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PREFACE

The study of molecular systems is based on the Born—Oppenheimer theory, which dis-
tinguishes between rapidly moving electrons and slowly moving nuclei and therefore
leads to the formation of the electronic (adiabatic) eigenstates and the corresponding
nonadiabatic coupling terms (NACTs). The existence of the adiabatic states seems
to be compatible with a wide range of experimental studies, from photochemical
processes through photodissociation and unimolecular processes and finally to bi-
molecular interactions accompanied by exchange and/or charge transfer processes.
Having available the adiabatic states, the dynamical treatment is frequently carried
out applying the Born—Oppenheimer approximation, which assumes the existence of
a single decoupled state, thus ignoring the NACTs that couple the various states. The
justification for this approximation is in the fact that NACTs are proportional to the
mass ratio, namely, (m./m )Y (where m, and m , are the masses of an electron and a
proton, respectively), and therefore are expected to be about two orders of magnitude
smaller than other characteristic magnitudes that appear in the nuclear Schrédinger
equation. However, as more and more molecular systems are studied and the number
of ab initio treatments increases, it is realized that this approximation holds, at most,
for small regions in configuration space, but otherwise cannot be satisfied.

The main reason for this misfortune is the existence of molecular degenerate states,
which in turn cause the NACTs not only to become infinitely large but also to dress as
poles. Being poles, the NACTs become the source for numerous phenomena that are
considered as topological effects and lead to several interesting issues, including the
well-known Longuet—Higgins/Berry phase and the open-path phase, the less known
quantization feature of the NACTs, the existence of molecular fields, and finally but
not less interesting, topological spin. Since the potential energy surfaces are expected
to behave linearly in the vicinity of these points, the degeneracy points are frequently

Xiii



Xiv PREFACE

referred to as (points of) conical intersection (cis), the potential energy surfaces may
in fact behave parabolically, in the vicinity of a conical intersection, but we still refer
to these points as cis.

Conical intersections are of most concern because, in contrast to what was believed
until the 1990s, they are not rare. In fact, ab initio calculations indicate that molecular
systems tend to form a ci, between every two adjacent states (and on many occasions
more than one ci). This fact impacts the numerical study of any process connected
with electronic transitions such as energy transfer, chemical reactions, and charge
transfer. In other words, unlike in the case of the Born—Oppenheimer approximation,
the cis cannot be ignored and the corresponding NACTSs, which, because of their
singularity and due to the formation of topological effects have to be approached
analytically. This analytic approach, which finally leads to the rigorous elimination
of the troublesome NACTs (and of the topological effects), is termed diabatization
and is one of the more important issues discussed in this book.

The book is intended to serve the theoreticians interested in treating, quantum-
mechanically, the issues mentioned in the title of the book. I want to emphasize that
since the mathematics to be applied is somewhat different from the usual, I take
the initiative of explaining the basic concepts by giving step-to-step derivations and
using a simple mathematical language. For this purpose, I devote a special chapter
(Chapter 1) to the mathematical aspects of the issues to be discussed in later chapters.
But I go further than that: I present models of varying complexity to illuminate the
meaning of the mathematical treatment and I discuss numerous ab initio systems to
reveal the prediction ability of the theory that is derived. Consequently I hope that
this book will contribute significantly to the understanding of the theory of electronic
nonadiabatic processes.

While treating the NACTs we also discuss known issues such as the previously
mentioned fopological effects in molecular systems (see Chapter 7, which treats the
Berry phase and related subjects) and some new issues such as quantization of the
NACTSs matrix (see Chapter 2) and the existence of a new type of a field, namely, the
molecular field (see Chapter 6). In particular, I want to mention that while treating
the time-dependent Schrodinger equation we encounter features related to the special
theory of relativity without introducing them explicitly.

My own studies related to electronic nonadiabatic processes and the features of
the NACTs themselves extend over two periods:

The First Period: 1974—-1980. 1 became acquainted with the subject during a 4-
month stay at the Max Planck Institut fur Stromungforschung in Gottingen in
the year 1974 as a guest of its director, Professor J. P. Toennies. At that time
I was interested in developing a quantum-mechanical method to compute S-
matrix elements for charge transfer processes that take place during bimolecular
(gas-phase) interactions. These processes were treated, with a limited success,
employing the well known trajectory surface hopping method. During that
visit I came across a publication, by Felix Smith, that discusses a transforma-
tion from the Born—Oppenheimer adiabatic framework to Lichten’s diabatic
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framework. This transformation was later termed adiabatic-to-diabatic trans-
formation (ADT). Since Smith’s study was carried out for atom—atom systems
I extended it to make it applicable to polyatomic systems and soon revealed the
necessity of carrying out calculus along contours. It was not obvious to me what,
in fact, is gained by applying ADT for atom—atom systems, as the noncrossing
rule inhibits the formation of singular NACTs. However, since the NACTs in
polyatomic systems may become singular, ADT eliminates these troublesome
NACTs, thus enabling a smooth numerical treatment of the resulting nuclear
Schrodinger equation. Although the infinitely large NACTs that appear in the
adiabatic Schrédinger equation for charge transfer are of a different type (they
become the Dirac § function), they still can be eliminated by the ADT as in-
deed was done, by my student Z. Top and myself, while studying the (charge
transfer) HF4+H, — H—i—H2+ reaction. It was because of this ADT that we could
calculate, quantum-mechanically, as early as the 1970s, the relevant charge
transfer probabilities for reduced dimensions. Ten years later these calculations
were extended to three dimensions and successfully compared with the state-
to-state differential cross sections of the abovementioned process as measured
by Niedner—Schatterburg and Toennies.

The Second Period: 1990-2005. During the academic year 1989/90 I took a
sabbatical leave in the Department of Chemistry at Iowa State University in
Ames as a guest of Professor C. Y. Ng. During my stay there, I extended
the charge transfer treatment to include spin—orbit coupling, and studied spin
transitions coupled with the charge transfer process in the Ar+H; <>Ar*+H,
and (Ar+H; ;Art+H,) — ArH* +H reactions. A good agreement with Ng’s
detailed experiments was achieved. During that visit I familiarized myself with
the Berry phase and wondered whether there is a connection between this phase
(and likewise the Longuet—Higgins phase) and the ADT angle as discussed in
our earlier studies. The answer to that question and the studies that succeeded
it form a major part of the present book.

This book could not have been written if it were not for my collaborations with
some members of our community and their support. In particular, I want to mention the
following people, starting with two scientists from my own institute, the Soreq Nuclear
Research Center in Yavne. The first is the late Yehiel Yelamed (Lehrer), a professor
of mathematics, who in the early 1970s introduced me to calculus along contours; the
second is Robert Englman, a professor of physics with whom I have collaborated for
more than 10 years since the early 1990s. I would also like to thank Professors Agnes
Viboék and Gabor J. Haldsz from the University of Debrecen (Debrecen, Hungary);
Professor Alexander M. Mebel, of the Florida International University in Miami;
and the late Professor Gert D. Billing of the University of Copenhagen (Copenhagen,
Denmark), who joined efforts with me at different stages during the period 1999-2005.
Also, I thank Professors Donald J. Kouri (Houston, Texas) and David K. Hoffman
(Ames, Iowa) who collaborated with me on the theory of time-dependent NACTs,
during my 2002 stay at the University of Houston.
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Next, I want to thank my younger colleagues: Drs. D. Charutz (Soreq, Israel),
A. Yahalom (Tel Aviv, Israel), Z. R. Xu (Coimbra, Portugal), A. Alijah (Bielefeld,
Germany), S. Adhikari (Guwabhati, India), and in particular Dr. T. Vértesi (Debrecen,
Hungary), who did his Ph.D. thesis on this subject (with Professor Vib6k) and made
important contributions. Finally I mention my son, Professor R. Baer of the Institute
of Chemistry, The Hebrew University in Jerusalem, whom I want to thank for many
fruitful discussions on the various aspects of the theory presented here and especially
for his significant contribution while studying time-dependent NACTs.

Our collaborative research was supported by several science funding agencies
and national academies: The U.S.—Israel Binational Science Foundation, The U.S.
National Science Foundation, The R. A. Welch Foundation, The Alexander von
Humboldt Stiftung, The Danish Research Training Council, Academia Sinica of
Taiwan, and The Hungarian National Academy. I am indebted and grateful to all
of them.

Rehovot, Israel, 2005 MICHAEL BAER
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CHAPTER 1

MATHEMATICAL INTRODUCTION

1.1 HILBERT SPACE

1.1.1 Eigenfunction and Electronic Nonadiabatic Coupling Term

We consider a complete basis set of electronic eigenfunctions [i(s.|s)); k =
1,2,..., N, which depend explicitly on the electronic coordinate s, and paramet-
rically on the nuclear coordinate s. The |¢;(s.|s)) functions are the eigenfunctions of
the following electronic Hamiltonian H, (s, |s)

(He(Sels) — ui()) |8k (sels)) = 0; k=1,...,N (1.1)

where uy(s) are the electronic eigenvalues [which later are recognized as the adiabatic
potential energy surfaces (PESs)].

The fact that the|x(s.|s)) functions form a complete set yields the resolution of
the unity in the following way:

N
1="] Gi(sels)) (Gu(sels) | (1.2)

k=1
This equation (1.2) guarantees that an arbitrary function |£(s.|s)) can be expressed

in terms of a linear combination of the |¢;(s.|s)) functions with coefficients (which
parametrically depend on the nuclear coordinates):

N
|E(se18)) = D 18k(se]9)) (Zi(SeS) € (e s)). (1.3)
k=1

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.



2 MATHEMATICAL INTRODUCTION

This expansion is known as Born—Oppenheimer expansion,’? and the bracket
notation, introduced by Dirac® and used throughout this book, implies integration
over the electronic coordinates.

Next we form the following magnitude

Tik = (¢jIVEk)s k,j={1,2,...,N} (1.4)

which is defined as the electronic nonadiabatic coupling term (NACT)."? Here the
grad operator is expressed in terms of the nuclear coordinate s

a 0
V= {5, 5,} (1.5)

where p and g are two Cartesian (mass-scaled) coordinates. It is important to note
that the elements 7 form a matrix 7 with elements that are vectors.

With these definitions we form the Hilbert space defined at a given point s, namely,
the space that contains all the functions that solve Eq. (1.1) at a given point s.* One
of the more important tasks is to connect Hilbert spaces defined at different points,
for instance, at s and s 4+ As. It can be shown that a connection is established through
the NACTs>

N
|Ck(sels + As)) = D (85 — As - Ti)|¢j(scs)) (1.6)
=1

J

where §j. is the Kronecker delta function and the dot stands for a scalar product.
Equation (1.6) is always fulfilled if the Hilbert spaces at point s and at points close to
it are of N dimensions (viz., contain N eigenfunctions). However, we show later that
this relation holds, under certain conditions, also for a smaller group of states that is
defined as a Hilbert subspace.

To prove Eq. (1.6) we consider the Taylor expansion for |, (s.|s + AS)):

|Ck(sels + As)) = [Lk(Sels)) + As - [VEi(sels)) 1.7

Since the derivative V|x(s.|s)) is also a function that belongs to the same Hilbert
space, it can be presented in terms of the (electronic) basis set introduced earlier:

N

IVEk(sel8)) = D Zig(9)IZ(se]s)) (1.8)

j=1

Multiplying both sides by (¢;(s.|s)| (which also implies integration over s.) yields
[see Eq. (1.4)]

Ly = —Tu; i,k={1,2,...,N} (1.9)
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Substituting Egs. (1.8) and (1.9) in Eq. (1.7) yields Eq. (1.6). In what follows we
consider only real eigenfunctions, for which it is easy to show that the diagonal
elements of the T matrix, namely, 7, are identically zero. As a result, Eq. (1.6) leads
to an important relation known as the parallel transport law:%

(Ck(Se19)|Ck(se[s + As)) = 1+ O(As?) (1.10)
Equation (1.6) can also be written employing matrix notation
g(sels + As) = (I — As - 7)¢(s|s) (1.6')

where I is the unity matrix.

1.1.2 Abelian and Non-Abelian Curl Equations

In what follows we distinguish between Abelian and non-Abelian magnitudes.
Abelian magnitudes are usually vectors and therefore field operations act on them
in the ordinary way as, for instance, in electrodynamics. As an example, we may
consider the definition of the Curl equation, for a vector 7 that is to be of the form

H = Curl 7 (1.11)

where H is also a vector. The Curl operator implies that the z component takes the
form

ar, 9
H = _ Ty (1.12)
ady ax

The situation changes significantly in case 7 (and consequently also H ) becomes a
matrix (of vectors). This situation is known as the non-Abelian case,’®’ and as will be
shown next, the fact that vectors are replaced by matrices of vectors affects relations
known to exist between ordinary vector functions.

As an example we consider the non-Abelian Curl equation, which is sometimes
also called the extended Curl equation (to avoid confusion with the ordinary Abelian
Curl equation). This equation, as mentioned earlier, is written in a matrix form and
for this purpose we introduce a few definitions:

Considering two (nuclear) Cartesian coordinates p and g, we define the following
tensorial vector F ,,:

) 3
oTp _9Tq _ (7). 4] (1.13)

F, =



4 MATHEMATICAL INTRODUCTION

where T;; A = ¢, p are the A components of T, defined as [see Eq. (1.4)]

0 :
njk=<§j ﬁ§k>; {k,j=1,...,N;A=p,q} (1.14)

and [T ,7,] is the commutation relation between 7, and 7,. Equation (1.13) can be
written in a more compact way

F=H-T (1.15)
where
aT oT
H P~ 9 = H=Curl 1.16
rq 9g ap url T ( )
and
Ty =I1p.7y]l=>T=[1 xT] (1.17)

d 6b,7—

F is the field tensor known also as the Yang—Mills fiel 10 Next we prove the

following lemma.
Lemma 1.1 For a Hilbert space, F has to be identically zero:!'!!2
F=0 (1.18)

Proof We consider the pth and gth components of Eq. (1.16):

3Tp> <3§j 3§k> < 3%k >
Omp ) (95194 [, 1.19
(861 & \dq |dp “i5q op (115
37‘q> <3§j 3§k> < 3%k >
—1) = ({22 (g | —= 1.19b
(317 & \dp | dq “i|5p oq (1.190)

Subtracting Eq. (1.19b) from Eq. (1.19a) and assuming that the eigenfunctions are
analytic functions with respect to the nuclear coordinates yields the following result:

C(2r o)) — (| (%
(Hpq)jk_(aqu 3p‘rq)jk_<3q 3P> <3P

Next we consider the (j, k) element of the first term in Eq. (1.17):

N Az 9
(TpTa)y = Z<§,~ £><§i ﬁ> (121)

izl dq

&k
£> (1.20)
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and recall the following relation (that holds for real functions):

o) --{22

Eq. (1.21) becomes

N la¢; B o9c:
(TyToj = = Z<3—ij 1) (i ﬁ> = —<8_2

i=l1

N

98k
> a6 (@D ‘a—>
i=1 q
or, due to the resolution of the unity [see Eq. (1.2)], we finally get

ae;
ap

84"> (1.22a)

(Tqu)jk = < 3q

A similar result is obtained for the second term in Eq. (1.17):

ag;
(Tqu)jk = - <8_qj

%> (1.22b)
op

Subtracting Eq. (1.22b) from Eq. (1.22a) yields the following (jk) element of T ,:

0 a 0

98k 98 | 98 (1.23)
g dq | ap
Next, comparing Eqgs. (1.23) and (1.20), it is readily noted that for any arbitrary
components p and g we have

0¢;
(Tpljk = (TpTqg — TgTplik = — << ap]

H,=T,, =F,,=H,,-T,, =0 (1.24)
which implies that Eq. (1.18) is fulfilled for a complete Hilbert space.
As a final issue in this section we consider the two-state (N = 2) case. In this case
the matrix T is identically zero so that Eq. (1.15) [see also Eq. (1.13)] becomes

F=H=CurlT7=0 (1.25)

which, because of the following structure of the 2 x 2 7 matrix

_ 0 T12
T = (-le 0 ) (1.26)

leads to the result that

Cul7T, =0 (1.27)
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This result implies that for any pair of coordinates (p, g) we have (in case the Hilbert
space is formed by two states)

87'1,12 _ 3’7'412
aq ap

=0 (1.28)

which is the Abelian form of the Curl equation.

Corollary 1.1 Equation (1.28) indicates that in case of two states (N = 2) the
non-Abelian case becomes Abelian.

We want to complete this section with two comments:

1. We emphasize the fact that all the derivations in this section apply as long as
the electronic eigenfunctions are analytic functions at every point in the region of
interest. In case certain eigenfunctions may not have first-order derivatives at some
points in configuration space, for instance, at conical intersections (see Chapter 5),
the respective derivative of the 7-matrix elements are not defined at these points
and therefore also the final outcome, namely, that F = 0 is unlikely to hold at these
points.

2. The importance of the fact that F = 0 for Born—-Oppenheimer systems and how it
is related to other fields in physics is briefly discussed by Englman and Yahalom.’

1.1.3 Abelian and Non-Abelian Divergence Equations

To guarantee the connection between Hilbert spaces defined at relative remote points,
specifically, where As is relatively large, one has to include in Eq. (1.6) terms that
contain both higher powers of T; and higher-order derivatives of 7;. In this respect

we prove next the relation between the second-order NACTs Tj(.,f) defined as

P =V kj={.2....N) (1.29)
and the ordinary (first-order) one 7; introduced in Eq. (1.4).

Lemma 1.2 The second-order NACT ‘r;,f) can be presented in the form'!~!3

N
2
T =Y T+ VT (1.30)
i=1
or in matrix notation

@ =124 Vr (1.31)
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Proof To derive Eq. (1.30) we consider V ;. Recalling Eq. (1.4), we get

Vi = V(¢ IVE) = (V& IV + (61V2e) (1.32)

To continue, we need to evaluate the first term on the right-hand side (r.h.s.) of this
expression. For this purpose we employ the resolution of the unity given in Eq. (1.2)

N

N
<V€J|V§k V;‘] (Z'gl é-l ) |V§k = Z vé‘]'é‘l §1|V§k ZTij'Tik
i=1

i=1

or, finally

(V§iIVa) = Zr,, T (1.33)

Substituting Eq. (1.33) in Eq. (1.32) (and recalling the definitions given above) yields
Eq. (1.30) [or Eq. (1.31)].

Corollary 1.2 Equation (1.31) was originally derived for the purpose of presenting
the adiabatic nuclear Schrodinger equation in a complete and efficient form that
guarantees yielding significant physical insight (see Section 2.1.1). However, it also
serves another purpose and thus will be written in a slightly different form:

Vr=1®-712 (1.34)

This equation is recognized as the extended divergence (div) equation, which together
with the extended Curl equation [see Egs. (1.15)—(1.18)] forms the Curl-Div equations
that the 7 matrix has to fulfill. These two equations are reminiscent of the Curl-Div
equations for the vector potential in electrodynamics.'*!3

The two-state system is of special interest because in this case the non-Abelian
situation becomes Abelian [i.e., the equations for the matrices become equations for
the single (1,2) term]; thus, in case of the divergence equation, we have

V=13 (1.35)

(The two-state 72 matrix produces only diagonal elements.) Equation (1.35) indicates
that the divergence equation encountered in molecular physics is, in general, different
from zero.

Equations (1.27) and (1.35) form the Curl-Div equations in case of a two-
dimensional Hilbert space.
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1.2 HILBERT SUBSPACE

Complete Hilbert spaces, in particular for realistic molecular systems, contain an
infinite number of states; therefore, to be able to treat such systems numerically, we
have to reveal the conditions or establish situations for which finite groups of states
will behave as a quasi-complete Hilbert space. If such a group of states can be formed,
we define it as a Hilbert subspace.

In the present study the breakup of the Hilbert space into Hilbert subspaces is
dictated by the behavior of the previously introduced NACTs elements 7. It will be
shown that the features that exist within a complete Hilbert space, for instance, the
the Curl-Div equations and the quantization (to be discussed in Chapters 2 and 3),
are approximately valid within the respective Hilbert subspace.

In what follows we consider a group of N states, and for convenience we assume
them to be the N lowest states. Next we assume the Hilbert space to break up into two
groups: a finite group, designated as the P space, which contains N (lowest) states,
and the complementary group, designated as the Q space, which contains the rest of
the Hilbert space (its dimensions can be infinite). As already mentioned, the breakup
of the Hilbert space is based on the following assumption:'

Tl = O(e) for j<N; k>N (1.36)

Here ¢ is arelatively small number. Equation (1.36) indicates that the NACTs between
P states and Q states are all assumed to be negligibly small. This implies that the T
matrix has the following form:2

0 T2 T3 TIN

-T2 0 T3 Ty
—T13 =73 0 T3N O(e)
0
—TIN —T2N —T3N 0
T = 0 TN+IN+2  TN+IN+3
—TN+INt2 0 TN2N+3
0(e) —TN+IN+3 —TN42N43 0
0
0
0
(1.37)

(Comment: In Section 6.5 this assumption is proved to exist in given regions in
configuration space.)

To continue, we define the following Feshbach projection operators,>
Py, the projection operator for the P space

4 namely,

N
Py = > 15l (1.382)
Jj=1
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and Qy, the projection operator for the Q space
Qy=1-Py (1.38b)

Our aim is to use the Feshbach operators in order to show that both the extended
Curl equation given in Egs. (1.15)—(1.18) and the Div equation given in Eq. (1.34) are
approximately fulfilled within this Hilbert subspace. Since the mathematical proof in
both cases is similar, we present the proof just for the divergence equation. The proof
for the extended Curl equation can be found in Refs. 5, 6, and 7.

Our starting point is, like before, Eq. (1.30) which, following a slight rearrangement
based on Eq. (1.33), takes the form

i) = —(VE|Va) + Vi (1.39)
Itis important to realize that Eq. (1.39) is valid for any two states j and k and therefore

also for those that fulfill j, k < N.In what follows we consider only states belonging
to the subspace. The first term on the r.h.s. is treated further as

(VEiIVG) = (VPN + QuIVE) = (VEIPNIVE) +(VEIQuIVE)  (1.40)

where the first of the two terms in Eq. (1.40) becomes

N N
(VG IPyIVE) =Y (VEGIGNGIVa) =D (—TiTi (141a)
i=1 i=1
and the second
(V¢ 1QnIVa) = Z(VC,IL (GiIVa) = Z( Ti)Tik (1.41b)
i>N i>N

Recalling Eq. (1.37), we note that the contribution due to Eq. (1.41b) is negligibly
small (because both j, k < N), and therefore Eq. (1.40) becomes

(VEiIVE) = (VPN |VE) = Z(TN)jz(TN)]k (1.42)

i=1

which yields the following result for Eq. (1.39)

N
TR =Y (TN ni + Vi (1.43)
-

Equation (1.43) is essentially identical to Eq. (1.30), which was derived for the com-
plete Hilbert space. Equation (1.43) can now also be written as an equation between
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the submatrices 7y, V7, and 7'53)

7(13) =73 4+ VTy (1.44)

which is similar to Eq. (1.31). Writing Eq. (1.44) slightly differently, as
Vry =19 - 1% (1.45)

yields the corresponding divergence equation.

We reiterate that one can show, employing similar considerations, that the Curl
equations in Egs. (1.15)—(1.18) can be written in the same way for a Hilbert subspace
but for the corresponding N x N submatrices.

As the last subject on this issue, we would like to estimate the size of the error
introduced by ignoring the contributions from the Q subspace. For this purpose we
consider the Curl equation or, more specifically, the two components of the (unper-
turbed) vectorial T matrix, namely, the matrices 7, and 7, with elements as presented
in Eq. (1.14). Each of these matrices is now written [following the presentation in
Eq. (1.37)] as follows:’

a0 L)
T = : x=gq, 1.46
=\rem o q.p (1.46)

Here 7( and 7{"); x = p, ¢ are the diagonal submatrices that contain the dominant
NACTs, whereas 7M1 [and 7/-M]; x = p, ¢ are the two off-diagonal submatrices
that couple the two diagonal ones and are assumed to contain weak coupling terms,
all of the order O(¢g). Next, followmg Eq. (1.13), we introduce the components of the
reduced tensorial vector F(

_ arM™  ar ™
(N) — 4 9 (N)  (N)
B = 30 " Top BCE (147

Recalling Eqs. (1.15)—(1.17), the N x N upper diagonal block of F, specifically, F)
can be written in the form

P‘]’

FOO = F0D — {7 (VD7 (BN (VD (11} (1.48)

but because of Eq. (1.18) we have F( = ( and therefore we get for F the following
result:

FO = {7 WD (BN g (VD (LN} (1.47)
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Since all four matrices 7"2) and 7(V); x = p, g contain elements of the order
O(e) (or smaller), the elements of the matrix on the r.h.s. of Eq. (1.48) are of the order
0(&?), which implies that the relevant elements of F%) are of the following order:

PNV 2
F,,/ = 0(@) (1.49a)

In other words, the extended Curl equation within the Hilbert subspace is fulfilled up
to O(¢?). A similar equation holds for the divergence (Div) equation

Vry =79 + 7% = 0() (1.49b)

where T is identical to the previously defined 7).

Because of these findings we do not distinguish any more between complete, usu-
ally infinite, Hilbert spaces and finite Hilbert subspaces. However, we do distinguish
between groups of states that form a Hilbert subspace and those that do not form a
Hilbert subspace.

1.3 VECTORIAL FIRST-ORDER DIFFERENTIAL
EQUATION AND LINE INTEGRAL

In this section we consider various issues concerning the following first-order differ-
ential equation’-2

VOs) + T(5)s) = 0 (1.50)

where T is a vector—matrix and €2 is a scalar—matrix and s is a point in configuration
space. Equation (1.50) was probably mentioned for the first time by Hobey and
McLachlan? (although in the context of two states only). However, no attempts were
made to study it. On the contrary, McMlachlan, in a follow-up publication,* termed
them as “inconsistent” and concluded that they are relevant only when s stands for a
(single) Cartesian coordinate.

Equation (1.50) has to be integrated from a point sy to a point s, and this integration
is usually done by assuming a contour I" that combines sy and s. However, before
doing that we devote the next few sections to investigating these equations with the
aim of obtaining the conditions to be satisfied by 7 in order to guarantee an analytic
solution in a given region of configuration space (and if not analytic, then, at least,
as close as possible to being analytic as will be discussed later). This investigation
is carried out first by considering the differential equation as written above (Section
1.3.1) or its corresponding integral equation (Section 1.3.3). In order to simplify this
study, we consider first the case where T is an ordinary vector (the Abelian case) and
then extend the treatment to the case where 7 is a vector—matrix (the non-Abelian
case).
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1.3.1 Vectorial First-Order Differential Equation

1.3.1.1 Study of Abelian Case

In this section 7 is a vector, namely, (tx, Ty, ...), and consequently €2 is a scalar
function, f(x, y). The study is carried out for any two components of 7 and therefore
we consider the following two equations:

9
a—f(x,y)+rxf(x,y)=0 (1.51a)
X

3
5f(x,y)+ryf(x,y) =0 (1.51b)

Continuity and Differentiability From the way the equations are presented, the
function f(x, y)is differentiable to the first order with respect to both x and y. All other
features depend on the analytic characteristics of the various components of 7, in this
case, the two functions 7,(x, y) and 7, (x, y). Therefore, if they are differentiable with
respect to x and y, then f(x, y) has second-order derivatives, namely, fiy, fry, fyx,
and f,,. Forinstance, Eq. (1.51a) guarantees the second derivative f,, in the following
way

N2fF ot af ot ,
_9S e O O 152
0x2 ox foe ox ox fret ( )

fex

and in a similar way it guarantees the existence of f,. The same applies to Eq. (1.51b)
and other equations.

Analyticity It is well known that a necessary condition, for a function defined in
terms of several variables, to be analytic in a given region is having derivatives (with
respect to all coordinates) to all orders. However, this condition is not sufficient. The
missing feature is relations between the mixed derivatives of the same order such as
fxy and fy, and all others. Thus the analyticity is guaranteed if and only if the order of
differentiation does not affect the result; for instance, we demand that f,, = f,, and
so on. For this requirement to be fulfilled at a given point (x, y), the two components
of 7, namely, 7,(x, y) and 7,(x, y), cannot be arbitrary but have to be related to each
other.
To find this relation, we differentiate Eq. (1.51a) with respect to y

2
o°f —%f—rx%:—ajf+rxryf (1.53a)

Fox = dy 9x - ay ay ay

and Eq. (1.51b) with respect to x:

52 9 3 i,
f Yy f L (1.53b)

'f"":axayz dax rya_ ax Y
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and subtract the first equation from the second so that we obtain

. 0Ty _ aj

Equation (1.54) implies that in order for f(x, y) to be an analytic function (viz.,
having fy, = f,x), 7« and t, have to fulfill the following relation:’

bu _ 9% =0 (1.55)
ay dax

Although Eq. (1.55) can be interpreted as the z component of a Curl equation, in fact

it applies for any number of pairs of coordinates. We recall that Eq. (1.55) is identical

to Eq. (1.28), which was derived earlier for two electronic eigenfunctions that form a

two-state Hilbert space.

1.3.1.2 Study of Non-Abelian Case

Next we extend the previous treatment to the case where 7 is a matrix and concentrate
again on its two components T, and T,. As before, the elements of 7, and 7, are
assumed to be analytic functions of the coordinates, and we demand that €2 be analytic,
which implies that 2., = €2,,. As before, we consider two components of Eq. (1.50),
namely'

9

8—Q(x,y)+7'x9(x,y)=0 (1.56a)
X

9

a—ﬂ(x,y)JrTyﬂ(x,y) =0 (1.56b)
y

and differentiate the first equation with respect to y, and the second with respect to x
and subtract the results:

ay ax

0°Qx,y) P, y) or, oTy
dyox  oxdy - |: : _(TxTy_TyTx)i| Q(x, y)

Thus, in contrast to the previous case, we see that in order to guarantee the analyticity
of 2, requiring that the corresponding component of the Curl equation be zero is not
enough. In fact, what is required is that the following expression become zero:'

ot 0T,

dy ax

—(TxTy —Ty7,) =0 (1.57)

This is the (x, y) component of the tensor equation given in Eq. (1.18):

Curllr — [T x 7] =0 (1.58)
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It is seen that in order for the 7 matrix to yield, an analytic solution for Eq. (1.50)
in a given region, it has to fulfill the extended Curl equation, a condition that only
certain groups of electronic states may guarantee. In Section 1.1 we showed that these
are the groups that form, in that region, a Hilbert space or, at least, a Hilbert subspace
(and in this case the analyticity is fulfilled only approximately). It is important to
emphasize that if Eq. (1.58) is not fulfilled, this implies not that Eq. (1.50) does not
have a solution but that the solution is not analytic.

1.3.1.3 Orthogonality

This subject is related to the previous section because it is intimately associated with
the first-order equation Eq. (I.50). However, because of its exceptional importance, it
is treated in a separate section.

Lemma 1.3 The matrix solution €2 of Eq. (1.50) is an orthogonal matrix.

Proof To prove this lemma, we consider Eq. (1.50) and its complex conjugate
vQi(s) — Q' (s)T(s) = 0 (1.50)

where we recall that 7(s) is an antisymmetric matrix. Next, multiplying Eq. (1.50)
from the left by Q7 and Eq. (1.50') from the right by € and adding up the two
equalities, we get

(V) Q2+ 2'VQ = V(Q'Q) =0= Q'Q = const (1.59)
or by choosing appropriate boundary conditions, we obtain the following:
Q0=1=00" =1 (1.60)

The orthogonality relation in Eq. (1.60) can be maintained in any region as long as
the T-matrix elements are analytic functions in that region. It is important to emphasize
that the orthogonality condition exists even if the Curl equation [see Eq. (1.58)] in
that region is not fulfilled.

1.3.2 Integral Equation

The integral equation approach, in contrast to the differential equation approach,
supplies a more general view on what to expect from the solution in a given region.
The differential approach concentrates on what happens at a given point and its close
neighborhood, whereas the integral approach yields information related to a given
region. In the forthcoming sections we derive the relevant integral equations first for
the case that 7(s) is a vector and then when it is a matrix.
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(xy) (Xy)
(xy)
y r y r
(xyo) (Xo¥0)
(Xo¥o0)
X X
(@) (b)

Figure 1.1 Two rectangular paths I'" and I'” connecting the points (xg, yo) and (x, y) in the
(x, y) plane.

1.3.2.1 Integral Equation along an Open Contour

We start by considering again Egs. (1.50), where 7(s) is an ordinary vector and €2(s)
is a scalar function f(s). In order to convert Eq. (1.50) into an integral equation that
connects an initial point sy with a final point s, we have also to assume a contour I"
that contains these two points and along which the integral equation has to be solved.
Thus symbolically the relevant integral equation to be considered is'

I = f(So)—de-T(SIF)f(SIF) (1.61)

In order to simplify our discussion, we assume a specific contour, I'' (see Fig. 1.1(a))
made up of two straight lines as

I = {(x0, yo) = (x, y0) = (x, )} (1.62a)
so that the relevant integral equation (1.61) becomes
x y

£ = fanom) = [ dxndonfoon = [ dyneonfey) (16
X0 Yo

In order to verify that this expression is a solution, it has to be substituted in
Egs. (1.51) and examined accordingly. As an example, we consider Eq. (1.51a) and
start by evaluating (9/9x) f(x, y):

y

= _Tx(xv yO)f(x’ y())_/dy/<

Yo

af (x,y)
dx

Ity(x, y)

af (x, y’))
dax

0x
(1.64)

F, )+ 1(x, )
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Next we assume that the Curl equation is fulfilled (at least) along I'” so that we can
replace (3/9x) T (x, y') in the first term under the integral sign by (3/3y")7.(x, y")
and then replace the resulting expression [(3/3y")t,(x, ¥)]f(x, y’) by

ATy (x, ") 0T, ) f(x, )] L Of(x, Y
Tf(xay)— ; — (X, y)———
y dy dy

Carrying out both steps yields, for Eq. (1.64), the following result:

y

= _Tx(.x, y)f('x7 y) - fdy/ (_fx(xa y,)

y0

af(x, y)

af(x, y) Laf(x, )
ax J”;Tyﬂy(x,y)ﬂiy)

0x
(1.64")

However, it can be seen that, due to Eqgs. (1.51), the term under the integral sign is
identically zero so that, in fact, Eq. (1.64’) becomes identical to (1.51a). Thus the
expression in (1.63a), indeed, satisfies Eq. (1.51).

In a similar way we can show that Eq. (1.63a) is also a solution of Eq. (1.51b).
In fact, the derivation is straightforward and does not require even fulfillment of the
Curl condition.

Short Summary We showed that Eq. (1.63a) satisfies Egs. (1.51) if the Curl con-
dition is satisfied for a given x value and for any y’ value defined in the interval.
However, if at a given point, say, P(x., y.), the Curl condition is not fulfilled, then an
integral equation for a contour that contains P(x;, y,) cannot be formed. Still we are
allowed to employ any other contour as long as it surrounds P(x;, y;).

Having derived Eq. (1.61) for a function f(x, y), where T is a vector, we are in a
position to extend it for the case where 7 is a matrix (which causes €2 to be a matrix
as well):

Q(s|T) = Q(sp) — /ds - T(s|T)Q(s|T) (1.65)
S0
We do not derive Eq. (1.65) as it is essentially similar to the derivation of Eq. (1.61).

The only difference is that in this case we have to consider, in the appropriate instance,
the extended Curl equation [see Eq. (1.58)] instead of Eq. (1.55).

1.3.2.2 Integral Equation along a Closed Contour
The equation to be treated in this case is of the form

J(soll") = f(s0) — ygrds T (s|I) f(s|T") (1.66)
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Equation (1.66) does not look like an ordinary integral equation; rather, it appears
to be more a result of an integration along a closed contour. In the present section we
study the condition(s) for which the final value f(sy|I") differs from the initial value
f(sp). If the two are equal, this implies that the value of the integral along the closed
contour is identically zero. In principle, the two values are expected to be the same,
but as is shown next, this is not always be the case. In what follows we continue to call
Eqg. (1.66) an integral equation because, after all, it is the equation used to calculate
the value of f(s) at the endpoint: s = s;.

The integral equation along a closed contour is best studied by considering two
open contours with identical initial and final points®> (see Fig. 1.1). For this purpose
we consider the integral equation along a second contour (see Fig. (1.1(b))

"= {(.X(), YO) - (XQ, )’) - (x’ y)} (162b)

so that the relevant integral equation is

y X

fx,y) = f(x0, ) — /dy Ty(x0, ¥).f (x0, ¥) — /dx T(x, y) f(x,y)  (1.63b)

Yo Xo

It is important to emphasize that Eqgs. (1.63) are both legitimate solutions of
Eq. (1.50) or, more specifically, of Eq. (1.51), at the point (x, y), although the re-
sults as obtained by the two independent calculations may not be the same.

Having the two equations, Eqgs. (1.63a) and (1.63b), we examine what happens at
the point of contact (x, y) = (x, y)—the point where the two contours I'” and I"”
cross and form the closed contour I', which can be symbolically written as

r=r'-r” (1.67)

At that point Eq. (1.63a) yields the value f(xs, y¢|T") and Eq. (1.63b), the value
f(xg, yr|II'")—the two values are not necessarily the same. Thus, if Af(xf, yf|T") is
defined as the difference

AfGp,ypll) = flrp yIT") = fxg, yr DY) (1.67')

then, due to Eq. (1.67), Af(xys, ys|I') is the value of the integral along the closed
contour I'. Therefore, if the two integral equations yield the same result at (xy,ys),
this implies that the value of the integral equation along the closed contour is zero. In
what follows we designate the value of Af(xy, ys|I") by Af ().
In order to continue, we consider a situation where the initial point (x¢, yo) and the
final point (x s, yr) are close to each other, so thatif xy = xo + Axand y; = yo + Ay,
then both Ax and Ay, are small enough to justify the approximations to be employed.
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Thus I'" is assumed to be the following open contour:

I'" = {(x0, yo) = (x0 + Ax, yo) = (x0 + Ax, yo + Ay)} (1.682)
and, in the same way, I'” is assumed to be

I = {(x0, yo) = (x0, Yo + Ay) = (xo + Ax, yo + Ay)} (1.68b)

Substitute Eqs. (1.63a) and (1.63b) in Eq. (1.67"), replace (x ¢, y) by (xo + Ax, yo +
AYy), and perform the required algebraic changes leading to the result

Xo+Ax
AF(T) = / dx (7.5, Y0) (5. 30) — T2(xs Yo + AV) F(x, ¥ + A))

Xo
Yot+Ay

+ / dy{zy(x0, y).f(x0, y) — Ty(xo + Ax, y) f(x0 + Ax, y)}

which can be written (because Ax and Ay are small enough) as

Xo+Ax 5 5 Yo+Ay B B
B =ty [ DI |y M)
X0 Yo

(1.69)

Next we replace each integral by a product between the relevant integrand (at some
intermediate point) and the respective interval length so that Eq. (1.69) becomes

WG NFE T dLE G, @)] (1.70)

Af(T) = Ay Ax |: oy ™

Recalling again Egs. (1.51) and assuming that f(x, y) is a continuous function,
Eq. (1.70) can be further simplified so that we finally have

AT (x, y) _ 0Ty(x, y)
ay dax

Af(T) = Ay Ax |: :| f,y) (1.71)

or

Af() = (Curl T),, f(x, y)Ax Ay (1.72)
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where (x, y) is some point in the interval xo <x <xo+ Ax and yo <y < yp +
Ay and Ax and Ay both — 0.

It is readily noted that the value of A f(xg, yo|I") depends solely on Curl 7. So, if
7 fulfills Eq. (1.55), then the results as calculated along the two different infinitesimal
contours are identical but differ if Curl 7 # 0.

Although TV and I'” are infinitesimal contours, this does not retract from the
generality of the derivation. In case we are interested in a regular-size region that
contains one such point [which causes Af(xy, ys|I') # 0], it has been shown (see
Appendix C in Ref. 2) that any closed contour that surrounds this point can be pre-
sented as a sum of all the infinitesimal closed contours in the region surrounded by
this regular-size contour, and therefore the conclusions regarding the value of the
closed-contour-integration depends solely on what happens at this one point inside
that region immaterial of the size of that region.

Short Summary If in a given region Curl 7 = 0 at every point in that region, the
integral in Eq. (1.66), along any closed contour in that region, is equal to zero. If, in
a given region, Curl 7 is not defined at some points in the region (these points can
be considered, at this stage, as pathological points), then the integral in Eq. (1.66) is
zero as long as the closed contour does not surround any of these points. If, however,
it surrounds one (or more) points of this kind, it becomes mathematically undefined
(this problem and how it is related to Extended Stokes theorem is discussed further
in Section 6.2.3).

Having studied Eq. (1.66), for a function f(x, y, ...) where T is a vector, we can
now extend it for the case that both 7 and €2 are matrices:

Q(so|T) = Q(so) — jﬁ ds - T(s|T)Q(s|T) (1.73)
r

The procedure that led to the analysis and the conclusions that ended with Eq. (1.72)
applies also for the matrix equation in Eq. (1.73) with only one modification. The
condition to be fulfilled in this case is now not by the Curl 7 but by its extended
non-Abelian version, namely, tensorial field F. Thus, Eq. (1.72) has to be replaced in
this case by’

AQT) = Ay AxF,Q(x, y) (1.74)

where both Ax and Ay — 0.

We do not repeat the relevant derivation (it can be found in Ref. 5) but just present
the following summary. If in a given region F = 0 at every point in that region the
integral in Eq. (1.73), along any closed contour in that region, is equal to zero. If,
in a given region, F differs from zero at some points, then the closed line integral,
in Eq. (1.73), is zero as long as the closed contour does not surround any of these
points, but differs from zero when the contour surrounds one of these points. If, in a
given region, F is not well defined at some points, then any closed line integral that
surrounds one of these points is mathematically undefined.
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1.3.3 Solution of Differential Vector Equation

In this section we derive the solution of the differential equation for the matrix €2 as
given Eq. (1.50). Since we are considering matrices and not functions, the derivation
is not straightforward. For instance, an expansion in terms of some power series is not
likely to succeed because the product of two different matrices is not commutative
(unless both are diagonal). This is the reason why the derivation has to be done in a
different way, known as propagation.®® Propagation is characterized by the fact that
the value of the unknown function at one point is calculated by its value, at a nearby
point employing an approximation based on finite differences. As mentioned earlier,
in order to solve Eq. (1.50), we have to assign a contour I" and solve the equations
along this contour. Therefore the propagation has to be done along that contour.

As an example, we consider a planar case characterized by the coordinates (x, y)
and show how to solve Eqgs. (1.56). Defining a grid of L points along I', namely,
{Py, P, ..., Py, ..., P}, where each point is defined as P, = P,(x,, y,) and Py is
the initial point for which is assigned an initial value in terms of the matrix (xg, o).

Assuming that we reached, by propagation, the point P,, we show how to continue
to the point P,.;. This we do by carrying out two consecutive steps (x,, y,) —
(x, + Ax, y,) and then (x, + Ax, y,) = (x, + Ax, y, + Ay) where Ax and Ay are
both small enough. Next we consider a point (%,, J,,) in the planar interval:

Xn <X <xp+Ax and  y, <, < y.+ Ay (1.75)

To carry out the first step, we employ the approximate equation [see Eq. (1.56a)]

d
gﬂ(xv y) + Tx(fna yn)Q(.x, y) = 0 (1763.)

where T,(x, y) is replaced by 7, calculated at some intermediate point (%,, 3,),
namely, 7. (x, y) ~ Tx(Zn, Jn).

Next, we introduce the orthogonal matrix G(x, y) and the corresponding diagonal
matrix t,(x, y), both defined through the relation

tx()zna j;n) = G(X~n, ?n)‘l'x(fn, yn)GJr(fna yn) (177)

Here G and t, contain, respectively, the eigenvectors and the eigenvalues of the T,
matrix. Multiplying Eq. (1.76a) from the left by G(%,, ¥,) and from the right by
G'(%,, J,) and defining

Qx, y) = G(E,, 5)2x, )G (F, F0) (1.78)

we get

0 ~ ~
aﬂ(x’ V) + (&, 5)Ux, y) =0 (1.79)
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Since t, is a diagonal (constant) matrix, the solution of Eq. (1.79) at x = x4 is
straightforward:

Q(xn-H’ yn) = eXP{_Ax tx(ins yn)}ﬂ(xnv yn) (180)

To return to the original matrices 7, and €2, Eq. (1.80) is multiplied from the left and
right by G¥(%,, 7,) and G(%,, 7,), respectively, and following other minor modifica-
tions, we get

Xn+1

Qxn1, Ju) = exp —/Tx(x,?n)dx Qxn, yn) (1.81)

Xn

To perform the second step, in the y direction, we employ Eq. (1.56b) and consider,
as before, the approximate equation
ad

oy Qx, y) + 7%, 5,)0x, y) =0 (1.76b)

where 7,(x, y) is replaced by 7, calculated at some (other) intermediate point

(;n» in)’ namely’ ’Ty(x, y) = Ty()%nv in)
Continuing in the same manner as before [see Eq. (1.81)], we get

Yn+1

Q(X,H_], yn+l) =exXp 4y — / Ty(-%n’ )’)dy ﬂ(xn-H’ yn) (1.82)

Yn
Substituting Eq. (1.81) in Eq. (1.82) and recalling the definition of the scalar product
T(s) - ds ~ Tx(x, §u)dx + T(%,, y)dy (1.83)

where s = (x, y), we finally obtain

Q(s,41) = exp —/‘r(s)~ds Q(s,) (1.84)

Sn

Equation (1.84) can be now be extended to any number of steps so that the final result
is

S

Q(s|T) = p exp —/T(S’|F)-ds’ Q(sg) (1.85)

So
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where g is the ordering operator that tells us to carry out the integration, in Eq.
(1.85), in the following order {Py — P;--- — P, — P,y --- — P} all this along
the assigned contour I.

As a final subject in this section we derive the numerical representation of the
solution in Eq. (1.85) for a given contour I'. This is done according to the following
recipe:

1. Divide I" into L sections where the nth section is defined in terms of its two
endpoints [s,—1, S, ].

2. Write the exponentiated integral as an ordered product of L exponentiated integrals,
each related to one section:

L S

Q(sy) = l_[eXp —/T(s’)'ds’ Q(so) (1.86)

n=1
Sn—1

3. Approximate the integrals in each exponential by 7(§,)A,, where §, is some
intermediate point and A, is defined as vectorial length A, =s,—s,_1, so that
Eq. (1.86) becomes

L
Qs,) = {1‘[ exp{—7(s;) - An}] Qso) (1.87)
n=1

4. Replace each exponential by
exp (=7 () - An) = GGEG)G'(,) (1.88)
where G(§,) is a matrix that diagonalizes 7(§,,), namely
7() = GEGE)G' () (1.89)

[here t(S,) is a diagonal matrix that contains the eigenvalues of 7(S,)] and E(S,)
is given in the form

E(,) = exp(—t(5,) - Ay) (1.90)

5. Substitute Eq. (1.88) in Eq. (1.87) so that

L
Q6.) = | [[IGEIEG)G G | Qs0) (191)

n=1

This completes the numerical presentation of the solution to Eq. (1.50).
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1.4 SUMMARY AND CONCLUSIONS

In Section 1.3 two approaches are presented are to treat first-order differential equa-
tions as presented in Eq. (1.50): (1) by converting it into an integral equation as
presented in Eq. (1.65) and (2) by employing the propagation technique and deriving
an analytic expression as presented in Eq. (1.85). This expression is then “translated”
into a numerical language as given in Eq. (1.91). The two approaches are expected
to yield the same results. In this section we discuss to some extent results, for closed
contours.

Equation (1.73) [see also (1.66)] is the integral equation for a closed contour, and
we have shown that the value of the integral is zero when the contour I does not
surround any of the points for which the tensorial field F is not defined. In case it
surrounds one or more points, the integral becomes undefined. The same is expected
for the explicit closed contour that follows from Eq. (1.85):

Q(so|") =g exp § — f 7(s'|T) - ds’ ¢ Q(sp) (1.92)
r

Defining the abovementioned exponentiated closed-contour integral as D(I")

D) = p exp {—f 7(s'|T) - ds’} (1.93)
r

we can state that the D matrix is the unit matrix I if the contour does not surround
any of the pathological points.

The D matrix can also be defined in terms of the line integral [see Eq.1.73)] as
follows

DI)=1- % ds - T(s|I")Q(s|T") (1.94)
r

where I is the unit matrix.

PROBLEM
1.1 Consider a planar system described in terms of two polar coordinates s = (¢, q)

and the corresponding components of 7: 7 = (7,/q, T,;). Assume T, to be
identically zero and T, to be a 2 x 2 matrix of the type

T, = (_Ol ) (1.95)
2

[« ST
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Employing Eq. (1.94) for a circular contour, prove that the corresponding two-
state D matrix takes the following form:

p( ! ° 1.96
0 —1 (1.96)

Solution  Our first step is to derive £2(¢, ¢), and this is done using Egs. (1.56)
after transforming them to polar coordinates:

9
gﬂ(q), q)+1,pq) =0 (1.97a)

1/9
- (—ﬂ(q), q) + 1,2, q)) =0 (1.97b)
g \9¢

Recalling that T, is identically zero (and consequently g = go) and T, is given
in Eq. (1.95), we find that Q(¢, g = qo) has to fulfill the following (matrix)
first-order differential equation:

1
0 3
0

=

0

To derive the solution of Eq. (1.98), we assume that

(1.99)

cosy(p) siny(p)
—siny(p) cosy(p)

Q(% 110) = (

Substituting Eq. (1.99) in Eq. (1.98) yields for y () the result y (¢) = ¢/2. Next,
substituting Eq. (1.99) in Eq. (1.98), we get for D(I") = D(qo)

2
o 1 cos(p/2)  sin(gp/2)
D(g)=1—- | d ’
(90) / ¢ (_% 0) (—sin((p/Z) cos(¢/2)

0

or following the integration
D(go)=1—-2I= -1 (1.100)

which is identical to Eq. (1.96).
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CHAPTER 2

BORN-OPPENHEIMER
APPROACH: DIABATIZATION
AND TOPOLOGICAL MATRIX

2.1 TIME-INDEPENDENT TREATMENT

2.1.1 Adiabatic Representation

The Hamiltonian H that governs the motion of the nuclei and the electrons is usually
written in the following form

H(s., s) = Tq(s) + H,(s.|s) 2.1

where T (s) is the nuclear kinetic energy and H,(s,|s) is the electronic Hamiltonian,
which also contains the nuclear Coulomb interactions and depends parametrically on
the nuclei coordinates.

The Schrodinger equation to be considered is of the form

H - E)[W(s.,8) =0 2.2

where E is the total energy and |W(s,,s)) is the complete wavefunction that de-
scribes the motion of both the electrons and the nuclei. Next we employ the Born—
Oppenheimer expansion'

N
(W(se,9)) = D [£(5el9) ¥5(9) (2.3)

j=1
where the ¥;(s),7 =1,..., N are the nuclear-coordinate-dependent coefficients
(recognized later as the nuclear wavefunctions) and |§ i(Se |s)); j=1,..., N are the

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.

26



2.1 TIME-INDEPENDENT TREATMENT 27

electronic (adiabatic) eigenfunctions of the electronic Hamiltonian introduced above:

(He(sc|s) — uj(s)) |£;(scls)) = O; j=1....N 2.4

Hereu(s),j =1, ..., N are the electronic eigenvalues. In this treatment we assume
that the Hilbert space is of dimension N. Substituting Eq. (2.3) in Eq. (2.2), multiplying
it from the left by (x(s.|s)|, and integrating over the electronic coordinates while
recalling Egs. (2.1) and (2.4) yields the following set of coupled equations:

N

D ATy (8) |£) + (a(s) — E)Y(s) =05k = 1,..., N 2.5)
j=1

Next, we recall that the kinetic operator T, can be written (in terms of mass-scaled

coordinates) as

_hz V2

2m

T, = (2.6)
where m is the mass of the system and V is the gradient (vector) operator expressed in
terms of mass-scaled coordinates. Substituting Eq. (2.6) in Eq. (2.5) and, performing
the corresponding differentiations with respect to the nuclear coordinates and the
integrations with respect to the electronic coordinates yield the more explicit form of
the Born—-Oppenheimer system of coupled equations:*

K2 Y @)
——VZI//k—l-(uk—E)Wk_ﬂZ(ZTkj'V+Tkj)‘ﬁj =0 k=L....N

2m .
Jj=1

2.7
where 7 is the (first-order) nonadiabatic coupling (vector) matrix with the elements
ik =(¢ | V&) (2.8a)

(see Section 1.1) and 7@ is the nonadiabatic (scalar) matrix of the second order with
the elements

™R =5 | V) (2.8b)

For a system of real electronic wavefunctions 7 is an antisymmetric matrix.
Equation (2.7) can also be written in a matrix form as follows’

2 2

h h
——— V¥ +U-E)V—— (27 V+7) T =0 (2.9)
2m 2m
where the dot designates the scalar product, W(s) is a column vector that contains the
abovementioned nuclear functions {1//_,-(5), j=1,..., N},and uis a diagonal matrix

that contains the adiabatic potentials. This equation is valid for any group of states.
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In Section 1.1 it is proved that when the group of states forms a Hilbert space (or
even a Hilbert subspace—see Section 1.2) so that the T matrix fulfills the divergence

condition (see Section 1.1.3), then 7® can be presented in terms of T as follows:>”
@ =74+ Vr (2.10)
Substituting Eq. (2.10) in Eq. (2.9) yields
n? n? h?
- VO 4 (u——T?—E| ¥ ——Q2r - V+VT)T =0 (2.11)
2m 2m 2m
This equation (2.11) can also be written in a more compact way:%°
h2
—2—(V+T)2‘Il+(u—E)\Il=0 (2.12)
m

This is the nuclear Schrédinger equation within the adiabatic framework for a group
of states that forms a Hilbert space. In this sense Eq. (2.12) differs from Eq. (2.9),
which is valid for any group of states.

