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Preface

The majority of the most important breakthroughs in physics have been made
by using scattering, as one of the leading strategies for studying the structure
of matter on very different fundamental levels, ranging from areas with perfectly
known interactions (atomic physics) to fields with phenomenologically postulated
potentials (nuclear physics). Atomic, nuclear and molecular particles, as well as
their constituents, are quantum systems per se and, therefore, quantum scattering
theory has been, and still is, overwhelmingly used in theoretical investigations on
particle scatterings. The common denominators of the most influential theoretical
studies in the past literature on collisions are principles of quantum scattering
theory. Interestingly enough, scattering theory is also intensively studied in
the mathematical literature, especially from the standpoint of spectral analysis.
In particular, resonant scattering theory merges smoothly into spectroscopy
and this provides an extraordinary opportunity for unifying these two general
methodological strategies into a single quantum theory, as opposed to traditionally
separate treatments. This versatile field of particle collisions is chosen for the
subject of the present book, since scattering principles are a veritable cross-
road for graduate physics students, future specialists on quantum scattering
theory, for other non-specialist physicists, mathematical physicists, accelerator
physicists, medical physicists, particle transport physicists, and researchers from
neighbouring sciences, as well as from technologies or industries related to energy
production (fusion reactors), to manufacturing of scanners for medical diagnostics
and to radio-therapeutic devices (medical accelerators), etc.

Despite their natural and plausible introduction from both the physical
and mathematical viewpoints, virtually all the theoretical principles of quantum
scatterings necessitate detailed confirmation by experiments. For this reason,
several principles of particle scatterings are singled out and thoroughly tested
against many available experimental data in a selected branch of major atomic
collisions at high non-relativistic energies. In performing such comprehensive
comparisons between theory and experiment in this book, due emphasis is
placed onto the main mechanisms that govern ion–atom energetic collisions. For
example, through the remarkable phenomenon of double scattering, the reader
is taken on a fascinating and illustrative journey from the time of Rutherford,
Thomas, Bohr and Oppenheimer with their conjectures and intricacies all the
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way to the successful resolution of a long-lasting enigma by contemporary
experiments based upon single-pass translational spectroscopy and multi-pass
recoil ion momentum spectroscopy. This challenging enigma was an outstanding
controversy about whether one or two binary collisions eventually dominate at
high-energy rearranging collisions. Unlikely as it might appear at first glance,
high-energy billiard-type Thomas double collisions prevail substantially over
single binary encounters, which are based upon the so-called velocity matching
mechanism. Moreover, contrary to the common perception, it is emphasized
in this book that the Thomas double scattering with two participating electrons
and one nucleus exhibits an enhanced probability at all collision energies. This
vigorously promotes the role of the underlying dynamic electron correlations
which, in turn, can increase the chance for multi-electron transitions in ion–
atom collisions, so that, e.g., several electrons could be readily ionized, as also
confirmed experimentally. This remarkable dominance of double scatterings over
single encounters has major ramifications for a proper formulation of quantum
scattering theory, especially when charged aggregates are present in either of the
channels. Furthermore, double scatterings play a very important role in collisions
of charged particles with condensed matter, in plasma physics, astrophysics,
particle transport physics, medical physics, radiation physics, as well as in
technological disciplines such as thermonuclear fusion, etc.

An inspection of the rich literature on perturbation developments of
transition matrices would reveal a totally unexpected finding that the second-
order in the Born expansion for, e.g., three-body rearranging collisions yields
by far inferior differential and total cross sections than those due to its first-order
counterpart. This occurs even at quite high energies and throughout the angular
range including the Thomas peak, despite an explicit inclusion of the free-particle
Green’s function which propagates the electron intermediately between two
Coulomb centres before capture finally takes place. The source for this surprising
occurrence, which resulted in a flagrant disagreement between the ensuing so-
called second-order Brinkman–Kramers approximation and experiments, has
been found to be in the neglect of the internuclear Coulomb potential for the
given channel states with plane waves for the relative motion of heavy scattering
aggregates. This unphysical procedure has been rectified in the literature by
retaining the internuclear potential exactly in the usual eikonal limit. As a
net result, the internuclear potential contributes rigorously nothing to the exact
eikonal total cross sections, but yields an important phase factor in the related
differential cross sections, in accordance with Wick’s well-known conjecture from
theory on charge exchange. When this modification is adequately introduced in
the Born perturbation expansion, its second-order term is found to give excellent
agreement with the experimentally measured differential and total cross sections.
Moreover, such a boundary-corrected exact second-second Born approximation
yields a substantial improvement over its first-order counterpart. This is expected,
since a consistently introduced second-order in a perturbation theory contains
better physics and, as such, is anticipated to display a clear superiority over the
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corresponding first-order. By contrast, better physics is also taken into account in
the second-order Brinkman–Kramers approximation through the Green’s function
propagator, but nevertheless this is fully masked, since the overall result is
totally unsatisfactory due to the inconsistency between the channel states and
the channel perturbations in the transition matrix. These important lessons from
past experience are discussed in the present book with a special emphasis on
the correct boundary conditions. These latter conditions encompass not only the
proper asymptotic behaviours of the total scattering wave functions, but also the
consistently introduced perturbation potentials which enable the transition to take
place in a full harmony with the strict prescriptions of the so-called Dollard’s
asymptotic convergence problem from formal scattering theory on long-range
Coulomb potentials.

The long-lasting controversy about the possible role of the inter-nuclear
potential in heavy particle collisions also makes interesting reading on the level
of a first-order term in a perturbation expansion. For years, the literature
witnessed all sorts of results differing from each other by huge factors ranging
from 2–10 to 100–1000 and this was due precisely to inadequate treatment of
the internuclear potential in a wider context of violation of the correct boundary
conditions. Even after the roles of the internuclear potential and the correct
boundary conditions were conclusively settled in 1979 within the exact eikonal
theory, a considerable degree of confusion still persisted for more than a decade.
For a while the good initial trend of this exact eikonal theory seemed to be
going in a reverse direction by a subsequent invention of the so-called strong
potential Born approximation, which turned out to be inherently divergent.
This unavoidable divergence could not be cured irrespective of whether one is
resorting to a distorted wave formalism or not. The source of divergence of
this model is in the ignorance of the correct boundary conditions, as dictated
by the mentioned exact eikonal theory, and widely recognized later on. Had this
failure been duly corrected, the strong potential Born approach would have simply
been reduced to the well-known second Born approximation with the Coulomb
Green’s function with no intrinsic divergences. Eventually, the consensus has
been reached so that the correct boundary conditions were irrevocably ingrained
into atomic scattering theory. The initial results from the so-called boundary
corrected first Born approximation introduced in 1979 came finally at the end
of the 80’s. The reported computational findings on total cross sections for
electron capture by completely stripped ions from multi-electron targets showed
remarkable improvements, occasionally within orders of magnitude (e.g., for
proton-argon), when passing from theoretically correct to the incorrect first
Born theory. Such improvements were even more dramatic than those from the
mentioned second Born approximation. These essential achievements constitute
‘the proof of principle’ confirming the tremendous practical relevance of the
asymptotic convergence problem in quantum scattering theory.

Inelastic atomic collisions are dominated by excitation, charge exchange and
ionization as well as by various combinations of these elementary processes,
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primarily double transitions, e.g., transfer-excitation transfer-ionization, two-
electron capture, twofold excitation or double ionization, etc. Charge exchange
(also known as charge transfer or electron capture) dominates at low energies
where excitation and ionization are negligible. The relative roles of these
processes are inverted at high energies where excitation and ionization dominate,
whereas charge exchange becomes negligible. At intermediate energies, these
three channels are competitive to each other and, therefore, this is the most
challenging region to investigate. Due to the prevailing role of ionization
at high energies, it is clear that charge transfer can be significantly altered
whenever ionization continua are intermediately open to the electron which is
ultimately captured. One of the most flexible ways to include these intermediate
channels into the theory of scattering is provided by the so-called distorted
waves. They represent scattering wave functions which basically describe
correlation effects stemming from the simultaneous presence of the electron
in the field of two Coulomb centres due to the projectile and target nucleus.
Remarkably, inclusions of such distorted waves in only the first-order of Dodd–
Greider’s distorted wave perturbation expansion become equivalent to the second-
order of the conventional undistorted Born perturbation development. This
equivalence is complete both quantitatively and qualitatively when it comes to
the Thomas double scattering, at least for the ground-to-ground state electron
transfer at asymptotically high non-relativistic energies. The practical importance
of this accomplishment is immensely augmented by the observation that the
quantum-mechanical transition matrix in the ensuing continuum distorted wave
approximation is obtainable by purely analytical methods in the explicit closed
form. This is opposed to the equivalent second Born approximation whose
transition matrix necessitates multiple numerical quadratures. Such favourable
circumstances about the continuum distorted wave method attracted over the
years an unprecedented number of researchers. Moreover, this method has also
been extended to ionization and transfer-ionization with a remarkable success in
comparisons with available experimental data. The continuum distorted wave
theory of ionization has many advantages over its competitors, e.g., (i) it is
mathematically well-defined, convergent and integrable, (ii) it permits the exact
calculation of the transition amplitude in the analytical form, (iii) it treats the
initial and final channel in a symmetric manner on the same footing, (iv) it yields
the total scattering wave functions with the correct boundary conditions in both
channels, (v) it accounts for the three major mechanisms via their characteristic
signatures such as (1) the zero-energy peak describing a direct ejection of slow
electrons, (2) electron capture to continuum yielding a cusp-shaped zero-angle
peak where vectors of momenta of ejected electrons and scattered projectiles are
parallel, and (3) binary encounters appearing as a binary peak when the ratio of
the momenta of the electron and projectile is equal to two multiplied by cosine
of the ejected electron angle. This book also openly discusses several limitations
of distorted wave methods for energetic ion–atom collisions and indicates certain
directions that could be undertaken for potential improvements.
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Electron detachment is a special nomenclature for ionization of targets which
are negatively charged ions. This is a very important sub-branch of ionizing
phenomena for which experimental data are available for testing few-body
quantum-mechanical scattering theories. A critical analysis of the theoretical
development in this field is presented in this book, illuminating the paramount
importance of consistency when linking the correctly behaving scattering wave
functions with the corresponding perturbation potentials responsible for the
investigated transitions. When this proper link is overlooked, entirely unphysical
results were obtained some thirty years ago for the total cross sections which
overestimate the experimental data and the required Bethe asymptotic limit at
high energies by three orders of magnitude, despite the use of the scattering waves
with the proper behaviours at asymptotically large inter-aggregate separations.
This inconsistent link between scattering waves and perturbations in the transition
matrix, has been identified only recently and when properly rectified, an adequate
theory of detachment was finally obtained, exhibiting perfect agreement with
modern experimental data from the threshold, through the Massey maximum to
high energies including the Bethe asymptotic region. Again, this demonstrates
that principles of quantum scattering are the key factors not only in the
establishment of proper relationships among the major ingredients of the theory,
but also in arriving to realistic and acceptable predictions about important
experimentally measurable physical quantities.

Collisions among multiply charged ions with long range Coulomb
interactions are very different from nuclear collisions characterized by short-range
potentials. Consequently, the standard quantum scattering theory from nuclear
physics cannot be used for atomic collisions without the essential modifications
due to the presence of Coulomb interactions. This fact is emphasized in the
present book by giving one of the most instructive illustrations within the
well-known impulse approximation which is successful for nuclear scatterings,
but fails for atomic collisions. Moreover, principles of quantum collision
physics are used to illustrate in a number of important applications how this
situation, which indeed significantly disturbed the customary scattering theory
for a half a century, can be favourably remedied by extending the framework of
the impulse hypothesis via the emergent ‘reformulated impulse approximation’
to match adequately all the essential peculiarities of Coulomb interactions.
Most importantly, the latter fundamental reformulation, driven by the strict
requirements from the principles of Coulomb scattering theory, is also fully
endorsed by practice, since now both differential and total cross sections are
brought into complete agreement with measurements. A wider interest in this
general reformulation of scattering theory, relying upon the extended impulse
hypothesis, is in the possibility to devise a myriad of new theoretical methods
at high energies by merely choosing different distorting potentials. This is multi-
purposely appealing, since these different methods would all belong to a common
and general theoretical framework and, as such, be accessible to more direct
comparative studies and to reliable assessments of their relative validity and
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performance. The availability of a number of such consistently derived methods
can be justified by the necessity of cross-validations of different approximations
in view of the lack of the exact theory for complicated physical systems. This
overall situation is highly advantageous relative to the usual occurrence, which
is abundant in many apparently unrelated approximate methods occasionally
introduced in a rather obscure way, such that their salient features could easily
evade a proper evaluation in inter-study comparisons.

