dard distributions with Gaussian statistics of matrix elements are often em-
ployed in the cases where a certain residual symmetry of the system con-
sidered is important. The Gaussian orthogonal ensemble Hi,j = Hj,i is ap-
plicable to time-reversible systems. This implies that all of the matrix el-
ement are real, whereas the Gaussian simplectic ensemble H1i,1j = H∗

2j,2i,
H1i,2j = −H∗

2j,1i corresponds to the situation where each matrix consists
of four blocks, with the diagonal blocks complex conjugated, and the off-
diagonal blocks complex conjugated with inverted signs. The last ensemble
describes the time-reversible situation in the absence of central symmetry.

All three Gaussian ensembles result in the same distribution of the eigen-
values of the random matrices with mean density g(E) of the eigenstates
given by the Wigner semicircle distribution
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g(E) =

√
E − N 〈V 2〉
π 〈V 2〉 , (1.2)

where N is the total number of states and
〈
V 2

〉
is the mean squared element

of the random matrix. The main difference between these ensembles mani-
fests itself in the statistics of the energy distances En+1 − En between the
neighboring levels. The probability to find the nearest neighbor on the small
energy distance scales as En+1−En, (En+1−En)2 , and (En+1−En)4 for the
orthogonal, unitary, and simplectic ensembles, respectively. We will not con-
sider here the physical properties associated with this difference but just note
that all of these ensembles are ”rigid” and small energy intervals between the
neighboring levels are unlikely. In other words, the levels of complex systems
interact and repel each other.

One more important case of the level statistics has to be mentioned. If a
system is composed of two or more independent parts that do not interact
among themselves, the spectrum of the compound is the direct superposition
of the spectra of the parts. In this case, the neighboring levels may belong to
different parts. They do not interact and do not repel each other. Therefore
the probability to find levels at a small distance is equal to the mean density
of states in this energy domain. Such a situation corresponds to the so-called
Poisson distribution, typical of Markovian random processes.

We also note another approach to complex quantum systems which con-
centrates not on the statistics of the eigenvalues of random Hamiltonians, but
on that of the evolution operators Û = exp(−itĤ) governing the time evolu-
tion of the systems. In contrast to Ĥ, the eigenvalues of Û are not real but
occupy the unit circle in the complex plane. Therefore the statistical ensem-
bles introduced for these quantities by Dyson are called circular ensembles,
and these ensembles can also be orthogonal, unitary, and simplectic by anal-
ogy to the Gaussian ensembles. Note that the circular ensembles had been
originally introduced in nuclear physics, not for the time-dependent evolution
operator, but for the scattering matrix which is roughly speaking the oper-
ator of evolution during a finite interaction time interval. The probability P
to find the eigenvalues of the scattering matrix at the positions

{
e−iϕn

}
on

the unit circle reads

P
({

e−iϕn
}) ∼

∏
k<l

|exp (−iϕk) − exp (−iϕl)|β
N∏
n=1

dϕn (1.3)

with β = 1, 2, 4 for the orthogonal, unitary, and simplectic Dyson ensembles,
respectively.

For circular ensembles, we suggest here a qualitative interpretation of their
physical meaning in terms of the time evolution, which is more relevant to the
problems that will be considered later on. The eigenvalues of the operator
tĤ are simply the eigenenergies multiplied by the elapsed time, and they
may be interpreted as phases accumulated by the states during the period of
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time t. Exponentiation of −itĤ implies that the n-th eigenstate is multiplied
by a phase factor exp(−itEn), or one can say that the real spectrum of tĤ
“winds” on the unit circle. Two energy eigenstates that are separated by an
energy interval 2π/t turn out to be at the same point on the unit circle. If
the time interval t is not too long, these states are far from each other and
therefore do not experience a significant repulsion, typical of the neighboring
energy eigenstates that result in the “rigidity” of the spectrum. However, for
a time-dependent Hamiltonian there is a Fourier component of the interaction
at the frequency 2π/t which repels the states separated by the energy of the
corresponding quantum as if they were neighboring. This provides us with
an idea of how the eigenstates of the scattering matrix can form a“rigid”
ensemble on the unit circle.

Simple and Complex Multilevel Systems

A small number of multilevel problems have exact analytical solutions. The
corresponding quantum systems usually have a certain, rather high, symme-
try, either explicit or hidden in specific relations amongst the parameters of
the unperturbed Hamiltonians Ĥ0 and the perturbations V̂ . This symmetry
is actually the reason why the system dynamics, depending formally on a
large number of the matrix elements of these operators, can still be described
either in terms of a finite number of algebraic and special functions, or in
terms of a few-fold integrals containing a limited number of combinations
of these parameters. The symmetry underlying the exact solutions manifests
itself in commutation relations between Ĥ0, the perturbation V̂ , and their
commutators of higher orders, that altogether form a relatively simple oper-
ator algebra with the total number of elements much smaller than the total
number of levels in the quantum system. In this case, the multilevel quantum
system is in fact a multidimensional representation of a relatively small Lie
group corresponding to the algebra.

One of the most illustrative examples is the magnetic multiplets of atomic
levels with high angular momentum J subjected to the action of magnetic
fields – the population dynamics of the 2J + 1 magnetic components is gov-
erned by the momentum operators J+, J−, and Jz that form a closed three-
element algebra su(2). Another example is that of a harmonic oscillator in
an external field, where the Hamiltonian â † â+ 1/2, and the creation â† and
annihilation operators â also form a closed algebra.

However, this is not the case for the generic N × N matrices Ĥ0 and
V̂ . Their higher-order commutators are usually linearly independent of the
commutators of lower orders and the matrices themselves, and each new
commutator yields a new linearly independent matrix until the total number
of different matrices reaches the maximum possible number N2. A statistical
description seems the natural approach which allows one to make meaningful
statements about the behavior of such systems. Of course, an important role
is played by the quantitative relations between the commutators of different
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orders. When a kind of hierarchic dependence exists, such that the sizes
of the commutators rapidly decrease with increasing order of commutation,
the same system may behave as a soluble system on a short time-scale but
develop complex dynamics for a longer time domain. An example of such a
system is a one dimensional chain of quantum states with disordered energies
and the tight binding coupling, which demonstrates diffusive broadening of
the population distribution over the states for short times but manifests the
effect of quantum localization in the long time limit.

Complexity and Chaos

One encounters complex quantum systems in physical problems of two dif-
ferent kinds. A problem of the first kind concerns a real physical ensemble of
multilevel systems, that is with a set of quantum objects with the Hamilto-
nian of each object different from the Hamiltonian of another. One can find
the ensemble average Hamiltonian and consider the differences between this
average and Hamiltonians of particular systems as a random perturbation.
We note that even a moderate perturbation of a multilevel system usually
results in a large change of eigenstates and in an appreciable transforma-
tion of the energy eigenvalues distribution. Therefore many characteristics
of a typical representative in the ensemble can be distinct from the mean
characteristics over the ensemble, thus yielding a large dispersion.

A problem of the second kind relates to a single system with complex
dynamics. In the classical limit such a system manifests chaotic behavior.
Dealing with a classical chaotic system one never tries to follow the trajectory
in phase space corresponding to a particular initial condition, but rather one
takes a set of initial conditions and uses statistical characteristics such as
Lyapunov exponents or Kolmogorov entropy for a description of the system
dynamics. In this case the average over the initial conditions plays the role
of the ensemble average.

We note however that in quantum mechanics one can usually find a natu-
ral representation for the Hamiltonian of a system of the second kind, where
it has a simple structure and an explicit physical meaning. It might be for
instance a product of physical quantities such as the coordinate, the electric
field strength, the angular or kinetic momentum, etc. But in spite of this, a
relatively small change in the Hamiltonian also results in a drastic change
in the eigenstates and eigenvalues of the system. In this respect, a quantum
system chaotic in the classical limit behaves like a system perturbed by a
random matrix. The statement that all classically chaotic systems behave on
the quantum level of consideration like the ensembles of random matrices is
known as the Bohigas–Giannoni–Schmit conjecture.

This situation is typical for quantum systems of two or more spatial de-
grees of freedom. Indeed, if the unperturbed motion is separable, that is it
can be represented as a combination of independent motions along each de-
gree of freedom, the perturbation usually causes mixing of these motions and
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destroys the separability of the problem. We can say that the perturbation
destroys the quantum numbers, or in terms of classical mechanics, it destroys
the integrals of motion. Another way to phrase the idea is to say that there
are holonom constraints in the phase space of the separable classical system
or in the Hilbert space of a quantum system. In classical mechanics these
constraints are known as Kolmogorov–Arnold–Moser tori. The perturbation
destroys the constraints and makes the system non-holonom.

In the following chapter we discuss a number of examples of complex
quantum systems originating from different physical problems. Here we il-
lustrate the analogy between a randomly perturbed quantum system and a
system chaotic in the classical limit for one example, known as the Sinai
billiard.

Fig. 1.1. The Sinai billiard and a random system with similar behavior.

We consider a particle in a two-dimensional potential well of infinite depth
and with a square cross-section of side L. This motion of a particle in such
a well is separable and the wavefunctions ψn,m of the energy eigenstates
are the products of the harmonic functions corresponding to each direc-
tion ψn,m = (2/L) sin(knx) sin(kmy), where kn = 2πn/L. We now place a
scattering potential V (x) at the corner of the well as shown in Fig. 1.1. In
classical mechanics, for a round scatterer V (x, y) = 0 at x2 + y2 > a and
V (x, y) = V0 → ∞ at x2 + y2 < a this system is known as a Sinai billiard
where the motion of the particle becomes chaotic. Apparently it is also the
case for a scatterer of an irregular (random) shape and for a large but finite
V0.

Let us now consider the problem quantum mechanically. The particle
Hamiltonian reads

Ĥ = Ĥ0 + V (x, y) =
1

2m
p̂2 + V (x, y), (1.4)
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and we assume that the potential V (x, y) differs from zero in the region S
around the origin x = y = 0. We take the eigenstates ψn,m of the unperturbed
Hamiltonian for the basis set of the problem and find the matrix elements of
the interaction

V n′,m′
n,m =

4
L

∫
S

sin(knx) sin(kmy)V (x, y) sin(kn′x) sin(km′y) dx dy (1.5)

that turn out to be the Fourier transform of the potential. If V (x, y) is a ran-
dom function, the matrix elements are apparently random. But for a regular
round scatterer they are definitely regular since they have the explicit form

V n′,m′
n,m =

4
L

a∫
0

rdr

π∫
0

dφ sin(knr cosφ) sin(kmr sinφ)

V (x, y) sin(kn′r cosφ) sin(km′ sinφ)

=
2V0

L2

∑
s

cs

a∫
0

rdrJ0(∆ksr) =
2V0

L2

∑
s

cs
J1(∆ksa)

∆ksa
, (1.6)

where ∆ks = ±√
(kn ± kn′)2 + (km ± km′)2, J0,1(x) are the Bessel functions,

and cs = ±1.
We know, however, that both problems are equivalent in the classical

limit. Therefore it is reasonable to assume that much of this similarity also
persists in the quantum case. This implies that many of the predictions made
for the systems perturbed by a random matrix will also be valid for a system
perturbed by a non-random matrix if such perturbation destroys the sep-
arability of the problem and makes the motion chaotic, in agreement with
the Bohigas–Giannoni–Schmit conjecture. In algebraic terms, the consecu-
tive commutation of the regular perturbation matrix with the unperturbed
Hamiltonian yields in this case the entire set of linearly independent matrices,
exactly in the same way as commutation with a random matrix.

Time Dependence and Spectral Properties

Our main concern will be to describe the population dynamics of complex
quantum systems under the action of random perturbations. Many of the as-
pects of the time evolution have specific manifestations in the spectra of the
ensemble averaged density of states g(E), or more precisely, in the spectra
of the total density of states projected either onto the initial state or onto
a given state of the unperturbed system. This is usually the case when the
dynamics are governed mainly by a specific unperturbed Hamiltonian, pos-
sessing some symmetries or corresponding to a separable motion of different
degrees of freedom, while a random perturbation destroys this separability
on a longer time-scale. The sharp edges of the state density g(E) that are
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already present for E = ±N
〈
V 2

〉
in the Wigner distribution (1.2), a cusp

on the dependence g(E) at the point where two Wigner distributions merge,
non-analytical dependencies g(E) typical both for fractal structures and for
systems corresponding to random walks in the classical limit, and some other
spectral signatures, are usually associated with non-exponential decay pro-
cesses. These processes are also known as coherent damping which usually
corresponds to an intermediate asymptotic regime, that is to a relatively
short time domain where the random perturbation has already started to
affect the separability of the unperturbed system, but has not yet destroyed
it completely.

Some other processes developing on a longer time-scale do not have sig-
natures in the ensemble averaged density of states but manifest themselves
in the statistics of the relative positions of the levels. These processes, known
as recurrences and complete or fractional revivals, usually imply complete or
partial returns of the population from different groups of quantum levels to
the initial state. Interference of the returns from different groups of levels
may result in an incomplete decay of the initially populated states which is
one of the manifestations of so-called dynamical localization.

An interesting class of problems is represented by the case where the in-
teraction which destroys the separability of the unperturbed motion changes
significantly, by orders of magnitude, for different degrees of freedom. There-
fore, in the course of time more and more degrees of freedom are getting
involved in the dynamical process. The situation resembles the case known
in classical mechanics as Arnold diffusion. For the corresponding quantum
case, the recurrences and revivals play a very important role, systematically
returning the population back to the initial state while still being unable to
prevent this state from complete decay. The spectral density of the states
accessible from the initial state is essentially a discontinuous and irregular
function of the energy in this case. In the long time limit it corresponds to
specific time dependences of the population of the initial state.

Main Parameters and Quantitative Criterion of Complexity

The commutation relations between Ĥ0 and V̂ , generating at each order of
commutation new linearly independent operators, cannot yet guarantee that
the considered quantum object conforms to the model of a complex system.
The quantitative parameters also play a crucial role, by indicating whether
the action of the new operators can be considered as a small perturbation or
whether the all-order perturbation theory is required for an adequate descrip-
tion. The main parameters that allow one to decide whether the system is
complex are the average density of states g of the unperturbed Hamiltonian
and the mean squared strength of the perturbation

〈
V 2

〉
.

The average density of states in the units where � = 1 has the dimension-
ality of time and represents the so-called Heisenberg time of return, a typical
time when the return of the system to an initial state given by a superposition
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of the eigenstates of Ĥ0 has to be taken into account. The mean squared in-
teraction enters the transition rate 2πg

〈
V 2

〉
, suggested by the Fermi golden

rule for the probability of transition per unit time from a given level to a
group of levels with spectral density g, that are coupled to this level by an
interaction characterized by the mean squared matrix element

〈
V 2

〉
. There-

fore the natural criterion of complexity reads 2πg
〈
V 2

〉
g � 1 which implies

that the probability of transition during the return time should be large.
Unless the special algebraic reasons emerging from the hidden symmetry

of the problem result in the rapid decrease or vanishing of the commutators
with the increase of the commutation order, the criterion 2πg2

〈
V 2

〉 � 1
also guarantees that the commutators can induce transitions. Since each new
commutator is a linearly independent operator, the variety of linear combina-
tions becomes more and more rich with the course of time. The interference
of all of these transitions makes the dynamics of the system complex.

Time-Dependent Perturbations and Control

A time-dependent perturbation enriches the system dynamics since each har-
monic of the perturbation couples the levels separated by the energy of the
corresponding quantum. For the periodic perturbation, the structure of the
evolution operator is given by the Floquet theorem, which roughly speaking
states that the amplitude ψm of each harmonic m of the state vector can be
considered as an independent variable in a Schrödinger equation with time-
independent parameters. The order of this matrix equation is the product of
the dimension of the system Hilbert space and the total number of important
harmonics. The order therefore approaches infinity when all harmonics are
equally important. The only technical question arising for this approach is
how to circumvent the ambiguity in relating the initial state of the system to
the initial state of the harmonics.

For non-periodic perturbations, the time dependence can also be taken
into account by introducing an additional degree of freedom which is now as-
sociated, not with a discrete index m of ψm, but with a continuous variable
τ specifying the corresponding component ψ(τ). In this new representation
the Hamiltonians also experience a transformation by acquiring an additional
operator term related to the new degree of freedom. Therefore the commu-
tation relations between the unperturbed Hamiltonian and the perturbation
may (and usually do) change, most strongly affecting “simple” multilevel
systems which possess an underlying algebraic symmetry.

The time dependence may destroy the holonom constraints in a system
including the energy conservation constraint, thus enriching the evolutionary
capability of the latter. The question arises: can one employ this destruction
and make the system evolve in an arbitrary predescribed way? In other words,
can one force the system with a Hamiltonian Ĥ0 to behave “a la carte”, that
is, as if it has another predetermined desired Hamiltonian Ĥd? The answer
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to this question is positive for a system that conforms to the Jurdjevic–
Sussman theorem and corresponds to the compact algebra generated by the
commutators of Ĥ0 and V̂ (t). The main problem is how to construct an
effective algorithm that would specify the required time dependence.

Structure of the Text

The manner of presentation of the material serves our main objective, which
is to invite the reader to consider different dynamical problems that belong
to various domains of quantum physics from the point of view of complex
quantum systems and attribute these problems to one of a number of differ-
ent cases where exact and physically consistent conclusions can be drawn. In
other words, the aim is to develop, as much as possible, the methods of solu-
tion rather than to calculate particular physical quantities for the particular
physical problems. The latter will be simply impossible considering the vast
number of domains where complex quantum systems can be encountered.
Moreover, in some cases and for some physical properties, an alternative
approach to the problem might be equally efficient, which does not how-
ever mean that the approach of the problem as a complex system is useless.
Sometimes there may be additional insight into the reasons why the system
behaves in such a way.

In Chap. 2, a number of examples are given in order to demonstrate the
different physical domains where complex quantum systems can be encoun-
tered. Both the situation involving a physically existing ensemble of systems,
and that involving a single system unknown in detail, are considered from
the same standpoint, in other words, we do not specify whether a complex
system means a single system with complex dynamics or an ensemble of sys-
tems, unless confusion is possible. Some of the examples are well known and
widely investigated while others are rather new. Most of them are drawn
from the fields of laser physics, physical chemistry, the physics of clusters,
and quantum optics, where the dynamical aspects of multilevel quantum sys-
tems are the primary concern, whereas examples from solid state physics and
nuclear physics – two domains where static aspects like quantum level statis-
tics are explored by the method of random matrices and widely described in
the literature – are presented hardly at all. In some examples we also show
analogies with classical physics where the different modes of oscillations of a
multidimensional system play the role of quantum states. The main purpose
of this chapter is to show how one can describe the main features of the
dynamical processes in terms of multilevel quantum systems.

In the next chapters we concentrate on the approaches to exactly soluble
multilevel problems. Each chapter starts with a simple problem, usually well-
known, which serves the principal role of introducing the technical tools and
for elucidation of the physical meaning and main parameters governing the
dynamics. Technical complexity usually increases in the subsequent parts of
the chapters. In these parts we have tried to give as many details as the
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reader would need for following the narration without doing the calculations,
or doing just a few of them.

In Chap. 3 we consider the two-level system and the level–band system,
which are problems that can be solved exactly, without an ensemble average.
We find the physical parameters responsible for the time evolution of such
systems, and demonstrate the important role of coherence, which persists in
the large multilevel systems and results in many interesting phenomena, such
as quantum revivals, for instance. We discuss the role of the spectrum density
and the spectrum edges, allow for the correlations in the matrix elements of
interaction in the case of two levels interacting with a band resulting in
specific spectral structures like the Fano profile, and analyze the situation
when the interaction matrix elements may differ significantly, by orders of
magnitude, resulting in non-exponential and incomplete decay of the level.

In Chap. 4 we consider the population dynamics in multilevel quantum
systems perturbed by a time-independent random matrix. We illustrate the
method of the ensemble average and demonstrate the technique, which can
later be used for the description of more complicated problems. It is worth
mentioning that in many respects, this technique is an analog of the diagram
technique for the many body problem that has been successfully employed in
solid state physics for the description of metals at low temperatures. We only
employ the representation performed in the spirit of Grotrian diagrams which
is more natural for atomic and molecular physics, where the unperturbed
motion is depicted by levels (or dots) and the transitions are shown by lines.
The main features of the diagram technique remain the same, including the
idea of renormalization of the state energies, better known in atomic physics
as “dressed states”. We consider the role of the state degeneracy, the coherent
damping associated with it, as well as the specific shapes of the spectral
lines resulting from the coherence. We pay attention to the effects related to
correlations in the perturbation matrices, when the rank of the perturbation
matrix is much smaller compared to its order.

In Chap. 5 we consider the effect of a time-dependent perturbation on the
population dynamics in “simple”, exactly soluble quantum systems such as
the two-level system and the level–band system. For a number of cases, the
additional dimension associated with the time dependence can still result in
an exactly soluble problem, although it complicates the algebraic relations
amongst the Hamiltonian, the perturbation, and their commutators. The
most well-known examples are the Landau–Zener problem and the Demkov–
Osherov problem. We also discuss the applicability of the semiclassical de-
scription also known as non-adiabatic transitions in time-dependent systems
conforming to the Dykhne model, and discuss non-adiabatic transitions at
the continuum edge.

In Chap. 6 we consider complex quantum systems subjected to a time-
dependent perturbation that also become exactly soluble following the en-
semble average. We focus on the case where the system is perturbed by a
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random matrix with a perturbation strength with an arbitrary time depen-
dence. We demonstrate that the shape of the population distribution as a
function of energy results from the interplay between the size of the per-
turbation and the spectral width of the time dependence. We also consider
the harmonic and bi-harmonic perturbation of complex systems, as well as
the bi-harmonic perturbation of a two-band system. The main purpose of this
consideration is to illustrate how the additional degree of freedom, associated
with the time dependence, manifests itself in the population distribution over
the energy scale. We discuss the linear optical response, the delayed coherent
polarization or optical echo, and the susceptibility of complex systems where
one can see a difference between the systems corresponding to the unitary
and the orthogonal ensembles. Controllability of complex quantum systems
and several algorithms that offer the possibility to achieve complete control
over the dynamics are discussed in this chapter as well.

In Chap. 7 we consider the situation where the levels are arranged in
a one-dimensional relay-like chain and the interaction occurs only among
the closest neighboring levels. We start with the problems that have exact
analytical solutions, conforming to one of the low-dimensional algebras of op-
erators. This concerns levels with linearly increasing energy and a constant
coupling, the harmonic oscillator in the presence of dipole and Raman har-
monic perturbations, angular momentum in an external magnetic field, and a
few other examples where the exact solution in terms of hypergeometric func-
tions exists. For the case of smooth variation of the parameters, we describe
an approach in the spirit of the WKB approximation. We also consider the
one-dimensional chain of irregularly detuned levels, the so-called Lloyd chain,
whose spectrum and localized wavefunctions have been widely explored, but
whose population dynamics have been much less addressed. In this context
we introduce the field-theory methods (also convenient for some other ap-
plications) that allow one to calculate ensemble averaged determinants of
random matrices, representing them as functional integrals over regular and
Grassmann variables.

In Chap. 8 we consider the dynamics of composed complex quantum sys-
tems where the perturbation matrix has a block structure. We discuss the
diffusion regime in the relay-like structures for various dependencies of the
transition rate on the block number, that allow an exact description in terms
of the hypergeometric functions, and show the important role of the cor-
relations in the perturbation matrix elements. We also concentrate on the
dynamics of multilevel systems at long times. We illustrate the dominating
role of the quantum interference effects on the population dynamics. In par-
ticular, we calculate the probability for a complex system to stay in the initial
state at asymptotically long time. This characteristic is complementary to the
property of quantum localization in disordered systems. We discuss the man-
ifestation of quantum complexity in the density of states and in the dipole
absorption profiles along with a relatively simple way to calculate these pro-
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files for the case when the spectral structures typical of the unperturbed
Hamiltonian are still not completely washed out by the random perturba-
tion. We demonstrate the spectral manifestation of the hierarchical structure
of the system, originating from the fractal nature of an object and the trans-
formations that this spectrum experiences under a random perturbation.

There is no literature references throughout the text, apart from the
names of the authors traditionally associated with the well-known results
of methodical importance. One of the reasons for this is the fact that many
similar or sometimes even identical results have been independently obtained
in different domains of physics and are known under different names. For
instance, the dipole susceptibility of highly exited molecules has almost the
same structure as conductance in metals, while the tunneling transparency of
disordered solids has much in common with the cross-section of multiphoton
ionization of atoms. The conductivity of narrow-band solids has exactly the
same mathematical description as the multiphoton off-resonant excitation of
ro-vibronic states of diatomic molecules. The interaction of resonant atoms
in a photonic band gap is similar to the Raman transitions between two vi-
brational states of a molecule. The Anderson localization turns out to be
analogous to the Fermi acceleration of the quantized kicked rotor, and the
Breit–Wigner distribution in nuclear physics is identical to the Lorentzian
profiles of optical line shapes, and also similar to Feshbach resonances for
molecular collisions. The idea of renormalization, widely employed in parti-
cle physics, practically coincides with the concept of dressed states for the
atoms in strong laser fields, etc. In such a situation, the references to differ-
ent physical domains throughout the text would be confusing. That is why
the review of the literature is performed in a separate, and last, Chap. 9,
although even there the list of literature cannot be complete and in fact is
far from being exhaustive. A relatively short review is presented in the form
of problems which the reader can consider with the help of the approaches
developed and compare the formulations of the problems and the results with
the original papers. More detailed information is available in the monographs
listed in accordance with the distribution of topics among the chapters.

However, the reader is assumed to know the main concepts and meth-
ods of quantum mechanics and mathematical methods of physics. For the
fundamentals of quantum mechanics one can consult the classical series of
textbooks by L. D. Landau and E. M. Lifshits as well as Quantum mechanics
by C. Cohen-Tanoudji, B. Diu, and F. Laloe [49]. The main mathematical
tools can be found in the textbook by J. Mathews and R. L. Walker [134]
Mathematical methods of physics. For more special aspects of the mathemat-
ical technique including the algebra and group theory, the books Mathemat-
ical methods of classical mechanics by V. I. Arnold, A. Weinstein, and K.
Vogtmann [9], Theory of group representations and applications by A. Barut
and R. Raczka [12], Integrable systems of classical mechanics and Lie alge-
bras by A. M. Perelomov [150], and the article Universal integrals of motion
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and universal invariants of quantum systems by V. V. Dodonov [61] can be
recommended.



2 Examples of Complex Systems

Molecular and laser physics offer many examples of complex quantum sys-
tems that demonstrate the importance of characteristics in disordered spec-
tra other than the density of states or density of states correlations. Here
we briefly discuss some of these systems that have been studied intensively
because of their fundamental interest or practical importance.

We start the consideration with problems related to the domain usually
known as the interaction of radiation with matter which is dedicated to atoms
and molecules in intense resonant laser fields. In these types of problems, one
can usually separate one or a few optically active degrees of freedom that
interact with the laser field directly, while the rest of the degrees of freedom
are not dipole active, but simply coupled to the optically active ones by
intra-molecular or intra-atomic interactions. The presence of the latter make
the system complex. Highly exited atomic states that belong to Rydberg
series have a rich spectrum and also form a complex system, being perturbed
by a strong laser or RF field. However the multilevel system should not
necessarily correspond to highly exited states. Polyatomic molecules, even
in the ground vibrational state, posses a rather rich rotational spectrum,
which can be strongly affected by an external field. Additional complexity is
associated with the presence of multiphoton resonances that correspond to
the simultaneous absorption of several laser quanta.

Chemical reactions offer a large number of examples of complex quantum
systems. Each molecule is already a complex object in itself, whereas two
colliding molecules, even in the absence of chemical reaction, form a com-
plex compound with a rich spectrum of vibrational states, the population
of which changes significantly during the collision. An additional source of
complexity is the non-adiabatic interaction of the electronic and vibrational
degrees of freedom inside a single vibrationally exited molecule which results
in intramolecular energy conversion.

The situation becomes even more involved in the case when the molecules
are highly exited electronically, approaching molecular Rydberg states. In
such a situation, the adiabatic separation of the fast electronic and slow nu-
clear motions fails, since the period of rotation of an electron along a Rydberg
orbit becomes comparable to, and sometimes even longer than, the vibra-
tional period. The electronic and vibrational states get strongly entangled
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and form a common complex spectrum. The collision of a Rydberg molecule
with another molecule may result in collisional ionization which adds a contin-
uous component to the system spectrum. An even more complicated situation
arises when we consider an ensemble of many interacting Rydberg atoms. Ex-
citation exchange among the atoms results in the motion of populations over
the volume occupied by the gas. The spectrum now becomes very rich and
involved, corresponding to the mobility of different exitons over the volume.

Another possibility to form complex systems is to put many identical
atoms together, such that they form an atomic cluster. Even in the case
when each atom has only two quantum states, the spectrum of a compound
containing n atoms already has N = 2n quantum levels and becomes a com-
plex system in the presence of even a very weak interatomic interaction. This
spectrum becomes completely disordered if we take into account the inter-
action of the electrons with atomic vibrations or phonons. This quantum
complexity manifests itself in the thermodynamical as well as in the optical
properties of the clusters. The complex spectra of clusters are not necessarily
formed as the result of atomic forces. The interaction can be mediated by the
electromagnetic field. In this case one can see the cooperative interaction of
the atoms with the external electromagnetic field.

Quantum complexity is not only typical of atoms and molecules. It has
parallels with multidimensional classical systems such as semiclassical trans-
lational motion of ions in ionic traps, nonlinear interaction of photons in a
resonator, and mobility of electrons on surfaces. In this chapter we show how
the equation of motion can be written in a similar form for all of the aforesaid
examples. All of the systems, including classical systems, conform to one of
many possible models of complex quantum systems.

2.1 Molecules and Atoms in Laser Fields

2.1.1 Laser Breaking of a Weakly Bonded Complex

The difference in the vibrational frequencies of a given molecule containing
different isotopes is exploited by the technique of laser isotope separation.
Let us consider in this context a coordinated compound that is a simple
molecule, IsO2 for example, which is surrounded by a number of relatively
weakly bound molecular complexes or ligands as shown in Fig. 2.1. Here Is
stands for an element that has variable isotopic modifications. The central
molecule is subjected to the action of the infrared laser which is in reso-
nance with a single dipole-active vibrational mode. The ligands may both
alter the frequency of the vibration, and quench the vibrational excitation of
the central molecule. The energy of one vibrational quantum of the excited
mode is usually sufficient to destroy the weakly bound ligands, and therefore
the transfer of the vibrational energy from the molecule to the surrounding
complexes immediately results in the dissociation of the compound.
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Fig. 2.1. A weakly bound dioxide compound. The dipole-active vibrations of the
oxygen atoms are much faster than the chaotic multidimensional motion of the
molecular groups surrounding the dioxide.

How can one formulate this problem mathematically? We use two indices
to describe the quantum state of the system – the index n which enumerates
the vibrational state ψn(q) of the mode q of the central molecule excited by
the radiation, and the index m which enumerates the energy eigenstate of
the entire system of the molecular compound provided the vibrational state
n of the excited mode is fixed. We denote by Φn,m(Q) the corresponding
wavefunctions of the compound, where Q stands for all of the set of N co-
ordinates of the compound other than q. We note that the Hamiltonian of
motion for the surrounding molecules depends on the vibrational state of the
central molecule, since the vibrationally excited central molecule has both a
different size and different force constants for the weak bonds compared with
the ground vibrational state of the central molecule. We therefore write the
Hamiltonian of the entire compound in the form

Ĥ = n�ωIsO2δn,n′δm,m′ + Hm,m′(n)δn,n′ (2.1)

where we still neglect the influence of the energy transfer from the central
molecule to the periphery, and the excitation by the laser field. The eigenen-
ergies

En,m = �ωn + ∆n,m (2.2)

correspond to the eigenfunctions |Ψn,m〉 = |ψn〉|Φn,m〉.
Now let us allow for the external resonant laser field which induces transi-

tions among the states of the system. The probability amplitudes of the tran-
sitions are given by the product of the electric field strength E = E cosωt and
the matrix elements of the dipole moment operator dn

′,m′
n,m = 〈n,m|eq̂|n′,m′〉.
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The latter is the product of two parts. The first part originates from the
excited vibrational mode of the central molecule and is given by the dipole
matrix element of the fundamental transition, whereas the second part arises
from the overlap integrals of the pairs of wavefunctions of the surroundings,
corresponding to the central molecule in the ground vibrational state and in
the first excited vibrational state, respectively. It reads

dn
′,m′

n,m =
∫

ψn(q)eqψn±1(q)dq
∫

Φn,m(Q)Φn±1,m′(Q)dNQ

= d
√

n

∫
Φn,m(Q)Φn±1,m′(Q)dNQ. (2.3)

Here we have employed the harmonic oscillator model for the vibrational
modes of the central molecule which gives the selection rules n − n′ = ±1
and have denoted by e the effective charge of the mode q.

Now we assume that the motion of the surroundings is chaotic and there-
fore a small change in the Hamiltonian of this motion associated with the
excitation of the central molecule results in a big change of the eigenfunc-
tions Φn,m(Q). In other words the vibrational excitation of the mode q results
in a rotation of the ligand energy eigenstates basis in Hilbert space by large
angles around many axes. Therefore for an ensemble of molecules, the statis-
tical approach is the natural way to describe the quantum dynamics, and the
normal distribution is the logical assumption for the distribution functions
of the overlap integrals 〈Φn,m|Φn′,m′〉 in (2.3).

One can write the Schrödinger equation for the amplitudes Ψn,m of the
states |Ψn,m〉 in the form

i�Ψ̇n,m = (�ωIsO2 + ∆n,m)Ψn,m + cosωt
∑
m′

V n±1,m′
n,m Ψn±1,m′ (2.4)

where V n±1,m′
n,m = Edn±1,m′

n,m .
If we now take the resonant approximation, that is we take the amplitudes

in the form
Ψn,m = ψn,m exp{inωt}, (2.5)

substitute (2.5) into (2.4), and neglect the rapidly oscillating terms, we arrive
at

i�ψ̇n,m = (ωIsO2 − ω + ∆n,m)ψn,m

+
∑
m′

(
V n+1,m′
n,m ψn+1,m′ + V n−1,m′

n,m ψn−1,m′

)
. (2.6)

This is the Schrödinger equation for the slow amplitudes ψn,m. The Hamil-
tonian of this equation contains two components which we shall consider as
random: ∆n,m gives us the random deviations of the level energies from their
harmonic positions �nω, while V n±1,m′

n,m allows for the random coupling of
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these states. The problem now is to find some average characteristics of these
matrices which governs the population dynamics of the system. That would
allow us to identify the common properties of all similar systems, provided
such common properties exist.

2.1.2 Laser-Induced Electronic Transitions in Molecules

There is a number of physical systems that are similar to the one just con-
sidered. Thus far we were considering the excitation of a vibrational mode of
the central molecule and the effect of this vibration on the weak bonds in the
compound. The crucial step there was the adiabatic separation of the rapid
vibrations and the slow motion of the surrounding molecules. This is com-
pletely analogous to the adiabatic separation of the electronic and vibrational
motions in molecules, and therefore we face the same situation considering
the electronic excitation of polyatomic molecules in laser fields.

This is illustrated in Fig. 2.2. The laser field induces transitions among

. .

Fig. 2.2. Electronic transition in a molecule.

the manifolds of vibrational states corresponding to two different electronic
terms. Transition amplitudes are proportional to the Frank–Condon factors,
that is the overlap integrals 〈Φ0

m|Φ1
m′〉 of the vibrational wavefunctions Φ0

m

in the ground electronic term, and the vibrational wavefunctions Φ1
m′ in the

excited term. The corresponding Schrödinger equation for slow amplitudes
ψn,m of the vibrational states |Φn,m〉 of the n-th electronic term (n = 0, 1)
reads
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i�ψ̇1,m = (E1,m − �ω)ψ1,m +
∑
m′

V 0,m′
1,m ψ0,m′

i�ψ̇0,m = E0,mψ0,m +
∑
m′

V 1,m′
0,m ψ1,m′ , (2.7)

where V n′,m′
n,m now stands for the probability amplitudes of the laser-induced

transitions.
The nuclear motion of vibrationally excited polyatomic molecules is usu-

ally chaotic. This implies that the vibrational wavefunction changes drasti-
cally and in an irregular way when we move from a given energy eigenstate
to a neighboring one. This is even more the case for the vibrational functions
corresponding to different electronic terms, which implies that the overlap
integrals 〈Φ0

m|Φ1
m′〉 change completely with any change of the indexes m and

m′. One, therefore, may consider the matrix element of the dipole transition

V 1,m′
0,m = Ed1,m′

0,m = 〈φ0|E d̂|φ1〉〈Φ0
m|Φ1

m′〉 (2.8)

as a random value. Here φ denotes the electronic wavefunctions, and Φ the
vibrational wavefunctions dependent on all the nuclear coordinates.

2.1.3 Vibrational Excitation of Polyatomic Molecules

We encounter the same situation for the vibrational motion of a polyatomic
molecule excited by an infrared laser field resonant to one of its vibrational
modes. In this case the Schrödinger equation formally coincides with (2.6)
where n denotes the number of absorbed laser quanta. Let us consider it
in more detail. The anharmonicity of vibrations makes the motion of the
polyatomic molecule chaotic, and hence the matrix elements of the dipole
moment acquire a random character. We illustrate this situation in the most
simple example of a three-fold degenerate mode of a symmetric polyatomic
molecule XY4 or XY6. In the harmonic approximation excited vibrational
levels of the mode are multiply degenerate. To each eigenstate of the de-
generate mode |I1, I2, I3〉 one can attribute three quantum numbers I1, I2,
and I3, that correspond to numbers of quanta in each of three vibrational
degrees of freedom comprising the mode. The energy of the state reads
EI1,I2,I3 = �ωvib(I1 + I2 + I3), where the vibrational frequency ωvib coin-
cides with the frequency of the external laser field ω. For light absorption
three possible dipole transitions from the state |I1, I2, I3〉 are allowed by the
selection rules. They correspond to an increase by one of the number of vi-
brational quanta in each degree of freedom:

|I1, I2, I3〉 →
⎧⎨⎩ → |I1 + 1, I2, I3〉

→ |I1, I2 + 1, I3〉
→ |I1, I2, I3 + 1〉.

(2.9)

We now take into account the anharmonicity of the vibrations. In a sym-
metric, three-dimensional oscillator the anharmonicity consists of three parts.
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The first part Ĥ1 is the regular, one-dimensional anharmonicity which shifts
the positions of levels of each degree of freedom independently:

Ĥ1|I1, I2, I3〉 = α(I2
1 + I2

2 + I2
3 )|I1, I2, I3〉, (2.10)

where by α we denote the corresponding anharmonicity constant. The sec-
ond part is the cross-anharmonicity. It allows for the change in frequency
of one degree of freedom following the excitation of another. We denote the
corresponding constant β and write the Hamiltonian in the form

Ĥ2|I1, I2, I3〉 = β(I1I2 + I2I3 + I3I1)|I1, I2, I3〉. (2.11)

Neither the first nor the second part allows for energy transfer between
the degrees of freedom of the degenerate mode. They do not destroy the sepa-
rability of the problem and each degree of freedom may thus far be considered
as dynamically independent. The third part of the anharmonicity, however, is
responsible for the mode mixing. The Hamiltonian Ĥ3 corresponding to this
part is non-diagonal in the representation of the quantum numbers I1, I2, I3,
and mixes the states

|I1, I2, I3〉 ↔ |I1 − 2, I2 + 2, I3〉 ↔ |I1 − 2, I2, I3 + 2〉 ↔ etc. (2.12)

by transferring pairs of quanta from one degree of freedom to another. It
does not commute with Ĥ1 and Ĥ2. One can write down this part of the
anharmonicity Hamiltonian in terms of the creation â†

j and annihilation âj
operators of the vibration of the j-th degree of freedom:

Ĥ3 = γ(â1â1â
†
2a

†
2 + â1â1â

†
3a

†
3 + â2â2â

†
3a

†
3 + c.c.), (2.13)

hereafter c.c. denotes the complex conjugate expression. Note, that the third
part of the anharmonic Hamiltonian commutes with the total number I =
I1 + I2 + I3 of the quanta in the mode, and leaves this quantity intact.

Diagonalization of the sum of the three Hamiltonians Ĥ1 + Ĥ2 + Ĥ3 at
fixed I gives the eigenstates |mI〉 of the three-fold degenerate mode. Here m
enumerates the levels corresponding to a given I. The many-fold degeneracy
of the state is now raised, as shown in Fig. 2.3. Usually the results of diag-
onalization are very sensitive to the values of the anharmonicity constants
α, β, and γ, and both the eigenvalues EI,m and the eigenstates |mI〉 of the
Hamiltonian change drastically with a relatively small change in each of the
parameters. This is typical of chaotic systems and implies that if we cast the
eigenstates |I,m〉 of the three-dimensional anharmonic oscillator in terms of
linear combinations of harmonic states |I1〉, |I2〉, and |I3〉:

|I,m〉 =
∑
I2,I3

cI,mI2,I3 |I − I2 − I3, I2, I3〉, (2.14)

the expansion coefficients cI,mI2,I3 will be complex functions of I1, I2, and m that
strongly depend on α, β, and γ. Therefore the matrix of dipole transitions
among the states |Im〉
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Fig. 2.3. Anharmonic splitting of a three-fold degenerate mode.

〈I,m|d̂|I + 1,m′〉 =
∑
I2,I3

(
cI,mI2,I3〈I1|d̂|I1 + 1〉cI+1,m′

I2,I3

+cI,mI2,I3〈I2|d̂|I2 + 1〉cI+1,m′
I2+1,I3

+cI,mI2,I3〈I3|d̂|I3 + 1〉cI+1,m′
I2,I3+1

)
(2.15)

is an irregular matrix constrained only by the condition I − I ′ = ±1. If we
replace it by a random matrix we arrive at the Schrödinger equation

i�ψ̇I,m = (EI,m − I�ω)ψI,m

+
∑
m′

(
V I+1,m′
I,m ψI+1,m′ + V I−1,m′

I,m ψI−1,m′

)
, (2.16)

which has the same structure as (2.6).

2.1.4 Transitions Among Levels with Fine Structure

We start with the fine structure of the rotational states of spherical-top sym-
metric polyatomic molecules which also conform with the random matrix
model. Spherical-top molecules have three equal components of the inertia
tensor, and therefore the rotational states are degenerate with respect to the
quantum number K, which gives the projection of the vector of total angu-
lar momentum L to the molecular axis. This may be interpreted that the
molecule has the same rotational energy regardless of the orientation of the
rotation axis in the reference system associated with the atomic positions.

This, however, is not the case for a non-rigid top, if its mechanical elas-
ticity depends on the orientation of the rotation axis. For a given angular
velocity Ω the rotational energy of the top is dependent on the orientation of
the rotation axis, and the angular momentum L is a nonlinear vector func-
tion of Ω. The direction of L(Ω) may deviate from the direction of Ω and
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this disalignment varies with the relative orientation of the molecule. For a
classical top the conservation of energy and angular momentum implies that
the magnitude and the direction of Ω changes in time, which also implies
that the orientation of the molecule with respect to the angular momentum
vector changes. The time evolution of the orientation of a non-rigid molecule
has an irregular and chaotic character. At the quantum level of consideration
this means that the quantum number K does not correspond to a certain
energy eigenstate, that is the K-degeneracy is raised, and quantum numbers
K are destroyed. We mark the quantum states |n〉 of the resulting multiplets
with the index n, which now has nothing to do with the angular momentum
projection. The number of these states is given by the number 2L + 1 of
different K-components and can be large for rapidly rotating molecules.

Consider now the dynamics of excitation of vibrational-rotational transi-
tions in spherical-top molecules by an external laser field. The molecule in the
ground vibrational state can be considered as rigid, and the rotational levels
are K-degenerate. In an excited vibrational state it looses the rigidity and
the K-degeneracy is raised. We denote by ∆n the displacement of the states
|n〉 from their unperturbed positions and write the Schrödinger equations for
the slow amplitudes in the form

i�ψ̇K =
∑
n

VK,nψn

i�ψ̇n = ∆nψn +
∑
K

Vn,KψK , (2.17)

where ψK correspond to the ground vibrational state, and ψn denotes the
amplitudes of the rotational energy eigenstates of the vibrationally excited
molecule. The total momentum L and its projection M are supposed to be
conserved in the course of molecular rotations. Note that the displacements
∆n may also include the detuning of the laser field from the frequency of the
unperturbed transition.

For a one-photon process the transition probability amplitudes Vn,K are
given by the product of the laser field amplitude E , the dipole moment of
vibrational transition dvib, and the scalar product of states 〈n|K〉. Chaotic
motion of the non-rigid top suggests the random matrix model for the latter.
For a multiphoton excitation we have to replace the transition amplitudes
Vn,K = Edvib〈n|K〉 by the composite matrix elements

Vn,K = 〈n|K〉Ed1

number of
absorbed photons∏

l=2

{ Edl
El − l�ω

}
, (2.18)

where El represents the energies of the intermediate states, and dl the dipole
moments for the transitions l − 1 → l.
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2.1.5 Excitation of Rydberg States in Atoms

Degeneracy of states is also present in atoms. However the optical transitions
in atoms usually occur among states with relatively small angular momenta,
where the number of the magnetic components is relatively small. The popu-
lation dynamics in atoms can therefore be studied analytically or numerically,
where an approach based on statistical ideas is not really needed. Neverthe-
less they are useful when we consider multiphoton transitions to highly ex-
cited Rydberg states. Indeed, multiphoton excitation can be associated with
a large acquisition of angular momentum, and thus highly excited states with
large angular momenta have rich multiplet structures resulting from the de-
generacy of the magnetic quantum numbers M . In the presence of electric
and magnetic fields the joint action of Stark and Zeeman effects raises the
degeneracy and destroys the quantum numbers M . The situation is identical
to that of spherical-top molecules; many components of the multiplets simul-
taneously fall into a multiphoton resonance with the external laser field, and
no selection rules are left. One may use (2.17) with the composed matrix
elements similar to those given in (2.18).

Another example of a complex multilevel system is that of Rydberg atoms
in an ultra-high-frequency radio field. One can formally describe the system
with the help of (2.16) where I denotes the principal quantum number, and
m stands for the magnetic quantum number. However, the matrix elements
V n′,l′
n,l cannot a priori be taken as random due to the presence of selection

rules. Nevertheless, since the classical motion of an electron in the Coulomb
and radio-frequency fields is chaotic, the corresponding quantum problem

a)

b)

c)

b) b)

d)

f)

e)

. .
Fig. 2.4. Rydberg atoms versus polyatomic molecules in laser fields. The spectral
density of the vibrational states of a polyatomic molecule rapidly increases with
energy (a). The laser field induces upward transitions. In the compound system of
the molecule+quantized field (b) the transitions occur among the states of the same
energy. An atom excited by a laser field (d) to a Rydberg state in the presence of
an RF field performs a series of transitions (f) towards the ionization limit (e)
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may manifest some properties of a multilevel system perturbed by a random
matrix, although the separation of the Hamiltonian into a regular part and
a random part may be different from the separation of the Hamiltonian of
the Coulomb problem and the RF-field dependent perturbation. Such a point
of view is complementary to the traditional approach to the problem which
relies on the numerical investigation of quantum maps. In Fig. 2.4 we compare
and contrast Rydberg atoms and molecules in an oscillating external field.

2.1.6 Competition of Multiphoton Processes of Different Orders

For molecules in strong laser fields one can face competition between multi-
photon processes of different orders. Indeed, polyatomic molecules posses rich
vibrational spectra.The detuning of the lowest excited level of the vibrational
mode from one-photon resonance can be equal or close to the detunings of
higher levels from the higher-order multiphoton resonances ( Fig. 2.5(a)). The
larger the order of the resonance n the higher the density of states gn in the
vicinity of the resonant energy n�ω. The excitation dynamics of such a sys-
tem result from the competition between the increasing density of states and
decreasing size of the composed matrix elements (2.18) of the multiphoton
transitions. We illustrate such a situation in Fig. 2.5.

In the resonant approximation this system is equivalent to the system
of interacting states shown in Fig. 2.5(b), where a large matrix element V1
connects the starting state |0〉 with a small number of levels, and a weaker
interaction V2 corresponds to a higher density of states g2, etc. The most
dense spectrum is hardly coupled to the starting state.
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Fig. 2.5. (a) Competition between multiphoton processes of different orders. (b)
Density of resonances as a function of excitation energy. (c) Level scheme for reso-
nances of different orders. The increasing density of resonances gn compensates for
the decreasing coupling Vn.
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The Schrödinger equation for such a system reads

i�ψ̇0 =
∑
m

V0,mψm

i�ψ̇m = ∆mψm + Vm,0ψ0, (2.19)

where ψ0 denotes the amplitude of the ground state of the system, and the ex-
cited states with the amplitudes ψm are detuned from the resonant positions
of one- or multiphoton resonances by the energy ∆m.

One of the possibilities to tackle the problem is to model the interaction
and detunings by random values. This model should however allow for large
differences in the typical matrix elements of interactions, that correspond to
different orders of resonances. We note the principal difference between this
problem and the problem of a level decaying to a continuum: two close states
|m〉, and |m′〉 in the system described by (2.17) which have a small difference
in the detunings ∆m − ∆m′ may possess transition amplitudes Vm and Vm′ ,
different by orders of magnitude.

2.2 Collisions and Reactions of Molecules

Interaction of atoms and molecules with laser radiation is not the only domain
where consideration of the population dynamics is needed. A great number
of similar problems arise in chemistry, in the theory of atomic and molecular
collisions, in the theory of Rydberg molecules, associative Penning ionization,
etc. In this section we consider some of these examples.

2.2.1 Collisional Redistribution of Energy

Let us first consider the simplest example of a polyatomic molecule colliding
with a simple, namely structureless, particle. We assume that the trajectories
of the colliding particles are given and concentrate only on the change of
the internal state, that is the vibrational state of the polyatomic molecule.
Since vibrationally excited polyatomic molecules move chaotically, we also
assume that the interaction Hamiltonian Ĥint in the representation of the
vibrational energy eigenstates |n〉 is complex, and is given by a random matrix
Ĥint = G(t)Vn,n′ , where the size of the interaction G(t) depends on the
distance between the colliding particles, and therefore changes with time. We
write the Schrödinger equation for the polyatomic molecule

i�ψ̇n = Enψn + G(t)
∑
m

V m
n ψm, (2.20)

which differs from (2.16), since in the interaction term it contains the time
dependence explicitly. The redistribution of the population among the vibra-
tional states of the molecule (see Fig. 2.6) depends on the typical size V and
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Fig. 2.6. Redistribution of the vibrational state populations in the course of the
collision of a polyatomic molecule with a buffer gas molecule.

the time dependence G(t) of the interaction. The solution of (2.16) allows us
to find the proper combination of V and G(t) that governs the probability of
the energy exchange.

Collisions among vibrationally excited polyatomic molecules also result in
vibrational energy exchange. If the distance between two colliding molecules
at the position of the closest approach exceeds their sizes, we can assume
that the translational and the vibrational degrees of freedom are decoupled
from each other and take straight lines for the trajectories of the centers of
mass of the molecules. The main contribution to the energy transfer then
results from the dipole–dipole interaction among the dipole-active vibrations
of different molecules.

If R(t) is the intramolecular distance, and d and d′ are the operators of
dipole moments of the molecules, the interaction Hamiltonian reads

V̂ = −|R(t)|−5 [3 (d · R(t)) (d′ · R(t)) + (d · d′)R2(t)
]
. (2.21)

The vibrational exchange is therefore mediated by the electromagnetic inter-
action, which occurs via emission and absorption of a photon near the point
of closest approach, as shown in Fig. 2.7.

Let us assume that the main contribution to the vibrational energy ex-
change between identical colliding molecules comes from the dipole–dipole
interaction of their identical modes that have the largest dipole moment. We
may consider for example the ν3 modes of SF6 molecules. Later on we show
that if the typical interaction time is much shorter than the typical time of
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Fig. 2.7. Vibrational energy exchange mediated by a photon. (a) Vibrational and
rotational spectra of symmetric polyatomic molecules are mixed and form a com-
mon ro-vibronic spectrum. (b) Sketch of a transition accompanied by change of
ro-vibronic states of colliding molecules. The dipole–dipole interaction is equivalent
to a photon exchange. (c) The compound spectrum of the colliding molecules is a
complex multilevel system.

the vibrational stochastization but much shorter than the inverse spacing
among the neighboring quantum states (in units of � = 1), the equation for
the ensemble average populations can be derived in the quasistatic assump-
tion. In other words, one can find the parameters governing the population
dynamics for the time-independent interaction and then allow for their slow
time variation.

We mark the probability amplitudes by two subscripts: Latin indices de-
note the total energy of each molecule in terms of the number of quanta of
the dipole-active mode, and Greek indices enumerate the sublevels of these
levels emerging from the anharmonic splitting shown in Fig. 2.3.

The pair of colliding molecules comprise a compound system. At large
distances when the molecules do not interact with each other, the state of
the compound system |n,m, α, β〉 = |n, α〉×|m,β〉 is the direct product of the
states of each molecule, and the amplitude of this state Ψn,m,α,β = ψn,αψm,β
is the product of the amplitudes. At closer distances, for interacting molecules
this is no longer the case, since the interaction (2.21) mixes up the states of
different molecules and destroys the separability of their individual motions.
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We therefore have to solve the Schrödinger equation for the entire compound
system.

photons

n=0 m=0

n=1 m=1

n=2
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N=(n+m)
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photon

Fig. 2.8. Vibrational exchange in polyatomic molecules. (a) A photon exchange
results in opposite vibrational transitions in colliding molecules. (b) Many photon
exchange acts occur during the elementary act of a strong collision. (c) Transitions
among the states of a compound system of two molecules is a process in a complex
quantum system.

For interacting molecules we introduce new variables. By the number
N = (n + m)/2 we denote the conserving quantity – half of the total energy
of the two molecules. Half of the energy difference M = (n − m)/2 changes
in the course of collision as well as the populations of the sublevels α and
β of the anharmonic splitting. In Fig. 2.8 we illustrate the correspondence
between the transitions in each of the molecules and the transitions in the
compound system. We denote by ∆N,M,α,β = En,α − Em,β the total energy
of the non-interacting molecules and introduce the matrix elements of the
interaction (2.21)

V N,M+1,α′,β′
N,M,α,β = V n+1,m−1,α′,β′

n,m,α,β ; V N,M−1,α′,β′
N,M,α,β = V n−1,m+1,α′,β′

n,m,α,β . (2.22)

In these notations the Schrödinger equation for the compound system reads
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i�Ψ̇N,M,α,β = ∆N,M,α,βΨN,M,α,β +
∑
α′,β′

V N,M+1,α′,β′
N,M,α,β ΨN,M+1,α′,β′

+
∑
α′,β′

V N,M−1,α′,β′
N,M,α,β ΨN,M−1,α′,β′ . (2.23)

The random matrix model is a natural selection for the interaction V̂
in the chosen representation, since the anharmonic vibrational motion of
each molecule is already chaotic, and the interaction would just add more
complexity to the motion of the compound system.

2.2.2 Chemical Reactions

Chemical reactions of polyatomic molecules in the gas phase are a very im-
portant particular case of collisions. From the quantum mechanical point of
view they are processes in multilevel quantum systems. We illustrate this in
several examples.

Harpoon Reaction

Consider an atom A with a low ionization potential which is at a small
distance R from a diatomic molecule BC which has a large electron affinity.
The outer atomic electron can transfer to the molecule, which yields an ion–
molecular compound A+ + BC−. In Fig. 2.9 we illustrate this process and
show the corresponding change ∆U(RBC) of the internuclear potential energy
U(RBC), which depends on the distance RBC between the atoms B and C.
The change of the potential results in a change of the molecular vibrations.

We express the wavefunction of the compound

Ψ =
∑
n

ψn(t)φnΦA +
∑
k

ψk(t)φkΦBC (2.24)

in terms of the electronic wavefunctions ΦA(r,R,RBC) localized at the atom
and ΦBC(r,R,RBC) localized at the molecule, and the molecular wavefunc-
tions φn(RAB) and φk(RAB) of the vibrational energy eigenstates |n〉 and
|k〉 in the potentials U(RBC) and U(RBC) +∆U(RBC) respectively. The co-
efficients ψn(t) stand for the time-dependent probability amplitudes of the
states when the electron is associated with the atom A and the molecule
BC is at the n vibrational level of the potential U(RBC), whereas the coeffi-
cients ψk(t) correspond to the electron associated with the molecule and the
vibrational state k in the potential U(RBC) + ∆U(RBC).

We substitute the ansatz (2.24) into the Schrödinger equation and arrive
at the equation for the amplitudes ψn(t) and ψk(t):

i�ψ̇n = Enψn +
∑
k

Vn,kψk

i�ψ̇k = Ekψk +
∑
m

Vk,nψn. (2.25)
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Fig. 2.9. The harpoon reaction. Atom A loses an electron which is captured by
the molecule BC at a large distance R. The interatomic potential of the molecular
ion differs by a value ∆U(RBC) from the molecular potential U(RBC), and this
difference serves as a perturbation for the vibrational motion of the ion.

Here En and Ek are the energies of the vibrational states |n〉 and |k〉. The
probability amplitudes of the transitions are given by the overlap integral

Vn,k=
∫

φn(RAB)φk(RAB)ΦBC(r, R,RBC)ΦA(r, R,RBC) d3r dRBC (2.26)

where r denotes the coordinates of the transferred electron.
For a polyatomic molecule M one has to replace the integration over the

interatomic distance RBC by integration over all N -dimensional space of the
internal degrees of freedom dNRM . For the vibrational energies correspond-
ing to the chaotic motions the overlap integrals

Vn,k =
∫

ΦM(r, R,RM )ΦA(r, R,RM )φn(RM )φk(RM ) dNRM d3r (2.27)

are complex functions of the indices n and k and the matrix Vn,m can therefore
be replaced by a random matrix. We note that if the atom A moves with
respect to the molecule, the vibrational energy eigenstates and the transition
amplitudes Vn,m become time dependent.
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Sub-barrier Reaction

Another example concerns a chemical reaction which occurs in the framework
of a single adiabatic electronic term, that is it involves only the vibrational
motion of molecules. Consider an atom A slowly approaching a rapidly os-
cillating molecule BC. The presence of the atom effects the frequency of the
molecular vibrations, which gradually change as the atom closes with the
molecule. After the atom has passed, the vibrational frequency returns to its
initial value. This adiabatic change of frequency is a time-dependent pertur-
bation, and in principle it is able to break the molecular bond B–C, although
with a low probability. The energy conservation law implies that the breaking
of the B − C bond is followed by the formation of another bond, say A–B.

A+BC
A+BC

q

q

q

CD

CD

CD

AB+C

A+BCA+BC

AB+C

1

2

a) b)

c)

. .
Fig. 2.10. Vibrational wavefunctions (a), potential surfaces (b), and trajectories
(c) of a tunneling chemical reaction.

A consistent quantum description of the process should consider the pro-
cess as a tunneling through the potential barrier along the reaction coor-
dinate, which is shown in Fig. 2.10. Let us consider possible trajectories of
the molecular motion in such a term. The trajectory starts at the potential
valley that corresponds to the atom A approaching the molecule BC. The os-
cillations of the trajectory represent the molecular vibrations. A non-reactive
process corresponds to the trajectory 1 that leaves the region of interaction
via the same potential valley, although probably with a different ratio be-
tween the vibrational and the translational energies. The chemical reaction
corresponds to the trajectory 2, which escapes the interaction region via the
other potential valley. It also includes a tunneling part 3. The oscillations
of this trajectory now represent the vibrations of the molecule AB that has
been formed in the course of the chemical reaction.
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We assume that the relative motion of the atom and the molecule is slow
and write the Schrödinger equation

i�ψ̇n = En(z)ψn +
∑
k

Vn,k(z)ψk

i�ψ̇k = Ek(z)ψk +
∑
m

Vk,n(z)ψn (2.28)

for the amplitudes ψn of the vibrational states |n〉 of the molecule BC, and the
amplitudes ψk of the vibrational states |k〉 of the reaction product AB. Here
z = z(t) is the slowly changing distance between the atom and the molecule,
and Vn,k represents the probability amplitudes of the tunneling through the
potential barrier given by the overlap integrals of the corresponding wave-
functions (Fig. 2.10). The latter evidently depend on the distance z between
the atom and the molecule.

When we consider the reactive collisions of polyatomic molecules, the en-
ergies En(z) and Ek(z) acquire a complex structure as do the overlap integrals
Vn,k. Such reactions occur in a multidimensional space of the configurations
which is difficult to depict, although the main features of the process, namely
the slow approach of the reagents and the tunneling along the reaction co-
ordinate remain qualitatively the same. This tunneling may however occur
in many different points of configuration space that correspond to different
shapes of the molecules at the moment of the reaction. Moreover, the motion
of polyatomic molecules is usually chaotic, and therefore the random matrix
model is natural for the transition amplitudes Vn,k.

In order to calculate the reaction rate or the energy distribution of the
products we first have to solve (2.28) and determine which combinations of
the spectra En(z);Ek(z) and the interaction Vn,k govern the reaction prop-
erties.

2.2.3 Intermolecular Conversion and Photochemistry

From the conceptual point of view chemical reactions are very similar to the
problems of intermolecular transfer of electronic energy to vibrational degrees
of freedom, to photochemical processes, and to photon-assisted reactive col-
lisions. We illustrate this with some examples.

Intermolecular Conversion

The adiabatic separation of electronic and nuclear motion is valid only far
from the points of term crossing. In the vicinities of these points the nuclear
motion may cause electronic transitions, which implies energy exchange be-
tween electronic and vibrational degrees of freedom. This perturbation is of
a higher order in the Born–Oppenheimer parameter ΛBO = (me/mp)1/4 and
normally is ignored, unless two or more electronic terms happen to be close
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to each other at a certain position of the nuclei in the molecule. In the latter
case the non-adiabatic interactions have to be taken into account.

Let us consider two crossing terms shown in Fig. 2.11. We take the dia-
batic potentials and construct the basis set from the electronic wavefunctions
Φ1(r,R), Φ2(r,R) and the vibrational wavefunctions φn(R), φk(R) in the
first and the second potentials respectively. Here r denotes the positions of

U (R)1 U (R)2

|1,n> |2,m>

R

a) b)

Vnm

Fig. 2.11. Crossing of molecular terms (a). Diabatic terms (dotted line) correspond
to a certain electronic state of a molecule and serve as potentials for the vibrational
motion. Non-adiabatic interactions result in a reconstruction of the electronic terms
and yield adiabatic terms (solid line) for which the electronic state is entangled
with the nuclear position (sometimes also with the momentum). (b) Phenomena
that occur near the crossing point can be considered in the diabatic vibrational
basis as dynamical processes in a complex multilevel system.

all molecular electrons, and R stands for the position of all nuclei. For the
corresponding amplitudes ψn and ψk we write the Schrödinger equation

i�ψ̇n = Enψn +
∑
k

Vn,kψk

i�ψ̇k = Ekψk +
∑
n

Vk,nψn, (2.29)

where Vn,k now denotes the matrix element of the non-adiabatic interaction

Vn,k = −
∫

dpr dN Φ1(r,R)φn(R) (∇RΦ2(r,R) · ∇Rφk(R)) . (2.30)

Here p and N denote the number of electronic and vibrational degrees of
freedom respectively.

For polyatomic molecules the vibrational energies En and Ek and the
matrix elements Vn,k can be modeled, as earlier, by random values.
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Photochemistry and Laser-Induced Term Crossing

Optical or ultraviolet laser fields induce transitions among the electronic
terms of molecules that usually result in chemical transformations. Strong
fields may also affect the vibrational dynamics. In the last case one can de-
scribe the system by (2.29), where instead of the matrix elements of non-
adiabatic interaction (2.30) we have to substitute the probability amplitudes
of laser induced transitions

Vn,k = −Ee

∫
dpr dN Φ1(r,R)φn(R)rΦ2(r,R)φk(R). (2.31)

Here E is the electric field amplitude, and e is the charge of the electron.
This analogy becomes evident, when we consider a compound system of

the molecule and the quantized laser field. Indeed, at some position of the
nuclei, the energy of the electron cloud in the ground electronic term equals
the energy of the excited electronic state minus the energy of one photon.
One can say that at this point, the two potential curves of the compound
system cross each other. Coupling occurs due to the dipole interaction with
the laser field, which is taken into account by the matrix elements (2.31).

If the typical size of the interaction exceeds the typical energy spacing
among the neighboring vibrational states, this process cannot be considered
perturbativly. For diatomic molecules it requires a very high laser intensity,
at which the typical interaction Ed is of the order of magnitude or larger
than the vibrational quantum. However this requirement is not as restricting
for polyatomic molecules, which have a much higher density of vibrational
states: even moderately intense laser fields may result in the coupling of
electronic and vibrational motions. The complex structure of the vibrational
wavefunctions of the excited polyatomic molecules results in an irregular
dependence of Vn,k on n and on k, and therefore justifies the utilization of a
random matrix model.

In some cases more than two electronic terms may get involved in the
dynamical process at moderate laser intensities. Then for the description
of such a system one has to employ (2.16) where I denotes the number of
absorbed quanta, and m enumerates the vibrational eigenstates in each of
the electronic terms involved.

Accommodation of the energy of an absorbed optical quantum by molec-
ular vibrations is also an example of processes in multilevel systems. Consider
a molecule initially in the ground vibrational state of the lowest electronic
term which absorbs a quantum of radiation and makes a transition to an
excited vibrational state of the higher electronic term. Thence, due to the
non-adiabatic interaction it gets transferred back to the ground electronic
term, although in a different vibrational state. This state may also be predis-
sociating. The Schrödinger equation for the amplitudes ψk of the vibrational
states in the diabatic excited electronic term, the amplitudes ψn of the highly
excited vibrational states of the ground diabatic term, and for the amplitude
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ψ0 of the ground vibrational state read

i�ψ̇0 = E0ψ0 +
∑
k

Ed0,kψk

i�ψ̇n = Enψn +
∑
k

Vn,kψk

i�ψ̇k = (Ek − �ω)ψk +
∑
n

Vk,nψn + Edk,0ψ0. (2.32)

Here Vm,n represents the matrix elements of the non-adiabatic transitions
(2.30), and Ed0,k are the matrix elements (2.31) of the interaction with the
electromagnetic field.

2.3 Rydberg Molecules

Multilevel quantum problems arise in a natural way when one considers highly
electronically excited or so-called Rydberg molecules, that is molecules with
one electron excited into a high Rydberg state. This electron possesses an
energy close to the ionization potential and, in the language of classical me-
chanics, it moves along a long Kepler orbit in the electrostatic field of the
molecular ionic core. Traditional adiabatic separation of the electronic and
vibrational motion in molecules implies a large difference in energies, veloc-
ities and frequencies of the electrons and nuclei of molecules. This is not
completely the case for the Rydberg molecules: the Kepler period might be
comparable and even longer than the vibrational or rotational period of the
ionic core, although the velocity of the Rydberg electron near the core is still
much higher than the velocity of the nuclei. We therefore meet the situation
which in a sense is inverse to the regular adiabatic case: the electron is a
slowly moving subsystem, while the rotations and vibrations of the ionic core
are the fast motion. We can therefore speak about the Rydberg sublevels En

of each ro-vibrational state |k〉 of the molecular ion. We give two examples
of such molecules.

2.3.1 Subthreshold Photoionization

Consider a molecule in an intense laser field. The outer electron of the
molecule makes a multiphoton transition to a highly excited Rydberg state
and starts its motion along a Kepler orbit. Returning back to the vicinity of
the molecular ion it encounters a potential that differs from the Coulombic
case, and therefore experiences scattering at the asymmetric part of the po-
tential. The scattering may be either elastic or non-elastic. The non-elastic
scattering is associated with a transfer of energy and angular momentum
from the electron to the molecular ion, and hence the electron changes its
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Fig. 2.12. Multiphoton ionization of a molecule via Rydberg states.

Rydberg orbit (see Fig. 2.12), whereas the molecular ion finds itself in an-
other rotational or vibrational state. The scattered electron with an energy
less than the ionization potential returns back again after a long Kepler pe-
riod. During this time the molecular ion in the center vibrates and rotates,
and there is sufficient time for the position of the nuclei to change. Therefore
the returning electron experiences quite a different scatterer as compared to
the initial scattering event. Thus the sequence of scattering events is a kind
of random process which has a direct analogy to the quantum Sinai billiard.

For the basis set of the problem we employ the products |n〉|k〉 of the Ry-
dberg states |n〉 of the hydrogen atom and the rotational (and/or vibrational)
states |k〉 of the molecular ion, and write down the Schrödinger equation

i�ψ̇0 = E0ψ0 +
∑
k,n

Ṽ k,n
0 ψk,n

i�ψ̇n,k = (En + Ek)ψk,n +
∑
k′,n′

V k′,n′
n,k ψk′,n′ + Ṽ 0

k,nψ0 (2.33)

for the amplitudes ψk,n of these states. Here Ṽ stands for the amplitude (2.18)
of multiphoton transitions from the ground state |0〉. The matrix elements
V k′,n′
k,n allow for the probability amplitudes of scattering from the state |k′〉|n′〉

to the state |k〉|n〉.
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We note one interesting peculiarity of this process. The Kepler period may
change considerably with the change in the energy of the Rydberg electron:
the closer the energy to the ionization limit the longer the period. In such a
situation it is natural to consider the evolution of the system not as a function
of time, but as a function of the number of scattering events. One determines
the corresponding transformation by multiplying the scattering amplitudes
V k′,n′
k,n in (2.33) by the phase factor exp[−i(Ek′ + En′)T (n′)], where T (k′) is

the Kepler period corresponding to the energy Ek′ . This phase factor changes
drastically from one state to another, and it makes the matrix elements of
the neighboring states very different in phase and thereby justifies the use of
the random matrix model for this process.

We also note one important application of this process: by measuring the
yield of zero kinetic energy electrons as a function of the laser frequency one
obtains the high-resolution rotational and vibrational spectra of molecular
ions.

2.3.2 Collisional Ionization

In Fig. 2.13 we show another example of a non-adiabatic process: the trans-
fer of vibrational energy to the Rydberg electron in the course of associative
ionization. An excited noble gas atom interacts with a metal atom. At inter-
atomic distances shorter than the orbit size of the excited electron the metal
atom sees only the ionic core of the noble atom, since the electron most of
the time stays at a longer distance. From the chemical point of view the core
resembles a halogen atom, that is an element with one vacancy in the outer
electronic shell. Therefore the reaction between the metal and the noble gas
core is of a harpoon type: the outer electron of the metal jumps to the core
and fills the vacancy in the outer shell of the noble gas ion. This is essen-
tially the formation of an ionic bond, with the two atoms comprising an ionic
molecular core, which generally speaking is in a vibrationally excited state.

At the same time the excited electron of the noble gas atom feels a dis-
placement of the charge center toward the metallic atom. If the distance
between the electron and the charge center increases, the electron finds itself
in a high Rydberg orbit of the molecular ion. The Kepler trajectory of the
electron goes through the space occupied by the molecular core, and there-
fore the Rydberg electron experiences a sequence of scattering analagous to
the case considered just before. In the course of non-elastic collisions the
vibrational energy of the molecular core can be transferred to the Rydberg
electron, which may result in ionization. The Schrödinger equation describing
the process

i�ψ̇n,k = (En + Ek)ψk,n +
∑
k′,n′

V k′,n′
n,k ψk′,n′ (2.34)

coincides with (2.33) when the laser field is at zero strength, Ṽ = 0.
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Fig. 2.13. Associative ionization. The outer electron of a metal atom experences
the vacancy in the outer shell of the noble gas core and forms a chemical bond.
The excited electron of the noble gas atom finds itself in a high Rydberg orbit of
the molecular ion. The vibrational energy of the molecular core is transferred to
the Rydberg electron in the course of collisions between the electron and the core.
The ionization therefore starts not at the incedent energy Ek equal to the adiabatic
threshold, but at a lower (subthreshold) energy.

2.4 Atomic and Molecular Clusters

Clusters are intermediate objects between molecules and solids, and the
physics of clusters inherits complexity from both molecular and solid state
physics. Indeed, the typical distance among the electronic states of a N -
atom cluster is N times smaller than for a single atom, and hence for
N ∼ Λ−1

BO = (mn/me)1/4 ∼ 10 the adiabatic separation of the nuclear and
electronic motion typical of molecules fails. In other words, for numbers of
atoms comparable to or higher than the inverse of the Born–Oppenheimer pa-
rameter the nonadiabatic corrections are of the order of the typical distance
between neighboring electronic states, and hence the electrons no longer fol-
low the nuclear motion.

The concept of quasiparticles is the key idea of solid state physics. The
strong interaction of electrons and nuclei comprising solids can be treated in
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terms of almost free elementary excitations such as phonons, excitons, holes
and electrons with an effective mass, etc. However, for clusters of sizes less
than a typical free path of the quasi particles (N ∼ 1000) this concept does
not yield any considerable simplification of the many-body problem: quantum
interference effects resulting from the confinement, and strong interaction on
the cluster boundaries make the quasiparticle approach as difficult as the
quantum chemical one.

Cluster
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n=1
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Ensemble of interacting atoms

a) b)

Fig. 2.14. Reconstruction of the energy spectrum of an ensemble of two-level
systems as a result of the excitation exchange interactions. (a) Energy spectrum of
the ensemble of atoms. The mean interatomic distance is large and the spectrum
is almost degenerate. (b) Energy spectrum of a cluster formed as a result of the
reconstruction of the atomic spectrum due to strong interatomic interaction.

Modeling of interactions by random matrices appears in a natural way in
the physics of atomic and molecular clusters. Indeed if, as the result of mutual
attraction, a group of atoms or molecules is stuck together, the spectrum of
the energy eigenstates of such aggregation changes considerably as compared
to the initial spectrum of the non-interacting particles. We illustrate this in
a simple example presented in Fig .2.14 by showing a reconstruction of the
spectrum of an ensemble of two-level systems resulting from the excitation-
exchange interaction among them. It might be the dipole–dipole interaction,
for instance.
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At finite temperatures various configurations of the cluster are possible,
and each of the geometrical arrangements of the atoms corresponds to dif-
ferent interatomic distances, and therefore to different sizes of the pair in-
teractions. Let us assume that only one atom was originally excited. Then,
as a result of the interaction the excitation can pass to other atoms, and
hence the energy eigenstates of the cluster do not correspond to a certain
location of the excitation. If nevertheless for the basis set of the problem we
chose the states corresponding to all possible locations of the excitation at
a single atom, the interaction Hamiltonian becomes a matrix with the ele-
ments depending on the particular configuration of the cluster. For a random
arrangement of atoms this matrix is random.

In spite of the fact that the interaction modifies considerably the energy
eigenstates of the system, the unperturbed Hamiltonian Ĥ0 still plays an
important role. We therefore arrive at the necessity to describe the energy
spectrum of a system perturbed by a random matrix V̂ . Which characteristics
have to be employed for the purpose? The density of states π−1Im Tr(E−Ĥ−
i0)−1 is one of the most represenative quantities for a spectrum. It suggests
the ensemble averaged density of states

g(E) =
〈

1
π

Im Tr
1

E − Ĥ0 − V̂ − i0

〉
(2.35)

as one of the key characteristics of a complex system. Indeed, the state density
is an ingredient of many experimentally observable properties such as optical
absorption, scattering cross-section, etc.

2.4.1 Ground Electronic State of Hot Metallic Clusters

We dwell on the example of metallic clusters which are an important par-
ticular case of aggregations. Metallic clusters have common orbitals for the
valence electrons. For minute clusters the shell structure of the orbitals effects
strongly their basic physical properties: the Fermi energy, work function, elec-
tron affinity, and cohesion energy all change abruptly and considerably with
an increase of the cluster size. At finite temperatures the thermal motion
of atoms perturbs appreciably the shell structure, and thereby it modifies
significantly properties of the clusters.

Let us consider this in the framework of the simplest one-particle approxi-
mation. The valence electrons of a cluster move in the self-consistent effective
potential, which implies that each of the electrons feels an average field of
the ionic core and all other electrons. The simplest model of this field is just
a rectangular potential well shown in Fig. 2.15. For spherically symmetric
clusters the angular momentum l of each of the electrons is conserved, and
their angular motion can be taken into account by introducing the centrifu-
gal force potential U(r) = (l)2/2mer

2, acting on the motion in the radial
direction r.
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Fig. 2.15. Spherically symmetric potential of cluster electrons. (a) Rectangular well
model of the work function and self-consistent local density potential. (b) Potential
of the centrifugal forces. (c) Effective potential and a wavefunction. (d) Classical
trajectory of an electron.

By solving the corresponding Schrödinger equation one finds the energy
eigenfunctions

ψn,l,m =
Jl+1/2(kn,lr)√

r
Yl,m(θ, φ) (2.36)

in terms of the Bessel functions Jν(x), and the spherical harmonics Yl,m(θ,φ).
For deep potential wells with the help of the boundary condition at the outer
border of the cluster

ψn,l,m

∣∣∣
r=R

= 0 (2.37)

one determines the radial wavevectors kn,l and the corresponding energies

En,l =
�2z2

n,l

2mer2
SN2/3 , (2.38)

provided the number N of atoms in the cluster and the typical size rS of the
atoms (Wigner–Seitz radius) are known. Here zn,l stands for the n-th root of
the Bessel function Jl+1/2(zn,l) = 0. The states are degenerate with respect
to the magnetic quantum number m.

More accurate models include a self-consistent consideration of the elec-
tronic states based on the local density functional approach. This implies
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iterative numerical calculation of the electronic wavefunctions and the corre-
sponding effective potential determined as a functional of the electron density
distribution. This method results in more accurate values of the cluster elec-
tron energies (2.38).

At finite temperatures the thermal motion of atoms comprising the cluster
destroys the spherical symmetry and raises the spherical degeneracy of the
electron energy eigenstates. Since the atomic motion is much slower than the
electron motion we can consider this perturbation as static. We note, however,
that this assumption does not mean that the momenta of the electrons play
no role in the perturbation. On the contrary, the nuclear momenta bring an
important contribution via the non-adiabatic coupling (2.30) of the electronic
states. The assumption only means that the time variation of the coupling is
slower than its typical size divided by Planck’s constant.

p

p

i

s

e

. .

Fig. 2.16. The classical trajectory of an electron (dashed line) in a hot cluster.
Scattering of the electron occures at impurities (i), at phonons (p), and at the
perturbed surface (s) of the spherical “in average” cluster.

The random character of the thermal motion suggests the consideration of
the perturbation as random. Indeed, in the classical limit the trajectory of an
electron moving in the potential well resembles the trajectory of a particle in
Sinai billiard theory (see Fig. 2.16): elastic scattering at thermal phonons at
irregularities of the surface and at atomic cores makes the electronic motion
chaotic. Therefore the corresponding quantum model relies on the assumption
that the thermal motion results in a coupling of the electronic states (2.36)
of the cluster via a random matrix with the mean squared matrix element
〈V 2〉 depending on temperature T . One can estimate this quantity by noticing
that the electron–phonon coupling is the main mechanism of the temperature-
dependent conductivity of metals, and the relaxation time of the electronic
momentum τ(T ) equals the inverse of the relaxation probability 2π〈V 2〉gf ,
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where gf is a typical one-electron state density near the Fermi energy of the
cluster.

Many of the properties of clusters in the ground electronic state can be
found with the help of the ensemble averaged density of the one-electron
states (2.35) where the energies (2.38) give the unperturbed Hamiltonian
Ĥ0. In particular, one finds the Fermi energy εf of the N -electron cluster
from the normalization condition

N =
∫ εf (N,〈V 2〉)

−∞
g(E) dE, (2.39)

the total energy of the electronic cloud

E(N, 〈V 2〉) =
∫ εf (N,〈V 2〉)

−∞
Eg(E) dE, (2.40)

and the dissociation energies

D(N, 〈V 2〉) = EI + E(N − 1, 〈V 2〉) − E(N, 〈V 2〉) (2.41)

of an ensemble of clusters. Here EI is the ionization potential of atoms com-
prising the cluster. Therefore the establishing of a simple recipe for the calcu-
lation of the ensemble average density of states g(E) for an arbitrary Hamil-
tonian H0 is of practical importance.

2.4.2 Optical Properties of Clusters

The random matrix model can also be applied to the excited states of metallic
clusters. One constructs these states by considering elementary excitations,
that is by transferring an electron from one of the occupied one-electron states
|ne, le,me〉 to one of the empty states |nh, lh,mh〉 above the Fermi energy.
In other words the elementary excitation corresponds to an electron in the
state |ne, le,me〉 and a hole in the state |nh, lh,mh〉. For the non-interacting
electrons it yields the energies

E(ne, le,me, nh, lh,mh) = Ene,le,me − Enh,lh,mh
(2.42)

of the excited states of clusters.
Electrons however interact with each other. Some part of this interac-

tion has already been taken into account when the self-consistent effective
potential has been employed as a model for the ground electron term. The
remaining part V̂ should allow for the deviation of the real interaction from
the effective one. The main contribution V̂ (1) to this remainder originates
from the coupling of the electron–hole pairs with the electromagnetic field.
The excited electron is annihilated with the hole and creates an interme-
diate virtual photon. The cluster therefore returns to the ground electronic
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. .

Fig. 2.17. Reconstructed spectrum of the exited states of Na+
21.

term. The photon, in its turn, creates another electron–hole pair by trans-
porting an electron from another occupied one-electron level to a different
empty state. Therefore all excited states |S〉 = |ne, le,me, nh, lh,mh〉 interact
among themselves via the ground electronic term and different states of the
electromagnetic field. It yields a specific (factorized) structure of the inter-
action Hamiltonian: each matrix element V

(1)
S,S′ = TS × TS′ is a product of a

quantity related to the starting state |S′〉 and the same quantity related to
the final state |S〉. One has to include this interaction in the Hamiltonian of
the cluster, which yields a considerable modification of the energies (2.42).
An example of such a reconstruction of a spectrum is shown in Fig. 2.17.

The rest V
(2)
S,S′ of the remaining VS,S′ has a complicated structure. It orig-

inates from the scattering of the excited electron at the hole. The dynamics
of the electron resemble the motion in a Sinai billiard with one difference: the
scatterer, that is the hole, does not stay at the same position but also moves
along a chaotic trajectory as the result of scattering by the electron. There-
fore the matrix elements V

(2)
S,S′ do not have a factorized structure. On the

contrary, they depend in a complex and irregular way on the indices S and
S′ and often are ignored. This is known as the random phase approximation.
However, this interaction can also be taken into account within the random
matrix model where the energies (2.42) and the interaction V (1) compose the
unperturbed Hamiltonian, and the interaction V (2) gives a random perturba-
tion. One can also include in the latter part the random coupling originating
from the scattering of the electron and the hole at the atomic core phonons
and irregularities of the surface by analogy to the coupling in the ground
electronic term discussed in the previous section.
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One ususally finds cross-sections of the linear absorption from the ground
state |0〉 of a quantum system with Hamiltonian Ĥ with the help of the
expression

σ(�ω) =
1
π

Im〈0| d̂
1

�ω − Ĥ − i0
d̂ |0〉, (2.43)

where d̂ is the dipole moment operator along the electric field vector. The real
part of the quantum average allows for the optical dispersion. For ensembles
of clusters (2.43) yields

σ(�ω) =
1
π

Im
〈〈0| d̂

1
�ω − Ĥ0 − V̂ − i0

d̂ |0〉〉, (2.44)

where Ĥ0 is the ensemble average Hamiltonian, and V̂ stands for the random
perturbation. More sophisticated combinations can be written for multipho-
ton cross-sections.

2.5 Some Other Examples

We consider here several examples from branches of physics other than atomic
and molecular physics, chemistry, or cluster physics. These examples relate to
fields with their own conceptual systems and corresponding well-developed
mathematical techniques. However, it seems useful to trace the analogies
among these problems in terms of interacting quantum states in order to gain
a deeper insight into the common properties of complex quantum objects.

2.5.1 Ion Traps

Systems such as ions trapped in an oscillating electromagnetic field where
classical and quantum effects are of the same order of magnitude represent
an interesting branch of contemporary physics. From electrostatics we know
that a given number of charged particles can never form an equilibrium con-
figuration in the static electric field. On the other hand, in a time-dependent
field a quasi-equilibrium and dynamically stable configurations may exist.
Indeed, rapid oscillation of the field results in an effective Kapiza–Dirac po-
tential, which may confine the motion of charged particles in a certain region
of space. A quasi-equilibrium distribution arises as the result of the inter-
play between Coulomb repulsion of the ions and the confining action of the
effective potential: the particles rapidly oscillate around certain points that
either move slowly or are static. This dynamic equilibrium may however be
destroyed by the influence of the small terms oscillating at double the driving
field frequency that result from the nonlinearity of the system. These terms
are usually ignored in the first-order approximation. One can take them into
account with the help of the random matrix model by the analogy to poly-
atomic molecules in an external laser field.
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Let us illustrate this with the example of N ions in a time-dependent
electric field with the potential

U(r, t) = α(x2 + z2 − 2y2) + A(x2 cosΩt − Ay2 cosΩt), (2.45)

where r ≡ (x, y, z) is the radius vector and Ω is the oscillation frequency
of the electric field vector in the plane (x, y). One sees that both static and
time-dependent components of the potential satisfy the Laplace equation
∆U = 0, which means that the chosen potential exists. We start our analysis
in terms of classical mechanics and quantize the motion at a later stage,
since the result of such consideration does not differ much from the result of
a consistent quantum approach.
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Fig. 2.18. Ions in the effective potential of an RF trap. (a) A static electric field
(shown by the field lines) rotates with an angular velocity Ω around the z-axis.
(b) The effective potential resulting from the rotation results in confinement of
atomic ions, which therefore form a crystal. Higher order harmonics of the effective
potential play the role of an external periodic force. (c) Such a perturbation provokes
transitions among the eigenenergy quantum states in the effective potential.

The classical Hamiltonian of N ions in the field reads

H({pn}, {rn}) =
N∑
n=1

(
p2
n

2m
+ eU(rn, t)

)
+

∑
n �=m

e2

|rn − rm| , (2.46)
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where e,pn are the ion charges and classical momenta respectively, and m is
the ion mass.

In a high-frequency field the motion of each particle consists of two com-
ponents

rn = ρn(t) + ξn(t), (2.47)

where the ξn(t) rapidly oscillates at the frequency of the field, and ρn(t) is
a slow component. The typical value ξt of the rapid component is usually
much smaller than the typical value of the slow component ρt, and therefore
the ratio ξt/ρt is a small parameter. This is not the case for the velocities

.
rn =

.
ρn(t) +

.

ξn(t), (2.48)

since ξ rapidly changes with time. In fact, we have
.
ρn(t) ∼

.

ξn(t).
We take into account that pn = m

.
rn = m

.
ρn(t) + m

.

ξn ≡ Pn + πn and
substitute (2.47), (2.48) into (2.46), which yields

H({pn}, {rn}) =
N∑
n=1

(P2
n + π2

n

2m
+

(Pn · πn)
m

+ eU(ρn + ξn, t)
)

+
∑
n �=m

e2

|ρn + ξn − ρm + ξm| . (2.49)

The rapidly oscillating components of the Hamiltonian (2.49) allow for the
rapid motion, and the slowly varying components for the slow motion. We
note that the term π2

n contains a slow component, namely the average ki-
netic energy of the rapid oscillations. This component plays the role of the
potential energy for the slow motion, and therefore together with the compo-
nent of the potential energy depending on the slow coordinates it comprises
the Kapiza–Dirac potential. Indeed, the time derivatives of the rapid mo-
menta, say in the x-direction, equal the rapid forces π

(x)
n = 2Ax cosΩt, and

hence π
(x)
n = 2Ax/Ω−1 sinΩt, which yields the contribution 〈(π(x)

n )2/2m〉t =
2(Ax/Ω)2/m〈sin2 Ωt〉t = (Ax)2/m to the effective potential.

The Hamiltonian for the slow motion reads

H({pn}, {rn}) =
N∑
n=1

(P2
n

2m
+ eα(x2

n + z2
n − 2y2

n) +
eA2

mω2 (x2
n + y2

n)
)

+
∑
n �=m

e2

|ρn − ρm| , (2.50)

and hence for 2α < A2/mω2m, the effective potential becomes binding as
shown in Fig. 2.18 Therefore the slow motion is confined and from the view-
point of this motion the system possesses an equilibrium configuration. One



2.5 Some Other Examples 51

can say that the time-dependent electrical field creates a parabolic trap for
the ions. Quantization of the slow motion in the trap yields a set of slow-
energy eigenstates.

However, these states are not real eigenstates of the system, since the
higher-order expansion terms

V ({ρn}) =
∑

k,l,n �=m

1
l!k!

∂l+k

∂lρn∂kρm

e2

|ρn − ρm|ξ
l
mξkn (2.51)

of the Coulomb interaction in ξ = ρ(A/mΩ2) sinΩt result in a time-
dependent perturbation and therefore they induce transitions among the
eigenstates of slow energy by analogy to multiphoton transitions in atoms
or molecules. The frequencies of the perturbation are multiples of the driving
frequency Ω. We note that the consistent quantum consideration yields an
expansion slightly different from (2.50); however this difference should not
play a significant role for relatively heavy ions and the relatively large typical
geometrical size α−1/2 of the potential.

Classical motion of the ions in the trap is multidimensional and nonlinear.
Therefore at a certain level of the excitation it becomes chaotic. In this case
one can consider the matrix elements of perturbation (2.50) as random, and
write the Schrödinger equation (2.6) by analogy to polyatomic molecules
where one also should allow for the transitions with the energy changing by
2�Ω, 3�Ω, etc.

2.5.2 Disordered Solids and Surfaces

The description of quantum effects in terms of random matrices is a powerful
method to tackle a number of problems in solid state physics and surface
science. This approach arises in a natural way if one considers the properties
of disordered systems like alloys, glasses, non-ideal metals, or systems with
chaotic billiard-like dynamics such as quantum dots. It turns out that for
such objects interference phenomena play a crucial role by affecting consid-
erably their macroscopic properties. The basic physical processes take place
on a limited size-scale which exceeds the atomic sizes, but remains much
smaller than a typical macroscopic scale. Therefore these phenomena are
called “mesoscopic”, and comprise a special field of solid state physics.

Mesoscopic phenomena in solids have as a rule two peculiarities. They usu-
ally occur in a coordinate space of three or less dimensions and remain trans-
lationally invariant “on average”. Therefore the properties of large species
result from a kind of superposition of the mesoscopic properties of many
statistically equivalent parts of smaller sizes, attached to each other consec-
utively. It allows one to take advantage of special basis sets, like plane waves
for example, to use the scaling hypothesis, or to factorize the propagators of
the particles.
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Disordered Chains

We illustrate the typical formulation of such a problem by the classical
example of the model which considers a single particle in a disordered
potential. We take the simplest one-dimensional version of the potential
U(x) =

∑
n knδ(x−na), which is a sequence of equidistant Dirac δ-functions

shown in Fig.2.19 of different “depth” kn, where the kn values are random.
The particle may be located at a given knot n of the potential or tunnel
at a distance a to a neighboring knot with a transition amplitude V . The
Schrödinger equation for the probability amplitudes ψn of the states |n〉 cor-
responding to the particle at a given knot n can be written in the form

Eψn = δknψn + V ψn+1 + V ψn−1, (2.52)

where E and δkn are the deviations of an eigenenergy and the individual
depth from the mean depth respectively, and V is the tunneling amplitude.
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. .

Fig. 2.19. A random sequence (a) of δ-potentials (Lloyd chain) and a more com-
plicated potential (b) with microstructure.

The most remarkable property of (2.52) is the so-called Anderson local-
ization phenomenon. Any energy eigenstate |E〉 of this equation is located
mainly at a limited number of states |n〉, which means that the coefficients
cnE of the expansion |E〉 =

∑
cnE |n〉 drop rapidly when n deviates from the

position nmax(E) of the knot corresponding to the maximum absolute value
of the amplitude ψn. The dependence of cnE on n is not monotonic and on
the contrary is rather random. However, the envelope of the randomly chang-
ing absolute values of the amplitudes drops exponentially at n → ±∞. As a
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measure γ of such localization one usually employs the limit

γ = lim
n→∞

1
n

〈log(ψ2
n + ψ2

n+1)〉 (2.53)

where the average 〈. . . 〉 is taken over the ensemble of possible realizations of
the random potential, that is over {kn}.

If the deviation δkn of each of the coefficients kn from the average is
statistically independent of the others and has the probability

w(kn) =
1
π

δ

δk2
n + δ2

n

(2.54)

to have a given value δkn, the problem has an exact solution which yields

γ = Arccosh

⎡⎣1
4

√(
2 +

E

V

)2

+
δ2

V 2 +
1
4

√(
2 − E

V

)2

+
δ2

V 2

⎤⎦ . (2.55)

The localization length is L = 1/γ 
 2V/δ for small E/V and δ/V .

Quantum States at a Surface

The localization phenomenon is considered as a universal property of one-
dimensional disordered quantum systems translationally invariant “on av-
erage”. The situation may change when we are dealing with a set of level
manifolds interacting in a relay-like manner. In this case one more dimension
is involved in the problem such as the internal degrees of freedom of particles
moving in a spatially limited domain. In Fig. 2.19(b) we illustrate this by
the example of a particle which can move in a domain limited by a binding
potential of a complex form. It can also tunnel to a similar potential of the
neighboring domain.

The Schrödinger equation for this system reads

iψ̇n,k = En,kψn,k +
∑
m

(
V n+1,m
n,k ψn+1,m + V n−1,m

n,k ψn−1,m

)
, (2.56)

where V n±1,m
n,k are the tunneling amplitudes. One sees that this equation has

the same form as (2.16) describing the excitation of a polyatomic molecule by
an intense laser field. For random potential pits the spectra En,k are random,
and the matrix elements V l,m

n,k may also be random for the multidimensional
internal motion. The latter is also the case for a particle on a random sur-
face, for which the potential energy resembles a set of conducting fractals
as shown in Fig. 2.20. For this case the problem of localization requires spe-
cial consideration. Examples are known where, in two-dimensional disordered
systems uniform “on average”, the so-called weak localization phenomenon
takes place: the particle does go to infinity, but it takes an exponentially long
time.
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Fig. 2.20. The random potential of a surface electron formed as a result of the
deposition of conducting material onto an isolating surface (a). Tunneling interac-
tion couples the one-electron states of different conducting ramified islands at the
points A, B, C, and D. (b) The corresponding levels scheme.

A classical Mechanics Analog

It is worth mentioning that one encounters equations of the type (2.52) or
(2.56) not only for quantum motion of electrons, but also for classical vibra-
tions of atoms in the lattice, namely phonons. This is the case when atoms
of different masses are randomly distributed among the nodes.

After Fourier transformation of the Newton equation

mnẍn =
∂Un−1

n (d)
∂d

(xn − xn−1) − ∂Un
n+1(d)
∂d

(xn − xn−1) (2.57)

for classical coordinates xn of the atoms of masses mn, where Un+1
n (d) is the

interaction potential between the n-th and n + 1-th atoms at distance d, we
arrive at

−ω2mnxn =
∂Un−1

n (d)
∂d

(xn − xn−1) − ∂Unn + 1(d)
∂d

(xn − xn−1). (2.58)

Equation (2.58) has the same structure as (2.52), since the randomness of
masses plays the same role as the distribution of detunings kn. For a given
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Fig. 2.21. Oscillations in a chain of atoms with disordered masses. The envelope
of the vibrational amplitudes of individual atoms drops exponentially.

vibrational mode the individual oscillation amplitudes of atoms change ir-
regularly from one knot to another, but the envelope of this change drops
exponentially as sketched in Fig. 2.21. This implies that phonons cannot
propagate far in such a medium.

2.5.3 Nonlinear Optics

From the viewpoint of quantum mechanics many of the well-known phenom-
ena described by the theory of nonlinear oscillations and nonlinear optics
are processes in multilevel quantum systems. This fact usually does not play
an important role in the limit of classical mechanics, that is when a process
involves a large number of quanta. Nevertheless, it may be important for con-
sideration of the threshold and subthreshold regimes of generation, chaotic
regimes, or for the processes developing in small confined volumes and on
long time-scales.

Let us illustrate this by the example of a nonlinear sample of volume V
placed into a multimode resonator shown in Fig. 2.22. In the empty resonator
only one mode, say k0, is excited and contains N photons, whereas all other
modes {kn} are in the vacuum state. The electric field amplitude in the cav-
ity E(r) =

√
NE0(r) is therefore given by the number of photons and the

mode function E0(r) of the excited mode. When we introduce the nonlinear
medium to the resonator, the radiation of the mode k0 induces a polariza-
tion P[

√
NE0(r)], which couples the excited mode to all other modes. The

interaction energy

Vn,0 = −
∫
V

d3r P[
√

NE0(r)]En(r) (2.59)

may change considerably and irregularly with the index n, if the sample is of
an irregular shape, or if the nonlinear medium is close to saturation. In the
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Optical resonator

Nonlinear crystal

Field modes

Fig. 2.22. Nonlinear interaction of modes in an optical resonator.

last case the irregularity arises from the spatial structure of the mode function
E0(r). We denote by ψ0 the amplitude of the state |N, 0, 0, . . . , 0〉 with N
photons in the mode k0 and no photons in other modes. By ψn we denote
the amplitude of the state |N − 1, 0, . . . , 1, . . . , 0〉 where one photon has been
transported from the mode k0 to the mode kn. We neglect the probability of
transportation of more than one photon and write the Schrödinger equation

i�ψ̇0 =
∑
n

V0,nψn

i�ψ̇n = ∆nψn + Vm,0ψ0, (2.60)

by analogy to (2.19). Here ∆n is the difference in photon energies of the
modes k0 and kn.

We mention here one more analogy. A nonlinear medium plays the role
of an anharmonicity for the field oscillators in the resonator, similar to the
role of vibrational anharmonicity for nuclear motion in polyatomic molecules,
whence (2.60) describes the first quantum transition in such a system.

2.5.4 Cooperative Effect

Cooperative emission of an ensemble of non-interacting two-level atoms lo-
cated in a region smaller than the wavelength of the resonant radiation is
known as the Dicke effect. What happens if the atoms interact with each
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other? Randomness in the mutual distances between the atoms and corre-
sponding pair interactions suggests the random matrix approach.

The following analogy between the ensemble of N two-level atoms and an
ensemble of N particles of spin 1/2 in a magnetic field suggests a convenient
means of description. One can consider each of the two-level atoms as a
particle of spin 1/2 in the magnetic field B. Transition among the upper and
the lower states of an atom corresponds to a spin flip from the state parallel
to B to the antiparallel state, whereas the dipole–dipole interaction of atoms
correspond to the spin–spin interaction.

The total spin S of the ensemble may take any value from N/2 to 0 for
N even, or to 1/2 for N odd. Each value of the total spin apart from N/2
can be constructed in many ways by combining the directions of the spins
of the individual particles. We mark each such combination by an index
ν. The statistical weight GS of a state with spin S is therefore given by

the binomial coefficients GS =
(

S/2
N − S/2

)
for N even and S integer, or

GS =
(

S/2 − 1/2
N − S/2 + 1/2

)
for N odd and S integer plus 1/2. There are 2S − 1

magnetic sublevels M for any state of a given S. The energy of each sublevel
depends linearly on M , and the spectrum of the ensemble is represented in
terms of the quantum numbers S and M , as shown in Fig. 2.23. Each energy
level corresponds to a certain value of M , and even for a fixed S is GS-fold
degenerate with respect to ν. Optical transitions in the system occur among
the states with the same “spin” S and the same number ν.
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Fig. 2.23. Energy spectrum of an ensemble of two-level systems in the represen-
tation of the total “spin” S and its projection M .
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Interaction of atoms changes considerably the structure of the spectrum,
since it implies the possibility of transitions among all GS-states |ν〉 with the
same S and M values. The random arrangement of atoms results in a ran-
dom coupling and yields a splitting of the degenerate levels. The new energy
eigenstates |k〉 are linear combinations |k〉 =

∑
sν,Mk,M |ν,M〉. The radiative

transitions induced by the electromagnetic field of amplitude E now occur in
a band-like spectral structure, and therefore conform to the same model (see
(2.16)) as anharmonic polyatomic molecules in a resonant laser field. The
corresponding Schrödinger equation reads

i�ψ̇M,k = ∆M,kψM,k + Ed
√

(M − S)(M + S + 1)
∑
k′

ck
′,M+1
M,k ψM+1,k′

+Ed
√

(M + S)(S + 1 − M)
∑
k′

ck
′,M−1
M,k ψM−1,k′ , (2.61)

where ∆M,k are the interaction-induced random detunings of states from their
original positions, ck

′,M ′
k,M =

∑
ν sν,Mk,M (s∗)ν,M

′
k,M ′ , and d is the dipole moment of

each atom.

2.5.5 Many-Body Effects in Cold Rydberg Gas

Consider an ensemble of cold atoms excited in a high Rydberg state |np〉.
Due to the dipole–dipole interaction, atoms may change their Rydberg state
as a result of energy exchange: a couple of neighboring atoms initially in
the state |np, np〉 performs a transition to the state |ns, n′s〉. This energy
exchange process may be viewed in the same way as the vibrational exchange
in molecules described in Section 2.2: one atom emits a photon and performs
a transition from the |np〉 Rydberg state to the |ns〉 Rydberg state. The
photon, being absorbed by the other atom, provokes a transition from the
|np〉 to the |n′s〉 state (with n′ = n + 1 ). Atomic transitions np → ns
and np → n′s are not always strictly in resonance, but they may be set to
resonance by the external static electric field, which controls by the Stark
effect the detuning ∆0 = (Enp − Ens) − (Enp − En′s) of the transition.

The process starts with pairs of relatively closed atoms and involves other
atoms via the excitation exchange mechanism, as shown in Fig. 2.24(a). Each
of the atoms of the pair can return to the state |np〉 whereas two surrounding
atoms perform the transitions to the |ns〉 and |n′s〉 states. This resembles an
autocatalytic process, where the products of a chemical reaction produced in
a density fluctuation diffuse out of the reaction zone.

Note that the dipole moments of Rydberg atoms are large, and therefore
the process of energy and excitation exchange is rapid for a reasonably high
density nat of the atomic vapor. It is much faster than the thermal motion
of the cold atoms, and therefore the energy and excitation exchange in the
ensemble can be considered as a Hamiltonian process without relaxation, in
contrast to collisional relaxation in ensembles of warm atoms and molecules.
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Fig. 2.24. (a) A couple of s-states (ss′-couple) is created at a pair of close atoms
(A and B). Excitation exchange processes result in the diffusion of these states out
the pair. When the s-states have left the pair can produce the next ss′-couple. (b)
Level scheme of the elementary act. The initial state |np, np〉 corresponds to both
atoms A and B of the pair in the state |np〉. It is coupled by the energy exchange
matrix element V01 to the state where one of the atoms is in the Rydberg state
|ns〉, while the other is in the state |(n + 1) s〉. Diffusion of the |ns〉 and |(n + 1) s〉
states over the ensemble of other atoms via the excitation exchange mechanism is
represented by transitions to the band.

Viewing this process by analogy to the quasiparticle concept one can say that
the couple of states |ns〉 and |n′s〉 moves coherently to other sites as a result
of the excitation exchange process. We refer to the |ns〉 and |n′s〉 states as the
s and s′ states respectively and to the |np〉 state as the p state. The excitation
exchange results in the motion of the s-state over the immobile atoms, thus
leading to diffusion of these states out of the“active center”, that is, the pair
of close atoms considered. Therefore, the pair of atoms can produce the next
s–s′ couple of states.

The level scheme for the elementary act of creation of a single s–s′ cou-
ple is shown in Fig. 2.24(b). The initial state |0〉 corresponds to all atoms
in the |np〉 state. The first state |1〉 corresponds to atoms of a close pair
(say the atom A and the atom B) in the states |ns〉 and |n′s〉. The states
|0〉and |1〉 are coupled by the matrix element of the dipole–dipole interac-

tion
∧
V 1,2 = µnsnpµ

n′s
np /R3

AB responsible for the energy exchange process. The
band corresponds to locations of |ns〉 and |n′s〉 states on other atoms (say
C, D, F, etc.). The state |1〉 is coupled by the interaction to a combina-
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tion |b〉 =
∑

V1n/〈V 2〉1/2 |n〉, which is a properly normalized superposition
of the band states. This combination represents the s–s′ couple delocalized
over a group of atoms near the initial pair A–B. It is not an eigenstate of
the Hamiltonian, and hence is also coupled to another combination of the
band states, etc. This hierarchy of couplings of the states corresponds to
a dynamical process, which resembles diffusion with a diffusion coefficient

 4πµ2nat ln (Rg/a) where Rg is the size of the Rydberg ensemble of the
density nat ∼ 1/a3, and µ is the dipole moment.

The Schrödinger equation reads

i
.

ψ0 = ∆0ψ0 + V01ψ1 (2.62)

i
.

ψ1 = V10ψ0 +
∑
n

V1nψn

i
.

ψn = ∆nψn + Vn1ψ1,

where ψ0, ψ1 and ψn are the amplitudes of the states |0〉, |1〉 and |n〉 respec-
tively, and ∆n is the detuning of the state |n〉 in the band from the state |1〉.
Analytical calculation of the energies ∆n of the eigenstates and the coupling
V1n is a challenging task. Indeed, the mean interaction

∫ ∞
0 V (R)natd3R in a

gas with 1/R3 binary interaction diverges both at small and long distances.
This can be interpreted that far atoms and close atoms are equally important
for the excitation-exchange process. In such a situation, the spatial structure
of stationary states of the quasiparticles is not immediately evident – the sta-
tionary states may be localized on one or several atoms, or, on the contrary,
each energy eigenstate may extend over the entire volume of the system, like
in a solid. It turns out that both well-localized states and strongly delocal-
ized states with multifractal spatial structure are possible, which yields a
non-trivial profile of the level detuning statistics g(∆n). On the other hand,
the coupling statistics g (V1n)s imilar to that shown in Fig. 2.5 turn out to
be statistically independent from detunings and to follow the inverse square
law g (V ) ∼ V −2.



3 Two-Level and Level–Band Systems

We start to consider the dynamics of populations of complex multilevel sys-
tems with two well-known examples: a two-level system and a system consist-
ing of a level and a band which is either continuous or composed of discrete
levels. The main purpose of such a consideration is to introduce the mathe-
matical methods which are usually employed for the description, and to relate
these methods to the main physical processes taking place in the systems,
such as Rabi oscillations in two-level systems, repulsion of the levels by in-
teraction, and the exponential decay of the level into the band, as well as to
figure out what are the main physical parameters governing the population
dynamics. The influence of the continuous band edges and the number of
resonant states for the discrete band are discussed along with the process of
population injection. We take into account the effects of interference resulting
from the structure induced in the continuum by the presence of another inter-
acting level and show how the interference yields special spectral structures
known as Fano profiles.

For the discrete bands, we pay great deal of attention to the asymptotic
behavior in the time domain longer than the Heisenberg return time. In this
regime, the population returns from the band to the level. In a number of
cases, the return can be complete and is then termed a revival. An interesting
case of fractional revivals, when the population returns in the form of several
short wavepackets, each of which contains a fraction of the complete popu-
lation, is discussed in detail. The existence of fractional revivals suggests the
revision of the Erenfest classical limit of quantum mechanics and its exten-
sion to the case where, in this limit, one can observe a quantum mixture of
two or more classical wavepackets, the situation known as Schrödinger’s cats.

We also concentrate on the case where an infinitely dense band has such
an irregular structure that it cannot be considered as a continuum. Though
this problem has an exact analytical solution in the form of a one-fold inte-
gral from an algebraic expression containing the sum of contributions of the
individual band levels, the dynamics of such a system is not trivial. It consists
of multiple returns of the population to the level that occur with different
return times, differing by orders of magnitude. Interference of these returns
results in a non-exponential decay of the level population averaged over a
time interval. Moreover under certain conditions, the decay of the level can
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be incomplete, which is the phenomenon related to dynamical localization.
We find the parameters of the quantum system governing the population
dynamics in this case.

3.1 Two-Level System

Let us concentrate first at a two-level system with the Hamiltonian

Ĥ =
(

E1 0
0 E0

)
(3.1)

and write down the Schrödinger equation for the amplitudes Ψ0 of the ground
state, corresponding to the energy E0 and the state vector |0〉. The ampli-
tude, the energy, and the state vector of the exited state are Ψ1, E1, and |1〉
respectively. The Schrödinger equation for the Hamiltonian (3.1) reads

i�
.

Ψ1 = E1Ψ1

i�
.

Ψ2 = E2Ψ2. (3.2)

What happens when we switch on an external periodic electromagnetic field
of amplitude E and frequency ω close to the transition frequency ω ∼ (E1 −
E0)/� if the interaction Hamiltonian is given by the product Eωd̂ of the
field strength Eω = E cosωt and the transition dipole moment operator d̂?
We assume that the dipole moment operator has real non-diagonal matrix
elements d = 〈0| d̂ |1〉, and the diagonal matrix elements vanish, as is usually
the case in optics. The Schrödinger equation now takes the form

i�
.

Ψ1 = E1Ψ1 + dE cos (ωt)Ψ0

i�
.

Ψ0 = E0Ψ0 + dE cos (ωt)Ψ1. (3.3)

We now apply to (3.3) the so-called rotating wave approximation, which
is convenient when the detuning ∆ = (E1 −E0)/� −ω of the field frequency
from the transition frequency (E1 − E0)/� is relatively small ∆ � ω, and
which implies that the quantum phases of the states are taken relative to the
phase ωt of the field. To this end we substitute the amplitudes of the ground
and the exited states in the form

Ψ1 = e−iωtψ1

Ψ0 = ψ0 (3.4)

to (3.3) and make use of the formula cos (ωt) = 1
2 (eiωt + e−iωt), which yields

i�
.

ψ1e
−iωt + �ωψ1e

−iωt = E1ψ1e
−iωt +

dE
2

(eiωt + e−iωt)ψ0

i�
.

ψ0 = E0ψ0 +
dE
2

(eiωt + e−iωt)ψ1e
−iωt. (3.5)
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When we set E0 = 0 and replace the combination dE/2 by a shorter notation
V , after multiplication of the first equation by eiωt the system (3.5) takes the
form

i�
.

ψ1 = (E1 − �ω)ψ1 + V (1 + e2iωt)ψ0

i�
.

ψ0 = V (1 + e−2iωt)ψ1. (3.6)

To shorten notation further we also set � = 1 hereafter.
We now note that typical time derivatives of the amplitudes ψ1 and ψ0 in

(3.6) are either of the order of the size of the interaction V or of the order of
the detuning ∆ = (E1−ω), when it exceeds V , and therefore these derivatives
are much smaller compared to the frequency of the external field ω, provided
the condition of resonance ∆ � ω is fulfilled. This enables us to ignore the
rapidly oscillating terms V e2iωt in (3.6) that give negligibly small average
contributions, and we arrive at

i
.

ψ1 = ∆ψ1 + V ψ0

i
.

ψ0 = V ψ1. (3.7)

Let us now consider the solution of (3.7) corresponding to the initial
conditions

ψ0(t = 0) = 1
ψ1(t = 0) = 0. (3.8)

One of our main tools is a method known either as the Fourier–Laplace trans-
formation or as the Fourier transformation of generalized functions or distri-
butions. The essence of the method is the following. The regular technique
of Fourier transformations requires that the subjecting function vanishes at
t → ±∞, otherwise the Fourier transform of a derivative

.
y(ω), denoted by

F [
.
y(t)], differs from the Fourier transform of the primitive function multiplied

by the frequency
.
y(ω) �= iωy(t). Therefore all the functions ψ are assumed

to be zero at t < 0 and coincide with the solutions of (3.7) with the initial
conditions (3.8) for t > 0. This implies that the function ψ0(t) is discontin-
uous at t = 0 and it experiences a jump from the value ψ0 = 0 to the value
ψ0 = 1 at this point. Apparently, the derivative

.

ψ0equals infinity, or in other
words it amounts to the Dirac δ-function. Equation (3.7) is no longer valid
at t = 0, and the correct equation reads

i
.

ψ1 = ∆ψ1 + V ψ0

i
.

ψ0 = V ψ1 + iδ(t). (3.9)

We note here, that the Dirac δ-function in the second equation (3.9) can
be interpreted in physical terms. Since we assume that at t < 0 there was no
particle in the system of two levels, and at t = 0 a particle has been supplied
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to the ground state |0〉, one can say that the flux of the probability amplitude
of the particle supply is infinitely large during an infinitely short time and is
given by the δ-function. Such a situation suggests an evident generalization:
one can supply a particle with the Π = Π(t), which can be an arbitrary
function of time satisfying just a normalization condition. Such a situation is
shown schematically in Fig. 3.1

a) b)
|1>

|1>

|0>

|0>d

�(t)

�(t)

�

�
��

Fig. 3.1. Two-level system in an external resonant field. A quantum particle is
supplied at the lower state with the probability amplitude flux Π(t). A transition
dipole moment d results in the coupling V = Ed between the states. (a) Represen-
tation in the basis of energy eigenstates. (b) Representation in the rotating wave
approximation.

Let us now perform the Fourier transformation of (3.9) and arrive at

εψ1(ε) − ∆ψ1(ε) − V ψ0(ε) = 0
εψ0(ε) − V ψ1(ε) = i, (3.10)

where

ψ0;1(ε) =
∫ +∞

−∞
eiεtψ0;1(t)dt, (3.11)

and we have employed the fact that
∫ +∞

−∞ eiεtδ(t)dt = 1.
The set of two linear algebraic equations (3.10) has the solution
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ψ1(ε) =

∣∣∣∣ 0, −V
i, ε

∣∣∣∣∣∣∣∣ ε − ∆, −V
−V, ε

∣∣∣∣ =
V i

(ε − ∆)ε − V 2

ψ0(ε) =

∣∣∣∣ ε − ∆, 0
−V, i

∣∣∣∣∣∣∣∣ ε − ∆, −V
−V, ε

∣∣∣∣ =
(ε − ∆)i

(ε − ∆)ε − V 2 =
i

ε − V 2

(ε−∆)

(3.12)

where vertical brackets around a matrix denote the determinants. We find
the time-dependent probability amplitudes ψ0(t) and ψ1(t) by performing
the inverse Fourier transformation

ψ0;1(t) =
1
2π

∫ +∞+iν

−∞+iν
e−iεtψ0;1(ε)d(ε), (3.13)

that is by integrating the Fourier transforms ψ0(ε) and ψ1(ε) in the complex
plane along the contour C given by a straight line which goes from −∞ to
+∞ at a distance ν above the real axis, as shown in Fig. 3.2

e0 e1

e

C1

C2

n

R
. .
Fig. 3.2. The integration contour of the inverse Fourier transform goes above the
real axis. It can be closed in the lower part of the complex plane of ε, where the
integrand vanishes.

The denominators of the right-hand sides of (3.12) tend to zero at the
points

ε0;1 =
∆

2
±

√(
∆

2

)2

+ V 2; (3.14)

we also note that the integrals (3.13) taken along the contour C2 (a circle
of large radius ε = R exp(−iθ); R −→ ∞; 0 ≤ θ ≤ π) vanish in the limit
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R −→ ∞ since the exponent of the integral acquires a large negative part. We
can therefore replace the open integration contour C1 = (−∞ − iν,∞ − iν)
by the closed integration contour C = C1 + C2 and make use of the Cauchy
theorem by replacing the integral by the sum of the contributions of residuals
corresponding to the singularities of the integrand at the points ε0;1 ( 3.14)
in the lower part of the complex plane ε including the real axis. We arrive at

ψ1(t) =
V

(ε0 − ε1)
e−iε0t − V

(ε0 − ε1)
e−iε1t

ψ0(t) =
(ε0 − ∆)V
(ε0 − ε1)

e−iε0t − (ε1 − ∆)V
(ε0 − ε1)

e−iε1t (3.15)

which yields

ψ1(t) =
V

2
√

(∆2 )2 + V 2
e−i( ∆

2 +
√

( ∆
2 )2+V 2)t− V

2
√

(∆2 )2 + V 2
e−i( ∆

2 −
√

( ∆
2 )2+V 2)t

ψ0(t) =
(∆2 +

√
(∆2 )2 + V 2)

2
√

(∆2 )2 + V 2
e−i( ∆

2 +
√

( ∆
2 )2+V 2)t (3.16)

−
(∆2 −

√
(∆2 )2 + V 2)

2
√

(∆2 )2 + V 2
e−i( ∆

2 −
√

( ∆
2 )2+V 2)t

that is

ψ1(t) = − V i√
(∆2 )2 + V 2

e−i∆
2 t sin t

√(
∆

2

)2

+ V 2

ψ0(t) = e−i∆
2 t

⎡⎣cos t

√(
∆

2

)2

+ V 2 −
∆
2 i sin t

√
(∆2 )2 + V 2√

(∆2 )2 + V 2

⎤⎦ . (3.17)

The combination
√

(∆/2)2 + V 2 is known as the Rabi frequency, and the
corresponding periodic oscillations of the probabilities are referred to as the
Rabi oscillations.

Let us now calculate the populations ρ1 = |ψ1|2 of the upper and ρ0 =
|ψ0|2of the lower levels. Equation (3.17) immediately results in

ρ1(t) =
V 2

(∆2 )2 + V 2
sin2 t

√(
∆

2

)2

+ V 2

ρ0(t) =
∆2

∆2 + 4V 2 sin2 t

√(
∆

2

)2

+ V 2 + cos2 t

√(
∆

2

)2

+ V 2. (3.18)
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Let us now ask for the time average populations ρ0;1 of the states. Allowing

for cos2 Ωt = sin2 Ωt = 1/2 we arrive at

ρ1 =
2V 2

∆2 + 4V 2

ρ0 =
1
2

[
∆2

∆2 + 4V 2 + 1
]
. (3.19)

One can see that for V � ∆/2 the mean population ρ1 of the upper level is
small, and the population ρ0 is of the order of 1. The populations of both levels
become of the same order of magnitude only when V ∼ ∆/2. At the extreme
V � ∆/2 we have ρ1 
 ρ0 
 1/2. We can therefore say that the states |0〉
and |1〉 are in resonance and the condition of the resonance V ∼ ∆/2 is that
the typical interaction amplitude becomes larger or of the order of the typical
detuning. Later on we will often employ this qualitative criterion analyzing
the behavior of multilevel quantum systems.

We also note an important case when the detuning is so small that it can
be set zero. In this case

ρ1(t) = sin2 V t

ρ0(t) = cos2 V t, (3.20)

and the population oscillates between the lower and the upper states with the
frequency V . In this case the average populations of the states are apparently
equal and amount to 1/2.

Sometimes it is expedient to represent the time-dependent amplitudes
ψ0,1(t) (3.17) in the form of a superposition of exact energy eigenstates |u〉,
|l〉 of the system corresponding to the upper and lower energy eigenvalues

ε1;0 = ∆
2 ±

√
(∆2 )2 + V 2 of (3.14) respectively. The amplitudes ϕl,u of these

states have only the phase time dependence e−iε0;1t whereas the absolute
values of the amplitudes and the phase factors at t = 0 one finds with the
help of the representation

|l〉 =
|0〉 ( ∆

2V +
√

1 + ∆2

4V 2 )√
1 +

(
∆
2V +

√
1 + ∆2

4V 2

)2
+

|1〉√
1 +

(
∆
2V +

√
1 + ∆2

4V 2

)2
(3.21)

|u〉 =
|0〉

√
1 +

(
∆
2V −

√
1 + ∆2

4V 2

)2

2
√

1 + ∆2

4V 2

− |1〉√
1 +

(
∆
2V −

√
1 + ∆2

4V 2

)2

of the eigenvectors in the basis of states |0〉 and |1〉 . In particular, for the
case ∆ = 0 we have two eigenstates
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|l〉 = |+〉 =
1√
2

|0〉 +
1√
2

|1〉

|u〉 = |−〉 =
1√
2

|0〉 − 1√
2

|1〉 (3.22)

corresponding to the eigenenergies ε0;1 = ±V , with the relative phase differ-
ence 2V t of the amplitudes ϕu,l = e±iV t/

√
2 having identical initial values

〈l |0〉 = 〈u |0〉 = 1/
√

2. Beating of the oscillations of these two amplitudes
yields (3.20) for the populations.

3.2 Level–band System

We continue by tackling a more complex system of a level interacting with
a band of levels. We first consider it in the general case and obtain an exact
expression for the Fourier transforms of time-dependent amplitudes of the
level population amplitudes by the analogy to the results of the previous
section. It turns out that this problem possesses an exact analytical solution.
However, physically meaningful results emerge from the general expressions
only in several limiting cases. The most well-known limit corresponds to an
infinite density of states and a constant interaction and yields an expression
known as the Fermi golden rule. The other important case is known as the
Fano problem. This also implies an infinite density of states but allows for a
non-uniform, that is energy-dependent, amplitude of the transition from the
initial level to the band which by itself is a result of the interaction of another
discrete level with a continuum. Comparison of the solutions of these two
problems shows an important role of the quantum interference that affects
strongly the population dynamics. This role becomes even more important
when we consider a band of finite state density, that is a zone composed by a
large but finite number of discrete levels. It results in specific effects at long
times-scale – recurrences, revivals, and fractional revivals. We also study the
dynamics of the system in the case, when the coupling among the level and the
states of the band can considerably, that is by orders of magnitudes, vary from
state to state. We show that the interference changes completely the dynamics
of the system in the long times-scale, although this phenomenon does not
manifest itself in periodic oscillations typical of interference phenomena.

3.2.1 General Consideration

In the previous section by having employed the rotating wave representation
and the resonance approximation we have shown that a system in a periodic
external field behaves as a system subjected to a time-independent pertur-
bation, provided the detuning of the external frequency from the transition
frequency is relatively small. Considering here a level–band system we make
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use of the same approximation and by the analogy arrive at the Shrödinger
equation

i
.

ψn = ∆nψn + V 0
nψ0

i
.