2.1.2 Diabatic Representation

Our starting equation is Eq. (2.3) with one difference, namely, we replace |¢;(s.|s))
by [£;(Scls0)); j =1, ..., L where sg is a set of nuclear coordinates for a fixed point in
configuration space. Thus, instead of the expansion in Eq. (2.3) |\il(se, s)) is presented
in a slightly different form:*10-14

L
(W(se, ) = D 12;(Sels0) T () (2.13)
j=1

J

Here ¥ j(s), the corresponding nuclear coefficient, stands for U j(s|so), which depends
parametrically on so and [Z;(S.[sg)) in exactly the same way that |Z;(s.|s)) is an
eigenfunction of a similar Hamiltonian

(He(SelS0) — u;(s0))IZ;(sclS0)) =0 (2.14)

whereu ;(so), j = 1, ..., L are the corresponding electronic eigenvalues as calculated
for this (fixed) set of nuclear coordinates. Substituting Eqgs. (2.13) and (2.14) in
Eq. (2.2), recalling that the coordinates sy are not variables, yields the following
expression:

L L
D 12j(sels0)) (T — EYJrj(8) + Y 9 (9)He(5e]9)|2(Se50)) = 0 (2.15)

=1 j=1
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Here T,, (= T,(s)) is as given in Eq. (2.6). Multiplying Eq. (2.15) by (&x(s.|s)| and
integrating over the electronic coordinates yield the following result

1 - L _
(—%W - E) Ti(s) + Y Vii(slso)j(s) = 0 (2.16)
j=1

where Vi;(s|so) is the (k,j) diabatic matrix element given in the following form:
Vij(slso) = (Ck(Selso) [He(Se[S)[E i (Se[S0)) (2.17)

Next, recalling that H,(s.|s) operator is given as the sum of the electronic kinetic
energy operator T,(s.) and the potential energy operator U (s,|s), we have

H,(s.|s) = T.(s.) + U(sc|s) (2.182)
Here U (s, |s) is the Coulomb field, which governs the motion of the electrons and we
include also Coulomb interactions due to the fixed, nuclei. A similar expression holds
also for H,(s.|sp):

He(se|sO) = Te(se) + U(se|SO) (218b)

Since the kinetic energy operator of the electrons does not depend on the nuclear
coordinates, H,(s,|s) can be written in the following way:

H.(s.|s) = H.(s.[s0) + (U(s.|s) — U(s.|so)) (2.19)

Having this relation, we are capable of presenting more explicitly the expression
V jk(slso) given in Eq. (2.17):

Vx(slso) = vx(s|so) + &;xu;(so) (2.20)
where
Vk(SIso) = (£;(se180)|(U(sc|s) — U(s,[s0))|Zk(Se]S0)) (2.21)

Equation (2.16) can be also written in matrix form:
n -
—— VI +(V-EP =0 (2.22)
2m

Here ¥ (s) is a column vector that contains the nuclear functions ¥ i®);j=1,...,L
and V(s|sg) is the diabatic potential matrix, which, in contrast to u(s) in Eq. (2.12),
is a full matrix.

Equation (2.22) is the Schrodinger equation within the diabatic representation.
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2.1.3 Adiabatic-to-Diabatic Transformation

Having adiabatic and diabatic frameworks with the two different Schrodinger equa-
tions, the obvious question is: Under what conditions will the two equations yield
similar results? In general, the two approaches are expected to yield similar results
because the two frameworks are connected by an orthogonal (unitary) transforma-
tion. However, it is shown that the two frameworks cannot always be connected
through an orthogonal transformation.!>!® In other words, such a transformation can
be formed only if certain conditions are fulfilled. Essentially there are two ways to
derive this transformation. One is by considering the relevant electronic basis sets,
namely, (s.|s) and {(s.|so) and the other, by considering the two nuclear functions
W(s) and P(s|so) in Egs. (2.12) and (2.22), respectively.

2.1.3.1 Transformation for Electronic Basis Sets

The derivation via the electronic basis sets is essentially in the spirit of quantum
chemistry, and we start with it by assuming that the two electronic basis sets are
connected as follows>-®

C(sels) = A(sIso)C(selso) (2.23)

where A(s|so) is the matrix to be determined. It is important to emphasize that writing
Eq. (2.23) in this way implies that {(s.|so) contains the diabatic basis set and ((s.|s),
for s # sp, contains the adiabatic one (although both are legitimate eigenfunctions
of the same Hamiltonian but are calculated at two different points in configuration
space). To continue along these lines, we refer the reader to Eq. (1.6), where we
mentioned that in case the group of N states forms a Hilbert space and As is small
enough, the following relation holds: '8

N
k(sc|s + As)) = Z(Bkj — As - 7y(8)15(se[9)) (2.24)
j=1

This relation holds, approximately, also for a Hilbert subspace of the type discussed
in Section 1.2. Equation (2.24) can be converted into a set of first-order differential
equations for the ¢;(s.|s) eigenfunctions:

N
V[8ik(8sc18)) = — ZTkj(S)ICj(S.eIS)); k=1,...,N (2.25)
j=1
or in matrix form:
V{(sels) + T()¢(scls) = 0 (2.26)

In order to calculate {(s.|s) at a given point s for an initial value {(s.|sy), we have
to assume a contour I' that connects s and sy and then solve Eq. (2.26) along this
contour. One way to see it more explicitly is to convert Eq. (2.26) into an integral
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equation

S

C(sels) = C(s¢ls0) — f ds - T(s)¢(sc[s) (2.27)

So

where the integration is done along the given contour.
Equations (2.26) also has an explicit solution given in the form [see derivation in
Section 1.3.3 and the final result in Eq. (1.85)]">!8

S

C(scls|so) = pexp | — / ds - 7(s) | ¢(selso) (2.28)

So

where, again, the integration is done along I and we replaced ¢(s.|s) by {(s.|s|so)
to emphasize the fact that the calculation is started at s = sy. This exponentiated
integration has to be carried out in a given order and therefore the symbol g [see
more in a sentence following Eq. (1.85)]. Comparing Eqs. (2.28) and (2.23), we get
a similar representation for the A matrix:

S

A(s|so|T) = g exp —/dS~T(S|F) (2.29)

So

where A(s|so|T") replaces A(s|sp) to emphasize the fact that the calculations are done
along the given contour I'. Although solving Eq. (2.29) numerically seems to be
straightforward, it may in fact contain inherent complications since the exponentiated
line integral with an arbitrary 7 matrix is not guaranteed to yield a single-valued
A matrix (although one may wonder whether a single-valued A matrix is really
required). This exponentiated line integral is used to solve Eq. (2.28) and here, as a
result of possible internal inconsistency, the difficulties are more apparent because
the 7-matrix elements are formed by eigenfunctions that we now intend to derive.
Since the eigenfunctions can be determined up to a phase factor (which may depend
on the nuclear coordinates), the whole approach is self-consistent if and only if the
T matrix produces, up to phase factors, the same (initial) eigenfunctions. In order to
reveal the conditions for this situation to occur, we extend the integration in Eq. (2.28)
to a closed contour, I'. In this way the integration that yields the A matrix returns to
the initial point and we expect to obtain the initial set of eigenfunctions ¢ (s, |So). The
set of functions, (s, |So|So), that results from this calculation is given as

C(selsolso) = [CXP (- ﬁ ds - 7'(Sllﬂ)ﬂ C(selso) (2.30)

In order for the theory to be self-consistent, the original set of electronic eigenfunctions
£ (s.|so) and the newly formed ¢ (s.|So|Sp) have to be the same up to a phase factor,
namely

Cj(selsolso) = exp(i?;(I"))C ;(Sels0); j=1L...,N (2.31)



32 BORN-OPPENHEIMER APPROACH: DIABATIZATION AND TOPOLOGICAL MATRIX

where 9;; j = {1,N} are real phases. Returning to Eq. (2.29) and introducing a new
matrix D(I") calculated for the closed contour I''*1%20 [see also Eq. (1.93)], namely

D(I") = A(solso|T) = £ exp (— ?g ds - ’T(S|F)> (2.32)
r

we ascertain that the D matrix elements have to be of the form
D (T") = & exp(iv;(T)); J. k={1,N} (2.33)

In case of real eigenfunctions, the phases, # ;(I") are multiples of 7 so that the diagonal
elements of the D matrix are #1,14-16:19.20
Equation (2.31) can be also be written as

Zj(Selsolso) = D ;(I)¢;(scs0); Jj=1{1, N} (2.31)

which explicitly shows that in case of real eigenfunctions we have ¢;(s.|solso) =
£¢(sels0); j = {1, N}.

Short Summary We showed that the two adiabatic electronic basis sets calculated
at two different points are related by an orthogonal transformation matrix A(s|T")
presented explicitly in Eq. (2.29). To satisfy self-consistency, it has to have, for any
(closed) contour I' in the region, the feature presented in Eq. (2.33).

Next we review results derived in Chapter 1. In Section 1.3.2.2 we considered a
group of states that form a Hilbert subspace in a given region but at some isolated
points the corresponding tensorial field F is not well defined. In such a case, the
following equation for £ (s.|so|I")

C(selsoll") = C(sels0) — fr ds - 7(s|I)E (s [s|T") (2.34)

[which is the closed-contour extension of Eq. (2.27)] does not necessarily produce
the initial set of functions (s.|sg). The contrary is also true, namely, as long as a
contour I" does not surround any of these pathological points, the closed line integral
is zero and the two functions (s.|sg) and {(s.|So|T") are identical. This means that the
electronic manifold is singlevalued and therefore implies that the exponentiated line
integral as given in Eq. (2.32) is the unit matrix, namely, that the diagonal elements
of the D matrix are all equal to +1.

For the situation where the contour surrounds the abovementioned pathological
points, the mathematical approach presented in Section 1.3.2.2 is not conclusive.
However, it is conclusive according to the theory presented here. It implies that
even in the case where the contour surrounds such points, the two sets {(s.|sg) and
¢(s.|so|T") [as given in Eq. (2.30)] are related. As can be seen from Eq. (2.31), they
are not necessarily identical but differ at most by phase factors. This possibility is
guaranteed because the Curl equation [i.e., Eq. (1.18) or (1.49a), in case of a Hilbert
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subspace] guarantees the solution given in Eq. (2.28) as long as the (open) contour
avoids the problematical points.

In case of real eigenfunctions the phase factors become +1, which means that
some (or all) of the ¢(s,|sp) functions flip their sign as a result of tracing the closed
contour I". From Eq. (2.31') it is noted that the functions that flip their sign are those
that are multiplied by the negative diagonal element of the matrix D. Therefore, if the
D matrix contains K elements that are —1, then the K corresponding eigenfunctions
flip their sign.

Before closing this section, I mention that the two-state case deserves special
consideration because of its utmost importance. The two-state case is treated in detail
in Section 3.1.1.

2.1.3.2 Transformation for Nuclear Wavefunctions
The fact that the two nuclear Schrodinger equations, presented in Eqgs. (2.12) and
(2.22), are expected to yield the same solution implies that both equations carry with
them the same amount of information and therefore are related through an orthogonal
transformation matrix. In order to derive this transformation matrix, we start with
the adiabatic Schrodinger equation, eliminate the r-matrix elements, and form the
relevant diabatic Schrodinger equation. Later on, we show that the newly formed
diabatic Schrodinger equation and the one presented in Eq. (2.22) are identical.

We start by replacing, in Eq. (2.12), the column vector W by another column vector
® where the two are related as follows:>8

U =Ad (2.35)
Here A is a matrix of the coordinates to be determined by the requirement that the

7 matrix in Eq. (2.12) will not appear in the Schrédinger equation for ®. To achieve
that, we evaluate the following expression

(V4 7)A® = (V+ 1)V + 7)AD
= (V+7)(AV® + (VA) ® + TAD)
=2(VA)- VO + AV’D + (V?A) &
+(VT)A® + 27 (VA) + 27A (VD) + T2AD

which can be arranged to become
ZAVZ® 4 2(VA+TA) -V + {(T+ V) - (VA+TA)} & (2.36)

where the grad operator, in the third term, does not act beyond the curled parentheses
(curly braces) { }. Now, choosing A to be a solution of the following equation

VA+7A=0 (2.37)
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Eq. (2.36) becomes
(V+ 1) AP =AV’P (2.36))

Substituting Egs. (2.35) and (2.36') in Eq. (2.12), we have

hz
—2—sz<1> +u—E)A® =0 (2.12)
m

In Section 1.3.1.3 we proved that the solution of Eq. (2.37) has to be an orthogonal
matrix. Therefore multiplying Eq. (2.12") by A'—the complex conjugate matrix of
A—we get

hZ
——V®+W-—E)®=0 (2.38)
2m

where W is given in the form
W =A"uA (2.39)

Equation (2.38) is the nuclear diabatic Schrodinger equation, and W is the corre-
sponding diabatic potential.

In Section (1.3.3) we proved that the solution of (2.37) is given in the following
form [see Eq. (1.85)]:!7

S

AGIT) = pexp { — / 7(s'|T) - ds’ } A(so) (2.40)

So

Comparing Eq. (2.40) with Eq. (2.29), it is noted that A(s|I") and A(s|) are, up to
a constant orthogonal transformation, identical. Therefore from now on we refer to
both as the “A matrix.”

Short Summary We showed that the orthogonal transformation matrix A(s|I")
that connects two adiabatic basis sets, {(s.|s|T") and {(s.|sy), defined at two different
points s and sy, also eliminates, step by step along the same contour, the electronic
nonadiabatic coupling matrix (NACM) 7, from the adiabatic Schrédinger equation
and in this way forms a diabatic Schrodinger equation.

The fact that these two transformations are carried out by the same matrix leads
to several interesting consequences to be discussed next.

2.1.3.3 Implications Due to Adiabatic-to-Diabatic Transformation
In this section we discuss four corollaries that are directly related to the findings of
the previous sections.
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Corollary 2.1 Singlevaluedness of the Diabatic Potential Matrix W  The po-
tential matrix W [see Eq. (2.39)] has to be singlevalued because the Schrédinger
equation in Eq. (2.38) cannot be solved unless W is singlevalued.

From Eq. (2.39) we note that W is singlevalued (in a given region) if the matrix
A is singlevalued in that region [the eigenvalues u;(s); j = {1, N} that form the u
matrix are singlevalued by construction]. However, in Section 1.3.2.2 we showed that
the singlevaluedness of the A matrix (where it was labeled as €2) is in general not
guaranteed unless the tensor F is identically zero in the region of interest. In what
follows we derive the necessary condition for W to be singlevalued, and during this
derivation that it becomes clear that, in fact, the singlevaluedness of the A matrix is
not required.

The proof'®2° is carried out for a region in configuration space for which the
relevant electronic manifold forms a Hilbert subspace.

We consider a closed contour I' defined in terms of a continuous parameter A so
that the starting point sy of the contour is at A = 0. Next, g is defined as the value
attained by A once the contour completes a full cycle and returns to its starting point.
For instance, in case of a circle, A is an angle and g = 27.

Given a closed contour I' and a point sy located on it, we calculate both A(A)
and W(}) starting at A = 0 (s = sp) and continue until we reach A = 8. To reveal
the necessary condition, we assume that at s, the calculated diabatic potential matrix
W(L = B) and the initial one—W (X = 0)—are identical, specifically

W0, =0) = WL = B) (2.41)

and derive the condition for that to happen. Following Eq. (2.39), this requirement
implies that for any arbitrary point sy (on the contour) we have

AT0)u(0)A(0) = AT(BIT)u(BA(BIT) (2.42)
Next, we introduce the matrix B(I") defined as
B(I') = A(BIT)A"(0) (2.43)
which, following Eq. (2.43), connects u(8) with u(0):
u(8) = B(Mu0)B'(I") (2.44)
The B matrix is, by definition, a unitary matrix (it is a product of two unitary
matrices) but other than that is not known and therefore will be derived next.
We recall that the adiabatic potential matrix u(s) is uniquely defined at each point
in configuration space and therefore u(0) = u(8). Consequently Eq. (2.44) implies

that the two matrices B(I") and u(f) commute:

B, u(B)] =0 (2.45)
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Since any two matrices that commute have to be diagonal, this implies that B(T") is
diagonal. Recalling that B(I") is also unitary implies that

Bi(T") = 6 exp(i0(I)) (2.46)

In other words, B(I") is a diagonal matrix that contains in its diagonal real phase
factors.

Returning to Eq. (2.43), we observe that the B matrix transforms the A matrix from
its initial value at A = O to its final value at . = 8 while tracing a closed contour, I":

A(BII") = B(I")A(0) (2.47)

To obtain a more explicit expression for B(I'), we consider Eq. (1.92) for the case
that €2(s) = A(s) and for a closed contour starting at the point s = s:

A(solT") = A(BIT) = poexp (— f ds - 7') A(sp) (2.48)
r

Comparing Eqgs. (2.48) and (2.47) and recalling the meaning of A = 0, we obtain:

B(T') = pexp <— ﬁ ds - T(S)) (2.49)

where B is contour-dependent but does not depend on any specific point located on
that contour (see a detailed study on this subject in Ref. 21). Recalling Eq. (2.32), it is
clearly noted that B(I") = D(I") introduced earlier to guarantee fundamental features
related to the electronic manifold that forms the Hilbert subspace.

Short Summary We established that the necessary condition for the A matrix to
yield a singlevalued diabatic potential as given in Eq. (2.40) is that the B matrix,
defined in Eq. (2.49), be diagonal and contain phase factors with real phases (because
the B matrix, just like the A matrix, is unitary). Since we consider only real electronic
eigenfunctions, these phase factors are 1. It is important to emphasize that for this
to happen, the A matrix is not necessarily singlevalued because the B matrix, as was
just proved, is not necessarily a unit matrix.

We showed that the B matrix is identical to the D matrix, and therefore we refer,
from now on, to both as the D matrix. As already mentioned earlier that the D matrix
depends only on the closed contour I, which is a geometric magnitude, and therefore
we frequently refer to the D matrix as the fopological matrix. As will be discussed
later, the magnitude that characterizes the D matrix most is the number of (—1)s along
its diagonal. We define this number as K and term it the topological number.

(Comment: Because of the close relation between the D matrix and the 7 matrix
as given in Eq. (2.49) and because the D matrix has to be diagonal in case of a Hilbert
space, we suggest that the corresponding 7 matrix will be termed guantized."*~>° The
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quantization is well recognized in case of a two-state Hilbert space as discussed in
Section 3.1.1.2.

Corollary 2.2 Uniqueness of the Diabatic Potential Matrices Earlier we dis-
cussed two different diabatic potential energy matrices: (1) one matrix—V(s), pre-
sented in Eq. (2.17)—is derived in terms of a single basis set attached to a fixed point
in configuration space and therefore is formed directly in the diabatic framework;
(2) the second matrix—W(s), presented in Eq. (2.39)—is formed by a more involved
process that starts with an adiabatic potential matrix but then, through an orthogonal
transformation, becomes a diabatic potential matrix. In what follows we show that
the two matrices are identical.!>16

We start with Eq. (2.17) and replace the ¢(s.|so) set, which serves, for the present
treatment, as the diabatic basis set by the corresponding adiabatic basis set—the
£ (s.|s) set—employing Eq. (2.23) [and Eq. (2.28)]. Thus

C(selso) = AT(sIsoIT){C(seIs) (2.50)

where we slightly changed the notation [replacing ¢ (s.|s|so) by ¢ (s.|s)]. Substituting
Eq.(2.50)inEq. (2.17) and considering one particular matrix element V;; (s|sp), we get

N N

Vii(s10) = Y Y A(sIolT) (G(el) He(sels) 15 (5els)) Awj(slsolT)  (2.51)

k=1 k'=1

Next, recalling that the ¢ (s.|s); k = {1, N} are the eigenfunctions of H,(s.|s) [see
Eq. (2.4)], we obtain

N
ViisIl') = Z Ay (SIT)ui($)A; (8IT) (2.52)
k=1
or
V=A"uA (2.53)

Comparing Eq. (2.53) with Eq. (2.39), it is seen that the two potential matrices,
namely, V and W, are identical.

Corollary 2.3 Uniqueness of the Total Wavefunction W (s,, s) The total wavefunc-
tion W(s,, s) is presented in Eq. (2.3) in terms of the adiabatic electronic eigenfunction
¢(s.|s) and the corresponding nuclear functions W(s):

(s, ) = ¢ (sc[s)T(s) (2.542)
A similar representation for total wavefunction ¥(s,, s) is given in terms the dia-

batic functions (s, |sg) and the corresponding nuclear functions ¥ (s) [see Eq. (2.13)]:

U(s,, s) = ¢ (s.ls0)T(s) (2.54b)
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‘We show that the two wavefunctions W(s,,s) and \i’(se, s) are identical. To do that,
we have to treat the relations between the electronic and the nuclear wavefunctions
separately.

Whereas the relation between the two electronic basis sets is presented explicitly
in Eq. (2.50), the relation between the two nuclear wavefunctions deserves more
attention. We start by reminding the reader that the two nuclear diabatic wavefunctions
¥ (s) and ®(s) are solutions of the same (diabatic) Schrodinger equation, namely, Egs.
(2.22) and (2.38) (recalling that the two potential matrices V and W are identical),
and therefore, when solved for the same boundary conditions, are identical. Next,
it was shown that the adiabatic function ¥(s) is related to ®(s) by the orthogonal
transformation as given in Eq. (2.35). This implies that the same relation holds between
¥(s) and ¥(s), thus

T(s) = A(s)¥(s) (2.55)

where we remember that A = A. Substituting Egs. (2.55) and (2.50) in Eq. (2.54a)
(with the obvious slight changes) yields Eq. (2.54b).

To conclude this derivation, we state that treatment of the Schrodinger equation,
whether it is done in the adiabatic or the diabatic framework, yields the same solution.
In other words, the transformation from the adiabatic to the diabatic frameworks (or
vice versa) discussed above does not affect the solution of this equation.

Since A is the (orthogonal) transformation matrix that connects the two frame-
works, it will be termed the adiabatic-to-diabatic transformation matrix and recog-
nized by its acronym as the ADT matrix.

2.1.3.4 Final Comments
It is now well accepted that in order to calculate spectroscopic and scattering cross
sections, one has to solve the diabatic Schrodinger equation. In many studies the
method employed to reach the diabatic framework follows the procedure as discussed
in Section 2.1.3.222* (sometimes termed the dynamic approach). However, there are
also numerous approaches that circumvent the use of the NACTs.*+-62

One of the more popular approaches is based on the smoothness of diabatic states
as a function of nuclear coordinates. Assuming smooth diabatic states, Macias and
Riera**> apply such an approach to certain operators in the vicinity of the avoided
crossing region assuming their corresponding diabatic presentation to be smooth as
well. This approach was extended and generalized by Kryachko by introducing what
he calls an equation of motion.***’ Werner and Meyer applied this approach to LiF
assuming a smooth electronic dipole moment operator.*® Petrongolo et al.,**>° while
studying the NH, and NO,, systems, considered for the first system the quadrupole
moment and, for the second, one of the dipole moments. This approach has so far
been applied only for two-state systems. Its extension to a multistate system does not
seem to be obvious and so far has not been tried. A somewhat different approach was
suggested by Rebentrost and others>!+3? according to which the so-called ADT angle
or also the mixing angle (to be properly introduced in the next chapter) is replaced
by an angle that the open-shell orbital forms with the intermolecular axis. Similar
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approaches were suggested by Romero et al.,>3 Sidis,’* Domcke and stock,> Schinke
and colleagues®®>’and Dobbyn and Knowles.’® A different approach is employed by
Pacher et al.>%% that is based on block diagonalization leading to the Lorentz gauge.
In all cases reported so far the calculated ADT angles exhibit a reasonable functional
form. Since this approach assumes a diabatic behavior at some parts in the region
of interest, its application may encounter difficulties if applied within a region of
numerous conical intersections (see next chapter). A different approach is suggested
by Sevryuk et al.,! namely, an approach based on the postadiabatic representation
developed by Klar and Fano.®> According to this approach, the diabatic framework
is reached by a series of transformations.

A different approach to treat the ADT matrix directly is given by due to Ryb and
Baer.%® They suggest presenting the ADT matrix as a product of overlap matrices:

A(g — qr) = Nll_r)nOO Onn-10N-1N-2... 02

where g; = g; is the initial point and gy = g is the final point of a given contour.
The matrix O, , is defined by

[0n+1,11]ij = <§i(9n+1)|§j(q;1))

where ¢; (g,) is the jth adiabatic (electronic) wavefunction at point g,,.

2.2 APPLICATION OF COMPLEX EIGENFUNCTIONS

2.2.1 Introducing Time-Independent Phase Factors

2.2.1.1 Adiabatic Schrédinger Equation
In the previous section we presented the Born—Openheimer treatment employing real
eigenfunctions. Here we extend this treatment and show that employing a complex
basis set may affect the adiabatic Schrodinger equation but not the final (diabatic)
Schrodinger equation, which follows applying the corresponding ADT.

In what follows we continue to refer to ;(s.[s), j = {1, N} as real eigenfunctions
but multiply them by a phase factor (with a real phase) to make them complex:

£j(sels) = exp(i9;(s));(s.|s) (2.56)

To continue, we introduce the diagonal matrix w(s)
wk(S) = d8jx exp(ivt;(s)) (2.57)

so that the column vector |§ (se|s)) can be written as

1{(se15)) = w(s)| ¢ (sels)) (2.56)
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It is important to realize that the (s, |s) functions, just like the real {(s,|s) functions,
are eigenfunctions of the electronic Hamiltonian in Eq. (2.4).

Having these definitions, we next introduce the corresponding nonadiabatic cou-
pling matrix (NACM) elements, 7 (S)

T =(C; [ V&) (2.58)
or employing Eq. (2.56) yields
7 =exp (—i0;) (¢ | V&) exp (i6y) + 18, V6, (2.59)
It can be shown that 7(s) and 7(s) are related in the following way
7(s) = w'($)T(s)w(s) + i VO(s) (2.60)

where ©(s) is a diagonal matrix that contains the attached phases. In the same way
we introduce the second-order NACM #®(s):

7P(s) =w'(s) (TP(s) + 2iT(s)VO(s)) w(s) + iV’ O(s) — VO(s)* (2.61)

where the 7 (s) matrix elements are as given in Eq. (2.8b). Continuing as in Section
2.1.1, we get the corresponding adiabatic nuclear Schrodinger equation:

2
—g—m(V++)2\If+(u—E)\IJ=0 (2.62)

2.2.1.2 Adiabatic-to-Diabatic Transformation
Next we perform the ADT, namely

U =Ad (2.35")
and it can be shown that if A is chosen to be the solution of the following equation
VA+FA=0 (2.63)
then the corresponding diabatic Schrodinger equation becomes similar to the one
presented in Eq. (2.38) with the potential W given in the following form [similar to
Eq. (2.39)]:
W =ATuA (2.64)

Next, substituting Eq. (2.60) i~n Eq. (2.63) and recalling that the A matrix fulfills
Eq. (2.37), it can be seen that A and A are related as follows:

A(s) = wi(8)A(s) (2.65)
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Finally, substituting Eq. (2.65) in Eq. (2.64) yields the diabatic potential presented in
terms of the real A matrix [see Eq. (2.39)]:

W(s) = W(s) (2.66)

Summary Equation (2.60) is reminiscent of a gauge transformation in the theory
of electromagnetic fields for time-independent phases!

7(s) = 7(8)+VO(s) (2.67)

where 6(s) is an arbitrary potential function of the coordinates. It is well known
that such transformations do not affect the magnetic field, or, in other words that
the magnetic field is invariant under this (gauge) transformation. However, we do
not consider magnetic fields but diabatic potentials, and therefore the above men-
tioned gauge invariance is observed with respect to the diabatic potential. Attaching a
phase factor to the (real) eigenfunctions of an electronic Hamiltonian [see Eq. (2.56)]
forms the gauge transformation given in Eq. (2.60) [and is similar to the one in
Eq. (2.67)]. This transformation is shown not to affect the final diabatic potential
[see Eq. (2.66)]. In other words, the diabatic Schrédinger equation is gauge-invariant
under the transformation in Eq. (2.56).

2.2.2 Introducing Time-Dependent Phase Factors

The starting point is the time-dependent Schrodinger equation for the full wavefunc-
tion W of the electrons and the nuclei

oW n?
ih— = ——V?+H, | P 2.68
: ot ( 2m + ) (2.68)

where H, is the electronic (time-independent) Hamiltonian and we continue, as usual,
employing the Born—-Oppenheimer expansion for the total wavefunction ¥ written in
the form

W(s,,s, 1) = CT(sels, )(s, 1) (2.69)

Here ¢7(s.|s, 1) is a row vector [in contrast to C(s,|s, #), which is a column vec-
tor] and (s, t) the corresponding column vector. Since H, is time-independent, the
electronic basis set functions &;(s.|s, t); j = {1, N} are the eigenfunctions of the
time-independent electronic Hamiltonian [see Eq. (2.4)]. To introduce the time de-
pendence, the eigenfunctions are multiplied by time-dependent phase factors [see
Egs. (2.56) and (2.57)]

C(sels, 1) =w(s, ¢V (s, s) (2.70)
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where the ¢;©(s,|s) values are the real eigenfunctions of H,(s,|s) and w(s, 7) is a
diagonal matrix that contains the phase factors [see Eq. (2.57)]. The extension as in
Eq. (2.70) does not affect the orthonormalization of the eigenfunctions.

Continuing the derivation as in Section 2.2.1 leads to a similar (but not exactly the
same) expression for the corresponding adiabatic Schrodinger equation, namely

oW(s, 1) B

ih = —— (V4 7, 1)> U(s, t) + u(s, 1)P(s, 1) 2.71)
at 2m

where 7(s, 1) is the “dressed” NACM given in the form [see Eq. (2.60)]?

F(s, 1) =w' (s, HT(S)w(s, 1) +iVO(s, 1) (2.72)

and (s, ¢) is an “extended” potential given as:’

00(s, 1)

u(s,t) =u(s) —nh o

(2.73)

Here ©(s, t) is a diagonal matrix that contains the phases themselves, and similarly
VO(s, t) and 0O(s, t)/dt are diagonal matrices that contain the corresponding space
and time derivatives of O s, t).

The only change caused by the fact that the phases are now time-dependent (in
contrast to those described in Section 2.2.1) is the additional potential Z(d®(s, t)/dt),
which affects u(s) and leads to a(s, 7).

The rest of the derivation is similar to the one given in the previous section.
Moreover, it can be shown that here, too, the diabatic potential matrix is invariant
with respect to the gauge transformation presented in Eqs. (2.72) and (2.73).

We would like to refer to one special type of phase, namely, any phase that is
proportional to time #:

O(s, 1) = Op(s)t (2.74)
Substituting Eq. (2.74) in Eq. (2.73) leaves ui(s) time-independent:
a(s) = u(s) — Oy(s) (2.75)

So far ®¢(s) is arbitrary; however, assuming it to be equal to u(s)/A leads to a
particular interesting Schrodinger equation [see Eq. (2.71)], namely

oW(s, 1) B

. _n - 2
ih = 3 (V+7(s,1)" W(s, 1) (2.76)

where

F(s, 1) = wi(s, NTS)W(s, 1) + (i /At Vu(s) 2.77)
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This result is somewhat unexpected for two reasons:

1. We encounter a nuclear Schrodinger equation that does not contain a potential and
is completely dominated by the (dressed) NACM.

2. Asisnoted from Eq. (2.77), the potential matrix is not really missing but becomes,
as a result of this particular gauge transformation, part of the extended NACM.

Equations (2.72) and (2.73) are the gauge transformations for the NACM and the
potential matrix, again reminiscent of the gauge transformation within the theory of
electromagnetism'

A(s, 1) = A(s, 1)+VO(s, 1)

100(s, 1)
@(s, 1) = P(s, 1)+-
c ot

(2.78)

where A(s, t) is the electromagnetic vector potential (not to be confused with the
ADT matrix) and ¢(s, t) is the electric potential. It is noted that, because of the time-
dependent phases, the similarity between the two types of gauge transformations is
enhanced. We not only clearly note that the molecular NACM is similar to the vector
potential A(s, ¢) in electromagnetism—a fact known for quite some time®®—but
also show here a new connection between the two frameworks, namely, the similarity
between molecular adiabatic potential energy surfaces u(s) and the electric potentials
@(s, t).

The diabatization process of Eq. (2.71) is similar to the one presented in Section
2.2.1.2 and will not be presented here.

2.3 TIME-DEPENDENT TREATMENT

2.3.1 Time-Dependent Perturbative Approach

The starting point is the time-dependent Schrodinger equation for the total wave-
function, W(s,, s, t) given in Eq. (2.68), where the electronic Hamiltonian H, is time-
dependent for ¢ > 0, specifically, H, = H,(s,|s, 7). In what follows we employ an
electronic basis set that is time-independent and therefore contains the eigenfunctions
of H.(s.|s, t) for < 0. Consequently ¥(s,, s, ) is assumed to be of the form!

W(s,, s, 1) = ¢ (s.19)(s, 1) (2.79)

Substituting Eq. (2.79) in Eq. (2.68) yields the following time-dependent equation
for the nuclear wavefunctions

2
e _ R g (7 (sels)p(s, 1)) + He(sels, )¢ 7 (sc|8)9(s, 1) (2.80)

i T .
iR (Sels)—- o
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or

3 n?
Ta_if = —%(;TV2¢+V2§T¢+2V§TV¢)~|—He§T1/; (2.81)

ih¢
Multiplying Eq. (2.81) (from the left-hand side) by {(s.|s) and integrating over the
electronic coordinates [which entails multiplying Eq. (2.81), each time, by one of the
time-independent eigenfunctions and integrating over s.], we obtain the (adiabatic)
time-dependent equation for the nuclear wavefunctions

2
ih@ __n (V+ 7)Y +Hap (2.82)
ot 2m

where 7 is the usual (time-independent) NACM but H, is the time-dependent potential
matrix defined as follows:

Hoji(s, 1) = (£;(Se18)| He(S I8, 1) |2k (s, 19)) (2.83)

It is important to mention that I:Ie, for ¢t <0, is a diagonal matrix that is identical
to the adiabatic potential matrix u introduced in Eq. (2.4) but becomes nondiagonal
fort > 0.

The next step is to perform the ADT in order to eliminate the 7 matrix which
is done in a way similar to that performed within the time-independent framework,
namely, replacing ¥ by A® and performing the required algebra [see also Egs. (2.36)
and (2.37)]. This derivation yields the following time-dependent nuclear Schrédinger
equation

P K2
ih— = ——V2® + W, (s, 1)® (2.84)
ot 2m

Whgre the diabatic potential W, is similar to W in Eq. (2.39) but defined with respect
to H,, given in Eq. (2.83):

W, = A'H,A (2.85)

As for the A matrix, this is, as usual, the solution of Eq. (2.37). Since the electronic
basis set is time-independent, the same rule applies to the 7 matrix as well as to the A
matrix so that the time dependence of the diabatic potential W, follows solely from H,.

At this stage we call the reader’s attention to the following difficulty. We note that
the number of coupled (nuclear) Schrodinger equations to be solved is equal to the
number of electronic eigenstates, designated as L, employed in the derivation of H,
(and therefore also in the derivation of W,). However if N is the size of the relevant
Hilbert subspace (viz., the size of a group of states that forms the Hilbert subspace),
then L has to be identical to N because otherwise multivalued diabatic potentials
would be expected from Eq. (2.85).
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2.3.2 Time-Dependent Nonperturbative Approach

2.3.2.1 Adiabatic Time-Dependent Electronic Basis Set

In this section is assumed that the electronic basis set, ¢ (s.|s, ), is time-dependent so
that the total wavefunction is written as in Eq. (2.69). At this stage we remind the reader
that, as in the time-independent case, the size of the Hilbert space is NV, which implies
that NV electronic eigenfunctions of the type ¢;(s.Is, t); j = {1, N} form the Hilbert
subspace. As is well known, these functions fulfill the time-dependent eigenvalue
equation:?

ih%CT(seIS, 1) =¢T(s,|s, )HL(s.]s, 1) (2.86)

This way of writing The time-dependent eigenvalue equation is written this way only
for convenience and implies that each eigenfunction fulfills the following equation:?

d
ini=-[gi(s.ls. D) = Ho(sels. 1] sels. 1) = (1. V) (2.87)

In order to proceed, we have to be somewhat more specific on the electronic Hamil-
tonian. In what follows we assume that H, is independent of time as long as r < 0.
Consequently, for ¢ < 0, the jth eigenfunction ¢;(s.|s, t) assumes the form!-3

£j(sels, 1) = ¢jo(sels) exp (=i /Myu;(s)r) (2.88)

where the substitution of Eq. (2.88) in Eq. (2.87) leads to the jth time-independent
eigenvalue equation for ;o(s.[s):

(He(sels, 7 = 0) — u;(s)) Ljo(sels) = 0 (2.89)

To solve Eq. (2.87) subject to the initial condition presented in Eq. (2.88), (s s, 1)
is expanded in terms of L eigenfunctions of H, as calculated at + = 0. Thus

L
|Cj(sels, D)) = D |ako(sels)) wnj(s, ); j=1,...,N (2.90)
k=1

where the w(s, t) is a rectangular matrix of dimensions L x N that contains the
expansion coefficients. It is important to realize that L can be made arbitrarily large
and the only constraints on L is that L > N. Substituting Eq. (2.90) in Eq. (2.87) and
continuing in the usual way yields the differential equation for w(s, t)

dw(s, 1)
ot

ik = H,(s, Hw(s, t) (2.91)

where H, is a square matrix of dimension L x L and its elements are given in the
following form:

He(s, ;= (Go(sels) He(s, 1) [¢jo(sels)); 0<k<L,0<j<L (292
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The solution of Eq. (2.91) is given in the form

t
w(s, 1) = pexp —Fil / dt'-H, (s,t) t 1 (2.93)

—00

where g is now a time-ordering operator and I is a rectangular unit matrix of
dimension L x N (where r denotes “rectangular”). It can be seen that for t < 0 the
matrix w(s, t) becomes

wir(s, 1 <0)= exp(iuj(s)t)chk (2.94)

Next we prove that w(s, #) is a unitary matrix and for this purpose we consider
Eq. (2.91) and form the equation for its complex conjugate w(s, ¢)

_in awT(s, 1) _

o wHL(s, 1) (2.95)

where w'(s, t) is a rectangular matrix of dimension N x L. Multiplying Eq. (2.91)
from the left-hand side by w(s, 7) and Eq. (2.95) from the right-side by w(s, #) and
subtracting the first equation from the second one yields

a (uﬂ'w)

5 =0 = w'w = const (2.96)

Next, recalling Eq. (2.94), it is easy to see that for any time ¢ we have
wis, Hws, 1) =10 (2.97)

where I®) is a square matrix of dimension N x N (where s denotes “square”). Thus,
we proved that w(s, ¢) is a unitary matrix with respect to its short dimension (i.e., N).

2.3.2.2 Adiabatic Time-Dependent Nuclear Schrédinger Equation
Substituting Egs. (2.69) and (2.86) in Eq. (2.68) yields (after a few algebraic rear-
rangements) the following time-dependent equation for the nuclear wavefunctions:

2
0P 1) _ —h—v2 (¢ (sels, Dap(s, 1)) (2.98)

ihe T (s,|s, t
iR (sels. 1) ot 2m

The interesting feature related to this equation is the fact that it is entirely dominated
by the nuclear kinetic operator.
Evaluating the r.h.s., one obtains

d n?
ih;T—TZJ =-

o > {¢"V2 + 2V vy + (V2¢T) 4} (2.99)
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Multiplying Eq. (2.98) (from the left side) by CT(se|s, t) and integrating over the
electronic coordinates, we obtain (see Appendix 2A.1):

LN o
zhE =5 (V47 (2.100)

where T is a time-dependent, dressed, NACM of dimension N x N given in the form
F=wlrw+w Vw (2.101)

Here T is the NACM (dimension L x L) defined in terms the time-independent basis
set £o(s.|s) [see Eq. (2.8a)].

Equation (2.100), the general adiabatic time-dependent nuclear Schrodinger equa-
tion, is somewhat unexpected because it lacks the potential matrix. A similar ex-
pression is encountered in the simplified version of the present treatment when we
attached time-dependent phase factors to the electronic eigenfunctions [see discussion
in Section 2.2.2 and in particular Eq. (2.76)].

2.3.2.3 Time-Dependent Adiabatic-to-Diabatic Transformation

To carry out the ADT for Eq. (2.100), we follow the procedure given for the time-
independent case in Section 2.1.3.2, but to distinguish this case from the previous
one, we label the ADT matrix as A. Substituting Eq. (2.35) in Eq. (2.100) yields the
following expression:

L I . - _0A
zhAE_—%[AV +2(GA)V + (G A)]@—zhai’ (2.102)

Here G is an operator that acts only on A and is given in the form
G=V+T (2.103)

To continue, we add and subtract an undetermined matrix T, multiplied by A®, so
that Eq. (2.102) becomes

2
ihA:—? = —;— [AVZ+2(GA)V + (G*A)]® — (G, — 1) A® (2.104)
m

where G, is an operator that acts on A only and is defined as

3
G, =i+, (2.105)

The four-dimensional vector (G,G,) is also known by the term covariant derivative.*
The A matrix is chosen as a simultaneous solution of the spatial (component) equation

GA=0 (2.106a)
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and the (time) equation

GA=0 (2.106b)

Once derived, we demand that the matrix, A, is an analytic function at every point
in a given four-dimensional configuration spacetime. This means that each element
of the A matrix has to be differentiable to any order with respect to all the spatial
coordinates and with respect to time. In addition, analyticity requires fulfillment of
the following two conditions:

1. The results of two consecutive differentiations of the A matrix with respect to two
spatial coordinates, p and g, should not depend on the order of differentiation. This
requirement can be shown to lead to the extended Curl equation similar to the one
discussed in Chapter 1 [see Eqs. (1.13)—-(1.18)] but where 7T is replaced by, its
time-dependent counterpart, 7 [see Eq. (2.101)].

2. The results of two consecutive differentiations of the A matrix, one with respect
to time and the other with respect to any spatial coordinate p, should not depend
on the order of differentiation. This requirement implies

0 - 9 -
—(VA)=V(|=A)=0 (2.107)
ot ot
In Appendix 2A.2 we prove that the condition for the equality in Eq. (2.107) to hold
is that the 7, matrix [introduced earlier, in Eqs. (2.104) and (2.105), but not yet
determined] has to be
T = ﬁe =w'Hw (2.108)

With this result, the first-order differential equations to be fulfilled by A are [see
Egs. (2.106)]

VA+FA =0 (2.109a)
A .
m5;+mA=0 (2.109b)

which can be written in terms of a four component vector equation
GA=0 (2.110)
where G is the covariant derivative given in the form
G=V+7 (2.111)

Here V is a four-component grad operator and

- 0 0 0 0
v=12 2 2 anl 2.112)
dq1 9q2 dg,” ot
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and, similarly 7 is recognized as a four-component vector—matrix

F =Ty T on By L) (2.113)

where H, is the time component of 7. It is important to mention that in our case we
do not have necessarily four components but in general (n + 1) components.

The corresponding four-component non-Abelian Curl equation, which guarantees
the existence of an analytic solution for Eq. (2.110), takes the form

— T — T — [T Tw] =0 {w, W' = p,q,t/(ih)} (2.114)

where 1:',, is the time component of 1:', namely, 7:-, = Ifle.
It can be shown that the A matrix that solves Eq. (2.110) is a unitary matrix and as
aresult the diabatic Schrodinger equation takes the simplified form [see Eq. (2.104)]

'haq)— h2v2+w (2.115)
“"or T\ om '

where W, is the ‘recovered’ potential matrix:

W, = A'H,A (2.116)

The potential matrix We ~is similar, in some respects, to W, in Eq. (2.39) because
at time 7 < 0 the matrix H, [and also the matrix H,; see Eq. (2.92)] is a diagonal
matrix that contains the adiabatic (ab initio) potentials. However, at ¢ > 0, I:Ie and I:Ie
become nondiagonal and in general differ from each other. Consequently W, differs

from W,.
(Comment In all the derivations made in this chapter the matrices G, G, A, T,
He, We, 7 and G are all square matrices of dimensions N x N.)

2.3.3 Summary

In Sections 2.3.1 and 2.3.2 two different diabatization schemes are presented for a
molecular system affected by a time-dependent perturbation. We termed the first, the
simplified version, the perurbative approach and the second, more general one, the
nonperurbative approach. In both treatments we end up with a unitary ADT matrix
(reminiscent of the one encountered in the time-independent framework) calculated
by solving a (vectorial) first-order differential equation along contours.

The main difference between the two approaches is as follows. Within the first
approach we employ a time-independent electronic basis set so that the ADT matrix
is time-independent and the resulting diabatic PES matrix is similar to the one en-
countered for a time-independent interaction. Within the second approach we apply
a time-dependent electronic basis set so that we end up with a time-dependent ADT
matrix that leads to a somewhat more complicated diabatic potential energy matrix.
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There is no doubt that on the face of it the first approach, becuase of its simplified
ADT, should be preferred. However, this version may have its disadvantages, due to
two contradictory requirements:

1. For a correct ADT matrix, one has to apply a Hilbert subspace that contains
N states (which results in a system of N nuclear Schrodinger equations to be
solved).

2. Given a TD interaction, one may need L (TID) electronic eigenfunctions to present
it reliably at all time (where L can be much larger than N).

With the first approach N and L have to be the same, and if L is very large, for
instance, as the result of an intense external field, one has to solve a large number
(=L) of nuclear Schrodinger equations. With the second approach the two numbers N
and L are independent, namely the number of Schrodinger equations to be solved is,
as before, NV, but this approach allows applying a (much) larger electronic basis set to
represent the perturbation. It is true that within this process one encounters rectangular
(as opposed to square) matrices, but the theory, as presented here, overcomes this
obstacle in a reliable, coherent, and consistent way. Thus the final outcome is a set
of N (not L) nuclear Schrodinger equations just as in the previous case, and the
inconvenience encountered with the second approach is mainly in constructing the
diabatic potential matrix but not in solving the nuclear Schrodinger equations.

[Comment: In Problem 2.1 we show that for L = N the nonperturbative nuclear
Hamiltonian given in Eqgs. (2.115) and (2.116) reduces to the perturbative one given
in Eqgs. (2.84) and (2.85).]

One of the more interesting results that follows from the time-dependent approach
is the dressed NACM, 7, as given in Eq. (2.101) and the interesting new nuclear
Schrodinger equation presented in Eq. (2.100), namely, an equation that lacks a po-
tential and is governed by the extended NACM only. Similar expressions were derived
in Section 2.2.2 [see Eq. (2.76)] where time-dependent phase factors are employed
to form time-dependent eigenfunctions.

Another interesting result is the way the Curl condition extends in case of a time-
dependent Hamiltonian [see Eq. (2.114)]. We note that the extension is of the kind
expected from a relativistic theory, although relativistic arguments are not explicitly
mentioned in this context.

As a final issue in this section, we mention that the ability to treat time-dependent
Born—Oppenheimer systems is crucial because of the intensive studies of shaped and
specially designed laser pulses to control molecular processes.’ !

PROBLEM

2.1 Show that for L = N (where L is the size of the perturbation and N the size
of the Hilbert subspace) the final Schrodinger equation for the nonperturbative
case in Eqs (2.115) and (2.116) reduces to the perturbative one given in Egs.
(2.84) and (2.85).
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Solution We start by considering Eqs. (2.109) and assuming that A can be
written in the form

A=w'B (2.117)

where B is still unknown and w is given in Eq. (2.93). This product is well
defined as all three matrices A, w, and B are square matrices. Substituting Eq.
(2.117) in Eq. (2.109a) and recalling the definition of 7 [see Eq. (2.101)], we
note, following a few algebraic operations, that B is a solution of the following
first-order vectorial equation:

VB+7B =0 (2.118)

In other words, B is the ADT matrix A [see Eq. (2.37)], which among other
things, implies that B is time-independent. Next we check to what extent
Eq. (2.109b) is satisfied. Substituting Eq. (2.117) in Eq. (2.109b) and recalling
Eq. (2.108) yields the first-order equation for w as given in Eq. (2.91). Summa-
rizing our findings so far, we may say that in the case in which L = N, the matrix
A, as expressed in Eq. (2.117), yields the relevant solution for Egs. (2.109). To
conclude the proof, we consider Eq. (2.116). Substituting Eq. (2.117) in Eq.
(2.116) and recalling again Eq. (2.108), we get the diabatic potential matrix for
the perturbative case as presented in Eq. (2.85).

2A APPENDIXES

2A.1 Dressed Nonadiabatic Coupling Matrix 7
Our starting point is Eq. (2.100):

d n?
itha—f’ = —%{KTV2¢+2VCT~V¢+(V2CT)¢} (2A.1)
Employing Eq. (2.90), we replace ¢ 7 (s, s, t) by ¢ 7 (s, s, t = 0)w(s, t) where we recall
that (1) the group of functions {(s.|s, = 0) forms an orthogonal set of eigenfunctions
and (2) the matrix w(s, t) is a unitary matrix. Thus we get
9 n?
ihg " (sels, 1 = 0)uw(s, t)a—lf = —2—{§T(Sels, t = 0)w(s, Ve
m

+2V(T(se]s, t = 0)w(s, 1)) - Vb + V(T (s0]s, t = 0)w(s, 1))} (2A.2)

Next, multiplying Eq. (2A.2) from the left side by w(s, #){(s.|s, t = 0) and integrating
over the electronic coordinates yields the following equation:

] n? .
2% = 92 12wt (rw + V) - Ve
ot 2m

+w (TPw + 21 - V 4+ VZw)h) (2A.3)
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where w replaces w(s, t), T is the time-independent NACM introduced in Eq. (2.8a),
and T @ is the time-independent NACM of the second order introduced in Eq. (2.8b).
Replacing 7@ (see Eq. (2.10)), we get

B n?
2P — 2 2w (rw + V) - Vi
ot 2m

+w'(T?w + V7w + 27 - Vw + VZw)p) (2A.4)
We now turn to Eq. (2.100) (and also Eq. (2.101))

. 0 K’ 2 ~ - =2
ih— = ———{V°Y + 27 - VY + (VT + 7)Y} (2A.5)
ot 2m

and intend to prove that it is identical to Eq. (2A.4). Recalling Eq. (2.101), we note
that what is left to prove is that the coefficients of ¢ in Egs. (2A.4) and (2A.5), namely

VF+ 72 and w'(7*w+ V1w + 27 - Vw + VW) (2A.6)

are equal. For this sake we evaluate the first expression of Eq. (2A.6) and employ Eq.
(2.101):
Vi 47 = V(wirtw + wiVw)
+(w'Tw + W V) WwTw + W Vw) (2A.7)
It is seen that the main obstacle for the expression of the r.h.s. of Eq. (2A.7) and
the second expression in Eq. (2A.6) to become equal is the fact that in Eq. (2A.7)
we encounter terms that contain Vw?, which is missing in the second expression of

Eq. (2A.6). To overcome this difficulty, we recall that w is a unitary matrix [see Eq.
(2.96)]. Consequently

V(w'w) = (Vww+w'Vw =0 (2A.8)
which allows us to express Vw' as follows:
V' = —w (Vw)w' (2A.9)

Evaluating the r.h.s. in Eq. (2A.7) and employing Eq. (2A.9) for the relevant expres-
sions finally yields the verification that Eqs. (2A.4) and (2A.5) are equal.