As always in physics, the most useful in diverse applications, and at the same
time computationally the most difficult, is the region of intermediate energies.
High-energy methods are perturbative and they truncate the series of the transition
matrix, but retain scattering wave functions to all degrees for a given order of
the investigated Feynman diagram. Low-energy methods develop the total state
vectors on conveniently chosen quadratically integrable basis set functions and
truncate this expansion, but keep the perturbation potentials to all orders. A severe
drawback of such an artificial separation of theoretical procedures is that neither
of these two groups of methods is adequate at the most needed intermediate
energies. It would be optimal to have a single strategy which could combine
the good features of low- and high-energy methods without truncating either
total scattering wave functions or perturbation potentials. This book presents
the possibilities for a judicious unification of scattering methods valid at low
and high energies through the introduction of the variational Padé approximant
applicable at all energies. Many practical methods can be derived from this novel
and non-perturbative framework of scattering theory by appropriate selections of
an additively factored high-energy distorted wave method with the remainder of
the full transition matrix evaluated on a Sturmian basis, which is complete despite
the use of exclusively discrete expansion functions. A distinct advantage of
this variational unification over conventional low-energy close coupling methods
is a total avoidance of the difficult and expensive problem of solving coupled
systems of differential equations, but with an adequate inclusion of basically the
same essential physics as the traditional expansion techniques. With the use of
the hydrogenic Sturmian basis of dual functions centred on the projectile and
target nucleus for three-body problems, it becomes quite impressive that the
only significant numerical effort in this variationally unified quantum theory of
scattering is reduced to a straightforward inversion of a matrix whose elements
can all be calculated explicitly and analytically. Even this inversion can be done
iteratively en route using a powerful method of continued fractions which is
another more familiar name for the Padé approximant.

The emergence of the Padé approximant as a bridge between low- and high-
energy methods in the mentioned unification is not unexpected at all, since this
universal method is known to be equivalent to Schwinger’s or Newton’s fractional
variational principles as well as to Fredholm’s determinant, finite-rank separable
expansions, Seaton’s variation-iteration method for solving integro-differential
equations in scattering problems, etc. It is anticipated that this variational Padé-
based quantum scattering theory will have a multitude of applications in the future
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on resonant and non-resonant atomic and nuclear collisions. Its counterpart, the
Padé-based quantum spectroscopy has recently been established in the literature
of spectral analysis of time signals that emanate from physical, chemical or
other generic systems including living organisms and ultimately human beings
scanned as patients for medical diagnostics. The present book points at this link
between scattering and spectroscopy by elaborating the so-called multi-variate
fast Padé transform. This transform is presently used for multi-dimensional
quadratures encountered in scattering integrals, but it has already been employed
elsewhere for signal processing and spectral analysis. For certain test functions,
it is demonstrated that some unprecedented twelve decimal places of accuracy
can be reached by the fast Padé transform as opposed to barely two exact
decimals secured by the more familiar fast Fourier transform, i.e. a trapezoidal-
type quadrature.

The fast Padé transform belongs to a category of deterministic methods,
but this book deals intensively also with stochastic computational strategies.
Here, after exhaustive computations of very complicated scattering integrals of
dimensions as high as thirteen with movable and integrable singularities, Lepage’s
adaptive and iterative Monte Carlo algorithm VEGAS is strongly recommended
for further use in collision physics and beyond. Remarkably, VEGAS which has
originally been put forward in quantum electrodynamics for precise evaluations
of certain corrections from Feynman’s theory of graphs, can compute multi-
dimensional integrals with a prescribed accuracy as if it were in a group of
classical quadratures of the Gauss type. This is because VEGAS computes the
standard deviation and performs the accompanying χ2-test. The obtained results
from such stochastic computations are exact within the guaranteed standard
deviation and the overall performance is deemed acceptable whenever the χ2-
test is close to the number of iterations minus 1. The message conveyed from
this book is that a wider usage of VEGAS in, e.g., atomic collision theory should
lead in the near future to substantial computational breakthroughs. For example,
VEGAS could be robustly employed to accurately evaluate for the first time the
third-, fourth- and fifth-order Born approximations for, e.g., charge exchange
in the most fundamental proton–hydrogen collisions. Since here the highest
dimensions of integrals are of the order of twelve, the indicated computations are
of complexity comparable to the one from the feasibility study presented in this
book. This avenue is more than just a computational advantage, since it actually
offers researchers a unique opportunity to probe the deeper physics of previously
inaccessible higher-order effects in perturbative scattering theories.

Finally we ask the key question as in Ockham’s razor: why should yet
another book on quantum scattering theory be added on top of a number
of already existing ones? This book is special in that it intertwines many
fundamental and important strands ranging from mathematically rigorous general
physical principles of quantum scattering theory, through thorough illustrations
presenting the results of the most comprehensive computations to date from
the leading distorted wave methods for selected major high-energy ion–atom
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collisions, via comprehensive analysis of certain among the most powerful
modern computational strategies, to finally paving the road for crucial links to
neighbouring interdisciplinary fields of sciences and related technologies. In
the present book, these links are especially illuminated towards medical physics,
where scattering theory, via its description of interactions of charged particles
with tissue, plays a unique and capital role. For example, the overall success
of radiotherapy with charged particles depends critically upon the availability
of reliable data bases of cross sections for inelastic phenomena, particularly
for energetic ionizing collisions. However, only simple empirical recipes have
overwhelmingly been used thus far for these cross sections, leaving the best
atomic scattering theories virtually unexplored in these key problems. To
overcome these obstacles for the important issue of delivering better health care
to patients, the present book urges cross-fertilization of atomic collision physics
and medical physics on a more proactive level. As emphasized in this book,
similar cross-talks have recently been initiated encompassing spectroscopy and
resonant scattering theory with the purpose of furthering progress in magnetic
resonance physics for medical diagnostics. It is hoped that the attempts made in
this book on versatile interconnected frontiers will be rewarded by the interest of
an interdisciplinary readership.

The overall message of this specialized book is that the exposition of the
selected principles of quantum scattering theory with the necessary mathematical
rigour is readily comprehensible to the indicated readership, and is indispensable
for a more fundamental understanding of particle scattering phenomena, as well
as being of the utmost numerical importance in comparison with experiment.

Dževad Belkić
Professor of Mathematical Radiation Physics

Karolinska Institute
Stockholm, Sweden

November 2003
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PART I

THE SELECTED MAIN PRINCIPLES
AND THE BASIC THEORETICAL
FRAMEWORKS FOR A
NON-RELATIVISTIC
QUANTUM-MECHANICAL THEORY
OF SCATTERING

The key problem in quantum scattering theory is probability conservation, i.e. the
unitarity of the S-matrix, which connects the initial with the final state of evolution
of the considered physical system. This problem is not possible to solve if the
scattering states neglect the so-called asymptotic convergence problem, which
requires that the bound and free dynamics coincide with each other at infinite
distances between the colliding particles. Usually quantum scattering theory is
thought merely as a part of courses of quantum mechanics. However, this very
important part is almost invariably presented through rather simplified concepts
that are overwhelmed by heuristic formulae, with a stereotypical explanation that
a rigorous mathematical formalism would merely obscure the physical arguments.
This is not the case as is documented in part I of the present book, relying
upon theorems of strong topology of vector spaces and spectral operator analysis,
from which all the standard synonyms of collision theory follow directly, such as
the Lippmann–Schwinger integral equations, behaviours of the scattering states,
probability transition from the initial to the final state, differential as well as total
cross sections, etc. Furthermore, rigour in the performed mathematical treatment
is in absolute compatibility with physical argumentation as well as intuition
and, moreover, this is presently established in a simple and plausible manner.
These fundamental aspects are not only relevant to the foundation of a complete
quantum-mechanical scattering theory, whose essential principles are outlined
in this book, but they are also of primary significance for introducing the most
adequate practical methods for various applications across interdisciplinary fields.
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Chapter A

Introduction

The major themes of quantum mechanics are (i) the physical interpretations
of interactions in bound systems and (ii) particle scatterings. The reason for
the first part of this assertion rests upon the fact that the solutions of the
standard Schrödinger eigenvalue problem, H�n = En�n , i.e. the eigenvalues
En and eigenfunctions�n of the self-adjoint Hamilton operator H correspond to
stationary states of an isolated system under study. In these stationary states, the
energy of the whole system must be conserved. A stationary state describes a
stable physical system, by which we understand a system which does not break
up spontaneously, meaning that all its constituent parts, when they are in isolation,
i.e. beyond an external influence, e.g. electromagnetic fields, remain together an
infinitely large amount of time. By means of such states, one further acquires
knowledge about the internal structure of the examined physical systems and,
finally, about the structure of matter itself, as the ultimate goal of the theory.
Stability of atoms and molecules is necessary in order that materials in nature
could have any given determined physical and chemical properties, according to
which these materials are distinguished, identified and studied. Of course, for us,
the most important terms in the Hamiltonians are interactions, because they are
the generators of the physical features of the examined systems. Within theme (i),
one studies the so-called proper interactions among the constituent parts of bound
compact, isolated systems. These interactions hold together all the particles of a
given system.

However, for particle scattering1, the situation is entirely different, since the
total system is obtained from at least two subsystems, which are not in mutually
bound states. One of the two subsystems has the role of a target, whereas the
other represents a projectile. Here, it is understood that the binding energy for
each of the subsystems, considered as isolated, is known from the analysis within

1 In the old literature a terminological difference has sometimes been made between the notions
of scattering and collision. The former and latter terms meant exclusively one- and multi-channel
problems, respectively. Such a difference, however, has disappeared with time as purely formal, so
that a linguistic dualism scattering-collision has been customarily in use for many years.
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4 Introduction

theme (i). In research area (ii), energy E of the whole system is taken as a
fixed entry parameter, so that certain other crucial physical characteristics of the
system, e.g. the S-matrix, cross sections, rate of the reactions, etc, are sought as
a function of E . Hence, scattering theory studies the interacting physical systems
projectile–target but in the framework of the time and/or space scale, which is
large in comparison to the corresponding standards typical for proper interparticle
interactions encountered in theme (i). For this simple reason, scattering theory is
the most efficient and often the only method of investigating the microstructure
of matter.

Scattering theory is something more than a simple dynamics with an account
of various interactions. Dynamics of non-collisional physical systems usually
develop in some finite time intervals, such as t ∈ [−τ, τ ] (|τ | < ∞). In
contrast to this, in scattering theory, one is examining special sorts of states
of interacting systems, known as ‘asymptotically free’ scattering states, whose
existence must be proven for the case before the collision, i.e. in the remote
past (t → −∞), as well as when the scattering is over, i.e. in the distant
future (t → +∞). In scattering problems, one performs a comparative analysis
of behaviours of a given physical system projectile–target in two diametrically
opposite situations, i.e. under the binding and free dynamics. The former and
the latter dynamics correspond to the case with and without the interactions
between the colliding particles. Free dynamics develop under the influence of
the unperturbed Hamiltonian H0, whereas the total Hamiltonian H governs the
binding dynamics. Then it is clear that the difference H − H0 will represent the
interaction V which causes the collision to take place, provided that certain initial
conditions are fulfilled. Hence, interaction V between the colliding particles
naturally plays the role of a perturbation potential, which is the sole cause of
the transition of the system under study from a given initial to a certain final
state out of all the possible final configurations. However, although such a
concept of the collision problem is formally enrolled into a standard framework
of the perturbation theory, it should be realized that potential V in the expression
H = H0+V must not necessarily, in any sense, be small in regard to unperturbed
Hamiltonian H0. Even in the case when V is smaller than H0, the collision
problem requires the more difficult variant of the perturbation method for an
absolutely continuous spectrum. This is in sharp contrast to bound-state problems,
which necessitate only the discrete spectrum of a given Hamiltonian.