ψ0 =
N∑
n=1

V n
0 ψn. (3.23)

Here ψ0 is a probability amplitude of the system to be in the ground state,
and ψn denote the amplitudes of the energy eigenstates in the N -level band.
The detunings ∆n and the interaction amplitudes V n

0 now depend on the
numbers n of the band levels that are supposed to be non-interacting among
themselves. In Fig. 3.3 we illustrate the level scheme of the system.

. .

�n
| >n

| >0

V
0

n

�(t)

Fig. 3.3. Level–band system. The levels |n〉 of the band detuned by ∆n are not
coupled among themselves directly, but only via couplings V n

0 with the level |0〉. The
system either was initially in the state |0〉 with probability amplitude ψ0(t = 0) = 1,
or has been injected into this state with probability amplitude flux Π(t).

Let us assume that at t = 0 only the state ψ0 is populated. Then by the
analogy to (3.9) we write

i
.

ψn = ∆nψn + V 0
nψ0

i
.

ψ0 =
N∑
n=1

V n
0 ψn + iδ(t). (3.24)

For the Fourier transforms ψn(ε) by analogy to (3.10) we therefore have

εψn − ∆nψn − V 0
nψ0 = 0

εψ0 −
N∑
n=1

V n
0 ψn. = i. (3.25)

We now express ψn(ε) in terms of ψ0(ε) with the help of the first equa-
tion (3.25), substitute this expression to the second equation, factor out the
common multiple ψ0(ε) from the sum, and finally arrive at
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ψ0(ε) =
i

ε − ∑N
n=1

V n
0 V 0

n

ε−∆n

ψn(ε) =
V n

0

ε − ∆n
ψ0 =

V n
0

ε − ∆n

i

ε − ∑N
n=1

V n
0 V 0

n

ε−∆n

, (3.26)

which is a formal solution of the problem in the Fourier representation.

3.2.2 Continuous Band Model

Equations (3.26) give an exact solution of the problem for arbitrary ampli-
tudes of interaction V n

0 and arbitrary detunings ∆n. It allows for all possible
interference phenomena that may occur in the system. However the practi-
cal usefulness of these equations is limited, since they contain a complicated
function given by the sum in the denominators. Therefore evaluation of the in-
tegrals in the inverse Fourier transformation now becomes the main difficulty.
Hence for the further analysis of the problem we have to find a reasonable ap-
proximation for the sum, which would allow us to find an analytical solution
of the problem. One possibility is to replace these sums by an integral which
can be evaluated. The following physical example of a level–band system will
help us to gain an insight into the physical meaning of the approximation.

An Example of the Level–Band Model

Let us consider a quantum particle moving in an external field formed by
two potential wells A and B separated by a barrier C shown in Fig. 3.4.
The first well is deep and narrow and the second is wide and shallow. The
distance between successive levels is of the order of the oscillation frequency,
and therefore the spacing among the neighboring levels |n〉 in the shallow
well B is much smaller than that in the deep well A.

Here we restrict our consideration to the energy region around the first
excited level in the first well, and allow for the tunneling from this state to the
states of the potential well B through the potential barrier C. We therefore
assign index 0 to this level, which is the initial state of our level–band problem.
The lower state in the pit A serves only as a reservoir for the probability
amplitude supply Π(t), and will not be taken into account otherwise. Note,
that energy eigenstates in each of the pits are not the exact eigenstates of the
entire problem. However they can be taken as a good approximative basis set,
provided the barrier is sufficiently high. These basis states are not orthogonal,
and the Hamiltonian is not diagonal in such a representation. It contains off-
diagonal matrix elements given by the overlap integrals, which are of the order
of tunneling exponents V n

0 ∼ exp
{

−Im
∫
under barrier C

√
E − U(x)dx

}
. Here

we take all V n
0 to be identical, since the distances among the levels of interest

are much smaller than the height of the barrier, and all tunneling exponents
are almost equal.
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Y (x)=A sin[(2mE ) x]n n

1/2

P(t)

d

V
n

0

L

A BC

. .

|0> |n>

Fig. 3.4. A quantum particle in a two-well potential, which consists of two pits
A and B separated by a barrier C, is an example of a level–band system with an
amplitude injection to the level. The interaction V n

0 among the energy eigenstates of
different pits is of the order of the tunneling exponent. The spacing δ of neighboring
levels in the pit of length L is of the order of the inverse period, that is the inverse
time of flight from wall to wall. The population supply Π(t) to the exited state in
the left pit can be controlled by an external field.

Let us turn now to the spacing δ among the neighboring levels in the pit B.
For a rectangular well the energy eigenfunctions satisfy the Bohr–Sommerfeld
quantization condition

right turning point∫
left turning point

√
2mEndx =

√
2mEnL = nπ. (3.27)

From (3.27) one immediately finds the energy difference among the neigh-
boring levels:√

2mEn −
√

2mEn−1 =
√

m

2En
(En − En−1) =

π

L
. (3.28)

We note that v =
√

m/2En is a typical velocity of the particle in the potential
well B corresponding to the energy region En, and therefore

δ = (En − En−1) =
π

L
v 
 π

T
, (3.29)
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where T is the time of flight from the left wall of the pit to the right wall.
The level spacing therefore amounts to the reciprocal time of return flight in
the pit.

We immediately understand the meaning of the continuum model limit
δ → 0: it means that the particle never returns once it has left the potential pit
A, since the limit T → ∞ means that the right turning point of the potential
B is infinitely far away from the barrier. We can phrase it differently by saying
that one can replace a discrete spectrum by the continuum when considering
the evolution during a time interval shorter than the inverse spacing among
the neighboring levels, that is the state density t � 1/δ ∼ g or the Heisenberg
return time. Note that it is exactly the same regime when the uncertainty of
the energy due to the finite observation time exceeds the level spacing δ.

Level and Uniform Continuum

Let us now consider the consequences of the continuous-band approximation.
In (3.26) we can now factor out the moduli squared of the interaction ampli-
tudes V 2 = |V n

0 |2, substitute ∆n = nδ, and replace summation over n by the
integration. We arrive at

ψ0(ε) =
i

ε − V 2
∫

dn
ε−nδ

ψn(ε) =
V

ε − nδ

i

ε − V 2
∫

dn
ε−nδ

. (3.30)

We now remember Fig. 3.2 where the integration contour of the inverse
Fourier transformation is shown. It goes above the real axis, which implies
that in (3.30) ε is a complex number with a positive imaginary part. We
also note that the strongly detuned levels, corresponding to large positive
and negative n, are so far that they should not make a physically important
contribution to the process. Therefore we can extend our integration over dn
to all the real axis from −∞ to +∞. We calculate the integral and find∫ +∞

−∞

dn

ε − nδ
= −1

δ

∫ +∞

−∞

dx

x − ε/δ
= −1

δ
ln

∞ + iν/δ

−∞ + iν/δ
= − iπ

δ
(3.31)

where we have employed the explicit expression log(z) = log |z| + i arg(z) for
the logarithm of a complex number z. After substitution of (3.31) into (3.30)
we perform the inverse Fourier transformation and obtain

ψ0(t) =
1
2π

∫ ∞+iν

−∞+iν

i

ε − iV 2π/δ
eiεtdε

ψn(t) =
1
2π

∫ ∞+iν

−∞+iν

V

ε − nδ

i

ε − iV 2π/δ
eiεtdε. (3.32)
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We close the integration contour in the lower plane and apply the Cauchy
formula, which yields

ψ0(t) = e−tV 2π/δ

ψn(t) =
eitnδ

nδ − iV 2π/δ
+

e−tV 2π/δ

iV 2π/δ − nδ
. (3.33)

a)
r(x,t)

b)

|0> |n>

P(t)

r

W

. .

Fig. 3.5. Level–band problem. (a) The Lorentzian distribution of the population
over the states of the continuum at the long time limit, when the density of states
g = 1/δ increases and the coupling V decreases, such that the product W = V 2g
remains constant. For the example of Fig. 3.4 such a distribution corresponds to a
wavepacket (b) which propagates in the continuum to the right and has an expo-
nential envelope.

One can see that the population ρ0(t) = |ψ0|2 of the state |0〉 decays
exponentially

ρ0(t) = e−t2πV 2/δ (3.34)

with the rate W = 2πV 2/δ. It implies that at the time T � t � δ/2πV 2 all
the population is on the levels |n〉 of the band. The second equation (3.33)
allows one to find a distribution of the population over these levels. The
second term of the equation vanishes at t → ∞ and the first term yields

ρn(t = ∞) =
V 2

(nδ)2 + (V 2π/δ)2
, (3.35)

which means that the population is distributed over the energy levels of the
band according to a Lorentzian profile, as shown in Fig. 3.5. Integration of
the right-hand side of (3.35) over n yields unity, as it should be in accordance
with the normalization condition.

Let us now rewrite (3.35) in terms of the detuning ∆n = nδ of the state
|n〉 from resonance with the state |0〉, omit the index n, since it enters the
expression only via the detuning, replace V 2π/δ by W, divide both parts by
δ, and obtain the spectral density of the population:
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f(∆) =
ρ(∆, t = ∞)

δ
=

1
π

W

∆2 + W 2 . (3.36)

This quantity has the same Lorentzian form and the same physical origin
as spectral line shapes of width W . Indeed, the Dirac δ-like supply Π(t) in
(3.24) can be represented as a superposition of harmonics of all frequencies
with equal amplitudes. The Schrödinger equation is linear, and hence each
harmonic at a frequency ∆ brings at t = ∞ an independent contribution to
the overall population transfer at this frequency. The efficiency of this process
depends on the absorption rate at this frequency given by the Lorentzian
profile, and thereby the final result coincides with (3.36).

Role of the Continuum Edges

Let us now consider the role of the continuum edges. In (3.30) we have to
take into account finite integration limits that yield

ψ0(ε) =
i

ε − V 2
∫ b
a

dn
ε−nδ

=
i

ε + V 2

δ ln( −ε+b
−ε+a )

ψn(ε) =
V

ε − nδ

i

ε + V 2

δ ln( −ε+b
−ε+a )

. (3.37)

The time dependence of the probability amplitude ψ0(t) depends on the
positions of poles in the complex plane, which are given by roots of the
equation

ε +
V 2

δ
ln

(−ε + b

−ε + a

)
= 0. (3.38)

For a < Re [ε] < b the logarithm has an imaginary part and corresponding
poles are not disposed on the real axis. Therefore they bring to the probability
amplitudes contributions exponentially decreasing in time. Besides on the
complex solutions, equation (3.38) has two real roots at the points εa < a
and εb > b that bring two oscillating contributions. These non-vanishing
contributions dominate at the asymptotic regime of long time even in the
case their amplitudes are small. In Fig. 3.6 we compare two terms of (3.38),
one of which is taken with the opposite sign. Crossing points of the curves
correspond to the non-vanishing oscillating contributions

ψ0(t) = − 2π (εa − b) (εa − a) e−iεat

(εa − b) (εa − a) + V 2

δ (b − a)
− 2π (εb − b) (εb − a) e−iεbt

(εb − b) (εb − a) + V 2

δ (b − a)


 −2πδ

V 2

[
(εa − a) e−iεat + (εb − b) e−iεbt

]
(3.39)

of the amplitudes 2πδ (εa − a) /V 2 and 2πδ (εb − b) /V 2 that are small pro-
vided the bandwidth (b − a) considerably exceeds the Lorentzian line width
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b
a

ea

eb

. .

Fig. 3.6. Graphical solution of (3.38). For ε < a and ε > b two real roots correspond
to oscillating non-vanishing contributions, and their amplitude equal the difference
of the slopes at the crossing point.

W = V 2/δ. Indeed, for the lower edge of the band εb ∼ b < 0 equation
(3.38) yields δ (b − εb) /V 2 
 ebδ/V

2
(a − b) δ/V 2. By analogy (ε − a) δ/V 2 


e−aδ/V 2
(a − b) δ/V 2 implies a > 0, and therefore

ψ0(t) 
 (a − b) δ

V 2

[
ebδ/V

2−iεbt − e−aδ/V 2−iεat
]
. (3.40)

One sees that the time-independent amplitudes are exponentially small when
the edges of the band are disposed at distances larger compared to the width
W of the Lorentzian (3.36).

Number of Levels in Resonance

We note that the result (3.35) is in complete agreement with the reasoning
based on the time–energy uncertainty principle: the inverse life-time 1/τ given
by the decay rate W determines the distribution width. It implies that the
population is distributed among the N 
 W/δ ∼ V 2/δ2 states of the band
closest to the resonance with the state |0〉. We also note that the ratio V 2/δ2

should be a large number, otherwise it is impossible to satisfy the condition
that the decay time τ = δ/V 2 is shorter than the Heisenberg return time
1/δ in the zone, which has been employed for replacing of the summation by
integration in (3.30).

The estimate which has just been obtained points to another interesting
phenomenon. From the analysis of the two-level system summarized in (3.19)
we know that a couple of levels can be considered as resonant, if the interac-
tion strength V between these levels exceeds the relative detuning ∆. Naively
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we could think that in the level–band system the same criterion is applica-
ble, and therefore the number of the band states in resonance amounts to the
number of levels |n〉 which falls into a strip of width V around the level |0〉,
that is N naive = V/δ. However, the true result obtained reads N = (V/δ)2.
This implies that the states of the band do not interact with the level |0〉
independently but rather manifest a cooperative behavior: in order to obtain
the correct estimate of the resonant levels with the help of the two-level con-
dition V > ∆ one has to replace the typical interaction V by an effective
(cooperative) interaction Vc in the “naive” expression N = Vc/δ. This effec-
tive interaction Vc equals the typical interaction V multiplied by the square
root of the true number of levels in resonance, that is V → Vc = V

√N .
The origin of the

√N -factor is in the fact that consideration of the same
problem from a different point of view in quantum mechanics usually implies
a different choice of the basis sets, and all the transformations of the basis
set are given by unitary matrices, which for all operators of physical values
preserve sums of the absolute value squares of the matrix elements of any
line and any column. Being applied to the operator of the dipole moment
it yields the well-known optical theorem stating that the sum of squares of
the transition dipole matrix elements that couple an arbitrary state to all
other states is a constant, which remains the same even after reconstruction
of the energy spectrum caused by a perturbation. This implies that the sum
of squares of the transition matrix elements given by the product of a typical
matrix element squared V 2 and the number N of the resonant states, that is

V 2 × (V/δ)2, is a constant, and indeed the decay rate W =
√

V 2 × (V/δ)2

does not depend on the detailed structure of the band spectrum.
One can also look at the situation differently. Imagine that the level–

band system originates from a two-level system, where one of the levels,
say the level |1〉, interacts strongly with a N -level band. As a result of this
interaction each of the energy eigenstates |n〉 of the system “level|1〉+N -level
band” contains a contribution from the state |1〉, and the amplitude of this
contribution 〈1|n〉 is of the order of 1/

√N and hence matrix elements V of the
transitions from the state |0〉 to states |n〉 are

√N times weaker, compared to
the initial matrix element Vc of the transition between the states |0〉 and |1〉.
But it is clear that this matrix element Vc has to be compared with a typical
detuning ∆ 
 δN in the two-level resonance criterion Vc ∼ ∆ 
 δN , that is
V ∼ δ

√N , or N ∼ V 2/δ2. Note that the decay rate W = 2πV 2/δ entering
(3.34) can also be given in terms of the cooperative coupling Vc = V

√N
divided by a typical width Γ = δN/2π of the band, that is W = V 2

c /Γ .

Wavepacket Representation

Sometimes it is very instructive to considerthe motion of the system shown
in Fig. 3.4 in the coordinate representation, which allows one to see a deep
analogy between the time evolution of the level–band system and the dynam-
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ics of wavepackets. For this purpose one has to multiply the state amplitudes
ψn(t) by the coordinate-dependent eigenfunctions Ψn(x) of the particle in
the well B and sum up over all n in order to obtain the time-dependent
wavefunction of the particle Ψ(t, x) =

∑
n ψn(t)Ψn(x). After substitution of

ψn(t) = 1
2π

∫ +∞+iν
−∞+iν e−iεtψn(ε)dε and ψn(ε) = ψ0(ε)V n

0 /(ε − ∆n) in accor-
dance with (3.26) this yields

Ψ(t, x) =
1
2π

∫ +∞+iν

−∞+iν
e−iεtK(x, ε)ψ0(ε)dε (3.41)

where K(x, ε) =
∑

n Ψn(x)V n
0 /(ε − ∆n). We note that the inverse Fourier

transform of a product equals the convolution of the inverse Fourier trans-
forms of the cofactors, and write this expression in the more convenient form

Ψ(t, x) =
∫ t

−∞
K(x, t − τ)ψ0(τ)dτ, (3.42)

where the time-dependent amplitude ψ0(t) of the state |0〉 is convoluted with
the kernel K(x, t) =

∑
n Ψn(x)V n

0 exp {−i∆nt}, resulting from the inverse
Fourier transformation of K(x, ε).

When the spectrum of the band is dense, the total number of levels in the
well is large, and the motion is one-dimensional, the semiclassical considera-
tion provides us with a good expression for the wavefunction corresponding
to a given energy En and any smooth potential U(x):

Ψn(x) =
1

4
√

En − U(x)
cos

[
π

4
−

√
2m

∫ x

0

√
En − U(z)dz

]
, (3.43)

where x = 0 corresponds to the turning point, whereas for the rectangular
potential of depth �ω − U0 shown in Fig. 3.4 one has

Ψn(x) =
1

4
√

∆n + U0
sin

[√
2mx

√
∆n + U0

]
. (3.44)

This yields the kernel

K(x, t) =
∑
n

V n
0 exp {−i∆nt}

4
√

∆n + U0
sin

[
x
√

2m
√

∆n + U0

]
, (3.45)

which can be further simplified if we set as earlier all V n
0 identical V n

0 = V ,
expand the root in the argument of sine in a Taylor series around ∆n = 0,
neglect indeed very slow dependence in the denominator and replace the sum
by an integral by analogy to (3.31). We arrive at

K(x, t) = V

∫
exp {−iδtn}

4
√

U0
sin

[√
mxδ√
2U0

n

]
dn

=
iπV

δ 4
√

U0
[δ(t − vx) − δ(t + vx)] , (3.46)
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where v =
√

2U0/
√

m is the particle velocity in the right potential pit, and
δ(t ± vx) are Dirac δ-functions. Since x and t are both positive only the first
of these two δ-functions is important. Substitution of (3.46) into (3.42) yields

Ψ(t, x) =
iπV

δ 4
√

U0
ψ0(t − vx), (3.47)

which means that the probability to detect the particle at the distance x
at the time moment t equals (apart of a constant factor) the probability to
detect the particle at the state |0〉 at the time t − vx, that is ρ(t, x) =
|Ψ(t, x)|2 ∼ ρ0(t − vx).

The Fano Problem

We now consider a more involved situation, when the continuum is not uni-
form, but is formed as a result of an interaction between a level and a uniform
continuum shown in Fig. 3.7. It turns out that in such a situation the interfer-
ence phenomena change significantly the Lorentzian line shapes of resonances.
We consider the problem in the representation where the states of the band
are not yet reduced to the eigenstate representation, but are still considered
as a result of interaction of a state |1〉 with a uniform band of states |k〉.

The corresponding Schrödinger equation reads

i
.

ψn = ∆nψn + V ψ0 + V ′ψ1

i
.

ψ0 = V

N∑
n=1

ψn + V
′′
ψ1

i
.

ψ1 = V ′
N∑
n=1

ψn + ∆1ψ1 + V
′′
ψ0, (3.48)

where ∆1 denotes detuning between the states |0〉 and |1〉 .
We now again proceed in the same way as earlier: after substitution of the

Dirac δ-function to the right-hand side of the second equation we perform
the Fourier transformation and arrive at

εψn = ∆nψn + V ψ0 + V ′ψ1

εψ0 = V

N∑
n=1

ψn + V
′′
ψ1 + i

εψ1 = V ′
N∑
n=1

ψn + ∆1ψ1 + V
′′
ψ0. (3.49)

We express ψn in terms of ψ0 and ψ1 with the help of the first equation and
find
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Fig. 3.7. The Fano problem. (a) Representation of the band as a level interacting
with a zone. The initial state |0〉 interacts with the state |1〉 by the coupling V ′′

and with the zone by the coupling V . The state |1〉 interacts with the zone by the
coupling V ′. (b) Representation of the band in the energy eigenstates basis. The
resulting coupling Vr(E) is not uniform, but has the Fano profile Vr ∼ f(E) shown
in (c).

εψ0 = V 2
N∑
n=1

1
(ε − ∆n)

ψ0 +

(
V V ′

N∑
n=1

1
(ε − ∆n)

+ V
′′
)

ψ1 + i (3.50)

εψ1 =

(
V

′′
+ V V ′

N∑
n=1

1
(ε − ∆n)

)
ψ0 +

(
(V ′)2

N∑
n=1

1
(ε − ∆n)

+ ∆1

)
ψ1.

We now replace the sums by the integrals (3.50) and obtain

(ε + iW0)ψ0 −
(
V

′′ − iWF

)
ψ1 = i(

V
′′ − iWF

)
ψ0 + (∆1 − iW1 − ε)ψ1 = 0, (3.51)

where W0 = πV 2/δ; W1 = π (V ′)2 /δ; WF = πV V ′/δ =
√

W0W1. By solving
(3.51) one obtains two expressions for ψ0 and ψ1:
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ψ0(ε) =
i (∆1 − iW1 − ε)

(ε + iW0) (∆1 − iW1 − ε) + (V ′′ − iWF )2

ψ1(ε) =
−i

(
V

′′ − iWF

)
(ε + iW0) (∆1 − iW1 − ε) + (V ′′ − iWF )2

, (3.52)

which after substitution into the first equation of the set (3.49), yield

ψn = i
(∆1 − iW1 − ε)V −

(
V

′′ − iWF

)
V ′

(ε − ∆n)
[
(ε + iW0) (∆1 − iW1 − ε) + (V ′′ − iWF )2

] . (3.53)
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Fig. 3.8. The Fano problem. (a) Time-dependent populations of the initial state
ρ1 and the total population of the states |0〉 and |1〉. The Fano profile (b) of the
population distribution over the states of the band.

As usual, the inverse Fourier transformation implies integration along the
contour shown in Fig. 3.2, which can be carried out by finding the residuals
in the singular points of the right-hand side of (3.52),(3.53) at the lower part
of the complex plane ε including the real axis. The denominators of (3.52)
are identical and have two singularities at the points ε1 and ε2, both of them
with negative imaginary parts, that can be found as roots of a quadratic
equation. Therefore each of the two amplitudes ψ0(t) and ψ1(t) manifests bi-
exponential decay, whereas the corresponding populations ρ0(t) and ρ1(t) also
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manifests an oscillatory interference pattern coming from the cross product
of different singularities, as shown in Fig. 3.8(a). Each amplitude of the band
states (3.53) also has an additional pole on the real axis; that at t → ∞ does
not decay but brings the main contribution of the form

ψn = i
(∆1 − iW1 − ∆n)V −

(
V

′′ − iWF

)
V ′

(∆n + iW0) (∆1 − iW1 − ∆n) + (V ′′ − iWF )2
ei∆nt. (3.54)

The corresponding population density distribution f(∆) = |ψn|2 /δ is no
longer of the Lorentzian form (3.36), but has a typical two-hump shape known
as the Fano profile, which is shown in Fig. 3.8(b). This profile also mani-
fests itself in the dependence of the absorption rate on the frequency ω of a
monochromatic excitation.

Population Amplitude Injection

Let us now consider the level–band problem assuming that the states of this
system were not populated initially, whereas the particle is pumped to the
state |0〉 of the system in the course of an external process of a finite duration
τ . In other words the flux Π(t) in (3.24) is not the Dirac δ-function but a
continuous function localized in a time interval of the order of τ . The results
of the consideration will show, on one hand, the relation between population
distributions and line shapes, and from the other hand side will help us later
on to understand the phenomena of population recurrences and revivals. Now
instead of (3.24) we have

i
.

ψn = ∆nψn + V 0
nψ0

i
.

ψ0 =
N∑
n=1

V n
0 ψn + iΠ(t), (3.55)

which by analogy to (3.26) yields

ψ0(ε) =
iΠ(ε)

ε − ∑N
n=1

V n
0

ε−∆n

ψn(ε) =
1

ε − ∆n
V n

0 ψ0 =
1

ε − ∆n

iΠ(ε)V n
0

ε − ∑N
n=1

V n
0

ε−∆n

. (3.56)

Here Π(ε) is the Fourier transform of Π(t), which enters the equations for the
amplitudes as an additional factor. We can now also identify the combination
V n

0 ψ0 with the probability amplitude supply corresponding to the transition
from the state |0〉 to the state |n〉.

Let us now consider a particular case of the dependence Π(t) by taking
the Gaussian function
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Π(t) =
e−t2/τ2

√
πτ

, (3.57)

which yields

Π(ε) =
1√
πτ

∫ ∞

−∞
e−t2/τ2−iεtdt = e−ε2τ2/4. (3.58)

Substitution of (3.58) into (3.56) results, for the continuum,

ψ0(ε) =
ie−ε2τ2/4

ε − iV 2π/δ
. (3.59)

P( )ta)
| >0

| >n r

DY( )x
b)

| >0
c)

.
.

Fig. 3.9. A model of the population amplitude supply. (a) A particle with a broad
wavepacket arrives from the left and penetrates to the state |0〉 through the left
potential barrier with the penetration rate Π(t) proportional to the probability
amplitude to be near the barrier. The typical duration of the supply τ consider-
ably exceeds the inverse decay rate 1/W of the level. From the state |0〉 it comes
to the states |n〉 of the right continuum (b). Interference of these states, taken
with allowance of the coordinate dependence of their eigenfunctions, results in the
propagation of a wavepacket Ψ(x), which is so broad in space (and long in time),
that the spectrum width (c) of the occupied states in the continuum is much less,
compared to the Lorentzian width (3.36) (dotted line) given by the transparency
of the second barrier W.

Let us consider the limiting case, when the decay rate exceeds the rate of
particle supply, that is V 2/δ � 1/τ . The Gaussian dependence makes ψ0(ε)
vanishing for ε > 2/τ and therefore the term ε in the denominator of (3.59)
can be omitted, and we arrive at

ψ0(ε) = − δ

V 2π
e−ε2τ2/4, (3.60)

which, after inverse Fourier transformation, reads

ψ0(t) = − δ

V 22π2

∫ ∞+iν

∞−iν
e−ε2τ2/4+iεtdε = − δ

V 2π
√

πτ
e−t2/τ2

. (3.61)

One sees that in this case the amplitude of the probability to be at the
level |0〉 follows the supply rate Π(t), although it is scaled by the decay rate
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factor 1/W = δ/V 2π and has opposite sign. This means that the probability
amplitude of staying in the state |0〉 is attained as a result of balance of
the supply process and the fast decay process corresponding to the rapid
transmission of the probability amplitude to the states of the band, natural
in the chosen limiting case. We illustrate this in Fig. 3.9 by an instructive
analogy. We also note that Π(ε) = const corresponds to the Dirac δ-function-
like population amplitude injection, and Π(ε) ∼ 1/ε allows for a steady state
flux of the population amplitude.

3.2.3 Measurements and Relaxation as Processes
in Level–Continuum Systems

The level–band system can serve as the simplest model of relaxation and of
the measurement process in a two-level system. The compound system thus
comprises the two-level system and either the meter or the environment.
The latter has a very rich spectrum of eigenenergies, originating either from
the classical character of the meter, or from the large number of degrees of
freedom in the environment. States of the band are therefore related to the
environment or the meter spectrum. The high band state density implies
that the Heisenberg time of return is extremely long, and therefore both
the measurement and the relaxation are irreversible processes, and we can
consider the band as continuous.

We focus on the simplest case where the relaxation may occur only from
the exited state |1〉 of the two-level system and that this system makes a
transition to the ground state |0〉 as a result. This transition is accompanied
by the transition in the environment associated with the energy transfer to
one of many degrees of freedom. For a single elementary act of relaxation, we
can say that the transition occurs from the vacuum state of the environment
|0, 0, 0, . . . , 0〉 to an excited state |k〉 = |0, . . . , 1, · · · , 0〉 where the k-th degree
of freedom gets excited from the ground to the first exited state. By ψ0 we
denote the probability amplitude for the compound system to be in the state
|0〉 ⊗ |0, 0, 0, . . . , 0〉, while ψ1 and ψk denote the amplitudes of the states
|1〉 ⊗ |0, 0, 0, . . . , 0〉 and |0〉 ⊗ |k〉, respectively.

Considering the measurement process, we assume that only the excited
state of the two-level system can be detected. In other words, excitation of
the two-level system provokes a transition in the meter, such that it leaves
its vacuum state for an excited state |k〉, while the two-level system remains
in the upper state |1〉. The complex variables ψ0, ψ1, and ψk then denote the
amplitudes of the states |0〉 ⊗ |0〉, |1〉 ⊗ |0〉, and |1〉 ⊗ |k〉, respectively.

Population dynamics is a coherent process, characterized by the probabil-
ity amplitudes as far as the compound system is concerned. These amplitudes
satisfy the Schrödinger equation



84 3 Two-Level and Level–Band Systems

i
.

ψ0 = V ψ1

i
.

ψ1 = E1ψ1 + V ψ0 +
∑
k

V ′ψk (3.62)

i
.

ψk = Ekψk + V ′∗ψ1,

where we have assumed that the upper and lower levels of the two-level sys-
tem, separated by the energy E1, are coupled by the interaction V , and that
all the band states are coupled to the exited state by an identical interaction
V ′. With the initial condition ψ1(t = 0) = 1 after Fourier transformation this
yields

ψ0 =
iV

(ε − E1 + iW (ε)) ε − V 2

ψ1 =
iε

(ε − E1 + iW (ε)) ε − V 2 (3.63)

ψk =
V ′∗

ε − Ek

iε

(ε − E1 + iW (ε)) ε − V 2 ,

where W (ε) = i
∑

k |V ′|2 (ε − Ek)−1. For the continuum, infinitely large in
both sides, the corresponding integration yields W = πg |V ′|2 which does not
depend on ε. After the inverse Fourier transformation we therefore arrive at

ψ0 = e−(iE1+W )t/2 2V
Ω

sin
tΩ

2
(3.64)

ψ1 = e−(iE1+W )t/2
[
i cos

tΩ

2
+

(E1 − iW )
Ω

sin
tΩ

2

]
ψk =

−iEkV
′∗e−iEkt

E1Ek + V 2 − Ek(Ek + iW )
+

V ′∗e−(iE1+W )t/2

E1Ek + V 2 − Ek(Ek + iW )

×
[
iEk cosΩ/2 +

(
E1Ek + 2V 2 − iEkW )

) sin tΩ/2
Ω

]
,

where Ω =
√

4V 2 + (E1 − iW )2. Note that the absolute values of the ampli-
tudes ψ0 and ψ1 decrease exponentially in time with the rate (W − ImΩ)/2.

Equations (3.64) provide us with the solution for the compound system.
However when concentrating only on the two-level system and ignoring the
quantum structure of the environment or of the meter we need to take the
trace of the compound system density matrix over all quantum numbers
except those of the two levels considered. This yields

ρ̂r = (ψ0 |0〉 + ψ1 |1〉) (ψ∗
0 〈0| + ψ∗

1 〈1|) +
∑

ψ∗
kψk |0〉 〈0|

ρ̂m = (ψ0 |0〉 + ψ1 |1〉) (ψ∗
0 〈0| + ψ∗

1 〈1|) +
∑

ψ∗
kψk |1〉 〈1| , (3.65)

for the environment and the meter, respectively. When we take into account
the normalization condition ψ∗

0ψ0 + ψ∗
1ψ1 +

∑
ψ∗
kψk = 1 for the compound

system, (3.65) adopts the form
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ρ̂r = ψ∗
0ψ1 |1〉 〈0| + ψ∗

1ψ0 |0〉 〈1| + ψ∗
1ψ1 |1〉 〈1| + (1 − ψ∗

1ψ1) |0〉 〈0|
ρ̂m = ψ∗

0ψ1 |1〉 〈0| + ψ∗
1ψ0 |0〉 〈1| + ψ∗

0ψ0 |0〉 〈0| + (1 − ψ∗
0ψ0) |1〉 〈1| . (3.66)

One sees that, as a result of the elementary act of relaxation, the two-level
system comes to the state |0〉 and the measured system comes to the state
|1〉 after a time 1/(W − ImΩ), when both amplitudes ψ0 and ψ1 vanish.
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Fig. 3.10. Dynamics of the Bloch vector B = (ρ01 + ρ10, iρ10 − iρ01, ρ11 − ρ00)
representing the density matrix. (a) For a relaxing two-level system the vector B
starts at the point (1, 0, 0) corresponding to the excited state and goes to the point
(−1, 0, 0) following the spiral trajectory associated with Rabi oscillations. For a
system measured in the upper states the vector returns to the initial position along
a spiral trajectory. (b) Exponential relaxation acquires oscillatory behavior in the
case of a finite bandwidth. (c) The finite bandwidth also affects the trajectory of
B.

A Bloch vector B = (2Reρ10, 2Imρ10, ρ11 − ρ00) composed of the density
matrix elements (3.66) with the allowance of amplitudes (3.64) is a convinient
real quantity which helps to trace the time evolution of an open two-level
system. Trajectories of B shown in Fig. 3.10a) illustrate the dynamics of
the two-level system, initially in the upper state |1〉, which is subjected to
either measurement or relaxation. One sees that the vector, initially in the
utmost upper position ρ11 = 1, starts to move toward lower positions as a
result of the interaction V but returns along a spiral trajectory as a result
of the elementary act of measurement. As a result of the elementary act of
relaxation the vector gradually moves to the lowest position ρ00 = 1, also
along a spiral trajectory.

Let us derive differential equations for the density matrices ρ̂r and ρ̂m.
We note that in the case of an infinite band one finds
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i
.

ψ0 = V ψ1 (3.67)

i
.

ψ1 = E1ψ1 + V ψ0 − iWψ1,

which results from the Fourier transformation of the last two equations (3.62),
substitution of ψk(ε) from the third equation to the second one, and the re-

placement
∑

k
|V ′|2
ε−Ek

→ −iW followed by the inverse Fourier transformation.
With the help of (3.67) and their complex conjugate, after direct calculations
one obtains the differential equations

−i ∂∂t

(
1 − ψ∗

1ψ1 ψ∗
0ψ1

ψ∗
1ψ0 ψ∗

1ψ1

)
=(

V ψ∗
1ψ0 − V ψ∗

0ψ1 − i2Wψ∗
1ψ1 (iW − E1)ψ∗

0ψ1 − V (ψ∗
0ψ0 − ψ∗

1ψ1)
(iW + E1)ψ∗

1ψ0 − V (ψ∗
1ψ1 − ψ∗

0ψ0) V ψ∗
0ψ1 − V ψ∗

1ψ0 + i2Wψ∗
1ψ1

)
−i ∂∂t

(
ψ∗

0ψ0 ψ∗
0ψ1

ψ∗
1ψ0 1 − ψ∗

0ψ0

)
=(

V ψ∗
1ψ0 − V ψ∗

0ψ1 (iW − E1)ψ∗
0ψ1 − V (ψ∗

0ψ0 − ψ∗
1ψ1)

(E1 + iW )ψ∗
1ψ0 − V (ψ∗

1ψ1 − ψ∗
0ψ0) V ψ∗

0ψ1 − V ψ∗
1ψ0

)
(3.68)

which contain all four binary combinations of the amplitudes on the right-
hand side. Therefore it is impossible to express the right-hand side only in
terms of the matrix elements of ρ̂r or ρ̂m each of which contains only three
such combinations. However one can write these equations in the form

i ∂∂t ρ̂r = [H, ρ̂r] − iW

(−2ρr11 ρr10
ρr01 2ρr11

)
− V

(
0 1

−1 0

)∑
ψ∗
kψk

i ∂∂t ρ̂m = [H, ρ̂m] − iW

(
0 ρm10

ρm01 0

)
+ V

(
0 1

−1 0

)∑
ψ∗
kψk

(3.69)

involving the sum over the band states.
In the situation where many elementary acts of relaxation or measure-

ments can occur continuously, one can omit the terms ψ∗
kψk on the right-

hand side of both equations (3.69), since immediately after the transition to
a band state |k〉 the system starts to be subjected to the influence of the
next meter or the next set of degrees of freedom of the environment in the
vacuum state, as if it were transported back to the states corresponding to
the two-level system and the vacuum state of the previous meter or environ-
ment. This gives the standard form known as the master equations. However,
for the consideration of a single elementary act of measurement or relaxation
the sum on the right-hand side of (3.69) is important. In order to express it
in terms of the density matrix elements we make use of the normalization
condition and take the time derivative of the sum∑

ψ∗
kψk = 1 − ψ∗

0ψ0 − ψ∗
1ψ1

i ∂∂t
∑

ψ∗
kψk = −i ∂∂t (ψ∗

0ψ0 + ψ∗
1ψ1) = −i2Wψ∗

1ψ1
(3.70)

which allows one to eliminate the unknown functions and write the second
order differential equations
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− ∂2

∂t2 ρ̂r =
[
H, i ∂∂t ρ̂r

] − W ∂
∂t

(
2ρr11 −ρr10
−ρr01 −2ρr11

)
+ i2WV

(
0 ρr11

−ρr11 0

)
,(

∂
∂t − 2W

)
∂
∂t ρ̂m = −i

[
H,

(
∂
∂t − 2W

)
ρ̂m

]
− W

(
∂
∂t − 2W

)( 0 ρm10
ρm01 0

)
+ i2V W

(
0 ρm11

−ρm11 0

)
(3.71)

for the density matrices ρ̂r and ρ̂m (3.66). These equations have to be em-
ployed in the situation where the environment or the meter saturates after a
single elementary act of relaxation or measurement, respectively.

Note the important particular regime of rapid and continuous measure-
ments. After having neglected the term ψ∗

kψk, (3.69) for ρ̂m takes the form

i
∂

∂t

(
ρ00 ρm10
ρm01 ρ11

)
= (3.72)(

V ρ10 − V ρ01 − (iW − E1) ρ10 + V (ρ00 − ρ11)
− (E1 + iW ) ρ01 − V (ρ00 − ρ11) −V ρm10 + V ρm01

)
,

and in the case W � V this yields

ρ01 = V ρ11−ρ00
E1+iW

; ρ10 = V ρ00−ρ11
iW−E1

∂

∂t
(ρ11 − ρ00) = −4WV 2

E2
1+W 2 (ρ11 − ρ00) , (3.73)

which means that the off-diagonal elements of the density matrix rapidly
assume their stationary values given by the instantaneous value of the differ-
ence ρ11 − ρ00 while the latter change slowly. One sees that for W � E1 the
relaxation rate 4V 2/W of the diagonal matrix elements is inversely propor-
tional to the measurement rate W and tends to zero when the measurements
are performed infinitely fast. This implies that the system originally in the
state |1〉 remains in this state indefinitely. This phenomenon is known as the
Zeno effect and can be observed in any quantum system subjected to frequent
measurements, where the relaxation rate of the measured state is inversely
proportional to the rate of measurement.

Now let us consider the role of the spectral characteristics of the environ-
ment and the meter, which have been taken as an infinite continuum in the
previous analysis. If the latter is not the case, the relaxation rate W is not a
constant, but a function which depends on the frequency ε. Therefore in the
time-dependent form of the Schrödinger equation it corresponds to an inte-
gral operator of convolution, with the kernel given by the Fourier transform
of W (ε). In the simplest case W (ε) = w/(ε − iΓ ), soluble analytically, one
finds

ψ0 = i
V

ε (ε − E1 − w/(ε + iΓ )) − V 2 ,

ψ1 =
iε

(ε − E1 − w/(ε + iΓ )) ε − V 2 . (3.74)
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These expressions have three simple poles each, in contrast to (3.63) where
the same quantities had only two poles. The additional pole and the associ-
ated frequency account for the dynamics of the meter or environment result-
ing from the non-instantaneous character of their motion. The narrower the
band width Γ, the larger the influence of this motion on the process of relax-
ation and measurement. In Fig.3.10(b) we illustrate the difference between
relaxation to an infinite band and to a band of a finite width for the example
of the population difference between the upper and lower levels suggested by
the Fourier transforms of (3.74) and the definitions (3.66). The time depen-
dence of the population difference is exponential for the case of an infinite
band, but it experiences dying oscillations when the band is narrow. Other
elements of the density matrix represented in Fig.3.10(c) in the form of the
Bloch vector B are also affected by the band width.

3.3 Long-Time Behavior

We are now in the position to consider dynamics of the level–band system
(3.23) at the long time limit t � 1/δ, that is at time longer compared to the
Heisenberg return time from the band, or speaking in terms of the example
shown in Fig. 3.4, longer than the period T of oscillations of the particle in the
potential pit B. It turns out that in a certain regime one observes at this time-
scale a number of interesting universal phenomena: quantum recurrences,
revivals, and fractional revivals. We start consideration of the long-time limit
with a general formalism, and later we turn to the phenomenon of quantum
recurrences, which occurs first, that is at a time-scale, shorter than that for
two other phenomena – revivals and fractional revivals.

3.3.1 General Consideration of the Long-Time Limit

For the sake of simplicity we restrict ourselves to the case when the population
amplitude has been injected to the system during a time τ , which is shorter
than the period T ∼ 1/δ, but still much longer than the typical decay time
1/W ∼ δ/V 2 of the state |0〉. The reason for this is purely technical, since in
this case the analytical expressions for the amplitudes are much simpler than
for the general case, but nevertheless they manifest all physically important
phenomena typical of the level–band system. Full analysis, which can be
done by analogy, results in much more cumbersome expressions. For the same
reason we restrict ourselves only to the case of identical transition amplitudes
V 0
n = V n

0 = V , and an equidistant spectrum of the band ∆n = δn, where
n takes all integer values, positive and negative. In such a case one of the
states of the band, n = 0, has the same energy and the same notation as
the level |0〉, which hopefully will not create any confusion, since this state
always enters expressions in combination with other states |n〉.
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Let us concentrate on zeros of the denominator of the first of (3.26), that
have to be found from the solution of the algebraic equation which now reads

ε −
∞∑

n=−∞

V 2

ε − δn
= 0, (3.75)

and can also be written in the form

ε

δ
=

πV 2

δ2 cot
(
π

ε

δ

)
(3.76)

since
∑∞

n=−∞(x − nπ)−1 = cotx. In Fig. 3.11 we depict the right- and the
left-hand sides of (3.76), where the roots correspond to the points of crossing.
For large V 2/δ2 the crossing occurs near the points εn 
 (n + 1/2)δ , where

D =dn n

e /dn

e/d

D =-d-n n

. .

Fig. 3.11. Energy eigenstates of the level–band system corresponding to cross-
ing points of the linear function ε and the band resolvent

∑
n V 2/(ε − ∆n) =(

πV 2/δ
)
cot (πε/δ).

cot (επ/δ) is small. Let us denote by αnδ/π the deviation of the n-th root εn
from the point (n + 1/2)δ, and write (3.76) in the form(

n +
1
2

)
+

αn
π

=
πV 2

δ2 cot
(

π

(
n +

1
2

)
+ αn

)
= −πV 2

δ2 tan (αn) 
 −πV 2

δ2 αn

(
1 +

α2
n

3

)
. (3.77)

We consider αn ∼ arctan
(
δ2n/πV 2

)
as small, since the typical number n ∼

1/τδ corresponding to a band state populated in the course of the spectrally
localized (∼ 1/τ) injection remains small as compared to the total number
of states πV 2/δ2 mixed up by the interaction V , as shown in Fig. 3.9.

The third-order equation (3.77) can be resolved exactly with respect to
αn. However, to be consistent with the order of approximation we have to
write it also in the approximative form
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αn =
π5V 2

δ2

(n + 1
2 )3

3
(
1 + π2V 2

δ2

)4 − π(n + 1
2 )

1 + π2V 2

δ2

, (3.78)

which for the same order of approximation yields

εn =
(

n +
1
2

)
δ′ + α

(
n +

1
2

)3

, (3.79)

where δ′ = δ
(
1 − δ2/π2V 2

)
and α = δ7/3π4V 6.

What is the physical meaning of (3.79)? It gives the position of energy
eigenstates of the system of the level and the band and implies that the
density of states 1/δ′ of such a system is slightly larger than the state density
1/δ of the band, since the same spectral domain now contains one more level.
Moreover, it shows that the energy eigenstates are not equidistant, as was
the case for the band, but experience a third-order correction α(n + 1/2)3.
One can also notice than n enters the equation in the combination (n + 1/2),
which implies that for the strong perturbation the energy eigenstates are
located in the middle of the intervals among the successive band states.

In order to find the time evolution of the system we have to perform the
inverse Fourier transformation, which implies calculation of the residuals at
the points of the singularities. One needs to calculate derivatives of the de-
nominator (3.75) for this purpose. We note that d(cot yx)/dx = −y/ sin2 yx,
calculate the derivative and obtain

1 − πV 2

δ

π

δ

1
sin2 πεn

δ


 −π2V 2

δ2 (3.80)

where we have substituted (3.79) and took into account the relation τV 2/δ �
1 that is V 2/δ2 � n. We now make use of the formula

1
f(x)

=
∑
xn

1
(x − xn)f ′(xn)

, (3.81)

which is valid for any analytical function f(x) that has only simple poles
in the points xn, and which implies summation over all these points. This
formula allows one to write (3.56)

ψ0(ε) = − iδ2Π(ε)
π2V 2

∑
n

1
ε − (n + 1

2 )δ′ − α(n + 1
2 )3

, (3.82)

where (3.79) and (3.80) have also been employed. We also give here without
derivation the expression

ψ0(ε) =
∑
n

−iδΠ(ε)V 2

(πV 2/δ)2 +
[
(n + 1

2 )δ′]2 1[
ε − (n + 1

2 )δ′ − α(n + 1
2 )3

] , (3.83)
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which is also valid in the case τV 2/δ < 1 and relies only on the requirement
V 2/δ2 � 1.

Note that expressions (3.81) and (3.82) have a clear quantum mechanical
meaning for the case Π(t) = δ(t), that is Π(ε) = 1: we just project the time-
dependent quantum state of the system given in terms of the eigenstates
|εn〉 to the initial state |0〉, which after Fourier transformation yields the
amplitude

ψ0(ε) =
∑
n

〈0|εn〉
ε − εn

, (3.84)

whereas the projections 〈0|εn〉 are given in terms of the residuals 1/f ′
ε (ε) at

the points ε = εn.
Inverse Fourier transformation of (3.82) recovers the time-dependent am-

plitude ψ0(t) and yields

ψ0(t) =
2δ2

πV 2

∑
n

e−[(n+1/2)δ′−α(n+1/2)3]2τ2/4−i(n+1/2)δ′t−iα(n+1/2)3t (3.85)

for the case of Π(t) given by (3.57). We note that for a typical size of n ∼ 1/τδ

and for α ∼ δ7/V 6 the combination α(n+ 1
2 )3 ∼ (

δ/V 2τ
)3

τδ can be omitted
as a product of two small parameters, and we are left with

ψ0(t) =
δ2

π2V 2

∑
n

e−(n+1/2)2δ′2τ2/4−i(n+1/2)δ′t−iα(n+1/2)3t. (3.86)

If we decide to consider the case t � 1/δ, neglect the cubic term in the
exponent and replace summation by integration, we immediately recover the
result (3.61) which has been obtained directly under the same assumption.
Our aim here is to go beyond the limit t � 1/δ, which does not allow one to
replace sums by integrals, since the phase difference between the neighboring
terms of the sum (3.86) is of the order of π.

3.3.2 Quantum Recurrences

Generally speaking all three terms in the exponent (3.86) are equally impor-
tant, since they depend on different combinations of parameters. Nevertheless
one can identify a regime t ∼ 1/δ′, where the cubic term is still negligible,
since n ∼ 1/τδ, and hence α(n + 1

2 )3t ∼ (
δ/V 2τ

)3
tδ ∼ (

δ/V 2τ
)3 � 1.

In terms of the wavepackets shown in Figs. 3.4 and 3.9 this regime corre-
sponds to the situation, where the wavepacket emitted by the level starts to
return after either one or several oscillation periods. We therefore have the
expression

ψ0(t) =
δ2

π2V 2

∑
n

e−(n+1/2)2δ′2τ2/4−i(n+1/2)δ′t, (3.87)
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where summation cannot be replaced by integration.
How do we calculate this sum? Consideration of wavepackets give us an

idea about the structure of the sum: it consists of a series of spikes cor-
responding to the time moments when the wavepacket returns to the left
turning point after each oscillation period. A mathematical tool known as
the Poisson summation formula turns out to be very convenient for calcula-
tion of the sum in such a case. Apparently one can write (3.87) in the form
of an integral

ψ0(t) =
δ2

π2V 2

∫ ∞

−∞

∑
n

δ(x − n)e−(x+1/2)2δ′2τ2/4−i(x+1/2)δ′tdx, (3.88)

since the sum
∑

n δ(x − n) of Dirac δ-functions just pickups the values of
the integrand in the integer points. Now we note that∑

n

δ(x − n) =
∑
k

ei2πkx, (3.89)

which can be proved just by casting both sides of this equation, which is
periodic in x, into Fourier series on any interval of length 1 placed around
any integer point. Indeed, for such an interval which starts at a point O we
find the m-th harmonic of the left-hand side∫ O+1

O

ei2πmx
∑
n

δ(x − n)dx =
∫ O+1

O

ei2πmxδ(x − nO)dx = ei2πmnO = 1,

(3.90)
and of the right-hand side∫ O+1

O

ei2πmx
∑
k

ei2πkxdx =
∑
k

∫ O+1

O

ei2π(m−n)xdx =
∑
k

δmn = 1, (3.91)

where nO is the integer part of O, and δmn is the Kronecker symbol. Substi-
tution of (3.89) into (3.88) yields

ψ0(t) =
δ2

π2V 2

∑
k

∫ ∞

−∞
e−(x+1/2)2δ′2τ2/4−i(x+1/2)δ′t+i2πkxdx, (3.92)

where we have changed the order of the summation and the integration. The
Gaussian integration is straightforward and with the allowance of the integral
(3.61) for ε = (x + 1/2) δ′ results in the sum

ψ0(t) =
δ

2πV 2

∑
k

e−iπk
√

πτ
exp

{
−
(
t − 2πk/δ′)2

τ2

}
, (3.93)

where we have neglected the difference between δ′ and δ in the pre-exponential
factor.
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One recognizes in (3.93) a series of Gaussian spikes, which apart of the
phase factor eiπk = (−1)k differ only by their arrival times 2πk/δ′ equally
spaced in time by the interval Tr = 2π/δ′, which for the model in Fig. 3.4 has
an evident meaning of the oscillation period for the particle in the well B.
We illustrate the situation in Fig. 3.12. The wavepacket created as the result
of Gaussian injection of the population amplitude to the level |0〉 propagates
toward the right turning point. It reaches the point at t 
 π/δ and after
reflection with phase inversion starts to propagate back. At t 
 2π/δ it
returns and penetrates through the barrier with the extent of penetration
given by the ratio ∼ W−1/τ of the decay time W−1 = δ/πV 2 and the
injection time τ .

P( )t

a)

b)

c)

potential well B

. .

Fig. 3.12. Recurrences in the level–band system corresponding to a two-well po-
tential. (a) Injection of the population amplitude to the system and creation of the
packet. (b) After half of the oscillation period, reflection of the wavepacket with
π-shift of the phase. (c) The recurrence. The presence of the particle at the initial
level is restricted by the necessity of penetration through the barrier.

In the extreme case we have just considered the wavepacket of the re-
turned particle has precisely the same shape as it is had at the beginning
of the evolution. This is not always the case in the presence of anharmonic
(that is nonlinear in n) terms that have been omitted in our consideration.
The n2 term results in dispersion of the wavepacket, which manifests itself
in spreading, that is in the increase of the recurrence duration. It has not
been taken into account initially in our band model with equidistant levels.
Although the n3 anharmonicity of the band has also not been taken into
account, it arises as a result of the interaction of the band states with the
level |0〉 in the form α(n+1/2)3, as one can see in (3.86), and results in more
significant transformation of the shape of spikes at long time, which is going
to be considered now.
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The third-order anharmonicity plays the dominating role for the time
interval 1/α � t � 1/αn3 ∼ 1/α′(τδ)3, that is (V/δ)6 � δt � (V 2/δ)τ ,
where one can neglect the square term compared to the cubic term in the
exponent of (3.86). The Poisson summation formula for this case yields

ψ0(t) =
δ2

π2V 2

∑
k

e−iπk
∫ ∞

−∞
e−iα(x+1/2)3t−i(x+1/2)δ′t+i2πk(x+1/2)dx, (3.94)

where after replacement x + 1/2 → x and regrouping of terms linear in x in
the exponent one recognizes in the integral on the right-hand side an integral
representation of the Airy function 2

√
πAi(z) =

∫ ∞
−∞ exp

(
ix3/3 + ixz

)
dx

and arrives at

ψ0(t) =
δ2

π
√

πV 2 3
√

3αt

∑
k

(−1)k Ai
(

2πk − δ′t
3
√

3αt

)
. (3.95)
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Fig. 3.13. A series of population recurrences for V 2/δ � 1.5 and τδ � 0.6 with
corresponding anharmonicity α = 0.001. The time axis is expressed in the numbers
of periods. One clearly sees a cross-over from the bell-shape spikes to the shapes
with asymmetric oscillations, typical of the Airy function.

Actually, this summation can be performed for the exact expression (3.86),
and even in a more general case, when along with the cubic nonlinearity
α(n + 1/2)3t a quadric term β(n + 1/2)2t enters the phase of the integrand.
One gets rid of the quadric term just by a shift of the integration variable
x → x − ia. The final expression reads

ψ0(t) =
δ2e2a3/3

π
√

πV 2 3
√

3αt

∑
k

(−1)keabAi(b + a2), (3.96)

where a = (−δ′2τ2/4 + iβt)/( 3
√

3αt)2 and b =
(
2πk − δ′t

)
/ 3
√

3αt enter the
argument of the Airy function in (3.95).
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In Fig. 3.13 we show a number of sequential recurrences for the popula-
tion |ψ0(t)|2, where one clearly sees that the spikes gradually change from
the bell-like (Gaussian) shape to a shape with asymmetric oscillations typ-
ical of the Airy function, since the relative role of the cubic term increases
with time. Note that the spike duration and the period of spike oscillations
changes in course of time as is clear from (3.95) where a slow decrease of the
spike oscillation frequency with time is associated with the factor 3

√
3αt in

the denominator of the argument of the Airy function. We also note that this
universal Airy-like shape of the spikes is attained in all cases, no matter what
the initial profile of the probability amplitude injection, provided the injec-
tion was short compared to the wavepacket oscillation period T = 2π/δ in
the potential pit. Destruction of this picture occurs when the spike duration
becomes comparable with the period T . In the wavepacket representation
this means that at a certain moment the wavepacket becomes so broad that
it spans the potential well. Corresponding temporal spikes start to overlap
thus entering in the regime of strong interference, where the Poisson sum-
mation formula remaining formally valid does not yield a simple expression
any longer. The separation of the probability amplitude into a sequence of

0
t

Period number

b)
a)

x/L

r( ,t)x

. .

46 47 48 5049

0.02

0.01

r( )

Fig. 3.14. (a) A series of population recurrences at longer time. The width of
the spikes becomes comparable with the return period and the signal takes on a
complicated shape. Corresponding wavepackets (b) span all of the potential pit.

individual signals no longer makes sense, and the corresponding population
acquires a complex irregular shape resembling a random function as shown
in Fig. 3.14.

3.3.3 Quantum Revivals

Now we show how the interference results in the complete reconstruction of
the initial wavepacket, which is followed by the repetition of all the series
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of recurrences. This phenomenon is called quantum revival. We dwell here
mainly on the case of the regular, almost equidistant (that is slightly anhar-
monic) spectrum, which we were considering in the previous subsection, and
discuss in just a few details another important case of an irregular spectrum,
which will be needed later on in this chapter for qualitative estimates.

Regular Spectrum

In order to get an insight into the origin of the quantum revival effect let us
consider (3.86) in more detail. The cubic term in the exponent reads

iα(n + 1/2)3t = iαt

(
n3 +

3
2
n2 +

3
4
n +

1
8

)
. (3.97)

For large t this term is large and differs considerably for the neighboring n.

t =8p/a

t <<p/d'

t =20p/d'

t ~ p/d't=0

t =2p/d'

. .

Fig. 3.15. Terms of the sum (3.86) as vectors in the complex plane. The corre-
sponding Cornu constructions for the sum are shown in the inserts in the lower left
corners. At t = 0 all vectors are aligned and the modulus of the sum is maximum.
With the course of time, each of the terms acquires a phase factor, such that the
sum decreases. At a time equal to the return period, all of the vectors are almost
aligned, since the phase difference comes only from the cubic anharmonicity. Com-
plete alignment occurs at the time of complete revival, when the phase differences
of the neighboring terms are multiples of 2π.

However, for some particular values of αt this big change becomes a multiple
of 2πi and therefore it does not result in any phase shift. Indeed, for αt = 8π
it amounts to

iα(n + 1/2)3t − iα(n − 1/2)3t = iπ(24n2 + 2), (3.98)

and yields zero phase shift for the amplitudes ψn(t = 8π/α) whatever the
indices n are. Note that in the case α/(τδ)3 � δ′ the cubic term (3.97)
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changes negligibly if t changes within one period T . This change can be
ignored, the overall contribution of the anharmonicity α therefore vanishes,
and we return to (3.87) for the probability amplitude of the state |0〉. This
means that the sequence of Gaussian spikes (3.93), which has been destroyed
by the anharmonicity α at the time t > 1/α(τδ)3, appears again in its original
form at the time t 
 8π/α. The whole scenario of the time evolution repeats
again after this revival time Tr = 8π/α. The wavepacket Ψ(x, Tr) reconstructs
itself back from the shape spread over all the potential pit (Fig. 3.14) to the
initial Gaussian localized form (Fig. 3.12).

It is expedient to illustrate the process of recurrence and revivals with the
help of vector diagrams in the complex plane, similar to the Cornu geometric
construction (Cornu spiral) widely known in diffraction theory. Indeed, each
term of the sum (3.86) is a complex number of modulus e−(n+1/2)2δ′2τ2/4

and phase −i(n + 1/2)δ′t + iα(n + 1/2)3t . We depict these numbers as
vectors in the complex plane shown in Fig.3.15. All the vectors have zero
phase at t = 0 and therefore their sum has maximum absolute value ψ0(0) =
1. In the course of time the phase difference among the neighboring terms
reduces the size of the absolute value of the sum, which almost vanishes at
t ∼ π/δ′, when the neighboring terms are opposite in phase. For the time
scale where αtn3 is still a small value for typical n ∼ δ′τ , the sum again
has a maximum at the multiples t = Tk of the recurrence time T = 2π/δ′,
although this maximum is a bit smaller than the value at t = 0 due to the
influence of the anharmonicity α, which introduce small phase shifts among
the neighboring terms resulting in disalignment of the vectors representing
these terms. The longer the time the stronger the disalignment, such that
at t ∼ δ′3/α no revivals can be seen any longer. However, at the time t ∼
Trv = 8π/α the phase differences resulting from the anharmonicity become
multiples of 2π, and therefore complete revivals become again possible. In
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Fig. 3.16. Evolution at the initial stage (a) and quantum revival (b) at t = Trv =
104T . The number of populated levels is 2/δ′τ = 40. The vectors representing
the terms of the sum ( 3.86) become aligned again, as at the beginning, and the
evolution repeats.
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Fig. 3.16 we show the probability ρ to be in the state |0〉 at the initial stage
of the evolution at t ∼ 0 and at the time t ∼ Trv of the revival. One sees
the complete reconstruction of the wavepacket at t = Trv followed by the
repetition of the evolution. Note that here we have considered the case of
a cubic nonlinearity, although the same phenomenon of revivals takes place
also for a square nonlinearity αtn2 for a different Trv.

Irregular Spectrum

The important case of the irregular spectrum of eigenstates should also be
mentioned here. It is rather typical for a multidimensional motion and does
not result in well-pronounced recurrences after a time of the order of the
inverse density of states. Indeed, in classical mechanics the motions in dif-
ferent directions are usually nolredyseparable for two or more dimensional
finite systems of general type, as we have already discussed for Sinai billiards
(Fig. 1.1). This implies that the classical particle never returns exactly to the
initial position, although, according to the Pointcaré theorem, it can approach
its vicinity with any predetermined accuracy. The smaller the predetermined
distance the longer the time needed to get in the vicinity. On the contrary, a
finite size of wavepackets in quantum mechanics implies that during such a
return a part of the population comes back to the initial state, which means a
partial recurrence. Since a long classical time is typically required for return
at the vicinity of a size of the initial wavepacket, the packet dispersion during
this time is large, and therefore the recurrency amplitude is typically small,
resembling rather the regime shown for one-dimensional motion in Fig. 3.14.

In the same time an analog of complete or partial revival can occur in
such a system. Revivals of amplitudes of the order of unity are extremely rare
events, which resemble giant fluctuations. Let us estimate the time needed
to return back to the initial state with an accuracy ε. By analogy to (3.86)
we take the amplitude in the form

ψ0(t) ∼
∑
n

e−(n+1/2)2/N2−i∆nt, (3.99)

where N stands for the typical number of the populated energy eigenstates
and ∆n denote detunings of these states from the energy of the level. Actually
a simpler expression

ψ0(t) =
1

2N + 1

N∑
n=−N

e−i∆nt (3.100)

is sufficient for the estimates, where we have replaced the bell-shaped Gaus-
sian distribution by a rectangular distribution, which affects only the shape of
revival signals but not the amplitudes at maximum. In order to have the sum
(3.100) close to unity we should find a time t such that all the phases ∆nt are
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close to multiples of 2π. This means that the end of the (2N + 1)-dimensional
vector −→r (t) = (∆−N t,∆−N+1t, . . . ;∆nt, . . .∆N t)

should be inside of a sphere of radius
√

2εN around the point

P = 2π(m−N ,m−N+1, . . . ;mn, . . .mN )

with integer mn. If all ∆n are random, one can identify the vector r(t) with
coordinates of a particle moving with a random velocity

−→v = (∆−N , ∆−N+1, . . . ;∆n, . . . ∆N )

in the (2N + 1)-dimensional space and the ε vicinities of points P with solid
spherical scatterers of radii

√
2ε/N placed in the nodes of a 2π-periodic

lattice. By analogy to molecular physics it allows one to say that the revival
mean free time Trv equals the inverse relative cross-section Γ(N)ε−Nπ−Nof
the (2N + 1)-dimensional spherical scatterer. With the help of the Stirling
formula for the Γ-function we find

Trv ∼ e−N (N/επ)N , (3.101)

which shows that the revival time rapidly increases with the number N of the
energy eigenstates involved. Indeed, the smaller the total mismatch ε of the
revival is, the smaller should be the mismatches ε/N of the individual terms
of the sum (3.100). This corresponds to the phase mismatches ∼ √

ε/N at
the position, when the vectors representing the terms are almost aligned and
cos (x) 
 1−x2/2. Probability to have all 2N terms aligned with this accuracy

is of the order of
(√

ε/N
)2N

, which yields (3.101) apart of a numerical factor

1/
√

eπ for each term of the sum.

3.3.4 Fractional Revivals

Let us now return to the almost equidistant spectra. One observes regular al-
most periodic time dependence of the probability amplitude ψ0(t) not only at
the initial stage of the evolution and at the time Trv = 8π/α of the complete
revival, but also at times t ∼ Tfr = (p/q)Trv , where the fraction is given
by the ratio mutually prime numbers p and q. This phenomenon is known as
Averbukh–Perelman fractional revivals, and it results in a more complicated
shapes of ψ0(t) as compared to the simple revivals. In order to be consistent
with the consideration of previous sections we concentrate here on the case of
cubic anharmonicity, although the fractional revivals phenomenon can also
be observed for quadratic nonlinearity. The wavepacket picture corresponding
to the fractional revivals shows that the particle usually is distributed among
two or several well-localized wavepackets each of which contains just a frac-
tion of the particle. In other words, the wavefunction Ψ(x, Tr) is a quantum
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Fig. 3.17. Fractional revivals at t = Trv/12 = 40000T/12. This regime corresponds
to complete revival that, however, occurs not at the multiple of the return period.
The number of the populated levels is 2/δ′τ = 18. (a) The time dependent pop-
ulation of the initial state. (b) The wavepacket representation: ρ = |Ψ(x, t)|2 at
τ = 3333.333. Only one wavepacket is seen in the potential pit. (c) The ends of vec-
tors representing the terms of the sum (3.86) are shown schematically by points in
the complex plane for corresponding times. The revival corresponds to the complete
alignment of all the terms.

superposition of several well-separated Erenfest wavepackets, which allows us
to consider this quantum mixture of several classical states as a Schrödinger
cat. For some p and q the wavefunction may consist of a single wave packet
which returns to the initial state not at a multiple of the return time nT as
it was at the beginning, but at a moment nT + ΘT , where ΘT is a fraction
Θ of the return period T . We depict such a situation for p = 1; q = 12 in
Fig. 3.17.
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Fig. 3.18. Same as Fig. 3.17 for a more complex situation at t = Trv/24. The
number of the populated levels is 2/δ′τ = 18 as before. (a) The time-dependent
population of the initial state has two spikes. (b) Two counterpropagating wave
packets are seen at τ = 1666.56 in the potential pit. (c) These fractional revivals
correspond to the situation where the terms of the sum (3.86) are grouped in two
sets of aligned vectors, with a π/2 phase shift between the sets.



3.3 Long-Time Behavior 101

For a shorter time (p = 1; q = 24) one observes two wavepackets and two
corresponding spikes of height 1/2. We depict such a situation in Fig. 3.18.
At the time points corresponding to the position of fractional revivals terms
of the sum (3.86) are grouped into two sets with a mutual phase shift of π/2,
as one can see from panel (c).

A more complicated situation takes place at Tfr ∼ Trv/32, when four
spikes of different size are seen during one return period. We depict such a
situation in Fig. 3.19.
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Fig. 3.19. Same as Fig. 3.17 for t = Trv/32. (a) The time-dependent popula-
tion of the initial state has four spikes of different size. (b) Four counterpropa-
gating wavepackets of different height corresponding to these spikes are seen at
τ = 1250.333. (c) Grouping of the terms of (3.86) to aligned sets is less apparent.

The grouping of vectors representing the terms of (3.86) to aligned sets is
less evident in this case. However they yield four counterpropageting Gaus-
sian wave packets for the equivalent particle in the potential pit. One can
conclude that in the regime αT (1/δ′τ)3 � 1 under consideration the spikes
of the fractional revivals have the same shape as the initial signal, but the
probability of return is shared among two or several time intervals relatively
short as compered to the return period T .

Let us dwell now on the distribution law for the return probability ampli-
tudes among the spikes. To this end we consider terms of the sum (3.86) at
t = (p/q)Trv + ϑ = (8πp/αq) + ϑ, where 0 < ϑ < T is a time interval of the
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duration of one return period. The general term of the sum adopts the form

exp
[ − (n + 1/2)2 δ

′2τ2

4 + i
(
p π
q + 6n pπ

q + 12n2 p π
q + 8n3 p π

q − 4 p π δ′

q α

− 8n pπ δ′

q α + αϑ
8 + 3nαϑ

4 + 3n2 αϑ
2 + n3 αϑ − δ′ ϑ

2 − nδ′ ϑ
)
]. (3.102)

We neglect the terms proportional to αϑ, since they are small in the regime
under consideration, omit the multiples of 2π, and arrive at

exp
{

−(n+1/2)2 δ
′2τ2

4 +i
[ 12n2 p π

q + 8n3 p π
q +n

( 12 p π
q − 8 p π δ′

q α −δ′ ϑ
)
]
}

(3.103)

Let us denote by Θ the fractional part of
(

12 p π
q − 8 p π δ′

q α − δ′ ϑ
)

/2π, which
allows one to express a moment of time in the interval between two sequential
return periods lT and (l+1)T in terms of a fraction of T . Then we set q = 2q′

and obtain the sum (3.86) in the form∑
n

exp
{

−(n + 1/2)2 δ
′2τ2

4 + i
(

6n2 p π
q′ + 4n3 p π

q′ + n 2 πΘ
)}

. (3.104)

We note that the parts of the phase which depend on n3 and n2 yield
multiples of 2π for n = mq, where m is an integer. We can therefore set
n = mq′ + k and replace the summation over n by two sums:

m=∞∑
m=−∞

k=q′∑
k=1

exp
{

− (mq′ + k + 1/2)2δ′2τ2/4

+i
[

6 (mq′+k)2 p π
q′ + 4 (mq′+k)3 p π

q′ + 2π(mq′ + k)Θ
]}

. (3.105)

We replace summation over m by integration over x with the help of the
Poisson formula

∑
m δ(x−m) =

∑
s ei2πsx (3.89) and perform this Gaussian

integration, which yields

∞∑
s=−∞

q′∑
k=1

2
√
π

q′ δ τ ei π (6 k2 p/q′+4 k3 p/q′−2 k s/q′)−i π( s/q′+Θ)− 4 π2

δ2 τ2 ( s/q′+Θ)2

.

(3.106)
It is convenient to rewrite this equation in the form

∞∑
s=−∞

2
√

π

q δ τ
e−i π(s/q′+Θ)− 4 π2

δ2 τ2 (s/q′+Θ)2 q′∑
k=1

ei π (6 k2 p/q′+4 k3 p/q′−2 k s/q′),

(3.107)
where one clearly identifies normalized Gaussian spikes with zero phase at
the maximum given by terms of the first sum at times TΘ with Θ = −s/q′

and a universal amplitude function

Fr(p, q′, s) =
q′∑
k=1

ei π (6 k2 p/q′+4 k3 p/q′−2 k s/q′) (3.108)
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Fig. 3.20. A universal dependence Fr(p, q′, s) which determines the distribution of
the amplitudes of the fractional revivals of population as a function of the fractional
revival number s for the case of cubic anharmonicity α(n + 1/2)3. Normally the
fractional revivals in the time region t ∼ p

2q′
8π
α

occur at the moments timeof t =
lT + s

q′ T , although for some s the revival amplitude may vanish, depending on the
factorization properties of the numbers p and q = 2q′.

depending only on the integer numbers, enumerating the revival time (s) and
the revival type (p, q).

For each type of nonlinear dependence of the eigenstate energy on the
number n, the function Fr(p, q′, s) of integer variables p, q′, and s is deter-
mined by (3.108), and yields the probability of fractional revivals at the time
t = lT + st/q′ for the time region t ∼ lT ∼ pTrv/2q′. Note, that an integer l
enumerating the number of the return period for which the fractional revivals
take place apparently equals the integer part of the ratio pTrv/2q′T . For the
case of cubic anharmonicity under consideration the function Fr(p, q′, s) is de-
picted in Fig. 3.20 for several lowest values of q. One sees that for the prime
q′ = 5, 7, 11 all the fractional revivals at different s are present although
with different amplitudes, whereas for composed q′ = 4, 6, 8, 9, 10 some of
the spikes disappear. This indicates a hidden relation between the fractional
revivals and number theory.

We have considered here the quantum revivals in the simplest version,
when all wavepackets were initially of a bell-like Gaussian shape, and we
have called revivals and fractional revivals the restoration of such a shape at
a given time. This does not always mean that the quantum system returns
completely to the initial level, but only implies that the initial state popu-
lation time dependence ρ0 (t) is restored at some moment as it was at the
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beginning, that is in the course of the population injection. For the original
level–band problem, with the initial condition ψ0 (t = 0) = 1, when the popu-
lation does indeed return completely back to the initial state, the wavepackets
have different forms – the initially exponential shape gradually transforms to
an Airy function-like dependence. In such a situation the variety of possible
shapes of fractional revivals is richer, although apart of this circumstance the
phenomenon keeps the same general features given by the function Fr(p, q′, s).
We also note that for any other type of nonlinearity, like αn2, αn4, ... etc.,
the corresponding function Fr(p, q′, s) is different and can be constructed by
analogy.

3.3.5 Revivals and the Classical Limit

The existence of revivals and fractional revivals suggests to consider more
carefully the traditional classical limit of quantum mechanics, at least in the
case of the one-dimensional motion where the energy eigenstate spectrum
demonstrates a tendency to become equidistant. Indeed, the parameter n =
S/� responsible for the transition to the classical limit is the ratio of the
mechanical action S =

∫
period p(q)dq of the particle and the elementary action

given by the Planck constant �. It gives the mean n of the typical number n
of the populated quantum states. The larger the ratio S/�, the more classical
the system is. The transition frequency ωn = (En+1 − En) /� among the
neighboring states n and n + 1 is a frequency of classical periodic motion,
and it is apparently a classical quantity which may depend on mass and
elastic constant but not on �. At the same time, the quantum anharmonicity
of the motion, that is the ratio of the anharmonic correction ωn+1 − ωn of
the transition frequency for the adjacent pairs of the neighboring quantum
levels to the frequency ωn itself, scales as �/S. Therefore with increasing n
the one-dimensional system becomes more and more harmonic.

The classical limit of quantum mechanics is based on the Erenfest the-
orem, which states that the center of a wavepacket composed as a linear
combination of many energy eigenstates follows the classical trajectory. For
the harmonic oscillator this is always the case. However the majority of the
one-dimensional systems are anharmonic, which results, in particular, in a
spread of the wavepacket increasing in the course of time. This quantum dis-
persion destroys the localization of the Erenfest wavepackets. Hence the more
classical the system the more equidistant the spectrum is, and the longer is
the relative time needed for the spread of a wavepacket composing a localized
particle.

In the traditional classical limit of quantum mechanics one first takes
� = 0 and then considers the limit t → ∞, which implies the time domain
of interest remaining shorter than the wavepacket dispersion time ∼ S/�ωn,
while implementing the consistent quantum approach one notes that at the
long time scale t � S/�ωn the anharmonic terms are important, since they
wash out the sharp distribution of the quasiclassical particle on the classical
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trajectory in the manner that the particle becomes distributed along all the
length of the trajectory with almost uniform probability, which depends only
on the inverse residual time at a chosen point. Figure 3.14, which corresponds
to the same situation for a relatively small number of energy eigenstates in
the wavepacket, gives an idea about the situation in the classical limit.

From the example of revivals and fractional revivals we have learned
that the consistent quantum consideration of the particle propagation prob-
lem yields another regime, where the particle is localized in one or a few
wavepackets obeying classical mechanics, that is the particle spread all over
the trajectory in the course of evolution reinstates itself again as a single well-
localized wavepacket or as a quantum superposition of the well-separated and
well-localized wave packets, each of which follows the same classical trajec-
tory just being displaced in time by a fraction of the oscillation period. In
the classical limit such a regime corresponds to an intermediate asymptotic
� → 0, t → ∞, but with the constraint �t = const for the case of quadratic
anharmonicity αn2. The size of the constant is of the order of a typical action
S multiplied by the oscillation period T = 2π/ωn. For cubic anharmonic-
ity αn3 the ratio (ωn+1 − ωn) /ωn scales as (�/S)2 and this constraint reads
�2t = const, with the constant of the order of S2T .

The considered asymptotic implies that during the time of evolution the
quantum system remains isolated, that is it obeys Hamiltonian mechanics.
For really classical objects the condition �t = ST is difficult to fulfill, since
the typical actions are large, and the typical periods are long. Isolating a
system for such a long period of time as t = ST/� is unrealistic. But for
the case of mesoscopic systems, such as cold atoms or molecules at relatively
large distances, this condition can in principle be satisfied.

3.4 Population of Inhomogeneous Bands

The case of an equidistant spectrum coupled to a level by identical matrix
elements is one of a few examples of the level–band problem that can be
solved exactly and analytically in the traditional manner. It allows to get
explicit analytical expressions for a number of different interference effects
that may occur in the system and that have been discussed earlier in this
chapter. However, no exact analytical solution is available for a more complex
quantum system, when the coupling constant V0n differs significantly with the
band level number n, and the detunings ∆n of the band levels deviate from
the equidistant positions δn. Of course, the exact expression (3.26) can still
be written, but neither the inverse Fourier transformation can be carried out
exactly, nor an adequate analysis of this exact expression is possible. We
encounter the situation, discussed earlier in Chap. 2, where the idea of the
ensemble average becomes indispensable. It yields an analytical expression
of the population of the level, although not for a particular quantum level–
band system, but for the population averaged over many possible realizations
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of such a system. We note that in such systems one can encounter non-
exponential behavior which is closely related with essentially non-Wigner
level statistics.

3.4.1 Statistically Independent Levels

Let us assume that we have an ensemble of level–band systems, each of which
has exactly the same numbers N(Vi) of band levels coupled to the state |0〉
by the matrix elements V0n = Vi. Although the numbers of levels with a
given coupling V0n are taken to be the same for each system comprising the
ensemble, the values of the couplings Vi may change significantly, that is by
orders of magnitude. The positions of the levels, on the contrary, are different
for different systems, such that the detuning ∆n may take any value from a
broad strip ∆n ∈ (−Γ, Γ ). An independent distribution of the level energies is
called “Poissonian statistics”. We assume that the width of the strip Γ → ∞,
such that the mean density gi = N(Vi)/2Γ of the levels with a fixed coupling
remains constant. An example of such a system is shown in Fig. 2.5.

How many band levels are in resonance with the state |0〉 in such a situa-
tion? From the discussion of Sect.3.2.2 we remember that a two-level system
is resonant when the detuning between the levels is less than their coupling.
Let us calculate the probability Pr to have a resonance suggested by this
criterion. Consider all the levels n of type i that have the matrix elements of
coupling V0n = Vi . The ratio of the coupling and a typical smallest detuning
∆′ ∼ 1/gi of the level of the group from resonance can be estimated by the
product giVi. As long as giVi � 1, this ratio gives the probability to have a
resonance in the selected group of levels. In order to get the total probability
to have a resonance one has to sum up all the types of level and arrive at
Pr =

∑
i giVi. In a system with distributed parameters the sum has to be

replaced by the integral

Pr =
∫

V g (V ) dV (3.109)

where g (V ) dV is a density of states with V0n ∈ (V, V + dV ).
While Pi is small it does indeed yield the probability to have a resonance.

However, the integral (3.109) may be large or may even diverge at the lower
limit, which means that the expected number of resonances is much larger
than one or is even infinite. Then the probability Pi suggested by the criterion
for a two-level system does not represent the expectation value of the number
of resonances, since in a multilevel system the resonance criterion is different.
From the discussion of Sect. 3.2.2 we know that NR ∼ 2πP 2

r gives a better
estimate of the number NR of resonant levels, provided the integral (3.109)
converges.

If the integral (3.109) diverges at the lower limit, the largest contribution
is given by the weakly coupled levels. This results in a very special dynamics
of the level–band interaction which implies that the number of levels involved
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Fig. 3.21. The probability amplitude (a) and the probability (b) to be in the state
|0〉 for a level–band system with coupling changing by orders of magnitude, shown
in the logarithmic time-scale. Complete revivals become more and more seldom
with the course of time, and therefore the time average population decreases. The
ensemble average washes out the oscillations and yield zero average amplitude while
the average population decreases as a power of the time, either ρ0(t) ∼ t2(α−2) for
α < 2 or ρ0 (t) ∼ t−2(α−2)/(α−1) for α > 2, where g(V ) ∼ gαV α is the asymptotic
behavior of the state density as V → 0.

in the process increases in the course of time. At the first stage of the process
the population rapidly oscillates among a relatively small number of states
for which V t ∼ 1. In the course of time, more and more weakly coupled levels
satisfy this condition and therefore become important, and hence a number of
slow Rabi oscillations replace the rapid process. This means that the typical
frequency scales down in the course of time, until it becomes zero. One gets an
idea about such a regime by considering a function φ(a, t) =

∏∞
n=0 cos [te−an],

where harmonic oscillations at unit frequency cos [t] are modulated by a se-
ries of periodically changing amplitudes cos [te−an] of exponentially decreas-
ing frequencies e−an. In Fig. 3.21 we show the probability amplitude and the
probability suggested by the model ψ0(t) = φ(a, t). The oscillation frequen-
cies are different for different systems comprising the ensemble, and therefore
the ensemble average probability amplitude is not a self-averaging value and
already vanishes for relatively short evolution times. But the ensemble av-
erage population is well defined, and therefore considering the essentially
non-homogeneous bands we concentrate on this very quantity.

Before discussing the technique of the ensemble average it is expedient to
consider another aspect of the problem, and turn to the location of the energy
eigenvalues by analogy to the approach shown in Fig. 3.11. The divergency
of the integral (3.109) at the lower limit means, that the poles of the sum∑

n V0nVn0/ (ε − ∆n + i0) in (3.26), which for the equidistant spectrum were
placed regularly in the real axis thus giving rise to the cotangent function,
are now randomly spread along this axis in such a manner that an infinite
number of singularities is present around each real point. Clearly the same is
also the case for the zeros of the denominator of (3.26), or, in other words,



108 3 Two-Level and Level–Band Systems

each point of the real axis is an essential singularity of the Fourier transform
ψ0(ε) of the type known as a limiting point of poles. The density of poles
increases to infinity while their strength V0nVn0 decreases. The multitude of
the pole positions resembles in some respect the Cantor set.

3.4.2 Factorization of the Level Population
and the Ensemble Average

We show now how to perform the ensemble average. The Schrödinger equation
for a level–band system in the Fourier representation yields (3.26) in the form

ψ0 (ε) =
i

ε − ∑
n

V0nVn0/ (ε − ∆n + i0)
. (3.110)

In the situation where all the levels are similar and each of them is weakly pop-
ulated and hence never absorbs a significant fraction of the total population,
one can replace the sum by the integral

∑
n ... → ∫

g(∆,V )d∆dV... at t � g
as we have done considering the continuous-band model. Here g (∆,V ) d∆dV
denotes the expectation number of levels in an interval d∆ around ∆ that
is coupled to the state |0〉 by the matrix element in the interval dV around
V . This replacement is illegal for matrix elements V0n that are different by
orders of magnitude, since different groups of band levels (sorted by the size
of V0nVn0) result in recurrences, revivals and fractional revivals in essentially
different time-scales, which also means that some of the levels can accumulate
a significant fraction of the total population more often then the other, and
hence during a finite interval of time they contribute to the sum (3.110) with
higher weights. In such a situation the statistical spread of various physical
values is large, and in order to get a consistent description one has to perform
the ensemble average of the quantity of interest, that is for the population.
To this end we take the exact expression for the population

ρ0 (t) = ψ0 (t)ψ∗
0 (t)

=
1

4π2

∫
e−i(ε−ξ)t

ε − ∑
m

V1mVm1/ (ε − ∆m + i0)

1
ξ − ∑

m
V1mVm1/ (ξ − ∆m − i0)

dεdξ (3.111)

and perform the ensemble average over
∏

d∆ndV0n with a distribution func-
tion g ({∆n} , {V0n}) depending the sets of all detunings {∆n} and all cou-
plings {V0n}.

Our assumption implies independent (Poisson) statistics of the position
of the band states and their couplings to the level, that is g ({∆n} , {V0n}) =∏

g (∆n) g (V0n), with g (∆n) = Θ(Γ − |∆n|)/2Γ given by the step func-
tion Θ(x). However, even within so strong a simplifying approximation the
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ensemble average procedure still requires some effort. For this purpose, one
first has to represent the right-hand side of (3.111) in factorized form, that is
as a product of terms, each of which depends only on the detuning ∆n and
coupling V0n of the same level n. Then the ensemble average is reduced to
an independent average over the position and the coupling of each level.

Let us first take the average of the population (3.111) over the detunings.
It reads

〈ρ0 (t)〉 =
1

4π2

∏
n

{
Γ∫

−Γ
d∆n

2Γ

}
∞∫

−∞
dεdξ

× e−i(ε−ξ)t(
ε − ∑

n

V0nVn0
(ε−∆n+i0)

)(
ξ − ∑

n

V0nVn0
(ξ−∆n−i0)

) . (3.112)

We introduce new variables ζ = ε− ξ, η = (ε + ξ) /2, xn = ∆n−η and arrive
at

〈ρ0 (t)〉 =
1

4π2

∏
n

{
Γ−η∫

−Γ−η
dxn

2Γ

}
∞+iν∫

−∞+iν

∞∫
−∞

dζdηe−iζt (3.113)

× 1(
η + ζ/2 − ∑

n

|V0n|2
(ζ/2−xn+i0)

)(
η − ζ/2 − ∑

n

|V0n|2
(−ζ/2−xn−i0)

) ,

where the integration contour for ζ is the same as for ε (see C1 in Fig. 3.2),
and the integral over dη is calculated along the real axis. We now neglect
η with respect to large Γ in the limits of integration over dxn and perform
integration over dη, which yields

〈ρ0 (t)〉 =
∞+iν∫

−∞+iν

dζ
2πi

∏
n

{
Γ∫

−Γ
dxn

2Γ

}
e−iζt

ζ − ∑
n

|V0n|2
(

1
ζ/2−xn

+ 1
ζ/2+xn

) .

(3.114)
Note that on the integration path in the ζ-plane the denominator of the
integrand (3.114) has a positive imaginary part, and hence the imaginary part
of the fraction is negative. We can therefore make use of the representation
1/x = i

∫ ∞
0 eixτdτ and write

1

ζ − ∑
n

|V0n|2ζ
(ζ/2)2−x2

n

= i
∞∫
0

exp
[
iτζ − ∑

n

|V0n|2ζτi
(ζ/2)2−x2

n

]
dτ

= i
∞∫
0

eiτζ
∏
n

{
exp

[
−i|V0n|2ζτ
(ζ/2)2−x2

n

]}
dτ. (3.115)

This representation gives the intended factorized form of the expression and
allows one to separate the variables and perform the integration over dxn
independently for each n. Substitution of (3.115) into (3.114) yields
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〈ρ1 (t)〉 =
∞+iν∫

−∞+iν

dζ
2π e−iζt ∞∫

0
dτeiτζ

∏
n

{
1

2Γ

Γ∫
−Γ

dxn exp
[

−i|V0n|2ζτ
(ζ/2)2−x2

n

]}
. (3.116)

In the limit under consideration of a large number of states and a
large width of the band Γ (with a constant state density) the value κ =
1

2Γ

∫ Γ
−Γ dx exp

[
−4i |V0n|2 ζτ/

(
ζ2 − 4x2

)]
is very close to unity, since the ex-

pression in the exponent vanishes for large x, and hence the integrand tends
to unity almost everywhere within the integration limits. We make use of this
fact and replace κ by eκ−1, which for (3.116) yields

〈ρ1 (t)〉 =
∞+iν∫

−∞+iν

dζ
2π e−iζt ∞∫

0
dτeiτζ

exp

{∑
n

[
1

2Γ

Γ∫
−Γ

exp
(

4i|V0n|2ζτ
4x2−ζ2

)
dx − 1

]}
. (3.117)

We note that exp
[
4i |V0n|2 ζτ/

(
4x2 − ζ2)] is always 1 along the contour C2

shown in Fig. 3.2, and hence the expression in the square brackets in (3.117)
can be considered as a single integral along the contour C = C1 + C2 of
Fig. 3.2, with the part C1 coinciding with the real axis:

Γ∫
−Γ

dx

[
exp

{
4i |V0n|2 ζτ

4x2 − ζ2

}
− 1

]
=

∫
C

dx exp

{
4i |V0n|2 ζτ

4x2 − ζ2

}
. (3.118)

In this limit one can also replace
∑

n 1/2Γ in (3.117) by the integral over
g (V ) dV . Note that singularities of the integrand are at different parts of
the complex x-plane divided by the real axis, and hence the contour C can
be transformed to a small loop around one of these singularities – the point
x = ζ/2 at the upper part. After replacement x→ [1 + 2/(x − 1)] ζ/2 the
integral takes the form

I = −
∫
C

ζ

(x − 1)2

(
exp

{
i
|V0n|2 τ

ζ

(x − 1)2

x

})
dx, (3.119)

and the integration contour C becomes a clockwise oriented circle of large
radius centered at the point x = 1. We now perform the integration iby parts
around this point, which results in

I =
∫
C

ζ

1 − x

d

dx

(
exp

{
i
|V0n|2 τ

ζ

(
x − 2 +

1
x

)})
dx

= −i |V0n|2 τ

∫
C

x + 1
x2

(
exp

{
i
|V0n|2 τ

ζ

(
x − 2 +

1
x

)})
dx. (3.120)
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For this integral the radius of the circle C can be taken equal to unity, and
therefore by changing variables x = eiϕ we arrive at

I = − |V0n|2 τ exp

{
2 |V0n|2 τ

iζ

} 2π∫
0

(
1 + e−iϕ) exp

{
i
2 |V0n|2 τ

ζ
cosϕ

}
dϕ,

(3.121)
which can be reduced to a standard integral representation of the Bessel
functions Jk (x) and yields

I = −2π |V0n|2 τ exp
{

2|V0n|2τ
ζi

} [
J0

(
2|V0n|2τ

ζ

)
+ i J1

(
2|V0n|2τ

ζ

)]
, (3.122)

where the calculation has been performed assuming a positive τ . The average
population (3.117) now takes the form

〈ρ0 (t)〉 =

∞+iν∫
−∞+iν

dζ

2π
e−iζt

∞∫
0

dτeiτζ exp

{
− τ

∞∫
0

g (V ) 2π |V |2

exp
{

2|V |2τ
ζi

}{
J0

(
2|V |2τ

ζ

)
+ iJ1

(
2|V |2τ

ζ

)}
dV

}
, (3.123)

and implies evaluation of the integral in the exponent for a given dependence
g (V ) of the state density on the coupling constant. If the time t is short the
typical frequencies ζ ∼ 1/t are big, as suggested by the uncertainty principle,
and the combination 2 |V |2 τ/ζ in the arguments under the integral in the
exponent can be set to 0, whence the integral yields the mean decay rate
W = 2π

∫ ∞
0 g (V ) |V |2 dV . The integration over dτ yields 1/(ζ + iW ), which

after the integration over dζ results in the exponentially decaying population
〈ρ0 (t)〉 = e−Wt. Now the physical meaning of the exponential and Bessel
functions becomes clear: they allow “in average” for the population recur-
rences from the band to the state |0〉 that modify strongly the exponential
decay process.

3.4.3 The Long-Time Asymptotic

We now consider an asymptotic expression for the population at long times.
Note that the main contribution to the integrals comes from the domain
where the arguments of the exponents are of the order of unity. For a long time
t the slow modes of frequencies ζ ∼ 1/t are important, which means that in
(3.123) the main contribution to the integrals come from the domain τ ∼ 1/ζ
and V ∼ ζ ∼ 1/t. One can therefore replace g (V ) by its asymptotic form as
V → 0. This is consistent with the fact that at the long-time asymptotic the
main part of the population is located at the band levels weakly bound to
the state |0〉 which are present in abundance.



112 3 Two-Level and Level–Band Systems

Let us consider the case g (V ) 
 gαV
−α for small V . Note that the power

index α should be within certain limits 1 ≤ α < 3, since the state density
g (V ) is supposed to satisfy two main conditions: (i) the mean transition rate,
given by the integral W = 2π

∫
g (V )V 2dV must be a finite number, which

implies that the integral
∫

gαV
−αV 2dV converges at the lower limit V → 0 ,

and (ii) the total state density of weakly coupled states given by the integral∫
g (V ) dV is infinite, which implies that as V → 0 the integral

∫
gαV

−αdV
diverges. On the contrary, the integral

∫
gαV

−αV dV of (3.109), which gives
the expectation value of the number of resonant levels, may diverge or con-
verge, thus yielding two qualitatively different knds of asymptotic behavior
of the population 〈ρ0 (t)〉.

We also note that for some problems the density of states can indeed
be given exactly by a power function of the coupling constant, as is the
case for the cold Rydberg atoms with g (V ) ∼ V −2 dependence discussed
in Sect2.5.5. Such a distribution yields divergence of integrals

∫
g (V )V 2dV

and
∫

g (V )V dV at the upper limit V → ∞ and implies a cut-off procedure
for strong couplings. In other problems the power dependence is valid just
for the asymptotic at V → 0. It turns out that convergence of the integrals
is often important for physical conclusions, and therefore the replacement
of the density g (V ) by its asymptotic dependence has to be done in a way,
which excludes these artificial divergencies. One of possible ways is to take
g (V ) = gαV

−αe−(V/h)2 , where h =
[
W/πgαΓ

( 3−α
2

)]2/(α−3) is the cut-off
parameter consistent with the notation W = 2π

∫
g (V )V 2dV , which can be

set to 1 by a proper choice of time units, and Γ(X) is the gamma function.
This allows us to calculate the integral in the exponent of (3.123):

∞∫
0

g (V ) |V |2 exp
{

2|V |2τ
ζi

}[
J0

(
2|V |2τ

ζ

)
+ iJ1

(
2|V |2τ

ζ

)]
dV, (3.124)

analytically in terms of hypergeometric functions, and obtain the asymptotic
expressions for large τ/ζ ∼ t2 directly from there. However, we present here
an approximate albeit physically meaningful approach, which demonstrates
directly the nature of the quantities that govern the long-time behavior of
the system.

The replacement ζ → z/t, τ → θt in (3.123) yields

〈ρ0 (t)〉 =

∞+iν∫
−∞+iν

∞∫
0

dzdθ

2π
exp{−2πtθ

∞∫
0

g (V ) |V |2 e−i|V |2v

[
J0

(
|V |2 v

)
+ iJ1

(
|V |2 v

)]
dV − iz + iθz}, (3.125)

where v = 2θt2/z is a large value for long t. We note that the real part
of the integral in the exponent is an even function of v, whereas the imag-
inary part is an odd one, which makes the entire expression real, as the
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population should be. One could employ here the asymptotic form of Bessel
functions Jn (x) 
 √

2/πx cos (x − nπ/2 − π/4) unless small values of V
were important. We therefore divide the integration interval into two parts∫ ∞
0 =

∫ 1/
√
v

0 +
∫ ∞
1/

√
v
. The first integral corresponds to small values of |V |2 v

and we set this combination to zero in the integrand, whereas the second inte-
gral corresponds to |V |2 v � 1 which allows one to make use of the aforesaid
asymptotic form of the Bessel functions. This results in

exp
(
−i |V |2 v

) [
J0

(
|V |2 v

)
+ iJ1

(
|V |2 v

)]
= eiπ/4

√
2/π |V |2 v, (3.126)

and after substitution to (3.125) yields

〈ρ0 (t)〉 =

∞+iν∫
−∞+iν

∞∫
0

dzdθ

2π
exp

{
−tθ

∫ 1/
√
v

0
2πg (V ) |V |2 dV

− eiπ/4
√

θz/π

∫ ∞

1/
√
v

2πg (V ) |V | dV − iz + iθz

}
. (3.127)

In the integrals over dV one now recognizes two meaningful quantities.
The first integral gives the total decay rate to the states that have coupling
matrix elements V less than 1/

√
v, that is less than or of the order of the

inverse time 1/t. For these states V t < 1, and hence they are not populated
but work just as an empty reservoir for the exponential decay of the state |0〉.
At large v this integral is small, since the mean decay rate W converges at the
lower limit, and for 2πg (V ) 
 gαV

−α it amounts to gαv
(α−3)/2/ (3 − α). The

second integral gives the expectation value of the number of resonances with
the coupling V > 1/

√
v, calculated with the help of the two-level criterion

(3.109). We have to consider two physically different cases, α < 2 when it
converges as V → 0, and α > 2 when it diverges. For the first case the
integral approaches its asymptotic value Pr = 2π

∫ ∞
0 g (V )V dV , with the

deviation
∫ 0
1/

√
v
2πg (V ) |V | dV 
 gαv

(α−2)/2/ (α − 2), and for the second case∫ ∞
1/

√
v
2πg (V ) |V | dV = const + gαv

(α−2)/2/ (α − 2), and it tends to infinity
like the power of time tα−2. Later on we consider separately the important
case α = 2. We take into account the specific form of the integrals and write
(3.127) in the form

〈ρ0 (t)〉 =

∞+iν∫
−∞+iν

∞∫
0

dzdθ

2π
exp

{
−iz + iθz − eiπ/4

√
θz/πPr

−z
3−α

2 θ
α−1

2 tα−2A − θ
α−1

2 z
3−α

2 t(α−2)B
}

. (3.128)

where A = gα2(α−3)/2/ (3 − α), B = e−iπ/4gα2(α−2)/2/
√

π (α − 2), and Pr
either is the expectation number of resonances for α < 2 or denotes an
integration constant for α > 2.
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Incomplete Decay

We now evaluate the integrals (3.128) taking into account the parity of the
exact expression (3.125) with respect to v ∼ θ/z by considering only the
real part of the integrals. For α < 2 we expand the exponent of the integral
(3.128) in powers of tα−2 and arrive at

〈ρ0 (t)〉 = Re

⎧⎨⎩
∞+iν∫

−∞+iν

∞∫
0

dzdθ

2π
e−iz+iθz−

√
−iθz/πPr

[
1 + z

3−α
2 θ

α−1
2 tα−2Cα + ...

]}
, (3.129)

where Cα = gα2(α−3)/2
[√

2/πe−iπ/4/ (α − 2) − 1/ (3 − α)
]

is a numerical
constant. This shows that the population 〈ρ0 (t)〉 of the level approaches its
asymptotic value

〈ρ0 (∞)〉 = Re

⎡⎣ ∞+iν∫
−∞+iν

∞∫
0

dzdθ

2π
e−iz+iθz−

√
−iθz/πPr

⎤⎦ (3.130)

as an inverse power tα−2 of time. After the replacement θ → −x/iz we
perform integration over dz and arrive at

〈ρ0 (∞)〉 = Re

⎡⎣ ∞∫
0

dxe−x−
√
x/πPr

⎤⎦ 
 2π
P 2
r

, (3.131)

where the last equality is the asymptotic form for large Pr of the exact ex-
pression

〈ρ0 (∞)〉 = 1 +
[

Erf
(

Pr
2

√
π

)
− 1

]
Pr
2

exp
(

P 2
r

4π

)
(3.132)

depicted in Fig. 3.22(a). Here Erf (x) is the error function.
Let us consider (3.131) in the context of the discussion of the number of

levels in resonance Sect.3.2.2. For a uniform spectrum and interaction the
total number N of indeed resonant levels is not given by the expectation
value Pr ∼ V g calculated with the help of the two-level resonance criterion,
but amounts to the square of this number N ∼ (V g)2. Therefore for large Pr
in the case of a uniform population distribution among the resonance levels
each of them, including the state |0〉, has on average 〈ρ (t)〉 ∼ 1/N ∼ 1/P 2

r .
Equation (3.131) shows that it is also the case for a random spectrum with
the total number of resonant levels given by the square of the expectation
number of two-level resonances N = P 2

r /2π. For a small probability of
resonance Pr � 1 only a small part of the systems comprising the ensemble
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Fig. 3.22. (a) Dependence of the asymptotic population on the expectation number
Pr of two-level resonances. (b) Dependence of the asymptotic value of the popu-
lation on the density of states for the case 2πg(V ) = g2V

−2 (solid line) and for
the case 2πg(V ) = g2V

−2e−V 2
(dotted line). (c) Dependence of the power index β

of the asymptotic decay law 〈ρ0 (t) − ρ0 (∞)〉 ∼ t−β on the power index α of the
asymptotic dependence 2πg(V ) � gαV −α of the state density on the coupling V at
the limit V → 0.

satisfies the two-level resonance condition V > ∆, which implies that each of
the systems has at most one resonance whence the population of the state
|0〉 is of the order of 1/2. The two-level criterion valid for this case yields
〈ρ0 (∞)〉 = 1 − Pr/2 in agreement with (3.132), since Erf (0) = 0.

Complete Decay

For α > 2 the integral
∫

g (V )V dV diverges, which implies that an infinite
number of states are in resonance with the level. In consequence the decay of
the level should be complete. In order to show this we keep in the exponent
of (3.96) only the leading term ∼ tα−2 and arrive at

〈ρ0 (t)〉 = Re

⎧⎨⎩
∞+iν∫

−∞+iν

∞∫
0

dzdθ

2π
e−iz+iθz−

√
−iθz/πPr exp

[
z

3−α
2 θ

α−1
2 tα−2Cα

]⎫⎬⎭ ,

(3.133)
where Cα denotes the same numerical constant as in (3.129). We note
that the main contribution to the integral comes from the domain z ∼ 1,
θ ∼ t−2(α−2)/(α−1), and therefore two terms in the exponent containing the
combination θz can be omitted, being small at long t. This yields

〈ρ0 (t)〉 = Re

⎧⎨⎩
∞+iν∫

−∞+iν

∞∫
0

dzdθ

2π
e−iz exp

[
z

3−α
2 θ

α−1
2 tα−2Cα

]⎫⎬⎭ , (3.134)

which, after the replacement θ → ϑt−2(α−2)/(α−1), results in
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〈ρ0 (t)〉 = t−2(α−2)/(α−1)Re

⎧⎨⎩
∞+iν∫

−∞+iν

∞∫
0

dzdϑ

2π
e−iz exp

[
z

3−α
2 ϑ

α−1
2 Cα

]⎫⎬⎭ ,

(3.135)
where the integral amounts to a time-independent constant. Thus the en-
semble average population decays to zero as the power 2 (α − 2) / (α − 1) of
time, that is 〈ρ0 (t)〉 ∼ t−2(α−2)/(α−1) as shown in Fig. 3.21.

We note that in both cases α > 2 and α < 2 the asymptotic time depen-
dence of the population becomes less and less rapid when α approaches the
value of 2, although the asymptotic population 〈ρ0 (∞)〉 changes abruptly
from a finite value to 0. This means that the particular case α = 2 when
the expectation value of resonances

∫
g (V )V dV diverges, whereas the time

dependence vanishes, requires special consideration.

The Special Case α = 2

In the case α = 2 the situation is more difficult. Efforts are required for the
determination of the long-time asymptotic 〈ρ0 (t) − ρ0 (∞)〉 which shows how
the population 〈ρ0 (t)〉 approaches the limiting value, although it is relatively
easy to find the asymptotic value 〈ρ0 (∞)〉 itself. For 2πg (V ) = g2V

−2 the
integral

I = 2π

∞∫
0

g (V ) |V |2 exp
(
−i |V |2 v

) [
J0

(
|V |2 v

)
+ iJ1

(
|V |2 v

)]
dV

(3.136)
entering (3.125) should not be split into two parts as we have done in (3.127),
since it has very peculiar behavior. Indeed, after the substitution 2πg (V ) =
g2V

−2 and the replacement V → x
√

v (3.136) yields

I = g2
√

1/v

∞∫
0

exp
(∓ix2) [J0

(
x2) ± iJ1

(
x2)] dx

= g2
√

z/θt2πe∓π/4
(

−2 + CE ± i

2
π + 5 ln(2)

)
, (3.137)

where the upper sign corresponds to positive z in the expression v = 2θt2/z,
and CE 
 0.577 is the Euler constant. After substitution of (3.137) into
(3.125) the time dependence disappears and with the allowance of the sym-
metry we arrive at

〈ρ0 (t)〉 = Re

∞∫
0

∞∫
0

dzdθ

π
exp

{
− iz + iθz −

g2
√

−izθ/π
(−2 + CE + i

2 π + 5 ln(2)
)}

, (3.138)
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which after the replacement θ → iθ/z and integration of sin z/πz over dz
results in

〈ρ0 (∞)〉 = Re

∞∫
0

dθ exp
{

−θ−g2

√
θ
π

(−2 + CE + i
2 π + 5 ln(2)

)}
. (3.139)

This integral can be expressed in terms of the error function similar to (3.132)
which now has a complex-valued argument, and in Fig. 3.22 we show the
asymptotic population (3.139) as a function of the constant g2. One sees that
at g2 = 0 the population remains on the level 〈ρ0 (∞)〉 = 1, as it should
be if there are no levels present in the band, whereas for larger densities it
decreases as a power 〈ρ0 (∞)〉 ∼ g−2

2 .
However, one has to take this result with caution, since it does not yield

any time dependence of the population, or in other words, for such a situ-
ation the asymptotic distribution is already attained at t = 0. This is an
artefact of the model 2πg (V ) = g2V

−2, which yields the expectation number
of resonances

∫
g (V )V dV logarithmically diverging at both upper and lower

limits. Thus the strong and the weak couplings V are equally important, and
in some way they compensate for each other in the population dynamics.
Therefore, in order to determine the asymptotic time dependence of the level
population 〈ρ0(t) − ρ0(∞)〉 we have to consider the integral

I =

∞∫
0

e−V 2
exp

(
−i |V |2 v

) [
J0

(
|V |2 v

)
+ iJ1

(
|V |2 v

)]
dV, (3.140)

where by introducing the cut-off factor e−V 2
we have taken into account that

the coupling V cannot have an infinite size. In this way we separate the arti-
ficial influence of strongly coupled states (V → ∞) on the long time behavior
of 〈ρ0 (t)〉, which for the case α = 2 by accident has compensated completely
the physically important contribution of the weakly coupled states.

Actually now, in the case α = 2 under consideration, even the represen-
tation (3.140), which was convenient for the splitting of the integral into two
parts given in (3.127), requires rather involved analysis. The reason of this
complexity becomes clear when we return to an earlier stage of the analysis
and consider our initial representation (3.119), with 2πg (V ) = g2V

−2e−V 2
,

which reads ∞∫
0

g2

V 2 e−V 2
∫
C

dx

2π
exp

{
4iV 2ζτ

4x2 − ζ2

}
dV. (3.141)

Earlier, in order to get rid of the diverging singularity V −α of the state
density (with α = 2 in (3.141)), we have performed, although not explaining
the reason, the integration by parts over dx along the contour C:
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∞∫
0

dV
g2

V 2 e−V 2

⎛⎜⎝ x

2π
e

4iV 2ζτ

4x2−ζ2

∣∣∣∣end.C

beg.C
−

end.C∫
beg.C

dx
x

2π
d

dx
e

4iV 2ζτ

4x2−ζ2

⎞⎟⎠ . (3.142)

As long as the integrand is an analytical function of the variable x the be-
ginning and the end of the contour C correspond to the same point of the
complex plane and the first term in parentheses vanishes whereas the second
term becomes an integral along a closed loop. But if in the second term we
try to change the order of integration and calculate the integral over dV first,
we obtain a non-analytic function

I =
g2

π

end.C∫
beg.C

dx
32iζτx2(

4x2 − ζ2)2

∞∫
0

dV e
4iV 2ζτ

4x2−ζ2 −V 2

=
g2√
π

end.C∫
beg.C

dx
32iζτx2(

4x2 − ζ2)3/2 √
4iζτ − 4x2 + ζ2

, (3.143)

which does not return to its initial value after circumvention around the point
x = ζ/2 but acquires a phase factor e3iπ. This example shows the typical
difficulty which arises when the ensemble average technique is employed –
the analytical properties of the functions before and after the average may be
different, and hence the change of the order of integration might be illegal.
The simplest way to avoid the problem in the case under consideration is
to choose a different integration contour. The simplest suitable contour C
circumvents both singularities at x = ±ζ/2 in the opposite directions andthus
has a figure–eight-like shape, as shown in Fig. 3.23.
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a) b)

Fig. 3.23. Integration contour C suitable for ensemble average. The averaged func-
tion returns to the initial value after circumventing both singularities of (3.125) in
the complex plane (a) of the variable u. After the replacement u → √

y this contour
coincides with the Pochhammer contour (b), well-known in the theory of hyperge-
ometric functions.
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By scaling the variable x = uζ/2 we change the size of C such that it
goes around the points u = ±1, and after the replacement u =

√
y this

contour takes the Pochhammer shape shown in Fig. 3.23. The integral it-
self coincides with the integral representation of the hypergeometric function
2F1 (a, b; c;X)∫

C

√
y (y − 1)−3/2√

1 − y(1 + 4 i τ/ζ)−1
dy = 2πi 2F1

(
1
2
,
3
2
; 1;

1
1 + 4 i τ/ζ

)
(3.144)

and can also be given in different forms either as a hypergeometric function
of a different argument or as an elliptic function E(X), which reads

I =
−2g2

√
πτ√

1 + 4 i τ/ζ
2F1

(
1
2
,
3
2
; 1;

1
1 + 4 i τ/ζ

)

= ig2
√

πζ

√
iτ

ζ
2F1

(
−1

2
,
1
2
; 1; − iζ

4τ

)

=
2ig2√

π
ζ

√
iτ

ζ
E

(
− iζ

4τ

)
. (3.145)

Note that when discussing (3.124) earlier we mentioned that for α �= 0 the
integral I can also be given in terms of hypergeometric functions, and indeed,
by considering (3.143) for this case one obtains a result similar to (3.145),
which however cannot be reduced to the elliptic function.

Substitution of (3.145) to (3.117) yields

〈ρ1 (t)〉 =

∞+iν∫
−∞+iν

∞∫
0

dτdζ

2π
exp

{
−iζt + iτζ − iζ

g2√
π

√
4τ
−iζ

E
( − iζ

4τ
)}

,

(3.146)
and after the replacement ζ → −2iz

√
θ; τ → −√

θ/2z results in

〈ρ1 (t)〉 =

i∞−ν∫
−i∞−ν

∞∫
0

dθdz

2πz
exp

{
−2z

√
θt − θ − 2g2√

π

√
θ E(z2)

}
. (3.147)

One can check that such a replacement does not affect the convergence of the
integrals.

In Fig. 3.24 we show the absolute value of the integrand (3.147), and the
phase of the hypergeometric function 2F1(−1/2, 1/2; 1; z2) = 2E(z2)/π in
the complex plane of the variable z. One clearly sees that the initial contour
C can be moved toward large z and can be transformed to a contour C ′

consisting of two parts. The first part is a loop around the pole at z = 0.
This yields a time-independent contribution corresponding to the asymptotic
population



120 3 Two-Level and Level–Band Systems

〈ρ0 (∞)〉 =

∞∫
0

dθ exp
{

−θ − g2√
π

√
θ

}
, (3.148)

which can be given in terms of the error function by analogy to (3.132), and
which is similar in all the main features to the population shown in Fig. 3.22.
The second part of the contour C ′ goes around the branching point of the
hypergeometric function at z = 1 and allows for the deviation 〈ρ0(t) − ρ0(∞)〉
decreasing in time. Since the hypergeometric function at different sides of
the real axis takes complex conjugated values, this contour integral can be
transformed to a definite integral along the real axis from z = 1 to z =
∞ provided we keep only the imaginary part of the integrand. For long t
the integral can be evaluated approximately. Indeed, since the limit t → ∞
corresponds to

√
θ → 0 the term θ in the exponent of the integral
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Fig. 3.24. The structure of the integrand (3.147) in the complex plane z. (a)
The absolute value of the integrand shows that the initial integration contour C =
(−i∞ − ν, i∞ − ν) can be transformed to the contour C′, which consists of two
parts and comprises a loop around the pole at z = 0 that gives the asymptotic
value of 〈ρ0(t)〉 and a contour that goes around the branching point z = 1 shown in
(b) which yields the deviation 〈ρ0(t) − ρ0(∞)〉 vanishing at long t. (b) The phase
of the hypergeometric function of (3.147) is discontinuous on the real axis, starting
from the branching point at z = 1.

〈ρ0(t) − ρ0(∞)〉 = −2Im

∞∫
1

∞∫
0

dθdz

2πz
e
−2z

√
θt−θ− 2g2√

π

√
θ E(z2) (3.149)

can be omitted as small, and the integration over dθ yields

〈ρ0(t) − ρ0(∞)〉 
 −2Im

∞∫
1

dz

πz
(
2zt + 2g2√

π
E(z2)

)2 . (3.150)
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The integrand tends to a real number 1/4πz3t2 for long t, and the first
non-vanishing correction g2 Im

[
E(z2)

]
/2π

√
πz4t3 can be determined by the

Taylor expansion over g2 and, after integration, yields

〈ρ0(t) − ρ0(∞)〉 
 g2

π
√

πt3

∞∫
1

Im
[
E(z2)

] dz

z4 =
2g2

9π
√

πt3
. (3.151)

One sees, in spite of the fact that for the case α = 2 the expectation
number of two-level resonances Pr is infinite, the decay of the level |0〉 is not
complete, although the population of this level approaches its finite asymp-
totic value 2π/g2

2 as t−3, which is much faster than for any other α, as shown
in Fig. 3.22. It worth mentioning that here the coefficient g2 plays the role of
Pr for other α.



4 Two-Band System

Thus far we have been considering the level–band system, for which an ex-
plicit analytic expression (3.26) for the Fourier transform of the probability
amplitude exists. However, as we have seen, even for such a system, the
complexity of the problem does not allow one to directly perform the inverse
Fourier transformation in the generic case, and therefore in order to get phys-
ically consistent analytic results, one needs to apply a statistical description
based on the idea of ensemble averages. The situation becomes more difficult
still when we consider the more complex quantum system of two coupled
bands. Not only the inverse Fourier transformation, but even the derivation
of an explicit, exact expression for the Fourier transforms like (3.26) turns out
to be problematic. Therefore, employment of the ensemble average approach
becomes a vital part of the analytic approach to this problem.

We start with the consideration of the all-order perturbation series and
their graphical representation in the spirit of Feynman diagrams. However,
being topologically equivalent to the standard diagrams of many-body theory
where the unperturbed motion of the particle is depicted as straight lines and
the perturbations as vortices with the incoming lines of the perturbation, our
diagrams more closely resemble Grotrian ones, with interaction shown by lines
of transitions among the points denoting the unperturbed energy levels. We
believe that such a representation, performed in the spirit suggested by P.W.
Anderson in his seminal paper on dynamical localization, is better suited to
the case of point (0-dimensional) systems like atoms and molecules, where
the free evolution does not imply propagation along a straight trajectory.

We discuss the renormalization associated with the random perturbation,
and consider several particular cases of non-degenerate bands, two degenerate
levels, and a degenerate level coupled to a non-degenerate band. We consider
the dynamics of the total populations of the bands and the degenerate levels
as well as the population distribution over the band, and demonstrate the
interplay between the exponential and the coherent damping that yields os-
cillations in the time dependencies of the total populations and oscillations
in the distribution of the population over the bands.

We dwell on the role of the correlations of the perturbation that manifest
themselves in the fact that the rank of the perturbation matrix becomes much
smaller relative to its order, and elucidate the role of correlations between the
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matrix elements of the perturbation and the energy position of the levels to
which they belong. We show how these correlations affect the time evolution
of the total populations and the distribution of the populations over the
bands. We conclude by considering the situation where all of the matrix
elements of the perturbation have Gaussian statistics but with an individual
width for each transition.

4.1 General Consideration

Under certain conditions, the calculation of the population dynamics in dif-
ferent complex quantum systems can be carried out in the same manner. We
first express the Fourier transforms of the probability amplitudes to be at
different quantum states in terms of the all-order perturbation series over
the coupling. We multiply these series by the similar series for the complex
conjugate amplitudes in order to obtain the probabilities. We then perform
the ensemble average over the sizes of the couplings and thereby eliminate the
majority of terms in the perturbation series. This often allows one to perform
an analytic summation of the series for probabilities. We note that after the
ensemble average, the particular values of the interaction matrix elements are
no longer important for certain regimes, whereas the topological structure of
the perturbation series, that is the number of possible sequences of adjunct
transitions induced by the perturbation, starts to play a leading role.

4.1.1 Series and Diagrams for the Level–Band Problem

The casting of the probability amplitudes in the all-order perturbation series
is the first step of the analysis, and in order to gain a deeper insight into
the approach we start with the example of the level–band system, which has
already been considered in the previous chapter, but this time with the help
of a different technique.

Series and Diagrams for the Probability Amplitudes

One can cast the exact expression (3.26) for the Fourier transform of the
probability amplitude tof remaining in the initial state |0〉 in a power series
over the coupling



4.1 General Consideration 125
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One sees that the generic term of the perturbation series has the structure
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V 0
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1
ε
, (4.3)

which can be interpreted in physical terms as a sequence of transitions in-
duced by the interaction V n

0 , and therefore the entire series represents the
sum over all transition trajectories. In Fig. 4.1 we show such a trajectory for
a 6-th order term
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V 0
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(4.4)

as an example. The system initially in the state |0〉 makes a transition to the
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Fig. 4.1.
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state |n〉 with the transition amplitude given by the matrix element V n
0 and

returns back to the state |0〉 with the amplitude V 0
n in order to perform two

more “round trip” transitions, to the state |m〉 and to the state |k〉 consecu-
tively. The visiting of each level |l〉 is associated with a fraction 1/ (ε − ∆l)
that corresponds to a pole in the complex plane of ε at the level energy po-
sition ∆l and yields an oscillating exponent ei∆lt after the inverse Fourier
transformation, whereas the energy position ∆0 of the level |0〉 is taken to be
zero and gives the fraction 1/ε corresponding to time integration.

=

X ( )0 e

|n> |n> |n> |m>|m> |k> |k> |l>|l> |s>|n> |n> |m>|m> |k>

+
|0> |0> |0> |0> |0> |0>

+ + + + +

Fig. 4.2.

Hereafter, instead of writing down the terms of the perturbation series,
which becomes more and more cumbersome as the order of the perturbation
increases, we will draw the corresponding diagrams, where each transition
between two states |e〉 and |s〉 with the amplitude V s

e is shown by a wave line
and points on the ends of these lines denote the fractions 1/ (ε − ∆l). In this
notation, the amplitude (4.2) is given by a sum over all possible “bush-like”
trajectories of any possible length that start and end at the point |0〉, as
shown in Fig. 4.2.

By X0(ε) we denote here the sum of all diagrams that start and end with
state |0〉, which coincides with the probability amplitude ψ0(ε) = X0(ε) for
the particular level–band problem under the consideration.

Repetition of the Transitions

The representation of the probability amplitudes in the form of a diagramatic
series not only provides a convenient way to handle cumbersome expressions,
but occasionally also suggests a hint for practical calculations. For example,
the role of repeating transitions between a pair of states can be readily under-
stood with the help of diagrams. This relies on the comprehension that each
term of the perturbation series corresponds to a sequence of transitions, and
each transition requires a time τ which is of the order either of the inverse
transition probability τ ∼ 1/W or of the inverse typical coupling τ ∼ 1/V ,
depending on which is longer. Therefore at a given moment t the total num-
ber of transitions that have occurred in the system is limited, and the typical
length of the diagram can be estimated as N(t) ∼ t/τ .

If the number N(t) is much less than the total number N 
 W/δ ∼
V 2/δ2 ∼ P 2

r of the levels involved in the process discussed earlier in Sect.3.2.2
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and Sect.3.4.3 (3.132), the probability to encounter a trajectory which arrives
twice or more times at the same state |n〉 of the band is small. Although these
trajectories enter into the sum over all diagrams, their relative contribution
is negligible for short time-scales. Therefore the ensemble average procedure
yields only the mean squared matrix elements

〈
V n

0 V 0
n

〉
, corresponding to the

“forward-and-back” transition from the level |0〉 to a state |n〉, where the
contribution of the higher-order averages remains unimportant. This is in
complete agreement with the result of (3.123) and the discussion thereafter,
showing that for the short-time regime, while the recurrences or revivals
have not yet occurred, only the mean square coupling

∫
g (V )V 2dV is of

importance.
This reasoning brings us to the conclusion that by taking into account

repeating transitions to the same states, we allow for the influence of recur-
rences and revivals on the population dynamics of a multilevel system, that
definitely play an important role over a long period of time but do not con-
tribute to the short-time dynamics. As we have already seen in Sect.3.3.2 the
revival regime arises at times t ∼ 1/δ ∼ g of the order of the inverse spacing
1/δ between the neighboring energy levels, that is the mean state density g.
This means that one can ignore the returns for t � g which also corresponds
to the regime where one can make use of the continuous-band model.

Diagrams for Populations

As we have already mentioned when considering the level–band system with a
complicated and irregular structure of the detunings ∆n and of the transition
matrix elements V n

0 , the value of the probability amplitude ψn(t) of a state
n may and usually does vanish after average over the ensemble. Therefore,
dealing with complex systems we have to consider mainly the probabilities
(3.111), that are “good” or “self-averaging” quantities, and draw the corre-

. .
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|n'> |m'> |k'> |l'>

|0>

|n> |m> |k>

|n'> |m'> |k'>

X ( )0 e

X ( )0 x

= +

Fig. 4.3.

sponding terms of the perturbation series for the populations. We do this by
superimposing the diagrams corresponding to the Fourier transform ψ0(ε)
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of the amplitude ψ0(t) with the diagrams for the Fourier transforms ψ0(ξ)
of the complex conjugate amplitude ψ∗

0(t) as shown in Fig. 4.3. In order to
distinguish between these two types of diagrams we use undulating lines for
the trajectories of ψ0(ε) and dashed lines for those of ψ0(ξ). It is clear that in
a typical term of the perturbation series for populations, the undulating and
the dashed trajectories have different lengths. We also note that the dashed
line connecting two points, say p and q corresponds to the factor (V p

q )∗ = V q
p

conjugated with the same coupling factor on the wavy line.
The technique under discussion plays no important role in the considera-

tion of the level–band systems; it only brings to light the fact that each term
of the perturbation series represents a certain trajectory of sequential jumps,
and that the all-order perturbation series itself is just a sum of the ampli-
tudes of all possible trajectories. This property is a particular case of a more
general rule stating that in quantum mechanics we have to take into account
the interference of all possible channels of the process. It is also a complete
analog of the Feynman path integrals, where the integration is carried out in
the discrete space of the energy eigenstates of the unperturbed Hamiltonian.

We note, however, that for more complex systems this approach seems
to be more convenient as compared with the other methods and to yield
the final results in the most straightforward and physically clear way. In-
deed for the level–band system, the topologic structure of the interaction
is such that a transition 0 → n must be followed immediately by the back
transition n → 0, and therefore each matrix element V n

0 entering the per-
turbation series together with its complex conjugate V 0

n form an irreducible
block V n

0 (ε − ∆n)−1
V 0
n in the geometric series (4.2). This is no longer the

case for more complex two-band systems, where the transition from a level of
the first band to an energy eigenstate of the second band does not imply an
immediate back transition. On the contrary, for this problem the generic tra-
jectory travels over different states with little probability of a self-intersection
occurring in the regime t � g.