2A.2 Analyticity of Adiabatic-to-Diabatic Transformation
Matrix A in Timespace Configuration

In this section of the appendix we intend to derive the matrix 7, [introduced in
Egs. (2.104) and (2.105)], which will yield an analytic A matrix in the configuration
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timespace that (besides being differentiable with respect to all coordinates) has to
satisfy the following condition [see Eq. (2.107)]:

R 3 -
m-{m@-v(m—A)zo (2A.10)
ot ot

From Egs. (2.106) we can see that A has to fulfill two first-order differential equations:

VA+7A =0 (2A.11)
dA B}
m5;+ﬂA:0 (2A.12)

Activating the grad operator on Eq. (2A.12), differentiating Eq. (2A.11) with respect
to time ¢ [and multiplying it by (i%)], subtracting the second from the first, and
assuming Eq. (2A.10), we obtain the following expression that has to be fulfilled:

LoT - . 0A . -
lhEA + Tlhﬁ —(Vr)A —17,VA =0 (2A.13)
Replacing the various derivates of A, employing Eqs. (2A.11) and (2A.12) yields

L 0T A -
lha—TTt—VT,—FTlT A=0

or since A fulfills Eq. (2A.11), it is a unitary matrix and therefore the expression

9
ih%—%ﬂ—vn+7ﬁ=0 (2A.14)

has to be fulfilled.
Employing Eq. (2.101), we evaluate the first term in Eq. (2A.14), namely

0T [ owt s dw  dw' s ow
ih—=ih|—Tw4+wr—+ —Vw+4+w'V|—
1 ot t t ot

where we recall that by definition the 7 matrix is time-independent, and then continue
by replacing the various time derivatives employing Eq. (2.91) so that we get

0T ' 1 v
zhg = —wH7tw+w'TH,Ww + w'(VH,)w (2A.15)

The next step is to evaluate the expressionV(wH,w') while recalling the unitarity
of w [see Eq. (2.96)]. The unitarity leads to the relation

Vw' = —w(Vw)w’
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so that V(wH,w™) becomes
ViwHw) = —w'(Vw)w Hw + o (VA)w + w H,Vw (2A.16)

This expression is used to replace, in Eq. (2A.15), the term w(VH,)w so that Eq.
(2A.15) becomes

oT - b o =
iha—: = —wH1w+ w'THw + VH,

+w (Vw)w Hw — wH, Vw (2A.17)

To continue, we first introduce a new definition, namely, H,:
H, = wH,w' (2A.18)

We then substitute Eqs. (2A.17) and (2A.18) in Eq. (2A.14) so that, by following a
few algebraic rearrangement, we get

~H.7 + 7H, + VH, — 71, — V7, + 7,7 =0 (2A.19)

We note that this expression becomes identically zero when 7, = H,.
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CHAPTER 3

MODEL STUDIES

In this chapter we discuss a few interesting cases that are expected to extend our
knowledge regarding the material presented in Chapters 1 and 2. In Section 3.1 we
concentrate on a certain type of model for the 7 matrix related to Hilbert spaces of
various dimensions. In Section 3.2 we discuss mainly the two-state diabatic poten-
tial matrix elements and their ability to form NACTs with interesting features. In
Section 3.3 we show to what extent certain types of ADT matrices are related to
Wigner’s rotation matrices.

3.1 TREATMENT OF ANALYTICAL MODELS

The issues to be discussed are the ADT matrix, A(s|T") (= A(s|I")) as presented in
Eq. (2.29) and the topological matrix D(I") as presented in Eq. (2.32) [see also Eq.
(2.33)]. For this purpose we consider T matrices presented as a product of a real
function (vector) A(s) that depends on the (nuclear) coordinates and a constant (real)
matrix g of the required dimension:'—3

T(s) = gA(s) (3.1

The main advantage in having this presentation for the 7 matrix is the fact that all the
derivations can be carried out analytically.

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.
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3.1.1 Two-State Systems

3.1.1.1 Adiabatic-to-Diabatic Transformation Matrix
The two-state model is in fact not a model at all—it is the general case per se. The
reason is that the most general 2 x 2 T matrix is written in the following form:

0 T12(8)
(s) = (_m © 0 ) 3.2)

In other words, the general, 2 x 2, 7 matrix contains only one single nonzero (vec-
torial) term, 715. It is seen that the g matrix in this case is

and therefore A(s) = 71,(S).

Our task is to derive the corresponding ADT matrix A, and this is done in two
ways:

1. Since A has to be a real orthogonal matrix of dimension 2 x 2, it can be pre-
sented in the form

AGs) = ( CO.S y(s) sin y(s) ) (3.4)
—siny(s) cosy(s)

where y(s) is the angle to be determined. Substituting Eq. (3.4) in Eq. (1.50) yields
the first-order differential equation for y(s) in the form

Vy(s) +712(s) =0 (3.52)
or

Vy(s)+A(s)=0 (3.5b)
which has to be solved along a given contour I'. The solution is

S

y(slso|l") = —/dS-A(SIF) (3.6)
So

where we assumed that y(sg) = 0. In what follows y (s) is defined as the adiabatic-
to-diabatic transformation (ADT) angle.
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2. We employ the general solution of the differential equation as given in Eq.
(1.85) [see also Eq. (1.91)]. For this purpose we have to derive the matrix G that
diagonalizes the g matrix given in (3.3):

1
GZ%G _11) 3.7)

The corresponding (two) eigenvalues are t; »(s) = =%i. Recalling that in the present
case the matrix G is a constant matrix, the expression in Eq. (1.91) simplifies to
become

A(s) = GE(s)G' (3.8)

where the two diagonal elements of the E matrix are

Eo(s) =exp | £i / A(s) - ds’ (3.9)

So

Performing the two matrix multiplications in Eq. (3.8) yields A(s) = A(y(s)) as given
in Eq. (3.4), where y(s) is as defined in Eq. (3.6).

3.1.1.2 Topological (D) Matrix
Closing the contour in Eq. (3.6) yields the angle a(T")

y(solsoll") = a(l’) = ?g ds-A(s|T) (3.10)
r
which, on replacing y(s) by «(I") in Eq. (3.4) yields the corresponding D matrix:

cosa(I") sina(F)) G.11)

D) = (— sina(I") cosa(l)

However, according to Eq. (2.33) the D matrix has to be diagonal, and this enforces
a(I) [see Eq. (3.10)] to be an integer multiple of 7. Thus

a(l) = y§ ds - X(s) = nw (3.12)
r

where n is an integer. In case n is an even number, Eq. (3.12) is essentially the Bohr—
Sommerfeld quantization condition for the (spatial) angular momentum of the electron
in a given closed system.* But in our case 7 is also allowed to be an odd number;
in particular, n may become 1. In this case the quantization condition is more remi-
niscent of the spin of the electron (this subject is discussed further in Section (5.4)).
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It is noted that if n is an odd integer, the diagonal of the D matrix contains two (—1)s,
which means that the two (diagonal) elements of the ADT matrix that at the initial
point are equal to (+1) become, following the integration along the closed contour
", equal to (—1). Recalling Eq. (2.31"), this change of sign implies that the two elec-
tronic eigenfunctions ¢;(s.|s); j = 1,2, flip their signs while tracing this particular
closed contour I'. In other words, starting at s = s with the values £;(s.|so); j = 1,2,
the corresponding ¢ (s, |s) function becomes (—¢;(s.|So)) after returning to the initial
point.

In case the value of n [in Eq. (3.12)] is an even integer, the diagonal of the D matrix
contains two (+1)s, which implies that in this case none of the elements of the ADT
matrix flip sign at the endpoint of I". Recalling, again, Eq. (2.30), this situation implies
that the abovementioned ¢ (s, |s) manifold traces the closed contour and returns to its
original value; namely, ¢(s.|s = so|I") functions are unchanged.

The two possible outcomes for the D matrix imply that in general we encounter
two kinds of contours. In case the D matrix is not the unit matrix, this implies that
within the region surrounded by the contour there is at least one point where the
function 7(s) is not defined and therefore the eigenfunctions are multivalued in that
region. In case the D matrix is the unit matrix, the situation is not clear because the
eigenfunctions may or may not be singlevalued in such a case. In case there are no
problematic points in the region surrounded by the contour, the eigenfunctions are
singlevalued in that particular region. However, in case there is an even number of
such points, the eigenfunctions are multivalued although n is even. The discussion
related to these issues is extended in Sections 5.3.1 and 5.3.3.

In principle we could have a situation where one of the diagonal elements is (41)
and one (—1), but from the structure of the D matrix one can see that this case can
never occur.

3.1.1.3 The Diabatic Potential Matrix

The final issue in this section is the diabatic potential matrix W as given by Eq. (2.39).
Employing the A matrix in Eq. (3.4) and recalling that u is a 2 x 2 diagonal matrix,
we get the following elements for W:

W11(s) = cos? y(s)uy + sin” y (s)uy
War(s) = sin® y(s)u; + cos?y (s)ux (3.13)
Wia(s) = cos y(s)siny(s) (1 — uz)

In Corollary 2.1 it was proved that in order for the W matrix to be singlevalued,
the D matrix has to be diagonal. In the previous section we showed that in order for
this matrix to be diagonal, the value of y(s) for a closed contour [when it becomes
a(I")] has to be an integer multiple of 7 [see Eq. (3.12)]. Indeed, from Eq. (3.13) it
can be seen immediately that the three matrix elements W;;(s); i, j = 1,2 at the initial
point and at the endpoint (which is identical to the initial point) are equal if and only
if this angle a(I") (= y(so|Sp)) is an integer multiple 7.
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Short Summary The fact that the NACT of the two-state system is quantized in a
given region in configuration space guarantees that the 2 x 2 diabatic potential matrix
is singlevalued in this region.

3.1.2 Three-State Systems

3.1.2.1 Adiabatic-to-Diabatic Transformation Matrix
The relevant 3 x 3 g matrix is given in the form!—3

0 1 0
g=| -1 0 g (3.14)
0 -n 0

where 7 is a parameter. The eigenvalues of the g matrix are
t,==iow, 3=0; w = 1+772 (3.15)

and the corresponding matrix, G, that diagonalizes it is

. 1 1 V2
G=——|io —-iw 0 (3.16)
/2
-n -n 2

Recalling Eq. (3.8), where the corresponding three diagonal elements of the E matrix
are

E1x(s) = exp(£iwy(s)); Ez(s) =1 (3.17)
we get for A the following matrix

n? + C(s) wS(s) n(l —C(s))
A(s) = w2 wS(s) W?C(s)  —nwS(s) (3.18)
n(l—C(s) nwSs) 1+n*C(s)

where
C(s) = cos (wy(s)); S(s) = sin (wy(s)) (3.19)

and y (s) is as given in Eq. (3.6).
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3.1.2.2 Topological Matrix
Having the A matrix, we can present the corresponding topological D matrix

”+CT)  wST) pl—C@)
DI) =w? wS() o’ CT)  —nwS) (3.20)
n(1—CT)) nwST) 1+n*CI)
where

C(I) = cos (wa());  S(T') = sin (wa(I")) (3.21)

and o(I") is as given in Eq. (3.10). We recall that the D matrix has to be diagonal and
in order for that to happen, a(I") has to fulfill the condition

wa(lT) =+/1+n?al)=27n = o) =27n/w (3.22)

where 7 is an integer. Once this condition is fulfilled, it is noted that the D matrix
becomes a unit matrix because all three diagonal matrix elements are equal to +1.
In case A(s) is chosen in such a way that it fulfills the equation

al) = % ds - A\s)=m (3.23)
r

we find that the condition to be fulfilled by 7 is

n=+v4n*>—1 (3.24)

where, as we recall, n is an integer.

Short Summary For this particular type of 3 x 3 7 matrix, the quantization takes
place if and only if n and A(s) fulfill the condition given in Eq. (3.22). It is interesting
to mention that the resulting D matrix is always a unit matrix that yields information
regarding the way the three states are coupled. This type of coupling is discussed in
Section 5.3.4.
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3.1.3 Four-State Systems

3.1.3.1 Adiabatic-to-Diabatic Transformation Matrix
The relevant 4 x 4 g matrix in this case takes the form?

o 1 0 o0
-1 0 n 0
8=lo - o o
0 0 - 0

(3.25)

where 1 and o are the two relevant parameters. The matrix G that diagonalizes g is

iAg iA, —iA, —iX,
LI pAy —pA =g, g},

2l ix i i

q)‘p _CI)‘p p)‘q _p>‘q

where A, and A, are constants given in the form

2 _ 2
_ |-t l—g¢
MEpmE Mo
p q
Here p and g are defined as
1 5 1/2
p:—(a) +\/a)4—402)
V2
1 (2 o 2>1/2
g=—|o"—Vo*—4o
V2

with @ given as

w=,/(1+n*+0?)

The corresponding four eigenvalues of g are

thhp==%ip, 14 ==iq

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Employing Eq. (3.8) where the corresponding four diagonal elements of the E matrix

are

Ej2(s) = exp(£ipy(s))
E34(s) = exp(Liqy(s))

(3.30")
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we find the following expressions for the 16 A-matrix elements

An(s) = XCp+ N2C,; Aix(s) = pAZS, + gA2S,

Ai3(8) = Ap A (=C, + Cy); Aa(8) = ApAg(—q S, + pSy)

An(®) = PPN Cp +°X;Cs Ans(s) = XA (S, — g5,

A2(s) = pgApAg(Cp = Cp);  Azz(s) = (A Cp +AICY) (33D
As(s) = —(@N; S, + PA;S);  Au(s) = ¢* N, Cp + PP AIC,

Ay (8) = —An(s);  Azi(s) = Ais(8);  Az(s) = —Axs(s)

Agi(s) = —Auu(s);  Apa(s) = An(s);  Agsz(s) = —Ax(s)

where

Cp=Cp(s) =cos(py(s));  Sp=Sy(s) =sin(py(s)) (3.32)
and similar expressions for C, and S,. The angle y(s) is presented in Eq. (3.6).

3.1.3.2 Topological Matrix
As will be seen next, the four-state case is not just another case in this series because
we encounter here more interesting laws of quantization.

We do not present the corresponding topological D matrix as it is identical to the
A matrix given in Eq. (3.31) with the relevant C,, S,, C,, and S, functions having
slightly different expressions, namely

C, = Cp(I) =cos(pa(l')); Sp==5Sp(I") =sin(pa(l)) (333)

C, = Cy(I') =cos(qa(l)); §; = §,(I') = sin(ga(l’)) '
where «(I") is as given in (3.10). Next are discussed the conditions for which the
relevant D matrix becomes diagonal. This happens if and only if p and ¢ fulfill the
following relations

pa = p% ds - A\(s) =2nn (3.34a)
r

qga =gq f ds - A(s) =274 (3.34b)
r

where n and ¢, defined in the range n, £ > 0, are allowed to be either integers or half-
integers but m(= n — £) can attain only integer values. Since p > g see [Eq. (3.28)]
this implies that n > ¢ and therefore m > 0. Again choosing A(s) to fulfill Eq. (3.23)
yields (p,q) = (2n,2¢) for p and q.

The difference between the case where n and £ are integers and the case where
both are half-integers is as follows. Examining the expressions for the elements of
the D matrix we note that in the first case all diagonal elements of D are (+1), so that
D is, in fact, the unit matrix. In the second case it can be seen that all four diagonal
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elements are (—1), so that the D matrix is the unit matrix multiplied by (—1). These
two situations are addressed later in Section 5.3.3 [see in particular Eq. (5.21¢)].

Since p and ¢q are directly related to the NACTs n and o [see Egs. (3.28) and
(3.29)], the two conditions in Egs. (3.34) imply, again, “quantization” conditions for
the values of the 7-matrix elements, namely, for n and o, once A(s) (or «) is given.

It is interesting to note that this is the first time in the present framework that
quantization is formed by fwo quantum numbers. This case is reminiscent of the two
quantum numbers that characterize, for instance, the hydrogen atom.

Short Summary In this special 4 x 4 T matrix the quantization takes place if and
only if 1, o, and A(s) fulfill the condition given in Eq. (3.34). It is interesting to
mention that the resulting D matrix is always either the unit matrix or the unit matrix
multiplied by (—1). These two possibilities yield information regarding the way the
four states are coupled with each other as is discussed in Section 5.3.3.

3.1.4 Comments Related to General Case

In Sections 3.1.1-3.1.3 we treat a particular group of 7 matrices (constructed for
corresponding Hilbert spaces) as presented in Eq. (3.1), where g is a constant anti-
symmetric matrix and A(s) is a vector. The general theory demands that the matrix D as
presented in Eq. (2.33) be diagonal and that, as such, it contain (£1)s in its diagonal. In
the three examples that were just discussed, we found that the corresponding D matrix
contains either (4+1)s or (—1)s in its diagonal but never a mixture of the two. In other
words, the D matrix for this type of model can be represented in the following way

D) = (— DI (3.35)

where k is either even or odd and I is the unit matrix. Indeed, for the two-state case
k was found to be either odd or even, for the three-state case it was found to be
only even, and for the four-state case it was found, again, to be either odd or even.
Assuming that this pattern continues (viz., the various D matrices have a fix sign
throughout their diagonal), the following conclusions can be drawn:

1. Incase the dimension of 7 is an odd number, the D matrix is always the unit matrix.
The reason is that an odd antisymmetric matrix has, at least, one eigenvalue that
is zero. The matrix 7 is such a matrix, and therefore it can be shown that the D
matrix has to have at least one diagonal term that is +1. Since all the diagonal
terms are expected to have identical signs, this implies that the D matrix has to be
the unit matrix and therefore &, in Eq. (3.35), is an even number

2. In case the dimension of the 7 matrix is an even number, no restrictions are known
to exist for the signs of the D-matrix elements, which implies that D is either I or
-D.

3. These two facts, based on our findings in Sections 3.1.1-3.1.3, imply that in case of
an odd dimension, “quantization” is characterized by integers only [see Eq. (3.22)]
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butin case of an even dimension itis characterized either by integers or half-integers
[see Egs. (3.12) and (3.34)].

3.2 STUDY OF 2 x 2 DIABATIC POTENTIAL MATRIX
AND RELATED TOPICS
3.2.1 Treatment of General Case

The models to be discussed in this section are 2 x 2 diabatic potential matrices of the
following type:

V(s) = (vl(s) vs) ) (3.36)

v(s)  va(s)

These matrices have to be symmetric in order to guarantee unitarity of the S matrix
needed for the calculation of scattering and spectroscopic cross sections.! In order to
simplify the forthcoming algebra, we introduce two new variables:

i(s) = 1 (i (s) + v2(9))

: (3.37)
w(s) = 5 (vi(s) — va(s))
The potential matrix V(s) is written in the form
V(s) = Va(s) + V(s) (3.38)

where V;(s) is a diagonal matrix of the form 9(s) I (I is the unit matrix) and V(s) is
the resulting (diabatic) matrix

w(s) v(s)
V(s) = ( o(s) —w(s)) (3.39)

which is the main issue of the present section.
We consider Eq. (2.17) and rewrite the general element of the diabatic potential
matrix:

V(s 150) = (¢;(se | 50)| He(se | 8) 15k (se | 50)) (3.40)

Next, following Eq. (2.23), we rewrite it in a somewhat modified way:

¢(se 150) = AT(8)¢(s. |'5) (3.41)
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Substituting Eq. (3.41) in Eq._(3.40) and recalling that {(s.|s) contains the eigenfunc-
tions of H,(s.|s), we get for V(s) the following outcome:

V=A"uA (3.42)

Here u(s) is a diagonal matrix that contains the adiabatic potentials, and Eq. (3.42)
implies that A(s) diagonalizes V(s) and consequently also diagonalizes V(s) [intro-
duced in Egs. 3.38) and (3.39)] because

u—V,=a=A"VA (3.43)

Here ii(s), just like u(s), is a diagonal matrix. Since A(s) is an orthogonal matrix, it
can be written as in Eq. (3.4). Following Eq. (3.41), the two electronic eigenfunctions
(1¢1(8)),1¢2(s))) can be presented in terms of their initial values as follows:

<|cl<s>>> =( cos B(s) sinﬁ(S)) <|§1(So))) k)
1£2(s)) —sinp(s) cosf(s) J \ 122(s0)) '

Here the notation y(s) is replaced by B(s) to emphasize the fact that in Eq. (3.44) is
encountered the mixing angle, which follows from diagonalizing the diabatic potential
matrix V(s) and not the ADT angle, which is computed employing a line integral [see

Egs. (3.5) and Eq. (3.6)]. Because it is the mixing angle, 8(s) is given in the following
form [see Eq. (3.39)]:>7°

w(s)

B(s) = %tanf1 <@> (3.45)

Lemma 3.1 The mixing angle S(s) is identical, up to an additive constant, to the
ADT angle y(s).

Proof To prove this lemma, we consider the corresponding NACT, 7,(s):

Ti2 = (11 V¢a) (3.46)

Substituting (|£1(s)),|£2(8))) as given by Eq. (3.44) in Eq. (3.46) yields as a result the
first-order differential equation for B(s):>>

T12(8) = —VB(s) (3.47)

Comparison of Eq. (3.47) with Eq. (3.5a) shows that the two angles, 8(s) and y(s),
fulfill identical first-order differential equations which proves the lemma.

Since the two angles differ at most by an additive constant (which is of a minor
physical significance), we do not distinguish anymore between the two angles. Both
are termed ADT angles.

In what follows the subscript (12) is deleted from 7,(s).
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Corollary 3.1 Combining Egs. (3.45) and (3.47) yields the connection between the
diabatic potentials v(s) and w(s) and the corresponding NACT, 7(s):%7
1

T = e )

V (v(s)/w(s)) (3.48)

The fact that the ADT angle and the mixing angles are identical introduces one
additional result, which is expressed in terms of the following lemma.

Lemma 3.2 The NACT, 7(s), formed by a diabatic potential is always quantized.

Proof To prove this lemma, we consider Eq. (3.45), from which it is seen that for
any point s = s, along the contour I' we have the following relation:

v(sp)
w(s,)

tan(28(s,)) = (3.49)

Consider now the initial point s = s; of a closed contour I' and the final point s =
s of this contour. Equation (3.49) is fulfilled for both points, but since I' is a closed
contour, we have that s = s; and s = s are the same points (in configuration space)
and consequently the mixing angle 8 calculated at the beginning of the contour and
the one calculated at the end of the contour are related as

B(sy) = B(si) +nm (3.50)

where n is an (unspecified) integer. Equation (3.50) implies that the NACT 7(s),
presented in Eq. (3.48) is always quantized [see Eq. (3.12)].
A numerical example for a calculation of the n value in Eq. (3.50) is given in Ref. 3.
As a final task, we check whether 7(s) as presented in Eq. (3.48) fulfills the Curl
equation. For this purpose we assume that s = (x,y) and we examine the expression
[see Eq. (1.28)]

OTx(xy)  9Ty(%y)
ay dx

0 (1.28)

where

1 ! D (u()/w(s) ~ /
21+ )y wey: P (3.48")

Tp(s) =

Defining f(x,y) = v(x,y)/w(x,y), it can be shown that:

%;’y) = (14 1) @ffefs = f)

0T, (x,y) _
ox

3.51
- (3.51)
(1+f) (szyfx_fxy)
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As is noted, the two expressions are identical if and only if f,, = f,,. Since
this equality is fulfilled for all potentials v(x,y) and w(x,y) that are analytic func-
tions of x and y, the Curl condition in Eq. (1.28) is fulfilled for such (diabatic)
potentials.

3.2.2 The Jahn-Teller Model

The Jahn-Teller model is the better known diabatic potential. It is simple enough
to be treated analytically and sufficiently general to have physical relevance.”~!3
Within this model we consider a planar case characterized by either general Cartesian
coordinates (x,y) or their corresponding polar coordinates (q,¢):

x=gqgcosgp and y=gsing (3.52)

The Jahn-Teller model concentrates on a region around point P(0,0), where the
two diabatic potentials, u(x,y) and v(x,y) [see Eq. (3.39)], become zero:

wx =0,y =0) = 0; v(x =0,y =0)=0 (3.53)

The basic assumption of the Jahn—Teller model is that in the close vicinity of this
point the diabatic potential V(s) is linear and takes the form

Vxy) =k ( " _xy) (3.54)

where k is a given constant. The two eigenvalues of V(x,y) (=V(q,p)) are
uy =kq and up; = —kq (3.55)

and they are valid for any value of ¢ in the range: 0 < ¢ < 2x. Since u; and u, are the
adiabatic potential energy surfaces, it can be easily seen that each potential has a cone
shape—one cone inverted with respect to the other—and have one common point at
the origin (see Fig. 3.1). This situation is known as the conical intersection,''~'3 and
we refer to the point of intersection as the ci point or simply as the ci. The ci points
were also mentioned in Section 1.1.2, where we referred to them as points at which
the relevant eigenfunction is not analytic.

The rest of this section concentrates on the polar components of the NACTs,
namely, the radial component, T,(¢,q) and the angular one, 7,(¢,q)/q, where both
7,(0.9); p = q,p are defined as

9
8—§2>; pP=9q.9 (3.56)
p

Tp = <§1
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(i, 4]

{1, q

Figure 3.1 The two interacting cones describing the Jahn—Teller model.

In case of the diabatic potentials, the two polar components 7,(¢,q); p = ¢,¢
[which are similar to the Cartesian ones given in Eq. (3.48')] are

1 d(v/w)
; =q, 3.48"
T+ @/w?) o P=q.9 (3.487)

Tp((p-Q) = _2(

Next, employing Eq. (3.48), we derive the polar NACT components for the Jahn—
Teller model. Since w(x,y) = y and v(x,y) = x, we get the following result for v(x,y)/
w(x,y) [see Eq. (3.52)];

v(@.9)/w(p,q) = tang (3.57)

Substituting Eq. (3.57) in Eq. (3.48) yields the two required components of 7(¢,q):
To(@q) =—3 Tpq) =0 (3.58)
Having these components, we are in a position to calculate the » value introduced in
Eq. (3.50) for the Jahn-Teller model. Substituting Eq. (3.58) [viz., T,(¢.q)/q =
1/(2¢g)] in Eq. (3.12) and assuming the contour to be a circle (which implies that the

tangential component of the infinitesimal vector ds is g d), for (') (= a(q)) we
get the result of 7, namely, n = 1.
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3.2.3 Elliptic Jahn-Teller Model

The elliptic Jahn—Teller model is defined in terms of ©
w(gg)(=y)=qcosp  and  v(@,g)(= bx)=Db(g)gsing (3.59)
Consequently v(g,¢)/w(g,¢) becomes

v(p.q)/w(pq) = b(g)tan ¢ (3.60)

Substituting Eq. (3.60) in Eq. (3.48") yields the following expressions for the two
components of 7(¢,q):

rolg) = —2 ——2D (3.61)
i 2 cos? ¢ + b(g)?sin® ¢ '

1 b db
To(pq) = — @) @ (3.61b)

“4cos2g + b(gPsin2g dg

It is noted that 7, (¢,q) becomes zero if the parameter b does not depend on g and the
circular Jahn—Teller model is obtained for b = 1.

Figure 3.2 presents three curves describing the angular NACT, 7,(¢), related to
the elliptic model [see Eq. (3.61a)], as calculated for three different b values, namely,
b = 2,4,6. It is noted that the curves have a double-hump structure. The humps are
of equal size and increase as b increases. It is also noted that as b — 1, the elliptic
model converges to the Jahn—Teller model.

—1
To()rad
— S}
— n o 93
e L

o
n

Figure 3.2 The angular NACT, 7,(¢), as calculated for the elliptic Jahn—Teller model, for
three b values [i.e., b = 2,4,6; see Eq. (3.61a)]. The b values are listed on the r.h.s. of the
figure.
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3.2.4 Distribution of Conical Intersections
and Diabatic Potential Matrix

The fact that the two-state NACT, 7(q,¢), can be presented in terms of the diabatic
potentials w(q,¢) and v(g,¢) [see Eq. (3.48)] opens up the possibility of studying the
ci distribution, in a given region of configuration space, within the diabatic framework
(i.e., without using the NACTs explicitly).

In Section 3.2.1 we proved that any (2 x 2) diabatic potential matrix forms NACTs
that satisfy the quantization condition. This implies that for the case where the contour
I' is a circle, Eq. (3.12) takes the form

2

a(q) = / o(@@)dp = n (3.62)
0

where T,(¢,q) is as given in Eq. (3.48”) but the integer n is unknown. The present
section is devoted to the determination of n for a given pair of potentials
(v(q,9),w(q,p)). For this purpose we employ Eq. (3.48”) and break up the ¢ interval
[0,27] into N subintervals [¢;_;,¢;] so that the integration along the angular [0,27]
interval is presented in terms of a sum of integrals along adjacent segments:

2 . @ . Pj

f d ]iV/ d 1%/ L e/w), (3.63)
Ted¢ = Tedp = = %) .

: = 295 ) 1 W/wr de

The gridpoints {¢;}j =0,1,... N possess the following features:

1. The starting point ¢ (which is also the final point of the closed contour) is chosen
so that w(gp) # 0. For reasons of convenience it is preferred to choose ¢q in such
a way that v(¢g) = 0.

2. All other gridpoints are chosen so that either w(g;) = 0 or v(¢;) = 0. No other
gridpoints are assumed.

In what follows the gridpoints {¢; } for which v(¢;) = 0 are labeled as “z points”
[these are the zeros of the function v(¢;)/w(y;)] and the gridpoints {¢;} for which
w(gp;) = 0 are labeled as “p points” [these are the poles of the function v(g;)/w(g;)].

To continue we change the variable of integration in each integral in Eq. (3.63) so
that we get

2 .

14X 1
f‘r‘pdgo =52 + f l+f2df 3.64)
0
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where the various f; terms, defined as f; = v(g;)/w(g;) = f(¢;), are either 0 or oco.

First let us consider the case of a single term for which f;_; = 0 and f; = oo:
171 1 1
- df = —tan~! f17° = = 3.65
2/11+f2 f=stan [l =37 (3.65)
0

Next we consider two successive intervals, the j and the (j + 1) intervals defined
by the three consecutive ¢; points: (z,p,z). These gridpoints translate into the three
consecutive f; points {0,00,0} Therefore, adding up the results due to two successive
intervals yields

®j Pj+1 | 0 | | 0 |
/dego—l—/de(p::t 5/1+f2df+§/1+f2df
Pj-1 @ 0 [e%s)

T —TT
:i<5_<3)):in (3.66)

The plus (minus) sign in front of the parentheses in Eq. (3.66) stands for the case
where (v/u) is positive (negative) in the range [¢;_1, ¢, 11].

It is important to comment that for a given series of p—z points two (or more)
successive points may be of the same kind, namely, either p—p or z—z points. Two
such successive points produce an integral [of the kind given in Eq. (3.65)] with
identical upper and lower limits, and therefore their value is zero.

The final result for the integral in Eq. (3.64) can be written as

YN 2

/m(q,so)dw = /Tw(q,w)dw =+imn (3.67)
0 0

Here m is an integer (or zero) that stands for the number of zp pairs along the interval
{0,257 } and fulfills the condition m < M where M is the number of p points. However,
the quantization condition [see Eq. (3.12)] requires that m be an even number (or zero).
It is guaranteed to be zero if between any two consecutive z points we have an even
number of p points. In case of a single ci m has to be at least 2, which implies that
in order for the (diabatic) potentials in Eq. (3.39) to yield a ci both w(q,¢) and v(g,¢)
have to flip their signs (one after the other) at least twice along any closed contour that
surrounds the ci. In other words, the four points have to be arranged in the sequence

{zp.2.p}.
[Comment: The roles of w(q,¢) and v(g,¢) can be reversed; namely, all points that are

defined as poles can be defined as zeros and vice versa so that the same m value is
expected in Eq. (3.67).]
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In the applications one has to carry out the following steps:

1. Choose a point in the region of interest that is the center for the circular contours.

2. Select a set of radii ¢ in the range ¢ = [¢min> gmax]-

3. Find along each circle the zeros of u(q,¢) and v(q,¢) and arrange them in a (mixed)
series according to their ¢ values.

4. Delete all two (or more) successive zeros of v(g,¢) and/or two (or more) successive
zeros of u(g,¢).

5. Count the remaining zp pairs to determine the number m.

The result of this procedure has to be a zp sequence of the kind {z,p,zp, ...,zp, - - .,
z,p,2,p}. Assuming that m is the number of zp pairs in this sequence, then the value
of the line integral in Eq. (3.67) is equal to m %7{, and because of the quantization rule
m has to be an even number. It is important to note two facts:

1. Having m = 0 does not necessarily imply that the region surrounded by the closed
contour does not contain any cis. It may imply that it contains an even number of
cis where half of them are positive cis and the other half are negative cis so that
that their net contribution is zero.

2. The number m may vary from one closed contour to another but not necessarily uni-
formly (e.g., not always in an increasing order just because the region surrounded
by the contour becomes larger).

As an example, we consider again the elliptic Jahn—Teller model discussed in
Section 3.2.3. For this model we have

flg.0) =v(pq)/w(pq) = b(g)tan ¢ (3.60)

It is noted that the z points are at ¢ = 0,77,27 and the p points, at ¢ = /2, 37 /2. This
means that we encounter the following (zp,zp) series; thus m = 2. Consequently the
relevant contour surrounds one ci (a similar situation is encountered for the regular
Jahn-Teller model). An exercise for studying a model with nine cis is presented at
the end of this chapter (see Section 3.4 and Problem 3.1).

Before closing our discussion of this subject, we mention two earlier studies on
this issue: (1) study'* of the function tan~!(2 f (¢)) as a function ¢ for a specific case
and (2) study'” of a similar idea applied for a general case.

3.3 ADIABATIC-TO-DIABATIC TRANSFORMATION MATRIX
AND WIGNER ROTATION MATRIX

The ADT matrix, as it is presented in Eq. (2.29), is somewhat reminiscent of the
Wigner rotation matrix.! In order to see that, we first present a few well-known
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features related to the definition of ordinary angular momentum operators (we follow
the presentation by Rose?) and the corresponding rotation matrices and then return to
discuss the similarities between the ADT matrix and the relevant Wigner rotational
matrix.

3.3.1 Wigner Rotation Matrices

The ordinary angular rotation operator D(k,¢) in the limit ¢ — O is written as
D(k,¢) = exp (—iS(k,p)) (3.68)

where Kk is a unit vector in the direction of the axis of rotation, ¢ is the angle of
rotation, and S(k,p) is an operator that has to fulfill the condition S(k,p) — 0 for
¢ — 0 to guarantee that in this situation (i.e., when ¢ — 0) D(k,p) — I. Moreover,
since D(k,¢) has to be unitary, the operator S(k,¢) has to be Hermitian (to guarantee
real eigenvalues). Next it is shown that S(k,¢) is related to the total angular momentum
operator J in the following way:*

Sk,p) = (k- Dg (3.69)

where the dot stands for scalar product. Substituting Eq. (3.69) in Eq. (3.68) yields
the following expression for D(k,p):

Dk,p) = exp (—i(k - )g) (3.68")

It has to be emphasized that in this framework J is the angular momentum operator
in the ordinary coordinates space (i.e., configuration space) and ¢ is a (differential)
ordinary angular polar coordinate.

Next the Euler angles are employed for deriving the outcome due to a general
rotation of a system of coordinates.? It can be shown that D(k,p) is, accordingly,
presented as*

D(k,p) = e™'*Ve 7 (3.70)

where J, and J, respectively are the y and the z components of J and «, 8, and y
are the corresponding three Euler angles. The explicit matrix elements of the rotation
operator D are given in the form!

D,,..(¢) = (jm'| Rk, @) |jm) = e~ ") (B) (3.71)
where m and m’ are the components of J along the J, and J, axes, respectively, | jm)
is an eigenfunction of the Hamiltonian J? and J., and &’ , (B(¢)) is the y component

m'm
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of the rotation matrix presented in the form:'
&, (B) = (jm'| PO | jm) (3.72)

Here the d matrix is termed Wigner’s matrix, and it is for this matrix that we intend
to show a close relationship with a certain class of ADT matrices.

3.3.2 Adiabatic-to-Diabatic Transformation Matrix
and Wigner d’ Matrix

The simplest way to reveal the relationship between Wigner’s d matrix and the A
matrix is to consider the two matrices J, and the 7 that form d’ and A, respectively
[see Eq. (2.29)].>°

We start by considering the elements of the J, matrix. Employing Egs. (2.18) and
(2.28) of Ref. 2, it can be shown that J, is a tridiagonal imaginary Hermitian matrix
with the following elements:

1
(jm|J, |jm +k) = (m;m +m+1)(j —m)
! (3.73)

1
Gm + KLy jm) = =61/ = m + D(j +m)

To see the similarity between the J, and the 7 matrix elements, we replace J, by J v
defined as

J, =—il, (3.74)

where J y is areal antisymmetric tridiagonal matrix. Having this real matrix, Wigner’s
d) matrix takes the form

d(B(p)) = exp(—J, 8(9)) (3.75)

which for a certain group of 7 matrices becomes similar to the ADT matrix A. In
fact, employing the T matrix for the models given in Eq. (3.1), where the g matrix
contains only tridiagonal elements [see Egs. (3.2), (3.14), and (3.25)], enhances the
similarity between the two types of matrices. Combining Eq. (2,29), Eq. (3.1), and (a
modified version of) Eq. (3.6) yields the following expression for the A matrix to be
discussed:

A(p|l") = exp (gy (¢I)) (3.76)

In Eq. (3.76) we assumed that the closed contour I' is a circle, and consequently
the vectorial variable s becomes the scalar angular coordinate, ¢ defined along the
interval {0,27 }. In this way, both y(¢|T") and B(¢) are defined in terms of the same
independent angle ¢ and both relate to the same contour.
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It is important to emphasize that the similarity between di and A is expected to be
enhanced by the fact that both J, and g fulfill similar guantization conditions.
In the following list we describe explicitly (our) two-state case (see Section 3.1.1),

which in Wigner’s notation is the case for which j = %, our three-state case (see

Section 3.1.2), which in Wigner’s notation is the case for which j = 1, and our four-
state case (see Section 3.1.3), which in Wigner’s notation is the case for which j = %:

1. For the two-state case (i.e., j = %) the condition for the two matrices to become

identical is that y (¢) = (3)B(¢).

2. For the three-state case (i.e., j = 1) the condition for the two matrices to become
identicalisthat y(¢) = (1/ V2)B (¢). This relation yields, the following numerical
values for the various parameters: n = 1 [see Eq. (3.14)]; w = V2 [see Eq. (3.22)];
o = /27 [see Eq. (3.22)]. We emphasize that n in Eq. (3.22) has to be (an integer),
and we assumed it to be 1. Substituting the values of these parameters in Eq. (3.18)
yields the corresponding d'(B(¢)) matrix given in the form:

1+C(B) V25(8) 1-CB)
d'@ =1 v2s) 208 —V25(8) (3.77)
1—-C@B) 28B) 1+C@PB)

where C(8) = cos B and S(B) = sin S.

3. For the four-state case (i.e., j = %) the condition for the two matrices to be-
come identical is that y(¢) = +/3/4 B(¢). This relation yields, the following nu-
merical values for the various parameters: n = \/g and 0 =1 [see Eq. (3.25)];
w= \/g [see Eq. (3.29)]; p = +/3 and ¢ = 1/+/3 [see Eq. (3.28)]; « = /3
[see Eq. (3.34)]. It is important to emphasize that Egs. (3.34) are employed for the
case n = % and £ = %

Substituting the values of these parameters in Eq. (3.31) yields the correspond-
ing d¥2(B(¢)) matrix given in the form

c? —3C?%s —/382C 53
V3C2S  Cc(1-38%) —S(1-3C%» —/38*C
—V/38*C  S(1-3C?%» C(1-35%) —J3C%s

-5 —/38%C V3C?S c?

¥ (B) = (3.78)

where C = cos(8/2) and S = sin(8/2).

The main issue to realize is that the original y component of the total angular
momentum operator J is a special case of the quantized g matrix. It is a special case
because the elements of J, have well-defined values whereas the quantization laws as
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established for the product ga(I") still leave freedom in choosing y (¢). Thus different
choices of y(¢) will lead to different types of di(B) matrices.

PROBLEM

3.1 Given the diabatic potential in Eq. (3.39), study the zp points (see Section
(3.2.4)) for the following model

v(x,y) = sin(x)

. 3.79
w(x,y) = sin(y) ( )
and derive the values of the various line integrals along three different circles
with three different radi ¢: (a) ¢ < 7; (b) 7 < g < ~/27; (c) g > /2.

Solution Having the potentials in Eq. (3.79), we note that all the points defined
as

(x,y) = (£jm, 2km) (3.80)

where j and k are integers (or zero) are ci points because at these points both
v(x,y) and w(x,y) become identically zero (see Ref. 1 in Section 3.4).

Figure 3.3 shows nine cis, three circles, with radii ¢ = 0.6, 1.2z, and 1.87,
that surround part or all of them, as well as three (horizontal) lines, namely,
x = —m,0,m, and three vertical lines, namely, y = —x,0,m. Following Egs.
(3.79) and (3.80), we have a ci at each intersection between a horizontal x
line and a vertical y line (thus, nine cis altogether). As for the zp points, the
intersection between a circle and any horizontal x line forms a z point, and the
intersection between a circle and any vertical y line forms a p point.

Next, we consider, the ci distribution in regions surrounded by three circles:

(a) The inner circle, drawn for a radius ¢ = 0.677. We note that only the x = 0
line and the y = 0 lines cross it (twice) and that these crossings form the
{zp,zp} sequence. In other words, we have here two zp pairs; thus m = 2
and therefore the value of the integral in Eq. (3.67) is 7. This fact implies
that in the region surrounded by the inner circle is located one ci (or,
eventually, an odd number of cis points). In fact, we see that we encounter
one ci only.

(b) The intermediate circle, drawn for aradius ¢ = 1.27. This circle is crossed
(twice) by the three horizontal lines, namely, x = —m,0,7r, and by the three
vertical lines, y = —m,0,. These intersection points form the following
sequence of zp points: {z,p,z,p,z.p,z,p,2P,2,p }—thus six pairs of zp points
that yield the value m = 6. As a result line integral in Eq. (3.67) becomes
3, implying that in the region surrounded by this circle are located either
three cis (with identical signs) or a larger number of cis where some of
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y=-n y=0 y=m

Figure 3.3 The distribution of cis as obtained for the model system given in Eq. (3.81).
Shown are ci points, the horizontal lines x = (7, 0, —7), the vertical lines y = (=, 0, —m),
the three concentric circles a, b and ¢ with radii g = 0.6, 1.27, 1.87, respectively), and the
z and p points (which are the crossing points between circles and the previously mentioned
straight lines). Along the inner circle are located two z points and two p points and along the
intermediate and the outer circles are located six z points and six p points. Note that the internal
distribution of the z and p points in both circles is different. [Key: B positions of ci points;
o crossing points between the circles and # = 0 lines (forming z points); ® crossing points
between the circles and v = 0 lines (forming p points).]

(c)

them are with an opposite sign. In fact, we encounter five cis; four of
them have identical signs, and one of them (the central one) possesses an
opposite sign.

The outer circle, drawn for ¢ = 1.8, which is crossed by the same six
previous lines, but at different points and therefore a different sequence of
zp points is formed, namely, {z,z,p,p,p,z,2,z.p,p,p,2}- Since each pair of the
same kind (i.e., zz or pp) cancel each other, we delete all these pairs so that
we are left with the following sequence of points: (p,z,p,z). In other words,
the initial large series of zp points shrinks to become two pairs or m = 2,
which implies that the value of the integral in Eq. (3.67) is now again, 7,
although we have a distribution that contains nine cis. The interpretation
of this outcome is that in this enlarged region we find five cis with one sign
and four with an opposite sign.
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As a final issue in this exercise, we refer to direct calculation of the line
integral in Eq. (3.67) where T,(¢|q) is given in the form

1 ycosxsiny + x sinx cosy

T,(x,y) = 3.81
(1) 2 sin® x + sin® y (G810
In deriving Eq. (3.79) we used the fact that x = g cos¢ and y = ¢ sin¢ and
applied the relation
dx dy
Ty(x,y) = Tx(x,y)% + Ty(x,y)% (3.82)
where T,

and T, are calculated employing Eq. (3.48").

To(P/q) rad™!

0 w2 T 3n/2 2/n

2n

(b)

Y(9/q) rad

/2 T 3m/2 2/n
¢/rad

Figure 3.4 The angular NACT, 7,(¢|q), and the ADT angle y(¢|q), both as functions of

@ calculated along circles with radii ¢ = 0.67,1.27,1.87. (Key: — g = 0.67; --- ¢ = 1.2m;
e g = 1.87).
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The calculations were done for the abovementioned three g values: g = 0.6,
1.27, and 1.87. Figures 3.4a and 3.4b present, respectively, the 7,(¢|g) and
y(¢|q) values calculated, as a function of ¢ (see Eq. (4.3)), for the three g values.
The values of y(¢ = 2m|q), which represent the results of the line integral in
Eq. (3.67) or the value «(g) in Eq. (3.12), are 7, —3m, and 7, respectively, just
like the ones we obtained by applying the zp sequence approach.

This issue is discussed in the article by Vértesi et al.!
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CHAPTER 4

STUDIES OF MOLECULAR SYSTEMS

4.1 INTRODUCTORY COMMENTS

The main issue to be discussed in this chapter is related to NACTs. The NACTs were
appropriately introduced in Chapter 1 and discussed further in Chapter 2. Here we
concentrate on their spatial distribution as obtained from ab initio treatments. Another
concept that is frequently mentioned in this chapter is the conical intersection (ci).
Although cis (or points of cis) were introduced in Section 3.2.2 their main features are
presented and analyzed only in Chapter 5. Still, the fact that cis and NACTs are closely
connected makes it impossible to refer to the one without mentioning the other. At this
stage we emphasize that ci points are points at which two (adiabatic) electronic states
become degenerate, and they are considered as the sources for forming NACTs.
Therefore while studying the NACTs we concentrate on regions surrounding the
various ci points.

Probably one of the most significant results of the theory so far is establishing the
quantization of the NACM for a group of states'~* that forms a Hilbert space (or the
approximate guantization for a group of states the forms a Hilbert subspace). This
concept is introduced in Section 2.1.3.3. (see Corollary 2.1), is discussed extensively
in Chapter 3 for simple models and is further established, in the present chapter, for
realistic molecular systems. Another aspect of the theory, of similar importance, is
the (approximate) fulfillment of the Curl equation (see Section 1.1.2) for a Hilbert
subspace. However, this issue is discussed, later, in Chapter 6.

To study the NACTSs, we consider a plane that contains three atoms (A,B,C). It is
important to realize that there exists only one plane that contains these three atoms

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.
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(although the plane itself is, in general, not fixed but may flip and tumble in space).
Still, for our purposes it suffices to consider only the body-fixed system of coordinates,
where a point in configuration space is described in terms of three coordinates. How-
ever, in order to simplify the search for the positions of the cis, we break up the
three-dimensional configuration space and present it as a series of two-dimensional
spaces that are chosen to be a series of parallel planes. In what follows we distinguish
between the various planes as follows. Each plane is formed while fixing the inter-
atomic distance R between two (out of the three) atoms, for instance, atoms B and C
(so that R = Rpc) and leaving atom A (the third atom) to move freely on that plane.
Atom A is used as a probe to examine the values of the different NACTSs, 7 1 (9), at the
various points Sbelonging to the (planar) region of interest. It is important to mention
that in order to obtain the NACTs for the three-dimensional configuration space the
values of Rpc are varied in some order and in this way to reveal all the cis of the
given molecular system. Doing it this way, it can be shown that the cis on the various
planes are connected by continuous finite or infinite /ines known by the term seams.

So far we mentioned triatom systems only. In fact, we also present results for a
tetraatomic system. There the search is done by fixing the positions of three atoms
and leaving, again, one atom to probe the NACTSs. Since we limit our discussion to
configurations where all four atoms form a plane, the free, fest atom is assumed to
move on that same plane as well. This system is discussed further in Section 4.3.1.3.

4.2 THEORETICAL BACKGROUND

The concept of quantization (without referring to it as such) was revealed a short
time after the Born—Oppenheimer treatment. While considering triatomic radicals for
which the ground electronic state in the collinear configuration is the doubly degener-
ate IT state, Renner presented a model, to study the spectroscopy of such molecules,
which is based on an angular NACT that couples the two nondegenerate states formed
by the (slightly) shifted central atom from the collinear arrangement.'> The NACT
is formed by the rotational motion of the central atom along a circular contour that
surrounds the axis formed by the two (fixed) external atoms. The Renner model
leads to two electronic states described in terms of the two electronic wavefunctions
|£;(S19)); j = 1,2 that satisfy the following relations?

= ihm (¢1] 4.1)

5 e
’%§1>=—1hm|§2), <£§2

where m is an integer. These relations yield a quantized NACT, namely, 7,1, = m
[see Eq. (1.4)], and a typical example is the NH, molecule.” A different situation is
encountered for the H 4+ H, system, which, employing either perturbation theory® or
ab initio treatment,* also leads to a quantized (angular) NACT, namely, 7,1, =
characterized by a half-integer.

It is important to mention that these studies are limited to an infinitely small (i.e.,
g-size) region surrounding the degeneracy axis, in the first (Renner) case, or the
ci point in the second. They resulted from successful applications of perturbation

1
2°
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theory but were not considered as general features related to molecular systems, and
therefore the concept of quantization was not used in this context. The contribution of
the present author and his collaborators to this issue is in extending the quantization
concept to substantial regions of configuration space and this first by discussing it
theoretically (see Section 2.1.3.1) and then by supporting it by numerical calculations
(as will be presented below). In this way the quantization is an inherent feature of
Born—Oppenheimer systems and applies to a group of N states that, in a given region
of configuration space, forms a Hilbert subspace (as introduced in Section 1.2).5~°

(Comment: Here we briefly mention that the Renner—Teller model, as it is now
termed,?!'? will not be discussed any further as this subject is beyond the scope of the
present book.)

Some confusion is created when quantization is connected with diabatization—a
process required if quantum-mechanical nonadiabatic calculations are to be carried
out (see Chapter 2). It was established (in Section 2.1.3.3 and in numerous publica-
tions) that diabatization in a given region can be carried out if and only if the NACM
is quantized (the quantization process is usually applied to the matrix as a whole and
not to a particular element). Thus quantization also, has a very important practical
aspect, and it is this aspect that is usually ignored. In other words, there exists the
belief that one is capable of diabatizing, for instance, a two-state system without
the topological phase «(q) to be a multiple of 7 [a requirement closely related to
Eq. (4.2)]. In Section 3.1.3.3 it is explained, why the NACT element [in this case the
(1,2) matrix element] for a two-state system has to be guantized in order to guarantee
the singlevaluedness of the diabatic potentials Wj;; jk = 1,2.

In Section 1.2 we discussed the subject of Hilbert subspace and the possibility of the
T matrix to breaking up into finite (diagonal) submatrices that are only weakly coupled
to each other. It is this breakup that enables the (quasi)quantization of finite blocks
of the T matrix. Therefore part of the numerical study is devoted also to this subject.

The numerical study to be presented next emphasizes the two aspects of this issue;
On one hand we show, numerically, that quantization of the two-state systems can
take place at relatively large regions of configuration space (and therefore for beyond
the region covered, e.g., by perturbation theory) and on the other hand show that in
those cases that two-state quantization breaks down a three-state quantization takes
over, and so on.

The theory is based on calculus performed along contours in configuration space
as discussed in Chapter 1. We remind the reader that our approach concentrates
on planes, and therefore the contours (in these planes) can be described in terms
of two coordinates (x,y) or (¢,¢) The magnitudes of interest in the two-states case
are the ADT angle as given in Eq. (3.6), and in case of more than two states, the
ADT matrix given in Eq. (2.29). In both cases the integration is carried out for the
tangential component of the required 7-matrix elements. In case of circular contours,
the tangential components become the angular components, namely, (1/g)T i, Wwhere
Tyjk 1s defined as follows:

9
Teik(@lg) = <§j(se|§0|Q)‘ @Q(selwlq)> 4.2)
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Thus, the ADT angle y(¢|q) related to the states j and j + 1 (the ADT angle
is defined only with respect to two adjacent states) is consequently designated as
vji+1(¢lg) and is given by the following expression:

(2
vii+1(plg) = /ijj+l(¢/|Q)d¢/ 4.3)
0

The corresponding topological phase, «;;+1(g), is defined similarly but for a closed
circle:

2

oi1(q) = / ot (@' l9)dy’ (4.4)
0

[Thus the upper limit in the integral in Eq. (4.3) becomes ¢ = 2.] Similar expressions
are employed for the ADT A-matrix elements [see Eq. (2.29)]

12

Alplg) = pexp —/Tw(wlq)dgo 4.5)
0

and the corresponding fopological D-matrix elements [see Eq. (2.32)]

2

D(g) = pexp —/Tw(wlq)dw (4.6)
0

The symbol g in front of the integrals in Egs. (4.5) and (4.6) implies that the integration
has to be carried out in a given order.