Standard scattering theory has originally been introduced in nuclear physics,
where the interactions are of short range [1–4], so that in the asymptotic region,
the aggregates can be considered as being fully free2. The same formalism is,

2 Under the notion ‘short-range potentials’, we will henceforth understand a function V (r) which is
quadratically integrable:

∫
dr|V (r)|2 <∞ or locally quadratically integrable:

∫
r≤R dr|V (r)|2 <∞,

and which behaves as �(r−β ), β > 1, when r → ∞. In the opposite case, we shall speak of ‘long-
range potentials’, whose general form is V (r)+γ/r , where V (r) is a short-range interaction, whereas
γ/r represents the Coulomb potential (γ is the coupling strength and r ≡ |r|). Here the notation
V (r) = �(r−β ) explicitly means: |V (r)| ≤ c/rβ , where c is a certain positive constant.
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however, not applicable to Coulomb potentials [5,6], for which the usual S-matrix
cannot be defined because the Møller wave operators �±, do not exist in the so-
called strong limits (when t → ∓∞) of the product of the interacting U†(t) =
eiHt and free U0(t) = e−iH0t evolution operator of a given conservative physical
system [7]. This is a direct consequence of the fact that the Coulomb interaction
never vanishes (not even for very large values of the distance between the
colliding aggregates). Ignoring these special features of the Coulomb potential,
which has often been done in the literature on atomic collisions [8, 9], leads to
divergencies of the perturbation Born expansions of the transition amplitudes for
passing from an initial to a final state of an investigated physical system. These
divergencies are due to the fact that the two-particle Coulomb transition amplitude
does not possess its on-shell limit for the case of plane waves3. These off-
shell amplitudes are present as the kernels of the integral equations of the three-
particle transition amplitudes. There have been some attempts [8,9] to artificially
remove the divergencies by subtracting an also divergent Coulomb phase factor,
say �. This is, however, unjustified because, according to the same reasoning,
one could have as well subtracted any other term of the type �+ δ, where δ is an
arbitrary finite quantity. This, of course, means that the final result is completely
undetermined, i.e. arbitrary. Instead of such an unphysical approach, one should
compute the two-particle off-shell transition amplitude with the Coulomb wave in
place of the plane wave, so that the final result will always be finite and without
any arbitrariness [10]. Hence, a direct taking of the definition of the S-matrix
from the theory of nuclear collisions leads to singular expansions of the Coulomb
amplitude for atomic scattering. This automatically implies that the first Born
approximation cannot be interpreted as a mathematically meaningful first term of
a perturbation series, because the latter is divergent. Attempts to do so have led, in
a number of concrete computations for the case of charge exchange, to a flagrant
disagreement between the first Born method and measurements [11, 12]. For
example, for highly asymmetric charges of the nuclei of the colliding particles,
the conventional first Born approximation in the form of Jackson–Schiff’s [13]
or Bates–Dalgarno’s [14] method, predicts cross sections which overestimate
the corresponding experimental data by several orders of magnitude. It then
clearly follows that a substantial reformulation of the Coulomb scattering theory
is necessary in accordance with the requirement of the existence of the previously
mentioned strong limits of the wave operators. The first finite S-matrix time-
dependent scattering theory encompassing Coulomb potentials was developed
by Dollard [7] in 1964 in a rigorous mathematical form for both the one- and
multi-channel case. Fundamental aspects of Dollard’s [7] analysis, however,
did not receive due attention for a long time, thus remaining attractive merely
in the framework of the formal theory of scattering. The reason for this lies in

3 The term on-energy-shell or the shorter on-shell signifies that the transition from an initial to a final
state occurs on the energy shell or surface, where the energy conservation law holds true. Otherwise,
when the energy is not conserved, we are talking about an event occurring outside the energy shell,
i.e. about the so-called off-energy shell or the shorter off-shell phenomenon.
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the fact that the Coulomb problem has been modified in [7], by introducing the
logarithmic corrective terms for �± in the form of certain integral o p e ra t o rs,
which are very inconvenient for practical purposes. The situation substantially
changed in 1979, when Belkić et al [15] showed that the introduction of Dollard’s
logarithmic modifications of the Møller wave operators �± is equivalent to
the requirement of the so-called proper boundary conditions. These conditions
impose the proper behaviours on the total scattering wavefunctions at infinitely
large inter-aggregate separations, in accordance with the given physical aspects
of the investigated problem. The required behaviours of the total sc a tte rin g
sta t e are determined by the very nature of the interactions between the widely
separated aggregates in the asymptotic region of scattering. In other words,
for short-range potentials it is justified to employ the plane waves to describe
the relative motion of the aggregates, whereas the full Coulomb wavefunctions
become indispensable for long-range Coulomb potentials. These latter functions
must be compatible with the eigenvalue problem in the corresponding channel of
the reaction. In this manner, a complicated Dollard’s [7] operator reformulation
of the standard scattering theory is reduced to the relevant modifications of
the wavefunctions. This is by far an easier task than the operator formalism,
so that the road to applications of the proper atomic scattering theory was
open, without which the formal aspects of Dollard’s theory would remain empty
and quantitatively unconfirmed. Moreover, in [15], an ex a c t eikonal transition
amplitude for three-particle rearrangement ion–atom collisions has been derived
which is valid for short-range as well as long-range potentials and, as such, is
applicable to problems in both atomic and nuclear physics (e.g. charge exchange,
ionization, stripping, pick-up and break-up reactions, etc). An entirely analogous
formalism can also be established for direct collisions, e.g. excitation of the target
by the impact of heavy charged particles. Numerous applications of the scattering
theory for long-range potentials, devised in the manner proposed in [15], reveal
an excellent and systematic agreement with experimental data [16–19]. This
will be thoroughly illustrated in part II of the present book, where the most
comprehensive computations to date have been carried out for charge exchange,
detachment and transfer ionization in high-energy ion–atom collisions.
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Chapter B

The main physical features of collision
problems

In contrast to a classical Hamiltonian, which always possesses continuous
eigenvalues, a quantum-mechanical Hamiltonian can have both discrete and
continuous spectra. Discrete eigenvalues correspond to stable bound states,
whose appearance is explained by the existence of the proper interactions of
sufficient strength to hold together the participating particles in a given finite
spatial domain. This will be the case if the wavefunctions of bound states
in the configuration space decrease rapidly at large values of the interparticle
distance. In contrast to this, the continual spectrum is associated to scattering
states, meaning that some of the constituent bodies will escape into the asymptotic
region of infinitely large interparticle separations. To these generalized free states
of particles, one customarily attaches the plane wave φκ = eiκ ·r characterized by
the so-called wavevector1 or propagation vector κ . However, plane waves are
diffused throughout the space and, as such, cannot describe a particle, which
must be localized in a given limited spatial region. In contrast to plane waves,
the so-called wave packets φ(t), formed as a linear combination of the type
φ(t) = ∫

dκw(κ)φκe−iEκ t with a certain peaked2 weight function w(κ) about
the incident direction κ ≈ ki ≡ k, are normalizable in the sense that they
belong to a separable Hilbert state space �. These wave packets are (indirectly)
physically interpretable vector states of a finite norm, despite the fact that we
are dealing with the continual spectrum of the Hamiltonian. As an illustration,
we give the following example of the previously mentioned weight function:
w(κ) = N(κ)e−|κ−k|2/κ2

, where N(κ) is the normalization factor. This Gaussian
function w(κ) behaves like the Dirac δ-function in the region κ ≈ k. Of course,

1 Unless otherwise stated, throughout this work atomic units will be utilized, i.e. � = e = me = c =
1, where � is the Planck constant, whereas e and me represent the charge and mass of the electron,
respectively.
2 The word ‘peak’ is often employed in physics in the context of appearance of certain local maxima
of a given function for some of the values of its argument.
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8 The main physical features of collision problems

it is quite obvious that the continuous spectrum of Hamiltonians exhibits its most
important applications precisely in the theory of particle scattering.

B.1 Recognizable reference points of scattering theory

Every important physical theory possesses its certain ‘trade mark’ or emblem,
i.e. some apparent and easily recognizable symbol or equation. For example
in classical Newtonian mechanics that symbol is given by the expression F =
ma, Einstein’s theory of relativity has its symbol in the energy–mass relation
E = mc2, then the assignment of the quantum field theory could be some of the
typical Feynman graphs, e.g. vacuum polarization or self-energy of the electron.
For the very first association with quantum mechanics of bound states one would
inevitably think of the Schrödinger eigenvalue problem H�n = En�n , etc. The
reference point of scattering theory, however, is the Lippmann–Schwinger integral
equation of the total scattering state with the well-known asymptotic behaviour in
the coordinate representation:

�+
k (r) = 〈r|�+

k 〉 −→r→∞(2π)
−3/2[eik·r + f (ϑ, ϕ)

eikr

r
]. (α)

Here the first term represents the incident plane wave with the initial wavevector
k, whereas the second contribution appears as a product of the transition
amplitude f (ϑ, ϕ) and spherically scattered wave r−1eikr . A detailed inspection
of this first association with the scattering theory of one particle at a given local
short-range potential V (r) would reveal that (α) contains four pieces of basic
information. The first relates to the superposition of the incident and scattered
waves in full accord with the universal Huygens principle, which asserts that
every spatial point hit by a wave becomes itself a source of new secondary
spherical waves. Although simple, the Huygens principle can be, as we shall
occasionally demonstrate in this book, a very useful tool in developing such basic
substrates of scattering theory as, e.g., the Green function or the Lippmann–
Schwinger integral equations for the total scattering wavefunctions. The second
piece of important information is the fact that the stationary asymptotic solution
�+

k (r) from (α) satisfies the time-independent Schrödinger equation but for
the continuous spectrum of the Hamiltonian H . The third essential point from
(α) is that the quantity | f (ϑ, ϕ)|2 becomes proportional to the experimentally
measurable differential cross section dQ/d�i , where �i = (ϑ, ϕ) represents the
solid angle around k = (k, ϑ, ϕ), through which the incident wave is scattered:

dQ

d�i
= outgoing flux/solid angle

incoming flux/area
= | f (ϑ, ϕ)|2. (ω)

Finally, the fourth but at the same time, for scattering theory, the most crucial
insight which can be gleaned from the asymptotic form (α) is that in the remote
past (t → −∞) only the free wave remains from the wave packet �+

k (t, r) =

Copyright 2004 IOP Publishing Ltd



Recognizable reference points of scattering theory 9∫
dκw(κ)�+

κ (r)e
−iEκ t formed by means of the stationary asymptotics (α) and a

certain weight function w(κ) dominantly concentrated around κ ≈ k.