4.1.2 Series and Diagrams for the Two-Band Problem

Let us now consider the two-band problem. We designate levels of the first
band by the index n and levels of the second band by index m, both indeces
running either from −∞ to ∞ for infinite number of states or from −N/2 to
N/2 and from −M/2 to M/2 for a finite numbers of states N + 1 and M + 1
of the first and the second bands respectively. We assume that at t = 0 only
the state n = 0 is populated, that is ψn(t = 0) = δ0

n, ψm(t = 0) = 0, and by
analogy to (3.10) write down the Fourier transformed Schrödinger equation

εψn(ε) = ∆nψn(ε) + V m
n ψm(ε) + iδ0

n

εψm(ε) = ∆mψm(ε) + V n
mψn(ε), (4.5)

where the summation over repeating upper and lower indices is implicit, that
is V m

n ψm =
∑

m V m
n ψm. Here, as earlier, ∆n and ∆m denote detunings from
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the resonance of the levels of the first and second bands, respectively, and
∆n=0 is set to zero.

Matrix Form

Two rectangular (N + 1) × (M + 1) matrices V̂ and V̂ + of an interaction
with the complex conjugate elements V m

n =
(
(V +)nm

)∗ together with the
unperturbed Hamiltonians of the first ∆̂1 and second ∆̂2 bands comprise the
Hamiltonian

Ĥ =
(

∆̂1 V̂

V̂ + ∆̂2

)
(4.6)

of the two-band system, which can be separated into two parts: (i) the un-
perturbed Hamiltonian

Ĥ0 =
(

∆̂1 0
0 ∆̂2

)
(4.7)

with
(
∆̂1

)n′

n
= δn

′
n ∆n and

(
∆̂2

)m′

m
= δm

′
m ∆m in the unperturbed energy

eigenstate representation, and (ii) the interaction

V̂int =
(

0 V̂12

V̂ +
21 0

)
, (4.8)

where Ĥ0 and V̂int are both square Hermitian matrices.

Series

In the matrix notation of (4.7)–(4.8) the Schrödinger equation (4.5) reads[
ε − Ĥ0 − V̂int

]
ψ̄(ε) = iδ0

n (4.9)

where ψ̄ denotes the vector
{
ψ−N/2, . . . , ψN/2, ψ−M/2, . . . , ψM/2

}
, and δ0

n ={
0, . . . , δ0

n, . . . , 0, . . . ., 0
}

corresponds to the initial condition. The solution of
(4.9)

ψ̄(ε) =
i

ε − Ĥ0 − V̂int
δ0
n (4.10)

given in terms of the resolvent 1/
(
ε − Ĥ0 − V̂int

)
means

ψn(ε) = 〈n| i

ε − Ĥ0 − V̂int
|n = 0〉 (4.11)

ψm(ε) = 〈m| i

ε − Ĥ0 − V̂int
|n = 0〉 . (4.12)
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Now we make use of the Taylor expansion of the resolvent operator

1

ε − Ĥ0 − V̂int
=

1

ε − Ĥ0
+

1

ε − Ĥ0
V̂int

1

ε − Ĥ0

+
1

ε − Ĥ0
V̂int

1

ε − Ĥ0
V̂int

1

ε − Ĥ0
+ . . . (4.13)

and take into account the block structure (4.6) of the Hamiltonian. The even
terms of (4.13) then contribute to (4.11) and yield the probability amplitudes
to find the system at the levels of the first band, whereas the odd terms
correspond to (4.12), that is to the second band. This yields

ψn(ε) =
iδ0
n

ε − ∆0
+ i

1
ε − ∆0

V m
0

1
ε − ∆m

V n
m

1
ε − ∆n

+ . . .

ψm(ε) = i
1

ε − ∆0
V m

0
1

ε − ∆m

+i
1

ε − ∆0
V m′

0
1

ε − ∆m′
V n
m′

1
ε − ∆n

V m
n

1
ε − ∆m

+ . . . , (4.14)

where the summation over repeating indices is implicit.

Diagrams

Comparison of (4.14) and (4.4) suggests that the amplitudes of the states
ψn(ε) and ψm(ε) are sums of the contributions of all possible trajectories
that start at the state |0〉, that is |n = 0〉 of the first band and end at the
states |n〉 or |m〉 respectively. In Fig. 4.4 we depict the diagrams representing
the 6-th order perturbation term for ψn(ε) and the 5-th order perturbation
term for ψm(ε) with the help of the same notation that has been employed
for the level–band problem.
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Fig. 4.4.

In contrast to the diagrams of Figs. 4.1 and 4.2 the trajectories in the
two-band system do not have to return to the same level because of the
interaction topology and indeed on the contrary, they travel over all possible
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intermediate states. Therefore generic terms of the series (4.14) contain the
majority of factors V m

n in the first power. This is also true for terms of the
series for populations such as those depicted in Fig. 4.5. This has a dramatic
consequence for the ensemble averaged quantities, since after the average over
an ensemble of matrices V̂int with a symmetric, say Gaussian, distribution
of the matrix elements V m

n the majority of terms in the perturbation series
vanish. Indeed, if a term of the perturbation series contains even a single

. .
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matrix element V m
n without its complex conjugate counterpart (V m

n )∗, it is
an odd function which yields zero after the ensemble average with an even
distribution. It is worth mentioning that if the mean matrix element 〈V m

n 〉
differs from zero, then the mean interaction 〈V̂int〉 can be attributed to the
unperturbed Hamiltonian Ĥ0 → Ĥ0 + 〈V̂int〉, such that the ensemble average
of the rest of the perturbation V̂int − 〈V̂int〉 would yield zero for the mean
values of the matrix elements.

The Diagram Topology

We must now consider the structure of the non-vanishing terms. Generally
speaking their structure is complex, once the long-time asymptotic behavior is
concerned, as detailed later. Here, however, we concentrate on the regime t �
g where the structure may be readily determined. Intuitively we understand
that during a finite time interval only a finite number of transitions can occur
in the two-band system, as was the case in the level-band system previously
discussed. If the interval is short enough, the number of transitions is much
less than the total number of levels involved in the population dynamics, and
hence the diagram has enough space for such a location where the number
of self-intersections is not larger than that needed to sustain the ensemble
average. An example of a diagram of 22-nd order for the amplitude is shown
in Fig. 4.6(a). In such a diagram each transition n → m occurs together
with its counterpart – the transition m → n in the opposite direction, which
yields a factor 〈V n

mV m
n 〉 after the ensemble average. There is no need to take
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into account repetition of the transitions, since their contribution is small
as long as the total number of transitions remains small compared to the
total number N of the levels involved in the process. We illustrate this in
Fig. 4.6(b) and (c) where the total number of different diagrams of type (c)
is N times smaller than the number of the diagrams of type (b), whereas a
contribution to the perturbation series of each particular 8-th order diagram
of these types is of the same order of magnitude.

We now depict the diagram for a generic, non-vanishing term of the per-
turbation series for the amplitude without paying attention to the particular
indices of the visited states. It has the tree-like structure shown in Fig. 4.7.
Let us convince ourselves by directly performing the ensemble averaging that
the terms of the perturbation series indeed have a tree-like structure. We first
consider the matrix elements that are the closest neighbors of their conju-
gates, that is the parts of the perturbation series terms where the sequence
of factors reads∑

m

... × V n
k

1
(ε − ∆n)

V m
n

1
(ε − ∆m)

V n
m

1
(ε − ∆n)

V l
n × ... (4.15)

The ensemble average of this part yields

... × 1
(ε − ∆n)

∑
m

〈V m
n V n

m〉
(ε − ∆m)

1
(ε − ∆n)

× ...

= ... × 1
(ε − ∆n)

∑
m

〈
V 2

〉
(ε − ∆m)

1
(ε − ∆n)

× .., (4.16)

where by
〈
V 2

〉
= 〈V m

n V n
m〉 =

∫ |V m
n |2 g(|V m

n |)dV m
n we denote the mean

square coupling corresponding to the distribution function g(|V m
n |). One can
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. .
Fig. 4.7.

see that the ensemble average wipes off the matrix structure of the perturba-
tion such that the remaining factor

∑
m

〈
V 2

〉
/ (ε − ∆m) can be attributed

to its “root” state n, and therefore the next two matrix elements V n
k and V l

n

separated by this factor can now be considered as neighboring. We repeat
this procedure again and again until all of the transition matrix elements
become coupled, as shown in Fig. 4.7.

4.1.3 The Renormalization

The tree-like structure of the diagrams after the ensemble average in the
short-time regime allows one to perform an analytical summation of the per-
turbation series and to reduce the problem to the solution of a set of algebraic
equations for the ensemble averaged sums and average characteristics of the
system, that do not contain parameters of particular systems comprising the
ensemble. The key idea of the approach employs the fact that each “branch”
of a “tree” has exactly the same topology as the entire “tree”.

Equations for the Averaged Amplitudes

Indeed, let us denote by Xm(ε) the sum of all possible tree-like diagrams that
start at a level m and return to the level m of the second band, and let us
concentrate on the structure of diagrams that start at a specific level n of the
first band. The perturbation series for the amplitudes with the allowance of
the fact that a branch also has this tree-like topology and therefore can be
denoted by Xm(ε), takes the form shown in Fig. 4.8 where we denote

〈
V 2

〉
by V 2. The first term of the series contains no transitions and yields just the
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factor 1/(ε − ∆n) corresponding to the level n of the first band. The first
transition starts at the level n, goes to a level m of the second band and
returns back. It yields the factor

〈
V 2

〉
/(ε − ∆m)(ε − ∆n)2, which can be

combined with all other non-vanishing terms of the perturbation series that
pass through the state m and return only once to the state n thus yielding
the combination

〈V m
n Xm(ε)V n

m〉
(ε − ∆n)2

=

〈
V 2

〉
Xm(ε)

(ε − ∆n)2
. (4.17)

Summation over m yields the second term of the series shown in Fig. 4.8.
The next term combines all the diagrams that return to the state n twice,
and thus the contribution reads

1
ε − ∆n

〈∑
m

V m
n Xm(ε)V n

m

〉
1

ε − ∆n

〈∑
m′

V m′
n Xm′(ε)V n

m′

〉
1

ε − ∆n

=
1

ε − ∆n

〈
V 2〉∑

m

Xm(ε)
1

ε − ∆n

〈
V 2〉∑

m′
Xm′(ε)

1
ε − ∆n

, (4.18)

whereas the generic term of the series corresponding to k returns has the
form

1
(ε − ∆n)k+1

〈
V 2〉k [∑

m

Xm(ε)

]k
. (4.19)

One sees that the generic term (4.19) for the amplitudes in the two-band
problem has exactly the same structure as the term (4.1) with the factor〈
V 2

〉
Xm(ε) playing the role of the factor V n

0 V 0
n / (ε − ∆n) and ε − ∆n → ε.

The sum Xn(ε) of the geometric series (4.19) can therefore be given in terms
of similar sums Xm(ε), that is

Xn(ε) =
∑
k

1
(ε − ∆n)k+1

〈
V 2〉k [∑

m

Xm(ε)

]k
=

1
ε − ∆n − 〈V 2〉∑

m
Xm(ε)

. (4.20)

By analogy
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Xm(ε) =
1

ε − ∆m − 〈V 2〉∑
n

Xn(ε)
, (4.21)

which together with (4.20) yields a set of two nonlinear algebraic equations

Q1(ε) =
∑
n

1
ε − ∆n − 〈V 2〉Q2(ε)

Q2(ε) =
∑
m

1
ε − ∆m − 〈V 2〉Q1(ε)

, (4.22)

for two sums Q1(ε) =
∑
n

Xn(ε) and Q2(ε) =
∑
m

Xm(ε).

Solutions of (4.22) depend on the structure of bands 1 and 2, and sev-
eral different examples will be considered later in this chapter. A general
conclusion emerging from the consideration of the two-band system should
already be mentioned: as the result of the perturbation of a two-band system
by a matrix of random couplings, the resonant denominators of the fractions
1/ (ε − ∆n;m) that allow for the poles at the positions of energy eigenvalues
∆n;m adopt the form 1/(ε−∆n;m−〈

V 2
〉
Q2;1(ε)), which means that all of the

energy eigenvalues of the same band acquire an imaginary part
〈
V 2

〉
Q1(ε)

or
〈
V 2

〉
Q1(ε), depending on the band number, that are solutions of the set

(4.22) of two nonlinear equations. One can refer to this change as renormal-
ization of the energies by a random perturbation that in the regime t � g
results in the irreversible decay of the states.

Note that by analogy we can obtain the equations

Xn(ξ) =
1

ξ − ∆n − 〈V 2〉Q2(ξ)
; Xm(ξ) =

1
ξ − ∆m − 〈V 2〉Q1(ξ)

Q1(ξ) =
∑
n

1
ξ − ∆n − 〈V 2〉Q2(ξ)

; Q2(ξ) =
∑
m

1
ξ − ∆m − 〈V 2〉Q1(ξ)

.

(4.23)
for the complex conjugate amplitudes that coincide with (4.20)-(4.22). How-
ever choosing the solution of these equations we should remember that the
integration contour of the inverse Fourier transformation over ξ goes not
above the real axis, as in Fig. 3.2, but below it, and therefore the solutions
for Xn;m(ξ) and for Q1;2(ξ) are the complex conjugates of those for ε.

Expressions for Averaged Populations

Let us now turn to the perturbation series for the populations. A diagram
representing a non-vanishing term of the perturbation series for the popula-
tions is shown in Fig. 4.9. Comparing this diagram with the diagrams for a
level-band system of Fig. 4.3 one sees a new important feature – the non-
vanishing contribution may come from an undulating and dashed lines con-
necting the same levels n and m. Indeed such a diagram contains the product
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V m
n (V m

n )∗ = V m
n V n

m since the series for the complex conjugate amplitudes
have complex conjugate matrix elements, and hence the parallel transition for
two different complex conjugated amplitudes yields exactly the same mean
value

〈
V 2

〉
as two opposite transitions for each of them. In Fig. 4.10 we

. .

Fig. 4.10.

show a higher-order diagram that demonstrates the typical structure of non-
vanishing terms – there are two trees “growing” from each level that corre-
spond to the amplitude and conjugate amplitude series, and these trees are
connected by coupled lines of different amplitudes.

Employing the notation of (4.20)–(4.23) for the renormalized energies
allows one to draw the diagram Fig. 4.10 summed over all possible trees,
which takes the form shown in Fig. 4.11
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We can now draw the diagram series for the populations shown in
Fig. 4.12.
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All even terms correspond to band 1, and the odd terms correspond to
band 2. One can sum up these perturbation series directly, since they consti-
tute a geometric series with the common factor

Ξ(ε, ξ) =
∑
n′,m′

Xn′(ε)Xn′(ξ)
〈
V 2〉X ′

m(ε)Xm′(ξ)
〈
V 2〉 (4.24)

shown in Fig. 4.13.
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The summation yields, for the population ρm (ε, ξ) of the states |m〉,

ρm (ε, ξ) =
1

ε − ∆m − V 2Q1(ε)
1

ξ − ∆m − V 2Q1(ξ)
V 2

1 − Ξ(ε, ξ)
1

ξ − V 2Q2(ξ)
1

ε − V 2Q2(ε)
, (4.25)

where we write V 2 instead of
〈
V 2

〉
to shorten the notation. We also note an

evident albeit remarkable consequence of such a structure of the series
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ρm (ε, ξ) =
1

ε − ∆m − V 2Q1(ε)
1

ξ − ∆m − V 2Q1(ξ)
V 2

∑
n

ρn (ε, ξ)

ρn (ε, ξ) =
1

ε − ∆n − V 2Q2(ε)
1

ξ − ∆n − V 2Q2(ξ)
V 2

∑
m

ρm (ε, ξ)

+δn0
1

ξ − V 2Q2(ξ)
1

ε − V 2Q2(ε)
, (4.26)

which is depicted in Fig. 4.14 and emerges clearly from the series shown in
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Fig. 4.12. It has an explicit physical meaning – the population of any state of
a band forms as a result of transitions from all populated states of the other
band.

Equations (4.26) allow one to find the total populations ρ1 (ε, ξ) =∑
n ρn (ε, ξ) of the first and ρ2 (ε, ξ) =

∑
m ρm (ε, ξ) of the second bands

after taking the sums over n for the first equation, and over m for the second
one. With the allowance of (4.20)–(4.23) this yields the equations

ρ1 (ε, ξ) =

(
V 2

∑
n

Xn(ε)Xn(ξ)

)
ρ2 (ε, ξ) + X0(ε)X0(ξ),

ρ2 (ε, ξ) =

(
V 2

∑
m

Xm(ε)Xm(ξ)

)
ρ1 (ε, ξ) , (4.27)

that have the solutions

ρ1 (ε, ξ) =
X0(ε)X0(ξ)

1 − (V 2
∑

n Xn(ε)Xn(ξ)) (V 2
∑

m Xm(ε)Xm(ξ))

ρ2 (ε, ξ) =
X0(ε)X0(ξ)

(
V 2 ∑

m Xm(ε)Xm(ξ)
)

1 − (V 2
∑

n Xn(ε)Xn(ξ)) (V 2
∑

m Xm(ε)Xm(ξ))
, (4.28)

and for the population difference ∆ρ (ε, ξ) = ρ1 (ε, ξ) − ρ2 (ε, ξ) one immedi-
ately obtains

∆ρ (ε, ξ) =

(
1 − V 2 ∑

m Xm(ε)Xm(ξ)
)
X0(ε)X0(ξ)

1 − (V 2
∑

n Xn(ε)Xn(ξ)) (V 2
∑

m Xm(ε)Xm(ξ))
. (4.29)
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4.2 Non-Degenerate Bands

We are now in the position to consider a particular realization of the two-band
system. We start with the simplest example of two statistically equivalent
bands, which are the bands with the same mean density of states, shown in
Fig. 4.15, and assume that at t = 0 only the state n = 0 is populated. We
will postpone the important generalization to the case of two different bands
until the end of this section, since such a system behaves in qualitatively the
same way, although it requires more awkward calculations.

4.2.1 General Remarks and the Main Questions

As earlier, we use the energy of the state |n = 0〉 as a reference point for the
energy scale, that is we put ∆n=0 = 0. Note that in order to find a solu-

n m
Vn

m

. .
Fig. 4.15. Two-band system with statistically equivalent bands of identical mean
density of states g1(∆) = g2(∆) = const.

tion for a different initial condition, the superposition principle for the initial
populations can be employed due to the fact that the ensemble averaging
procedure wipes out all of the interference effects related to the initial con-
ditions. This circumstance is related directly to the tree-like topology of the
terms sustaining the ensemble average, which eliminates completely the dia-
grams with dashed and undulating lines starting at different levels, namely
the diagrams responsible for the interference.

We address here two main questions: (i) what are the total populations of
the bands as a function of time, and (ii) in which way are these populations
distributed among the levels of the bands? The first question can also be
posed differently. One can establish a law, which would govern the total
population dynamics, and which would have a simple mathematical form.

The second question may have two qualitatively different answers. Indeed,
considering the level–band system in the previous chapter, we have seen that
the distribution of the populations among the levels of the band follows the
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Lorentzian profile (3.35) shown in Fig. 3.5, which has a width given by the
level decay rate W . For that case the population of a band state |n〉 has
only one possibility to change, namely to return back to the initial level |0〉,
whereas in the two-band system it has other possibilities – the population
arriving to a state |m〉 of the second band from a state |n〉 of the first band
may, in principle return back to any other state |n′〉 of the band 1. What
happens to the width of the population distribution in this case? Does it
become broader by a value W after each subsequent transition from band to
band as should be the case if all the phase information is washed away by the
ensemble average, or in spite of the ensemble average does the system keep
its phase information in such a way that the population distribution over the
band remains localized in a finite strip?

4.2.2 Renormalized Energies and the Population Distribution

We start by considering the population distribution over the bands and first
solve the equations (4.20)–(4.22) for the case t � g, which allows one to
replace the summation by integration. We also note that for the statistically
equivalent bands Q1(ε) = Q2(ε) = Q(ε) and Q1(ξ) = Q2(ξ) = Q(ξ), and
therefore the equations for Q(ε) and Q(ξ) take the form

Q(ε) =

Γ∫
−Γ

gd∆

ε − ∆ − 〈V 2〉Q(ε)

Q(ξ) =

Γ∫
−Γ

gd∆

ξ − ∆ − 〈V 2〉Q(ξ)
, (4.30)

where Γ → ∞ is the band width, and g is the state density. We perform the
integration and arrive at

Q(ε) = −g ln
Γ − 〈

V 2
〉
Q(ε) + ε

−Γ − 〈V 2〉Q(ε) + ε

Q(ξ) = −g ln
Γ − 〈

V 2
〉
Q(ξ) + ξ

−Γ − 〈V 2〉Q(ξ) + ξ
. (4.31)

In the limit Γ → ∞ the numerators of the fractions in the arguments of
logarithms are large and positive, and the denominators are large and nega-
tive, thus the fraction itself tends to −1. But ln (−1) may take both values
±iπ, depending on the direction of the circumvention of the branching point
x = 0 of ln (x), which depends in turn on the sign of the imaginary part of
the fraction, that is on the locations of zeros of the denominators of X(ε) and
X(ξ) on the complex plane. We remember that ε has a positive imaginary
part, and ξ has a negative one, and therefore the poles of X(ε) as well as the
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zeros of Γ − 〈
V 2

〉
Q(ε)+ ε are in the negative imaginary part of the complex

plane, whereas for ξ the opposite is the case. This yields in the limit Γ → ∞
Q(ε) = −iπg

Q(ξ) = iπg. (4.32)

and hence, according to (4.20)–(4.23)

Xn(ε) = Xm(ε) = X(ε) =
1

ε − ∆n; m + iπ 〈V 2〉 g
,

Xn(ξ) = Xm(ξ) = X(ξ) =
1

ξ − ∆n;m − iπ 〈V 2〉 g
.

(4.33)

One sees, that the energy renormalization results in simply adding an imag-
inary contribution, with the sign changing as a function of the sign of the
imaginary part of the variable ε or ξ.

We can now find the sum

∑
n

Xn(ε)Xn(ξ) =

Γ∫
−Γ

gd∆

(ε − ∆ + iπ 〈V 2〉 g) (ξ − ∆ − iπ 〈V 2〉 g)
(4.34)

which enters (4.28) and 4.29). For Γ → ∞ we calculate the residual at the
upper part of the complex plane and arrive at∑

n

Xn(ε)Xn(ξ) =
−2πig

ξ − ε − 2iπ 〈V 2〉 g
, (4.35)

which also gives the identical value of the sum for the other, statistically
equivalent band

∑
n Xn(ε)Xn(ξ) =

∑
m Xm(ε)Xm(ξ). After substitution of

these sums and (4.32) to (4.25) with the allowance of (4.24) one obtains

ρm (ε, ξ) =
1

ε − ∆m + iπgV 2

1
ξ − ∆m − iπgV 2

V 2

1 +
(

2πgV 2

ξ−ε−2iπV 2g

)2
1

ξ − iπgV 2

1
ε + iπgV 2 , (4.36)

where we as earlier write V 2 instead of
〈
V 2

〉
to shorten the notation. After

double inverse Fourier transformation for the time dependent population of
the state |m〉 of the second band we therefore obtain

ρm (t) =
1

4π2

∞−iν∫
−∞−iν

dξ

∞+iν∫
−∞+iν

dε
exp [i(ξ − ε)t]

(ξ − iπgV 2) (ε + iπgV 2) (ξ − ε)

V 2
(
ξ − ε − 2iπV 2g

)2

(ξ − ε − 4iπV 2g) (ε − ∆m + iπgV 2) (ξ − ∆m − iπgV 2)
.(4.37)



142 4 Two-Band System

By analogy to (3.113) we introduce the variables ζ = ξ − ε, η = (ε + ξ) /2,
and perform the integration over dη, which yields the spectral density of the
population ρ (t,∆) = ρm (t) g corresponding to the detuning ∆m = ∆:

ρ (t,∆) =
1
π2

∞+iν∫
−∞+iν

dζ
exp [iζt]

ζ (ζ − 2iW )
W (W + iζ)

(ζ − iW − ∆) (ζ − iW + ∆)
. (4.38)

where W = 2πV 2g. Performing integration over dζ one obtains the answer
to question (ii):

ρ (t,∆) =
W

π (W 2 + ∆2)
(
1 + e−2Wt − 2e−Wt cos (∆t)

)
, (4.39)

which indicates clearly that a Lorentzian distribution W/π (W 2 + ∆2) of
width W attains in the regime t > 1/W . Note that for the two-band problem
(4.39) gives exactly the same distribution over the levels of the second band
as the distribution following from (3.33) for the level–band problem, apart
from the fact that the distribution (4.39) is twice as broad and four times
smaller than it should be, bearing in mind that for two bands the total sate
density is twice as big, and the total population is shared between two bands.
We also note that for two statistically equivalent bands the same Lorentzian
distribution of populations attains in the first band, although with a slightly
different time dependence:

ρ (t,∆) =
W

π (W 2 + ∆2)

(
1 − e−2Wt − 2We−Wt sin(t∆)

∆

)
+ e−Wtδ(∆).

(4.40)
In Fig. 4.16 we depict the distributions (4.39)–(4.40). One sees that both
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Fig. 4.16. Population distribution over the first (a) and the second (b) bands. The
initial δ-like distribution of the state 0 is not shown.

population distributions which can be broad initially become localized in the
W -vicinity of the resonance ∆ = 0 as time passes.
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4.2.3 Dynamics of the Total Populations of Bands

Let us now return to question (i) and consider the dynamics of the population
distribution between two bands. Equations (4.27) for the total populations
with allowance for (4.33) and (4.35) read

ρ1 (ε, ξ) =
−2πigV 2

ξ − ε − 2iπV 2g
ρ2 (ε, ξ) +

1
ξ − iπgV 2

1
ε + iπgV 2 ,

ρ2 (ε, ξ) =
−2πigV 2

ξ − ε − 2iπV 2g
ρ1 (ε, ξ) , (4.41)

As earlier, by analogy with (3.113) we introduce the variables ζ = ε − ξ,
η = (ε + ξ) /2, and perform the integration over dη, which yields

ρ1 (ζ) =
−2πigV 2

ζ − 2iπV 2g
ρ2 (ζ) +

i

ζ − i2πgV 2 ,

ρ2 (ζ) =
−2πigV 2

ς − 2iπV 2g
ρ1 (ζ) , (4.42)

which for W = 2πV 2g takes the form

−iςρ1 (ζ) = W [ρ1 (ζ) − ρ2 (ζ)] + 1,
−iςρ2 (ζ) = W [ρ2 (ζ) − ρ1 (ζ)] , (4.43)

and after the inverse Fourier transformation over ζ results in the differential
equations

ρ̇1 (t) = −W [ρ1 (t) − ρ2 (t)] + δ(t),
ρ̇2 (t) = −W [ρ2 (t) − ρ1 (t)] , (4.44)

for the time-dependent populations ρ1 (t) and ρ2 (t) with the δ-function cor-
responding to the initial condition ρ1 (t = 0) = 1.

One immediately recognizes in (4.44) the balance equation, or master
equation, and readily finds the population difference

ρ1 (t) − ρ2 (t) = e−2Wt, (4.45)

whereas for the sum of the populations one obtains

ρ̇1 (t) + ρ̇2 (t) = δ(t), (4.46)

which means ρ1 (t) + ρ2 (t) = 1 for t > 0.
Let us summarize the physical meaning of the results obtained. The total

populations of the first and the second band obey the master equation, such
that if at t = 0 the population was localized at a single level of the first band,
the population difference ρ1 (t) − ρ2 (t) decreases exponentially from 1 to 0,
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with a rate W = 4πV 2g given by the product of the mean squared interaction
V 2 and the state density g. After a time t ∼ 1/W both bands have a total
population close to 1/2. One may think that this irreversible dynamic is a
signature of the loss of coherence in the system. However, the distribution of
the populations over the levels of the bands does not become broader with the
course of time but on the contrary becomes localized towards a Lorentzian
profile of width W which implies that the coherence in the system is present
at all times and plays the dominating role in spite of the exponential character
of the total population dynamics. The exponential decay is therefore just a
transient process that takes place during a limited time interval t ∼ g, as long
as the recurrences do not yet affect the population dynamics. We therefore
note an evident condition of the applicability of this approach – there must be
many band levels in a strip of the width W of the population distribution. We
find this number by multiplying width W = 2πV 2g by the state density g, so
that the condition reads 2πV 2g2 � 1. This also implies that the recurrence
time T = g must be much longer as compared to the typical decay time 1/W ,
and that the typical interaction

√
V 2 exceeds the mean distance δ ∼ 1/g

among the neighboring band levels. All these conditions allow one to employ
the continuous-band model of (4.30).

4.2.4 Different Bands

Let us now consider populations ρn (ε, ξ) and ρm (ε, ξ) of two different bands
with the state densities g1 and g2 respectively. Equations (4.23) yield

Xn(ε) =
1

ε − ∆n − 〈V 2〉Q2(ε)

Xm(ε) =
1

ε − ∆m − 〈V 2〉Q1(ε)

Xn(ξ) =
1

ξ − ∆n − 〈V 2〉Q2(ξ)

Xm(ξ) =
1

ξ − ∆m − 〈V 2〉Q1(ξ)
(4.47)

where by analogy to (4.30) for the quantities Q we have explicit expressions
resulting from the set of equations

Q1(ε) =

Γ∫
−Γ

g1d∆

ε − ∆ − 〈V 2〉Q2(ε)
= −iπg1,

Q2(ε) =

Γ∫
−Γ

g2d∆

ε − ∆ − 〈V 2〉Q1(ε)
= −iπg2,
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Q1(ξ) =

Γ∫
−Γ

g1d∆

ξ − ∆ − 〈V 2〉Q2(ξ)
= iπg1,

Q2(ξ) =

Γ∫
−Γ

g2d∆

ξ − ∆ − 〈V 2〉Q1(ξ)
= iπg2, (4.48)

and therefore ∑
n

Xn(ε)Xn(ξ) =
−2πig1

ξ − ε − 2iπ 〈V 2〉 g2∑
m

Xm(ε)Xm(ξ) =
−2πig2

ξ − ε − 2iπ 〈V 2〉 g1
. (4.49)

Now (4.28), after integration over dη, reads

ρ1 (ζ) =
(ζ + iW1)

(ζ + i (W1 + W2)) ζ

ρ2 (ζ) =
iW2

(ζ + i (W1 + W2)) ζ
, (4.50)

which yields for the time-dependent and density-weighted population differ-
ence

ρ1 (t) /g1 − ρ2 (t) /g2 = e−(W1+W2)t/g1. (4.51)

Here W1,2 = 2π
〈
V 2

〉
g1,2. By analogy to (4.39)–(4.40) a Lorentzian distribu-

tion of width (W1 + W2) /2 is attained at t > 1/ (W1 + W2). We also note
that the total populations of the bands satisfy the master equation

ρ̇1 (t) = −W2ρ1 (t) + W1ρ2 (t) + δ(t),
ρ̇2 (t) = −W1ρ2 (t) + W2ρ1 (t) . (4.52)

4.3 Two Degenerate Levels

The coherent character of the population dynamics discussed at the end of
Sect. 4.2.3 becomes much more apparent for the case of two degenerate levels,
that is for bands with ∆m = ∆n = 0. Considering such a system we first make
use of the results of the general analysis of Sect. 4.1, and then we present
an alternative, that allows one to obtain a deeper insight into the random
matrix model.

4.3.1 Degenerate Levels as a Complex System

Equations (4.20)–(4.23), (4.26)–(4.28) remain valid for this system, although
the particular algebraic form of (4.20)–(4.23) is now different from (4.32)–
(4.33). Let us assume, as earlier in (4.30), that the bands are statistically
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equivalent both having an identical number N of levels, and write (4.22) for
Q1,2(ε) = Q(ε) and Q1,2(ξ) = Q(ξ) in the form

Q(ε) =
N

ε − 〈V 2〉Q(ε)

Q(ξ) =
N

ξ − 〈V 2〉Q(ξ)
. (4.53)

These second-order algebraic equations yield

Q(ε) =
ε +

√
ε2 − 4N 〈V 2〉
2 〈V 2〉

Q(ξ) =
ξ −

√
ξ2 − 4N 〈V 2〉
2 〈V 2〉 , (4.54)

where the signs of the roots are chosen such that the signs of the imaginary
parts of Q(ε) and Q(ξ) coincide with those for ε−1 and ξ−1 on the inte-
gration contours (−∞ ± iν; ∞ ± iν) of the inverse Fourier transformation re-
spectively, since otherwise the inverse Fourier transforms of the corresponding
probability amplitudes vanish. Equations (4.32) give us a hint for the proper
choice.

All states of each of the degenerate bands are apparently statistically
equivalent, and therefore we will not consider the population distribution
amongst them but dwell on the difference of the total populations of the
bands. Substitution of (4.54) into (4.20), (4.23) yields

Xn(ε) = Xm(ε) = X(ε) =
2

ε − √
ε2 − 4N 〈V 2〉

Xn(ξ) = Xm(ξ) = X(ξ) =
2

ξ +
√

ξ2 − 4N 〈V 2〉
, (4.55)

and therefore (4.29) results in

∆ρ (ε, ξ) =
X(ε)X(ξ)

1 + N 〈V 2〉X(ε)X(ξ)
. (4.56)

The inverse Fourier transform of (4.56) reads

∆ρ (t) =
1

4π2

∞+iν∫
−∞+iν

∞−iν∫
−∞−iν

exp [i (ε − ξ) t] dεdξ(
ε − √

ε2 − 4NV 2
) (

ξ +
√

ξ2 − 4NV 2
)

+ NV 2
,

(4.57)
where as earlier we replace

〈
V 2

〉
by V 2.

One can close the integration contours in the complex planes ε and ξ
and transform them such that they become the closed loops C1 and C2 going
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around the branching points ε1,2 = ξ1,2 = ±
√

4NV 2 as shown in Fig. 4.17(a).
After the replacements ε =

√
4NV 2 sinϕ and ξ =

√
4NV 2 sin θ these con-

tours become intervals as shown in Fig. 4.17(b), whereas the integral (4.57)

-w w -p p
C1 C1

C2 C2

e,x j,qa) b)

Fig. 4.17. Integration contours C1 and C2 in the complex planes ε and ξ respec-
tively (a) go around the points w = ±√

4NV 2. The replacements ε → √
4NV 2 sin ϕ

and ξ → √
4NV 2 sin θ transform these contours to the straight lines (b) in the com-

plex plane of ϕ and θ

takes the form

∆ρ (t) =
∫
C1

∫
C2

exp
[
i
√

4NV 2 (sinϕ − sin θ) t
]
cosϕ cos θdϕdθ

π2
(
ei(ϕ−θ) + 1

) . (4.58)

We first perform the integration over one of the variables, say ϕ, by moving
the integration contour C1 toward ϕ → i∞ along the strip (−π, π), by taking
the residual at the point ϕ = θ+π, and allowing for the fact that as ϕ → i∞
the integrand vanishes, we arrive at

∆ρ (t) =
2
π

π∫
−π

dθ exp
[
−i4t

√
NV 2 sin θ

]
cos2 θ. (4.59)

The integral (4.59) can be given in terms of Bessel functions. Indeed

Jn(z) =
1
2π

π∫
−π

dθ exp [inθ + iz sin θ] , (4.60)

and 2 cos2 θ = 1 + cos 2θ, and therefore

∆ρ (t) = J0(4t
√

NV 2) + J2(4t
√

NV 2) =
J1(4t

√
NV 2)

2t
√

NV 2
. (4.61)

In Fig. 4.18 we show this dependence. One can see that the population differ-
ence of the first and the second bands is an oscillatory and decaying function
of time. This means that the populations of these two degenerate levels be-
come equal, that is they indeed do tend to the limit given by the irreversible
master equation, although this process does not have an exponential char-
acter, but on the contrary, has strong reminiscences of coherent behavior.
Therefore such dynamics are sometimes called coherent damping.
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Fig. 4.18. Two degenerate levels (a). The arrows show possible transitions and
correspond to different transition matrix elements V m

n . (b) Population difference of
two statistically equivalent degenerate bands as a function of dimensionless time τ =
t
√

NV 2. The population dynamics is not exponential, and is influenced strongly by
the coherence, although at the limit of long times it results in the equal distribution
of the population among the bands, typical of incoherent decay, as one can see from
the total populations ρ1 and ρ2 shown in (c).

4.3.2 The Bands as an Ensemble of Two-Level Systems

Let us consider the results obtained from a different point of view. The Hamil-
tonian Ĥ of the system of two degenerate levels coupled to each other by a
random matrix has a specific block structure:

Ĥ =
(

0̂ V̂

V̂ + 0̂

)
=

(
0 V m

n

V n
m 0

)
(4.62)

with zero diagonal blocks. The zero matrix has an evident property - it re-
mains zero after multiplication by any other matrix. We can therefore con-
struct a unitary matrix

Ŝ =
(

ŝ 0̂
0̂ ŝ+

)
=

(
sn

′
n 0
0 (s+)m

′

m

)
(4.63)

where the unitary submatrix sn
′

n and its conjugate (s+)m
′

m diagonalize the
matrix V m

n , that is
∑

n′m′ sn
′

n V m′
n′ (s+)mm′ = Vnδ

m
n , where Vn are the eigen-

values of V̂ . This implies that the matrix V̂ is Hermitian, which is a priori
not necessarily the case although we assume it in this section; and in the
general case the resulting matrix is not diagonal but a triangular one. After
the transformation ŜĤŜ+ the Hamiltonian takes the form

Ĥ =
(

0 Vnδ
m
n

Vnδ
m
n 0

)
(4.64)

with diagonal matrices in the off-diagonal blocks. This form has a physical
meaning: we have represented our system of two degenerate levels coupled by
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a random matrix as a set of N independent two-level systems each of which
has the coupling matrix element Vn. The random character of the coupling
also suggests that in our new representation all the states corresponding to
the level 1 are uniformly populated.

In Chap. 3 we have seen that the population of the upper level of a
resonant two-level system with the coupling V is given by (3.20) and has the
form ρup(t) = sin2 V t, whereas the population of the lower level is ρlw(t) =
cos2 V t, and hence the population difference ∆ρn(t) corresponding to the
coupling Vn reads

∆ρn(t) = cos2 Vnt − sin2 Vnt = cos 2Vnt. (4.65)

The ensemble average population is therefore given by (4.65) averaged with
the distribution function of the couplings g(Vn), that is

∆ρ(t) =
∫

dVn g(Vn) cos 2Vnt. (4.66)

From (4.66) we immediately obtain (4.61) by taking the distribution

g(Vn) =

√
(Vn)2 − 4N 〈V 2〉

2πN 〈V 2〉 . (4.67)

of the span ±2
√

N 〈V 2〉, which is known as the Wigner semicircular distri-
bution (1.2) of the eigenvalues of a random matrix with Gaussian statistics
of the matrix elements g(V m

n ) = e−(V m
n )2/〈V 2〉. Indeed, when we substitute

(4.67) into (4.66) and make the replacement Vn → 2
√

N 〈V 2〉 sin θ we arrive
at

∆ρ(t) =
2
π

π∫
−π

dθ cos2 θ cos
[
4t
√

N 〈V 2〉 sin θ
]
. (4.68)

which coincides with (4.59) if we take parity into account. This coin-
cidence is in fact an independent confirmation of the Wigner distribu-
tion given by (4.67). We also note that the imaginary part Im

[
X(ε)
π

]
=

2
π Im

[
ε − √

ε2 − 4N〈V 2〉
]

=
√

4N〈V 2〉 − ε2/2πN〈V 2〉 of the average resol-
vent represents the density of eigenstates at the energy E = ε. This part
also yields the distribution (4.67), which is quite natural since the two energy
eigenstates of a resonant two-level system (3.14) are at the points E1,2 = ±Vn
given by the value of the level coupling Vn.

In Sect. 4.1, when we were considering the role of returns, we mentioned
that the approach based on the assumption of the tree-like topology of the di-
agrams may fail when the number of transitions exceeds the number of levels
involved in the process and the self-intersections of the diagrams mentioned
on p. 131 start to play a role. This is also the case for the degenerate bands.
One estimates the number of transitions during the time t by the product
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V

g(V)

. .

Fig. 4.19. Spectrum of eigenvalues of a 100 × 100 random Hermitian matrix with
Gaussian distribution of the matrix elements shown by ticks on the abscissa, and the
convolution of this spectrum with a Gaussian of width 0.5 (solid line) that gives the
averaged state density. The corresponding Wigner distribution of the eigenvalues of
a random matrix is shown by the dashed line. One sees that the eigenvalue spectrum
is far from being equidistant.

√〈V 2〉t and the number of levels is apparently N . This means that the ap-
proach is valid as long as t < N/

√〈V 2〉 . This time exceeds considerably
the mean energy eigenstate density g ∼ √

N/ 〈V 2〉 of the coupled degenerate
bands, which can be estimated as the total number of states 2N divided by
the width 2

√
N 〈V 2〉 of the distribution of the couplings (4.67).

It is expedient to consider this situation in the context of the quantum
recurrences and quantum revivals discussed in Sect. 3.3 that are the physical
phenomena destroying the validity of the tree-like topology approximation. If
the exact energy eigenstate spectrum is equidistant, or close to equidistant,
then at t ∼ g one observes a strong recurrence of the population to the initial
state that cannot be found in the framework of the continuous-band model.
But if the eigenstates are randomly placed on the energy scale, there is no
recurrence at t ∼ g, although a partial revival may take place at a longer time.
The latter is rather the case for the system of two degenerate levels, where
the spectrum of the coupling matrix elements Vn has no physical reasons to
be equidistant for small values of V . We illustrate this in Fig. 4.19 where
an example of a random matrix eigenstates is shown along with the Wigner
semicircular distribution.
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4.4 A Band Coupled to a Degenerate Level

We consider now one more extreme, namely a system of two different bands:
an N -fold degenerate level 1 coupled to a band 2 with a constant density
of states g. This system has both the features typical of the exponential
dynamics of a two-non-degenerate band system and the features typical of
the coherent dynamics system of two degenerate levels.

4.4.1 Total Population of the Bands

Equations (4.22) for the case of one degenerate and one uniform band reads

Q1(ε) =
N

ε − 〈V 2〉Q2(ε)

Q2(ε) =
∑
m

1
ε − ∆m − 〈V 2〉Q1(ε)

, (4.69)

and one finds the equations for Q1,2(ξ) analogously. We consider the case t �
g and by analogy to (4.48) replace the sum by the integral, which immediately
yields

Q1(ε) =
N

ε + iπ 〈V 2〉 g

Q2(ε) = −iπg, (4.70)

and

Q1(ξ) =
N

ξ − iπ 〈V 2〉 g

Q2(ξ) = iπg. (4.71)

We also note that

Xn(ε) =
1

ε + iπ 〈V 2〉 g

Xm(ε) =
1

ε − ∆m − 〈V 2〉N (ε + iπ 〈V 2〉 g)−1

Xn(ξ) =
1

ξ − iπ 〈V 2〉 g

Xm(ξ) =
1

ξ − ∆m − N 〈V 2〉 (ξ − iπ 〈V 2〉 g)−1 , (4.72)

and hence ∑
n

Xn(ε)Xn(ξ) =
N

(ε + iπ 〈V 2〉 g) (ξ − iπ 〈V 2〉 g)∑
m

Xm(ε)Xm(ξ) =
−2πig

ξ − ε − 〈V 2〉 (Q1(ξ) − Q1(ε))
, (4.73)
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where

Q1(ξ) − Q1(ε) =
N

(
ε − ξ + 2iπ

〈
V 2

〉
g
)

(ε + iπ 〈V 2〉 g) (ξ − iπ 〈V 2〉 g)
. (4.74)

We substitute (4.73), (4.74) into (4.29) and after straightforward algebraic
transformations arrive at

∆ρ (ε, ξ) =
(

1
ε + iπ 〈V 2〉 g

− 1
ξ − iπ 〈V 2〉 g

)
1

ξ − ε
(4.75)

+
4πig

〈
V 2

〉
(ε + iπ 〈V 2〉 g) (ξ − iπ 〈V 2〉 g) + 〈V 2〉N

1
ξ − ε

.

We now note that i (ξ − ε)∆ρ (ε, ξ) is the Fourier transform of the time
derivative of the population difference, which we denote ∆ρ′ (ε, ξ), and obtain

∆ρ′ (ε, ξ) =
i

(ε + iπ 〈V 2〉 g)
− i

(ξ − iπ 〈V 2〉 g)

− 4πg
〈
V 2

〉
(ε + iπ 〈V 2〉 g) (ξ − iπ 〈V 2〉 g) + 〈V 2〉N

. (4.76)

The first two terms depend only on one of the two variables ε and ξ, and
therefore for t > 0 they vanish after the inverse Fourier transformation over
both ε and ξ. Hence we have

d

dt
∆ρ (t) =

−1
4π2

∞+iν∫
−∞+iν

∞−iν∫
−∞−iν

4πig
〈
V 2

〉
exp [i (ξ − ε) t] dεdξ

(ε + iπ 〈V 2〉 g) (ξ − iπ 〈V 2〉 g) + 〈V 2〉N
.

(4.77)
We now introduce the variables ζ = ξ − ε, η = (ε + ξ) /2, take into account
the relation

(
ε + iπ

〈
V 2

〉
g
) (

ξ − iπ
〈
V 2

〉
g
)

= η2 − (
ζ/2 − iπ

〈
V 2

〉
g
)2, and

perform the integration over dη, which yields

d

dt
∆ρ (t) = g

〈
V 2〉 ∞+iν∫

−∞+iν

exp [iζt] dζ√
(ζ/2 − iπ 〈V 2〉 g)2 − 〈V 2〉N

. (4.78)

One can close the integration path, such that it becomes a closed contour
going around the interval

(
i2π

〈
V 2

〉
g − 2

√〈V 2〉N, i2π
〈
V 2

〉
g + 2

√〈V 2〉N
)

connecting two branching points in the complex plane ζ, and obtain after the
replacement ζ → i2π

〈
V 2

〉
g + 2

√〈V 2〉N cosϕ

d

dt
∆ρ (t) = −4g

〈
V 2〉 exp

[−2πg
〈
V 2〉 t

] π∫
−π

exp
[
it2

√
〈V 2〉N cosϕ

]
dϕ

= −4πg
〈
V 2〉 exp

[−2πg
〈
V 2〉 t

]
J0

(
t
√

4 〈V 2〉N
)

, (4.79)
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that is

∆ρ (t) = 1 − 4πg
〈
V 2〉 t∫

0

exp
[−2π

〈
V 2〉 gτ

]
J0

(
τ
√

4 〈V 2〉N
)

dτ, (4.80)

where we have taken into account the initial condition ∆ρ (t = 0) = 1.
One sees clearly the oscillatory character of the time derivative of the

population difference coming from the Bessel function in (4.79), and some
reminiscences of these oscillations are seen in the dependence of the popula-
tion difference ∆ρ (t) of (4.80) itself, which is shown in Fig. 4.20. This behav-
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Fig. 4.20. The population difference ρ1(t)−ρ2(t) for a system of an N -fold degen-
erate level coupled to a band with a state density g by a random matrix with the
mean squared matrix element

〈
V 2〉 as a function of the scaled time T = t

√
4 〈V 2〉 N

is shown (a) for several values of the dimensionless parameter w = πg
√〈V 2〉 /N .

The asymptotic values of the populations of the degenerate level ρ1(∞) and of the
band ρ2(∞) depend (b) on the parameter w.

ior is typical of the coherent damping in the system of two non-degenerate
bands. At the same time, in (4.79) one also sees the exponential factor
exp

[−2πg
〈
V 2

〉
t
]

typical of the level–band problem and for the two non-
degenerate bands problem. And we see here once more the interplay of the
coherent and relaxation processes in the population dynamics of the complex
multilevel systems, although we have to remember that the exponential re-
laxation occurs only until the quantum revivals and recurrences start to play
a role at t > g.

Let us concentrate on the populations at times t � 1/
√

4N 〈V 2〉 and
t � 1/2 πg

〈
V 2

〉
, assuming that t � g. At this extreme we can extend the

integration limit in (4.80) to infinity and obtain

∆ρ (∞) = 1 − 4πg
〈
V 2

〉√
(2π 〈V 2〉 g)2 + 4 〈V 2〉N

, (4.81)

where we have taken into account that
∫ ∞
0 exp [−ατ ]J0 (τβ) dτ = (α2 +

β2)−1/2. If we make use of the relation ρ1(∞)+ρ2(∞) = 1 we get immediately
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the explicit asymptotic populations

ρ1(∞) = 1 − 2πg
〈
V 2

〉√
(2π 〈V 2〉 g)2 + 4 〈V 2〉N

,

ρ2(∞) =
2πg

〈
V 2

〉√
(2π 〈V 2〉 g)2 + 4 〈V 2〉N

(4.82)

shown in Fig. 4.20(b). The total populations of the degenerate level and the
band become equal for a mean squared coupling

〈
V 2

〉
= V 2

st = N/π2g2 for
which the number of the populated energy eigenstates of the band equals the
degeneracy of the level.

4.4.2 Population Distribution over the Band

Let us concentrate on the population distribution among the states of the
band. After straightforward, albeit cumbersome transformations, (4.26) with
allowance of (4.28) and (4.71)–(4.74) yields

ρm (ε, ξ) =
1

(ε − ∆m) (ε + iW ) − W 2

w2

1
(ξ − ∆m) (ξ − iW ) − W 2

w2[
1 − 2iW 3/w2[

(ε + iW ) (ξ − iW ) + W 2

w2

]
(ξ − ε)

]
W 2

Nw2 , (4.83)

where we denote W = π
〈
V 2

〉
g and w = W/

√〈V 2〉N. Further analysis of
this expression should rely on the search for the positions of poles in the
complex planes of the variables ε and ξ followed by the inverse Fourier trans-
formation with respect to these variables, which also require quite cumber-
some calculations. However, these calculations become much shorter if we
concentrate only on the distribution which is attained in the regime t → ∞,
when the only non-vanishing contribution is given by the second term in
the parentheses in the second line of (4.83) containing the factor (ξ − ε) in
the denominator. This contribution gives a time independent term for the
population distribution ρm (t = ∞) = ρm which reads

ρm =
1
π

∞∫
−∞

1[
(ε − ∆m) (ε + iW ) − W 2

w2

] 1[
(ε − ∆m) (ε − iW ) − W 2

w2

]
W 5/w4N[

(ε + iW ) (ε − iW ) + W 2

w2

]dε. (4.84)

The integrand (4.84) has six poles at the points of the complex plane ε
located symmetrically with respect to the real axis. By taking residuals at
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three points of the upper part of the complex plane and factoring out W 2

with allowance for the relation Nw = πgW/w one obtains

ρmg =
1

πW

w√
w2 + 1

2
√

1 + 1/w2 − 1(
2
√

1 + 1/w2 − 1
)

2 +
(

∆m

W

)
2
. (4.85)

In (4.85) one recognizes the total population ρ2(∞) = w/
√

w2 + 1 of the
non-degenerate band (4.82) multiplied by a Lorentzian distribution of width
Γ = 2

√
1 + 1/w2 − 1 over scaled detunings δ = ∆m/W , which reads

ρm =

〈
V 2

〉√
(π 〈V 2〉 g)2 + 〈V 2〉N

2
√

(π 〈V 2〉 g)2 + 〈V 2〉N − π
〈
V 2

〉
g(

2
√

(π 〈V 2〉 g)2 + 〈V 2〉N − π 〈V 2〉 g

)
2 + ∆m

2
, (4.86)

in the initial notation whereas the width is Γ = 2
√

(π 〈V 2〉 g)2 + 〈V 2〉N −
π
〈
V 2

〉
g. This dependence (4.85) is shown in Fig. 4.21(a), and we replace

hereafter in this subsection ∆m by ∆. One sees that for large coupling,
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Fig. 4.21. The asymptotic population distribution (a) over the levels of the band as
a function of the scaled detuning ∆/πg

〈
V 2〉 and the dimensionless parameter w =

πg
√〈V 2〉 /N . The asymptotic distribution is attained as a result of a dynamical

process that yields a distribution oscillating in time shown in (b) as a function of
the detuning ∆ for w = 1/

√
3.

〈
V 2

〉 → ∞, when
√〈V 2〉N becomes small as compared to W = πg

〈
V 2

〉
and as a consequence the number πg2

〈
V 2

〉
of the band levels participating

in the population dynamics considerably exceeds the degeneracy N of the
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level, and the width Γ of the Lorentzian distribution equals W = π
〈
V 2

〉
g

as is the case for the level–band problem (3.35) discussed in Chap. 3. This is
quite natural, since for each state of the degenerate level, there are enough
energy eigenstates of the band where its population can go without interfer-
ing with the decay of other states of the level. In the opposite limit

√〈V 2〉N

� πg
〈
V 2

〉
the distribution width is Γ 
 2

√〈V 2〉N , and the number of band
levels in resonance amounts to πΓg 
 2π

√〈V 2〉Ng2. Note that if we assume
that the total populations ρ2 of the band and ρ1 of the degenerate level are
proportional to the corresponding numbers of states in resonance, we arrive
at ρ2/ρ1 = 2π

√〈V 2〉Ng2/N = 2π
〈
V 2

〉
g/

√〈V 2〉N, which is twice as large
as the value suggested in the same extreme by the exact solution (4.82).
This means that the equal distribution principle does not always govern the
stationary population distribution among the states of a complex multilevel
system.

In order to trace the dynamics of the population distribution over the
band of levels one needs to perform the inverse Fourier transformation of
(4.83), which requires straightforward although cumbersome calculations. We
do not present here all the details, but just show the crucial aspects of the
main transformation, that could serve as guiding lines for such calculations.
The unity in the square brackets yields just an absolute value of the inverse
Fourier transform of

ψm (ε) =
1

(ε − ∆) (ε + iW ) − W 2

w2

√
W 2

Nw2 , (4.87)

which is not the total ensemble average population, but “a naive popula-
tion” ρ̃m (t,∆) given by the absolute value squared of the ensemble averaged
wavefunction. The right-hand side of (4.87) has poles at the points

ε1,2 =
1
2
(∆ − iW ) ±

√
1
2
(∆ − iW )2 +

W 2

w2 , (4.88)

and the integration performed by calculating the residuals at these points
gives the time-dependent average amplitude, which yields the corresponding
“probability”

ρ̃m (t,∆) =
W 2

Nw2

2
∣∣∣∣sin( t2

√
4W 2

w2 + (∆ − iW )2)
∣∣∣∣2 e−tW√

∆4 +
(
W 2 − 4W 2

w2

)2
+ 2∆2

(
4W 2

w2 + W 2
) . (4.89)

The rest of (4.83) is the correlation term δρ (ε, ξ,∆) to this “naive” popula-
tion which actually plays the dominant role in the long-time limit. As earlier,
to calculate this term, we introduce the variables ζ = ξ − ε, η = (ε + ξ) /2
and write
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δρ (ζ, η,∆) =
1(

η − ζ
2 − ∆m

)(
η − ζ

2 + iW
)

− W 2

w2

1(
η + ζ

2 − ∆m

)(
η + ζ

2 − iW
)

− W 2

w2

−2iW 5/Nw4[(
η − ζ

2 + iW
)(

η + ζ
2 − iW

)
+ W 2

w2

]
ζ
. (4.90)

The first and second factors have singularities at the points η = ζ/2 +
ε1,2 and η = −ζ/2 + ε∗

1,2, whereas the third factor has poles at η =

±
√

(ζ/2 − iW )2 − W 2/w2. It is sufficient to consider only one of the first
four singularities, say ε1, since all the other poles of the first two parts result
from ε1 after complex conjugation associated with the replacement ζ → −ζ,
and after the replacement ∆ → −∆. One has to take the real and even in
∆ part of the final expression at the end of the calculations. In the third
factor we retain only one pole which is located in the part of the complex
plane which is opposite with respect to the real axis to the part where ε1 is
located, or else the integral over dη vanishes. This results in

δρ (ζ, η,∆) =
1(

η − ζ
2 − ε1

)
(ζ + ε1 − ε∗

1) (ζ + ε1 − ε∗
2) (ε1 − ε2)

1√(
ζ
2 − iW

)2
− W 2

w2

iW 5/Nw4[(
η +

√(
ζ
2 − iW

)2
− W 2

w2

)]
ζ

, (4.91)

and yields after integration over dη

δρ (ζ,∆) =
−1(√(

ζ
2 − iW

)2
− W 2

w2 + ζ
2 + ε1

)
(ε1 − ε2) ζ

2πW 5/Nw4

(ζ + ε1 − ε∗
1) (ζ + ε1 − ε∗

2)

√(
ζ
2 − iW

)2
− W 2

w2

, (4.92)

which is equivalent to an expression more convienient for further calculations

δρ (ζ,∆) =

(√
(ζ/2 − iW )2 − W 2/w2 − ζ/2 − ε1

)
(

−
(
ζ
2 − iW

)2
+ W 2

w2 +
(
ζ
2 + ε1

)2
)

(ε1 − ε2) ζ

2πW 5/Nw4

(ζ + ε1 − ε∗
1) (ζ + ε1 − ε∗

2)

√(
ζ
2 − iW

)2
− W 2

w2

. (4.93)
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One sees clearly that (4.92) has poles at the points ζ1,2,3 = 0, ε∗
1 − ε1, ε

∗
2 − ε1,

and at the point ζ4 = (W 2 + W 2/w2 + ε2
1)/(iW − ε1) corresponding to the

first factor in the denominator. Apart from these singularities, the expression
has branching points at ζ5,6 = iW ± W/w. We note that the part

δρ1 (ζ, η,∆) =
(iW − ε1)2πW 5/Nw4 (ε1 − ε2)

ζ (ζ − ζ2) (ζ − ζ3) (ζ − ζ4)
(4.94)

of the right-hand side of (4.93) does not contain the branching points, and
after the inverse Fourier transform over ζ it gives a constant and three expo-
nential time dependencies, whereas only the remainder

δρ2 (ζ,∆) =
(−ζ/2 − ε1) (iW − ε1)4πW 5/Nw4 (ε1 − ε2)

ζ (ζ − ζ2) (ζ − ζ3) (ζ − ζ4)
√

(ζ − ζ5) (ζ − ζ6)
(4.95)

which does contain the branching points requires further consideration.
By casting the polynomial fraction factor in (4.95) as a sum of poles

(−ζ/2 − ε1)
ζ (ζ − ζ2) (ζ − ζ3) (ζ − ζ4)

=
ε1

ζ2ζ3ζ4

1
ζ

− ζ2/2 + ε1

ζ2 (ζ2 − ζ3) (ζ2 − ζ4)
1

(ζ − ζ2)

− ζ3/2 + ε1

ζ3 (ζ3 − ζ2) (ζ3 − ζ4)
1

(ζ − ζ3)
− ζ4/2 + ε1

ζ4 (ζ4 − ζ2) (ζ4 − ζ3)
1

(ζ − ζ4)
(4.96)

one reduces (4.95) to the form

δρ2 (ζ,∆) =
∑
k

ak
(iW − ε1)4πW 5/Nw4 (ε1 − ε2)

(ζ − ζk)
√

(ζ − ζ5) (ζ − ζ6)
(4.97)

where the coefficients ak emerge from (4.96). The next step is the calculation
of the inverse Fourier transform of the expression of type

TF (t, ζk, ζ5, ζ6) =
1

4π2

∞∫
−∞

exp [itζ]
(ζ − ζk)

√
(ζ − ζ5) (ζ − ζ6)

dζ, (4.98)

which is easier to perform by substituting explicitly ζ5,6 = iW ±W/w. After
the replacement ζ → xW/w + iW , equation (4.98) takes the form

TF (t, ζk, ζ5, ζ6) =
1

4π2

∞∫
−∞

exp [it (xW/w + iW )]
(xW/w + iW − ζk)

√
x2 − 1

dx. (4.99)

We now multiply both parts of this equation by exp (−ζkit), take the time
derivative, and arrive at

d
[
e−itζkTF (t, ζk)

]
dt

=

∞∫
−∞

exp
[
it
(
xW
w + iW − ζk

)](
xW
w + iW − ζk

)√
x2 − 1

dx

4π2 (4.100)

=
e−t(W+iζk)

4π2

∞∫
−∞

exp[itxW
w ]√

x2−1
dx = e−t(W+iζk) J0(tW/w)

2π ,
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where we have made use of the same reasoning as for (4.78), ( 4.79). This
implies that

TF (t, ζk) = eitζk

t∫
0

e−τ(W+iζk)J0

(
τ
W

w

)
dτ

2π
, (4.101)

where the lower limit is set to 0, since at t = 0 the integration contour (4.99)
can be moved to infinity, where the integral vanishes.

Equations (4.94)–(4.98) with allowance for (4.89), (4.101) yield a clumsy
albeit explicit expression for the distribution of the population over the band
as a function of time. The result of such a calculation for w = 1/

√
3 is

shown in Fig. 4.21(b). One sees an important feature of the distribution – it
manifests oscillations in time and oscillations as a function of detuning until
the asymptotic Lorentzian profile is attained. The larger the ratio 1/w =√〈V 2〉N/πg

〈
V 2

〉
, the more pronounced the oscillations.

4.4.3 Role of the Interaction Rank

Some important aspects of the degenerate level–band problem, including the
difference of the factor of 2 in the extreme

√〈V 2〉N � πg
〈
V 2

〉
between the

exact asymptotic distribution of the populations and that suggested by the
equal distribution principle, are revealed when we consider this system as
an ensemble of two-level systems, by analogy with the consideration of two
degenerate levels presented in Sect.4.3.2. As earlier, in (4.62) we concentrate
here on the matrix structure of the Hamiltonian

Ĥ =
(

Ĥ2 V̂

V̂ + Ĥ1

)
=

(
∆mδm

′
m V m

n

V n
m 0

)
(4.102)

and truncate the band such that only the levels that were populated in
the process of population transfer are taken into account. The Hamiltonian
now also consists of four blocks, a small M × M block Ĥ2 of order M ∼
π
√〈V 2〉Ng2, a large N × N block Ĥ1 of order N , and two M × N and

N ×M blocks V m
n and V n

m of the interaction matrices, that apparently have
a rank not larger than M . Since Ĥ1 = 0, one can perform a linear unitary
transformation such that the rectangular conjugated matrices V̂ and V̂ + have
only non-zero upper and right M × M blocks, while all of the other matrix
elements vanish. The Hamiltonian (4.102) then takes the form

Ĥ =

⎛⎝ Ĥ2 V̂ ′ 0
V̂

′+ 0 0
0 0 0

⎞⎠ =
(

∆mδm
′

m V m
n

V n
m 0

)
(4.103)

where V̂ ′ and V̂
′+ are hermitian conjugate M × M matrices of rank M ′ not

higher than M . In other words, via the linear unitary transformation applied



160 4 Two-Band System

to the states of the degenerate level we arrive at a representation where only
the first M ′ states of the basis are coupled to the upper band. These states are
composed of the properly normalized and orthogonalized linear combinations
of M ′ different states

|cm〉 =
N∑
n=0

V n
m |n〉 (4.104)

interacting with the band, whereas the remaining N − M ′ states are orthog-
onal to these M ′ states. One calls the latter “dark states”, as opposed to
”bright” states (4.104), since they do not interact with the band. The com-
pletely decoupled dark states retain their initial population, and hence the
excitation process leaves the (N − M ′)/N fraction of the initial population
of the degenerate level intact. The rest of the population M ′/N is equally
distributed among M states of band 2 and M ′ bright states of the degenerate
level, provided the matrix V̂ ′ commutes with its Hermitian conjugate V̂

′+

and can be diagonalized by a unitary transformation, which we assume to be
the case. For M ′ = M this yields ρ2 = M/2N , ρ1 = (N − M)/N + M/2N ,
and we arrive at

ρ2/ρ1 
 M/2N = π
〈
V 2〉 g/

√
〈V 2〉N (4.105)

which coincides with the extreme following from (4.82) and differs by the
factor of 2 from the estimate on p.156

In the example just considered we have seen that the rank of the inter-
action matrix, that is the number of its non-zero eigenvalues, may play an
important role in the population dynamics of a complex multilevel quantum
system. It effects the number of states that actually participate in the pro-
cess. The rank of the interaction matrix is closely related to the question of
the applicability of the random matrix model to the description of quantum
dynamics in a complex system. Indeed, a square N × N matrix which has
rank R � N can be cast with the help of the Schmidt expansion into the
sum

V k
j =

R∑
s=1

〈j |cs〉Vs 〈cs| k〉 (4.106)

over its eigenvalues Vs and eigenvectors |cs〉 . In the extreme case R = 1 this
yields

V k
j = 〈j |c1〉V1 〈c1| k〉 = CjV1C

∗
k (4.107)

with Cj = 〈j |c1〉, which means that the interaction matrix assumes a fac-
torized form. Note that the matrix elements of V̂ can still be random, if the
expansion coefficients 〈c1| k〉 of its eigenvector |c1〉 over the basis set of the
energy eigenstates |k〉 of the unperturbed Hamiltonian are random. In this
case, however, as well as in the more general case R � N, the statistical
properties of the products of the matrix elements differ drastically from that
for completely random matrices, and in particular this circumstance does not
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allow one to select from the diagram series of Fig. 4.5 the “tree”-like contri-
butions of Fig. 4.6. This implies a strong statistical correlation among the
matrix elements of V̂ , which one can see explicitly for (4.107) for which we
have 〈∣∣V k

j V r
k

∣∣2〉 = (V1)
4
/N2 (4.108)

and not 〈
V k
j V r

k

〉
=

〈
V 2〉 δrj (4.109)

as would be the case for completely random matrices.

4.5 The Role of Correlations

The correlations among the interaction matrix elements allow for the inter-
ference of different excitation trajectories which not only do not disappear
after the ensemble average, but on the contrary strongly effect the population
dynamics in the quantum system in general, and the population distribution
among the states of different energies in particular. We illustrate this with two
examples, that of two levels interacting via a band, and a two-band system
with an interaction matrix of rank 1 given in (4.107).

4.5.1 Two levels and a band

Let us consider a quantum system of two levels, each of which interacts with
a band of levels as shown in Fig. 4.22. This system resembles the Fano system

|0> |1>|n>

V0
n

V1
n

. .

Fig. 4.22. Two levels coupled to a band by different interaction matrix elements
V n

0 , and V n
1 .

depicted in Fig. 3.7, that was previously considered in Sect.3.2.2, although
here we will not assume equal couplings V and V ′ of each of the levels to
the states of the band, but on the contrary we concentrate on the statistical
properties of these matrix elements.
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The General Solution

By analogy to (3.49) we can write

εψ0 =
N∑
n=1

V n
0 ψn + i

εψ1 =
N∑
n=1

V n
1 ψn + ∆1ψ1 + V

′′
ψ0

εψn = ∆nψn + V 0
nψ0 + V 1

nψ1. (4.110)

where ψ0(t = 0) = 1;ψ1(t = 0) = 0;ψn(t = 0) = 0 are taken as the ini-
tial conditions. Substitution of ψn from the last equation into the first two
equations yields the system of equations(

ε −
N∑
n=1

V n
0 V 0

n

(ε − ∆n)

)
ψ0 −

N∑
n=1

V n
0 V 1

n

(ε − ∆n)
ψ1 = i

−
N∑
n=1

V n
1 V 0

n

(ε − ∆n)
ψ0 +

(
ε −

N∑
n=1

V n
1 V 1

n

(ε − ∆n)
− ∆1

)
ψ1 = 0. (4.111)

which have the solutions

ψ0(ε) =
i
(
ε − W 1

1 − ∆1
)

(ε − W 0
0 ) (ε − W 1

1 − ∆1) − W 1
0 W 0

1

ψ1(ε) =
iW 0

1

(ε − W 0
0 ) (ε − W 1

1 − ∆1) − W 1
0 W 0

1
. (4.112)

where we denote W q
p =

∑N
n=1 V n

p V q
n /(ε − ∆n) with p, q = 0, 1.

Let us now choose the interactions in the form

V 0
n = V Cn

V 1
n = V Sn. (4.113)

similar to (4.107), where V is a coupling constant of energy dimensionality
whereas the coefficients Cn = |Cn| eiθn and Sn = |Sn| eiχn are complex
numbers normalized by the conditions

∑
n |Cn|2 =

∑
n |Sn|2 = 1. Equation

(4.113) implies that the state |0〉 interacts with only one linear combination
|c〉 =

∑
n Cn |n〉 of the states of the band and that for the state |1〉 the similar

combination |s〉 =
∑

n Sn |n〉 of the band levels might be different. Here we
assume equal interaction matrix elements, that is

∑
n |V n

0 |2 =
∑

n |V n
1 |2,

which is actually not a restricting assumption, since the strip of interacting
levels can have an arbitrary width.

Substitution of (4.113) allows one to express the coefficients W q
p in (4.112)

in the form
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W 0
0 = V 2S1 = V 2

N∑
n=1

|Cn|2 /(ε − ∆n),

W 1
1 = V 2S2 = V 2

N∑
n=1

|Sn|2 /(ε − ∆n),

W 0
1 = (W 1

0 )∗ = V 2S3 = V 2
N∑
n=1

C∗
nSn/(ε − ∆n). (4.114)

We now assume that both |Cn|2 and |Sn|2 are smooth functions of the
index n, and in the vicinity of ∆n = 0 they amount to |C|2 and |S|2
respectively. For the regime t < g we can therefore factor out these quantities
from the sums (4.114) and replace the first two sums by integrations, which
yields

S1 =
N∑
n=1

|Cn|2
ε − ∆n

= iπg |C|2 ,

S2 =
N∑
n=1

|Sn|2
ε − ∆n

= iπg |S|2 . (4.115)

The sum S3 = V 2 ∑N
n=1 C∗

nSn/(ε − ∆n) requires a more detailed analysis.
Indeed, apart from the moduli |Cn| and |Sn| it contains the phase factors
eiθn−iχn , that may differ considerably from unity, thus adding another de-
pendence of the summand on the summation index n. However, for t � g this
problem can be considerably simplified when we make use of the uncertainty
principle. The simplest way to employ this principle it is to say that at a
time t, the typical frequency ε bringing the main contribution to the integral
of the inverse Fourier transformation is of the order of 1/t, and that gener-
ally speaking, this number has a complex value. Denominators of the sums
(4.114) do not therefore differ much for two sequential terms, since the dif-
ference ∆n+1 − ∆n ∼ 1/g remains less than the imaginary part of ε ∼ 1/t in
the denominator governing the resonance width by the condition t � g. We
can therefore perform the summation for S3 in two steps: by taking first the
average of the phase factors over a number 2K ∼ g/t of neighboring terms for
which the denominators (ε−∆n) are almost identical, and then by replacing
these factors by their average

〈
eiθn−iχn

〉
=

∑n+K
m=n−K eiθm−iχm/2K, which is

likely a smooth function of the index n. Therefore replacing summation by
integration one arrives at

S3 = V 2
N∑
n=1

C∗
nSn

ε − ∆n
= iπg |CS| 〈eiθn−iχn

〉
, (4.116)

where, in the last part, the index n corresponds to the states for which ∆n ∼
0. By taking such an average we assume implicitly that the absolute values
of Cn and Sn and their phases are statistically independent.
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Substitution of (4.114)–(4.116) into (4.112) yields

ψ0(ε) = i
ε − ∆1 + iπgV 2 |C|2

(ε − ε1) (ε − ε2)

ψ1(ε) = −πgV 2 |CS| 〈eiθn−iχn

〉
(ε − ε1) (ε − ε2)

, (4.117)

where

ε1,2 =
∆1 + giπV 2

(
|C|2 + |S|2

)
2

±
[(∆1 + giπV 2

(
|C|2 + |S|2

))2

4

−gπV 2 |C|2
(
i∆1 +

(∣∣〈eiθn−iχn
〉∣∣2 − 1

)
gπV 2 |S|2

) ]1/2
(4.118)

are the roots of the denominators responsible for the time evolution of the
system at t < g. One sees that the phase correlation of the matrix elements〈
eiθn−iχn

〉
is an important ingredient in these expressions.

Different Particular Cases

In the particular case of totally random phases,
〈
eiθn−iχn

〉
= 0, and hence,

according to (4.118) the probability amplitude of being in state |1〉 vanishes
completely. For this case ε1 = ∆1−iπgV 2 |C|2 , and ε2 = −iπgV 2 |S|2 , which
yields the result

ψ0(t) =
1
2π

∫
C

ie−iεtdε(
ε + iπgV 2 |S|2

) = e−W 0
0 t (4.119)

coinciding with the corresponding expressions of (3.32)–(3.33). This means
that in the absence of correlation among the matrix elements that couple
the states |0〉 and |1〉 to the band, each of these states interacts with the
states of the band independently, thus conforming to the level–band model
and yielding all the consequences of this model including (3.35) for the distri-
bution of the population over the band levels. Therefore the state |1〉, which
was not populated initially, remains unpopulated as long as t < g, and the
continuous-band model remains valid, whereas the population of state |0〉
prefers to be distributed amongst the more statistically abundant states of
the band.

On the other hand, in the case of strongest correlation
〈
eiθn−iχn

〉
= 1 the

most pronounced effect takes place for the case ∆1 = 0, when

ε1,2 =
{

0
−iπgV 2(|C|2 + |S|2) (4.120)

and therefore (4.117) take the form
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ψ0(ε) = i
ε + iπgV 2 |C|2

ε
(
ε + iπgV 2(|C|2 + |S|2)

)
ψ1(ε) = i

iπgV 2 |CS|
ε
(
ε + iπgV 2(|C|2 + |S|2)

) . (4.121)

and yield

ψ0(t) =
|C|2

|C|2 + |S|2 +
|S|2

|C|2 + |S|2 e−tπgV 2(|C|2+|S|2)

ψ1(t) =
|CS|

|C|2 + |S|2
(
1 − e−tπgV 2(|C|2+|S|2)

)
. (4.122)

The most important consequence of the complete correlation of the matrix
elements is that ε1 = 0, and hence the probability amplitudes of (4.122)
do not vanish as t → ∞. The levels retain a significant part of the total
population ρ0(t = ∞) = |C|4 /(|C|2 + |S|2)2, ρ1(t = ∞) = |C|2 |S|2 /(|C|2 +
|S|2)2, whereas the total population of the band levels amounts to ρb(t =
∞) = (|S|4+|C|2 |S|2)/(|C|2+|S|2)2. In the particular case |C|2 = |S|2 = 1/2
both of the levels have the asymptotic population ρ0(t = ∞) = ρ1(t = ∞) =
1/4, while the band takes the other half of the population.

The last case of |C|2 = |S|2 = 1/2 ,
〈
eiθn−iχn

〉
= 1 and ∆1 = 0 can be

readily understood when we consider the population dynamics of the system
taking for the basis set of the problem the combinations |+〉 = (|0〉+ |1〉)/√2,
and |−〉 = (|0〉− |1〉)/√2, that is the symmetric and antisymmetric combina-
tions of the levels. The state |+〉 interacts with the band states via a constant
matrix element V whereas the state |−〉 turns out to be completely decou-
pled. Therefore the state |−〉 retains the initial population |〈1 |−〉|2 = 1/2
and the other half of the population, which was initially in the state |+〉,
moves completely to the levels of the band. We note that in the case where〈
eiθn−iχn

〉
= a < 1, the combination |−〉 starts to decay as well, since

ε1,2 =
1
2
g i π V 2 ± 1

2
g i π V 2 |a| (4.123)

which yields the amplitudes

ψ+(t) =
1√
2
e−tπgV 2(1+|a|)/2

ψ−(t) =
1√
2
e−tπgV 2(1−|a|)/2 (4.124)

and the populations

ρ0(t) =
1
4

(
e−tπgV 2(1+|a|)/2 + e−tπgV 2(1−|a|)/2

)2

ρ1(t) =
1
4

(
e−tπgV 2(1+|a|)/2 − e−tπgV 2(1−|a|)/2

)2
. (4.125)
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The last terms manifest a tri-exponential decay with rates πgV 2(1 + |a|),
πgV 2, and πgV 2(1 − |a|).

One more simple limiting case with |C|2 = |S|2 (we take both equal
to 1/2),

〈
eiθn−iχn

〉
= 1 and ∆1 �= 0 corresponds to two resonant levels

interacting via a continuum. Equation (4.118) yields for this case

ε1,2 =
1
2
[
∆1 + g i π V 2 ] ± 1

2
[
∆2

1−
(
g π V 2) 2]1/2 , (4.126)

which after substitution into (4.117) and the inverse Fourier transformation
results in

ψ0(t) =
−i∆1 eit[∆1+g i π V 2 ]/2√

∆2
1− (g π V 2) 2

sin
(

t

2

√
∆2

1− (g π V 2) 2

)
+eit[∆1+g i π V 2 ]/2 cos

(
t

2

√
∆2

1− (g π V 2) 2

)
ψ1(ε) =

g π V 2 eit[∆1+g i π V 2 ]/2√
∆2

1− (g π V 2) 2
sin

(
t

2

√
∆2

1− (g π V 2) 2

)
. (4.127)

From this equation one sees that the population

ρ1(t) =

(
g π V 2

)
2

∆2
1− (g π V 2) 2 e−tg π V 2

sin2
(

t

2

√
∆2

1− (g π V 2) 2

)
(4.128)

of state |1〉 manifests two different dynamical regimes of dying oscillations for
|∆1| >

∣∣g π V 2
∣∣ , and a bi-exponential decay in the opposite case. For a fixed

∆1 the decay rate depends on V . For large V , when
√

(g π V 2) 2 − ∆2
1 


g π V 2 −∆2
1/2g π V 2 and the slowest exponent gives the main contribution to

the population, (4.128) reads

ρ1(t) =
1
4
e−t∆2

1/2g π V
2
. (4.129)

One sees that the slowest decay rate ∆2
1/2g π V 2 decreases with the increase

of the interaction V . Insight into this paradoxical result is gained by noting
that the states |0〉 and |1〉 are coupled via the band, and that the stronger the
interaction is, the larger the coupling. With an extremely strong coupling,
the eigenstates of a two-level system (3.21) are very close to the combinations
|+〉, and |−〉, and the last state is completely decoupled from the band for
the case

〈
eiθn−iχn

〉
= 1, as shown above.

Distribution of the Population over the Band

From the analysis of the two-level-band system we have learned that the cor-
relations of the interaction matrix elements may have an important influence
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on the population dynamics. Interference phenomena may result in a consid-
erable increase in the decay time. When earlier, in Sect.3.2.2, considering the
Fano problem, we saw that the interference phenomenon in a two-level band
system can manifest titself also in the population distribution over the band.
Now we will consider this phenomenon in more detail for the system of two
levels and a band. We assume that ε1 of (4.118) differs from zero and has
therefore a non-zero imaginary part, since otherwise the system is equivalent
to a level–band system that has already been considered in Chap. 3.

From the third equation (4.110) with the allowance of (4.113) one obtains

ψn =
V Cn

(ε − ∆n)
ψ0 +

V Sn
(ε − ∆n)

ψ1, (4.130)

and substitution of ψ0 and ψ1 from (4.117) yields

ψn = i
V Cn

(ε − ∆n)
ε − ∆1 + iπgV 2 |C|2

(ε − ε1) (ε − ε2)

− V Sn
(ε − ∆n)

πgV 2 |CS| 〈eiθn−iχn

〉
(ε − ε1) (ε − ε2)

. (4.131)

In the regime 1/Wm � t � g, the main contribution to the inverse Fourier
transform comes from the pole ε = ∆n, since two other poles ε = ε1,2 give
exponentially small contributions that can be majorized by the exponent
e−tWm , where Wm is the minimum of two imaginary parts of ε1,2. This yields

ρ(∆) =
W ′

πg

∣∣∣∣ 1
(∆ − ε1) (∆ − ε2)

∣∣∣∣2∣∣∣Cn

(
∆ − ∆1 + iW ′ |C|2

)
+ iSnW

′ |CS| 〈eiθn−iχn
〉∣∣∣2 (4.132)

for the population ρ(∆n) = ρn = |ψn|2 of a state |n〉 , where by W ′ we denote
the combination πgV 2.

By taking the average of the last factor in (4.132) over a small energy
interval we obtain the mean population spectral density gρ(∆) in the form

gρ(∆) =
Wu

π

(∆ − ∆1)
2 + W 2(u2 + 2α(1 − u))

|(∆ − ε1) (∆ − ε2)|2
(4.133)

where by α we denote |a|2 =
∣∣〈eiχn−iθn

〉∣∣2, take u = |C|2 /(|C|2 + |S|2),
W = W ′(|C|2 + |S|2), and write the roots

ε1,2

W
=

∆1

2W
+

i

2
±

[(
∆1

2W
+

i

2

)2

− u(
i∆1

W
+ (α − 1)(1 − u))

]1/2

(4.134)

in the same notation. The asymptotic population profile of (4.133) is a sum
of two Lorentzian profiles
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gρ(∆) =
1
π

f1

|∆ − ε1|2
+

1
π

f2

|∆ − ε2|2
+

f0

π

(
∆

|∆ − ε1|2
− ∆

|∆ − ε2|2
)

(4.135)

that are placed at the positions Reε1,2 and have the widths Imε1,2 respec-
tively and an asymmetric correction term. The corresponding strengths f0,1,2
are algebraic functions of ∆1, α, and u, that can be found by equating the
coefficients of quadratic, linear and constant terms in the numerators of the
right-hand sides of (4.133) and (4.135):

f1 + f2 − f0 (2R2 − 2R1) = Wu

R2f1 + f2R1 − f0
|ε2|2 − |ε1|2

2
= ∆1Wu

f1 |ε2|2 + f2 |ε1|2 = Wu( ∆2
1 + W 2(u2 + 2α(1 − u))), (4.136)

where R1 = Reε1, R2 = Reε2, which yields

f0 =
2uW (R2 − R1)((2α (1 − u) + u2)W 2 + ∆2

1)

4R2
2|ε2

1| + 4R1
2|ε2

2| + (|ε2
1| − |ε2

2|)2 − 4R1R2(|ε2
1| + |ε2

2|)
+

2uW (R1|ε2
2| − R2|ε2

1| − ∆1(|ε2
2| − |ε2

1|))
4R2

2|ε2
1| + 4R1

2|ε2
2| + (|ε2

1| − |ε2
2|)2 − 4R1R2(|ε2

1| + |ε2
2|)

,

f1 = uW
((2α (1 − u) + u2)W 2 + ∆2

1)(4R1 (R1 − R2) − |ε2
1| + |ε2

2|)
4R2

2|ε2
1| + 4R1

2|ε2
2| + (|ε2

1| − |ε2
2|)2 − 4R1R2(|ε2

1| + |ε2
2|)

+
uW |ε2

1|(4 (R2 − R1)∆1 + |ε2
1| − |ε2

2|)
4R2

2|ε2
1| + 4R1

2|ε2
2| + (|ε2

1| − |ε2
2|)2 − 4R1R2(|ε2

1| + |ε2
2|)

,

f2 = uW
((2α (1 − u) + u2)W 2 + ∆2

1)(4R2 (R2 − R1) + |ε2
1| − |ε2

2|)
4R2

2|ε2
1| + 4R1

2|ε2
2| + (|ε2

1| − |ε2
2|)2 − 4R1R2(|ε2

1| + |ε2
2|)

+
uW |ε2

2|(4 (R1 − R2)∆1 − |ε2
1| + |ε2

2|)
4R2

2|ε2
1| + 4R1

2|ε2
2| + (|ε2

1| − |ε2
2|)2 − 4R1R2(|ε2

1| + |ε2
2|)

. (4.137)

One sees that the asymmetric correction term of the amplitude f0 vanishes
for identical positions of the poles ε1 = ε2, but that in the general case it is
of the order of two other terms that give the Lorentzian profiles. However, in
the absence of direct interaction between the |0〉 and |1〉 levels, this correction
term never compensates completely for the Lorentzian profiles, so that the
population of the band never becomes zero at a band level with a finite
detuning ∆m, which was the case for the Fano problem where such a direct
coupling is present and renders the dependence of the coupling averaged over
a small energy interval essentially non-uniform. One can see the resulting
profiles in Fig. 4.23, where we show the dependence of the distribution gρ(∆)
on the parameters ∆1, α, and u. In principle, with the help of (4.136) one
can find the correlation factor α of the band spectrum by analyzing the
asymptotic population distribution gρ(∆) over the band states.
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Fig. 4.23. The population distribution over a band as a function of the scaled
detuning ∆/W for two levels coupled to a band by different interaction matrix
elements V n

0 = V Cn and V n
1 = V Sn. Parameters governing the distribution are (a)

the detuning between the levels ∆1, divided by W = iπV 2(〈|Cn|2〉 + 〈|Sn|2〉, (b)
the relative coupling u = 〈|Cn|2〉/(〈|Cn|2〉 + 〈|Sn|2〉 of the level 0, and (c) the cor-
relation a = |〈CnSn〉|2/(〈|Cn|2〉〈|Sn|2〉. Two peakes of the population distribution,
corresponding to each of the levels, can be seen.

From the analysis of the two-level-band system we have learned that the
correlation of the matrix elements of interaction may have an important influ-
ence on the population dynamics. These correlations may result in a consid-
erable increase in the decay time as was the case for (4.129), which however
remains finite and roughly amounts to the dispersion of the matrix elements
V 2(1−∣∣〈eiχn−iθn

〉∣∣2) multiplied by the band state density. If the dispersion of
the matrix element distribution is of the order of its mean square, the typical
decay time does not experience drastic variations, although the distribution
of the population over the band can be essentially non-Lorentzian.

4.5.2 Two Bands With a Correlated Coupling

Let us now consider another example of a system with correlated matrix
elements, namely a system of two bands (4.5) with a Hamiltonian (4.6) where
the coupling matrices have the factorized form V m

n = CnVC∗
m of (4.107). For

the sake of simplicity we assume a specific form

Cn =

√
N

π (N2 + n2)

Cm =

√
M

π (M2 + m2)
(4.138)

of the coefficients entering (4.107) that allows one to perform the considera-
tion analytically.

We note that
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Fig. 4.24. (a) Two bands coupled by a factorized interaction. The N levels |n〉 of
the first band located in a strip of width ∼ Nδ0 interact with M states |m〉 of the
second band within a strip of width ∼ Mδ1 as if the interaction occurs via a single
intermediate state |Vs〉 = Cn|n〉 = Cm|m〉, which however does not correspond to
an energy level. The mean spacing among the neighboring levels of the first and
the second bands are δ0 and δ1 respectively. (b) The same problem in another
representation, where the states |b1〉 =

∑
Cn|n〉 and |b2〉 =

∑
Cm|m〉 are included

in the basis set together with the orthogonal linear combinations |n′〉 =
∑

Cn′
n |n〉

of the states of the first band and |m′〉 =
∑

Cm′
m |m〉 of the second band. States |b1〉

and |b2〉 are coupled by the cooperative interaction V = V
√

MN .

∞∑
n=−∞

|Cn|2 =
∞∑

m=−∞
|Cm|2 
 1 (4.139)

for large N and M . This implies that the rank of the perturbation matrix
equals one, and that the matrix itself is proportional to a direct product of
two normalized vectors |c0〉 〈c1| that belong to different bands. The only non-
zero eigenvalue V of V m

n corresponds to the cooperative matrix element for
the transition between the bands, which couples |c0〉 with |c1〉 .

What is the physical meaning of (4.138)? It tells us that a number of the
order of N levels of the first band interact strongly with a number of the order
of M levels of the second band, and that the matrix element of the interaction
changes smoothly with the state numbers n and m. Let us denote by δ0 and
δ1 the mean energy spacing between the neighboring levels of the first and
the second bands respectively. Then one can say that the levels located in the
energy strip Nδ0 in the vicinity of ∆n = 0 interact strongly with the levels of
the second band located in the energy strip Mδ1 around the position ∆m = 0
of the second band, as shown in Fig. 4.24. One can say that the interaction of
the bands occurs via an intermediate state |Vs〉, which does not correspond
to an energy level, being just the only non-zero eigenvector of the interaction
matrix (4.106). Projection of this vector onto the Hilbert space of the first
band gives the state vector |c0〉 =

∑
n Cn|n〉 , whereas for the Hilbert space

of the second band this projection reads |c1〉 =
∑

m Cm|m〉. These states
are responsible for the interaction of the bands. When this interaction is a
dipole coupling of atomic multiplets mediated by an external electromagnetic
field they are called “bright states”, in contrast to the “dark states” that are
orthogonal to the “bright” ones and do not interact directly with the field.
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Formal Solution

The Shcrödinger equation (4.5) for the system yields

ψn(ε) =
CnV

(ε − ∆n)

∞∑
m=−∞

Cmψm(ε) +
iδ0
n

(ε − ∆n)

ψm(ε) =
CmV

(ε − ∆m)

∞∑
n=−∞

Cnψn(ε). (4.140)

We multiply the first equation by Cn, the second equation by Cm, sum up
the terms, and obtain the equations

Φ0(ε) =
∞∑

n=−∞

|Cn|2 V
(ε − ∆n)

Φ1(ε) +
iC0

(ε − ∆0)

Φ1(ε) =
∞∑

m=−∞

|Cm|2 V
(ε − ∆m)

Φ0(ε), (4.141)

for the combinations

Φ0(ε) =
∞∑

n=−∞
Cnψn(ε)

Φ1(ε) =
∞∑

m=−∞
Cmψm(ε). (4.142)

We now substitute (4.138) into the sums entering (4.141), substitute ∆n =
nδ0, ∆m = mδ1 and replace the summation by integration in the regime
t < (1/δ0; 1/δ1). We arrive at

∞∑
n=−∞

|Cn|2
(ε − ∆n)

=
1
π

∞∫
−∞

dn
N

N2 + n2

1
ε − nδ0

=
1

ε + iNδ0

∞∑
m=−∞

|Cm|2
(ε − ∆m)

=
1
π

∞∫
−∞

dm
M

M2 + m2

1
ε − mδ1

=
1

ε + iMδ1
. (4.143)

Note the physical meaning of these sums. They represent the Fourier trans-
formed autocorrelation, that is the probability amplitude to find the system
at the states |c0〉 and |c1〉, respectively, after a time interval t, provided the
system had been in these states at t = 0. Substituting (4.143) into (4.141)
we obtain

Φ0(ε) =
V

ε + iNδ0
Φ1(ε) +

i

ε
√

πN

Φ1(ε) =
V

ε + iMδ1
Φ0(ε), (4.144)



172 4 Two-Band System

and solving this system of equations we find

Φ0(ε) =
i

ε
√

πN

(
1 − V

ε + iNδ0

V
ε + iMδ1

)−1

Φ1(ε) =
V

ε + iMδ1

i

ε
√

πN

(
1 − V

ε + iNδ0

V
ε + iMδ1

)−1

, (4.145)

which yields, with the allowance of (4.140),

ψn(ε) =
iδ0
n

ε
+

CnV
ε − ∆n

V
ε + iMδ1

i

ε
√

πN

×
(

1 − V
ε + iNδ0

V
ε + iMδ1

)−1

ψm(ε) =
CmV

ε − ∆m

i

ε
√

πN

(
1 − V

ε + iNδ0

V
ε + iMδ1

)−1

. (4.146)

Distribution of the Population over the Band

Let us concentrate on the last equation (4.146) and consider the regime
(1/Nδ0; 1/Mδ1) � t � (1/δ0; 1/δ1) when only the poles at the real points
ε = ∆m; ε = 0 are important in the inverse Fourier transformation, whereas
two other poles at the imaginary points ε = iNδ0 and ε = iMδ1 yield in this
regime, exponentially vanishing contributions.

The inverse Fourier transformation gives the time dependent amplitude
ψm(t)

ψm(t) =
−CmV

∆m

√
πN

[
Nδ0Mδ1

Nδ0Mδ1 + V2

−ei∆mt(∆m − iNδ0)(∆m − iMδ1)
(∆m − iNδ0)(∆m − iMδ1) − V2

]
(4.147)

and the population ρm(t) = |ψm(t)|2 reads

ρm(t) =
1/NM

1 + y2∆2

w

∆2π2

∣∣∣∣ ei∆τ (∆ − iy)(∆ − i/y)
(∆ − iy)(∆ − i/y) − w

− 1
1 + w

∣∣∣∣2
=

1/NM

1 + y2∆2

w

π2

∣∣∣∣ei∆τ − 1
∆

(∆ − iy)(∆ − i/y)
(∆ − iy)(∆ − i/y) − w

+
w

(1 + w)
∆ − (iy + i/y)

((∆ − iy)(∆ − i/y) − w)

∣∣∣∣2 , (4.148)

where w = V2/Nδ0Mδ1; ∆ = ∆m/
√

Nδ0Mδ1; y =
√

Nδ0/Mδ1; τ =
t
√

Nδ0Mδ1 and we have employed (4.138). One sees the important peculiar-
ity of this system – no stationary distribution over the levels of the second
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band arises after the relaxation time t ∼ (1/Nδ0; 1/Mδ1), since the right-
hand side of (4.147) remains a function of time.

In the long-time limit, the right-hand side of (4.148) can be considered as
consisting of two parts. The well-localized first part arising in the vicinity of
the point ∆ = 0 from the terms containing the combination

(
ei∆τ − 1

)
/∆

and its square is given by
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Fig. 4.25. Two bands coupled by a factorized interaction. (a) Distribution of pop-
ulation over the second band for y = 1.2 for three different times τ = 1, 3, 9 in
the regime Im

√
r �= 0. One sees that the time-dependent part of the population

becomes larger. (b) The same as (a) for Im
√

r = 0. (c) The time-independent part
of the population distribution as a function of w. One sees the cross-over from the
regime Im

√
r = 0 where the distribution is localized around ∆ = 0, to the regime

Im
√

r �= 0 where tree peaks of the distribution are present. (d) The time-dependent
part of the distribution becomes more and more narrow with the course of time
and contains a larger and larger part of the population. The total contribution of
this spike increases as ∼ τ .

ρ(1)
m (t) 
 1

NM

2w2
(
y + y−1

)
π2(1 + w)3

sin(t∆)
∆

− 1
NM

2w
π2(1 + w)2

(cos(t∆) − 1)
∆2 (4.149)

where as t → ∞ one recognizes the Dirac δ-function δ(∆) which originates
from the first term on the right-hand side of (4.149) linear in

(
ei∆τ − 1

)
/∆



174 4 Two-Band System

and the dominating contribution, ∼ δ(∆)t, resulting from the second term
quadratic in

(
ei∆τ − 1

)
/∆. The time-independent second part

ρ(2)
m (t) 
 1/NMπ2

1 + y2∆2

w3

(1 + w)

∣∣∣∣ ∆ − (iy + i/y)
((∆ − iy)(∆ − i/y) − w)

∣∣∣∣2 (4.150)

emerges from (4.148) when at ∆ �= 0 and ∆t � 1 we omit the rapidly
oscillating term

(
ei∆τ − 1

)
/∆.

The time-independent part (4.150) of the population distribution can be
represented as a sum of three Lorentzian profiles – one peak of width 1/ |y|
located at ∆ = 0, and two other peaks, of width a = |Rer1| located at the
points ∆ = ±b = ±Imr1, where

r1,2 = a ± ib =
y + y−1

2
±

√(
y − y−1

2

)2

− w (4.151)

is the solution of the bi-quadratic equation |(ix − iy)(ix − i/y) − w|2 = 0
with respect to ∆ = ix, corresponding to the poles of (4.150). For real and
positive r all three of these peaks are located at the point ∆ = 0, but have
nevertheless different widths. In Fig. 4.25 we show the population distribution
profiles as a function of the detuning for different regimes.

Total Populations of the Bands

Multiplying the probability amplitude ψm(ε) of (4.146) by its complex con-
jugate one finds the total population of the second band by integrating over
dm = d∆/δ1. After substitution of Cm from (4.138) and employing the no-
tation of (4.148)

ρ1(ε, ξ) =
∫

d∆

π2N

1/y
(1/y2 + ∆2)

w

(ε − ∆) (ξ − ∆)
1
εξ(

1 +
w

(ε − ir1) (ε − ir2)

)(
1 +

w

(ξ + ir1) (ξ + ir2)

)
,(4.152)

one obtains

ρ1(ε, ξ) =
w

Nπ

(
1 +

2i
y (ε − ξ)

)
1

ε
(
ε + i

y

) (
1 +

w

(ε − b + ai) (ε + b + ai)

)
1

ξ
(
ξ − i

y

) (
1 +

w

(ξ − b − ai) (ξ + b − ai)

)
. (4.153)

By analogy to (4.75) we note that the factor i/ (ε − ξ) corresponds to the
time integration whereas the combinations on the second and the third lines
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yield, after the inverse Fourier transformation, two complex conjugate time
dependent functions φε(t) and φξ(t) respectively, which read

φε,ξ(t) =
∫
C

e−iεt

ε
(
ε + i

y

) (
1 +

w

(ε − b + ai) (ε + b + ai)

)

= y

(
w

b2 + a2 − 1
)

− w sin(tb ± ϕ)e−at

b |b − ai|
∣∣∣b − ai + i

y

∣∣∣
+y

(
1 − w

b2 − (a − 1/y)2

)
e−t/y (4.154)

where ϕ = arg(b − ai) + arg(b − ai + i
y ). Therefore the time-dependent pop-

ulation ρ1(t) of the second band can be given in the form

ρ1(τ) =
w

Nπ

⎛⎝|φε(τ)|2 +
2
y

τ∫
0

|φε(t)|2 dt

⎞⎠ , (4.155)

which after straightforward calculations yields

ρ1(τ) =
2w

N (1 + w)π2

[
2τy

w
+

w2 + w
(
2 + y2

)2 − 2
(
y2 + y4

)
w (1 + w) (1 + y2)

− 2y2 (1 + w)
(
y2 − 1

)
e−2aτ

(1 + y2) (1 − 2 (1 + 2w) y2 + y4)

+
2
(
y2 − w

(
2 + y2

))
(1 + w)

e−aτ cos(bτ)

+
2w2y2 + y2

(
y2 − 1

) − w
(
2 + 3y2 + y4

)
b (1 + w) yw

e−aτ sin(bτ)

+
2w2y2 + y4(y2 − 1) − w(1 + y2 + 4y4)

(1 + w) (1 − (2 + 4w) y2 + y4)
e−2aτ cos(2bτ)

− w + 2wy2 − y4

2b (1 + w) y
e−2aτ sin(2bτ)

]
. (4.156)

One sees that the total population demonstrates an exponential decay
along with dying oscillations. We should note, however, that for the initial
conditions chosen, these terms play a minor role, remaining of the order of in-
verse numbers 1/N ; 1/M , of levels participating in the population dynamics.
The dominating role is played by the linear term

ρ1(τ) 
 4τy/N(1 + w)π2 = 4tδ0/
(
1 + V2/Nδ0Mδ1

)
π2, (4.157)

which however also remains small as compared to unity within the domain
t � g ∼ 1/δ0 of applicability of the continuous-band model.
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Representation by Two Level–Band Systems

The behavior of the two-band system with factorized interaction matrix ele-
ments is revealed when one considers the matrix structure of the correspond-
ing Hamiltonian. In Fig. 4.24 we illustrate the principal features of such a
structure, by representing the two-band system as a combination of two level–
band systems interacting via coupled levels. Indeed, the Hamiltonian of a two
band system with the factorized interaction V̂ = |Cn〉 V 〈Cm|

Ĥ =

⎛⎝∑
m

|m〉∆m 〈m| |c1〉 V 〈c0|
|c0〉 V 〈c1|

∑
n

|n〉∆n 〈n|

⎞⎠ =

(
∆mδm

′
m C∗

nVCm

C∗
mVCn ∆nδ

n′
n

)
(4.158)

can be rewritten in another representation, which comprises the states |c0〉
and |c1〉 as the basis states together with the other orthogonal basis states {ν}
and {µ}, with µ, ν = 1, 2, . . .. The Hamiltonians of the first

∑
n |n〉∆n 〈n| and

the second
∑

m |m〉∆m 〈m| bands are not diagonal in such a representation,
but via an appropriate choice of the sets |ν〉 and |µ〉 one can diagonalize
the blocks of the Hamiltonian corresponding to these states. This yields the
representation

Ĥ =

⎛⎜⎜⎝
|µ〉∆

′
µ 〈µ| |µ〉Hµ 〈c1| 0 0

|c1〉H∗
µ 〈µ| |c1〉E1 〈c1| |c1〉 V 〈c0| 0

0 |c0〉 V 〈c1| |c0〉E0 〈c0| |ν〉Hν 〈c0|
0 0 |c0〉H∗

ν 〈n′| |ν〉∆′
ν 〈ν|

⎞⎟⎟⎠ , (4.159)

in Dirac notation, where summation over ν and µ is implicit, or explicitly in
the matrix form

Ĥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . .

. ∆′
µ−1 0 0 Hµ−1 0 0 0 0 .

. 0 ∆′
µ 0 Hµ 0 0 0 0 .

. 0 0 ∆′
µ+1 Hµ+1 0 0 0 0 .

. H∗
µ−1 H∗

µ H∗
µ+1 E1 V 0 0 0 .

. 0 0 0 V E0 Hν+1 Hν Hν−1 .

. 0 0 0 0 H∗
ν+1 ∆′

ν+1 0 0 .
. 0 0 0 0 H∗

ν 0 ∆′
ν 0 .

. 0 0 0 0 H∗
ν−1 0 0 ∆′

ν−1 .
. . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.160)

where E0 =
∑

n |Cn|2 ∆n and E1 =
∑

m |Cm|2 ∆m.
The precise positions of the energies ∆′

ν and ∆′
µ are not important in

the regime t � g, and can, as earlier, be taken as equidistant with the
spacing among the neighboring levels δ0 and δ1 respectively, while the new
non-diagonal matrix elements Hµ and Hν can be estimated with the help of
the consideration on p. 75 of the number of levels in resonance: We express



4.5 The Role of Correlations 177

the number N of levels of the first band accessible from the state |c0〉 as
〈|Hν |2〉/δ2

0 = N and by analogy 〈|Hµ|2〉/δ2
1 = M for the second band, which

yields Hν ∼ δ0
√

N and Hµ ∼ δ1
√

M respectively.
We note that the combinations Φ0(ε) and Φ1(ε) of (4.142) now have a

clear physical meaning, representing the probability amplitudes to be in the
states |c0〉 and |c1〉, whereas (4.144) is the Fourier form of the Schrödinger
equation

εΦ0(ε) = iNδ0Φ0(ε) + VΦ1(ε) +
i (ε + iNδ0)

ε
√

πN

εΦ1(ε) = VΦ0(ε) + iMδ1Φ1(ε) (4.161)

for these amplitudes allowing for the irreversible decay with the rates Nδ0
and Mδ1 to the continua of the first and the second bands respectively. In the
inhomogeneous term on the right-hand side of (4.161) one also recognizes (see
p. 83) a small initial population amplitude 1/

√
πN of the state |c0〉 at t = 0,

and a steady state amplitude injection Π(t) = Θ(t)
√

Nδ0/
√

π corresponding
to the term

√
Nδ0/ε

√
π.

The origin of the terms exponentially decaying, oscillating, and linearly
increasing with time in (4.156) for the population is now clear: the linearly
increasing term originates from the steady state population injection, which
is becoming localized with the course of time near the energy ∆ = 0, whereas
the terms exponentially decreasing in time result from the irreversible (on
the scale t � g) decay of the small initial population of the state |c0〉. The
decay occurs either with or without oscillations depending on the relation
between the coupling strength V and the typical damping rates Nδ0 and Mδ1
similar to the dynamics of a damped pendulum. Large coupling corresponds
to the oscillatory regime, which results in satellite spikes in the population
distribution over the band at the positions ∆ ∼ ±V, seen in Fig. 4.25(a,b,c).

But where does the initial population of the state |c0〉 and the population
amplitude supply come from? To answer this question, one has to note that
the initial condition ψn(t = 0) = δ0

n, ψm(t = 0) = 0 in the representation of
the basis states |ν〉 and |µ〉 is determined by the amplitudes ψν(t = 0) and
ψµ(t = 0) and reads ψν(t = 0) = 〈ν|n = 0〉, ψµ(t = 0) = 0. This yields a
small initial amplitude 〈c0|n = 0〉 = C0 = 1/

√
πN for the state |c0〉, whereas

the main part (∼ 1) of the initial population amplitude remains in the band
states |ν〉 either precisely at the state |ν = 0〉 or at a small group of states
located in an extremely narrow strip around it. Being coupled to the short-
lived state |c0〉 by a relatively small matrix element Hν=0 ∼ δ0

√
N , the state

|ν = 0〉 supplies a small population flux Π ∼ |Hν=0|2 /(Nδ0 +Mδ1) given by
the ratio of the squared coupling to the decay rate of |c0〉 . (Note that this
ratio represents the cooperative matrix element of coupling squared divided
by the width of the band discussed on p. 76.) For Nδ0 ∼ Mδ1 this yields the
estimate Π ∼ ρ1(t)/t ∼ δ0 which is consistent with the result of (4.157).
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One sees that the correlations of the interaction matrix elements play an
important role and may have a significant effect on the population dynamics
in a multilevel quantum system. The Fano problem discussed in Sect.3.2.2
and the problems that have been considered in this section show that the
correlations manifest themselves in non-Lorentzian profiles of the population
distribution over the band and in the non-exponential time dependences of
the total populations of the bands.

4.5.3 Regime of Stabilization for the Correlated Coupling

An interesting regime exists in a system consisting of an equidistant discrete
band coupled to a continuum by a correlated coupling V . It turns out that for
time t considerably exceeding the inverse spacing 1/δ between the neighboring
discrete levels, the rate of the band population decay to continuum decreases
with the increase of V . We consider the continuum with a state density
g = 1/δ1 as a band of N discrete levels in the limit N → ∞, δ1 → 0 and
employ (4.140) with Cn = 1/

√
N and Cm = 1/

√
M , where M is the number

of levels in the disctete band. This yields

ψn(ε) = V√
MN(ε−∆n)

∞∑
m=−∞

ψm(ε) + iΠ(ε)√
N(ε−∆n)

,

ψm(ε) = V√
MN(ε−∆m)

∞∑
n=−∞

ψn(ε), (4.162)

where Π(ε) = exp(−ε2τ2/4) is the Fourier transformed external injection
(3.58) to the continuum and V = V

√
MN .

By analogy to (4.140)–(4.146) with (4.143) of the form

∞∫
−∞

dn 1
ε−nδ1 = iπg,

∞∑
m=−∞

1
ε − mδ

=
π

δ
cot

επ

δ
(4.163)

suggested by (3.76), we arrive at

ψm(ε) = −πgΠ(ε)V
(ε−∆m)

(
1 − iπ2gV 2

δ cot επδ
)−1

. (4.164)

We determine the level population

ρm(ε, ξ) = (πgV )2 Π(ε)Π(ξ)
(ε−∆m)(ξ−∆m)(

1 − iπ2gV 2

δ cot επδ
)−1 (

1 + iπ2gV 2

δ cot ξπδ
)−1

, (4.165)
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and find the total population ρ1(ε, ξ) =
∑

m ρm(ε, ξ) of the discrete band

ρ1(ε, ξ) = − (πgV )2 Π(ε)Π(ξ) cotπξ/δ−cotπε/δ
(ξ−ε)

π
δ

(
1 − iπ2gV 2

δ cot επδ
)−1 (

1 + iπ2gV 2

δ cot ξπδ
)−1

. (4.166)

For large gV 2/δ and for long times t � π/δ the main contribution to the
inverse Fourier transformation comes from the vicinities of the points where
ξ 
 ε 
 π/2 + nπ, and after having performed the replacements ξ → ξ +
π/2 + nπ and ε → ε + π/2 + nπ we arrive at

ρ1(ε, ξ) = − (πgV )2
∑
n

Π(nδ1)Π(nδ1) πδ1
π
δ1(

1 − iπ3gV 2

δ2
ε
)−1 (

1 + iπ3gV 2

δ2
ξ
)−1

, (4.167)

and hence

ρ1(t) = 4δ2
V 2 e−2tδ2/π3gV 2 ∑

n
e−(nδτ)2/2 = 4gδ

√
2π

τW e−2tδ2/π2W . (4.168)

One sees that the stronger the regular decay rate 2W = 2πgV 2 of the band
levels to the continuum at t < 1/δ, the slower is this decay rate 2δ2/π2W in
the regime t � π/δ under consideration. This phenomenon has been observed
in Rydberg atoms interacting with a strong laser field and is known as strong
field stabilization of atoms.

4.5.4 Correlation Between the Mean Squared Coupling
and the Energy Position

Let us now consider a different example of the correlation, when the in-
teraction matrix elements V m

n do not correlate among themselves, that is
〈V m

n 〉 = 0, but their mean square values vmn =
〈
|V m
n |2

〉
are different for dif-

ferent transitions, and therefore they correlate with the energy positions ∆m

and ∆n of both the coupled states |m〉 and |n〉. All the results of Sect. 4.1
remain valid for this case if one does not put the mean squared interactions
in front of the summations symbols, such that (4.20) and (4.21) read

Xn(ε) =
1

ε − ∆n − ∑
m

vmn Xm(ε)

Xm(ε) =
1

ε − ∆m − ∑
n

vnmXn(ε)
, (4.169)

while (4.26) takes the form
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ρm (ε, ξ) =
1

ε − ∆m − ∑
n

vnmXn(ε)
1

ξ − ∆m − ∑
n

vnmXn(ξ)

∑
n

vnmρn (ε, ξ)

ρn (ε, ξ) =
1

ε − ∆n − ∑
m

vmn Xm(ε)
1

ξ − ∆n − ∑
m

vmn Xm(ξ)

∑
m

vmn ρm (ε, ξ)

+δn0
1

ξ − ∑
m

vm0 Xm(ξ)
1

ε − ∑
m

vm0 Xm(ε)
. (4.170)

We concentrate here on the case of a factorized form of the mean squared
interaction vmn = cnV

2cm and two identical bands for which one obtains the
relations

Xn(ε) = Xm(ε) =
1

ε − ∆m − cmV 2s(ε)
(4.171)

s(ε) =
∑
n

cnXn(ε) (4.172)

yielding the renormalization equation

s(ε) =
∑
n

cn
ε − ∆n − cnV 2s(ε)

, (4.173)

that has much in common with (4.22), although differs from it.
Note that s(ξ) is the complex conjugate function of s(ε), that is s(ξ) =

s∗(ε)|ε=ξ. For this case (4.26) reads

ρm (ε, ξ) =
1

ε − ∆m − cmV 2s(ε)
1

ξ − ∆m − cmV 2s(ξ)
cmV 2ρ̃0 (ε, ξ)

ρn (ε, ξ) =
1

ε − ∆n − cnV 2s(ε)
1

ξ − ∆n − cnV 2s(ξ)
cnV

2ρ̃1 (ε, ξ)

+δn0
1

ξ − c0V 2s(ξ)
1

ε − c0V 2s(ε)
, (4.174)

where ρ̃0 (ε, ξ) =
∑

n cnρn (ε, ξ) and ρ̃1 (ε, ξ) =
∑

m cmρm (ε, ξ). Multiplica-
tion of the first and the second parts of (4.174) by cm and cn respectively
followed by summation over all m and n results in the system of equations

ρ̃1 (ε, ξ) = F̃ (ε, ξ)ρ̃0 (ε, ξ)

ρ̃0 (ε, ξ) = F̃ (ε, ξ)ρ̃1 (ε, ξ) + c0
ξ−c0V 2s(ξ)

1
ε−c0V 2s(ε) (4.175)

for the auxiliary quantities ρ̃0 (ε, ξ) and ρ̃1 (ε, ξ) which has the solution

ρ̃0 (ε, ξ) =
−c0(

F̃ (ε, ξ)2 − 1
)

(ξ − c0V 2s(ξ)) (ε − c0V 2s(ε))

ρ̃1 (ε, ξ) =
−F̃ (ε, ξ)c0(

F̃ (ε, ξ)2 − 1
)

(ξ − c0V 2s(ξ)) (ε − c0V 2s(ε))
. (4.176)
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After substitution into (4.174) this yields, for the total populations,

ρ1 (ε, ξ) = F (ε, ξ)ρ̃0 (ε, ξ)

ρ0 (ε, ξ) = F (ε, ξ)ρ̃1 (ε, ξ) +
1

ξ − c0V 2s(ξ)
1

ε − c0V 2s(ε)
. (4.177)

Here we have employed the notation

F̃ (ε, ξ) =
∑
m

V cm
ε − ∆m − cmV 2s(ε)

V cm
ξ − ∆m − cmV 2s(ξ)

F (ε, ξ) =
∑
m

V 2

ε − ∆m − cmV 2s(ε)
cm

ξ − ∆m − cmV 2s(ξ)
. (4.178)

Note that the sum ρ+ (ε, ξ) = ρ1 (ε, ξ) + ρ0 (ε, ξ) can be written in the
form

ρ+ (ε, ξ) = F (ε, ξ) (ρ̃0 (ε, ξ) + ρ̃1 (ε, ξ)) +
1

ξ − c0V 2s(ξ)
1

ε − c0V 2s(ε)

=
1 − F̃ (ε, ξ) − c0F (ε, ξ)

1 − F̃ (ε, ξ)

1
ξ − c0V 2s(ξ)

1
ε − c0V 2s(ε)

. (4.179)

After the inverse Fourier transformation it should be identical to 1, which
implies a hidden functional relation among F̃ (ε, ξ), F (ε, ξ), s(ξ) and s(ε),
and indeed, by taking apart the fractional factors in the first part of (4.178)
and with allowance for (4.173) one obtains, after straightforward calculations

1 − F̃ (ε, ξ) =
ε − ξ

s(ε) − s(ξ)
F (ε, ξ)

V 2 , (4.180)

which yields

ρ+ (ε, ξ) =
ε − ξ − c0V

2(s(ε) − s(ξ))
ε − ξ

1
ξ − c0V 2s(ξ)

1
ε − c0V 2s(ε)

=
1

ε − ξ

1
ξ − c0V 2s(ξ)

− 1
ε − ξ

1
ε − c0V 2s(ε)

. (4.181)

Indeed, consider the first fraction in the last part of the equation. In the
inverse Fourier transformation it corresponds to the term, which as a function
of ε, has only one pole at the point ε = ξ. We therefore integrate this term over
ε first, thus removing the time dependence. The analytical properties of the
function s(ξ) dictated by the causality principle are such that the remaining
factor (ξ − c0V

2s(ξ))−1 has no singularities in the lower part of the complex
plane, and therefore by transforming the initial integration contour along the
real axis into the integration contour C2, shown in Fig. 3.2 (the circumvention
direction is the opposite to that shown in the figure) one gets the numerical
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contribution 1/2 implied by the condition s(ξ) → 0 at |ξ| → ∞. The other
half comes from the complex conjugate (the second) term in (4.181).

The equation for the population difference is similar to (4.29). It emerges
from (4.176) (4.177) with the allowance of (4.180) and reads

∆ρ (ε, ξ) =

(
F̃ (ε, ξ) − 1

F̃ (ε, ξ) + 1

V 2c0 (s(ε) − s(ξ))
(ε − ξ)

+ 1

)
1

ξ − c0V 2s(ξ)
1

ε − c0V 2s(ε)
, (4.182)

whereas the distribution over the second band results from Eqs.(4.174, 4.176)
and (4.180), that yield

ρm (ε, ξ) =
1

ε − ∆m − cmV 2s(ε)
1

ξ − ∆m − cmV 2s(ξ)
(s(ε) − s(ξ)) c0cmV 4

F (ε, ξ) (ε − ξ) (ξ − c0V 2s(ξ)) (ε − c0V 2s(ε))
. (4.183)

In the long time limit, the main contribution comes from the point ε = ξ,
where F̃ (ε, ξ) = 1 according to (4.180), and the function F (ε, ξ) is regular,
while the difference s(ε)−s(ξ) assumes an imaginary value. Therefore (4.183)
after the inverse Fourier transformation takes the form

ρm (∆) =
∫

1
ε − ∆ − c(∆)V 2s(ε)

1
ε − ∆ − c(∆)V 2s∗(ε)

2πi (s(ε) − s∗(ε)) c0c(∆)V 4

F (ε, ε) (ε − c0V 2s∗(ε)) (ε − c0V 2s(ε))
dε. (4.184)

with s∗(ε) = s(ξ)|ξ=ε. We also note, that the asymptotic population distri-
bution over the states of the first band at t → ∞ coincides with that for the
second band.

We now have to determine the functions s(ε), s(ξ), F (ε, ξ), and F̃ (ε, ξ),
entering (4.183,4.184). For the model of two continuous bands of an identical
state density g they are given by the equations

s(ε) =
∫

gd∆

(ε − ∆) /c(∆) − V 2s(ε)
(4.185)

F (ε, ξ) =
∫

V
ε−∆
c(∆) − V 2s(ε)

V
ξ−∆
c(∆) − V 2s(ξ)

gd∆

c(∆)
(4.186)

F̃ (ε, ξ) =
∫

V
ε−∆
c(∆) − V 2s(ε)

V
ξ−∆
c(∆) − V 2s(ξ)

gd∆.

In order to proceed with the calculations we have to choose a model for the
dependence c(∆) which would allow us to evaluate the integrals (4.185,4.186)
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and solve the equation (4.185) for s(ε) choosing for s(ξ), the complex con-
jugate solution. However, even for the simplest model of coupling c(∆) =
Γ/gπ(∆2 + Γ 2) which has a Lorentzian profile of width Γ , the calculations
turn out to be rather cumbersome. We therefore will show here just the main
steps of the general analysis and concentrate mainly on the case of strong
coupling V 2g � Γ , which can be performed analytically. We note that the
opposite extreme V 2g � Γ corresponds to the case of two homogeneous
bands that has already been considered in the section 4.2.

Replacements ∆ → Γx, ε → Γε, s(ε) → 2πgΓ 2r(ε)/V 2, κ → V 2/π2gΓ 3 in
(4.185) yield

r(ε) =
κ

2

∫
dx

(ε − x) (x2 + 1) − 2r(ε)
. (4.187)

The denominator of the integrand is a third-order polynomial with respect
to x, which has roots at the points

a =
ε

3
+

3 − ε2 − Θ2/3

3 Θ1/3 ,

b =
ε

3
+

eiπ/3
(
ε2 − 3

)
+ e−iπ/3 Θ2/3

3 Θ1/3 ,

c =
ε

3
+

e−iπ/3 (
ε2 − 3

)
+ eiπ/3 Θ2/3

3 Θ1/3 , (4.188)

where

Θ(ε, r) = 27r − 9ε − ε3 + 3
√

3
√

27r2 + (1 + ε2)2 − 2rε(9 + ε2) (4.189)

For Imε > 0 the points a and b are in the upper part of the complex plane,
whereas the point c is in the lower part. Therefore the integral (4.187) can be
evaluated by taking the residue at the point x = c which yields the algebraic
equation

r(ε) =
−πiκ

(c − a) (c − b)
. (4.190)

Let us make the replacement Θ → (
e2i arccos(j)−2πi/3

(
ε2 − 3

))3/2
, which

yields

a =
ε

3
− 1

3
(j +

√
3
√

1 − j2)
√

ε2 − 3,

b =
ε

3
− 1

3
(j −

√
3
√

1 − j2)
√

ε2 − 3,

c =
ε

3
+

2
3

j
√

ε2 − 3, (4.191)

for the roots given by (4.188) and thereby allows one to write the expressions
(4.189) and (4.190) in a much shorter form
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r(ε) =
2
(
ε2 − 3

)3/2

27

[
4j3 − 3j +

ε(ε2 + 9)

(ε2 − 3)3/2

]
(4.192)

r(ε) =
3πiκ

(ε2 − 3) (4j2 − 1)
. (4.193)

One sees that this system of equations gives an explicit expression for r(ε)
provided one has selected the correct branch j(ε, κ) from the five possible
solutions of the 5-th order polynomial equation

81πiκ

2 (ε2 − 3)5/2
=

[
4j3 − 3j +

ε(ε2 + 9)

(ε2 − 3)3/2

]
(4j2 − 1) (4.194)

and substitutes this solution into (4.192). The correct branch has the asymp-
totic form j(ε, κ) → 1 for ε → ∞, as it follows from the direct evaluation of
the integral (4.187) in the limit

r(ε) 
 πiκ

ε2
, (4.195)

when the main contribution comes from the pole x = ε.
The strong coupling limit V 2g � Γ corresponds to the extreme κ → ∞,

where apart from (4.195), which is valid in the domain ∆/Γ ∼ ε ∼ κ1/3 � 1
containing the main part of the population distribution, the approximate
expressions

j 
 1, (4.196)

c 
 ε

3
+

2
3

√
ε2 − 3,

can also be found for the auxiliary variable j and for the root c. The main
contributions to the integrals of (4.185)–(4.186) and to the inverse Fourier
transformation come from the point ξ 
 ε 
 ∆, |ε − ξ| � |ε| . With al-
lowance of the relations c0 = 1/gπΓ, c(∆) 
 Γ/gπ∆2 this yields

s(ε) 
 2iΓ
ε2 ,

F̃ (ε, ξ) 
 2iΓ 2V 2
(
ε−4 + ξ−4)

gπ (ξ − ε) + 2iΓ 2V 2
(
ε−4 + ξ−4) . (4.197)

Substitution of (4.197) (4.182) gives the population difference

∆ρ (ε, ξ) =
( −V 24iε2

8iΓ 2V 2 + gπε4 (ξ − ε)
+ 1

)
ε2gπ

ε3gπ − 2V 2i

ξ2gπ

ξ3gπ + 2V 2i
. (4.198)
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Fig. 4.26. Two identical bands with mean squared interaction depending on the
position of the coupled levels: Wn,m(∆n, ∆m) = Γ 4〈V 2〉g/[(Γ 2 +∆2

m)(Γ 2 +∆2
n)] in

the regime Γ 	 〈V 2〉g. (a) The difference of the total populations of the first and
the second bands depends on the scaled time T = 2πtΓ 2g/〈V 2〉. (b) The asymptotic
distribution of the populations over the energies of the band states is identical for
the first and the second bands and depends only on the scaled detuning ∆/a, where
a = (2〈V 2〉/gπ)1/3.