4.3 QUANTIZATION OF NONADIABATIC COUPLING MATRIX:
STUDY OF AB INITIO MOLECULAR SYSTEMS

4.3.1 Two-State Quasiquantization

4311 {H,H} System

The {H,H} system is known for its equilateral D3, conical intersection, which cou-
ples the two lowest states. In the present chapter we study the spatial distribution of
the NACT - to be designated as (1,2) NACT - that results from this ci. However, in
so doing we reveal that this spatial distribution is affected by two other cis that couple
the second and the third states and are located not too far from the just-mentioned D3,
ci' (see Fig. 4.1). We note that these cis are located on the two sides of the symmetry
line that connects the center of mass of the two fixed hydrogens and the (1,2) ci point.
Consequently this type of ci is frequently referred to as “twin cis.”
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Figure4.1 Position of the three ci points of the {Hy,H} system. Shown is the (1,2) D3, ci
(o) designated as X , and the two (symmetric) (2,3) ci twins (M) designated as X, 3. One of
them is located at {g;, = 0.73 A, ¢ = 141.5°} and the other, at {g, = 0.73 A, ¢ = 218.5°}
both with respect to the (1,2) ci. The distance between these two cis is 0.93 A. The locations
of the cis are calculated for the (fixed) HH distance, Ry = 1.044 A.

The H, + H, D3y, ci has attracted numerous studies revealing various features that
result from the existence of this ci. The earlier publications>~> concentrated mainly
on the sign flip phenomenon (caused by the ci) more widely known as the Jahn—
Teller effect,®” and only the more recent publications emphasize the resulting NACT,
formed by cis.!3~18

Calculation of the NACTSs was carried out at the state-average complete active-
space self-consistent field (CASSCF) level using a 6-311G** (3df,3pd) basis set,'® but
extended with diffuse functions. Thus, in order to properly account, for the Rydberg
states, two diffuse functions—one s function and one p function—were added to
the basis set, in an even-tempered manner,?’ with the exponents of 0.0121424 and
0.046875, respectively. We used the active space including all three electrons dis-
tributed on nine orbitals. Three different electronic states, namely, 1247, 22A’, and
32A’, were computed by the abovementioned state-average CASSCF method (with
equal weights). Calculations of both the eigenfunctions and the NACTs were done
by employing the MOLPRO program.?!

We report here on results as calculated for the situation where two hydrogens are
at a (fixed) distance Ryy = 1.044 A and the third is used to probe the NACTs at
the points of interest.! The calculations are carried out along circular contours. Four
circles are considered; all of them are centered at the D3, point and with radiig = 0.3,
0.5, 0.7, 0.75 A. In the present section we concentrate on angular NACTs and the
relevant ADT angles. The ab initio angular NACTs are presented in Figure 4.2. As
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TABLE 4.1 Topological Phases ai12(q) and cos aip, (Q) as
Calculated for {H,,H} System along Different Closed Circles

Radius q (A) an COS &p
0.010 3.11 —0.9995
0.015 3.12 —0.9998
0.020 3.14 —1.0000
0.030 3.14 —1.0000
0.050 3.14 —1.0000
0.100 3.13 —1.0000
0.200 3.12 —0.9998
0.300 3.10 —0.999
0.50 3.08(5) —0.998
0.60 3.10 —0.999
0.7 3.10 —0.999
0.72 3.09 —0.999
0.75 2.27 —0.640
0.80 2.27 —0.640

is noted the figure is arranged in columns—each column for one situation related to
a specified circle with an assigned radius g. Each column contains a set of upper and
lower panels; the upper panel presents the (angular) NACT 7,2(¢lq), and the lower
one shows the corresponding y;2(¢|g) angle, both presented as a function of ¢. In
addition, each lower panel gives the value of the corresponding o5(q). Additional
information is supplied in Table 4.1, which lists a set of phases, «2(g) [and cos
a12(g)] as a function of g.

The main features to be noticed in Figure 4.2 are the wiggly 7,12(¢|q) functions,
which, as long as ¢ is small enough, are smooth with relatively small amplitudes and
evenly distributed around the value 7,1, =0.5. However, as g increases, the T, func-
tions become more erratic, with larger amplitudes and values rapidly approaching the
¢ axis. Finally, at g ~0.75 A, the T 12 function crosses this axis to become negative.
As for the topological phases [i.e., «j2(g)], it is noted that as long as g is smaller than
0.72A, all a1, values are in close proximity to 7. However, once g exceeds this value,
the a1, values drop abruptly, to become 2.27 [or cos(cj2) = —0.62]. The fact that oy,
starts to deviate from 7 once ¢ > 0.72 A is, according to the theory, an indication that
the two-state system is not isolated as it previously was for regions closer to the D3,
ci. In other words, we encounter strong disturbances, most probably, due to the next
(third) state that acts via one or several (2,3) cis. These cis have to be located in the
region defined by ¢ > 0.72 A. Indeed, more extensive studies revealed the existence
of twin (2,3) C», cis, located on both sides of the symmetry line, at a distance of
q =0.73 A from the (1,2) Ds, ci! (see Fig. 4.1).

The conclusion of this study is that the two-state quantization is fulfilled for a
relatively large region surrounding the (1,2) c¢i (much beyond the “perturbation”
region). However, it seems to be damaged by the third state once the region becomes
large enough to include also the twin (2,3) cis. This situation is discussed further in
Section 4.3.2.1.
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43.1.2 {H,,0} System

The ab initio calculation of the NACTs was carried out, as in the previous case, at
the state-average CASSCF level employing the following basis functions.?? For the
oxygen we applied s, p, and d functions from the aug-cc-pVQZ set and f functions
from the cc-pVQZ set. For the hydrogens we employed s and p functions from the
aug-cc-pVQZ set and d and f functions from the cc-pVQZ set. We used the active
space including all eight valence electrons distributed on 10 orbitals. Four different
electronic states, including the two studied states, were computed by the abovemen-
tioned state-average CASSCF method with equal weights. The required NACTs were
obtained employing the MOLPRO program.?!

As is known, the {H,,0} system is characterized by two kinds of (1,2) cis: one
located along collinear OHH arrangement channel and the other along the collinear
HOH arrangement channel.>*~27 Here we consider only the cis belonging to the OHH
configuration. To be more specific, we fixed the distance Roy between the oxygen
and the central hydrogen (i.e., H; in Fig. 4.3) and allowed the sideward hydrogen

q=0.3au =1.5a.u
20¢ 2.0 ] L b
L :(C)
T 15F L5F
= L
£ ‘ :
= 1LOF LOF
= E C
© 0.5F 0.5
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75 S ST E TR gl 1 [0 7o) e S B T E TR
™20 T 2n 0 n 2n 0 T 2n
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Figure4.3 Results related to the (1,2) ci for the collinear {OHH) arrangement as calculated
along circles positioned at Ryx(= Ryp) =1.6 a.u. and different Roy values. Panels (a) and (b)
represent Roy = 2.5 a.u. and g = 0.5 a.u.; panels (c) and (d), Rog =3.0a.u.andg = 0.3 a.u.;
panels (e) and (f), Rog =3.0 a.u. and ¢ = 1.5 a.u. Panels (a), (c) and (e) present the angular
NACTS, T,12(¢lq) and panels. (b), (d), and (f) present the ADT angle y1,(¢|q), both as a
function of ¢. A schematic representation of the configurations is given above each panel.
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(i.e., H; in Fig. 4.3) to move along assumed circles surrounding the (1,2) ci. The
results of this study are presented in Fig. 4.3. We note that the figure is arranged in
columns—each column for one situation, specified by the abovementioned distance,
Rop and a radius ¢ of the a specific circle [Ryx, the distance between H; and the
position of the (1,2) ci, is fixed to be at 1.5 a.u. (atomic units)]. Each column contains
two sets of panels; the upper panel presents the (angular) NACT 7,12(¢|q), and the
lower one shows the corresponding y>(¢|q) angle, both calculated along a circle and
presented as a function of ¢. In addition, each lower panel plots the corresponding
values of «j>(g) and cos a1,(g). As for the shape of the curves, we note that they can
be considered to be of the elliptic Jahn—Teller type (see Section 3.2.3 and Fig. 3.2).
In this sense the present system differs from the {H,,H} system, which is a typical
(circular) Jahn—Teller system.

Figure 4.3 shows results due to three circles and in all three of them the value of
a12(q) ~ 7. The most outstanding result is the one for ¢ = 1.6 a.u.; it is observed that
although the circular contour is far away from the ci, the value of «,(g) is, for all
practical purposes, still equal to w. This result contradicts all expectations because
of the ability of the corresponding NACTs to form the value of = within such a large
region—a result that cannot be justified, for instance, by perturbation theory. Our
interpretation for this phenomenon is that inside the region surrounded by this large
circle the system does not form any (2,3) cis so that the two lower states can form a
quasiisolated two-state Hilbert subspace (see Section 2.1.3.1).

In this sense the two systems—{H,,H} and {H,,0}—behave differently. The
two-state quantization for the {H,,0} system extends to large regions, whereas the
quantization region for the {H,H} system is relatively small [due to the existence of
(2,3) cis as is discussed below].

43.1.3 {C,H,} System

The third system to be discussed is the four-atom molecule, C,;H,. The electronic
spectrum of the molecule has been a subject of numerous experimental®®~3! and
numerical®?>~3® studies (a detailed summary of studies related to this system can be
found in Refs. 36 and 37). In this respect we mention that our preliminary results for
acetylene are presented in Refs. 39 and 40. As in the two previous cases, here, too,
the eigenfunctions and the eigenvalues are calculated at the state-average CASSCF
level employing a 6-311G** basis set.'® We used the active space, including all 10
valence electrons distributed on 10 orbitals (a full-valence active space). Following
convergence tests we included in the calculations, in addition to the four studied states
(i.e., 12A7,22A’, 3%A’, and 4%A’), another four to six electronic states. The calculations
were done employing the abovementioned state-average CASSCF method with equal
weights.

In order to reveal the cis of this system, we restrict our study to a plane that contains
all four atoms (in this way we have to consider five internal coordinates). Next, fixing
the CC distance and the position of the Lh.s. hydrogen leaves the r.h.s. hydrogen free
to move on this given plane (see Fig 4.4). The results to be presented are obtained
for Rcc = 1.35 A, Ryc = 1.10 A, and Z(HCC) = 109°. In this section we discuss
four cis, namely, one (1,2) ci, one (2,3) ci, and two (3,4) cis [designated as (3,4), cis;
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Figure 44 The {C,,H,} configuration and the four ci points for which the four angular
NACTS, Tyjj+1(¢lq); j =1,2,3, were calculated. We present three fixed atoms, namely, one hy-
drogen (on the L.h.s) and two carbons. The fourth hydrogen is moving on the plane that contains
the four atoms. The calculations are done for Rec = 1.35 A, Rey = 1.10 A, and £(HCC) = 109°.

The positions of the four (j,j + 1) cis with respect to the r.h.s. carbon are as follows:

(Rxc, Ocex) = {(2.044A, 82.7°), (1.58A, 57.5°), (1.37A, 80.0°), (1.204, 52.0°)}

x = a,b] all located in the radial range between the two carbons (see Fig. 4.4). As is
usually the case, this free-moving hydrogen is used as a test particle to locate cis and
to examine their spatial intensities.

Figure 4.5 presents the corresponding, angular ¢-dependent NACTs, 7;;41(¢]q);

J = 1,2,3, as calculated along equicentered circles that surround each of the four cis
(12 cases altogether). In addition, the relevant topological phase « ;1 1(q) is specified
in each panel (a-1) (see Eq. (4.4)). The smallest radius, g, for each 7,;;41(¢lq) is
chosen to show that in such a case the corresponding value of «;1(q) is, indeed,
close to 7, as expected. We encounter various shapes for the different NACTs, but the
dominant shape is the double-hump shape. A double hump is, as mentioned earlier,
typical for the elliptic Jahn—Teller model (see Section 3.2.3 and Fig. 3.2)—in particu-

lar, when the two humps are of identical size as, for instance, can be seen in panels (b)

and (I). In most cases «j;1.1(g) are close to 7 as expected, particularly for sufficiently

small g values. In particular, we emphasize the encouraging results for the (1,2) NACT
for which the double-hump structure survives even for relatively large g values.
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Figure4.5 The angular ¢-dependent NACTs, 7,;;41(¢lq); j = 1,2,3, as calculated for acety-
lene along three different equicentered circles (characterized by different radii ¢) that surround
the four cis presented in Figure. 4.4. The results for the (1,2) NACT, as calculated along circles
centered at the (1,2) ci, are presented in panels (a)—(c); the results for the (2,3) NACT as cal-
culated along circles centered at the (2,3) ci, are presented in panels (d)—(f); the results for the
(3,4), NACT as calculated along circles centered at the r.h.s. (3,4) ci, are presented in panels
(g)—(1); and the results for the (3,4), NACT as calculated along circles centered at the Lh.s.
(3,4) ci, are presented in panels (j)—(1). Each panel also gives the corresponding value of the
topological phase, a;;11(g).
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Figure4.6 A three-dimensional presentation of the four ab initio surfaces as calculated for
acetylene for the configuration given in Figure 4.4. Also noted are the positions of the four ci
points.

Figure 4.6 presents the four surfaces related to the first four lower A’ states of acety-
lene. The figure emphasizes the existence of the four cis and shows how close they are
located to each other. The values of the energies at the ci points (as compared to the
collinear, ground-state, configuration: { Ryc, Rec, Ren} = {1.076, 1.218, 1.076 A})
are as follows: {E12, E23, Eza)s E3ap)t = {5.5, 9.1, 10.0, 11.2 eV}. The structure
of the potential energy surfaces (PESs) and the corresponding ci points as presented
in Figure 4.6 are interesting in the sense that they seem to form a system of inlets and
outlets capable of driving a wavepacket, in a most efficient way, from the upper surface
(in this case surface 4?A’) to the two lower surfaces, namely, 12A” and 2%A’, which
adiabatically are known to be related to the C,H(X?X) and C,H(A?IT) radicals,*®
respectively, by sheer potential gradients.
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4.3.2 Multistate Quasiquantization

43.2.1 {HyH} System

We report here on NACTs, ADT angles, and, in particular, topological D-matrix ele-
ments as calculated for three to five adiabatic states, where two hydrogens are at a fixed
distance Ryy = 0.74 A.*° Four circular contours are considered, three of them cen-
tered, as in Section 4.2.2.1, at the (1,2) D3, ci point with the radii ¢ = 0.3, 0.4, 0.5 A
and the fourth, centered at a point shifted along the symmetry line by 0.25 A, thus
located at a distance of 0.89 A from the HH axis (compared to 0.64 A in the previous
three cases), with radius ¢ = 0.65 A.

Quasibreakup of TMatrix Our first aim is to use this opportunity to show, em-
ploying ab initio results, that our assumption concerning the block structure of the
T matrix as presented in Eq. (1.37) is encountered in real molecular systems. For
this purpose, in Figure 4.7 we present 10 different ¢-dependent NACTs, namely,
Tik(@lq); j(<k) = 1,2,3,4, as calculated along the four circles mentioned above.

Here we emphasize the large values that are attached to the three tridiagonal
elements Ty;;41; j = 1,2,4, formed by adjacent states [see Fig. 4.7 panels (a), (d),
(), (j), all in the first row], as compared to the values attached to the off-tridiagonal
elements 7,;; where k > j + 1, formed by nonadjacent states (see results presented
in the two lower rows). Also, note the different scales used in the two types of figure
panels (viz., those presented in the first row vs. those presented in the second and
third rows); the ratio is 1 : 3.

Two additional observations are to be made:

1. The values of 7,34 are exceptionally small, although they are formed by adjacent
states (the third and fourth). These small values indicate that, most likely, no (3,4)
cis existin the regions given in Figure 4.7. This missing cis, in fact, the main reason
for the formation of the 3 x 3 upper block of the T matrix or, in other words, that
the three lower states of the {H,,H} system form a quasi-Hilbert subspace in these
regions.

2. Out of all the off-tridiagonal elements, T3 is the largest one. The reason is
attributed to the overlap between 71, and 73,'®4! which, according to the Curl
equation, is responsible for forming this matrix element [see Eq. (6.35¢) and, in par-
ticular, the following discussion on multistate quantization for the {H,,H} system].

Multistate Quantization for {H,,H }System The measure for the quantization of
the 7 matrix is given in terms of the relevant topological D matrix (discussed in Sec-
tion 2.1.3.1 and in particular Eq. (2.32)]. According to the theory, an N-dimensional
T matrix is quantized if the corresponding topological matrix, D(N), is diagonal (thus
having £1 in its diagonal). Table 4.2 are presented the diagonal elements of the D(N),
namely, D;;(g|N); j =1,...,N as calculated for different N values, specifically,
N = 2,3.4,5 and different circles.*°

Since in this analysis we also refer to the (4,5) ci, we briefly discuss this ci as it
was not mentioned before. Within the numerical study as described earlier, the (4,5)
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TABLE 4.2 Diagonal Elements of Topological D Matrix asa Function of N Calculated
for {H,,H} System along Different Closed Contours

N

q (radius®) — 2 3 4 35

0.3% Dy, —0.2924 —0.986 —0.810 —0.995
D, —0.292¢ —0.986 —0.996 —0.996
Dy — +1.000 +0.984 +0.999
Dy —0.998¢ — —0.798 —0.991
Dss —0.998¢ — — —0.990

0.4° Dy, —0.361¢ —0.966 —-0.714 —0.992
D>, —0.361¢ —0.966 —0.993 —0.991
Dz — +0.999 +0.963 +0.997
Dy —0.991¢ — —0.684 —0.931
Dss —0.991¢ — — —0.925

0.5° Dy —0.4044 —0.940 —0.629 —0.986
D, —0.4044 —0.938 —0.990 —0.985
Dy — +0.999 +0.936 +0.993
Dyy —0.975°¢ — —0.576 —0.931
Ds;s —0.975¢ — — —0.925

0.65¢ Dy, —0.4064 —0.935 —-0.614 —0.982
D, —0.406¢ —-0.921 —0.995 —0.982
Dy — +0.986 +0.674 +0.987
Dy, —1.000° — —0.293 —0.974
Dss —1.000° — — —0.961

“ Values in anstroms (A).

b Center at D3, point.

¢ Center, removed from D3y, point, by 0.25 A “northway.”

4 Values for cos a1» where &3 is calculated employing Eq. (4.4) for the (1,2) ci.
¢ Values for cos ags5 where ays is calculated employing Eq. (4.4) for the (4,5) ci.

D3y, ci was revealed by employing Eq. (4.4) for T,45 to calculate a4s. The results of
this calculation are presented in Table 4.2 (third column, i.e., N = 2), where we show

Daa(q) = Dss(q) (=cos aus).
Returning now to the more general cases in Table 4.2, the following is to be noted:

1. Inspecting values of D (g) (= D2x(q)) as calculated assuming N = 2, we see that
these are far from being (— 1), the expected value. This result implies, as already men-
tioned in Section 4.3.1.2, that in the region surrounded by the circle with q = 0.3 A
[(in this case the corresponding region contains also the (2,3) cis—see Fig. 4.7)],
the corresponding 2 x 2 T matrix element, namely, 7, is not quantized. The sit-
uation improves significantly once a third state is added. It is noted that the three
D-matrix elements are close to +1, which implies that the three lower states form,
approximately, a reasonably quantized T matrix; however, this quantization slowly
deteriorates as the spatial region increases (compare results along the N = 3 column
for different g values).
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2. Adding the two upper states (i.e., states 4 and 5), we note that for the smaller
regions, the quantization holds for both the three lower states and the two upper states
separately. This implies that the five-dimensional 7 matrix breaks up into two blocks:
the lower part of dimension 3 x 3 and the upper one of dimension 2 x 2. The main
reason for this breakup is, as discussed earlier, the missing (3,4) cis in the region of
interest.*’

3. Itis observed that increasing the dimension of the T matrix from 3 to 4 does not
improve the quantization quality (cf. values along N = 3 and the N = 4 columns).
In fact, the quality of the four diagonal D-matrix elements deteriorated because the
fourth state is strongly coupled with the fifth state [recall the existence of the (4,5) ci],
and this coupling is ignored, thus affecting the conditions to achieve the quantization.

4. Increasing the dimension of the 7 matrix from N =3 to N =5 improves
the quantization quality altogether. This is clearly evident while inspecting the five
diagonal elements of the D matrix (for each region) as presented in the last column.
This addition improves not only the four-state quantization but even the three-state
quantization—in particular the quantization for the larger regions (cf. results for
g =0.5and 0.65 A).

5. Interesting and encouraging results are obtained for the region surrounded by
the shifted circle (by 0.25 A from the D3, point) with ¢ = 0.65 A (see results for the
last five rows). Doing this shift enabled the increase of the relevant circular region
without getting too close to the fixed hydrogens axis. We note that although the spatial
region surrounded by this circle is almost doubled (compared to the one for g = 0.5
A), its diagonal D-matrix elements are of the same quality. This implies that the slow
deterioration of the nice quantization (along the first three regions) as g increases is
not necessarily connected to the size of the region but can sometimes be attributed to
the effect (damage) caused by the presence of the (fixed) atoms close to this region,
in this case the two hydrogens.

43.2.2 {C,H} System
As in Section 4.3.2.1, here, too, we concentrate on a three-state Hilbert subspace.
For this purpose we consider the three excited states 22A’, 32A’ and 4? A’ of the title

Figure 4.7 Angular NACTS, 7,;(¢lg);i < j(i = 1,2,3,4), as calculated for the {H,,H}
system for Ryy = 0.74 A. Panels (a)—(c) present results as calculated along a circle lo-
cated at the (1,2) Ds, ci with radius ¢ = 0.3 A, panels. (d)—(f) present results as calculated
along a circle located at the (1,2) D3, c¢i with radius g = 0.4 A, panels (g)—(i) present re-
sults as calculated along a circle located at the (1,2) D3, ci with radius g = 0.5 A and pan-
els (j)—(1) present results as calculated along a circle located at a point (designated as x)
on the symmetry line shifted by 0.25 A from the (1,2) D3, ci with radius ¢ = 0.65 A. It
is important to emphasize that the Ds;, (4,5) ci is located, in exactly the same way as is
the Ds;, (1,2) ci, at the equilateral position. Enlarged dots designate the two fixed hydro-
gens, solid squares denote the (1,2) ci points [and also the (4,5) ci points], solid diamonds
designate the (2,3) ci points, and the circles describe the contours along which the 7;;(¢|q)
were calculated. The straight line perpendicular to the HH axis connects the center-of-mass
point of the two (fixed) hydrogens and the D3, ci point. Note the different scale in panels (b),
(c), (e), (f), (h), (i), (k), and (1) in contrast to the scale in panels (a), (d), (g) and (j).
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system that were found to form, approximately, such a subspace.*’> The NACTs in
this case are due to one (2,3) ci—a C», ci—located on the symmetry line that passes
through the center-of-mass point of the two carbons and is perpendicular to the CC
axis (sometimes referred to as the C,, symmetry line) and two twin (3,4) cis located
on both sides of this line in close vicinity to the (2,3) ci*? (see Fig. 4.8). The (1,2)

(@) X3 (b)
031 A
>
X34 X34
Cyy 1.81 A Cy, 1.50 A
¢ 125 A c ¢ 125A c
(©) (d)
Xa3
X34
C o C Ce *C

Figure4.8 This figure presents geometric magnitudes related to the {C,,H} system as calcu-
lated for the interatomic distance Rcc = 1.25 A. Panel (a) gives the geometric position of the
(2,3) ci (designated as X,3) that couples the 22A’ and 32 A’ states; panel (b) gives the geometric
positions of the two (3,4) ci twins (designated as X34) that couple the 32A’ and the 4* A’ states.
Panels (c) and (d) show the circular contours along which the ADT A-matrix and the topological
D-matrix elements are calculated. In panel (c) circle 24, forg = 0.4 A, is centered on the Cy,
line, at the (2,3) ci; in panel (d) circle [y, for g = 0.2 A, is centered at the midway between
the (2,3) ci and the r.h.s. (3,4) ci. Circle [',4 surrounds all three cis, namely, the (2,3) ci and the
two (3,4) cis, while circle I'}, surrounds only two cis, namely, the (2,3) ci and one (3,4) ci.



4.3 QUANTIZATION OF NONADIABATIC COUPLING MATRIX 101

NACT, revealed in earlier studies,*> was found not to interact with the (2,3) NACT
as not only are the two cis located too far from each other*** but also their NACTs
only slightly overlap.*'#6 In the same way the (4,5) cis are located far away from the
symmetry line and therefore, in this case too, the overlap between the (4,5) and (3,4)
NACTS is negligible.*’

Ab initio calculations were carried out at the state-average CASSCF level with the
6-311G** basis set. We used the active space, including all nine valence electrons
distributed on nine orbitals (full-valence active space). Four different electronic states,
namely, 12A4’,22A’,32 A’, and 4> A’ were computed by the state-average CASSCF with
equal weights, employing MOLPRO 2'.

We report on the diagonal elements A ;;(¢lq); j = 1,2,3 of the ADT matrix [see Eq.
(4.5)] and the corresponding diagonal elements of the D matrix [see Eq. (4.6)] as cal-
culated for the situation where two carbon atoms are at a fixed distance Rcc = 1.25 A.
For this situation we find that the (2,3) Ca, ci is located at a distance of 1.81 A from
the CC axis and the two (3,4) ci twins are located at a distance of 1.50 A from the
CC axis and at a distance of 0.31 A apart from each other (see Figs. 4.8a and 4.8b).
The calculations are done along two contours, I'z4 and I'}, (see Figs. 4.8c and 4.8d,
respectively). It is important to mention that in order to solve for A and D, we em-
ploy the procedure described in Section 1.3.3 and in particular, use series of ordered
products as given in Eq. (1.91).

We start by reporting the results for the A matrix as calculated along I'},. For
this purpose we need the three NACM elements, namely, 723(¢|q), T34(¢|q), and
T24(p|q), presented, as a function of ¢, in Figures 4.9a, 4.9b, and 4.9c, respectively.
The three diagonal terms of the A(¢|g) matrix are shown in Figure 4.9d. The integra-
tion along the contour is started with an A matrix that is the unit matrix. We expect to
find at the end of the circular contour, namely, at ¢ = ¢y (= 27), the matrix A(py|q)
that is diagonal and whose elements are one (41) and two (—1)s. The position of the
(+1) along the diagonal depends on the chosen contour. As is noted from the figure,
we obtain the following series (— + —). More details are given in Ref. 42, but see
also discussion in Section 5.3.2 related to Eq. (5.20).

The end values of the A matrix, just mentioned, are the D-matrix elements, and
these values, as calculated along the two contours, I'y4 and F§4 in Figures 4.8c and
4.8d, are presented in Table 4.3. The following is to be noted:

1. The first three columns in the Table 4.3 give the three diagonal elements of
the D matrix: Dy (g); kK = 1,2,3. We pay attention to two features: (a) how close the
values of Dy, (gq) are to the numbers to £1 and (b) the order of the minus signs along
the diagonal. As for the first feature, the closer the numbers are to +1, the more
pronounced is the three-state quantization. As for the second feature, we encounter
for the contour I'y4 the sign series (— — +) and for the I'}, contour the sign series
(= 4+ —). In other words, the positions of the + sign along the diagonal of the D matrix
are seen to depend on the chosen contour. At this stage we are not yet fully able to
discuss the difference between the two situations. This is done in Section 5.3.2.

2. In the fifth and the sixth columns of Table 4.3 the cosine values, namely,
cos ajji1, j = 2,3, respectively, are presented, where «;;; is the corresponding
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Figure 49 The three elements of the angular NACM, namely, 71, (=T23,(¢lq)), T2
(=T340(@lq)), and T13 (=T24,(¢lq)) and the corresponding three diagonal elements of the
ADT matrix, Aj;(¢lq); j = 1,2,3 as calculated for the {C,,H} system, along the contour '},
that surrounds the (2,3) ci and one of the two (3,4) cis (see contour in Fig. 4.8d). The NACTs
are presented in panels (a)—(c) and the ADT matrix elements, in (d).

topological phase [see Eq. (4.4)]. In case the (2,3) states and/or the (3,4) states form a
two-state Hilbert subspace, the values of the relevant cosine functions are expected to
be (a) cos ap3 = (—1) for the (2,3) pair and (b) either cos o34 = (+1) (for the contour
"p4) or cos az4 = (—1) (for the contour I'},). As can be seen, in all four cases the ab
initio values of the cosine functions are significantly different from the expected %1
values. These findings indicate that none of the two pairs of states form a two-state

TABLE 4.3 Diagonal Elementsof 3x3 D Matrix and
Corresponding Two-State Cosine Values as Calculated for
{C,,H} Molecule along Two Closed Contours

Contour Dy, Dy, D33 COS ()3 COS Q34

o4 —0.990 —-0.988 +0.997 -0.318 +0.752
o —1.000 +41.000 —1.000 —0.960 —0.891
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Hilbert subspace in the region of interest [cf., e.g., values for the {H,,0} system in
Section 4.3.1.2 as presented in Fig. 4.3].
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CHAPTER 5

DEGENERACY POINTS AND
BORN-OPPENHEIMER COUPLING
TERMS AS POLES

5.1 RELATION BETWEEN BORN-OPPENHEIMER
COUPLING TERMS AND DEGENERACY POINTS

In the late 1930s, Hellmann' and Feynman? independently derived a relation now
known as the Hellmann—-Feynman theorem, which enables the calculation of forces
that directly act on molecules. It turns out that the Hellmann—Feynman theorem can
be extended to a situation that yields a closed formula for the NACTs. This extension
is attributed to Epstein,® as was recommended by Singh and Singh in 1989.#

Theorem 5.1 connects the NACTs and the topography of the Born—-Oppenheimer
surfaces and in particular refers to the possibility that NACTs may become singular
at points where the Born—Oppenheimer surfaces become degenerate.

Theorem 5.1 Considering two states j and k defined in terms of their two adiabatic
eigenfunctions [¢;(s.|s)) and |gx(S.[s)), the corresponding NACT, 7 (s), fulfills the
following relation

- (giIVH,|&)
e (5.1)

where u; and u; are the two corresponding eigenvalues and V is a grad operator with
respect to the nuclear coordinates.

Proof To prove the theorem, we consider, following Eq. (1.1), the expression
He(Se[9)18k(Se19)) — ur($)|Zk(se]s)) = 0; k=1,....,N (5.2)
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and differentiate it, employing the grad operator:

VH,(Sc[8)|8k(Se[8)) + He(Se )V Ek(Sels)) — Vur(s)|Zi(sels) — ux($)|VEk(ses)) =0
(5.3)

Next, multiplying Eq. (5.3) by (¢;(s.|s)| for j # k (which implies also integration
over the electronic coordinates), we get

(£j(SelS)IVHe(Sc [8)5k(Sel8)) + (£j(Sel8)He(Se[8)IVEk(Sels))
— ur(8)(Z;(Se[9)VEr(Sels)) = 0 (5.4
where the contribution of the third term in Eq. (5.3) is eliminated because of the
orthogonality feature of the electronic basis set. To complete the derivation, we do

the following:

1. We recall that H, is an operator that also acts on the L.h.s. eigenfunction so that

(Cj(sels)He(sc[s) = (£j(Sel®)uj(s) =0, j=1,....N (5.2)
2. Substituting Eq. (5.2') in Eq. (5.4), and recalling the definition of 7.(s) yield:
(£(SeS) VH (S [8)|Ck(Se[8)) + (uj(8) — u($)Tjx = 0 (5.5)
It is noted that dividing Eq. (5.5) by (ux(s) — u ;(s)) asserts the theorem.

In what follows we briefly elaborate on the meaning of Eq. (5.1), in particular in
the vicinity of a degeneracy point. In order to do that in a simple way, we consider a
situation of a planar system, defined in terms of two polar coordinates (g, ¢), assume a
point of degeneracy at ¢ = 0, and concentrate on the angular component of Eq. (5.1).
Since the angular component of 7 is T,/g and the angular component of the grad
operator is (1/¢g)(9/0¢), we get

1 §k>

a
Tk = ————————————

1
q q U — U

(5.6)

Next we assume that both u(g, ¢) and u ;(¢, ¢), behave in the vicinity of ¢ ~ 0, in
the following way:

lim u; ~ uo(p) + 2i(p)g™ + 0"t i=jk (5.7a)
q—)

where m is an integer and uo(¢) and X;(¢); i = j, k are analytic functions. It can be
seen that in order to guarantee the quantization as presented in Eq. (3.62) [see also
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Eq. (3.12)] the numerator near the degeneracy point has to behave in a similar way,
namely

d
“H,
—0 a(D

lim <§ j §k> ~n(@)g" + 0(g"*) (5.7b)
where 1n(¢) is some function. The case of m = 1 is the well-known Jahn-Teller
conical intersection case>® (see Sections 3.2.2, and 3.2.3) The case m = 2 stands,
among other things, for the Renner’ model, also known as the Renner—Teller model ®

Comment: By mentioning the case m = 2, we referred to the Renner—Teller model;
in fact, there is more to it because it is also characterized by a singularity that yields
for the topological phase a(g) the value of 2nm, where n is an integer’ (see also a
brief discussion in Section 4.2).

So far we have discussed a general case where j and k refer to any two states. In
fact, not any, arbitrary, pair of states forms a degeneracy point. For this purpose we
have the following lemma.

Lemma 5.1 Degeneracy points can be formed only between two adjacent adiabatic
states, namely, state j and state (j + 1).

Proof To prove this lemma, we consider the following two nonadjacent states: the
Jj state and the (j + 2) state. From the way the adiabatic states are constructed, it
is obvious that in order for these two states to be degenerate at a given point, each
one of them has to form a degeneracy with the “in between” (j 4 1) state at the
same point. This situation leads to a formation of (a single) three-state degeneracy.
Thus, we may have either the case where only two adjacent states form a degeneracy
(and therefore k = j 4 1) or the case where the jth and the kth states, together with
all the in-between states, form one single point of degeneracy (e.g., in case of the
{H,, H} system, we encounter a single point of degeneracy for its three lower states,
{12A’,22A’, 32 A’}, formed at its D3, ci point where Ry ~ 0.52 A1) This issue is
discussed further in Section 5.3.4.

In Chapter 1 we discussed in some detail the extended Curl equation and referred
to the possibility that the component H of F [see Eq. (1.15,16)] may not be defined at
some points. Since the NACTs are singular at the degeneracy points, their derivatives
cannot be formed and therefore H (and also F) becomes undefined at these degeneracy
points. In what follows we assume that the opposite is also valid; specifically, at the
pathological points where H cannot be formed, we attribute it to a singularity of
one or several NACTs. Again, we emphasize that these singularities are all assumed
to be simple poles. In what follows we refer to these points as ci points, or simply
cis (although the potentials may not be conical as, e.g., in the case of the Renner
model).

The subject of degeneracy points requires additional clarification because cis are
not really points in configuration space but arrange themselves along “infinite”!~'* (or
semiinfinite!’) long lines known as seams, namely, geometric objects of one or more
dimensions. For instance, in case of three internal coordinates, the seams are lines that
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usually extend from —oo to +0o0. However, our studies, discussed in this book, are
carried out on planes. For a system of N atoms we fix the position of (N — 1) atoms
and allow the Nth atom to move freely on an assigned plane. Under this assumption
the motion of this atom can be described in terms of two polar coordinates (g, ¢),
where ¢ is a radial coordinate and ¢ is an angular coordinate. As is shown later, this
single atom is used as a test particle to expose the cis on the particular plane.

As mentioned, the planes are formed by fixing the coordinates of the (N — 1)
atoms. To move from one plane to another, we may vary the coordinates of one of
the N — 1 atoms. Doing that gradually for all the coordinates of the N — 1 atoms, we
finally trace the full configuration space.

Having defined the plane, which contains the cis, it is important to emphasize that
the theory developed here does not apply for the whole plane but for a given region
in this plane, usually defined by a closed contour.

5.2 CONSTRUCTION OF HILBERT SUBSPACE

In Chapters 1 and 2 we frequently discussed the possibility of breaking up, in a given
region in configuration space, the Hilbert space into (quasi) Hilbert subspaces. We also
discussed to some extent the conditions for that to happen; however, this discussion
was limited, and it is our intention to extend it in the present section. As is presented
next, the magnitudes to play a role in determining the extent a Hilbert space breaks
up into Hilbert subspaces are the NACTs.

The basic assumption is as follows. We consider a region in configuration space
and a given distribution of cis. Assuming that the Hilbert space contains N states and
breaks up into L subspaces where the Pth subspace contains Np states so that N is
given in the form:

L
N = Z Np (5.8)
P=1
For the Pth subspace we assume the following:'

1. Each two adjacent states form at least one ci. In other words, if T;fjr)l defined as

(P) (P) (P)
Ti = (gj |V§jJrl (5.9a)
is the NACT between two such adjacent states, then this NACT has at least one
singular point in the region of interest.

2. If P and Q are two adjacent subspaces (thus Q = P £ 1), then no P state forms
a ci with a Q state. In other words, if T(lva;I’P) defined as

A0 = (e ve) (5.9b)

is the NACT between the highest state in the P subspace and the lowest state of the
(P + 1)th subspace, then this NACT does not possess a singularity in the region
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Np i
P+1

1

NP
P

2

1

NP—I
P-1

1

Figure 5.1 A schematic representation of the three consecutive Hilbert subspaces, namely,
the (P — 1)th, the Pth, and the (P + 1)th. The dotted lines were drawn to differentiate the
subspaces.

of interest. A similar assumption is made for the T(li,’il_]) NACT, which is formed

by the lowest P state and the highest (P — 1) -state (see Fig. 5.1).

The question to be asked is whether these two requirements are compatible with
the conditions given in Eq. (1.36) or Eq. (1.37). In other words, is it enough to require
that the upper and lower states of a group of states do not form any cis with their
external neighbors to guarantee the breakup as presented in Egs. (1.36) and (1.37).
The answer to this question can be found only in Section 5.3, in which is discussed,
in detail, the physical implication of the existence of cis.

5.3 SIGN FLIPS OF ELECTRONIC EIGENFUNCTIONS

5.3.1 Two-State Hilbert Subspace

In the late 1950s and the beginning of the 1960s Longuet-Higgins and colleagues'™
discovered one of the more interesting features in molecular physics related to the
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Born—-Oppenheimer electronic adiabatic eigenfunctions. They found that these func-
tions, when surrounding a point of degeneracy, may acquire a phase that leads to a flip
of sign of these functions. In particular, Herzberg and Longuet-Higgins® demonstrated
this feature with respect to eigenfunctions of the Jahn—Teller model. This interesting
observation implies that if a molecular system possesses a ci at a point in configuration
space, the two relevant electronic eigenfunctions may become multivalued.

In Section 3.1.1 we considered the two-state system as an issue related to analytical
models. In fact, this study is not limited to any model because the rwo-state T matrix,
as written in Eq. (3.1), applies for the general (two-state) case. In the discussion that
follows Eq. (3.12), we refer to the sign flips of the adiabatic eigenfunctions, which
leads to the multivaluedness of these functions. In this sense the findings due to
Longuet-Higgins et al.!=3 and the general theory as expressed in terms of Egs. (3.11),
(3.12), and Eq. (2.31") lead to the same conclusions, namely, tracing a closed contour
around a single ci causes the two functions to flip their signs simultaneously.

In case of several cis, this conclusion is generalized as will be done next. The line
integral in Eq. (1.94) [see also Problem 1.1 (at the end of Chapter I)] can always be
written as a sum of line integrals where each integral is performed along a closed
contour that surrounds one single ci. In this situation each line integral contributes a
value of 7 to the total value of line integral formed for a contour I" that surrounds
all the cis in the region (assumed to be N). The value of the line integral is not known
at this stage (because of the two possible signs), but it is obvious that the value of
n, in Eq. (3.12), is either even or odd when N is even or odd, respectively. In other
words, the eigenfunctions flip their sign when this particular contour surrounds an
odd number of cis but no sign-flips occur in case of an even number of cis.

Returning to Section 3.1.1 (or better, 3.1.1.2) and referring to the D(I") matrix, we
find that in case the closed contour I" surrounds an even number of cis, D(I") becomes
a unit matrix but in case it surrounds an odd number of cis D(I") becomes

py—( ! ° 5.10
o=, _ (5.10)

[see Egs. (3.11) and (3.12)].

Short Summary We showed that sign flips of the eigenfunctions and the signs
along the diagonal of the D matrix are closely connected in view of Eq. (2.31').
Equation (2.31") explicitly states that each eigenfunction that traces a closed contour
is identical to its original value multiplied by the corresponding (diagonal) element
of the D matrix. Therefore, if this element of the D matrix is equal to (—1), the
corresponding eigenfunction flips its sign.

5.3.2 Three-State Hilbert Subspace

To study the possible sign flips for a three-state Hilbert subspace, we consider three
states with two cis. One ci is formed between the two lower states and may be
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considered as the source for the 71, NACT; the second ci is formed between the two
upper states and may be considered as the source for the 7,3 NACT. It is known from
numerous calculations that for a sufficiently small region surrounding a ci the two
states that produce this ci form a two-state Hilbert subspace>°® (see Chapter 4). This
also applies in the present case for the two lower states, namely, states 1 and 2 and
their (1,2) ci and for the two upper states, namely, states 2 and 3 and their (2,3) ci.
In other words, tracing a contour that surrounds, close enough, one of these cis will
cause the two relevant eigenfunctions, j and (j + 1), to flip their signs.

Therefore, to construct the mathematical formulation to study possible sign flips
for a three-state Hilbert subspace, we must first present the 3 x 3 7 matrices for the
two possible cases and the corresponding D matrices.

As for the 7 matrices, we assume them to be

0 T12 0 0 0 0
t12(S) = —T12 0 0 and t23(S) = 0 0 T23 (511)
0 0 0 0 —75 0

Having the T matrices, we are now in a position to derive the corresponding D
matrices. For this reason we employ Eq. (1.93) and the matrices t;, and t,3 to calculate
D»2(T"12) and Dy3(I"23), along the corresponding contours '}, and I'»3 that surround
the (1,2) ci and the (2,3) ci respectively (see also detailed discussion on this subject
in Sections 3.1.1.1 and 3.1.1.2)

-1 0 O 1 0 O
D]z(rlz) = 0 -1 0 and D23(F23) = 0 -1 0 (512)
0 0 1 0 0 -1

The issue we intend to consider next is what happens when a contour, I'y3 surrounds
both, cis, namely, the (1,2) ci and the (2,3) ci (see Fig. 5.2).”

LemmaS5.2 Ifacontourina given plane surrounds two cis belonging to two different
(adjacent) pairs of states, only two eigenfunctions flip their sign—the one that belongs
to the lower state and the one that belongs to the upper state—but the intermediate
eigenfunction is left unchanged. Consequently the appropriate D matrix takes the
following form:

-1 0 0
DisTi3)=| 0 1 0 (5.13)
0 0 -1

Proof To prove the lemma, we consider the following three regions (see Fig. 5.2)
In the first region, designated as o7y, is located the main portion of the interaction,
T12, With the ci point at (1,2) ci. In the second region, designated as 0,3, is located
the main portion of the interaction, 753, and the ci point at (2,3) ci. In addition, we
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(a) <
L] .
(1, 2)ci o (2, 3)ci
°
T
_—
(b ¢ (©) < (d) )
[ ]
(1, 2)ci @, 3)ci
% .
O
O3
Iy Iy Ty
— — —

Figure 5.2 This diagram shows a region o that contains two cis designated as e: (a) the full
region, o, defined in terms of the closed contour I'; (b) the region o,, which contains one (1,2)
ci and is defined by the closed contour I'j»; (¢) the region oy, which does not contain any ci
and is defined by the closed contour I'y; (d) the region 0,3, which contains one (2,3) ci and is
defined by the closed contour I'y;. It can be seen that I' = I'j, + [y + Ips.

assume a third region, o, which is located in between the two and is used as a buffer
zone. Next we assume that the intensity of 7,3 (i.e., |723|) in o}, and the intensity of
712 (i.e., |T12]) in 03 is negligibly small (i.e., |7j41| < &, where j =1,2and¢isa
sufficiently small number). This situation can always be achieved by reducing area
of o1, (023) around the corresponding ci point. In oy, both 7, and 7,3 may be of
arbitrary intensities.

To prove our statement, we consider the expression as derived in Section 1.3.2.2
[in particular, see Eq. (1.73)]

AT) =Ap — % ds - T(s)A(s) (5.14)
r

where the integration is carried out along a closed contour I', A is a (constant) given
matrix, A(s) is the 3 x 3 ADT matrix to be calculated, the dot stands for a scalar
product, and 7(s) is the 3 x 3 matrix that contains the relevant NACTs,

0 T T3
T =] -T2 0 T3 (5.11")
—Ti3 —T3 0
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The closed contour I can be presented as a sum of three closed contours: I'j5, I'23
and I'y (see Fig. 5.2). Consequently, the integral in Eq. (5.14) becomes a sum of three
integrals, namely

A(F):Ao—¢ ds~7'A—fds-‘rA—% ds-TA (5.14)
T T o
or to be more specific
A(F)ZA()—% dS~t12A—V¢ dS-TA—% dS't23A (515)
T2 o Iz

where we assumed that the intensity of 73 is negligibly small in the close vicinity of
each of the cis (this assumption is consistent with what we know about the formation
of 713—to be discussed in Chapter 6). Since there are no cis in the buffer zone, oy, the
second integral is identically zero (see discussion in Section 1.3.2.2)) and therefore
can be deleted so that we are left with the first and the third integrals:

AN = AO_%

ds - tpA — yg ds - t;3A (5.15)
F]z 1_‘23
To carry out the integrations we need A(s), which is not given. Therefore we intend
to obtain the D matrix in a different way. For this purpose we introduce two (constant)
matrices G, and G,3 that enable the presentation of Eq. (5.15) in two more different
ways:

A(r):GjN—?{ ds-tj A, j=1,2 (5.16)

lwjj+1
Comparing Eqgs. (5.15") and (5.16) yields the following expressions for Gjjii;
j=12

G2(I'23) = Ap — f ds - t;3A
Iy

5.17)
G2(I'2) = Ap — ?g ds -t A

ISP
Using Egs. (5.14) and (5.16), we have three different ways to present A(I") in terms

of three different D matrices [see Eq. (2.47), recalling that D = B]: first, applying the
definition of the D matrix with respect to Eq. (5.14)

A) =DM)Ay (5.18a)
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and then applying it for the two equations in Eq. (5.16):

AT) =Dp(T12)Gr2 (5.18b)
A(T) = Da3(I"23)Gas (5.18¢)

In the same way the matrices Dj;; and Gj11; j = 1,2 are related as follows [see
Eq. (5.17)]:

G2 =Dx(TM23)Ag
G =Do(T'12)Ag

(5.19)

Substituting Egs. (5.19) in Egs. (5. 18b) and (5.18c¢) (see Eq. (5.18a)) and recalling
that the D matrices, for the corresponding Hilbert subspaces, are diagonal, we obtain:

D) = D3 = D12(IN12)D23(I'23) (5.20)

Next, recalling the explicit form of D, and Dy; [see Egs. (5.12)], we substitute
Egs. (5.12) in Eq. (5.20), and this leads directly to Eq. (5.13).

Summary We know from numerical calculations that tracing any contour that sur-
rounds a single ci causes the sign flip of the two states that form the ci. In the present
section we proved, analytically, that surrounding two cis as given in Lemma 5.2 again
causes two sign flips, but this time these are the signs of eigenfunctions related to
the lower and the upper states. Thus the sign related to the intermediate state is left
unaffected. The conclusion of this study is that tracing any closed contour within
the three-state Hilbert subspace yields at most two sign flips (however if the contour
does not surround any ci, no sign flip takes place). This finding can be extended, in a
straightforward way, to Hilbert subspaces of arbitrary dimensions, as will be done in
the next section.

5.3.3 General Hilbert Subspace

In this section we present a geometric approach that yields possible sign flips for an
electronic manifold, ¢(s), which traces a contour that surrounds one or several cis
belonging to a given subspace. To be more specific, we assume that the subspace
contains N states (N > 2) where any adjacent pair of states forms at least one ci. The
geometric approach is based on the analytical derivation in Section ( 5.3.2) carried
out for N = 3.

[Comment: Two adjacent states may form more than one ci, but here, to simplify
the discussion, we assume one ci for any two (adjacent) states. The extension is done
at later stages.]
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Notations

1. Having two adjacent states, j and (j + 1), the two form the ci to be assigned as
C; (see Fig. 5.3).

2. The contour that surrounds (only) C; is assigned as I'ji;; (see Fig. 5.4a).

3. A contour that surrounds n consecutive cis (i.e., Cj, Cjy1 - - - Cjy,) is assigned as
[jji+n (see Fig. 5.4b for n = 1 and Fig. 5.4c for n = 2).

4. A contour that surrounds only two cis, namely, C; and Cy is assigned as I'; ;4.
For instance, I'; 4 surrounds C; and C3 but not C, (see Fig. 5.4d).

These notations can be extended, in case of larger subspaces, to include other possi-
bilities.

Having these notations, we return to describe the various possible sign flips. In
case of N = 2, we have two possibilities: I'(= I"}) either (1) surrounds or (2) does
not surround the ci. In case 1, the two functions, ¢{; and ¢, flip their sign so that
K =2 (K, the topological number, is defined as the number of minus signs along the
diagonal of the D matrix). In case N = 3, we encounter two conical intersections: C
and the C; (see Fig. 5.4a). Moving the electronic manifold along the path I'j, flips the
signs of ¢; and ¢,, moving it along I"»3 flips the signs of ¢, and &3, but moving it along
I'13 (see Fig. 5.4b) causes the signs of ¢; and ¢3 to be flipped once but the sign of
&> to be flipped twice (once surrounding C; and once surrounding C;) and therefore,

Energy

q

Figure 5.3 A schematic representation of four interacting adiabatic surfaces presented in
terms of four (adiabatic) curves; j = 1, 2, 3, 4. The three C_/s where j = 1, 2, 3, stand for the
three ci points formed by the intersections of the four surfaces. The curves are presented as a
function of g.
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Figure 5.4
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altogether, its sign remains unflipped. The conclusion for three-state systems is that
we can have either no sign flip (when the I does not surround any ci) or three cases
where two different functions flip signs.

Next, we discuss the case N = 4. It is now obvious that tracing contours of the
type I'jiy157 = 1,2, ... that surround the relevant C; (see Fig. 5.4a) flip the signs
of the two corresponding functions, ¢; and ;4. Next, tracing contours of the type
[jit2; j = 1,2 (see Fig. 5.4b) flip the sign of the two external functions, ¢; and ¢,
but leave the sign of the intermediate function, {;41, unchanged (see also Eq. (5.20)).
We have two such situations: one related to the first and the second cis and one related
to the second and the third cis. Then we have the contour I"(4 that surrounds all three
cis (see Fig. 5.4¢), and here, as in the previous three-state case, only the two external
functions, ¢; and &4, flip signs whereas the signs of the two internal functions, namely,
&> and &3, are left unchanged (they are flipped twice). Finally, we have the case where
the contour I'; 4 surrounds C; and C; but does not surround C; (see Fig. 5.4d). In
this case all four functions flip signs (none of the four functions get their sign flipped
twice).

As an example, we present this particular situation in terms of a product of two
matrices. Thus, defining D, and D34 as

-1 0 0 O
0O -1 0 0
D (Tyn) = 0 o0 1 0 (5.21a)
0 0 0 1
and
1 0 O 0
01 0 0
D34(T3) = 00 -1 0 (5.21b)
00 0 -1

Figure 5.4 Four interacting adiabatic surfaces, three ci points and the corresponding contours
to study sign flips along the closed contours. (a) The contours I'ji;; each surrounding the
respective C; [i.e., the (j, j + 1) ci] leads to sign flip of the jth and (j + 1)th eigenfunctions.
(b) The contours I'j;;», which surround two consecutive cis at C; and C; 1, lead to sign flip of
the jth and (j + 2)th eigenfunctions but leave the sign of the intermediate (j + 1) eigenfunction
unchanged. Also shown are the contours of type I'jj;; that surround the respective C; points
(designated by dotted lines). It can be seen that I'ji o = I'jip1 + I'jpq, 42 (see Fig. 5.2). (c)
The contour I'4 that surrounds the three C; points leads to sign flip of the first and the fourth
eigenfunctions and leaves, unflipped, the signs of the second and the third eigenfunctions.
Extending the situation in Eq. (5.4¢), we obtain I'j4 = I'j5 4 I'23 + I's4. (d) The contour I'; 4
surrounds the two external ci points but not the middle one. Based on Figure 5.4b, we have
[i4 =T+
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we observe that the matrix that describes the sign flips along I'; 4 is given in the form

DT 4) =Dy 4(T14) = Do(T12)D34(I'34)

or
-1 0 0 0
0O -1 0 0
D=0 o -1 o (5.21¢)
0 0 0 -1

The four-state system can be summarized as follows. We revealed six different types
of contours that lead to the sign flip of two functions and one kind that leads to the
sign flip of all four functions.