The notion ‘free wave’ used in the previously mentioned remark is linked to
the spatial asymptotics (r → ∞) and this corresponds to the stationary formalism,
which, from the chronological viewpoint, was the very first framework for
introducing scattering theory. However, there are no valid reasons that such a road
should be followed in the modern presentation of the theory of particle collisions.
On the contrary, there exist two strong motivations to proceed in a different
manner. First, scattering theory in its original derivation abounds with heuristic
concepts, which received their justification only later, when the time-dependent
formalism had been put forward. In that sense, one should critically view the
asymptotics (α) for �+

k (r). Second, although the S-operator (whose matrix
elements are, in fact, the probability amplitudes of finding the given colliding
system in a certain state) represents the constant of motion, thus exhibiting the
global stationary character of the scattering phenomenon, the collision event still
effectively takes place in distinct time episodes, which naturally demand a time-
dependent description as the optimal theoretical framework. The present work
will thoroughly employ such a non-stationary formalism for which, instead of a
search of the asymptotics of the scattering states �+

k (r) in the limit r → ∞, one
looks for the limiting values of the state vectors and operators (i.e. the elements
of the non-commutative algebra), when the real-time variable t tends to ∓∞. In
any case, stationary and non-stationary scattering theory complement each other
in many theoretical derivations as well as in versatile applications. The passage
from non-stationary to the stationary formalism is carried out by means of Fourier
transforms or through the use of Abel–Cauchy limits. This passage is especially
important in the final operational part of the analysis, when one is preparing for
concrete numerical computations, which are necessary for a quantitative testing of
the theory in comparison with experiment. There are, however, several substantial
reasons for which the very first contact with scattering theory should not be based
upon the asymptotic (α) and the resulting interpretation (ω). Namely, relation
(α) is interpreted by saying that the wavefunction �+

k (r) represents the sum of
the incident particle beam of momentum k of a steady form described through
the plane wave eik·r and the spherically expanding scattered wave r−1eikr of
the amplitude f (ϑ, ϕ). Interpreted only in this way, the asymptotic (α) can
directly lead to the definition (ω) of the differential cross sections dQ/d�i .
However, the wavefunction �+

k (r), which depends exclusively on one variable
r , can eventually represent a state of only one given particle and not the particle
beam. This beam is, however, precisely necessary in the definition (ω), which
rests upon the particle flux. Moreover, vector state �+

k (r) from (α) is not
even normalizable, i.e. its norm is infinite. Therefore, the wavefunction (α)

cannot in any way represent a proper state of a particle and, as such, it does
not even belong to the appropriate separable Hilbert eigenstate space �, whose
elements must all be square integrable. This is clearly seen already on the
level of the initial configuration of the projectile, which is represented by the

Copyright 2004 IOP Publishing Ltd



10 The main physical features of collision problems

plane wave eik·r , playing the role of a generalized state of the operator H0.
These are also equivalently called the improper states, which cannot be found
in the Hilbert space � of proper, normalizable and physically interpretable
physical states. Furthermore, the wavefunction (α), which satisfies the stationary
Schrödinger equation H�+

k (r) = E�+
k (r), corresponds to a certain model

situation which is stable, i.e. unaltered with the passage of time, and this is
diametrically opposite to an obvious time development of any real physical
scattering problem. In addition, separate evaluation of the flux of the incoming
and outgoing particle, as done in (α) and (ω), completely ignores the interference
between the incident and scattered waves. This interference, however, represents
an effect of primary importance for forward scattering. Namely, one of the evident
characteristics of the description of a collision event within the wave formalism is
that the amplitude of the incident plane wave decreases by its passage through
the interaction domain. Such an effect is only possible to account for via a
destructive interference of the original incident wave and the secondary spherical
scattered wave. This occurs in the direction of the propagation k, i.e. for forward
scattering. In order to overcome all of these difficulties of the standard stationary
scattering theory, it became customary to introduce a posteriori various artificial
recipes, such as normalization of free waves in a certain box of large dimensions,
then averaging the results by means of the Fourier analysis with the help of a
convenient weight function, say w(κ), which is peaked around the incidence
direction κ ≈ k, etc. Because of these critical remarks, we shall abandon
altogether the aforementioned usual, stereotypical approach to scattering theory
and expose its essential principles on a modern level. Thus, for example, the
correct formulation of the initial and final scattering states will be, from the onset,
based upon the wave packets, which are the elements of � and, therefore, can
represent proper physical states. Such a treatment is in natural harmony with the
situation encountered in the collision, since the wave packets are localized in a
limited spatial region, and that is the very first precondition that a given wave can
describe a particle in any way. This is in contrast to the plane waves, which not
only represent a physical abstraction and idealization but are also mathematically
most inconvenient, since they do not belong to the Hilbert eigenstate space
�. With regard to the proposed concept on which we shall expose the major
selected principles of modern scattering theory, these introductory remarks will
be thoroughly worked out in the forthcoming chapters. Particular attention will
be paid to the appropriate definition of the sufficient and necessary conditions for
selecting (from a large class of all the quantum-mechanical particle systems) a
certain subclass known as quantum scattering systems. The elaboration of these
ideas will be accomplished by extensive use of the elements of functional analysis,
strong topology and spectral analysis of the operators.

Copyright 2004 IOP Publishing Ltd



Chapter C

Universality of the scattering problem

In order to convince ourselves of the intrinsic importance of the theory of
scattering, its universality and presence in various branches of physics and other
neighbouring sciences, including technology and industry, let us give a few of the
most remarkable illustrations.

First, numerous phenomena in the micro-world (nature which is
unobservable to the naked eye) are the net result of collisions among mass and/or
massless particles, e.g. glory, corona, etc. For a proper explanation of these and
similar events, it is necessary to examine their dynamics from the viewpoint of the
theory of the scattering of light on atmospheric particles. Furthermore, if dust is
suspended in a liquid, it is easily seen through a microscope that the dust particles
are moving randomly along various zig-zag paths in an entirely unpredictable
manner. This is the well-known Brownian motion which, according to Einstein’s
explanation in this case, occurs because of a number of continuous collisions
of the dust particles with the molecules of the neighbouring medium. Through
these collisions, the dust suffers an uneven number of strikes from all sides,
thus acquiring a momentum which is not compensated, so that the dust moves
randomly in various directions. Hence, the phenomenon of Brownian motion
is one of the most direct and obvious confirmations of the molecular motion
of matter. Note that Brownian motion can be modelled by means of stochastic
processes of the Markov type and of the Ohrnstein–Uhlenback type. The well-
known Feynman theory of graphs exhibits a certain formal resemblance to the
Brownian model.

Second, using the dynamics of certain well-studied wave and/or particle
scatterings as a prototype often turns out to be of great value in examining the
structure of other, more complex and otherwise directly inaccessible objects. Let
us cite only a few areas: roentgen crystallography, which led to the discovery of
deoxyribonucleic acid (DNA), then in positron tomography, echo cardiography,
in research and the discovery of certain undersea objects by means of ultrasound,
etc. In this endeavour, based on the fact that the dynamics of ultrasound are
well known, one is interested in the position description as well as in the internal
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12 Universality of the scattering problem

structure of the matter under study using the data on scattering of ultrasound on
the observed objects or on organs in a patient’s body during medical examinations.
Such an assumed relation could be expressed through a certain convenient
functional dependence (in an ideal case this could even be reduced to some
explicit formulae or equations), which, in turn, would allow one to approximately
reconstruct the studied object according to the data on model scatterings. In
practice, however, this process is nowadays so much simplified and standardized,
that e.g. in obtaining an echo cardiogram by means of ultrasound, the commercial
apparatus already contains built-in calibration for determining the depth from
which the echo comes.

Third, scattering theory often represents the ‘gold standard’ for the very
dynamics of physical systems. Thus, for example, in elementary particle physics,
the dynamics are not well known due to postulated interactions and every
important measurement is, in fact, the scattering experiment. Here the key
question and the eliminating test of any proposed dynamics reduce to examination
of the possibility of conceptually devising a scattering theory accompanied by its
fundamental entities, e.g. unitary and convergent (meaning re-normalizable) S-
matrix (scattering matrix). Such a scattering theory must be capable of explaining
and interpreting the existing experimental data, thus activating its descriptive role.
The latter role, however, should not be the only task of theoretical concepts
which, most importantly, must promote the theory as a powerful predictor,
whose results would precede the measurement and thus anticipate yet unobserved
physical phenomena. In this way, scattering theory would permanently offer new
challenges to experimental investigations. Hence, the previously mentioned key
question is, in fact, raised to the pedestal of the type of raison d’être for the theory,
i.e. it represents the very reason for the theory’s existence. Such an assertion has
certainly the most convincing justification in the example of elementary particle
physics, because any real progress in this research area critically depends upon the
technological feasibilities of achieving high-energy incident beams for scattering
experiments, which would create new (otherwise only theoretically postulated)
particles.

C.1 Fundamental aspects of collision theory

The fundamental aspects of collision theory were put forward in 1933 in the book
by Mott and Massey [20], where the cornerstones were formulated in the domain
of atomic collisions. However, numerous and very important contributions to the
area of scattering followed later in other branches of physics. These contributions
stemmed chiefly from (i) quantum field theory, which necessitates a more abstract
and more general formulation of the scattering process than the one given in [20]
and from (ii) nuclear physics, where it was indispensable to systematize the
experimental data on nuclear reactions, without any knowledge of the nature of
nuclear forces. Here we mainly have in mind the following achievements in the
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development of scattering theory: introduction of the S-matrix concept (Wheeler
[21], Heisenberg [22]), general formulation of the mathematical problem of
finding the S-matrix [23–26], behaviour of cross sections in the vicinity of
resonances and thresholds of reactions [27,28], obtaining the interaction potential
from the S-matrix [29,30], etc. Let us emphasize that the S-matrix plays a central
role in quantum mechanics and in quantum field theory, because this operator is
the carrier of the actual and/or postulated interactions among particles as the main
generators of the physical properties of matter.

Development of the mathematical concept of scattering theory proceeded
quite slowly because of difficulties in the mathematical problems themselves, as
well as the lack of collaboration among mathematicians and physicists. Given
these circumstances, the physical literature for a long time abounded in heuristic
formulae and methods, empirical equations, artificial prescriptions introduced
ad hoc, etc. The situation, however, fundamentally improved in 1958 (Jauch
[31, 32]), in 1960 (Faddeev [33–35]) and in 1964 (Dollard [7]), when enormous
steps were made through the formulation of the problem of one- and multi-
channel collisions in a rigorous mathematical manner for short-range potentials
[31–35], as well as for long-range interactions [7].

C.2 Collisions in various branches of physics

The scattering experiment plays one of the leading roles in the part of physics
devoted to measurement, irrespective of whether one is concerned with particle
collisions or with scattering of photons on various substances. To see that this
statement is true, it suffices to make only a cursory inspection of the literature. For
the purpose of illustration, let us quote a few of the most remarkable experimental
results.

In atomic physics, Rutherford’s [36] experimental discovery of the nucleus
in 1911 resulted from his examination of scattering of α-particles on thin foils of
gold atoms. The results of this remarkably simple measurement had far reaching
consequences, which already in 1913 initiated the foundation of the Bohr [37]
model of atomic hydrogen based on the concept of stationary states. The first
direct confirmation of the existence of these stationary states of atoms came in
1914 through Franck–Hertz’s [38] experiment on inelastic scattering of electrons
on the mercury target vapour. The well-known Davisson–Germer [39] experiment
on collisions of electrons with the solid surface convincingly proved the concept
of electron diffraction. This latter measurement unambiguously confirmed the
existence of the dualistic wave–corpuscular nature of the electron, as one of the
fundamental hypotheses of quantum wave mechanics due to de Broglie.

In nuclear physics, the first clear confirmation of nuclear structure came in
1919 in Rutherford’s [40] experiments on collisions of α particles with a nitrogen
(7N14), whose nucleus decays and forms an oxygen (8O17) and a free proton (p),
i.e. α + 7N14 −→ p + 8O17.
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14 Universality of the scattering problem

In elementary particle physics, the scattering experiment is, in fact, the
principal method of creating new matter. Thus, for example a π0 meson can
be obtained in the collisional reaction of two protons: p + p −→ p + p + π0.
This experimental discovery was performed in 1947 by Lattes et al [41, 42], who
thus confirmed Yukawa’s [43] theory of mesons from 1935 for strong interactions
among nucleons. More recently, in the well-known experiment on the collision
between protons and anti-protons (p) carried out in 1983 in CERN (Geneva),
vector bosons W± and Z0 were discovered. These latter particles together
with photons, represent the mediators of the electroweak interactions. This
measurement confirms Weinberg–Salam–Glashow’s [44–46] theory from 1967 by
which the unification of electromagnetic and weak interactions was accomplished.
This is considered as one of the most significant achievements in the 65-year -old
investigations in elementary particle physics [47].

C.3 Importance of collisions in atomic and molecular physics

Broadly speaking, atomic and molecular physics have the task to discover and
apply the fundamental laws of nature, to acquire further knowledge and explain
the structure of matter and its evolution on the atomic and molecular level
and then, finally, to make a direct use of its own findings, as well as to pass
these to other scientific disciplines and technologic branches. These goals are
predominantly accomplished through the method of atomic collisions with or
without the presence of external fields. Collision problems include at least 80%
of the entire research themes and activities in the domain of atomic physics
theory. The field of atomic scattering, by its original theoretical and experimental
methods, as well as technical achievements and data bases, plays an essential
role in developing other scientific disciplines in physics (plasma physics, nuclear
physics, solid state physics), as well as in other branches of science (astrophysics,
quantum chemistry, biophysics, medicine). From such an active role for atomic
physics in the last three decades, the scientific community has witnessed the
development of quantum physics of surface as a relatively autonomous field,
which is a product of the synthesis of the themes and methods of atomic,
molecular and solid state physics. Here also one of the most propulsive research
activities is precisely the collision of mass and/or massless particles on the surface
of solid bodies.