We now perform the inverse Fourier transformation of (4.198) and obtain
the time dependent population ∆ρ (t) shown in Fig. 4.26(a).

In order to obtain this dependence we consider first the contribution of
the pole at ξ = i

(
2V 2/gπ

)1/3 in the upper part of the complex plane ξ
where the integration contour can be displaced for positive t. For this pole
the only singularity in the lower part of the complex plane of ε is located at
ε = −i

(
2V 2/gπ

)1/3, and even at t = 0 it yields a small ∼ κ−2/3 contribution
to the expression (4.198), which becomes yet smaller, decreasing exponen-
tially with elapsing time. It can therefore be completely ignored for the given
order of approximation. The main contribution to the inverse Fourier trans-
formation for the population difference comes from the point ε 
 ξ and reads

∆ρ (t) =
∫
C

e−t8Γ 2V 2/gπε4 2gV 2ε2

ε6 (gπ)2 + 4V 4
dε. (4.199)

The replacements ε3 → 2 xV 2/gπ and t → T
(
2V 2/gπ

)1/3
/4Γ 2 yield

∆ρ (t) =
1
π

∫
Cx

e−Tx−4/3 dx

3 (x2 + 1)

=
3
π

∞∫
−∞

e−Tx−4/3 dx

3 (x2 + 1)
, (4.200)
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where the contour Cx circumvents the point x = 0 three times, in order to
accumulate the same phase difference of 6π as the function ε3 after a single
circumvention of the point ε = 0 along the contour C. This is the origin of the
topological factor 3 in the last equality of (4.200). At t = 0 this equation gives
∆ρ (0) = 1, and for t → ∞ it yields the asymptotic power-law dependence

∆ρ (t) =
6V 2

gπ2

( gπ

8Γ 2V 2t

)3/4
∞∫

−∞
e−1/u4 du

u4 ∼ t−3/4. (4.201)

Let us consider now the population distribution over the energy levels
of the bands suggested by (4.184). With the allowance of (4.180)–(4.197),
the relations c0 = 1/gπΓ, c(∆) 
 Γ/gπ∆2, and the topological factor 3
mentioned above it reads

ρm (∆) =
6V 2

(gπ)2
∆2

∆6 +
(

2V 2

gπ

)2 , (4.202)

which corresponds to a two-hump distribution of width
(
2V 2/gπ

)1/3, shown
in Fig.4.26(b). We note that

∫
ρm (∆) gd∆ = 1/2, since the population is

equally distributed amongst the states of the first and the second band of
the same energy. We also note that for the regime V 2g � Γ under consider-
ation the width Γ of the coupling line W (∆) does not effect the population
distribution profile (4.202), which is located on the far wings of this line.
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We now consider quantum systems with time-dependent Hamiltonians. The
formal expression for the evolution operator for such systems is given by the
time-ordered exponent of the integral of the corresponding Hamiltonian

Û(t) = T̂ exp
{

−i

∫ t

Ĥ(τ)dτ
}

= e−iĤ(t)dτe−iĤ(t−dτ)dτ . . . e−iĤ(τ+dτ)dτ

e−iĤ(τ)dτ . . . e−iĤ(2dτ)dτe−iĤ(dτ)dτe−iĤ(0)dτ (5.1)

which simply involves the sequential application of infinitesimal evolution
operators e−iĤ(τ)dτ with instantaneous Hamiltonians. Here T̂ denotes the
time ordering operator. Usually this expression is not very practical when
one looks for an exact analytic solution. Moreover, it turns out that for a
multilevel quantum system, the possibility to achieve an analytic description
is strongly related to the algebraic structure of the time-dependent Hamil-
tonian suggested by Lie group theory. We therefore start our consideration
by introducing some general ideas, remarks, and results of the group theory
required for our analysis.

We continue with the analysis of a number of exactly soluble problems
widely known as the Landau–Zener problem and its generalization to the
case of decaying and dephasing levels. We also consider a two-level system
for two special cases of the time-dependent perturbation that can be per-
formed analytically. The results are obtained in terms of the hypergeometric
functions which is almost always the case for the exactly soluble problems.
In certain conditions, the hypergeometric functions can be reduced to other
special functions, which is the case for exponentially rising coupling. Then we
turn to the adiabatic approximation and show that the probability of non-
adiabatic transitions is given by the Dykhne formula, also valid for multilevel
time-dependent systems.

The next classical example of multilevel time-dependent systems is the
Demkov–Osherov system consisting of a level moving across a band. This
problem can be solved exactly by the Laplace contour integral method. In
this context we address a question about non-adiabatic processes at the edges
of the band. The Laplace method allows one to find a solution in the form
of a contour integral for another problem – a level placed at a certain energy
difference underneath a continuous band with the coupling exponentially in-
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creasing between the level and the band. It turns out that in spite of the
fact that with the course of time, the coupling rapidly exceeds the detuning
between the level and the edge of the band, the level keeps the main part of
its population, being only repelled toward negative energies.

5.1 Algebraic Structure of Time Dependent Systems

The dynamics of a quantum system with time-dependent parameters is often
more involved compared to the stationary analog. This is always the case
when the system Hamiltonians corresponding to different moments in time
do not commute. The algebra of their commutators of various orders, namely
the rules by which the commutators can be expressed in terms of a linear
combinations of operators Ĝn (where n = 0 . . . No, and Ĝ0 = Î) comprising
a set of No so-called generators of a Lie group, play an important role and
shift the consideration of the problem to the domain of Lie group theory. In
the following sections, we illustrate the group theory background of several
exactly soluble problems, and here we demonstrate it for the simplest example
of a system with a Hamiltonian that takes only two values Ĥ = ĤA or
Ĥ = ĤB .

Consider the system after it has been evolving with the Hamiltonian ĤA

during a time interval tA and with the Hamiltonian ĤB during a time interval
tB . The evolution operator reads

Û(tA, tB) = e−itBĤBe−itAĤA . (5.2)

The essence of the problem is in the fact that the regular multiplication rule
eBeA = eA+B is not valid for non-commuting operators Â and B̂, and must
be replaced by the relation known as the Baker–Campbell–Hausdorff formula

eB̂eÂ = eĈ ,

Ĉ = Â + B̂ +
1
2
[Â, B̂] +

1
12

[Â, [Â, B̂]]

− 1
12

[B̂, [Â, B̂]] + . . . + ck,s[A, [. . . , [A,B] . . .]] + . . . , (5.3)

where an explicit albeit non-trivial computation rule exists (see p. 220) for
the numerical coefficients ck,s in front of a generic commutator of k-th order.
The index s = 1, . . . , 2k enumerates different sequences of commutation and
has unities and zeros in its binary representation in the order suggested by
the sequence of operators Â and B̂ respectively in the corresponding multiple
commutator. For example [A, [A, [B, [A,B]]]] corresponds to s = 11010 in the
binary representation, that is s = 0 + 1 × 21 + 0 × 22 + 1 × 23 + 1 × 24 =
26. Now one sees that, indeed, the commutation relations generated by two
Hamiltonians ĤA and ĤB play a crucial role in the dynamics of the quantum
system since
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U(tA, tB) = exp
{

− itBĤB − itAĤA − tBtA
2 [ĤB , ĤA]

− it2BtA
12 [ĤB , [ĤB , ĤA]] + itBt

2
A

12 [ĤA, [ĤB , ĤA]] + . . .
}
. (5.4)

Equation (5.4) gives us a clue for the classification of different particular
cases – the larger the dimension of the operator space produced by the com-
mutators, that is the larger the set of operators comprising the algebra, the
more involved the quantum dynamics are. For a commuting pair of Hamil-
tonians the set has only two elements since the evolution operator is given
by the exponent of the linear combination −itBĤB − itAĤA of just two op-
erators, and hence the operator space is two-dimensional. One can say that
the evolution operator (5.2) belongs to a two-parametric Lie group. Apart
from a phase factor e− tBtA

2 C it is also the case when the commutator is a
number C = [ĤB , ĤA]. In a more involved case, when all of the commutators
of the order higher than a certain k vanish, the evolutionary operator turns
to be the exponent of a linear combination of a larger, albeit finite number of
terms, each of which is a commutator of some order less than k. The dimen-
sionality No of the operator space can reach at most 2k, since this value gives
the number of different commutators, unless some of the commutators can
be represented as linear combinations of the others, and hence the number
of linearly independent elements of the set comprising the algebra is smaller.

Another case, the most interesting from the viewpoint of a comprehensive
analytical consideration, corresponds to the situation when no commutators
of higher order vanish, but can all be represented as a linear combination
of commutators of orders less than a certain order k. In this case, all of the
coefficients in (5.3) are different from zero, but nevertheless this infinite sum
can be cast in a finite linear combination of commutators with the coefficients
fn(tA, tB) given by the infinite series. In this very case, Lie group theory is
the most important concept, which allows one to employ generators Gn of
standard groups as a basis set in the space of commutators and thereby
express the evolution operator in the form

Û(t) = e
∑No

n=0 fn(tA,tB)Ĝn , (5.5)

which sometimes provides one with an exact analytical solution of the prob-
lem. In other words, this is the case where the dimensionality of the operator
space generated by the commutators of the Hamiltonians at different mo-
ments of time is much less than the dimensionality of the Hilbert space of
the considered system: No � N . The evolution operator belongs to an No-
parametric Lie group, although the values of these parameters fn(tA, tB) are
possibly rather complex functions of tA and tB even for the simplest partic-
ular problem (5.2) under consideration. Finally, in the case where all of the
commutators of the lower orders turn out to be linearly independent until
their total number No reaches the maximum possible number N2 of linearly
independent Hermitian matrices in a N -dimensional Hilbert space of the sys-
tem, we encounter the so-called non-holonom problem. No compact general
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solution of the problem in terms of analytic or special functions exists for
large N , and the analytic description requires statistical hypotheses, as is the
case for complex stationary quantum systems.

In order to consider time-dependent Hamiltonians of a general type one
could consider time as one of the parameters of the Lie group and treat the
operator of the time derivative as one of the group generators. From the
formal point of view this consideration relies on the method of characteris-
tics for linear partial deferential equations as well as on the operator of a
finite shift. We will not however dwell on the mathematical background of
the approach but instead illustrate this formal construction by the following
physical example. Consider a point quantum system with a time-dependent
Hamiltonian Ĥ(t) for which the Shrödinger equation reads

i
∣∣∣ .Ψ(t)

〉
= Ĥ(t) |Ψ(t)〉 . (5.6)

Imagine that the time dependence of the Hamiltonian originates from the fact
that the system moves with a constant velocity v along the axis x, whereas
the Hamiltonian Ĥ(t) = Ĥ(x/v)|x=vt depends on the position x(t) = vt of
the system on this axis. Equation (5.6) describes the evolution of the state
vector |Ψ(t)〉 in the reference frame attached to the moving system, whereas
in the reference frame at rest, the Schrödinger equation adopts the form

i
∣∣∣ .Ψ(t, x)

〉
=

[
Ĥ
(x

v

)
− iv

∂

∂x

]
|Ψ(t, x)〉 , (5.7)

where the last term in the square brackets allows for the Galilean transforma-
tion to a reference frame moving with a constant velocity. Once the solution
|Ψ(t, x)〉 of (5.7) is found, one should set x = vt. To shorten the notation, we
take x = vτ and rewrite (5.7) in the form

i
∣∣∣ .Ψ(t, τ)

〉
=

[
Ĥ(τ) − i

∂

∂τ

]
|Ψ(t, τ)〉 , (5.8)

where the new effective Hamiltonian [Ĥ(τ)− i ∂∂τ ] depends on the new ”time”
variable τ , but does not depend on ”real” time t. Therefore the operator of
evolution corresponding to (5.8) reads

Û(t) = e−it[Ĥ(τ)−i ∂
∂τ ], (5.9)

which implies
|Ψ(t, τ)〉 = e−it[Ĥ(τ)−i ∂

∂τ ] |Ψ(0, τ)〉 , (5.10)

given an initial condition |Ψ(0, τ)〉 at t = 0. One can choose an arbitrary
initial condition for the state vector |Ψ(t, τ)〉 in two-dimensional time space,
which is restricted only by the correspondence requirement |Ψ(0, 0)〉 = |Ψ(0)〉
suggested by the initial condition for the original state vector |Ψ(t)〉 entering
(5.6).



5.1 Algebraic Structure of Time Dependent Systems 191

Let us consider first the evolution operator (5.9) in the particular case
Ĥ(τ) = 0, that is

Û(t) = e−t ∂
∂τ . (5.11)

The application of this operator to an arbitrary function or a state vector,
say |Ψ(0, τ)〉, with allowance for a Taylor expansion formula yields

e−t ∂
∂τ |Ψ(0, τ)〉 =

∞∑
n=0

(−t)n

n!

(
∂
∂τ

)n |Ψ(0, τ)〉 = |Ψ(0, τ − t)〉 . (5.12)

One sees that application of the operator (5.11) results in a shift of the
argument τ of an arbitrary function or state vector by a finite value −t.
Therefore one can refer to et

∂
∂τ as the operator of finite shift by the value t.

Note the evident consequence of (5.10) for Ĥ(τ) = 0 and (5.12):

|Ψ(t, τ)〉 = e−t ∂
∂τ |Ψ(0, τ)〉 = |Ψ(0, τ − t)〉 , (5.13)

therefore

|Ψ(t)〉 = |Ψ(t, τ)〉|τ=t = |Ψ(0, τ − t)〉|τ=t = |Ψ(0, 0)〉 = |Ψ(0)〉 , (5.14)

as it should be for Ĥ(τ) = 0, which simply indicates displacement of a non-
evolving system in space with constant velocity.

Let us now consider the evolution operator (5.9) in the general case,
rewrite it in the equivalent form

Û(t) = e−t ∂
∂τ et

∂
∂τ e−it[Ĥ(τ)−i ∂

∂τ ], (5.15)

and apply the Baker–Campbell–Hausdorff formula (5.3) to the last two fac-
tors. This yields

Û(t, τ) = e−t ∂
∂τ e−itĤ(τ)−t ∂

∂τ +t ∂
∂τ + 1

2 [−itĤ(τ)−t ∂
∂τ ,t

∂
∂τ ]+.... (5.16)

One sees that the operator of finite shift e−t ∂
∂τ acts on the exponent of the

argument

−itĤ(τ) + 1
2 [−itĤ(τ), t ∂

∂τ ] + 1
12 [t ∂

∂τ , [−itĤ(τ), t ∂
∂τ ]]

− 1
12 [−itĤ(τ) − t ∂

∂τ , [−itĤ(τ), t ∂
∂τ ]] + ...,

(5.17)

which, apart from the time dependent Hamiltonian Ĥ(τ) comprises commu-
tators of different orders of the Hamiltonian and the time derivative ∂

∂τ . From
the relation

[ ∂∂τ , Ĥ(τ)] |Ψ(t, τ)〉 = ∂
∂τ Ĥ(τ) |Ψ(t, τ)〉 − Ĥ(τ) ∂

∂τ |Ψ(t, τ)〉
=

[
∂
∂τ Ĥ(τ)

]
|Ψ(t, τ)〉 +Ĥ(τ) ∂

∂τ |Ψ(t, τ)〉 − Ĥ(τ) ∂
∂τ |Ψ(t, τ)〉

=
.̂

H(τ) |Ψ(t, τ)〉 (5.18)
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it becomes evident that commutation of a time dependent operator with the
time derivative yields the time derivative of this operator. Equation (5.16)
now reads

Û(t, τ) = e−t ∂
∂τ exp{−itĤ(τ) − it2

2

.̂

H(τ) + . . . (5.19)

+
itkak,n,...,m,l

2
[Ĥ(n)(τ), [. . . , [Ĥ(m)(τ), Ĥ(l)(τ)] . . .] + . . .}.

where dots denote commutators of different orders of the time derivatives
.̂

H(τ),
.̂.

H(τ), . . ., Ĥ(n)(τ) . . . of the Hamiltonian that enter the series with the
coefficients ak,n,...,m,l related in a certain way to the coefficients ck,s in the
Baker–Campbell–Hausdorff series (5.3).

Note that the approach based on the expansion (5.19) gives us a tool
which helps us to determine whether or not a quantum system possesses a
hidden symmetry, which would allow one to reduce the original problem to a
problem of smaller dimension. That is, it allows one to identify the situation
when the space spanned by the commutators of Ĥ(n)(τ) has a smaller dimen-
sion compared to the dimension of the entire Hilbert space. Unfortunately
this method does not suggest any practical way to calculate the operator
of evolution, since the coefficients ck,s and hence ak,n,...,m,l are given by a
recurrent computation rule and there is no explicit expression available for
these coefficients at the moment.

We also note that the application of the operator of finite shift in (5.16)
results in

Û(t, τ) = e−itĤ(τ−t)− it2
2

.̂
H(τ−t)+..., (5.20)

and once we set τ = x/v = t (that is we remain on the characteristics, or in
other words on the trajectory, see (5.6)–(5.7)) it yields the equation

Û(t) = exp
{

−itĤ(0) − it2

2

.̂

H(0) − it3

3!

.̂.

H(0) + . . .

+ak,n,...,m,l
itk

2
[Ĥ(n)(0), [. . . , [Ĥ(m)(0), Ĥ(l)(0)] . . .] + . . .

}
= T̂ exp

{
−i

∫ t

Ĥ(τ)dτ
}

, (5.21)

which plays the role of the Taylor expansion for the integral in the time-
ordered exponent T̂ exp

{∫ t
Ĥ(τ)dτ

}
encountered earlier in (5.1). Indeed, in

the first line of (5.21) one recognizes the Taylor expansion of the integral∫ t
Ĥ(τ)dτ such that (5.21) has the structure

Û(t) = T̂ exp
{

−i

∫ t

Ĥ(τ)dτ
}

= exp
[
−i

∫ t

Ĥ(τ)dτ − iR̂
(
t; Ĥ(n)(0)

)]
, (5.22)
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where the remainder R̂(t, Ĥ(n)(0)) is a Hermitian operator, which has a com-
plex explicit form, contains the commutators of the Hamiltonian and its
derivatives of different orders, and thereby allows for the non-commutativity
of the Hamiltonian corresponding to different moments in time.

Consider an important particular case of time dependence. A Hamiltonian
periodic in time of period 2π/ω can be represented as a Fourier series Ĥ(τ) =∑

n Ĥne
−iωnτ . One can also cast the state vector into a Fourier series

|Ψ(t, τ)〉 =
∑
n

e−iωnτ |Ψn(t)〉 (5.23)

and rewrite (5.8) in the form

i
∣∣∣ .Ψm(t)

〉
=

∑
k

Ĥm−k |Ψk(t)〉 − ωm |Ψm(t)〉 , (5.24)

which is a system of linear first-order differential equations with time inde-
pendent coefficients. One can represent the state vector (5.23) as a double
sum

|Ψ(t, τ)〉 =
∑
n,j

e−iωnτψn,j(t) |j〉 , (5.25)

where the states |j〉 form a complete basis set for the system, which yields

i
.

ψm,j(t) =
∑
k,l

Hm−k,j,lψk,l(t) − ωmψm,l(t). (5.26)

The Fourier transformation of this equation over the time t yields

Eψm,l =
∑
k,l

Hm−k,j,lψk,l − ωmψm,l. (5.27)

The eigenvalues Eν of this equation are called quasienergies by analogy with
the quasimomenta for the systems with Hamiltonians periodic in space, while
such a form of the time-dependent Schrödinger equation (5.6) is called the
quasienergy representation. This method is also known as the Floquet ap-
proach.

The initial condition for (5.26) reads

|Ψ(t = 0)〉 =
∑
n,j

ψn,j(t = 0) |j〉 . (5.28)

Later on we will see that for the case where the time dependence results from
the interaction of the system with a quantized external electromagnetic field,
the coefficients ψn,j(0) have the clear physical interpretation of the probabil-
ity amplitudes to find the system in the quantum state |j〉 and the field in
the state with n photons at t = 0. However, for a classical electromagnetic
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field, or in the general case of a periodic Hamiltonian, the initial condition
(5.28) alone does not permit one to determine unambiguously all of the co-
efficients ψn,j(t = 0), as was the case for (5.10). One of the most common
ways to choose the initial condition for the amplitudes ψn,j(t = 0) is to take
them as identical for all the quasienergy indices ψn,j = ψn′,j , which actually
corresponds to the classical limit of the coherent quantum field state.

5.2 Time-Dependent Two-Level Systems

The simplest example of systems with time-dependent Hamiltonians are two-
level systems. The corresponding Schrödinger equation has the form of a set
of two linear, first-order differential equations

iψ̇0 = ∆0(t)ψ0 + V (t)ψ1,

iψ̇1 = ∆1(t)ψ1 + V (t)ψ0, (5.29)

for the probability amplitudes ψ0 and ψ1 to be in the states |0〉 and |1〉
respectively, and is similar to (3.7) for the time-independent Hamiltonian.
It can also be rewritten in the equivalent form of one linear second-order
differential equation with time-dependent coefficients

..

ψ1 +

( .

V

V
− i∆1 + i∆0

)
ψ̇1 + ∆1

(
i

.

∆1

∆1
− i

.

V

V
− ∆0 +

V 2

∆1

)
ψ1 = 0, (5.30)

which just by interchange of indices yields the analagous equation for ψ0.
Solutions of a large number of second-order linear differential equations are
known. They can be found and expressed in terms of special functions, pro-
vided a proper replacement and change of the variable equation (5.30) is
reduced to one of the standard forms of the second-order equations for the
special functions. In this section we consider several examples that give in-
sight into the typical behavior of two-level systems in various conditions.

5.2.1 Landau–Zener Problem

In Fig. 5.1 we show an example of an exactly soluble problem, known as the
Landau–Zener problem, considering a two-level system with a linear time de-
pendence αt of the energy distance between the levels and a time-independent
coupling V of the levels. The corresponding Schrödinger equation reads

iψ̇0 =
αt

2
ψ0 + V ψ1,

iψ̇1 = −αt

2
ψ1 + V ψ0. (5.31)

In order to illustrate the speculations of the previous section, it is convenient
to represent the Hamiltonian
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Fig. 5.1. Landau–Zener problem. (a) Two states move toward each other with
linear dependence of the energy difference with time. At t = 0 the level-crossing
occurs, which means that the positions of the levels on the energy scale coincide,
and for positive times the levels continue their motion with the same velocity α.
The states are coupled by the interaction V . (b) Position of the level energies and
the Hamiltonian eigenstates of the system as a function of time. The dot-dash lines
show so-called diabatic levels, that is the energy position of the states in the absence
of the interaction. The dashed lines show the so-called adiabatic levels, that is the
energy eigenstates of the system corresponding to the instantaneous Hamiltonian.

Ĥ =
αt

2
σ̂z + V σ̂x (5.32)

with the help of three Pauli matrices

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
(5.33)

that together with the unit matrix Î generate the SU(2) group and comprise
a closed Lie algebra of three elements Ĝ1 = σ̂x; Ĝ2 = σ̂y; Ĝ3 = σ̂z satisfying
the commutation relations

[σ̂x, σ̂y] = 2iσ̂z; [σ̂z, σ̂x] = 2iσ̂y; [σ̂y, σ̂z] = 2iσ̂x. (5.34)

The evolution operator (5.5) for this case reads

Û(t) = ef0(t)Î+fx(t)σ̂x+fy(t)σ̂y+fz(t)σ̂z . (5.35)

Such a representation does not result, however, in any significant simplifica-
tion of the Landau–Zener problem since it implies utilization of four time-
dependent coefficients fn(t) instead of two complex-valued time-dependent
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amplitudes ψ0,1(t). Nevertheless, we will trace this equivalence which is useful
in other, more complicated cases where the number of different amplitudes
(which is sometimes infinite), exceeds considerably the number of coefficients
fn(t) needed for the description.

Let us now find the solution of the set (5.31). We express ψ1 from the
first equation, substitute it into the second equation of the set and arrive at(

i
∂

∂t
+

αt

2

)(
i
∂

∂t
− αt

2

)
ψ0 = V 2ψ0, (5.36)

which has the form of the Schrödinger equation for an eigenfunction ψ(x)
of a particle of mass 1/2 moving in the parabolic potential −α2x2/4 with
energy V 2 + iα/2, provided we have replaced time t by the coordinate x. In
the combinations i ∂∂t +

αt
2 and αt

2 −i ∂∂t one recognizes the harmonic oscillator
annihilation and creation operators, respectively, which are generators of the
su(1, 1) Lie algebra. Due to this fact, the solution of (5.36) can be explicitly
expressed in terms of special functions. It can either be found in handbooks
on special functions in the chapters dedicated to parabolic cylinder functions,
or just calculated directly by substituting a Taylor series into (5.36) which
after the replacement ψ0(t) = ϕ0(t)e−iαt2/4 takes the form(

∂2

∂t2
− iαt

∂

∂t
+ V 2

)
ϕ0(t) = 0. (5.37)

Two linearly independent solutions correspond to even ϕ0(t) =
∑∞

n=0
an

n! t
2n

and odd ϕ0(t) =
∑∞

n=0
bn

n! t
2n+1 functions of time. Direct substitution of these

series into (5.37) yields recurrence relations(
n + 1

2

)
an+1 = iα

2

(
n − V 2

2iα

)
an,(

n + 3
2

)
bn+1 = iα

2

(
n − V 2

2iα + 1
2

)
bn,

(5.38)

for the coefficients an and bn. The same relations among coefficients hold for
the confluent (or degenerate) hypergeometric functions

1F1(β; γ; z) = 1 +
β

γ

z

1!
+

β (β + 1)
γ (γ + 1)

z2

2!
+ . . . , (5.39)

when z = iαt2/2, β = −V 2/2iα, γ = 1/2 for even and z = iαt2/2, β =
1/2 − V 2/2iα, γ = 3/2 for odd functions. Therefore, the general solution of
(5.36) reads

ψ0(t) =
[
c1 1F1

(
− V 2

2iα
;
1
2
;
iαt2

2

)
+ c2t 1F1

(1
2

− V 2

2iα
;
3
2
;
iαt2

2

)]
e−iαt2/4,

(5.40)
where c1 and c2 are two constants. From (5.31) one sees that the replacement
α → −α corresponds to the permutation ψ0(t) � ψ1(t) and therefore the
general solution for ψ1(t) reads
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ψ1(t) =
[
c3 1F1

( V 2

2iα
;
1
2
; − iαt2

2

)
+ c4t 1F1

(1
2

+
V 2

2iα
;
3
2
; − iαt2

2

)]
eiαt

2/4,

(5.41)
where the constants cn can be given in terms of the amplitudes at t = 0, that
is c1 = ψ0(0); c2 = −iV ψ1(0); c3 = −iV ψ0(0); c4 = ψ1(0). In other words
the evolution operator reads

Û(t) =

(
1F1( iV

2

2α ; 1
2 ; iαt

2

2 )e
−iαt2

4 V t
i 1F1( 1

2 + iV 2

2α ; 3
2 ; iαt

2

2 )e
−iαt2

4

V t
i 1F1( 1

2 + V 2

2iα ; 3
2 ; αt

2

2i )e
iαt2

4 1F1( V
2

2iα ; 1
2 ; αt

2

2i )e
iαt2

4

)
,

(5.42)
which, after comparison with (5.35), determines implicitly the four functions
fn(t).

One sees that the evolution operator (5.42) as well as the amplitudes
(5.40)–(5.41) depend only on the dimensionless time

√
αt and the dimension-

less adiabaticity parameter V 2/α, and in Fig. 5.2 we show the population

ρ0(t) = |ψ0(t)|2 =
∣∣∣∣(Û(t)Û−1(−∞)

)
0,0

∣∣∣∣2 (5.43)

of the state |0〉 as a function of these parameters, calculated for the initial
condition ψ0(t = −∞) = 1 with the help of (5.42). One can identify two lim-
iting cases of (i) a small and of (ii) a large parameter of adiabaticity V 2/α.
In case (i), the coupling V between the states |0〉 and |1〉 is small and the
system mainly remains in its initial state following the diabatic trajectory
shown in Fig. 5.1 while the population of the state |0〉 experiences just slight,
dying oscillations with the phase ∼ αt2 after crossing the resonance at t = 0.
In the opposite extreme (ii), the velocity α of the state displacement along
the energy scale is small compared to V 2, such that the system follows the
adiabatic trajectory and performs around t = 0, an almost complete transi-
tion from the initial state |0〉 to the final state |1〉, although the population
still manifests slight and dying oscillations corresponding to the transitions
between the states.

One finds the asymptotic expression for the population

ρ0(∞) = e−2πV 2/α, (5.44)

provided the asymptotic expression for the degenerate hypergeometric func-
tion

1F1(β; γ; z) = Γ(γ)
Γ(γ−β) (−z)−β (5.45)

relevant to the case under consideration (Rez > 0) and the relations

|Γ(iy)|2 =
π

y sinh(πy)∣∣∣∣Γ(
1
2

+ iy)
∣∣∣∣2 =

π

cosh(πy)
(5.46)



198 5 Soluble Time-Dependent Systems

-40

-20

0

20

40

a
-2

0

2

ln
V

2

a

0

1

-100 -50 50 100

1

-2 2 4 ln
V

2

a

1 r

t|t|

at|t|
___

__

a)

b) c) 0
r0

r0

Fig. 5.2. (a) Population ρ0 of the state |0〉 as a function of the dimensionless
parameters t2α and V 2/α. (b) Time dependence of the population for two values
of the adiabaticity parameter V 2/α = e−3 (upper curve) and V 2/α = e3 (lower
curve). One sees the Rabi oscillations of the probability with the phase ∼ t2 while
it tends to its asymptotic value e−2πV 2/α suggested by (5.44) and shown in (c)

for Γ-functions has been employed for the expression

ρ0(∞) = lim
t→∞

∣∣∣∣(Û(t)Û−1(−t)
)

0,0

∣∣∣∣2
= lim

t→∞

∣∣∣∣ 1F1(− V 2

2iα ; 1
2 ; iαt

2

2 ) 1F1( V
2

2iα ;
1
2
; − iαt2

2 )+

(V t)21 F1( 1
2 − V 2

2iα ; 3
2 ; iαt

2

2 ) 1F1( 1
2 + V 2

2iα ; 3
2 ; − iαt2

2 )
∣∣∣2 (5.47)

following from (5.43) with allowance of (5.42). The probability ρ0(∞) =
e−2πV 2/α to remain in the initial state after the level crossing is shown in
Fig. 5.2(c).

From (5.44) one concludes that the probability to make a transition to
the state |1〉 is ρ1(∞) = 1− e−2πV 2/α. We note that for slowly changing level
positions, that is at small α, the probability to remain in the initial state is
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small, whereas the probability to make a transition is large. At the same time
one can consider the problem in another frame, the so-called adiabatic basis
(see Fig. 5.1), by making use of the instantaneous energy eigenstates

|+〉 =
V |1〉 −

(
αt
2 −

√
(αt2 )2 + V 2

)
|0〉√(

αt
2 −

√
(αt2 )2 + V 2

)2
+ V 2

,

|−〉 =
V |1〉 −

(
αt
2 +

√
(αt2 )2 + V 2

)
|0〉√(

αt
2 +

√
(αt2 )2 + V 2

)2
+ V 2

, (5.48)

corresponding respectively to the eigenvalues E± = ±
√

(αt2 )2 + V 2 of the
time-dependent Hamiltonian (5.32). Note that |+〉 = |0〉 and |−〉 = |1〉 at
t = −∞, whereas at t = ∞ one finds |+〉 = |1〉 and |−〉 = − |0〉. This
means that ρ+(t = −∞) = 1 and ρ−(t = −∞) = 0, and the probability of
making a transition from the initially populated state |+〉 to the state |−〉
is exponentially small in the limit α → 0, or as one says in this context -
adiabatically small, that is

ρ+(t = ∞) = 1 − e−2πV 2/α (5.49)

and
ρ−(t = ∞) = e−2πV 2/α. (5.50)

It is worth mentioning that the so-called Landau–Zener formula given by
the expression ρdp(∞) = 2e−2πV 2/α(1−e−2πV 2/α) is valid for the probability
of a transition following a double passage (forward and back) of the level
crossing, in the absence of the quantum interference between the passages.
This means that the resulting probability is just a product of the probabilities
of two sequential events – to remain in the initial state after the first passage
and to make a transition during the second one, while the factor 2 takes into
account the possibility for the opposite order of these events. Deviation of
the probability from this expression resulting from the quantum interference
is known as the Ramsay effect.

5.2.2 Landau–Zener Transition to a Decaying State

The results of the previous section can be generalized in the case of decaying
states, where the Schrödinger equation similar to (5.31) reads

iψ̇0 =
(

αt

2
− iγ0

)
ψ0 + V ψ1,

iψ̇1 = −
(

αt

2
+ iγ1

)
ψ1 + V ψ0. (5.51)



200 5 Soluble Time-Dependent Systems

-at/2
at/2

V

0

1

m V
V1

0n

d

d

|n>

|m>

Fig. 5.3. Landau–Zener transition between two decaying levels. The presence of
the continua results in the complex shift of the time variable αt/2 → αt/2 − iγ1;2

where the decay rate γ1,2 = πV 2
0,n;1,m/δ0,1 is in accordance with (3.34).

By analogy to the level–band problem discussed in Sect.3.2 one can consider
the decay rates γ0 and γ1 as resulting from the interaction of levels |1〉 and
|0〉 with two continua of states |n〉 and |m〉 respectively, that accompany
the levels in their translational motion along the energy axis, as shown in
Fig. 5.3. The Schrödinger equation for this entire system does not apparently
contain non-Hermitian terms proportional to γ0 and γ1, and indeed has a
more complex form that reads

iψ̇n =
(

αt

2
+ nδ0

)
ψn + Vn0ψ0,

iψ̇0 =
αt

2
ψ0 + V ψ1 +

∞∑
n=−∞

V0nψn,

iψ̇1 = −αt

2
ψ1 + V ψ0 +

∞∑
m=−∞

V1mψm,

iψ̇m =
(

−αt

2
+ mδ1

)
ψm + Vm1ψ1. (5.52)

However, since the parts of the total Hamiltonians corresponding to the
interaction of the levels with their continua commute with each other as well
as with the part responsible for the level coupling, the problem can actually
be separated into three independent parts: the results of the levels–continua
interaction yield according to (3.34) the decay rates γ0 = π |V0n|2 /δ0 and
γ1 = π |V1m|2 /δ1 for the probability amplitudes, while for the interaction of
the states |1〉 and |0〉 one finds (5.51). This means that the algebraic structure
of the problem in the case of decaying levels remains the same as in the former
case, and therefore the analytical solution can be found in terms of the same
special functions. Indeed, after the replacement ψ0;1(t) → ψ̃0;1(t)e−(γ0+γ1)t/2
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(5.51) takes the form

i
˙̃
ψ0 =

(
αt − iγ0 + iγ1

2

)
ψ̃0 + V ψ̃1,

i
˙̃
ψ1 = −

(
αt − iγ0 + iγ1

2

)
ψ̃1 + V ψ̃0. (5.53)

which coincides with (5.31) for non-decaying states after the substitution
t → t′ + i (γ0 − γ1) /α. The evolution operator therefore readŝ̃

U(t′) = e−(γ0+γ1)t/2Û

(
t − i

γ0 − γ1

α

)
, (5.54)

where the evolution operator Û (t) is given by (5.42).
The exponential pre-factor in (5.54) takes into account the exponential

decrease of the total population, whereas the complex argument of the evo-
lution operator (5.42) allows for the relative populations of the states |1〉 and
|0〉:

ρ0(t) ∼
∣∣∣∣(Û(t − ig)Û−1(−∞ − ig)

)
0,0

∣∣∣∣2 ,

ρ1(t) ∼
∣∣∣∣(Û(t − ig)Û−1(−∞) − ig

)
1,0

∣∣∣∣2 , (5.55)

where g = (γ0 − γ1) /α. Therefore, there is a third dimensionless parameter
(γ0 − γ1) /

√
α which along with dimensionless time

√
αt and the dimension-

less adiabaticity parameter V 2/α govern the time evolution of the decaying
Landau–Zener system. In Fig. 5.4 we show the dependence of the population
of the state |0〉 normalized to its value e−2γ0t at V = 0 as a function of time
and the adiabaticity parameter for a positive and a negative value of g.

Asymptotic expressions for the degenerate hypergeometric functions

1F1(β; γ; z) = Γ(γ)
Γ(β)z

β−γez (5.56)

and (5.45) that are valid in the case (Rez < 0) allow one to find the population
ρ0 (5.55) in the limit t → ∞, which reads

ρ0(t → ∞) =

⎧⎨⎩ e−2γ0te−2πV 2/α; g < 0

e−2γ1t
(

V 2

α2t2

)2
e2πV 2/α; g > 0.

(5.57)

One sees that apart from the exponential factor allowing for the decay of the
state |0〉, the asymptotic population for g < 0 coincides with that of (5.44)
which is typical of non-decaying levels. On the contrary, if the decay rate
of the state |0〉 exceeds that of the state |1〉 , that is g < 0, the asymptotic
behavior is completely different, since the population ρ0 exists mainly because
of ρ1, which decays more slowly and feeds ρ0 via the interaction V with a rate
proportional to the power of the ratio of the coupling to the instantaneous
detuning.
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Fig. 5.4. Landau–Zener transition between two decaying levels. (a) The population
of the state |0〉 for the case γ0 < γ1 (normalized to the population of the decaying
state at zero coupling V = 0). The asymptotic value of the population is the same,
as for the case of non-decaying states, although the time evolution is somewhat
different. (b) The population of the state |1〉 for the case of γ0 > γ1 manifests
completely different behavior and exceeds sometimes considerably ρ1 for the case
of non-decaying levels, although it vanishes in the long-time asymptotic (5.58).

5.2.3 Landau–Zener Transition in the Presence
of Transversal Relaxation

The decay of quantum state populations resulting from the interaction with
a continuum or continua is just one of many examples of irreversible pro-
cesses that may occur in quantum systems. Another type of relaxation takes
place when a system is subjected to a perturbation which we don’t know in
all details, such as white noise for instance. This makes the system evolve
in Hilbert space, along an unknown and unpredictable trajectory. This pro-
cess can no longer be considered in terms of the Hamiltonian dynamics of
a quantum state, but requires the density matrix formalism incorporating a
statistical model for this unknown action. The description is usually given in
terms of the density matrix ρ̂(t) = |Ψ〉 〈Ψ | of the system, which is the direct
product of the state vector by its conjugate averaged over all possible realiza-
tions of the unknown external action. The simplest model takes into account

the relaxation by introducing the so-called relaxation operator ̂̂R acting on
ρ̂(t), such that the master equation for the density matrix reads

i ˙̂ρ(t) = [Ĥ, ρ̂(t)] + ̂̂Rρ̂(t), (5.58)

as we have already seen on p. 86. The action of the relaxation operator to
the n×n density matrix does not have the form of multiplication by another
matrix of the same size, but it is a convolution with the forth rank n×n×n×n

tensor ̂̂R, that is
( ̂̂Rρ̂(t)

)
ij

=
∑

kl Rijklρkl. For the two-level system with

the Landau–Zener Hamiltonian (5.22)
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Ĥ =
(

αt/2 V
V −αt/2

)
(5.59)

(5.58) has the form

iρ̇00 = V (ρ10 − ρ01) + iρ11/T1

iρ̇01 = αtρ10 + V (ρ11 − ρ00) − iρ10/T2

iρ̇10 = −αtρ10 + V (ρ00 − ρ11) − iρ10/T2

iρ̇11 = V (ρ01 − ρ10) − iρ11/T1, (5.60)

where T1 and T2 are two parameters of the relaxation matrix called the
longitudinal and transversal relaxation times.

By adding the first and the fourth equations in the system (5.60) one
immediately finds the integral of motion ρ11 + ρ00 = const, and the con-
stant has to be unity as it follows from the normalization condition. The
remaining three linearly independent equations rewritten in terms of three
new variables: the polarization P = ρ01 + ρ10, dispersion Q = ρ01 − ρ10, and
population of the upper level ρ11 ≡ 1

2Z, read

Ż = 2V P − γZ,

Ṗ = −2V Z + αtQ − γP + 2V,

Q̇ = −αtP − γQ. (5.61)

Here we have assumed that the constant γ = 1/T1,2 is identical for the
transverse and longitudinal relaxation.

The initial conditions corresponding to the case ρ00(−∞) = 1 are

Z(−∞) = P(−∞) = Q(−∞) = 0. (5.62)

For large positive time, the two-level system is out of resonance, and hence in
the asymptotic t → ∞ due to the longitudinal relaxation, the system returns
to its initial state |0〉. This gives the boundary condition

Z(∞) = P(∞) = Q(∞) = 0. (5.63)

Since the asymptotic population distribution between the states is evident,
we concentrate here on a non-trivial characteristic of the process – the lon-
gitudinal relaxation yield I, namely on the mean number of the elementary
acts of the longitudinal relaxation given by the expression

I = γ

∞∫
−∞

ρ11(t)dt =
γ

2

∞∫
−∞

Z(t)dt. (5.64)

Equations (5.62)–(5.63) allow us to perform a Fourier transformation of
(5.61) which yields
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iωZ = 2V P − γZ,

iωP = −2V Z + iα
∂

∂ω
Q − γP + 4πV δ(ω),

iωQ = −iα
∂

∂ω
P − γQ. (5.65)

Now we express Z and Q in terms of P with the help of the first and the
third equations of (5.65) and substitute them into the second equation of this
set. This yields

α2

ω − iγ

∂

∂ω

1
ω − iγ

∂

∂ω
P + P − 4V 2

(ω − iγ)2
P = 4π

V

γ
δ(ω). (5.66)

The Dirac δ-function on the right-hand side of the equation implies that
at the point ω = 0 the Fourier transform of the polarization P(ω) has a
discontinuity in the first derivative. When we integrate (5.66) over the small
vicinity ε of ω = 0 we find

∂P
∂ω

|ω=0+ε − ∂P
∂ω

|ω=0−ε = − 4π
γV

α2 . (5.67)

Thus, we have to find the solution of the homogeneous equation (5.66) that
satisfies the boundary condition, (5.67), and corresponds to a real P(t), that
is,

P(ω) = P∗(−ω). (5.68)

We may now obtain the exact analytical solution of (5.66) in terms of
Whittaker functions, which are another form of degenerate hypergeometric
functions of (5.39).

Wλ,µ(z) = Γ(−2µ)z
1
2 +µe− z

2

Γ( 1
2 −µ−λ) 1F1( 1

2 + µ − λ; 1 + 2µ; z)

+Γ(2µ)z
1
2 −µe− z

2

Γ( 1
2+µ−λ) 1F1( 1

2 − µ − λ; 1 − 2µ; z), (5.69)

and have an integral representation

Wλ,µ(z) =
z

1
2+µe− z

2 (1 + e2iπ(µ−λ))−1

Γ( 1
2 + µ − λ)

∫
C

τµ− 1
2 −λ(τ + 1)µ− 1

2+λe−τxdτ,

(5.70)
with the integration contour C going from ∞ to ∞ around the point 0.

In order to simplify the notation, we put 2V = 1, γ = γ̃/(2V ), α =
α̃/(2V )2, ω = ω̃/(2V ), and introduce the new variable x = (iω + γ)2/2α.
Then we have

x
∂2

∂x2 P +
1
2α̃

P + xP = 0. (5.71)



5.2 Time-Dependent Two-Level Systems 205

Solutions of the differential equations with the coefficients that are first-order
polynomials in the independent variable, can be found with the help of the so-
called Laplace contour integral method, which suggests that the differential
equation ∑

n

(an + bnx)
∂n

∂xn
Y = 0 (5.72)

has the solution

Y(x) =
∫
C

dτ∑
n bnτn

exp

⎡⎣xτ +

τ∫ ∑
n any

n∑
n bnyn

dy

⎤⎦ , (5.73)

where the integration contour C has to be chosen such that the expo-
nent in the integrand has the same values at each end. Different contours
satisfying this condition usually yield different, linearly independent solu-
tions, provided they circumvent differently the singularities of the function
(
∑

n bnτ
n)−1. In particular for (5.71) one has (

∑
n bnτ

n)−1 =
(
τ2 + 1

)−1 ;
τ∫ ∑

n any
n/

∑
n bny

ndy = 1
4α̃ ln

(
τ2 + 1

)
, and this method yields

P =
A′

2iα

∫
CW

exp(τx)
(τ + i)1−i/4α̃(τ − i)1+i/4α̃

dτ. (5.74)

The contour CW arrives from τ = i∞, goes around the point τ = i, returning
along the direction τ = i∞. This integration path ensures convergence of
the integral for ω > 0. The integral representation for ω < 0 follows from
the condition (5.68). We note that another possible contour CM is the loop
which circumvents both points i and −i. The corresponding polarization P
accounts for the homogeneous solution which is regular at the point ω = 0
and therefore does not contribute to the final result.

The substitution τ = i+ i2z transforms the integral (5.74) to the integral
representation of the Whittaker function (5.70),

u1(ω) = Wi/4α,−1/2

(
−i

(iω + γ)2

α

)
. (5.75)

Here, we have made use of the explicit expression for x. Hence, the Whittaker
function u1(ω) is a solution of (5.71) for ω > 0, that is, P(ω)|ω>0 = Au1(ω).
The other linearly independent solution of (5.66),

P(ω) = A∗u2(ω) = A∗W−i/4α,−1/2

(
i
(iω + γ)2

α

)
, (5.76)

accounts for the case ω < 0.
Now we can find the proportionality constant A with the help of the

condition given in (5.68) at ω = 0 and the condition (5.67). We come then
to the set of equations
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Au1(0) − A∗u2(0) = 0

A
∂u1

∂ω
|ω=0 − A∗ ∂u2

∂ω
|ω=0 = −2π

γ

α2 . (5.77)

The determinant D of this set is proportional to the Wronskian W (u1;u2) ≡
(u1

∂
∂xu2 − u2

∂
∂xu1) of the Whittaker functions and reads

D =
2γ
α

W (u1;u2) =
2γ
α

exp
( π

4α

)
. (5.78)

The factor 2γ
α results from the derivative of the arguments ∂x

∂ω . Solving (5.77)
we obtain the constant A and find for the polarization

P(ω)|ω>0 = π
u2(0)u1(ω)

α
exp

(
− π

4α

)
. (5.79)

Now we are able to calculate the longitudinal relaxation yield (5.64) that
is I = γ

2

∫ ∞
−∞Z(t)dt = γ

2Z(ω = 0). Since, according to the first line of (5.65),
we have 1

2Z(ω = 0) = (2γ)−1P(ω = 0) we find from Eqs.(5.75)–(5.76) and
(5.79) for ω = 0

I = 2π
V 2

α
e

−πV 2
α

∣∣∣∣W iV 2
α ,− 1

2

(
− iγ2

α

)∣∣∣∣2 . (5.80)

In Fig. 5.5 we show the dependence of the longitudinal relaxation yield I
on the adiabaticity parameter V 2/α and on the quenching parameter γ2/α
suggested by (5.80). At γ = 0, the yield is given by the regular Landau–Zener
dependence (5.44) for ρ1 = 1 − ρ0, which simply means that the relaxation
yield amounts to the probability to make the transition. It changes with the
increase of the quenching parameter γ2/α, as the relaxation yield increases
with increasing relaxation rate.

We now consider the asymptote of (5.80). We start with the case of slow
passage through the resonance, that is α → 0. We use the integral represen-
tation of the Whittaker function and find the following expression with the
help of the stationary phase method

W iV 2
4α ,− 1

2
(− iγ2

α
) =

eiγ
2/2α

Γ(− iV 2

α )

∞∫
0

exp{iγ2

α t − iV
2

α ln t
1+t}

t(t + 1)
dt


 eiΦ

Γ(−iV 2/α)

√
πα

[1 + (2V/γ)2)]1/4V
, (5.81)

where Φ is a phase factor that does not effect the final result, (5.80). Here
we have taken into account that in the limit α → 0 the only stationary
point on the integration path is t = − 1

2 + 1
2

√
1 + 4V 2

γ2 . We also have assumed

V 2γ2/α2 � 1, allowing us to neglect derivatives higher than second order at
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Fig. 5.5. Landau–Zener transition to a decaying level. (a) Level scheme. (b) Expec-
tation value of the relaxation yield I given by (5.80) as a function of the Landau–
Zener parameter V 2/α and quenching parameter γ2/α. At γ = 0 the dependency
recovers the probability of the Landau–Zener transition ρ1 = 1 − ρ0.

the stationary phase point and thus satisfy the requirement of the stationary
phase method. Substitution of (5.81) into (5.80) results in

I = 2π
γV 2

α

1 − exp{−2πV 2

α }
(γ2 + 4V 2)1/2

, (5.82)

where we have made use of (5.46). The exponential term, reminiscent of the
Landau–Zener expression, arises from the Γ-function and not from the sta-
tionary phase analysis of (5.81). However, in order to be consistent within the
order of approximation it should be neglected. Note that this result also fol-
lows from the rate equation. Indeed, one can obtain the result (5.82) directly
from (5.61) in the quasi-stationary limit, namely when all time derivatives
are equal to zero. This results in Z = 2V P/γ, and Q = −αtP/γ, which gives
P = 2γV [4V 2 + (αt)2 + γ2]−1 and hence

I = V

∫
Pdt = 2π

γV 2

α
√

γ2 + 4V 2
.

The limit of weak interaction, V 2/α → 0, follows from the condition
|W0,−1/2(x)| = |eix| = 1, and (5.80) simplifies to I 
 2πV 2/α. This implies
that the asymptotic formula (5.82) is also valid for weak interactions.

We now consider the limit of slow decay, γ2/α � 1, with the help of the
asymptotic expression for the Whittaker function

lim
z→0

Wia,− 1
2
(z) =

1
Γ(1 + ia)

=
1

iaΓ(ia)
, (5.83)

which, after substitution into (5.80), results in

I = 1 − exp
(

−2πV 2

α

)
. (5.84)
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We hence recover the probability of the Landau–Zener transition, (5.44),
which indeed is identical to the probability of emission of a spontaneous
photon in the case of a small decay rate. We note that a simple expression
for the limit V 2γ2/α2 � 1 is difficult to obtain due to the non-analytical
behavior of the Whittaker function at small values of the argument, as shown
in Fig. 5.2.

We conclude by noting that Rabi oscillations of population between the
states (Fig. 5.2) that take place while the levels are in resonance, do not
manifest themselves in any oscillations of the asymptotic populations nor
in the relaxation yield. At first sight, one might think that the relaxation
would bring them to light, since it “brakes” the population oscillations in the
middle of the Rabi cycle, that is, before the passage through the resonance
is complete. However, they remain hidden even in the case when relaxation
processes are taken into account: the irreversible decay does not affect the
probability of the transition at all as long as the population of the initially
populated state decays faster then the population of the other state. The
longitudinal relaxation of the upper level accounts for the multiple returns
of the particle to the initial state in the middle of the Rabi cycle. However,
it is also the case that these returns do not bring any oscillations to the
expectation value of the relaxation yield. The gradual change of the quenching
parameter results instead in the gradual transformation of the Landau–Zener
dependence to the smooth dependence given by the rate equation.

5.2.4 Excitation by a Pulse

Another example of an exactly soluble two-level problem corresponds to the
case of a constant detuning ∆0 = 0, ∆1 = const and the time-dependent
interaction of a very special profile V (t) = V/ coshαt. The Schrödinger equa-
tion (5.29) after the replacements

z =
1

1 + e−2αt ; ∆ =
∆1

2α
; θ =

V π

α
(5.85)

yields the second-order differential equation (5.30) in the form

−z(z − 1)
∂2ψ0

∂z2 +
(

1
2

− z + i∆

)
∂ψ0

∂z
+

2θ
π

ψ0 = 0, (5.86)

which for ψ0(t → −∞) = ψ0(z → 0) → 1 has an explicit solution in terms of
the hypergeometric function

ψ0(z) = 2F1

(
θ

π
,− θ

π
;
1
2

+ i∆; z
)

. (5.87)

This expression yields the amplitude as t → ∞
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ψ0(t)|t→∞ = ψ0(z)|z=1 = 2F1(
θ

π
,− θ

π
;
1
2

+ i∆; 1)

= Γ( 1
2+i∆)Γ( 1

2+i∆)
Γ( 1

2+i∆− θ
π )Γ( 1

2+i∆+ θ
π ) (5.88)

in terms of Γ-functions. The corresponding population reads

ρ0(t)|t→∞ =
cosh(2π∆) + cos(2θ)

2 cosh2(π∆)
. (5.89)

where (5.46) and the relations

Γ(x + 1) = xΓ(x)

|Γ(1−x+i∆)Γ(1+x+i∆)|2 = 2π2(x2+∆2)
cosh(2π∆)−cos(2πx) (5.90)

have been employed. For the transition probability, after trigonometric trans-
formations one obtains

ρ1(t)|t→∞ =
sin2 θ

cosh2(π∆)
. (5.91)

In Fig. 5.6 we show the time-dependent transition probability 1 − |ψ0(t)|2
corresponding to the amplitude (5.87), this amplitude, and the asymptotic
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Fig. 5.6. Excitation of a two-level system by a pulse V/ cosh−2(2αt). (a) Transition
probability as a function of time T = 2αt and detuning ∆ = ∆1/2α. One sees
oscillations in resonance, and the adiabatic regime for large detunings. (b) The
asymptotic probability as a function of the detuning and the pulse area θ = V/α. (c)
Real (dashed line) and imaginary (dot-dash line) parts of the probability amplitude
to remain in the state |0〉 as a function of time for fixed detuning ∆1/2α = 0.7 and
pulse area θ = 2.45.
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probability transition (5.91).
We note one very specific property of the problem under consideration.

Unlike other cases of time-dependence, for the interaction profile V/ coshαt
the transition probability is a product of two factors, one of which is a function
of the detuning ∆ only, whereas the other depends only on the coupling
amplitude V. Moreover, the last enters the expression in the form of the so-
called pulse area θ =

∫ ∞
−∞ V/ cosh (αt) dt. Each of these two factors has clear

physical meaning. Indeed, for ∆0;1 = 0 equations (5.29) take a particularly
simple form iψ̇0 = V (t)ψ1, iψ̇1 = V (t)ψ0, and have an exact solution

ψ0(t) = cos[

t∫
−∞

V (t′) dt′],

ψ1(t) = i sin[

t∫
−∞

V (t′) dt′], (5.92)

which yields ψ1(∞) = i sin θ, and hence the expression ρ1(∞) = sin2 θ co-
inciding completely with (5.91) in resonance. The other factor allows for
non-zero detunings, being just the line shape |Vω|2 at ω = ∆1 given by the
Fourier transform of the V/ coshαt dependence and normalized by the con-
dition Vω=0 = 1. Indeed, employing the Cauchy formula for residuals at the
points αt = i (π/2 + nπ) , for n = 0, 1 . . . , yields

1
πi

∞∫
−∞

exp(i∆1t)
cosh (αt)

dt = 2
∞∑
n=0

(−1)n exp(−∆1

α
(π/2 + nπ))

= 2 exp(− ∆1π
2α )

1+exp(− ∆1π
α )

= cosh−1(
∆1π

2α
). (5.93)

We emphasize that such a simple asymptotic form of (5.91) is more a co-
incidence than the result of separation between the effects of detuning and
coupling that remain strongly entangled during the evolution at finite t. One
can see this in Fig.5.6(a), where the difference of the time behavior of the
population ρ1(t) for different detunings ∆ is clearly seen.

5.2.5 Exponentially Rising Coupling

We consider one more example of exactly soluble problems for which the
interaction V (t) between the states rises exponentially, while the detuning
∆1 remains constant, also known as the Demkov–Olson problem, for which
the Schrödinger equation (5.29) reads

iψ̇0 = V eαtψ1,

iψ̇1 = ∆1ψ1 + V eαtψ0. (5.94)
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We set ∆0 = 0 as earlier, and introduce the variable θ =
∫ t

V eαxdx = V eαt/α
such, that the system takes the form

i
∂ψ0

∂θ
= ψ1,

i
∂ψ1

∂θ
=

∆1

αθ
ψ1 + ψ0, (5.95)

where the initial condition is ψ0(θ = 0) = 1.
Now one can either employ the transformation (5.30) that yields the

Bessel equation, or look for the solution in the form of a power series
ψ0(θ) =

∑∞
n=0 c2nθ

2n and ψ1(θ) =
∑∞

n=0 c2n+1θ
2n+1, as has been done for

(5.37). The last method immediately allows one to incorporate the initial
condition by setting c0 = 1, and after making use of the recurrence relations

i2nc2n = c2n−1,

i (2n − 1) c2n−1 =
∆1

α
c2n−1 + c2(n−1), (5.96)

that is c2n = −c2(n−1)/2n(2n − 1 + i∆1
α ), this approach results in

c2n =
(−1

4

)n 1
n!

Γ
( 1

2 + i∆1
2α

)
Γ
(
n + 1

2 + i∆1
2α

) . (5.97)

This means that

ψ0(θ) = Γ

(
1
2

+
i∆1

2α

) ∞∑
n=0

1
n!

(−θ2/4)n

Γ(n+ 1
2+ i∆1

2α )

= Γ
(

1
2

+ i∆

)(
θ

2

)1/2−i∆
Ji∆−1/2(θ), (5.98)

where a standard representation of the Bessel function Jν(θ) in the form of
a power series has been employed, and where we make use of the notation
(5.85), although now the parameter α corresponds to an exponential, and
not the 1/ coshx dependence, and even has a different dimensionality. From
first equation of the set (5.95) and with allowance of the rule for the Bessel
function derivatives one also obtains

ψ1(θ) = −iΓ
(

1
2

+ i∆

)(
θ

2

)1/2−i∆
Ji∆+1/2(θ). (5.99)

Equation (5.98) with allowance of (5.46) gives the probabilities

ρ0(θ) =
∣∣∣∣Γ(

1
2

+ i∆

)∣∣∣∣2 θ

2

∣∣Ji∆−1/2(θ)
∣∣2

=
πθ

2
cosh−1(π∆)

∣∣Ji∆−1/2(θ)
∣∣2 ,

ρ1(θ) =
πθ

2
cosh−1(π∆)

∣∣Ji∆+1/2(θ)
∣∣2 . (5.100)
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Fig. 5.7. Excitation of a two-level system by an exponentially increasing interaction
V/eαt. (a) Transition probability as a function of the time parameter θ = V eαt/α
and the detuning ∆ = ∆1/2α. One sees oscillations for small detunings and the
stationary regime with ρ0;1 → 1/2. (b) The probability of the adiabatic transition
as a function of T = αt and ln(∆1/2α). At small detunings one can identify a
regime where the non-adiabatic transition probability tends to 1/4.

The population of the state |0〉 is shown in Fig. 5.7. It is also interesting
to trace the populations of the adiabatic states, that is the instantaneous
eigenstates |±〉 of the Hamiltonian, that can be found by analogy to (5.48)
as

|±〉 =
θ |1〉 +

(
∆ ±

√
∆2 + θ2

)
|0〉√(

∆ ±
√

∆2 + θ2
)2

+ θ2

. (5.101)

Let us assume ∆ > 0 and denote by Θ the angle in Hilbert space between
the state vector |+〉 and the state |0〉 , that is

cosΘ =

(
∆ +

√
∆2 + θ2

)
√(

∆ +
√

∆2 + θ2
)2

+ θ2

,

and find the population

ρ−(θ) =
πθ

∣∣Ji∆−1/2(θ) cosΘ − iJi∆+1/2(θ) sinΘ
∣∣2

2 cosh(π∆)
(5.102)

of the state |−〉 that determines the probability of a non-adiabatic transition.
In Fig. 5.7(b) we depict this population as a function of time and the detun-
ing. One sees that for small detunings in the long-time regime it approaches
the asymptotic value 1/4, which can be seen directly from (5.102) with the
help of the asymptotic expression
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Ji∆±1/2(θ) 

√

1
πθ

cosh
(

iθ + ∆π − (1 ± 1)
πi

4

)
(5.103)

and with allowance of the fact that cosΘ 
 sinΘ 
 1/
√

2 as t → ∞ for large
θ and interactions. The substitution yields

ρna(θ → ∞) =
exp (−2 |∆|π)
4 cosh(π∆)

, (5.104)

where we have also taken into account that for negative ∆ the probability of
the non adiabatic transition ρna(θ) is given by ρ+.

We note one general property common for all two-level problems. For slow
variation of the system α → 0 and the probability to change the adiabatic
state given by (5.50), (5.91), and (5.104) is always small.

5.3 Semiclassical Analysis of Time-Dependent Systems

Considering the Landau–Zener problem on p. 198, we have seen that the
populations of adiabatic states change slightly when the Hamiltonian varies
slowly. This is a general situation, also valid in the case of a large system con-
sisting of many quantum levels. For the description of the population dynam-
ics, one may make use of a treatment similar to the semiclassical approach to
the Schrödinger equation of a particle moving in an external potential, with
the only difference that time t plays the role of the coordinate. A straightfor-
ward substitution of the semiclassical ansatz exp[−iS(t)] either into (5.36)
or (5.37) results however in a complex-valued solution for S(t), which means
that there is no direct classical analog for the mechanical action in these
representations. Moreover, the Hamilton–Jacobi equation, obtained for the
classical action S(t) after the substitution exp[−iS(t)] into the Schrödinger
equation, turns out to be dependent on the choice of representation, while
the allowance for the second derivative of S(t) via perturbation theory does
not improve the situation much. Therefore, in order to make use of the semi-
classical analysis, one needs first to find a representation where the equation
for the action would have an appropriate form that would demonstrate the
vanishing transition probabilities among the adiabatic states.

5.3.1 Two-Level Systems and the Dykhne Formula

We start the analysis with the semiclassical consideration of the Landau–
Zener problem and determine the reference system most suitable for the semi-
classical consideration. To this end we employ the adiabatic representation by
finding a time-dependent transformation Ô(t) diagonalizing the Hamiltonian
(5.32) by the transformation Ĥ ′(t) = Ô−1(t)Ĥ(t)Ô(t), which corresponds to
the rotation from our initial diabatic representation to the adiabatic basis.
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For the Landau–Zener problem, the unitary matrix performing the rotation
has the form

Ô(t) = exp [iσ̂yΘ(t)/2] (5.105)

where Θ(t) = π/2 + arctan (αt/2V ) is the angle of rotation around the y-
axis that aligns the vector (V, 0, αt/2) with the z-axis, and the Pauli ma-
trices σ̂x, σ̂y, σ̂z are given explicitly by (5.33). The unitary matrix (5.105)
transforms the Hamiltonian Ĥ = V σ̂x + αtσ̂z/2 to the diagonal form

Ĥ ′ =
√

(αt/2)2 + V 2σ̂z

We note here that Ô(t) of (5.105) equals the unit matrix at t = −∞, and
at t = ∞ it reads

Ô(∞) = eiσ̂yπ/2 =
(

0 1
−1 0

)
, (5.106)

which means that not only the amplitudes of the states |0〉 and |1〉 have been
interchanged after the diabatic states have passed through the resonance,
but also that an additional phase factor eiπ = −1 appears as a result of
this change in the relative position of the levels. This is a particular example
of the general phenomenon known as topological or Berry phases associated
with rotation of the adiabatic energy eigenstates with respect to the original
basis in Hilbert space.

By substituting |ψ〉 = Ô(t)
∣∣ψ′〉 into (5.31)

i
∂

∂t
Ô(t)

∣∣ψ′〉 = i
∂̂O(t)

∂t

∣∣ψ′〉 + iÔ(t)
∂

∂t

∣∣ψ′〉 = Ĥ(t)Ô(t)
∣∣ψ′〉 , (5.107)

one obtains the Schrödinger equation for the state vector
∣∣ψ′〉 in the adiabatic

representation

i
∂

∂t

∣∣ψ′〉 =
[
Ĥ ′(t) − Ĉ(t)

] ∣∣ψ′〉 , (5.108)

where Ĥ ′(t) =
√

V 2 + (αt/2)2σ̂z is a diagonal matrix, and

Ĉ(t) = iÔ−1(t)
.̂

O(t) = −σ̂y
.

Θ(t)/2.

In other words the Schrödinger equation has the explicit form

i
∂

∂t
ψ′

0 = −
√

V 2 + (
αt

2
)2ψ′

0 − iV α

4V 2 + (αt)2
ψ′

1

i
∂

∂t
ψ′

1 =

√
V 2 + (

αt

2
)2ψ′

1 +
iV α

4V 2 + (αt)2
ψ′

0. (5.109)

One sees that in spite of the fact that the matrix Ô(t) diagonalizes the Hamil-
tonian, the cross-terms between the adiabatic states persist due to the time
dependence of this transformation, and the rotation rate

.

Θ(t) of the adiabatic
reference frame represents the probability amplitude of this process.
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We now express ψ′
1 from the first equation (5.109) and substitute it into

the second one, which yields

∂2ψ′
0

∂t2
+

α2t/2
V 2 + α2t2

4

∂ψ′
0

∂t
=

⎡⎣ 3iα2t/4√
V 2 + α2t2

4

− V 2 − α2t2

4
− α2/16

V 2 + α2t2

4

⎤⎦ψ′
0,

(5.110)
take the amplitude in the form ψ′

0 = Ψ0
(
4V 2 + (αt)2

)−1/2 in order to get rid
of the coefficient in front of the first derivative, and arrive at

∂2Ψ0

∂t2
+

[
3iα2t/2√

4V 2 + (αt)2
+ V 2 +

(αt)2

4
+

5α2/4
(4V 2 + (αt)2)2

]
Ψ0 = 0. (5.111)

The last term in square brackets can be omitted when the adiabaticity pa-
rameter α/V 2 is small, and we obtain the WKB solution

ψ′
0 =

C exp

[
−i

∫ (
3iα2t/2√
4V 2+(αt)2

+ V 2 + (αt)2

4

)1/2

dt

]
(

3iα2t/2√
4V 2+(αt)2

+ V 2 + (αt)2
4

)1/4

(4V 2 + (αt)2)1/2
, (5.112)

where C is a constant.
In the adiabatic condition, the imaginary term is always small and the

square root in the integrand can be developed as a Taylor series, which after
integration yields

ψ′
0 =

C exp
[
−i

∫ √
V 2 + (αt)2

4 dt +
∫ 3α2t/2

4V 2+(αt)2 dt

]
(
V 2 + (αt)2

4

)1/4
(4V 2 + (αt)2)1/2

= C ′e−i ∫ √
V 2+(αt)2/4dt,

(5.113)
where to be consistent with the order of approximation we have omitted terms
in the pre-exponential factors that are small and vanishing as t → ∞ and
have substituted the explicit expression

∫ 3α2t/2
4V 2+(αt)2 dt = (3/4) ln[4V 2+(αt)2].

The constant C ′ equals unity for the initial conditions ρ0(t → −∞) → 1.
From the result (5.113) one sees that the adiabatic representation has a

remarkable property – all of the first-order corrections over the parameter
α/V 2 within the approximation given by the diagonal Hamiltonian Ĥ ′(t)
cancel each other, such that the latter gives much better precision than is
suggested by the linear perturbation theory for other representations. The
reason for this is in the fact, that the probability amplitudes oscillate rapidly
as compared to the typical time dependence of the non-diagonal matrix ele-
ments iV α(4V 2 + (ατ)2)−1responsible for the transition in (5.109). But how
do we determine the accuracy of the approximation? Substituting (5.113)
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into the second equation of the set (5.109) one finds the other probability
amplitude ψ′

1

ψ′
1 = ieiΦ(t)

∫ t iV α

4V 2 + (ατ)2
e−2iΦ(τ)dτ. (5.114)

Evaluation of the integrals Φ(t) =
∫ t√

V 2 + (αt4 )2dt yields t
2

√
V 2 + (αt4 )2 +

V 2

α ln[ tα2V +
√

1 + ( αt
2 V )2], and hence (5.114) takes the form

ψ′
1 = −eiΦ(t)

∫ t V α( τα2V +
√

1 + ( ατ2V )2)−i2V 2/α

4V 2 + (ατ)2
e−iτ

√
V 2+(ατ)2/4dτ, (5.115)

and results for t → ∞, after the substitution τ = 2V sinh[χ]/α, in

∣∣ψ′
1

∣∣2 =

∣∣∣∣∣∣
∞∫

−∞

exp[V
2

iα (2χ + sinh[2χ])]
2 cosh[χ]

d χ

∣∣∣∣∣∣
2

. (5.116)

By analogy to (5.93), the integral in (5.116) has simple poles at the points
χ = −πi/2 − ikπ, where cosh[χ] = sinh[2χ] = 0. We have to take positive k,
corresponding to the vanishing residuals, in order to obtain the result

∣∣ψ′
1

∣∣2 =

∣∣∣∣∣
∞∑
k=0

π exp[−πV 2

α (1 + 2k)]
−i(−1)k

∣∣∣∣∣
2

=

∣∣∣∣∣ iπ exp[−πV 2

α ]

2(1 + exp[− 2πV 2

α ])

∣∣∣∣∣
2


 π2e− 2πV 2
α ,

(5.117)
coinciding with the exact result of (5.44) for the adiabatic limit 2πV 2

α � 1
under consideration. Note that the exponentially small probability of the
non-adiabatic transition has an evident physical explanation: the frequency
spectrum of the time-dependent perturbation V α

(
4V 2 + (αt)2

)−1, given by
(5.109) and originating from the slow rotation of the adiabatic basis, simply
has vanishing intensities for the harmonics corresponding to the transition
energies between the adiabatic states, even at the moment of their closest
approach.

This result can be generalized to an arbitrary time-dependent two-level
Hamiltonian, provided the typical width of the frequency spectrum associ-
ated with the rotation of the adiabatic frame remains much smaller than the
transition frequency between the adiabatic levels. For the Hamiltonian

Ĥ = Hz(t)σ̂z + Hx(t)σ̂x (5.118)

the equation (5.114) takes the form

ψ′
1 = eiΦ(t)

∫ t
.

Θ(τ)
2

e−2iΦ(τ)dτ, (5.119)

where Φ(t) =
∫ t√

H2
z (t) + H2

x(t)dt is the accumulated adiabatic phase, and
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.

Θ(t) =

.

[Hz(t)Hz(t) −
.

Hz(t)Hx(t)]
[H2

z (t) + H2
x(t)]

is the derivative of the angle Θ(t) = π/2−arctan (Hz(t)/Hx(t)) in the trans-
formation matrix exp [iσ̂yΘ(t)/2] relating the diabatic and the adiabatic ref-
erence frames (5.105). The main contribution to the integral (5.119) comes
from the domain around the points tn in the complex plane t given by the
relation [H2

z (tn) + H2
x(tn)] = 0 where the derivative

.

Θ(t) has poles, and the
phase Φ(t) has a stationary point

.

Φ(t) =
√

H2
z (t) + H2

x(t) = 0. However, the
fact that

.

Φ(t) is not analytic at these points does not allow one to employ
either the Cauchy formula or the stationary point approximation for Φ(t).
Nevertheless, the Taylor expansion of the square root and the substitution
tn − t = x2 result in

ψ′
1(t → ∞) 
 e−2iΦ(tn)+iΦ(t)

∫
e−iAx dx

2x
= πe−2iΦ(tn)+iΦ(t), (5.120)

and apparently all the contributions of different points tn in that half of the
complex plane t where −2iΦ(tn) has a negative real part have to be added.
Note that the coefficient A originating from the third-order term in the Taylor
expansion does not enter the result. The main contribution corresponds to
tn with the largest negative real part.
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Fig. 5.8. (a) The integration contour C for the calculation of the non-adiabatic
transition probability. (b) Imaginary part of the transition frequency as a func-
tion of the complex-valued time. The contour circumvents two complex conjugated
branching points tn = i and t∗

n = −i, where the energies corresponding to the state
a and the state b coincide, that is ωa,b = 0. One has to take either the open contour
from t∗

n = −i to tn = i or take half of the integral over the loop shown.

For the transition probabilities Pab between the adiabatic states a and
b the result (5.120) gives a short and elegant generalization known as the
Dykhne expression
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Pab =
∣∣ψ′

1(t → ∞)
∣∣ 
 π2 exp

{
i

∫ t∗n

tn

ωab(t)dt

}
, (5.121)

where the integral of the time-dependent energy difference ωab(t) between
the adiabatic states a and b calculated in the limits suggested by the two
closest complex conjugated roots tn and t∗n of the equation ωab(t) = 0 takes
a positive imaginary value. The other possibility is to integrate half of the
frequency over a closed loop, shown in Fig. 5.8.

5.3.2 Multilevel Systems

The adiabatic reference system can also be introduced for a multilevel quan-
tum system with a time-dependent Hamiltonian, if all the eigenstates are
non-degenerate. Indeed, let Ĥ(t) be a time-dependent Hamiltonian entering
the Schrödinger equation

i
∂

∂t
|ψ〉 = Ĥ(t) |ψ〉 (5.122)

for a large system of n + 1 interacting non-degenerate levels correspond-
ing to the states |k〉 ; k = 0, 1, . . . , n, The state vector therefore reads
|ψ〉 =

∑
k ψk |k〉. For each time t one can find a set of eigenvalues Ek′(t) of

the Hamiltonian, and the corresponding eigenvectors |k′〉, that form an adi-
abatic basis set related to the initial basis via the expression |k〉 = Ô(t) |k′〉 .

Here Ô(t) is a unitary time-dependent operator of the transformation di-
agonalizing the Hamiltonian, as in (5.105) for the Landau–Zener problem.
By analogy, substitution of |ψ〉 = Ô(t)

∣∣ψ′〉 into (5.105) yields (5.107)
for the state vector

∣∣ψ′〉 in the adiabatic representation and results in
the Schrödinger equation (5.109) with the diagonal Hamiltonian Ĥ ′(t) =
Ô−1(t)Ĥ(t)Ô(t) = δk′m′Ek′(t) perturbed by a small and slowly changing op-

erator Ĉ(t) = Ô−1(t)
.̂

O(t) originating from a slow rotation of the adiabatic
basis in Hilbert space. In the adiabatic representation, the last operator does
not have diagonal matrix elements.

Note that by passing to the adiabatic reference system, we did not gain
much from a formal point of view, since instead of an initial time-dependent
Hamiltonian Ĥ(t), which does not commute with itself at t′ �= t, we obtain
another one, Ĥ ′(t) − Ĉ(t), neither self-commuting for different times. The
only advantage is that the off-diagonal elements of the new Hamiltonian are
directly related to the rotation of the adiabatic basis, and vanish when the
rotation rate approaches zero. When the latter is the case, the transformation
Ô(t) diagonalizing the Hamiltonian also diagonalizes the evolution operator

ÛO(t) = Ô(t) exp
[
−i

∫ t

Ĥ ′(τ)dτ
]
Ô−1(t), (5.123)
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which implies that no transitions occur among the adiabatic states. On the
contrary, in the general case of (5.22) the operator Û(t) allows for such non-
adiabatic transitions, and therefore is not diagonal in the |k′〉 representation.
This difference originates from the finite Ĉ(t) not commuting with Ĥ ′ and
results in a remainder R̂ encountered in (5.22) which, as we have seen, is
exponentially (∼ e−πV 2/α) small for the two-level Landau–Zener problem.
However, in a multilevel system the large variety of possible paths leading
from the initial to the final state may change the situation considerably by
augmenting the number of the transition channels possible.

Let us consider this situation in more detail, and calculate the remainder
R̂ responsible for the discrepancy between the set of adiabatic states |k′〉 and
the set of eigenvectors of the evolution operator. To get the maximum benefit
from the adiabaticity condition, we make use of the interaction representa-
tion, that is, we take the evolution operator in the form Û(t) = e−iR̂(t)ÛO(t).
The differential equation for R̂(t) follows from the equation for the evolution
operator Ûint(t) = e−iR̂(t) in the interaction representation

i
∂

∂t
Ûint(t) = Ĥ ′′(t)Ûint(t) (5.124)

with the Hamiltonian Ĥ ′′(t) = −ei
∫
Ĥ′(t)dtĈ(t)e−i ∫

Ĥ′(t)dt which in the adi-
abatic basis contains only small and rapidly oscillating non-diagonal matrix
elements. This allows us to find the equation for the coefficients in the from
of the Backer–Campbell–Hausdorff formula (5.3). Indeed, from (5.124) one
obtains the expression Û(t+dt) = exp

[
−iĤ ′′(t)dt

]
Û(t) for an infinitesimally

small variation of the evolution operator, which in agreement with (5.1) yields

e−iR̂(t+dt) = e−iĤ′′(t)dte−iR̂(t). (5.125)

We take the logarithm of both sides of this equation and expanding the first
exponent in a Taylor series obtain

−iR̂(t + dt) = ln[e−iR̂(t) − iĤ ′′(t)e−iR̂(t)dt]

= ln[1 − (1 − e−iR̂(t) + iĤ ′′(t)e−iR̂(t)dt)]

=
∑
n

(−1)n+1

n

[
1 − e−iR̂(t) + iĤ ′′(t)dte−iR̂(t)

]n
. (5.126)

Taylor expansion of the logarithm over Ĥ ′′ yields

−iR̂(t + dt) =
∑
n=1

(−1)n+1

n

[
1 − e−iR̂(t)

]n
(5.127)

+i dt
∑

n,k=0

(−1)n+k

n+k+1

[
1 − e−iR̂(t)

]n
Ĥ ′′(t)e−iR̂(t)

[
1 − e−iR̂(t)

]k
,
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which after performing the summation takes the form

−iR̂(t + dt) = −iR̂(t) + i dt
∑
k=0

ak

{[ − iR̂(t),
}k

Ĥ ′′(t)
{]}k

, (5.128)

where the coefficients ak in the commutator series are given by the Taylor
expansion

∑
akx

k = x(ex − 1)−1. Here we have employed the integral repre-
sentation (n + k + 1)−1 =

∫ 1
0 zn+kdz that enables one to rewrite the sum in

the last line of (5.127) in the form

1∫
0

∑
n,k=0

(−z)n
[
1 − e−iR̂(t)

]n
Ĥ ′′(t)e−iR̂(t) (−z)k

[
1 − e−iR̂(t)

]k
dz

=
1∫
0

[
1 + z

(
1 − e−iR̂(t)

)]−1
Ĥ ′′(t)e−iR̂(t)

[
1 + z

(
1 − e−iR̂(t)

)]−1
dz.

(5.129)

For the matrix elements of (5.129) in the representation where R̂(t) is diagonal
we have performed the integration

1∫
0

1
1+z

(
1−e−iR̂ll(t)

)Ĥ ′′
lm(t) e−iR̂mm(t)

1+z(1−e−iR̂mm(t))dz

=
log

[
e−iR̂ll(t)

]
−log

[
e−iR̂mm(t)

]
e−iR̂ll(t)−e−iR̂mm(t)

e−iR̂mm(t)Ĥ ′′
lm(t)

=
∑
k=0

ak

[
iR̂mm(t) − iR̂ll(t)

]k
Ĥ ′′
lm(t), (5.130)

which yields the matrix form of the commutator expansion (5.128).
The nonlinear differential equation (5.128)

∂R̂(t)
∂t

= −
∑
k=0

ak

{[ − iR̂(t),
}k

Ĥ ′′(t)
{]}k

, (5.131)

for the matrix R̂(t) has, in the adiabatic case, an approximate solution based
on the fact that Ĥ ′′(t) is small and rapidly changing. Note that assuming
Ĥ ′′(t > tA) = ĤB and R̂(tA) = tAĤA and solving this equation iteratively
one can also determine the coefficients ck,s in the Baker–Campbell–Hausdorff
formula (5.3)–(5.4).

For small and rapidly changing Ĥ ′′(t), by taking only the first term on the
right-hand side of (5.131) one obtains R̂(t) =

∫ t
−∞ Ĥ ′′(t)dt + ô(t) where the

small higher-order correction ô(t) can also be found by iterations if necessary.
Neglecting the correction immediately results in

R̂(∞) = −
∫ ∞

−∞
ei

∫ t Ĥ′(τ)dτ Ô−1(t)
.̂

O(t) e−i ∫ t Ĥ′(τ)dτdt (5.132)
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where we have substituted the explicit form of Ĥ ′′(t). Matrix elements

Rlm(∞) = −
∑
k

∞∫
−∞

ei
t∫
Ĥ′

ll(τ)dτ
[
Ô−1(t)

]
lk

.

Okm(t) e−i
t∫
Ĥ′

mm(τ)dτdt

(5.133)
found by an approximate calculation similar to (5.121) give the amplitudes of
the direct transitions between the states l and m in the presence of a number
of other states k, whereas the overall probabilities that include sequential
transitions in this order of approximation are given by the expression

Plm =
∣∣∣ [

e−iR̂(∞)
]
lm

∣∣∣2 . (5.134)

In the adiabatic regime each matrix element Rkn of R̂(∞) is exponentially
small. However, this does not necessarily mean that the matrix itself is small,

since the rank ∼ N of the matrix and hence its norm ∼
√

N (Rkn)2 can be
large for a large number N of levels in the system. Therefore, the Taylor
expansion of the exponent in (5.134) cannot be automatically truncated at
the first-order terms. The question arises whether equation (5.131) for R̂(t)
can be restricted to the zero-order approximation in such a situation that
has given the result (5.132)? The answer can be positive if the system is
“complex enough”, such that both the Hamiltonian Ĥ ′′(t) and its primitive∫

Ĥ ′′(t)dt are generic, that is each of them contains all or almost all of the
∼ N2 terms in their representations in the form of linear combinations of
the operators Ĝn generating the Lie group of the N × N matrix of evolution.
Among the total number N2 × N2 of pairs of generators the number of non-
commuting pairs is of the order of N2, and hence a typical matrix element
of the commutator of two generic matrices is of the order of the product of
their typical matrix elements. Therefore the norms of commutators of small
generic matrices are small values of a higher order, and thus the correction
ô(t) = R̂(t) − ∫ t

−∞ Ĥ ′′(t)dt can indeed be neglected.

5.4 Time-Dependent Level–Band System

Earlierin Chap. 3, we have seen that a single level interacting with a homoge-
neous band of levels is a very particular example of complex multilevel quan-
tum systems that allow an exact analytic description. A number of problems
for the time-dependent level–band systems with the Schrödinger equation

i
.

ψn = δ nψn + Vn0(t)ψ0

i
.

ψ0 = ∆(t)ψ0 +
∞∑
n=1

V0n(t)ψn (5.135)
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can also be solved analytically for certain particular cases of the time de-
pendence of the detuning ∆(t) and the couplings Vn0(t). Here we consider
just some of them, which manifest meaningful and qualitatively important
features.

One peculiarity, common to all of the problems under consideration, has
to be mentioned in advance: we assume that the size of the band X is very
large, much larger, as compared to any of the energy parameters of the sys-
tem. However we cannot simply set it to infinity since the logarithm of the
ratio X/δ, that is the logarithm of the typical number of levels in the system,
remains one of the crucial parameters of the problem. It has a very moder-
ate size even when the bandwidth X is enormous, and enters many of the
characteristics of the system, such as the typical response time.

5.4.1 The Demkov–Osherov Problem

Let us consider now an example of complex multilevel quantum systems with
time-dependent parameters that have an exact analytic solution. A system
shown in Fig. 5.9 composed of a non-degenerate quantum state |0〉 with a
time-dependent energy E0(t) = αt interacting with an equidistant spectrum
En = δ n via a constant coupling V0n = V was suggested by Demkov and
Osherov as a model for chemical reactions. The Schrödinger equation (5.135)
for such a system

i
.

ψn = δ nψn + V ψ0

i
.

ψ0 = αtψ0 + V

∞∑
n=1

ψn (5.136)

is similar to (3.23) for the level–band system of Sect. 3.2 with the only
difference that the energy of the initially populated state |0〉 depends linearly
on time. The Laplace contour integral method (see p. 205) allows one to find
an exact solution. We look for the solution in the form

ψn(t) =
∫
C

ψn(ε)e−iεtdε, (5.137)

where the integration contour C is selected in such a way that ψn(ε) assumes
the same values at the ends of C for any n = 0, 1, . . . while the amplitudes
themselves satisfy the initial conditions. This choice allows one to perform
integration in parts, replacing the time derivatives ∂/∂t by the factors −iε
and factors t by −i∂/∂ε, which results in a set of equations for the amplitudes
entering the integrands

εψn(ε) = δ nψn(ε) + V ψ0(ε)

εψ0(ε) = −iα
∂ψ0(ε)

∂ε
+ V

∞∑
n=1

ψn(ε). (5.138)
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Fig. 5.9. (a) A level with energy linearly dependent on time crosses a band of
levels. The solid and the dashed lines represent the adiabatic and the diabatic state
energies, respectively. (b) Integration contours for different initial conditions. For
the moving state initially populated one has to take the contour C, while for the
initial condition ψn(t = −∞) = 1 the contour C′ has to be selected. The borders
of the Stokes domains are shown by the dashed lines.

We note here an important difference between (5.138) and equations result-
ing from the standard Fourier–Laplace method of solving systems of linear
differential equations discussed earlier in Chap. 3: this equation does not ex-
plicitly contain initial conditions, and therefore one has to look for a proper
integration contour instead.

For ψ0(ε) (5.138) immediately yields a first-order differential equation

iα
∂ψ0

∂ε
+ εψ0 −

∞∑
n=1

V 2ψ0

ε − δ n
= 0, (5.139)

with the solution

ψ0 = exp

{∫ (
i
ε

α
−

∞∑
n=1

iV 2/α

ε − δ n

)
dε

}

= exp

{
i
ε2

2α
−

∞∑
n=1

iV 2

α
ln(

ε − δ n

A
)

}
, (5.140)

where A is an integration constant. Substitution of this expression into (5.137)
yields

ψ0(t) =
∫
C

exp

{
i
ε2

2α
− iεt −

∞∑
n=1

iV 2

α
ln

(ε − δ n

A

)}
dε. (5.141)

Now we have to find an integration contour that would correspond to
the initial conditions imposed. The expression in the exponent has no poles,
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but only branching points at each ε = δ n, such that closed loops are in-
capable of giving non-trivial solutions, while the possibility to find an open
loop with a pair of initial and final points where the integrand (5.137) takes
identical values for each n is quite questionable. The other possibility is to
take contours where all of the integrands vanish. This can be done either for
ε → ±ie±iπ/4∞ or for arg (ε − δ n) → −∞. These two possibilities shown
in Fig. 5.9 correspond to different initial conditions. If all of the population
was initially in the moving level, the contour C going from ε =

√
i∞ to

ε = −√
i∞ along the Stokes lines can be selected. At t ∼ t0 → ∞ where

the functional dependence of the logarithmic terms is negligible, the contour
passes through the saddle point ε = αt on the real axis, which yields

ψ0(t) = const

∫
C

exp
{

i
ε2

2α
− iεt

}
dε = exp

{
−i

t2α

2

}
. (5.142)

The contour C ′ appropriate for the initial condition ψn(t)|t→−∞ = 1 is a
spiral winding towards the point ε = δ n, and the main contribution for large
negative t comes from the vicinity of the saddle point ε = δ n− (V 2/α+ i)/t

ψn(t) =
∫
C′

V
ε−δ n exp

{
i ε

2

2α − iεt −
∑∞

n=1
iV 2

α ln( ε−δ n
A )

}
dε


 exp
{

−iδ nt +
iV 2

α
ln(−t/A′)

}
. (5.143)

where A′ is a constant different from A.
Let us consider the problem in the limit δ → 0, V 2/δ → W , and for

t � 1/δ, namely assuming that our time interval t being long, still remains
shorter than the Heisenberg recurrence time given by the inverse of the level
spacing δ. Replacing the sum in (5.140) by the integral we arrive at

ψ0 = exp
{

i
ε2

2α
− iW

α

∫
ln

(ε − x

A

)
dx

}
. (5.144)

Evaluation of the integral in the finite limits 0 < x < X < ∞ results in

X∫
0

ln(
ε − x

A
)dx = ε ln( −ε

X−ε ) − X + X ln
[−X+ε

A

]

 ε ln(−ε

X ) − ε + const = ε log( −ε
Xe ) + const, (5.145)

where we have ignored the small variable ε in the arguments of logarithms
as compared to a large constant X in the first term on the right-hand side
and retain only the correction linear in ε resulting from the third term; these
are the only two non-constant parts in this extreme. Equation (5.144) then
takes the form



5.4 Time-Dependent Level–Band System 225

ψ0 = const

∫
exp

{
i
ε2

2α
− iW

α
ε ln

(−ε

Xe

)}
dε, (5.146)

and for the time-dependent amplitudes results in

ψ0 =
1√
2απ

∫
C

exp
{

i
ε2

2α
+ i

(
W

α
ln

X

W
− t

)
ε − ε

iW

α
ln

( −ε

We

)}
dε,

(5.147)
where we have employed the relation log(−ε/X) = ln(−ε/W )−ln(X/W ), and
have chosen the constant corresponding to the initial condition |ψ0 |t→−∞| =
1. By the replacement ε → yW and t = (W/α) ln (X/W )+WT/α we express
the probability amplitude in terms of a contour integral

ψ0 =

√
W 2

2απ

∫
C

exp
{

iW 2

α

[
y2

2
− T y − y ln(

−y

e
)
]}

dy, (5.148)

which is a universal function of two parameters, T and W 2/α. In Fig. 5.10 we
depict |ψ0| as a function of these parameters. One sees that with the elapse
of time the population |ψ0|2 initially equal to 1 approaches zero with a rate
proportional to the parameter W 2/α. This process is not just an exponential
relaxation – a tiny reminiscence of the coherence manifests itself in small
oscillations of the real and imaginary parts of the amplitude. The asymptotic
expression for the probability of the state |0〉 reads

ρ0 
 e−2πW 2T/α. (5.149)

Equation (5.149) written in the ordinary time variable t ∼ TW/α corresponds
to the exponential decay ρ0 ∼ e−2πV 2t/δ identical to that in the case of a
stationary level–band system, which is given by (3.34).

In Sect. 5.1 we have noticed that the complexity of the multilevel quantum
system dynamics originates from the algebraic properties of the Hamiltonian
and its time derivatives. If the operator algebra of their commutators is rich
enough, the dynamics of the system does not have a simple description either
in terms of explicit algebraic expressions nor in terms of integrals. The fact
that the Demkov–Osherov problem under consideration possesses such an
explicit solution implies that it corresponds to a very particular structure of
the underlying operator relations. Inspection immediately shows that only
the first derivative of the Hamiltonian corresponding to (5.136) is a non-
zero matrix of rank 1, and is proportional to the operator P̂0 of projection
to the moving state |0〉. Nevertheless, the direct application of the idea of
algebraic description is not of much use, since the ensemble of all possible
commutations of the Hamiltonian iĤ(t) |t=0 and the projector iP̂0 spans
all operator space. In other words, any Hermitian operator in the Hilbert
space of quantum states can be given in the form of a linear combination
of iĤ(0), iP̂0, and their commutators of first and all higher orders, which
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Fig. 5.10. Probability amplitude to remain in the initial state |ψ| as a function of
time T = αt/W − ln(X/W ) and the interaction parameter W 2/α for the linearly
moving level coupled to a continuum. (a) The amplitudes tends from its initial value
1 to the final value 0 with the rate depending on the scaled coupling

√
W 2/α. (b)

Manifestation of a coherent transitional process that takes place at the moment that
the level enters the continuum. (c) Real (dashed line) and imaginary (dot-dashed
line) parts of the amplitude during the transitional process, for the value of W 2/α
shown in (b) by the arrow.

form therefore a complete basis set. Hence from the viewpoint of the algebra
of operators in the Hilbert space of quantum states, we have encountered a
problem of the general type.

The possibility of finding the analytical solution comes from the fact that
the relation ∂Ĥ(t)/∂t |t=0∼ P̂0 results in a very important simplification of
the problem. After the Fourier transformation t → ε the Schrödinger equa-
tion results in a linear first-order differential equation (5.139) in the space ε.
In other words, the algebraic structure of the problem is very simple from the
viewpoint of operators in the frequency space. Indeed, the commutator of the
operator ∂/∂ε canonically conjugated with ε and any multiplicative operator
U(ε) results in another multiplicative operator U ′(ε) = [∂/∂ε, U(ε)] which
is equivalent to U(ε) as an operator. We note that any further complication
of the problem, such as parabolic time dependence of the detuning, or si-
multaneous linear time dependence of two states, results, instead of (5.139),
in a second-order differential equation for ψ0, whose algebraic structure is
much more involved, and which in the general case does not have an explicit
analytic solution.
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5.4.2 The Landau–Zener Transition at the Continuum Edge

When considering on p.74 the role of spectrum edges, we noticed that a dis-
crete quantum state exists near the end of the continuum interacting with a
non-degenerate level |0〉. The positions of such states in the vicinity of each of
two continuum edges are found from the solution of a transcendental equation
illustrated in Fig. 3.6, and their population remains constant with the course
of time. Therefore, even though weakly populated, these states bring the
dominating contribution to the long-time asymptotic of the level population,
while the contribution of the rest of the spectrum decays exponentially. For
the level–band problem with time-dependent parameters such discrete eigen-
values of instantaneous Hamiltonians exist as well and although they move,
their population also plays an important role in the long time dynamics of
the system.

The single moving level

One can trace the origin of these discrete states for the Demkov–Osherov
problem in the limit δ → 0, V 2/δ → W shown in Fig. 5.11(a). We concentrate
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Fig. 5.11. Level crosses a continuous band (a). There are two discrete adiabatic
states above and below the continuum. Population (b) of the lower adiabatic state as
a function of the scaled time T = αt/V 2g− ln X/W and the adiabaticity parameter
W/

√
α.

here on the role of the lower edge, considering the problem only as long as
the level remains far below the upper edge of the band. Even in the condition
where the level |0〉 crosses the lower edge and penetrates deeper and deeper
into the band, the adiabatic state |ad〉 corresponding at t → −∞ to the
position Ead(t) → αt of the level |0〉 remains discrete, although it approaches
the lower edge of the continuum, that is Ead(t) → 0 at t → ∞. Our aim is to
find the time-dependent population of this adiabatic state.
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Let us first express the probability amplitude of the adiabatic state in
terms of the amplitudes ψn of diabatic states |n〉 of (5.136) and than take
the limit δ → 0. From the equation for the eigenvalues one finds immediately

Ead(t)ψ̃n = δ nψ̃n + V ψ̃0

Ead(t)ψ̃0 = αtψ̃0 + V

∞∑
n=1

ψ̃n, (5.150)

which yields algebraic equations for the projections 〈ad | n〉 = ψ̃n and for the
adiabatic energy

ψ̃n = V
Ead(t)−δ n ψ̃0

Ead(t) = αt +
∞∑
n=1

V 2

Ead(t)−δ n , (5.151)

respectively. The first equation allows one to express the normalized adiabatic
state in the form

|ad〉 =
1
N

(
|0〉 +

∞∑
n=1

V

Ead(t) − δ n
|n〉

)
(5.152)

where

N =

√√√√1 +
∞∑
n=1

(
V

Ead(t) − δ n

)2

, (5.153)

and therefore relates the amplitude ψad = 〈ad | st〉 of the adiabatic state to
the solutions ψn(t) of (5.136) via the standard definition of the state vector
|st〉 =

∑
ψn(t) |n〉

ψad(t) =
1
N

(
〈0| +

∞∑
n=1

V
Ead(t)−δ n 〈n|

) ∞∑
n=0

ψn(t) |n〉

=
1
N

(
ψ0 +

∞∑
n=1

V ψn

Ead(t)−δ n

)
. (5.154)

The first equation in the set (5.136) yields

ψn(t) = −iV

t∫
−∞

e−iδn(t−t′)ψ0(t
′)dt, (5.155)

and hence

ψad(t) =
1
N

⎛⎝ψ0(t) − i

t∫
−∞

∞∑
n=1

V 2e−iδn(t−t′)ψ0(t′)
Ead(t) − δ n

dt

⎞⎠ , (5.156)
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where the probability amplitude ψ0(t) to remain in the state |0〉 is given by
(5.141).

Now we are in a position to consider the limit δ → 0 and replace sum-
mation by integration. This yields an explicit expression for the probability
amplitude

ψad(t) =
ψ0(t) − i

t∫
−∞

W
∞∫
0

exp[−ix(t−t′)]
Ead(t)−x dxψ0(t′) dt′√

1 − W/Ead(t)
, (5.157)

where we have taken into account the normalization constant

N =

√√√√√1 +

∞∫
0

W dx

(Ead(t) − x)2
=

√
1 − W

Ead(t)
. (5.158)

At the same extreme equation (5.151) reads

Ead(t) = αt +

X→∞∫
0

W dx

Ead(t) − x
= αt + W ln

(
Ead(t)
−X

)
, (5.159)

where we should take precautions and cut the logarithmic divergence at the
upper integration limit, by choosing a large but finite width X for the con-
tinuum band in the same way as earlier in (5.145)–(5.148). As then, the
replacement t → (W/α) log (X/W ) + WT/α, along with the substitutions
Ead(t) = E(T )W , W 2/α = w allows one to get rid of the large constant X,
and after a proper change of the integration variable x together with (5.148)
yields

ψad = 1√
1−E−1

⎛⎝ψ0 − i

T∫
−∞

w

∞∫
0

exp[−ix(T−T ′)]
wE−x ψ0(T

′) dx dT ′

⎞⎠
E = T + ln [−E ] ,

ψ0 =
√

w
2π

∫
C

exp
{
iw

[
y2

2 − T y − y ln(−y
e )

]}
dy, (5.160)

where we have to keep in mind that E = E(T ) < 0, where the integration
contour C is shown in Fig. 5.9(b).

Substitution of the last equation of set (5.160) into the second term in
the parentheses of the first equation followed by integration over T ′ yields

−
√

w3

2π

∫
C

∞∫
0

exp
{
iw

[
y2

2 − T y − y ln(−y
e )

]}
(wE(T ) − x) (ix − iw y)

dx dy. (5.161)
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We note that the position E(T ) of the discrete adiabatic level underneath
the band is related to time by the second equation (5.160), and therefore
the replacement T → E − ln [−E ] can be performed in order to simplify the
integrals. After integration of (5.161) over x and substitution of the result
into the first equation (5.160) we arrive at

ψad =
√

w

2π

∫
C

(
1 +

ln −E
y

y − E

)
exp

{
iw

[
y2

2 − E y − y ln( y
eE )

]}
√E−1 − 1

dy. (5.162)

In the exponent one recognizes the primitive of y − E + log (−E/y) which is
also the numerator of the prefactor, and therefore after integration by parts,
the integral takes the form

ψad =
√

w

2π

∫
C

exp
{
iw

[
y2

2 − E y − y ln( y
eE )

]}
(y − E)2

√E−1 − 1
dy, (5.163)

convenient for numerical calculations.
In Fig. 5.11(b) we show the results of the numerical calculation of the

probability |ψad|2 given by (5.163) as a function of two parameters T and
w where for large couplings and slow motion, one sees that the population
decay of the adiabatic state at T → ∞ is slower than for the state ψ0. We
demonstrate this in Fig. 5.12, where the adiabatic state population, ρad =
|ψad|2, and its ratio to the diabatic state population ρ0 = |ψ0|2 are shown
as a function of the parameter W/

√
α and the energy position E(T ) of the

adiabatic level which serves as a nonlinear time-scale.
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Fig. 5.12. Population (a) of the adiabatic state as a function of the adiabaticity
parameter W/α1/2 and the position E(T ) of the adiabatic level, given by (5.160)
and its ratio (b) to the diabatic state population as a function of the same variables.

As we have mentioned in the previous section, the amplitude ψ0 expo-
nentially decreases in the long-time limit such that the population given by
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(5.149) decreases as e−2πWt, and in a certain regime its asymptotic contribu-
tion to the amplitude of the adiabatic state can become small as compared
to the contribution of the ensemble of the band states, the states near the
edge in particular. In order to find the asymptotic behavior of the adiabatic
population, we evaluate the integral (5.163) approximately for large w and
long times (that is small E ). We transform the integration contour to a loop
circumventing the branching point 0 and consider the sum of two parts of
the integral as the single integral

ψad =

0∫
−∞

(1 − e2πwy)
exp

{
iw

[
y2

2 − E y − y ln( y
eE )

]}
(y − E)2

√
2π/w

√E−1 − 1
dy. (5.164)

We now set (1 − e2πwy) 
 2πwy and keep only the leading term in the
exponent, which yields

ψad =
−

√
2πw3

√E−1 − 1

0∫
−∞

y exp{iwy ln(−E)}
(y−E)2 dy


 − ln(−wE ln(−E))√E−1−1

√
2πw3. (5.165)

We note that at long times T 
 − ln [−E ] and hence E 
 −e−T , and therefore

|ψad|2 
 2πw3e−T [
ln

(
we−T ln

(
e−T ))]2


 2πw3e−TT 2. (5.166)

It is expedient to compare the population (5.166) of the adiabatic state
with the population of the diabatic state |0〉 of (5.149). The comparison

ρad 
 2πw3e−TT 2

ρ0 
 e−2πwT , (5.167)

shows clearly that for a slow motion (w → ∞), the adiabatic contribu-
tion dominates. Both expressions (5.167) contain implicitly the width of
the band, which determines, however, just the typical time T when the
asymptotic regime is attained. Comparison of (5.149) with (5.166) shows
that the adiabatic asymptotic regime certainly becomes more important at
T > log(2πw3)/ (1 − 2πw).

Note another important consequence. Imagine that the level |0〉 enters the
band and remains for a while before returning back, as shown in Fig. 5.13(a).
Let us assume that during the return, the system has lost the phase coherence
such that the probability to return back to the initial state after the double
passage of the continuum edge is just the product of two equal probabilities
for the forward and for the back transition, no matter whether we consider
the adiabatic or the diabatic trajectory. As for the overall probability ρ0→0
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Fig. 5.13. Double passage of the continuum edge (a). The diabatic (dashed line)
and the adiabatic (solid line) channels. Population (b) of the non-adiabatic transi-
tion as a function of the level velocity v = α/W 2 for W = 10−2. The interaction
time is taken such that E(Tmax)/W = 1/e

to return in the initial state |0〉 at t → ∞ one has to take into account the
fact that the adiabatic and the diabatic discrete states are not orthogonal,
and therefore this probability has to be taken in the form

ρ0→0 
 ρ2
0 + ρ2

ad − ρ0ρad

|〈0|ad〉|2 = ρ2
0 + ρ2

ad − ρ0ρad

|N |2 , (5.168)

where the normalization factor N is given by (5.153). The irreversible transi-
tion probability ρtr = 1 − ρ0→0 as a function of the velocity has a maximum
when the adiabatic and the diabatic populations are of the same order of
magnitude, which is illustrated in Fig.5.13(b).

The Exponentially Rising Interaction

Earlier, on p. 210 we considered the two-level system with an exponentially
rising coupling. Here we generalize this consideration to the case of the level–
band system. The Schrödinger equation (5.135) for this case reads

i
.

ψn = nδψn + V eαtψ0

i
.

ψ0 = ∆0ψ0 + V eαt
∞∑
n=1

ψn, (5.169)

and with the notation θ =
√

α/2δ
∫ t

V eαxdx = V eαt/
√

2αδ and ∆ = ∆0/2α,
similar to that introduced earlier in (5.94) and (5.85), it adopts the form

i
∂ψn
∂θ

=
∆ + nδ′

θ
ψn +

√
2δ′ψ0

i
∂ψ0

∂θ
=

√
2δ′

∞∑
n=1

ψn (5.170)
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resembling (5.95) for a two-level system. Here δ′ = δ/α and the initial con-
dition ψ0(θ = 0) = 1 is the same as earlier.

Now one can employ the same method and look for the solution in the
form of a power series

ψ0(θ) =
∞∑
k=0

(−i)k
c0,k

k!
θ2k,

ψn(θ) =
∞∑
k=0

(−i)k
cn,k
k!

θ2k+1, (5.171)

as was done for (5.37). The recurrence relations for the coefficients[
i (2k + 1) − (

∆ + δ′ n
)]

cn,k =
√

2δ′c0,k

2c0,k =
√

2δ′
∞∑
n=1

cn,k−1
(5.172)

yield

c0,k = c0,k−1

∞∑
n=1

δ′[
i (2k − 1) − (

∆ + δ′ n
)] (5.173)

= c0,k−1

X→∞∫
0

dx

[i (2k − 1) − ∆ − x]
= c0,k−1 ln

i (2k − 1) − ∆

−X

and result in

c0,k =
k∏

p=1

ln
2p − 1 + i∆

iX
. (5.174)

such that

ψ0(θ) =
∞∑
k=0

(−iθ2)k

k!

k∏
p=1

ln
2p − 1 + i∆

iX
. (5.175)

In the calculation of the sum (5.175), we make use of the fact that the band-
width X is large. We employ the representation

c0,k = exp

{
k∑

p=1

ln
[
ln

2p − 1 + i∆

iX

]}
(5.176)

and develop the double logarithm in the exponent in the Taylor series over a
small parameter 1/ lnX allowing for the fact that the leading term ln [− lnX]
of this series is non analytic at 1/ lnX → 0. Although in the first-order
approximation the coefficients

c0,k = k exp ln [− lnX] − 1
lnX

k∑
p=1

ln
(

2p − 1
i

+ ∆

)
(5.177)
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. .

Fig. 5.14. Integration contour C circumventing the negative integer points in the
complex plane can be deformed as C → Cp +C′ such that it passes the saddle point
S. The loop C′ which goes around the branching (B) point y = (1 + i∆)/2 allows
for the dying oscillations of the populations, whereas the principal part Cp of the
contour gives the main contribution.

can be found explicitly

k∑
p=1

ln
(

2p − 1
i

+ ∆

)
= ln

k∏
p=1

(
2p − 1

i
+ ∆

)
= ln

2k

ik

Γ
(

k +
1 + i∆

2

)
Γ
(

1 + i∆

2

) ,

(5.178)
in order to be consistent within the approximation one has to take the asymp-
totic k,∆ � 1 for the Γ-functions and substitute ln Γ(z) = (z − 1/2) ln z −
z + ln

√
2π. Equation (5.175) then yields

ψ0(θ) =
∞∑
k=0

(iθ2 lnX)k

k!

(
∆ − i − 2ik

2

)−(2k+i∆)/2 lnX

(
∆ − i

2

)−i∆/2 lnX . (5.179)

For small θ, equations (5.175) and (5.179) are both equally good for the
numerical evaluation of the probability amplitude of the initial state. However
for large θ, the series starts to explode and become inconvenient for numerical
calculations. There is an alternative integral representation

ψ0(θ) =
∫
C

(−iθ2 lnX)−y

2πi
Γ(y)

(
∆ − i

2
+ iy

)(2y−i∆)/2 lnX

(
∆ − i

2

)−i∆/2 lnX dy, (5.180)
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Fig. 5.15. A level near the continuum edge with an exponentially rising coupling
V = V0e

αt. Population of the level (a) as a function of the integrated interaction
θ2 =

∫
dtV 2

0 e2αt/β = We2αt/2α, and the detuning ∆0 of the level from the lower
edge of the band. (b) Probability of the transition as a function of the growthrate
α for the case of phase decorrelated double interaction: the exponential increase
followed by an exponential decrease of the same rate. Small detuning ∆0 ∼ W ∼
0.001 (solid line) and large detuning ∆0 ∼ 20W (dashed line). The maximum of
the solid curve corresponds to the velocity α ∼ πW ln(X/W )/2, where the band
width X is taken to be unity.

which relies on the fact that the Γ-function has simple poles with the residuals
(−1)k/k! all at negative integer points −k, that the integration contour C
shown in Fig. 5.14 has to circumvent.

For large θ one can make use of the asymptotic expression Γ(y) =
yye−y/

√
2πy for the Γ-function

ψ0(θ) =
∫
C

(
∆ − i

2

)i∆/2 lnX

√
2πy

(
∆ − i

2
+ iy

)(i∆−2y)/2 lnX

(
iy

e θ2 lnX

)y

dy, (5.181)

and move the integration contour at the saddle point located near y =
−iθ2 lnX. For moderate θ2 the integral can be evaluated numerically with
the help of the saddle point method, which in this case requires numerical
solution of the equation determining the position of the saddle point, and in
the extreme of large θ2 (5.181) yields for the population

|ψ0(θ)|2 
 exp
[
−4θ2 + ∆/ lnX

2θ2 lnX + ∆
+

∆

lnX
arctan

1
∆

]
. (5.182)

In Fig. 5.15(a) we show the population ρtr = 1−|ψ0(θ)|2 transferred from the
discrete level as a function of the integrated interaction θ2 =

∫ t
dt′V 2(t′)/β =
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dt′W (t′) and the detuning ∆0 = ∆2α. At detunings smaller than the

growthrate α of the interaction, one observes dying oscillations, typical of the
coherent damping discussed earlier in Chap. 4. It is worth mentioning that
the oscillation frequency amounts to lnX, which indicates the important role
of the cooperative behavior which was previously discussed on p. 76. For de-
tunings much larger than the growthrate, the transferred population remains
zero as long as the interaction remains smaller than the detuning. Note an
interesting phenomenon: even for small detunings the transition probability
remains small, being of the order of 2/lnX. This somewhat strange effect
becomes clear when we recall that the repulsion of the level from the band
resulting by analogy to (5.159) in the adiabatic energy

Ead(t) − ∆0 = W ln
(

Ead(t)
−X

)
, (5.183)

differs from the probability W of the resonant decay approximately by the
factor lnX, which means that even for small detunings, the adiabatic state
remains separated from the bottom of the continuum by a gap broader than
the width of the Lorentzian profile (3.36) of the resonant transition.



6 Time-Dependent Complex Systems

We now turn to time-dependent multilevel systems, which are similar to the
two-band models discussed in Chap. 4. The main difference between them
and the time-dependent Level–band problem discussed in Chap. 5 is in the
topology of the transitions; for two-band models the transition topology is
much more involved, and a transition from one level to another does not
necessarily imply the immediate inverse transition. On the contrary, the next
transition rather occurs to a different energy eigenstate of the unperturbed
Hamiltonian. The algebraic structure of these problems is such that they
cannot be reduced to simpler systems, and therefore no explicit solution is
possible without taking advantage of the statistical models. Therefore the
main technique employed for the description is based on the ensemble average
over the matrix elements of the coupling, and on the topological selection
rules for leading terms in each order of the perturbation series, followed by
the exact analytic summation of these series, in complete analogy with the
approach developed in Chap. 4.

We start with the problem of a degenerate level crossing a band, resem-
bling the Demkov–Osherov case. However, the presence of the many quantum
states in the degenerate level drastically changes the structure of the solution,
such that it can no longer be exactly solved by the Laplace contour integral
method. The moving level becomes split to individual components and does
not lose its population exponentially, but retrieves it when the new compo-
nent passes the same resonance with a band state that has been crossed by
the former component.

We continue by considering perturbations of multilevel systems by a
time-dependent random matrix. A generic time-dependent perturbation con-
tains different harmonics, which provoke transitions among the eigenstates
of the unperturbed Hamiltonian separated by energies equal to the energies
of quanta corresponding to the harmonics. Therefore, under the action of a
time-dependent perturbation, the energy distribution can differ dramatically
from the Lorentzian distribution typical of the time-independent perturba-
tions switched on at a given moment of time. The ensemble averaged popu-
lation distribution can be found exactly for a quntum system perturbed by
a random matrix with an amplitude arbitrarily changing in time. We con-
sider this problem prior to calculation of the responses of the systems to
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the random perturbations. Note that a non-trivial coherent response exists
only in the case of the perturbations that belong to the Gaussian orthogonal
ensemble.

We also consider the special cases of harmonic time-dependent perturba-
tions for the case of an abrupt and adiabatic switching. These results can
be generalized to the bi-harmonic time dependence and to the case of a two
band system. It turns out that the energy distribution of the populations
over the bands is sensitive to the photon statistics in the case when the time-
dependent perturbation is considered as a quantized electromagnetic field.

We conclude the chapter by investigating the possibility to control the
dynamics of complex quantum systems. The commutation relations among
the unperturbed Hamiltonian, the perturbation, and their commutators that
make the dynamics complex, also remove all of the holonomic constraints
protecting the system from complete control. For the example of the Bloch
vectors for the simplest two-level system, we illustrate the geometrical mean-
ing of the algorithms that allow one to determine the time dependence of the
perturbation, which yields a desired time evolution of the system. We also
show the geometrical meaning of the constraints that exist when the com-
mutation relations correspond to a simple, small-dimensional algebra. We
illustrate how control of the complex system can protect a part of it from the
loss of coherence.

6.1 Degenerate Level Crosses an Infinite Band

Our initial system consists of a level with linearly increasing energy, which
crosses an infinite band. In many respects this problem is similar to the
Demkov–Osherov problem considered in Sect.5.4.1. The two main differences
are in the fact that the level is degenerate, as was the case in Sect. 4.4
for a similar time independent system, and in that the band is infinite on
both sides. We also assume that initially, at t = 0, only one sublevel of the
degenerate level is populated, which from the physical point of view implies
that the population has been injected into this sublevel while the degenerate
level was already in resonance with the band.

The corresponding Schrödinger equation then reads

i
.

ψn = nδψn +
N∑

m=1

Vnmψm

i
.

ψm = αtψm +
∞∑

n=−∞
Vmnψn, (6.1)

and implies that an N -fold degenerate level of energy αt moving linearly in
time, enters across an infinite band of levels spaced by small energy intervals
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δ, which we consider vanishing δ → 0. The index n enumerates the levels of
the band, and m denotes the sublevels of the degenerate level.

We take the position of the degenerate level at t = 0 as the energy refer-
ence point and attribute the detuning αt, linearly depending on time, to the
levels n of the band. After such a replacement, Fourier-Laplace transforma-
tion of (6.1) yields

εψn(ε) = nδψn(ε) − iα
∂ψn(ε)

∂ε
+

N∑
m=1

Vnmψm(ε)

εψm(ε) = iδm,1 +
∞∑
n=1

Vmnψn, (6.2)

where δm,m′ is the Kronecker δ. Equation (6.2) differs from (5.138) not only
in the fact that we allow here for the sublevels m of the degenerate level and
move the time dependence of the degenerate level detuning to the states of
the band, but also in the presence of the initial condition iδm,1, which means
that initially only the first sublevel of the degenerate level is populated.

Let us now compare (6.2) with (4.5) for the two-band system of Sect.4.2.1.
at ∆m = 0. The main discrepancy is in the fact that the detunings of the
band states ∆n = δ n− iα ∂

∂ε include the derivative over the spectral variable
ε, and therefore after the ensemble average, the renormalized Greens func-
tions Xn(ε), Xm(ε) given by (4.20), (4.21) and corresponding to the static
degenerate-level-band problem of (4.5) became, for the time dependent sys-
tem of (6.2) considered, integral operators X̂n, X̂m over ε, that read

X̂n = 1
ε−(nδ−iα ∂

∂ε )−〈V 2〉NX̂m

X̂m = 1
ε−〈V 2〉 ∑

n
X̂n

. (6.3)

In complete analogy with Sect.4.4.1 we replace the sum by the integral and
obtain again (4.71)–(4.73), that is∑

n

X̂n = iπg

X̂m = X(ε) = 1
ε+iπg〈V 2〉 , (6.4)

regardless of the presence of the derivative in the denominator of the first of
(6.3). Here g, as earlier, is the density of the band states. This yields

X̂n(ε) =
1

ε − (nδ − iα ∂
∂ε ) − 〈V 2〉N(ε + iπg 〈V 2〉)−1

, (6.5)

and by analogy for the complex conjugate Green’s function
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X̂n(ξ) = 1
ξ−(nδ−iα ∂

∂ξ )−〈V 2〉N(ξ−iπg〈V 2〉)−1 ,

X(ξ) = 1
ξ−iπg〈V 2〉 . (6.6)

We also note that apart from the replacements n ↔ m and 2 ↔ 0 expressions
(4.27) remain valid for the total population of the degenerate level ρ0 (ε, ξ)
and of the band ρ1 (ε, ξ), and therefore after having evaluated the sum∑

n

X̂n(ε)X̂n(ξ) =
−2πig

ε − ξ + 〈V 2〉N (X(ξ) − X(ε)) + iα( ∂
∂ε + ∂

∂ξ )
(6.7)

by calculating the correspondent integral, one finds for the total population

ρ1 = −2πiV 2g
ε−ξ+〈V 2〉N(X(ξ)−X(ε))−iα( ∂

∂ε + ∂
∂ξ )ρ0

ρ0 = V 2NX(ε)X(ξ)ρ1 + X(ε)X(ξ). (6.8)

After substitution of X(ξ) and X(ε) from (6.4) and (6.6) this immediately
results in(

ε − ξ +
V2 (ε − ξ)

(ε + iW )(ξ − iW )
− iα(

∂

∂ε
+

∂

∂ξ
)
)

ρ1 =
−1

ε + iW

2iW
ξ − iW

(6.9)

where
〈
V 2

〉
N = V2 is the squared cooperative coupling (see p. 76) and

πg
〈
V 2

〉
= W is the probability amplitude decay rate (3.34). After the re-

placement ε − ξ → 2vW , ε + ξ → 2uW this yields the equation(
2v +

V22v/W 2

u2 − (v + i)2
+

iα

W 2

∂

∂u

)
ρ1 =

−2i/W 2

u2 − (v + i)2
. (6.10)

By standard methods, one finds the solution of the first-order differential
equation (6.10) in the form

ρ1 =
−2i
α

(
u − v − i

u + v + i

)−b 0∫
−∞

exp
(−2ivλ

α/W 2

)
(u + λ − v − i)b−1

(u + λ + v + i)b+1 dλ, (6.11)

where b = −V2v/α(1 − iv), or in the original notation

ρ1 =
W

α

(
ε + iW

ξ − iW

)b
0∫

−∞
eiλ(ξ−ε)/α (ξ+λ−iW )b−1

(ε+λ+iW )1+b
dλ (6.12)

where b = −V2(ξ−ε)
α(2W+i(ξ−ε)) . Another representation of the integral

ρ1 =
W

α

1
(ε + iW )(ξ − iW )

0∫
−∞

eiλ(ξ−ε)/α (1+ λ
ξ−iW )b−1

(1+ λ
ε+iW )1+b

dλ (6.13)
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is more convenient for further calculations and the asymptotic analysis.
Let us first consider the limit α → 0. The main contribution to the integral

comes from the domain of small λ which allows one to approximate (6.13)
and write

ρ1 =
W

α
1

(ε+iW )(ξ−iW )

0∫
−∞

eiλ(ξ−ε)/α+ λ
ξ+iW (b−1)− λ

ε−iW (b+1)dλ

= W/α
(ε+iW )(ξ−iW )i(ξ−ε)/α+(ε+iW )(b−1)−(ξ−iW )(b+1) . (6.14)

After substitution of b, replacements (ε+ξ)/2 → η, (ε−ξ) → ζ and integration
over η this yields

ρ1 =
2πiW√

4α2 + (4V 2 − (2iW + ζ)2)ζ2
, (6.15)

which for α = 0 after inverse Fourier transformation over ζ results in (4.80) for
the time-independent system of a band and a degenerate level. This equation
shows that the ratio of band population to the degenerate level population
in this extreme is a constant, in accordance with (4.82).

Since the limit just considered implies αT → 0, that is α/(ε − ξ) → 0, it
cannot be employed in the physically interesting case of α → 0, αT = const
corresponding to the adiabatic displacement of the degenerate level by a
finite energy interval αT , which implies that (ε− ξ) ∼ α. In order to describe
the dynamics of populations in this limit, one has to make the replacements
(ε + ξ)/2 → η, (ε − ξ) → ζ and −V2ζ/α(iζ − 2W ) → b in (6.13) and find

ρ1 =
W

α

(
η+ζ/2+iW
η−ζ/2−iW

)b 0∫
−∞

eiλζ/α (η−ζ/2+λ−iW )b−1

(η+ζ/2+λ+iW )1+b dλ. (6.16)

Now we note that the integration to be performed over dη from −∞ to ∞
along the real axis is equivalent to the integration along a contour circum-
venting two singularities in the upper part of the complex plane at the points
η = ζ/2−λ+iW and η = ζ/2 + iW . This can be done explicitly after the
replacement

η → − (2iW + ζ)(2iW + ζ + λ + λx)
2(2iW + ζ + λ − λx)

(6.17)

which reduces to an integral over dx coinciding with the integral representa-
tion of the hypergeometric function and yields

ρ1 =
0∫

−∞
−2iW

α(ζ+2iW )e
iλζ/2α

(
ζ−λ+2iW
ζ+λ+2iW

)b
2F1

(
b,−b, 1, λ2

λ2−(ζ+2iW )2

)
dλ.

(6.18)
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In this exact expression we can neglect ζ compared to W in the long-time
limit, since the crucial dependence on ζ already enters the indices ±b of
the hypergeometric function, and after introducing the variables w = W/V,
y = λw, x = ζ/2αw, Θ = αT/V we obtain the inverse Fourier transform

ρ1(Θ) =
−1
π

0∫
−∞

exp
(
ixy − 2iΘx + 2ix

w arctan( yw )
)

2F1

( x

w
,− x

w
, 1, y2

w2+y2

)
dxdy. (6.19)

Now one has to take into account that the Fourier transformation of this
hypergeometric function over the indices reads

∞∫
−∞

2F1 (u,−u, 1, z) cos (uv) du =
cos

(
v
2

)√
z − sin2 ( v

2

) , (6.20)

which can be found by a certain exponential replacement in the corresponding
integral representation of 2F1. The spectrum of the hypergeometric function
ranges from v = −2 arcsin

√
z to v = 2 arcsin

√
z, and therefore after the

replacement y → y/w one arrives at

ρ1(Θ) =

0∫
−∞

cos( y
2 −Θw+arctan y

w2 )√
sin2(arctan y

w2 )−sin2( y
2 −Θw+arctan y

w2 )
dy

π

=

0∫
−∞

cos( y
2 −Θw+arctan y

w2 )√
sin(Θw− y

2 +2 arctan y

w2 ) sin( y
2 −Θw)

dy

π
, (6.21)

where the arguments of sine and cosine must remain within the inter-
val (−π, π). Here we have also taken into account, that sin2 (arctan z) =
z2/(1 + z2).