The discussion above introduces the idea of attaching “algebra” of closed contours
(based on the closed line integral approach as presented in Section 5.3.2). We present
two examples:

1. The case of the contour I'ji1,, which surrounds n consecutive cis. It can be shown
that

n—1
in =) Tt (5.22)
k=j

2. The contour I'; ;1 1, which surrounds two nonconsecutive cis (i.e., the jth and the
kth):

Cjkrt =Thjr1 = Tjpr + Tiarrs k= j+1 (5.23)
In case k = j + 1 we have
Ujjv2 =T +Tjnj20 =T (5.23)

As an example of an ab initio treatment for a real molecular system, we briefly
discuss the three diagonal elements of the D matrix as calculated for the {C,,H}
system along the rwo contours presented in Figure. 4.8.

For the contour that surrounds one (2,3) ci and one (3,4) ci (see Fig. 4.8d), we get
the series { —+—}—a case treated analytically in Section 5.3.2 and discussed earlier
[see also Eq. (5.20)]. For the contour that surrounds one (2,3) ci and two (3,4) cis (see
Fig. 4.8¢c), we form the following series of products

D(I'24) = D3 = D12D23Do3 (5.20)

where D, and D,3 are as given in Eq. (5.12). This product yields for the D(I"y4)-
diagonal elements the series { ——+} as indeed is found in the calculation (see results
along the first row of Table 4.3).
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[Caution: There is some confusion regarding the indices because the analysis is
done with respect to three excited state, ignoring the ground state (usually assigned
as state 1).]

Returning, again, to the topological number, K we prove the following lemma:

Lemma 5.3 The topological number K (I')is an even number.?

Proof We assume a system of N states and a closed contour I' that surrounds 7 cis
(to simplify this proof, we assume that each adjacent pair of states is coupled by one
ci) so that when the group of N states traces I', K functions flip their signs. Next we
assume a slightly different contour, I'’, which surrounds one ci less, for instance, the
(j, j + 1) ci. As a result, the signs of two functions, the jth and the (j + 1)th, are
affected. The change in K is either 2 [when the two functions flip their original signs,
e.g., two (—1)s become two (41)s] or zero [when, e.g., one (—1) becomes (41) and
one (41) becomes (—1)]. Thus any change in K caused by including or excluding
cis is accompanied by a flip of an even number of signs only. Next, since the smallest
value of K is zero (and never 1), K may attain even integers only.

Asis noted K determines the number of possible sign flips along a given contour.
Information regarding the number of different groups of functions with identical
number of flipped signs is still missing.

Corollary 5.1 If N is the number of states that form the subspace where each two
adjacent states are coupled by a single ci, then Nk, the number of groups that contain
different functions with K flipped signs, is as follows:

N
N; = <K) (5.24)

This expression is known to yield the number of different groups of K elements out
of a group of N elements.

Example 5.1 In the four-states case, the number of groups with two flipped signs is
six (6), the number of groups with four flipped signs is one, and the number of groups
with unflipped signs is also one.

Short Summary Extending Lemma 5.2 for any N-state Hilbert subspace with
an arbitrary number of cis, the number of functions that flip their signs while the
electronic manifold traces a given closed contour I' is determined by the number K
related to the D matrix formed by the product

D) = [ ['Dj1(D) (5.25)
j=1
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where Dj;1(I') is an N x N (diagonal) matrix that has (—1)s at positions (j, j) and
(j+ 1, j+ 1) [and otherwise (+1)], and the prime sign implies that the product is
carried out only with respect to cis surrounded by I.

5.3.4 Multidegeneracy Point

5.3.4.1 General Approach
The emphasis in our previous sections was on isolated two-state cis. Here we would
like to refer to cases where at a given point three (or more) states form one degeneracy
point.8 This can happen, for instance, when two seams cross each other at a point so
that at this point we have three surfaces intersecting each other or, in other words, a
three-state degeneracy point. In fact we may even expect higher multistate degeneracy
when several (more than two) seams cross each other all at the same point. The issue
is how to incorporate this situation into the already existing theoretical framework.
In what follows we assume that each two adjacent states form only one ci (the
extension to several cis is straightforward). We start by analyzing a three-state degen-
eracy point and consider the following situation:

1. The two lower states form a ci, presented in terms of 71,(0,¢), located at the origin,
namely, at p = 0.

2. The two upper states form a ci, presented in terms of 723(0,9| 00, ¢0), located at
P = pPo, ¥ = Yo-

3. The three-state degeneracy is formed by letting oy — 0, namely

plim() 723(0, @1p0, ¥0) = T23(0, @lPo) (5.26)
0*)

so that the two cis coincide (the angle ¢y becomes, in this case, redundant). Since
the two cis are located at the same point, every closed contour that surrounds one
of them surrounds the other so that this situation is the case of a contour I'(= I";3)
surrounding two (adjacent) cis (see Fig. 5.4b) According to the analysis in Section
(5.3.2), only two functions flip signs in such a case, that is, the ones belonging to
the lower and the upper states.

Extending this situation to a degeneracy point formed by N states does not change
the final result, namely, only two functions flip signs: the one belonging to the lower
state and the one belonging to the upper state. This implies that along the diago-
nal of the D matrix we encounter the series (—+- - -+—} to be designated as {—+
(N —2)+-}.

This general result is at odds with some more recent models. First, it contradicts the
conclusions given in Sections 3.1.2 and 3.1.3, which refer to specific models as pre-
sented there. Then it also contradicts a model discussed by Child and Manolopoulos.’
On the other hand, they seem to be supported by an analysis given by Varandas and
colleagues.'®!! based on Lie algebra.
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5.3.4.2 Model Studies

In Section 3.1.2 we treated a particular type of a three-state model and found that in
this case none of the functions flip sign, which implies that along the diagonal of the
D matrix we have the {+++} series. In Section 3.1.3 a four-state model is treated
and it is found that either all four functions flip sign or none of them flip sign. This
implies that along the diagonal of the D matrix we have the {————} series or the
{++-++} series, respectively. We explain these outcomes as follows.

The Three-State System To explain this case, we assume the existence of four
cis: two of them formed by the two lower states and two formed by the two upper
states. In Section 5.3.1 we briefly discussed the outcome of surrounding two or more
cis formed by the same two states. We showed that in case the contour I' surrounds
an even number of cis, no sign flip takes place. Here we consider the extension of this
situation for a three-state system where each two adjacent states form a pair of cis
and the contour surrounds all four cis. To determine what the signs of the D matrix
diagonal elements are in such a situation, we apply a product similar to Eq. (5.20")
[see also Eq. (5.25)] for the two matrices Dy, and Dy3 in Egs. (5.12):

D(T'13) = D13 = DioD12Dx3Dos (5.20")

It is straightforward to verify that D; 3 = I, or in other words, we encounter the
{+++} series. In case of a single three-state degeneracy point, since any contour
surrounds all four cis, we always encounter the same series. As a final point on
this issue, we mention an ab initio treatment carried out for the three lower states
of the {H,,H} system.!? In this study Haldsz et al. revealed that for the equilateral
configuration, Ryyg ~ 0.52 A, two pairs of cis (two cis formed by the lower states,
12A” and 22 A’, and two cis formed by the upper states 22A’, 32 A’) converge to form a
single three-state degeneracy point (see also Refs. 13—-15). It is shown, numerically,
that the corresponding D matrix is characterized by the (4++) series.

The Four-State System We mentioned earlier that while studying, the four-state
system in Section 3.1.3, we found that either (1) none of or (2) all of the four functions
flip sign. Case 1 (i.e., no sign flip) can be explained in the same way as the previous
three-state case, namely, assuming that each two adjacent states form two cis (thus
three pairs altogether). Therefore, enforcing the four-state degeneracy causes the shift
of all six cis to the same point so that any contour surrounds the six cis. In this way
we encounter the {+-+++} series. The second case where all four functions flip their
signs is somewhat more complicated. Here states (1,2) and (3,4) each form one ci, but
the two intermediate states, (2,3), form two cis. Therefore the four corresponding ma-
trices to be employed are D, and D34 given in Egs. (5.21a) and (5.21b), respectively,
and two D3 matrices. Next, forming the relevant product

D 4(T14) = D12D23D23D3y (5.20")
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we note that the matrix D 4 is identical to the one given in Eq. (5.21c), thus charac-
terized by the {————1} series.

A different model was studied by Child and Manolopoulos.® Within their model
they consider a diabatic potential matrix of the form

H(g, ¢) = F(g)cos ¢ + G(g) sing

where F(g) and G(gq) are real symmetric matrices assumed to form an N-fold de-
generacy at the vicinity of the origin and scale linearly with g. Once constructed,
the two authors solved the corresponding eigenvalue problem for the eigenfunctions
xj(¢lq); j = {1, N}. These eigenfunctions were then followed along closed contours
(formed by fixed g values) to determine their signs at the end of the contour. With
this model a situation for N = 3 was found, that yields the series {—-+—}, a series
identical to the one discussed in Section 5.3.4.1 and resulting from the existence of
two cis: one (1,2) ci and one (2,3) ci. But they also report on the existence of the
(+++) series, which has to be a result of at least four cis, namely, two (1,2) cis
and two (2,3) cis formed by the corresponding product given in Eq. (5.20”). In other
words, the model produces more than the minimal number of two cis (one ci for each
adjacent pair of states). This conclusion is also supported by an analysis carried out
by Pistolesi and Manini.'®

We also briefly discuss the N = 4 case. For this case, the Child—-Manolopoulos
model produces either the series {++++} or the series {————1}. As discussed
earlier, we need to have at least six cis to form a {4++-++} series and four cis to form
a {————1 series. Thus in both cases more than just the minimal number of three
cis are involved (again, one ci for each adjacent pair of states). However, strangely
enough, this model does not produce the {—++—1} series, which requires only three
cis as discussed in Section 5.3.4.1. In the same way their model requires, in case of
higher N values, many more cis than the necessary minimal number of N — 1 cis as
discussed in the previous section.

In this respect we also mention a model applied by Varandas et al.,'>!! based on
Lie algebra, who derive essentially the same results as discussed in Section 5.3.4.1.
They obtain, in case of an N-state degeneracy point, the following series {—+
(N — 2)4+—}—aresult formed by N — 1 cis. In other words, regardless of the value
of N, only two functions flip their signs, namely, those relate to the lowest and the
highest states.

5.4 TOPOLOGICAL SPIN

The concept of spin in quantum mechanics was introduced because experiments
indicated that elementary particles such as electrons and nucleons are not completely
identified in terms of their three spatial coordinates.! To be more specific, to ensure
a complete description of the state of a particle, one has to consider the possibility
that these particles may have intrinsic angular momentum, which is known by the
name spin. This magnitude, like any other classical angular momentum, is a vector.
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Hence the wavefunction of a particle must be a function of four variables: the three
spatial coordinates and the spin variable, which determines the values of all possible
projections of the spin along a given direction. Next, pricisely as in the case of the ordi-
nary angular momentum, these variables—for a given spin—are allowed to have a
limited number of discrete values. Usually these values are added as a subscript to
the wavefunction that describes the state of the particle. This implies that in fact a
wavefunction of a particle (with a nonzero spin) is not a single function but a set of
functions that are characterized by their spin subscripts.

Returning now to NACTs and their matrix 7, we intend to construct a concept that
is somewhat similar to what is understood as a spin. For this purpose we mention
the two-state NACT, 75, which was found to fulfill the quantization condition as
presented in Eq. (3.12). As was discussed, the number n in this equation has to
be an integer but not necessarily an even integer (as required by the spatial Bohr—
Sommerfeld quantization law?) and therefore can also be an odd integer. In this sense
the quantization as required for 7, is reminiscent of the spin of an elementary particle
rather than the quantization of spatial angular momentum.

In case the two states are coupled by several cis, the value for the total spin for
a region surrounded by a given closed contour is simply the algebraic sum of the
individual spin values in the same way as is done in case of the ordinary electronic
spins. Thus in this case the meaning of the ordinary spin is conserved. See also a more
detailed discussion in Section 5.3.1.

As we have shown, the magnitude that most characterizes a Hilbert subspace is
its cis. In the present section we are interested mainly in the fopological features
produced by the cis. For instance, a two-state system may have several cis but it is
immaterial how many cis it possesses, the fopological number K is either 2 or O (see
discussion in Section 5.3.1).

To extend these ideas to an N-state system (N > 2), we encounter a major ob-
stacle, specifically, the fact that the system becomes non-Abelian; namely, the usual
Abelian (functional) variables now become matrices. This difficulty, as we discussed
in previous sections of this Chapter , is resolved by the topological D(I") matrix. In
order to introduce the fopological spin for an N-state system, we need to introduce
some order regarding the various numbers that define the N-state system (in a given
region).

We start by defining N, as the smallest possible number of cis, which an N-state
Hilbert subspace is capable of forming. It is, in fact, straightforward to show that
N, = N — 1 (werecall that any pair of adjacent states has to form at least one ci). It is
important to emphasize that in general, one may encounter more than one ci between
a pair of states>™ so that the number of cis is usually larger than N...

The second number of interest is the abovementioned K value, which, like the
D matrix, depends on the chosen (closed) contour I'; thus K = K(I"). On the other
hand, K does not depend on how many cis exist in the N-state system, but it is
constrained in two ways: (1) K has to be an even integer and (2) the K values are
limited by N(= N, + 1) because K yields the possible numbers of (—1)s along the
diagonal of the D matrix and this number cannot exceed the dimension N of the D
matrix.
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Thus, K attains the following values:

K. =N N. = even

K.=(N.+1); N.,=odd (5.27)

K:{O,Z,...,KC}{

In order to construct a relation between N, and K that is similar to the relation
between S—the total spin of a give system—and its magnetic components Mg =

{—S,...,+S}, we define the quantum numbers S as
5= 1K (5.28a)
=—-— .28a
22
and, accordingly, its magnetic component numbers Mg:
Ms=S—-K/)2 (5.28b)
As examples for S and M|, we present their values for N. = {0, 7}:
For N. =0: {§=0 M, = 0}
ForN.=1: {s=1 M=% -1}
For N.=2: {S=1  M;=1 -3}
For N. =3 {§=1 M, =1,0,—-1}
(5.29)
For N. =4 {(§=1 M, =1,0,—-1}
ForNo=5:  (S=% M=}t
ForN.=6: {S=3 M, =31 -1 -3}
For N.=17: {§=2 M, =2,1,0,—1, -2}

The general formula and the individual cases listed above indicate that the smallest
number of cis to form a particular Hilbert subspace and the number of possible sign
flips within this subspace are indeed interrelated, and this relation is similar to the
relation between a given spin value S and its magnetic components M. Thus, each
Hilbert subspace is now characterized by a spin quantum number S, which is related
to the number of states that form the Hilbert subspace and the topological effects
that take place within the assigned region in configuration space, namely, how many
possible (or different) sign flips may occur while following all possible contours in
this assigned region.

Since there is a one-to-one relation between the values of (S, Ms) and (K., K),
Eqgs. (5.28) yield the following results

K, =4S
K =2(S — My)

(5.30)

However, the value of N, is not uniquely determined here because K, has to be even
whereas N, can be either even or odd, independent of K. (or K). The reason for not
having a unique relation with N, is the fact that in every sign flip two functions are
involved regardless of whether the number of cis, N, is even or odd.
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Although the whole idea of the topological spin and its components may seem
somewhat artificial, it seems to contain physical information in case the molecule is
exposed to an external (adiabatic) magnetic field. In this situation a magnetic dipole
interaction should theoretically be formed because of the existence of the topological
spin as, for instance, in case of an ordinary electronic spin.

According to the procedure above described a system with a given spin S has a
(28 + 1) degeneracy. It is obvious that the molecular system, in a field-free situation,
is not affected by the sign flip of one function or another as the diabatic potential is a
well-defined magnitude of the subspace as a whole. However, exposing the molecular
system to a cyclic, electromagnetic field causes parts of the molecule to move, one
with respect to the other, along various (closed) contours. This motion may cause
some of the eigenfunctions to flip their sign. For a given molecule, the number of
flipped signs is determined by the contours enforced by the electromagnetic field.
This situation causes the creation of the topological spin, which in turn interacts with
the magnetic field.!® The intensity of this novel type of interaction is not dependent
on what happens along a given contour but is related to the structure of the Hilbert
subspace. In other word the issue is not how many different sign flips may be formed
along a particular contour but rather the probability of producing a certain number
of sign flips in a given molecule (or subspace), and this probability is related to the
number of possible bundles of contours to form this number of sign flips.

So let us summarize as follows. The multiplicity of the D matrix due to an electro-
magnetic field depends on what happens along a given contour (viz., how many sign
flips are encountered), but the probability for that to occur depends on the number of
possible bundles of contours that lead to this multiplicity.

As examples, we consider the cases of four and five states where each two adjacent
states are coupled by a single ci. In case of N = 4 (or N, = 3), there are six bundles
of contours that lead to two (different) sign flips and one bundle of contours that
lead to four sign flips [see Eq. (5.24)]. Thus, the multiplicity is equal to 3 because
Mg = (1,0, —1) as given in the list above, but the probability of having the value
Mg = 0(i.e., K = 2)is 6 times greater than having the value Mg = —1 (i.e., K = 4).
In case of N = 5 (or N, = 4), the multiplicity is the same as before, namely, equal
to 3 (because Mg = (1, 0, —1)) but the probability of having two sign flips is only 2
times greater than having four sign flips because Eq. (5.24) yields the ratio for the
two types of contours as 10:5.

5.5 EXTENDED EULER MATRIX AS A MODEL FOR
ADIABATIC-TO-DIABATIC TRANSFORMATION MATRIX
5.5.1 Introductory Comments

In deriving a model for the ADT matrix A, we have to make sure that it is capable of
forming a matrix with the following features:

1. The matrix has to be orthogonal at any point in configuration space (see Section
1.3.1.3).
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2. Its elements are cyclic functions with respect to a single given parameter A, so that,
starting with a diagonal (unit) matrix, the model matrix has to become diagonal
again after one cycle (it does not have to return to a unit matrix)

3. While becoming diagonal, it has to contain an even number K of (—1)s along the
diagonal.

It is important to realize that the first condition is due to the fact that A is a solution
of Eq. (1.50) and the two other conditions are a result the quantization condition (see
Section 2.1.3.1 and 2.1.3.3).

In this section we intend to present the general N x N ADT matrix A as a product
of single angle N x N rotation matrices. This resulting matrix, which becomes similar
to the Euler matrix! in case of N = 3, will be termed, for N > 3, the extended Euler
matrix. In what follows this matrix is labeled AV .

Before describing the general situation, we discuss two cases: N =2 and N = 3.
Once we find that A® and A® fulfill the abovementioned, conditions we continue to
the general case.

5.5.2 Two-Dimensional Case

The matrix A@ is discussed in Section 3.1.1, but for completeness, we describe all
its features here.
The matrix A®(y;,) takes the form

@ [ cosya(s)  sinypa(s)
Ao =S5 Se) (53D

where yi»(s) fulfills the first-order vector differential equation [see Eq. (3.5)]:
Vyn(s) + 712(s) = 0 (5.32)

This equation is solved along a contour I" [and consequently the solution of Eq.
(5.32) becomes I'-dependent] given by Eq. (3.6), which in the present notation
becomes

S

yia(s|T) = — / ds - T1>(s|T) (533)
S

In deriving Eq. (5.33), we assumed that the initial value of yj,, namely, yj2(s = $p),
is zero.
Next we consider the D matrix, which is presented in Eq. (3.11):

D(z)(F)— cosapp(l)  sinap(IN) (534)
~ \—sinapp()  cosap(l) '
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As a result of the quantization condition, the matrix D® has to be diagonal for any
closed contour in the region of interest, which implies that a12(I") (= y12(s = so|1"))
fulfills the condition

a12(l) = yia(s = 8o|l') = nw (5.35)

where n is an integer (or zero). From these findings we note that the two (diagonal)
elements of the D matrix are either +1 or — 1, which implies that K is an even number
(=2) or zero. Thus the only two possibilities for D® are as follows

DT = (=1 (5.36)

where I is the unit matrix and % is either even or odd.

5.5.3 Three-Dimensional Case

In case of N = 3, we encounter a matrix, namely, A®, with nine elements However,
since A® has to be an orthogonal matrix, the orthonormality criterion requires the ful-
fillment of six conditions, which leaves three free unknowns that, according to Euler,
are three angles of rotation, namely, y;2, y13, and y23.1 Consequently construction of
the A matrix as a product of three rotation matrices was suggested. For this purpose
we define the three matrices Q(fz)(ylz), Q(233)()/23), and Q(133)(y13), where, for instance,

Q(133)()/13) is given in the form

cosy;3 0 siny;
D) = 0 10 (5.37)

— sin Y13 0 cos Y13

(the other two are similar in structure with the respective cosine and sine functions in
the appropriate positions). Thus, A® becomes

A" = Qe 539)

which, following multiplication, takes the form

C12€13 — 812513523 —812C23 C12513 + $13512523
3
A® = | —sppei3 —cios13523  C12c3 —S12813 + €12C13523 (5.39)
—C23813 —523 C13C23

Here cxj = cos(y;) and s;; = sin(yy;). Itis important to note that deriving the matrix
A® in this way guarantees that the matrix is orthogonal (i.e., is a product of three
orthogonal matrices).
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The relevant D® matrix is obtained from A® by replacing the y;; angles by
vkj(s = so|I"), which are the values, y;;, at the end of the (closed) contour. These
end-of-contour angles are designated as oy ;(I")

ag;(I') = yij(s = so|T") (5.40)

Next it is known that the D® matrix formed in this way has to be a diagonal matrix;
this condition can be achieved if and only if ay;(I") = ny;7, where ny; are integers.
Since the diagonality of the D® matrix is guaranteed by the quantization condition
(see Sections 2.1.3.1 and/or 2.1.3.3), it is expected that if the suggested model is
correct, then the quantization also guarantees that o (I') = ny; 7.

To obtain the three angles, Eq. (5.39) is substituted in Eq. (1.50) (instead of €2)
and it can be shown that the three angles have to satisfy the following three coupled
first-order differential equations:>3

Vy12 = =712 — tan yp3(—713 €OS y12 + T23 Sin y12)

—(123 COS Y12 + T135In Y1) (5.41)

Vyzs

Vi3 = (cos y13) (=113 cos y12 + Ta3 sin y12)

Next we examine the possible signs of the diagonal elements of D®. Because of the
product in Eq. (5.38) (see also Eq. (5.39)), these diagonal elements can be written as

Df;) = 8 COS @}y, COS O j; Jj#n#m; j=12,3 (5.42)

where all the terms that contain sine functions are obviously zero [sin (£nx) = 0]

The expressions in Eq. (5.42) show that the D® matrix may have either (1) three
(+1)s in the diagonal (this happens when all cosine functions are either positive or
negative) or (2) two (—1)s and one (41) (which happens when one or two of the
three cosine functions are negative). Case 1 can occur if the contour surrounds an
even number of conical intersections for each pair of adjacent states (or does not
surround any conical intersection), whereas case 2 applies for all other situations. It
is straightforward to see that according to this model, K is either 2 or 0 as, indeed, is
required.

Equations (5.41) were solved on various occasions either for model systems®* or
for real molecular systems such as the {C,H} molecule® and the {H,H,} system.®

In the present section we show a few results obtained for the {Cy,H} system.
These calculations are performed along circular contours for the various angular
components, namely, (1/g)7T; [see Eq. (4.2)] only. Consequently the grad operator
V in Eq. (5.41) is replaced by the corresponding angular component (1/g)(3/d¢).
These calculations yield the p-dependent y angles [i.e., y;(¢lq), calculated for given
values of g.
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As discussed in section 4.3.2.2, the three lower excifed states of the {C;H} system,
namely, the 22A’, 32A’, and 42 A’ states, form a three-state Hilbert subspace. These
states are coupled by three cis, the lower two states, namely, the 22 A’ and 32 A’ states
are coupled by one C,, ci and the two upper ones, the 22A’ and 32A’ states, are
coupled by two twin cis (see Figs. 4.8c and 4.8c). Employing MOLPRO, we derived
the three angular NACTs 1, (¢|q); j(> k) = 1,2, which were then substituted in
Egs. (5.41) to be solved for the three Euler angles: y,3(¢|q), y34(¢|g) and ya(¢|q)?
The subindices are shifted by one because we consider three excited states and ignore
the ground state.

In Figure. 5.5 these three angles are presented as a function of ¢, calculated along
two different circles shown in Figure 4.8 (one is the I'y4 contour given in Fig. 5.5¢
and one is the I'}, contour in Fig. 5.5d). In general, the results speak for themselves,
but we refer to one particular issue—the values of the topological phases ojx (= yi
(¢ = 2m|q)), as calculated for different circles, are all either zero or . This, in turn,
guarantees that the relevant D matrix is a diagonal matrix with numbers of (£1) in
the diagonal [see Eq. (5.42)]. Moreover, we note that for the results in Figure 5.5a we
get {3, a4, 034} = {7, 0, 0}, which correspond to { D11, D2y, D33} = {——+} [see
Eq. (5.42)] and for the results in Figure 5.5b we get {a23,024,034} = {0, —7, 0}, which

2n - (b)

Euler Angles

1 1 1 1 1 1
T 2n T 2n
@/rad ¢/rad

Figure 5.5 The three Euler angles (y»3, 34, 24) as a function ¢, calculated along contours that
surround cis of the {C,,H} system, namely, the (2,3) ¢i and the two (3,4) cis: (a) calculations
along the contour I'y4 (see Fig. 4.8c); (b) calculations along the contour I'',4 (see Fig. 4.8d):

V235 === V245 0t V34
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correspond to { D11, Dy, D33} = {—+—1} [see Eq. (5.42)]. The diagonal elements of
the D matrix calculated solving the Euler angles are identical to the one listed in
Table 4.3.

5.5.4 Multidimensional Case

The N-dimensional ADT matrix AV can be written as a product of elementary rotation
matrices similar to that given in Eq. (5.38):7

N—-1 N
AM = TTTTQ (5.43)
i=1 j>i

where QEJN)()/U) [as in Eq. (5.37)] is an N x N matrix with the following elements.
The two relevant cosine functions are located at its (i7) and (jj) positions and (+1)s
are located at the remaining (N — 2) positions along the diagonal the two relevant
=+ sine functions are located at the (ij) and (ji) off-diagonal positions, and all other
remaining positions are zeros. From Eq. (5.43) it can be seen that the number of
matrices contained in this product is N(N — 1)/2 and that this is also the number of
independent y; angles needed to describe an N x N unitary matrix [we recall that
the missing N(N + 1)/2 conditions follow from the orthonormality conditions]. The
matrix AY) as presented in Eq. (5.43) is characterized by two important features: (1)
every diagonal element contains at least one term that is a product of cosine functions
only and (2) all off-diagonal elements are formed by a summation of products where
each one contains at least one sine function.

To obtain the y;; angles, one usually has to solve the first-order differential equations
of the type given in Eq. (5.41). Next, as before, the «;; angles are defined as the y;;
angles at the end of a closed contour. In order to obtain the matrix DY), one replaces,
in Eq. (5.43), the angles y;; by the corresponding «;; angles. In order for DY) to be a
diagonal matrix, all o;; angles have to be multiples of 7 (or zero) to guarantee that all
sine functions become zero and all cosine functions become +1. The only nonzero
elements, if these requirements are fulfilled, are the diagonal ones, which are made
up of products of cosine functions [see also Eq. (5.42)], that is

N
DY = 8; [ Jeosau = 8;(~DZ="; i = {1, N} (5.44)
ki

where n;, are integers that fulfill n;; = ny;. From Eq. (5.44) we note that one encounters
(£1)s along the diagonal of DY), Our next assignment is to prove the following lemma.

Lemma 5.4 The number of (—1)s, K, along the diagonal is an even number for any
D™ matrix.
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Proof We start with a given matrix DY) and consider the various «j phases in
Eq. (5.44). Next we consider a slightly different matrix D®V) [to be assigned as D'™)]
for which one of the phases, say, a,,,, is changed form zero to . It is obvious that all
matrix elements that do not contain «,,, are unaffected by this change and those that
contain it flip their sign. Since o, = &, it can be shown that only two products
(or two matrix elements) contain this particular angle, namely, D) and D). Thus,
the sign flip of the single cos(«,,,) function causes two sign flips along the diagonal
of DY), namely, one at DY) and one at D). This implies that, in general, sign flips
can occur only to an even number of terms of the DY) matrix. Since the group of
all possible matrices DY) contains also the unit matrix, this implies that K has to be
even, and its values are given as

K =1{0,2,...,Ky) (5.45)
where K ¢ is equal to either N or N — 1 (depending on whether N is even or odd).

Short Summary At the beginning of this section we listed three requirements for
the extended Euler matrix to be a model matrix for the ADT matrix. In this section
we proved that these Euler matrices fulfill these requirements and therefore can be
considered as suitable for presentation of a general ADT matrix.

5.6 QUANTIZATION OF = MATRIX AND ITS RELATION TO SIZE OF
CONFIGURATION SPACE: MATHIEU EQUATION AS A CASE OF STUDY

The way to estimate the degree that a given T matrix of dimension N x N is quantized
in a region A, formed by a closed contour T', is to form the relevant D(I"| N') matrix
[see, eg., Eq. (4.6)] and to determine the extent to which it is diagonal [we recall
that since the D matrix is an orthogonal (real) matrix, its diagonal elements are
expected to be close to +1]. In Section 5.3 we discussed various ab initio molecular
systems and found strong evidence that for a given region in configuration space
the matrix D(V) becomes more and more diagonal as N gets larger. However, a
consistent convergence study of this kind could not be done for ab initio systems
because numerical instabilities are enhanced as N increases. In this section we present
such a study, but employing eigenfunctions derived from the (appropriate) Mathieu
equation. Because of its simplicity, we face no instabilities, and the wall time it takes
to produce a sizable electronic manifold is relatively short.

5.6.1 Mathieu Equation and Its Eigenfunctions

The Mathieu equation considered in this section is of the form'™

1 02
<_§Eelw —U@lg,q) —u;(p, 61)) ¢j@le.q)=0 (5.46)
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where U (0|¢, q) is the electronic potential:

U@le, q) = G(p, g)cos(20 — ¢) (5.47)

Here, 6 serves as an electronic (cyclic) coordinate, (¢, g) are two nuclear polar coordi-
nates, G(¢, q)is the nuclear—electronic interaction coefficient, u j (¢, g) and £; (0 |¢, q)
are the jth eigenvalue and eigenfunction, respectively, which parametrically depend on
the nuclear coordinates, and E., is a characteristic electronic quantity. Equation (5.46)
is recognized as the well-known Mathieu equation. For the present study we assume
that G(g, q) is independent of ¢ and linearly dependent on ¢, namely, equal to kg,
where k is a constant. This choice of the interaction term has several numerical ad-
vantages, discussed below.

To simplify the forthcoming treatment somewhat, we introduce a new parameter,
x, defined as follows:

x = q(k/Ee) (5.48)

Thus, x replaces g as the radial coordinate. As was mentioned earlier, the size of the
A region plays an important role in our study. In the present notation ¢ is a (nuclear)
coordinate directly associated with the size of A so that the larger is g, the larger is the
A region. The same rule now applies for x; the larger is x, the larger is the A region.
Therefore, the numerical study reported here concentrates on the relation between x
and N, the dimension of the 7 matrix. With all these changes, Eq. (5.46) takes the
following form:

1 9?

(7@ —xcos(® — ¢/2) —u;(gp, x)> zj@lp,x) =0 (5.49)

To solve the Mathieu equation, we expand the ¢;(0|x,¢) eigenfunctions in Fourier

series. For our purposes and in the notation of Ref. 7, we select the following two
families of solutions

oo
cernpi(z, —x) = 3 Agntl(—x)cos(2m + 1)z
m=0

(5.50)
sexnii1(z, —x) = 3 Bynt! (—x)sinm + 1)z
m=0
where z is given as
¥
=0—- = 5.51
z 7 (3.51)

Here the cosine series stands for the ¢;(0]x,¢) functions with odd j values and the
sine function, for those with the even j values.
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It is well known that the geometric series as presented in Egs. (5.50) does not con-
verge at points close to the real z axis. This feature may affect the rate of convergence
for points on the real axis. For this reason, the convergence in each case has to be
treated with care. In this respect it is important to mention that we had to include 200
terms in the series in Eq. (5.50) to guarantee the required convergence.

5.6.2 Nonadiabatic Coupling Matrix () and Topological Matrix (D)

Solving Eq. (5.49) yields a set of N eigenvalues with the following features: (1) all
the eigenvalues are g-independent and depend on x only—thus u;(x, ¢) = u;(x);
Jj = {1, N}; (2) the eigenvalues become degenerate at x = 0 only; (3) the degenerate
states are arranged in pairs, namely, the first and the second states are degenerate (at
x = 0), and so are the third and the fourth states, the fifth and the sixth states, and
so on. Consequently, close enough to x = 0, each pair of this kind forms a two-state
Hilbert subspace.

We continue by considering the NACTs themselves and their NACMs; they, just
like the eigenvalues, are found to be ¢-independent.* The fact that the degenerate
states are arranged in the pattern described above implies that in the close vicinity of
x =0, the NACM, 7, becomes

0 Ty12 0 0 0
—Tyl2 0 0 0 0
To(x ~O|N) = 0 0 0 Tp3s 0 (5.52)
0 0 —7p4 0 0
0 0 0 0 O

The two-state case was studied in Ref. 2, and it was found that 7,2(x ~ 0) = %
Therefore, here, too, Tyji 1 = Tyjit1(x ~ 0) = % for j = 2n + 1, where n is an inte-
ger (or zero).

Next we consider the D matrix, which, for our case, takes the form*

D(x|N) = pexp(—27T,(x|N)) (5.53)

because, as mentioned earlier, the various NACTs are ¢-independent. This D matrix,
for the NACM in Eq. (5.52), can be shown to be equal to —I, where I is the unit
matrix.

In order to obtain the D matrix for arbitrary x values, we solve Eq. (5.49), form
the required NACM, and substitute it in Eq. (5.53).

From the results it was verified that the last diagonal element of the matrix D(x|N),
namely, Dyy(x|N), shows the largest deviation from (-1)* In Figure 5.6 these
Dyn(x|N) elements are presented as a function of N for different x values. It is
noticed that the each Dyy(x|N) curve decays asymptotically toward the value of
(—1) as N increases but the rate of decay becomes slower when x is greather (i.e.,
when the region in configuration space is larger). Thus it is noted that, for example, at
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1.0 |

0.5

The (N, N) element of the matrix D(N, x)
<)
1S
T

-1.0

2 4 6 8 10 12 14 16
Matrix dimension N

Figure 5.6 The last diagonal matrix element of the topological D matrix, Dyn(N, x) (de-
rived by solving the Mathieu equation) as a function of N, presented for various x values
(empty circles—x = 1.0; enlarged dots—x = 4.0; diamonds—x = 8.0; squares—x = 12.0;
triangles—x = 16.0).

x = 4 the rate of decay is relatively fast (all diagonal elements for N > 4 are already
—1) but for x = 16 the rate of convergence is so slow that we may reach the value of
(—1) only when N > 16.

Short Summary We showed here that the more extended is the region in configura-
tion space (expressed in terms of x), the larger is the required size N of a group of states
in order to become a Hilbert subspace. Our study is not typical for Born—-Oppenheimer
states because the various ci points for this system are located at the same point, but
nevertheless this study illuminates some aspects of the relation between x and N.

PROBLEMS
5.1 In Section 5.1 we expressed the NACT matrix elements 7(s) in terms of
VH,(s.|s) [see Eq. (5.1)]. Here, we express Tj(s) in terms of the diabatic
potential matrix W(s) [see Eq. (2.39)]:
W = A"uA (5.54)

and the corresponding ADT matrix A.



5.2

PROBLEMS 135

Solution  We start by differentiating Eq. (5.54) and rearranging somewhat the
result:

A VWA = A (VA")u+ Vu + u(VA) AT (5.55)

Next, employing Eq. (2.37), we express the derivates VA and VAT in terms of
the matrix 7(s):

AVWA" = 7u+ Vu — ur (5.56)

If Q is defined as the sum of the three terms on the r.h.s. of Eq. (5.56), we find
its elements to be of the form

Vu;; j=k
Q= J . 5.57
" { (wj —we) Ties  JHEk 47

Since €2 is also equal to the Lh.s. of Eq. (5.56), we get the following result for
Tjk(8):

Th=—L—K  j#k (5.58)

which is the requested expression. Equation (5.58) implies that having the dia-
batic matrix W, one can produce the corresponding NACM by employing only
the W matrix and its eigenvalues and eigenvectors.

Given the 2?2 diabatic potential matrix W

Wi Wi
W= 5.59
(W12 sz) (5.59)

prove the following:
(a) If A, written in the form

[ cos B sin B
AlB) = (— sin 8 cos ,3) (5.60)
is the matrix that diagonalizes W, then the angle g fulfills the following
relation:
1 2w
p=stan”! =2 (5.61)

2 Wii—Wa
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(b) Employ Eq. (5.59) to show that the corresponding (1,2) NACT, 73, is
given in the following form:

T12(8) =V (5.62)

Solution:

(a) Toderive Eq. (5.61), we consider Egs. (3.13), subtract the second equation
from the first, and divide the third equation by respective differences

Wia(s) _ cos B(s) sin B(s)
Wii(s) — Wa(s)  cos? B(s) — sin® B(s)
or
1 _ Wia(s)
3 tan 28(s) = —W”(s) W) (5.63)

which, following simple rearrangements, leads to Eq. (5.61).

(b) To prove Eq. (5.62), we consider Eq. (5.58) for the case that j = 1 and
k = 2 and again employ Eq. (3.13):

A VWA sin2p

A, VWA! (5.64)
U —uq 2W12

T2(s) =

where A;; j = 1, 2 are the two rows of the A matrix in Eq. (5.60). Substi-
tuting the explicit expressions for A ;; j = 1,2 in Eq. (5.64) yields

T12(8) =

sin2f sin 2
2Win 2

\% (W11 — W22) —+ cos 2,3VW]2) (565)

Next, differentiating Eq. (5.61), we obtain
%V(WU — Wx) = WV (cot28) + cot 28V Wy, (5.66)

and substituting Eq. (5.66) in Eq. (5.65) finally yields Eq. (5.62)
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CHAPTER 6

MOLECULAR FIELD

6.1 SOLENOID AS A MODEL FOR THE SEAM

In Sections 1.1.2 and 1.1.3 we showed that the adiabatic Born—-Oppenheimer
eigenfunctions that form a Hilbert space produce Curl-divergence equations [see
Egs. (1.24) and (1.34), respectively] that are similar to the Curl-divergence equations
encountered in electrodynamics' (in what follows we refer to these equations as C-D
equations).

On the basis of this feature, we present a new approach to treat the NACTs, namely,
to consider their spatial distribution as fields where at least some of them are produced
by source points reminiscent of electromagnetic fields formed by charged particles
(electrons, protons, etc.). It will be shown that the source points in our case are the ci
points—the points at which certain NACTs become singular (see Section 5.1). Since
cis arrange themselves along (semi)infinite long contour lines—seams®>*—and since
electric charges do not exist within the Born—Oppenheimer framework, formation of
an analogy with the magnetic component of the electromagnetic field is suggested.”'
This analogy almost speaks for itself because a seam is reminiscent of the infinite (or
semiinfinite) long and infinitesimal narrow solenoid that forms a magnetic field, H
(see Fig. 6.1). However, from experiments it is known that solenoids produce magnetic
fields only inside the solenoid whereas outside the solenoid the field is zero. Thus
T, which is different from zero in configuration space, cannot be identified with H,
but if it can at all, then with the vector potential A, which, like T, differs from zero
in the space surrounding the solenoid. Indeed, as will be shown in this chapter, the
similarity between 7 and A is rather striking. Having formed this similarity, we are
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Figure6.1 Simulation of a seam as a helical (electric) wire characteristic for a solenoid. Two
seams are shown: one formed by a (1,2) c¢i and one by a (2,3) ci.

in a position to add a few more features to the NACTSs based on this similarity. These
assumptions were justified by detailed numerical treatments as discussed throughout
the present chapter.

For this purpose we first summarize our knowledge regarding the solenoid and its
field.'* Recalling the theory of electrodynamics, the magnetic field H is formed by a
vector potential A according to the following relation:

H=Curl A 6.1)

Since the direction of H in the solenoid is along the solenoid’s axis, Eq. (6.1) implies
that A is orthogonal to H and therefore also to the solenoid’s axis. Thus, if for a given
value of z the x—y plane is chosen in such a way that the axis of the solenoid is perpen-
dicular to it (and therefore is along the z axis), then H possesses only a z component
and A, only the (nonzero) components A, and A,. Assuming that the A-solenoid
system correctly simulates the 7-seam system, this implies that if the seam is in the
z direction, then 7, ~ 0 and T, and 7, differ from zero.
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There are, however, two major differences between the solenoid (A) and the seam
(t) systems that cannot be ignored:

1. The vector potential A is Abelian, namely, made up of vector functions whereas
T is usually a non-Abelian magnitude made up of (vector) matrices. Because of this
difference, the simulation may fail. However, in Corollary 1.1 it was shown that the
2 x 2 T matrices exhibit Abelian behavior and therefore a simulation can be formed for
a two-state Hilbert subspace. Moreover, the two-state case is exceptionally important
because any non-Abelian 7 matrix usually reduces, at the vicinity of any ci,toa2 x 2
matrix and therefore becomes Abelian so that the simulation is always valid close
enough to a given ci. (We remind the reader that as the distance from the given ci
increases, the 7 matrix, as a result of interactions with other cis, expands to become
N-dimensional, where N > 2, and therefore is non-Abelian.)

2. The A vector produced by a solenoid possesses a cylindrical symmetry whereas
the spatial distribution of a NACT (formed even by a single ci) is rarely circular. For
instance, in case of a three-atom system it is frequently elliptic'’ (see Section 3.2.3).
This difference is a source for difficulties because for a solenoid, A can be chosen so
that it fulfills the equation Div A = 0'* (by this we do not mean that Div A has to be
zero), whereas in our case we usually have Div 7 # 0. It is important to emphasize
that for molecular systems Div T has to differ from zero.

In the present chapter the molecular C-D equations are reconsidered for a different
reason, namely, to prove that indeed the various elements of the T matrix behave
like (molecular) fields.!6~'3 It will be shown that part of them have sources just as
in electrodynamics and others, which lack sources, are induced by the fields with
sources—a situation not encountered in electrodynamics. Both types will be studied
employing the ordinary mathematical tools as applied within field theory.

In Section 6.2 we show, step by step, to what extent the two-state NACT behaves
like an Abelian system, whereas in Section 6.3 we discuss in some detail the multistate
non-Abelian system.

6.2 TWO-STATE (ABELIAN) SYSTEM

6.2.1 Nonadiabatic Coupling Term as a Vector Potential

We start by stating the following lemma.

Lemma 6.1 Given a two-state Hilbert subspace, the corresponding two coupled
adiabatic Schrodinger equations in Eq. (2.12) can be decoupled, for sufficiently low
energy, so that one equation is for a function ¢(S) and the second for its complex
conjugate, namely, ¢(s)™.!

Proof For the sake of completeness, Eq. (2.12) is repeated here:

2
—S—m(v+r)2\11+(u—E)\I:=0 (2.12)
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and the same applies to 7 given in Eq. (1.26):

— 0 T12
o —T12 0
Next, W is replaced by @ following the (constant) unitary transformation, thus

T = Gd (6.2)

where G is chosen in such a way that it diagonalizes the 7 matrix:'-?

1
-0 1)

Substituting Egs. (6.2), (6.3), and (1.26) in Eq. (2.12) (see above) yields the two
coupled equations:

K2 1 1
5 (V+ iTY ¢ + (—(ul + 1) — E) ¢1 + = (U1 — ur)ps =0
m 2 2

n? 1 1
2 (V =it ¢+ <—(u1 +us) — E) G+ (g —ux)pr =0 (6.4)
m 2 2

where 7, is replaced by 7 to simplify the notation. These two equations can be
rearranged to become

K2 1
—%<V+ir)2¢l + (i — E) ¢ +iﬁ<u2 —uyr =0

P vV —it)? E = =0 6.5
—%( —iT) ¢+ (U — )d)z—lﬁ(uz—uu)wz— (6.5)

where v, the (nuclear) adiabatic function associated with the upper state u5, is put
back again to replace the difference (¢; — ¢») = —i~/2y, [employing Eqs. (6.2) and
(6.3)]. Next we assume the energy to be low enough so that u, is classically forbidden
and therefore [y;| ~ O at every point. Consequently the term that contains ¥, can be
neglected so that the two coupled equations become decoupled!2

2
—h—(v +it)Y’p+w, —E)p=0 (6.6)
2m

where the subscripts 1 and 2 become redundant and are deleted. Thus we managed
to derive a single (decoupled) Schrodinger equation that keeps its NACT contrary
to the ordinary Born-Oppenheimer approximation.>= It is important to mention that
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the derivation of a decoupled single Schrodinger equation from a (general) N-state
system is discussed in Chapter 8.

The outcome of this proof is that the NACT appears in the single-state Schrodinger
equation in the same way as the magnetic vector potential appears in a Hamiltonian
that describes the interaction of a charged particle with an external magnetic field.5’

It is important to remind the reader that writing the Hamiltonian as in Eq. (6.6)
guarantees, classically, that the magnetic force that acts on a charged particle is the
Lorentz force:’

F=-[pxH]
mc

However, due to Eq. (1.28) [see also Eq. (6.8)], H = 0, and consequently the Lorentz
force for the charged particles within the molecule (at least in close vicinity of the ci)
is identically zero.

6.2.2 Two-State Curl Equation

The two-state Curl equation is introduced in Section 1.1.2, in particular through
Egs. (1.27) and (1.28), where it is presented, in terms of cartesian coordinates. Here
and in what follows we are interested in a planar system described by two polar
coordinates (¢, q), where the two are related to the Cartesian coordinates as follows:

p=tan"'(y/x); q=+x2+)2 (6.7)

Transforming from the Cartesian to the polar coordinates yields the following expres-
sion for the Curl equation in polar coordinates [see Eq. (1.25)—(1.28)]

1 /ot 0T, 0T, T,
F - _ _‘/’__">=0:>—‘p_—q=0 (6.8)
g <3q dg dg  0¢
where
ol e A 6.9)
T, = - ; =@, .
A 1 i 2 2%

Next we prove the following lemma.

Lemma6.2 Foratwo-state Hilbert subspace, the line integral of which is quantized
in Eq. (3.12), the radial component of 7, namely, 7,, has to be singlevalued.8
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Proof Integrating Eq. (6.8) with respect to both g and ¢ yields the following result:

2 2 q2

/w(% q2)dg — / (¢, q1)dp — /dq(rq(so =2m,9) —1(¢ =0,9))=0
0 0 q
(6.10)
The quantization implies that Eq. (3.12) holds for every radius g so that we have

2w 2

/tw(wsqz)dw =/r¢(<p,q1)d<p (=nm) (3.12)

0 0
Returning to Eq. (6.10), we obtain the following for 7,(¢, g):

q2
/dq(fq(w =21,9) — (¢ =0,9)) =0 (6.11)

q1

Thus, 7,(¢, ¢) is a singlevalued function with respect to ¢ for any g.

6.2.3 (Extended) Stokes Theorem

The Stokes theorem implies that

?ﬁ ds-1(9) = % Fdo (6.12)
r o

where F is introduced in Eq. (6.8), T is the (1,2) NACT vector (not a matrix) mentioned
earlier, and the closed contour I" is the borderline of the assigned planar region o. On
the Lh.s. of Eq. (6.12) we encounter a line integral and on the r.h.s., a surface integral.

It seems as if Eq. (6.12) is not fulfilled within the present formalism because
the expression on the r.h.s. is always zero [see Eq. (6.8)] whereas the expression
on the Lh.s., due to the quantization condition [see Eq. (3.12)], usually differs from
zero. This discrepancy is due to the integration over o, which cannot be carried out
correctly because F is not defined at the singular ci points (these points were termed
in Section 1.3.2.2 as pathological points). To correct for this defect, we recall that
the ci points form a finite group of (isolated) points and therefore at each such point
the (g, ¢) tensorial component of F, namely, F,,, has to be infinitely large to ensure
that the surface integral in Eq. (6.12) yields a nonzero contribution. To continue, we
consider the case of one single ci. In order to guarantee the quantization in Eq. (3.12),
we assume for F,, at the ci point, the following expression:’

8
Fyp = 2nf(g0,q)% (6.13)
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Here 6(q) is the Dirac delta function and f(¢, ¢) is an analytic, as yet undetermined,
function.

To continue, we concentrate on a circular region that contains one ci at ¢ = 0 and
unite Egs. (6.13) and (6.8) to form an extended version of the Curl equation:

1 [t aT 3(q)
Fpg=— 57— —") —27f(p, 9)— (6.14)
g < dg g q

Next, considering again Eq. (6.12) and employing Eq. (6.14) for F,,, we observe that
the Stokes theorem leads to the following expression:'%!!

1 1

;w(so, q)qdy =2m gf(w, 9)8(q)q dy dq (6.15)

r o

In writing Eq. (6.15) it is assumed that Eq. (6.8) is fulfilled at every point in ¢
(including g = 0).

To continue, we perform the integrations on both sides of Eq. (6.15) and find that
in order to guarantee equality, the function f(¢, ¢ = 0) has to fulfill the following
condition:

2

2
ffw(w, @dp =1 / f(p,q =0)de (6.15)
0

0

However, recalling Eq. (3.12') (see previous page) we see that f(¢){ = f(¢, g = 0)},
just like 7,(¢, ¢), has to be quantized, namely

2
/ flp)dp =n (6.16)
0

where 7 is an integer.
We continue to elaborate on Eq. (6.14). This equation is defined for both ¢ =0
and ¢ > 0 and therefore can be considered as the extension of Eq. (6.8):°

0% _ %% _anpigrsa) (6.17)
aq dp

We note that adding the r.h.s in Eq. (6.17) is, in fact, a way to incorporate, in Eq. (6.8),

the boundary condition at g = 0.
The solution of Eq. (6.17) (for ¢ > 0) is given in the form

q
0
2,(q.0) — | dg=2 = 7h(g) f(0) (6.18)
dp
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where ¢ — 0 and &(q) is the Heaviside function:

1
h(q) = {0 Z g 8 (6.19)

The fact that Eq. (6.18) is a solution of Eq. (6.17) can be verified by substitution.
Since g is a radius, it is always positive and therefore Eq. (6.18) can be written,
without loss of generality, as follows:

q
0
7,(q.9) — / d"a_z: 7f(p) (6.20)

&

Next, assuming 7, (¢, q) to be finite at the vicinity of g ~ 0, we note that the second
term on the Lh.s. of Eq. (6.20) for ¢ — & (~0) can be ignored, so that we find’

1
flo)= %~ 0.9) (6.21)

This result implies that the angular dependence of the Curl term in Eq. (6.13) is
identical (up to a division by 1) to the angular component of 7 as calculated (at any ¢
but in particular in the close vicinity of the ci, i.e., ¢ ~ 0). In what follows the angular
component at g ~ 0 is termed the virgin function—virgin in the sense that its values
are not damaged by NACTs of other cis. The virgin functions are used as boundary
conditions to solve the C-D equations.

An unavoidable difficulty of the present theory is that the radial component of T,
namely, 7,(¢, q), remains, in fact, unknown. Moreover, except for its singlevaluedness
in configuration space (see Section 6.2.2), we are not aware of any special features.
We assumed it to be finite for g ~ 0, but no clue is given with regard to its values
for g > 0. In fact, distinguishing, for 7,(¢, g ~ 0), between being finite or identi-
cally zero is not essential because the angular component of 7, namely, 7,(¢, 9)/q,
becomes infinitely large and therefore completely dominates 7 in this region. Since
the values of 7,(¢, ¢) are of minor importance at the ci point, we continue to ignore
it at the whole region of interest. In other words, we assume that for an isolated ci,
74(¢, q) ~ O for any g value. We are aware that this is a far-reaching assumption and
therefore, this assumption has been under detailed scrutiny in more recent numerical
treatments.'>-14

6.2.4 Application of Stokes Theorem for Several
Two-State Conical Intersections

We start by extending Eq. (6.14) to the case of several cis

F=Cul7-) § (6.14')

Jj=1
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where éj is the intensity due to the jth ci [see Eq. (6.13)]:

5 — Gjo) -
g = gj0)5 (6.13))
lg — gjol

Si(@) =2nfi(¢))
Here fi; is a unit vector normal to the plane under consideration, thus pointing either
up or down.
Consequently the line integral in Eq. (6.15), which now is assumed to surround N
cis, is given in the form

ﬁdS.T(S):%;%.dazéﬁSidU

or
f ds-T(s)=) }}4{ S do; (6.22)

r j=1 aj
where 0, j =1, ..., N is an infinitely small area element that surrounds the jth ci.