Phenomena on the atomic level also play an important role in preparing
the experiment in the physics of elementary particles. Thus, for example, in
planning investigations of hadron interactions of mesons with nucleons, essential
information is necessary about the initial population of negative hadrons1,
after their capture in the atomic orbitals during the action of the field of the
Coulomb potentials of the nuclei. These data are provided by the atomic

1 The name of ‘hadrons’ comprises particles such as barions and mesons, which are characterized
through their strong interactions.
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collision field, through data based on the theoretical and experimental findings
on the formation of muonic, pionic and kaonic exotic atoms of hydrogen via
the mechanism of radiative recombination. Quark–antiquark interactions are
successfully represented in the framework of the current confinement model
(charmonium) in elementary particle physics by a linear superposition of a
Coulomb field and the potentials in the form of a power function of the distance
[48]. Data on muonic atoms, which are formed through rearranging collisions,
are also necessary for modern studies of nuclear properties.

Research areas linked to atomic and molecular systems in external fields are
of great importance from the standpoint of the advancement of the theory itself
and especially in connection with numerous applications in various branches of
physics and also in other sciences (astrophysics, medicine, etc), as well as in
technology and industry. The interaction of radiation with matter takes a central
place in these investigations. Under the notion of ‘radiation’, we understand the
electromagnetic field in the largest sense of the word, which also comprises so-
called laser radiation. If the intensity of the light source is sufficiently strong,
it would be possible to observe the transitions followed by absorption, emission
or scattering of one or more photons. We quote here only the experiment of
Agostini et al [49], who succeeded in detecting the ionization of atomic hydrogen
as a result of absorbing 19 photons. This type of process is called multi-photon
ionization, whose detection generally requires high intensity radiation [50, 51].
Even more significant is the problem of excited states, whose distribution in
atoms could substantially be modified by turning on the laser field. Namely,
due to a weak binding energy, these metastable atoms are sensitive to external
fields. This, in turn, offers an excellent possibility for basic testing of our actual
knowledge about the atomic physics of strong fields. The laser technique is
nowadays also used very successfully for a selective formation of atoms in highly
excited Rydberg states. The problem of the Rydberg atoms in external fields
represents those typical physical systems with dominantly exhibited instabilities,
so that this research domain of atomic physics is, in part, tangent to problems in
chaos, i.e. in nonlinear dynamics [52]. Interest in highly excited atomic states in
external magnetic fields is heightened also in a larger context, such as, e.g., the
possibility of incredibly strong magnetic fields in the regions near black holes,
pulsars and neutron stars [53]. For these extraordinarily strong fields, the nature of
atoms and molecules must be drastically modified in comparison with the normal
situation without external fields. Therefore, observations of radiation lines, which
are due to emission from the excited states of these highly deformed atoms, indeed
represent a great challenge to experimentalists.

Due to the dominant role of scattering phenomena in research within atomic
and molecular physics, it is fundamental to formulate scattering theory from
first principles. Here we must emphasize the inapplicability of the standard
concept of nuclear physics, so that the question of the investigation of the typical
features of atomic interactions of long-range nature manifested through Coulomb
interactions emerges as the most important point of departure. The peculiarity
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of Coulomb interactions is transparent through the fact that their effect is felt
even at infinitely large distances from the centre of scattering. This feature leads
to considerable modifications of the states of those physical systems which are
charged as a whole. This long-range effect has a decisive influence upon the
quantitative predictions of theory, as conclusively demonstrated in [15]. In the
literature, a misleading argument against the use of the correct treatment of the
Coulomb potentials has, for a long time, been employed. This is the observation
that, in realistic situations, all interactions are screened at large distances, so
that one can introduce a sufficiently large cut-off and forget altogether about
the troublesome Coulombic effects. However, such an argument is false for
the following reasons. If we are about to screen a given Coulomb potential at
a certain large but finite distance r0, then all the resulting transition amplitudes
derived from such a modification would only be meaningful if they do not depend
upon the distance r0. However, it is quite clear that such a cut-off of a Coulomb
potential would not alter the final results, i.e. the transition amplitudes T±

i f will be
insensitive to the choice of r0 only if r0 represents a sufficiently large distance,
so that the neighbourhood r ∼ r0 does not give any contribution to the values
of T±

i f . However, this means, in particular, that for the spatial domain R, which
includes all the points r < r0 but such that r is close to r0, one should take proper
account of the long-range (because r0 is large) Coulomb behaviour of a given
potential in order to avoid spurious contributions from the region R. In other
words, one is again faced with the request for the correct treatment of the Coulomb
interaction but this time for the reason of eliminating the wrong contributions
to the transition amplitudes coming from the cut-off distance r0. This analysis
illustrates how introducing a screening of the Coulomb potentials unnecessarily
complicates the problem. Thus, Coulomb screening is completely undesirable. It
is ironic that the cut-off procedure modifies the potential only in the region which,
for consistency, must afterwards be excluded from the domains which provide
physical contributions to the transition amplitudes. It then appears as the natural
and easiest way to ensure that the quantities T±

i f are identical, with and without the
screening, to include the long-range behaviour of the Coulomb potential exactly
from the very beginning, as in [10, 15]. In addition, the theory of [15] is general
in the sense that it is applicable to various ion–atom collisions, which lead to
electron transfer, excitation, ionization, Auger processes, etc. All these reactions
exhibit divergent Born expansions, so that the exact eikonal formalism from [15]
represents a universal manner of regularization of the transition amplitudes. Here,
the notion eikonal relates to the collisions at small scattering angles. The eikonal
method is otherwise a perfectly adequate framework for studying ion–atom
collisions. Namely, as is well known in collisions between heavy particles, due to
the large projectile mass, the incident beam deviates only slightly from its original
direction. Therefore, the total cross sections obtained through integrations over
given angular distributions are predominantly determined by the contributions
from extremely small angles (fractions of milli-radians), in the immediate vicinity
of the region of the forward scattering. The contributions from larger scattering
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angles stem from the Rutherford scattering, as a result of a Coulomb repulsive
interaction between the incident and target nucleus. Including this latter effect
would yield a correction to the transition amplitudes T±

i f of the order of, at the

most, the values of the ratio of the masses of electron and proton (∼10−4), in
comparison to the major contribution from the interaction between the electron
and the incident nucleus. Hence, the exact eikonal transition amplitudes account
exactly for the contribution from the interaction electron–nuclei, whereas the
contribution from the nucleus–nucleus potential is incorporated approximately
in the eikonal sense (∼1/µ), where µ is the reduced mass of the incident and
target nucleus. Moreover, thus obtained exact eikonal transition amplitudes T±

i f
from [15] contain the entire contribution from the internuclear potential in the
form of a phase factor, which modifies only the differential and not the total
cross sections. In this manner, the long-standing controversy with regard to the
question as to whether or not the nucleus–nucleus interaction should be taken
into account [13, 14], is conclusively resolved. The definite answer given in [15],
which has subsequently been accepted by others as a general fact [16–18], is
that the internuclear potential yields a contribution of the order of �(1/µ) to
the transition amplitudes T±

i f only if that interaction is accounted for exactly in
the eikonal sense. If this basic fact is ignored, as has repeatedly been done in
the literature, one obtains unphysical modifications of the observables. These
modifications can sometimes be wrong by several orders of magnitudes [11, 12].

C.4 Collisions and new sources of energy

In research connected with controlled thermonuclear fusion, which represents one
of the possible energy sources, the role of atomic collisions is of exceptional
importance [54,55]. The properties and behaviour of magnetically confined, high
temperature thermonuclear plasmas of low density are determined by collisions
among the particles in the plasma. Stability, which is one of the most essential
characteristics of fusion plasmas in tokamacs, is substantially influenced by
neutralization processes, e.g. charge exchange, as well as by collisions which
can heat plasma, such as ionization. Atomic collisions to a large extent also
affect: (a) the plasma radiation, as one of the dominant mechanisms of cooling
of fusion plasma, (b) the transport of neutral particles in tokamacs, (c) the flux
distribution of momentum and energy among the constituents of plasma, etc.
Here, a particular place is reserved for collisions between multiply charged ions
with hydrogen and helium. These ions are present in the peripheral edge of
the plasma in tokamacs and they have a significant influence upon radiation
losses and additional methods of heating by neutral beams. In fusion research,
a particular emphasis is given to multi-electron correlated processes, such as
simultaneous electron transfer and ionization (transfer ionization), double charge
exchange, electron capture and excitation (transfer excitation), double excitation,
simultaneous ionization and excitation, double ionization, etc. These processes
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play a key role in modern toroidal machines for magnetic confinement of high-
temperature plasmas, in the balance of energy and transport properties as well
as in diagnostics [54, 55]. Of considerable importance is also obtaining original
quantitative data on these processes. Such data should shed new light onto the
basic mechanisms of the multi-electron transitions. These theoretical results
should also include evaluations of the cross sections of certain typical ion–atom
reactions through the use of the most successful approximations available in
the literature (e.g. the exact second- and higher-order Born approximations, the
continuum distorted wave method, the reformulated impulse approximation, etc).
In the case of electron–atom collisions, encompassing both the target in its ground
or metastable state, the so-called eikonal-Born series emerged, from a number
of studies, as a very reliable method at intermediate and high energies [56].
However, in contrast to the exact eikonal theory of [15], which treats the electronic
motion exactly, the eikonal-Born model approximates the kinetic energy of
the electrons by the corresponding eikonal, linearized terms. Furthermore, we
mention in regard to fusion that the diagnostic of the fusion plasma is based upon
the effects produced in atomic collisions. Spectroscopic techniques, designed on
bremsstrahlung or on the intensity of individual lines, require knowledge of the
data for excitation and the whole string of other collisional processes, which lead
to the population of certain energy levels in atomic systems. Active and passive
diagnostic techniques with particle beams are mainly based upon the problem of
scattering in which electron transfer takes place [54, 55]. There is yet another
important application of the data base on atomic and molecular physics in fusion,
namely study of the transport of momentum and energy in plasmas. Here atomic
collisions can considerably affect the flux distributions of momentum and energy
among the constituent particles of the plasma [54, 55].

Let us also point out that in 1991 in Abingdon (England), the researchers
on the Joint European Torus (JET) succeeded, for the first time, to obtain a
considerable quantity of electric power of the order of (1.5–2.0) MW from
controlled thermonuclear fusion. This was, without any doubt, a crucial step
forward in the development of fusion as a new energy source. This fusion
experiment with confining magnets used a gaseous mixture of deuterium and
tritium as the reactor fuel, which was heated up to the temperature of ∼(2 ×
108) ◦C, i.e. about ten times higher than the temperature in the centre of the Sun.
The pulse generated by fusion has reached the order of magnitude of ∼1 MW
with a duration of 2 s and the deuterium torus exhibited stable conditions in the
tokamacs in the period of 1 min. Through this milestone experiment, the several
decades long effort of a large number of physicists has been successfully brought
to the finishing point from the scientific point of view. Of course, this is not yet
the end of the whole endeavour, since further fusion technology projects are still
ongoing within the realm of the planned construction and implementation of the
International Thermonuclear Experimental Reactor (ITER), which is predicted
to produce more than 1000 MW of thermal energy. After this achievement,
there remains yet the final goal of the engineering technology, i.e. commercial
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production of electric and thermal power from the fusion processes. This will
represent the culmination of one of the most profound thoughts of physicists in
connecting fundamental physical phenomena with the efficient creation of new
energy for the versatile needs of humankind.