In Fig. 6.1 we show the population ρ0(Θ) = 1 − ρ1(Θ) of the degenerate
level as a function of the displacement ∆ = αT and the coupling parameter
V/W = 1/w, calculated with the help of (6.21). Note that 1/w2 equates to
the ratio of the number of states N comprising the degenerate level and the
number Wg of the band levels in resonance, discussed on p. 76. One sees
the main trend of the population behavior, namely an almost linear decrease
of ρ0(T ) toward zero with a slope proportional to the parameter w. This is
a natural consequence of the fact that in the course of the motion of the
degenerate level across the band, the degeneracy is raised by the interaction.
Therefore the populations of the resulting components make transitions to
the states of the band via the mechanism of adiabatic population transport.
Each transition can occur in both directions: from a state of the level to a
state of the band and vice versa, depending on which one of these two states
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Fig. 6.1. Population (a) of the degenerate level as a function of the dimensionless
energy shift Θ = ∆W/V 2N and the scaled coupling 1/w =

√
V 2N/W 2 in the limit

α → 0, and Tα → ∆, for the system of an N -fold degenerate level interacting with a
band. The eigenvalues of the system (b) are shown as a function of time. In order to
distinguish among the eigenstates originating from the degenerate level and those
originating from the states of the band we took a finite time for the interaction
switch. The density of states that belong to the degenerate level are shown by
dashed lines for two different times. The population of the adiabatic levels (dash-
dot line) given by the initial distribution of the degenerate level’s density of states
propagated along the adiabatic curves after convolution with the final distribution
of these states gives the population (a).

corresponds to the populated adiabatic level before the crossing. The number
of such transitions is proportional to the product of the band state density
and the displacement, whereas the population of each component is inversely
proportional to the degeneracy N of the level. One can see this phenomenon
by tracing the time evolution of the eigenstates shown in Fig. 6.1b). The
population of the adiabatic states does not change, whereas the population
of the degenerate level at a given moment in time depends on the number of
the initially populated adiabatic states that still belong to this manifold at
that moment.

On a long-time scale, the band population probability approaches unity.
Deviation from unity can be found from (6.21) when we denote y

2 − Θw +
arctan y

w2 = u, take this quantity as the integration variable, and find ap-
proximately the derivative ∂u/∂y 
 1/2 + 1/(w2 + 4Θ2). This yields

ρ1(Θ) =
∫

du√
sin2 (arctan 2Θw

w2

) − u2

1
π ∂u
∂y


 1
1 + 2/(w2 + 4Θ2)


 1 − V2

2(αT )2
, (6.22)

that is

ρ0(T ) 
 V2

2(αT )2
. (6.23)
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In this expression one recognizes the population ρ0 of (3.19) for a single level
separated from the resonance with another populated single level by a large
detuning αT and coupled to this level by an interaction V/2, which can be
attributed to the joint effect of the wings of the initial population distribution
and the influence of the second-order perturbation of the level’s states by the
populated states of the band.

An explicit analytical solution for another important limit of high veloc-
ities, that is α → ∞, can be easily found after the replacement λ → αλ in
(6.18) which yields, in the limit under consideration

ρ1 =

0∫
−∞

−2iWeiλζ/2

(ζ + 2iW )
(−1)b 2F1 (b,−b, 1, 1) dλ

=
−i4W

2πb(ζ + 2iW )ζ
(
1 − e2iπb) , (6.24)

where the relation

(−1)b 2F1 (b,−b, 1, 1) =
i

2πb

(
1 − e2iπb) (6.25)

has been employed. We have also to set b → 0, and hence

ρ1 =
−4W

(ζ + 2iW )ζ
, (6.26)

which after inverse Fourier transformation gives a transparent expression

ρ1(t) = 1 − e−2πg〈V 2〉t (6.27)

in complete analogy with (3.34). This means that, at such a high velocity
of displacement of the degenerate level across the band, each component
of the level encounters such a large number of band states that it decays
to these states individually, as if they were a real continuum, while all of
the interference phenomena such as recurrences and revivals are completely
suppressed.

6.2 Perturbation Proportional to a Random Matrix

Thus far, we have considered particular forms of the time dependencies of
the interaction or the level positions, that allow one to find the result analyt-
ically. Looking at this class of problems from the viewpoint of the algebraic
properties of quantum systems discussed in Sect. 5.1, one can say that their
algebraic structure is such that the representation

Û(t) = e
∑NO

n=0 fn(t)Ĝn (6.28)
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of the evolution operator Û(t) given in terms of the generators Ĝn of the
unitary group, by analogy to (5.5), has a very special relationship among the
functions fn(t), that allow one to express the solution in terms of integrals
or special functions, something that is completely impossible for a generic
problem. In this section we turn to the problem of a perturbation with an
arbitrary time dependence, which does not have such a hidden symmetry.
In order to achieve an analytical result for this case, we have to make some
simplifying assumptions compensating for the complex character of the exact
dynamics. We therefore assume that the Hamiltonian has the form

Ĥ(t) = Ĥ0 + q(t) V̂ (6.29)

of an unperturbed Hamiltonian Ĥ0 with a dense and uniform spectrum, plus
a perturbation in the form of a time-independent random matrix V̂ multi-
plied by an arbitrary time-dependent coefficient q(t). In the representation of
the eigenfunctions of Ĥ0 shown in Fig. 6.2(a) the corresponding Schrödinger
equation reads

i
.

ψn = ∆nψn + q(t)
∑
m

Vnmψm, (6.30)

where ∆n stand for the eigenstate energies.

. .Vj,k

�

�

V

���
-2

3

W/�

�

a) b) c)

0
2

Fig. 6.2. Model of a collision. Dense spectrum (a) subjected to the action of a
perturbation which has the structure q(t)V̂ of a random matrix V̂ multiplied by
a time-dependent function q(t). Typical population distribution after the collision
(b). Population distribution (c) as a function of the interaction strength W = πgV 2

and the detuning ∆ for a Gaussian q(t) = e−α2t2 time dependence.

We now make use of the idea already employed in Sect. 5.1, and replace the
Schrödinger equation (6.30) with time dependent coefficients by an equation
of a higher dimensionality with time independent coefficients by analogy to
(5.8). For the evolution operator of this system in a Fourier representation
one obtains

εÛ(ε, τ) −
[
Ĥ0 + q(τ) V̂ − i

∂

∂τ

]
Û(ε, τ) = Î , (6.31)
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that is

Û(ε, τ) =
(

ε − Ĥ0 + i
∂

∂τ
− q(τ) V̂

)−1

. (6.32)

In other words

ψn(t) =
∫

e−iεt

2π

∑
m

(
1

ε − Ĥ0 + i ∂∂τ − q(τ) V̂

)
n,m

∣∣∣∣∣∣
τ=t

ψm(t = 0). (6.33)

This equation takes exactly the same form as (4.10) when we attribute the
derivative −i ∂∂τ to the unperturbed Hamiltonian Ĥ0. Therefore all of the
calculations performed in Sect. 4.1 such as the expansion of the evolution
operator in a Taylor series over V̂ followed by ensemble averaging can also
be repeated for the problem under consideration. The only new requirement
is to take into account the order of operators, since −i ∂∂τ and q(τ) do not
commute.

By complete analogy to (4.21), the calculations yield the equation

X̂n(ε, τ) =
1

ε − ∆n + i ∂∂τ − q(τ) 〈V 2〉∑
m

X̂m(ε) q(τ)
, (6.34)

for the renormalized operators X̂n(ε) although now they have to be consid-
ered also as operators in τ -space. However for the sum Q̂(ε) =

∑
m

X̂m(ε),

under the condition that the spectrum of Ĥ0 is broad enough, we still obtain
the solutions (4.32). This yields

X̂n(ε, τ) =
1

ε − ∆n + i ∂∂τ + iπg 〈V 2〉 q2(τ)
. (6.35)

6.2.1 Population Distribution

We now consider the population ρn of an arbitrary state |n〉. Since we have
just one band, the perturbation series for the population is a sum of all the
diagrams shown in Fig. 6.3 similar to Fig. 4.12, and ρn is given by (4.25)
with the only difference that instead of (4.24) the factor Ξ reads

Ξ̂(ε, ξ, τ , θ) =
∑
n

X̂n(ε, τ)X̂n(ξ, θ)V 2q(τ)q(θ)

=

∞∫
−∞

g〈V 2〉
ε−∆+i ∂

∂τ +iπg V 2 q2(τ)
d∆

ξ−∆−i ∂
∂θ −iπg V 2 q2(θ)q(τ)q(θ)

= 2iπgV 2

ε−ξ+i ∂
∂θ +i ∂

∂τ +iπg V 2 (q2(τ)+ q2(θ))q(τ)q(θ). (6.36)
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Fig. 6.3.

Here the variable θ plays for Xn′(ξ, θ) the same role as τ does for Xn′(ε, τ),
and the integral replacing the sum has been calculated by taking the residual
in the pole of the upper part of the complex plane. The sum of the series (4.25)
for the initial distribution ρm(t = 0) yields for the resulting population

ρn (ε, ξ, τ , θ) = X̂n(ε, τ)X̂n(ξ, θ)ρn(t = 0)
+X̂n(ε, τ)X̂n(ξ, θ)V 2q(τ)q(θ) 1

1−Ξ̂(ε,ξ)

∑
m

X̂m(ε, τ)X̂m(ξ, θ)ρm(t = 0).

(6.37)
We note that the relation

1

1 − Ξ̂(ε, ξ)
=

ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2
(
q2(τ) + q2(θ)

)
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (q(τ) − q(θ))2

(6.38)

follows from (6.36), and consider the initial condition ρm(t = 0) = δ0
m, where

∆0 = 0. For n �= 0 (6.37) takes the form

ρn (ε, ξ, τ , θ) = X̂n(ε, τ)X̂n(ξ, θ)V 2q(τ)q(θ)Ẑ(ξ, θ, ε, τ)[
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2

(
q2(τ) + q2(θ)

)]
X̂0(ε, τ)X̂0(ξ, θ),

(6.39)

where

Ẑ(ξ, θ, ε, τ) =
1

ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (q(τ) − q(θ))2
, (6.40)

and the term X̂n(ε, τ)X̂n(ξ, θ)δn0 is omitted. We now note the consequence
of (6.35)[

X̂−1
m (ε, τ) − X̂−1

m (ξ, θ)
]

=
[
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (

q2(τ) + q2(θ)
)]

,

(6.41)
which is valid for any m, including m = 0. Therefore, the product of the
right-hand side of (6.39) with X̂0(ε, τ)X̂0(ξ, θ) yields

[
X̂0(ξ, θ) − X̂0(ε, τ)

]
,

and hence substitution of this product into (6.39) results in

ρn (ε, ξ, τ , θ) = X̂n(ε, τ)X̂n(ξ, θ)V 2q(τ)q(θ)Ẑ(ξ, θ, ε, τ)
[
X̂0(ξ, θ) − X̂0(ε, τ)

]
.

(6.42)
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The relation[
Ẑ−1(ξ, θ, ε, τ) + X̂−1

m (ε, τ) − X̂−1
m (ξ, θ)

]
= 2πgV 2q(τ)q(θ) (6.43)

allows one to make the last simplification for the general form of operators

2πgρn (ε, ξ, τ , θ) = −iX̂n(ε, τ)X̂n(ξ, θ)[
Ẑ−1(ξ, θ, ε, τ) + X̂−1

m (ε, τ) − X̂−1
m (ξ, θ)

]
Ẑ(ξ, θ, ε, τ)

[
X̂0(ξ, θ) − X̂0(ε, τ)

]
, (6.44)

which results in

2πgρn (ε, ξ, τ , θ) = −iX̂n(ε, τ)X̂n(ξ, θ)
[
X̂0(ξ, θ) − X̂0(ε, τ)

]
−i

[
X̂n(ξ, θ) − X̂n(ε, τ)

]
Ẑ(ξ, θ, ε, τ)

[
X̂0(ξ, θ) − X̂0(ε, τ)

]
.

(6.45)

Further simplifications require the substitution of explicit expressions for
X̂n(ε, τ), X̂n(ξ, θ), and Ẑ(ξ, θ, ε, τ), that being inverse to the first-order dif-
ferential operators (6.35), (6.40), are integral operators of the form

X̂n(ε, τ)ψ(τ) =
∞∫

−∞
Xn(ε, τ , τ ′)ψ(τ ′)dτ ′. (6.46)

For the kernels Z(ξ, θ, θ′, ε, τ , τ ′), Xn(ε, τ , τ ′), and Xn(ξ, θ, θ′) of these oper-
ators one finds the first-order differential equations[

ε − ξ + iπg V 2 (q(τ) − q(θ))2
]
Z(ξ, θ, θ′, ε, τ , τ ′)

+i

(
∂

∂θ
+

∂

∂τ

)
Z(ξ, θ, θ′, ε, τ , τ ′) = δ(τ − τ ′)δ(θ − θ′),

(
ε − ∆n + iπg

〈
V 2〉 q2(τ)

)
Xn(ε, τ , τ ′) + i

∂Xn(ε, τ , τ ′)
∂τ

= δ(τ − τ ′),(
ξ − ∆n − iπg

〈
V 2〉 q2(θ)

)
Xn(ξ, θ, θ′) − i

∂Xn(ξ, θ, θ′)
∂θ

= δ(θ − θ′). (6.47)

The solutions

Xn(ε, τ , τ ′) = −iΘ(τ − τ ′)e
i(ε−∆n)(τ−τ ′)−πg V 2

τ∫
τ′
q2(x)dx

Xn(ξ, θ, θ′) = iΘ(θ − θ′)e
−i(ξ−∆n)(θ−θ′)−πg V 2

θ∫
θ′
q2(x)dx

Z(ξ, θ, θ′, ε, τ , τ ′) = −iΘ(τ + θ − τ ′ − θ′)δ( τ−θ−τ ′+θ′
2 ) exp

[
i (ε − ξ)

× τ+θ−τ ′−θ′
2 − πg V 2

τ+θ
2∫

τ′+θ′
2

(
q( τ−θ

2 + x) − q(x − τ−θ
2 )

)2
dx

]
(6.48)
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substituted into (6.45), integrated over all intermediate indexes, followed by
the substitution τ → t, θ → t after the inverse Fourier transformation yield
for the spectral population density at t > 0

ρn (t) = Re
t∫
0

exp
[
i∆nυ − 2πgV 2

(
t∫
0
q2(x)dx −

t−υ∫
0

q(x)q(υ + x)dx
)]

dυ
πg .

(6.49)
We note that the contribution comes only from the second term of the right-
hand side of (6.45), since the first term is a δ(∆n)-like one.

We present more details of the calculations. One can obtain the re-
sult (6.49) by considering two of six terms of the expanded (6.45), namely
X̂n(ε, τ)X̂n(ξ, θ)X̂0(ξ, θ) and X̂n(ξ, θ)Ẑ(ξ, θ, ε, τ)X̂0(ε, τ). Two other terms
given by the replacement ε � ξ are just the complex conjugate of these
terms, and the two remaining terms X̂n(ξ, θ)Ẑ(ξ, θ, ε, τ)X̂0(ξ, θ) and its com-
plex conjugate vanish, since all of the singularities of this expression are
located at the lower (upper) part of the complex plane ξ (upper part of ε
plane for the conjugate). Substitution of (6.48) yields

X̂n(ε, τ)X̂n(ξ, θ)X̂0(ξ, θ) = iΘ(τ − τ ′)
∫

dθ′′ Θ(θ − θ′′)Θ(θ′′ − θ′)

e
i(ε−∆n)(τ−τ ′)−πg V 2

τ∫
τ′
q2(x)dx

e
−i(ξ−∆n)(θ−θ′′)−πg V 2

θ∫
θ′′

q2(x)dx

e
−i(ξ−∆n)(θ′′−θ′)−πg V 2

θ′′∫
θ′
q2(x)dx

, (6.50)

which after performing the integration of the inverse Fourier transformation
over ε and ξ results in

1
4π2

∫
e−i(ε−ξ)tX̂n(ε, τ)X̂n(ξ, θ)X̂0(ξ, θ) =

Θ(t)δ(θ′)δ(τ ′)e
−2πg V 2

t∫
0
q2(x)dx 1 − e−i∆nt

i∆n
. (6.51)

The real part of this expression is proportional to sin(∆nt)/∆n, which in the
long-time asymptotic gives the singular term δ(∆n), unimportant for non-
zero detunings.

The principal term contributing to (6.48) reads

− X̂n(ξ, θ)Ẑ(ξ, θ, ε, τ)X̂0(ε, τ) = Θ(θ − θ′′)e
−i(ξ−∆n)(θ−θ′′)−πg V 2

θ∫
θ′′

q2(x)dx

iΘ(τ + θ′′ − τ ′′ − θ′)δ( τ−θ′′−τ ′′+θ′
2 )Θ(τ ′′ − τ ′)e

iε(τ ′′−τ ′)−πg V 2
τ′′∫
τ′

q2(x)dx

e

i(ε−ξ) τ+θ′′−τ′′−θ′
2 −πg V 2

τ+θ′′
2∫

τ′′+θ′
2

(
q( τ+θ′′

2 +x)− q( τ+θ′′
2 −x)

)2
dx

(6.52)
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whereas its inverse Fourier transform over ε and ξ gives the Dirac δ-functions
δ( τ−θ′′−τ ′′+θ′

2 ) and δ(−t − τ ′ + τ+θ′′+τ ′′−θ′
2 ) and yields

−
∫

e−i(ε−ξ)tX̂n(ξ, θ)Ẑ(ξ, θ, ε, τ)X̂0(ε, τ)
dεdξ

4π2 = iΘ(θ′′ − θ′)Θ(θ − θ′′)

δ(t − θ + θ′)e
i∆n(θ−θ′′)−πg V 2

θ∫
θ′′

q2(x)dx
δ(

τ − θ′′ − τ ′′ + θ′

2
)δ(−t − τ ′ + τ)

e

−πg V 2

τ+θ′′
2∫

τ′′+θ′
2

[
q( τ−θ′′

2 +x)− q(x− τ−θ′′
2 )

]2
dx

Θ(τ ′′ − τ ′)e
−πg V 2

τ′′∫
τ′

q2(x)dx
, (6.53)

where we have to set θ = τ = t. This results in

−
∫

e−i(ε−ξ)tX̂n(ξ, θ)Ẑ(ξ, θ, ε, τ)X̂0(ε, τ)dεdξ4π2 = −iΘ(t − τ ′′)Θ(τ ′′)

δ(τ ′)δ(θ′)ei∆nτ
′′
e
2πg V 2

t−τ′′∫
0

q(x) q(x+τ ′′)dx−2πg V 2
t∫
0
q2(x)dx

, (6.54)

which after the substitution τ ′′ → v and after adding the complex conjugate,
yields (6.49).

For the interaction vanishing at |t| → ∞ the integration limits [0, t] have
to be extended to ±∞

πgρn (t) = Re

∞∫
−∞

exp

⎧⎨⎩i∆nυ − 2πgV 2

∞∫
−∞

[
q2(x) − q(x)q(υ + x)

]
dx

⎫⎬⎭ dυ.

(6.55)
Briefly, the result obtained means that the population distribution over the
spectrum of a system with a uniform density of states perturbed by a time-
dependent random matrix equals the Fourier transform v → ∆n of the expo-
nent of the interaction autocorrelation. Figure 6.2(c) illustrates the situation
for a particular example of a gaussian time dependence q(x) resulting in
Gaussian autocorrelation.

Note that the result (6.55) can be generalized to the case of time-
dependent detunings ∆n(t). To this end the combination ∆nυ has to be
replaced by the integral

∫ ∞
−∞[∆n(t + υ) − ∆n(t)]dt, as it follows from the

exact solution of the first-order differential equations (6.47). The same gen-
eralization can be done for (6.49); in this case the replacing integral reads∫ t
0 ∆n(x)dx − ∫ t−v

0 ∆n(x)dx.

6.2.2 Response to Perturbation Proportional to a Random Matrix

Thus far our main concern was the population distribution over states of
time-dependent, complex quantum systems. However, it is not the only pos-
sible quantity that manifests universal behavior independent of spectrum
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details and interaction in the systems. Another example of such a quantity
is interaction with external fields. We consider an external field F where the
interaction Hamiltonian F x̂ is proportional to a generalized coordinate oper-
ator x̂. If the time-dependent mean value x = 〈Ψ(t)| x̂ |Ψ(t)〉 of this operator
does not vanish after the ensemble average discussed in Chap. 4, the com-
plex system interacts with such a field, and at the macroscopic level such an
interaction is responsible for the polarization of the media corresponding to
F . Electric polarization is a typical example, when F is simply the electric
field strength, and x̂ is the dipole moment operator.

Diagram Series Structure

The terms of perturbation series contributing to this interaction have a sim-
ilar, although somewhat different structure as compared to the perturbation
series for the population shown in Figs. 4.10–4.12. The main difference re-
sults from the necessity to find a counterpart for the matrix elements of x̂
among the transition matrix elements V̂ belonging either to the perturbation
series for |Ψ(t)〉 or that for 〈Ψ(t)|, such that 〈xkmVmk〉 �= 0. Also important
is the difference between the statistical ensemble for imaginary and for real
matrix elements of the perturbation, concisely written as two possibilities
〈VkmVkm〉 = 0 and 〈VkmVkm〉 = 〈VkmVmk〉 =

〈
V 2

〉 �= 0, respectively. For
the Gaussian statistics of the matrix elements these cases correspond respec-
tively to the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary
ensemble (GUE). In Fig. 6.4 we show the diagrams that, after the ensemble

r

<xV>

a) r

<xV>

C

b)

. .

Fig. 6.4. Non-vanishing contribution of the perturbation series for the matrix
element of a generalized coordinate operator x̂. Dotted lines correspond to |Ψ〉
and dashed lines to 〈Ψ |. (a) Case of complex random couplings, typical of the
unitary Gaussian ensemble. The main contribution results from the susceptibility
〈x̂X̂(ε)V̂ 〉 + c.c. averaged over the population distribution ρ. One recognizes the
parallel diagrams contributing to the series for the populations ρ, similar to that of
Fig. 4.11. (b) Real coupling V̂ , typical of the orthogonal Gaussian ensemble. Apart
from the diagrams for the population one sees part C originating from the averages
〈VkmVkm〉. Terms of the same topology are responsible for the Cooper pairs in the
theory of superconductivity.
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average, give a non-vanishing contribution for the mean matrix element for
these two cases.

Thus we have encountered for the first time a quantity for which the
results depend on the symmetry with respect to time inversion, a property
of random ensembles, typically associated with the presence of a magnetic
field. In the absence of magnetic fields, all of the interaction matrix ele-
ments are real (or can be selected as real in a certain basis), and therefore
〈VkmVkm〉 = 〈VkmVmk〉. Therefore, apart from the diagrams where the non-
vanishing contribution results either from the transitions coupled to the an-
tiparallel transition in the perturbation series for the same wavefunction or
from the transitions coupled with the parallel transition in the perturbation
series for the conjugated wavefunctions, we have to take into account the
contributions Ĉ, resulting from the coupling of the antiparallel transitions in
series for the different wavefunctions. We note that the diagrams of such a
topology are important and well known in the theory of superconductivity,
allowing for the formation of Cooper pairs, or ”Cooperons”. The relative num-
ber of these terms is, however, usually smaller by a factor 1/N of the inverse
number of levels participating in the process, since topologically an extra
self-crossing of the diagram is required for this purpose. That was the reason
why these diagrams have not been taken into account for the populations.
Nevertheless, for susceptibilities they may give the leading contributions.

Let us consider first the other case, 〈VkmVkm〉 = 0, typical of the systems
with no time-reversal symmetry. The principal contribution to the pertur-
bation series for 〈Ψ(t)| x̂ |Ψ(t)〉 has the structure shown in Fig. 6.4(a) and
reads

x (t) = 〈Ψ(t)| x̂ |Ψ(t)〉
= Re

∑
n,m

∫
ei(ε−ξ) tρ̂n (ε, ξ, τ , θ) 〈xnmVmn〉 X̂m(ε, τ)dεdξ4π2 (6.56)

where the operators ρ̂n and X̂m are given in (6.35), (6.42) and the effect is pro-
portional to the correlation value 〈xnmVmn〉. When this average is indepen-
dent of the index m, the summation over the uniform spectrum yields a purely
imaginary value

∑
m X̂m(ε, τ) = Q̂(ε), such that the result (6.56) vanishes.

For the more general case of non-uniform density of states and the correlation
〈xnmVmn〉, the combination Re

∑
m 〈xnmVmn〉 X̂m(ε, τ) may be interpreted

as the linear response of the system in the state n, whereas summation over
n implies taking the average of the linear response by convolution with the
instantaneous population distribution ρ̂n(t) =

∫
ei(ε−ξ)tρ̂n (ε, ξ, τ , θ) dεdξ4π2 .

We note that (6.56) is asymmetric with respect of the change ε to ξ, how-
ever this asymmetry disappears after taking the real part of the expression.
Due to this, there is no need for special consideration of the diagram sym-
metric with respect to the interchange of 〈Ψ(t)| and |Ψ(t)〉 to the one shown
in Fig. 6.4(b).
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The Case of Inverted Ordering

We now turn to the case 〈VkmVkm〉 = (V ′)2 �= 0, and consider the general
case V �= V ′, assuming that a real V ′ is different from another real number
V . The main contribution comes from the diagrams of the type shown in Fig.
6.4(b), and reads

x (t) = 〈Ψ(t)| x̂ |Ψ(t)〉 = Re
∑
n,m

∫
ei(ε−ξ)t 〈xmnVmn〉

×Ĉmn (ε, ξ, τ , θ) X̂−1
n (ε, τ)ρ̂n (ε, ξ, τ , θ)

dεdξ

4π2 , (6.57)

where Ĉmn denotes an operator similar to ρ̂n in (6.37) which corresponds
to the series Fig. 6.5, and the order of operations is in accordance with that
shown in Fig. 6.4(b). The operator X̂−1

n (ε, τ) compensates for the repetition
of the operator X̂n(ε, τ) found both at the end of ρ̂n and the beginning of
Ĉmn.

Cmn(e,t,x,q) = + +

+....

+

+

m m n

m nm

n

n

dn
m. .

Fig. 6.5.

We note that the perturbation operators originating from the perturba-
tion series for 〈Ψ(t)| are ordered in a sequence opposite to those of |Ψ(t)〉 in
the “Cooperon” loop Ĉ of the diagram in Fig.6.4(b). This may be accounted
for when performing calculations for Ĉ by analogy to (6.37) for ρ̂ without
rewriting all of the cumbersome intermediate expressions. All that is nec-
essary is to change the sign of the derivative over θ in all of the operators
related to Ĉ. Those operators with inverted ordering are indicated by primes
and by analogy to (6.35)–(6.37) we can write

X̂ ′
n(ξ, θ) =

1
ξ − ∆n + i ∂∂θ − iπg 〈V 2〉 q2(θ)

, (6.58)

Ξ̂ ′(ε, ξ, τ , θ) =
2iπg(V ′)2

ε−ξ−i ∂
∂θ +i ∂

∂τ +iπg V 2 (q2(τ)+ q2(θ))q(τ)q(θ), (6.59)

Ĉmn (ε, ξ, τ , θ) = X̂n(ε, τ)X̂ ′
n(ξ, θ)δmn + X̂m(ε, τ)X̂ ′

m(ξ, θ) (V ′)2

×q(τ)q(θ) 1
1−Ξ̂′(ε,ξ)

X̂n(ε, τ)X̂ ′
n(ξ, θ). (6.60)

The reasoning behind changing the sign of the derivative becomes evident
when we recall the physical image associated with the technique discussed
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on p. 245. The derivatives ∂
∂θ and ∂

∂τ appear when we replace the time-
dependent system by the time-independent system with a dimensionality
higher by unity, and assume that the system moves along this new degree of
freedom with a constant velocity, while the Hamiltonian depends on this new
coordinate. The opposite ordering therefore implies motion along the same
coordinate in the opposite direction.

Equation (6.57) takes the form

x (t) = Re 〈xV 〉
∑
n,m

∫
ei(ε−ξ)tĈmn (ε, ξ, τ , θ) X̂−1

n (ε, τ)ρ̂n (ε, ξ, τ , θ)
dεdξ

4π2 ,

(6.61)
where, again, the operator X̂−1

n (ε, τ) is needed to avoid double counting of
the operator X̂n(ε, τ) originating from the beginning of the series for Ĉmn

and that coming from the termination of the diagrams for ρ̂n.

Factorization of the Diagrams

Equations (6.58)–(6.61) still remain rather cumbersome operator expressions,
ones not very convenient for calculations. In order to simplify, one can employ
the operator identity

X̂m(ε, τ)X̂m(ξ, θ) =
[
X̂−1
m (ξ, θ) − X̂−1

m (ε, τ)
]−1 [

X̂m(ε, τ) − X̂m(ξ, θ)
]

=
−1

ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (q2(τ) + q2(θ))

×
[
X̂m(ε, τ) − X̂m(ξ, θ)

]
, (6.62)

which is easy to prove with the help of (6.41) and the evident relation

1

X̂m(ξ, θ)
− 1

X̂m(ε, τ)
=

X̂m(ε, τ) − X̂m(ξ, θ)

X̂m(ε, τ)X̂m(ξ, θ)
, (6.63)

and which allows one to replace the products X̂m(ε, τ)X̂m(ξ, θ) of the mean
Greens functions by their differences X̂m(ε, τ)−X̂m(ξ, θ) subject to the action
of an m-independent operator. From (6.36) one also sees that

2iπg

ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (q2(τ) + q2(θ))
=

∑
n

X̂n(ε, τ)X̂n(ξ, θ),

(6.64)
and hence (6.62) reads

X̂m(ε, τ)X̂m(ξ, θ) =
−i

2πg

∑
n

X̂n(ε, τ)X̂n(ξ, θ)
[
X̂m(ε, τ) − X̂m(ξ, θ)

]
.

(6.65)
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Equation (6.65) allows one to simplify the triple products of the mean
Greens functions to products of independent binary products, such as∑
m

X̂m(ε, τ)X̂m(ξ, θ)X̂ ′
m(ξ, θ) =

−i

2πg

∑
n

X̂n(ε, τ)X̂n(ξ, θ)

×∑
m

[
X̂m(ε, τ) − X̂m(ξ, θ)

]
X̂ ′
m(ξ, θ) (6.66)

=
−i

2πg

∑
n

X̂n(ε, τ)X̂n(ξ, θ)
∑
m

X̂m(ε, τ)X̂ ′
m(ξ, θ),

for instance, which gives a very convenient tool for diagram factorization. In
the last equation we have taken into account the fact that∑

m

X̂m(ξ, θ)X̂ ′
m(ξ, θ) = 0, (6.67)

since both X̂m(ξ, θ) and X̂ ′
m(ξ, θ), as functions of ∆m, have poles in the upper

part of the complex plane. In Fig. 6.6 we illustrate the topological meaning
of this transformation.

<xV>

n

<xV>

n'

n

m

Xn(e,t)
Xn(x,q)

Xn'(e,t)
X'n(x,q )'

Xn(e,t)

Xn(x,q)
X'n'(x,q )'

Xm(e,t )'
Xm(x,q)

Fig. 6.6.

Application of (6.66) to (6.61) yields

x (t) = Re −i〈xV 〉
2πg

∫
ei(ε−ξ)t

∑
n′,m

Ĉmn′ (ε, ξ, τ , θ)
∑
n

ρ̂n (ε, ξ, τ , θ) dεdξ4π2 ,

(6.68)
which means that the operators Ĉ and ρ̂ do not retain common indices. We
note that the interaction operator V coupled to the operator x by the ensem-
ble average 〈xV 〉 has been factored out from the integral. This means that
we consider the time-dependent susceptibility of the system to the pertur-
bation V , which yields the response only after being multiplied by the time
dependence of this perturbation. We will occasionally refer to this value as a
“response”, since it indeed gives a linear response to a small δ-like additional
increase in the interaction.
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The Total Population Operator

Considering (6.37) which includes the first term X̂n(ε, τ)X̂n(ξ, θ)δ0
n that has

been neglected during consideration of the population transfer, and with the
allowance of (6.45) and (6.64) one finds∑

n

ρn (ε, ξ, τ , θ) = Ẑ(ξ, θ, ε, τ) (6.69)[
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (

q2(τ) + q2(θ)
)]

X̂0(ε, τ)X̂0(ξ, θ),

which can be reduced to a simpler form∑
n

ρn (ε, ξ, τ , θ) = Ẑ(ξ, θ, ε, τ)
[
X̂0(ξ, θ) − X̂0(ε, τ)

]
, (6.70)

with the help of the expression[
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (

q2(τ) + q2(θ)
)]

(6.71)

×X̂0(ε, τ)X̂0(ξ, θ) =
[
X̂0(ξ, θ) − X̂0(ε, τ)

]
,

which is a particular form of (6.62) for m = 0. Note that since the operator
Ẑ depends only on the difference ζ = ε− ξ, and hence (6.70), integrated over
the variable η = (ε + ξ) /2, has the form∑

n

ρn (ζ, τ , θ) = Ẑ(ξ, θ, ε, τ)2πi, (6.72)

which we will employ later on.
Substitution of the explicit expressions (6.48) into (6.70) yields

∑
n

ρn (ε, ξ, τ , θ) = δ( τ−θ−τ ′+θ′
2 )e

−πg V 2
τ∫

τ′′
q2(x)dx−πgV 2

θ∫
θ′′

q2(x)dx

e

iε(τ−τ ′′)−iξ(θ−θ′′)+2πgV 2

τ+θ
2∫

τ′+θ′
2

(q( τ−θ
2 +x) q(x− τ−θ

2 ))dx
Θ(τ − τ ′)Θ(θ − θ′)[

δ(τ ′ − τ ′′)Θ(θ′ − θ′′) + δ(θ′ − θ′′)Θ(τ ′ − τ ′′)
]
. (6.73)

Note that the Fourier transform of the operator has for τ = θ = t, a δ-like
kernel ∫

ei(ε−ξ)t
∑
n

ρ̂n (ε, ξ, τ , θ)
dεdξ

4π2

∣∣∣∣∣
τ=θ=t

→ δ(θ′′)δ(τ ′′) (6.74)

which is consistent with the normalization requirement
∞∫

−∞
dτ ′′dθ′′

∫
ei(ε−ξ)t

∑
n

ρ̂n (ε, ξ, τ , θ)
dεdξ

4π2

∣∣∣∣∣
τ=θ=t

ρ(t = 0, τ ′′, θ′′) = 1

(6.75)
following the application of the operator (6.74) to the τ -independent initial
condition ρ(t = 0, τ , θ) = 1 .
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Sum of the “Cooperon” Series

Substitution of the combination

Ξ̂ ′(ε, ξ, τ , θ) =
∑
n

X̂n(ε, τ)X̂ ′
n(ξ, θ) (V ′)2 q(τ)q(θ) (6.76)

entering (6.59) into (6.60) yields, after taking the sum over n′ and m∑
n′,m

Ĉn′m (ε, ξ, τ , θ) =
∑
n′,m

X̂n′(ε, τ)X̂ ′
n′(ξ, θ)δmn (6.77)

+
∑
n′

X̂n′(ε, τ)X̂ ′
n′(ξ, θ) (V ′)2 q(τ)q(θ) 1

1−Ξ̂′
∑
m

X̂m(ε, τ)X̂ ′
m(ξ, θ)

=
(
1 + Ξ̂′

1−Ξ̂′

)∑
m

X̂m(ε, τ)X̂ ′
m(ξ, θ) = 1

1−Ξ̂′
∑
m

X̂m(ε, τ)X̂ ′
m(ξ, θ).

With the allowance of (6.64) and (6.59) this results in

Ẑ ′(ξ, θ, ε, τ) =
∑
n′,m

Ĉn′m (ε, ξ, τ , θ)

= 2iπg
ε−ξ−i ∂

∂θ +i ∂
∂τ +iπgV 2((q(τ)− q(θ))2+ λ q(τ) q(θ)) , (6.78)

where λ = 2
(
V 2 − (V ′)2

)
/V 2 is the relative difference between the mean

squared matrix elements of the interaction and their mean moduli squared.
For real matrix elements, λ vanishes.

By analogy to (6.47) one finds the kernel Z ′(ξ, θ, θ′, ε, τ , τ ′) of this integral
operator by solving the differential equation[

ε − ξ + iπg V 2 (
(q(τ) − q(θ))2 + λ q(τ) q(θ)

)]
Z ′(ξ, θ, θ′, ε, τ , τ ′)

+ i
(
∂
∂τ − ∂

∂θ

)
Z ′(ξ, θ, θ′, ε, τ , τ ′) = 2iπgδ(τ − τ ′)δ(θ − θ′), (6.79)

which yields

Z ′(ξ, θ, θ′, ε, τ , τ ′) = 2πgΘ(τ − θ − τ ′ + θ′)δ( τ+θ−τ
′−θ′

2 )

e

i(ε−ξ) τ−θ−τ′+θ′
2 −πgV 2

τ−θ
2∫

τ′−θ′
2

[
(q( τ+θ

2 +x)− q( τ+θ
2 −x))2

+λq( τ+θ
2 +x)q( τ+θ

2 −x)
]
dx

(6.80)

The Response

We are now in a position to determine the response. To this end we substitute
(6.70), (6.78) into (6.68) and obtain

x (t) = Re −i〈xV 〉
2πg

∫
ei(ε−ξ)tẐ ′(ξ, θ, ε, τ)

Ẑ(ξ, θ, ε, τ)
[
X̂0(ξ, θ) − X̂0(ε, τ)

]
dεdξ
4π2 . (6.81)
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We note that both Ẑ ′(ξ, θ, ε, τ) and Ẑ(ξ, θ, ε, τ) depend only on the variable
ζ given by the difference ε − ξ = ζ, whereas the functional dependence on
the sum ε + ξ = 2η enters only via the combination Ŝ = X̂0(ξ, θ) − X̂0(ε, τ),
related to the initial condition. This immediately results in

x (t) = Re
−i 〈xV 〉

2πg

∫
ei(ε−ξ)tẐ ′(ζ, θ, τ)Ẑ(ζ, θ, τ)Ŝ(ζ, η)

dηdζ

4π2 . (6.82)

From (6.35) one finds

∞∫
−∞

Ŝ(ζ, η)dη =

∞∫
−∞

dη

η− ζ
2 −i ∂

∂θ −iπg 〈V 2〉 q2(θ)

−
∞∫

−∞

dη

η− ζ
2 +i ∂

∂τ +iπg 〈V 2〉 q2(τ) = 2πi, (6.83)

which is easy to obtain by displacement of the integration contour in the
lower part of the complex plane toward −i∞ for the first integral, and in the
upper part of the complex plane towards i∞ for the second integral, where
the corresponding integrands have no singularities because of the causality
principle. The integrals therefore amount to the accumulated phases ±iπ of
the corresponding logarithms. This yields

x (t) = Re
〈xV 〉
4π2g

∫
ei(ε−ξ) tẐ ′(ζ, θ, τ)Ẑ(ζ, θ, τ)dζ

= Re
∫

Z ′(ξ, θ′′, θ, ε, τ , τ ′′)Z(ξ, θ′′, θ′, ε, τ ′′, τ ′)
∣∣
τ=θ=t

ei(ε−ξ)t
〈xV 〉
4π2g

dζdτ ′′dθ′′dτ ′dθ′. (6.84)

where we have taken into account that the convolution of the kernels of Ẑ ′

and Ẑ has to be performed with an inverted order of θ-arguments in the
operator Ẑ ′, as illustrated in Fig. 6.7.

We now make use of (6.48) and (6.80) for the kernels of Ẑ ′ and Ẑ which
can be written in the form

Z ′(ξ, θ, θ′, ε, τ , τ ′) = −iδ( τ+θ−τ
′−θ′

2 )Θ(τ − τ ′)

eiζ(τ−τ ′)−πgV 2 ∫ τ
τ′ [(q(x)− q(τ+θ−x))2+λq(x)q(τ+θ−x)]dx,

Z(ξ, θ, θ′, ε, τ , τ ′) = 2πgδ( τ−θ−τ ′+θ′
2 )Θ(τ − τ ′)

eiζ(τ−τ ′)−πgV 2 ∫ τ
τ′ (q(x)− q(x−τ+θ))2dx, (6.85)

and arrive at
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Fig. 6.7. The correspondence of the arguments τ and θ of the operators Ẑ and Ẑ′

in (6.84) follows from the topology of the diagrams shown in Fig.6.6.

x (t) = Re
〈xV 〉
2πi

∫
dζdτ ′′dθ′′dτ ′dθ′ e−iζ tΘ(τ − τ ′′)δ( τ+θ

′′−τ ′′−θ
2 )

e
iζ(τ−τ ′′)−πg V 2 ∫ τ

τ′′
[
(q(x)− q(τ+θ′′−x))2

+λq(x)q(τ+θ′′−x)
]
dx

Θ(τ ′′ − τ ′)

δ(
τ ′′ − θ′′ − τ ′ + θ′

2
) eiζ(τ

′′−τ ′)−πg V 2 ∫ τ′′
τ′ (q(x)− q(x−τ ′+θ′))2

dx
∣∣∣
τ=θ=t

.

(6.86)

Integration over dζ yields one more δ-function 2πδ (τ − τ ′′ − t), and after
straightforward integration over dθ′′dτ ′dθ′ of the expression with three δ-
functions one finds

x (t) = Re 2i 〈xV 〉
t∫

0

dτ ′′e−πgλ V 2 ∫ τ′′
0 q2(x)dx

exp

⎧⎨⎩−πg V 2

t∫
τ ′′

(q(x) − q(t + τ ′′ − x))2 dx

⎫⎬⎭ , (6.87)

where we have substituted τ = θ = t, as required in this approach.
Note that for an interaction profile q(t) ranging not from t = 0 to t = ∞,

but from t = −∞ to t = ∞, an evident generalization of this expression reads

x (t) = Re 2i 〈xV 〉
t∫

−∞
dτ ′′e

−πgλ V 2
τ′′∫

−∞
q2(x)dx

exp

⎧⎨⎩−πg V 2

t∫
τ ′′

(q(x) − q(t + τ ′′ − x))2 dx

⎫⎬⎭ . (6.88)

This short and elegant expression (6.88) has only one disadvantage – it van-
ishes for a generic quantum system, since all of the averages V 2, 〈xV 〉, and
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λ are normally real. Therefore a generic complex quantum system with a
uniform spectrum does not manifest either the linear response nor any of the
higher responses of odd orders.
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Fig. 6.8.

The situation can be different for the even-order responses, if the triple
means 〈xnmVmkVkn〉 =

〈
xV 2

〉
differ from zero. This is, for example, the case

for the interaction V̂ = Exd̂x + Byµ̂y, proportional to the electric field E in
the x-direction and the magnetic field B in the y-direction and the operator
of the Hall current x̂ = ĵz in the z-direction. In this case the average 〈xV 〉
entering the perturbation series shown in Fig. 6.6 has to be replaced by the
mean value

〈xV 〉 →
∑
k

〈
xnmVmkX̂

′
k(ξ, θ)Vkn

〉
=

〈
xV 2〉∑

k

X̂ ′
k(ξ, θ) =

〈
xV 2〉 iπg (6.89)

where we have employed (4.32) for Q(ξ) =
∑

k X̂k(ξ). We illustrate the mean-
ing of this replacement and subsequent factorization of the series in Fig. 6.8.
This yields

x (t) = −πg
〈
xV 2〉 t∫

−∞
dτ ′′e−πgλ V 2 ∫ τ′′

−∞ q2(x)dx

exp

⎧⎨⎩−πg V 2

t∫
τ ′′

(q(x) − q(t + τ ′′ − x))2 dx

⎫⎬⎭ , (6.90)

for the response, which in the dimensionless units πg V 2 → 1, πg
〈
xV 2

〉 → X
takes the simple form
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x (t) = −X
t∫

−∞
dτ ′′e

−λ ∫ τ′′
−∞ q2(x)dx−

t∫
τ′′

(q(x)− q(t+τ ′′−x))2
dx

. (6.91)

It is worth mentioning that, for a complex system without central symmetry,
the even order response given by the average

∑
k

〈
VnmxmkX̂

′
k(ξ, θ)Vkn

〉
can

also contribute to the result.
In order to gain a first insight into the physics of the response of com-

plex quantum systems, let us consider the simplest step-like time dependence
q(t) = Θ(t), which allows one to write (6.91) in the form

x (t) = −X
t∫

0

dτ ′′e−λ ∫ τ′′
0 q2(x)dx = X 1 − e−λt

λ
. (6.92)

This shows that the response approaches its stationary value X/λ with the
rate λ proportional to the difference V 2 − (V ′)2 given by the mean square
(ImV )2 of the imaginary part of the coupling matrix elements. Note that the
stationary value itself is inversely proportional to the imaginary part of the
coupling, since X ∼ 〈

xV 2
〉 ∼ 〈x ReV ImV 〉 .

6.3 Harmonic Perturbation of Complex Systems

One of the standard characteristics of a physical system is its behavior under
harmonic perturbation. Consideration of Sect.6.2 enables us to give an imme-
diate answer to the question concerning the population distribution and the
response of a system with a uniform density of states subjected to a harmonic
perturbation proportional to a random matrix. Analysis of this case will be
followed by the consideration of several more sophisticated examples of quan-
tum systems with interaction matrices of a block structure. The treatment of
these cases is facilitated by the use of the quasi-energy technique (Sect.5.1),
to be presented below in more detail.

6.3.1 Population Distribution over a Uniform Spectrum

Equations (6.49) and (6.55) allow one to explicitly find the time-dependent
population distribution and the response of complex quantum systems for
the time-dependent interaction χ(t) cos(ωt+ϕ) V̂ , proportional to a random
matrix V̂ . To shorten the expressions that follow we set ω = 1, 2πgV 2 = W
and first consider the population dynamics.

Population Dynamics for an Abrupt Switching

In the case ϕ = 0 for the step-like envelope χ(t) = Θ(t) the population
density reads
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πgρn (t) = Re

t∫
0

e
i∆nυ−W

(
t∫
0

cos2(x)dx−
t−υ∫
0

cos(x) cos(υ+x)dx

)
dυ. (6.93)

We perform the integration in the exponent and arrive at

πgρn (t) = Re

t∫
0

dy exp
{
i∆ny − W

4 (2t + sin 2t)

+W
4 (2(t − y) cos y + sin(2t − y) − sin y)

}
. (6.94)

For W small, as compared to the frequency, one can neglect the oscillating
terms with constant amplitudes and obtain the integral

gρn (t) = Re

t∫
0

dy exp
[
i∆ny − W

2
t +

W

2
(t − y) cos y

]
, (6.95)

which for times exceeding the typical time 1/W of a single transition can be
calculated approximately. We first note that for a large number of transitions
Wt � 1, the main contribution can come only from the vicinities of the
points where cos y 
 1, otherwise the contribution is small. This immediately
yields y = 2πk + z with z � 1, the integration over z can be extended from
−∞ to ∞ for all k except of k = 0, and the population (6.95) takes the form

πgρn (t) = Re

∞∫
0

dz exp
[
i∆nz − Wt

2
z2

2

]

+Re
∞∑
k=1

∞∫
−∞

dz exp
[
i∆n(2πk + z) − Wt

2
z2

2 − Wπk
]
. (6.96)

The integral in the first term is half of the integral from −∞ to ∞, and the
rest of the terms form a geometric series which results in

gρn (t) = 2√
πWt

exp
[
−∆2

n

Wt

]
Re

[
1
2 + e2πi∆n−W π

1−e2πi∆n−W π

]
= 1√

πWt
exp

[
−∆2

n

Wt

]
Im cot(π∆n + iW/2)

= 1√
πWt

exp
[
−∆2

n

Wt

]∑∞
m=−∞

W/2π
(∆n−m)2+W 2/4 , (6.97)

where we have taken into account the singularities of cot(π∆n+ iW/2) which
has simple poles at the points ∆n = −iW/2π+m, where m is an integer. One
sees that the population is located in the W/2π-vicinities of the resonant fre-
quencies ∆ = m, whereas the population distribution among these vicinities
is a Gaussian of width proportional to the square root of the dimensionless
time

√
Wt. In Fig. 6.9(a) we illustrate this dependence.
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Fig. 6.9. A complex quantum system under harmonic perturbation. (a) Population
distribution over the uniform spectrum as a function of time for W/ω = 0.3. (b)
Population distribution for the adiabatic envelope ( 6.98) for α/ω2 = 3 × 10−3

(solid line) as compared to the distribution for an abrupt switch (dash line). The
typical number of transitions Wt = 5 is taken for both cases. The transition rate
W is the same as that in (a).

As seen in Fig. 6.9(a), the population remains localized in the vicinities
of the resonances. The width of all these populated vicinities is the same
and is equal to the transition probability W . Moreover, consideration of the
general case q(t) = cos(ωt + ϕ) shows that this result does not depend on
the initial phase ϕ as long as W is small as compared to the frequency,
which demonstrates once again the evident fact that all dependencies with
fronts shorter than a typical relaxation time 1/W act as an instantaneous
switching. A natural question arises as to whether this width is formed during
the development of the population dynamics, or is just a result of an abrupt
switching of the interaction at t = 0.

Population Dynamics for an Adiabatic Switching

In order to answer this question let us consider the population distribution
ρn (t = ∞) following a quasiperiodic perturbation with a smooth Gaussian
envelope q(t) = e−αt2 cosωt. Equation (6.55) reads

πgρn (∞) = Re

∞∫
−∞

e
i∆nυ−W

−∞∫
−∞

exp(−2αx2) cos2(x)dx

e
W

−∞∫
0

exp(−αx2−α(υ+x)2) cos(x) cos(υ+x)dx
dυ, (6.98)

and for ω = 1 yields after integration over x
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πgρn (∞) = Re

∞∫
−∞

dυ ei∆nυ exp
[
−W

√
π
8α (1 − e−υ2 α/2 cos υ)

]
exp

[
−e−1/2α

√
π
8α W

(
1 − e−υ2 α/2

)]
. (6.99)

The last factor in the integrand is exponentially close to unity for α → 0,
and therefore can be neglected, while the exponent of the second factor can
be expanded in a power series and gives

πgρn (∞) = Re

∞∫
−∞

dυ exp
[
i∆nυ − W

√
π

8α

(
1 − cos υ +

υ2 α

2

)]
. (6.100)

Here we have also taken into account the fact that W/
√

α is a large factor
and therefore the main contribution arises from the domains where cos υ 
 1.

The population distribution (6.100) is an inverse Fourier transformed
product of two factors e−Wυ2

√
π α/2/4 and e−W

√
π/8α (1−cos υ) each of which

has an explicit inverse Fourier transform – a narrow Gaussian

∞∫
−∞

dυ

2π
ei∆nυ−υ2W

√
πα/32 =

(
2

απ3W 2

)1/4

e−∆2
n

√
2/παW 2

, (6.101)

and a series
∞∫

−∞

dυ

2π
ei∆nυ−W

√
π/8α (1−cos υ) =

∑
k

δ (∆n − k) e−W
√
π/8αIk

(
W

√
π

8α

)
(6.102)

with the coefficients given by the modified Bessel functions Ik(x), respec-
tively. The last equation can be obtained with the help of the Poisson sum-
mation formula (3.89) and the Schlafley integral representation for the Bessel
functions.

The result is the convolution of (6.101) and (6.102)

gρn (∞) =
∑
k

(
2π

αW 2

)1/4

e−(∆n−k)2
√

2/παW 2
e−

√
πW 2/8αIk

(√
πW 2

8α

)
.

(6.103)
This has a clear physical meaning. The narrow vicinities of the resonances
∆n = k of width

(
παW 2/2

)1/4 given by the span of the Fourier transfor-
mation of the Gaussian envelope are populated according to the weights
suggested by the solution e−

√
πW 2/8αIk(

√
πW 2/8α) of the one-dimensional

diffusion equation on a grid, while the step of the grid is given by the pumping
frequency (ω = 1) as we will see from (8.30) later on. The typical number of
transitions 〈|k|〉 amounts to the probability W of a single transition multiplied
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by the typical interaction time
√

π
2α . The product W

√
π
2α plays the same role

as the combination Wt in the previous case. Implicit in this treatment is the
condition

(
παW 2/2

)1/4
g � 1 of sufficient spectral density, which means that

the populated vicinity of each resonance contains many of quantum levels of
the system. In Fig. 6.9(b) we compare the population distributions for the
abrupt and the adiabatic switch of the perturbations.

Now we can give an answer to the question concerning the origin of the
population distribution in the vicinities of the resonances. It has a coherent
nature since the distribution is given by the Fourier transform of the per-
turbation envelope, being Lorentzian for an abrupt switching, while narrow
and Gaussian for a long adiabatic Gaussian pulse of interaction. This implies
that the population distribution near the resonance is formed as a result of
a reversible process. Indeed, being a broad ∼ W Lorentzian for the middle
part of the adiabatic interaction pulse, the distribution shrinks to a narrower
by a factor of

(
W 2/α

)1/4 Gaussian when the pulse is over. We can therefore
expect the coherent interference phenomena in the case ω ∼ W when the
vicinities of different resonances start to overlap. Later on we will consider
such a phenomenon for a two-band quantum system.

6.3.2 Response of the Uniform Spectrum
to a Harmonic Perturbation

We consider the susceptibility of the quantum system with a uniform spec-
trum to the periodic perturbation switched either abruptly or adiabatically.
We employ (6.90) for a perturbation with frequency ω = 1 and 2πgV 2 = W,
and ignore, as earlier, the time dependence of

〈
xV 2

〉
.

Response for an Abrupt Switching

For the abrupt switch one has

x (t) = −πg
〈
xV 2〉 t∫

0
dτ ′′e−λ W

∫ τ′′
0 cos2(x)dx

exp
{

−W
t∫
τ ′′

(cos(x) − cos(t + τ ′′ − x))2 dx

}
(6.104)

for the complex quantum system with a uniform spectrum on a periodic
perturbation V̂ cos t starting at t = 0. Here we set ω = 1. We concentrate
here on the case of small W and small λ, which allows one to retain only the
linearly increasing component of the first integral in the exponent and write

x (t) = −πg
〈
xV 2〉 t∫

0

dτ ′′e−λ Wτ ′′/2

exp
{

−2W sin2(
t + τ ′′

2
) (t − τ ′′ − sin(t − τ ′′))

}
. (6.105)
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Consider this expression in the limit of long t. We note that the last
exponent is always less than unity, and therefore the contribution of the
domain τ ′′ � 1/λW is negligible, and also we neglect the term sin(t − τ ′′)
as compared to the large quantity t − τ ′′ thus arriving at

x (t) = −πg
〈
xV 2〉 t∫

0

dτ ′′e−λ Wτ ′′/2e−2W(t−τ ′′) sin2[(t+τ ′′)/2], (6.106)

where the main contribution to this integral comes from the domains t+τ ′′ 

2kπ around zeros of the argument of the second exponent. We therefore set
τ ′′ = 2kπ − arg eit + z and split the integration interval into a set of 2π-long
intervals, with the total number of these intervals equal to the integer part
of the ratio t/2π, that is K = (t − arg eit)/2π, and arrive at

x (t) = −πg
〈
xV 2〉 K∑

k=0

exp [−λ W (kπ)]

π∫
−π

dz exp
[−2W

(
t − 2kπ + arg eit − z

)
sin2 [z/2]

]
, (6.107)

where the small terms λW (arg(exp(it)) − z) have been ignored. We make
use of the fact that for the all important k ≤ 1/Wλ, the prefactor in front
of sin2 [z/2] is large, of the order of Wt, and therefore we can expand the
expression in a Taylor series around z = 0 and keep only the first non-
vanishing quadratic term. We can also set both integration limits and the
upper limit of the sum to infinity, that is

x (t) = −πg
〈
xV 2〉 ∞∑

k=0

e−λ Wkπ

∞∫
−∞

dz exp
[
−Wt

2
z2

]

=
−πg

〈
xV 2

〉
1 − e−λ Wπ

√
2π
Wt


 −g
〈
xV 2

〉
λ W

√
2π
Wt

, (6.108)

We have thus encountered an interesting universal property of complex
systems, namely that the second-order response to an abruptly switched har-
monic perturbation decreases as the square root of time. This is remarkable
in the fact that the periodic perturbation does not result in the oscillation
of the permeability of the system. On the contrary, the spectrum of the per-
meability is located near zero frequencies and manifests there a non-analytic
behavior ∼ 1/

√
ω, as one can find by performing the Fourier transforma-

tion of (6.108). It is also important to note that, as we have mentioned on
p. 255, for calculation of the total response, the multiplication of the 1/

√
t

dependence by the time-dependent part of
〈
xV 2

〉
is required.
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Response to an Adiabatic Switching

The long-lasting 1/
√

t character of the response suggests we consider the
case of the adiabatic switching of the harmonic interaction. For the case
q(t) = e−αt2 cosωt, (6.90) for the response reads

x (t) = −πg
〈
xV 2〉 t∫

−∞
dτ ′′e

−λW
τ′′∫

−∞
exp(−2αx2) cos2 x dx

exp
{

−W
t∫
τ ′′

(
e−αx2

cosx − e−α(t+τ ′′−x)2 cos(t + τ ′′ − x)
)2

dx

}
,

(6.109)

where the rate α of the front rising is a very small number, and the factor in
front of the integral we treat as a constant for the moment. We replace cos2 x
entering the first integral in the exponent by its mean value 1/2 assuming
λ W � 1, and note that this integral is large ∼ λ W/

√
α unless the integration

limit τ ′′ is a large negative number τ ′′ � −1/
√

α. Since the second integral
in the exponent is negative, the last inequality is also a necessary condition
for the total integral not to vanish. Indeed, for τ ′′ ∼ −1/

√
α the result of the

integration will be small because of the first integral in the exponent, which
takes a large negative value. In turn, the second integral in the exponent
becomes large when two oscillating terms of the integrand have different
amplitudes. This means that the response is exponentially small, unless t ∼
−τ ′′ � 1/

√
α. Therefore the sum t + τ ′′ must be a small value, such that

α(t+τ ′′)2 � 1 and the limits of the second integral in the exponent therefore
can be taken as infinite. After straightforward integration of the second term
one obtains

x (t) = −πg
〈
xV 2〉 t∫

−∞
dτ ′′e

−λ W
τ′′∫

−∞
exp(−2αx2)/2 dx

exp
{

−W
√

π
2α

(
1 − e−α(t+τ ′′)2/2 cos(t + τ ′′)

)}
, (6.110)

where we have also set e−1/α to zero.
The second exponential factor dominates in (6.110), since it contains a

large parameter W
√

π
2α , and the main contributions to the integral arise in

the vicinities of the points τ ′′ = −t + 2kπ periodically arranged on the in-
tegration axis, where cos(t + τ ′′) → 1. Each interval of length 2π gives the
contribution (πα2 )1/4W−1/2eα(t+τ ′′)2/4, equal to the width of the correspond-
ing vicinity, which one can find by expanding the second exponent in series
near these points. Calculation of the integrals (6.110) for small α results in
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x (t) = −πg〈xV 2〉
2
√
W

(
πα

2
)1/4

∞∑
k=−∞

e
−λ W

−t+2kπ∫
−∞

exp(−2αx2)/2 dx

exp
{
α(kπ)2 − W

√
π
2α

(
1 − e−2α(kπ)2

)}
. (6.111)

In order to be consistent within the approximation, one has to neglect the
first term in the second exponent as compared to the second one and take
the Taylor expansion of 1 − e−2α(kπ)2 . This yields

x (t) = −πg〈xV 2〉
2
√
W

(πα2 )1/4

∞∑
k=−∞

e
−W√

2απ(kπ)2−λ W
−t+2kπ∫

−∞
exp(−2αx2)/2 dx

.
(6.112)

For small α the sum can be replaced by an integral which results in

x (t) = − g〈xV 2〉
4
√

2α
√
W

(
πα

2
)1/4

∞∫
−∞

dy

exp

⎡⎣−W
√
π

4
√

2α

⎛⎝(y + t
√

2α)2 + λ√
π

y∫
−∞

exp(−x2) dx

⎞⎠⎤⎦ , (6.113)

which can be found by the saddle-point method.
For small λ the saddle point is located near y = −t

√
2α, whereas the

second derivative is close to W
√

π/8α and therefore

x (t) = −g
〈
xV 2

〉√
π

2
√

2W
exp

⎡⎢⎣− Wλ

4
√

2α

−t√2α∫
−∞

exp(−x2) dx

⎤⎥⎦ , (6.114)

which in the notation of (6.91) and after the replacements πg
〈
xV 2

〉 → X for
dimensionless permeability, Wλ

√
π/8

√
2α → A for the parameter represent-

ing a typical number of transitions during the adiabatic pulse, and t
√

2α → T
for dimensionless time takes the short form

x (t) = − X
2
√

2π
exp {A Erf(T ) − A} , (6.115)

where the Gaussian integral is replaced by the error function

−X∫
−∞

exp(−x2) dx =
√

π

2
(1 − Erf[X]), (6.116)

that has already been encountered in (3.132).
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Fig. 6.10. Response of a complex quantum system (6.117) to a harmonic pertur-
bation switched on adiabatically. (a) The response (arbitrary units) as a function
of dimensionless time T = t

√
2α and the parameter A proportional to the num-

ber of transitions during the pulse ∼ W/
√

α and the ratio
√

λ = ImV/ReV of the
mean squared imaginary and the mean squared real parts of the interaction. (b)
Response as a function of T for A = 9 (bold line) and for A = 100 (dashed line).
The main part of the response is located near the final edge of the pumping pulse
(solid line), when the decay rate drops faster than the pumping. (c) The stronger
the interaction the smaller the response, since the decay rate drops to the required
level later.

By adding −T 2 to the exponent one can also take into account the time
dependence of

〈
xV 2

〉
. Discussing the response (6.92), we have already men-

tioned that λ ∼ ImV 2 and hence A ∼ λ, whereas X ∼ ImV ∼ √
A . For

small λ, assuming the mean squared real part of the perturbation fixed, we
can write

x (T ) ∼
√

A exp
{
A Erf(T ) − A − T 2} , (6.117)

for the time-dependent response given by the product of the permeability and
the square of the time-dependent Gaussian envelope of the interaction q(t). In
Fig. 6.10(a) we illustrate this dependence. The response is mainly located near
the end of the pumping pulse, which is a natural consequence of the fact that
the decay rate increases rapidly at the pulse front, thus resulting in a rapid
decrease of the response, whereas at the end of the pulse the equally rapid
decrease of the rate does not last a sufficiently long time to completely destroy
the response. We note, that the integral of exp

{
A Erf(T ) − A − T 2

}
over T

tends for large A to the dependence 0.88/A. With dimensional variables, this
yields the asymptotic behavior
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x (t) dt = −g

〈
xV 2

〉√
2π0.88

W 2λ
∼ xtg

gW
, (6.118)

for the integrated total response, decreasing with the increase of the interac-
tion strength and independent of the width α−1 of the pulse envelope.

The numeric factor in (6.118) relates to the chosen model of a Gaussian
envelope, but the inverse dependence on the interaction intensity ∼ W−1 is
a general property of the physical quantities given by the self-intersecting
diagrams, as is the case in Fig. 6.4 for the response diagrams, since each
self-intersection reduces the number of corresponding diagrams by a factor
equal to the number of levels in resonance, discussed on p. 75. The order of
magnitude estimations suggest that the integrated response is of the order
of the typical matrix element xt multiplied by the typical return time g
and divided by the number gW of levels in the populated vicinities of the
resonances.

6.4 Two-Frequency Excitation of Complex Systems

We now turn to complex quantum systems subjected to the simultaneous
action of two harmonics and consider the universal properties of nonlinear
wave mixing in such systems. We start with the population distribution given
by (6.55) for q(x) = e−αt2 (cos t + cos bt) and then consider the corresponding
response (6.87).

6.4.1 Population Dynamics for Bi-Harmonic Excitation

After a straightforward calculation one finds the integral

∞∫
−∞

[
q2(x) − q(x)q(υ + x)

]
dx =

1
2

√
π

2α

[
2 − e−υ2α/2 (cos υ + cos bυ)

]
(6.119)

where the terms ∼ exp[−1/α] have been ignored, and equation (6.55) yields

πgρn (t) = Re

∞∫
−∞

exp
{

i∆nυ − W

√
π

8α

[
2 − e−υ2α/2 (cos υ + cos bυ)

]}
dυ.

(6.120)
One recognizes here the Fourier transformation of the product of two similar
expressions

exp
{

−W

√
π

8α

[
1 − e−υ2α/2 cos υ

]}
(6.121)

and
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exp
{

−W

√
π

8α

[
1 − e−υ2α/2 cos bυ

]}
. (6.122)

each of which has exactly the same structure as the expression in (6.99), which
we have encountered in considering the harmonic excitation of the complex
system. The Fourier transform of a product F [ab] yields the convolution
F [a] ∗ F [b] of the Fourier transforms of the factors, and therefore with the
help of (6.103)

gρn (∞) =
∑
k

( 2π
αW 2

)1/4
e−(∆n−k)2

√
2/παW 2

e−
√
πW 2/8αIk

(√
πW 2

8α

)

∗
∑
m

( 2π
αW 2

)1/4
e−(∆n−mb)2

√
2/παW 2

e−
√
πW 2/8αIm

(√
πW 2

8α

)
=

∑
km

( 2π
αW 2

)1/4
e−(∆n−k−bm)2

√
2/παW 2

e−
√
πW 2/2α

Im

(√
πW 2

8α

)
Ik

(√
πW 2

8α

)
(6.123)

Equation (6.123) has a clear physical meaning. It shows that the popula-
tion is located in narrow (∼

√
W

√
α) vicinities of the resonances ∆ = k+bm,

whereas the total populations Pmk of different vicinities are distributed ac-
cording the solution e−wIm(w/2)Ik(w/2) of the diffusion equation on a two-
dimensional grid (see (8.30)), given in terms of the modified Bessel functions
and corresponding to the effective number of transitions w = W

∫
q2(t)dt =

W
√

π/2α. For large T one finds the asymptotic relation

Pmk = e−wIm(w/2)Ik(w/2) 
 e−(k2+m2)/w/πw (6.124)

and (6.123) for the population spectral density ρ(∆n) = gρn(t = ∞) adopts
the form

ρ (∆) =
∑
km

( 8απ
W 2

)1/4
e−(∆−k−bm)2

√
2/παW 2

e−(k2+m2)
√

2α/πW 2 1
π2W . (6.125)

This expression gives the population distribution over the uniform energy
spectrum, which results from the overlap of the vicinities of different reso-
nances, located in the same energy positions. The way these vicinities are
distributed along the energy axes depends on the ratio b of the pumping fre-
quencies. The situation is similar to the Bragg scattering patterns as a func-
tion of different orientations of solids with rectangular lattices. In Fig. 6.11
we illustrate this dependence.

It turns out that the commensurability of two pumping frequencies plays
an important role and determines the pattern of the population distribution.
Indeed, when the frequency ratio b = p/q is a rational number given by an ir-



272 6 Time-Dependent Complex Systems

D

Pmk

D

D

D

m

k

m

k

Pmk

Fig. 6.11. Population distribution (6.123) of a complex quantum system subjected
to an action of an adiabatically switched two-frequency field. The distribution re-
sults from the diffusion on the two-dimensional grid (upper panel) given by the
resonant absorption or emission of quanta at frequencies ω1 = 1 (index k) and
ω2 = b (index m) of the field. The result depends on the diffusion-weighted Pm,k

projection of this grid on the one-dimensional energy axis (lower panel). For the
commensurate frequencies b = p/q (left panel) and for the non-commensurate fre-
quencies b �= p/q the distributions are significantly different. The positions of the
resonances are shown by arrows.

reducible fraction of two integer numbers p and q, then according to (6.123),
the energy positions of different resonances ∆ = k + bm = (kq + pm)/q
are separated by a minimum distance 1/q. The resulting distribution than
turns out to be a set of narrow spikes of population separated by unpopu-
lated intervals. The width of the spikes depends only on the spectral resolu-
tion ∼ (

2/παW 2
)−1/4 corresponding to the transition rate W and the pulse

duration∼ 1/
√

α, whereas the total population of each vicinity depends on
the number of steps needed for arriving at this resonance from the initially
populated state and the interaction pulse duration.

The situation is completely different for an irrational b. For asymptot-
ically long pulse durations this results in a uniform distribution over the
energy scale. However, this distribution is not attained at once but arises
through a series of quasiperiodical distributions, each of which is given by the
denominator of the best rational approximation to the irrational number b

corresponding to the actual spectral resolution∼ (
2/παW 2

)−1/4. In Fig. 6.12
we illustrate this situation for the example of b = 1/3 and b = 1/π. For the
last case, the best approximations are b = 1/π 
 1/3 
 7/22 
 113/335

 99532/312689, and one sees the periodic structures corresponding to three
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Fig. 6.12. Density of population ( see (6.123) and Fig. 6.11) for different pulse
durations 1/

√
α and different frequency ratios ω1/ω2 = b. Transition rate W = 0.1

for all plots. (a) For commensurate frequencies b = 1/3, the population distribution
is given by the spikes located periodically at the position of the inverse of the largest
common divider of the oscillation periods, ∆p = 1/3. The non-commensurate ratio
b = 1/π yields a multiperiodic structure. (b) The genesis of multiperiodicity for
irrational b. For different pulse durations the spectral resolution are different, and
the period 1/q is given by the denominators of the best rational approximation b �
p/q of the frequency ratio. For α = 10−4 one finds q = 3 (dotted line), for α = 10−7

q = 22 (dashed line scaled ×3 relative to (a)) and q = 355 for α = 10−11 (solid
line scaled ×9), which corresponds the the best rational approximations π � 3 �
22/7 � 355/113, respectively.

first denominators 1/q = 1/3 ; 1/22 ; 1/355 that sequentially attains with
increasing pulse duration.

6.4.2 Response to Bi-Harmonic Excitation

A complex periodic structure, originating in the number theory relating to
the best rational approximation of irrational numbers also appears, although
in a less pronounced way, in the spectrum for the universal time-dependent
response of a complex quantum system with a uniform density of states,
in the presence of a two-frequency perturbation. We shall consider the bi-
harmonic time dependence q(x) = χ(t) (cos t + cos bt) with an envelope χ(t).
The particular choice of χ(t) does not play a crucial role and can be made in a
way minimizing technical complications during the calculations by assuming
that most of the time the envelope takes a constant value, say unity. The
frequency spectrum of the response according to (6.87) reads
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x (∆) ∼
∞∫

−∞
dt χ2(t)

0∫
−∞

dy (6.126)

e
i∆t−λW

y+t∫
−∞

q2(x)dx−W
0∫
y

(q(x+t)− q(t+y−x))2dx
,

where we have made the replacements τ ′′ → t + y, x → x + t, and by
introducing the factor χ2(t) we have also taken into account the profile of the
pumping field. Before taking the Fourier transform over time we note that
the integrand can be represented as a product of two factors

x (∆) ∼
∞∫

−∞
dt ei∆i R̃(t)f̃(t)

f̃(t) = χ2(t) exp

[
−λ W

t∫
−∞

q2(x)dx

]

R̃(t) =
0∫

−∞
dy e

−W
0∫

y
[(q(x+t)− q(t+y−x))2+λq2(x+t)]dx

, (6.127)

which means that the Fourier transform of the response is a convolution of
two profiles: the term

R(∆) =

∞∫
−∞

dt

2π
ei∆t

0∫
−∞

dy e
−W

0∫
y
[(q(x+t)− q(t+y−x))2+λq2(x+t)]dx

, (6.128)

which allows for the frequency dependence of the response on a large scale
and which has the structure of a number of δ-like spikes similar to (6.17),
and the term

f (∆) =

∞∫
−∞

dt

2π
χ2(t)e

i∆t−λ W
t∫

−∞
q2(x)dx

(6.129)

allowing for the profile (line shape) of each spike that mainly depends on the
steepness of fronts and the shape of the envelope χ(t).

In the limit of small λ we can neglect the oscillating component of q2(x)
and taking χ2(t) = 1 + tanhαx, for instance, obtain after the replacement
t → T/α

f (∆) =

∞∫
−∞

dt

2π
[1 + tanhαt)] e

i∆t−λ W
t∫

−∞
[1+tanhαx)]dx

=

∞∫
−∞

dT

πα

e2T

1 + e2T exp
{

i
∆

α
T − λ W

α
ln

[
1 + e2T ]} . (6.130)

The substitution z = e2T results in the line shape
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f (∆) =

∞∫
0

zi∆/2αdz

2πα (1 + z)1+λ W/α
=

Γ(1+i ∆
2α )Γ(λ W

α −i ∆
2α )

2πλ WΓ(λ W
α ) (6.131)

whose absolute value has a bell-like shape of width ∼ α centered at ∆ = 0
and with phase modulations antisymmetric with respect to this point.

Let us turn now to the term (6.128). The integrand in the exponent is
always positive, and hence only y ∼ 1/λW can be important. In this domain
we can ignore the variation of the envelope and set χ(t) = 1. Moreover,
we assume W � 1 and ignore the oscillatory terms of constant amplitude,
retaining only the leading terms with amplitudes proportional to y. This
yields for the integral in the exponent

0∫
y

[
(q(x + t) − q(t + y − x))2 + λq2(x + t)

]
dx


 −y {2 + λ − cos [2t + y] − cos [b(2t + y)]} ,

(6.132)

and hence

R(∆) =

∞∫
−∞

dt
2π ei∆t

0∫
−∞

dy eWy{2+λ−cos[2t+y]−cos[b(2t+y)]}

=

0∫
−∞

dye−i∆y/2+Wyλ

∞∫
−∞

dt
2π ei∆teWy{2−cos 2t−cos 2bt}. (6.133)

In (6.120) we have already encountered the last integral, which can be given
in terms of Bessel functions, and therefore we arrive at

R(∆) =
0∫

−∞
dyeWyλ−i∆y/2 e2Wy ∑

m,n
Im(−Wy)In(−Wy)δ(∆ − n − bm).

(6.134)
The structure of this expression resembles that for the population distribution
(6.125), which is also a set of narrow (here δ-like) spikes weighted with an
intensity distribution function Pn,m. Following convolution with the profile
(6.131) this results in

R(∆) =
∑
m,n

Pn,m(W,λ)f(∆ − n − bm)

Pn,m =

0∫
−∞

dyeWyλ−i(n−bm)y/2 e2WyIm(−Wy)In(−Wy). (6.135)

However, in contrast to the population distribution, the weighting function
for the response remains essentially different from the Gaussian. When we
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make use of the Gaussian asymptotic expression for the Bessel functions
(6.124) it takes the form

Pn,m =

0∫
−∞

2dy
πWy exp

{
Wyλ − i(n+bm)y

2 + (k2+m2)2
Wy

}

= − 4
W K0

[
2
√(

i(bm−n)
W + 2λ

)
(m2 + n2)

]
, (6.136)

where K0(z) is the modified Bessel function.
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Fig. 6.13. Frequency dependence of the response (6.137) of a complex quantum
system with a uniform density of states to a bi-harmonic excitation. The princi-
pal effect occurs around zero frequency. (a) Coalescence of two resonances for a
frequency ratio b, assuming a rational value. (b) In contrast to the population dis-
tribution Fig. 6.11, the contribution of higher-order resonances is suppressed by the
spectral profile (dashed line) decreasing exponentially for large detunings. There-
fore only a few resonances near zero frequency can interfere as illustrated in the
inset. The parameters of the plot are W = 0.1, λ = 0.05, α = 0.01.

Combination of (6.131) and (6.136) gives the spectral composition of the
response

x (∆) = 2πg
〈
xV 2〉∑

m,n

K0

[
2
√(

i(bm−n)
W + 2λ

)
(m2 + n2)

]
Γ
(
1 + i (∆−n−bm)

2α

)
Γ
(
λ W
α − i (∆−n−bm)

2α

)
πλ W 2Γ

(
λ W
α

) . (6.137)
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The main difference between this function and the population distribution
(6.125) is due to the narrow weighting function (6.136) given by K0(z) ex-
ponentially decreasing at large values of the argument z. Therefore the typ-
ical detuning (bm − n) between the higher-order harmonics n and m should
be smaller than W/

(
m2 + n2

)
, otherwise there is no substantial contribu-

tion to the sum (6.137). However a typical detuning scales as 1/n whereas
for the best rational approximation it can be estimated as 1/n2, assuming
a uniform, random distribution of the higher-order resonances on the fre-
quency axis. Therefore for a typical b, the minimum value of the combination
(bm − n)

(
m2 + n2

)
for integer n and m ranging from −N to N does not de-

pend much on the size N of the interval, remaining of the order of unity. For
example, in the case b = 1/π for the first four best rational approximations
this combination takes the values 0.15, −0.068, −0.0037, −0.317. This means
that for a generic ratio of frequencies at certain conditions one may observe
the response consisting of several higher order resonances at once, one for
each best rational approximation, but it never forms a periodic pattern as
was the case for the population distribution. Typically one can see the coa-
lescence of only two resonances when b assumes a rational value, as shown in
Fig. 6.13.

6.5 Two-Band System in a Periodic Field

The behavior of two-band systems under the action of a harmonic perturba-
tion shown in Fig.6.14(a) is almost identical to the dynamics of the single-
band spectra of Sect. 6.3. The main distinction is in the fact that the even-
order resonances correspond to the first band, while the odd-order resonances
correspond to the second one. We therefore address a natural question spe-
cific for the two-band problem, about the time dependence of the population
difference of the two bands. We also consider here the role of the phase
statistics of the pumping field and the regime of overlapping resonances –
two problems that have not been considered earlier, although they could be
formulated for a single-band as well. Note that the two band model can be
applied to a single band system when we consider in the resonant approxi-
mation a high-frequency perturbation Vh = V q(t) cosωht at a frequency ωh
comparable with the total width Γ ∼ ωh of the band. In the last case, the
oscillation of the field amplitude V q(t) plays the role of the time dependent
perturbation coupling two resonant parts, as shown in Fig 6.14(b).

6.5.1 Dynamics of Total Band Populations

We address this problem with the help of the technique employed earlier in
this chapter, and then propose a somewhat different point of view at the
obtained results, which is based on the consideration of a quantized pumping
field.
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The Direct Consideration

Equations (4.28), valid for the total population of the bands in the case
of time-independent perturbations, can also be employed for the harmonic
pumping by simply replacing the static operators X̂ (4.21) by similar oper-
ators for the time-dependent situation. For two identical bands the simplest
forms have the expressions for the sum ρ̂+ = ρ̂1 + ρ̂2 and the difference
ρ̂− = ρ̂1 − ρ̂2 of the populations

ρ̂+ (ε, ξ, τ , θ) =
1

1 − Ξ̂(ε, ξ, τ , θ)
X̂0(ε, τ)X̂0(ξ, θ),

ρ̂− (ε, ξ, τ , θ) =
1

1 + Ξ̂(ε, ξ, τ , θ)
X̂0(ε, τ)X̂0(ξ, θ), (6.138)

where X̂0(ε, τ) and Ξ̂(ε, ξ, τ , θ) are given by (6.35), (6.36).
We note that (6.38) can be generalized in order to include both signs in

the denominator

1

1 ± Ξ̂(ε, ξ)
=

1
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (q(τ) ± q(θ))2[
ε − ξ + i ∂∂θ + i ∂∂τ + iπg V 2 (

q2(τ) + q2(θ)
)]

, (6.139)

which with the allowance of (6.71) results in the equation[
ε − ξ + i

∂

∂θ
+ i

∂

∂τ
+ iπg V 2 (q(τ) + q(θ))2

]
ρ̂− (ε, ξ, τ , θ) =

[
X̂0(ξ, θ) − X̂0(ε, τ)

]
, (6.140)

for the population difference.
After the standard replacements ε − ξ → ζ , ε + ξ → 2η and integration

over η this yields[
ζ + i ∂∂θ + i ∂∂τ + iπg V 2 (q(τ) + q(θ))2

]
ρ̂− (ζ, τ , θ) = 2πi. (6.141)

The solution of this equation yields the population difference at a given time
t, if after performing an inverse Fourier transformation one sets τ = θ = t. Of
course, one can always act in this way and obtain the correct result, however
we note that the same result can be obtained directly when we remember
that the axillary variables τ and θ have been introduced in order to replace
the time-dependent Schrödinger equation by a time-independent one with
one more coordinate for the wavefunction ψ or two more coordinates for the
density matrix ρ. Therefore, (6.141) is just a representation of the equation[

∂

∂t
+ 4πg V 2 q2(t)

]
ρ− (t) = 0, (6.142)
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with the initial condition ρ̂− (t = 0) = 1 which is much easier to solve directly,
without making use of such a technique. This yields

ρ− (t) = e
−4πgV 2

t∫
0
q2(x)dx

, (6.143)

and for q(t) = cos[t + ϕ] results in

ρ− (t) = exp
[−2πgV 2(t + cos(t + 2ϕ) sin t)

]
, (6.144)

or in dimensional variables for frequency ω

ρ− (t) = exp
[−2πgV 2(t + ω−1 cos(ωt + 2ϕ) sinωt)

]
. (6.145)

This function shown in Fig. 6.14(d), demonstrates a decay with an oscillating
rate.
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Fig. 6.14. One band in a bi-harmonic field with frequencies ωh ± ω compara-
ble with the band width (a) can be considered as a two-band problem (b) with
the harmonic interaction at the beat frequency ω. Application of the quasienergy
method (c) suggests the consideration of an equivalent multiband system with a
time-independent coupling, where each harmonic of the population amplitude ψkn,
(6.146), corresponds to an individual band. (d) The difference between the total
band populations (6.145) for W = 1, ω = 5, and the phase shifts φ = π/4 (dashed
line) or φ = −π/4 (dot dash line) is a decaying function of time, with an oscillating
decrement. For the field in the quantum state corresponding to a given number of
photons (6.157), the dependence has no oscillations (solid line)

Quantized Pumping Field

Thus far in our consideration, we have always assumed that the external field
is classical in nature. The employed technique of introducing the additional
variables τ and θ is identical to that known as the quasi-energy method briefly
discussed in Sect.5.1, which is closely related to the quantum consideration
of the pumping field. The main idea of the method is the following.
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We substitute the anzats

ψn =
∑
k

e−ikωtψkn(t) (6.146)

into the Schrödinger equation (6.30) with q(t) = cos(ωt), and considering
all of the coefficients corresponding to the harmonics e−ikωt arrive at the
expression

i
.

ψkn = (∆n − ωk)ψkn +
1
2
∑
m

Vnm
(
ψk−1,m + ψk+1,m

)
, (6.147)

which is known as the quasi-energy representation of (6.30) with periodic co-
efficients. This new equation does not contain the time-dependent coefficients
and therefore can be solved by standard methods. Formally it can be consid-
ered as a multiband system as shown in Fig. 6.14(c), where each quasi-energy
index k corresponds to an individual band of levels enumerated either by the
index m or by index n, depending on the number of the band (1 or 2) to
which it belongs initially.

But now we have encountered the problem of undefined initial conditions.
Indeed, the requirement ψ0(t = 0) = 1 with the allowance of (6.146) only
states that

∑
k ψk0(0) = 1 and does not give any individual initial conditions

for each amplitude ψkn(t = 0). This problem has deep roots in the question
of the quantum statistics of the pumping field, and its solution is different for
the coherent states of the quantum field corresponding to the classical limit,
and for the photon number state of the field which corresponds to a definite
field energy.

Let us look at (6.147) from the point of view of a quantized field. Con-
sidering the two equivalent problems of a single band in the two-frequency
field at ωh ± ω and two bands in a harmonic field at the frequency ω we
favor the latter approach and denote by ψkn the probability amplitude for
the system to be at the level n of the first band and the quantized field to
be in the state with k � 1 photons at the frequency ω. This corresponds to
the state |n〉⊗ |k〉 of the compound system. By ψkm we denote the analagous
amplitudes for the second band, and therefore (6.147) now may be directly
interpreted as the Schrödinger equation for the compound system. By intro-
ducing the operators D̂ and q̂ with the matrix elements Dkk′ = ωkδk,k′ and
qkk′ = (δk,k′+1 + δk,k′−1)/2 one obtains for this system the Fourier trans-
formed evolution operator

Û(ε) =
(
ε − Ĥ0 + D̂ − q̂ ⊗ V̂

)−1
, (6.148)

which actually coincides with (6.32) if we note that the operators D̂ and q̂ are
just a Fourier (in k) representation of i ∂∂τ and the harmonic time-dependent
profile, respectively.
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There is no need to repeat here all of the derivation, since by analogy
one can write equations (6.138) and (6.140) for the total populations of the
bands in a form similar to (6.72)

Ẑ−1
− (ζ)ρ̂+ (ζ) = 2πi,

Ẑ−1
+ (ζ)ρ̂− (ζ) = 2πi,

Ẑ−1
∓ (ζ) = ζ − D̂ + D̂′ + iπg V 2 (q̂ ± q̂′)2 , (6.149)

where the operators D̂′ and q̂′ act on the density operators ρ̂± from right
to left. The density matrices ρ̂± do not depend on the indices enumerating
the sublevels m of the system, but they do depend on the photon variables
k. Note that the first equation (6.149) after the Fourier transformation in ζ
takes the form of an equation for commutators and anticommutators

i ∂∂t ρ̂+ =
[
D̂, ρ̂+

]
− iπg V 2 [q̂, [q̂, ρ̂+

]]
,

i ∂∂t ρ̂− =
[
D̂, ρ̂−

]
− iπg V 2 {q̂,

{
q̂, ρ̂−

}}
. (6.150)

The traces of ρ̂+ and ρ̂− will give the sum and the difference of the total
band populations respectively. We concentrate on the second trace given by
the second equation (6.150), since for the first one the result is evidently unity.
After the trace-preserving transformation ρ̂− → e−iD̂tρ̂−eiD̂t one obtains

∂

∂t
ρ̂− = −πg V 2

{
e−iD̂tq̂eiD̂t,

{
e−iD̂tq̂eiD̂t, ρ̂−

}}
, (6.151)

which in the explicit matrix notation reads

− 4
πg V 2

∂
∂tρk,k′ =

(
4ρk,k′ + 2ρk+1,k′+1 + 2ρk−1,k′−1

)
+ei2ωt

(
ρk+2,k′ + 2ρk+1,k′−1 + ρk,k′−2

)
+e−i2ωt (ρk−2,k′ + 2ρk−1,k′+1 + ρk,k′+2

)
, (6.152)

and we have omitted here the index “−”. Let us now introduce ρs =∑
k ρk,k+s and note that ρs=0 gives the band population difference. Equa-

tion (6.152) yields for this quantity

− 1
πg V 2

∂

∂t
ρs = 2ρs + ei2ωtρs−2 + e−i2ωtρs+2. (6.153)

We make use of the generation function ρ(β, t) =
∑

s ρs(t)eisβ for which
one immediately finds

− 1
2πg V 2

∂

∂t
ρ(β, t) = (1 + cos [2ωt + 2β])ρ(β, t), (6.154)

that is
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ρ(β, t) = C(β) exp
{

−2πg V 2[t +
1
2ω

sin(2ωt + 2β)]
}

, (6.155)

and hence

ρs(t) =

2π∫
0

dβ C(β)
2π exp

{−2πg V 2[t + 1
2ω sin(2ωt + 2β)] − isβ

}
. (6.156)

For the case C(β) = 2πδ(β) (6.156) coincides with the result (6.145) obtained
for a classical field of phase ϕ = 0. This result also follows from the consistent
quantum consideration of the problem: for a quantized field in a coherent state
with a large mean number of photons the initial photonic density matrix
∼ exp (−i(k − k′)ϕ) results in ρs(t = 0) ∼ exp (−isϕ), and hence according
to (6.155) yields C(β) = 2πδ(β − ϕ), which indeed gives C(β) = 2πδ(β) for
the field phase ϕ = 0.

For the field initially in the state with a given number of photons n0,
the photonic density matrix has the form δk,n0δk′,n0 and therefore C(β) =
ρ(β, t = 0) = 1. The population difference can therefore be given in terms of
a modified Bessel function

ρ−(t) = ρs=0(t) =
e−2πg V 2t

2π

2π∫
0

dβ exp
[
−πg V 2

ω sin (2ωt + 2β)
]

= e−πg V 2tI0(πg V 2

ω sinωt), (6.157)

which is different from the absorption rate in a coherent field (6.145). However
this expression can be obtained from (6.145) by averaging it over the field
phase ϕ. We have thus obtained an interesting result, which shows that the
complex systems absorbs radiation with the rate depending on the quantum
field statistics.

6.5.2 Population Distribution over the Bands

We now consider the distribution of the populations over the bands. Actually,
this problem has already been solved for the sum ρn+ of the band populations,
for which the derivation coincides with that for (6.49) and (6.55) while for
the population difference ρn− the result is identical apart from the change
of sign in the cross-term of the correlation function, such that the general
expression reads

πgρn± (t) = e
−W

t∫
0
q2(x)dx t∫

0
cos(∆ny) exp

[
±W

t−y∫
0

q(x)q(y + x)dx

]
dy.

(6.158)
The change of sign originates from the fact that for ρn− instead of the op-
erator Ẑ given by (6.40), one has to make use of the operator Ẑ+ given by
(6.149).
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Fig. 6.15. Density of the population distribution (arb. units) of the first band
gρ1 = (ρ+ +ρ−)/2 and of the second band gρ2 = (ρ+ −ρ−)/2, as functions of time.
For short times, one sees that the profiles resembling those shown in Figs .4.16, 4.21
for the level–band system and for the degenerate level–band system respectively,
although in the asymptotic of long times, these profiles behave differently, showing
a diffusive broadening.

As we have already seen, for small W/ω and an abrupt switch of the
interaction, the population is distributed over the narrow vicinities of the
resonances with Lorentzian profiles according to (6.97). This is also evidently
the case for the two-band system, as long as the resonances do not overlap —
we have just to take into account that the even resonances correspond to the
first and the odd to the second bands. We therefore concentrate here on the
other extreme W � ω which we referred to on p. 265 and restrict ourselves
to the case of a coherent field. Taking as earlier the frequency units (ω = 1)
and performing the integration in the exponent of (6.158) one obtains

πgρn± (t) = e−W [t+cos(t+2ϕ) sin t]/2 (6.159)
t∫
0

cos(∆ny) exp
[±W

2 ((t − y) cos y + cos (t + 2ϕ) sin (t − y))
]
dy.

In Fig. 6.15 we show the population distribution over the first and the second
bands as a function of time.
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For the asymptotically long times, the population difference ρn− becomes
small, since the maximum index of the exponent in the integrand for the case
of negative sign cannot compensate for the exponentially decreasing factor in
front of the integral. The population distributions of the first and the second
bands are therefore identical for long times, and in order to find them one can
consider their sum ρn+. The main contribution comes from small y ∼ 1/

√
W

such that one can cast the expression in the exponent of the integrand in a
Taylor series and obtain

πgρn± (t) =

∞∫
0

cos(∆ny)

exp
[−W

2

(
t
y2

2
+ y cos (t + 2ϕ) cos t

)]
dy, (6.160)

where the integration interval has been extended to infinity. Evaluation of the
integral for t � W (with the allowance of ω = 1 ) results in the distribution
profile

πgρ+ (∆, t) 

√

π
tW e−∆2/Wt

{
cos

[
∆
t cos t cos (t + 2ϕ)

]
+ Erfi( ∆√

Wt
) sin

[
∆
t cos t cos (t + 2ϕ)

]}
, (6.161)

where Erfi(x) is the error function. The Gaussian dependence implies that
∆ ∼ √

Wt, and therefore ∆/t � 1, which means that in order to be consis-
tent within the approximation we have to replace this expression by an even
simpler Gaussian dependence

πgρ+ (∆, t) 

√

π

tW
e−∆2/Wt. (6.162)

In other words the population distribution is broadening in the long-time
limit, according to the diffusion law.

6.6 Control of Complex Quantum Systems

Thus far we have been considering the universal properties common to almost
all realizations of complex quantum systems, regardless of the details of the
unperturbed Hamiltonian Ĥ0 and the interaction V̂ . We now consider another
aspect of such systems, namely their controllability, the possibility to make
a complex system follow a predescribed evolution by choosing the strengths
and types of applied external perturbations. The control goals can be of two
types. One can either place the system at a certain time in a well-defined
particular quantum state, begining from another well-defined initial state, or
perform a well-defined transformation of an unknown initial quantum state.
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In the first case we speak of quantum state manipulation, whereas the second
case implies a more involved control over the unitary evolution of the entire
system, given by a specific unitary transformation matrix. The latter also
implies a predetermined evolution of each basis state in the Hilbert space of
the system.

Though it is not evident at first glance, the justification of the statistical
description of complex quantum systems and the requirement necessary for
the controllability of a multilevel system have common algebraic and group
theory roots. In spite of this, the ways of describing these two processes are
very different. Considering the dynamics of a complex system, one ignores in-
dividual details of the spectrum and the interaction performing the ensemble
average, thus assuming that the particular realization of a complex system
has a small influence on the universal character of its behavior, given by a few
average characteristics. For the problem of control the situation is quite the
opposite: one needs to know all of the spectral and interaction details in order
to achieve the desired system evolution. The techniques for solving these two
problems, as well as the final results obtained, are accordingly distinct. In
order to describe the universal dynamics of a complex system, one tries to
find a finite algebraic expression for the ensemble averaged physical quantity
of interest in terms of standard functions, and to check whenever it is possi-
ble, whether the dispersion of the results is small. The solution of the control
problem is usually an algorithm which enables one to compute the control
functions fi(t), by employing detailed information about the Hamiltonian
Ĥ0, the perturbations V̂j , and the desired transformation matrix Ûd.

The most general control problem is formulated for a Hamiltonian

Ĥ(t) = Ĥ0 +
∑

j
fj(t)V̂j (6.163)

comprising a given time-independent unperturbed part Ĥ0 and a given set of
different perturbation operators V̂j . Each of the perturbations may have an
individual time-dependent strength fj(t) and the solution implies that one
can specify the particular forms of fj(t) such that the evolution matrix

Û(t) = T̂ e−i ∫ t
0 Ĥ(t)dt = 1 − i

t∫
0

Ĥ(t)dt + i2
t∫
0

Ĥ(t)
t∫
0

Ĥ(t′)dt′dt + . . .

+(−i)n
t∫
0

Ĥ(t)
t∫
0

Ĥ(t′)
t′∫
0

Ĥ(t′′) . . .
t(n−1)∫

0
Ĥ(t(n))dt(n) . . . dt′′dt′dt + . . .

(6.164)
assumes a predetermined form Û(T ) = Ûd at a given time moment t = T .
When this is possible the system is called controllable. Here T̂ is the time
ordering operator that has been encountered earlier in (5.2). A particular
case, where all functions fj(t) take only two values fj(t) = 0 and fj(t) = 1,
is called bang–bang control.

The nessecery condition of the system’s controllability is that the Hamil-
tonian Ĥ0 and perturbation operators V̂j together with their commutators
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of different orders form an operator basis set which spans the entier linear
space of the operators in the Hilbert space of the system. In other words,
it should be possible to represent any operator in the Hilbert space of the
considered quantum system as a linear combination of Ĥ0, operators V̂j , and
their commutators of various orders.

We consider several aspects of the control problem, starting with the sim-
plest examples of the two-level system. Though the consideration of these
examples can be performed directly in exact analytical form, we discuss sev-
eral algorithms for the numerical solution and introduce the main concepts
and images convenient for the description of more sophisticated situations.

6.6.1 Control of Two-Level Systems

A two-level quantum system within two-dimensional Hilbert space corre-
sponds to the Lie group SU(2) and can be described with the help of the
three-element algebra of Pauli matrices σ̂x, σ̂y, σ̂z, that compose the set of
generators of SU(2) supplemented by the identity matrix Î. This group is
isomorphic to the group of three dimensional rotations, and therefore the
main ideas of the control technique can be illustrated by three-dimensional
images, convenient for intuitive perception.

Indeed, each Hermitian operator Ĥ can be represented as a linear combi-
nation of Pauli matrices

Ĥ = Xσ̂x + Y σ̂y + Zσ̂z + E0Î , (6.165)

where the constant E0 determining the mean energy responsible for the global
phase can be omitted. Therefore the vector H = (X,Y, Z) formed by three
real numbers determines the Hermitian operator with zero trace. The quan-
tum state of the two-level system can also be represented as a real three-
dimensional vector of unit length. Two eigenvectors of an operator Ĥ are
given by the three-dimensional vectors (x, y, z) of length 1 that are parallel
and antiparallel to the vector H. Each state vector (x, y, z) also corresponds
to a unit rank density matrix

ρ = |ψ〉 〈ψ| =
x

2
σ̂x +

y

2
σ̂y +

z

2
σ̂z +

1
2
Î (6.166)

of the pure state. The coordinates (x, y, z) of the state |ψ〉 and the state
∣∣∣ψ̃〉

orthogonal to it, thus correspond to opposite points on the unit sphere, as
shown in Fig. 6.16a). These coordinates are also known as the components
of the Bloch vector.

Each unitary transformation

Û = e−itĤ = exp [−it (Xσ̂x + Y σ̂y + Zσ̂z)] (6.167)

of a state vector (x, y, z) under the action of a time-independent Hamilto-
nian is a counterclockwise rotation around the axis H by the angle φ =
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Fig. 6.16. Representation of the states and operators of a two-level system by
three-dimensional vectors. (a) Each Hamiltonian Ĥ corresponds to a vector H with
the coordinates (X, Y, Z) given by the coefficients in the representation (6.165) of
this Hamiltonian as the sum of Pauli matrices σx, σy, and σz. Two eigenstates
of the Hamiltonian, with positive (+) and negative (−) eigenenergies, correspond
to the points given by the intersection of the vector axis with the unit sphere.
Coordinates ±(x, y, z) of these points are given by the components P, Q, and W of
the Bloch vector (6.166), respectively. (b) A unitary transformation exp(−itĤ) can
be represented by an axial vector φ, directed parallel to H, which has a length equal
to the rotation angle. The points representing the states move on the unit sphere.
(c) Vector U representing the unitary transformation as a sum (6.168) does not
conserve its length, moving under the action of a different transformation around
the vector H, along an elliptic trajectory.

t
(
X2 + Y 2 + Z2

)1/2 represented by the axial vector φ = (Xt, Y t, Zt) , as
shown in Fig. 6.16b). One can also derive a differential equation describing
the evolution of the unitary operator Û under the action of a time-dependent
Hamiltonian. Indeed, by representing the evolution operator as a linear com-
bination

Û = U0Î − iUX σ̂x − iUY σ̂y − iUZ σ̂z (6.168)

and by calculating the products of the Pauli matrices, one can rewrite the
Schrödinger equation i ∂∂t Û = ĤÛ in the form

∂

∂t
U0 = −(HU)

∂

∂t
U = HU0 +

[
H × U

]
(6.169)
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employing the vector notation U = (UX , UY , UZ) and H = (X,Y, Z).
The unitarity of Û implies that U2

0 + U2
X + U2

Y + U2
Z = 1, which means

that the length of the three-dimensional part U of the four dimensional vector
(U0, UX , UY , UZ) is not conserved. Inspection of (6.169) shows that U moves
along an elliptic trajectory over the surface of a cylinder directed along the
vector H as shown in Fig. 6.16(c), since the component of U rotates around
the axis given by the direction of H with the angular velocity

∣∣H∣∣, whereas
the component U|| parallel to H oscillates with the same frequency as that of
the component U0. The latter is a manifestation of the rotation of the vector
(U||, U0) in four-dimensional space. However, due to the unitarity condition,
the three-dimensional vector U describes the evolution operator completely.

The fact that the quantum states of the system, the Hamiltonians, and
the unitary transformation matrices can all be represented in the same three-
dimensional real vector space is a unique property of the two-level systems
corresponding to the SU(2) symmetry group. For other systems, the dimen-
sionality of the real vector spaces corresponding to operators are larger as
compared to the vector spaces representing the states. When we ignore the
global phase of the state and allow for the normalization condition, each
state of an N -level system given by a normalized complex-valued vector
in N -dimensional Hilbert space corresponds to a 2N − 2 real vector. The
Hamiltonians, being Hermitian matrices, can be described by N2 −1 real pa-
rameters when we set their mean energy responsible for the global phase to
zero, thus assuming that all Hamiltonians have zero trace. This is also valid
for the unitary matrices generated by such Hamiltonians via the relation
Û = exp(−itĤ).

Iterative Transformations of States

The control of two-level systems is not a challenging task, and usually solu-
tions can be found with the help of relatively simple algebraic calculations.
However, it is useful to consider several control algorithms as operations in
the vector space, since this illustrates the main principle of finding the con-
trol amplitudes fj(t) for large systems. We mainly restrict ourselves to the
so-called “bang–bang” control when the amplitudes assume only the values
0 or 1 during certain time intervals.

Let us assume that Ĥ0 = 0 and that we have only two different perturba-
tions V̂1 = σ̂x and V̂2 = σ̂z at our disposal. The commutator

[
V̂1, V̂2

]
= 2iσ̂y

provides us with the missing third operator and the operator basis becomes
complete and the system is therefore controllable. For this simplest of exam-
ples, we will illustrate the geometrical meaning of the algorithms that allow
one to control the system.

The simplest iterative algorithm allows one to approach a given quantum
state |f〉 starting from an initial state |i〉 . We apply to the system initially
in the state |i〉 , the perturbations V̂1 and V̂2 in sequence, trying to approach
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the desired state |f〉 with each iteration step. As a result, the initial state
experiences the series of transformations |iN 〉 = exp

(
−itN V̂1,2

)
|iN−1〉 where

V̂1,2 can be either V̂1 or V̂2, depending on the parity of N .
At each step of the iteration we try to maximize the scalar product

〈f |iN 〉 = 〈f | exp
(
−itN V̂1,2

)
|iN−1〉 (6.170)

by the proper choice of the parameter tN denoting the exposure time to the
perturbation. After N iterations we therefore achieve the state

|iN 〉 = Û |i〉 (6.171)

which approaches the desired state |f〉 as a result of the application of the
iteratively constructed operator

Û = exp
(
−itN V̂1,2

)
. . . exp

(
−it3V̂1

)
exp

(
−it2V̂2

)
exp

(
−it1V̂1

)
|i〉 .

(6.172)
as illustrated in Fig. 6.17(a).
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Fig. 6.17. The iterative procedure compared to the direct transition. (a) By suc-
cessive application of two different transformations, exp(−iV̂1t) and exp(−iV̂2t),
suggested by the two Hamiltonians V̂1 = σ̂x and V̂2 = σ̂z one can reach the final
state |f〉 from the initial state |i〉 by choosing the variable tN at each step in such
a way that the scalar product of the transformed state and the target state is max-
imum. (b) The same transformation can be performed in two steps only by finding
the maximum scalar product as a function of two variables, t1 and t2. However
this approach may not result in the coincidence of the transformed state with the
target state and can result only in the closest approach if the order of the applied
transformations is wrong, as shown by the spots with the dashed line contour. The
scalar product then has a local maximum, different from the global maximum value
1.

The iterative procedure is not a very efficient way to perform the de-
sired transformation. Indeed, it depends on a large number of parameters
tN , whereas only two parameters are required for determining the position
of a point on the unit sphere representing a state of the two-level system.
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Therefore the objective can be achieved by application of only two transfor-
mations

|i2〉 = exp
(
−iT2V̂2

)
exp

(
−iT1V̂1

)
|i〉 . (6.173)

However, for this purpose, one needs to perform a simultaneous search for
the parameters T1 and T2 that yield the maximum scalar product 〈f |i2〉 , as
illustrated in Fig. 6.17(b). The main obstacle in this approach is that the
problem may not always have a solution for a given transformation sequence.
The natural way to overcome this obstacle is to add an extra transformation

|i3〉 = exp
(
−iT3V̂1

)
exp

(
−iT2V̂2

)
exp

(
−iT1V̂1

)
|i〉 (6.174)

and look for the maximum in the space of three variables instead of two. The
solution of the latter problem is not unique, and the set of solutions form
a one-dimensional curve in the three-dimensional space of the parameters
(T1, T2, T3).

Iterative Construction of a Unitary Transformation

Prior to the consideration of an algorithm allowing one to construct a desired
unitary transformation, we take advantage of the simplicity of the two-level
system and solve the problem directly by calculation of the most direct trans-
formation. For the case V̂1 = σ̂x and V̂2 = σ̂z under consideration, the direct
multiplication of matrices yields

Û = exp
(
−iT3V̂1

)
exp

(
−iT2V̂2

)
exp

(
−iT1V̂1

)
= cos (T3 + T1) cos(T2)Î − i sin (T3 + T1) cos(T2)σ̂x

+i sin (T3 − T1) sin(T2)σ̂y − i cos (T3 − T1) sin(T2)σ̂z. (6.175)

Comparison of (6.175) and (6.168) allows us to find the vector (U0, UX, UY, UZ).
The solution of the equation Û(T1, T2, T3) = Ûd can be found for any desired
unitary matrix Ûd = U0Î − iUX σ̂x − iUY σ̂y − iUZ σ̂z, and reads

T1 =
1
2

arcsin
UY√

U2
X + U2

Y

+
1
2

arcsin
UZ√

U2
0 + U2

Z

,

T2 = arccos
(

−
√

U2
X + U2

Y

)
,

T3 =
1
2

arccos
−UY√

U2
X + U2

Y

+
1
2

arccos
UZ√

U2
0 + U2

Z

. (6.176)

One can verify directly that the coefficients U given by the trigonometric
expressions do indeed satisfy the requirement U2

0 + U2
X + U2

Y + U2
Z = 1.

The solution (6.176) can also be found numerically by minimizing the
function
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Tr[(Û(T1, T2, T3) − Ûd)(Û(T1, T2, T3) − Ûd)∗] (6.177)

which gives the square of the distance between two matrices vanishing for the
desired solution. However, if by analogy to the state control we try to find a
solution minimizing successively the function

Tr
{[

exp
(
−itN V̂1,2

)
... exp

(
−it2V̂2

)
exp

(
−it1V̂1

)
− Ûd

]
× c.c

}
(6.178)

for each new added operator exp
(
−itN V̂1,2

)
, the procedure may converge

to a local minimum different from zero and not give the desired result. We
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Fig. 6.18. The iterative procedure for a predescribed unitary transformation. The
trajectories of the vector (6.168), changing with the course of the transformations,
are shown by the long dashed and dotted arrows for the direct and iterative trans-
formations, respectively. (a) The desired transformation represented by the vector
U (bold solid arrow) can be achieved directly by three successive transformations
that are found by minimizing the functional (6.176). The iterative approach (6.177)
may result in a transformation U i which cannot be improved, since the next iter-
ation corresponds to displacement in the direction perpendicular to that required.
(b) The situation can be improved by linear iterations based on the linear expan-
sion T = T

(0)
+ τ of the operator (6.171) near the point (T (0)

1 , T
(0)
2 , T

(0)
3 , T

(0)
4 )

corresponding to U i. Linear corrections (dash-dot arrows) allow one to iteratively
achieve the solution U .

illustrate this in Fig. 6.18(a) showing the situation where the last added op-
erator moves the vector U in a direction perpendicular to that going towards
the solution. Note that a similar complication resulting from the presence of
local minima for the function (6.177) can also be encountered for systems
with a large Hilbert space dimension.

If the iteration procedure given by the function (6.178) or any other itera-
tive algorithm based on a incomplete set of the variables {t} has stopped close
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enough to the global minimum of the function (6.177), the exact solution can
still be found by successive application of the linear approximation which in-
volves all variables. Though for low-dimensional systems this technique does
not give a substantial advantage as compared to the direct minimization of
(6.177), for large systems it is much more convenient and requires much less
numerical work.

Let us consider this approach in more detail. For a set of variables
{
T

(0)
n

}
close to the solution {Tn}, the difference

exp
(
−iT

(0)
N V̂1,2

)
. . . exp

(
−iT

(0)
2 V̂2

)
exp

(
−iT

(0)
1 V̂1

)
− Ûd (6.179)

can be expanded into a Taylor series over the variations {δTn} of the variables
{Tn} up to the first order near the point

{
T

(0)
n

}
, that is

ÛδT = exp
(
−iTN V̂1,2

)
. . . exp

(
−iT2V̂2

)
exp

(
−iT1V̂1

)
− Ûd (6.180)

+
N∑
n

δTn
∂

∂T
(0)
n

exp
(
−iT

(0)
N V̂1,2

)
. . . exp

(
−iT

(0)
2 V̂2

)
exp

(
−iT

(0)
1 V̂1

)
.

Calculation of the derivatives is the most time-consuming part of the nu-
merical work but must be done only once. With the help of these deriva-
tives, we construct an algorithm which allows one to find the exact solution
Tn = T

(0)
n + δTn as a result of the iterations over δTn. Once the derivatives

are found, one can find the first approximation of the variables δTn solving
the system of linear equations ÛδT = 0 with ÛδT given by (6.180).

For the two-level system under consideration, the matrix equations ÛδT =
0 formally correspond to a system of four linear equations. However due to
the unitarity of Û , the actual number of linearly independent equations is
three, as can be shown when we employ the Pauli matrices as the basis set
in the matrix space according to (6.168) and take into account the unitarity
requirement U2

0 + U2
X + U2

Y + U2
Z = 1. Hence for N > 3 the number of

equations is less than the number of variables. In this representation for
N = 4 the equation ÛδT = 0 adopts the matrix form⎛⎝MX,1 MX,2 MX,3 MX,4

MY,1 MY,2 MY,3 MY,1
MZ,1 MZ,2 MZ,3 MZ,3

⎞⎠
⎛⎜⎜⎝

δT1
δT2
δT3
δT4

⎞⎟⎟⎠ =

⎛⎝ δUX
δUY
δUZ

⎞⎠ (6.181)

with

Mjn =
∂

∂T
(0)
n

Tr
[
σ̂je

−iT (0)
4 V̂2e−iT (0)

3 V̂1e−iT (0)
2 V̂2e−iT (0)

1 V̂1

]
δUj = Tr

[
σ̂je

−iT4V̂2e−iT3V̂1e−iT2V̂2e−iT1V̂1 − σ̂jÛd

]
, (6.182)
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where the Pauli matrices have been employed for a basis of the operator
space.

As the first step we solve (6.181) with respect to δT1, δT2, and δT3 since
the fourth column of the matrix is perpendicular to the vector δU , which
was precisely the reason for the inefficiency of the iterative variations (6.178).
Then we substitute the new values of Tn = T

(0)
n +δTn into the second equation

(6.182), find new δU and repeat the iteration. We note that the deviations δU

have changed as a result of the iteration, whereas the matrix M̂ is retained in
its original form. This is the main difference between the employed method
and the steepest descent technique which requires recalculation of all of the
derivatives at each step of the iteration. Nevertheless, if we are close enough to
the exact solution, at each step of the iteration the displacement of variables
δTn occurs at a small angle to the direction of the steepest descent and hence
this procedure will converge, since for δU → 0 the parameters δTn → 0 as
well. We illustrate this in Fig. 6.18(b).

Control by a Periodic Field

One can control the two-level system completely by applying a harmonic
external field of a given polarization, frequency and amplitude. These three
parameters determine the three parameters of the effective Hamiltonian. For
an external field Vx = Exd/2 polarized in the x-direction we have obtained
(3.9) describing the evolution of the state vector (ψ0, ψ1) in the resonant
approximation. For an arbitrary polarization, this equation adopts the form

i
∂

∂t

(
ψ1
ψ0

)
=

(
∆
2 Vx − iVy

Vx + iVy −∆
2

)(
ψ1
ψ0

)
(6.183)

where ∆ = E1 − E0 − ω is the detuning of the field quantum energy from
the energy of the transition. Here we do not include the initial conditions in
the form of δ-functions and shift the energy scale such that the mean value
of the interaction vanishes.

The Hamiltonian of the system has an evident representation (6.165)

Ĥ =
∆

2
σ̂z + Vxσ̂x + Vyσ̂y

with X = Vx, Y = Vy, and Z = ∆/2. Therefore any unitary evolution
Û = exp(−itĤ) can be constructed directly by choosing the strength and
the orientation of the external field polarization along with the detuning.
The only restriction of this method is the applicability of the resonant ap-
proximation, which requires that the Rabi frequency Ω = (∆2 + E2d2)1/2

should be much smaller than the field frequency ω. This implies that the
detuning and the interactions should be small, whereas the desired transfor-
mation can be achieved on a time-scale much longer than the field period.
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This type of control can also be employed for larger systems, provided they
satisfy some requirements that are in close relation with the general algebraic
requirements necessary for the controllability of generic quantum systems.

6.6.2 Holonom and Non-Holonom Systems

The universal character of complex quantum system dynamics relies on the
fact that it is possible for the generic system with an unperturbed Hamil-
tonian Ĥ0 and a perturbation V̂ to occupy any of the levels close in energy
to the initially populated state, while the state vector of the system, evolv-
ing with the course of time, can approach any linear combination of the
energy eigenfunctions corresponding to these levels. Mathematically this im-
plies the validity of the bracket generation condition: for almost any pair
V̂ and Ĥ0 the set of all possible commutators

[
V̂ ,

[
V̂ ,

[
. . . ,

[
Ĥ0

]]
. . .

]]
,[

Ĥ0,
[
Ĥ0,

[
. . . ,

[
V̂
]]

. . .
]]

, . . . spans the entire N2-dimensional space of the
operators, which is restricted only by the condition of Hermiticity and anti-
Hermiticity for the even and odd orders of the commutation, respectively.
Roughly speaking, the bracket generation condition is necessary for the com-
plexity of a system and it becomes sufficient condition when all the linearly
independent commutators are of the same order of magnitude. If the latter
is not the case, the universality manifests itself only on the energy scale cor-
responding to the smallest typical size of the commutators and in the time
domain given by the inverse of this value. At larger energy scales, or for
shorter time intervals, the system may manifest individual behavior.

In special cases, when all of the commutators are restricted to a lower-
dimensional subspace and form there a closed subalgebra, with a number of
elements smaller than N2, the system may exhibit individual behavior at
any energy and at all time-scales. In the extreme case of a low-dimensional
subalgebra, the multilevel system may have an exact analytical solution, thus
being equivalent to a simpler quantum system. The two-level system with the
three-element algebra su(2) of the Pauli matrices σx, σy, σz, along with the
harmonic oscillator with the closed three-dimensional su(1, 1) algebra of a†,
a, aa† are two examples of such simple systems.

The bracket generation condition is also necessary for complete con-
trol over the dynamics of quantum systems. Indeed, considering the time-
dependent systems in Sect. 5.1, we have seen that even in the simplest case
of the evolution Û = e−itBB̂e−itAÂ under the action of two Hamiltonians Â
and B̂ applied in sequence during the time intervals tA and tB , respectively,
all series of different order commutators appeared in the Baker–Campbell–
Hausdorff formula (5.4). The coefficients with which these commutators enter
the linear combination in the exponent, were powers of the exposition times
tA and tB . For a time dependent perturbation f(t)V̂ acting together with the
unperturbed Hamiltonian Ĥ0 the operator structure of the evolution matrix



6.6 Control of Complex Quantum Systems 295

is also of the type suggested by the Baker–Campbell–Hausdorff formula: it is
an exponent of a linear combination of different commutators

Û(t) = exp

{
− iĤ0t − i

∑
j

V̂j

t∫
0

fj(t)dt +
∑
j

cj0[fi(t)]
[
V̂j , Ĥ0

]
+

∑
jk

ckj0[fi(t)]
[
V̂k,

[
V̂j , Ĥ0

]]
+ . . .

+
∑
...j

c00...j [fi(t)]
[
Ĥ0,

[
Ĥ0,

[
. . . , V̂j

]
. . .

]]
+ . . .

}
. (6.184)

However, in this case, the corresponding coefficients c are complex function-
als of all functions fj(t). If the commutators of V̂j and Ĥ0 span all N2-
dimensional operator space corresponding to the N -dimensional Hilbert space
of the system, one can try to find the functions fj(t) that give the desired
evolution of the system. Usually this requires much more effort since the func-
tional relations between set of the coefficients c... and the set of the functions
fj(t) is complicated and in most cases is unknown explicitly.

The bracket generation condition is equivalent to the property known in
analytical mechanics as holonomicity. The essence of this concept is the fol-
lowing. The infinitesimal evolution of a mechanical system given by a set of
local differential Hamilton equations relates the coordinates and momenta of
the system in two sequential moments of time. One can often find integrals
of these equations that are quantities conserved throughout the evolution.
For a conservative system, the most well-known integral is the total energy,
whereas the energy conservation law is the global constraint following from
the local equations of motion. A local constraint, resulting in a global one, is
designated as integrable or holonom. If the number of holonom constraints
equals the number of degrees of freedom, the system is completely integrable
or completely holonom. The motion of the completly holonom system can
be separated to independent motions of differend degrees of freedom. In this
case, a set of coordinates can be introduced in such a way that the motion
of the system is equivalent to an independent evolution of different coor-
dinates, and the motion of a completely holonom mechanical system with
n degrees of freedom occurs along the surface of an n-dimensional torus in
2n-dimensional phase space. A system is called partially holonom when the
number of holonom constraints is less than the number of degrees of free-
dom, and for no constraints the system is non-holonom. The evolution of a
non-holonom system occurs in entire (unconstrained) phase space.

There is a simple, sufficient criterion ensuring that the bracket genera-
tion condition holds for a pair of operators Â and B̂. Each of the operators
should have non-degenerate eigenvalues Aj �= Ak with all frequencies differ-
ent Aj − Al �= Ak − As, and in the representation where one operator, say
Â, is diagonal, the other one should not have zero matrix elements Bj,k �= 0.
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Note that this very condition allows one to construct any desired evolution
with the Hamiltonian Ĥ by applying harmonic external fields in complete
analogy with the case of a two-level system (6.183). In fact, considering each
pair of eigenvectors of Â as an independent two-level system, and applying
periodic fields at the frequencies ωj,k detuned from the corresponding tran-
sition frequency Aj − Ak by the values Hj,j − Hk,k and with the amplitudes
vj,k = Hj,k/Bj,k one can construct any desired Ĥ in the rotating wave ap-
proximation.

Partially Controlled Systems

We now demonstrate an analogy between the holonom dynamics of a me-
chanical system and the uncontrollable dynamics of the simplest compound
quantum system comprising a pair of two-level systems. At this example we
draw a parallel between non-controllability and holonomicity by introducing
quantum variables that behave like classical coordinates of holonom mechan-
ical systems moving along tori surfaces. We start with the simplest case of
two non-interacting two-level parts, each of which can be exposed to the ac-
tion of just one Hamiltonian, σ̂x for the first part and Σ̂z for the second part.
We will employ capital letters to designate the Pauli operators of the second
two-level system. The system has a four-dimensional Hilbert space spanned
by the orthogonal states |0, 0〉 , |0, 1〉 , |1, 0〉 , and |1, 1〉, whereas the space of
Hermitian operators consists of 16 elements, including the identity operator.
The operators Î , σ̂x, σ̂y, σ̂z, Σ̂x, Σ̂y, Σ̂z along with nine binary direct prod-
ucts σ̂j ⊗ Σ̂k with j, k = x, y, z can be selected as the basis spanning the
operator space.

This system is apparently non-controllable since the algebra consists of
only two operators σ̂x and Σ̂z that moreover commute corresponding to differ-
ent Hilbert subspaces. Therefore, one cannot create new linearly independent
operators via bracket generation, and the creation of controllability cannot
be satisfied, since two operators σ̂x and Σ̂z alone cannot span the entire
16-dimensional operator space. Furthermore, neither of the sub-systems is
controllable individually, since the motion of the Bloch vectors representing
these subsystems is just a simple rotation around the x-axis for the first part
and around the z-axis for the second part of the system, that do not span
the corresponding Bloch spheres. Let us construct an adequate image corre-
sponding to this motion by representing the quantum state geometrically.

A complex vector in four-dimensional Hilbert space depends on six real
parameters, provided we ignore the global phase of the state vector and al-
low for the normalization condition. Therefore it is impossible to depict this
object as a single vector in three-dimensional space, and at least a pair of
such vectors is required. When two parts of the systems are completely inde-
pendent, the state vector is a direct product of the state vectors of the parts
|Ψ〉 = |ψ1〉 |ψ2〉. Each part then has its own Bloch vector of unit length. By
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simply appending one of the vectors to the other, scaled by a certain factor
for convenience of presentation, we can construct a composition represent-
ing a quantum state of the system. The sum of the Bloch vectors contains
only part of the information about the state, in contrast to the composition.
Taken just by itself, the sum is insufficient for a complete description, and
supplementary parameters of the composition are required for this purpose.
We specify these parameters by considering different trajectories of the sum.

The initial condition |ψ1〉 = |1〉 , |ψ2〉 = (|1〉 + |0〉)/√2 corresponds to
the eigenstates of the operators σ̂z and Σ̂x, respectively, that are given by
the vectors (0, 0, 1) and (1, 0, 0) on the Bloch spheres related to the first and
second parts. Under the action of the Hamiltonians σ̂x and Σ̂z these vectors
start to rotate in the (z, y) and in the (x, y) planes, respectively, and the
entire evolution can be represented as a motion on the surface of a torus, as
shown in Fig. 6.19 Note that each torus corresponds to a certain initial con-
dition, which is not necessarily of the type |ψ1〉 |ψ2〉 , but can also include the
entangled states α |ψ1〉 |ψ2〉 + β

∣∣∣ψ̃1

〉 ∣∣∣ψ̃2

〉
with 〈ψi

∣∣∣ψ̃i〉 = 0. Whatever the

strengths f(t) and g(t) of the Hamiltonian g(t)σ̂x+f(t)Σ̂z are, the evolution
cannot bring the system off the surface of the torus, which is the holonom
constraint of the system motion. Therefore in order to specify the state of
the system, one has to indicate not only the position of the composition of
the Bloch vectors, but also to specify the parameters of the torus to which
it belongs. The parameters of tori, namely the vertical position of the equa-
torial plane, the larger radius, the eccentricity, and the smallest radius are
independent integrals of motion that specify the holonom constraint as shown
in Fig. 6.19(b),(c),(d).