As an example of what happens in case of two cis, we consider the two (3,4) ci
twins that couple the third and the fourth states of the {C,,H} system (see Fig. 4.8c¢).
Assuming the contour I' = I",4 to surround both cis, it was found that the line integral
in Eq. (6.22) yields the value zero, indicating that the two cis annihilate each other. '
This result implies, following the substitution of Eq. (6.13') in Eq. (6.22), that the two
unit vectors fi;; j = 1,2 have opposite signs. At first it was not clear why the two
vectors posses opposite signs. For instance, they could both have the same sign,
thus yielding, for the line integral in Eq. (6.22), the value of 2. An explanation
that supports these findings was given by Vértesi and Bene!” and is schematically,
presented in Figure 6.2. Mebel et al.!> found that by increasing the distance between
the two fixed carbons in Figure 4.8b, the two cis, originally located on a plane A,
approach each other, as schematically described in Figure 6.2, so thatat Rcc = 1.35 A
they coalesce at point P on plane B. It is clearly noted that since the two seams coalesce
and because the direction of the NACT along the common seam (up and down) has
to be continuous, these two conditions cause the two (3,4) NACTs related to the two
cis, located on plane A, to have different signs.

6.2.5 Application of Vector Algebra to Calculate the Field
of a Two-State Hilbert Space

In the previous section we analyzed a system with a single ci and ended up with the
conclusion that the NACT, 7, associated with a single c¢i does not possess a radial
component; in other words, 7,(¢, q) =0 for any g. Recalling the Curl equation
[Eq. (6.8)], this assumption implies that 7,(¢, ¢) does not depend on g. Therefore the
NACT, 7, due to one single ci located at g = 0 (viz., at the origin) can be presented
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Figure6.2 A schematic representation of two semiinfinite long (directed) seams, each formed
by a series of cis as encountered for the C,H system (see Fig. 4.8c). Also shown are two planes,
A and B as obtained by assigning the carbon-carbon distance, Rcc, two different values. On
plane A, where the two ci twins are well separated from each other, are drawn a contour I"
that surrounds the two (3,4) cis and the two infinitesimal small contours I'; and I', that (each)
surround only one ci. Plane B contains the point P, where the two cis coalesce or the two seams
intersect each other.

as 7(¢, q) = (f(¢)/q,0) at any point (¢,¢) in configuration space. Next we consider
the situation where the two states form several cis. In this case, just as in the case
of a vector potential that is formed by several solenoids, vector algebra is employed
on the basis of the contribution of each ci, namely adding up the contributions of the
various cis to obtain the resultant intensity of the field at a given point.

For this purpose we first derive the mathematical expression for field due to
a single ci located at an arbitrary point (g;0,¢,0). The procedure is as follows.
Having 7 = (f(¢)/q,0), we present it in terms Cartesian components (7,,7,) and
then shift (but not rotate) the vector 7 to the point of interest, namely, (0,0) — (x 0,y jo)
(=(q;0,9;0)). Since no rotation is involved in the transformation, the shift of the ori-
gin to a new point is parallel. Once completed, the solution is transformed back into
polar coordinates. The details of the derivation are given as a solution of Problem 6.1
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at the end of this chapter. This derivation yields the following results®'? for a given
point P(q,p) (as measured from the new origin)

1
7,(q.0) = —f;(w;); sin(p — ¢;)
J

1,(q.9) = f,-(w,-)f cos(p — ¢;) (6.23)
J

where the connection between the various coordinates is as follows:

4; = /(g cosp — gjocos ;o) + (g sing — g;5in j0)

COSQ — qinCOSQ;
cosQ; = A $ 450 Ll (6.24)

4j

It is noted that for g ;o — O (and therefore ¢; — ¢), the solution in Eq. (6.23) yields
(to(q.9)/q9,74(q,9)) = (fi(9;)/q, T, — 0), which is the solution for the case where
the ciis at the origin. A similar situation is encountered as g >> ¢qjo. Here, too, ¢; — ¢,
and therefore 7, — 0.

We attached to each ci a different f(¢) function, specifically f;(¢;), to indicate
that each such ci (in this case the jth one) may form a different virgin distribution.

With this modified expression we can now extend the solution of Eq. (6.23) to any
number of cis. Since 7,(q,9) and 7,(q,p) are scalars, the solution in case of N cis is
obtained by summing up the contributions of all cis:'>!8

N
1
7(q.9) = — Z filgj)— sin(e — ;)
j=1 q;
Al 1
T,(0.9)=q ) fitep) - coste = ¢)) (6.25)
J

j=1

Equation (6.25) yields the two components of 7(g,¢), for a distribution of two-state
cis expressed in terms of the virgin distributions of the NACTs at their cis. These
functions have to be obtained from ab initio treatments, however, the entire field is
formed by Eq. (6.25).

6.2.6 A Numerical Example: Study of {H,,Na} System

In 2003 we completed an extensive study of the {H,,Na} system'® and found two
features that allow us to test our two-state vector algebra approach for a situation
where 4 two-state cis form the NACT field.

Within this study the four lowest states of this system, namely, 12A’, 22A4’, 324/,
4? A’ were considered and the relevant NACTs were calculated employing MOLPRO?
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(see Chapter 4). For this purpose we concentrate on configurations for which the
distance Ryp between the two hydrogen atoms is fixed, namely, Ryy = 2.18 a.u.,
and allow the sodium to be free and serve as the test particle to determine the values
of the NACTs at various points. The main finding for the present study is that the third
and the fourth states form a quasi-fwo-state Hilbert subspace coupled by four (3,4) cis.
Consequently this system furnishes a unique opportunity to apply the vector algebra
for a relatively complicated system with four sources and test the ideas presented in
the previous sections (particularly in Section 6.2.4).

The aim of the numerical treatment is to compare the ab initio values of 734,(q,9)
and 7344 (q,¢) with those derived by applying Eq. (6.25).

In order to apply Eq. (6.25), we need the virgin distributions, f;(¢;), for the four
(3,4) cis. These are calculated, employing MOLPRO, along circles of small radii
(~0.01 a.u.) that surround each of the four cis and are presented in Figure 6.3.

The comparison is carried out along four circles that surround various numbers of
cis (see Fig. 6.4). The comparison itself is presented in Figure 6.5, and the results speak
for themselves. It is observed that although the ab initio distributions are frequently
rather complicated and show a lot of structure, the vector algebra approach produces
functions that are capable of accurately following the ab initio points.

Before closing this section, we refer to one issue related to the assumption that
radial component 74;(q;,¢;) that originate from the jth ci are small enough for any
q value and hence can be ignored in numerical treatments. The ability of the vector
algebra approach to correctly simulate the NACTs of the {H,,Na} (and also those of
the {H,,H}'>!%) may not be the ultimate proof for the relevance of this assumption
but does yield strong support for it.

¢ P
4
q=0.01A
0.0 T T
E(a) ] ]
[ -1.0p 7 ]
5] C ] |
S -20p ] 1
s . :
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0 o 21 2n 0 w2 ® 3n2 2n
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Figure6.3 Thethreeabinitio virgin distributions of the (3,4) cis as calculated for the ({H,,Na}
system for the configuration formed by Ryy = 2.18 a.u.: (a) f1(¢1) (= Ty34(@1lq1)) calculated
for the upper (3,4) ci located on the symmetry line; (b) f2(¢2) (= Ty34(¢2192)) [and its mirror
image f3(¢3)] calculated for the sideward (3,4) ci; (¢) fa(@s) (= T y34(¢4]q4)) calculated for the
lower (3,4) ci located on the symmetry line.
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Figure6.4 Four circular contours along that are calculated the various NACTs for the {H,,Na}
system: (a) three concentric circles with their centers at 0(0,0) surrounding different numbers
of cis; (b) a circle with its center shifted downward at O(0,—0.135 a.u.) surrounding two cis
located on the symmetry line. The positions of the cis are designated as (full) triangles.

6.2.7 A Short Summary

In this section we presented an approach implying that the field produced by the
two-state NACTs—termed the molecular field—is formed at ci points. Moreover, nu-
merical examples'?!? (one of which is presented in Section 6.2.6) indicate that cis not
only form the molecular fields but also seem to be the only sources to form these fields.

6.3 MULTISTATE HILBERT SUBSPACE

6.3.1 Non-Abelian Stokes Theorem

The multistate extended Curl equation is discussed in Section 1.1.2, and it is shown
that for a Hilbert space it takes the form

F=H-T=0 (6.26)

where H and T are as given in Egs. (1.16) and (1.17), respectively.
Next we extend this equation in order to include the various source terms similar
to the extension of Eq. (6.14). Thus Eq. (6.26) is assumed to be of the form

F=H-T-5S (6.27)

where Sis an antisymmetric tridiagonal vector matrix that contains at its two tridi-
agonals [viz., at the (k,k & 1) locations] the various source terms. Thus

Sut1@ =Y Sux1;(@) (6.28)
j=1
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Figure6.5 A comparisonbetween ab initio and vector algebra results, for the two components
of T34(¢|q), calculated along four circles presented in Figure 6.4. Panels (a)—(d) present the
angular components, 7T,34(¢|q), and panels (e)—(h), the radial components, 7,423(¢|g). Full

lines are results due to ab initio calculations; dashed lines are results due to the vector algebra
model.
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where ékkil j((}) is the contribution of a jth ci located at Z]_,«o to the (k,k £ 1) source
terms [see also Eq. (6.13') on p. 147]:

2 - ; 8@ —qjo)
Su+1(q) = iznfk(li)il(wj)ﬁ (6.29)
— G0

Here g is the (polar) coordinate of a point in a given system of coordinates, ¢; is
angular coordinate relating the point of interest to the jth ci, fk(,{il(q) ;) is the angular
component of the field as formed by the corresponding (k,k =+ 1) ci at the point g o,
and 8(§ — g o) is the relevant Dirac § function. It is important to emphasize that, due
to the Dirac § function, the expression in Eq. (6.29) is an Abelian system source term.

Having prepared these numerical tools, we intend to show that the topological D
matrix—the magnitude that most characterizes a given Hilbert subspace (in a given
region)—is formed by the (Abelian) cis located in this region.

In order to show that we consider the line integral given in Eq. (1.94) for a circle
on a plane

D) =1- frds- T(SDAS) (1.94")
We employ the Stokes theorem to present it as a surface integral:
D) =1 —% do - Curl (T(9A(9) (6.30)
Next, performing a few algebraic rearrangements, we find
D) =1 —% do-(H-T)A() (6.31)

Asin the Abelian, two-state, case, here, too, the surface integral yields the zero matrix,
which causes the D matrix to be the unity matrix. The reason for this mishap is that the
integration is carried out over pathological points where H is not well defined (viz., at
the ci points). To correct for this malfunction, we have to replace, in the integrand, the
matrix (H — T) by the expression in Eq. (6.27), and then we obtain for the D matrix
the expression:

21 q

D)= — / / dq' ¢’ do Sg. VA, 7)) 6.32)
00

where we also introduced explicitly the polar coordinates and assumed I" to be a circle
(so that o becomes a circular region).

As is noted, the integrand in Eq. (6.32) yields nonzero contributions only at ci
points. In other words, the multistate D matrix is formed solely by the two-state cis
where the corresponding § functions guarantee that the contribution for the D matrix
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comes only from regions infinitesimally close to the various cis [we recall that the
corresponding A-matrix elements appearing in the integrand are, in fact, two-state
matrix elements of the type discussed in Section 3.11.1—see Eq. (3.4)].

While calculating the D matrix, we recall that it is expected to be (approximately)
a diagonal matrix (for a Hilbert subspace). In case one is interested in calculating it
employing Eq. (6.32), we suggest first studying Problem 1.1 (in Chapter 1).

6.3.2 The Curl-Divergence Equations

In Section 6.2 we concentrated on NACTs belonging to a two-state Hilbert space,
which implies that all the cis are formed by the same two states. However, once we
encounter a multistate Hilbert subspace with three or more states, we face a different
type of system, the non-Abelian system, characterized by a new type of interaction,
namely, an interaction between cis formed by different pairs of states, for instance,
a (1,2) ci interacting with a (2,3) ci. Thus, we argue that the non-Abelian system
behaves differently than just a collection of Abelian systems.

Although the non-Abelian system behaves differently, we still carry out the study
of such a system by applying the numerical tools presented in the previous sections.
This becomes possible because any non-Abelian system reduces to an Abelian system
in the vicinity of any ci. Since cis, as mentioned in Section 6.2.6, are the sources of
Abelian fields, they are in fact also the sources of those fields encountered in the non-
Abelian system. Indeed, in Section 6.3.1 we showed, explicitly, that the topological
D matrix related to a multistate system is produced solely by the two-state cis.

In case of the Abelian system, one is able to derive the intensity of the molecular
field (viz., the NACT) at every point by simply applying a vector algebra approach
as described in Section 6.2.4 because, in so doing, we observe that the jth extended
Curl equation that is fulfilled in the vicinity of the jth ci is also fulfilled for a given
group of n cis because of the sum rule expressed in Egs. (6.14") and (6.25).

Since the interactions in non-Abelian systems are not always additive, vector al-
gebra cannot be applied and therefore other means have to be developed to derive
the molecular fields. More recent publications have suggested solving, for this pur-
pose, C-D equations subject to boundary conditions formed at cis. This approach is
discussed to some extent in the following sections' ™.

In applying the C-D equations, we encounter two difficulties:

1. To solve the differential equations, we need the source terms as were just dis-
cussed. However, not all molecular fields are formed by sources of this type. For
instance, the field related to the 73(q,¢)-matrix element is not formed in this way
because 713(g,¢) is a NACT between two nonadjacent states and two such states do
not produce a ci. Thus in what follows we need to distinguish between NACTs of
the type 7 ;;+1(q.9) that have source terms and NACTs of the kind 7 j;14(g.9); k > 1
that do not have source terms.

2. The divergence equation is given in the form

Divr=7%—71.1 (6.33)
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[see Eq. (1.34), where it is presented in a slightly different form]. The main difficulty
with applying this equation is that it contains the 7»-matrix elements [see Eq. (1.29)]
that are not explicitly given and have to be obtained independently. In what follows
this matrix is termed the Strange matrix and its elements are referred to as the Strange
elements.

6.3.2.1 Three-State Hilbert Subspace
Derivation of C-D Equations for Three-State System The three-state 7 matrix
is given in the form

0 T12 T13
T = —T12 0 T23 (634)
—Ti3 —T3 O

and the corresponding three-state Curl equations that follow from the Eq. (1.13) are
expressed as follows:!#

Curl 712 = [T23 X T13] (6.35a)
Curl 793 = [T13 X T12] (6.35b)
Curl 713 = [T12 X T23] (6.35¢)

As is noted, the extension from a two-state system to a three-state one is much more
complicated than just adding another equation. A comparison between Egs. (6.35)
and (6.8) already reveals part of the difficulty with this extension. Moreover, in the
two-state case we do not solve for differential equations; all we have to do is to employ
vector algebra to obtain the components of 7T (see Section 6.2.4). In the three-state
system, not only do we have to solve differential equations to obtain the NACTs but
also these equations are nonlinear [see r.h.s. of Eq. (6.35)], a fact that may introduce
additional complications.

Equation (6.35) contain six unknown functions, namely, (zyjk, Tqjx); J > k,
Jj = 1,2. Thus, in order to solve them, we need three more equations that, as dis-
cussed earlier, follow from the divergence equations:

Div 71, =705 — T23 - T13 (6.36a)
Div 793 = 7(223) — T3 -T2 (6.36b)
Div 713 = 7(123) + T2 T (6.36¢)

It is noted that each of these Equations (6.36) contains one Strange term, namely,
2 __Q 2) : . : ) i
T3> T»; and 733, respectively—the corresponding elements of the 7% matrix [see

Eq. (1.29)].

Ab-Initio Verification for the Curl Equation In this section we briefly examine
to what extent an ab initio three-state Hilbert subspace fulfills the Curl equation as
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presented in Eq. (6.35c). To be more specific, we consider the expression (written in
polar coordinates)

0Tg13  9Ty13
dg dq

= (Tp12T423 — T412Tp23) (6.35¢)

and apply it for the three lower states of the {H,H} system (for details regarding this
system, see Section 4.3.1.1 and in particular Section 4.3.2.1).

According to this equation, the (g,¢) component of Curl 73 can be presented as a
difference between two products, each related to the components of the two NACTs,
T2 and T73. As is noted, the required Curl 73 expression can be calculated in two
different ways: (1) applying MOLPRO? to derive the two (1,3) components T53(¢|q);
A = ¢,q and then producing, numerically, the relevant derivatives to form the respec-
tive Curl expression [i.e., the L.h.s. term in Eq. (6.35¢")] or (2) applying MOLPRO
to derive the two components of the (1,2) and (2,3) NACTs, namely, 7;12(¢|g) and
T23(¢]q); A = @,q, respectively, and form the required commutator [i.e., the r.h.s. of
Eq. (6.35¢)]. The calculations were done along two circles with radii ¢ = 0.2, 0.35
A centered at the (1,2) Dsy,. ci point. The geometry and the corresponding results are
presented in Figure 6.6. As is noted, the fit is practically complete. For more details,
see Refs. 6 and 7.

Q q
. - .
q=024 q=0354
(@)
24} ‘
g X
£
= 12F
&
ES
@)
0
0 T 2n 0 T 2n
@/rad ¢/rad

Figure 6.6 Results for the H4+H, system as calculated along the two circles centered at the
Dy, ci: (a) results for Curl 715(p|g = 0.2 A); (b) results for Curl 715(p|g = 0.35 A). Full lines
present results due to the Lh.s. of Eq. (6.35¢’) (derived from numerical differentiations of the
relevant magnitudes as obtained from MOLPRO), and dotted lines present results due to the
r.h.s. of Eq. (6.35¢") [derived from the vectorial product and therefore based on 71,(¢|q) and
T5(p19)].
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In 2004 a similar calculation was carried out by Barragan et al. while studying the
two lower states of the (Hy,H™) system.8

6.3.2.2 Derivation of Poisson Equations

As mentioned earlier, the divergence equations have their own source terms, namely,

Strange terms, 7'(122), 7'(223), and 7'523). However, as in the Curl equations, here, too, we

distinguish between two types of Strange terms: those formed at cis, like 7'(122) and 7'(223),

and those that are not formed at any particular point, such as 7'(123). As will be shown
in see Section 6.2.4, two of the three Strange elements, namely, 7'(122) and 7(22;, are
essential to obtain correct results or in other words are nonremovable, for instance,
by a gauge transformation, but 7(123) is less essential and therefore can be removed by
a gauge transformation.

Equations (6.35) and (6.36) can be arranged as three pairs of C-D equations

Curl 7 = [7je X Tu; jAElEk> | (6.37a)
Div Tjk=T§2]3+Tj£'TZk; JFELFk>] (6.37b)
(where T, = —T};, etc.). Each of the two equations contains on the Lh.s. the

same unknown function, namely, 7 ;;, whereas the other two (unknown) functions,
T je and 7 , show up on the r.h.s. of these two equations and appear to be part of the
inhomogeneity terms. In fact, it is these inhomogeneities that not only cause the three
pairs of equations to be coupled but also form the nonlinear part of the equations,
which may cause additional difficulties while solving them.

The structure of Eqs. (6.37) hints at the possibility that these equations can even-
tually be solved iteratively where values of a previous step are employed on the
rh.s. Thus, if the 7, and 7 are replaced by 7'5%) and T}(]){), then Eqgs. (6.37)
become, essentially, two equations decoupled from the other four equations:

Cul 7 = [r%) x 7§]: JALFEk > ] (6.382)
Div e =75 + 74 7)) JAELER> ] (6.38b)

These two coupled equations are further processed to prepare for the numerical treat-
ment. To achieve this purpose, we present Egs. (6.38) in a more explicit form

1 /0T 0T,
1 (_w _ _Q> _ Felpg) (6.39)
g \dq 9
1 dt, aT T,
S+ +-2L=Fplp.g) (6.39b)
g*dp dq q

where Fc(p,q) and Fp(p,q) are the corresponding inhomogeneities as shown in
Egs. (6.38).
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Next, defining g7, as f,, these equations take the more familiar form:

ar, 10%
I i qFc(p,q) (6.40a)
dg q ¢
197, 0%
B A . R qFp(e.q) (6.40b)
q d¢  0q

To derive the two decoupled equations, we do the following:

1. Derivation of Angular Component
a. Multiply the first equation by ¢ and differentiate it with respect to g.
b. Differentiate the second equation with respect to ¢.
c. Add up the two resultant expressions and divide the result by g. Thus
1 9%z, 9*t, 107,

— ——* = F,(op, 6.41
q2 a(pz aq2 + q 8(] (ﬂ((p 51) ( a)

where

dFp  13(g°Fc)
g do q dq

(6.42a)

2. Derivation of Radial Component
a. Multiply the second equation by g and differentiate it with respect to q.
b. Differentiate the first equation with respect to ¢.

c. Subtract the first resultant expression from the second and divide the result by
q. Thus

1 0°¢, 09%%, 10%,
— 24— 19— F (o, 6.41b

where
IFc , 19("Fp)

(6.42b)
do g 9q

Fy(p.q) = —

The two inhomogeneous terms given in Eqs. (6.42) can be written in a somewhat

more compact way:
0 10>\ (Fo —Fc
Fy,F)=—,——/— 6.42
(Fo- Fo) <8¢ q361>(FC Fp (0420

Equations (6.41) are the expected (two-dimensional) decoupled Poisson equations:
one for the angular component of 7, namely, 7,,(¢,q), and one for its radial component,

namely, 7,(¢,q).
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6.3.2.3 Strange Matrix Element and Gauge Transformation

Since the Strange elements appear as inhomogeneous terms in the divergence equa-
tions [see, e.g., Egs. (6.38)], one may hope that they can be eliminated by a gauge
transformation. In order to carry out the gauge transformation, we consider Egs. (6.38)
and replace 7 j;, by 7, so that

Ti=Tu+Vod (6.43)
where @ is an unknown function that fulfills the following equation:
Vio =7 (6.44)
Next, we replace, in Eq. (6.38a), 75, by Eq. (6.43):
Curl 7 = Curl (Fjx + V) (6.45)
Now, if the function ®, which is a solution for Eq. (6.44), is an analytic function, then
Curl VO =V x Vb =0 (6.46)
and Eq. (6.44) yields
Curl 7, = Curl 7 (6.47)

With this result and recalling Eq. (6.44), we finally obtain for Egs. (6.38) the results

Curl 7 = [75) x 7]: JECEk> | (6.48a)
Div 7 = 74 - T}): JALFEk > ] (6.48b)

where the tilde sign is dropped from 7.

From numerical studies [see Section 6.4], we found that the preceding gauge trans-
formation is fully justified for 7(123) and like terms (which are not formed at any par-
ticular ci point and therefore are analytic functions) but cannot be applied for Strange
terms formed at ci points [e.g., 7(122) and 7(223) ]. It is important to mention that in case
Egs. (6.48) are valid, there is really no need to calculate the function ® because Eqs.
(6.48) are solved for a set of boundary conditions and they uniquely determine 73.

In fact, gauge transformation may also be applied when ngk) are formed at cis.
However, in this case the gauge transformation eliminates the removable component
of T?k) but leaves the nonremovable one, which can eventually be estimated by other
means (this possibility is discussed to some extent in Section 6.4).
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6.4 A NUMERICAL STUDY OF {Hz,H} SYSTEM

6.4.1 Introductory Comments

In this chapter we briefly discuss the numerical solution of the decoupled Poisson
equations [see Eqs. (6.41)] and then present a few results to show that, indeed, the
C-D equations are capable of correctly simulating the two components of T, T23,
and 73 as obtained by the ab initio treatment.

To solve the coupled equations in Eq. (6.41), one has to develop a series of iterations
in order to establish the inhomogeneity terms at each stage. This process can, in
principle, be carried out because we may produce the terms for the initial step without
necessarily solving differential equations. A way to do that is to calculate these terms
employing the vector algebra approach as described in Section 6.2.5 (see also Refs. 1
and 2). This procedure may resolve most of the difficulties related to the iteration
process but not all of them. In particular, we may encounter difficulties related to the
Strange elements -rjzk) formed by adjacent states. In Ref. 3 these strange elements are
analyzed and, accordingly, a recipe is given as to how they can, eventually be derived.
The studies on this issue are not yet completed.

So far none of these ideas were tested in actual calculations. Itis true that Eqs. (6.41)
were solved as described in Ref. 3, but without iterations. At this early stage, we were
interested to find out to what extent the newly derived Poisson equations are capable
of reproducing the ab initio NACTs (thus, at most, forming an existence theorem for
these equations) and not so much in testing the relevance of the iteration process. This
aim was achieved by solving the Poisson equations for inhomogeneities supplied by
the ab initio treatment. In other words, we assume the inhomogeneities to be given at
every point, and the differential equations, for 715, 7»3, and 73, are solved, as will
be briefly discussed in the next section.

6.4.2 Introducing Fourier Expansion

Within the numerical study the two decoupled Poisson equations (for each component
of the three NACTSs, 71,, 723, and 73) are solved separately.3 In the present section
we elaborate, to some extent, on how these equations are solved.

Considering the two equations in Eq. (6.41), both are observed to be essentially
similar (their L.h.s expressions are identical) and differ only in their inhomogeneity
terms. In addition, they are solved for different sets of boundary conditions.

To solve these equations, we expand the unknown functions in terms of Fourier
series. In what follows we treat Eq. (6.41a) and for this purpose present 7,(¢,q) as
follows:

To(9.q) = Z {Tocr(q) cos(M(k)@) + Tysi(q) sin(A(k)p)} (6.49)
k=0

The Fourier series is usually characterized assuming A(k) to be integers, namely,
A(k) = k. In the present case we found the expansion to be more efficient by assuming
that A(k) is equal to half-integers, namely, A(k) = (1 4 2k)/2. A similar expansion is
assumed for ¥, (¢, q).
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Substituting Eq. (6.49) in Eq. (6.41a) and recalling that { cos(A(k)p), sin(A(k)p)}
form an orthonormal set, we note that each of the coefficients fulfills the equation

" 1 ., 1
Tyre + ;T(pm( - ?A(k)szRk = Fyri; R=C,S, k>1 (6.50)

where the two prime signs label first and second derivatives with respect to g and F, gy,
on the r.h.s., are the corresponding inhomogeneities as obtained from Eq. (6.42a).

The equations for the Fourier coefficients of 7,(¢,q)(= g7,(¢,q)) are identical to
those in Eq. (6.50) except that the inhomogeneity is now taken from Eq. (6.42b) and
becomes Fgy.

6.4.3 Introducing Boundary Conditions

The Poisson equations are solved for a (circular) region centered at the equilateral D5,
ci and surrounded by a circle with aradius ¢ = ¢qg, where gy = 0.5 A. However, since
this region contains the two troublesome (2,3) cis located at a distance of g ~ 0.29 A,
we divided this region into two subregions: (1) the internal region, defined within the
(radial) range 0 < ¢ < g;, where g; = 0.285 A; and (2) the external region, defined
within the circular strip in the interval g, < g < g, where g, = 0.295 A. With these
two regions, the two (2,3) cis are located outside both of them (see Fig. 6.7). In this

H H

Figure 6.7 Division of configuration space into two circular regions: (a) internal region
defined along the interval (0 < g < g;); (b) external region defined (as a circular strip) along
the interval (¢, < g < qo). The full square presents the (1,2) D5, ci and the two full diamonds,
the two (2,3) C», cis.
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section we report on a few results related to the internal region only (more results for
both regions can be found in Ref. 3).

To solve the equations, we assume Dirichlet-type boundary conditions, derived by
ab initio calculations, along the internal circle with the radius ¢ = ¢;. In addition,
at the origin, all five NACTSs [i.e., Ty23(@.q = 0)), To13(0.g = 0)), 7412(0.,g = 0)),
T423(0.q = 0)), 7513(¢,g = 0))] are assumed to be identically zero. The only excep-
tion is 7,12(¢,q = 0) for which it is assumed to be 0.5 rad~!, as was verified on
numerous occasions.*>

6.4.4 Numerical Results

A detailed numerical study is presented in Ref. 3. Here we report on only a few results
emphasizing the fact that the calculation seems to justify the promised existence
theorem mentioned in Section 6.4.1. Before presenting the results, we mention only
that all the details required to carry out the numerical study for the {H,,H} are
given in Sections 4.3.1.1 and 4.3.2.1. In particular, the fixed interatomic distance is
Run = 0.74 A.

Figures 6.8—6.10 present the angular and the radial components of 75, 723, and
T13, respectively, as calculated along various circles surrounding the Dsj ci (see
Fig. 6.7). We remind the reader that boundary conditions are attached only along the
circle with the radius g = ¢; = 0.285 A (see Fig. 6.7). At the origin, namely, atg = 0,
all functions are assumed to be equal to zero (as was also mentioned earlier) except
for 7412, which is assumed to be equal to 0.5 rad~!. As is noted, the fit for the two
components of all three 7-matrix elements is very promising.

The ability of the Poisson equations to produce such encouraging fits has to be
appreciated because (1) the initial integration point is the D3, ci point, namely, a sin-
gular point; and (2) ab initio boundary conditions were attached to only one boundary
atg = gi).

The nice fit between two types of results for all six functions has important impli-
cations for the physical contents of the assumed model. However, the more important
message due to this numerical study is that in the vicinity of a given ci [in this case
the (1,2) ci] the other NACTS (in this case 7,3 and 73) become negligibly small. An-
other important outcome is that for the relevant NACT, namely, T, only the angular
component remains nonzero (actually becomes singular) whereas the radial one is
practically zero.

6.5 MULTISTATE HILBERT SUBSPACE: BREAKUP OF
NONADIABATIC COUPLING MATRIX

In this section we discuss the possibility of forming finite Hilbert subspaces in a given
region. For this purpose we consider a group of N states and for simplicity assume
them to be the N lowest states. Next, it is assumed that within this group each two
adjacent states form at least one ci but the Nth state does not form a ci with its upper
neighbor—the (N + 1)th state. As discussed in the previous sections, we distinguish
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To12(q=0-0.285 A) To12(q=0-0.285 A)

q=0.04 A

To(9/q) rad™!

0 T 2n 0 T 2n
¢/rad ¢/rad

Figure6.8 Results for the (1,2) NACT 7,(¢|q), namely, T,12(¢|g) and 7,12(¢|q) presented
as a function ¢ along specified concentric circles centered at the equilateral (1,2) D3, ci (see
Fig. 6.7). Solid lines describe results due to ab initio calculations; dotted lines describe results
obtained from the Poisson equations. Along the first column results are shown for the angular
component 7,1, and along the second, results for the radial component 7,,,. The Dirichlet (ab
initio) boundary conditions are given along the circle with the radius g(=¢;) = 0.285 A
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Figure 6.9 Similar to the scenario depicted in Figure 6.8 but for the (2,3) NACTSs, namely,

Ty23(9) and T,23(¢). [Note how well the Poisson equations produce the nonsymmetric 7,,3(¢)
function.]
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Figure 6.10 Similar to the results shown in Figure 6.8 but for the (1,3) NACTS, namely,
T,13(¢) and 7413(p).



166 MOLECULAR FIELD

between NACTs that are created by sources located at ci points and NACTs that do
not have a source and are maintained by other NACTs. In what follows we concentrate
on the second type, namely, on Tj; NACTs, where |j — k| > 1, determined by the
C-D equations (see Egs. (6.37)):

]

Curl 7j, = Z[Tﬂ xTuls  k>j+1 (6.51a)
=1

o0
Div Ty =Y [rje-muls  k>j+1 (6.51b)
=1

Since we consider only NACTs without a source, the corresponding Strange terms
are eliminated by gauge transformations.
Having these general expressions, we prove the following lemma.

Lemma6.3 Forasystem of (N + 1) states that lacks the (N,N + 1) ci, all elements
of the type 7;n+1, Where j < N, are expected to be (negligibly) small.

Proof To prove the lemma, we assume that all the elements 7, (and 7;;) where
Jj < N and k < N are given (eventually formed step by step employing iteration
procedures—see Section 6.4) and we concentrate on the elements located along the
N + 1 column, namely, Tjy41; j = {1, oo}. The relevant set of equations to determine
the N first elements in this column are as follows:

o0

Cull iy = Y [me x vls  j = {1, N} (6.52a)
=1
o0

Div Tjn 41 = Z[Tje TN+l J={L, N} (6.52b)
(=1

Equation (6.52a) can be rewritten in a more explicit form:

N 0
D6V —Ti) x Tnpal = Y [me x mvals i =1, N} (6.53)
=1 e=N+2

A similar equation can be written for Eq. (6.52b) (where the dot replaces the x sign).
In what follows we concentrate first on the Lh.s. of Eq. (6.53), for which the
unknown terms are the Tyy41 (Where £ < N) and the Tj,; j,£ < N serve as the co-
efficients for the equations (and, as mentioned earlier, are assumed to be given). It
is important to realize that in this set of equations each of the unknown elements,
TiN+1, 1s multiplied at least once (and sometimes twice) by T4 ¢, namely, NACTs
of a well-defined intensity, formed at cis, located in the region of interest. This fact
guarantees that each unknown is properly presented within this set of equations.
Next we discuss the r.h.s., where we note that the summation starts at £ = N + 2
(andnotat £ = N + 1) because Ty+1n+1 = 0. The expressions on the r.h.s. serve, in
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this case, as the N inhomogeneous terms for the equations on the L.h.s. These terms
are usually formed by products of two NACTs where at least one, and usually both,
are of weak intensity (because they are not of the type 7,41 ¢ produced directly by
sources). The only exception is the NACT 7 42 n+1, which appears in the inhomo-
geneity of the Nth equation but still is multiplied by T n42, and is again of weak
intensity.

Equation (6.53), together with its divergence counterpart, form a set of differen-
tial equations for the N NACTs, 7, y+1; £ < N. This set of equations does not have
a source term [as we assumed that this system lacks the only possible (N,N + 1)
ci] and all its inhomogeneous terms are expected to be relatively weak except, even-
tually, the inhomogeneous terms associated with the Nth Curl equation and the
Nth divergence (Div) equation. These two inhomogeneous terms are of the form
TN,N+2 X TN42,N+1 and Tx y42 - T2 n+1, Tespectively, and in principle can be
substantial [due to the (N + 1,N + 2) ci]. However, for that to happen, two conditions
have to be satisfied: their multiplier, 742, must (1) have nonnegligible intensity
and (2) overlap significantly with 72 x+1. The conclusion is that if the Nth in-
homogeneous terms Tyy42 X Tyian+1 and Ty yy2 - Tyt2, n+1 are small enough,
the NACTs 7, n41; £ < N along the (N + 1)th column, are expected to be weak,
specifically, of order O(e).

Corollary 6.1 The same procedure can be applied for any column k outside the
N x N sub-NACM (viz., where k > N + 1) so that in general all elements of the type
Tjr (and 73;) where j < N and k > N are expected to be of the order O(¢) or less.

This lemma contains one of the most fundamental features of the Born-
Oppenheimer coupling terms, namely, that the absence of cis between two adjacent
states, in a given region in configuration space, is likely to yield a breakup of the
NACM to the level of O(¢), as assumed in Egs. (1.36) and (1.37). The size of O(e)
is expected to depend mainly on how far are the relevant (N, N + 1) cis are located
from the region of interest.

In Section 4.3.2.1, the paragraphs under the heading “Quasibreakup of t Matrix”
present a detailed study on this subject as carried out for the {H,,H} system (see also
Ref. 1). It is shown that in the region of interest the three lower states of this system
form one (1,2) ci, two (2,3) cis, but no (3,4) cis. The implication of this finding
is that the three lower states of the {H,,H} system form approximately a Hilbert
subspace as shown numerically in Section 4.3.2.1, text under heading “Multistate
Quantization for {H,,H} System.”

6.6 PSEUDOMAGNETIC FIELD

The present chapter is devoted to the possibility that the NACTs form fields that
were previously termed molecular fields. It is important to realize that these are
neither electric nor magnetic fields. These are vector-potential-type fields, which, as
is known from the seminal Aharonov—Bohm publication,' are capable of affecting
the phases of moving (charged) particles but are not capable of affecting the route
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of these particles.'-? In this section we discuss the pseudomagnetic field as generated
by the NACTs.

6.6.1 Quantization of Pseudomagnetic Field along the Seam

In Section 6.2.3 we discussed the Stokes theorem and found that for this theorem to ap-
ply, the tensorial (Abelian) component £, has to be of the form as given in Eq. (6.13).
Next, it was found that the function f(¢), which yields the angular distribution of
F4e (with regard to the seam), has to be quantized.

In order to understand these two outcomes, we remind the reader of two facts:
(1) for the Abelian case we have F = Curl 7; and (2) we assume the existence of
pseudomagnetic field H, which is formed by 7 in the same way that a real magnetic
field H is formed by A [see Eq. (6.1)]. Combining these two results, we have F = A.
Next, since F,, fulfills Eq. (6.13), the same applies for H:

H=2n f((p)?n (6.54)

This equation, in conjunction with the fact that f(¢) is quantized [see Eq. 6.17)],
implies that the pseudomagnetic field H, formed along the seam, is quantized.>* This
result is reminiscent of Dirac’s quantization of the magnetic monopole.’ Although
we have the interesting analogy between H and H, we note that H is quantized but
that H, as formed along the solenoid, is not.

6.6.2 Non-Abelian Magnetic Fields

Whereas an Abelian system is not capable of generating a pseudomagnetic field,
unless it is located along the seam itself, we found that non-Abelian systems form
pseudomagnetic fields distributed in configuration space. To see that, we call the
reader’s attention to a three-state system and Egs. (6.35). Defining H jk as the field
formed by Curl 7}, we, obtain

Hjr = [1j¢ x Tl JFELFEk > (6.55)
In other words, within the non-Abelian framework pseudomagnetic fields are formed
as a result of interactions between NACTSs belonging to different Abelian systems.
PROBLEMS
6.1 Derive Egs. (6.25).
Solution Equations (6.25) can be derived in two different approaches. In the
first approach the ci is shifted to an arbitrary point employing Cartesian coor-

dinates and the field is calculated for this shifted ci. In the other approach we
employ straightforward vector algebra.
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(@) Shift transformation employing change of variables. We start by writing
the Curl equation in Eq. (6.8) for a vector 7(x,y) in Cartesian coordinates

ot, 0T,
b T (6.56)
dy ax
and assume 7(x,y) to be of the form
. v\ —yiy + xiy

where i, and i, are unit vectors along the x and the y axes, respectively
[it can be shown, by substitution, that the expression in Eq. (6.57) fulfills
Eq. (6.56)]. To shift this solution (without rotation) from the origin to some
given point (x 9,y o), the variables x and y are replaced by (x — x o) and
(y — ¥jo) so that the solution of Eq. (6.57) takes the following form:

(6.58)

T(X,)’) = f (y — ij) _(y — ij)ix + ()C _xj())iy

x—xjo) (x—xj0)*+Q—yjo)?

Our next step is to express this result in terms of polar coordinates (g,¢).
For this purpose we recall the relations:

X = qCcosg; y=gsing (6.59)
and introduce the following definitions (see Fig. 6.11):
X —Xjo =g, COSQ;; Yy —Yjo=g;sing; (6.60)

Since we are interested in the polar components of 7(q,¢), namely, 7,
and 7, we also need to know their relation with 7, and 7,, which can be
derived by chain rules (for the derivatives)

Ty = <§1

Ty = <§1

d
—§2> = COS T, + sin T,
aq ’

ol
8_§2> = gq(—singt, + cos ¢ty) (6.61)
4

where ¢| and ¢, are the two electronic adiabatic wavefunctions. Employing
Eqgs. (6.58), (6.60), and (6.61), we finally get

1
7,(q,9) = _f((ﬂj); sin(g — ¢;)
J

7,(q.¢) = ff(go»cos(go —9) (6.62)
J

Equations (6.62) are employed in the main text [see Egs. (6.23)].
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PO, /=

T,
. ¢
~
Yj
9;
\
A& X;
’,/ c1
qjo,/
”

(pjo

X

Figure6.11 Two systems of coordinates, one shifted parallel with respect to the other. The first
system, with the axes (x;,y;), is located at the ci point and the second system, with axes (x y),1s
located at some arbitrary point (on the same plane). Also shown is the angular component ¥, (=
r(pj /q;) related to the ci (body) system and the two polar components (‘L'q,, ) (= (,/q,1T,))
related to the (x,y) (space-fixed) system, both evaluated at point P(¢,g).

(b)  Shift transformation employing vector algebra. We consider two parallel
systems of coordinates (see Fig. 6.11): one at the ci point described by
(qj,9;) and the other at the assumed new system of coordinates described
in terms of (q,¢). The component of interest is the angular component
—fi(p;)/q; along @;, which at the point P(q,p) is projected into the
corresponding (§,¢) axes:

L@ = - fgpsin
g YT g Y

1
w(4.0) =~ flpeos (v~ 5 o)

2

b
-

J

(6.63)

Next, making the required changes yields the expression in Egs. (6.62)

6.2 Prove the following statement: “The farther a 7-matrix element is located from
the diagonal, the weaker is its intensity.”
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Solution  In this problem we consider matrix elements that do not couple two
adjacent states and therefore are located along the off-tridiagonals and even
farther out. To prove the statement, we consider Egs. (6.51). In fact, we consider
only the Curl equations as any statement that applies to the Curl equations applies
to the divergence equation as well. We consider the following Curl equations:

N
Curl 7540 = Y [Tje X Tejpil (6.64)
=1

where k > 2, and therefore this equation does not contain any terms, 7+,
unless they are multiplied by other elements of the NACM (see Egs. (6.65) and
(6.66)). The statement above is proved as follows.

(@) We start by considering the case k = 2 (viz., the elements along the first
off-tridiagonal). Rewriting Eq. (6.64) for these elements, we get

N
Curl Tjj+2 = [Tjj-H X Tj+lj+2] + Z [Tjg X T[j+2] (665)
=1
where the summation does not include the index £ = j + 1. We note that
the separated product [T ;41 X T 41 42] contains two NACTs, where each
is of a well-defined intensity as both are formed by sources and therefore
have to fulfill the quantization as presented in Eq. (3.12") [which follows Eq.
(6.10)]. All other terms contained in the summation are formed by products
where at least one of the multipliers is not a source term and therefore are
expected to be of reduced intensity. Thus the differential equations for
terms of the kind 74, are dominated by the abovementioned products.

(b) To treat the other terms, we rewrite Eq. (6.64) in the following form:

Curl 7 = [Tjjs1 X Tjgrjsk] + [Tjjak—1 X Tja—1j+k]

N
+ Y I x Tl (6.66)
=1

where k£ > 2 and the summation does not include terms with the indices
{=j+1,j+k—1. We note that the two separated products are ex-
pected to form the largest contributions to the inhomogeneity of the equa-
tion for 7;;, because each one of them contains one source term and
another term of reduced intensity. For instance, in case of k = 3, these
two terms are 7jj4+1 X Tj+1;+3 and T;;4> X Tj42;43 and in case of k = 4,
Tij+1 X Tjt+1j+4 and Tjj+3 X Tj4+3j+4- Therefore, the Tjj+3 elements lo-
cated along the fourth diagonals are expected to be of a lower intensity than
the previously discussed 7;;4, elements located along the third diagonals
but of an intensity higher than that of the 7;;,4 elements located along the
fifth diagonals.

These kinds of arguments can be further pursued for larger k values.
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CHAPTER 7

OPEN PHASE AND BERRY PHASE
FOR MOLECULAR SYSTEMS

7.1 STUDIES OF AB INITIO SYSTEMS

7.1.1 Introductory Comments

Since the early 1980s, one of the discoveries in quantum mechanics has been the
geometric phase by Berry.! He showed that transporting a system in a given eigenstate
|, (s(2))) along a contour I" will acquire a time-dependent phase factor exp(i 7(¢)). In
case I' becomes a closed contour and the time 7 it takes for the excursion along that
closed contour is long enough, the acquired phase y(¢+ = T'|I") becomes independent
of T. In general this phase depends on I" but not on any particular point along, I".

We can summarize Berry’s findings by saying that if I lies in a plane that contains
a ci, then the phase factoratr = T becomes!

—1; if I encircles the degenercy

+1; otherwise (7.1)

exp(iy(I') = {

This result is reminiscent of a study by Herzberg and Longuet-Higgins,”> who, a
few years before Berry’s study, revealed the somewhat unexpected result that in the
Jahn—Teller model?-° the eigenfunctions flip their sign on completing a closed circle
around a degeneracy point. Although their finding is not related to the time-dependent
framework as presented by Berry, these two phenomena nevertheless seem to be
closely connected.

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.
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One of the clearest observable manifestations of the geometric phase is in the order-
ing of the vibronic energy levels in molecular systems.”-8 Moreover, it was proved that
the geometric phase is gauge-invariant’~!! and therefore is also a measurable quantity.
Indeed, the existence of the Berry phase was also established experimentally.'?!3

Although the geometric phase exists within Born—Oppenheimer systems, the final
part in Berry’s derivation is, as will be shown, inapplicable for these systems.'# Thus,
for completeness, Berry’s derivation is presented with the aim of showing why it
becomes inappropriate for Born—-Oppenheimer systems (see Section 7.1.2). Next,
in Section 7.1.3, we discuss the derivation which is suitable for these systems, and
an examples based on an ab initio treatment of the {H,,H} system is worked out
in Section 7.1.3.4.

7.1.2 Open Phase and Berry Phase for Singlevalued
Eigenfunctions: Berry’s Approach

We consider the function [1(s.|s)), which is assumed to be a solution of the time-
dependent Schrodinger equation, namely

RALASCLR Y (1.2)
at
where s, is an electronic coordinate and s is a nuclear coordinate, which may depend
on time. Next we consider the electronic function| y,(s.|s)), which is assumed to be
an eigenstate of the electronic Hamiltonian H, = H,(s.|s) and therefore solves the
following eigenvalue equation

H. | xx(scls)) = wi(S) | xx(sc|s)) (7.3)

where wy(s) is the corresponding eigenvalue. Since Eq. (7.3) is valid for any attached
(nuclear) phase factor, we may choose it in such a way that | x,(s.|s)) is singlevalued
in the region of interest.

In what follows we trace the motion of |y (s.|s(¢))) [the function that solves
Eq. (7.2)] along a closed contour I'. Assuming the system to be at a given eigen-
state | xx(s.|s(t = 0))) at = 0 and T to be the time period of the cycle, we consider
situations for which T is large enough so that at any time ¢ the system is in the state
| xx(se|s(?))) (eventually multiplied by some phase factors). Making this assumption,
the function |1/ (s.|s(¢))) can be written as follows:

wslson) = exp | 2 [ dr'usw | x exp (ino) putslsn) 7

0

In this expression the first exponential is the dynamical phase factor, a typical term
that accompanies any eigenstate involved in the solution of Eq. (7.2), and the second
term is the phase factor assumed to develop while the system moves along the contour.
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Our interest is in the phase y (), termed the open phase, and to obtain it, we substitute
Eq. (7.4) in Eq. (7.2) and, recalling Eq. (7.3), we get

ds(t)

V(s Is(0)) - == 7.5)

dve

2 = i xetsels(0)

where the dot stands for scalar product. The value of y;, once the system reached the
end of the closed contour [viz., when t = T]is yx(t = T). In what follows this value
is denoted as o4 (I") and is recognized as the geometric phase (or the Berry phase),
which, according to this approach, is given in the following form:

) =i § (s8] Toxetsls) - ds (7.6)
r

It is noted that o (I") depends on the chosen contour I" but not on any particular point
along I'.

As mentioned earlier, this is Berry’s original derivation. Nevertheless, we stop here
because the rest of the derivation applies to an isolated degeneracy point in a three-
dimensional system whereas in molecular systems this type of degeneracy does not
exist. The degeneracy points in molecular systems arrange themselves along infinitely
long seams. Therefore the procedure suggested by Berry in order to evaluate Eq. (7.6),
namely, to convert the line integral into a surface integral by applying Stokes’ theorem
(thus circumventing the need to treat the poles produced at the degeneracy points—
see Section 5.1), cannot be materialized because each such surface is crossed by the
infinitely long seams that contain degeneracy points. Any other procedure requires the
evaluation of |Vgy;) (which in this derivation is a singlevalued function) in terms of
locally singlevalued basis functions | x;), which can be an insurmountable difficulty.

In the next section we show how the existence of Berry’s phase becomes apparent
in molecular systems and how it is derived.

7.1.3 Open Phase and Berry Phase for Multivalued Eigenfunctions:
Present Approach

7.1.3.1 Derivation of Time-Dependent Equation
The approach presented next is similar to the one applied in the previous section,
but instead of employing adiabatic, singlevalued eigenfunctions, we employ real
eigenfunctions, which are not necessarily singlevalued.

We consider the following time-dependent Schrodinger equation

i 31€(sels))

=H,
ot

£Gs.ls)) .7

where all notations are similar to the ones in Section 7.1.2. Next, we assume a Hilbert
subspace of dimension N in a given region A of configuration space. This implies that
any (normalized) function |£(s,|s)) defined in this region can be presented in terms
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of N eigenfunctions of H,, calculated at a given (fixed) point sy and are denoted as
{‘Ck(se|s())>; k=1, N}. Thus

N
€Gsel8) = Cu(®)[C(selso)) (7.8)
k=1

where {Z‘k(s); k=1,N } are coefficients that depend solely on nuclear coordinates
and are normalized in such a way that |£(s.|s)) is guaranteed to be normalized as
mentioned earlier. It is important to emphasize that |(s.|s)) does not have to be
singlevalued and therefore also the coefficients {Zk(s); k=1,N } are not necessarily
singlevalued.

To be more efficient in the derivation, we employ matrix notation so that Eq. (7.8)
is written as

1€(sls)) =

¢*s.I50)2) (7.8)

where ‘{ *(Se |So)> is a row vector and C(s(1)) is the corresponding column vector that
contains the coefficients {é_'k (s);k=1,N }

Substituting Eq. (7.8") in Eq. (7.7) and integrating over s, yields the matrix-equation
to be solved, namely

3C(s(1))
ot

ih = V(s(t){(s(t)) (7.9)

where V(s(t)) is the (diabatic) potential matrix formed by the basis set {|¢x(S.|So);
k = 1,N} introduced above [see Section 2.1.2, and in particular Eq. (2.17), for details].

Next are introduced the matrix A that diagonalizes V(s) and u, a diagonal matrix
that contains the eigenvalues of V:

V(s) = AT(s)u(s)A(s) (7.10)

Matrix A is recognized as the adiabatic-to-diabatic transformation (ADT) matrix
introduced earlier [see section 2.1.3.2, and specifically Eq. (2.39)]. Substituting
Eq. (7.10) in Eq. (7.9) and replacing {(s(#)) by n(t) where

n(t) = A(s()(s(1)) (7.11)
yields, for Eq. (7.9), the result!4—16

ol .
ih% = u(s(t)n(1) — ihASO)AT(s())n () (7.12)

or

9
" git) = u(s())(t) — KA (5(1)) (5 - VAT (s(2)) n(1) (7.13)
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In what follows Eq. (7.13) is solved for a closed contour I'. If s is chosen to be
proportional to ¢ and if 7, as before, is the corresponding time period, then s can be
written as s = sir, where ir is a unit vector along the contour I' and s =20 (¢/T)
so that Eq. (7.13) becomes

0 2 OAT
ih g(t) u(s())n(t) — ihoo—-A (s(1) —— ( ®) n(t) (7.14)

Here oy is either a constant or, at most, a weakly time-dependent function.