C.5 Application of collisional phenomena in other sciences

Nuclear magnetic resonance (NMR) is intensively used as a non-invasive
procedure in medicine, e.g. in the most reliable modern diagnostics of the disease
of the brain, spinal cord and the cardiovascular system (particularly of the aorta).
Here, precise magnetic-resonance pictures of the damage to various human organs
are formed through radiofrequency (RF) signals, which are emitted by protons
from the tissue, after its exposure to the perturbation from the incident RF pulses
in the presence of strong magnetic static fields. Furthermore, computerized
positron–electron tomography (PET) is considered, in the most advanced non-
invasive cardiovascular diagnostics, as a revolutionary medical technique, which
is a key procedure enabling inspection into the viability of damaged cardiac
tissue by directly assessing metabolism of the heart. The same principle can
also detect blockage of blood flow in the coronary arteries. The striking feature
here is that the fundamental starting point of this fascinating application of
physics in medicine, with further enormous horizons of its possible usage, is
the collision of positrons e+ with electrons e−. The result of such a collision
is the pair annihilation e+ − e−, accompanied by the emission of two photons
each having the same energy of 511 keV and moving in opposite directions.
Many of the most relevant modern discoveries about the influence of ionizing
radiation on biological systems are based upon data stemming from the domain
of investigations of atomic and molecular physics. Knowledge of the energy and
angular distributions of ionizing particles during atomic collisions is of great
significance in the technology of X lasers, then in biophysics and in medical
physics. This is particularly true in the case of the deposition of heavy energetic
ions in organic matter, then for detection of charged particles and also for the
relative efficacy of the δ-rays, i.e. secondary ionized electrons [57–59]. In
biophysics, collisions are important in the context of investigations linked to the
surface of numerous biophysical systems. Dynamics typical of collisions are
necessary for an adequate study of mobility and transport of bio-matter through
the cell membranes, propagation of nerve impulses across neuronal surfaces,
permeability of the cell membrane and their capability to enable the diffusion of
glucose molecules and alike under conditions of even drastically reduced blood
flow, etc.

In plasma physics, cross sections of a large number of collision processes
are in use as the entry data, without which it would be virtually impossible to do
an adequate kinetic modelling of plasmas. The most fruitful joint problematics
of plasma physics and atomic–molecular physics is certainly in the domain of
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controlled thermonuclear fusion research. In the physics of condensed matter,
collisions of multiple charged ions with the solid surface are of considerable
significance [60]. Quantum surface physics, as a new autonomous field, connects
certain themes common to solid state physics, atomic and molecular physics. The
interest in this research area has particularly intensified with respect to application
of the results in fusion investigations which relate to the effects stemming from
the interaction of plasmas with a tokamac’s walls. Quantum effects on the surface
of solid bodies are also important in obtaining laser radiation outside the optical
domain (X lasers). Let us cite here only a few important phenomena from
quantum surface physics: formation of Rydberg states of ions in the vicinity
of metallic surfaces, Auger processes resulting from collisions of ions with the
solid surface at small scattering angles, diagnostics of surface spin ordering
and chaos in ferromagnetics, statistics of electronic emission from the metallic
surface under the influence of incident ions, electronic capture into continuum
states in slow collisions of ions with the metallic surface, ion neutralization
at the surface, etc [60]. In collisions of heavy ions with the solid surface of
tokamac walls, neutralization in the fusion plasmas frequently takes place. Of
course, such an effect is undesirable and should be reduced to the smallest amount
possible, since the main goal in fusion is obtaining the positive energy defect of
elementary processes in tokamacs, i.e. the creation of the current flux is enabled
by maintaining the constituents of the plasma in the state with non-zero charge.
For technological procedures of wall construction, one needs atomic data bases
for cross sections of neutralization collision processes of the fusion plasma. With
these data at hand, one knows which materials exhibit the large neutralization
cross sections, i.e. for which the probability of neutralization of the plasma is
most significant. Such ingredients are afterwards technologically extracted from
the walls of the tokamacs, so that the whole performance will be considerably
improved.

In astrophysics, atomic collisions are also one of the fundamental themes of
research. For example, determination of the coefficients of the reaction rate of ion
capture by molecules with the permanent dipole and/or quadrupole moment at
low temperatures is important for theoretical modelling of complex ion synthesis
in cold interstellar clouds. The corresponding computed data on cross sections are
necessary in studying the problems of radiative association [61]. In a larger class
of astrophysical problems, it is possible to apply the methods originally developed
in atomic and molecular physics [62–65]. When low-energy (≤10 MeV amu−1)
cosmic rays interact with the interstellar gases (H, He, etc), particle-rearranging
phenomena occur with the electron transfer, leading to formation of atoms and/or
ions primarily in their excited states. These newly formed atomic systems possess
one or more electrons bound to nuclei of cosmic rays [62–65]. The formed excited
states are metastable, so that their subsequent radiative decays yield the emission
of the x-rays. Detection of the latter radiation is of primary significance for a
direct determination of the intensity of the interstellar cosmic rays. Hence, here
too, knowledge of adequate theoretical predictions of cross sections for electron
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capture from interstellar atoms by the impact of nuclei of cosmic radiation
becomes mandatory [65]. The importance of these reliable theoretical data bases
on atomic collisions is best appreciated in light of the existence of only indirect
measurements connected with the influence of cosmic radiation on heating and
ionization processes, as well as on formation of HD molecules [62]. For energies
below 100 MeV amu−1, a direct terrestrial measurement is not reliable, due
to serious and undetermined modulations by the solar magnetic field. Here,
theoretical results represent nowadays the only source of information about the
relative intensity of cosmic radiation.

C.6 Application of collision phenomena in technology

Applications of the results from atomic and molecular physics in technology
are very important and numerous, e.g. the study and refinement of materials
by laser beams, laser separation of isotopes, laser-induced chemical reactions,
transfer of energy and information by directed and coherent electromagnetic
fields, etc. Atomic and molecular physics are also vital for a proper understanding
of atmospheric and meteorological phenomena [66]. One of the net outcomes
of the latter interplay is the significant contribution of atomic physics research
to programmes for the preservation of the environment. We note, e.g., sensors
which act from a distance using lasers and laser spectroscopy. In this way, it is
feasible to monitor air pollution efficiently at a distance which is far from the
source of the pollution. Data bases on atomic collisions are also important for
many technological research projects, such as MHD generators, fusion machines,
gaseous UV, X lasers and the technology of metal surfaces (surface features, e.g.
surface ‘aging’, corrosion, etc).
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Chapter 1

The key features of quantum systems and
the Kato conditions

This chapter represents a descriptive introduction to the field of collision
phenomena from the theoretical point of view, with the primary purpose of
enumerating the fundamental themes of research as well as the relevant basic
physical aspects. With this goal in mind, we shall elucidate the role of the key
features of collision phenomena and introduce certain basic notions and chief
observables.

It is methodologically justified to start first with a qualitative and intuitive
description of scattering of one particle on a given potential. In this case,
scattering can be imagined as a stationary or non-stationary event. In the non-
stationary treatment, collision is understood as a physical phenomenon which
essentially develops in three time stages. Time t will be considered as being a
continuous real variable t ∈ �, where � is the set of real numbers. In the first
episode, we have an incident particle approaching the potential, which acts as
a centre of the interacting field. In the second step, which is of a very short
duration in comparison to the total time of the entire event, collision occurs, i.e.
the incident particle is being scattered on the given potential. In the third stage
after the collision, the particle moves away from the centre of the interaction field,
in a direction which generally differs from the incident direction. This intuitive
picture forms a good basis for theory of scattering. The problem is, then, in
searching for the corresponding mathematical language, by which the previously
outlined collision event could precisely be described.

In the stated qualitative description of scattering, we did not introduce any
assumptions which would guarantee that the number and/or kind of particles
should be the same before and after the collision. In addition, we did not limit
the internal degrees of freedom, e.g. spin or isospin, of the particles which
participate in the collision process. The mathematical apparatus, which we shall
analyse in this book, will be of sufficient generality to encompass the most
important cases of interest to physics. Naturally, potential scattering represents
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nothing but an idealization of the type of one-channel problems1. However,
the three analogous stages could also be readily identified while considering a
more general multi-channel problem, in which more particles appear. The same
remark holds also true for collisions in which the number and/or kind of particles
is not the same before and after the scattering (reactions, processes, etc). An
adequate mathematical formalism will be established in a general and sufficiently
flexible manner to incorporate the necessary mathematical rigour and physical
intuition. With this goal in mind, we shall expose the basic principles of the non-
relativistic S-matrix theory of scattering on a modern level. Collisions between
elementary particles are beyond the primary scope of the present work, because
they would require relativistic quantum mechanics, considering, e.g., a target as
an elementary particle, built from mesons, quarks, etc.

As is usually the case, problems have a far better chance to be first well
defined and then eventually solved, if one succeeds in identifying their key
features. Thus, in the case of scattering, the most essential property emerges
from the fact that both, in the remote past (t → −∞), and in the distant future
(t → +∞), the motion of particles becomes free. This, in particular, means that
in the limits t → ∓∞ no interactions remain between the colliding particles. The
time evolution of states of such free particles develops under the action of the free,
i.e. the unperturbed Hamiltonian H0, which for potential scattering represents the
operator of the total kinetic energy of the system. One-channel scattering, i.e.
collision between two particles, is equivalent to the scattering of a particle on a
fixed potential, which plays the role of a centre of interaction field. A state of
the given system is described by an eigenvector (up to an arbitrary phase factor),
which is a normalizable element of the separable Hilbert space�.

Let us now take a collision system projectile–target2, whose unperturbed
Hamiltonian H0 is given by a simple sum of the operators of the kinetic energy and
the internal proper interaction potentials, which are reminiscent of bound states
in each of the colliding particles. In other words, the spectrum of the operator H0
describes two subsystems, whose interaction is equal to zero (interaction between
the projectile and target is ‘turned off’). We denote by H the total Hamiltonian
of the collision system, whose physical meaning is realized by ‘turning on’ the
interaction between the projectile and the target. Then the difference H−H0 ≡ V
represents the very interaction which causes the collision.

1 The term ‘channel’ denotes hereafter one of all the possible states of colliding particles in the initial
(entrance channel) and in the final (exit channel) configuration. In other words, a channel is one of the
possible ways of fragmentation, i.e. of rearranging a given composite collision system.
2 Projectile is a collective name for the incident beam of mass or massless particles, which is directed
towards the target. A given spatial ensemble of quantum systems at rest in the laboratory coordinate
frame is called a target and that can be any general particle (atom, ion, molecule, etc) with or without
internal structure. A particle without internal structure, i.e. a structureless particle, is that particle
which does not represent a system of two or more other particles in a bound state. In the opposite
case, a particle is said to be composite, i.e. a structured particle.
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Hence, the total Hamiltonian H can be written in the following additive
form:

H = H0 + V . (1.1)

The associated time-dependent Schrödinger equation is H�(t) = i(∂/∂ t)�(t),
where �(t) is the total state vector. The collision phenomenon differs from
all other dynamic processes, which can be described by the same Schrödinger
equation, in the rigorous requirement that �(t) for t → ∓∞ be respectively
reduced to free vector states �0i,0 f (t) ≡ �i, f (t), which obey the unperturbed
eigenvalue problem H0�0(t) = i(∂/∂ t)�0(t). Separation (1.1) of operator H
into two parts, H0 and V , is possible to accomplish trivially in many problems and
specially in non-relativistic collisions. Thus, for example, H0 can be an operator
of the total kinetic energy of the unperturbed motion of the isolated particles,
whereas V could be the total interaction among all the particles. However, a
separation of type (1.1) is not always possible to carry out, e.g. in field theory or
in atomic, molecular and nuclear reactions encompassing several channels, where
non-local interactions are encountered. A given potential V is local if it depends
only on the particle’s position, i.e. if it is diagonal in the configuration space
〈r|V |r ′〉 = V (r)δ(r − r ′), where δ(r − r ′) is the Dirac δ-function. However, a
non-local interaction is an operator which is non-diagonal and which otherwise
plays a role of a potential in the Schrödinger equation. Hence, the non-local
potential V (r, r ′) = 〈r|V |r ′〉 cannot be written in the form V (r)δ(r − r ′) and,
therefore, its action on the wavefunction �(r) is given by the integral operator:∫

d r ′〈r|V |r ′〉�(r ′). It is then clear from this expression that the action of a
non-local potential on a wavefunction depends of the values of that function in
the whole configuration space. Hence, the name non-local potentials3. Thus,
for the scattering of a spinless particle of mass m on the non-local potential
V , the Schrödinger equation in the coordinate representation has the following
form: (H0 − E)�(r) = ∫

dr ′ 〈r|V |r ′〉�(r ′), where H0 = −∇2
r /(2m) and

E ≡ Ek . Now it is obvious that, for the non-local potential V , it is impossible
to extract a term of type (H0 + V )�(r). In these and other similar cases,
the formalism of scattering theory should be conveniently modified along the
lines in [67]. In addition to their importance in the case of potential scattering,
non-local interactions also play a significant role for three- and many-particle
problems in atomic and molecular physics. In atomic physics, the non-local
potentials are unavoidable in the formulation and implementation of the Hartree–
Fock method of self-consistent fields for multi-electron atoms. Here the non-
local potentials are reduced to the well-known Coulomb and exchange integrals,
which are energy dependent. In nuclear physics, interactions are usually modelled
through so-called separable potentials of the type 〈r|V |r ′〉 = λu(r)u(r ′). In
this expression, parameter λ is the strength constant (the constant of interaction),
whereas quantity u(r) is a function which in impulse space most frequently takes

3 In a particular case of the local potential we have that:
∫

dr ′ 〈r|V |r ′〉�(r ′) = ∫
dr ′ δ(r −

r ′)V (r ′)�(r′) = V (r)�(r).
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the form 1/(γ 2 + p2)n (n = 1, 2, 3, . . .), with γ being a real constant. Separable
potentials are obviously one special case of non-local interactions.