Let us consider a more involved example of an uncontrollable system. We
take two Hamiltonians σ̂x and Σ̂z ⊗ σ̂z and find that together with their
commutator Σ̂z ⊗ σ̂y they form a closed, three-element algebra and together
with the identity matrix span a four-dimensional subspace of the entire 16-
dimensional space of all 4 × 4 Hermitian matrices. The latter also includes
the operators σ̂y, σ̂z, Σ̂x, Σ̂y, Σ̂z, Σ̂z ⊗ σ̂x, Σ̂y ⊗ σ̂j , Σ̂z ⊗ σ̂j , (j = x, y, z)
that can never be obtained by the commutation of σ̂z and Σ̂z ⊗ σ̂x.

Under the action of the Hamiltonian Σ̂z ⊗ σ̂x, the trajectory of the com-
position of Bloch vectors moves along a torus surface in such a way that a 2π
rotation of the large radius corresponds to same rotation of the small one. Af-
ter the application of the Hamiltonian σ̂z the composition moves to another
torus with the same larger radius and the same position of the equatorial
plane, but with a different small radius, as illustrated in Fig. 6.20(a). Having
returned to the original torus by another application of the Hamiltonian σ̂z,
the trajectory can never return precisely to its initial position, but acquires a
shift. Therefore all of the inner part of the largest torus for a given larger ra-
dius and equatorial plane can be filled by the trajectories when we apply two
Hamiltonians in sequence. In other words, the set of states accessible from
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Fig. 6.19. A pair of two-level systems moving independently under the action of
a single operator for each system is not completely controllable. The evolution of
the pair, considered as a single uncontrollable compound quantum system, can be
represented as a motion along the surface of a torus with the parameters depending
on the initial condition. The torus is formed by the rotation of the Bloch vector b
of the first part around the end of the Bloch vector B of the second part, whereas
the plane (Z, B) is considered as the (zy) plane of the first part. This image is valid
even for the case when the Bloch vectors of the second (b) or the first (c) are not
in the planes (z, y) and (x, y) respectively. The image can also be extended to the
case of entangled states that cannot be factorized as a direct product. In this case,
B is not in the unit sphere, and has a length equal to the population difference
of the factorizable components. The phase difference can also be visualized by the
ellipticity of the tori cross-sections or by inclination of the equatorial plane with
respect to the Z axis.

an initial state by control over the operators σ̂x and Σ̂z ⊗ σ̂z comprising a
three-element subalgebra is a three-dimensional variety. By employing more
complicated Hamiltonians, one can obtain subalgebras with more elements
which imposes fewer holonom constraints on the system dynamics and results
in a variety of accessible states of a larger spatial dimensionality.

Now let us take the following Hamiltonians

Â = σ̂z + Σ̂x + Σ̂x ⊗ σ̂x + Σ̂z ⊗ σ̂y

B̂ = σ̂x + σ̂z + Σ̂y + Σ̂x ⊗ σ̂x + Σ̂y ⊗ σ̂x (6.185)
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Fig. 6.20. (a) Evolution of a couple of two-level systems under the action of two
Hamiltonians that belong to a three-element subalgebra. The composition b of the
Bloch vectors may now go from one torus to another with the same axis (the
big radius, and the equatorial plane are identical). Holonom constraints have now
only three parameters, while the constrained motion occupies three-dimensional
sets, that is inner parts of the tori of smaller radius 1 and different positions of
the equatorial planes. (b) The spectrum of the Hamiltonian Ĥ0 and the evolution
operator over a period Û = exp(−iĤT ). Static perturbation V repels the levels
close in energy. A harmonic of a time-dependent perturbation Vω repels the levels
separated by the energy of the corresponding quantum and leads to a more uniform
distribution of the eigenstates of Û along the unit circle.

chosen more or less randomly among the other combinations of a rather gen-
eral structure. Their commutator gives a new, linearly independent combina-
tion which does not commute with the Hamiltonians yielding two more lin-
early independent combinations, and so on, until after eight cycles of commu-
tation the number of all possible linearly independent combinations reaches
the maximum possible number 15. This is an example of non-holonom sys-
tem, which does not have constraints and can be controlled completely. The
trajectory of the sum of the Bloch vectors can occupy the entire space re-
stricted by the normalization requirement limiting the maximum length, and
moreover each of two Bloch vectors comprising the composition occupies a
three-dimensional set, and thus the state vector moves in a sixt-dimensional
space.

Control of Non-Holonom Systems

Let us try to construct a bang–bang control for the two interacting two-
level systems with the Hamiltonians (6.185) assuming that the interaction
Ĥ0 = σ̂z + Σ̂x ⊗ σ̂x is always present, whereas two different perturbations
V̂A = Σ̂x + Σ̂z ⊗ σ̂y and V̂B = σ̂x + Σ̂y + Σ̂y ⊗ σ̂x are switched on and
off in sequence with the time-independent amplitudes fA,B(t) = 1 during the



300 6 Time-Dependent Complex Systems

exposition time intervals T1, T2, . . . , T16. Here, the even subscripts correspond
to the perturbation V̂B with fA(t) = 0, fB(t) = 1 and the odd to V̂A with
fB(t) = 0, fA(t) = 1. Evidently

∫
fA(t)fB(t)dt = 0 and the total number for

the switching required for complete control in the case of four-dimensional
Hilbert space amounts either to 16, or to 15 if we ignore the global phase.
By analogy to a single two-level system with the evolution operator (6.175)
we write

Û({Ti}) = e−iT16B̂e−iT15Âe−iT14B̂e−iT13Âe−iT12B̂e−iT11Âe−iT10B̂

e−iT9Âe−iT8B̂e−iT7Âe−iT6B̂e−iT5Âe−iT4B̂e−iT3Âe−iT2B̂e−iT1Â (6.186)

for the generic evolution operator of this type. Our aim is to find the timings
Ti that would result in a desired evolution of the system Ûd.

The identity operator Ûd = Î that corresponds to a non-trivial timing∑
i Ti = T > 0 is the simplest example of a desired evolution. Such an

evolution allows one to return the system to its initial state without even
knowing this state explicitly. The straightforward way to find this evolution
by minimizing the function

Tr[(Û(T1, . . . , T16) − Î)(Û(T1, . . . , T16) − Î)∗] (6.187)

in the 16-dimensional space of the parameters Ti in complete analogy with
(6.177) requires an already appreciable amount of numerical work. Moreover,
this procedure, started from an arbitrary point in the parameter space {Ti} ,

usually converges to a local minimum and yields a matrix Û which is far
from the desired one. In order to be successful, one should start already in
a very close vicinity of the solution – for each dimension the value of Ti
should be within at least a half of the shortest period corresponding to the
evolution operators e−iT B̂ or e−iT Â. For the N -dimensional Hilbert space
this vicinity has an exponentially small ∼ 2−N2

volume relative to the total
volume ∼ (2π)N

2

of the parameter space. Therefore the functional (6.187) is
not a very useful tool, unless we have some other means to gain an insight
into the dynamics of the system by narrowing the domain of the solution
search.

An alternative algorithm relies on the natural property of complex quan-
tum systems to have a “rigid” spectrum resulting from the interaction-
induced repulsion of the energy eigenstates. Let us discuss this in more detail.
Consider a time-dependent Hamiltonian Ĥ(t) = Ĥ0 + V̂ (t) that changes pe-
riodically in time with a period T . As we have already seen in the context of
(5.12), the time-dependent operator can be replaced by a time-independent
one Ĥ(τ)− i ∂∂τ containing one additional direction τ in geometric space. Let
us perform the Fourier transformation over the variable τ and make use of the
quasienergy representation (6.147) by complete analogy to the quasimomen-
tum representation for a quantum system, periodic in space. The Hamiltonian
adopts the form

∑
k Ĥ(kω)δn+k,n′ + nωδn,n′ where n and n′ are the quasi-

energy indices and ω = 2π/T . For the operator of the evolution over a period
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we therefore obtain Û(T ) = exp[−iT
∑

k Ĥ(kω)δn+k,n′ ] whereas the term
−iTnωδn,n′ in the Hamiltonian just gives a multiple of 2π phase for each n
and can be omitted. This implies that the energy eigenstates of the effective
Hamiltonian iT−1 ln Û(T ) separated by the energy ω of a quantum or by a
multiple of this value, have to be considered as neighboring states from the
point of view of the contributions they give to the operator of evolution over
a period. In other words, the eigenstates of Ĥ0 located at an energy distance
nω are coupled by the n-th harmonics of the time-dependent part V̂ (t) and
repel each other in the same way as the stationary coupled states that lie
close together in energy. Mutual repulsion of the levels causes the eigenvalues
of Û(T ) to be distributed over the unit circle in the complex plane with the
maximum possible distance among the neighboring eigenvalues. We illustrate
this in Fig. 6.20(b).

In the context of two interacting, two-level systems we now consider the
truncated evolution operator

Û0({Ti}) = e−iT4B̂e−iT3Âe−iT2B̂e−iT1Â (6.188)

which depends on N = 4 parameters. All four eigenvalues of this 4×4 matrix
are on the unit circle in the complex plane. Let us try to choose the four
exposure times {Ti} such that the eigenvalues of Û0 become equally spaced
on the unit circle, thus aiding this natural tendency, typical of strong and
complex perturbations. For this purpose we calculate the coefficients cn({Ti})
of the characteristic polynomial

det
∣∣∣Û0({Ti}) − λÎ

∣∣∣ = λ4 + λ3c3({Ti}) + λ2c2({Ti})

+λc1({Ti}) + c0({Ti}) (6.189)

and minimize the sum

F ({Ti}) =
n=N−1∑
n=1

|cn({Ti})|2 (6.190)

of its coefficients. When the function (6.188) assumes a zero value, the roots
of the resulting characteristic polynomial λN + c0 = 0 are equidistantly dis-
tributed on the unit circle. Due to the fact that a homogeneous distribution
of the eigenvalues of Û0 is a natural property of complex systems, the func-
tion (6.190) reaches the global minimum much more often, as compared to
the function (6.187).

Being repeated N = 4 times, the truncated evolution yields the identity
transformation Û4

0 = Î. Starting from this non trivial identity Û({Ti}) with
{Ti} = T1,...,T4, T1,...,T4, T1,...,T4, T1,...,T4 one finds the desired transforma-
tion Ûd by solving iteratively (with the help of (6.181), (6.182)) the problem
Û({Ti}) = exp(µ ln Ûd) for µ gradually increasing from 0 to 1.
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6.6.3 Control of Coherence Loss

Decay and loss of coherence are two processes, common to all open quan-
tum systems interacting with an environment. Two different relaxation times
T1 and T2 characterize these processes in two-level systems as has been men-
tioned in (5.60). Though both processes represent irreversible relaxation, they
are of rather different nature. The number of occupied quantum states, given
by the rank of the density matrix – an analog of the phase volume in the
classical case – may change in an elementary act of relaxation, and usually
does it towards diminishing. By contrast, this number does not change in an
elementary act of coherence loss, but yet increases after being averaged over
subsequent elementary acts.

Considering irreversible processes such as decay or measurement, one can
always employ certain physical models, describing these phenomena as a co-
herent process in a large compound system, that apart from the system of
interest, also includes a much larger part with a continuous spectrum called
“the environment” and “the meter”, respectively.- The most relevant model
for the measurement and for the decay is the level-continuum problem con-
sidered on p. 72. Here we will not dwell on this aspect of the process, simply
assuming that after a given time considered as short relative to other typical
times, the system of interest simply moves to a certain state (either known of
unknown) with an exponentially vanishing probability of the opposite result.

On the contrary, loss of coherence does not require a quantum model of
the environment. It can be viewed as a systematic and uncontrolled clas-
sical external intervention in the system, resulting in the application of a
known Hamiltonian during unknown time intervals. Without performing a
measurement, one can never know whether such an intervention has occurred.
Coherence loss protection is therefore a special kind of measurement which
produces the action of canceling all of the results of coherence loss without
affecting the quantum state of the system.

We now show how one can completely suppress coherence loss in a uni-
versal way. The suggested method relies on the basic ideas of classical error-
correcting codes and on the idea known as the Zeno effect, that states that
periodic measurements allow one to keep a quantum system in the initial
state for as long as needed, provided that the period T is short relative to
the relaxation time T2. In order to protect a quantum system from coherence
loss, we do not intervene in the entire system, but only affect the auxiliary
part, the ancilla, which we have to add for the purpose of protection. We
perform encoding in the entire Hilbert space of the system and the ancilla by
employing non-holonom control.

We start with a geometric illustration of the regular Zeno effect for the
simplest two-level system, show how this method allows one to inhibit the
coherence loss, and suggest a generalization to larger systems. The density
operator of a two-level system is a 2 × 2 matrix which can be represented
according to (6.166) as a sum of four parts ρ̂ = Î +Pσ̂x +Qσ̂y +Wσ̂z where
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three Pauli matrices are multiplied by three real components P,Q, and W
of the Bloch vector. For pure states, the rank of ρ̂ is 1 and the Bloch vector
remains on the unit sphere. When the density matrix becomes a statistical
mixture of different pure states, the vector becomes shorter. The coherence
loss, associated with the action of the unknown Hamiltonian, leaves the vector
on the unit sphere, although moving it to a new, unknown position as shown
in Fig. 6.21(a). Usually the coherence loss time T2 is much shorter than the
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Fig. 6.21. The Zeno effect for a two-level system. (a) The Bloch vector B rep-
resenting the density matrix of a two-level system in terms of the polarization P ,
dispersion Q, and the population inversion W . Pure states correspond to the unit
sphere. The Hamiltonian evolution, including the uncontrolled loss of coherence
with a time constant T2, occurs on this surface. Decay destroys pure states, and
moves the Bloch vector out of the surface with a typical time T1(dash-dot line).
(b) The trajectory of the Bloch vector in the P −W plane. According to first-order
time-dependent perturbation theory the coherence loss (dashed arrow) and decay
to a narrow band (solid curve) do not move the Bloch vector away from the unit
sphere, and can therefore be corrected to second order by frequent measurement-
induced projections (dotted arrow) onto the initial upper state W = 1. The decay
(dash-dot line) moves B out of the sphere with a typical time T1.

longitudinal relaxation time T1 which is associated with spontaneous decay
and entanglement, with an escaping photon thus moving the Bloch vector out
of the unit sphere. In the case of spontaneous decay to an infinite continuum,
this process results in a linear in time decrease of the length of the Bloch
vector. For a band-like continuum, a short period of quadratic decrease of
the length may exist prior to this linear regime. This persists for a time
equal to the inverse width of the band. These three possibilities are shown in
Fig. 6.21(b).

Measurement of a physical quantity results in the projection of the Bloch
vector to a vector representing the measured eigenstate of the corresponding
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operator. In Fig. 6.21 we illustrate this for the measurement of the population
of the upper level, corresponding to the positive eigenvalue of the operator
σ̂z. Being subjected to the action of a Hamiltonian of type σ̂y, for unknown
time T , the Bloch vector turns from its initial upper position in the direction
P to an unknown angle ∼ T/T2 which is small, provided that T � T2.
The linear increment of the vector, resulting from the evolution, is therefore
orthogonal to the vector itself. Being projected after the measurement to
the W -axis, it returns to the initial position almost entirely. In other words,
the regular Zeno effect allows one to restore the initial state vector up to
the second-order terms in T/T2. Though for a multilevel system, the Bloch
representation is less convenient, the essence of the Zeno effect relies on the
same geometric idea. We consider the real and the imaginary parts of the
probability amplitudes as independent components of a real state vector v,
which rotates in the course of an uncontrolled unitary evolution at a small
angle, and returns after the measurement to the initial position, up to the
second-order corrections.

In the N -dimensional Hilbert space HN of a compound quantum system
N comprising the main part K and an axillary part, the ancilla A = N/K,
a measurement of the ancilla state results in the projection of the compound
state vector onto a multidimensional subspace HK instead of a state vector.
The dimension K of this subspace coincides with the dimension of the Hilbert
space of the main part. If the evolution induced by the error Hamiltonians
results in a linear increment of the state vector, always perpendicular to
HK, then the projecting measurement returns the system to its initial state.
This is sketched in Fig. 6.22(a) in complete analogy to the regular Zeno
effect. In other words, the errors do not affect the main part of the system.
Though this assumption corresponds to an unphysical situation, when all
errors affect only the ancilla and no error Hamiltonians act on the main
system, it nevertheless allows us to make an important conclusion that the
total number M of different error-inducing Hamiltonians may not exceed the
dimensionality A of the ancilla Hilbert space. Universal protection against
this number of Hamiltonians relies on a similar method, which just requires
some modification in the spirit of coding theory.

We come to the key idea of the protection method. For a system composed
of a main part and an ancilla, eventually subjected to an action of a number
M of different but known error-inducing Hamiltonians Em, one can find a
subspace C such that any error-induced linear increment δv of any state
vector v ∈ C is orthogonal to C, provided M ≤ A. Consider the subspace
HK, formed as the direct product of the Hilbert space of the main part by
a given state vector |α̃〉 of the ancilla. If by a unitary coding transformation
Ĉ, one can rapidly move HK to C prior to exposing the system to the action
of errors, and perform rapidly the decoding transformation Ĉ−1 just before
measurement of the ancilla in the state |α̃〉, then the resulting dynamics are
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equivalent to the errors acting solely on the ancilla. Hereafter we call C a
code space. A system N may have many C.
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Fig. 6.22. (a) The multidimensional Zeno effect. If all the linear increments
δv ∼ Êjv of the state vectors v from the code subspace C are orthogonal to this
subspace for any error-induced transformation v′ → v, the projection to C induced
by the measurement compensates for the errors up to O((T/T2)2). (b) The itera-
tive algorithm for finding the code space. The code space C is represented here by
a single vector. The application of all possible errors ÊmC′ to a code space guess
C′ forms the space of errors E ′. A linear combination

∑
γmÊmC′ shows a direction

in E ′ in which the length of the sum C′ +
∑

γmÊmC′ assumes the minimum value.
Displacement in this direction increases the angle Θ between C′ and E ′, which ap-
proaches the maximum value π/2 in the vicinity of the “median” point. Repeating
this exponentially converging iteration one obtains the code space C orthogonal to
the error space E .

Let us perform formal calculations illustrating this idea. Consider a state
vector |S〉 = |s〉⊗|α̃〉 of N formed by K in a state |s〉 and A in the state |α̃〉. We
treat the errors Êm as matrix parts of interaction Hamiltonians with external
random fields fm(t) that produce an uncontrolled evolution of the system. For
Êm ∼ 1 one can estimate fm ∼ 1/T2. Under the action of the error-inducing
Hamiltonians Êmfm(t), the vector |S〉 undergoes an uncontrolled evolution
given by the unitary operator

Û =
M∏
m=1

e−iÊm

∫
fm(t)dt 
 Î − i

M∑
m=1

Êm

∫
fm(t)dt, (6.191)

where the time ordering of the product is implicit. Actions over the Zeno
period T of the M different fields are small

∫ t+T
t

fm(x)dx
∣∣∣Êm

∣∣∣ � 1, such

that only the identity operator Î and the first-order terms ∼ ∫
fm(t)dt are

important in the Taylor series for the evolution operator.
Let ρ̂sc = |s〉⊗〈s| be the density matrix of the main part before the action

of errors. Then ρ̂ = |S〉 ⊗ 〈S| = |α̃〉 ρ̂sc 〈α̃| is the density matrix of the entire
system. After coding by the unitary transformation Ĉ, this matrix takes
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the form Ĉρ̂Ĉ−1, and reads Û Ĉρ̂Ĉ−1Û∗ at the end of the action of errors.
Decoding yields ρ̂′ = Ĉ−1Û Ĉρ̂Ĉ−1Û∗Ĉ whereas the direct substitution shows
that the variation δρ̂sc = 〈α̃| ρ̂′−ρ̂ |α̃〉 of the density matrix of the main system
after the perturbation (6.191) and the measurement of the ancilla is given by
the commutator

δρ̂sc = −i

[
M∑
m=1

∫
fm(t)dt 〈α̃| Ĉ−1ÊmĈ |α̃〉 , ρ̂sc

]
. (6.192)

Therefore ρ̂sc satisfies the equation

i
dρ̂sc
dt

=
[
ĥe, ρ̂sc

]
; ĥe =

M∑
m=1

fm 〈α̃| Ĉ−1ÊmĈ |α̃〉 (6.193)

with the effective Hamiltonian ĥe made up of error-inducing Hamiltonians
transformed by coding and decoding and projected to the state of the ancilla.
Our aim is to set these projections to zero by a proper choice of the coding
transformation Ĉ.

The relation |v〉 = Ĉ |s〉 ⊗ |α̃〉 holds for the code vectors and the states of
the system. If ĥe = 0, the errors do not affect the main part of the system
and ρ̂sc = const which implies

〈v′| Êm |v〉 = 0; ∀ |v〉 , |v′〉 ∈ C; ∀Êm ∈
{
Êm

}
. (6.194)

In other words, a linear increment δv = Êmv resulting from any error Êm

applied to a vector v of the coding space is orthogonal to any other vector v′

of the coding space. Note that all Hamiltonians Êm in (6.194) projected to
the code space have zero traces, or should be set in this form by subtracting a
scalar operator λÎ that does not change the Hamiltonian dynamics. We note
the physical meaning of (6.194). A corrupted state vector of the code space
does not overlap with another vector of the code space if they were orthogo-
nal before the corruption. This corresponds to the so-called Hamming error
detection condition in classical information theory. It simply means that the
variety of all of the results obtained by the corruption of one message should
not include another possible message. The only difference is that in quantum
mechanics we interpret the overlap as a scalar product of the state vectors
in the Hilbert space, whereas in classical information theory this concept is
formulated in terms of “distance”, a metrical property which denotes the
number of distinct information bits for two messages.

Now we show an algorithm which allows one to design such codes. For
N = KA dimensional Hilbert space HN formed by the main part K and
ancilla A, condition (6.194) is a set of MK2 equations taken over AK2 matrix
elements 〈α|⊗〈s′| Ĉ |s〉⊗ |α̃〉 of the N ×N encoding operator Ĉ. This defines
a rectangular K×N part Ĉ |α̃〉 of Ĉ. To specify (6.194) further, let the states
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|s〉⊗|α̃〉 correspond to the first K positions of the state vector, which implies
that each of the M matrices Ĉ−1ÊmĈ has an all-zero upper left K×K corner.
The standard methods of linear algebra do not give a recipe for finding a linear
transformation Ĉ that simultaneously sets to zero the corners of M different
matrices. The following iterative algorithm accomplishes this task– we find
a code space C composed of all linear combinations of K first columns of Ĉ
which satisfies the conditions of (6.194) given M arbitrary error Hamiltonians
Êm.

Though it can directly be done in the Hilbert space, in order to elucidate
the geometrical meaning of the algorithm we write the code basis as a single
real vector C of length 2KN by appending vectors of length N corresponding
to real and imaginary parts of the first K columns of Ĉ. We rewrite (6.194)
in the form (

CÊmC
)

= 0, (6.195)

where 2KN × 2KN error matrices Êm have a K × K block structure. Each
diagonal and upper-diagonal block repeats real 2N × 2N matrices Êm cor-
responding to Hamiltonians Êm, whereas the lower blocks are formed by
the unity operator Î in the Hilbert space HN rewritten in the chosen real
representation. The first type of blocks corresponds to the condition (6.194)
whereas the second part ensures the orthogonality of different columns of
Ĉ |α̃〉 . In other words, the vector C should satisfy M quadratic equations
(6.195) for each m.

The input of our algorithm is a randomly selected and properly normalized
vector C′. If by chance C′ is orthogonal to all vectors ÊmC′, the problem
is solved. Otherwise, there exists a linear combination

∑M
m=1 γmÊmC′ that

minimizes the length of the vector
∑M

m=1 γmÊmC′ +C′. This is schematically
shown in Fig.6.22(b). To find it, we employ the standard variational principle
and solve the corresponding set of linear equations for γm. When we displace
the end of our vector C′ in this direction, the angle Θ between this vector
and the plane

{
ÊmC′

}
increases. Since the orientation of the plane

{
ÊmC′

}
may also change with the displacement, the latter should not be too big.
To achieve the best convergency of our further iterations we direct the new
vector to the “median” point C′ → ∑M

m=1
1
2γmÊmC′ +C′, then normalize the

new vector, and repeat this procedure until the required accuracy is achieved.
Summarizing, we state that the discussed protecting codes give a univer-

sal means to protect a quantum system from coherence loss, although they
require a physical procedure of rapid coding and frequent measurement which
determines the efficiency of the error protection.



7 The Dynamics of One-Dimensional
Relay-Type Systems

Thus far we have mainly considered an extreme of quantum complexity, where
each pair of quantum states has been coupled by a matrix element, which is
statistically equivalent to any matrix element coupling another pair of lev-
els. Although this was not strictly speaking the case for two-band systems
where states of the same bands are not coupled, the resulting impact of this
fact on their behavior is so tiny that we could attribute them to the same
class of problems. The structure of the couplings among different quantum
states is closely related to the spatial dimensionality of the system, and the
situation where all of the coupling matrix elements have the same order of
magnitude is often referred to as the 0-dimensional case. In this chapter we
consider a different situation, where quantum systems are arranged, satisfy-
ing certain ”selection rules”. We begin with the consideration of multilevel
systems where not all of the states are coupled to each other, but where this
coupling is organized in some way. The first natural example is a system
of isolated levels, coupled only with their closest neighbors. After presenting
several examples of exactly soluble problems, we consider systems conforming
to the approximative WKB description, and then turn to the systems with
randomly distributed couplings and energy level positions. This will give us
an opportunity to introduce a number of mathematical methods useful for
the analysis of complex systems.

7.1 Exactly Soluble Relays of Isolated Levels

Consider a relay of isolated levels, that is a set of quantum states |n〉 of
energies En coupled with their closest neighbors by the interaction matrix
elements Vn,m = Vnδn,m+1+ V ∗

n δm+1,n, where δm,n is the Kronecker delta.
The Schrödinger equation for the probability amplitudes ψn corresponding
to the states |n〉 reads

i
∂ψn
∂t

= Enψn + Vnψn−1 + V ∗
n+1ψn+1. (7.1)

The corresponding equation for the eigenvalues

0 = ∆nψn + Vnψn−1 + V ∗
n+1ψn+1 (7.2)
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with ∆n = En−E has the form of a three-term recurrence relation, typical of
orthogonal polynomials or some other special functions. Each of these special
functions corresponds to an exactly soluble problem for the particular case
of ∆n and Vn. We consider a number of such problems.

7.1.1 Uniform Coupling and Linear Detuning

The simplest case ∆n = αn − E, Vn = V ∗
n = V conforms to the recurrence

relations for the Bessel functions

0 = (αn − E)Jn− E
α

(−V

2α

)
+ V Jn−1− E

α

(−V

2α

)
+ V Jn+1− E

α

(−V

2α

)
, (7.3)

and therefore the energy eigenstates can indeed be given in terms of the
Bessel functions

ψn(E) = AJn− E
α

(−V

2α

)
+ BJ−n+ E

α

( V

2α

)
(7.4)

where A and B are constants.
Dealing with the time-dependent problem for the initial condition ψ0(t =

0) = 1, it is however easier to make use of the generating function Ψ(t, ϕ) =∑
n ψn(t)eiϕn for which, for the chosen dependencies of ∆n and Vn after

substitution into (7.1), one finds the equation

i
∂Ψ(t, ϕ)

∂t
=

∑
n

αnψn(t)eiϕn + (V eiϕ + V ∗e−iϕ)Ψ(t, ϕ)

= −iα
∂Ψ(t, ϕ)

∂ϕ
+ (V eiϕ + V ∗e−iϕ)Ψ(t, ϕ), (7.5)

which can also be extended to the case of a time-dependent coupling V (t)
and results in

i
∂ ln [Ψ(t, ϕ)]

∂t
+ iα

∂ ln [Ψ(t, ϕ)]
∂ϕ

= V (t)eiϕ + V ∗(t)e−iϕ. (7.6)

We now introduce the new variables x = (αt+ϕ)/2 and y = (αt−ϕ)/2 which
yields

ln [Ψ(t, ϕ)] =
∫

V (x+yα )ei(x−y) + V ∗(x+yα )ei(y−x) dx
iα

. (7.7)

With the allowance for the initial condition Ψ(t = 0, ϕ) = 1 one therefore
finds

ln [Ψ(t, ϕ)] =

(αt+ϕ)/2∫
ϕ/2

V (x+yα )ei(x−y) + V ∗(x+yα )ei(y−x) dx
iα

=

t∫
t/2

V (z)ei(αz−αt+ϕ) + V ∗(z)e−i(αz−αt+ϕ) dz
i , (7.8)

where the replacement z → (x + y)/α has been made.
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From the generating function one immediately finds the amplitudes

ψn(t) =

2π∫
0

dϕ

2π
exp

⎧⎪⎨⎪⎩−i

⎡⎢⎣eiϕ
t∫

t/2

V (z)ei(αz−αt)dz + c.c.

⎤⎥⎦ − inϕ

⎫⎪⎬⎪⎭ , (7.9)

which, with the help of the integral representation for the Bessel functions

Jn(X) =
1
2π

π∫
−π

e−iX sinϑ+inϑdϑ (7.10)

yields
ψn(t) = inein argZJn(2 |Z|), (7.11)

where Z =
∫ t
t/2 V (z)ei(αz−αt)dz.

We note that the problem can also be solved for any dependence α(t)
which results in (7.11) with Z =

∫ t
t/2 V (z) exp

[
i
∫ z
t

α(θ)dθ
]
dz. The reason

why this can be solved for arbitrary dependences V (t) and α(t) lies in the
algebraic structure of the Hamiltonian, which only contains the operators
â± → (δn,m+1 ± δm+1,n)/2 and âd → nδn,m forming a closed subalgebra in
the infinite dimensional Hilbert space of the entire system. These operators
satisfy the commutation relations [â+, â−] = 0, [âd, â±] = â∓ which is easy to
see after Fourier transformation over the indices (momentum representation
n → ϕ), since âd → −i∂/∂ϕ; â+ → cosϕ, and â− → i sinϕ. That is why
the representation (5.5) for the evolution operator of this infinite-dimensional
system contains only these three generators, demonstrating once again the
fact that an exactly soluble problem usually has a hidden operator structure
symmetry.

In Fig. 7.1(a) we show the population distribution corresponding to the
amplitudes (7.11) for different values of the parameter Z. Note that the states
with n < V , apart from periodic oscillations, are populated almost uniformly,
with a certain augmentation for n 
 V , whereas for n > V the population
decreases exponentially.

7.1.2 The Harmonic Oscillator
in an Arbitrary Time-Dependent Field

The next important case of (7.1) is En = αn, Vn = V
√

n which after the
replacement ψn = e−iαntψ̃n results in

i
∂

∂t
ψ̃n = V eiαt

√
nψ̃n−1 + V ∗e−iαt√n + 1ψ̃n+1, (7.12)

which it is expedient to rewrite with the help of the operators â and â† of
the harmonic oscillator
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Fig. 7.1. Population distribution in systems with closest neighbor interaction. (a)
Linear detuning and constant coupling. The absolute value of the amplitude is given
by the Bessel functions (7.11). (b) Harmonic oscillator. The absolute value of the
amplitude is given by the Laguerre polynomials (7.20). The dependence is shown
for the initially populated state n′ = 6.

i
∂

∂t

∣∣∣ψ̃〉
= V eiαtâ

∣∣∣ψ̃〉
+ V ∗e−iαtâ †

∣∣∣ψ̃〉
. (7.13)

This form of the equation will help us to find a solution even for an arbitrary
time dependence of V (t) and α(t) when (7.13) reads

i
∂

∂t

∣∣∣ψ̃〉
=

[
V (t)ei

∫
α(t)dtâ + V ∗(t)e−i ∫

α(t)dtâ†
] ∣∣∣ψ̃〉

. (7.14)

We introduce the quantity

Z(t) = −i

∫
V (t)ei

∫
α(t)dtdt (7.15)

and consider a transformation Û(t) = exp [Z(t)â + Z∗(t)â†], which according
to the Baker–Campbell–Hausdorff formula (5.3) and with allowance of the
commutation relation [â, â†] = 1 can be written in the form

Û(t) = exp [Z(t)â + Z∗(t)â†]
= exp [Z(t)â] exp [Z∗(t)â†] exp

[ 1
2Z(t)Z∗(t)

]
. (7.16)

For
∣∣∣ψ̃〉

= Û(t)
∣∣ψ′〉 after straightforward calculations, (7.14) yields

∂

∂t

∣∣ψ′〉 =
[
Z(t)

∂Z∗(t)
2∂t

− Z∗(t)
∂Z(t)
2∂t

] ∣∣ψ′〉 , (7.17)

where in the course of calculations the expansion

eX̂ Ŷ e−X̂ = Ŷ +
[
X̂, Ŷ

]
+

1
2!

[
X̂,

[
X̂, Ŷ

]]
+ . . . , (7.18)

has been employed.
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Equation (7.17) describes an unimportant common phase shift, and hence
the operator Û(t) of (7.16), depending on two real functions ReZ(t) and
ImZ(t), gives the evolution of the system. However, if the initial state of the
system corresponds to a single number state, that is ψn(t = 0) = δn,n′ , and if
we are interested only in the population distribution and not in the relative
phases of different probability amplitudes, the result depends only on a single
function |Z(t)| and reads

|ψn|2 =
∣∣〈n| exp

[|Z(t)| (â − â†)] |n′〉∣∣2 , (7.19)

which can be obtained by the transformation

exp
(−iΦ(t)â†â

)
Û(t) exp

(
iΦ(t)â†â

)
corresponding to rotation of the operator (7.16) by an angle Φ(t) = π/2 +
arg Z(t) in the phase space. In the combination

(
â − â†) /

√
2 one recognizes

the momentum operator ip̂ = ∂/∂x, and therefore exp
[|Z(t)| (â − â†)] is

just an operator of finite shift (5.13) of the coordinate by the value |Z(t)|√2.
The simplest way to determine the matrix elements (7.19) of this operator
is simply to perform calculations in the coordinate representation, where the
wave functions on the oscillator energy eigenstates ϕ(x) are given by Hermite
polynomials Hn(x)e−x2/2/

√
2nn!. This yields

|ψn|2 = e−|Z(t)|2

2n+n′n!n′!

∣∣∣∣∫ Hn′
(
x + |Z(t)|√

2

)
Hn

(
x − |Z(t)|√

2

)
e−x2

dx

∣∣∣∣2
= πe−|Z(t)|2 |Z(t)|2(n−n′) n′!

n!

[
Ln−n′
n′

(
|Z(t)|2

)]2
, (7.20)

where n > n′ and Lmk (x) is a Laguerre polynomial. For n > n′ these two
indices have to be interchanged.

In Fig. 7.1(b) we show the population distribution corresponding to the
amplitudes (7.20) for different values of the parameter Z. The existence of
an explicit solution again originates in the structure of the operator algebra
corresponding to the problem. The Hamiltonian for the harmonic oscillator,
interacting with an external field, can be given in terms of three operators
– the unperturbed Hamiltonian Ĥ0 = â†â = (P̂ 2 + Q̂2)/2, the momentum
P̂ = i(â† − â)/

√
2 and the coordinate Q̂ = (â + â†)/

√
2 operators, which

satisfy the canonical commutation relations
[
Ĥ0Q̂

]
= iP̂ ,

[
Ĥ0P̂

]
= −iQ̂,

and
[
P̂ Q̂

]
= −i.

7.1.3 Raman Pumping of a Harmonic Oscillator

The case En = 2αn, Vn = V
√

2n(2n + 1), where V and α are functions
of time, also corresponds to a harmonic oscillator, although subjected to a
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different pumping. In equation (7.1) for such parameters, one recognizes the
Schrödinger equation

i
∂

∂t

∣∣∣ψ̃〉
=

[
α ââ† + V â2 + V ∗ â†2] ∣∣∣ψ̃〉

. (7.21)

for the linear combinations
∣∣∣ψ̃〉

=
∑

ψ̃n |2n〉 of even numbered states of the
harmonic oscillator, written with the help of the creation â† and annihilation
â operators squared. The odd functions also satisfy the same equation. By
analogy to the previous two cases, these squares â2 and â†2, together with
the unperturbed Hamiltonian â† â, also form a closed subalgebra in the entire
Hilbert space of the system, satisfying the commutation relations

[
â†â, â2

]
=

−2â2,
[
â†â, â†2] = 2â†2, and

[
â2, â†2] = 2ââ†. Therefore one can try to find

an explicit solution for this problem as well.
In the coordinate and momentum representation (7.21) reads

i
∂

∂t

∣∣∣ψ̃〉
=

[
α

Q̂2 + P̂ 2

2
+ ReV

(
Q̂2 − P̂ 2

)
− ImV

(
P̂ Q̂ + Q̂P̂

) ] ∣∣∣ψ̃〉
,

(7.22)
and we note that the operators µ̂+ = (Q̂2 + P̂ 2)/2, µ̂− = (Q̂2 − P̂ 2)/2, and
µ̂s = (P̂ Q̂ + Q̂P̂ )/2 satisfy the commutation relation resembling that for the
spin operators σx, σy, and σz,[

µ̂s, µ̂±
]

= −2iµ̂∓;
[
µ̂+, µ̂−

]
= −2iµ̂s (7.23)

which however have an important difference in sign, resulting in a non-
compact SU(1, 1) Lie group which apart from rotation in the oscillator phase
space exp

(−iφµ̂+
)
, also contains a squeezing operation exp (−iZµ̂s).

Let us assume V real (which can always be done by proper choice
of the representation) and perform two sequential transformations

∣∣ψ′〉 =

exp (−iZµ̂s) exp
(−iφµ̂+

) ∣∣∣ψ̃〉
with time-dependent Z and φ. The first trans-

formation mixes up the operators µ̂− and µ̂s

exp
(
iφµ̂+

)
µ̂− exp

(−iφµ̂+
)

= µ̂− cos 2φ − µ̂s sin 2φ

exp
(
iφµ̂+

)
µ̂s exp

(−iφµ̂+
)

= µ̂s cos 2φ + µ̂− sin 2φ (7.24)

in the same way as the transformation exp (−iφσ̂x) mixes up the σy, and σz
operators. The second transformation

exp (iZµ̂s) µ̂+ exp (−iZµ̂s) = µ̂+ cosh 2Z + µ̂− sinh 2Z
exp (iZµ̂s) µ̂− exp (−iZµ̂s) = µ̂− cosh 2Z + µ̂+ sinh 2Z (7.25)

corresponds to squeezing of the phase space in the coordinate direction and
stretching it in the momentum direction:
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exp (iZµ̂s) Q̂ exp (−iZµ̂s) = Q̂e−Z

exp (iZµ̂s) P̂ exp (−iZµ̂s) = P̂ eZ . (7.26)

In this representation we find

i
∂

∂t

∣∣ψ′〉 =
[(

α +
.

φ
)

cosh 2Z + 2V cosφ sinh 2Z
]

µ̂+

∣∣ψ′〉
+

[
V cosφ cosh 2Z + 1

2

(
α +

.

φ
)

sinh 2Z
]
2µ̂−

∣∣ψ′〉
−

(
V sinφ −

.

Z
)

2µ̂s
∣∣ψ′〉 . (7.27)

We now require the coefficients in front of µ̂− and µ̂s to vanish, and determine
Z(t) and φ(t) by solving the set of two coupled nonlinear equations

.

φ = −α − 2V cosφ coth 2Z
.

Z = V sinφ (7.28)

which depend on the particular time dependence of V (t) and α(t). The re-
maining terms in (7.27) result in a transformation exp

(−iθµ̂+
)

where the

phase reads θ =
∫ [(

α +
.

φ
)

cosh 2Z + 2V cosφ sinh 2Z
]
dt, and hence each

number state |n〉 acquires an individual phase shift nθ. The resulting dis-
tribution is given by multiplication of the initial condition by the resulting
evolution matrix

|ψn|2 =
∣∣∣∣∑
n′

〈n| exp
(−iθµ̂+

)
exp (−iZµ̂s) exp

(−iφµ̂+
) |n′〉ψn′

∣∣∣∣2 , (7.29)

and for a single initially populated level n′, the value of Z(t) is the only
parameter governing the distribution at time t.

One again finds the population distribution (7.29), considering the overlap
integrals of the properly normalized squeezed initial coordinate wavefunction
exp (−iZµ̂s)Hn′(x)e−x2/2 = Hn′(xe−Z)e−x2e−2Z/2 and the final wavefunc-
tion

|ψn|2 =
e−Z

2n+n′n!n′!

∣∣∣∣∫ Hn(x)e−x2/2Hn′(xe−Z)e−x2e−2Z/2dx

∣∣∣∣2 . (7.30)

One can say that the symmetry corresponding to the algebraic operator rela-
tions (7.23) manifests itself in the coordinate representation – the wavefunc-
tion of the oscillator remains the same throughout the evolution apart from
the fact that the coordinate itself experiences a scaling by a time-dependent
complex number. In particular, this means that Gaussian wavefunctions re-
main gaussian although the complex width parameter of the Gaussian dis-
tribution changes with the course of time. Such wavefunctions are known as
squeezed states of the harmonic oscillator.
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7.1.4 The Harmonic Oscillator in the Simultaneous Presence
of Dipole and Raman Pumping

We note that for the harmonic oscillator, the more general problem of si-
multaneous excitation via both dipole and Raman interaction has an explicit
analytical solution. For this case, the closed subalgebra also includes the op-
erators P̂ 2and Q̂2, or the operators â†2 and â2 in the representation of second
quantization. Instead of (7.2), this problem gives a five-term recurrent rela-
tion, which being considered with the help of generating functions results
in awkward intermediate expressions. That is why we do not present this
approach here. However, because of the important role played by harmonic
oscillator models in quantum physics, we give here an alternative description.

Consider the Hamiltonian

Ĥ = a(t)P̂ 2 + b(t)Q̂2 + c(t)P̂ Q̂ + f(t)P̂ + h(t)Q̂, (7.31)

and perform several sequential transformations in order to find a represen-
tation where this expression has the most simple form. We first consider the
shift transformation Û1(t) = exp

[
i
(
A(t)P̂ + B(t)Q̂

)]
and find the time-

dependent shifts of the coordinate A(t) and of the momentum −B(t) such
that the transformed Hamiltonian

Ĥ1 = Û1(t)ĤÛ−1
1 (t) (7.32)

does not contain terms linear in P̂ and Q̂. To this end we note that

Û1(t)P̂ Û−1
1 (t) = P̂ − B(t)

Û1(t)Q̂Û−1
1 (t) = Q̂ + A(t)

(7.33)

as follows from the commutation relation and (7.18) , and substitute (7.33)
into (7.31), (7.32). This yields

Ĥ1 = a(t)P̂ 2 + b(t)Q̂2 + c(t)P̂ Q̂ + [c(t)A(t) − 2a(t)B(t) + f(t)] P̂

+ [2b(t)A(t) − c(t)B(t) + h(t)] Q̂ + b(t)A(t)2

−c(t)B(t)A(t) + a(t)B(t)2 − f(t)B(t) + h(t)A(t), (7.34)

and for

A(t) =
2a(t)h(t) − c(t)f(t)
c2(t) − 4a(t)b(t)

; B(t) =
2b(t)f(t) − c(t)h(t)
c2(t) − 4a(t)b(t)

, (7.35)

the terms linear in P̂ and Q̂ disappear, whereas the free terms do not contain
an operator part and therefore can be ignored.

We have therefore reduced the problem to the former one, and hence the
total evolution can be given in the form
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Û(t) = exp
[
−θ(t)

2i

(
P̂ 2 + Q̂2

)]
exp

[
−iZ(t)P̂ Q̂

]
exp

[
−i

φ(t)
2

(
P̂ 2 + Q̂2

)]
exp

[
−iA(t)P̂ − iB(t)Q̂

]
, (7.36)

as follows from (7.29) whereas five time-dependent coefficients A(t), B(t),
φ(t), Z(t), θ(t) are related to the arbitrary functions a(t), b(t), c(t), f(t), and
h(t) by (7.28), (7.35). For an initial state, localized on just a single number
state |n〉 , the population distribution depends only on three parameters,
since in this case the operators with P̂ 2 + Q̂2 in the exponents give only an
irrelevant phase dependence, whereas the important part reads

Û(t) = exp
[
−iZ(t)P̂ Q̂

]
exp

[
−iA′(t)P̂ − iB′(t)Q̂

]
, (7.37)

with

A′(t) = A cosφ(t) + B sinφ(t)
B′(t) = B cosφ(t) − A sinφ(t). (7.38)

We note that the last exponent in (7.36) corresponds to the case of dipole
excitation (7.20) whereas the first exponent is related to the Raman pumping
(7.30).

7.2 General Case of an Exactly Soluble Relay

We now consider the general case of (7.1) with time independent coefficients,
and try to find the conditions where the solution can be expressed explicitly
in terms of known functions. The matrix form of the Schrödinger equation

i

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

ψ1.
ψ2.
ψ3
.

.

ψN−2.

ψN−1.

ψN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

E1 V ∗
1 0 . 0 0 0

V1 E2 V ∗
2 . 0 0 0

0 V2 E3 . 0 0 0
. . . . . . .
0 0 0 . EN−2 V ∗

N−2 0
0 0 0 . VN−2 EN−1 V ∗

N−1
0 0 0 . 0 VN−1 EN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ψ1
ψ2
ψ3
.

ψN−2
ψN−1
ψN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (7.39)

allows one to write, for the Fourier transforms∥∥∥∥∥∥∥∥∥∥
ψ1
ψ2
.

ψN−1
ψN

∥∥∥∥∥∥∥∥∥∥
= i

∥∥∥∥∥∥∥∥∥∥
E1 − ε V ∗

1 . 0 0
V1 E2 − ε . 0 0
. . . . .
0 0 . EN−1 − ε V ∗

N−1
0 0 . VN−1 EN − ε

∥∥∥∥∥∥∥∥∥∥

−1 ∥∥∥∥∥∥∥∥∥∥
ψ′

1
ψ′

2
.

ψ′
N−1
ψ′
N

∥∥∥∥∥∥∥∥∥∥
(7.40)
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where primes denote initial conditions at t = 0. In accordance with the
standard rules of linear algebra, the inverse of the three-diagonal matrix
Ĥ − ε can be found with the help of the diagonal minors, M+

k corresponding
to the k×k upper-left corner and M−

n corresponding to the (N −n)×(N −n)
lower-right corner of the matrix Ĥ−ε,and for the matrix elements with k < n
one finds (

Ĥ − ε
)−1

kn
=

M+
k M−

n

Det
∣∣∣Ĥ − ε

∣∣∣
n−1∏
l=k

V ∗
l (7.41)

that for the matrix element with k = 4 and n = N − 3 in particular means

(
Ĥ − ε

)−1

4,N−3
=

∣∣∣∣∣∣
E1 V ∗

1 0
V1 E2 V ∗

2
0 V2 E3

∣∣∣∣∣∣
∣∣∣∣∣∣
EN−2 V ∗

N−2 0
VN−2 EN−1 V ∗

N−1
0 VN−1 EN

∣∣∣∣∣∣
Det

∣∣∣Ĥ − ε
∣∣∣ V ∗

4 . . . V ∗
N−4. (7.42)

The minors M−
n and M+

k satisfy the three-term recurrence relations

M−
n = (En+1 − ε)M−

n+1 − |Vn+1|2 M−
n+2,

M+
k = (Ek−1 − ε)M+

k−1 − |Vk−1|2 M+
k−2. (7.43)

which coincide with the Fourier transformed initial Schrödinger equation.
Indeed, after the replacement ψn → φn

∏n−1
k=0 V ∗

k , equation (7.39) yields

(En − ε)φn = φn−1 + |Vn|2 φn+1 (7.44)

where we have ignored for the moment the initial conditions in the form of
δ-functions, discussed earlier in the context of (3.9). We also note that the
relation

M+
n+1M

−
n − |Vn|2 M+

n M−
n+1 = Det

∣∣∣Ĥ − ε
∣∣∣ (7.45)

is valid for any n.

7.2.1 Conditions for the Existence of a Polynomial Solution

Let us consider the conditions where the recurrence relations (7.43), (7.44)
have an explicit algebraic solution, representable by an analytic expression.
We concentrate only on the particular case where En+1 is a polynomial in
n and |Vn+1|2 = Fn/Dn is a ratio of two polynomials. The minors in this
case will also be ratios of polynomials, as well as the combinations u−

n =
M−

n /M−
n+1 and u+

k = M+
k /M+

k−1 satisfying the equations

u−
n = (En+1 − ε) − |Vn+1|2

u−
n+1

,

u+
k = (Ek−1 − ε) − |Vk−1|2

u+
k−1

. (7.46)
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These two equations are equivalent. Therefore, we take just the second one
and substitute u+

k = Pk/Qk in the form of a ratio of a polynomial Pk of order
p and a polynomial Qk of order q. This yields

DkP
+
k P+

k+1 = Dk (Ek − ε)P+
k Q+

k+1 − FkQ
+
k Q+

k+1. (7.47)

Now one can ask if a solution of (7.47) exists for p and q independent of k.
In this case, the minors can be found in the form of an explicit algebraic
expression. Otherwise no general algebraic expression exists for the minors
simpler than their definitions. The p + q + 2 coefficients of the polynomials
Pk and Qk play the role of independent variables in (7.47), whereas the
coincidence of the coefficients corresponding to the same powers of k on the
left and on the right hand sides results in a set of at least 2p+d+1 equations,
where d is the order of the polynomial Dk, as suggested by the polynomial
order of left hand side of (7.47). A solution exists for p + q + 2 ≥ 2p + d + 1,
that is for q − p ≥ d − 1. Moreover, the last term on the right hand side
suggests that the number of equations is not less than 2q + f + 1, where f
is the order of Fk, and therefore d − 1 ≤ q − p ≤ 1 − f. Therefore q − p can
only assume the values 0,±1. One more condition 1 ≥ d + ε emerges from
the polynomial order of the first term on the right-hand side, where ε is the
polynomial order of Ek. The latter yields two possibilities: d = 1; ε = 0, or
d = 0; ε = 1, that imply f ≤ 1 for the first and f ≤ 2 for the second cases.

The case d = 0; ε = 1; f = 0 coincides with (7.3), and the case d = 0; ε =
1; f = 1 corresponds to the harmonic oscillator (7.12). Hence we are left with
only two more possibilities

d = 1; ε = 0; f = 1; (p = q) ,

d = 0; ε = 1; f = 2; (p = q + 1) , (7.48)

where d = 1, ε = 0, f = 0 is a particular case of the first possibility. The
second possibility includes Raman pumping (7.21) as a particular case. Equa-
tions (7.43) for minors now read

(an + b)
(
M−

n−1 + εM−
n

)
+ M−

n+1 = 0,

(ak + b)
(
M+

k+1 + εM+
k

)
+ M+

k−1 = 0, (7.49)

for the decreasing coupling |Vn|−2 = an + b; and strict resonance En = 0,
and

M−
n−1 = (αn − ε)M−

n − a (n − b) (n − c)M−
n+1,

M+
k+1 = (αk − ε)M+

k − a (k − b) (k − c)M+
k−1, (7.50)

for the increasing coupling |Vn|2 = a (n − b) (n − c) and an arbitrary linear
detuning En = αn. These couplings are shown in Fig. 7.2. The corresponding
equations (7.44) read
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Fig. 7.2. Two types of dependences of the coupling strength on the level number
corresponding to exactly soluble problems (Sect. 7.2.2, left and Sect. 7.2.3, right).
Arrows show the domains of the imaginary matrix elements.

(an + b)
(
εφn + φn−1

)
+ φn+1 = 0,

(αn − ε)φn − φn−1 − a (n − b) (n − c)φn+1 = 0. (7.51)

For the case of increasing coupling, it is convenient to make the replace-
ment φn → φnΓ (1 − c)/Γ (n − c). Equations (7.51), with allowance of the
initial conditions ψn(0) at t = 0, ignored earlier in (7.44), take the form

(an + b)
(
εφn + φn−1

)
+ φn+1 = i (an + b)ψn(0)

n−1∏
k=0

(V ∗
k )−1

,

(ε − αn)φn + (n − 1 − c)φn−1 + a (n − b)φn+1 = iψn(0)
n−1∏
k=0

(k−c)
V ∗

k
.

(7.52)

Equations (7.52) are linear in n, and can be solved as earlier (7.5), by
introducing the generating functions M(ϕ) =

∑
n φne

iϕn. The generating
function method suggests the replacement n → −i∂/∂ϕ, and we arrive at
the first-order differential equations

ia
∂
(
eiϕ + ε

)M(ϕ)
θϕ

=
(
beiϕ + bε + e−iϕ)M(ϕ) + q(ϕ), (7.53)

i
∂
(
α − ae−iϕ − eiϕ

)M(ϕ)
θϕ

=
[
(1 + c) eiϕ − ε + abe−iϕ]M(ϕ) + q(ϕ),

(7.54)

with the inhomogeneous terms q(ϕ) originating from the initial conditions.
Note that .(7.53)–(7.54) are first-order linear differential equations, and

that they always have explicit solutions in the form of integrals. The reason
why the original problem reduces to an exactly soluble one originates in the
condition (7.47), which implies a sort of translational symmetry, which fol-
lows from the requirement of the independence of the polynomial orders of Pk
and Qk entering (7.46) for u+

k = Pk/Qk on the index k. Moreover, it points
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to the fact that the Schrödinger equation, with the detunings and interac-
tions restricted by the condition (7.48), describe evolution in a subspace of
the entire Hilbert space of the multilevel system, whereas the corresponding
evolution operators belong to a certain subgroup. For certain particular cases
of increasing coupling, this is the subgroup SU(2) of rotations generated by
the angular momentum operators L±, Lz, whereas the Hamiltonian can be
written as a sum aL+ + a∗L− + αLz of these operators.

The homogeneous parts of (7.53)–(7.54) have the form

i
∂f(ϕ)M(ϕ)

θϕ
= g(ϕ)M(ϕ), (7.55)

where f(x) and g(x) are arbitrary functions. Therefore their solution has the
form

M(ϕ) =
1

f(ϕ)
exp

⎧⎨⎩−i

ϕ∫
g(x)
f(x)

dx

⎫⎬⎭ , (7.56)

which results in a general solution of the homogenous equation

φn = C

2π∫
0

e−iϕn

f(ϕ)
exp

⎧⎨⎩−i

ϕ∫
g(x)
f(x)

dx

⎫⎬⎭ dϕ. (7.57)

The complete equations

i
∂f(ϕ)M(ϕ)

θϕ
= g(ϕ)M(ϕ) + q(ϕ), (7.58)

have the solution

M(ϕ) =
1

if(ϕ)

ϕ∫
q(y) exp

⎧⎨⎩i

y∫
ϕ

g(x)
f(x)

dx

⎫⎬⎭ dy. (7.59)

and hence

φn =

2π∫
0

e−iϕn

if(ϕ)

⎡⎣ ϕ∫
q(y) exp

⎧⎨⎩i

y∫
ϕ

g(x)
f(x)

dx

⎫⎬⎭ dy

⎤⎦ dϕ (7.60)

is the solution of the original problem. Straightforward calculations of the
integrals (7.60) are rather awkward. We therefore separately consider the
case of increasing coupling, for which another approach is more convenient,
and then we concentrate on the case of decreasing coupling.
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7.2.2 The Increasing Coupling |Vn| =
√

a (n − b) (n − c).

Equation (7.54), after inverse Fourier transformation, reads

i
(
α − ae−iϕ − eiϕ

) ∂M(ϕ)
∂ϕ

+ i
∂M(ϕ)

∂t
=

[
ceiϕ + a(b − 1)e−iϕ]M(ϕ),

(7.61)
where the factor a can be set to one, by introducing

√
a as the frequency

unit. As any of the first order linear differential equations, it has a general
solution

M(ϕ, t) = eiϕ(2+b) [(eiϕ − x−
) (

eiϕ − x+
)]A2

(
eiϕ−x+
eiϕ−x−

)A1F( e
iϕ−x−
eiϕ−x+

et
√

4a+α2
),

(7.62)
found by the method of characteristics, where

x± =
iα

2
± i

√
4 + α2

2
; A1 = i

1 + b + c

2
√

4 − α2
α; A2 =

c − 3 − b

2
, (7.63)

and F(x) is an arbitrary function.
The choice of F(x) is suggested by the initial condition M(ϕ, 0) =∑
φn(t = 0)eiϕn

F(
eiϕ − x−
eiϕ − x+

) = e−iϕ(2+b)
(

eiϕ − x−
eiϕ − x+

)A1 M(ϕ, 0)

[(eiϕ − x−) (eiϕ − x+)]A2
, (7.64)

which after the substitution eiϕ = (yx− − x+)/(y − 1) yields

F(y) =
y−A2−A1(y − 1)c−1

(yx− − x+)b+2 (x+ − x−)2A2
M

(
−i ln

(
yx− − x+

y − 1

)
, 0

)
. (7.65)

Since any initial condition φn(t = 0) = δn,n0 after the replacements b →
b+n0, c → c+n0 results in φn(t = 0) = δn,0, we can consider only M(ϕ, 0) =
1 and obtain

φk(t) =

2π∫
0

dϕ

2π
e(A2−A1)T−iϕ(k−b−2)

(x+ − x−)2A2

(
eiϕ(eT − 1) − x+eT + x−

)c−1

(eiϕ(eTx− − x+) + 1 − eT )b+2 , (7.66)

where T = t
√

4a + α2. The other form of the same expression

φk(t) =

2π∫
0

dϕ
e−iϕk

2π
e(A2−A1)T

(x+ − x−)2A2

(
x− − x+eT

)c−1

(eTx− − x+)b+2

(
eiϕ(eT − 1)
−x+eT + x−

+ 1
)c−1 (

1 +
1 − eT

eiϕ(eTx− − x+)

)−b−2

, (7.67)
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is more convenient for casting in power series over
(
eT − 1

)
.

This results in

ψk(t) =

2π∫
0

dϕ
e−iϕk

2π
e(A2−A1)T

(x+ − x−)2A2

(
x− − x+eT

)c−1

(eTx− − x+)b+2

∞∑
m=0

Γ(c)eimϕ

Γ(c − m)m!

(
eT − 1

x− − x+eT

)m

∞∑
n=0

Γ(−1 − b)e−inϕ

Γ(−1 − b − n)n!

(
1 − eT

eTx− − x+

)n

, (7.68)

where we have assumed that b < 0, c > 0. Integration yields m = k + n and
we are left with the known sum
∞∑
m=0

Γ(c)
Γ(c−k−n)(−k−n)!

Γ(−1−b)
Γ(−1−b−n)n!x

n = Γ(c)
k!Γ(c−k) 2F1 (2 + b, 1 + k − c; k + 1;x) ,

(7.69)
given in terms of hypergeometric function 2F1 (α, β; γ; z). Substitution of this
sum yields for the probability amplitudes

ψk(t) =
ike(A2−A1)T

(x+ − x−)2A2

√
Γ(c)Γ(k − b)

Γ(c − k)Γ(−b)

(
x− − x+eT

)c−1−k

(eTx− − x+)b+2

(
eT − 1

)k
k!

2F1

(
2 + b, 1 + k − c; k + 1;

eT − 1
x− − x+eT

1 − eT

eTx− − x+

)
. (7.70)

Note that the transformation formulas for the hypergeometric function can
give an expression, symmetric with respect to b and c, such that the imposed
conditions c > b can be lifted. Otherwise one has to make the replacements
b � c, x− � x+. In the opposite case α < 1, the population distribution re-
mains localized near the initially populated state. Note that in order to get the
correct result of the form (7.70) in the domain where |Vn| ∼ √

(n − b) (n − c)
assumes imaginary values, one has to make the replacements α → iα and
t → it. Also note that for the particular case of integer b and c, the problem
describes the dynamics of an angular momentum J , with 2J +1 = |b − c| , in
a constant magnetic field, and therefore corresponds to a 2L+1-dimensional
representation of the SU2 group.

In Fig. 7.3 we show two different regimes of the population dynamics
corresponding to small detunings α < 1 and large detunings α > 1. In the
first regime, the population initially localized at the level k = 0 moves toward
infinite values of k in the direction of increasing couplings Vn. We note that
many different wavepackets are formed during the time evolution, and these
packets follow different trajectories.
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Fig. 7.3. Two regimes of population dynamics for a system with linear detuning
En = αn and coupling V =

√
a(n − b)(n − c). (a) In the regime of small detuning

α <
√

a, the population distribution moves with the course of time to the levels
with large numbers. (b) For the large detunings α >

√
a the distribution oscillates

around the initially populated state. Arrows show the directions of propagation of
different wavepackets comprising the population distribution.

7.2.3 Decreasing Coupling |Vn| = 1/
√

an + b

Consider the case of decreasing coupling. Calculating the integrals entering
the exponents of (7.57), (7.59) one finds

ϕ∫
beix + bε + e−ix

eix + ε
dx = bϕ +

ie−iϕ

ε
− i

ε2 ln
(
1 + εe−iϕ) , (7.71)

and hence (7.57) yields a solution

φk = A

2π∫
0

e−iϕ(k+b)

(1 + εe−iϕ)1+1/ε2 exp
{

e−iϕ

ε

}
deiϕ

= εkA′
∫
C

y(k+b)

(1 + y)1+1/ε2 exp
{ y

ε2

}
deiϕ (7.72)

for the homogeneous equation (7.52). Here A and A′ are constants, and the
replacement eiϕ → y/ε has been performed in the last line. We have also set
a = 1 by employing the scaled time t → t

√
a and frequency ε → ε/

√
a.

Note that the integration contour C must not necessarily be a circle of
radius ε around the point y = 0, as suggested by the replacement. On the con-
trary, any contour, such that the integrand takes identical values at his ends,
can be chosen in the spirit of the Laplace contour integral method (5.137).
In this case, one can show by integration by parts that (7.72) satisfies the
homogeneous recurrence relation (7.52). For k+b > 0, among the possibilities
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is the contour of the type shown in Fig. 3.23(b) which goes around the points
y = 0 and y = −1 and yields the confluent hypergeometric function

χk = b
εk−1e−1/ε2Γ( 1

ε2 − b)
Γ(1 − b − k + 1

ε2 ) 1F1

(
− 1

ε2 , 1 + b − 1
ε2 ;

1
ε2

)
1F1

(
−k − b, 1 − k − b +

1
ε2 ;

1
ε2

)
, (7.73)

where a convenient normalization has been done.
For k + b < 0 one finds the other solution by noting that the combination

χ̃k(b, ε) = (−i)kχ−k (1 − b, iε)Γ(k + b)/Γ(b) also satisfies the homogeneous
recurrent relation (7.52). The substitution yields

χ′
k =

(1 − b)
(−ε)k−1 e−1/ε2 Γ

(
b − 1 − 1

ε2

)
Γ
(
b + k − 1

ε2

) 1F1

(
1
ε2 , 2 − b +

1
ε2 ;

1
ε2

)
Γ(k + b)

Γ(b) 1F1

(
1 − 1

ε2 , k + b − 1
ε2 ;

1
ε2

)
, (7.74)

where the relation 1F1(α, γ;x) = ex 1F1(γ − α, γ; −x) has been employed.
The normalization of χk and χ′

k has been chosen such that the combination

φk = χk Θ(k) + χ′
k Θ(−k) (7.75)

satisfies (7.52) with ψ0 (t = 0) = 1. This enables us to avoid cumbersome cal-
culations of the integrals suggested by the explicit expression (7.60). Time-
dependent amplitudes have to be found by numerical calculation of the in-
verse Fourier transformation of (7.75).

It is worth mentioning that k-dependence of the solutions (7.73)–(7.74)
coincide with k-dependence of the minors (7.49), and hence the determinant
Det

∣∣∣Ĥ − ε
∣∣∣ in (7.41) behaves as χ′

k→∞. For |ε| < 1 it vanishes at the points

ε = 1/
√

b + n of the complex ε-plane, where n is an integer. This gives the
frequency spectrum of the system. Note that 1/

√
b + n coincides by accident

with the Rabi frequencies of two-level systems composed of neighboring levels.
In Fig. 7.4 one sees the interplay of these non commensurable eigenfrequen-
cies resulting in a partial transfer of the population to the states with large
numbers. The corresponding wavepackets, however, lose their population in
the course of propagation at a constant velocity.

7.3 Smooth Variation of the Parameters

As we have seen, the exactly soluble problems correspond to certain sub-
groups in the Hilbert space of the multilevel systems. This implies that the
corresponding Hamiltonians in (7.1) consist of several additive parts that
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Fig. 7.4. Two regimes of population dynamics for a resonant system with a de-
creasing coupling V = 1/

√
a(n − b). One sees that the interference of different

non-comensurate harmonics results in involved population dynamics: a part of the
population remains at the levels neighboring the initially populated state, whereas
the rest of the population leaves toward states with large numbers n. The last part
of the population distribution forms wavepackets, gradually losing their population
with the course of propagation toward large n with a constant velocity. The arrows
show the dynamics of the main wavepackets formed as a result of the interference.

form an algebra of relatively small size, that is commutators of these parts
are given by their linear combinations. This is not always the case for systems
with couplings Vn and energies En arbitrarily changing with the level number
n. However, if these quantities change slowly, the commutators are small and
can be ignored.

7.3.1 WKB approximation

In this extreme, one can also consider the level number as a continuous co-
ordinate, and write the Schrödinger equation (7.1) in the form

i
∂ψ(n)

∂t
= E(n)ψ(n)+V (n) exp

(− ∂
∂n

)
ψ(n)+V ∗(n+1) exp

(
∂
∂n

)
ψ(n) (7.76)

where the finite shift operator (5.12) has been employed. The generating
function Ψ(t, p) =

∑
n ψn(t)eipn of (7.5) may now be interpreted as the

probability amplitude in the momentum representation, while the finite shift
operator in this representation is multiplicative in nature: exp

(
∂
∂n

) → eip.
Equation (7.76) can be interpreted as the Schrödinger equation of a par-

ticle with a non-quadratic relation between energy and momentum, moving
in direction n. The momentum operator p̂ = −i ∂

∂n commutes neither with
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the analog of the potential energy E(n) nor with the analog of the inverse
mass V (n), and the commutators given by the derivatives of these func-
tions, generally nonlinear, do not commute with p̂ either. However, when we
consider the dimensionless mechanical action S(n, t) given by the WKB sub-
stitution ψ(n, t) = e−iS(n,t) for slowly changing E(n) and V (n), the higher-
order derivatives turn out to be small, as compared to the powers of the first
derivative. In other words, higher-order commutators of the action with the
momentum operator can be ignored which yields

∂S(n, t)
∂t

= E(n) + V (n) exp
(

i
∂S(n, t)

∂n

)
+ V ∗(n) exp

(
∂S(n, t)

i ∂n

)
, (7.77)

where the difference between V ∗(n + 1) and V ∗(n) has also been ignored
within the order of the approximation. In this equation, one recognizes the
Hamilton–Jacobi equation for a classical particle with the Hamiltonian

H(n, p) = E(n) + 2V (n) cos p, (7.78)

where 2V (n) cos p plays the role of the kinetic energy. Let us first assume
that the classical total energy of the system is ε. Then one immediately
sees two regimes: (a) classically forbidden |E(n) − ε| > |2V (n)|, where the
potential energy exceeds the kinetic energy, and (b) classically allowed, where
|E(n) − ε| < |2V (n)|.

Substitution of S(n, t) = εt + Sm(n) into (7.78) yields the equation

∂Sm(n)
∂n

= arccos
ε − E(n)
2V (n)

(7.79)

for the reduced action Sm(n) which determines the eigenfunction ψ(n, ε) =
e−iSm(n) for the eigenstate of energy ε. This allows us to find Sm(n) explicitly,
and we obtain the WKB approximate result

ψ(n, t) =
∫

f(ε) exp

⎡⎣−iεt − i

n∫
arccos

ε − E(x)
2V (x)

dx

⎤⎦ dε (7.80)

which has a clear physical meaning: the wavefunction is a linear superposi-
tion of the eigenfunctions of different energies ε with arbitrary amplitudes
f(ε). The latter have to be found from the initial conditions. Note that in
the particular case E(n) = const; V (n) = const, considered on p. 310, the
amplitude (7.80) gives an exact solution of the problem.

7.3.2 Position and Width of the Erenfest Wavepacket

Let us analyze some physical consequences of (7.80). Let us assume that
initially the wave packet is localized near the point x = x0 at zero energy. At
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long times, the main contribution to the integral over energies ε comes from
the vicinity of the point ε = 0. We therefore can develop the classical action
S(n, t)

S(n, t) = εt +

n∫
arccos

ε − E(x)
2V (x)

dx = 0 (7.81)

in a Taylor series near this point. This yields

S(n, t) =

n∫
arccos

−E(x)
2V (x)

dx (7.82)

+ε

⎛⎝t −
n∫

dx
[4V (x)2−E(x)2]1/2

⎞⎠ +
ε2

4

n∫
E(x) dx

[4V (x)2−E(x)2]3/2 .

A relatively smooth function f(ε) can be factored out of the integral (7.80)
and replaced by its value at zero, and the integration with the allowance of
(7.82) yields

ψ(n, t) =
f(0)

√
2π√√√√ n∫

E(x) dx

[4V (x)2 − E(x)2]3/2

exp

⎡⎣−i

n∫
arccos

−E(x)
2V (x)

dx

⎤⎦

exp

⎡⎢⎣−
⎛⎝t +

n∫
dx

[4V (x)2 − E(x)2]1/2

⎞⎠2

/

n∫
E(x) dx

[4V (x)2 − E(x)2]3/2

⎤⎥⎦ .

(7.83)

This means that a wavepacket passes the point n at time

t =

n∫
dx

[4V (x)2 − E(x)2]1/2
, (7.84)

at velocity
∂n

∂t
= [4V (n)2 − E(n)2]1/2, (7.85)

and the passage takes time

δt =

n∫
E(x) dx

[4V (x)2 − E(x)2]3/2
. (7.86)

Note that the width δt is given by the integral diverging at the classical
turning points where 4V (x)2 = E(x)2, and the main contribution comes from
the vicinity of this point. Therefore it depends strongly on the parameters of
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Fig. 7.5. Semiclassical analysis of the population distributions. (a) The energy
dependence E(n) increases at n → ∞ slower, as compared to the coupling V (n)
(solid lines). The arrival time t(n) (dashed line), the power index Sm(n) of the
tunneling probability e−ImSm(n) (long dash line), and the width δt(n) (dash-dot
line) are not shown to scale. (b) Population as a function of the level number n and
time t for V (n) = 0.42 + 0.53n0.9 and E(n) = n1/2 as an example.

the last, classically available state, and sometimes it is necessary to replace
the integrals by sums at the integer points x = n near the turning points.
Another important feature of the wavepacket duration follows from the fact
that the integral (7.86) converges at the upper limit if the dependence V (n)
rises faster than n1/3 in the classically accessible region n → ∞. Therefore δt
does not depend on the level number for large n.

We also note that if the combination 4V (n)2−E(n)2 is positive in the limit
of large n and tends to infinity faster than n2, the integral (7.84) also con-
verges as n → ∞, and therefore the center of the classical wavepacket reaches
infinity at a finite time. In this regime, a level population with a Gaussian
time-dependence does not imply a Gaussian distribution over the levels at a
given time. On the contrary, this distribution has an essentially non-Gaussian
character, being strongly asymmetric, since the higher the number n is, the
higher is the local velocity of the populations. This asymmetry can already
be seen for V (x) ∼ xa for 1/2 < a < 1, as shown in Fig. 7.5(b).

7.3.3 The Tunneling Probability

The wavepacket cannot propagate in the classically forbidden region where
|E(n) − ε| > |2V (n)|. The integrand of (7.79) assumes the imaginary values
and the integral

Im(Sm) = i

na∫
nb

arccos
ε − E(x)
2V (x)

dx. (7.87)

between the points na,b where |E(na,b) − ε| = |2V (na,b)| , gives the probabil-
ity amplitude e−Im(Sm) for tunneling through the classically forbidden region.
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A more instructing form of this expression can be gained if we replace the
arccosine function by the corresponding logarithm and the integral by a sum

e−Im(Sm) = exp

⎡⎣−i

na∫
nb

arccos ε−E(x)
2V (x) dx

⎤⎦
= exp

{
na∑

n=nb

ln

[∣∣∣ ε−E(n)
2V (n)

∣∣∣ −
√(

ε−E(n)
2V (n)

)2
− 1

]}

=
na∏

n=nb

∣∣∣∣∣∣ |ε − E(x)| −
√

(ε − E(x))2 − 4V (x)2

2V (x)

∣∣∣∣∣∣ (7.88)

where na,b now represents the first and the last integer points in the classically
forbidden region. Expansion over the small ratio 2V (x)/(ε − E(x)) gives the
result

e−Im(Sm) =
na∏

n=nb

∣∣∣∣ V (n)
ε − E(n)

∣∣∣∣ (7.89)

which coincides with the first non-vanishing order of perturbation theory.
Indeed, as we have seen in (3.17), the amplitude ψ1 of a level |1〉 strongly de-
tuned by an energy ∆ = ε−E(1) from the energy ε of the initially populated
state |0〉 amounts at most to a fraction V (1)/(ε−E(1)) of the amplitude ψ0.
The level |1〉 serves, in turn, as a starting state for the subsequent set of two
levels |1〉 and |2〉. Therefore, by analogy, ψ2 ∼ V (1)V (2)/(ε−E(1))(ε−E(2)),
and repeating the same reasonings for all strongly detuned levels of the clas-
sically forbidden region, we arrive at (7.89).

7.3.4 Applicability of the WKB Approximation

We note that, contrary to the WKB analysis of the Schrödinger equation
with a quadratic dependence of the kinetic energy on the momentum, the
zero order WKB approximation cannot be easily improved for the discrete
level systems considered. The main reason for this is that a consistent equa-
tion for the corrections to the mechanical action (7.79) has the same structure
as the original equation (7.76) and contains all-order derivatives. However,
from WKB analysis of the regular Schrödinger equation, we know that this
correction is important mainly near turning points where the integrals for ac-
tion correction diverge. The turning points seldom coincide with the integer
points, important for the ensembles of discrete levels. Therefore, cut-off or
replacement of integrals diverging near the turning points by the correspond-
ing sums may compensate to some extent for the impossibility of improving
the zero-order approximation.

The other limitation of the WKB analysis has to do with the fact that,
for the validity of the approach, the duration δt(n) (7.86) of the wavepacket
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at a given state n should be much shorter compared to the arrival time t(n)
(7.84) to this level. This is not the case when the coupling increases faster
than ∼ n, when both quantities assume finite values. Neither is it the case
for decreasing couplings, when the width increases faster with n than the
arrival time. Therefore, the applicability of this approach is restricted to the
classically accessible domains where V (n) ∼ na at n → ∞ with 0 < a < 1.
It is worth mentioning that in the limit a = 0, that is for constant coupling,
the expression (7.80) is valid and, moreover, it yields solutions of the type
(7.10), but the saddle-point approximation of the integrals is incorrect. The
population distribution does not have the structure of a Gaussian wavepacket,
although the front of this distribution indeed propagates with velocity (7.85).

7.4 Relay with disordered parameters

Efficient transport of population from a quantum level to another one, sepa-
rated by a large interval in the relay-like sequence of coupled states, is possible
only if both levels are equally represented in the large number of different
eigenfunctions of the system. Formally this statement can be given in terms
of the resolvent 1/(ε− Ĥ) (4.10) which is another name for Green’s operator.
In the basis of eigenfunctions |ek〉 the Green’s operator reads

1

ε − Ĥ
=

∑
k

|ek〉 〈ek|
ε − εk

(7.90)

where εk denotes energies of the eigenstates, and the amplitude of the tran-
sition from the level n0 = 0 to the level n adopts the form

ψn(t) =
∫

dε e−iεt∑
k

ψn(εk)ψ∗
0(εk)

ε − εk
(7.91)

where ψn(Ek) = 〈n |ek〉 is the amplitude of the level n in the eigenstate k.
Comparison of (7.91) and (7.41) for Vn = 1 shows a useful correspondence:

ψn(εk)ψ∗
0(εk) =

M+
n (ε = εk)M−

0 (ε = εk)(
∂Det

∣∣∣Ĥ − ε
∣∣∣ /∂ε

)
ε=εk

=
M+

0 (εk)M−
0 (εk)(

∂Det
∣∣∣Ĥ − ε

∣∣∣ /∂ε
)
ε=εk

l=n∏
1

u+
l (εk), (7.92)

between the eigenfunctions ψn(εk) and the minors M+
n (εk) of the matrix

Ĥ − ε, where now, in contrast to (7.39), the system is infinite on both sides,
and u+

k = M+
k /M+

k−1as earlier.
From (7.41) one immediately finds the expression
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ρn(t) =

∞−iν∫
−∞−iν

dξ

2πi

∞+iν∫
−∞+iν

dε
2πi e−i(ε−ξ)t

(
Ĥ − ε

)−1

kn

(
Ĥ − ξ

)−1

kn

=

∞−iν∫
−∞−iν

dξ
2πi

∞+iν∫
−∞+iν

dε
2πi e−i(ε−ξ)t M+

k (ε)M−
n (ε)

Det|Ĥ−ε|
M+

k (ξ)M−
n (ξ)

Det|Ĥ−ξ| (7.93)

for the populations ρn(t) = |ψn(t)|2, which with the help of (7.90) can also
be given in terms of the eigenfunctions ψn(εk) of the Hamiltonian

ρn(t) =
∫ ∫

dξdε e−i(ε−ξ)t∑
k,k′

ψn(εk)ψ∗
n(εk′)ψ∗

0(εk)ψ0(εk′)
4π2(ε − εk)(ξ − εk′)

=
∫

dζ e−iζt∑
k,k′

ψn(εk)ψ∗
n(εk′)ψ∗

0(εk)ψ0(εk′)
2πi(ζ + εk − εk′)

, (7.94)

where, as earlier in (3.112), we have introduced the variables η = (ε+ξ)/2 and
ζ = ε−ξ and have performed integration over dη. Now one sees, that when the
product ψn(εk)ψ∗

0(εk) of two amplitudes corresponding to the same energy
εk of the eigenstate k in the numerator is small, the transition probability is
small as well.

It turns out that for the vast majority of the system described by the
three-term recurrence equation (7.2), the probability of transition from an
initially populated state to another state at some distance ∆n vanishes at
large distances. Indeed, a typical realization of a relay-like system of interact-
ing levels corresponds to the energies Ek irregularly changing with the level
number n. Numerical analysis shows that the eigenfunctions of disordered
systems are exponentially localized. This phenomenon is known as Anderson
localization. More precisely, for almost all one-dimensional quantum systems,
the amplitudes of eigenstates exponentially decrease when |n| → ∞, whereas
all of the exactly solved problems considered earlier in this section are excep-
tions, resulting from a special underlying group symmetry. In this subsection
we give a semiqualitative description of the localization phenomenon, use-
ful for an intuitive understanding of the dynamics of multilevel systems in
the opposite limit of total absence of such a symmetry. The main tool of
the analysis is the ensemble average which will be performed with a model
distribution function of the states energies. The exactly soluble case, known
as the Lloyd model, allows one to find the ensemble averaged resolvents for
the Cauchy distribution of the level energies. More rigorous analysis based
on the resolvents for populations requires a more sophisticated field theory
technique whose basic elements are given in the next subsection.

It is worth mentioning that the Hamiltonian Ĥ0 = Enδn,n′ and the cou-
pling V̂ = δn+1,n′ + δn−1,n′ do not commute. Moreover, for the case of ran-
dom En the higer-order commutators remain linearly independent. However,
these commutators are not all of the same order of magnitude, since with the
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increasing order of commutation r, their sizes decrease like r−1/2, demon-
strating the dependence typical of a random process. That is the algebraic
reason for the existance of the localization phenomenon considered in this
section.

7.4.1 Ensemble Averaged Amplitudes
and Corresponding Populations

We start with a quantity most convenient for calculation – the mean prob-
ability amplitudes 〈ψn(t)〉 for the system to be in a given level n. Following
P. Lloyd, we assume that in an ensemble of systems (7.2), the level energies
En have independent, Lorentzian (Cauchy) distributions

g̃(En) =
γ/π

(En − Ω)2 + γ2
, (7.95)

where |Vn|2 = 1. This situation is shown in Fig. 7.6(a).
The resolvent 1/(ε − Ĥ) of (7.2)

0 = (En − ε)ψn + ψn−1 + ψn+1

given by the explicit expression (7.41) is a regular function in the lower part
of complex planes of all En, since the Fourier variable ε is shifted to the upper
part of the complex plane by a vanishing value ν → 0, as shown in Fig. 3.2.
Therefore calculation of the average with the distributions (7.95) can simply
be done by taking the residuals at the points En = Ω − iγ which means the
replacements En → Ω − iγ in the resolvent. But such an average resolvent
corresponds to the Schrödinger equation

i
∂ψn
∂t

= (Ω − iγ)ψn + ψn−1 + ψn+1 (7.96)

which after the replacement ψn(t) → ψn(t)e−γt coincides with (7.1) for En =
Ω, Vn = 1. With the help of the solution (7.11), for (7.96) we immediately
find

ψn(t) = ine−γt−iΩtJn(2 |t|). (7.97)

The ensemble averaged equation (7.96) coincides with the Schrödinger
equation of a cascade of resonant levels, each of which is coupled to an inde-
pendent uniform continuum, by analogy to the case of a single level coupled to
a continuum considered in Sect.3.2.2 as shown in Fig. 7.6(b). Let us calculate
the harmonics of the total “fluence”

Φn(ε) = γ

∞∫
0

eiεtψn(t)dt = in
[
4 + (γ + iΩ − iε)2

]−(n+1)/2
(7.98)
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Fig. 7.6. Anderson localization in one dimension and its simplistic description by
the mean Green’s function. (a) A set of levels with the nearest neighbor coupling
and disordered level positions given by the distribution function g̃(En) of width γ
suggested by (7.95). (b) Naive description assuming that the Lorentzian distribu-
tion of the level positions is equivalent to level dacay to continua with a rate γ.
(c) Distribution of the populations ( 7.100) suggested by the ensemble averaged
resolvent. (d) Density of states of the disordered chain given by ( 7.103) for γ = 0.2
(solid line), γ = 1 (dashed line), γ = 2.5 (dash-dot line). For γ = 0 the density of
states tends to infinity at the edges of the spectrum ε → ±2.

of the population amplitude to the continua, where in order to perform the
integration we have employed the Hankel integral representation of the Bessel
function. We can also find the asymptotic populations of the continua

ρ̃n = 2γ

∞∫
0

|ψn(t)|2 dt = Γ(n+ 1
2 )

γ2nn!
√
π 2F1

(
n +

1
2
, n +

1
2
; 1 + 2n; −4

γ2

)
(7.99)

that coincide with |Φn(ε)|2 integrated over the spectrum ε. In order to gain a
deeper insight into the population dynamics in Fig. 7.6(c) we depict the sum
of the population of the levels and corresponding continua

ρn(t) = |ψn(t)|2 + 2γ

t∫
0

|ψn(t)|2 dt (7.100)
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as a function of time, which shows how the asymptotic distribution (7.99)
is attained. One sees that the population initially localized at level n = 0
spreads over the neighboring states with the course of time, until it reaches
a steady state distribution, exponentially decreasing for |n| → ∞.

7.4.2 Ensemble Averaged Spectrum

We can also find the ensemble averaged spectrum density of the eigenstates.
To this end we note that the energy spectrum of a quantum system can be
found from the resolvent with the help of the expression

g(ε) =
−1
π

lim
ν→0

Im
(

Tr
1

ε − Ĥ + iν

)
=

−1
π

lim
ν→0

Im

(∑
k

〈ek |ek〉
ε − εk + iν

)
=

∑
k

δ(ε − εk). (7.101)

The simplest way to calculate the average spectrum of a disordered chain is to
express the Hamiltonian with the help of the momentum operator p = −i ∂

∂n
which we have already employed when considering the classical limit (7.78)

Ĥ = En + 2 cos p̂, (7.102)

and obtain after integration over the energies En with the distributions (7.95)

g(ε) =
−1
π

Im
(

Tr
1

ε − Ω + iγ − 2 cos p̂

)

=
−1
π

Im

π∫
−π

dp

ε − Ω + iγ − 2 cos p

= Re
2√

4 − (ε − Ω + iγ)2
, (7.103)

where in the last line we have taken advantage of the invariance of the trace
operator and have employed the momentum representation. One sees that
this spectrum in Fig. 7.6(d). It is given by the inverse of the combination√

4 − (ε − Ω + iγ)2, the same as that which determines the amplitude fluence
distribution (7.98).

7.4.3 Distribution of the Amplitude Ratios

Strictly speaking, the population distribution (7.100) calculated with the help
of the ensemble averaged amplitudes has nothing to do with the ensemble
averaged populations in the relay-like system with random positions of the
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levels. It just gives an ”eye guiding line” and some parameters that might be
of use for a consistent consideration, which is technically much more involved.
Let us consider this phenomenon more carefully with the help of a different
technique. From (7.2)

0 = (En − ε)ψn(ε) + ψn−1(ε) + ψn+1(ε)

and from the distribution of the level positions (7.95) we find distribution
functions g±

n (u±
n ) of the ratios

u+
n+1(ε) = ψn+1(ε)/ψn(ε) (7.104)

and
u−
n−1(ε) = ψn−1(ε)/ψn(ε) (7.105)

that satisfy (7.46)

u+
n+1 = (ε − En) − 1

u+
n

,

u−
n−1 = (ε − En) − 1

u−
n

.

Note that we can also have in mind the ratios of minors of (7.92), as in the
original form of (7.46).

We assume the distribution (7.95) for the level energies g̃(En), and ask for
the distributions g±

n (u±
n ) of the ratios u±

n . Due to the physical meaning of the
probability distribution, the functions g±

n (x) have to be real and positive at
any complex value of the argument. For the sake of simplicity, let us consider
only real x. With the help of (7.46) we arrive at the recurrence equation

g+
n+1(u

+
n+1) =

∞∫
−∞

∞∫
−∞

δ

[
u+
n+1 − ε + En +

1
u+
n

]
g+
n (u+

n )g̃(En) dEndu
+
n

g+
n+1(x) =

∞∫
−∞

γ/π

(x − ε + 1/y + Ω)2 + γ2
g+
n (y)dy, (7.106)

where in the last line we have replaced the integration variable u+
n by y and

u+
n+1 by x. A similar equation holds for g−

n (u−
n ).

The functional equation (7.106) may have many different complicated
solutions. We will consider the simplest solution which has the structure

g+
n (y) =

γn/π

(y − ωn)2 + γ2
n

. (7.107)

In other words, we assume that distribution functions for different n have
the same functional structure, and differ only by the positions ωn and width
γn of the single spike. Substitution of (7.107) into (7.106), followed by the
integration around the poles in the upper part of the complex plane, yields
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g±
n+1(y) =

γn+1/π

(y − ωn+1)2 + γn+1
2 , (7.108)

where

γn+1 =
γn

ω2
n + γ2

n

+ γ,

ωn+1 =
−ωn

ω2
n + γ2

n

+ Ω + ε. (7.109)

The last equations can be written in a more compact form

zn+1 =
−1
zn

+ Z, (7.110)

when we introduce complex numbers zn = ωn + iγn and Z = Ω − ε+ iγ. For
g−
n (y) one obtains a similar relation

zn−1 =
−1
zn

+ Z. (7.111)

z
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Z
n
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n

n+1
z

-1

. .

Fig. 7.7. Transformation of the complex plane given by (7.110). A complex number
zn (shown by the solid vector) after taking the inverse value 1/zn, change of sign
(dotted vectors), and after displacement by the complex number Z (dashed vector),
becomes a complex number zn+1. The stable stationary point of this transformation
(center of the small solid circle) is located outside of the unit circle, whereas the
inverse value corresponds to the unstable stationary point (center of the dotted
circle).

Equations (7.110), (7.111) map the complex plane z to itself. There is
a clear geometric meaning, as shown in Fig.7.7. The transformation −1/z
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corresponds to inversion of a complex point z with respect to the unit circle,
followed by the sign inversion of the real part, whereas addition of the complex
number Z means displacement of this point. This mapping has two stationary
points, given by the solution of the algebraic equation

z =
−1
z

+ Z, (7.112)

that corresponds to the situation where displacement of the point as a result
of inversion and reflection with respect to the imaginary axis exactly equals
−Z. The solution of (7.16) suggests

z± =
Z

2
±

√
Z

4

2

− 1. (7.113)

The stationary point z+ with |z+| > 1 is stable for (7.110), whereas |z−| < 1
corresponds to an unstable stationary point z−. This follows from the fact
that inversion to the inner part of a circle is a compressing mapping. And
for (7.111), the situation is the opposite. Note that the indices ± of z± do
not always correspond to the sign of the square root in (7.113), which for
complex Z may depend on the choise of the square root branch, and hence
the condition |z+| > 1 should be checked.

The presence of stationary points means that, after several iterations,
any initial Lorentzian distribution of the ratios (7.104), (7.105) results in a
Lorentzian distribution of width Im z± around the points Re z±. Moreover,
the linearity of (7.106) implies that any distribution that can be represented
as a sum of Lorentzians adopts this form. Therefore, any analytical distribu-
tion that has an arbitrary number of simple poles, placed symmetrically with
respect to the real axis, becomes Lorentzian

g±
n (u±

n ) =
Im z+/π

(u±
n − Re z+)2 + Im z+

2
. (7.114)

With the help of the distribution (7.107) we can find a mean value which
will play an important role in our further analysis. We calculate the mean
log (u±

n ) and concentrate on its real part. Straightforward integration yields

〈
ln

∣∣u±
n (ε)

∣∣〉 =
1
π

∞∫
−∞

du±
n

ln |u±
n (ε)| Im z+(

u±
n − Re z+

)2
+ (Im z+)2

= ln |z+(ε)| = ln
∣∣∣∣Z2 ±

√
Z
4

2 − 1
∣∣∣∣ (7.115)

where the sign of the square root should be chosen such that |z+(ε)| > 1.
Substitution of Z = 2 coshX yields another form of this expression

ln |z+(ε)| = |ReX| =
∣∣Re(arc cosh Z

2 )
∣∣

= arc cosh
[ 1
2

∣∣1 − Z
2

∣∣ + 1
2

∣∣1 + Z
2

∣∣] . (7.116)
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Note that the mean values (7.116) of both log u+
n and log u−

n are posi-
tive, although the product u+

nu−
n is equal to unity for any specific realization

of the system, as follows from the definitions (7.104)–(7.105). There is no
contradiction in this fact, since (7.2) for a generic ε has two solutions – one
exponentially increasing for n → ∞ and the other exponentially increasing
for n → −∞. Only when ε equals an eigenvalues εk of a specific realization of
the random system, do these two solutions match at some point n, but only
for this specific realization. At a fixed ε, this does not happen for a typical
realization in the ensemble, and that is why 〈ln |u+

n |〉+〈ln |u−
n |〉 �= 〈ln |u+

nu−
n |〉

but tend to the largest stationary values.
Equation (7.115) gives the idea of the typical behavior of the eigenstate

amplitudes ψn(εk) as a function of the level number n. These functions are
typically growing with the growth rate log |z+(εk)| when the number n comes
from ±∞ to a certain finite number nmax(εk) where for a particular realiza-
tion of the random system, these functions match the three-term recurrence
relation. This exponential behavior is typical of all eigenfunctions and of
any particular realization of the Hamiltonian, whereas the precise value of
the energy εk and specific position nmax(εk) are sensitive to the particular
realization.
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Fig. 7.8. Anderson localization in 1D systems. (a) Moduli of eigenvectors (dots,
not to scale) as functions of the level number n are depicted for three values of
eigenenergies εk for γ = 0.8. The values of εk serve as reference levels of the cor-
responding plots. The mean state density g(εk) (dashed line) of (7.103) and mean
ratios of neighboring amplitudes z+(εk) (long dash line) of (7.116) are also shown,
but not to scale. (b) “Naive” distribution of the populations (7.100) (solid line)
compared to the population distribution (7.124) (dash-dot line) for γ = 0.15.
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In Fig. 7.8(a) we show three typical examples of the eigenvector ampli-
tudes, corresponding to different energies of the eigenstates. One clearly sees
the exponential decrease of the amplitudes. The ensemble averaged density
of states and the mean ratios of the neighboring amplitudes are also shown
as a function of energy.

7.4.4 Distribution of the Populations for Long Times

Let us now consider the population distribution (7.94) which has the form of a
product of two mutually complex conjugate probability amplitudes. After the
ensemble average, the sums over the eigenenergies εk and εk′ can be replaced
by integrals over their distributions g(εk, εk′) which can always be represented
as a sum g(εk, εk′) = g(εk)g(εk′) + g2(εk, εk′) of the independent binary
distribution g(εk)g(εk′), given by (7.103), and a correlation term g2(εk, εk′).
This yields

ρn(t) =
∫ ∫

e−iεtg(εk)
ψn(εk)ψ∗

0(εk)
2πi(ε − εk)

dεkdε

×
∫ ∫

eiξtg(εk′)
ψ∗
n(εk′)ψ0(εk′)

−2πi(ξ − εk′)
dεk′dξ

+
∫ ∫ ∫

g2(εk, εk′) e−iζtψn(εk)ψ∗
n(εk′)ψ∗

0(εk)ψ0(εk′)
2πi(ζ + εk − εk′)

dζdεkdεk′

(7.117)

where in the last term, the variables η = (ε + ξ)/2 and ζ = ε − ξ of (7.94)
have been employed.

The first term of (7.117) has the clear physical meaning of the product
of two ensemble averaged Green operators that result in the term |ψn(t)|2 of
(7.100), whereas the last term allows for the correction ρ̃n(t) which in (7.100)
has been replaced by the heuristic term 2γ

∫ t
0 |ψn(t)|2 dt. We concentrate on

this last term, since it is responsible for the stationary population distribution
which is attained in the long-time limit. With the help of (7.104) and (7.105)
we write this term in the form

ρ̃n(t) =
∫ ∫ ∫ |ψ0(εk)|2 |ψ0(εk′)|2

2πi(ζ + εk − εk′)
e−iζtg2(εk, εk′) dζdεkdεk′

n−1∏
m=1

u−
m(εk)

(
u−
m(εk′)

)∗
, (7.118)

which shows that, as t → ∞, the dominating time-independent contribution
comes from k = k′. This yields

ρ̃n|t→∞ =
∫

|ψ0(εk)|4 g2(εk, εk)
n−1∏
m=1

∣∣u−
m(εk)

∣∣−2
dεk, (7.119)

whereas the time-dependent part reads
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ρ̃n(t) − ρ̃n|t→∞ =
∫

g(2)
n (ζ)e−iζtdζ, (7.120)

where the function

g(2)
n (ζ) =

∫
dx

∣∣∣ψ0(x + ζ
2 )
∣∣∣2 ∣∣∣ψ0(x − ζ

2 )
∣∣∣2 g2

(
x + ζ

2 , x − ζ
2

)
n−1∏
m=1

u−
m(x + ζ

2 )
(
u−
m(x − ζ

2 )
)∗ (7.121)

has the physical meaning of the correlation of the energy distance between
eigenstates, weighted by the correlations of the probability amplitudes to be
in the initial and the final levels corresponding to these states. Note that
the joint distribution g2(x, x′) of two eigenvalues is discontinuous at x = x′,
assuming at this point the dependence (7.103) of a single eigenvalue distribu-
tion g(x). Therefore, from the integral (7.120) we have to exclude the point
ζ = 0 which is included in the part (7.119) with g2(εk, εk) = g(εk)N , where
N is the total number of levels.

Consider first the stationary distribution (7.119). According to (7.115)

n−1∏
m=1

∣∣u−
m(εk)

∣∣−2 = e−2
∑n−1

m=1 ln|u−
m(εk)| 
 |z+(εk)|−2|n| (7.122)

since the sum of many randomly distributed logarithms can be replaced by
their mean value multiplied by the total number of terms. Therefore

ρ̃n|t→∞ 

∫

|ψ0(x)|4 Ng(x) |z+(x)|−2|n|
dx, (7.123)

where the procedure of taking the average of |ψ0(x)|4 absorbs the devia-
tions of sums of logarithms in (7.122) from their mean values

〈
|ψ0(x)|4

〉
=〈

|ψ0(x)|4 ∏n−1
m=1 |z+(x)/u−

m(εk)|2
〉

and should be done carefully. To this end,
let us take into account the normalization

∑
n ρ̃n|

t→∞ = 1 of the popula-
tion distribution and establish with the help of this condition a relation be-
tween the average

〈
|ψ0(x)|2

〉
and |z+(x)|. If

〈
|ψ0(x)|2

〉
entering the product〈

|ψ0(x)|2
〉

|z+(x)|−2n absorbs the deviations
∑n−1

m=1 ln |u−
m(εk)/z+(x)|2, then

the product equals the mean population ρ̃n =
〈
|ψ0(x)|2 ∏n−1

m=1 |u−
m(εk)|−2

〉
of the level n corresponding to a given eigenenergy x. Therefore the sum∑

n

〈
|ψ0(x)|2

〉
|z+(x)|−2n equals 1, whereas the average of the remaining

factor |ψ0(x)|2 in (7.123) is uniform and equals the inverse total number
N of levels in the system, thus normalizing the distribution function of the
eigenvalues Ng(x) to unity. This yields the stationary ensemble averaged
population distribution
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ρ̃n|t→∞ 

∫

g(x) |z+(x)|−2|n|
∞∑

k=−∞
|z+(x)|−2|k|

dx =
∫

1 − |z+(x)|−2

1 + |z+(x)|−2 g(x) |z+(x)|−2|n|
dx

(7.124)
which is systematically slightly broader than our first “naive” guess (7.99),
as if the distribution (7.124) results from a dynamical process which takes
into account partial recurrences from the continua shown in Fig. 7.6(b). In
Fig. 7.8(b) we depict both the “naive” guess and the distribution (7.124)
calculated with the help of (7.103) and (7.113).

7.4.5 Dynamics of the Asymptotic Populations

We consider next the dynamics of populations at long t. According to (7.120),
the population approaches its stationary distribution (7.124) following a time
dependence given by the Fourier transformation of the correlator (7.121). It
can also be given in the form

g(2)
n (ζ) 


∫
dx

∣∣∣ψ0(x + ζ
2 )
∣∣∣2 ∣∣∣ψ0(x − ζ

2 )
∣∣∣2 g2

(
x + ζ

2 , x − ζ
2

)
|z+(x)|2n−2 , (7.125)

where, as earlier, we have replaced the amplitude ratios by their mean values,
and have ignored the difference between u−

m(x + ζ
2 ) and u−

m(x − ζ
2 ) in the

limit ζ → 0. Indeed, in the limit of long times, the most important domain
corresponds to ζ ∼ 0. Therefore the main contribution arises from close
eigenenergies in the system. The integrand (7.125) can be interpreted as the
spectral correlation g2 weighted by the joint probability

w =
∣∣∣∣ψ0(x +

ζ

2
)
∣∣∣∣2 ∣∣∣∣ψn(x − ζ

2
)
∣∣∣∣2

to be at the levels |0〉 and |n〉 corresponding to energy eigenstates
∣∣∣x + ζ

2

〉
and

∣∣∣x − ζ
2

〉
, respectively. In a large, disordered system, the probability

g2(x + ζ
2 , x − ζ

2 ) to have two close eigenvalues, x + ζ/2 and x − ζ/2, is
high. However, typically these states are localized in different domains of
n, and therefore the weight factor w is exponentially small for most of x. On
the other hand, the eigenstates localized in the same domain of n and hav-
ing large w, typically correspond to distinct eigenenergies. The probability
of finding close eigenvalues increases linearly with the increasing size of the
considered domain of n, whereas their contribution to the integral (7.125)
drops exponentially because of the decreasing weight factors w. The inter-
play between these two tendencies forms the asymptotic spectral dependence
g
(2)
n (ζ) as ζ → 0.
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Let us discuss a possible form of this asymptotic dependence. On the
axis of n, consider a long interval of N successive levels symmetrically placed
around the point n = 0. The density of states in the energy domain x amounts
to Ng(x) and the mean spacing between the neighboring energy eigenstates
localized in this domain is δ ∼ 1/Ng(x). Smaller spacings in larger intervals
result from the eigenstates localized in the domain with n > N/2. Therefore,
in order to have the mean level spacing smaller than ζ, one has to consider
levels at long distance with n > 1/2g(x) |ζ|. But the overall contribution of
these levels to the integral (7.125) is exponentially small, and can be esti-
mated as a double sum

C(x, ζ) =
∑

k,k′>1/2g(x)ζ

A2e−ln|z+(x)|(k+k′) =
A2e−2ln|z+(x)|/g(x)ζ(

1 − |z+(x)|−2
)2

=
(
1 + |z+(x)|−2

)2
exp

[
− ln |z+(x)|

g(x) |ζ|
]

(7.126)

where the normalization A =
(
1 − |z+(x)|−2

)
/
(
1 + |z+(x)|−2

)
, similar to

that in (7.124), has been taken into account.
The derivative ∂/∂ζ of the total contribution C(x, ζ) of all resonances

closer than ζ gives the weighted correlation wg
(2)
n (x, ζ) for a given x and

hence

g(2)
n (ζ) 


∫
dx

(
1 + |z+(x)|−2

)2

|z+(x)|2n+2
ln |z+(x)|
g(x)ζ2 exp

[
− ln |z+(x)|

g(x) |ζ|
]
. (7.127)

Therefore, for the time dependence (7.120), by performing the inverse Fourier
transformation with the help of (7.103) and (7.113) one obtains

ρ̃n(t) − ρ̃n|t→∞ =
∫

dx
(1+|z+(x)|−2)2

|z+(x)|2n+2
ln|z+(x)|
g(x)

∞∫
0

exp
[
− ln|z+(x)|

g(x)|ζ|
]
cos (ζt) dζ

ζ2
,

(7.128)
and to be consistent within the order of approximation, after exact represen-
tation of the last integral

ρ̃n(t) − ρ̃n|t→∞ =
∫

dx
(1+|z+(x)|−2)2

|z+(x)|2n+2 2
√

t log|z+(x)|
g(x) ReK1

[
2
√

it log|z+(x)|
g(x)

]
,

(7.129)
in terms of the Bessel function K1(x), one has to take the asymptotic of long
times which implies t/ng(x = 0) � 1.

Equation (7.129) yields the dying oscillations at a frequency decreasing
in time as t−1/2 and of an amplitude changing as t−1/4 exp

[−const
√

t
]
. In

order to obtain the last dependence we have taken into account that the main
contribution to the integral (7.129) over x at t → ∞ comes from the band
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center, that is from the domain x ∼ 0 where |z+(x)| − |z+(0)| ∝ |x| , as one
sees in Fig. 7.8(a). The localization length L = 1/2log |z+(0)| assumes in this
spectral region the longest possible value. In Sect. 3.4, we have already seen
that strongly non-homogeneous bands may result in non-exponential decay
laws. The e−√

t dependence obtained here indicates once again the fact that
the evolution of a disordered system may differ considerably from the stan-
dard exponential relaxation, typical of continua. The common feature of such
systems is an infinitely dense but not continuous spectrum, where the eigen-
functions and related matrix elements of physical operators are discontinuous
at every point and may change considerably, by orders of magnitudes, with
infinitesimal changes of the energy.

7.5 Field Theory Method for Disordered Systems

Considering in Sect.7.2.1, the Anderson localization for a one-dimensional
disordered relay of levels, we have employed the Cauchy distribution (7.95)
of the level energies. This particular type of ensemble has enabled us to
determine explicitly the distribution (7.106) of the neighboring amplitude
ratios, which has been further employed for the analysis of the population
dynamics. The analysis, however, relied on qualitative reasonings rather than
on straightforward calculations of the physical quantities of interest. Though
this approach helps to develop an intuitive vision of the problem, one needs
another, based on straightforward calculations that would leave no doubts
about the results obtained. It turns out that this goal is achieved with the
help of a Gaussian distribution of the level energies

g̃(En) =
1√
πγ

exp
− (En − Ω)2

γ2 . (7.130)

The required technique for this calculation is well known in field theory. In
this subsection we discuss it, trying to keep the narration close (as much as
possible) to the manner of presentation of the rest of the text.

7.5.1 Tunneling Transparency and Classical Bosonic Fields

We concentrate first on the simplest problem, and consider the tunneling
transparency of a disordered chain. Equation (7.41) yields the probability

ρN (t) =

∞−iν∫
−∞−iν

dξ

2πi

∞+iν∫
−∞+iν

dε

2πi

exp [−it(ε − ξ)]

Det
∣∣∣Ĥ − ε

∣∣∣Det
∣∣∣Ĥ − ξ

∣∣∣ (7.131)

to find a particle at the last level N of the chain at a time t, provided that
at t = 0 it has been at the first level. The Hamiltonian
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Ĥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

E1 1 0 . 0 0 0
1 E2 1 . 0 0 0
0 1 E3 . 0 0 0
. . . . . . .
0 0 0 . EN−2 1 0
0 0 0 . 1 EN−1 1
0 0 0 . 0 1 EN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(7.132)

contains level energies En distributed according to (7.130). An explicit ex-
pression for the multidimensional Gaussian integral

N∏
n=1

⎧⎨⎩
∞∫

−∞

dxn√
π

⎫⎬⎭ exp

[
−i

N∑
n,m=1

xnanmxm

]
=

1√
Det |anm| , (7.133)

valid for any matrix anm with eigenvalues in the lower part of the complex
plane, suggests a practical way to evaluate the ensemble averaged population
(7.131). Indeed, taking into account the signs of the imaginary parts of ε and
ξ for anm = Hnm − δn,mε (or ξ), one finds

ρN (t) =
∞−iν∫

−∞−iν
dξ
2π

∞+iν∫
−∞+iν

dε
2π

N∏
n=1

{
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

dxndxndyndyn

π2

}

exp
[
−it(ε − ξ) − 2i

N−1∑
n=1

(xnxn+1 + xnxn+1 − ynyn+1 − ynyn+1)

−i
N∑
n=1

(
(En − ε)(x2

n + x2
n) − (En − ξ)(y2

n + y2
n)
)]

, (7.134)

which after the ensemble average with (7.130) yields

ρN (t) =
∞−iν∫

−∞−iν

dξ

2π

∞+iν∫
−∞+iν

dε

2π

N∏
n=1

{
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

dxndxndyndyn
π2

}

× exp
[

− it(ε − ξ) − 2i
N−1∑
n=1

(xnxn+1 + ynyn+1 − xnxn+1 − ynyn+1)

+
N∑
n=1

(
iε(x2

n + x2
n) − iξ(y2

n + y2
n) − γ2

4 (x2
n + x2

n − y2
n − y2

n)2
) ]

.

(7.135)

These integrals are known in field theory as functional integrals on a grid
and can be viewed as integrals over all trajectories

−→
R (n), given by all of the

possible dependencies of the four-dimensional radius vector
−→
R = (x, x, y, y)

on the fictitious “time” n that take discrete, integer, values. Note that one
can also consider this four-dimensional real space as two-dimensional complex
space of the variables z = x + ix and z′ = y + iy for which instead of (7.133)
one has
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N∏
n=1

⎧⎨⎩
∞∫

−∞

dz∗
ndzn
π

⎫⎬⎭ exp

[
−i

N∑
n,m=1

znanmz∗
m

]
=

1
Det |anm| , (7.136)

which implies integration over all complex planes of each variable. One can
also consider the complex plane z as the phase space of a classical oscillator,
where the square of the absolute value |zn|2 and the phase Im ln zn play the
roles of action and phase, respectively.

An Analogy between the Feynman Path Integral for a Boson
and an Inverse Determinant

Prior to a detailed consideration of the integral (7.135), let us dwell on a
simpler integral (7.133) for the case of anm = Hnm − δn,mε and Hnm of
(7.132) with En ≡ 0, that is on the many-fold integral

IN (ε) =
N∏
n=1

{
∞∫

−∞
dxn√
π

}
exp

[
−2i

N−1∑
n=1

xnxn+1 + i
N∑
n=1

εx2
n

]

=
N∏
n=1

{
∞∫

−∞
dxn√
π

}
exp

[
i
N∑
n=0

(xn − xn+1)
2 + (ε − 2)x2

n

]
,(7.137)

where in the last line we have assumed x0 = xN+1 = 0.
We trace an analogy between this expression and the Feynman path in-

tegral for a quantum particle. Indeed, considering n as a continuous “time”
variable and replacing finite differences by the first derivatives and the sums
by the integrals, we obtain

IN 

∫

exp

⎧⎨⎩i

N+1∫
0

[(
∂x(n)
∂n

)2

+ (ε − 2)x2(n)

]
dn

⎫⎬⎭ D x(n), (7.138)

with
x(N + 1) = x(0) = 0. (7.139)

This is a standard path integral representation for the probability amplitude
of a quantum particle with a classical Lagrangian

L

(
x,

∂x

∂n

)
=

(
∂x

∂n

)2

+ (ε − 2)x2 (7.140)

to remain in the initial position x = 0 after a “time” N +1. This Lagrangian
corresponds to a particle of mass m = 2 moving in a parabolic potential
(2− ε)x2, whereas (7.138) simply represents the integral of exp (−iS) for the
action S =

∫
L(x, ∂x∂n )dn over all the trajectories starting at x = 0 at n = 0

and ending at the same point at n = N + 1. The corresponding Hamiltonian
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Ĥ = −1
4

(
∂

∂x

)2

+ (2 − ε)x2 (7.141)

coincides with the Hamiltonian of a one-dimensional quantum harmonic oscil-
lator of a “frequency”

√
4 − 2ε. Note that the “time”-dependent Hamiltonian

Ĥ =
1
4
p̂2 + (2 − ε)x2

∞∑
k=0

δ(n − k) (7.142)

corresponds to the original integral (7.137) with the finite difference in the
action sum. It employs the trajectories on a one-dimensional grid of integer

. .
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Fig. 7.9. The transmission probability amplitude for a set of N levels, coupled by
relay-like interaction, can be given in terms of Feynman trajectories on a discrete
grid (a) and the corresponding potential curve (b) for a particle of mass m = 2
which has probability amplitude to be in the initial state x = 0 at the fictitious
“time” n = N . Calculation of the population also requires integration over classical
trajectories of spin 1/2 (c).

numbers, as shown in Fig. 7.9. The parabolic dependence of the Hamiltonian
(7.142) on the coordinate and momentum, suggests the assumption that the
dynamics of the system is closely related to the dynamics of a harmonic
oscillator.

Bosonic Field, a Quantum Oscillator and Mapping over a Period

Earlier we have mentioned that the possibility to find an exact solution of
(7.22) for a harmonic oscillator subjected to an arbitrary Raman field, results
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from an underlying algebraic symmetry, summarized in (7.23). The same sym-
metry also exists for a harmonic oscillator with a time-dependent frequency,
where the Hamiltonian (7.142) can be rewritten in terms of bosonic creation
and annihilation operators â† = cx̂ + if p̂ and â = c∗x̂ − if∗p̂:

Ĥ = − 1
16f2

(
â − â†)2

+
(2 − ε)

4c2

(
â + â†)2

∞∑
k=0

δ(n − k), (7.143)

in a form similar to the Hamiltonian in (7.21). A particular choice of the
constants c and f, constrained by the condition

[
â, â†] = 1, is a matter

of convenience. The symmetry manifests itself in the independence of the
oscillation period on the oscillator amplitude, and is responsible for another
important feature: the action S corresponding to the Lagrangian (7.140) iden-
tically equals zero for all classical trajectories.

Though from the viewpoint of calculation, the path integral representation
(7.137) with the allowance of (7.139) adds nothing new to the exact expression
(7.133)

IN (ε) =
N∏
n=1

⎧⎨⎩
∞∫

−∞

dxn√
π

⎫⎬⎭ exp

{
i

N∑
n=0

[
(xn − xn+1)

2 + (ε − 2)x2
n

]}

= Det−1/2

∥∥∥∥∥∥∥∥
−ε 1 . 0
1 −ε . 0
. . . .
0 0 . −ε

∥∥∥∥∥∥∥∥ =
1√

cos [N arccos(−ε)]
, (7.144)

the analogy between the relay-like multilevel system and a free particle sub-
jected to periodic δ-like parabolic “kicks”, suggests an additional intuitive
insight, useful for the choice of an approximate description of disordered
chains.

Note in this context that since integration with the kernel ei(xn−xn+1)2 is
equivalent to the transformation exp

{−i1
4 p̂

2
}
, and hence the operator

Û = exp
{−i(2 − ε)x2} exp

{−i 1
4 p̂

2} (7.145)

gives the quantum evolution over a period for the particle, corresponding
to the Hamiltonian (7.143). For the Heisenberg coordinate and momentum
operators, the transformation (7.145) yields a mapping over a period

Û p̂Û−1 = p̂ − 2(2 − ε)x̂

Û x̂Û−1 = (−1 + ε)x̂ +
1
2
p̂, (7.146)

which can also be written in the matrix form(
p̂
x̂

)
n+1

=
(

1 −2(2 − ε)
1
2 −1 + ε

)(
p̂
x̂

)
n

. (7.147)
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The transposed matrix gives the change of the coefficients r and s(
r
s

)
n+1

=
(

1 1
2−2(2 − ε) −1 + ε

)(
r
s

)
n

. (7.148)

for a linear combination rp̂+sx̂, as a result of the mapping. This 2×2 matrix

has two eigenvalues λ1,2 = ε
2 ±

√
ε2

4 − 1 , such that |λ1,2| = 1 for |ε| < 2, and
the determinant of the matrix is equal to unity. For ε = 2 sinφ; π/2 < φ <
3π/2 one has λ1,2 = exp [∓i(φ − π/2)]. The corresponding eigenvectors

â = 1√− cosφ

[
p̂ e

i(φ+π/2)/2

2 + 2x̂ sin
(
φ
2 − π

4

)]
â† = 1√− cosφ

[
p̂ e

−i(φ+π/2)/2

2 + 2x̂ sin
(
φ
2 − π

4

)]
(7.149)

of the mapping (7.147) suggest a convenient choice of the bosonic creation
and annihilation operators encountered in (7.143).

Mapping of â and â† is given by a simple multiplication â = −i exp (iφ) â,
â† = i exp (−iφ) â†, whereas the state |0〉 corresponds for a positive φ to the
wavefunction

〈x |0〉 =
∣∣∣∣2 cosφ

π

∣∣∣∣1/4 eix
2(1−i exp(−iφ)), (7.150)

which satisfies the relation â |0〉 = 0, thus being the ground state of the
effective Hamiltonian i ln Û of (7.145). In terms of the operators â and â† the
operator Û of evolution over a period (7.145) adopts the form

Û = exp
{

−i(φ − π

2
)
(

â † â +
1
2

)}
. (7.151)

For ε = 2 sinφ; π/2 < φ < 3π/2 one obtains the complex conjugate ampli-
tudes (7.150) and inverse evolution. We note an explicit expression

x̂ =
1

2
√− cosφ

(
eiτ â† + e−iτ â

)
,

τ = φ/2 + π/4 (7.152)

for the coordinate operator in terms of the creation and the annihilation
operators (7.149), where the coefficients in front of â† and â are just mutually
conjugated phase factors.

The Tunneling Transparency as Propagation of Four Bosons

The ensemble averaged transparency (7.135) can also be considered as a path
integral for a “particle”, by analogy to (7.138), although this particle now
moves in a four-dimensional space and discrete time, having negative values
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of mass for motion in the directions x and y, whereas the problem itself does
not have “oscillator” symmetry. The corresponding Hamiltonian

Ĥ = p̂2x
4 + p̂2x

4 − p̂2y
4 − p̂2y

4 +
1
4
[
iγ2(x2 + x2 − y2 − y2)2

−4(2 − ξ)(y2 + y2) + 4(2 − ε)(x2 + x2)
] ∞∑
k=0

δ(n − k) (7.153)

no longer has the same symmetry as (7.142), containing a bi-quadratic imag-
inary part of the “particle’s”potential energy. This imaginary part results in
an irreversible “decay”, which implies that the rate of transition from the
first to the last (N -th) level of the chain decreases exponentially with the
”time” N . The probability amplitude for the “particle” to be at the origin
x = y = x = y = 0 at “time” N, in the presence of the decay, gives, after in-
verse Fourier transformation, the population of the last level of the disordered
chain.

Since at γ = 0, (7.153) is a sum of four independent Hamiltonians (7.142),
for γ �= 0, we can consider the problem in the interaction representation by
just replacing coordinates in the interaction term iγ2(x2 + x2 − y2 − y2)2/4
by the unperturbed Heisenberg operators of these coordinates, that is

Ĥint =
∞∑
k=0

iγ2

4
(x2

H + x2
H − y2

H − y2
H)2δ(n − k). (7.154)

According to (7.152) and the mapping relations on p. 349 for the creation
and annihilation operators, the Heisenberg operators of coordinates have the
form

x̂H = 1
2
√− cosφ

(
eiτ

(−ieiφ
)n

â† + e−iτ (ie−iφ)n â
)

,

x̂H = 1
2
√− cosφ

(
eiτ

(−ieiφ
)n

b̂† + e−iτ (ie−iφ)n b̂
)

,

ŷH = 1
2
√− cosϕ

(
eiτ

′ (
ie−iϕ)n â

†
+ e−iτ ′ (−ieiϕ

)n
â
)

,

ŷH = 1
2
√− cosϕ

(
eiτ

′ (
ie−iϕ)n b̂

†
+ e−iτ ′ (−ieiϕ

)n
b̂

)
, (7.155)

with ξ = 2 sinϕ; −π/2 < ϕ < π/2, which results from the mapping over n

periods of all of the bosonic operators â, â†, b̂, b̂†, â, â
†
, b̂, and b̂

†
corresponding

to all four dimensions. The phase factor eiτ
′
, implicitly given by (7.149),

coincides with eiτ after replacing φ by ϕ and complex conjugation.
We concentrate on the case of γ � 1, since the opposite extreme corre-

sponds to the case when the neighboring levels in the cascade are strongly
off resonance and therefore their population is small, according to (7.89). In
this limit we can consider an average of the Hamiltonian (7.154) over a large
number of periods
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Ĥint =
iγ2

4
〈
(x2

H + x2
H − y2

H − y2
H)2

〉
n

(7.156)

drop out all the terms oscillating with “time”, that is the terms dependent on
φn or ϕn, and concentrate only on the smallest eigenvalue of the remaining
Hamiltonian, which corresponds to the vacuum state |0〉 of all four oscillators.
One determines this value by making use of the explicit forms

x̂2
H = 1

−4 cosφ

(
e2iτ (−ieiφ

)2n
â†2 + e−2iτ (ie−iφ)2n

â2 +
{
â†â

})
,〈

x̂2
H

〉
n

= 1
−4 cosφ

{
â†â

} 〈0|..|0〉→ 1
−4 cosφ〈

x̂
4
H

〉
n

= 1
16 cos2 φ

({
â†2â2} +

{
â†â

}2
) 〈0|..|0〉→ 3

16 cos2 φ , (7.157)

of the Heisenberg coordinate operators and their averages in the ground state.
Substituting into (7.156) the explicit mean values (7.157) and similar ex-
pressions for the other averaged operators, we find the smallest eigenvalue
iγ2(cos−2 φ + cos−2 ϕ − cos−1 ϕ cos−1 φ)/8 ∼ iγ2/8 cosφ cosϕ which gives
the slowest rate of “decay” with the course of “time” n. It therefore deter-
mines the asymptotic behavior at the limit of long chain N � 1.

The ground state dominates in the expression for the evolution operator
in the interaction representation

Ûint(n) 
 |0〉 e−γ2n/8 cosφ cosϕ 〈0| , (7.158)

and hence for the original problem we find an expression

ρN (t) =

∞−iν∫
−∞−iν

dξ

2π

∞+iν∫
−∞+iν

dε

2π
e−it(ε−ξ)−γ2N/8 cosφ cosϕ

∣∣∣∣2 cosϕ

π

2 cosφ

π

∣∣∣∣1/2

Det−1

∥∥∥∥∥∥∥∥
−ε 1 . 0
1 −ε . 0
. . . .
0 0 . −ε′

∥∥∥∥∥∥∥∥Det−1

∥∥∥∥∥∥∥∥
−ξ 1 . 0
1 −ξ . 0
. . . .
0 0 . −ξ′

∥∥∥∥∥∥∥∥ , (7.159)

where one recognizes the exponent corresponding to the evolution operator
(7.158) in the interaction representation, the factors 2 cosϕ

π and 2 cosφ
π that

according to (7.150) allow for the projection of the states 〈0| to the point x0 =
y0 = x0 = y0 = 0 which is the origin of the trajectories, and the determinants
that describe the free evolution in agreement with (7.144). The last diagonal
terms ε′ = 1 + ε − i cosφ and ξ′ = 1 + ξ + i cosϕ in these determinants come
from the projection of the evolution operators for unperturbed motion to the
slowest decaying state |0〉 , instead of setting xN+1 = yN+1 = xN+1 = yN+1 =
0 which modifies the integral (7.137). Note that ε = 2 sinφ; ξ = 2 sinϕ as
earlier.

Equation (7.159) has a clear physical meaning: the population of the last
level of a disordered chain of N levels has almost the same time behavior
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as that of the infinite system of resonant levels depicted in Fig. 7.1(a) for
V = 1, becoming different from zero once the front of the population distri-
bution |ψn(t)|2 = J2

n(2t) of (7.11) approaches the level n = N at the time
t ∼ N/2. The disorder just results in attenuation of this distribution by the
exponentially small factor ∼ e−γ2N/8 by analogy to the case of (7.97).