7.1.3.2 Treatment of Adiabatic Case

Connection between Berry Phases and D-Matrix Elements 1In this section we

discuss the solution of Eq. (7.14) in the adiabatic limit, namely, when 7" — ooc.
From the structure of Eq. (7.14) we note that in the adiabatic case its second term

may be deleted. Consequently the solution of Eq. (7.14) becomes

t

Tlim n(t) = exp —f;/u(t)dt n( =0) (7.15)
0

where u(f) =u(s(¢)) and the exponential function is a diagonal matrix that contains
in its kth position the kth dynamic phase factor: exp(—(i /h) fot uy (t)dr).
Next, recalling Eq. (7.11), we get the following solution for é’ (1):

1

Jim C(r) = AT(t) exp —i / u(t)dr | At = 0)¢(r = 0) (7.16)

0

and following that, the expression for |£(s,|?)) [see Eq. (7.8")]:

t

Jim [€(s|0)) = £ (sels0)) AT(1) exp —}:l/U(t)dt

0
xA(r = 0){(t = 0) (7.17)
To continue, we distinguish between two situations:
1. For t = 0 we have the result
[€(selt = 0)) = [¢™(sels0)) St = 0) (7.18)

which is identical to the one given in Eq. (7.8") by assuming sy = s (+ = 0).
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2. For t = T we have the result

Jim [€(selr = T)) = |7 (sels0)) ATt = T)

T
X exp —% / utydr | A¢t = 0)C(t =0)  (7.19)
0

where A(r = T) is identified with A(S|I") as presented in Eq. (2.48). Recalling
the definition of the D matrix in Eq. (2.47) [where the matrix B(T"), in Eq. (2.47),
is later identified as the D(I")—see discussion following Eq. (2.49)] we replace
ATt =T)by ATt =0)D":

Jim [€Gs|t = T)) = |¢* (selso)) A"(c = 0)D'(T)

T
X exp —}% / u(ndt | A = 0)¢ =0)  (7.20)
0

In what follows we recall that the D matrix is real (because the electronic basis set
is assumed to be real) and therefore DT = D.

To complete the derivation, we check the case where A(r = 0) is a unit matrix,
namely, the case where sy = s(r = 0):

Jim [£(s.|r = T)) = |£7(sels0)) D)

T
X exp —;l—/u(t)dt E(t = 0) (7.21)

0

Comparing Eq. (7.21) with Eq. (7.18), we note that the main difference is the appear-
ance of the D matrix, which contains, in fact, Berry’s phase factors [see also Eq. (7.4)
and compare for a single state].

Short Summary We showed that in the adiabatic limit the solution of the time-
dependent Schrodinger equation produces, at the end of a closed contour, the diagonal
elements of the fopological D matrix as introduced within the time-independent for-
mulation [see Eq. (2.32)]. These diagonal matrix elements are identified with Berry’s
phase factors as produced by an N-state Hilbert space (or produced, approximately,
by an N-state Hilbert subspace). In Problem 7.1 it is proved that, in the adiabatic limit,
the present derivation yields a system that moves along a contour while being in an
eigenstate of the time-dependent Hamiltonian.
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Open-Path Phase and Principal Open-Path Phase Having prepared the ana-
lytical background, the question to be asked is whether we are in a position to derive
the open-path phase (OPP), namely, the time-dependent phase associated with the
eigenstate of the system at time ¢ while the system is moving adiabatically. It seems
that using the (adiabatic) solution given in Eq. (7.17), substituting it in Eq. (7.7),
and employing the fact that this solution also produces the relevant eigenvalue of the
Hamiltonian (as is shown in the next section) will yield the required equation for
calculating the OPP. It turns out that this procedure fails because A(?) is, in general,
not a diagonal matrix (it is diagonal only at # = 0 and ¢t = T'), and therefore this goal
cannot be achieved within such a framework.

In what follows we derive the OPP, not of the whole eigenfunction but for the
components associated with the individual vector elements, {é 5-k)(t); j=1,...,N}.
Thus, once Ec; (7.14) is solved, we again employ Eq. (7.11) to derive the vector
elements, {C( ®;j=1, N } for any time 7. However, we concentrate on one
particular component, the (j X )(t) element, namely, the only element that at t = 0 is
equal to 1 (the rest are all assumed to be zero) and at t = T is expected to be, again,
the only nonzero element. Employing Eq. (7.21), it can be shown to be of the form:

T

lim &9 = T) = D) exp —é / w(r)dt (7.22)
0

where

D (T) = exp <ioz(k)(I‘)> (7.23)

[see Eq. (2.33)], and we also recall that in case of real eigenfunctions a®(T) has to
be an integer multiple of 7.
This g“,fk)(t) term becomes, for any intermediate time ¢ [see Eq. (7.16)]

t

lim &9 = Al () exp _r_; / w(t)dt (7.24)
0

In the numerical study to be presented later we concentrate on this particular (kth)
OPP, which in the adiabatic limit, when ¢t = T, becomes the Berry phase. In what
follows this phase is termed the principal open-path phase (POPP). For real molecular
eigenfunctions, we show not only that the Berry phase is a multiple of 7z but also that
the POPP is, at any given instant, a multiple of .

7.1.3.3 Treatment of Nonadiabatic (General) Case

To treat the general case, we return to Eq. (7.9) and solve it numerically for different
T values and show that once T becomes large enough, the computations converge
to results obtained analytically, namely, for ¢(¢) in Eq. (7.16), where that the whole
dependence of () is expressed in terms of the A-matrix elements.



182 OPEN PHASE AND BERRY PHASE FOR MOLECULAR SYSTEMS

The calculations are carried out for circular contours—circles—with given centers
and fixed radii. As a result, we apply polar coordinates (g, ¢), where g is the radial
coordinate (usually fixed) and ¢ is the angular coordinate that is applied as the in-
dependent variable. However, the independent variable in the present study is the
time ¢ and, therefore, we assume that ¢ and ¢ are related as ¢ = (2 /T)t. Equation
(7.9) is solved for the following boundary conditions; namely, ¢( = 0) as given in
the form {c (t=0)=38;;j=1,N}.

For our purposes we present the kth element as'#17-20

t

&0 =l exp (o) exp |~ [ wioras (7.25)

0

where o, )(t) is a positive number in the range {0,1} and describes the kth ampli-
tude in the expansion of £®(r) in terms of the original electronic basis set, namely,
{1¢(s.|t =0));k =1, N} and yk(k)(t) is the (kth) associated POPP. It is important to
emphasize that Eq. (7.25) is relevant for both the nonadiabatic case and the adiabatic
one.

Next, comparing Eq. (7.25) with Eq. (7.24) (in case of the adiabatic limit), it is
seen that

hm ,o(k)(t) exp (iyk(k)(t)) = A" () (7.26)
which implies
lim pP(t) = |ATw ()| (7.27a)
T—o0
i y0(1) = arg(A" (1)) (7.27b)

Since in case of real electronic eigenfunctions the A-matrix elements are always real,
we obtain from Eq. (7.27b) the fact that the POPP has to be an integer multiple of .
This implies that the phase function yk(k)(t) is a step function (or Heaviside function),
which may vary discontinuously along the time axis. In other words

lim y (1) = n(t)m (7.27¢)
T—o0

where n(f) is an integer. The discontinuous jumps in n(f) take place at times ¢ when
the corresponding diagonal matrix element, Ay (¢) flips its sign.

This process also guarantees that at# = T the value of yk(k)(t = T), which becomes
Berry’s topological phase, a®(I"), is an integer multiple of m; that is, n(t = T) is
also an integer.



7.1 STUDIES OF AB INITIO SYSTEMS 183

From previous studies we found that the most reliable way to extract the yk(k)(t) is
by employing the following expression:!'417:18

(LB (selth| g selth)
(e (seltn]e (selr)

t
v =Re | / dr’ (7.282)

0

In the adiabatic limit yk(k)(t) is expected to be a step function [see Eq. (7.27¢)] and
the absolute value of g“k(b(t) becomes

A0 = e )| (7.28b)

In the next section this approach is applied for the {H,,H} system.'#

7.1.4 {H,H} System as a Case Study

In order to understand the meaning of the numerical results to be presented next, we
first discuss a general molecular system for which this approach is applicable and
then analyze numerical results for the title system.

We assume a system of electrons and nuclei that is composed of two “floppy” parts,
but otherwise the two parts are rigid. Next, at time ¢ = 0 an external electromagnetic
field is turned on that causes one part of the molecule (or both) to revolve around some
(common) point. Assuming the molecular system to be in a given Born—Oppenheimer
eigenstate, this induced rotational motion may cause transitions to other (electronic)
states with (oscillating) time-dependent probabilities. To calculate these transition
probabilities, we employ the time-dependent semiclassical treatment as presented in
Section 7.1.3.3. These equations will be applied for the {H,,H} system for which we
have available the necessary ab initio information (Section 4.3.1.1 and 4.3.2.1)

The main emphasis in these numerical treatments is to study the dependence of

the amplitude ,o,((k)(t) and the POPP )/k(k)(t) on time as obtained for different val-

ues of T. We recall that both ,o,ik)(t) and yk(k)(t) relate to the principal term in the
expansion of the electronic wavefunction |£(s.|s(?))) in terms of the adiabatic set
{|§k(se|so =s(t=0)); k=1, N} (for more details, see Section 7.1.3.2, text under
heading “Open-Path Phase and Principal Open-Path Phase”). The aim in this study is
to repeat the calculation of these two magnitudes for increasing values of T with the
aim of justifying the theoretical asymptotic adiabatic limits as obtained for 7 — oo.

The study to be presented next is related to a three-state system, namely, the three
lower states of the H + H, system: the 12A’, the 22 A’, and the 3% A’ states known to
be coupled to each other.?!~2* We recall that the two lower states of the H3 system
are coupled by an equilateral ci, labeled as a D3, ci and that the second and the third
states are coupled by two C», cis formed for the corresponding isosceles triangles
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Figure7.1 Results for the ab initio H4-H, system as calculated along three circles surrounding
the (1,2) ci and the (2,3) ci (labeled m and e, respectively). All calculations are done once for
T = T; = 10° a.u. and once for T = T,y = 2 x 10* a.u. The values of | A}, (¢(¢)|I")| [presented
in panels (a), (c), and (e)] are obtained from the (time-independent) ab initio treatment [see
Eq. (7.27a)]. The pil) (¢|T) functions, presented in the same panels, are the amplitudes of the
components related to the first state (as obtained from solving the semiclassical time-dependent
Schrodinger equation). Panels (b), (d), and (f) present the corresponding POPPs, yfl) t|T).

(see also Section 4.3.2.1. Our numerical study is related to a situation where two of
the hydrogen atoms are at a (fixed) distance Ryy = 0.74 A and the third is free to
move on a plane.

We discuss results (shown in Figs. 7.1-7.3) as calculated along three circular
contours (formed by the free hydrogen): two of them, centered at the D3, point, with
the radii ¢ = 0.2 and 0.4 A and a third centered at a sideward point between the
D3, point and one of the Cy, points. It is observed that the first circle for ¢ = 0.2
A [in panels (a) and (b)] surrounds only the D3, ci, the second circle for g = 0.4 A
[in panels (e) and (f)] surrounds the D3, ci, and two Cy, cis and the third circle for
g =0.3 A [in panels (c) and (d)] surrounds the D3, ci and one of the two C5, cis.
Figure 7.1 (as well as in Figs. 7.2 and 7.3) schematically present the positions of the
various cis and the corresponding circular contours.

For each such circle (in Figs. 7.1-7.3) the only variable is ¢, defined in the range

0 <t < T. To calculate the relevant amplitude ,o,({k) (¢|T) and the POPP yk(k) t|T);

k = 1,2, 3, we first solve Eq. (7.9) to obtain ¢\(¢|T); j = 1.2, 3, for an initial state
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Figure 7.2 The same as in Figure 7.1, but for the second state of the H 4+ H, system, namely,

the principal amplitudes related to the second state, ,052) (t|T), and the corresponding POPPs,
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Figure 7.3 The same as in Figure 7.1 but for the third state of the H + H, system, namely,
the principal amplitudes related to the third state, pf) (t|T), and the corresponding POPPs,

v (| T).
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k and then employ Eqgs. (7.28) to extract the results presented in Figures 7.1-7.3.
In panels (a), (c), and (e) of these figures, we find the amplitudes, p,Ek) (t|T), as
calculated, once by solving Eq. (7.9) for a finite T = T5 (i.e., a period too short to
yield the adiabatic limit) and once for T = T,q4 (a period closer to the adiabatic limit).
Also shown are the diagonal matrix elements Ay (¢|I") [for ¢ = (1/T)2r] [see Eq.
(7.27a)], which yield the theoretical adiabatic limit (in this particular case the A matrix
is of dimension 3 x3). The same applies to panels (b), (d), and (f), which contain the
POPP yk(k) (#|T) [in particular, see Eq. (7.27b)].

Figures 7.1-7.3 present results for the three (different) relevant initial states. This
means that Figure 7.1 presents the amplitudes, ,051) (¢|T), and the POPPs, yl(l) t|T),
where the initial state is the lowest state (state 1); Figure 7.2 gives the ampli-
tudes and the OPPs, ,052) (t|T), and 7/2(2) (t|T) for the case where the initial state is
the intermediate state (state 2), and in Figure 7.3 shows the amplitudes and the POPPs
p§3) (t|T), and y3(3) (¢|T) for the case where the initial state is the higher state (state 3).

The two main issues to be discussed are as follows:

1. The curves for the principal amplitudes p,(f) (tIT); k=1,2,3 as calculated for
the adiabatic case (viz., T = T,g = 2 x 10* a.u.) overlap to some extent with the
curves presenting the corresponding values of |Ay.(t|I")|. This is far from be the
case when T = T; = 10° a.u.

2. The POPPs as calculated for the case with larger T values become Heaviside
functions along the whole ¢ axis.

Whereas the figures for the amplitudes speak for themselves, we encounter some
interesting features for the POPPs that should be discussed to some extent. The shapes
of the Heaviside functions vary, not only from one contour to the, other, but also from
one initial state to the other. We find the dependence on the initial state more interesting
because this dependence was, to a certain extent, not expected. So let us briefly discuss
each column separately:

1. Comparing the three adiabatic POPPs related to panels (a) and (b) in Figures
7.1-7.3, we note that the first two POPPs for k = 1,2 (in Figs. 7.1 and 7.2) are
similar and are characteristic for a case of a single ci but the third POPP (in Fig. 7.3)
is entirely different and is typical for a situation where the contour does not surround
any ci. Indeed, the contours for k = 1, 2 surround the (1,2) ci related to their initial
state (whether it is state 1 or state 2). However, this contour does not surround any ci
related to state 3, and therefore this POPP does not show any effect due to a ci.

2. The POPPs in panels (e) and (f) of Figures 7.1-7.3 are somewhat similar to
those in panels (a) and (b). Again, the contour surrounds one single (1,2) ci, and
therefore the Berry phase should be (2n 4 1) except that n # 0 and is equal to 1
probably because of the strong interaction between the (1,2) and the (2,3) NACTs,
which is known to exist.>!-?? As for the third POPP (in Fig. 7.3), here this POPP, in
contrast to the corresponding POPP in panels (a) and (b), is produced along a contour
that surrounds two (2,3) cis, known to be of different signs, and therefore the resultant
Berry phase is zero.
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3. A new situation is encountered for the POPP presented in panels (c) and (d).
Here the contour surrounds one (1,2) and one (2,3) cis. Therefore the Berry phases
related to states 1 and 3 are equal to ;v but the phase of the intermediate function is
turned twice (once up and once down) so that the resultant Berry phase is zero.

Details about similar findings as revealed within the time-independent framework
can be found Sections 4.3.1.1 and 4.3.2.1.

7.2 PHASE-MODULUS RELATIONS FOR AN EXTERNAL CYCLIC
TIME-DEPENDENT FIELD

In this section we discuss an interesting observation made by Englman et al.!~>
that instead of deriving the OPP employing Eq. (7.28a), one may apply, for this
purpose, reciprocal relations between phase and amplitude moduli, characteristic for
amolecular system exposed to an external, periodic, time-dependent field. In the next
section we derive these equations, known also as dispersion relations or Kramers—
Kronig dispersion equations,® and then apply them, in Section 7.2.2, for a two-state
model derived from the Mathieu equation (see Section 5.6.1)

7.2.1 Derivation of Reciprocal Relations

The starting point for deriving the reciprocal relation is the Cauchy integral formula’

W) = — yﬁw(“dz/ (7.29)
I

2mi 7 —z

where w(z) is an analytic function in aregion formed by a closed contour I in the com-
plex plane. In what follows I' is assumed to be the real axis ¢ (i.e.,—oco0 < t < 400),
traversed in the reverse direction and an infinite semicircle in the lower half of the
complex plane. Consequently, w(z) is assumed to be an analytic function in the lower
half-plane. In general the variables z and 7/, in Eq. (7.29), are identified as com-
plex variables. However, in what follows we limit our discussion to z points located
along the real axis only and consequently z becomes ¢. With these two additional
requirements Eq. (7.29) takes the form?

1 r ¢ 1
t
u)([):—_'P/‘wdt/_i__

Tt

t—t T

7{ Mdz/ (7.30)

scZ —t
—00

where P stands for the principal value of the integral and the subscript “SC”, in the
second term, stands for semicircle. Next we replace the variable 7', which is defined
along the semicircle by an angular variable, 6, namely

7 =rexp(if);= d7 = irexp(if)do (7.31)
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where A is the radius of the semicircle, and we recall that A — oo. In what follows
we consider cases for which w(z) is essentially zero along the semicircle except,
eventually, on the real axis itself, namely

lim w(z) =0 (7.32)
|z] > 00
so that w(?) in Eq. (7.30) becomes
1T ow
t
w(t) = — —P / W 4y (7.33)
i t—t
—o0

To continue, we recall that w(z) is a complex function, and therefore, although ¢ is a
real variable, the function w(f) remains complex:

w(t) = u(t) +iv(t) (7.34)

Substituting Eq. (7.34) in Eq. (7.33) and equating the real and the imaginary compo-
nents leads to the following two equations:

o0 [e¢]

1 v(t) 1 u(t’)
u(t) =— —P / - dt' and wv(t)=—P / - dt (7.34)
T v —t b4 1=t

—00 —00

These are the (previously mentioned) Kramers—Kronig relations, and they are applied
to form a relation between the topological phase of a wavefunction and its amplitude-
modulus. To be more specific, we refer to Eq. (7.25) and, for convenience, rewrite it,
deleting all indices and ignoring the fast oscillating (dynamic) phase, namely

¢(t) = p(t)exp (iy (1)) (7.35)

where both p(¢) and y(¢) are real functions. Defining w(z) as

w(z) = €n(£(2)) = €n(p(2)) +iy(2) (7.36)

we assume that £n(p(z)) and y (z) fulfill the necessary conditions to obey the Kramers—
Kronig equations. This implies (1) that p(z) is not only an analytic function throughout
the lower complex half-plane but is also free of zeros in that region (however, it
can have simple zeros along the real axis>®°) and (2) that p(z) becomes, along the
corresponding infinite semicircle, a constant [in fact, the constant has to be equal to
1 —so that £n(p(z)) = 0—but if it is # 1, the analysis is applied to w(z) divided by
this constant].
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Identifying £n(p(¢)) with u(¢) and y (¢), with v(¢), we obtain the following relations
for Egs. (7.34):

(o) = — L P / ra) (7.37)
T t—t

V(l)=lP / pr(t ))dt (7.38)
b4 " —t

—00

In case p(¢) is an even function, the equation for y(¢) can be written as

v () =%P / Mdt’ (7.39)

t/2_t2
0

and if p(t) is a periodic function, then Eq. (7.39) can be written as?

2t ,
o =—p / en(p(t)z (t’+nT)2 e (7.40)

where T is the relevant period.

Itis important to mention that the application of the reciprocal relation demands the
fulfillment of a few more conditions. These were discussed extensively elsewhere? >
and will not be considered here.

7.2.2 Mathieu Equation
7.2.2.1 Time-Dependent Schrédinger Equations

In order to gain more insight, we consider the Hamiltonian'-10~12
1 92 .
H = =5 Ea7 5 = Gi(g. ¢)cos(20) + Ga(q. @) sin(20) (7.41)

which is recognized as being related to the Mathieu equation (see Section 5.6.1).
Here 6 is an electronic coordinate and (g, ¢) are nuclear polar coordinates. As in
the previous case, ¢ is assumed to change linearly with time; thus ¢ = wt, where
o =2m/T and T is the periodicity.
The time-dependent equation to be considered is
v

ih— = HW (7.42)
at

and we solve it within the first-order approximation in G/E,, thus yielding the
ground-state doublet. For this situation W is expanded as'!3

W = x1(t)cos O + x(t)sinf (7.43)
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and we seek an analytic solution for the initial conditions: x;(t = 0) = 1 and x,(¢t =
0) = 0. To derive this solution, the coefficients y;(z) and x»(¢) are replaced by ¥, (¢)
and ¢ _(¢), defined as

1 E.
V(t) = 5 exp (ihft> (1) £ x2(0)) (7.44)

and we get the corresponding equations for v (¢)
iy, =—3Gy_ and - =—1G*y, (7.45)

where G is defined as G = G| +iG, (G* is its complex conjugate) and the dot
represents the time derivative.

Differentiating the two equations in Eq. (7.45) leads to decoupling of the two
equations for ¥ (¢). The equation for v (t) is>

d ~..d 1 .
G 4 1GP, =0 (7.46)

. s
dr?

and a similar equation can be formed for v/_(t) where G™* replaces G. Next, assuming
that }G} is a constant, G, and presenting G = G exp(i ), the two equations for V. (¢)
become

Yo FidyL + 121G =0 (7.47)

The aim of this treatment is to obtain the phase, y (¢), which along the terminology
introduced in Section 7.1.3.2, text under heading “Open-Path Phase and Principal
Open-Path Phase,” is recognized as POPP for the lower state. Consequently y () is
expected to be related to the phase x(z); however, this phase factor contains also the
dynamical phase (G/2)t, and therefore, to eliminate this rapidly oscillating phase, we
consider the smooth function x;(¢) defined as

x1(0) = xi@) exp (i3Gr) = p(1) exp iy (1)) (7.48)

The function ¥, (¢) is governed only by the POPP, y(¢).
As it turns out, Eq. (7.47) can be solved analytically employing trigonometric
functions. Thus

1
X1(t) = exp (iEGt>

ktycos (Lot ) + Zsintkr)sin ( ~oor ) — i 2 sin(kr) cos ( Lo
X | COS COS 2(,() stln Sin 2(,() 12k51n COS 2(,()

(7.49)
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where
k=3vVG? + o? (7.50)

Considering the expression in Eq. (7.49), it is clear that it is governed by two
periodicities: one, w, is a periodicity due to the external field and the other, &, is a
periodicity due to the electronic coupling term, G.

7.2.2.2 Numerical Study of Topological Phase

As an example, we calculate ¢n(p(¢)) and y(¢) for the nonadiabatic, cyclic case
(k = w, G = w+/3). The calculations are done in one of two ways: (1) deriving the
values for ¢n(p(t)) and y(¢) from Egs. (7.48) and (7.49) or (2) using the reciprocal
relations, as given in Egs. (7.37) and (7.38) where y (¢) serves as the input to calculate
In(p(t)) and, in the same way €n(p(¢)) serves as an input to calculate y(¢). The
results are presented in Figure 7.4, where we note that the fit between the two types
of calculation is very encouraging.

Whereas this example applies for a nonadiabatic case, in what follows we briefly
refer to the (near-) adiabatic case but concentrate on the POPP only. The calculations
were done for different values of w(= 27/ T)) and the coupling intensity G. The re-
sults for three different cases are presented in Figure 7.5. Again, as in the nonadiabatic
case, the fit between the two types of calculation is satisfactory. However, in contrast
to the previous case, this time we encounter the discontinuous jump, typical for the
adiabatic case.!~*!* Such discontinuous jumps were discussed in Section 7.1.4, but
here we analyze them again in a somewhat different way.

As a final subject in this section, we analyze (again) the adiabatic case, namely,
when T — oo. The most characteristic feature for the adiabatic case is the fact that
y(¢) is constant along the whole cycle except for sporadic discontinuous jumps of
size of nm, where n is an integer. For instance, employing Eq. (7.49), we derive y(t)

2
@) sin?(kr)(1 — cos(wt)) + £ sin(2kt) sin(wt)
dy _ G <k) k (7.51)

2
dt 8 cosz(%a)t) + ﬁ sin(2kt) sin(wt) — (%) sin®(kr) cos(wt)

and it can be shown that y(#) — 0 along (almost the entire) interval 0 < ¢ < T when
T — oo. The only exception takes place at the close vicinity of ¢ ~ 7/2. In other
words, we have for y(¢) the presentation:

dy 0; when t < T/2
— =1 G/2; whent ~ T2 (7.52)
at 0; whent > T)2

which implies that y(¢) is a constant (= 0) along the interval 0 < ¢ < 7/2 and then
becomes a constant again (but not necessarily zero) for t > 7/2.
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Figure 7.4 Test of the reciprocal relations: Comparing inputs and outputs of Eqgs. (7.37a)
and (7.37b) for %;(¢) in (7.49). The calculations were done for the nonadiabatic, cyclic case
(k = w, G = wv/3). (a) The POPP, y(t), as calculated along the time interval 0 < ¢ < 7/2.
The solid curve describes y(¢) as obtained from the arg{%;(¢)}, namely, extracting it from
Eq. (7.49), and the, broken curve yields y(¢) as obtained from the numerical integration of Eq.
(7.38), with p(t) values obtained from Eq. (7.49). (b) The ¢n(p(¢))—the ¢n of the amplitude
modulus—as calculated employing Eq. (7.49) (solid lines) and Eq. (7.37), where y(t) was
obtained from Eq. (7.49) (broken lines). The phase axis and the axis for the ¢£n of the amplitude
modulus both have the same sign but are presented upward and downward in order to distinguish
between the two types of results (which are, in fact, identical).
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Figure 7.5 The time-dependent POPP, y(¢), as a function of time, calculated for the near-
adiabatic case. The calculations were done for different values of the external field frequency
w (= 2m/T)) and the coupling intensity G. Two curves are shown in each panel; one, drawn as
a solid line, is the curve calculated employing Eq. (7.49) and the other, drawn as a dashed line,
obtained as in Figure 7.4, from numerical integration of Eq. (7.38). (a) T = 10*, G = 0.208;
(b) T = 10*, G = 0.0659; (c) T = 10, G = 0.0208.
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This discontinuous step can be further understood by employing the Eq. (7.48)
and writing the POPP in the form

y (1) = 3{n( (1)} (7.53)

where 3 stands for the imaginary part. Considering Eq. (7.49) for the case where
T — o0, it can be seen that

y(t) = X {en[cosGot) + O(w)]} (7.54)

With this expression, the following is noted: (1) Since for r < (7/2) we have
cos %a)t > (0, this implies that along the interval 0 < ¢ < (T'/2), the phase y () = 0;
and (2) since for r > (7/2) we have cos %wt < 0, this implies that along the interval
(T/2) <t < T,thephase y(t) = x.

Similar arguments were applied to explain the discontinuous steps encountered in
the three-state study for the {H,,H} system (see Section 7.1.4)

As a byproduct, we also reveal that the geometric (Berry) phase is, for the present
model, 7 (see Fig. 7.5).

7.2.3 Short Summary

The existence of the reciprocity relations for the phase—amplitude moduli functions
is interesting as it is, but it seems to carry with it an important physical message;
specifically, the part of the phase that is given by the second reciprocal relation [Eq.
(7.38)], is a measurable quantity (and therefore is also gauge-invariant). Thus one
may measure the instant population of a given state as produced by a cyclic external
field and deduce for it, employing Eq. (7.38), not only the Berry phase but also the
complete POPP.

PROBLEM

7.1 Starting an excursion at t = 0 while the system is in its kth eigenstate, prove that
in the adiabatic case the system remains in the same kth eigenstate throughout
its motion along a given contour.

Solution  To prove this statement, we consider Eq. (7.17) and assume that A
(t = 0) is the unit matrix and that Z(t = 0) is a column vector with the elements
{g:jl(t =0) = &;; j = 1, N}. Next, we define the column vector E®(¢), which
contains one single nonzero element at the kth position:

t

i .
EQ (1) = 8 exp —ﬁ/uk(t)dt . j={1,N} (7.55)
0
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With these definitions, Eq. (7.17) takes the form

Jim [€96s.[0)) = 1¢¥(selr = 0))ATOEV () (7.56)

and our aim is to show that |£(k)(se|t)) is an eigenfunction of H,(s(¢)) and the
corresponding eigenvalue is ug(s(¢)), and thus to prove the following:

(EB (s, 15(0))[H [€P(s,]5(1))) = ur(s(t)) (7.57)

To show this, we consider the following matrix element:

lim (¢9(s.[s)] H [69sls))
= EX0) [AD) (CGselt = 0 H, [¢ (5.1t = 0) ATO] EP (1) (7.58)

The expression within the angular bracket notation on the r.h.s. produces the
diabatic matrix V(s) [mentioned in Eq. (7.9) and given in Eq. (7.10)], and the
product inside the square brackets on the r.h.s. produces the diagonal adiabatic
potential matrix u(s) [see Eq. (7.10)]. The remaining two products, from left
and right [where E®(¢) is a column vector—see Eq. (7.55)] finally yield the
requested kth eigenvalue, ug(s(¢)). Thus, the validity of Eq. (7.57) is proved.
[In this problem we have shown that in the adiabatic limit, the solution of the
time-dependent Schrodinger equation produces, at the end of a closed contour,
the diagonal elements of the topological D matrix as introduced within the time-
independent formulation (see Section 2.1.3.1.). These diagonal matrix elements
are identified as Berry’s phase factors produced by a Hilbert subspace of N
states. We also showed that in the adiabatic limit the system moves along the
contour (not necessarily a closed contour) while being in its eigenstate.]
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CHAPTER 8

EXTENDED BORN-OPPENHEIMER
APPROXIMATIONS

8.1 INTRODUCTORY COMMENTS

The Born—Oppenheimer approximation is a direct outcome of the Born—-Oppenheimer
treatment of molecular systems'~ (see Chapter 2) and follows from the fact that the
NACTsS (responsible for the coupling between the various states) contain a mass factor
that in usual situations keeps them small enough to be of minor importance.>™

In general, a derivative of an electronic eigenfunction with respect to a nuclear
coordinate is expected to result in a much smaller value than is the corresponding
derivative with respect to an electronic coordinate. The reason is that the electronic
eigenfunctions that describe the electron density in (relatively) large regions in con-
figuration space with typical distances of a several angstroms do not vary much along
distances of a few tenths of angstroms, which are typical dimensions for a nuclear
region. This is also how Eq. (1.10) is to be understood. Equation (1.10) is written
here, again, in a slightly different form:

(L1 (e lS)] (i (Sels + AS) — Li(sclS))) = O(AS®) (i (Se|9)|k (Se]9)) (8.1)

Next, dividing Eq. (8.1) by As and removing the integration over s, yields the fol-
lowing expression:

[ALi(Sc9))

s O(As)|Zk(sels)) (8.2)

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
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This implies that differentiating an electronic wavefunction with respect to a nuclear
coordinate is expected to be much smaller than the corresponding differentiation
with respect to an electronic coordinate (which is of the same order of magnitude as
the function itself). Because of Eq. (8.2), the corresponding NACTs are also expected
to be small. It is known that in order for a NACT to be effective in causing nonadia-
batic transitions, its product with the nuclear momentum P has to be of the order of the
energy gap A E between two states.* In this context we mention the Massey parameter
known to be related to the ratio AE /(P - T), which is expected to be <1.* Due to
Eq. (8.2) the Massey condition is not likely to be fulfilled unless the expansion in Eq.
(1.10) fails in the vicinity of the pathological (or ci-) points mentioned in Section 1.1.1.
For all these reasons, the relevance of the Born—Oppenheimer approximation is not
considered to be dependent on the energy of the system as long the kinetic energy
is not too large (at most a few electronvolts). However, the Born—Oppenheimer ap-
proximation is also employed for cases where the NACTs become very large (and
eventually infinite usually close to ci points) but assuming that the kinetic energy can
be made as low as required (to avoid transition to excited states). The justification for
this approximation is that for a sufficiently low energy, the upper adiabatic surface is
classically forbidden, implying that the component of the total wavefunction related
to this (closed) state is negligibly small. As a result, terms that contain the product
of this component with the relevant NACT are also small and therefore are expected
to have a minor effect on the dynamical process. This assumption, which underlies
many of the single-state dynamical calculations, becomes questionable under these
conditions.’ !¢ The reason is that although the components of the total wavefunction
are negligibly small, their products with (infinitely) large NACTs may result in non-
negligible values. In that case the Born—Oppenheimer approximation breaks down
for any (kinetic) energy, irrespective of how low it is (see Section 1.1).

In fact, the case of infinitely large NACTs is even more complicated. As we have
shown in Chapter 5, the singularities associated with NACTsS are not accidental (viz.,
of the type ¢~ where n > 1) but, most likely, are poles (viz., n = 1), and it is well
known that poles form nonlocal effects (also known as fopological effects) that ex-
tend to infinity and mathematically cannot be ignored. However, the ordinary Born—
Oppenheimer approximation ignores this situation. In Section 8.2 we discuss how to
rigorously incorporate the topological effect within the Born—Oppenheimer approxi-
mation. Unfortunately the theoretical treatment is limited to a certain type of NACTs
and does not apply for a general case (except for two-state systems, for which it is
general).

In Section 8.3 we discuss a different type of an approximation, which can be
regarded more as a Born—-Oppenheimer-type approximation.'”-'® For this purpose we
consider a system of N diabatic coupled Schrodinger equations (see Section 2.1.2)
and study the possibility of rigorously reducing this number to M equations (N > M).
The main idea here is to form a smaller number of diabatic Schrédinger equations
with the aim of affecting as little as possible the topological features contained within
the original system of equations.
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8.2 BORN-OPPENHEIMER APPROXIMATION AS APPLIED
TO A MULTISTATE MODEL SYSTEM

8.2.1 Extended Approximate Born—Oppenheimer Equation

As is well known, the NACM is an antisymmetric matrix and consequently contains
nonzero elements at the off-diagonal positions only [see, e.g., Eq. (1.37)]. In order to
form an extended approximate Born—Oppenheimer equation (that contains as much
as possible the relevant topological effects), these terms have first to be shifted to the
diagonal positions following an orthogonal transformation before any further steps
are taken.

The starting equation is the adiabatic Born—Oppenheimer equation as presented in
Eq. (2.12), where T is a model matrix!= of the type presented in Eq. (3.1) and is, for
reason of completeness, presented again here:

T(s) = gA(s) (3.1

Here A(s) is a vector whose components are functions of the coordinates and g is a
constant antisymmetric matrix of dimensions M x M. Because of its particular for-
mat, it presents the multidegeneracy case as discussed, to some extent, in Section 3.1.
The reason for this limited choice is that the unitary matrix that diagonalizes it, is a
constant matrix G. Thus, returning to Eq. (2.12), replacing ¥ by x, where both are

¥ = Gy (8.3)

and continuing in the usual way leads to the following equation for y:

h2
—%(v +tAS) X+ W —E)x =0 (8.4)

Here, t is a diagonal imaginary matrix that contains the eigenvalues of the g matrix
and W is the corresponding diabatic potential matrix; thus

W = G'uG (8.5)

where G'is the complex conjugate of G.

Considering Eq. (8.4), it is seen that the first term in front of the (column) vector x
is a diagonal matrix because the expression in parentheses is diagonal according to the
preceding definition of t. However, the constant transformation matrix G produced
a nondiagonal potential matrix W, and it is the off-diagonal elements of this matrix
that couple the M differential equations. It is important to emphasize that so far the
derivation has been rigorous and no approximations have been imposed. Thus, the
solution of Eq. (8.4) is the same as the solution of Egs. (2.12).
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Having arrived at Eq. (8.4), we are now in a position to impose the Born—
Oppenheimer approximation in case the energy is low enough. As was stated earlier,
in such a situation all upper adiabatic states are energetically closed so that each of
the corresponding adiabatic functions v, j = {2, M} is negligibly small. Therefore,
in all those regions of configuration space where the lower surface is energetically
allowed we expect the fulfillment of the following condition:

Vi) > [Yi(s)l: k= {2, M} (8.6)

Our next step is to analyze the product Wy, for the jth equation of Eq. (8.4).
Recalling Egs. (8.3) and (8.5), we have*

M
(Wx); = (GGG ®)}; = > G (8.7)
k=1

which by adding and subtracting u;(s) x; can also be written as

M M
(Wx); =uix; —u1 y_ G v+ Y G i
k=1 k=1
or
M
(Wx); =uix; + Y Glhlwe —unyes  j=1{1, M) (8.8)

k=2

It is noticed from Eq. (8.8) that for each j = {1, M}, the column (Wy); contains
the product of the function x; and the lowest adiabatic potential surface, u(s), in
addition to a summation of products of (finite) potential terms with the negligibly
small 1, values (viz., only those for k£ > 2). Substituting Eq. (8.8) in Eq. (8.4) and
deleting the summation term in each of the equations yields the following system of
equations

h2
—%(V +iw;AS) x4+ (1 — E)x; =0; j={1,M)} (8.9)

where the imaginary eigenvalue, t;, is replaced by iw; [and therefore w; is a real
constant (or zero)]. This system of M equations for the M functions, x;; j = {1, M}
is obviously decoupled, or in other words we encounter here M equations where each
one has to be solved separately (independently of the rest). However, it is also seen
that all these equations contain the same (adiabatic) potential energy surface u(s)
and differ only in the values of w;.
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8.2.2 Gauge Invariance Condition for Approximate
Born-Oppenheimer Equations

The various (independent) equations presented in Eq. (8.9) do not necessarily yield
solutions that are related to each other even if solved for identical boundary conditions.
However, the whole approach is meaningless if each equation or even some of them
will yield different solutions. In other words, we have to form conditions that guarantee
that all these equations yield the same solution.

Since the equations may differ only because their imaginary components [i.e.,
w;X(s); j = {1, M}] are not necessarily identical, the question to be posed is: “What
are the necessary conditions for having identical solutions even if not all w; values
are the same?” It is well known from gauge theory that these equations are gauge-
invariant (i.e., yielding the same solution) if and only if the products w; A(s) appearing
in Eq. (8.9) satisfy the following condition

wjfd&)\(s) =27n;; j={1, M)} (8.10)
r

where the n ; numbers form either a series of integers or a series of half-integers. These
conditions are similar to those discussed in Sections 3.1.1-3.1.3 [see Egs. (3.12),
(3.22), and (3.34)] and, in particular, in Section 3.1.4 (in which the general case is
considered) for the type of T matrices defined in Eq. (3.1). We remind the reader that
Egs. (8.10), for A(s) and the g-matrix elements, have to be fulfilled, and also in order
for the topological matrix D to be diagonal—which implies having =1 in its diagonal
(see Section 2.1.3.1).

We mentioned earlier that the n; series have to consist of either integers or half-
integers. This implies that in case of integers, we may have any number of coupled
states; namely, M can be (any number); M = 2,3,4 ..., butin case of half-integers, M
is restricted to even numbers only, namely, M =24, . ... Since a NACM that produces
even n; numbers does not form topological effects, their importance is limited. The
only systems of interest are those that produce odd n ; numbers.

At the beginning we emphasized the fact that the derivation of the extended Born—
Oppenheimer approximation applies only to a model system of the type given in
Eq. (3.1). This statement is correct as long as M > 2. However, the case where M = 2
is, in fact, the general case, and therefore Eq. (8.10) is valid for any two-state system.
We remind the reader that the two-state case is already discussed in Section 6.2.1.

8.3 MULTISTATE BORN-OPPENHEIMER APPROXIMATION:
ENERGY CONSIDERATIONS TO REDUCE DIMENSIONS OF
DIABATIC POTENTIAL MATRIX

8.3.1 Introductory Comments

In Section 2.1.3.2 we showed that diabatization overcomes one major difficulty related
to the adiabatic Born—Oppenheimer equations; namely, it eliminates the singular
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NACTSs but then may create a new difficulty, namely, forming a large system of
(coupled) diabatic equations to be solved [see Eq. (2.38)]. As we recall, the size of
the system of equations is dictated by the ability of the NACTSs to form decoupled
blocks within the 7 matrix [see Eq. (1.37)]. Thus the number of diabatic equations
(just like the number of adiabatic equations) is an inherent feature of the molecular
system under consideration and is not related to the method used to carry out the
diabatization process.! In the present section we discuss an approach that reduces the
size of this set of equations, for sufficiently low kinetic energies and, on the basis of
a convergence process, is expected to yield the relevant dynamical results.

8.3.2 Derivation of Reduced Diabatic Potential Matrix

In this section we adopt the following notation: Z' denotes a rectangular matrix, Z,
with M columns and N rows. In other words, the upper index designates number of
columns and the lower index, the number of rows.! With this notation the diabatic
Schrodinger equation in Eq. (2.38) takes the form

h2
—%v%,‘v +(Wy —E)®), =0 (8.11)

where @), is a column vector that contains N diabatic (nuclear) wavefunctions and
W% is the diabatic potential matrix [see Eq. (2.39)]:

WY = ANuNA™Y (8.12)

Next, we recall that the connection between the diabatic wavefunction ®), and the
adiabatic one \Il,lv is given as follows [see Eq. (2.35)]

ol =ANT) (8.13)

where, for convenience, we replaced the A in Eq. (2.35) by A'. We continue, as-
suming that for a given energy E only M adiabatic states are classically allowed
(i.e., classically open). This implies that out of the N nuclear adiabatic wavefunctions
(Y1, ..., ¥n), only the M lowest ones differ from zero for any practical application.
For this reason the row vector ¥/ takes the form ¥/ = W, .. ¥y, 0,...,0)and
consequently, Eq. (8.13) can also be written in the following form:

o) = ANw], (8.14)

Based on this observation, the first M(M < N) diabatic nuclear functions ®7 =
(¢1, - .. ,dum), are given (without approximation) in the form:

Bl — ANl (8.14))
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In what follows we treat only the first M equation of Eq. (8.11):

hz
—%v%; + (W), —E)®), =0 (8.15)

where ‘I’zlv’ in the second term, is still unchanged, but next is replaced employing
Eq. (8.14). Consequently, Eq. (8.15) becomes

hZ
—%vzﬂl + (W), — E)AN ¥, =0 (8.16)
Recalling Eq. (8.14), W, is replaced by a different expression, specifically

vl = (A¥) el = Cla), (8.17)
and thus Eq. (8.16) takes the form
_ﬁ 251 N _ Mgl _
5 Vi) + (W) — E)BY @), =0 (8.18)
n
where
BY = ANC) (8.19)
Here C4] is the inverse of the matrix A}
AMCY =1 (8.20)

Returning to Eq. (8.18), this can be further simplified to become

h? -
—%VZQIIW—F(W%—E)(P}W =0 (8.21)

where the elements of VV% are

N
(W%)kn = (W%)kn + Z (W/]lv/l)k/(B%)]n (822)

j=M+1

Here, both k and n are restricted by M. Thus, although only M equations are treated
(instead of N), we still employ all the N? elements of W (recall that W is a symmetric
matrix).

To continue the derivation, we examine in more detail the potential matrix elements
(W%)nk given in Eq. (8.22), which from now on is designated as Wi (recalling that
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W= W%). For this purpose we consider first the ordinary potential matrix element
W..t, which is given in the form [see Eq. (8.12)]

N N
&
W= Agui(AN = > Ayjuj Ay, (8.23)
j=1 j=1

where the star designates complex conjugate. Along the same line we remember that,
due to unitarity, we obtain

N
k
> AyAjn = b (8.24)
j=1

Returning to Eq. (8.22), we consider the second term on the right-hand side:

N N N " M
Y (W)BY), = > [Z(AkxumA,gZ(Aﬁcm)}
t=1

j=M+1 j=M+1 | s=1
N M N
=Y [Aksum > [ > (AjZA,-,)Cm} }
s=1 =1 [ j=M+1
N M M
=) {Aksuss > { [ss, - Z(A;:Aj,):| C,n} }
s=1 =1 j=1

which can be farther simplified as follows:
M N M .M
So= Z(Aksusscsn) - Z {Aksuss Z [Aj‘y Z(Ajtcm):| }
s=1 s=1 j=1 =1

From Eq. (8.20), the summation (over ¢) yields the Kronecker 6 function, that is §;,,
so the final form of the preceding above expression is as follows:

N M N
Z (W%)kJ(B%)Jn = Z Aksusscsn - Z AksustrTs
J=M+1 s=1 s=1

M
= Z ApsttssCon — (W%)kn (8.25)
s=1
Substituting Eq. (8.25) in Eq. (8.22), we obtain for Wk,, the result

M
Wkn = Z Aksusxcsn (826)
s=1
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where all four matrices are of dimensions M x M. Equation (8.26) can also be written
as a matrix equation

W = AuC = AuA~! (8.27)

which is our final outcome.

The result in Eq. (8.27) is, in fact, somewhat surprising because we managed to
show that the modified diabatic potential matrix W(= W%) is similar to the ordinary
diabatic potential W as given in Eq. (8.12) except that A (= A}.)isnotthe full N x N
ADT matrix but the reduced one of dimension M x M(M < N). Consequently we
do not encounter, in Eq. (8.27), the complex conjugate matrix (A3)" but A~'—the
inverse matrix of AY.

Equation (8.27) yields the (diabatic) potential matrix for the modified (reduced)
diabatic framework. At the beginning of our analytical derivation we assumed that
the Hilbert subspace is made up of N states, and therefore one expects a diabatic
potential matrix to be of dimension N x N and the number of equations to be solved
as N. Following the analytical study presented in the previous section, we reduced
this number to M, which can, in principle, be increased again until convergence is
attained (M < N). This convergence procedure is expected to be energy-dependent.

Summary Equation (8.27) clearly exhibits the two aspects that affect most elec-
tronic nonadiabatic processes, namely, the topology and the energy. The energy as-
pect enters through the u matrix, which contains the adiabatic surfaces, because
the energy controls M, the number of states to be included in the calculation. The
topological aspect enters through the reduced A matrix (and its inverse) because its
derivation, although it is of dimension M x M, involves all the N states of the Hilbert
subspace.

We are aware that since W(E W%) in Eq. (8.27) is not a symmetric matrix, the
Hamiltonian is not Hermitian (and therefore, e.g., in a scattering calculation the S
matrix is not guaranteed to be a unitary matrix), but it is our belief that this fact
does not necessarily affect the results significantly—at least not those related to
the lower states. Non-Hermitian Hamiltonians are frequently applied in molecular
dynamics (see, e.g., those that contain optical potential>* or negative imaginary
potentials*®); nevertheless, the results are practically correct. In any case the final
results, as mentioned earlier, are subject to convergence tests, and therefore in order
to achieve convergence, we may need to increase somewhat the dimension M, just as
in any other scattering or spectroscopic cross-sectional calculation.

Having said all that, in the next section we discuss a procedure that overcomes
the nonsymmetry defect of the potential matrix in a way that differs substantially
from the ordinary approaches by employing the special features of the ADT matrix.
With this new approach, the user controls the conditions for which (or for which not)
to employ this approximation. In fact, it will be shown that even in extreme cases
the nonsymmetric potential matrix may yield reliable results simply because of the
special features of the ADT matrix employed.’
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8.3.3 Application of Extended Euler Matrix: Introducing the N-State
Adiabatic-to-Diabatic Transformation Angle

8.3.3.1 Introductory Comments

In Section 5.5 we suggested using the extended Euler matrix as a way to present an
ADT matrix.'%!" It has been proved that this matrix satisfies the various requirements
fulfilled by the ADT matrix. This matrix is now applied to form the ADT angle as
derived for an N-state system. The ADT angle!? (also known as the mixing angle)
is characteristic for a two-state system (see Section 3.1.1.1) and can be derived for a
two-state Hilbert subspace, but here we show how to derive it for an N-state Hilbert
subspace and then eventually apply it for a two-state system that does not necessarily
form a Hilbert subspace. In other words, this angle is applied to construct the 2 x 2
ADT matrix [see, e.g., Eq. (3.4)], which will be used to form the Born—-Oppenheimer
approximation for an N-state diabatic system as discussed in Section 8.3.2.

8.3.3.2 Derivation of Adiabatic-to-Diabatic Transformation Angle
Derivation of the ADT angle is done in two steps, first for a three-state system and
then for a general N-state system

The three-state ADT matrix, A®), is expressed as a product of three basic matri-
ces of the type given in Eq. (5.37). Forming the multiplication in Eq. (5.38) yields
Eq. (5.39), where the three Euler angles y», v13, and y»3 fulfill the three coupled, first-
order, differential equations in Eq. (5.41). A different matrix is obtained by changing
the order of the multiplication in Eq. (5.38), namely

AY = QQiIQy (8.28)
which, on multiplication, yields the following for A

C12€13 $12€23 — C128513523  S128523 + C12513€23
3
A® = | —sppci3 cieo3 + 512513523 C12823 — S12813C23 (8.29)
—513 —C13523 C13¢23

where the three angles fulfill a different set of differential equations:

Vyia = —7112 — tan y13(T23 €8s y12 + T135in 1)
Vy2s = T38iny12 — 713 COS Y12 (8.30)
Vi3 = —(cos y13)~ (123 cos yia + T3 sin y12)

For the various notations, see Section 5.5.3. In general, the two sets of equations
yield different results for the three angles, y12, v13, ¥23; however, as long as we are
interested only in the elements of the A matrix, Egs. (5.39) and (5.41) lead to the
same elements as do Egs. (8.29) and (8.30)."!

In principle, we may derive other sets of equations, for the other orders of mul-
tiplication (to be termed permutations) as was discussed in Ref. 11, but here and in
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what follows, we are interested only in those permutations where the first matrix on
the Lh.s. is Q(132)(y12). This choice guarantees that the angle y), is privileged by a
differential equation where its own NACT, namely, 71,, is the isolated, free term [see
the first equation in Eq. (8.30) and also the first equation in Eq. (5.41)]. In this way, as
is shown next, y;, becomes a two-state ADT angle. This fact ensures that whenever
the region contains (1,2) cis, the corresponding y;, angle has the feature that connects
it, in a straightforward way, with 7. This feature is expected when this region is
dominated by 71,, but, as will be shown here, even in less extreme situations yi,, as
derived by Egs. (5.41) or (8.30), is still dominated by 5.

Itis true that y;, can be derived from Egs. (5.41) or (8.30), but in actual applications
the A matrix is solved applying the exponentiated line integral [see, e.g., Eq. (2.29)]
and not by calculating the individual angles. Consequently y), is not apparent, and
therefore the question is how to extract y;, once A® is given. A closer look at the
analytic expressions of the ADT elements [see, e.g., Eq. (8.29)] reveals that y;, can
be obtained from the equation

Yo =y, = —tan"'(A21 /A1) (8.31a)

where Aj; and A, are taken from Eq. (8.29). In the same way we may obtain y,,
also from the equation

Vi2 = }/1(? =tan"'(A12/An) (8.31b)

where A, and Ay, are taken from Eq. (5.39).

Since there is no reason to believe that the two expressions yield the same value
for y1,, the question is which of the two values should be preferred. This subject is
discussed in Ref. 9, and the conclusions are as follows. The two y;, angles apply
for two different situations. One of them, obtained from Eq. (8.31a) and designated
as yle), is the ADT angle attached to the lower eigenfunction and therefore should
be employed to study 1 — 2 transitions; the second, obtained from Eq. (8.31b) and
designated as yl(?, is the ADT angle attached to the upper eigenfunction and therefore
should be employed to study 2 — 1 transition.

[Comment: We remind the reader that in case of a two-state Hilbert space, the ADT
angles related to the two eigenfunctions are always identical. However, in case of a
three-state Hilbert subspace, their values depend on the closed contour traced by the
electronic manifold (see also Sections 4.3.2.2 and 5.3.3), and therefore they are not
necessarily identical].

The extension to cases where N > 3 was also done in Ref. 9 and will be discussed
only briefly. As in the previous three-state case, here, too, we are interested in permu-
tations similar to those given in Eq. (8.28) or (5.38), namely, where the first matrix on
the Lh.s. is Q(g)(ylz). Therefore, we treat the N-dimensional case for an ADT matrix
given in the form

AN, v - vvein) = QY i)AM (s, - yv- i) (8.32)



208 EXTENDED BORN-OPPENHEIMER APPROXIMATIONS

where we recall that, in general, we have N(N — 1)/2 angles of the type yy; k < j as
unknowns and that Qg)(yn) is, for instance, for N = 5, of the following form:

cos(yrz) sin(yiz) 0 0 0O
—sin(y2) cos(yz) 0 0 O
QY™ (yin) = 0 0 100 (8.33)
0 0 0 1 0
0 0 0 0 1

Our next task is not to present the first-order differential equations for all the
N(N — 1)/2 angles but only to derive the equation for y;,. To achieve that, we sub-
stitute Eq. (8.32) in Eq. (1.50) (instead of €2):

V(Q(l];’)(ylz)A(N)(Vn, CLYN-IN)) F QN (1)AN (y13, .., yv_in) =0
(8.34)

Having obtained Eq. (8.34), it can be shown that the two first-order differential equa-
tions for y;, are similar to those in Egs. (5.41) and (8.30), namely

Uy ==t =Y Z{Vy =12 (8.35)
k
where none of the coefficients ZJ(.,?(E Z;,i)(yn, ...,¥N—1n)) depend on y;, and the

index i represents the two possible values of y;,. The prime sign under the summation
sy(n;bol implies that the summation does not contain the term (jk) = (12), because
zZ) =0.