Let us suppose that H0 is a sufficiently simple Hamiltonian whose spectrum,
which plays the role of a certain reference spectrum, can relatively easily be
found. Then, operator V will ultimately be considered as a perturbation of
the system but without any obligation to be small, in contrast to the standard
perturbation theory. In an idealized physical situation, we shall further assume
that in the remote past, we have performed a good localization of the wave
packets of the two colliding particles, which are afterwards enabled to approach
each other. In other words, their so-called world lines will intersect, which
means that the particles under consideration will start to interact mutually. After
this step, the particles will again go away from each other at an infinite inter-
separation distance. Here it is essential to note that the particles are free before
and after the collision in the so-called asymptotic regions t −→ ∓∞ and this
is precisely a collision problem by definition. We ought to give certain concrete
physical meaning to the notions ‘remote past’ (t −→ −∞) and ‘distant future’
(t −→ +∞). This can be easily done if we stress the well-known fact that the
time of collision per se is extremely short, at least of the order of T0 = 10−10 s,
even when we are dealing with very slow projectiles (e.g. thermal neutrons)
impinging on the target comprised of a big molecule4. This implies that, taking
the moment t0 (� T0) for the beginning of counting the time (the present
time), we could rightly consider the motion of particles as being experimentally
indistinguishable from the free motion, for all the time before t ≈ −T0 and after
t ≈ +T0. Hence, this emphasis on the order of magnitude of the time variable
clearly illustrates that the usage of the boundary limiting procedures t −→ ∓∞
in the mathematical formalism of the theory of scattering should not be taken
too literally. In fact, this does not mean at all that in an experiment one has to
wait an ‘infinitely long time’ to record the observables associated with the free
states of the particles. Yet the mathematical assertions about the asymptotic states
must strictly and explicitly contain the limits t → ∓∞, since this is the only
way to guarantee, in a theoretical treatment, that the total state of the system is
reduced to a certain state from all the available asymptotic states. In other words,
in a general case, it is impossible to find a finite time after which the total state
�(t) of the system could exactly coincide with the asymptotic states �i (t) or
� f (t). Our measuring instruments possess a certain minimal resolution, so that
there exists some finite time, after which the difference between �(t) and, e.g.,
�i (t) is smaller than the actual resolution power of the apparatus5. Due to the
extraordinarily short duration of a scattering, in practice all measurements are,
in fact, performed with free particles before and after the collision. Time limits

4 For many important scattering phenomena studied in, e.g., modern atomic physics experiments, the
collision time T0 is much shorter than ∼10−10 s and often of the order of ∼10−15 s.
5 Of course, this ‘comparison’ of the difference of the vector states �(t)− �i (t) and the resolution
power should be conceived only as a shortened manner of expressing ourselves while comparing the
corresponding observables.
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t → ∓∞ also have obvious spatial implications, which mean that the particles
find themselves at infinitely large inter-separating distances before and after the
scattering. However, this does not mean at all that, in an experiment, the target
really must be infinitely far from the measuring devices. Namely, here the notion
of infinity must be understood in a relative sense, by referring to a certain typical
scale. As to atomic collisions, we know that they take place in the region of the
order of the radius of the classic orbit of the electron in atomic hydrogen and
this is the Bohr radius a0 ≈ 0.5 × 10−8 cm. In such a case, for an experiment
where a detector placed at a distance which is only ≈1 cm from the target, we can
confidently claim that the measuring apparatus is situated in the asymptotic region
of scattering. As an example, we quote the already mentioned work [36], dealing
with the scattering of α-particles on gold foils. In this ingenious experiment,
which initiated the appearance of the Rutherford planetary classical model of
an atom as a predecessor of the quantum Bohr atomic model [37], the distance
from the target to the detector (scintilloscope) was only 8 cm, whereas the whole
complex comprising a source of α-particles and the fluorescent screen on which
the scintillations were seen with impact of the scattered particles, was put in a box
of dimensions 16 cm×9 cm. Hence, such distances which are entirely accessible,
i.e. readily achievable in an ordinary laboratory, do secure the essential condition
of clearly distinguishing from one another the two pure situations before and after
the collision.

Information about what is really happening in the scattering region can be
obtained experimentally only indirectly, by comparing the corresponding relevant
characteristics of the entrance and exit channel of a given reaction. In other words,
for a scattering experiment, the most relevant physical information is contained in
a certain quantity, which connects the initial and final free states of the system’s
particles. This central role in collision theory is played by the unitary scattering
operator S, which correlates the free wavefunctions before and after collision, i.e.
�i (t) and � f (t):

� f (t) = S�i (t). (1.2)

We immediately emphasize the stationary property of the S-operator, i.e. the fact
that it does not depend on time. This directly implies that the total energy of the
system is conserved. Since only the asymptotic states�i (t) and� f (t) are directly
connected with the measurable physical quantities, i.e. with the observable in the
scattering experiment, it is clear that the S-operator yields all the information
about the quantum system under study. Of course, such a statement has its
backup in the well-known quantum-mechanical postulate, which states that no
experiment could possibly offer more information than is already contained in
the total state vector �(t) of the system. From the S-operator, we obtain the
S-matrix elements, whose square of the absolute value |〈� f |S|�i 〉|2 is directly
proportional to the detectable quantities, such as the differential cross section for
the probability of the transition i −→ f from the initial (i ) to the final ( f ) state of
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the system6. Hence, relevant information about the physics of quantum scattering
systems is contained in the S-matrix, which is therefore rightly considered as
being one of the central quantities of modern physics. In the course of the
entire analysis in this work, we shall utilize the terms S-operator and S-matrix
as identical notions and, moreover, the same letter S will be employed. However,
it will be clear from the context whether we are dealing with the operator or the
matrix.

It follows from these remarks that we shall, in this work, prefer those
theoretical concepts of quantum phenomena of particle scattering which enable
quantitative acquisition of physically measurable quantities. This is a purely
pragmatic choice, which emphasizes experimental verification of physical ideas,
without which the formal theory of scattering, with its abstract and axiomatic
mathematical concept, would seem empty. However, there is only a small number
of problems in physics for which, e.g., the S-matrix can be calculated exactly.
Moreover, for all realistic situations, resorting to models is inevitable, so that
approximate solutions necessarily begin to play a central role in comparisons with
experiments. The strength of physics is, nevertheless, in approximations, which
are its very heart. However, those approximate methods which fulfil the following
conditions should be favoured:

(1) internal consistency regarding the first principles of physics,
(2) maximal or total avoidance of free parameters,
(3) systematic improvement of a given approximation, i.e. tendency to reach the

largest possible internal accuracy of a given model and
(4) agreement with reliable experimental data.

Such rigorous criteria are understandable, due to the fact that physics is an
experimental science, so that a theory acquires its full sense only if it is in accord
with the confirmed measurements. Otherwise, the measurement itself has an
intrinsic importance. Namely, when we are concerned in general with the natural
sciences and with mathematics themselves (or, more precisely, with classical
mathematical analysis), then measurements in laboratory conditions as well as
observations in nature represent one of the major sources of scientific discoveries.
During all our presentation, whenever feasible, we shall make an effort to interpret
the obtained functional connections among the physical quantities from eventual
equivalent relations recorded experimentally.

As one can now anticipate from this discussion, the main problem in
quantum scattering theory is the proper characterization of the state vector �(t)
of the total system and its time evolution from a certain given configuration
�i (t). A solution to this problem requires very careful analysis, particularly in the

6 Throughout, we shall interchangeably employ the notions ‘state vectors’ and ‘wavefunctions’, as
if they were the synonyms. For these objects, the Dirac ket symbol |�(t)〉, or the shorter �(t), will
be used, without necessarily limiting ourselves to any of the concrete representations. Also, we shall
refer to the terms ‘state’ and ‘state vector’, as if they were the same, except in situations which could
eventually cause a misunderstanding.
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case of the long-range Coulomb potential [7, 15]. The peculiarity of this unique
interaction is reflected in the fact that it practically never becomes equal to zero,
even when the distance between the colliding particles tends to infinity. Despite
this feature, however, the physical system under study must still be described by
the non-interacting state vectors which, according to the previously mentioned
definition of scattering, are certainly the only mathematical objects possessing
unambiguous physical interpretations. In order to achieve this goal properly, i.e.
for fulfilment of the physical conditions reminiscent of the collision problem, it
is necessary that the operators and state vectors are introduced into the theory in
such a manner that the following so-called Kato’s requirements are satisfied [68]:

(a) Hamiltonians are self-adjoint operators, implying that the corresponding
energy, as a proper value (eigenvalue) represents a real physical variable
(stochastic variable of the quantum system), i.e. a measurable quantity-
observable. This problem has been studied thoroughly by Kato [68],
who showed that most Hamiltonians of physical interests are self-adjoint
operators.

(b) Transition amplitudes T±
i f which describe the passage from the asymptotic

initial state �i (t) to the final configuration � f (t) of the total system are
rigorously defined mathematically and can, in principle, be calculated. These
asymptotic states �i (t) and � f (t), between which the transition i −→ f
occurs, are assumed to exist ‘a long time before’ (t −→ −∞) and ‘a long
time after’ (t −→ +∞) the collision, respectively. State vectors �+(t)
and �−(t) of the total system, which describe scattering, must necessarily
converge in the norm i.e. in the sense of so-called strong topology, to the
corresponding unperturbed states �i (t) and � f (t), in the respective limits
t −→ −∞ and t −→ +∞. This property, known as the asymptotic
convergence of scattering states, or the problem of the correct boundary
conditions, represents one of the most important characteristics of the
collision phenomenon. Without this feature, it would be impossible to define
the S-matrix.

(c) The S-matrix is unitary (SS† = S† S = 1). This means that the sum of
probabilities of finding all possible final states from any given initial state of
the examined physical system is equal to unity. In this manner, we express
the probability conservation law, which is essential for the probabilistic
interpretation of quantum scattering theory. In rigorous mathematical terms,
for the unitarity of the S-matrix, e.g. in the case of one-channel collision
problems, it is first necessary that the Møller wave operators �± : � −→
�± exist and that they have the property of completeness. This means that
�± ≡ ��± ⊂ �, where the sets ��± denote, respectively, the range, i.e.
the image region of operators�±. These Møller operators are introduced as
isometric mappings of elements �i, f from the entire Hilbert space � onto
subspaces �± of scattering states �± = �±�i, f . The existence of the
wave operators is linked to the proof of the relation ��+ = ��− = �.
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However, completeness relates to establishing the equality�+ = �− = �,
where the sets ��± are the domains, i.e. the region of definition of operators
�±, respectively, whereas � ≡ �ac is the subspace of the state vectors of
absolutely continuous part of the spectrum of Hamiltonian H . Fulfilment
of the requirement that �+ = �− = �, which is more precisely known
as asymptotic completeness, has the deepest physical meaning, since it
guarantees that we are accounting for all the possible asymptotic states of
the total colliding system. Hence, the name: asymptotic completeness. With
this principle in hand, the well-known quantum-mechanical fundamental
postulate, according to which an experiment cannot offer more information
than the theoretically predicted total scattering state �± of the whole
quantum colliding system, is fully justified. Therefore, a scattering theory
which satisfies the requirement of asymptotic completeness is called an
asymptotically complete theory. The most difficult mathematical problem
in collision theory is to prove the relation of asymptotic completeness in the
general case.