For the case of small γ, let us consider the long-time limit ε → ξ of
the tunneling probability of a specific domain of spectrum at a given en-
ergy η = (ε + ξ)/2 corresponding to a certain value of the density of states
g(η). For the case of the Lorentzian distribution (7.95) of the level ener-
gies, the density g(η) coincides with g(ε), given by (7.103) and shown in
Fig. 7.6(d). The mean density of states for the Gaussian distribution (7.130)
is clearly identical to (7.103) for small γ, and can be written in the form
g(η) = 1/ cos (arcsin(η/2)) . Therefore, in terms of the state density, the
smallest eigenvalue of Ĥint is iγ2g2(η)/8, which takes the maximum value
at the edges of the spectrum η → ±2 where g(η) → ∞. The maximum trans-
parency comes from the center of the spectrum η → 0, which is the spectrum
domain responsible for the overall transparency ∼ e−γ2N/8. This is consis-
tent with the dependence of the localization length on the energy depicted
in Fig. 7.8(a) which clearly shows that the localization length assumes the
minimum values at the spectrum edges.

7.5.2 An Analogy With the Liouville Equation

The different signs of the x and y variables in (7.153), and the imaginary
interaction (7.154), suggest the employment of the density matrix formalism
and the Liouville equation instead of the Hamiltonian formalism and the
Schrödinger equation, as a more suitable technique. Indeed, let us consider
the combination

ρ̃n(xn, xn; yn, yn) =
n−1∏
k=1

{
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

dxkdxkdykdyk

π2

}

exp
[
−2i

n−1∑
k=1

(xkxk+1 + xkxk+1 − ykyk+1 − ykyk+1)

n∑
k=1

(
iη(x2

k + x2
k − y2

k − y2
k) + iζ(x2

k + x2
k + y2

k + y2
k)
)

−γ2

4

n∑
k=1

(x2
k + x2

k − y2
k − y2

k)
2
]
, (7.160)

entering (7.135), where we take the part of the integrand dependent only on
n first sets of variables and perform integrations over all variables except the
last four: xn, xn; yn, and yn. We identify this combination with the “density
matrix”, evolving in the course of fictitious “time” n which we mark by the
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tilde sign in order to distinguish between this fictitious object and the real
density matrix. For this object one finds the recurrence relation

ρ̃n+1(x, x; y, y) = Û(x)Û(x)ρ̃n(x, x; y, y)Û∗(y)Û∗(y)

exp
[
iζ(x2 + x2 + y2 + y2) − γ2

4 (x2 + x2 − y2 − y2)2
]

(7.161)

with

Û(x) = exp
{−i(2 − η)x2} exp

{−i

4
p̂2
x

}
(7.162)

by analogy to (7.145).
In the interaction representation

ρ̃n(x, x; y, y) =
(
Û(x)Û(x)

)n
ρ̃(int)
n (x, x; y, y)

(
Û∗(y)Û∗(y)

)n
and for small γ and ζ one finds by a Taylor expansion in γ2

ρ̃
(int)
n+1 (x, x; y, y) − ρ̃(int)

n (x, x; y, y) = −γ2

2 Ẑ2
H ρ̃(int)

n (x, x; y, y)Ẑ ′2
H

+
(
iζẐ2

H − γ2

4 Ẑ4
H

)
ρ̃(int)
n (x, x; y, y) + ρ̃(int)

n (x, x; y, y)
(
iζẐ ′2

H − γ2

4 Ẑ ′4
H

)
(7.163)

where Ẑ2
H = (x̂2

H + x̂
2
H), Ẑ ′2

H = (ŷ2
H + ŷ

2
H) are the left and right Heisenberg

operators, respectively. Equations (7.155) and (7.157) specify these operators
and their powers in terms of the bosonic creation and annihilation operators
(7.149), where ε or ξ should be replaced by η. To be consistent within the
approximation of small γ and ζ, we should also replace the finite difference
with the “time” derivative ∂/∂n and take averages of the operators over many
periods. This yields

∂ρ̃(int)
n

∂n = iζ
{
Ĥo, ρ̃

(int)
n

}
− γ2

4

[
Ĥo ,

[
Ĥo , ρ̃(int)

n

]]
−γ2

4

[
Â†

2 ,
[
Â2 , ρ̃(int)

n

]]
− γ2

4

[
Â2 ,

[
Â†

2 , ρ̃(int)
n

]]
, (7.164)

where [ , ] and {, } denote commutator and anticommutator, respectively, and

Ĥo = ω(â†â + b̂†b̂ + 1); Â†
2 = ω(â†2 + b̂†2);

Â2 = ω(â2 + b̂2); ω = 1/4 cos (arcsin η/2) . (7.165)

The operators b and b† correspond here to the coordinates with bars.
Equation (7.164) resembles the Liouville equation, where the relaxation

term governing the evolution of the density matrix in the interaction repre-
sentation originates from the ensemble averaged disorder γ2. It is an analog
of the relaxation operator for the regular density matrix of an open quantum
system, originating from random time-dependent external interventions into
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the coherent dynamics. Note that after substitution of the explicit expres-
sions for the commutators and the anticommutator, the relaxation operator
contains three different components R̂ll, R̂rr, and R̂lr that act on ρ̃(int)

n from
the left-hand side, from the right-hand side, and from both sides, respec-
tively. These relaxation operators are linear, although their action on the
density matrix cannot always be written as a matrix multiplication as it was
discussed in the context of (5.58). We therefore employ the notations with

double “hats” ̂̂
Rll,

̂̂
Rrr, and ̂̂

Rlr on top of these operators in the situation
where this circumstance is important.

For large n, the dominating contribution comes from the eigenvector (in
this case of the Liouville equation it is the eigen ”density” matrix) which
corresponds to the eigenvalue of the Liouville operator with the smallest
imaginary part. The “density” matrix satisfying (7.164) is a diagonal matrix
in the oscillator quantum numbers representation

∑
mk |mk〉 ρ̃(mk)

n 〈km| . The
main contribution to the slowest decaying term comes from the vacuum state
m = k = 0 for which the Liouville equation reads

∂ρ̃(0,0)
n

∂n
= i2ζωρ̃(0,0)

n − 2(γω)2ρ̃(0,0)
n . (7.166)

The dominating contribution therefore reads

ρ̃(int)
n (x, x; y, y) = 〈x, x|0〉 ρ̃(0,0)

n 〈0|y, y〉 ,

where the coordinate representation of the wavefunctions is given explicitly
in (7.150). We have thus reproduced the result of the previous subsection
(p. 352) and have obtained for ζ → 0 the static transparency decreasing as
∼ e−γ2N/8 in the center of the band (η = 0) where the “frequency” assumes,
according to (7.165), the minimum value ω = 1/4.

7.5.3 Classical Fermionic Fields for the Population Dynamics

We now consider the evolution of the population ρn(t) in an infinite relay of
levels of energies En, randomly distributed around the mean position Ω =
0 with Gaussian statistics (7.130). We calculate ρn(t) for the case where
all of the population of the chain has been initially localized at level 0. In
other words, the initial condition ψ0(t = 0) = 1 holds for the Schrödinger
equation (7.1), where the index n assumes both positive and negative integer
values. The constant coupling Vn is taken as the energy unit. From (7.93)
one immediately finds the population

ρn(t) =

∞−iν∫
−∞−iν

∞+iν∫
−∞+iν

dξ dε

4π2 e−i(ε−ξ)tM
+
0 (ε)M−

n (ε)

Det
∣∣∣Ĥ − ε

∣∣∣ M+
0 (ξ)M−

n (ξ)

Det
∣∣∣Ĥ − ξ

∣∣∣ . (7.167)

Though this expression resembles (7.131) for the tunneling transparency,
it contains an important additional factor in the numerator of the integrand
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given by the product of four minors of the matrices (Ĥ−ε)n,n′ and (Ĥ−ξ)n,n′ .
As earlier, one can represent the determinants in the denominator with the
help of the functional integrals (7.133). We are now going to introduce a
technique which allows one to represent the factors in the numerator also
in the form of functional integrals, and thereby to perform the Gaussian
ensemble average by analogy to (7.134) and (7.135).

Analogy Between Minors and an Ensemble of Spins 1/2

As we have already seen in the previous section, the functional integral (7.137)
for the inverse square root of the determinant can be interpreted in terms of
a one-dimensional particle, with a Hamiltonian (7.142) moving in a parabolic
potential, periodically changing in time. The integral equals the probabil-
ity amplitude for the particle to remain at the origin after N + 1 periods,
whereas the evolution after one period is given by (7.145). We can build
a similar construction for the minors starting from the recurrence relation
(7.43). However, now the representing particle does not correspond to an
infinite-dimensional Hilbert space of a harmonic oscillator, but to just two-
dimensional Hilbert space of a spin 1/2. Indeed, by introducing “spinors 1/2”
given as

{
M+

n , iM+
n−1

}
one can rewrite (7.43) for Vn ≡ 1 in the matrix form{

M+
n+1

iM+
n

}
=

(
En − ε i

i 0

){
M+

n

iM+
n−1

}
(7.168)

where the 2 × 2 matrix describes the evolution over the period by analogy to
(7.145).

The upper diagonal matrix element (s = 1/2) of the product of these
matrices corresponding to the evolution over N periods yields the entire
determinant Det

∣∣∣Ĥ − ε
∣∣∣, whereas that for n + 1 periods yields M+

n . In other
words, projection to the upper state of the “spin” plays the same role as the
projection to the state |x = 0〉 of the oscillator. Note that the operator of the
evolution over a period(

En − ε i
i 0

)
= (En − ε)σ̂+σ̂ + iσ̂+ + iσ̂ (7.169)

can be given in terms of the spin raising and lowering operators σ̂+ and σ̂.
One can introduce “trajectories” (see Fig. 7.9c) for the spin 1/2 that evidently
are discrete, not only in “time” n but also in “space”, since the spin assumes
only two values s± = ±1/2. The trajectories are just sequences {(s±)n} of
s+ or s− for each n, and each trajectory corresponds unambiguously to one
of 2N terms in the explicit representation of the three-diagonal determinant
Det

∣∣∣Ĥ − ε
∣∣∣. We assume the standard vector notation
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|s+〉 =
(

1
0

)
; |s−〉 =

(
0
1

)
〈s+| =

(
1 0

)
; 〈s−| =

(
0 1

)
(7.170)

for the spin eigenstates.
The correspondence between the terms of the determinant and the spin

trajectoties can be established as follows. We develop the determinant over
the elements of the last column. The diagonal matrix element then corre-
sponds to s+ and has the factor (E1 − ε) in front of the minor M+

1 , whereas
the off-diagonal matrix element corresponds to s− and gives the unity fac-
tor in front of the minor

(
M+

2

)
ap

. The latter results from appending the
minor M+

2 by one line and one column, containing zeros everywhere apart
from unity on the diagonal position. The same development applied to M+

1
or

(
M+

2

)
ap

provides us with the second element of the trajectory, and the
procedure can be repeated up to the end, thus yielding the representation
of the determinant as a sum of different products of unities and the factors
(En − ε) , whereas each of the products corresponds to a different trajectory.

We illustrate this for the simplest example of a 2×2 determinant. On the
one hand, straightforward calculation via expansion over the elements of the
last column yields

Det
∣∣∣∣E2 − ε 1

1 E1 − ε

∣∣∣∣ = M+
1 (E1 − ε) − (

M+
2

)
ap

1

= (E2 − ε) (E1 − ε) − 1, (7.171)

where the 1 × 1 minors are M+
1 = (E2 − ε) and

(
M+

2

)
ap

= (1). On the other
hand, with the help of (7.168) one obtains

Det
∣∣∣Ĥ − ε

∣∣∣ = 〈s+|
(

E2 − ε i
i 0

)(
E1 − ε i

i 0

)
|s+〉

= 〈s+|
(

E2 − ε i
i 0

)
|s+〉 〈s+|

(
E1 − ε i

i 0

)
|s+〉

+ 〈s+|
(

E2 − ε i
i 0

)
|s−〉 〈s−|

(
E1 − ε i

i 0

)
|s+〉 , (7.172)

where in agreement with (7.169,7.170), the last two terms show the contri-
bution (E2 − ε) 2 〈s+| σ̂+σ̂ |s+〉2 (E1 − ε) 1 〈s+| σ̂+σ̂ |s+〉1 of the trajectory
(s+)2 (s+)1 and the contribution 1 〈s+| σ̂+ |s−〉2 (−1) 2 〈s−| σ̂ |s+〉1 of the
trajectory (s−)2 (s+)1. The indices n of |s±〉n enumerate columns of the de-
terminant, whereas that of n 〈s±| enumerate the lines. Note that for a higher
order determinant, the trajectory (sr)N (su)c . . . (ss)b (sv)a (sw)1 implies that
the operators (7.169) are sequentially placed in between a 〈sv| and |sw〉1, in
between b 〈ss| and |sv〉a, etc. until one finally reaches the last operator in be-
tween N 〈sr| and |su〉c , at the end of the trajectory. The running indic7.177es
a = 1, 2; b = 1, 2; c = 1, 2 mark the trajectory.
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Classical Anticommuting Variables

The main problem in describing a quantum system, with the help of a func-
tional integral over classical trajectories, is finding a proper “action” func-
tional exp[S] and the corresponding classical integration variables. For the
particular problem under consideration, the functional integration should be
equivalent to summation over the “spin” trajectories. Each “spin” trajectory
{(s±)n} corresponds to a spin eigenstate of an ensemble of N spins 1/2,
explicitly given by the tensor product

∏N
n=1 ⊗ |s±〉n of N individual spin

states (either s+ or s−) enumerated by the index n, such that the trajec-
tory sum can also be considered as a trace over these eigenstates. However,
the functional integrals convenient for the description of spin ensembles do
not employ spins as the coordinates of classical trajectories, but rely on a
different construction.

The fact that the problem is formulated in terms of the ensemble of spins
of 1/2 suggests the use of the anticommuting fermionic operators. In the
context of tunneling transparency, we have seen the correspondence between
a quantum harmonic oscillator described by the bosonic operators â† and â
with the commutation relation

[
â, â†] = 1 and the functional integral over

the regular (commuting) classical coordinates xn, xn. By analogy, classical
anticommuting coordinates χn and χn with the anticommutators {χn, χm} =
0, {χn, χm} = 0, and {χn, χm} = 0 are related to the quantum spin operators
σ̂+ and σ̂ of (7.169) satisfying the anticommutation relation

{
σ̂+, σ̂

}
= 1.

These classical anticommuting coordinates are known as nilpotent, graded,
or Grassmann variables. The anticommutation relations imply that χ2

n = 0
and χ2

n = 0. Moreover, they also imply that each anticommuting coordinate
enters, at most once, to any non-vanishing product of the coordinates, and
in particular χnχnχnχn = 0.

A certain physical meaning can be attributed to the variables χn and
χn. The variable χn can be interpreted as the creation of a “particle” at the
position n, whereas χn denotes either annihilation of the existing ”particle” or
creation of an “antiparticle” at the same position. The combination χnχn may
thus be interpreted as the number of particles (0 or 1) at the site n, whereas
the combination χn+1χn indicates creation of a “particle–antiparticle” couple
at the sites n and (n + 1), respectively. Each “particle” or antiparticle can
be created and annihilated only once, as follows from the anticommutation
relations for the fermionic operators.

Since each “particle” has “spin” 1/2, creation or annihilation of a couple
of “particles” changes the total ”spin” by unity. In the case of the nearest
neighbor, relay-like interaction, resulting in three-term recurrence relations
for the minors, and in accordance with (7.137) following from these relations,
the total “spin” always remains 1/2, whereas creation or annihilation of a
couple just corresponds to “spin flip”. We note that the “pair” corresponding
to spin 1, and its creation and annihilation operators given by products of
two Grassmann coordinates (bi-Grassmann), are bosonic operators commut-
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ing among themselves. The operators of “pairs” also commute with single
“particle” operators. Therefore one can manipulate with these operators as
regular numbers.

Now each term of the determinant, which corresponds to a certain choice
of the matrix elements in the sequential development of the minors over the
elements of the last column, can also be attributed to a “spin” trajectory,
and each of the “spin” trajectories corresponds in turn to a certain sequence
of creation and annihilation of “particles” and “pairs”. Let us illustrate this
for the simplest example of (7.171), (7.172)

Det
∣∣∣∣E2 − ε 1

1 E1 − ε

∣∣∣∣ = (E2 − ε) (E1 − ε) − 1;

(E2 − ε) (E1 − ε) → (s+)2 (s+)1 → χ2χ2χ1χ1;
−1 → (s−)2 (s+)1 → χ1χ2χ2χ1. (7.173)

The first term of the determinant resulting from the choice of the matrix
element (E1 − ε) in the last column corresponds to the trajectory (s+)2 (s+)1
and to the creation and annihilation of “particle” 1 followed by the creation
and annihilation of “particle” 2, whereas the second term resulting from the
choice of the matrix element 1 in the last column corresponds to the creation
of a “pair” consisting of a “particle” at site 1 and an “antiparticle” at site 2
followed by their annihilation. Our next step is to find an algebraic way to
reveal this correspondence.

Functional Integrals over Anticommuting Variables

Consider a bilinear form

←−
χ (Ĥ − ε)−→χ ≡ (

χ2 χ1
)(E2 − ε 1

1 E1 − ε

)(
χ2
χ1

)
= (E2 − ε)χ2χ2 + (E1 − ε)χ1χ1 + χ2χ1 + χ1χ2 ≡ −S

(7.174)

and calculate the exponent exp [S] of this quantity, casting it in a Taylor
series

exp [S] = 1 − (E2 − ε)χ2χ2 − (E1 − ε)χ1χ1 − χ2χ1 − χ1χ2

+ (E2 − ε)χ2χ2 (E1 − ε)χ1χ1 + χ2χ1χ1χ2 (7.175)

where we retain only the terms linear in each coordinate, and allow for the
fact that all binary products of the variables commute among themselves.
Let us concentrate only on the two last terms of (7.175) containing all of the
fermionic coordinates, and with the help of the anticommutation relations,
make the order of the variables of the last term identical to those of the
preceding term. This yields

exp [S] = . . . + (E2 − ε) (E1 − ε)χ2χ2χ1χ1 − χ2χ2χ1χ1, (7.176)
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where, in the numerical factor in front of the coordinate product χ2χ2χ1χ1,
one recognizes the determinant (7.173).

The functional S can serve as the action of the path integrals over an-
ticommuting variables, provided this integration is defined as a procedure
ensuring the selection of all of the terms in the Taylor expansion that only
contain products of all of the coordinates. In other words, a “particle” should
be created and annihilated at each site n. This goal is met by following the
definitions of the integrals over the Grassmannian variables∫

dχn = 0,
∫

χndχn = 1, (7.177)

where the differentials of the fermionic variables also anticommute. Equation
(7.177) together with the anticommutation relations

{dχndχm} = {dχndχm} = 0,
{χn, χm} = 0; {χn, χm} = 0; {χn, χm} = 0 (7.178)

can serve as an axiomatic definition of the Grassmann variables.
We therefore have∫

exp [S] dχ1dχ1dχ2dχ2 = (E2 − ε) (E1 − ε) − 1, (7.179)

whereas the functional integral

∫
exp

[
−

N∑
n,m=1

χnanmχm

]
N∏
n=1

{ dχndχn} = Det |anm| , (7.180)

is the generalization of (7.179) for the case of an arbitrary order N of the
determinant, and is an analog of (7.136) for the regular variable. This expres-
sion is valid for the general matrix anm even when the three-term recurrence
relations (7.43) and (7.168) do not hold. Note that for a minor Mkl resulting
from the elimination of the k-th line and l-th column from the matrix anm
one has an integral representation

Mkl =
∫

χkχl exp

[
−

N∑
n,m=1

χnanmχm

]
N∏
n=1

{ dχndχn} . (7.181)

Two coordinates in the pre-exponential factor eliminate all of the terms con-
taining the matrix elements of the k-th line and l-th column from the Taylor
expansion of the integrand.
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7.6 Population Dynamics in a Disordered Chain

With the help of Grassmann notation, we now consider the population of an
infinite relay of levels with disordered energies given by (7.167). We note that
for the relay-like systems with Vn = 1 one has M+

0 M−
n = M0n and hence

ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2 e−i(ε−ξ)t ∞∏

k=−∞

{ ∫
dχkdχkdχ

′
kdχ

′
k

}
χ′

0χ
′
nχ0χn exp

[
−

∞∑
k,m=−∞

(χkakmχm − χ′
ka

′
kmχ′

m)

]
∞∏

k=−∞

{
∞∫

−∞
dz∗

kdzkdz
′∗
k dz′

k

4π2

}
exp

[
−i

∞∑
k,m=−∞

(zkakmz∗
m − z′

ka
′
kmz′∗

m)

]
(7.182)

where akm = (Ek − ε)δk,m + δk,m+1 + δk,m−1 and a′
km = (Ek − ξ)δk,m +

δk,m+1 + δk,m−1. The integrals over the variables z∗, z, z′∗, and z′ are just
another form of the integral (7.134), given in the notation of (7.136), whereas
the integrals over the anticommuting variables of the type (7.181), take into
account the minors in the numerators of (7.167).

By analogy to (7.135), for the Gaussian distribution function (7.130) cen-
tered around Ω = 0, one finds the ensemble average of (7.182)

ρn(t) =

∞−iν∫
−∞−iν

∞+iν∫
−∞+iν

dξ dε

4π2

∞∏
k=−∞

⎧⎨⎩
∞∫

−∞

dz∗
kdzkdz

′∗
k dz′

k

4π2

⎫⎬⎭
∞∏

k=−∞

{∫
dχkdχkdχ

′
kdχ

′
k

}
χ′

0χ
′
nχ0χn e−i(ε−ξ)t+S ;

S =
∞∑

k=−∞

[
εχkχk − ξχ′

kχ
′
k + iε |zk|2 − iξ |z′

k|2 + χ′
kχ

′
k±1 − χkχk±1

+iz′
kz

′∗
k±1 − izkz

∗
k±1 − γ2

4

(
iχ′

kχ
′
k − iχkχk + |zk|2 − |z′

k|2
)2

]
,

(7.183)

where the subscript k ± 1 denotes the sum of the terms with indices k − 1
and k + 1.

7.6.1 Population Dynamics and Propagating Fictitious Particles

Considering the inverse square root of a three-diagonal determinant in the
context of tunneling transparency as a function of its order n, we have seen
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that for γ = 0, the functional integral (7.137) representing this determinant
can be interpreted as the probability amplitude of a periodically driven har-
monic oscillator evolving in a fictitious “time” n. The evolution over a period
(7.151) written with the help of the creation and the annihilation opera-
tors (7.149) suggests the employment of the oscillator energy eigenfunctions,
where the most important role is played by the ground state (7.150). We have
expressed the tunneling transparency in terms of four oscillators composing
a “density matrix” (7.160) and considering γ2 �= 0 as a perturbation. Now
we employ the same idea for the anticommuting variables.

First we separate the “fermionic” part of (7.183) and introduce for γ = 0
the “fermionic density matrix” ρn(χk, χk, χ

′
k, χ

′
k)

ρn(χn, χn, χ
′
n, χ

′
n) = exp (εχnχn − ξχ′

nχ
′
n)

n−1∏
k=−∞

{∫
dχkdχkdχ

′
kdχ

′
k

}
exp

[
n−1∑
k=−∞

εχkχk − ξχ′
kχ

′
k + χ′

kχ
′
k+1 − χkχk+1 + χ′

k+1χ
′
k − χk+1χk

]
,

(7.184)

by finishing the Grassmann integration at the “time moment” n−1. In order
to distinguish between the real density matrix and the fictitious “bosonic”
and “fermionic density matrices” (7.184), the latter is indicated by a bar.
The “fermionic density matrix” is a polynomial consisting of 16 terms where
each of four coordinates (χn, χn, χ

′
n, χ

′
n) occurs either in the first or in zero

power, that is

ρn(χ, χ, χ′, χ′) = ρ0000(n) + χ′ρ0001(n)
+χ′ρ0010(n) + χ′χ′ρ0011(n) + χρ0100(n)
+χχ′ρ0101(n) + χχ′ρ0110(n) + χχ′χ′ρ0111(n)
+χρ1000(n) + χχ′ρ1001(n)
+χχ′ρ1010(n) + χχ′χ′ρ1011(n) + χχρ1100(n)
+χχχ′ρ1101(n) + χχχ′ρ1110(n) + χχχ′χ′ρ1111(n). (7.185)

With the help of the leftmost line vector
(
1, χ, χ, χχ,

)
and the corresponding

rightmost column vector this can also be written as a bi-linear form

ρn(χ, χ, χ′, χ′) =
(
1, χ, χ, χχ,

)
×

⎛⎜⎜⎝
ρ0000 ρ0001 ρ0010 ρ0011
ρ0100 ρ0101 ρ0110 ρ0111
ρ1000 ρ1001 ρ1010 ρ1011
ρ1100 ρ1101 ρ1110 ρ1111

⎞⎟⎟⎠
⎛⎜⎜⎝

1
χ′

χ′

χ′χ′

⎞⎟⎟⎠ (7.186)

where the coefficients forming a 4×4 matrix and depending on n encode all of
the fermionic information. Later, we will consider the evolution of a multiplet
consisting of both “fermions” and “bosons”, for which all matrix elements
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are functions of bosonic variables (x, x; y, y), or in short (z, z′). We attribute
variables with primes to “antiparticles”; z′ to “antibosons”, and χ′and χ′

to “antifermions”. We assume that “bosonic” coordinates are implicit in the
representation (7.186).

We determine the recurrence relation for this matrix propagating it in
“time” to n + 1. The result of such a propagation is known: it should be
equivalent to the transformation given by a 2 × 2 matrix in (7.168) for En =
0, which has to be applied to each of the participating fermions, that is
separately for each index (0, 1) , of the matrix elements. We consider this in
more detail and show how this transformation appears in the matrix notation
(7.186). We perform integration over all but the last four anticommuting
variables and find the recurrence relations

ρn(χ, χ, χ′, χ′) =
∫

dχ1dχ1dχ
′
1dχ

′
1ρn−1(χ1, χ1, χ

′
1, χ

′
1) (7.187)

exp (εχχ − ξχ′χ′ + χ′χ′
1 − χχ1 + χ′

1χ
′ − χ1χ)

for the functions of the Grassmann variables.
Let us first consider the result of integration over one variable, say dχ′

1,
which involves only the last column vector of the quadratic form (7.186). We
take into account the anticommutation relations (7.178) among the differen-
tials dχ1dχ1dχ

′
1dχ

′
1 = −dχ′

1dχ
′
1dχ1dχ1, allow for the relation exp (χ′

1χ
′) =

(1 + χ′
1χ

′) , and perform the integration following the rules (7.177). For the
last vector of (7.186) this yields⎛⎜⎜⎝

1
χ′

1
χ′

1
χ′

1χ
′
1

⎞⎟⎟⎠ dχ′
1→

⎛⎜⎜⎝
− ∫

(1 + χ′
1χ

′) dχ′
1

− ∫
χ′

1 (1 + χ′
1χ

′) dχ′
1

− ∫
χ′

1 (1 + χ′
1χ

′) dχ′
1

− ∫
χ′

1χ
′
1 (1 + χ′

1χ
′) dχ′

1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
χ′

χ′
1χ

′

−1
χ′

1

⎞⎟⎟⎠ . (7.188)

Continuing by integration over dχ′
1 allowing for the relation exp (χ′χ′

1) =
(1 + χ′χ′

1) we obtain⎛⎜⎜⎝
χ′

χ′
1χ

′

−1
χ′

1

⎞⎟⎟⎠ dχ′
1→

⎛⎜⎜⎝
∫

χ′ (1 + χ′χ′
1) dχ′

1∫
χ′

1χ
′ (1 + χ′χ′

1) dχ′
1

− ∫
(1 + χ′χ′

1) dχ′
1∫

χ′
1 (1 + χ′χ′

1) dχ′
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−χ′χ′

−χ′

−χ′

1

⎞⎟⎟⎠ . (7.189)

In other words, replacement of the variables with subscript 1 by variables
without the subscript, is equivalent to multiplication of the vector column by
a transformation matrix⎛⎜⎜⎝

1
χ′

1
χ′

1
χ′

1χ
′
1

⎞⎟⎟⎠ dχ′
1dχ

′
1→

⎛⎜⎜⎝
0 0 0 −1
0 −1 0 0
0 0 −1 0
1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

1
χ′

χ′

χ′χ′

⎞⎟⎟⎠ . (7.190)
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Let us allow now for multiplication by exp (−ξχ′χ′) = 1 − ξχ′χ′ which
yields ⎛⎜⎜⎝

1
χ′

χ′

χ′χ′

⎞⎟⎟⎠ exp(−ξχ′χ′)→

⎛⎜⎜⎝
1 − ξχ′χ′

χ′

χ′

χ′χ′

⎞⎟⎟⎠ , (7.191)

and therefore modifies (7.190)⎛⎜⎜⎝
1
χ′

χ′

χ′χ′

⎞⎟⎟⎠
1

dχ′
1dχ

′
1×exp(−ξχ′χ′)→

⎛⎜⎜⎝
−ξ 0 0 −1
0 −1 0 0
0 0 −1 0
1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

1
χ′

χ′

χ′χ′

⎞⎟⎟⎠ . (7.192)

We can calculate the transformation of the line vectors analagously and ob-
tain

(
1, χ, χ, χχ,

)
1 → (

1 χ, χ, χχ,
)⎛⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0

−1 0 0 ε

⎞⎟⎟⎠ . (7.193)

In other words, the matrix ρ̂ of the coefficients ρijkl of (7.186) experience the
transformation ÛRρ̂ÛA, where ÛA and ÛR are the matrices entering (7.192)
and (7.193), respectively.

Note that the fermionic part of the line and the column vectors that
contain only linear terms χ′, χ′ or χ, χ is not affected by the transformation
over the period and does not change, apart from an unimportant variation of
the signs. This allows us to concentrate only on the first and the last lines and
columns of the matrices, discard the second and the third line and column
and write (

1
χ′χ′

)
1

→
(−ξ, −1

1, 0

)(
1

χ′χ′

)
. (7.194)

(
1, χχ

)
1 → (

1, χχ
)( 0, 1

−1, ε

)
, (7.195)

which is equivalent to (7.168). In other words, combinations of “particles”
containing an odd number of “fermions” or “antifermions” are not affected by
the ”time” evolution. Neither are they affected by the disorder. This circum-
stance is very important to note, since the operators χ′

0χ0 and χnχ
′
n in front

of the exponent in the integrand (7.182) do change the number of “fermions”
from even to odd. This occurs at the “time moments” corresponding to the
starting level 0 and the final level n in our original problem of the population
dynamics, and means that during this “interval of time”, the propagation of
the “fermions” is disentangled from that of the “bosons”, where the latter
propagate independently according to (7.166).



364 7 The Dynamics of One-Dimensional Relay-Type Systems

After discarding from (7.186) the lines and the columns corresponding to
odd numbers of fermions and antifermions, the “density matrix” for fictitious
particles adopts the form

ρ̃n(χ, χ, x, x;χ′, χ′, y, y) =
(
1, χχ

)
ρ̂n(z, z′)

(
1

χ′χ′

)
;

ρ̂n(z, z′) =
(

ρ̃0000(z, z′, n), ρ̃0011(z, z′, n)
ρ̃1100(z, z′, n), ρ̃1111(z, z′, n)

)
(7.196)

where the bosonic variables (x, x; y, y) are written explicitly as complex num-
bers (z, z′), as in (7.136). At γ = 0 according to (7.162), (7.194), and (7.195),
the evolution of the ”density matrix” over the period reads

ρ̂n+1(z, z
′) = ÛlûLρ̂n(z, z′)ûRÛr (7.197)

where

ûR =
(−ξ −1

1 0

)
; ûL =

(
0 1

−1 ε

)
,

Ûr = exp
{

i
1
4

|p̂|2z′

}
exp

{
i(2 − ξ) |z′|2

}
Ûl = exp

{
−i(2 − ε) |z|2

}
exp

{
−i

1
4

|p̂|2z
}

. (7.198)

7.6.2 Mapping over a Period and the Ensemble Average

For γ �= 0, equation (7.183) results from the ensemble averaging of the ex-
pression

ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2

∞∏
k=−∞

{
∞∫

−∞
dz∗

kdzkdz
′∗
k dz′

k

4π2

}
∞∏

k=−∞

{∫
dχkdχkdχ

′
kdχ

′
k

}
χ′

0χ
′
nχ0χn e−i(ε−ξ)t+S ;

S =
∞∑

k=−∞

[
(ε − γk)χkχk − (ξ − γk)χ

′
kχ

′
k + i(ε − γk) |zk|2

−i(ξ − γk) |z′
k|2 + iz′

kz
′∗
k±1 − izkz

∗
k±1 + χ′

kχ
′
k±1 − χkχk±1

]
,

(7.199)

with the distribution function (7.130) for En. Here, as earlier, zk = xk + ixk,
z′
k = yk + iyk. This suggests the consideration of the recurrence relations for

fictitious “density matrices” ρn (7.186) for each individual realization of the
disorder
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ρn(χn, χn, xn, xn;χ′
n, χ

′
n, yn, yn) =

n−1∏
k=−∞

{
∞∫

−∞
dxkdykdxkdyk

π2

}

×
n−1∏
k=−∞

{∫
dχkdχkdχ

′
kdχ

′
k

}
exp

n∑
k=−∞

[
2ixkxk−1 + 2ixkxk−1 − 2iykyk−1

−2iykyk−1 + χ′
kχ

′
k−1 − χkχk−1 + χ′

k−1χ
′
k − χk−1χk + (ε − Ek)χkχk

−(ξ − Ek)χ′
kχ

′
k + i(ε − Ek)

(
x2
k + x2

k

) − i(ξ − Ek)
(
y2
k + y2

k

) ]
, (7.200)

where the integrations are performed over all variables with indices less than
n. Since the result of such a multistep Gaussian integration is a Gaussian
function, one can assume that the “density matrix” has the form

ρn−1 = exp
[
iM

(n−1)
11 |zn−1|2 − iM

(n−1)
22

∣∣z′
n−1

∣∣2
−M

(n−1)
33 χn−1χn−1 + M

(n−1)
44 χ′

n−1χ
′
n−1

]
, (7.201)

and after substitution of (7.201) into (7.200), followed by integration, we find
a Gaussian function again for the next n

ρn = exp
[
iM

(n)
11 |zn|2 − iM

(n)
22 |z′

n|2 − M
(n)
33 χnχn + M

(n)
44 χ′

nχ
′
n

]
, (7.202)

where the diagonal matrices M̂ (n) and M̂ (n−1) are defined as

M̂ (n) =

⎛⎜⎜⎜⎝
M

(n)
11 0 0 0
0 M

(n)
22 0 0

0 0 M
(n)
33 0

0 0 0 M
(n)
44

⎞⎟⎟⎟⎠
and satisfy the recurrence relation

M̂ (n) = −
(
M̂ (n−1)

)−1
+

⎛⎜⎜⎝
ε − En 0 0 0

0 ξ − En 0 0
0 0 ε − En 0
0 0 0 ξ − En

⎞⎟⎟⎠ . (7.203)

This is a direct analog of mapping (7.110). One sees that in this construction,
M

(n)
11 always coincides with M

(n)
33 , whereas M

(n)
22 coincides with M

(n)
44 . We

have already encountered such a situation considering the tunneling trans-
parency.

Successive application of the mapping yields the matrix M̂ (n) as a function
of the initial condition M̂ (0) and all of the string of intermediate energies
Ek with 0 < k < n. Averaging over the ensemble of random energies Ek

therefore generates an ensemble of random matrices M̂ (n) with a certain
distribution function g(M (n)

11 ,M
(n)
22 , ε, ξ). For an infinitely long chain of levels,
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this distribution function loses the memory of the initial condition M̂ (0) and
becomes “stationary”, not depending on the level number n, that is on the
fictitious “time”. Hence for the ensemble average “density matrix” one finds

ρn(χ, χ, z;χ′, χ′, z′) =
∫

dM11dM22 g(M11,M22, ε, ξ)

exp
[
iM11 |z|2 − iM22 |z′|2 − M11χχ + M22χ

′χ′
]
, (7.204)

where the ”stationary” distribution function g(M (n)
11 ,M

(n)
22 , ε, ξ) of matrices

satisfies the equation

g(M11,M22, ε, ξ) =
∫

dEn
g̃(En)

(ε−En−M11)2
(7.205)

1
(ξ−En−M2

22)2
g
(

1
ε−En−M11

, 1
ξ−En−M22

, ε, ξ
)
,

which follows from the recurrence relation (7.203) and the random energy
distribution (7.130)

g̃(En) =
1√
πγ

exp
−E2

n

γ2 .

Integration over dM11dM22 can be referred to as integration over a matrix
dM̂ , which for the particular case under consideration is reduced to integra-
tion over only two diagonal matrix elements. For the real numbers ε, ξ, En the
matrix elements M11 and M22 are real, but even a vanishing imaginary part
of ε and ξ makes these matrix elements complex when mapping (7.203) is per-
formed an infinite number of times. In the latter case the symbol dM11dM22
implies independent integration over the real and the imaginary parts of M11
and M22, for which one always has two constraints ImM11 > 0 > ImM22. The
distribution g(M11,M22, ε, ξ) in this case is a real function of the complex
variables M11,M22.

Note that the representation

ρ̃n(z, z′) =
∫

dM11dM22 gn(M11,M22, ε, ξ) ×

exp
[
iM11 |z|2 − iM22 |z′|2

]
, (7.206)

similar to (7.204) can be given for the purely “bosonic” density matrix (7.161)
although with a slightly different recurrence relation

gn+1(M11,M22, ε, ξ) =
∫

dEn
g̃(En)

ε − En − M11
1

ξ − En − M22
gn

(
1

ε−En−M11
, 1
ξ−En−M22

, ε, ξ
)

,

(7.207)
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for the distribution function. The difference originates in the fact that in-
tegration over bosonic variables z, z′ yields denominators M ′

11 M ′
22 that are

not compensated by the same factors in numerators resulting from Grass-
mann integrations. Due to this difference, the normalization of the distri-
bution function (7.207) is not conserved, but exponentially decreases over
the course of iterations, where the function itself does not have a non-zero
asymptotic profile. The decrease rate is given by the modulus of the smallest
eigenvalue eλ(ε,ξ) of the integral operator (7.207), and we denote the corre-
sponding eigenfunction by gmin(M ′

11,M
′
22, ε, ξ).
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Fig. 7.10. Distribution of the points M11 and M22 in the upper and lower parts
of the complex plane after a large number of mappings ( 7.203) with randomly
distributed En. (a) A Lorentzian stationary distribution is attained close to the
real axis for the case Imζ/γ2 	 1, whereas in the opposite limit (b) one sees a nar-
row Gaussian distribution around the attracting stable points. The corresponding
distribution functions g(M11) are shown in (c) and (d) respectively.

Equation (7.205) implies that a stationary distribution g(M11,M22, ε, ξ)
is attained as a result of the interplay between the compressing mapping
(7.203) at En = 0 and the random walk resulting from the irregular energy
shifts En. Mapping in the complex planes M11 and M22 tends to compress the
distribution to the stable stationary points shown for (7.110) in Fig. 7.7. For
Im(ε−ξ) < 0 these points are located outside of the unit circles |M11| = 1 and
|M22| = 1 at a distance |Imζ| /

√
4 − η2, which can be found for small ζ by

straightforward calculation of the positions of the stationary points. Here η =
(ε+ξ)/2 and ζ = ε−ξ, as usual. The compression factor 1−2 |Imζ| /

√
4 − η2

narrows the distribution around the stationary points, whereas the random
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values of En result in a diffusive broadening of the distribution. Relative
broadening of a Gaussian distribution exp[−a |Mii − Mst|2] as a result of one
additional random diffusion step of length γ amounts to γ2a+1, and therefore
is completely compensated by the compression if γ2a = 2 |Imζ| /

√
4 − η2.

Hence, for |Imζ| /γ2 � 1 the stationary distribution is a gaussian

g(M11,M22, ε, ξ) = exp

[
−2 |Imζ|

∣∣M11 − ei arccos η/2
∣∣2

γ2
√

4 − η2

]

exp

[
−2 |Imζ|

∣∣M22 − e−i arccos η/2∣∣2
γ2

√
4 − η2

]
γ4(4 − η2)
4π2 |Imζ|2 ,

(7.208)

where we have determined the positions of the stationary points

Mst = exp (±i arccos η/2)

in the approximation |ζ| � η and have allowed for the normalization factor.
The inverse Fourier transformation is performed however along the con-

tours, where the imaginary parts of both ε and ξ are small as compared to any
physical parameter. Therefore the other extreme |Imζ| /γ2 � 1 is important.
In this limit, the distribution tends to its asymptotic form

g(M11,M22, ε, ξ) =

√
(4 − ε2)(4 − ξ2)

π2 (2 + 2M2
11 − 2M11ε) (2 + 2M2

22 − 2M22ξ)
, (7.209)

which is a solution of (7.205) for γ → 0, (Imζ)/γ → 0 in complete agreement
with the distribution (7.107), (7.113). In Fig.7.10 we show the results of
a large number of sequential mappings (7.203) performed numerically, with
randomly chosen sequences of En for both the |Imζ| /γ2 � 1 and |Imζ| /γ2 �
1 cases. One sees that the values of M11 and M22 obtained for different
realizations of the disorder from the same initial conditions are scattered in
the upper and lower parts of the complex plane, respectively. Two regimes
of small and large ratio |Imζ| /γ2 corresponding to distributions (7.208) and
(7.209) respectively, are clearly seen.

For the “bosonic density matrix” (7.207) the distribution is similar. For
the case |Imζ| /γ2 � 1 one finds

gn(M̂, ε, ξ) = gmin(M̂, ε, ξ)e−nλ(ε,ξ),

gmin(M̂, ε, ξ) = 4
π2(ε+i

√
4−ε2−2M11)

(
ξ−i

√
4−ξ2−2M22

) , (7.210)

exp [λ(ε, ξ)] =
(
ε
2 + i

√
1 − ε2

4

)(
ξ
2 − i

√
1 − ξ2

4

)
= ei arccos ε/2−i arccos ξ/2,

which satisfys the recurrence equation (7.207) at γ = 0. We note that sub-
stitution of (7.209), (7.210) into (7.204), (7.206), respectively, yields the
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“density matrices”, which do not change as a result of the transformations
(7.162), (7.198), thus remaining constants in the interaction representation.

Allowance for the finite width γ of the distribution of En can be consid-
ered as a perturbation of (7.209), ( 7.210). For the distribution function gmin
of (7.210) this yields a small (∼ γ2) correction, and also results in a correction
for the eigenvalue parameter λ of the same order of magnitude. The latter
is of major importance, since this very correction leads to the localization
effect and thereby changes the form of the asymptotic population distribu-
tion in the long-time limit. Corrections resulting from the difference between
the identity operator applied to gmin and a convolution with a sharp sym-
metric distribution (7.130) are proportional to the second derivative of this
function, which should be projected back to gmin, according to the standard
prescription of perturbation theory. Performing the calculations for ζ � 1
one finds λ = iζ/

√
4 − η2 − γ2/2(4 − η2) which coincides with the index of

the exponent suggested by the Liouville equation (7.166) in the interaction
representation.

7.6.3 Time Dependence of the Population Distribution

Now we can interpret the time evolution of the population distribution ρn(t)
of the relay (7.183) in terms of “density matrices” (7.204), (7.206) for fictitious
particles evolving in fictitious time n. We denote the running value of this
fictitious time by the index k. From k = −∞ until the moment k = 0, the “n-
evolution” corresponds to the joint propagation of bosons and bi-fermions,
and is given by their stationary “density matrix” (7.204). Note that in this
case the matrix contains only the part ρ̃n given by (7.196) of the entire density
matrix (7.186). At the point k = 0, the Grassmann operators χ′

0χ0 entering
the pre-exponential factor in the integrand of (7.183) annihilate one of the
fermions, and as a result, the remaining fermion becomes decoupled from the
bosons, propagating without change as we have seen in the context of (7.194).
Note in this case that only the matrix element ρ1010 of (7.186) is different
from zero and

ρ̃k(χ, χ, z;χ′, χ′, z′) = ρ̃k(z, z
′)χ′

kχk.

The bosons, in turn, start to experience decay, and the dominating contri-
bution to their density matrix ρ̃k(z, z′) (7.206) comes from the distribution
given by the eigenfunction g̃min(M ′

11,M
′
22, ε, ξ) with the smallest eigenvalue

eλ(ε,ξ) corresponding to the slowest decay. At the point k = n, the Grass-
mann operators χ′

nχn restore the fermion, and the further propagation again
corresponds to the stationary “density matrix” (7.204). We illustrate this in
Fig. 7.11

The population ρn(t) can therefore be written as overlap integrals

ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2 e−i(ε−ξ)tenλ(ε,ξ) ∫ dz∗dzdz′∗dz′

4π2 dχdχdχ′dχ′

ρ(χ, χ, z;χ′, χ′, z′)χ′χρ̃(z, z′)χ′χ (7.211)
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Fig. 7.11. Representation of the localization with the help of the Liouville equation
for a decaying compound. The dependence of the population on n can be interpreted
as a Liouvillian evolution of a compound comprising “bosons” and “fermions” along
a fictitious time axis n. The stationary compound being perturbed at the point
k = 0 becomes decomposed to “fermions” propagating without decay and “bosons”
exponentially decaying with the course of time. In order to determine the population
ρn at the point n one has to find an overlap of the decaying density matrix at the
point k = n with the density matrix of the stationary compound.

of the “density matrices” Eqs.(7.204, 7.206) of fictitious particles, where we
have taken into account that these “density matrices” do not change with
n, apart from attenuation by a factor enλ(ε,ξ). After substitution of the
right-hand sides of these equations and after performing integrations over
“fermionic” and “bosonic” coordinates, one obtains another representation
of the overlap integral,

ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2 e−i(ε−ξ)t−nλ(ε,ξ)

∫
dM11dM22 g(M11,M22, ε, ξ)gmin(M11,M22, ε, ξ), (7.212)

now in terms of the distribution functions (7.205) and (7.207). Note that
substituting of the distribution functions (7.209), (7.210), which are exact in
the limit γ → 0, into this equation, followed by integration over the matrix
elements dM11, dM22 , dM ′

11, and dM ′
22 along the real axis and over dξ dε

one finds
ρn(t) = |Jn(2t)|2 , (7.213)

in complete agreement with (7.11) for the relay of resonant levels. Evidently
in this limit, one cannot see any trace of the disorder.

In order to take into account the effect of the disorder, one therefore has
to allow for the deviation of the distribution functions entering (7.205) and
(7.207) from their asymptotic forms given by (7.209) and (7.210). Let us
assume that for both g and gmin this deviation can be expressed in the form
of a convolution of the asymptotic distribution with a narrow function of
width vanishing in the limit γ → 0. Although each of the functions g and
gmin may have an individual narrow counterpart, the population distribution
is governed by the convolution gγ of these two counterparts. This modifies
(7.212)
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ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2 e−i(ε−ξ)t−nλ(ε,ξ) ∫ dM11dM22 du gγ(u)

g(M11 + u,M22 + u, ε, ξ)gmin(M11 − u,M22 − u, ε, ξ) (7.214)

and integration over M̂, after substitution of (7.209), (7.210), results in

ρn(t) =
∞−iν∫

−∞−iν

∞+iν∫
−∞+iν

dξ dε
4π2 e−i(ε−ξ)t−nλ(ε,ξ) ∫ du

gγ(u)

(−i√4−ε2+u)
(
i
√

4−ξ2+u
) ,

(7.215)
where λ 
 i(arccos ε/2−arccos ζ/2)−γ2/2(4−η2). Note that replacement of
the distribution gγ(u) by the Dirac δ-function, followed by integration over ε
and ξ, immediately yields a result similar to that of (7.159).

After the replacements ε → cosφ and ξ → cosϕ we take into account the
contributions of the poles at the points φ = arcsin u

2i , φ = π− arcsin u
2i , ϕ =

− arcsin u
2i , and ϕ = π+ arcsin u

2i to the integrals over φ and ϕ and find

ρn(t) =
∫

du
gγ(u)u2

cos2 arcsinu/2i exp
[
−2in arcsin u

2i − nγ2

u2

]
−Re

∫
du

gγ(u)u2

cos2 arcsinu/2i exp
[
−4it cos arcsin u

2i − inπ − nγ2

u2

]
.

(7.216)

In the limit n → ∞, t → ∞, this integral has the asymptotic form resulting
from the contribution of the saddle points u = (2γ2)1/3, u =

(
nγ2

it

)1/3

ρn(t) 
 A√
n

exp
[
−3(γ/2)2/3n

]
− B n5/6

t4/3

∣∣∣gγ [(nγ2

it )1/3
]∣∣∣

exp
[
− 33/2γ2/3

2 n1/3t2/3
]
cos

[
3γ2/3

2 n1/3t2/3 − nπ − 2
3π + θγ

]
,

(7.217)

where

A 

√

4π
3

gγ(21/3γ2/3)25/6γ5/3;

B =

√
2π
3

γ5/3 ; θγ = arg gγ

[
(
nγ2

it
)1/3

]
. (7.218)

This means that an exponentially localized distribution of localization length
∼ γ−2/3/3 is attained, while the deviation from this distribution has the
asymptotic time dependence exp

(−const n1/3t2/3
)
. We note that the par-

ticular form of the distribution function gγ does not affect the shape of the
asymptotic population distribution, but only influences the pre-exponential
factor of the time-dependent deviation from this distribution, which vanishes
with the course of time.



8 Composite Complex Quantum Systems

We now consider level grouping in multilevel systems other than the one-
dimensional relay of isolated levels discussed in the previous chapter. The
population dynamics of such systems can display various manifestations that
are typical of the systems already considered, such as exponential decay at
short times, quantum recurrences and revivals, cooperative behavior, and
quantum localization. Such systems can also demonstrate diffusive behavior.
Typically, a problem of this type does not correspond to any hidden symme-
try resulting in specific commutation relations among different parts of the
Hamiltonian that comprise a closed subalgebra, and the evolution occurs in
the entire Hilbert space, being constrained only by energy conservation. We
first consider several problems for the relay of multilevel bands, for which
diffusive evolution is strongly affected by correlations between the energy
position and the coupling of the levels, and then address a general question
concerning quantum dynamics of the systems, that in the classical limit man-
ifest random walk behavior. We relate the quantum localization phenomenon
to the dimensionality of those random walks responsible for classical returns
and to the quantum recurrences. We also consider spectral manifestations
typical of a quantum system perturbed by a random matrix, when both the
structure of the unperturbed Hamiltonian and the mean squared coupling
by the random matrix play an important role. The spectral transformation
which occurs as a result of such perturbation explains many aspects of the
time evolution of complex quantum systems.

8.1 Relay of Multilevel Bands

Consider a number of statistically equivalent, or identical spectral bands ar-
ranged in a one-dimensional array where each of the bands is coupled to each
of its two neighbors via an interaction. The unperturbed Hamiltonian of the
n-th band is given by its eigenvalues En,m enumerated by the index m, while
the coupling matrices are V n+1,m′

n,m and V n−1,m′
n,m . The Schrödinger equation

for the system reads

iψ̇n,k = En,kψn,k +
∑
m

(
V n+1,m
n,k ψn+1,m + V n−1,m

n,k ψn−1,m

)
, (8.1)
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and serves as a model for the physical problems corresponding to (2.4)
and (2.56). In this section we consider three particular cases of (8.1). The
first case relates to the situation where the total width of each of the
bands is negligibly small as compared to the cooperative coupling, that is
max (En,k − En,k′) � N

〈
V 2

〉
where N is the total number of levels in each

band and
〈
V 2

〉
is the mean squared interaction, as earlier. During a period

of time shorter than 1/max (En,k − En,k′) we can neglect the difference in
level energies and consider the system as resonant. In the opposite extreme
of broad bands, the total number N of levels in each band plays an unim-
portant role, while the dynamics of the system is governed by the density g
of the band states. For time intervals shorter than the quantum recurrence
time, the band populations satisfy the discrete diffusion equation or a master
equation in the case of statistically non-equivalent bands.

|C' >n+1|C >n

V

c) |C' >n+2|C >n+1

V

|C' >n+3|C >n+2

Vn n+1 n+2
n+3n+1 n+2

a)
Vn,m'

n+1,m Vn+1,m'
n+2,m

Vn+2,m'
n+3,m

b)

Vn,m'
n+1,m Vn+1,m'

n+2,m
Vn+2,m'

n+3,m

|C >n

V

d) |C >n+1

V

|C >n+2

Vn n+1 n+2
n+3n+1 n+2

|C >n+3

. .

Fig. 8.1. Relay of bands. (a) The bands can be considered as degenerate levels
when the cooperative coupling 〈V 2〉N 
 max|∆n,m − ∆n,m′ |. (b) For the broad
bands the population remains in the vicinities of resonances, whose total popu-
lations satisfy the master equation. (c) Correlation among the matrix elements
〈V n+1,k

n,m V n+1,k′
n,m′ 〉 �= 0 occurs when the rank of the interaction matrix is consider-

ably smaller than its order. For rank 1 the correlation can be taken into account
by introducing eigenstates of the coupling matrix, corresponding to non-vanishing
eigenvalues. For the non-Hermitian matrix V n+1,k

n,m the right eigenvector |Cn〉 may
not coincide with the left one |C′

n〉. (d) When the right and the left eigenstates
coincide the system resembles a relay of decaying levels.

Earlier, in Sec. 4.5, we have considered the influence of correlations among
the coupling amplitudes and energy positions of the band levels on the popu-
lation dynamics of two-band systems. The same influence exists in multiband
problems, where the correlations are responsible for the initial stage of the
evolution, which resembles the ballistic evolution of a classical particle pre-



8.1 Relay of Multilevel Bands 375

ceding its diffusion in a disordered medium. As for the two-band systems,
the correlations can manifest themselves in the ranks of the coupling matri-
ces V n±1,m

n,k , that can be considerably smaller as compared to the order of the
matrices. In this case one can choose the eigenstates of the coupling matrices
corresponding to non-zero eigenvalues as basis states, appending this incom-
plete basis by orthogonal combination of the eigenstates of unperturbed band
Hamiltonians, in the manner shown in Fig. 4.24b) for two-band systems. Four
particular cases considered in this section are sketched in Fig. 8.1.

For the initial condition we always take ψn,k(t = 0) = δ0
nδ

0
k, since for any

other Kronekker δ-like initial condition the consideration is similar, whereas
in general, initial conditions can be given as a linear combination of the δ-like
ones. We choose the energy position E0,0 of the level n = 0, k = 0 as the
energy reference point and denote En,k−E0,0 = ∆n,k. Fourier transformation
in time of (8.1) therefore adopts the form

εψn,k(ε) = ∆n,kψn,k +
∑
m

[
V n+1,m
n,k ψn+1,m(ε) + V n−1,m

n,k ψn−1,m(ε)
]

+ iδ0
nδ

0
k,

(8.2)
where, as earlier, we denote by the same symbol ψn,k the time-dependent am-
plitude ψn,k(t) and its Fourier transform ψn,k(ε), since the argument clearly
specifies which one of these two objects we have in mind. This equation is a
generalization of (4.5) for the case of many bands.

. .

Fig. 8.2.

Green’s function, corresponding to (8.2), can be represented as a per-
turbation series (4.13) for the resolvent, in complete analogy with the two-
band systems with random matrix elements, and can be depicted as diagrams
Fig. 4.4, which after the ensemble average for the case

〈
V n+1,m
n,k V n+1,m′

n,k′

〉
=〈

V 2
〉
δm

′
m δk

′
k , adopt a tree-like structure (Fig. 4.7). This structure, resulting

in the renormalized factors Xn(ε) satisfying the equations

Xn,k(ε) =
1

ε − ∆n,k − ∑
k 〈V 2〉Xn+1,k(ε) − ∑

k 〈V 2〉Xn−1,k(ε)

Xn,k(ξ) =
1

ξ − ∆n,k − ∑
k 〈V 2〉Xn+1,k(ξ) − ∑

k 〈V 2〉Xn−1,k(ξ)
(8.3)

by analogy to (4.20), ( 4.21), is shown in Fig. 4.8. This is also valid for the
perturbation series for ensemble averaged populations, shown in Figs. 4.10
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and 4.11. The only difference is in the fact that now instead of two alter-
nating factors Xm(ε)Xm(ξ) and Xn(ε)Xn(ξ), we have a sequence of factors
Xn,k(ε)Xn,k(ξ) where the running indices n for two neighboring factors are
different by ±1, as shown in Fig. 8.2.

By analogy to (4.27) and Fig. 4.14 one can write the equation for the
population

ρn (ε, ξ) = ρn−1 (ε, ξ)
∑
k

〈
V 2〉Xn,k(ε)Xn,k(ξ)

+ρn+1 (ε, ξ)
∑
k

〈
V 2〉Xn,k(ε)Xn,k(ξ) + δ0

nδ
0
kX0,0(ε)X0,0(ξ),

(8.4)

which corresponds to the diagram shown in Fig. 8.3.

+

n,k0

dn
0r (e,x) =nk S r (e,x)m n- ,m1

n,k

S r (e,x)m n+ ,m1+

Fig. 8.3.

8.1.1 Degenerate Bands With Random Coupling

For an infinite relay of degenerate bands shown in Fig. 8.1 a) the factors
Xn,k(ε) and Xn,k(ξ) in (8.3) do not depend on the index k thus satisfying
the equations

Xn(ε) =
[
ε − 〈

V 2〉NXn+1(ε) − 〈
V 2〉NXn−1(ε)

]−1

Xn(ξ) =
[
ξ − 〈

V 2〉NXn+1(ξ) − 〈
V 2〉NXn−1(ξ)

]−1
. (8.5)

For the case of statistically equivalent bands, by analogy to (4.55) they have
n-independent solutions

Xn,k(ε) = X(ε) = 2
ε−

√
ε2−8〈V 2〉N ,

Xn,k(ξ) = X(ξ) = 2
ξ+

√
ξ2−8〈V 2〉N , (8.6)

different from (4.55) only by a factor of 2 in front of the number of states N
in the degenerate bands, which allows for the presence of two neighbors for
each band.

There are many ways to solve (8.4), with the factors Xn,k(ε) and Xn,k(ξ)
given by (8.6), that do not depend on indices. We choose one, based on
the calculation of the trajectory sum for the diagrams of the type shown in
Fig. 8.2. For this purpose, we note that the total number Tl,n of trajectories
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of length l that start at the band number 0 and finish at the band number
n, is given by the binomial coefficient

Tl,n = C
(n+l)/2
l =

l!
( l+n2 )!( l−n2 )!

, (8.7)

as one can conclude from the sketch shown in Fig. 8.4 (a). Each trajectory

n=2

n=0

y

0
1

a) b)

Fig. 8.4. (a) A number of random walk trajectories of length l (dotted arrows) that
result in the displacement n, given by the number of choices of k + n steps upward
and k steps downward from the total number of l = n + 2k steps. (b) Integra-
tion contours (dashed lines) for calculation of the generating function

∑∞
n=0 Tl,nxn

corresponding to these numbers. Poles of the integrand (8.11) are shown by circles.

of length l brings a contribution [X(ε)X(ξ)]l+1 (〈
V 2

〉
N
)l to the trajectory

sum for populations, and therefore the net sum of all trajectories reads

ρn (ε, ξ) =
∞∑
l=n

Tl,n [X(ε)X(ξ)]l+1 (〈
V 2〉N

)l
. (8.8)

The sum in (8.8) can be found with the help of the generating function

Φn(x) =
∞∑
l=n

l!
( l+n2 )!( l−n2 )!

xl =
∞∑
l=0

l!
( l+n2 )!( l−n2 )!

xl, (8.9)

which can be extended on the integer l < n since in this case, the second
factorial in the denominator takes an infinite value. We calculate the numbers
Tl,n of (8.7) with the help of the integral representation

Tl,n = C
(n+l)/2
l =

1
l + 1

1
B

(
l+n
2 + 1, l−n2 + 1

) =
2l

2π

π∫
−π

dt cos (nt) cosl t

(8.10)
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for the B-function, which is valid for l and n of the same parity. Substitution
of (8.10) into (8.9), followed by summation of the geometric series yields

Φn(x) =
∞∑
l=0

2l

2π

2π∫
0

dt cos (nt) cosl t xl

= 1
2π

2π∫
0

dt cos(nt)
1−2x cos t = (2x)n

2(1+
√

1−4x2)n√
1−4x2 , (8.11)

where in the last line after the replacement eit → y, the integration contour
becomes a circle of unit radius around the point y = 0 shown in Fig. 8.4b),
separating the singularities of the integrand. For n ≥ 0 integration along this
contour gives the result directly, while for n ≤ 0 the sign has to be changed.

Substituting ε → √
8 〈V 2〉N cosφ, ξ → √

8 〈V 2〉N cosϕ into (8.6) we
find the explicit expressions for the factors

1/X(ε) =
√

2 〈V 2〉Ne−iφ,

1/X(ξ) =
√

2 〈V 2〉Neiϕ, (8.12)

and making the replacement

x → X(ε)X(ξ)
(〈

V 2〉N
)

=
1
2
eiφ−iϕ (8.13)

in (8.11) we obtain

ρn (φ, ϕ) =
ei(n+1)(φ−ϕ)

2 〈V 2〉N
(
1 +

√
1 − e2i(φ−ϕ)

)n √
1 − e2i(φ−ϕ)

(8.14)

for the populations (8.8). The inverse Fourier transform of ρn (ε, ξ) in the
coordinates (φ, ϕ) therefore reads

ρn (τ) =
1
π2

∫
C2C1

dφdϕ
sinφ sinϕ ei(n+1)(φ−ϕ)−iτ(cosφ−cosϕ)(
1 +

√
1 − e2i(φ−ϕ)

)n √
1 − e2i(φ−ϕ)

(8.15)

where τ = t
√

8 〈V 2〉N , and the integration contours for φ and ϕ coincide
with the contours C1 and C2, respectively, shown in Fig. 4.17(b).

For further simplification we introduce the variables

v = φ+ϕ
2

u = ϕ − φ. (8.16)

Due to the periodicity of the integrand (8.15) the integration contours for u
and v are the same intervals (−π, π), and merely shifted by −i0 for u. Note
that this shift ensures the convergence of the sum (8.9) for the generating
function. We therefore arrive at
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ρn (τ) =
π∫

−π

π−i0∫
−π−i0

dudv [cosu−cos 2v]ei2τ sin(u/2) sin ve−i(n+1)u

2π2 (1+
√

1−e−2iu)n√
1−e−2iu

=
π−i0∫

−π−i0
du

cosu J0(2τ sin u
2 )−J2(2τ sin u

2 )
π(1+

√
1−e−2iu)n√

1−e−2iu
e−i(n+1)u (8.17)

where in the last line the integral representation (4.60) of the Bessel functions
Jk(x) has been employed.
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Fig. 8.5. Population distribution in an infinite relay of degenerate levels coupled
by random matrices. Initially all the population is in level n = 0. The time t is
scaled as τ =

√
8N〈V 2〉t. (a) Time dependence of the population for the first

several levels. (For negative n the populations are identical.) (b) Dependence of
population on time and index n. (Nonlinear scale √

ρn for the population.) (c)
Universal asymptotic profile Φ(Y ) of the population distribution (solid line) depends
only on the parameter Y 2 = n2/τ , the same as that which enters the diffusion
profile, exp(−Y 2/2) (dash-dot line).

In the asymptotic of large n and large τ the main contribution comes
from the domains u ∼ 1/n2 and u − π ∼ 1/n2 where the denominator is not

an exponentially small value. Replacing
(
1 +

√
1 − e−2iu

)n
in these domains

by its approximate value expn
√

2iu we find

ρn (τ) =

∞∫
−∞

du
J0(τu) − J2(τu)

π
√

2iu
e−n√

2iu

+

∞∫
−∞

du
J0(2τ) + J2(2τ)

π
√

2iu
e−inπe−n√

2iu (8.18)
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where the first and the second integral correspond to the first and the sec-
ond domain, respectively, and the integration limits for these exponentially
converging integrals are extended to infinity. For large n and τ the second
integral scales as 1/n

√
τ and can be ignored, as compared to the first integral,

which scales as 1/
√

τ . Replacing positive u by y2/τ and negative u by −y2/τ
in the first integral we arrive at

ρn (τ) 
 2
√

2
π

√
τ

∞∫
0

dy
[
J0(y2) − J2(y2)

]
e−Y y cos (Y y + π/4) (8.19)

where Y = n/
√

τ . The integral on the right-hand side of (8.19) is a universal
function

√
πΦ(Y )/4 of the parameter Y, which for large Y is not very much

different from a Gaussian function exp
(−Y 2/2

)
, such that the population

distribution (8.19) resembles a diffusive one.
In Fig. 8.5(a) we show the total population of the first few degener-

ate levels calculated with the help of the exact expression (8.17). One sees
dying oscillations resembling those shown in Fig. 4.19(c) for two degener-
ate levels. Over the course of time, the population distribution becomes
broader and its width increases as the square root of time, as one can see in
Fig. 8.5(b), whereas the asymptotic profile Φ(Y ) of the distribution is shown
in Fig. 8.5(c).

The validity of the approach is limited in time by the assumption of the
tree-like topological structure of the diagrams shown in Fig. 4.7. Indeed, for
a one-dimensional random walk the mean width of the diffusive population
distribution, and hence the mean displacement of the random trajectory is
of the order of the square root of the random steps. In the context of the
problem under consideration, this means that at the time t, a typical length
of the trajectory is of the order of τ = t

√
8 〈V 2〉N and a typical width

of the distribution is nt ∼ √
τ ∼ t1/2(8

〈
V 2

〉
N)1/4. This means that the

trajectory returns τ/nt ∼ t1/2(8
〈
V 2

〉
N)1/4 times to the initially populated

level, and this number of returns should remain much smaller as compared
to the total degeneracy N of the level. Therefore, at t ∼ N3/2(8

〈
V 2

〉
)−1/2,

the system no longer conforms to the model employed. At this time, the
population recurrences to energy eigenstates become important. Later on,
we will consider this situation in more detail.

8.1.2 Non-Degenerate Bands With Random Coupling

We now consider the case of non-degenerate bands, as shown in Fig. 8.1(b).
The three-term recurrence relation (8.4) instead of the operators X(ε) and
X(ξ) of (8.6) now contains the operators (4.33) for non-degenerate bands,
which are slightly modified by the presence of two neighbors of each band
and read
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Xn,k(ε) =
1

ε − ∆n,k + iπ
〈
V 2
n+1

〉
gn+1 + iπ 〈V 2

n 〉 gn−1
,

Xn,k(ξ) =
1

ξ − ∆n,k − iπ
〈
V 2
n+1

〉
gn+1 − iπ 〈V 2

n 〉 gn−1
, (8.20)

in the general case of bands of different density of states gn and different
mean square interactions

〈
V 2
n

〉
coupling the band n with the band n − 1.

Substitution of (8.20) into (8.4), after summation over k yields

ρn (ε, ξ) =
2πi ρn−1(ε,ξ)〈V 2

n 〉gn

ε−ξ+2iπ〈V 2
n+1〉gn+1+2iπ〈V 2

n 〉gn−1

+
2πi ρn+1(ε,ξ)〈V 2

n+1〉gn

ε−ξ+2iπ〈V 2
n+1〉gn+1+2iπ〈V 2

n 〉gn−1
+ δ0

nX0,0(ε)X0,0(ξ). (8.21)

Introducing the variables ζ = ε−ξ, η = (ε+ξ)/2 and integrating this equation
over dη one finds

ρn (ζ) =
2iπρn−1(ζ)〈V 2

n 〉gn

ζ+2iπ〈V 2
n+1〉gn+1+2iπ〈V 2

n 〉gn−1

+
2iπρn+1(ζ)〈V 2

n+1〉gn

ζ+2iπ〈V 2
n+1〉gn+1+2iπ〈V 2

n 〉gn−1
+ 2iπδ0n

ζ+2iπ〈V 2
1 〉g1+2iπ〈V 2

0 〉g−1
.(8.22)

for ρn (ζ) =
∫

ρn (ζ, η) dη/2π. This immediately yields

ζρn (ζ) = 2iπ
〈
V 2
n

〉 [
ρn−1 (ζ) gn − ρn (ζ) gn−1

]
+2iπ

〈
V 2
n+1

〉 [
ρn+1 (ζ) gn − ρn (ζ) gn+1

]
+ δ0

nδ
0
k, (8.23)

and after inverse Fourier transformation over ζ results in the master equation

.
ρn (t) = 2π

〈
V 2
n

〉 [
ρn−1 (t) gn − ρn (t) gn−1

]
+2π

〈
V 2
n+1

〉 [
ρn+1 (t) gn − ρn (t) gn+1

]
+ δ0

nδ(t). (8.24)

where the last term containing the Dirac δ-function allows for the initial
condition ρn (t = 0) = δ0

n. One can interpret this term as a unit population
instantaneously injected into the band n = 0 at time t = 0.

For the population per quantum state ρ̃n (t) = ρn (t) /gn, (8.24) takes a
more symmetric form

.

ρ̃n (t) = D−
n

[
ρ̃n−1 (t) − ρ̃n (t)

]
+ D+

n

[
ρ̃n+1 (t) − ρ̃n (t)

]
+

δ0
nδ(t)
g0

. (8.25)

where D+
n = 2πgn+1

〈
V 2
n+1

〉
and D−

n = 2πgn−1
〈
V 2
n

〉
denote the transition

probability to the neighboring bands with the larger and smaller n, respec-
tively. An attempt to solve this equation analytically leads to the same prob-
lems that have already been discussed in the context of the Schrödinger equa-
tion (7.1) for the relay of isolated levels – there are only a small number of
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particular cases of dependences D−
n and D+

n where the problem possesses an
exact solution. However, since the eigenfunctions of (8.25) decay exponen-
tially in time, the approximate WKB calculations describing the time evolu-
tion of the “wavepackets” turn out to be rather accurate, and applicable to
most cases.

Constant Transition Rates

For the case of n-independent coefficients D−
n and D+

n , solution of (8.25) can
be found with the help the generating function

Φ(x, t) =
∞∑

n=−∞
einxρ̃n (t) . (8.26)

One finds the differential equation

.

Φ(x, t) =
[
D− (

eix − 1
)

+ D+ (
e−ix − 1

)]
Φ(x, t) +

δ(t)
g0

(8.27)

for this function which immediately yields

Φ(x, t) =
1
g0

exp
[
tD− (

eix − 1
)

+ tD+ (
e−ix − 1

)]
. (8.28)

From the generating function (8.28) one finds

ρ̃n (t) =
1
2π

π∫
−π

dx e−inxΦ(x, t) =
e−t(D−+D+)

2πig0

∫
C

dy
yn+1 exp

[
tD−y + tD+ 1

y

]

= e−t(D−+D+) In(2t
√

D−D+)
g0(D+/D−)n/2

. (8.29)

where the replacement eix → y has been done. The contour C is a loop around
y = 0, and In(x) is a modified Bessel function. Note that the requirements
D−
n = const and D+

n = const imply that gn = const and
〈
V 2
n

〉
= const, and

consequently one finds D−
n = D+

n = D, which yields for the total populations

ρn (t) = e−2DtIn(2Dt). (8.30)

Let us find the asymptotic form of this equation for large t when the main
contribution to the integral (8.29) comes from the vicinity of the saddle point
y = 1, that is x = 0. By developing the argument of the exponent in (8.28)
over x, up to second order and by extending the integration limits for x to
±∞ one finds the distribution

ρn (t) = e−2DtIn(2Dt)


 1
2π

∞∫
−∞

dx exp
[−tDx2 − inx

]
= 1√

2πDt
exp

[
− n2

4Dt

]
(8.31)
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coinciding with the classical diffusion expression. We note that at t > 1/D for
the population distribution ρn (∆, t) over the band one finds the Lorentzian
profile (4.39) with W = 2D by considering the poles of ρn,k (ζ, η) on the real
axis of ζ by analogy to (4.38), which yields

ρn (∆, t) 
 ρn (t)
2D

π(4D2 + ∆2)
. (8.32)

In the context of (8.32), it is expedient to discuss the applicability of the
approach based on the master equation (8.25) for asymptotically long times.
As for the case of degenerate levels, the validity of the approach is limited in
time by the assumption of the tree-like structure of diagrams, which implies
that self-intersections of the diagrams are unlikely. This assumption fails when
the typical number of returns of the random trajectory

√
Dt becomes of the

order of the total number gD of band levels in the populated domain of width
D, suggested by the distribution (8.31). This occurs for t ∼ g2D, when the
distribution over the band has a width gD coinciding with the number of
populated levels in each band.

Linearly Increasing Transition Rates

Equation (8.25) can also be solved exactly for linearly changing coefficients
D+
n = 2πgn+1

〈
V 2
n+1

〉
and D−

n = 2πgn−1
〈
V 2
n

〉
. This variation can result from

a linear dependence of the state density gn = g(1 + αn) on the band number
n or from the dependence of the mean square coupling

〈
V 2
n

〉
= V 2(1+αn) on

n. A slight difference between these two cases manifests itself in a difference
between the coefficients D−

n : the coefficient for the first case D−
n+1 = 2πg

〈
V 2

〉
(1 + αn) coincides with the coefficient D−

n for the second case, whereas the
coefficients D+

n are identical. Equation (8.25) takes the form

.

ρ̃n (τ) = (1 − α′ + αn)
[
ρ̃n−1 (τ) − ρ̃n (τ)

]
+(1 + α + αn)

[
ρ̃n+1 (τ) − ρ̃n (τ)

]
+ δ0nδ(τ)

g (8.33)

where τ = 2πg
〈
V 2

〉
t, and either α′ = α for the first case, or α′ = 0 for the

second case.
For the generating function (8.26) one finds the equation

.

Φ(x, τ) =
[
(1 − α′)

(
eix − 1

)
+ (1 + α)

(
e−ix − 1

)]
Φ(x, τ)

−iα ∂
∂x

{[(
eix − 1

)
+

(
e−ix − 1

)]
Φ(x, τ)

}
+ δ(τ)

g . (8.34)

where linear dependence on n corresponds to the derivative −i∂/∂x. Solution
of this first-order linear differential equation in two dimensions can be found
by the standard method of characteristics. This reads
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Φ(x, τ) = 1
g e

−ix/α(eix + ατ − eixατ)1/α(1 + ατ − eixατ)−1+α′/α−1/α (8.35)

and yields the population

ρ̃n (τ) = 1
2πg

2π∫
0

dxe−inx−ix/α(eix+ατ−eixατ)1/α(1+ατ−eixατ)−1+α′/α−1/α.

(8.36)
By making the replacement eix → y and by deformation of the integration
contour one can write this integral in the form

ρ̃n (τ) = −i
2πg

∫
C0

dy y−n−1/α(y + ατ − yατ)1/α(1 + ατ − yατ)−1+α′/α−1/α,

(8.37)
where the integration contour C0 circumvents the zeros of two last factors
of the integrand. This three-center integral resembles the integral represen-
tation of the hypergeometric function 2F1(a, b; c;X), and indeed, after the
replacement y → (α2t2 − z)/(α2t2 − αt) the integral over dz takes the form
of this integral representation and yields

ρ̃n (τ) =
Γ(n − 1/α)(−ατ)n 2F1(n − (1 − α′)/α, n − 1/α;n + 1;α2τ2)

g (1 + ατ)1+2/α−α′/α−nΓ(−1/α) n!
,

(8.38)
which for large n and τ has the asymptotic form

ρ̃n (τ) 
 1
2πg

∞∫
−∞

dxe−inx−ix/α(1 − ixατ)−1 
 e−n/ατ

ατg
(8.39)

in the case α′ = α. For α′ = 0 the asymptotic behavior differs by the pre-
exponential factor.

In Fig. 8.6 we illustrate the dependence of the population per state on
the band number. One sees that the population distribution is limited in
the domain of n, where the coefficients D+

n and D−
n are positive. For the

case of linearly dependent coupling, the distribution tends to zero when n
approaches the band for which one of the coefficients D equals zero. For the
linearly dependent state density at this point, the distribution function is
discontinuous. Both functions manifest asymptotic behavior (8.39).

WKB Approximation

For smooth dependencies of the kinetic coefficients D+
n and D−

n on the band
number, one can employ the WKB approximation by analogy to that con-
sidered on p. 326. With the help of the finite shift operators (5.15) one can
write the continuous analog of (8.25) in the form
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Fig. 8.6. Dependence of the population per state on the band number for the
linearly changing transition probability. (a) Dependence of the population on the
band number n and on the scaled time τ = 2πg〈V 2〉t in the case of constant
state density and linearly increasing coupling (α = 0.2, α′ = 0). (b) Population
distributions for the linearly increasing state density gn = g(1 + 0.2n) and for
linearly increasing mean square coupling 〈V 2

n 〉 = 〈V 2〉(1 + 0.2n) are shown by
dotted lines 1 and 2, respectively.

.

ρ̃ (n, t) =
{
D−(n)

[
exp(− ∂

∂n ) − 1
]
+ D+(n)

[
exp( ∂

∂n ) − 1
]}

ρ̃ (n, t) , (8.40)

which requires separate consideration of the initial condition. Smooth depen-
dence of the positive coefficients results in a smooth distribution function,
for which one can expand exponents into a Taylor series up to second order
and obtain

.

ρ̃ (n, t) =
[
D+(n) − D−(n)

] ∂ρ̃ (n, t)
∂n

+
[
D+(n) + D−(n)

] ∂2ρ̃ (n, t)
2∂n2 . (8.41)

The WKB ansatz ρ̃ (n, t) =
∫

dλ g(λ) exp [−λt + S (n, λ)] yields in the same
order of approximation

−λ = Π(n)
∂S (n, λ)

∂n
+ D(n)

[
∂S (n, λ)

∂n

]2

(8.42)

where

Π(n) =
[
D+(n) − D−(n)

]
,

D(n) =
1
2
[
D+(n) + D−(n)

]
, (8.43)

whereas the function g(λ) has to be found from the initial condition at t = 0.
Solution of the quadratic equation (8.42) allows one to find the exponen-

tial factor

S (n, λ) =

n∫
0

dn′
[

−Π(n′)
2D(n′)

±
√

Π2(n′) + 4λD(n′)
2D(n′)

]
, (8.44)



386 8 Composite Complex Quantum Systems

where the positive sign, which gives a physically meaningful solution, has to
be chosen. For long times only small λ are important, and therefore one can
make use of the Taylor expansion of the right-hand side of (8.44), that is

S (n, λ) =

n∫
0

dn′
[

λ

Π(n′)
− λ2D(n′)

Π3(n′)

]
. (8.45)

Therefore the WKB ansatz takes the form

ρ̃ (n, t) 

∫

dλ g(0) exp

⎡⎣−λ

⎛⎝t −
n∫

0

dn′

Π(n′)

⎞⎠ − λ2

n∫
0

dn′ D(n′)
Π3(n′)

⎤⎦ .

(8.46)
Integration over dλ yields

ρ̃ (n, t) 


√√√√√2π

n∫
0

D(n′)dn′

Π3(n′)
g(0) exp

⎡⎢⎢⎢⎣−

(
t −

n∫
0

dn′
Π(n′)

)2

4
n∫
0

dn′ D(n′)
Π3(n′)

⎤⎥⎥⎥⎦ . (8.47)

If the dependencies Π(n) and D(n′) are such that for large n

n∫
0

dn′

Π(n′)
�

⎛⎝ n∫
0

dn′ D(n′)
Π3(n′)

⎞⎠1/2

, (8.48)

then at a given time moment t, expression (8.47) corresponds to a distribu-
tion, localized around the band number n0 for which

n0∫
0

dn′

Π(n′)
= t (8.49)

while the distribution width is

∆n ∼ Π(n0)

⎛⎝ n0∫
0

dn′ D(n′)
Π3(n′)

⎞⎠1/2

. (8.50)

Note that if the relation (8.48) is not valid, the width of the distribution
∆n exceeds the displacement of the center of the distribution n0 and the
truncation of the Taylor expansion (8.45) at the second-order terms might
not be justified. In this case (8.47) might not be very accurate. In the latter
case one has to perform an exact integration over dn′dλ employing (8.44).
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8.1.3 Correlated Coupling

Now we consider the case of (8.1) when the coupling matrices V̂ n+1
n with

the matrix elements V n+1,m
n,k connecting each level of a band with the levels

of the neighboring band have low ranks R � N . Here N denotes a typ-
ical number of levels in each band. In other words, the matrix elements
V̂ n+1
n =

∑R
j=1

∣∣∣C(j)
n

〉
V(j)

〈
C

(j)
n+1

∣∣∣ are strongly correlated, since each of the
matrices is a sum of tensor products for a small number R of eigenvectors.
Earlier, on p. 160 we considered such a situation for two-band systems. Now,
considering multiband problems, we concentrate on the extreme, when the
rank of the matrix is one, and therefore the matrix elements have a factorized
form V n+1,m

n,k = C ′
n,kVnCn+1,m determined by the single non-zero eigenvalue

Vn and the corresponding left C ′
n,k and right Cn+1,m eigenvectors normalized

to unity, for each band number n. We assume that the components C ′
n,k and

Cn+1,m of the vectors are real, although a straightforward generalization of
the complex values of these coefficients can also be performed. We note that
the eigenvalue Vn may be physically interpreted as the cooperative matrix
element of the transition between band n and band n + 1. A typical matrix
element V, coupling two levels of neighboring bands, is of the order of V/N .

Substitution of this particular form of V n+1,m
n,k into (8.1) after Fourier

transformation results in

(ε − En,k)ψn,k(ε) = iψn,k(t = 0) + C ′
n,kVn

∑
m

Cn+1,mψn+1,m(ε)

+Cn,kVn−1
∑
m

C ′
n−1,mψn−1,m(ε), (8.51)

where the term iψn,k(t = 0) on the right-hand side corresponds to the initial
condition. For the combinations

Φn(ε) =
∑
k

Cn,kψn,k(ε)

Φn(ε) =
∑
k

C ′
n,kψn,k(ε) (8.52)

(8.51) yields

Φn = VnΦn+1
∑
k

Cn,kC
′
n,k

ε − En,k
+ Vn−1Φn−1

∑
k

Cn,kCn,k

ε − En,k
+ iUn,

Φn = VnΦn+1
∑
k

C ′
n,kC

′
n,k

ε − En,k
+ Vn−1Φn−1

∑
k

C ′
n,kCn,k

ε − En,k
+ iUn, (8.53)

where

Un(ε) =
∑
k

Cn,kψn,k(t = 0)
ε − En,k

,

Un(ε) =
∑
k

C ′
n,kψn,k(t = 0)

ε − En,k
. (8.54)
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In Figs. 8.1(c) and (d) one sees two different cases of the system with
factorized interaction. The case of Fig. 8.1(c) corresponds to the situation
where the left

∣∣∣C(j)
n

〉
and the conjugate of the right eigenstate

∣∣∣C(j)
n+1

〉
of

the coupling matrices coincide, and therefore the interaction couples these
“bright” states of neighboring bands directly. In this case the population
propagates along this relay of isolated “bright” levels, decaying to the other
“dark” states of the bands, by analogy to the situation discussed on p. 170 for
the two-band system. In the case of Fig. 8.1(d) the left and right eigenvectors
for the coupling are different. This means that the state which is “bright” for
the transition n − 1 → n does not coincide with the “bright” state for the
transition n → n+1. The matrix element of the resolvent coupling these two
states determines the efficiency of the transition, by analogy to the quantity
W 0

1 in (4.114) introduced for the problem of two states interacting via the
band shown in Fig. 4.22.

For statistically identical bands, and for times shorter as compared to the
typical density of states of one band, the sums

W 1
0 = Vn

∑
k

Cn,kC
′
n,k

ε−En,k
, W 0

0 = Vn−1
∑
k

Cn,kCn,k

ε−En,k
,

W 1
1 = Vn

∑
k

C′
n,kC

′
n,k

ε−En,k
, W 0

1 = Vn−1
∑
k

C′
n,kCn,k

ε−En,k
, (8.55)

do not depend on the index n, W 1
0 = W 0

1 = Wand therefore (8.53) takes the
form

Φn = Φn+1W + Φn−1W
0
0 + iUn,

Φn = Φn+1W
1
1 + Φn−1W + iUn, (8.56)

and results in the equation

Φ(x) = e−ixΦ(x)W + eixΦ(x)W 0
0 + iU(x),

Φ(x) = e−ixΦ(x)W 1
1 + eixΦ(x)W + iU(x), (8.57)

for the generating functions

Φ(x) =
∑
n

einxΦn, Φ(x) =
∑
n

einxΦn,

U(x) =
∑
n

einxUn, U(x) =
∑
n

einxUn. (8.58)

Solution of (8.58) yields for the functions (8.52)

Φn =
i

2π

π∫
−π

(1 − eixW )U(x) − e−ixW 1
1 U(x)

1 − eixW − e−ixW
e−inxdx

Φn =
i

2π

π∫
−π

(
1 − e−ixW

)
U(x) − eixW 0

0 U(x)
1 − eixW − e−ixW

e−inxdx, (8.59)

where the argument ε is implicit.
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If all of the population is initially in the band n = 0, then the generating
function of the initial conditions U(x) does not depend on the variable x.
In this case the integrands (8.59) only have singularities at the points where
cosx = 1/2W and the integration yields

Φn = Uδ0
n ± UW − W 1

1 U√
1 − 4W 2

e∓i(n+1) arccos(1/2W )

Φn = Uδ0
n ± UW − W 0

0 U√
1 − 4W 2

e∓i(n−1) arccos(1/2W ) (8.60)

where the choice of the sign + or − depends on the sign of the imaginary part
of arccos 1/2W and the sign of the number n in such a way, that the result
converges for |n| → ∞. Substitution of (8.60) into (8.51) gives the probability
amplitude

ψn,k(ε) =
C ′
n,kV

(
UW − W 1

1 U
)

(ε − En,k)
√

1 − 4W 2
e∓i(n+2) arccos(1/2W )

+
Cn,kV

(
UW − W 0

0 U
)

(ε − En,k)
√

1 − 4W 2
e∓i(n−2) arccos(1/2W ). (8.61)

for the initially non-populated state.
For further calculations one needs to make a particular choice of the

real coefficients Cn,k and C ′
n,k. We take the simplest model and assume the

distribution

(Cn,k)2 = (C ′
n,k)

2 = N
π(k2+N2) ,

Cn,kC
′
n,k = µN

π(k2+N2) (8.62)

for the squares and the product of these coefficients by analogy to (4.138).
Here the factor µ entering the last equation allows for the fact that the left
and the right eigenvectors of the coupling matrix can be different, although
they have an identical distribution for the absolute values. The difference
manifests itself in the statistics of the coefficients, and we assume that the
product C ′

n,kCn,k averaged over a narrow strip of energy, near the energy
position En,k differs only by an energy-independent factor µ from the product
Cn,kCn,k averaged over the same strip. We have already encountered such a
situation in (4.114), considering the transition between two isolated levels
which occurs via a band. Equation (8.62) also implies that the bands are
infinitely broad, although the levels located a large distance from the energy
position En,k 
 0 are weakly coupled to the levels of neighboring bands, since
they are weakly represented in the eigenvectors |Cn〉 of the coupling matrices.

Substitution of (8.62) into (8.55) yields
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W 0
0 = W 1

1 = V
∑
k

1
ε − kδ

N

π(k2 + N2)
=

V
ε + iNδ

,

W = V
∑
k

1
ε − kδ

µN

π(k2 + N2)
=

Vµ

ε + iNδ
, (8.63)

for Vn independent of n, and for En,k = δk, where δ is a typical energy
spacing among neighboring levels in the same band. As we have already seen
in Chap. 3, the detailed structure of the spectrum is not important for time
intervals t � 1/δ shorter then the recurrence period, and this spectrum can
be considered as an equidistant one, whereas the sums can be replaced by
integrals.

The main effects associated with correlated matrix elements are seen al-
ready for the simplest case of the initial condition

ψn,k(t = 0) = Cn,k, (8.64)

which means that the state |Cn〉 corresponding to the eigenvector of the
coupling matrix is populated at t = 0. Therefore comparing (8.54) with
allowance of (8.64) and (8.55) we find

U(ε) =
∑
k

Cn,kCn,k

ε − En,k
=

W

V ,

U(ε) =
∑
k

C ′
n,kCn,k

ε − En,k
=

µW

V , (8.65)

and substitution of Eqs.(8.63, 8.65) into (8.61) yields

ψn,k(ε) =
(1 − µ2)(Vµ)2

(iN − k) δ

√√√√ N

π(k2 + N2)
[
(ε + iNδ)2 − 4(Vµ)2

]
(

1
ε − kδ

− 1
ε − iNδ

)
exp

[
∓i(n − 2) arccos(

ε + iNδ

2Vµ
)
]
.(8.66)

This expression, as a function of ε, has four singularities: two poles at the
points ε = kδ and ε = −iNδ, and two branching points at ε = −iNδ ± 2Vµ.
Only the first point is located on the real axis and therefore is important
at times t > 1/Nδ, whereas the other points yield exponentially decreasing
contributions responsible for transitional dynamics resembling that of (7.97)
for the relay of isolated levels. Contribution of the pole at the real axis yields
the stationary distribution

ψn,k(t → ∞) =
πi(µ2 − 1)
2G (iN + k)√
N

π(k2 + N2)
exp [∓i(n − 2) arccos(G (k + iN))]√

G2 (k + iN)2 − 1
. (8.67)
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which depends only on one dimensionless parameter G = δ/2Vµ and results
in the expression

ρn,k =
(

(1 − µ2)
2G

)2
Nπ

(N2 + k2)2

exp [−2(n − 2) |Re arccos(G (k + iN))|]√[
G2 (k − iN)2 − 1

] [
G2 (k + iN)2 − 1

] (8.68)

for the population distribution.
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Fig. 8.7. Population distribution (not to scale) over the bands for the case of
correlated coupling of band levels. The typical number of interacting levels in each
band is N = 1000. Exponential factors have been introduced in order to illustrate
the energy distribution of the population for large n. (a) For strong interaction
GN 	 1 one sees the population peaks detuned from the center, resembling that
shown in Fig. 4.25. (b) Weak interaction. Population distribution over the energy
remains Lorentzian, whereas the total population distribution amongst the bands
is localized practically only on one, the initially populated band.

From (8.68), it is clear that at k = 0 in the center of the distribution over
the bands, the population as a function of n manifests an exponential behav-
ior that is ρn,0 ∼ exp [−2n |Reβ|], where β = arccos (iGN). The parameter
GN = Nδ/2Vµ may be physically interpreted as the ratio of the effective
band width Nδ and the cooperative matrix element of the interaction V. We
have already encountered a similar parameter 1/

√
w =

√
Nδ0Mδ1/V that

is responsible for the population distribution width in the two-band system
shown in Fig. 4.25. When this parameter is large one finds |Reβ| 
 log (GN)
and the population distribution over the bands behaves as ρn,0 ∼ (GN)−2n,
decreasing rapidly with the increase of n. As we have seen on p. 387, a typical
matrix element V which couples two levels of neighboring bands is of order
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V/N , and therefore the parameter GN is of the order of the ratio of the typi-
cal detuning δ/2 between the two closest levels of the neighboring bands and
their coupling V . That is why the dependence ρn,0 ∼ (GN)−2n coincides with
the perturbation theory limit (7.89) for the relay of weakly coupled isolated
levels. When the interaction V exceeds the typical distance δ between the
neighboring levels of a band, the population of bands with large n becomes
larger. In Fig. 8.7 we show the dependence (8.68) as a function of the band
number n and the ratio k/N for two different cases (a) GN � 1 and (b)
GN � 1. In order to illustrate the population distribution over the bands
we scale the band population by an exponential factor. The most interesting
feature of the distribution is the spikes of the population near the position
kδ ∼ V corresponding to the cooperative “8.68Rabi frequency” V.

8.2 Random Walks and Coherent Behavior

While considering the behavior of the level–band systems in Chap. 3, we
have seen that for time intervals exceeding the inverse energy distance be-
tween neighboring levels, the recurrences and revivals bring the population
partially back to the initial state. This phenomenon results in an incomplete
decay of the levels. For infinite systems such as relays, the density of states
approaches infinity, thus making the estimate of the revival time infinite.
However, from the results discussed in Chap. 7, we know that even infinite
relays with irregularly positioned energy levels manifest the localization phe-
nomenon, which implies that an initially populated level does not experience
complete decay. This means that in the general case, the estimate of the
time when the revivals and recurrences begin to play the dominating role
is governed by other parameters, and therefore must be improved. We have
already encountered an example of incomplete decay to an infinitely dense
spectrum when considering, in Sect. 3.4, a band with extremely irregular be-
havior of the matrix elements, coupling states of the band to the isolated
level. The incomplete decay may occur when the density of states with van-
ishing coupling dominates in the total state density. In this section we will
trace more attentively the relation between the random walks in an infinite
complex multilevel system and the quantum recurrences resulting either in
non-exponential or even incomplete decay of the initially populated state.
Prior to this, we consider manifestation of the returns of a random walk on
the spectral properties of a quantum system.

8.2.1 Level Decay to a Band of Random Walks

Let us consider two coupled levels, one of which interacts with a band. Such
a system has already been considered in the context of the Fano problem
shown in Fig. 3.8(a). However, now we assume that only one of these two
levels is coupled to a band, as was the case in Fig. 2.24(b) and that the
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transition amplitudes coupling this level with the energy eigenstates of the
band do not depend smoothly on the state energy, resembling the case shown
in Fig. 2.5(c), and corresponding to the case considered in p .108 and to
(3.110). The Shrödinger equation for the level scheme has the same structure

i
.

ψ0 = ∆0ψ0 + V01ψ1

i
.

ψ1 = ∆1ψ1 + V10ψ0 +
∑
n

V1nψn

i
.

ψn = ∆nψn + Vn1ψ1, (8.69)

as (3.48) for the Fano problem, although the coupling strength V1n now
changes strongly, by orders of magnitude, for the neighboring levels, and
therefore cannot be factored out from the sum. Here ψ0, ψ1 and ψn are am-
plitudes of the states |0〉, |1〉 and |n〉 respectively, and ∆n is the detuning of
the state |n〉 in the band from the state |1〉.

In this section we do not specify the matrix elements of the coupling
V1n, but make use of the phenomenological diffusion model. To this end we
perform Fourier transformation of (8.69), express ψn in terms of ψ1 with the
help of the third equation, and substitute the result into the second equation.
This yields

εψ0 (ε) = V01ψ1 (ε) + ∆0ψ0 (ε) + i,

εψ1 (ε) = ∆1ψ1 + V10ψ0 (ε) +
∑
n

V1nVn1

ε − ∆n + i0
ψ1 (ε) , (8.70)

and hence

ψ0 (ε) =
i

ε − ∆0 − V01V10

(
ε − ∆1 − ∑

n

V1nVn1
ε−∆n+i0

)−1 . (8.71)

The sum
Gb(ε) =

∑
n

V1nVn1

ε − ∆n + i0
(8.72)

in (8.71) has a clear physical meaning: up to the factor 〈V 2〉 it coincides with
the Fourier transform of the probability amplitude to return back to the state
|b〉 =

∑
V1n/V |n〉 at time t, once the system leaves this state for the band

at time t = 0. Here V = 〈V 2〉1/2.
In this section we take the Fourier transform Gb (t) of Gb (ε) , proportional

to the square root of the probability

ρb (t) =
exp

{−a2/4Dt
}

(2πDt)−d/2 (8.73)

to find the system in the |b〉 state, assuming that this probability corresponds
to the classical diffusion in a d-dimensional space. This yields
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Gb(ε) = −i〈V 2〉eiθ
∞∫
0

(2πDt)−d/4 exp
{
iεt − a2/8Dt

}
dt, (8.74)

where eiθ is an arbitrary phase factor, and hence

ψ0 (ε) =
i

ε − ∆0 − |V01|2
[
ε − ∆1 + iV 2eiθ

∞∫
0

(2πDt)−d/4
eiεt−a2/8Dtdt

]−1 .

(8.75)
Here a finite parameter a ensures the convergence of the integral (8.74) and
may be interpreted as the typical size of a domain occupied by the state |b〉
in the space where the diffusion occurs. We assume that only this domain is
coupled directly to the level |1〉 and take its size to be small. Note that for
a → 0 the integrand in (8.75) behaves as εd/4−1 for d �= 4 and as ln(ε) for
d = 4, and (8.75) takes the form

ψ0 (ε) =
i

ε − ∆0 − |V01|2
[
ε − ∆1 − eiθV 2εd/4−1 (2πiD)−d/4 Γ(1 − d

4 )
]−1 .

(8.76)
Equation (8.76) has two simple poles in the complex plane correspond-

ing to the exponentially decreasing contributions to the population ρ0 (t) =
|ψ0 (t)|2 and a branching point at ε = 0 which yields a power dependence
dominating in the limit of long times. We concentrate on the last contribution
which is the most important one and consider two different cases 0 < d < 4
and 4 < d < 8 corresponding to the different asymptotic behavior of the
Green’s functions at long times. For d > 4 one finds that Gb(ε) → 0 at
ε → 0, and the Taylor expansion over Gb(ε) yields the first non-vanishing
contribution

ψ0 (ε) =
i |V01|2 eiθV 2(

∆0∆1 − |V01|2
)2 εd/4−1 (2πiD)−d/4 Γ(1 − d

4
), (8.77)

provided ∆0∆1 �= V01V10. For ∆0∆1 = V01V10 the expansion reads

ψ0 (ε) =
−i∆1e

−iθ

∆0εd/4−1V 2 (2πiD)−d/4 Γ(1 − d
4 )

. (8.78)

For d < 4 the Green’s function Gb(ε) → ∞ for ε → 0, and for ∆0 �= 0 the
Taylor expansion over 1/Gb(ε) results in

ψ0 (ε) =
ε1−d/4

i∆2
0

e−iθ |V01|2
V 2 (2πiD)−d/4 Γ(1 − d

4 )
, (8.79)

whereas for ∆0 = 0 it yields
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ψ0 (ε) =
eiθεd/4−1V 2 (2πiD)−d/4 Γ(1 − d

4 )

|V01|2
. (8.80)

For d > 4 after inverse Fourier transformation (8.77) and (8.78) yield

ρ0 (t) 
 V 4 |V01|4 π2

(2πDt)d/2
(
∆0∆1 − |V01|2

)4 (8.81)

and

ρ0 (t) 
 (2πDt)d/2 ∆2
1(1 − d/4)2 sin2(πd/4)
V 4t4∆2

0
, (8.82)

respectively. This means that the population of the state |0〉 manifests the
time behavior suggested by the diffusion. However, at resonance, when the
detuning of the ground state shifted by the interaction with the state|1〉
vanishes, that is ∆0 − |V01|2 /∆1 = 0, the decay gets slower by the factor
∼ td−4.

For d < 4, equations (8.79)–(8.80) result in

ρ0 (t) 
 (2πDt)d/2 |V01|4 (1 − d/4)2 sin2 (πd/4)
V 4t4∆4

0
, (8.83)

and

ρ0 (t) 
 π2V 4

(2πDt)d/2 |V01|4
. (8.84)

In this regime, the behavior is similar – the slowest decay occurs in the res-
onance ∆0 = 0, but corresponds now to diffusive behavior. The off-resonant
decay is faster by the factor ∼ td−4. We note that the presence of the state
|1〉 no longer result in a shift of the resonance between the band and the state
|0〉, since the state |1〉 is strongly broadened due to the interaction with the
continuum.

The crucial role of returns of the population amplitudes (or the population
amplitude wavepackets) in the course of a random walk becomes much more
clear in another particular case related to the level–band problem. Let us
assume that a probability amplitude is injected into the state |0〉 with the
rate Π(ε), similar to the case shown in Fig. 3.3 for a level–band system.
Equation (8.76) then adopts the form

ψ0 (ε) =
iΠ(ε)

ε − ∆0 − |V01|2
[
ε − ∆1 − eiθV 2εd/4−1 (2πiD)−d/4

Γ (1 − d
4 )
]−1 .

(8.85)
From (8.85) one finds the Fourier transform ρ (t)
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ρ0 (t) =
1
2π

∞∫
−∞

ψ0(ε)ψ
∗
0(ξ)e

−i(ε−ξ)tdεdξ (8.86)

=
1
2π

∫
Π(ε)Π(ξ)[

ε−∆0− |V01|2
ε−∆1−Gb(ε)

][
ξ−∆0− |V01|2

ξ−∆1−G∗
b
(ξ)

]e−i(ε−ξ)tdεdξ

of the probability to be at the state |0〉 at time t. Assuming the injected
population amplitude Π(t) to be a random function, with a δ-like time au-
tocorrelation that results in 〈Π(ε)Π(ξ)〉 ∼ δ(ε − ξ), one finds a steady state
population
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Fig. 8.8. Population flux Φ to a band corresponding to a multidimensional random
walk. The flux Φ for V01 = 1.3 as a function of the detunings ∆0 and ∆1, for different
dimensions d = 3 (a) and d = 5 (b). The flux Φ for ∆1 = 1.3 as a function of ∆0

and V01 for d = 3 (c) and d = 5 (d).

ρ0 ∼
∫

dε[
ε − ∆0 − |V01|2

ε−∆1−Gb(ε)

] [
ε − ∆0 − |V01|2

ε−∆1−G∗
b (ε)

] . (8.87)

If we assume that the amplitude injection is saturated, such that population
of the state |0〉 remains of the order of its maximum possible value ρ0 
 1
then the flux Φ of the population to the continuum corresponding to the
random walk is given by the inverse value of the integral (8.87).



8.2 Random Walks and Coherent Behavior 397

Φ ∼ 1/
∫

dε[
ε − ∆0 − |V01|2

ε−∆1−Gb(ε)

] [
ε − ∆0 − |V01|2

ε−∆1−G∗
b (ε)

] . (8.88)

In Fig. 8.8 we show this flux Φ as a function of the detunings ∆0 and ∆1,
and as a function of ∆0 and V01 for different dimensions d of the random
walk. Diffusive returns of the population amplitude play an important role
inhibiting the decay at small detuning ∆0 and result in a depth in the center
of the line at d < 4. In other words, interference of the population decay
with these recurrences strongly affects the line shapes of the resonances. For
d > 4 returns of the population amplitude do not occur, and the line shape
resembles a Lorentzian profile.

8.2.2 Interference of Random Returns at Long Times.
General Consideration

We now consider the behavior of quantum systems for asymptotically long
times. For a complex system, this behavior might be strongly affected by the
important role played by self-intersections in the diagrams. Under certain
conditions, the main contribution to the perturbation series give the diagrams
that return many times at the same quantum levels, and allow for the self-
interference of the wavepackets. The most important characteristic which
determines the behavior of a complex quantum system is therefore closely
related to a property of the corresponding classical random walk, given by the
probability for a randomly moving particle to return back to the points which
it has previously visited. In the quantum limit, this corresponds to multiple
self-intersections of the trajectories, which results in strong interference of
many essentially different quantum paths.

The direct approach can be based on the combinatorial calculation of the
numbers of different self-intersecting trajectories and the numbers of different
ways to pass along these trajectories. The latter is well known in mathemat-
ics as the number of Euler trails on the oriented graphs. An explicit formula
exists for such a number, as a function of the self-intersecting diagram topol-
ogy, and the number of paths entering each self-intersection. However the
calculations based on this intuitively clear idea are usually rather cumber-
some, and therefore we demonstrate this approach in the next section, for a
simpler example. Here we suggest a less instructive consideration based on
the integrals over Grassmann variables, that have already been introduced
in the previous chapter. Though it hides to a certain extent the intuitively
meaningful images associated with the diagrams of interfering trajectories, it
is most practical technically, giving more compact intermediate expressions.

Level–Band–Random Walk Continuum Model

We consider the system shown in Fig. 8.9(a) consisting of a non-degenerate
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2

1515
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Fig. 8.9. The type of random walk affects the level decay at long times. (a) A non-
degenerate level |0〉 is coupled directly by interactions V0n of a random strength to
a discrete set of quantum states randomly distributed in energy that are coupled
among themselves via the states |κ〉 of an irregular continuum. The Fourier trans-
forms of the decay rate G(ε) to the continuum and the correlation function λ2(ε, ξ)
of the return amplitudes are the main characteristics of the process. (b) The un-
likely (∼ exp(−∆g)), long decaying realizations of the band, with a large gap ∆ in
the resonance position, determine the long-time behavior for a non-returnable ran-
dom walk. (c) Two types of returnable random walks. The exponential wavepackets
leaving the band states acquire, after return from the continuum, either zero or a
finite autocorrelation time.

level |0〉 directly coupled to a band of levels |n〉. The latter are coupled among
themselves by an indirect interaction which occurs via a very dense or even
a continuous set of states |κ〉 that represents a random walk with certain
statistical properties. The Schrödinger equation for the system initially in
the state |0〉 reads

i
.

ψ0 = V0nψn + iδ(t)

i
.

ψn = ∆nψn + Vn0ψ0 +
∑
κ

Vnκψκ

i
.

ψκ = ∆κψκ +
∑
n

Vκnψn, (8.89)

and adopts the form

εψ0 = V0nψn + i

εψn = ∆nψn + Vn0ψ0 +
∑
κ

Vnκψκ

εψκ = ∆κψκ +
∑
n

Vκnψn (8.90)
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after the Fourier transformation. We assume a uniform distribution ∆n

of the level positions in the entire interval from −∞ to ∞ and a Gaus-
sian distribution of e−|V 2| complex valued couplings V0n with unit vari-
ance. All energy variables are therefore scaled by the mean square coupling
V =

〈
V 2

〉1/2whereas the mean density of states g is understood as a large
dimensionless parameter gV, representing the expectation number of reso-
nances, that have been considered in Sect.3.4.4.

Introducing in complete analogy with (8.72) the function

Gnn′(ε) =
∑
κ

VnκVκn′

ε − ∆κ
(8.91)

we exclude from the consideration the levels of the band representing the
random walk and the Schrödinger equation adopts the form

εψ0 = V0nψn + i

εψn = ∆nψn + Vn0ψ0 +
∑
n′

Gnn′(ε)ψn′ . (8.92)

A similar equation holds for the Fourier transforms of the complex conjugate
amplitudes ψn(ξ) and the corresponding functions Gnn′(ξ).

The moments
〈
Gk
nn′(ε)

〉
and the correlations

〈
Gk
nn′(ε)Gk′

mm′(ξ)
〉

of the
functions (8.71) contain information about all of the statistical properties of
the random walk. Later on we will discuss in detail the particular properties
governing the asymptotic behavior of the quantum systems in the long-time
limit. Here we just specify several general hypotheses employed. We assume
that the random walk is completely defined by the first G(ε) = 〈Gnn′(ε)〉
and the second λ2(ε, ξ) = 〈Gnn′(ε)Gmm′(ξ)〉 moments. In other words, the
Green’s functions are well-defined, have zero dispersion in absolute values,
and vary randomly in phase. Therefore the non-vanishing higher moments
are explicitly given by the two first moments via the relations.〈

Gk
nn′(ε)Gk′

mm′(ξ)
〉

= δkk′δnmδn′m′
[
λ2(ε, ξ)

]k
〈
Gk
nn′(ε)

〉
= δnn′ [G(ε)]k . (8.93)

Effective Hamiltonians and Averaging over the Random Walk

Once the amplitudes of the states |κ〉 are excluded, the dynamics of the
remaining system consisting of the level |0〉 and the band of the states |n〉
satisfy the Schrödinger equation (8.92) with the effective Hamiltonian

Ĥ(ε) =

⎛⎜⎜⎜⎜⎝
0 V01 V02 . . . V0N

V10 ∆1 + G11(ε) G12(ε) . . . G1N (ε)
V20 G21(ε) ∆2 + G22(ε) . . . G2N (ε)
. . . . . . . . . . . . . . .
V0N GN1(ε) GN2(ε) . . . ∆N + GNN (ε)

⎞⎟⎟⎟⎟⎠ . (8.94)
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The Fourier transform of the population ρ0(ε, ξ) of the state |0〉 reads

ρ0 =

∣∣∣∣∣∣∣∣∣∣∣

∆1ε G12(ε) . . . G1N (ε)
G21(ε) ∆2ε . . . G2N (ε)

. . . . . . . . . . . .
GN1(ε) GN2(ε) . . . ∆Nε

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∆1ξ G12(ξ) . . . G1N (ξ)
G21(ξ) ∆2ξ . . . G2N (ξ)

. . . . . . . . . . . .
GN1(ξ) GN2(ξ) . . . ∆Nξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ε V01 . . . V0N
V10 ∆1ε . . . G1N (ε)
. . . . . . . . . . . .
V0N GN1(ε) . . . ∆Nε

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

−ξ V01 . . . V0N
V10 ∆1ξ . . . G1N (ξ)
. . . . . . . . . . . .
V0N GN1(ξ) . . . ∆Nξ

∣∣∣∣∣∣∣∣∣∣∣

(8.95)

as it directly follows from the solution of (8.92). Here the replacements ∆n +
Gnn(ξ)− ξ → ∆nξ and ∆n+Gnn(ε)− ε → ∆nε are performed to shorten the
notation.

We have to find the average of the population over all possible realiza-
tions of the couplings V0n and the positions ∆n of the levels which we assume
to be statistically independent, that is, following Poissinian statistics. In the
representation (8.95) this is impossible, since ρ0(ε, ξ) depends on complex
combinations of V0n and ∆n. A possible approach should rely on factoriza-
tion of the expression for the population in such a way that each cofactor
corresponds to a different |n〉 and is distributed in the same way. To this end,
the ratios of the determinants can be represented as Gaussian integrals over
complex numbers x and the Grassmann variables χ with the help of (7.133),
(7.136), and (7.180). This yields

ρ0(ε, ξ) =
∫

e
−

N∑
n,n′=1

[Ĥ′
nn′ (ε)χnχn′+Ĥ′

nn′ (ξ)χ′
nχ

′
n′ ] N∏

n=1
dχndχn′dχ′

ndχ
′
n′

× ∫
e
−

N∑
n,n′=0

[Ĥ′
nn′ (ε)xnxn′+Ĥ′

nn′ (ξ)x′
nx

′
n′ ] N∏

n=0
dxndxndx

′
ndx

′
n,

(8.96)

where we denote Ĥnn′(ε)−ε = Ĥ ′
nn′(ε) and Ĥnn′(ξ)−ξ = Ĥ ′

nn′(ξ) to shorten
the notation. For the same reason, the normalization 1/π of Gaussian inte-
grals over dxndxn is implicit.

We first make use of the statistical properties of the random walk. We
cast the right-hand side of (8.96)
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∫ N∏
n=0

dxndxn′dx′
ndx

′
n′

N∏
n=1

dχndχn′dχ′
ndχ

′
n′ exp

{
iεx0x0 − iξx′

0x
′
0

−i
N∑
n=1

∆nε (χnχn + xnxn) + i
N∑
n=1

∆nξ (χ′
nχ

′
n + x′

nx
′
n)

+i
N∑
n=1

V0n (x0xn − x′
nx

′
0) − i

N∑
n=1

V ∗
0n (x′

0x
′
n − xnx0) (8.97)

+
N∑

n,n′=1
[iGn′n(ε) (χn′χn + xn′xn) − iGn′n(ξ) (χ′

n′χ′
n + x′

n′x′
n)]

}
in a Taylor series over G, make use of (8.93) performing the average over the
random walks, and employ the integral representation for the factor 1/k! and
write 〈

Gk
nn′(ε)Gk

mm′(ξ)
〉

k!k!
= δnmδn′m′

1
k!

∫
C

e−τ

2πiτ

[
λ2(ε, ξ)

−τ

]k
dτ, (8.98)

where the contour C circumvents the point τ = 0 in the positive direction
starting and ending at τ = ∞. Summing the Taylor series back we arrive at

〈ρ0(ε, ξ)〉 =
∫

e−τ

2πiτ dτ
N∏
n=0

dxndxn′dx′
ndx

′
n′

N∏
n=1

dχndχn′dχ′
ndχ

′
n′

× exp
{

− i
N∑
n=1

∆nε (χnχn + xnxn) + i
N∑
n=1

∆nξ (χ′
nχ

′
n + x′

nx
′
n)

+i
N∑
n=1

V0n (x0xn − x′
nx

′
0) − i

N∑
n=1

V ∗
0n (x′

0x
′
n − xnx0) + iεx0x0

−iξx′
nx

′
n − λ2

τ

N∑
n,n′=1

(χn′χn + xn′xn) (χ′
n′χ′

n + x′
n′x′

n)
}

(8.99)

which now has to be averaged only over the ensemble of the band levels.

Factorization of the Population

Now our aim is to represent (8.99) in factorized form. To this end, in the
exponent of (8.99), we multiply factors proportional to λ2 and regroup them
differently

exp

[
−λ2

τ

N∑
n,n′=1

(χn′χn + xn′xn) (χ′
n′χ′

n + x′
n′x′

n)

]
= exp

[
−λ2

τ (Sχχ′Sχ′χ + σχxσxχ′ + σx′χσχx′ + Sxx′Sxx′)
]

(8.100)

with the help of the combinations
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N∑
n=1

xnx
′
n = Sxx′ ;

N∑
n=1

xnx
′
n = Sxx′ ;

N∑
n=1

χnχ
′
n = Sχχ′ ;

N∑
n=1

χ′
nχn = Sχ′χ;

N∑
n=1

χ′
nxn = σχx;

N∑
n=1

xnχ
′
n = σxχ′ ;

N∑
n=1

x′
nχn = σx′χ;

N∑
n=1

χnx
′
n = σχx′

(8.101)

that do not contain double sums. The combinations S contain complex num-
bers and bi-Grassmann variables, that from the viewpoint of the commutation
relations are equivalent to complex numbers, while the combinations σ are
equivalent to Grassmann variables. We note the following relations for Gaus-
sian integrals over complex conjugated variables z = x + iy and z = x − iy

∞∫
−∞

dzdz
π exp (iaz + ibz − zz) =

∞∫
−∞

dxdy
π ei(a+b)x+(b−a)y−x2−y2

= e(b−a)2/4−(a+b)2/4 = e−ab (8.102)

are valid for any numbers a and b. Therefore the factorization of the binary
combinations of the sums S in the exponent can be performed with the help
of the integrals over two pairs of complex conjugated numbers – the pair f
and f for Sxx′Sxx′ and the pair w and w for Sχχ′Sχ′χ:

exp
[
−λ2

τ (Sχχ′Sχ′χ + Sxx′Sxx′)
]

=
∫

dwdwdfdf

exp
[
iλ√
τ

(
Sχχ′w + wSχ′χ + Sxx′f + fSxx′

) − ww − ff
]

(8.103)

where the normalization factors 1/π for dwdw and for dfdf are implicit. For
Grassmann combinations σ one finds an analog of the relation (8.102)∫

exp[−αα − σα − ασ]dαdα = expσσ. (8.104)

With the help of (8.102) and (8.104) one obtains only a linear combination
of sums (8.101) in the exponent, and therefore the population adopts the
desired factorized form

〈ρ0(ε, ξ)〉 =
∫

dτ
2πiτ dwdwdfdfdαdαdβdβ e−τ−ww−ff−αα−ββ{

N∏
n=0

∫
dxndxndx

′
ndx

′
ndχndχndχ

′
ndχ

′
n

}
eiεx0x0−iξx′

0x
′
0

N∏
n=1

eLn ,

(8.105)

where

Ln = iV0n(x0xn − x′
nx

′
0) − iV ∗

0n(x′
0x

′
n − xnx0)

−i∆nε(χnχn + xnxn) + i∆nξ(χ′
nχ

′
n + x′

nx
′
n)

− λ√
τ
(x′

nχnα + αχnx
′
n + χ′

nxnβ + βxnχ
′
n).

+ iλ√
τ
(χnχ

′
nw + wχ′

nχn + xnx
′
nf + fxnx

′
n). (8.106)
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The expression for the ensemble averaged population therefore takes the form
of a 9-fold integral

〈ρ0(ε, ξ)〉 =
∫

e−τ

2πiτ dτdwdwdfdfdαdαdβdβ exp
[−ww − ff − αα − ββ

]
∫

dx0dx0dx
′
0dx

′
0 eiεx0x0−iξx′

0x
′
0

N∏
n=1

〈
Ψ(∆n, x0, . . . , β)

〉
.(8.107)

which includes the product of identical and independently distributed factors

Ψ(∆n, x0, ..., β) =
∫

dxdxdx′dx′dχdχdχ′dχ′ exp (Ln) (8.108)

averaged over the distribution of statistically independent positions and cou-
plings of the band levels. The index n of the integration variables x and χ is
omitted since all the |κ〉 levels are statistically equivalent, and the averages of
the integrals (8.108) for n �= 0 are identical. The marker n of the statistically
independent level position ∆n can be omitted as well.

Average over the Ensemble of the Band Levels

Our next step is to perform the ensemble average of Ψ(∆,x0, . . . , β) over
the positions ∆ and the couplings V of the levels |n〉. For the distribution
g(V,∆) of these quantities we choose the uniform Poissonian dependence on
∆ in the entire interval from −∞ to ∞ and the Gaussian distribution e−|V 2|
of the complex valued V . The average over the ensemble with the coupling
distribution e−|V 2| is straightforward – according to (8.102) the average of
the V -dependent part immediately yields∫

e−|V 2| exp [iV (x0x − x′x′
0) − iV ∗ (x′

0x
′ − xx0)] dV dV ∗

= exp (−x0x
′
0xx′ + x′

0x
′
0x

′x′ + x0x0xx − x′
0x0x

′x) . (8.109)

However the average over the ensemble of uniformly distributed ∆ is a more
sophisticated procedure. Indeed, for large ∆ the integral over the variables x
and χ yields a value close to unity as one can see neglecting in (8.106) the
terms of Ln, independent of ∆ and performing the integration∫

dxdxdx′dx′dχdχdχ′dχ′e−i∆ε(χχ+xx)+i∆ξ(χ′χ′+x′x′) =
−i∆εi∆ξ

−i∆εi∆ξ
= 1.

(8.110)
Therefore the ensemble average of Ψ(∆,x0, ..., β) is a value infinitesimally
close to 1. However the product of an infinite number of such factors can be
arbitrary. We have already encountered such a situation in Chap. 3, consid-
ering the decay of the level to a dense and irregular band. The proper way
to overcome the problem has been demonstrated in (3.118). Employing the
relation

∏
Ψ(∆n) 
 exp {∑ [Ψ(∆n) − 1]} one can put the small values Ψ − 1
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into the exponent, and perform the integration of Ψ over ∆ there, closing
the integration contour C at infinity where the integral equals unity, that is∫ ∞

−∞ [Ψ(∆) − 1] d∆ → ∫
C

Ψ(∆)d∆. For the population (8.107) this yields

〈ρ0(ε, ξ)〉 =
∫
e−τ

τ dτdwdwdfdfdαdαdβdβ e−ww−ff−αα−ββ∫
dx0dx0dx

′
0dx

′
0 eiεx0x0−iξx′

0x
′
0 exp

(∫
C

gΨdV dV ∗d∆
)

where g = Ng(V,∆) stands for the total density of levels with given detuning
and coupling and the contour C has to be closed either in the upper or in
the lower part of the complex plane ∆ where the integrand vanishes.

In order to find an explicit expression for the averaged Ψ we now perform
the integration

ΨG =
∫

eLGdχdχdχ′dχ′

retaining in (8.106) only the terms LG of Ln that contain Grassmann vari-
ables. Expanding eLG in a Taylor series over each of the Grassmann variables
up to first order and combining the terms proportional to χχχ′χ′, which ac-
cording to the definition (7.177) is the only non-vanishing term remaining
after the integration, we find

ΨG =
∫

dχdχdχ′dχ′ exp
[

− i∆εχχ + i∆ξχ
′χ′

+λτ−1/2 (iχχ′w + iwχ′χ − x′χα − αχx′ − χ′xβ − βxχ′) ]
=

(
ix′x′αα∆ξ − iββxx∆ε + iλ√

τ
wαβxx′ + iλ√

τ
x′xβαw

)
λ2

τ

+xxx′x′ββααλ4

τ2 + ∆ξ∆ε − λ2

τ ww. (8.111)

The next step is the calculation of the integral

Ψ(∆) =
∫

eL
′
ΨG dxdxdx′dx′ (8.112)

where the remaining terms

L′ = −i∆εxx + i∆ξx
′x′ − x0x

′
0xx′ + x′

0x
′
0x

′x′

+x0x0xx − x′
0x0x

′x + iλ√
τ
xx′f + iλ√

τ
fxx′

of Ln are taken into account with the allowance of (8.109) for the average
over the couplings. With the help of the relations

xxx′x′ λ2

τ eL
′
= −∂2eL′

∂f∂f
; ix′x′eL

′
= ∂eL′

∂∆ξ
; − ixxeL

′
= ∂eL′

∂∆ε

iλ√
τ
xx′eL

′
= ∂eL′

∂f
; iλ√

τ
x′xeL

′
= ∂eL′

∂f

one can write Ψ(∆) in the form
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Ψ(∆) =
[
(ββ∆ε∂

∂∆ε
+ αα

∆ξ∂
∂∆ξ

+ βαw ∂
∂f + wαβ ∂

∂f

− ∂2

∂f∂f
ββαα − ww

)
λ2

τ + ∆ξ∆ε

]
Ξ, (8.113)

where the Gaussian integral

Ξ =
∫

eL
′
dxdxdx′dx′

can be found explicitly by calculating the determinant of the quadratic form
∂2L′/∂x∂x′, in agreement with (7.133). This yields

Ξ =

[(
i∆ξr − i∆εr

′ − ∆ε∆ξ − λ2

τ
ff

)2

+ 4rr′ λ
2

τ
ff

]−1/2

, (8.114)

where the variables r and r′ stand for the combinations x0x0 and x′
0x

′
0 re-

spectively.
Now we perform the last remaining integration over the level position∫

gΨd∆ =
∫

gd∆
[
λ2

τ

(
wαβ ∂

∂f
+ βαw ∂

∂f − ββαα ∂2

∂f∂f

−ww + ββ∆ε∂
∂∆ε

+ αα
∆ξ∂
∂∆ξ

)
+ ∆ξ∆ε

]
Ξ. (8.115)

where g = N
∫

g(V,∆)d2V now denotes the uniform total density of the band
levels, and find∫
C

gΨd∆ =
∫
C

Ξ∆ξ∆εd∆ + λ2

τ ββ
∫
C

∆ε∂Ξ
∂∆ε

d∆ + λ2

τ αα
∫
C

∆ξ∂Ξ
∂∆ξ

d∆ (8.116)

+λ2

τ

(
ββ + αα + wαβ ∂

∂f
+ βαw ∂

∂f − ββαα ∂2

∂f∂f
− ww

) ∫
C

gΞd∆.