Next, it was shown that Egs. (8.31) apply also for N = 4 and N = 5 (and probably
for any N value). In other words, using the N x N ADT matrix [usually obtained
by solving the exponentiated line integral—see, e.g., Eq. (2.29)], we are capable of
extracting the two yy, angles. In fact, this procedure can be extended to any two
adjacent states (j, j + 1) and the corresponding two yji.; angles, namely, the one
responsible for the j — j + 1 transition and the other for the j + 1 — j transition.

In Fig. 8.1 are shown results as obtained for the {H,, H} system (see Sections
4.3.1.1 and 4.3.2.1). We present the two y;, angles as calculated once employing
Eq. (8.31a) [panels (a), (c), (e), and (g) in Fig. 8.1] and once employing Eq. (8.3b)
[panels (b), (d), (f), and (h)] for four different N values, namely, N = 2,3,4,5. The
results are presented in four columns (of panels)—each column refers to a different
circle as shown in the schematic drawings at the top of each column.

Two main features are to be noted:

1. The y, functions are seen to, approximately, converge as N increases—a feature
to be expected (but that could not be proved analytically at this stage).

2. Fast convergence is achieved in case the contour surrounds only one ci [see figure
panels (a) and (b)]. In all other cases the convergence is slower; in particular, it
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Figure 8.1 Results as obtained for the {H,, H} system: The two-state ADT angles y](;) (upper
row of panels) and yg) (lower row of panels) as a function of ¢ calculated along the closed
contours. The different curves in each panel are calculated for different N values, where N
is the dimension of the subspace (see discussion in Section 8.3.3.2). Results are shown for
N = 2.3.4.5. The main issue here is the large difference between the curves as calculated for
N = 2 and those for N > 2. Also noteworthy is the fast convergence once N > 3. Interesting
results are shown in panels (g) and (h) emphasizing the different characteristics of the two ADT
angles, y,’ and y.3'; the first ends up with a fopological phase 7 and the second, with ~0, as
indeed is expected for this particular contour (see discussion in text). As for the notations for
the geometry (upper) row: (®) denotes positions of the two fixed hydrogens; the single (1,2)
D3, ci point is presented in terms of a (full) square and the two (2,3) ci points, in terms of (full)
triangles. In the first three columns results are presented along circles with their center at the
(1,2) ci point and in the fourth column along a circle with its center at the x point (so that the
circle surrounds the (1,2) c¢i and only one (2,3) ci.

is observed that the y;, functions for N = 2 are always inadequate, but then, al-
ready, for N = 3, relatively well converged y;, functions are obtained. The only
exceptions are 7/1(;) functions as calculated for ¢ = 0.4,0.5 A along a short interval
around ¢ = . This slower convergence is due mainly to the strong interaction be-
tween 71, and 7,3 along that interval. This interaction also affects the convergence
for yl(g) but to a much smaller degree.
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8.3.4 Two-State Diabatic Potential Energy Matrix

8.3.4.1 Derivation of Diabatic Potential Matrix
In what follows we concentrate on calculating the two-dimensional diabatic matrix
according to the prescription given in Eq. (8.27), where the required two-dimensional
A matrix is obtained from A® matrices presented in Egs. (8.29) and (5.39). The
decision as to which of the two matrices to apply is, as discussed before, based on
which of the two transitions one is interested in studying. If the aim is to study
the 1 — 2 transition, then the A® given in Eq. (8.29) and the y|)’ angle given in
Eq. (8.31a) should be employed. If the aim is to study the 2 — 1 transition (viz., the
transition from the (first) excited state to the ground state), then the A® in Eq. (5.39)
and the yS) angle, in Eq. (8.31b), have to be used (see discussion in the previous
section).

Derivation of W® for A® as given in Eq. (8.29) is presented in Problem 8.1.
Writing W® as

W2 =wW® 4+ AW (8.36)

we obtain W@, the principal part of the potential matrix, of the form

WO — 1 + shua  crasiuy — uy) (8.37)
cipsia(uy — 1) shuy + chua '

and AW, the correction term, is given as

2

§13823 [ —C12512 —C

AW = 5 2) (uy — uy) (8.38a)
23 S12 C12512

where we recall that u;(s) and u,(s) are the two corresponding adiabatic potentials.
Similar expressions are obtained for the second case of A® given in Eq. (5.39). Here
W® is identical to the one given in Eq. (8.37), but AW takes a slightly different form:

2
AW _ 52313 <C12812 512> (s — uy) (8.38b)

2
Cc13 Cla C12512

Short Summary The main outcome of this derivation is that in situations where
the elements of AW are small, the diabatic potential matrix W is of the usual form
but expressed in terms of an ADT angle (i.e., y;») that results from a three-state (or
N-state) calculation and therefore is guaranteed to be a multiple of w. This, as is
well known, ensures the singlevaluedness of the diabatic potentials. Also, Eq. (8.38a)
[Eq. (8.38b)], implies that AW can be ignored as long as y»3 (y13) is small enough.
On the other hand, this approximation breaks down when y»3 (y13) becomes too close
to /2. This, as will be seen next, happens when the contour gets too close to any of
the (2,3) cis.
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8.3.4.2 A Numerical Study of AW Matrix Elements

Usually a numerical study concentrates on comparisons between accurate results
(when they are available) and approximate results. In our study this implies comparing
the approximate and the correct diabatic potential matrix elements. However, from
the presentation of the approximate diabatic potential matrix [see Eq. (8.27)], it is
obvious that the elements of this matrix and the corresponding elements of the so-
called accurate N x N matrix are not necessarily similar. Moreover, going over the
derivation, the relevant elements of the two matrices cannot be similar because we
ignored all those adiabatic potentials that, for a given energy E, are unreachable (or
classically closed), arguing that doing so does not affect the solution of the diabatic
(nuclear) Schrodinger equation. No claims were made regarding the resulting diabatic
potential matrix elements. Therefore, comparing the two kinds of diabatic matrix
elements is meaningless.

The numerical study in this section concentrates on the two matrices AW. The aim
is to determine the conditions for which the elements of AW remain small enough
so that W@ [see Eq. (8.37)] can serve as the relevant 2 x 2 diabatic potential W,

To study this issue, we consider Eq. (8.38a) and concentrate mainly on c3 =
cos y»3 [because c,3 appears in the denominator of Eq. (8.38a)]. Since (cos y3) "l is
the only function in Eq. (8.38a) that may attain large values (eventually even infinite
values, in case y»3 = m/2), we follow what happens to y»3 along various contours in
configuration space. From the second equation in Eq. (8.30), it is obvious that if 7,3 is
small enough along a given contour, y»3; is expected to remain small so that it cannot
reach /2 [we remind the reader that usually |73] < |723] (see also Chapter 6) so
that, in such a situation, 73 can be ignored as well]. In other words, we expect y»3
to approach 7/2 only along those contours where 7,3 is large enough, and this can
occur only in the vicinity of a (2,3) ci. Therefore, as long as the region of interest
does not contain any (2,3) ci, y»3 is not expected to change significantly and therefore
|v23] < /2. From Eq. (8.38a) it follows that not only is the denominator finite in
such a case but also the numerator — 0. Similar arguments apply for y;3.

The next issue is related to the case when the contour approaches a (2,3) ci. The
issue is whether we can ignore AW® even in such a situation. Including the closed
vicinity of the (2,3) ci usually implies including a region where u(s) is large—at
the (2,3) ci points, the surface, u,(s) most likely reaches its highest (local) values.
Consequently, for the case under consideration, these values of u,(s) are assumed
to be classically closed (if this assumption is not valid, then we have to carry out,
instead, a three-state diabatization) and therefore adding the large values of AW to
the large values of W® [see Eq. (8.36)] is not expected to affect much the dynamical
calculations because the wavefunctions are negligibly small in such a region, with or
without AW.

The conclusion of this analysis is that in general the elements of AW can always
be ignored and we are left with the potential matrix W® dominated by (one) ADT
angle.

The results, to be discussed next, are derived for the H+H, system (see Sec-
tion 4.3.2.1) and are presented in a series of panels in Figure 8.2. The upper row of
this figure [panels (a), (d), (g), (j), (m)] gives the two lower adiabatic potentials of the
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H+H; system as calculated along five different circular contours (three of which are
shown in Fig. 8.1). In the second and third rows [panels (b), (e), (h), (k), (n) and (c),
(), (i), (1), (0), respectively] the corresponding four elements of the AW matrix as
calculated along the same contours are presented. The intermediate row [panels (b),
(e), (h), (k), (n)] shows the matrix elements as calculated employing yl(é) (and the
corresponding y»3 and y;3 angles); the lower (third) row [panels (c), (f), (i), (1), (0)]
shows those calculated employing yl(;) (and the corresponding y»3 and y;3 angles).
The following is to be noted:

1. The first two columns [panels (a)—(c) and (d)—(f)] are related to situations where
the circular contour [which is centered at the (1,2) ci] does not surround any of the (2,3)
cis. As a result, the elements of AW® are relatively small—a few millielectronvolts
for the inner circle and, at most, a few hundreds of millielectronvolts for the second
circle. These values have to be compared with the corresponding values of u; and u5,
calculated along the same angular intervals. It is also noteworthy that the values of u
and u, are between one and two orders of magnitude larger than the corresponding
ones of AW®,

2. The next three columns [panels (g)-(i), (j)—(1), and (m)—(o0)] are related to
situations where the circular contours surround the two (2,3) cis. As is noted, although
the values of both those of u;(s) and u,(s) and those of AW are much larger still the
values of u(s) and u,(s) remain one order of magnitude (or more) larger than those
of AW [except in those (rare) cases when y»3 (or y;3) becomes (exactly) 7/2]. In fact,
this situation is encountered for circles for which the radius ¢ = 0.3,0.4 A (see Fig.
8.1) but no longer along the circle for which g = 0.5 A. The reason is that the contour
in case of ¢ = 0.5 A is located too far away from the (2,3) cis so that y»3 (y13) can
no longer become /2.

Short Summary We showed that although the diabatic potential matrix given in
Eq. (8.27) is in general nonsymmetric, this nonsymmetry can be easily modified (e.g.,
by symmetrization of the potential matrix), a correction that causes some damage to
the potential, but since it takes place in nonphysical regions, it is not expected to
significantly affect the final results.

Figure 8.2 The adiabatic potentials u;(¢|g) and u,(¢|g) and the elements of the diabatic
correction matrix AW(g|q) as calculated along various contours. The first two contours sur-
round only the (1,2) ci; and the three other contours surround either two or three cis, (presented
in Fig. 8.1). The first (upper) row in each panel contains, two curves related to the adiabatic
potentials, u#1(¢|q) and u»(¢|q); each panel in the next two rows contains four curves describing
AWi(elg), AW (elg), AWai(plg), and AWy (@lq), respectively. The curves in the interme-
diate row are calculated, employing Eq. (8.38a), for yl(é) and the corresponding y;; and y»;3
angles [obtained from Eq. (8.30)], and the curves in the third row are calculated, employing

Eq. (8.38b), for yg) and the respective y;3 and y»3 angles [obtained from Eq. (5.40)].
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8.3.4.3 A Different Approach: Helmholtz Decomposition

As afinal issue on this subject we briefly refer to another approach that yields two-state
ADT angles for a multistate system.'>!# This approach is based on the Helmholtz
theorem,'> which asserts that each vector 7 can be decomposed into a longitudinal
component 7 and a transverse component 7, where

CulTy =V x71,=0

Divr,=V.-7,=0 (8.39)

According to this procedure,'® the ADT angle g is chosen to be a solution of the
following first-order differential equation

VB =1 (8.40a)

because this choice guarantees that for any closed contour surrounding the ci, the
angle 8 becomes a multiple integer of 7 (cf. discussion in Section 3.1.1). Since
T = Ty + T4, it can be shown that g fulfills the following Poisson equation:

VB=V-1 (8.40Db)

The main advantage of this approach is that in case the two-state system is only
slightly affected by higher states, the final equation guarantees a relevant approximate
solution. However, in case the higher states significantly affect the two-state system,
this approach is not designed to incorporate the effect of the upper states. In other
words, the results obtained by this approach depend solely on the two states under
consideration.

8.4 A NUMERICAL STUDY OF A REACTIVE (EXCHANGE)
SCATTERING TWO-COORDINATE MODEL

8.4.1 Basic Equations

In this section we present a model that yields deeper insight into the Born—
Oppenheimer approximation. We refer to two types of approximation: the ordinary
Born—Oppenheimer approximation to be discussed below and the extended Born—
Oppenheimer approximation as presented in Eq. (8.9) and governed by the quantiza-
tion condition given in Eq. (8.10). As a byproduct we show to what extent the existence
of a ci affects final results, namely, reactive (exchange) vibrational transitions for the
model to be presented below.

We consider a two-state system described in terms of two coupled adiabatic equa-
tions [see Eq. (2.12)]:

2
—f—m(v+7)2\11+(u— E)Yr =0 (8.41)
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where W is a column vector with two elements (Y1, ¥»), u is the adiabatic (diagonal)
potential matrix, and 7, the NACM, is given in the following form [see Eq. (2.57)]:

_ 0 T12
T= (_m 0 ) (8.42)

Here 75 is assumed to fulfill the quantization condition [see Eq. (3.12)]

jg Tio-ds =nmw (8.43)
T

where n is an integer.
Next we consider the two Born—Oppenheimer approximations for Eq. (8.39):

1. The ordinary Born—Oppenheimer approximation follows from Eq. (8.39) by as-
suming that 7, = 0. Since 7, is the only term that couples the two equations,
assuming it to be negligibly small, yields two (approximately) decoupled Born—
Oppenheimer equations:

hZ
—%vwﬁ(uj—E)zpj:o; ji=12 (8.44a)

In what follows we concentrate only on one of them, namely, the equation with
j=1

2. The extended Born—Oppenheimer approximation that was derived in Section 6.2.1
and is explicitly given Egs. (6.6). For completeness, these two equations are pre-
sented here as well:

2
;l—(—iV + 7 +w—Enp=0 (8.44b)
m

In what follows u(s) is the lowest adiabatic potential [i.e., u(s) = u(s)], T represents
T12, and we recall that it fulfills the condition in Eq. (8.43). For this case the solution
of Eq. (8.44b) is invariant to the sign in front of 7, and therefore we solve, in what
follows, only one of the equations.

Before we describe the model, we also present the corresponding two coupled
diabatic equations (see Section 2.1.3.2), which are of the form

hZ
——V®+W—-—E)®=0 (8.44c)
2m

where @ is a column vector with two terms ($,®,) and W is the diabatic 2 x 2
matrix with the following elements (see Section 3.1.1.3):

Wii(s) = cos” y(s)uy + sin” y(s)uz
Wan(s) = sin® y(s)u; + cos” y(S)u» (8.45)
Wia(s) = cos y(s) sin y (s)(u; — uz)
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Here y(s) is the ADT angle given in the following form [see Eq. (3.6)]:

S

y(s|so|T") = — / ds - 7(s|I") (8.46)
So

In the numerical treatment we consider all three Eqgs. (8.44). The three types of
equations were solved employing a novel efficient approach based on features of the
Toeplitz matrix to treat the asymptotic regions of each arrangement channel.! (It can
be of interest to know that there also exist a time-dependent wavepacket approach
based on features of the Toeplitz matrix developed by Kouri and colleagues’). We do
not elaborate on this approach as it is beyond the scope of this book. However, we will
say a few words about Eq. (8.44b), which contains singular terms [see Eq. (8.47)]. This
equation may pose some difficulties because the relevant boundary conditions have
to be treated with care. Because of this sensitivity, the present author, together with
Englman, developed a perturbative approach® that guarantees the correct treatment
of this kind of equation (see also Refs. 7 and 8).

8.4.2 A Two-Coordinate Reactive (Exchange) Model

The model to be applied was described on several occasions®™'* and was solved by

applying several approaches: (1) R. Baer et al. solved Eq. (8.44b), within the time-
independent framework, employing the previously mentioned perturbative-Toeplitz-
type approach;!% (2) Adhikari and Billing solved this equation within the time-
dependent framework,'! employing two methods, one based on the vector potential
and the other based on the application of anti-symmetric basis functions!'? (in
both cases they applied wave packets and absorbing boundary conditions!'¥); and
(3) finally, Adhikari and colleagues treated this model semiclassically'*!> employing
the quantum—classical approach as developed by Billing and colleagues.'®'8

It may be important to mention that there also exists a three-state version of this
model'*?! that yields different results, thus showing to what extent the final results
depend on the dimension of the Hilbert subspace. This treatment is not discussed
here.

We consider a planar system expressed in terms of two Cartesian coordinates (R, r)
within the range —oo < x < 00; x = r, R. In this model r represents a vibrational
coordinate and R is the translational coordinate. The system starts at R = —oo and
moves toward the origin (R, r) = (0, 0). Atthe origin it encounters a ci that is assumed
to be of a Jahn—Teller type [see Eq. (3.58)]. Since the numerical treatment is carried
out employing Cartesian coordinates, we present the Cartesian components of the
corresponding Jahn—Teller NACT:

1 r 1 R

I . 8.47
2r2+ R? T 2r2 4+ R? ( )

TR =



8.4 A NUMERICAL STUDY OF A REACTIVE SCATTERING TWO-COORDINATE MODEL 217

TABLE 8.1 Adiabatic Potential Energy
Parameters Used for Two-State
Adiabatic Model Potential®

m 0.58 Atomic mass units
A 3.0eV

D 5.0eV

o 0.30 A

o) 0.75 A

N 39.14 x 10183 57!

@y 7.83 x 103 57!

“See Section 8.4.

Next we present the two adiabatic PESs, namely, u;, j = 1, 2:

ui(R,r) = m(wo — w(R)*r* + Af(R, 1) (8.48a)
u(R,r) = %ma)gﬂ —(D—-A)f(R,r) (8.48b)

Here m, wg, A, and D are parameters (their values are listed in Table 8.1), the function
f(R, r)is chosen to be a two-variable Gaussian that peaks at (0,0), namely

R? 4+ r?
f(R,r)=exp| ——— (8.49)
o
and w(R) is an R-dependent frequency given in the following form:
R2
w(R) = moexp (——2> (8.50)
%

The values of o and oy are also listed in Table 8.1. It is important to emphasize that
the adiabatic potentials are of the Renner—Teller type??* (see Section 5.1), although
we assumed the NACT to be of the Jahn—Teller type.

In Figure 8.3 we present the corresponding two-coordinate, two adiabatic PESs.
It can be seen that these potentials describe a two-arrangement channel system: the
reagent arrangement is defined for R — oo and the product arrangement is defined
for R - —o0.

This completes the derivation of the model.

8.4.3 Numerical Results and Discussion

The model is made up of two arrangement channels: an inelastic one, located at the
entrance (reagents) arrangement, namely, at R ~ —o0; and one at the exit (products)
arrangement, namely, at R ~ +00.
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Figure 8.3 The two reactive adiabatic potential energy surfaces applied in the quasi-Jahn—
Teller model. The ci point is located at the origin, namely, at (» = 0, R = 0), the point where
the two adiabatic surfaces approach each other tangentially.

Once all three types of Schrodinger equations are solved, the relevant wavefunc-
tions are analyzed at the two asymptotic regions with the aim of deriving the nonreac-
tive and the reactive state-to-state S-matrix elements, namely, Sf]\-/"; x = R, NR, where
R and NR designate reactive and nonreactive, respectively, and following that the
corresponding state-to-state reactive/nonreactive transition probabilities. The indices
i and j denote the initial (reagent) state i and the final states j, respectively. Table 8.2
lists some of these probabilities as calculated for four energies: £ = 1.0, 1.5, 2.0, and

2.5 eV. In this respect we make the following three technical comments:

1. Since the lowest point of the upper surface [located at the ci point (r = 0, R = 0)]
isat E = 3.0 eV (see Table 8.1), this implies that for all chosen energies the upper
surface is classically forbidden or, in other words, is a closed state throughout
configuration space.

2. The threshold energy for the reactive (“exchange”) process is in the vicinity of
E k™ 1.0eV.

3. Reactive probabilities will be shown only for the initial state v; = 0 but for all
possible final states. (More results as obtained within this treatment and also within
the time-dependent treatment can be found in Refs. 9 and 10, respectively).

Before presenting the results, we elaborate on the potential effect of the nonadia-
batic coupling terms. The two adiabatic potentials u (r, R) and u,(r, R) in Egs. (8.48a)
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TABLE 8.2 Reactive State-to-State Transition Probabilities”

0—0 0—1 0—»2 03 04 05 06 07 08 09 Total

E =1.00eV
— 0.027" — 0.010 0.037
— 0.030¢ — 0.011 0.041
0.011¢ — 0.031 — 0.042
E=15eV
— 0.189 — 0034 — 0071 0.295
— 0.189 — 0038 — 0076 0.304
0.098 — 0.090 — 0115 — 0.304
E=20eV
— 0.068 — 0047 — 0133 —  0.203 0.451
— 0.063 — 0046 — 0125 — 0215 0.454
0.047 — 0022 — 0056 — 0371 — 0.446
E=25eV
— 0.105 — 0032 — 0150 — 0014 — 0319 0.621
— 0.110 — 0.041 — 0163 — 0013 — 0332 0.666
0.147 — 0005 — 0010 — 0114 — 0118 — 0393

¢ See Section 8.4.

b Two-surface calculation.

¢ Single-surface calculation (including the nonadiabatic coupling term).
4 Single-surface calculation (ordinary Born—-Oppenheimer treatment).

and (8.48b) are seen to be constructed from even powers of the vibrational coordinate
r (that is why the model is, in fact, a Renner-Teller model??); therefore, as long as the
NACTs are ignored, the state-to-state transitions even— even and odd— odd transi-
tions are allowed whereas the even— odd and odd— even transitions are forbidden. If
now, following the inclusion of the NACTs, these selection rules are affected to any
extent, the deviations are unambiguously attributed to the inclusion of the NACTs,
and therefore these deviations are considered as geometric (or topological) effects.
Table 8.2 presents state-to-state “reactive” transition probabilities for the four
different energies described above. As mentioned earlier, three types of transition
probability are shown: one type, given in the first row, is due to the exact treatment
[solving the coupled equations, Eq. (8.44¢)]; a second type, presented in the second
row, is due to the extended Born—Oppenheimer approximation [solving Eq. (8.44b)];
and a third type, presented in the third row, is due to the ordinary Born—Oppenheimer
approximation [solving Eq. (8.44a)]. We note that the extended Born—Oppenheimer
treatment reproduces very nicely the exact state-to-state reactive probabilities whereas
the ordinary Born—Oppenheimer treatment fails to do that. However, the failure is
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expressed in producing not only erroneous numbers but also results of the wrong char-
acter. The ordinary approximation is found to fulfill the even— even and odd— odd
selection rule, whereas the accurate treatment as well the extended approximation
obey different selection rules, namely, the even— odd and the odd— even® selection
rule.

PROBLEM

8.1 Given the 3 x 3 A matrix in Eq. (8.29), derive the relevant 2 x 2 diabatic po-
tential matrix applying Eq. (8.27).

Solution  In order to apply the A matrix in Eq. (8.29) for the reduced 2 x 2
case, we have to extract the 2 x 2 submatrix located at the upper left corner of
A, namely AD:

AQ — [ €12€13 12023 = C12813523 (8.51)
—S12€13  €12€23 + S12513523

Next, according to the theory, we form its inverse:

1 C12C23 + S12513523  —S12C23 + C12513S
(AD)! = 12023 + 512513523 12€23 + C12513523 (8.52)
C13C3 S12€13 C12€13

The corresponding 2 x 2 diabatic matrix, W, is given in the form
VO _ A@ (41 0) A@y-1
W =A < 0 uz) (A¥) (8.53)
and we suggest expressing it as follows
W = W 4+ AW (8.54)
where W®, the principal term, is given in the form

WO — chur + sy ciasinuy — up) (8.55)
csnuy —uy)  shuy + e '

and AW, the correction term, is given in the form

2

§13823 [ —cC128 —C

AW® = B2 (e 2) (uy — uy) (8.56)
23 S12 C12512
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CHAPTER 9

A SUMMARY

The features of conical intersection (cis) and the physics of their NACTs are discussed
in this book. To be more specific, we discuss four issues related to the ci/NACT system:

1. One issue, the more analytical one, is related to the physical content of the
ci/NACT system and is treated mainly in Chapters 2 and 5—7. We start by mentioning
that the NACM elements related to a Hilbert subspace are quantized (the matrix as a
whole, not every individual element). This quantization leads to the introduction of
the topological spin for this group (Chapter 5) and reveals the relations between char-
acteristic magnitudes of the time-independent framework, namely, the ADT matrix
elements, and adiabatic magnitudes defined within the time-dependent framework
(Chapter 7). In particular, we have established the connection between the topological
(Berry) phases and the diagonal elements of the topological D matrix. Other signifi-
cant achievements are the Curl-Div equations (Chapter 6), which, once solved, yield
the spatial distribution of the various NACTs for a set of cis in a given region. This
fact leads to the definition of molecular fields, namely, fields formed by cis in a given
region of configuration space. It is important to realize that these fields differ from
the ordinary electromagnetic field. In particular, we have shown that they decay, in a
close vicinity of any given ci, to become identically zero except for the one single field
that is formed at that ci. It is tempting to define these fields as weak electromagnetic
fields.

2. One of the more interesting magnitudes that is revealed in the present study is
the existence of topological spin (see Section 5.4). Although its introduction seems
to be somewhat artificial, it is likely that it creates magnetic dipole interaction—an
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interaction of a new kind—whenever the molecular system is exposed to an electro-
magnetic field'.

3. The next issue, the more technical one, is related to the fact that the original
nuclear Schrodinger equation, which follows from the Born—Oppenheimer treatment,
may contain the singular NACTs and therefore is unfriendly to the interested user.
Numerous approaches and approximations were suggested to overcome this difficulty;
some of them have been known for quite some time, and some are new. The basic
approach, namely, how to form the diabatic framework, is discussed in Chapter 2,
but it is recommended to study also Chapter 8, where various approximations are
presented to this effect, which can be applied as such or be used for developing new
ideas.

4. The fourth issue is related to the distinction between the time-independent and
time-dependent frameworks. In Section 2.3.2 we discuss the time-dependent frame-
work, derive the relevant nuclear Schrodinger equation for the general case (which
involves time-dependent dressed NACTs), and show how such an equation should
be diabatized employing contours within spacetime configurations. The fact that the
Curl condition is now extended to include mixed spacetime derivatives and the fact
that the usual spatial contours become spacetime contours cause the present treatment
to be reminiscent of the theory of special relativity without explicitly mentioning it.?

I want to end this book by quoting Felix Smith,* who emphasizes the importance
of electronic nonadiabatic transitions in molecular systems:

I believe that calculations based on a single-potential energy surface will be of very
limited usefulness in the real world of chemically reacting systems, and that electronic
transitions between a multiplicity of states are likely to play a very large role in such
events. Even where adiabatic calculations with a single potential surface are valid, it is
desirable to demonstrate their validity, and this can only be done in the framework of a
theory which takes proper account of all the couplings between states that may exist, so
that they can be evaluated and proved to be small. If these couplings are strong, quantum
effects associated with such non-adiabatic behavior may prove to be one of the most
important features of many chemical reaction processes. Probably such quantum effects
will turn out to be more important than the quantum effects associated with barrier
leakage and vibrational zero-point energy that are often discussed in connection with
the movement of systems over adiabatic surfaces.
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Abelian Curl equations, 3—6
Abelian divergence equations, 6—7
Abelian first-order differential equations, 12—13
Abelian systems, 154. See also Two-state systems
molecular fields as, 141-151
Ab initio angular NACTs. See also Ab initio
NACTS; Nonadiabatic coupling terms
(NACTs)
in {Cy,H} system, 99-103
in {C2,Hy} system, 92-95
in {Hp,H} system, 88-90, 96-99
in {H,,0} system, 91-92
Ab initio molecular systems, 85, 87-103, 155-157
Berry phase and open phase in, 175-187
Ab initio NACTs, in {H,H} system, 160, 162. See
also Nonadiabatic coupling terms (NACTs)
Ab initio surfaces, 95
Adiabatic Born—Oppenheimer eigenfunctions, 139
Adiabatic Born—Oppenheimer equation, 28,
199-200
Adiabatic eigenfunctions, sign flips of, 109-122
Adiabatic eigenstates, xiii
Adiabatic framework, xiv—xv, 26-28, 224
Berry phase in, 179-181
for molecular fields, 141-143
topological phase in, 191-194
Adiabatic potential matrix, 35, 179

Adiabatic Schrodinger equation, 42-43
complex eigenfunctions with, 39-40
time-dependent, 46-47, 49-50

Adiabatic surfaces, 95, 115-117

Adiabatic-to-diabatic transformation (ADT), xv,

30-39
electronic basis sets for, 30-33
for nuclear wavefunctions, 33-34
time-dependent, 47-50
Adiabatic-to-diabatic transformation (ADT)
angles, 59-60, 68, 69, 81-82, 215-216
derivation of N-state, 206-209
in {Hp,H} system, 88-90
in triatomic systems, 86—87
Adiabatic-to-diabatic transformation (ADT)
matrices, 38, 39, 47-50, 58, 61, 75-82, 134,
178, 205, 206
complex, 4041
extended Euler matrix as model for, 125-131
for four-state systems, 64—65
for three-state systems, 62
for triatomic systems, 86—87
for two-state systems, 59-60

Analytical models, 58—-67
eigenfunction sign flips and, 110

Analyticity, of differential equation solutions,

12-14

Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
By Michael Baer. Copyright © 2006 John Wiley & Sons, Inc.

227



228 INDEX

Angular component of Poisson equations, 158
Angular momentum
intrinsic, 122-123
ordinary, 123
Angular NACTs, 72, 81-82, 85. See also Ab initio
angular NACTs; Nonadiabatic coupling
terms (NACTs)
Angular rotation operator, 76
Arrangement channels, 217-218
Atom-atom systems, XV

Basis sets, electronic, 30-33, 45
Berry phase, 175-195. See also
Longuet-Higgins/Berry phase
defined, 177
Bohr—Sommerfeld quantization, 60, 123
Born—-Oppenheimer adiabatic eigenfunctions, sign
flips of, 109-122
Born—-Oppenheimer approximations, Xiii, Xiv
extended, 197-220
with multistate systems, 199-201
Born—Oppenheimer coupling terms, 105, 167
Born—-Oppenheimer eigenfunctions, adiabatic, 139
Born—Oppenheimer expansion, 2, 26-27, 41
Born—Oppenheimer surfaces, NACTs and,
105-106
Born—Oppenheimer systems, 6, 27-28, 85, 86
geometric phase in, 176
Born—Oppenheimer theory, xiii, Xiv—xv, 26-54
complex eigenfunctions in, 3943
time-dependent treatment in, 43-51
time-independent treatment in, 26-39
Boundary conditions, with {H,,H} system,
161-162
Bundles, of contours, 125

{C2,H} system
Euler matrix for, 128-130
multistate quasiquantization of, 99-103
{C2,H,} system, two-state quasiquantization of,
92-95
Cauchy integral formula, 187
Charge transfer, xv
ci points, 70. See also Conical intersections (cis)
Circles, conical intersection points in, 79-82,
85-92, 94, 95, 98-99, 100. See also Circular
contours; Semicircles
Circular contours, 24, 150-151, 182, 184—186. See
also Circles
for {Hp,H} system, 161-162
Closed contours, 35-37, 131, 180, 182, 195
conical intersections and, 73-75
eigenfunction sign flips and, 110-113, 115-119

geometric phase and, 175-177
for {Hp,Na} system, 149-151
integral equations along, 16-19, 23, 31-32
Stokes theorem and, 144-146
topological spin and, 125
Wigner rotation matrix and, 77
Complete active-space self-consistent field
(CASSCF) method, 88, 91, 92, 100
Complete Hilbert spaces, 5, 8
Complex conjugate, 204
Complex eigenfunctions, with adiabatic
Schrodinger equation, 3940
Complex functions, 188
Conical intersections (cis), xiv, 6, 70-71, 168, 225
Born—-Oppenheimer approximations and, 198
in {Cy,H} system, 99-103
in {C2,Hy} system, 92-95
constructing Hilbert subspaces and, 108-109
degeneracy points and, 107-108
distribution of, 73-75, 79-82
eigenfunction sign flips and, 110-112, 114-120
equilateral, 183-187
in {Hp,H} system, 87-90, 96-99, 162
in {H,0} system, 91-92
multidegeneracy points and, 120-122
with multistate Hilbert subspaces, 167
in non-Abelian systems, 154
solenoids and, 140
Stokes theorem and, 144-147
Strange matrix and, 159
topological spin and, 123-124
with two-state Hilbert subspaces, 147-149
Continuity, of differential equation solutions, 12
Contours, 60-61, 69. See also Circular contours;
Closed contours; Seams
differential vector equations and, 20-22
eigenfunction sign flips and, 110-113, 115-119
geometric phase and, 175-177
for {Hp,H} system, 161-162
for {H,,Na} system, 149-151
integral equations along, 11, 15-19, 23, 30-32
spacetime, 225
Stokes theorem and, 144-146
topological spin and, 125
in triatomic systems, 86—87, 96-99, 100-103
Coulomb field, 29
Coupled Schrodinger equations, 198
Covariant derivative, 47, 48
Curl-Div (C-D) equations, 7-9, 139-141,
154-159, 224
with {Hz,H} system, 160
with multistate Hilbert subspaces,
166-167



Curl equations, 13, 14, 16, 32-33, 69, 70, 84, 157,
159, 169-171

Abelian, 3-6

extended, 3, 4,7, 9-11

four-component, 48—49

multistate extended, 151-154

with multistate Hilbert subspaces, 166167

non-Abelian, 3-6, 151-154

with pseudomagnetic fields, 168

Stokes theorem and, 145

with three-state Hilbert subspaces, 155-156

two-state, 143144

with two-state Hilbert subspaces, 147-149
Curl operator, 3, 140

Decoupled Poisson equations, 158
with {Hp,H} system, 160-161
Degeneracy points, xiii—xiv, 105-108. See also
Multidegeneracy points
eigenfunction sign flips and, 110
Degenerate states, molecular, xiii
Diabatic framework, xiv—xv, 28-29, 38
Diabatic potential, 44, 86
Diabatic potential matrices, 42, 67-75. See also
Diabatic potential matrix
conical intersections and, 73-75, 79-82
multidegeneracy points and, 122
two-state, 58
Diabatic potential matrix, 29, 34, 40-41, 61-62,
67-68, 70, 178, 199-200, 220
derivation of two-state, 210
recovered, 49
reducing dimensions of, 201-214
singlevaluedness of, 35-37
uniqueness of, 37
Diabatic Schrodinger equation, 28-29, 33-34, 40
Diabatic wavefunctions, uniqueness of, 38
Diabatization, xiv, 26-54, 43, 201-202, 225
in triatomic systems, 86
Diagonal matrices, 20-22
imaginary, 199
Differentiability, of differential equation solutions,
12
Differential equations, 30
first-order, 11-14, 23
integral equations versus, 14, 23
vector, 20-22
Dirac bracket notation, 2
Dirac function, xv, 145, 153
Dirichlet-type boundary conditions, with {H,,H}
system, 161-162
Dispersion relations, 187
Divergence equations, 9, 11, 154-155, 157, 159
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Abelian and non-Abelian, 6-7

for multistate Hilbert subspaces, 166167

for three-state Hilbert subspaces, 155-156
d matrix, 58, 75-79
D matrices, 32, 33, 36, 58, 60-61, 63, 65-67,

153-154, 195, 224

Berry phase and, 179-181

in {C2,H} system, 101-103

eigenfunction sign flips and, 110, 111, 113-114,

117-120

in {Hy,H} system, 96-99

Mathieu equation and, 131

multidegeneracy points and, 121-122

multidimensional A matrix and, 130-131

nondiabatic coupling matrix and, 133-134

three-dimensional A matrix and, 128, 130

topological spin and, 123, 125

in triatomic systems, 87

two-dimensional A matrix and, 126-127
Dressed NACM, 42, 47, 50-52. See also

Nonadiabatic coupling matrix (NACM)

Dynamical phase factor, 176

Eigenfunctions
electronic, 45, 197-198
Hilbert space of, 1-3
of Mathieu matrix, 131-133
multivalued, 177-187
real, 3, 41-42
sign flips of, 109-122
singlevalued, 176-177
Eigenvalues, electronic, 26-27
Electric potential, 43
Electromagnetic vector potential, 43
Electronic basis sets, 45
for adiabatic-to-diabatic transformation, 30-33
Electronic coordinates, 1-3, 197
Electronic coupling term (G), 191
Electronic eigenfunctions, 45, 197-198
sign flips of, 109-122
Electronic eigenstates, xiii
Electronic eigenvalues, 26-27
Electronic Hamiltonian, 1, 26, 43—46, 50, 53-54,
105-107, 134
Berry and open phase and, 176-177
diabatic potential matrix and, 67-68
time-independent, 41-42
Electronic kinetic energy operator, 29
Electronic NACTs, Hilbert space of, 1-3. See also
Nonadiabatic coupling terms (NACTs)
Electronic potential, 131-132
Electronic wavefunctions, 197-198
Electron motions, 26
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Elliptic Jahn—Teller model, 72, 75

Equation of motion, 38

Euler matrix, extended, 125-131, 206-209

Even functions, 189

Exchange scattering two-coordinate model,
214-220

Extended Curl equation, 3, 4, 7, 9-11

multistate, 151-154

Extended divergence equation, 7

Extended Euler matrix, 125-131, 206-209

Extended potential, 42

Extended Stokes theorem, 144—-147

External cyclic time-dependent fields,
phase-modulus relations for, 187-195

External region, for {Hy,H} system,
161-162

Feshbach projection operators (Py), 8-9
Fields, 139
time-dependent, 187-195
First-order differential equations, 11-14, 23
First-order NACTS, 2, 6. See also Nonadiabatic
coupling terms (NACTs)
Four-dimensional vectors, 47-49, 225
Fourier expansion, with {H,H} system,
160-161
Fourier series, 132, 160
Four-state systems, 64—66
multidegeneracy points and, 121-122
Wigner rotation matrix with, 78

Gauge invariance
for Born-Oppenheimer approximations,
201
of geometric phase, 176
Gauge transformations, 41, 43, 157
Strange matrix and, 159
General Hilbert subspace, eigenfunction sign flips
and, 114-120
Geometric phase, 175-177. See also Berry phase
g matrix, 59-60, 62, 64, 77-79
G matrices, 60, 62, 64, 142, 199, 200
eigenfunction sign flips and, 113-114
multidegeneracy points and, 122
Grad operator, 2, 53-54, 105-106
four-component, 48-49
Gridpoints, 73, 74

{H2.H} system, 156
Berry phase in, 183-187
multistate quasiquantization of, 96-99
numerical study of, 160-162
two-state quasiquantization of, 87-90

{H,Na} system, 149-151
{H2,0} system, two-state quasiquantization of,
91-92
Hamiltonian, 26, 28, 30, 205
electronic, 1, 26, 41-46, 50, 53-54
Mathieu equation and, 189-191
Heaviside function, 146
Hellman—Feynman theorem, 105
Helmbholtz decomposition, 214
Hilbert space, 1-7, 27, 28, 30, 45, 50, 58, 139,
151. See also Hilbert subspaces
with Abelian and non-Abelian Curl equations,
3-6
with Abelian and non-Abelian divergence
equations, 6-7
complete, 8
constructing subspaces in, 108—-109
of eigenfunctions, 1-3
Hilbert subspaces, 2, 8—11, 28, 32, 35, 36, 44, 45,
50-51, 84, 92,99, 102-103, 129, 134, 177,
195, 216, 224
constructing, 108-109
eigenfunction sign flips and, 110-120
multistate, 151-159, 162-167
three-state, 155-157
topological spin and, 124
two-state, 141-144, 147-151
Hydrogen. See {Ca,H} system; {C2,Ha } system;
{Hz,H} system; {H,Na} system; {H»,0}
system

Infinitesimal contours, 19
Inhomogeneities, 157-159

with multistate Hilbert subspaces, 166-167
Inlets, 95
Integral equations, 11, 14-19, 23, 30-32
Integration, conical intersections and, 73-75. See

also Line integrals; Surface integrals

Internal region, for {H»,H} system, 161-162
Intrinsic angular momentum, 122-123
Isolated points, 32

Jahn—Teller effect
in {Ca,Hy} system, 93
in {Hy,H} system, 88
in {H,,0} system, 92
Jahn-Teller model, 70-71, 107, 175, 216-218
elliptic, 72, 75

Kinetic energy operator, electronic, 29
Kinetic operator, 27

Kramers—Kronig equations, 187, 188
Kronecker delta function, 2, 204



Lie algebra, 120, 122
Line integrals, 11, 15-19, 31, 80-81, 144, 145,
147, 153
eigenfunction sign flips and, 110, 112, 118
Longuet-Higgins Berry/phase, xiii, xv. See also
Berry phase
Lorenz force, 143, 144-145

Magnetic dipole interaction, 224-225
Magnetic field (H), 140, 143
non-Abelian, 168
Magnetic monopole, 168
Massey parameter, 198
Mathieu equation, 131-133, 187, 189-194
Matrices
unitary, 35-36
Wigner rotation, 58, 75-79
Mixing angle, 38-39, 68, 69
Model systems, 58—82
Jahn-Teller, 70-72, 75, 107
reactive (exchange) scattering two-coordinate,
214-220
Renner-Teller, 85-86, 107
Molecular degenerate states, xiii—xiv
Molecular fields, xiii, xiv, 139-171, 224
{H,,H} system, 160-162
multistate Hilbert subspaces, 151-159, 162-167
pseudomagnetic fields, 167-168
seams as solenoids in, 139-141
two-state (Abelian) systems, 141-151, 168-171
Molecular systems, xiii—xv, 84—103
ab initio, 85, 87-103, 155-157, 175-187
Berry phase and open phase in, 175-195
theoretical background for, 85-87
topological effects in, xiv
MOLPRO program, 88, 91, 101, 129, 149-150,
156
Multidegeneracy points, 120
Multistate Hilbert subspaces, 151-159, 162-167
Multistate quasiquantization, 96—103
Multistate systems, Born—Oppenheimer
approximations with, 199-201
Multivalued eigenfunctions, Berry and open phase
and, 177-187

NACTS matrix, quantization of, xiv. See also
Nonadiabatic coupling terms (NACTs)

Non-Abelian Curl equations, 3—-6, 151-154

Non-Abelian divergence equations, 6—7

Non-Abelian first-order differential equations,
13-14

Non-Abelian magnetic fields, 168

Non-Abelian Stokes theorem, 151-154
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Non-Abelian systems, Curl-Div equations for,
154-159
Nonadiabatic coupling matrix (NACM), 40,
133-135, 224. See also Matrices
breakup of, 162-167
dressed, 42, 47, 50-52
for molecular systems, 84, 86
quantization of, 84, 86-103
second-order time-independent, 27, 52
Nonadiabatic coupling terms (NACTS), xiii—xv,
58, 68-69, 73, 129, 136, 207, 216-217, 224,
225
angular, 72, 81-82, 85
Born—-Oppenheimer approximations and, 198,
202
Born—Oppenheimer surfaces and, 105-106
in {C,H} system, 99-103
in {C2,Hy} system, 92-95
constructing Hilbert subspaces and, 108—109
eigenfunction sign flips and, 111-112
elliptic Jahn-Teller model and, 72, 75
fields of, 139-141
in {Hp,H} system, 87-90, 96-99, 160, 162
in {Hp,Na} system, 149-151
in {H,0} system, 91-92
Hilbert space of, 1-3
Hilbert subspaces and, 8
infinitely large, 198
Jahn-Teller model and, 70-71, 107
for molecular systems, 84—85
in non-Abelian systems, 154, 155
with pseudomagnetic fields, 168
Stokes theorem and, 144
topological matrix and, 133
topological spin and, 123
two-state Hilbert subspaces and, 147-149,
154
Nonadiabatic framework
Berry phase in, 181-183
topological phase in, 191-194
Non-Hermitian Hamiltonians, 205
Nonperturbative approach, 45-50
Nonreactive S matrix elements, 218
Nuclear coefficient, 28
Nuclear coordinates, 1-4, 197
Nuclear-electronic interaction coefficient, 132
Nuclear kinetic energy, 26
Nuclear kinetic operator, 46
Nuclear motions, 26
Nuclear Schrodinger equation, 28-29, 33-34
Nuclear wavefunctions
adiabatic-to-diabatic transformation for, 33-34
time-dependent, 43-44, 49, 50
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Open contours, integral equations along, 15-16
Open-path phase (OPP), xiii, 181
Open phase, 175-195

defined, 177

Ordinary Born—Oppenheimer approximation, 215,

219-220
Ordinary Curl equation, 3
Orthogonality, of differential equation solutions,
14
Orthogonal matrices, 14, 20, 127, 131
Orthogonal transformation, 30
Orthonormalization, 42
Outlets, 95
Overlap matrices, 39

Parallel planes, in molecular systems, 85
Parallel transport law, 3
Pathological points, 19, 23
Periodic functions, 189
Permutations, 206-207
Perturbation theory, in triatomic systems,
85-86
Perturbative approach, 43—44, 49-50
Phase
Berry, 175-195
geometric, 175-177
Longuet-Higgins/Berry, xiii, xv
open, 175-195
open-path, xiii, 181
Phase factors, 31-33, 3940, 176
time-dependent, 41-43
Phase-modulus relations, for external cyclic
time-dependent field, 187-195
wavefunction, 44, 142, 202-203, 215
uniqueness of, 38
Planes, in molecular systems, 84-85,
107-108
Poisson equations, 157-158, 214
with {Hz,H} system, 160-161
Polar components, of NACTs, 70-71
Poles, xiii, 73, 74, 105
Polyatomic systems, NACTSs in, xv
Potential energy surfaces (PESs), xiii—xiv, 1,
49
adiabatic, 217, 218
p points, 73-75, 79-82
Principal open-path phase (POPP), 181-187,
191-194
Mathieu equation and, 189-191
topological phase and, 191-194
Principal part of W matrix, 210
Probabilities, reactive state-to-state, 219
Problematical points, 32-33

Propagation, 20-23

Pseudomagnetic fields, 167-168
column vector, 33, 202, 215
wavefunction. See also Total wavefunction ()
time-dependent form of, 43, 44
time-dependent phase factors with, 41—43
uniqueness of, 37-38

Quantization, xiii, xiv, 8, 66, 73, 78-79, 106-107,
214. See also Quasiquantization
Bohr—Sommerfeld, 60, 123
of NACMs, 84, 86103
of pseudomagnetic fields, 168
Stokes theorem and, 144-146
of matrix, 131-134
three-state, 86
in triatomic systems, 85-87
two-state, 86-95
Quantum chemistry, 30
Quantum effects, 225
Quasi-complete Hilbert spaces, 8
Quasiquantization
multistate, 96—-103
two-state, 87-95

Radial component, of Poisson equations, 158
Reactive (exchange) scattering two-coordinate
model, 214-220

Reactive S matrix elements, 218
Reactive state-to-state probabilities, 219
Real eigenfunctions, 3, 41-42
Reduced tensorial vector, 10-11
Regions, 108, 111-112

for {H,,H} system, 161-162

with Mathieu equation, 131-132
Renner-Teller model, 85-86, 107, 217, 219
Rotation matrices, 127
Rydberg states, 88

Scalar product, 2
Schrodinger equation, xiii, xiv, xv, 225
in adiabatic framework, 2628, 39-40, 42,
141-143
adiabatic nuclear, 7
adiabatic time-dependent, 4647, 49-50
Born—-Oppenheimer approximations and, 198,
202
in diabatic framework, 28-29, 33-34, 40
nuclear, 28-29, 33-34
time-dependent, 41-43, 44, 189-191, 195
Seams, 107-108, 139, 140
in molecular systems, 85
multidegeneracy points and, 120



quantization of pseudomagnetic fields along,
168
solenoids as modeling, 139-141
two-state Hilbert subspaces and, 148
Second-order NACM, 40. See also Nonadiabatic
coupling matrix (NACM)
time-independent, 27, 52
Second-order NACTS, 6. See also Nonadiabatic
coupling terms (NACTs)
Semicircles, with phase-modulus relations,
187-188
Shift transformations, 168—171
Sign flips, 175
of electronic eigenfunctions, 109-122
multidegeneracy points and, 120-122
topological spin and, 124125
Singlevalued eigenfunctions, Berry and open
phase and, 176-177
Singular NACTS, xv. See also Nonadiabatic
coupling terms (NACTs)
Smatrix, 67, 151, 153, 205, 218
Smoothness of diabatic states, 38
Solenoids, 139, 140
as seam models, 139-141
Spacetime. See Four-dimensional vectors
Spacetime contours, 225
Special theory of relativity, xiv
Spin (), 122-123
topological, xiii, 122—125, 224-225
Spin-orbit coupling, xv
Spin quantum number (S), 124
Spin transitions, xv
State-average complete active-space
self-consistent field (CASSCF) method, 88,
91,92, 100
Stokes theorem, 144—-147
non-Abelian, 151-154
Strange elements, 155, 157, 159
with multistate Hilbert subspaces, 166
Strange matrix, 155, 157, 159
Sum rule, 154
Surface integral, 144, 145, 147, 153

Tensorial vector, 3—4
matrix, 42
Three-state Hilbert subspace
Curl-Div equations for, 155-157
eigenfunction sign flips and, 110-114
Three-state quantization, 86
Three-state systems, 62—63
Berry phase in, 183-187
multidegeneracy points and, 121
Wigner rotation matrix with, 78
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Time-dependent adiabatic-to-diabatic
transformation, 47-50
Time-dependent fields, external cyclic, 187-195
Time-dependent framework, 225
Time-dependent nonperturbative approach,
45-50
Time-dependent perturbative approach, 43-44,
49-50
Time-dependent Schrodinger equation, 195
adiabatic, 4647, 49-50
Berry and open phase and, 176-180
Mathieu equation and, 189-191
Time-dependent wave packet approach, 216
Time-independent framework, 225
Time-independent NACM, 27, 52
Time-ordering operator, 46
Toeplitz matrix, 216
Topological matrix (D), 26-54, 58, 60-61, 195,
224
Berry phase and, 179-181
in {C,,H} system, 101-103
eigenfunction sign flips and, 110, 111, 113-114,
117-120
for four-state systems, 65-66
in general theory, 66—67
in {Hp,H} system, 96-99
Mathieu equation and, 131
multidimensional A matrix and, 130-131
matrix and, 133134
for three-state systems, 63
topological spin and, 123
in triatomic systems, 87
Topological number (K), 115, 119
multidimensional A matrix and, 130-131
topological spin and, 123-125
Topological phase, numerical study of, 191-194
Topological spin, xiii, 122—125, 224-225
Total angular momentum operator (J), 76, 78
Total wavefunction, 142
time-dependent form of, 43, 44, 49
uniqueness of, 37-38
Triatomic systems, 84-85
quantization in, 85-87
Trigonometric functions, 190-191
Twin cis, 87-90, 100, 147
Two-coordinate reactive (exchange) model,
214-220
Two-state adiabatic-to-diabatic transformation
matrices, 59-60
Two-state conical intersections, Stokes theorem
and, 146-147
Two-state Curl equations, 143—144
Two-state diabatic potential matrix, 58, 210



234 INDEX

Two-state quantization, 86-95
Two-state quasiquantization, 87-95
Two-state systems, 5-6, 7

with Born—Oppenheimer approximation,

214-220

molecular fields as, 141-151

‘Wigner rotation matrix with, 78
Two-state matrices, 142

eigenfunction sign flips and, 110, 111

Unitary matrices, 35-36
Unity matrix (1), 1, 3

Vector algebra, 160, 168-171
Vector equations, differential, 20-22

Vectorial first-order differential equations, 11-14

Vector-matrices, 11, 13-14
Vector potentials (A), 139-141. See also A
matrices
NACTS as, 141-143
Vectors, 11-13
four-dimensional, 4749, 225
reduced tensorial, 1011
Vibrational transitions, 214
Virgin functions/distributions, 146, 149, 150

Wavefunctions, electronic_, 197-198
Wigner rotation matrix (d!), 58, 75-79

Yang—Mills field (F), 4

z points, 73-75, 79-82
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