The integral Λ =
∫
C

gΞd∆ can be given explicitly in terms of the hypergeo-
metric function

Λ =
∫
C

gdy√−(a − iy2)2 − b2
=

√
1
a
πg 2F1

(
1
4
,
3
4
; 1,

b2

a2

)
(8.117)

with

a = (r−r′)2

4 + λ2

τ ff + i r+r
′

2 (∆ε − ∆ξ) − 1
4 (∆ξ − ∆ε)

2

b =
√

4rr′λ2ff
−τ

(8.118)

whereas the remaining integrals

Λε =
∫
∆ε∂
∂∆ε

Ξd∆ = r′−r
2i

∂Λ
∂X + X

2
∂Λ
∂X − 1

2Λ

Λξ =
∫ ∆ξ∂
∂∆ξ

Ξd∆ = r−r′
2i

∂Λ
∂X + X

2
∂Λ
∂X − 1

2Λ∫
d∆Ξ∆ξ∆ε = Φ − (r−r′)2

4 Λ − X2

4 Λ

(8.119)



406 8 Composite Complex Quantum Systems

can also be expressed in term of the hypergeometric functions

Φ =
∫
C

gy2dy√−(a − iy2)2 − b2
= −√

aπg 2F1

(
−1

4
,
1
4
; 1,

b2

a2

)
(8.120)

where X = ∆ε − ∆ξ = F (ε) − F (ξ) + ξ − ε. Note that the hypergeometric
functions have branching points at b2/a2 = 1, and the proper choice of the
branches of Λ and Φ depend on the sign of the imaginary part of a − b, that
is on the sign of ζ. Equation (8.116) finally adopts the form∫

gΨd∆ = ββ λ2

τ Λξ + ααλ2

τ Λε − λ2

τ
∂2Λ
∂f∂f

ββαα + wαβ λ2∂Λ
τ∂f

+βαw λ2∂Λ
τ∂f − ww λ2Λ

τ + Φ − (r−r′)2

4 Λ − X2

4 Λ. (8.121)

We now substitute (8.121) into (8.111) and perform the exact integra-
tions over the variables dαdαdβdβ starting with the Grassmann variables.
Expanding in a Taylor series and retaining only the terms linear in α, α, β, β
we arrive at

〈ρ0(ε, ξ)〉 =
∫ e−τ

τ
dτdwdwdfdf

∫
drdr′[(

1 − λ2

τ Λξ

)(
1 − λ2

τ Λε

)
− λ2

τ
∂2Λ
∂f∂f

+ ww ∂Λλ2

τ∂f
∂Λλ2

τ∂f

]
(8.122)

exp
(
iεr − iξr′ − wwΛλ2

τ − ww − ff + Φ − (r−r′)2

4 Λ − X2

4 Λ
)

,

where we have taken into account that

1
π2

∫ ∞

−∞
. . . dx0dx0dx

′
0dx

′
0 →

∫ ∞

0
. . . drdr′.

After integration over dwdw this yields the final general and exact expression

〈ρ0(ε, ξ)〉 =
∫ e−τ

τ
dτdfdf

∫
drdr′

[
−τ

Λλ2+τ
λ2

τ
∂2Λ
∂f∂f

+ τ
Λλ2+τ

(
1 − λ2

τ Λξ

)(
1 − λ2

τ Λε

)
+

(
τ

Λλ2+τ

)2
∂Λλ2

τ∂f
∂Λλ2

τ∂f

]
exp

(
iεr − iξr′ − ff + Φ − (r−r′)2

4 Λ − X2

4 Λ
)

(8.123)

for the ensemble averaged population of the state |0〉. Further analysis should
rely on the particular choice of the functions F (ε) and λ2(ε, ξ) that depend
on the particular type of random walk.

8.2.3 Three Types of Random Walk and the Asymptotic Decay

As we have already mentioned, the analysis of population dynamics in the
long-time limit, resulting from the quantum interference of different self-
intersecting trajectories, depends on particular properties of the random
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walk. The quantities G(ε) and λ2(ε, ξ) responsible for the specific behav-
ior of the random walk and entering (8.121) and (8.123) have a clear physical
meaning for the system of band levels |n〉 and the states |κ〉 of the continuum
that does not include the state |0〉. The quantity G(ε) has been already in-
troduced in Sect.3.2.1 for the level–band problem, and it allows for the level
probability amplitude decay rate to the continuum. Now we consider G(ε) as
a characteristic of the band levels interacting with the continuum responsible
for the random walk. The quantity λ2(ε, ξ) represents the Fourier transform
of the time correlation of the probability amplitudes to be in a given state
of the band under the condition that at the initial time moment t = 0, the
population was localized in another level of the band. After being integrated
over the variable η = (ε + ξ)/2, this quantity depends only on the difference
ζ = ε− ξ and represents the Fourier transform of the probability to be in the
given state.

We consider two rather general particular cases of returnable and non-
returnable random walks. For a returnable random walk, the Fourier trans-
form λ2(ε, ξ) diverges at the limit ε → ξ according to the power law (ε − ξ)−ν

where the power index ν also describes the increase of the expectation num-
ber of returns N ∼ tν at time t. For a non-returnable random walk, λ → 0
as ε → ξ. For the first case we also identify two different particular cases:
a random walk with a finite correlation time τ r and a δ-correlated random
walk. The correlation time of the random walk is a typical residence time τ r,
during which the probability amplitude of the quantum particle remains at a
state of the band, once it has returned to the state from the continuum. This
time is associated with dephasing of the probability amplitudes, whereas the
absolute value of the amplitude changes smoothly. The width of the quan-
tity λ2(ζ, η) as a function of η is inversely proportional to τ r. The order of
magnitude of τ r can be found from the second derivative

∂2λ2(η)
2 ∂η2 = −λ2(η)

τ2
r

(8.124)

at the point η = 0. It also relates to the width of the continuum seen by each
state of the band. The function λ2(ζ, η) does not depend on η at all for a
δ-correlated random walk, when the particle wavepacket rapidly comes and
leaves the band state, keeping the mean population unchanged during some
short time interval.

Non-Returnable Random Walk

For λ → 0, the only important singularity of the integrand (8.123) as a
function of τ is the simple pole at τ = 0, and for this case the integration
over dτ yields

〈ρ0(ε, ξ)〉 =
∫

dfdf
∫

drdr′

exp
(
iεr − iξr′ − ff − √

aπg − (r−r′)2

4
√
a

πg − X2

4
√
a
πg

)
.

(8.125)
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with

a =
(r − r′)2

4
+ i

r + r′

2
X − X2

4
where we have employed the fact that hypergeometric functions tend to one
at zero argument. For the long-time limit, when ε ∼ ξ ∼ 1/t the parameter
X = F (ε) − F (ξ) + ξ − ε 
 −2iγc can be considered as independent of ε and
ξ, and it is given by the decay rate γc of the amplitudes of the band states
decaying to the continuum. In this case, the inverse Fourier transformation
over ε and ξ immediately gives the Dirac δ-functions δ(r − t) and δ(r′ − t),
that is a = 2γt, and we arrive at

〈ρ0(t)〉 =
∫

dfdf exp
(

−ff − √
aπg − γ2

4
√

a
πg

)

 exp

(
−πg

√
γct

)
,

(8.126)
or 〈ρ0(t)〉 
 exp

(
−πg

√〈V 2〉 γct
)

for dimensional variables.
The exponent of the square root time dependence emerges from the en-

semble average over the randomly distributed energies of the levels in the
band. Namely, it results from the unlikely long leaving realizations of the
system when the level |0〉 is separated from the closest level |n〉 of the band
by a big energy gap ∆, as shown in Fig .8.9(b). The probability of such
a realization for the independently distributed ∆n is exponentially small
∼ exp(−g∆). However the contribution of this realization is dominating for
large t since it is long-leaving, with a decay rate inversely proportional to
∆. Indeed, the composite matrix element V0nVnκ/∆ of the transition from
the level |0〉 to a state |κ〉 of the continuum via a level |n〉 of the band de-
tuned from the state |0〉 by the energy difference ∆n, gives the contribution
(V0nVnκ/∆)2gκ = (V0n/∆n)2γc to the decay rate. The contribution of all
levels with the detuning larger than a gap size ∆ is given by the integral∫ ∞
∆

(V0n/∆n)2γcgd∆n that is a quantity γcgV
2/∆ which is small for a large

gap size and which results in a decay exp(−tγcgV
2/∆) of ρ0(t). Averaging

over the gap size yields

〈ρ0(t)〉 =
∫

d∆ exp
(−tγcgV

2/∆ − g∆
) ∼ exp

(
−πg

√
V 2γct

)
, (8.127)

where we have ignored a factor in front of the exponent, slowly dependent
on time. In the units where V = 1 this expression coinsides with (8.126).

Returnable Random Walk

Now let us consider the technically more difficult case of a returnable random
walk. For λ �= 0 the point τ = 0 gives no contribution to the integral (8.123),
since the hypergeometric function entering the term Φ in the exponent tends
at this point to infinity. The contribution comes now from the singularity
at the point τ = −Λλ2. In order to avoid cumbersome calculations of the
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derivatives of hypergeometric functions associated with the second-order pole
we make the replacement of the integration variables f → −τf which moves
the variable τ out of the arguments of Λ and Φ. Such a replacement does not
affect the convergence of the integrals over dfdf, provided the term Λλ2 has
a positive real part. If this is not the case, the replacement should be taken
with the opposite sign. The integral (8.123) takes the form

〈ρ0(ε, ξ)〉 =
∫

e−τdτdfdf
∫

drdr′
[

1
Λλ2+τ

∂2Λλ2

τ∂f∂f

− τ
Λλ2+τ

(
1 − λ2

τ Λξ

)(
1 − λ2

τ Λε

)
−

(
1

Λλ2+τ

)2
∂Λλ2

∂f
∂Λλ2

τ∂f

]
exp

(
iεr − iξr′ + τff + Φ − (r−r′)2

4 Λ − X2

4 Λ
)

, (8.128)

where the arguments of Φ and Λ read

a = (r−r′)2

4 − λ2ff + i r+r
′

2 X − X2

4
b =

√
4rr′λ2ff.

(8.129)

The integration over dτ yields

〈ρ0(ε, ξ)〉 =
∫

dfdf

∫
drdr′

[
− ∂2Λ

Λ∂f∂f
+ Λλ2

(
1 + Λξ

Λ

) (
1 + Λε

Λ

)
+ ∂Λ
Λ∂f

∂Λ
Λ∂f

(
1 − Λλ2 + ffΛλ2) ] (8.130)

× exp
(
iεr − iξr′ + Φ − (r−r′)2

4 Λ − X2

4 Λ + Λλ2 − Λλ2ff
)

.

No further significant simplifications can be performed in the general form
of (8.130), even by introducing a single integration variable u instead of the
product ff of two variables. However one can pursue the simplification by
making the replacement ff → u in the long-time limit, where the return
probability λ2 is asymptotically large and hence the asymptotic form

Λ
(
r, r′, u, λ2) → Λ

2u1/4λ1/2
√
rr′ ; Λ = πg

√
iπΓ

( 1
4

)−2

Φ
(
r, r′, u, λ2) → −2Φu1/4λ1/2√rr′; Φ = πg

√
i3πΓ

( 3
4

)−2 (8.131)

can be employed for the functions Φ
(
r, r′, u, λ2) and Λ

(
r, r′, u, λ2). Note

that the functions are now independent of X. Hereafter the symbols Φ and
Λ without arguments denote the large constants given by (8.131) in terms
of Γ-functions. Substitution of (8.131) into (8.130) with allowance of (8.119)
yields

〈ρ0(ε, ξ)〉 =
∫

du
∫

drdr′ Λλ3/2(3+u)
32 u5/4

√
rr′ e

iεr−iξr′

exp
[
−2Φu1/4λ1/2

√
rr′ − Λ (r−r′)2+X2−4λ2+4λ2u

8u1/4λ1/2
√
rr′

]
. (8.132)
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We neglect the finite value X2 compared to the large function λ2 and employ
the hyperbolic coordinates R, θ, φ introduced by the relations

r = R eθ+φ
Λ

2Φ
; r′ = R e−θ−φ Λ

2Φ
; u =

e4φ

λ2

(
Λ

2Φ

)2

(8.133)

with the Jacobian −e6φRΛ4/2λ2Φ4. This results in

〈ρ0(ζ, η)〉 =
∫

dφ(e4φ + 12λ2)
∫

dR exp
[(

−
√

2eφR − 4e−2φλ2−e2φ√
2R

)
gU
2

]
i(gU)3

16

∫
dθ exp

[(
ieφ2η sinh[θ] −

√
2ζeφ cosh[θ] − sinh[θ]2

)
RgU

2

]
, (8.134)

where g =
√

ΛΦ =
√

πg/
√

2 , U = ΦΛ−1, λ =2λU , ζ = i
√

2g(ε − ξ), and
η = g(ε+ξ)/2. By the last two substitutions we have scaled the time variable
t → t/g, which means that time is now measured in the band recurrence
periods (Heisenberg times) discussed in Sect.3.3.1. We have also rotated the
variable ε − ξ in the complex plane such that the integration contour of the
inverse Fourier transformation will circumvent the positive part of the real
axis. The Fourier transformation over this variable thus becomes the Laplace
transformation. The expression is multiplied by the Jacobian i

√
2g2 of the

last two replacements as well.
Since the parameter g is large, the integration over dθ in (8.134) can

be performed by the saddle point method. Expanding the function in the
exponent near the point θ = 0, one finds the first integral over the hyperbolic
angle θ

√
2√
R

(
π
√

2
Ug

)1/2 (
1 + ieφζ

)−1/2
exp

[−RU√
2

g

(
eφζ +

e2φη2

1 + ζeφ

)]
. (8.135)

The second integral over the hyperbolic radius R now has the structure

∞∫
0

dR√
R

exp
(

−AR − 1
R

B

)
=

√
π

A
e−2

√
AB

and yields

〈ρ0(ζ, η)〉 = 21/4πiU2

8

∫
dφ e−φ(e4φ+12λ2)√

η2+ζ2+1+2ζ coshφ

exp
[
−Ug(4λ2−e4φ)1/2

(1+ζeφ)1/2

(
η2 + ζ2 + 1 + 2ζ coshφ

)1/2
]
.(8.136)

One can neglect the small quantity ζ everywhere in (8.136) except in those
terms where it is multiplied by exponentially large factors. We also note that
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for small ζ, two different contributions to the integral come from two distinct
domains of large positive and large negative φ, where only one of the two
exponents entering coshφ can be retained. This suggests the substitution
x = ζeφ for large positive φ and the substitution x = ζe−φ for large negative
φ with x ranging from 0 to ∞, such that the integral adopts the form

〈ρ0(ζ, η)〉 =
21/4πiU2

8

∞∫
0

dx (x/ζ2+12λ2ζ2/x2)

ζ
√
η2+1+x

× exp
[
−Ug(4λ2−ζ−4x)1/2

(1+x)1/2

(
η2 + 1 + x

)1/2
]

(8.137)

+

∞∫
0

dx 3λ221/4πiU2

2ζ
√
η2+1+x

. exp
[
−2Ug

(
λ2)1/2 (

η2 + 1 + x
)1/2

]
.

Inspection shows that the first integral contributes only at short times and
can be ignored. The second integral can be evaluated exactly and yields the
probability to be in the state |0〉 for the returnable random walk

〈ρ0(ζ, η)〉 =
3
√

πλ(ζ, η)
21/4ζgV

exp
[
−

√
2π(η2 + V 4g2)1/2λ(ζ, η)

]
. (8.138)

In this final result for the general case of the returnable random walk, we have
restored the original notation λ2(ζ, η) = 4λ

2
U2 for the Fourier transform of

the random walk correlation function and the density of the band states
g =

√
πg/

√
2. The mean squared coupling V =

〈
V 2

〉1/2 is also included.

The Role of the Correlation Time for a Returnable Walk

We now analyze the role of the correlation time τ r. For a δ-correlated random
walk, the Fourier transform λ2(ζ, η) does not depend on η. Therefore the
main contribution to the inverse Fourier transformation over dη comes from
the domain η = 0 where the exponent in (8.138) has the only saddle point.
Evaluation of the integral results in

〈ρ0(ζ)〉 =
3π3/4

√
λ(ζ)

ζ
√

g
exp

[
−

√
2πV 2gλ(ζ)

]
, (8.139)

and for a random walk with the power law dependence λ(ζ) = κζ−α at the
limit of small ζ this gives the time dependence

〈ρ0(t)〉 =
∫

3π3/4
√

λ(ζ)
2πζ

√
g

e−ζt−√
2πV 2gλ(ζ)dζ

∼ t1/(1+α)

g(3+2α)/(1+α) exp
[
−const tα/(1+α)

]
. (8.140)
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For the case of a finite τ r we employ the model λ2(ζ, η) = λ2(ζ)/(η2 +γ2)
where γ = 1/τ r determines the width associated with the dephasing. After
the replacement

√
2π

√
η2 + V 4g2

(η2 + γ2)
λ(ζ) → Z (8.141)

equation (8.138) yields

〈ρ0(ζ)〉 =

∞∫
0

−i3 21/4πλ2(ζ)Z
√

γ2 − V 4g2e−Z

ζgV
(
Z2 + 2πλ2(ζ)

)√
Z2γ2 + 2πλ2(ζ)V 4g2

dZ. (8.142)

Here we have employed the fact that the integration contour for η can be
closed in the upper part of the complex plane (which was impossible for
the δ-correlating random walk), whereas the lower and upper integration
limits for Z correspond to the points η = iV 2g and η = iγ, respectively.
The analytical property of λ2(ζ, η) that makes such a transformation of the
contour possible has an important consequence – contrary to (8.139) the
integral (8.142) contains a term which corresponds to a population, non-
vanishing in the long-time limit. Indeed, for small values of the parameter
V 4g2γ−2, by neglecting Z2 relative to the large function 2πλ2(ζ) we find the
integral exactly in terms of the Bessel functions which we however give only
in the asymptotic form for large λ2(ζ)

〈ρ0(ζ)〉 =
3 2−3/4

iζgV

∞∫
0

Ze−Z√
Z2 + 2πλ2(ζ)V 4g2γ−2

dZ (8.143)

3 23/4

iζgV
+

3i
ζ

√
λ(ζ)√
πγg

sin
(

λ(ζ)V 2g

γ

)
ln

(√
2πλ(ζ)V 2g

γ

)

in order to be consistent within the approximation.
The asymptotic regime corresponding to (8.143) is attained only for very

long times, when the number of returns ∼ λ2(1/t) exceeds the number of
levels (γg)2 in the spectral band of width γ = 1/τ r corresponding to the
correlation time. Therefore it is never attained for the δ-correlated random
walk with τ r = 0.

The inverse Laplace transformation of (8.143) yields

〈ρ0(t)〉 =
3 23/4

gV
+

const t1/(1+α)

(g/γ)(3+2α)/(1+α) exp
[
−const (g/γ)−1/(1+α)tα/(1+α)

]
(8.144)

where the last term is estimated for λ(ζ) = κζ−α by analogy to (8.140). One
sees, that the asymptotic population is given by the inverse of the expectation
value of resonances gV for the level–band system and does not contain any
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trace of the correlation time, which only determines the typical time when
the constant asymptotic population of the state |0〉 is reached.

Summarizing the results obtained, we can say that a level does not de-
cay completely to a band corresponding to a returnable random walk with a
finite time of the correlation of the probability amplitudes. It keeps a resid-
ual population given by the inverse expectation number of resonances gV .
For a non-returnable random walk, the decay manifests a universal time de-
pendence exp(−√

t), whereas for a δ-correlated returnable random walk, the
decay law exp

[−tα/(1+α)
]

is governed by the power index α of the Fourier
transformed return probability λ(ζ) = κζ−α.

8.3 Manifestation of Quantum Complexity
in the State Density

Thus far we were mainly focused on the dynamics of populations in complex
quantum systems and the time evolution of probability amplitudes was con-
sidered only as an auxiliary tool in this context. However, some important
physical properties such as the density of states and the linear susceptibility
of quantum objects at a given frequency are primarily related to the dynamics
of the probability amplitudes.

Generally speaking, all of the physical properties that can be expressed
as a linear functional of the Green’s operator of a system, are associated
with the dynamical and spectral properties of the probability amplitudes.
Moreover, all results obtained for the ensemble averaged amplitudes 〈ψ(ε)〉
corresponding to the initial condition ψ(t = 0) = 1 are valid for the Green’s
functions G0n(E) = ψn(E), since in fact these two objects are identical. In
this section, we consider a general rule which governs the transformation
of the spectral density and other physical characteristics of a large number
of interacting quantum states, linear in G(E). The Fourier transforms of
such spectral characteristics give the corresponding time-dependent response
functions. The universal features in these spectral dependences, typical of
complex multilevel quantum systems, give rise to some universality in the
responses, that at certain conditions can manifest a universal behavior of
physically different response functions at asymptotically long time.

We start by addressing the question: what happens to the density of
states of an arbitrary multilevel quantum system when we couple the lev-
els by random interaction? The rigorous analysis of this problem relies on
involved calculations, but the final result which governs the reconstruction
of the spectra in the limit of a large number of quantum states mixed up
by a random perturbation has a very simple, although non-trivial form. It is
closely related with the procedure of renormalization that has been employed
in Sect.4.3.1, in the context of the analysis of population dynamics for time
intervals shorter than the inverse density of states. We can also illustrate this
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result by simple heuristic speculation, based on second-order perturbation
theory. Several examples of the transformation of the state density and the
absorption line profiles follow.

The rigorous analysis, for the case when the interaction mixes up just a
small number of states gV ∼ 1, is a more challenging task. One has to take
into account the role of recurrences and revivals, which manifests itself in the
dominating contribution of the trajectories with multiple self-intersections,
similar to the trajectories considered in the previous section in the context of
the incomplete level decay, and population localization. In this section we give
a description based directly on the physically more meaningful calculation of
the self-intersecting trajectories and the corresponding diagrams, instead of
the more compact approach of Sect.8.2 involving the Grassmann integration.
We try to show the parallels between these two approaches when it is possible.

8.3.1 Spectrum Transformation Induced by Random Perturbation

In the second-order perturbation theory, a weak coupling V̂ shifts the energies
∆l of levels such that they acquire the new values

∆̃l = ∆l +
∑
m

|Vl,m|2
∆l − ∆m

. (8.145)

This implies that the physical properties associated with a given level undergo
a shift to a different spectral region. Let us take, for example, the linear
susceptibility fl(E) = µ2

l (E − ∆l − iγl)−1corresponding to the level l. Here
γl is the decay rate and µl the dipole moment of the transition to this level
from the ground state. The real part of the susceptibility Refl(E;∆l) gives
the Raman scattering amplitude, and the imaginary part Imfl(E;∆l) is the
absorption cross-section. For the perturbed spectra in these expressions we
have to replace ∆l by ∆̃l.

But what happens when the interaction is not small? Evidently, the level
shifts become larger. Besides the shifts, the strong interaction mixes up the
quantum states, so that the “individual properties” of each of the levels be-
come distributed among a number of energy eigenstates. It turns out that for
a random perturbation, this spreading of the “individual properties” does not
manifest itself in the resulting spectra: after the ensemble average, only the
level shifts remain important. These shifts may however contain imaginary
components, thus moving the state responsible for a certain contribution to
the quantity of interest to the complex plane of energies. In other words, a
physical value Φ(E), which had a given magnitude at the energy E, now has
the same magnitude at the energy Ẽ. Here the function Φ(E) is supposed to
be proportional to the Green’s function, that is, it corresponds to a linear
property of the system.
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A Simple Rule for Large Complex Systems

The main features of the transformation of the density of states follows from
a procedure almost identical to the renormalization discussed in Sect.4.1.3. It
only has to be generalized to an arbitrary density of the unperturbed states.
This gives the relation between E and Ẽ, that is between the domain of the
unperturbed energy spectrum associated with the contribution to the partic-
ular physical property, and the new energy position of the state responsible
for this contribution. We note that as a result of such a transformation, the
new energy position could, and usually does, acquire an imaginary part. In
other words, the quantum states contributing in a specific way to the physical
property of the system, are not necessarily energy eigenstates. In the limit of
a large number of levels, this energy is given by the transcendental algebraic
equation resembling (8.145), which reads

E = Ẽ +
∑
m

〈V 2〉
Ẽ − ∆m − iγm

, (8.146)

where 〈V 2〉 is the mean square of the random interaction. In the other nota-
tions, the nonuniform transformation of the energy scale (8.146) is given by
the equation

E = Ẽ + 〈V 2〉 TrG(Ẽ), (8.147)

where Ĝ0(Ẽ) is the unperturbed Green’s function.
Equation (8.147) implicitly determines the dependence of new energies

on the old ones, that is, the function Ẽ(E), and thus enables us to calculate
the new shapes of any spectral dependence Φ̃(E), provided we knew the old
profiles Φ(E). This relation reads

Φ̃(E) = Φ
[
Ẽ(E)

]
. (8.148)

Note that the transformation of the spectra, given by (8.147) and (8.148), is
not as trivial as it may look at first glance: Plural roots of (8.147) result in the
multivalued dependence of Ẽ(E). In this case we may obtain a superposition
of profiles corresponding to different roots. For the roots of (8.147) to be
taken into account, we use the following selection rule. We find the contour
in the complex plane Ẽ going from −∞ to ∞, on which the imaginary part of
the right-hand side of (8.147) equals zero. We take only the roots of (8.147)
located on this contour, and numerate them according to the sequence in
which they are ordered, starting from −∞. The even roots give positive and
the odd, negative contributions. Note that the roots of the transcendental
equation (8.147) obtained in this way are not necessarily real: they usually
have negative imaginary parts.

For the derivation of (8.147), there is no need to perform all of the calcu-
lations based on the ensemble averaging of the all-order perturbation series of
the Green’s functions in the general case, since all of the physically important
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ingredients of such a calculation have already been illustrated in Sect.4.1.3
for the particular example of the Green’s function projected to the unper-
turbed energy eigenstate Xm(E) = 〈m| 〈G(E)〉 |m〉. Equation (4.21) can be
directly generalized to the average Green’s functions in any representation,
which reads

〈G(E)〉 =
∑
m

|m〉 〈m|
E − ∆m − 〈V 2〉 Tr 〈G(E)〉 . (8.149)

We simply notice that substitution of the renormalized energy Ẽ = E −〈
V 2

〉
Tr 〈G(E)〉 into the definition of the Green’s function

G(E) =
∑
m

|m〉 〈m|
E − ∆m

. (8.150)

given in the representation of the unperturbed energy eigen states |m〉, imme-
diately gives 〈G(E)〉 = G(Ẽ), while from the invariance of the trace operation
one obtains Tr 〈G(E)〉 = TrG(Ẽ), which results in (8.147).

Example of Two Merging Multiplets

Let us illustrate this rule by simple examples. For a degenerate multiplet
containing N components we find

Ẽ − E +
N〈V 2〉

Ẽ
= 0. (8.151)

This equation has two roots

Ẽ1,2 =
E

2
±

√(
E

2

)2

− N〈V 2〉. (8.152)

The sign selection rule suggests minus, and the new Green’s function therefore
reads

〈G(E)〉 =
N

Ẽ
=

N

E
2 −

√(
E
2

)2 − N〈V 2〉
. (8.153)

For (E2 )2 < N〈V 2〉 the imaginary part of the Green’s function yields the
Wigner semicircular state density

g(E) = ImG(E) = (π〈V 2〉)−1
√

E2 − 4N〈V 2〉 (8.154)

shown in Fig. 4.19.
One can also see the coalescence of two Wigner semicircles. We take Na

levels, at the energy ∆a = ∆ and Nb levels of the energy ∆b = −∆. The
trace of the imaginary part of the Green’s function ImG(E) = Im[Na(E −
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Fig. 8.10. Density of states g(E) calculated with the help of (8.156) for vareous
parameters V 2N/∆2 (a) and C = Na/(Na + Nb) (b). This is an analog of the
semicircular Wigner distribution (Fig. 4.19) for the case of two multiply degenerate
levels coupled by a random matrix.

∆ − i0)−1 + Nb(E + ∆ − i0)−1] gives us the unperturbed density of states.
For the transformed energy Ẽ one finds a cubic equation

Ẽ − E + V 2G(Ẽ) ≡ Ẽ − E +
V 2Na

Ẽ − ∆ − i0
+

V 2Nb

Ẽ + ∆ − i0
= 0 (8.155)

with the roots Ẽ1,2,3(E) given by the Cardano formula. The selection rule
yields the root with the negative imaginary part. We note that the variable
E is real, and therefore according to (8.149), the density of states g(E) is
given by g(E) ≡ ImTr

〈
Ĝ(E)

〉
= ImG[Ẽ(E)]. After substitution of G[Ẽ(E)]

from (8.155) this reads
g(E) = −Im Ẽ3(E). (8.156)

In Fig. 8.10 we depict the density of states for various concentrations
Na/(Na + Nb).

Examples of Multidimensional Motion

For a free particle moving in d-dimensional space, with kinetic energy pro-
portional to the momentum squared p2, the density of states as a function of
energy E reads g(E) = d(2π)−d/2Ed/2−1/Γ(d/2), and therefore the trace of
the Green’s function in the eigenstate representation reads

TrG(E) =
d

(2π)d/2Γ(d/2)

∞∫
0

xd/2−1e−νx

E − x − i0
dx (8.157)

where a small cut-off constant ν is introduced in order to avoid the divergency
of the upper limit. For d = 1, 2, 3 (8.157) yields
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TrG(E) =
i√

2 (E − i0)
;

TrG(E) =
1
π

[ln (−E + i0) + ln ν + C] ;

TrG(E) =
3i√
2π

√
E − i0 − 3

√
π

2π3ν
, (8.158)

respectively, where C 
 0.577 . . . is the Euler constant. We do not include
here the dimensional parameters related to the mass of the particle and the
size of the system, but simply define the mean squared perturbation by the
rate W = 〈V 2〉g of relaxation that moves the particle with a given momentum
out of the momentum state. This implies that the perturbation amplitude is
strong and rapidly changing in space, such that this rate is independent of
the momentum.

We will not take into account the energy-independent terms of (8.158)
that just shift the energy scale without affecting the profile of the density of
states, but concentrate only on the energy-dependent ones, that have to be
substituted into (8.147). This yields

E = Ẽ − i√
2
(
Ẽ − i0

)W ;

E = Ẽ +
W

π

[
ln

(
−Ẽ + i0

)]
;

E = Ẽ − 3iW√
2π

√
Ẽ − i0, (8.159)

where the first and the last equations can be solved analytically, whereas the
second one requires a numerical solution. Equations (8.159) have a certain
symmetry with respect to scaling and shift operations, such that their solu-
tions result in the universal functional dependencies of the density of states,
whereas the energy axis experiences shift and scaling, which may also be ac-
companied by a scaling of the density axis. Indeed, representing E and Ẽ in
the first equation as the quantities X1 and X̃1, respectively, that are both
multiplied by the factor W 2/3, one gets rid of the parameter W . A similar
representation of E and Ẽ in the second equation containing the factor W/π,
followed by the shift of the argument X2 → X2−lnW/π gives a similar result.
The right-hand side of the third equation is quadratic with respect to

√
Ẽ.

Therefore, by simple shift of the argument E by the value −9W 2/8π2 followed
by taking the roots and squares one finds that the combination −Im(Ẽ)/πW
remains the same square root function, simply shifted along the energy axis.
We therefore arrive at
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g̃1(E) =
−1

πW 1/3 ImX̃1(
E

W 2/3 )

g̃2(E) = − 1
π

ImX̃2(
Eπ

W
− ln

W

π
)

g̃3(E) =
3√
2π2

√
E − 9W 2

8π2 , (8.160)

where X̃1(X) and X̃1(X) are universal functions given by the solutions of
the algebraic and transcendental equations(

X̃1 − X
)2

2X̃1 + 1 = 0,

X = X̃2 +
[
ln

(
−X̃2 + i0

)]
,

(8.161)

respectively. The first equation implies a standard solution for the cubic equa-
tion, while we have already encountered the second equation in (5.160) in the
context of a band interacting with the moving level. There we were interested
in the real solution of the latter equation that determines the position of an
adiabatic state near the continuum edge, whereas now we are concentrating
on the imaginary solution describing the transformation of the state density.
In Fig. 8.11 we show the profiles of the imaginary parts of these functions.
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Fig. 8.11. Universal profiles of the state density g(E) perturbed by a random
matrix as a function of the scaled energy E, given by the solutions X̃1(X) (solid line)
and π−1X̃2(πX) (dash-dot line) of (8.161) for one- and two-dimensional motion,
respectively.

Examples of Absorption Lines

The density of states is not the only characteristic of a quantum system that
is linear in the Green’s function. The other important physical quantity is the
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transition probability. The natural example of this is the photon absorption
cross-section, corresponding to dipole transitions from the ground state of a
quantum system to a set of highly excited levels, coupled among themselves
by a random perturbation. When the perturbation mixes up the dipole ac-
cessible odd states with even states, forbidden for the dipole transitions, the
profile F (E) of the absorption line experiences a significant transformation.
We illustrate such a transformation for two merging multiplets that undergo
transformation given by (8.155). We assume that only one of these multiplets,
say a, is accessible from the ground state |0〉 and that the other multiplet is
“dark”. Therefore the profile

F (E) = 〈0 |µ0aG(E)µa0| 0〉 (8.162)

given for 〈V 2〉 = 0 in terms of the unperturbed Green’s function (8.150)
and the matrix elements µ0a of the dipole moments (taken here as identical)
adopts the form

〈F (E)〉 =
Na |µa0|2

Ẽ(E) − ∆ − i0
, (8.163)

as suggested by the transformation (8.149) of the energy scale in the presence
of the perturbation.

In Fig. 8.12 we show the evolution of 〈F (E)〉 for an increasing, random
perturbation 〈V 2〉. For small perturbations the dipole activity is localized
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Fig. 8.12. Absorption contour of a “bright” multiplet merging with a “dark” one
as a result of random coupling of the multiplet levels, calculated with the help of
(8.163). (a) The level scheme for transitions to coupled bright and dark multiplets.
(b) The absorption profiles σ(∆, V ) for small, medium and strong random coupling.
(c) The same as a function of the mean squared coupling. (d) The same near the
point where the multiplets merge.
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on the manifold a and gives the “triangular” shaped profile typical of the
multiplets with a Wigner semicircular shape. When the nearest edges of the
manifolds a and b get closer, part of the dipole activity moves to the multiplet
b, while the superposition with a non-uniform state density at the edges
creates a two-hump profile, shown in Fig. 8.12(b). For strong coupling, when
the multiplets merge, the line acquires an almost Lorenzian shape which
returns to the “triangular” one only for very strong couplings, when both
multiplets can be treated as one.

Universal Features in Time Dependencies

When considering in Sect. 4.3 the population dynamics of two degenerate lev-
els, we encountered a non exponential behavior of the population difference
in the long time limit. The non-exponential time dependence also manifests
itself in the frequency domain as discontinuities of derivatives of the corre-
sponding spectra. The sharp edges of the Wigner semicircular distribution
entering the imaginary part of Q ∼ Ẽ in (4.54) as the origin of the oscillating
dependencies given by Bessel functions in (4.61) for the population difference
is one of the examples. We can illustrate this by taking the Fourier transform
of the Green’s function in (8.153) and calculating the response function

R(t) ≡
−∞∫
∞

dE

2π
G̃(E)eiεt =

−∞∫
∞

dE

2π
eiEt

E − √
E2 − 4N〈V 2〉 =

J1(t
√

N〈V 2〉)
t
√

N〈V 2〉 .

(8.164)
The square of the response function R(t) gives us the time-dependent prob-
ability of the transition. We recall the asymptotic behavior of the Bessel
function J1(x) ∼ x−1/2 sin(x − π/4) and see that this probability decreases
as t−3. In this respect, the Wigner semicircular spectrum behaves like a six-
dimensional random walk

We can also find some typical features of the optical response function
R(t) corresponding to the profile

〈F (E)〉 = 〈0 |µ0a 〈G(E)〉µa0| 0〉 (8.165)

in the general case. Calculating the integral

R(t) =

−∞∫
∞

dE

2π

〈
0
∣∣∣µ0aG[Ẽ(E)]µa0

∣∣∣ 0〉 eiEt. (8.166)

of the inverse Fourier transformation by parts one finds

R(t) = −
−∞∫
∞

eiEt

2πit

∂
〈
0
∣∣∣µ0aG[Ẽ(E)]µa0

∣∣∣ 0〉
∂E

dE. (8.167)



422 8 Composite Complex Quantum Systems

A spectrum edge located at a point E = Eed where G[Ẽ(E)] ∼ (E − Eed)1/2

gives the contribution

R(t) ∼ exp [iEedt]
t3/2

(8.168)

to the integral (8.167), and hence the overall response in the long-time limit
decreases as t−3/2 and results from the interference of responses (8.168) of
all spectrum edges. This yields a multifrequency interference pattern in the
case of a spectrum consisting of many spectral bands. However when for a
certain value of the random coupling two closest edges of neighboring bands
merge at a point E = Ecusp, as shown in Fig. 8.10, the density of state form
a cusp with the profile ∼ |E − Ecusp|5/3and the corresponding contribution
to the response

R(t) ∼ exp [iEcuspt]
t8/3

(8.169)

decays faster as compared to the edge contributions.

8.3.2 The Effect of Quantum Recurrences
on the State Density Profiles

Thus far we have been considering the situation when the typical strength
V of the random perturbation is much larger than the typical spacing 1/g
between the neighboring levels of the unperturbed system and we were con-
centrating on the transformation of the spectral density on a scale much larger
than 1/g. In other words, the time uncertainty corresponding to our spectral
resolution was much shorter than the typical Heisenberg return time ∼ g.
Now we turn to the case when the perturbation is of the order of the mean
spacing V g ∼ 1 and the time uncertainty of the resolution has to be larger
than the return time. The influence of quantum returns therefore becomes
dominant.

In Fig. 8.13(a) we illustrate this situation by showing the average density
of states g(ε,∆) in the most simple case of a “complex” quantum system
consisting of two levels with an energy spacing 2∆, which is perturbed by a
Hermitian 2 × 2 random matrix Vkm. Averageing of the state density

δ

(
ε − V11+V22

2 +
√

(V11−V22
2 + ∆)2 + V12V21

)
+δ

(
ε − V11+V22

2 −
√

(V11−V22
2 + ∆)2 + V12V21

)
with the Wigner perturbation distribution function g ∼ e−V 2

11−V 2
22−2V12V21

reads
(ε + ∆)e2∆ε − (ε − ∆)

2
√

2π∆
exp

[
− (ε + ∆)2

2

]
, (8.170)

as one can find by performing the direct integration over dV11 dV22 d |V12|
d arg V12. Here ε stands for energy which is scaled in the mean perturbation



8.3 Manifestation of Quantum Complexity in the State Density 423

-1
0

1

1

3

0

0.4
g

D

E

0 1

2

3! 2! 1!
2! 2!

4 -2 -1
-2 3 -1
-1 -1 2

=15E =

a)

b)

c)

Fig. 8.13. The density of quantum states at a resolution scale less than the mean
level spacing is affected by the interference of recurrences. For the simplest, two-
level “complex” quantum system (a) it results in a two hump profile (8.170). (b)
Consistent description of larger systems requires that one takes into account that
different trajectories (dash lines) give identical contributions when they correspond
to the the same oriented graph (solid lines). (c) Example of an orgraph with parallel
transitions. For this orgraph K0 = 4; K1 = 3; K2 = 2; p0,1 = p1,0 = 2; p0,2 =
p2,0 = p1,2 = p2,1 = 1. The number of different Euler paths is 15 according to
(8.175) and, indeed, the orgraph corresponds to the 15 trajectories: 010121030;
010102120; 010120210; 010201210; 010210120; 010212010; 012010210; 012021010;
012101020; 012102010; 020101210; 020121010; 021010120; 021012010; 021201010.

〈
V 2

〉1/2 as well as all other energy units in this subsection. One sees the two
Gaussian profiles corresponding to two levels that for a vanishing spacing ∆
form a single two hump profile. The humps originate from the level repulsion
by the interaction V12.

Trajectories and Oriented Graphs

In order to obtain the state density in the general case, we begin the exact
analytical calculation of the averaged perturbation series (4.2) which is quite
unwieldy but contains no approximation apart from the ensemble average
with the distribution function g ∼ exp(−TrV̂ 2). In particular, the calculation
does not imply that the diagrams have only a tree-like structure, which was
the key assumption in the regime of short times t < g. The final result of
these calculations is a threefold integral representation of the average Green’s
function 〈G(ε)〉 which gives (8.170) as a particular case.

A generic term of the perturbation series corresponds to a diagram which
may return many times to the same level. It has the structure
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S({pn,m}) =
∏
n,m

[(Vnm)pnm ]
∏
n

[
1

(ε − ∆n)Kn

]
, (8.171)

where Kn =
∑

m pmn is the number of times the level |n〉 has been visited,
and the numbers pmn = 0, 1, 2 . . . show how many times the matrix element
Vnm is found on the trajectory. Each trajectory 0 → . . . → n → m → . . . → 0
starts and ends at the state |0〉 , the only initially populated level. For the
state |0〉 the power index is K0 =

∑
m pm0 + 1. When needed, one obtains

the trace of the Green’s function, by taking for the state |0〉 , all levels of the
system and summing up the resulting contributions. The Green’s function is
the sum of the amplitudes S of all trajectories

G(ε) =
∑

traject.

S({pnm}), (8.172)

where many of these trajectories may have the same set {pn,m} of indices
and therefore give identical contributions.

Let us represent the states n of the system by points in a plane, and
depict a self-intersecting trajectory by connecting these points by the lines
representing the coupling Vnm which has been encountered on the trajectory.
We obtain an oriented graph (orgraph), that is, the totality {pn,m} of lines
connecting each pair n,m of the points, and pnm gives the number of different
lines going from the point n to the point m. The set of numbers {pmn}
uniquely defines the orgraph.

There is no one-to-one correspondence between trajectories and orgraphs:
Any trajectory of the sum (8.172) corresponds only to one orgraph, but this
orgraph may also correspond to some other trajectories. One can say that
each of these trajectories goes round the orgraph in its own way, as shown in
Fig. 8.13(b). All of the trajectories corresponding to the same orgraph have
identical amplitudes S and hence they interfere constructively. Therefore the
sum (8.172) of the terms (8.171) can be represented in the form

G(ε) =
∑

orgraph{pn,m}

∏
n

⎡⎣
∏
m

(Vnm)pn,m

(ε − ∆n)Kn

⎤⎦ E({pmn}), (8.173)

where the factor E({pmn}) allows for a number of different trajectories on
the orgraph {pnm}.

The Number of Euler Paths and Sum Over Carriers

We now make use of the combinatorial expression for E({pm,n}) entering
(8.173) which is known explicitly for pn,m = 0, 1. It is the so-called number
of Euler paths, given as

E =
∏
n

[(Kn − 1)!] minor

∣∣∣∣∣δn,m
(∑

m

pnm

)
− pnm

∣∣∣∣∣ , (8.174)
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where the symbol “minor” stands for any of the M2 identical (M − 1)-th
order minors corresponding to the Mth-order matrix δnm

∑
m

pnm − pnm. The

determinant |δnm
∑
m

pnm − pnm| of this matrix equals zero. Instead of cal-

culating minors, one can calculate the determinant where unity is added to
the diagonal element corresponding to the level |0〉. In this way, one can re-
place the sum of pmn by the value of Kn. We illustrate this in the orgraphs
by adding an entering arrow to the point corresponding to |0〉. One obtains
the generalization of (8.174) for the case pn,m = 0, 1, 2, . . . dividing it by the
number

∏
n,m pn,m! of the transposition of all identical lines in the orgraph

E({pn,m}) =
∏
n

⎡⎣ (Kn − 1)!∏
m

pnm!

⎤⎦ |δn,mKn − pn,m| . (8.175)

The summation over orgraphs (8.173) is not equivalent to the summation
over all pn,m = 0, 1, . . ., because a trajectory may not visit all of the states of
the system. As a consequence, the order of the matrix δn,mKn−pnm in (8.175)
can be different for different orgraphs. We therefore perform the summation in
two steps. Firstly we select the carrier C({n}) of the orgraph, that is, a group
{n} of N levels, each of which must be visited by the corresponding trajectory
at least once. The carrier always includes the state |0〉. Then we sum the
contributions of all orgraphs with identical carriers, that is, we perform the
summation over all pn,m running from one to infinity. In this sum we keep the
size N ×N of the matrix pm,n unchanged. When some of the numbers Kn =∑

m pn,m equal zero, the determinant in (8.175) has a zero line and hence the
corresponding E vanishes. Hence the imposed condition, that each trajectory
must visit all the states of the carrier, holds automatically. Secondly we sum
up the contributions of all possible selections of the carriers with different N
and arrive at

G(ε) =
∑

C({n})

∞∑
pn,m=0

∏
n

⎡⎣
∏
m

(Vnm)pn,m

(ε − ∆n)Kn

⎤⎦ E({pmn}). (8.176)

Note that if we want to keep the natural enumeration of the states included
in a carrier (n,m = 1, 2, . . .), we have to attribute to them new numbers
according to the sequence of the initial numeration. The other possibility
is to retain the original enumeration, which does not run over all natural
numbers. It is convenient to choose the set-theory notation that gives identical
expressions for both types of enumeration. We write l,m ∈ {n} if the states
l and m are included in the set {n}, and l,m ∈ {n}/{q} if at the same time
these states are not included in the set {q}. All states in the sets are ordered
according to the original enumeration.



426 8 Composite Complex Quantum Systems

Factorization of E and the Ensemble Average

Our aim now is to factorize the number of Euler paths and represent the sum
of products

∑
pnm

∏
nm as the product of sums

∏
nm

∑
pnm

. Following that,
we perform the summation for each pair n,m independently. We employ the
relation

(Kn − 1)!
(ε − ∆n)Kn

=
∫
Ct

dtn
tn

tKn
n exp{−(ε − ∆n)tn}, (8.177)

were Ct is the integration contour that starts at t = 0 and goes to infinity
along the direction ensuring convergence of the integrals, and thereby in
the integrand we obtain the product of the factors tpmn

n . Separation of the
determinants can be performed with the help of Grassmann integration. Here
we employ another approach, which to a certain extent illustrates the meaning
of the graded anticommuting variables. We note that ∂

∂α exp(plmα) → plm
for α → 0 and write∣∣∣∣∣δlm ∑

k∈{n}
pkm + δl0δm0 − plm

∣∣∣∣∣
= lim

α→0

∣∣∣∣∣δlm ∑
k∈{n}

∂
∂αkm

+ δl0δm0 − ∂
∂αlm

∣∣∣∣∣ exp
∑
l,m

plmαlm, (8.178)

where δl0δm0 allows for the fact that K0 =
∑

m p0m + 1.
Let us make parallels between the technique based on the differential

operator-determinant and the technique based on graded variables. Inter-
change of two neighboring columns in a determinant results in a change of
its sign. This property corresponds to the anticommutation relations of the
Grassmann variables χχ′ = − χ′χ, whereas the fact that elements of each
line or column enter into each term of the determinant only once along with
the requirement α → 0 corresponds to the vanishing of all powers of these
variables. The fact that the argument should depend on the variables αlm for
Grassmann variables χ corresponds to the condition

∫
dχ = 0.

We substitute Eqs. (8.177), (8.178), and (8.175) into (8.176) and arrive
at

G(ε) = lim
α→0

∑
C({n})

∣∣∣∣∣δlm ∑
k∈{n}

∂
∂αkm

+ δl0δm0 − ∂
∂αlm

∣∣∣∣∣ (8.179)

∏
l∈{n}

∫
Ct

dtl
tl

tδ0l

l exp{−(ε − ∆l)tl
∏

m∈{n}

[
∞∑

pn,m=0

[tl exp(αlm)Vl,m]plm

pl,m!

]
.

Here by the power δl0 we take into account that all carriers C({n}) include
the state n = 0. In the summation over pl,m = 0, 1, . . . we recognize the
Taylor expansion of the exponents, and hence
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G(ε) = lim
α→0

∑
C({n})

∣∣∣∣∣δlm ∑
k∈{n}

∂
∂αkm

+ δl0δm0 − ∂
∂αlm

∣∣∣∣∣ (8.180)∏
l∈{n}

∫
Ct

dtl
tl

tδ0l

l exp{−(ε − ∆l)tl
∏

m∈{n}
[exp(tlVl,m expαlm)] .

Now we perform the average over the Gaussian distribution of the matrix
elements Vnm. Application of (8.102) to each matrix element Vlm and its
complex conjugate counterpart Vml yields〈 ∏

l,m∈{n}
exp(tlVl,m expαlm)

〉
= exp

⎡⎣ ∑
l,m∈{n}

tltm exp (αml + αlm)

⎤⎦ .

(8.181)
We now move the differential operator-determinant under the integral (8.180)
and substitute (8.181) such that the integrand of the many-fold integral over∏

dtl adopts the form

Y = lim
α→0

∣∣∣∣∣δlm ∑
k∈{n}

∂
∂αkm

+ δl0δm0 − ∂
∂αlm

∣∣∣∣∣ (8.182)

exp

[ ∑
l,m∈{n}

tltmeαml+αlm

] ∏
l∈{n}

{
t
δl,1−1
l exp[−(ε − ∆l)tl]

}
.

Now we calculate the derivatives, and take the limit α = 0. The deter-
minant in (8.182) is a differential operator. It comprises only the first-order
derivatives over each particular αl,m, since all of the terms generated by a de-
terminant include only the matrix elements corresponding to different lines.
Therefore in the last sum we can expand the exponents

tltmeαml+αlm = tltm + tltmαml + tltmαmlαlm,

move the zero-order terms in front of the determinant, and keep only the
terms linear in α. Bilinear terms are not important in the limit α → 0.
Indeed, when we take a bilinear term αmlαlm and consider the structure of
the minor of the determinant comprising derivatives over both these variables,
we find that it has the structure∣∣∣∣ ∂

∂αml
− ∂
∂αml

− ∂
∂αlm

∂
∂αlm

∣∣∣∣ = 0,

vanishing identically. The integrand of the averaged equation (8.180) given
by (8.182) adopts the form

Y =

∣∣∣∣∣δlmtm
∑

k∈{n}
tk + δl0δm0 − tltm

∣∣∣∣∣
exp

[ ∑
l,m∈{n}

tltm

] ∏
l∈{n}

{
t
δl,1−1
l exp[−(ε − ∆l)tl]

}
. (8.183)
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The determinant can be found explicitly, and for the N ×N matrix reads( ∑
l∈{n}

tl

)N−2 ∏
l∈{n}

tl. We can represent this in completely factorized form

with the help of the integrals( ∑
l∈{n}

tl

)−1

=

∞∫
0

exp

{
−u

∑
l∈{n}

tl

}
du, (8.184)

( ∑
l∈{n}

tl

)N−1

=
1

2πi

∫
C0

dx

x

∞∫
0

dze−z
( z

x

)N−1
exp

{
−x

∑
l∈{n}

tl

}
,

where the contour C0 circumvents the point x = 0 and allows one to select
the (N −1)-th power of the sum according the Cauchy formula for derivatives
of analytical functions, and the integral over dz compensates for the factorial
in the Cauchy formula. For the factorization of the sums in the exponent, we
employ a simpler version

exp

⎛⎝ ∑
l∈{n}

tl
∑

m∈{n}
tm

⎞⎠ =
1√
π

∞∫
−∞

exp

⎛⎝−y2 − 2y
∑

m∈{n}
tm

⎞⎠ dy, (8.185)

of the standard factorization procedure (8.102). Substituting (8.184) and
(8.185) into (8.183) for the integrand we obtain (8.180) in the form

〈G(ε)〉 =
∑

C({n})

1
2πi

√
π

∫
C0

dx

x

∞∫
0

dz
∞∫

−∞
dy

∞∫
0

du
( z

x

)N−1
e−z−y2

∏
l∈{n}

∫
Ct

tδ0l

l exp [−(u + x + 2y + ε − ∆l)tl] dtl. (8.186)

The last integration is standard and yields (u + x + 2y + ε − ∆l)−1−δ0l since
the integration contour Ct can be directed from tl = 0 to −i∞ employing an
infinitesimal imaginary part of the variable ε.

Now we perform the summation over all of the carriers that contain the
state n = 0. All other states of the system can either be included or not
included in the carrier C({n}). We attribute the factor unity to the states
which are not included in the carriers, and extend our product to all states
of the system. Then the summation over all possible carriers reduces to the
multiplication of a binomial, and we arrive at

〈G(ε)〉 = 1
2πi

√
π

∫
C0

dx

x

∞∫
0

dz

∞∫
−∞

dy e−z−y2

∞∫
0

du (8.187)

(u + x + 2y + ε − ∆0)−2
N∏
l=1

[
1 +

z

x
(u + x + 2y + ε − ∆l)−1

]
.
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Equation (8.187) corresponds by construction to the matrix element G(ε)0,0
of the Green’s operator, since we have considered only the trajectories that
start at the level |0〉. In order to obtain the trace of the Green’s operator
we note that the factor in (8.187) corresponding to the starting level |0〉 is
the derivative ∂/∂u of the factor identical to that of the other levels, and
therefore after integration over du the trace reads

Tr 〈G(ε)〉 =
1

2πi
√

π

∫
C0

dx

x

∞∫
0

dz
∞∫

−∞
dy e−z−y2

x

z

{
N∏
l=0

[
1 +

z

x
(x + 2y + ε − ∆l)−1

]
− 1

}
, (8.188)

where the integration constant −1 is chosen in order to exclude the non-
physical constant term of the product, corresponding to the carrier containing
no level.

Further simplifications have no physical background, being purely techni-
cal. We employ an integral representation similar to (8.185), replacing e−y2

by the integral of π−1/2
∫

e−q2 −2iyqdq, change the variables 2y + x + ε → 2y
and x → zx, simultaneously also changing the order of the integration when
needed, perform integration over dz, and arrive at

Tr 〈G(ε)〉 =
1

2π2i

∞∫
−∞

dq
∫
C0

dx

x

∞∫
−∞

dy e−q2 −2iyq+iq(xz+ε)

1
1 − iqx

x

{
N∏
l=0

[
1 +

1
x

(2y − ∆l)−1
]

− 1
}

. (8.189)

The integration contour C0 is a loop separating the high-order poles at the
point x = 0 from the first-order pole at x = 1/iq. We move this contour to
infinity, where the integral vanishes and calculate the residual at the point
x = 1/iq. This yields

Tr 〈G(ε)〉 =
1
π

∞∫
−∞

dq
∞∫

−∞
dy e−q2 −2iyq+iqε

1
iq

{
N∏
l=0

[
1 + iq(2y − ∆l)−1] − 1

}
, (8.190)

which is the final result for the general case. The limit of a large number
of states follows from (8.190) after some algebraic manipulations, when we
assume that each factor of the product is close to unity and set∏N

l=0

[
1 + iq(2y − ∆l)−1] = exp

[
iq

∑N

l=0
(2y − ∆l)−1

]
by analogy to (3.118) and (8.111).
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Fig. 8.14. The density of quantum states for multiplets perturbed by a random
matrix. The even number of states N = 2, 4, 6, 8 are shown by solid lines, while
the dashed lines show the profiles for the odd N . The asymptotic semicircular
dependence, scaled to the parameters of N = 10, is also shown. The two-hump
dependence of N = 2 coincides with that of Fig. 8.12.

The other interesting limit is that of identical levels, that is ∆l = 0 for
all l. In this case one can expand the binomial (1 + iq(2y)−1)N and integrate
each term independently allowing for the integral representation

Hn(x) =
2n√
π

∞∫
−∞

(x + iq̃)n e−q̃2 dq̃

for the Hermite polynomials, which yields

〈G(ε)〉 =
e−ε2/4

2
√

π

N−1∑
k=0

N !H2k(ε/2)
2k(k + 1)!k!(N − k − 1)!

. (8.191)

In Fig. 8.14 we show the density of states for the case of N = 1, 2, ...8 along
with the Wigner semicircular profile corresponding to the asymptotic of N →
∞.

We conclude by summarizing the main results of this subsection. We
sum up explicitly the all-order perturbation series for an arbitrary quantum
system perturbed by a random matrix from a Gaussian unitary ensemble. We
take into account all self-intersections of the trajectories exactly, with the help
of the explicit expression for the number of Euler paths. We obtain the exact
expression for the transformed spectra in the form of a two-fold integral. A
simple transformation rule, which governs the ”macroscopic” transformation
of spectra, follows from the exact expression in the extreme of a large number
of states.
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8.3.3 The Density of Quantum States of Fractals

The description of the interference phenomena inhibiting the level’s decay
and affecting the state density at high resolution was based on the analysis
of self-intersections of the transition trajectories going over quantum states
of a complex quantum system. Now we focus on another case of interference,
when the orgraphs of the diagrams do not self-intersect but correspond to
a tree-like topological structure. However each branch of the “tree” may be
passed an infinite number of times by the trajectory. One encounters a phys-
ical realization of this situation by considering a quantum particle moving
along a ramified structure like that shown in Fig. 2.20. In contrast with the
problems considered earlier in the energy representation, for this problem the
coordinate representation is much more natural, whereas the Green’s func-
tion of the particle is given by the Feynman path integral in its classical
formulation, that is as a sum over all possible trajectories, weighted by a
phase factor suggested by the classical action along each trajectory.

The Renormalization Equation

In Fig. 8.15 we compare and contrast the tree-like diagrams for both cases,
assuming that each vertex is connected to only two vertexes placed at a larger
distance from the beginning of the tree. The Green’s function of the particle

Gnm(p) = exp (−ipLmn) (8.192)

moving with momentum p along a one-dimensional interval of length Lmn
connecting nodes n and m of the ramified structure, corresponds to the line of
the graph which coincides with standard notations in solid state physics and
field theory. The vertexes that were denoting the Green’s functions (ε−∆k)−1

of the unperturbed complex system correspond now, on the contrary, to the
interaction matrix

Ŝ =

⎛⎝Sbb Sbr Sbl
Srb Srr Srl
Slb Srr Srr

⎞⎠ (8.193)

which describes the scattering of the particle at a node of the ramified struc-
ture. We assume that the scattering amplitudes are identical for all vertexes,
depending only on the direction. The subscripts r and l denote the right and
left direction, respectively, while b stands for the direction towards the root
of the tree. We also assume that the distance Lmn can decrease by a factor a
with each additional step in the number of intervals N separating the interval
from the root. For simplicity, we take all intervals corresponding to the same
N to be identical, that is Lmn = LN .

Let us derive an equation for the Green’s function (8.192) which would
be an analog of the renormalization equations (4.21) or (8.149) for complex
systems. The derivation is illustrated in Fig. 8.16(a). By XN we denote the
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Fig. 8.15. Tree-like diagrams for the probability amplitude at times shorter than
the recurrency time (left) and the diagrams for a particle moving along a rami-
fied structure (right) have the same topological structure. However line and vortex
symbols have opposite meanings. The free propagation of the complex system cor-
responds to the Green’s function (ε − ∆k)−1 shown by the vertex point, which
corresponds to the line Gn,m = exp(−ipLn,m) for the propagating particle. The
coupling Vn,m corresponds in turn to the vertex Ŝ describing scattering of the par-
ticle in the node of the fractal. The length of the intervals Ln,m may decrease with
increasing number N of steps separating a vertex from the root.

renormalized Green’s function for a particle leaving a node N for the neigh-
boring vertexes N +1 and coming back. This implies the relation φr = XN ψr
between the amplitude of the returning wave φr and the amplitude ψr of the
wave leaving a node N along the right channel. The same condition for the
incoming φl and outgoing ψl waves holds for the left channel. The renormal-
ized Green’s function XN−1 is a product of three factors, two functions GN−1
acquired before and after the passinge the vertex N and the ratio ψb/φb al-
lowing for the scattering process in the node. By the relation ψ = Ŝφ,the
scattering matrix (8.193) relates the vector φ = (φb, φr, φl) of the incoming
amplitudes for the vortex N with the vector ψ = (ψb, ψr, ψl) of the outgoing
amplitudes.

For further analysis, we take the simplest model of the unitary scattering
matrix Ŝ, completely symmetric with respect to the interchanging channels,
which also satisfies the long-wave requirement, giving the −π phase shift
for the amplitudes φb/ψb = −1 when the same is valid for two other pairs
φr/ψr = −1 and φl/ψl = −1. The latter condition means that if both chan-
nels r and l are closed, channel b sees the vertex as an infinite, vertical,
completely reflecting wall. In other words, no quantum defect is associated
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Fig. 8.16. Recurrence relation for the Green’s functions. (a) The relations among
the scattering amplitudes at a node N have to be complemented by the propagation
conditions given by the phase factors XN . (b) The trajectory X(p/aN ) of mapping
(8.196) shows the value of the asymptotic dependence after each consecutive mo-
mentum scaling. Starting from the vicinity of the unstable stationary point with
X = −1 which corresponds to the boundary condition ψ(xN ) = 0 for the wavefunc-
tion in the coordinate representation, the trajectory goes to the stable stationary
point that corresponds to the condition ψ′

x(xN ) = 0 of the constant flux (c).

with the vertex. The only matrix satisfying these properties gives the follow-
ing system of equations

Ŝφ =

⎛⎝−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3

⎞⎠⎛⎝ φb
XN ψr
XN ψl

⎞⎠ =

⎛⎝ψb
ψr
ψl

⎞⎠
and after excluding ψr and ψl via the relation XN−1 = G2

N−1ψb/φb it yields
the renormalization condition

XN−1(LN−1p) = G2
N−1

1 − 3XN (LN p)
XN (LN p) − 3

(8.194)

relating two successive renormalized Green’s functions X.

Asymptotic Ddependence

With the help of (8.194), one recursively finds the renormalized Greens func-
tion on a larger scale, provided they are known for the closest smaller scale,
and vice versa. In the long wave limit, when G2

N−1 = exp (−ipLN−1) 
 1 this
equation is a mapping which does not contain any parameters depending on
the scale size, apart from the arguments of X. Each branch of the tree-like di-
agram has the same topology. If we assume that the size of the branches scales
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by a factor 1/a when we pass from the branch N−1 to the next branch N, the
corresponding functions XN−1(LN−1p) and XN (LN p) should be identical,
differing only by the scale factor of the argument, that is XN−1(LN−1p) =
X(LN−1p) and XN (LN p) = X(LN p) = XN−1(LN−1p/a). In other words,
for small p (8.194) reads

X(p) =
1 − 3X(p/a)
X(p/a) − 3

; or X(p/a) =
1 + 3X(p)
X(p) + 3

. (8.195)

This implies that starting from the value of the asymptotic dependence X(p)
for a given argument p and performing the mapping

XN =
1 + 3XN−1

XN−1 + 3
, p = p/a (8.196)

one can obtain the values of this function at all points p = p/aN approaching
the point p = 0, as shown in Fig. 8.16(b).

The mapping (8.196) has two stationary points at X = ±1, as one can
see in Fig. 8.16(b). The unstable stationary point X = −1 corresponds to the
reflection of the wavefunction from the node as from a rigid potential wall,
where the probability amplitude ψb+ φb must tend to 0. Therefore the re-
flected wave ψb is shifted in phase by π with respect to the incident wave φb.
The stable stationary point X = 1 corresponds to the probability amplitude
flux going through the node to the ensuing branches of the fractal structure
and returning. The total length of the branches can be very large, even in-
finite, and hence the totality of the branches occupies a vast domain of the
phase space and is therefore capable of absorbing a big fraction of the pop-
ulation. However, the length of each particular trajectory going through the
node to the end of the ramified structure decreases, and often even vanishes
at N → ∞, such that the total accumulated phase of the returning wave does
not have enough distance to change. This implies that in this case, the wave-
function at the node satisfies the boundary condition with zero derivative
pψb − p φb = 0, and the reflection occurs with zero phase shift, as illustrated
in Fig. 8.16(c). The latter condition changes the spectrum of the system dras-
tically, since now the Bohr quantification rule permits momenta values close
to zero. Let us call “the spectrum of fractals” the part of the spectrum at
small p resulting from the large total length of the ramified structure and
consider it in more detail.

The asymptotic behavior of Xas(p) for p → 0 can be found exactly. Com-
paring the mapping (8.196) with the trigonometric identity

tanh
(
z + ln

√
2
)

=
1 + 3 tanh z

3 tanh z + 3

we find that Xas(p) = tanh [−α ln(Lp)] satisfies (8.195) exactly, provided
that α ln(a) = ln

√
2. Therefore
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Xas(p) =
1 − (Lp)2α

1 + (Lp)2α
, (8.197)

which indeed tends to −1 for p → 0. Starting with Xas(p) for a small ar-
gument p/aN0 and performing N0 iterations back to the larger scales, one
finds the exact dependence X(p) for all p with any predetermined accuracy,
depending on the number N0 of iterations. Even for a few iterations, the re-
sult perfectly reproduces all of the important features of the system, whereas
N0 = 10 is sufficient for practical reasons for a > 1.5 and gives an accuracy
better than 1%. Note that the asymptotic form (8.197) remains valid even
in the case when the scaling factor a depends on the interaction number N ,
with the only difference that we have to substitute the average of ln(a) over
all of the iterations performed into the definition α ln(a) = ln

√
2 of the in-

dex α. Note that α coincides with the fractal dimensionality of the tree-like
structure.

Density of States

In order to find the state density profile for the fractal structures, we note that
at a given energy two different momenta with the same absolute values |p|
and opposite signs contribute to the state density. The corresponding Green’s
functions interfere in the coordinate representation. Therefore, instead of
generalization of the expression g(E) = −Im[TrG(E)/π] n the case of the
double degeneracy of the energy levels, it is more convenient to make use of
the known Fabri–Perrot formula

g(|p|) =
1
2π

Re
1 + X(p)
1 − X(p)

, (8.198)

which for X(p) = R exp[iLp] gives the state density of the rectangular poten-
tial well, with the reflection coefficient R at the edges. Actually, apart from a
constant factor, this formula coincides with the expression for the transmis-
sion profile of the Fabri–Perrot resonator for the particle wave. In Fig. 8.17(a)
we show the state density as a function of |p|, calculated for different scaling
factors a with the help of (8.198). For a > 1 but relatively small, the position
of the first resonance goes down with respect to the position of the first state
in the potential well, which is consistent with the increase of the space do-
main occupied by the particle. The presence of the fractal manifests itself in
the broadening of the profile. For larger a the resonance returns to the Fabri–
Perrot position, and goes even higher, being repelled by the states appearing
at the domain |p| → 0. The appearance of these state close to zero energy is
the most important manifestation of the fractal structure, and implies that
the population is getting distributed over all of the domain occupied by the
fractal.

The asymptotic dependence g(|p|) ∼ (Lp)−2α directly follows from the
substitution of (8.197) into (8.198). In Fig. 8.17(b) we show this domain of
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Fig. 8.17. Spectra of fractal structures. (a) Density g of states as a function of
dimensionless momentum Lp. Fabri-Perot resonances (dotted line) corresponding
to the isolated first branch get shifted towards lower Lp when additional branches
with a relatively small scaling factor (a = 1.7 solid line) are added. For a larger
scaling factor (a = 2.9 dot-dash line and a = 3.9 dashed line) the resonances are
broadened and shifted due to the presence of states at small Lp. (b) The states
at small Lp typical of fractals for the same parameters. The state density g(Lp)
follows power laws with different indices for different scaling factors. (c) Fractal state
density transformed by a random perturbation for different fractal dimensionality
found from the solution of (8.199) with β = 2α. Dashed lines show the particular
cases corresponding to the Wigner semicircle and to one- and two-dimensional free
particles, depicted in Figs. 4.19, 8.14, and 8.11, respectively. (The state density g
is positive in both upward and downward directions.)

momenta with a higher resolution, where the power dependencies different
for different a are clearly seen. We note that the relation between the energy
and momentum can be different for different cases, changing from E ∼ p2 for
free particles to E ∼ p for the conducting electrons near the Fermi surface
in metals. In the latter case the energy dependence of the state density for
small E reads g(E) ∼ E− ln 2/ ln a. For this case, an important qualitative
conclusion can be made, – for a > 2 the total number of low-laying states
is finite, since the integral

∫
0 g(E)dE converges at the lower limit. This is

consistent with the fact that the total length of the fractal branches is finite
in this case, and is given by the sum of the geometric series L/(1 − 2/a). For
a < 2 the total length of the branches is infinite, and the integral diverges. For
a free particle with E ∼ p2 the density of states at small energies behaves as
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g(E) ∼ E−α−1/2, and therefore the combination 2(1 − α) can be interpreted
as a spatial dimensionality of the fractal, by comparison with the expression
g(E) ∼ E(d−2)/2 for the regular d-dimensional space.

Randomly Perturbed Fractals

We now address the question: how general are our results obtained for the
specific scattering at the nodes and for the strict scaling law of the branch
sizes? One possibility to answer the question is to consider deviations of
branch lengths from the mean value L/aN and scattering matrices from the
mean matrix S of (8.193) as random perturbations. This assumption allows
us to employ the transformation (8.147), (8.148) that can be written in the
dimensionless variables

E = Ẽ −
(
−Ẽ + i0

)−2α
, (8.199)

by analogy to (8.159) for a free particle moving in regular space, whereas
the mean squared random perturbation just scales the energies. This yields
universal shapes of the state densities for each value of the fractal dimension
shown in Fig. 8.17(c). Note that this form is identical for the reciprocal
dimensions.



9 Bibliography and Problems

Even considering particular aspects of problems that have been encountered
through many decades in different branches of physics and chemistry, it is
impossible to give a comprehensive review of all relevant publications. This is
particularly the case for the dynamics of multilevel quantum systems, which
usually is just a technical aspect and not the main concern of research papers
and textbooks dedicated mostly to physical phenomena, rather than to the
technical details of their description. In considering a bibliographic search in
such a situation, one has to make a difficult choice amongst the numerous
possibilities. The main objective of the bibliography presented here was to
find a balance between the pioneering papers, topical reviews, monographs,
textbooks concerning particular physical domains, and the original publica-
tions most closely related to the dynamical processes in complex quantum
systems. This review therefore consists of two parts: the “Bookshelf” compris-
ing a selection of classical original papers and monographs, and the “Prob-
lems” where a selection of more recent publications from different domains
is suggested to the reader for consideration from the point of view of the
dynamics of multilevel systems developed in the previous chapters. Though
some old classical papers cited below might be more difficult to access than
their subsequent interpretations, we believe that the pleasure of following
the development of the original ideas of the great physicists should definitely
compensate for this trouble.

Among numerous modern publications, only a limited number of papers
from a number of different fields have been selected. The majority of the
problems considered there have been formulated in terms traditional to the
corresponding physical domains and we suggest that they be approached from
the point of view of the dynamics of complex quantum systems, since we be-
lieve that the effort aimed at such a diversification of approaches will help
the reader to attain a deeper insight into the nature of these processes. Con-
sideration of some of the problems requires a certain advanced experience in
ajacent fields, and that can be achieved by consulting the cited monographs
and reviews. In particular, this relates to the field-theoretical models in com-
bination with the saddle-point approximation that have not been considered
here in sufficient detail.
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9.1 Bookshelf

Cascades and Exponential Decay

“Consider an ensemble of two-level systems interacting with a quantized oscil-
lator of a field mode in a highly exited Fock state in the presence of an infinite
number of other field modes in the vacuum state” – that is how we would
formulate today the problem considered by A. Einstein[73] in his famous pa-
per Zur Quantentheorie der Strahlung (1917). Solving this problem, we would
draw the level scheme, Fig. 8.1(d), consider the corresponding Schrödinger
equation, and find that the system is described by the master equation with
the probability amplitudes Bn coupling the closest states of the excited field
oscillator and the atomic ensemble, and the probabilities A coupling states
of the atomic ensemble with the bands of states describing the reservoir of
the other field oscillators. Of course Einstein did not formulate this problem
in terms of the Schrödinger equation or Dirac formalism that were intro-
duced later, but this problem can still be viewed as the first example of the
dynamics of complex quantum systems. This approach was first adopted a
decade later by L. D. Landau[123] in his paper Das Dämpfungsproblem in
der Wellenmechanik (1927)

The description of the interaction between radiation and matter in terms
of multilevel quantum systems is already found in the paper Berechnung der
natürlichen Linienbreite auf Grund der Diracschen Lichttheorie (1930) by V.
Weisskopf and E. Wigner[175], dedicated to the analogy between the width of
the resonance of a classical harmonic oscillator with the friction and the spec-
tral line widths. The dynamical aproach had been employed by E. Fermi[80]
in his paper Quantum theory of radiation (1932), where the level–band prob-
lem had been formulated and solved in the context of atomic spontaneous
emission. The radiative widths of resonances were the main physical quanti-
ties of interest. Later on he generalized the result and obtained the “Fermi
golden rule” for the transition rate in an arbitrary level–band system, valid
for times shorter than the Heisenberg time.

The dynamical consideration of multilevel quantum systems for a long
time remained an auxiliary tool in the investigation of the spectral proper-
ties of quantum objects that manifest themselves in scattering processes. G.
Breit and E. Wigner[28] in their paper Capture of slow neutrons (1936) had
demonstrated that nuclear interactions can result in scattering profiles much
broader than those suggested by the radiation life-times. The development of
the microwave technique had offered an opportunity to control the strength
of interaction between radiation and matter, such that the rates of radiative
transitions became of the order of the interactions in quantum systems. R.
Karplus and J. Schwinger[110] in their paper A note on saturation in mi-
crowave spectroscopy (1948) have shown that the width of the resonance can
depend on the radiation field intensity.
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Alternative Line Shapes

For open quantum systems, there always exists a time parameter which gives
the typical time of an exponential decay. However some important spec-
tral features may result from another, non-exponential type of dynamics,
which yields different line shapes. One of the most striking theoretical results
is the semicircular profile of the energy eigenstate density obtained by E.
Wigner[177] in his paper On the distribution of the roots of certain symmet-
ric matrices (1957). This distribution emerges from the model of a Gaussian
random matrix based on the central limit theorem of statistics. Though the
physical validity of this model for the description of complex nuclei has been
questioned by F. Dyson[69] in his series of papers Statistical theory of the
energy levels of complex systems (1962), it nevertheless remains an elegant
example of a complex system being adequate and useful in other domains
of physics, in situations where the spectral complexity truly results from the
randomness of the system parameters.

Corrections to the semicircular Wigner distributions near the spectrum
edges had been explored by Ya. G. Sinai and A. B. Soshnikov[171] in their
paper A refinement of Wigner’s semi-circle law in a neighborhood of the spec-
trum edge for random symmetric matrices (1998), while the general properties
of the Hamiltonians perturbed by a random matrix had been discussed by
E.Brezin, S. Hikami, and A.Zee[33] in the paper Universal correlations for
deterministic plus random Hamiltonians (1995).

The other famous example of a spectral profile different from a Lorentzian
one is given by U. Fano[76] in the paper Effects of configuration interaction
on intensities and phase shifts (1961) which was a developpment of the ideas
formulated in his earlier publication[75] Sullo spettro di assorbimento dei
gas nobili presso il limite dello spettro d’arco (1935). Formulated initially
for purely intra-atomic interactions, this example became of extreme impor-
tance with the development of lasers in the situations when laser-induced
interactions strongly perturb atomic spectra. The dynamics corresponding
to these spectra also differ from a simple exponential decay, as illustrated
by P. L. Knight, M. A. Lauder and B. J. Dalton[111] in the review paper
Laser-induced continuum structure (1990).

Non-Lorentzian spectral profiles are typical of solid state physics. J. Hub-
bard[96] in his series of works entiteled Electron correlations in narrow energy
bands (1963–1964), had demonstrated that under certain conditions, spectra
of random alloys have a semicircular structure resulting from electron cor-
relation. The Hubbard model Hamiltonian for the electron liquid does not
have any random parameters, however the resulting spectra so resemble those
obtained via the random perturbation of a system of two degenerate levels,
shown in Fig. 8.10, that it invites one to think about the fundamental reasons
for such a similiarity.
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Dynamics

The general relation between the dynamical and spectral properties of quan-
tum systems had been established by R. Kubo[118] in his paper A general
expression for the conductivity tensor (1956), which gives the linear response
of the system to a weak perturbation. This expression implies that the system
is subjected to a relaxation, such that the nonlinear effects do not have time
to manifest themselves.

Hamiltonian systems behave differently. The first exemple of such behav-
ior had been given by E. L. Hahn[95] in his paper Spin Echoes (1950), where
it had been shown that an ensemble of spins in a slightly inhomogeneous field
experience a coherent damping which can be reversed by sending a π-pulse
which inverts the phases of the probability amplitudes. A very convinient
tool for the consideration of this kind of problem had been introduced in
the paper by I. I. Rabi, N. F. Ramsey, and J. Schwinger[154] entitled Use of
rotating coordinates in magnetic resonance problems (1954).

The interation of the ensemble of two-level systems with radiation in
the regime of developed coherent dynamics also differs considerably from the
linear responce regime. R. H. Dicke[60] in his paper Coherence in spontaneous
radiation processes (1954) had demonstrated that the spontaneous decay rate
resulting from the interaction of the ensemble with a photon vacuum increases
strongly for the highly correlated states of individual atoms achieved in the
course of their coherent dynamics. These states also change the propagation
of the electromagnetic radiation in a medium composed of the ensemble of
two-level atoms as shown by C. K. Rhodes, A. Szöke, and A. Javan[156] in
the paper The influence of level degeneracy on the self-induced transparency
effect (1968), and by S. L. McCall and E. L. Hahn[135] in the paper Self-
induced transparency (1969).

Localization and Chains

The dynamics of complex quantum systems are strongly related to the struc-
ture of the energy eigenfunctions. P. W. Anderson[7] in his famous paper
Absence of diffusion in certain random lattices (1957) had demonstrated that
in a perturbed infinite complex system with random parameters, the diffu-
sion process can be partially or completly suppressed, such that the energy
eigenfunctions turn out to be localized on a limited number of unperturbed
states. In the one-dimensional case, the corresponding energy eigenfunctions
are localized exponentially, as had been numerically demonstrated in the
paper by R. E. Borland[27] entitled The nature of the electronic states in dis-
ordered one-dimensional systems (1963). An analytically soluble model had
been introduced by P. Lloyd[131], in his paper Exactly solvable model of elec-
tronic states in a three-dimensional disordered Hamiltonian: non-existence of
localized states (1969). D. J. Thouless[174] in his paper Maximum metallic
resistance in thin wires (1977) had discussed the localization conditions for
the one-dimensional case.
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Exhaustive numerical analysis of the one-dimensional case had been
presented in the paper by K. Ishii[100] entitled Localization of eigenstates
and transport phenomena in the one-dimensional disordered systems (1972)
whereas the analytical consideration had been summarized in the monograph
by I.M. Lifshits, S.A. Gredeskul and L.A. Pastur[129] Introduction to the
theory of disordered systems (1988). It turns out that the localization phe-
nomenon is not something specific to disordered systems, but has deeper
roots in the algebraic structure of operators, as had been shown in the pa-
per by Ya. G. Sinai[169] entitled Anderson localization for one-dimensional
difference Schroedinger operator with quasi-periodic potential (1987).

Quantum dynamics in chains had been considered for the first time in the
paper by V. L. Berezinskii[15] entitled Kinetics of a quantum particle in a
one-dimensional random potential (1974). This work had demonstrated that
the all-order correlations of the Green function are important in the one-
dimensional case, contrary to the Bogolyubov method for the description of
complex dynamics.

Ensembles. Levels Statistics

The idea of a statistical description of complex quantum systems had first
been employed by E. Wigner[176] in his paper On a class of analytic func-
tions from the quantum theory of collisions (1951) for the neutron scattering
amplitudes that have been assumed to possess certain statistical properties
in the complex plane of energies. Much later, F. Dyson[69] in his paper Sta-
tistical theory of the energy levels of complex systems, (1962) had proposed
the ensemble average as a universal approach to complex quantum systems,
which was relevent even in the case where no real physical ensemble had
been associated with the complex system, whereas the statistical approach
emerged from the “renounce of the exact knowladge. . . of the nature of the
system. . . ”. This very concept called, following F. Dyson, “a new kind of
statistical mechanics” remains the cornerstone of the modern approach to
complex quantum systems.

The dynamical aspects of the behavior of multilevel systems had been
restricted to the statistics of resonance widths in open multilevel quantum
systems, that had been related in the paper by C.E. Porter and R.G. Thomas
[152] entitled Fluctuations of nuclear reaction widths (1956) to the statistics
of eigenvectors of complex systems. One finds more details of the statistical
approach to nuclear and atomic spectra in the book by C. E. Porter[151] Sta-
tistical theories of spectra: fluctuations (1965). The mathemetical background
of the statistical approach to complex spectra along with the fundamental re-
sults of the level correlation statistics is given in the book by M. L. Metha[136]
Random matrices and the statistical theory of energy levels (1967).

In contemporary research, statistical models are widely employed in con-
densed matter physics. One can consult the review by C. W. J. Beenakker[14]
Random matrix theory of quantum transport (1997), the book by J. Imry[99]
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Introduction to mesoscopic physics (2002), and the special issue of The Jour-
nal of Physics[106] (2003) for a modern view on the statistical description
of complex quantum systems in the context of mesoscopic condensed matter
physics.

Classical and Quantum Chaos, Level Statistics

Quantum complexity and chaos have not only a long history of parallel de-
velopment and mutual enrichment via the exchange of basic ideas but also
have common roots in ergodic theory. The first demonstration of the rele-
vance of the statistical approach to the description of dynamical systems had
been performed by Ya. G. Sinai[167] in his pioneering paper On the concept
of entropy for a dynamic system (1959), that got further development in the
later monographs[168] Introduction to ergodic theory (1976), and Topics in
ergodic theory (1994)[170] by the same author. About the same time, B. V.
Chirikov[46] in his paper Resonance processes in magnetic traps (1960), had
introduced the resonance overlap criterion necessary for the destruction of
the separability of the motion, which results in the chaotic classical dynam-
ics of mechanical systems. These ideas were further developed in detail in
the monographs by A.J. Lichtenberg, M.A. Liberman[128] entitled Regular
and stochastic motion (1982), and by G. M. Zaslavski, R. Z. Sagdeev, D.
A. Usikov, and A. A. Chernikov[180] entitled Weak chaos and quasi-regular
patterns (1991).

The quantum mechanical counterpart of classicaly regular and chaotic
systems had been studied numerically. For regular dynamics, the Poissonian
statistics of distances to the closest neighboring level and level clustering had
been found in the paper by M. V. Bery and M. Tabor[16], entitled Level clus-
tering in the regular spectrum (1977), whereas the level repulsion results were
typical of chaotic dynamics, as had been shown in the well-known publication
of O. Bohigas, M. J. Giannoni, and C. Schmit[24] entitled Characterization
of chaotic quantum spectra and universality of level fluctuation laws (1984).
For more details concerning the manifestation of the chaotic dynamics at
the quantum level of consideration, one can consult the reviews by B. Eck-
hardt[72] entitled Quantum mechanics of classically non-integrable systems
(1988), and F. M. Izrailev[102], Simple models of quantum chaos: spectrum
and eigenfunctions (1990) where some dynamical aspects related to Anderson
localization in kicked rotors had been considered, as well as the monographs
by M. Gutzwiller[93] Chaos in classical and quantum mechanics (1990), by L.
E. Reichl[155] The transition to chaos (1992), and by F. Haake[94] Quantum
signatures of chaos ( 2001) for a general point of view of this field.

An interesting example of level statistics had been discussed in the papers
by E. B. Bogomolny, U. Gerland, and C. Schmit[25] entitled Models of in-
termediate spectral statistics (1999), and[26] Singular statistics (2001), where
it had been demonstrated that for essentially quantum systems that have
no classical analogs, one could observe intermediate statistics, corresponding
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neither to a Poissonian nor to a Wigner–Dyson distribution on the closest
neighboring levels spacing.

Supersymmetry, Unification Disorder and Chaos

Considerable progress in the understanding and a better description of dis-
ordered quantum systems has been achieved after the application of field
theory methods to disordered quantum systems. This supersymmetry tech-
nique, along with the representative references to earlier publications, had
been presented in detail in the book by K. Efetov[74] entitled Supersymmetry
in disorder and chaos (1997). One should append to this exhaustive publi-
cation the review by M. Zirnbauer[183] Anderson localization and non linear
sigma-model with graded symmetry (1986) and the recent paper[32] New cor-
relation functions for random matrices and integrals over supergroups (2003)
by E. Brezin and S. Hikami.

In the paper Quantum billiards with surface scattering: Ballistic sigma-
model approach (1998) by by Ya. M. Blanter, A. D. Mirlin, and B. A.
Muzykantskii[19], the supersymmetry methods have been generalized to the
case of ballistically propagating particles which allowd one to apply field the-
ory methods to the ballistic billiards typically considered in the models of
quantum chaos.

Dynamics of Atoms and Molecules

Contrary to the case of nuclear collisions, for the collision of atoms one has
the small Born–Oppenheimer parameter Λ = (m/M)1/4 which allows for the
fact that the electrons of mass m move much faster relative to the nuclei of
mass M . The adiabaticity parameter Λ is widely employed for the description
of atomic collisions, as one can see from the classical monograph by H.S.W.
Massey and N. F. Mott[133] entitled The theory of atomic collisions (1997)
and the monograph by I. I. Sobelman, L. A. Vainshtain, and E. A. Yukov[172]
entitled Excitation of atoms and broadening of spectral lines (1981). When
the trajectories of the center-of-mass motion of colliding atoms or molecules
can be considered as given, the electron Hamiltonian acquires an explicit time
dependence. Numerous models of such collisions have been considered in the
monograph[145] Theory elementary atomic and molecular processes (1985)
by E. E. Nikitin and in the monograph[146] Theory of slow atomic collisions
(1984) by E. E. Nikitin and S. Ya. Umanskii.

Among the pionieering papers related to molecular dynamics, one should
cite the paper by A. M. Dykhne[67], entitled Adiabatic perturbation of the de-
screte spectrum states (1962), where the general semiclassical expression for
the transition probability had been obtained, the paper by Yu. N. Demkov
and V. I. Osherov[57] entitled Stationary and nonstationary problems in
quantum mechanics that can be solved by means of contour integration (1968)
where the famous exemple of an exactly soluble problem had been suggested,
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and the papers by M. Bixon and J. Jortner[17] entitled Intramolecular radia-
tionless transitions (1968) and[18] Long radiative lifetimes of small molecules
(1969) where the multilevel quantum model had been introduced for the de-
scription of intramolecular conversion and spontaneous emission.

Complex multilevel systems corresponding to the Rydberg states of atoms
and small molecules had been exhaustively described in the monographs by E.
W. Schlag[160] entitled ZEKE spectroscopy (1998), the book[107] Molecular
applications of quantum defect theory (1996), edited by Ch. Jungen, and the
monograph by T. F. Gallagher[87] entitled Rydberg atoms (1994).

Laser Theory, Quantum Optics

Though Albert Einstein in his work[73] (1917) did not consider the situation
where the population of the exited atomic states exceeds the population of
the ground state, the master equation derived by him had been employed for
the prediction and explanation of induced coherent emission of masers and
lasers. Later on it became clear that the master equation did not include in-
formation relating to the phase of the electromagnetic field and other, more
general, characteristics, such as the photon statistics of the emitted radia-
tion. A consistent description of the interaction of quantized electromagnetic
fields with matter had been presented in the review by S. Stenholm[173] en-
titled Quantum theory of electromagnetic fields interacting with atoms and
molecules (1973), where the dynamical description of the quantum evolution
of multilevel systems composed of atomic ensembles and multimode fields,
arose naturally and described all of the dynamical details of the process, in-
cluding irreversible relaxation. For more details, one can consult the book by
M. Sargent, W. E. Lamb, and M. O. Scully[158] Laser physics (1977) whereas
for the modern view on the problems of quantum optics the monograph W.
Schleich[161] Quantum optics in phase space (2001) can be recommended.

Atoms and Molecules in Strong Fields

Atoms and molecules interacting with strong laser fields are the classical
example of multilevel quantum systems that experience coherent quantum
evolution. F. V. Bunkin and A. M. Prokhorov[35] in their paper The exita-
tion and ionization of atoms in a strong radiation field (1964) had employed
the rotating wave aproach, earlier introduced by I. I. Rabi, N. F. Ramsey,
and J. Schwinger in the already cited paper[154]. It was the first applica-
tion of the seminal concept of quasienergy, which was introduced some years
later by Ya. B. Zeldovich[181] in his papers The quasienergy of a quantum-
mechanical system subjected to a periodic action (1967) and Scattering and
emission of a quantum system in a strong electromagnetic wave (1973), and
by V. I. Ritus[157] in the paper Shift and splitting of atomic energy levels by
the field of an electromagnetic wave (1967), that had yielded the method of
the effective Hamiltonian describing the time evolution of a multilevel quan-
tum system under a strong time-dependent perturbation. The mathematical
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formalism of this approach relied on the classical paper by G. Floquet[81] Sur
les équations différentialles linéaires à coefficients périodiques (1889). For the
modern applications of the Floquet theory to dynamics of atoms in strong
fields, one can consult the review by S. Guérin and H. R. Jauslin[92] enti-
tled Control of quantum sdynamics by laser pulses: adiabatic Floquet theory
(2003). The dynamics of molecules in laser fields had first been considered by
G. A. Askaryan [10] in the paper Excitation and dissociation of molecules in
an intense light field (1964) and by F. V. Bunkin, A. M. Prokhorov, and R.
V. Karapetyan[36] in the paper Dissociation of molecules in strong radiation
field (1965).

Fundamental aspects of the interaction between intense radiation and
matter are widely presented in monographs and textbooks. One can consult
the book[23] Nonlinear optics by N. Blombergen (1965) for the details of the
coupling of photons in atomic media, the book by L. Allen, J. H. Eberly[5]
entitled Optical resonance and two-level atoms (1975) for fundamentals of
the interaction between strong radiation and matter, the monograph by N.B.
Delone, V.P. Krainov[54] entitled Atoms in strong light fields (1985) for a
review of multiphoton processes in atoms, and the textbook by C. Cohen-
Tannoudji, J. Dupont-Roc, and G. Grynberg[50] Atom–photon interactions:
basic processes and applications (1998). The consistent description of atoms
and molecules in strong laser fields in terms of multilevel quantum systems is
also given in the textbook by N. V. Karlov and V.M. Akulin[4] Intense res-
onant interactions in quantum electronics (1991), which evidently is a publi-
cation that is conceptually closest to the present text.

Interatomic Forces in Resonators and Laser Fields, Ionic Traps, Atomic
Optics

The development of lasers in the 1990s had opened up new possibilities for
the observation of quantum phenomena. On the one hand, the photon mea-
surement technique had reached the sensibility level of a single photon that
had allowed one to address questions about atomic interaction mediated by
a single photon in resonators, and the manifestations of such interactions in
the dynamics of individual photons. One of the examples of such systems
had been presented in the paper by G. Kurizki, A. G. Kofman, and V. Yud-
son[119] entitled Resonant photon exchange by atom pairs in high-Q cavities
(1996). In this context important role played by photonic band structures
had been described in detail in the monograph[105] by J. D. Joannopoulos,
R. D. Meade, and J. N. Winn Photonic crystals (1995). The novel aspect
of the problem was the coupling of internal atomic degrees of freedom with
translational atomic motion.

On the other hand, the powerful and stable sources of electromagnetic
radiation had enabled experimentalists to control and confine the transla-
tional motion of atoms and atomic ions. In the situation where the quantum
levels corresponding to the coupled internal and translational motion were
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addressed individualy, the multilevel quantum system had been proposed for
quantum computations by J. I. Cirac and P. Zoller[48] in their pioneering pa-
per Quantum computation with cold trapped ions (1995). Note that the quan-
tization of the translational motion of atomic ions results in this case from
the effective Kapitsa–Dirac potential imposed by rapidly oscillating radio-
frequency fields, as had been described in detail in the monograph[89] Ion
traps by P. K. Ghosh (1997). This quantization of ionic vibrational modes in
ionic traps suggests the comparison of the ensemble of trapped ions with a
polyatomic molecule, as has been done in Sect. 2.5.1.

The quantization of the translational motion of neutral atoms can also
be achieved by strong laser fields. The fundamentals of such processes are
presented in the monograph[137] by P. Meystre entitled Atom optics (2001).
The consideration of the aforesaid systems by the methods developed in the
previous sections for complex multilevel systems is a matter for future re-
search. For such systems, the complex translational quantum dynamics of
atoms results from the spatial structure of the laser field modes.

Long-Term Dynamics

The main difference between descrete and continuous complex spectra man-
ifests itself in the long-term behavior of the populations. Coherent returns
of the population to the initial state were discussed for the first time by J.
Eberly, N. B. Narozhny, and J. J. Sanchez-Mondregon [71] in their pioneering
paper Periodic spontaneous collapse and revivals in a simple quantum model
(1980). Later on, I. Sh. Averbukh and N. F. Perelman[11] in their cornerstone
paper Fractional revivals: universality in the long-term evolution of quantum
wave packets beyond the correspondence principle dynamics (1989) had eluci-
dated the role of anharmonicity on the violation of the Erenfest principle, and
had revealed a rich domain of possible intermediate assymptotics of quantum
mechanics resulting from strong and long-lasting interference phenomena in
multilevel systems.

The manifestation of such interference in the dynamical properties of
multilevel relay-like systems had been numerically shown in the exemple of
a hydrogen atom by G. Casati, B. V. Chirikov, and D. L. Shepelyansky[41]
in the paper Quantum limitation for chaotic excitation of the hydrogen atom
in a monochromatic field (1984) and further discussed by D. L. Shepelyan-
sky[164] in his paper Localization of diffusive excitation in multi-level systems
(1987) where the relations between Anderson localization and the long-time
assymptotic behavior of complex systems had been demonstrated.

The long-time limit of the coherent dynamics of a strongly perturbed con-
tinuum was the main concern of the paper by M. V. Fedorov, M. Yu. Ivanov
and A. M. Movsesian[77] entitled Strong-field photoionization of an initially
excited hydrogen atom: formation of Rydberg wavepacket, its structure and
trapping of population at Rydberg levels (1990), where it had been demon-
strated that the life time of the atomic states increases with the increase of
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the ionizing laser field intensity. This conterintuitive result is a natural con-
seqence of correlations between the interaction matrix elements, typical of
atomic systems.

In the context of polyatomic molecules, the non-exponential, long-time
behavior of complex quantum systems had been discussed by S. A. Schofield
and P. G. Wolynes[162] in the paper A scaling perspective on quantum energy
flow in molecules (1992), while for metals, a similar approach had been devel-
loped by J. T. Chalker, I. V. Lerner and R. A. Smith[45] in the paper Random
walks through the ensemble: linking spectral statistics with wave-function cor-
relations in disordered metals (1996).

Control

The possibility to control a multilevel quantum system by aplying a time-
dependent perturbation is based on the existance theorem proved by V. Jur-
devic and H. J. Sussmann[108] in their paper Control systems on Lie groups
(1972), where it had been shown that the compactness of the group gener-
ated by the unperturbed Hamiltonian and the perturbations plays a crucial
role and permits one to exert complete control if the group coincides with the
group of all possible unitary transformations of the system. Application of this
general result to quantum systems has been discussed by A. G. Butkovskiy
and Yu. I. Samoilenko[38] in the monograph Control of quantum-mechanical
processes and systems (1990). Practical methods of control are presented in
the monograph by P. W. Brumer, M. Shapiro[34] entitled Principles of the
quantum control of molecular processes (2003). For basic principles of error
corrections one can consult the momograph by R. G. Gallager [86] Informa-
tion theory and reliable communications (1968).

9.2 Problems

Two Levels

1. Describe the dynamics of spin classically (F. Bloch [20], Nuclear induction
(1946)) and in terms of two-level systems and Bloch vectors (F. Bloch[21],
Generalized theory of relaxation (1956)).

Level–Band

1. Consider the level–band problem in terms of scattering theory. (G. Breit
and E. Wigner[28] Capture of slow neutrons (1936)).

2. Consider the level–band model of intramolecular transitions and find
the conversion rate of the electronic excitation to vibrational energy (M.
Bixon and J. Jortner[17] Intramolecular radiationless transitions (1968)).
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3. Consider the transition rates in atoms as a function of the frequency of
the probe radiation in the presence of a strong laser field.(P. L. Knight, M.
A. Lauder and B. J. Dalton[111] Laser-induced continuum structure (1990)).

4. Consider the interaction of two atoms via a narrow resonator mode (G.
Kurizki, A. G. Kofman, and V. Yudson[119] Resonant photon exchange by
atom pairs in high-Q cavities (1996)) and generalize the result to the case of
a photonic band.

5. Consider the population dynamics corresponding to the Fano spectral
profile (Ph. Durand, I. Paladrova and F. X. Cadea[66] Theory of Fano profiles
(2001)).

6. Consider the time evolution of an atomic doublet coupled to an ioniza-
tion continuum (Yu. V. Dubrovskii, M. V. Fedorov, and M. Yu. Ivanov[65]
Rydberg atom ionization by an intense laser pulse with smooth time envelope:
A model of two closely spaced levels coupled to continuum (1992)). Compare
this to the method of projections (L. Mower[141] Decay theory of closely
coupled unstable states (1966)).

7. Consider the dynamics of level decay to a band edge, with the desity
of states increasing according to the power law. (A. G. Kofman [112] Theory
of single-photon bound-free transitions: Extension of the pole approximation
(1997)).

Revivals Wavepackets

1.Condider the regime of recurrences in the molecular quasicontinuum (E.
Kyrölä and J. Eberly[121], Quasicontinuum effects in molecular exciation
(1985)).

2. Consider the long-time assymptotics of the quasicontinuum and con-
tinuous band models (J. Javanainen and E. Kyrölä[104] Long-time limit of a
quasicontinuum model (1985)).

3. Consider the time dependence of the fractional revivals spikes (C. Lech-
tle, I. Sh. Averbukh, and W. P. Schleich[125] Generic structure of multilevel
quantum beats (1996)).

4. Consider a band of atomic Rydberg states in terms of wavepackets (M.
V. Fedorov, M. Yu. Ivanov and A. M. Movsesian[77] Strong-field photoioniza-
tion of an initially excited hydrogen atom: Formation of Rydberg wavepacket,
its structure and trapping of population at Rydberg levels (1990)).

5. Consider the excitation of an atom by a laser field and its second
harmonics in terms of a multilevel system. Interpret the phase dependence of
the numerically observed structure ( K. J. Schafer and K. C. Kulander [159]
Phase dependent effects in multiphoton ionization induced by a laser field and
its second harmonic (1992)).

6. Consider recurrences in a spectrum with the Poisson statistics of levels
(P. Pechukas[148] Quantum chaos in the irregular spectrum (1982)).
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Singular Statistics and Power Decay

1. Consider the singular billiard (P. Seba[163] Wave chaos in singular quan-
tum billiard (1990)) and describe it in terms of a level interacting with a band.
Compare this to the system perturbed by a rank-1 matrix (E. B. Bogomolny,
U. Gerland, and C. Schmit [26] Singular statistics (2001)), and relate the
singular statistics to the non-exponential decay of the level to a continuum.

2. Consider a perturbation imposed by a magnetic flux line on a band
corresponding to a billiard (R. Narevich, R. E. Prange, O. Zaitsev[144] Square
billiard with an Aharonov–Bohm flux line (2001)). Formulate this problem in
terms of a rank-1 perturbation.

3. Relate the spectral correlations at the mobility edge of a disordered
metal (V. E. Kravtsov, I. V. Lerner, B. L. Altshuler and A. G. Aronov[117]
Universal spectral correlations at the mobility edge (1994)) with the power-
law decay law (J. T. Chalker, I. V. Lerner and R. A. Smith[45] Random walks
through the ensemble: Linking spectral statistics with wave-function correla-
tions in disordered metals (1996)).

4. Consider the vibrational dynamics of polyatomic molecules in the
regime of power law decay (M. Gruebele[91] Intramolecular vibrational de-
phasing obays a power law at intermediate times (1998)).

Two Bands

1. Consider an example of an individual addresing the transitions in a two-
band system (I. J. Cirac and P. Zoller[48] Quantum computing with cold
trapped ions (1995)).

2. Compare the coherent damping and revivals in the Jannes–Cumming
model (J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondregon[71], Pe-
riodic spontaneous collapse and revival in a simple quantum model (1980))
with that for an ensemble of spins subjected to a phase conjugating action
(E. L. Hahn[95], Spin Echoes (1950)).

3. Consider the two-band model of metallic wires (D. J. Thouless [174],
Maximum metallic resistance in thin wires (1977)).

4. Consider the two-band model of unimolecular reactions in laser fields.
(M. Quack[153] Theory of unimolecular reactions induced by monochromatic
infrared radiation (1978)). Identify the master equation regime, the role of
correlations of the dipole matrix elements, and consider the case of several
privileged transitions.

5. Determine the probability of multiphoton transition as a function of
laser intensity in the presence of removed degeneracy over the momentum pro-
jections (V. M. Akulin[2] Contribution of weak and multiphoton transitions
to the excitation of polyatomic molecules in an intense laser field (1982)).

6. Consider a Rydberg atom in a strong laser field as a discrete band
coupled to a continuum (M. Yu. Ivanov[101] Suppression of resonant mul-
tiphoton ionization via Rydberg states (1994)). Demonstrate the role of the
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rank-1 interaction matrix in the narrowing of the decay resonances and as
an inhibitor of the decay rates. Determine the positions of the quasienergy
eigenstates in the complex plane for this problem.

Quasienergy

1. Derive the time-independent Shcrödinger equation for an atom in a strong,
circularly polarized laser field (F. V. Bunkin, A. M. Prokhorov [35] The ex-
citation and ionization of atoms in a strong radiation field (1964)).

2. Consider the role of photon quantum states in the concept of the
quasienergy (Ya. B. Zeldovich[181, 182] The quasienergy of a quantum-
mechanical system subjected to a periodic action (1967) and Scattering and
emission of a quantum system in a strong electromagnetic wave (1973)).

3. Derive the Schrödinger equation for an atom in an arbitrary periodic
external field (M. Gavrila and J. Z. Kaminski[88] Free-free transitions in
intense high-frequency laser fields (1984)).

4. Consider the dynamics of Rydberg wave packets in the representation
of quasienergy eigenstates (D. Delande and J. Zakrzewski[51] Spontaneous
emission of nondispersive Rydberg wave packets (1998)).

Time-dependent systems

1. Consider a quantum particle scattered by the potrntial −U0/ cosh2(x)
(Landau and Lifshits Quantum mechanics, problem for §23) and trace the
analogy with the two-level system excited by the pulse interaction n.5.2.4.

2. Reproduce the result of the paper (Yu. N. Demkov[56] Charge trans-
fer at small resonance defects (1964)) for the exponentially rising coupling
between two detuned levels.

3. Consider two coupled levels with a detuning changing parabollically in
time (E. E. Nikitin and S. Ya. Umanskii[146] Theory of slow atomic collisions
§ 8.3 (1984)). Compare the result with the approximate one given by the
Dykhne formula (A. M. Dykhne[67] Adiabatic perturbation of the discrete
spectrum states (1962)).

4. Estimate the probability of a non-adiabatic transition corresponding
to the level–band system of (5.169) with the help of the Dykhne formula.

Time-Dependent Complex Systems

1. Consider the role of the degeneracy of band states in the Demkov–
Osherov problem (V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne, and Y.
B. Brand[179] Conterintuitive transitions in multistate curve crossing involv-
ing linear potentials (1999)).

2. Consider two-state curve crossing of a band (V. A. Yurovsky, A. Ben-
Reuven[178] Saturated transition in exactly soluble models of two-state curve
crossing with time-dependent potentials (1999)).
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3. Estimate the rate of population diffusion over the energy scale for a
complex system, adiabatically perturbed by a strong time-dependent pertur-
bation.

4. In the quasienergy representation, consider the decay of a single level
to a continuous band of finite width, for the case of harmonic modulation
of the coupling (G. S. Agarwal[1] Control of decoherence and relaxation by
frequency modulation of a heat bath (2000)).

5. Perform the same for the case of phase modulation (A. G. Kofman and
G. Kurizki[114] Universal dynamical control of quantum mechanical decay:
Modulation of the coupling to the continuum (2001), A. G. Kofman[113] Re-
laxation of a two-level system strongly coupled to a reservoir: Anomalously
slow decoherence (2001)).

6. Compare the universal population distribution in a quantum system pe-
rurbed by a random matrix for colliding molecules (V.M. Akulin[3] Singulari-
ties of collisional vibrational relaxation processes in strongly excited spectrally
complex polyatomic molecules (1983)) and for quantum dots in an external
field (V. E. Kravtsov[116], Time-reversal symmetry breaking by ac field: Effect
of commensurability in frequency domain (2002)).

7. Consider a quantum particle evolving in the presence of a chaotic back-
ground (D. Kuznetsov, A. Bulgak and G. D. Dang[120] Quantum Lévy process
and fractional kinetics (1999)).

Control

1. Determine a way to perform a given transformation via controlled colli-
sion (D. Jaksch, H. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller [103]
Entanglement of atoms via cold controlled collisions (1999)).

2. Trace the equivalence of the sufficient criterion of the bracket generation
condition and the requirement given in the book by P. W. Brumer, M. Shapiro
[34] entitled Principles of the quantum control of molecular processes (2003).

3. Check the possibility to control a couple of dipole–dipole interacting
spins by application of an external time-dependent magnetic field.

Group Symmetry Underlying Exact Solubility

1. Show that the system of n two level atoms which has 2n quantum levels
can be separated into subsystems, each of which is a high-dimensional rep-
resentation of a SU(2) group (F. Bloch and I. I. Rabi[22] Atoms in variable
magnetic fields (1945)).

2. Consider a harmonic oscilator with time-dependent parameters (K.
Husimi [98] Miscellanea in elementary quantum mechanics (1953)). Relate
the possibility to find an exact solution with the algebraic properties of the
operators entering the Hamiltonian.

3. Consider the underlying group symmetry for the Morse oscillator (R. D.
Levine [126] Representation of one-dimensional motion in a Morse potential
by a quadratic Hamiltonian (1983)).



454 9 Bibliography and Problems

4. Generalize the time-dependent oscillator problem to a multidimensional
case (V. V. Dodonov and V. I. Man’ko[62] Phase space eigenfunctions of
multidimensional quadratic hamiltonians (1986)).

5. Consider the underlying group symmetry for the oscillator with a 1/x
perturbation (V. V. Dodonov, V. I. Manko, and D. E. Nikonov[63] Exact
propagators for time-dependent Coulomb, delta and other potentials (1992)),
and for the Landau levels (V. A. Kostelecky, V. I. Manko, M. M. Nieto,
and D. R. Traux[115] Supersymmetry and a time-dependent Landau system
(1993)).

Relay of Isolated Levels

1. Derive the relay-like Schrödinger equation for an ensemble of two-level
atoms interacting with the quantized field mode for one-photon and multi-
photon cases (S. Stenholm[173] Quantum theory of electromagnetic fields in-
teracting with atoms and molecules (1973)).

2. Perform the same derivation for the photon down-conversion, that is for
a field mode nonlinearly coupled to another field mode at half the frequency.
(G. Drobny, I. Jex, and V.Buzek [64] Mode entanglement in nondegenerate
down-conversion with quantized pump (1993)).

3. Consider an exactly soluble relay and determine the role of relay trun-
cation on the recurrencies dynamics (M. Lindberg and E. Kyrölä[130] Infinite
multilevel system coupled to a quantum-field mode (1992)).

4. Find the analytic description of the previous problem. ( B. W. Shore
and J. H. Eberly[166] Analytic approximations in multi-level excitation theory
(1978)).

5. Determine the population distribution evolution in a perfict lattice with
a single defect (P. Lloyd[131] Exactly solvable model of electronic states in a
three-dimensional disordered Hamiltonian: non-existence of localized states
(1969)).

6. Consider the soluble, semi-infinite relay of levels with a coupling de-
creasing with the level number and with an arbitrary coupling for the first
transition (A. Makarov[132] Coherent excitation of equidistant multilevel sys-
tems in a resonant monochromatic field (1977)).

7. Consider the relay with quadratically changing detunings (S. Mukamel
and J. Jortner[143] A model for isotope separation via molecular multiphoton
photodissociation (1976)) and compare the numerical results of the paper
with the predictions of the WKB method.

Disordered Chains

1. Consider resonant levels, consecutively coupled by matrix elements ran-
domly distributed according to Poisson statistics, by analogy to the one-
dimensional elastic chain of randomly distributed masses (F. J. Dyson [68]
The dynamics of a disordered linear chain (1953)) shown in Fig. 2.21 and
find the mean density of states.
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2. Consider the mean Green functions for the disordered chains (P.
Lloyd[131] Exactly solvable model of electronic states in a three-dimensional
disordered Hamiltonian: non-existence of localized states (1969)).

3. Consider quantum localization with the help of the scaling idea ap-
plied to transparencies and reflectivities of groups of consecutive levels in the
disordered chain (P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S.
Fisher[8] New method for a scaling theory of localization (1980)).

4. For the same problem consider the role of phase relations in the scaling
(L. I. Deych, A. A. Lisyansky, and B. L. Altshuler[59] Single parameter scaling
in one-dimensional localization revisited (2000)).

5. Consider the density of states fora non-Hermitian chain (C. Mudry, P.
W. Brouwer, B. I. Halperin, V. Gurarie, A. Zee[142] Density of states in the
non-Hermitian Lloyd model (1998)).

6. Consider the effect of a time-dependent perturbation on the localized
electron states in a random one-dimensional lattice (N.F. Mott and W. D.
Twose[139] The theory of impurity conduction §7 (1961)).

Composite Systems. Relay of Bands

1. Consider the possibility of representating generic, multilevel systems as
a level–band system and as a relay of isolated levels (E. Kyrölä, and M.
Lindberg[122] Serial and parallel multilevel systems (1987)).

2. Represent the Shcrödinger equation describing the Hall effect (B. Huck-
estein[97] Scaling theory of the integer quantum Hall effect (1995)) as a relay
of degenerate bands of Landau levels.

3. Derive the master equation for randomly coupled, multi-band systems
(Sect. 8.1.2) with the help of a standard Feynman diagram approach (B.
Carmeli, A. Nitzan[39] Kinetic equation for collisionless multiphoton excita-
tion of large molecules (1978) and[40] Random coupling model for intramolec-
ular dynamics (1980)).

4. Consider the limit of applicability of the master equation (D. L.
Shepelyansky[164] Localization of diffusive excitation in multi-level systems
(1987)).

5. Consider the one-dimensional chain of levels with time-dependent level
positions (J. Karczmarek, M. Scott, and M. Ivanov[109] Two-color control of
localization: From lattices to spin systems (1999)) in the quasienergy repre-
sentation, as a relay of bands.

6. Describe a quantum dot in a microwave field (D. M. Basko, M. A.
Skvortsov, and V. E. Kravtsov[13] Dynamic localization in quantum dots:
analytical theory (2003)) as a relay of quasienergy bands.

7. Describe an electron in a nanotube (L.S. Levitov and A. M. Tsve-
lik[127] Narrow-gap Luttinger liquid in carbon nanotubes (2003)) in terms of
a multiband system with four levels in each band.
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8. Describe Arnold diffusion (V. Ya. Demikhovskii, F. M. Izrailev, and
A. I. Malyshev[55] Manifestation of Arnold diffusion in quantum systems
(2002)) as a process in a multiband system.

9. Consider multiphoton excitation of atoms above the ionization limit
(N. B. Delone and M. V. Fedorov [52] Above-Threshold Ionization (1989),
and [53] Multiphoton ionization of atoms: New effects (1989)).

Effect of Correlations and Relay with Decay

1. Consider a relay of isolated levels coupled to a continuum (R. S. Burkey and
C. D. Cantrell[37] Multichannel excitation of the quasi-continuum (1985)) as
a multiband system with correlated matrix elements.

2. Consider the above-threshold ionization of atoms (Z. Deng and J. H.
Eberly[58] Multiphoton absorption above ionization threshold by atoms in
strong laser field (1985)) as a process in a multiband relay with completly
correlated matrix elements.

3. Consider a Rydberg atom in a strong laser field (M. V. Fedorov and
A. M. Movsesian[78] Interference suppression of photoionization of Rydberg
atoms in a strong electromagnetic field (1988) and [79] Field-induced effects of
narrowing of photoelectron spectra and stabilization of Rydberg atoms (1988))
as continuum–continuum transitions with a rank-1 interaction.

4. Consider a hydrogen atom in an intense RF field (G. Casati, B. V.
Chirikov, and D. L. Shepelyansky[41] Quantum limitation for chaotic exci-
tation of the hydrogen atom in a monochromatic field (1984)) as a relay of
bands with correlated matrix elements. Estimate the typical time for ballistic
propagation for this model.

Localization in Relay of Bands, Field-Theory Methods

1. Determine the quantum localization border for Rydberg atoms in an RF
field (G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky[42] Dy-
namical stability of quantum “chaotic” motion in a hydrogen atom (1986))
and find the parameter gouverning the localization (G. Casati, I. Guarneri,
F. Izrailev, and R. Scharf[43] Scaling behavior of localization in quantum
chaos (1990)). Express this in terms of band random matrices (G. Casati,
L. Molinari, and F. Izrailev[44] Scaling properties of band random matri-
ces (1990)) and compare it to molecular models (G.Grahm and D. Shep-
elyansky[90] A solid-state model for photonic localization in molecular quasi-
continua (1991)).

2. Consider compex systems with the help of the σ-model technique and
the saddle-point approximation. (K. Efetov[74] Supersymmetry in disorder
and chaos (1996), Chap. 4).

3. Consider random band matrices in terms of a σ-model (Y. V. Fyodorov
and A. D. Mirlin[82] Scaling properties of localization in random band ma-
trices: A σ-model approach (1991). Consider the transition to localization in
such systems (A. D. Mirlin, Y. V. Fyodorov, F-M. Dittes J. Quezada, and
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T. H. Seligman[138] Transition from localized to extanded eigenstates in the
ensembles of power-law random banded matrices (1996)).

4. Consider the role of particle collisions on the localization (B. L. Alt-
shuler, A. G. Aronov and D. E. Khmelnitsky[6] Effects of electron-electron
collisions with small energy transfers on quantum localisation (1982)). For-
mulate the problem of binary collisions in terms of random matrices (D.
L. Shepelyansky[165] Coherent propagation of two interacting particles in a
random potential (1994)). Consider this problem with the help of a σ-model
(Y. V. Fyodorov, and A. Mirlin[83] Statistical properties of random banded
matrices with strongly fluctuating diagonal elements (1995)).

5. Consider the transition to localization for sparse band matrices ( Y.
V. Fyodorov, A. D. Mirlin, and H-J. Sommers[85] A novel field theoretical
approach to the Anderson localization: sparse random hopping model (1992)).

6. Consider the dynamics of elementary excitations in cold Rydberg atoms
as a level coupled to a band of random walks (I. Mourachko et al.[140] Many-
body effects in a frozen rydberg gas (1998)).

Transformation of Complex Spectra

1. Consider the transformation of a non-degenerate spectrum perturbed by a
small random matrix (P.Pechukas[149] Distribution of energy eigenvalues in
the irregular spectrum (1983)). Derive the diffusion equation describing this
process.

2. Derive a functional equation describing the transformation of a general
multilevel system perturbed by a random matrix. (L.A. Pastur[147] On the
spectrum of random matrices (1972)).

3. Derive the Pastur equation via a direct average over a random matrix
perturbation of a deterministic quantum system (E.Brezin, S. Hikami, and
A. Zee[33] Universal correlations for deterministic plus random Hamiltonians
(1995)), and find the correlations of the level positions. Consider the corre-
sponding time evolution ( E. Brezin and S. Hikami [29] Spectral form factor
in a random matrix theory (1997)). Consider the general case of level corre-
lations (E. Brezin and S. Hakami[30] Extension of level-spacing universality
(1997).

4. Trace the transition from the Breit–Wigner density of states to a
Wigner semicircular profile for sparse band random matrices (Y. V. Fyo-
dorov, O. A. Chubykalo, F. M. Izrailev and G. Casati[84] Wigner random
banded matrices with sparse steucture: local spectral density of states (1996)).

5. Derive a differential equation of motion for the mean density of states
considering the mean square coupling of a random perturbation as a variable
(F. Dyson[70] A class of matrix ensembles (1972)).

6. Consider the behavior near the gap closing (E.Brezin, S. Hikami[31]
Universal singularity at the closure of a gap in a random matrix theory
(1998)).
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7. Find the transformation under perturbation by a random matrix of
the following spectral profiles: (a) Density of states of a one-dimensional
free particle g(E) = 2π(1 − E2)−1/2; (b) Hubbard random alloys; (c) two-
dimensional free particle g(E) = πΘ(E); (d) a particle in the conduction band
of a semiconductor with the kinetic energy T (p) = cos p; (e) the Rydberg
spectrum E = 1/n2 for n = 2, 3, 4 as given by the solution of the fourth-
order algebraic equation.
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104. J. Javanainen and E. Kyrölä, Long-time limit of a quasicontinuum model, Opt.
Comm. 56, 17–21 (1985)

105. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals, Prince-
ton Univ Pr; (1995).

106. Journal of Physics A 36, Number 12, 28 March (2003)
107. Ch. Jungen, Molecular applications of quantum defect theory, Institute of

Physics Pub, (1996)
108. V. Jurdevic and H. J. Sussmann, Control systems on Lie groups, Journal of

Differential Equations, 12, 313–329 (1972)
109. J. Karczmarek, M. Scott, and M. Ivanov, Two-color control of localization:

From lattices to spin systems, Phys. Rev. A 60, R4225-R4228 (1999)
110. R. Karplus and J. Schwinger, A note on saturation in microwave spectroscopy,

Phys. Rev. 73, 1020–1026 (1948)
111. P. L. Knight, M. A. Lauder and B. J. Dalton, Laser-induced continuum struc-

ture, Phys. Reports 190, 1–61 (1990)



464 References

112. A. G. Kofman, Theory of single-photon bound-free transitions: Extension of
the pole approximation, J. Phys. B 30, 5141–5156 (1997)

113. A. G. Kofman, Relaxation of a two-level system strongly coupled to a reservoir:
Anomalously slow decoherence, Phys. Rev. A 64, 033809 (2001)

114. A. G. Kofman and G. Kurizki, Universal dynamical control of quantum me-
chanical decay: Modulation of the coupling to the continuum, Phys. Rev. Lett.
87, 270405 (2001)

115. V. A. Kostelecky, V. I. Manko, M. M. Nieto, and D. R. Traux, Supersymmetry
and time-dependent Landau system, Phys. Rev. A 48, 951–963 (1993)

116. V. E. Kravtsov, Time reversal symmetry breaking by ac field: Effect of com-
mensurability in frequency domain, Pramana - journal of physics 58, 183–193
(2002)

117. V. E. Kravtsov, I. V. Lerner, B. L. Altshuler and A. G. Aronov, Universal
spectral correlations at the mobility edge, Phys. Rev. Lett. 72, 888–891 (1994)

118. R. Kubo, A general expression for the conductivity tensor, Canadian J. Phys.
34,1274–1277 (1956)

119. G. Kurizki, A. G. Kofman, and V. Yudson, Resonant photon exchange by atom
pairs in high-Q cavities, Phys. Rev. A 53, R35–R38 (1996)

120. D. Kuznetsov, A. Bulgak and G. D. Dang, Quantum Lévy process and frac-
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cross-sections, 48

Liouville equation
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Lorentzian (Cauchy) profile, 15, 74, 142
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Population distribution

amongst bands, 143, 147, 174
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and interaction time dependence, 265
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matrix, 270
for band and degenerate level, 151
harmonic perturbation by random
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adiabatic switching, 263
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role of the quantum field statistics,
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two bands in a periodic field, 277
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criterion, 11
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Rabi
frequency, 66, 392
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Random walk
and incomplete decay, 392
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395
interference of returns, 397
non-returnable, 407
returnable, 407, 408

δ-correlated, 407, 411
finite correlation time, 412

returns and interference, 407
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422
shape, 95
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correlated coupling of bands, 387
degenerate bands with random

coupling, 376
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general soluble case, 317
harmonic oscillator, 311
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smooth varation of the parameters,
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WKB approximation, 326
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coupling, 380
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tunneling transparency, 349
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complete, 98
distribution of amplitudes for

fractional, 101
fractional, 61, 68, 88, 99
in irregular spectrum, 98
partial, 98
shape, 98
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Rotating wave
approximation, 62
representation, 68
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Separability

of holonom systems, 295
of molecular motion, 23
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Squeezed states, 315
Stabilization

for correlated couplings, 178
Statistical approach, 20
Statistics
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Supply of probability amplitude
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Floquet approach, 190
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matrix, 261
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with decay, 199
with dephasing, 202

perturbation proportional to a
random matrix, 244

Time-dependent system
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and Dykhne formula, 213
complex, 237
controllable, 285
Demkov–Osherov, 222
level–band, 221
multilevel, 218, 222
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Time-ordering, 187
Transformation

of absorption lines, 420
of spectral state density, 413, 414
rule for random perturbation, 415

Tunneling transparency
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Two level–band systems, 176
Two-band system, 123
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correlated coupling, 169
degenerate, 145
in a periodic field, 277
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Two-frequency perturbation (bi-
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by random matrix, 270
of a two-band system, 14

Two-level system, 62
control, 286
excitation by pulse, 208
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time dependent, 194
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Universal features in time dependencies,
421

Wavepacket
and Erenfest theorem, 104
and fractional revivals, 101
and recurrences, 93
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327
of revivals, 97, 98
representation, 77

Wigner semicircle, 149
WKB approximation, 14

applicability for relay, 330
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for relay-like system of isolated levels,
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