(d) The set of state vectors, which are obtained as the asymptotic limits of the
scattering states in the sense of the concept of the asymptotic convergence,
complemented with the subspace � ⊂ � of all the possible bound states
for the given potential V , is complete and this represents the content of
the requirement known as asymptotic orthogonality. This request is defined
mathematically as the twofold splitting of the whole Hilbert vector space �
into the direct sums of the type �+ ⊕ � = � = �− ⊕ �. This condition
enables every state vector ψ ∈ � to be written as the sum ψ = φ + χ of
the two mutually orthogonal vectors 〈φ|χ〉 = 0, where φ ∈ � and χ ∈ �.
Ikebe [69, 70] was the first to show that this property termed ‘asymptotic
orthogonality’ holds true for a class of short-range, quadratically integrable
potentials of the type

∫
dr |V (r)|2 < ∞, which decrease faster than 1/r as

r → ∞.

In the course of the first part of the upcoming analysis, we shall expose, in
the principal steps, the most important ideas relating to the demonstration of the
asymptotic convergence for short-range interactions. In so doing, we shall update,
in each of the steps, the definition of the notion of short-range potentials. This will
be done with the purpose of stating that the Coulomb interaction always violates
the conditions of the asymptotic convergence. We shall see, however, that the
study of short-range potentials is not only unavoidable from the methodological
point of view, but also very useful for a proper understanding of the more difficult
problems of long-range interactions, among which Coulomb scattering plays the
central role. This subject deserves a separate study. In short, with the help of
certain redefined Hamiltonians, it is possible to conveniently introduce a modified
asymptotic convergence of scattering states for the Coulomb interaction [7] in a
similar manner as for short-range potentials. This can be done by fully preserving
the previously quoted properties (a)–(d), so that they have the same meaning
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as for short-range interactions. Throughout part I of the present book, analysis
will be limited to two - p a rticle non-relativistic collision problems encompassing
the short-range potentials. This is justified from the methodological-pedagogic
standpoint, since the fundamental principles and concepts can most plausibly be
introduced on the level of one-channel scattering. The multi-channel scattering
theory will be presented in part II within a formalism which readily provides
several leading methods whose performance in critical applications will be
thoroughly examined.

In quantum mechanics, an observable � is called a constant of motion, if
it belongs to the Hermitean operator A, which does not explicitly depend upon
time (∂A/∂ t = 0) and which commutes with the total Hamiltonian H of a
given system, i.e. [H, A] ≡ H A − AH = 0. This notion is, of course, also
transferred to quantum scattering theory. However, in scattering problems, one
encounters the so-called asymptotic constant of motion. Namely, as we have
already pointed out, due to the extraordinarily short duration of the collision
event, all the measurements are, in practice, carried out with free particles,
which obey the free dynamics determined by the unperturbed Hamiltonian H0.
In other words, a measurement, which consists of two steps (preparing and
performing), develops itself in the time asymptotic scale t → ∓∞, for which
H = H0 + V reduces to H0 for the given short-range potential V . This is so
because it is certainly most probable to find the colliding particles at infinitely
large separations from each other as t → ∓∞, where their interaction V is
completely negligible due to the assumed short-range nature of the potential.
In this manner, for asymptotic times t → ∓∞, the condition [H, A] = 0
reduces to the equivalent requirement [H0, A] = 0, which defines the asymptotic
constant of motion �. We remark that the reduction of the total Hamiltonian
(H ) to the free Hamiltonian (H0) in the limits t → ∓∞ should not necessarily
be connected to a functional dependence of these operators upon time t , since
entirely the same interpretation of the asymptotic constants of motion holds true,
irrespective of whether we are dealing with a conservative physical system or not.
We recall that a conservative physical system is a system whose Hamiltonian
does not depend upon time. A characteristic empirical fact in the scattering
experiment is that the measured cross sections become independent of distance
between the interaction region and a detector, for sufficiently large separations, i.e.
provided that a measuring apparatus is situated in the spatial asymptotic region.
This fact is properly interpreted in a non-stationary theory only if the related
observables possess the limits as t → ∓∞. Hence, the subject of the theory
must be finding the asymptotic constants of motion. In experiments, the initial
information about these constants of motion is obtained by analysing the incident
beam after the removal of the target. Namely, in an arbitrary initial moment, one
first measures the probability of the distribution of the constant of motion, such
as impulse, spin, isospin, etc, as the free projectile’s characteristics without the
presence of the target. Due to the very small values of the typical time T0 of
the collision (�10−10 s), the obtained probability distributions correspond to the
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incident projectile in the remote past (t → −∞), a long time before the actual
scattering, when the target was put in its place in the origin of the laboratory
frame of reference. Such an interpretation is justified even if the projectile is
freed from its generating source, e.g. an accelerator, immediately before the
collision takes place, since time T0 is extremely small. Analogous to this and
according to a symmetric reasoning, due to the shortness of the collision time
T0, every final time t (� T0), chosen as the beginning of the measurement of the
observable, associated with the outgoing stationary scattering state, can rightly
be taken for the distant future (t → +∞). Hence, if the final information (after
collision) about the distribution of momenta and other internal ‘coordinates’ yield
the same result in the statistical sense, as in the initial configuration, we shall
assert that we are dealing with the asymptotic constant of motion, which is the
same for the remote past and the distant future (with the relative meaning of
these notions, due to the value of collision time T0). Nevertheless, in scattering
theory, one must strictly apply the limits t → ∓∞, because there is no other
way to ensure that we have obtained (for a certain finite time t , no matter
how large), the asymptotic stationary state vectors with the outgoing/incoming
spherical waves, respectively. Then it is clear from the quoted arguments how
great the importance of establishing the symmetry between the past and future in
scattering problems is, since through that bridge a meaningful correspondence is
accomplished between the measured and computed quantities. Such a symmetry
is not normally present in realistic scattering experiments. However, it could
formally be established [71], if under the notion of measurement we understand
a complex process, which consists of two principal phases, such as (1) the
preparation of the incident beam (t → −∞) and (2) the detection of the scattered
particles (t → +∞). The first step comprises collimating the incident beam,
i.e. a directed flux of particles; passing it through the energy analyser; and then
determining of the quantities defining its quantum state, etc. Naturally, it is
understood that this first phase also completes the required information about the
quantum state of the target. Let us point out here that what is usually considered
as the main result of the scattering experiment is, in fact, not an answer to the
otherwise standard quantum mechanical question: if we are given a state, say
|�i (t0)〉, of a certain physical system in the initial time t0, what is the probability
that such a system be found in a subsequent time t in a different state |� f (t)〉?
A modification of such a question, relevant to the scattering experiment, is: for a
given initial state |�i (t0)〉 of the system, established when the target was removed
at an infinitely large distance from the projectile source, what is the probability
of the appearance of the system in state |� f (t)〉 as t → +∞ after returning the
target back to its place?

Asymptotic convergence of scattering states is the most essential
characteristic of the collision problem. This sole characteristic makes the
collision phenomenon substantially different from the problem of finding bound
states of the examined physical system for certain given interactions among
the constituents. Far reaching are the implications of such a concept from the
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physical point of view, since it critically determines the main goal of the theory:
obtaining consistent predictions for experimentally measurable quantities, such
as the differential or total cross sections, which are directly connected with the
probability of the transition of the system from the initial to final state, i.e. with
the S-matrix elements |〈� f | S|�  i 〉|2. In chapter 9, a proof will be given showing
that this key statement indeed stems from the asymptotic boundary conditions.

Being acquainted with the quoted major features of quantum scattering
systems, one is in a better position to identify the fundamental research themes
in scattering theory relatively easily. These themes will receive full attention in
the forthcoming analysis. Here we primarily have in mind the following central
problems:

(1) the existence and uniqueness of scattering states,
(2) asymptotic completeness,
(3) asymptotic orthogonality,
(4) determination of the S-matrix and
(5) the convergence properties of the Born–Neumann perturbation expansions.
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Chapter 2

Time evolution of quantum systems

In regard to the discussion from chapter 1, as well as for a better and more
complete understanding of scattering theory, it is necessary to summarize briefly
several of the most relevant parts of non-relativistic quantum mechanics. Here we
primarily have in mind:

(i) dynamic states,
(ii) vector state space,
(iii) probability and
(iv) equations of evolution of physical systems.

In non-relativistic quantum mechanics, there exist several different ways of
describing the time dependence of dynamics of physical systems. Of particular
importance for quantum scattering theory are the Schrödinger, Heisenberg and
Dirac pictures1. The latter is also known as the interaction picture.

In the Schrödinger picture, state vectors (which describe certain dynamic
states of the considered physical system) depend upon time. Here the operators
are, however, time independent, except when they are intrinsically given as some
explicit functions of time t . This picture is most efficiently interpreted in the
framework of wave formalism and the time dependence of the state vectors is
described by the non-stationary Schrödinger equation.

In the Heisenberg picture, the situation is diametrically opposite to the
preceding case, since here all the state vectors are constant in time. Now the
time dependence is carried through by the operators, which are associated with
the dynamic observables of the system. Such operators satisfy the Heisenberg
equation of operator motion, which can formally be obtained from the appropriate
expressions of classical mechanics via the correspondence principle. This can
be accomplished by introducing the concept of operators and subsequently
substituting the classical Poisson brackets by the commutators. Another

1 As the equivalent terms for the Schrödinger, Heisenberg or Dirac ‘picture’, one could use the notion
of representation. We shall, however, adhere to the term ‘picture’, whereas the word representation
will be reserved for, e.g., the coordinate, impulse, energy representation and the like.

Copyright 2004 IOP Publishing Ltd



34 Time evolution of quantum systems

equivalent way of attaining the same goal is linked with the use of the Ehrenfest
theorem [72]. Therefore, the manner of reasoning within the Heisenberg picture
is the closest to classical mechanics. The Heisenberg formalism has another
advantage in relation to the Schrödinger picture, when we are dealing with
quantum field theory, namely the spatial and time dependence of the field
operators are treated on the same footing.

The interaction picture is a combination of the former two formalisms,
because it enables state vectors and operators of the associated dynamic
observables to be time dependent. Then it is logical that the time development
of state vectors and operators is described by the Schrödinger and Heisenberg
equations, respectively. The interaction picture certainly represents a natural way
of describing single-channel collisions, i.e. potential scatterings [25]. Moreover,
this picture can conveniently be extended to multi-channel collisions (processes,
reactions, etc). It should also be pointed out that the interaction picture is closely
related to Dirac’s time-dependent method of the variation of constants. This is
why the interaction picture is also known as the Dirac picture2. The interaction
picture is especially important in the formulation of the relativistic covariant
quantum field theory, which can best be seen in the works of Tomonaga [73]
and Schwinger [74].

It is important, however, to emphasize that all three pictures are mutually
interrelated by means of certain unitary transformations, which leave the
probability unaltered. This means that the three formalisms yield the same
physical predictions about a system under study. Therefore, we are dealing with
rigorously equivalent pictures. From here, a meaningful question arises as to
whether or not it is useful to present all three pictures? This would not certainly
be recommended if we were applying all the pictures to the same phenomena. The
reason for an analysis of the three pictures is, however, more subtle. Namely, one
or other picture appears to be more adapted to one or other domain of physical
phenomena and, therefore, the question of the choice of the most appropriate
picture becomes crucial. When we are dealing with concrete computations, the
Schrödinger picture is extremely useful. Namely, in most physical situations, one
is interested in searching for the probability that a system undergoes a transition
from a given initial state �(t0) at time t0 to another state described by vector
�(t) at a later instant t . This transition probability is possible to obtain by
solving the Schrödinger time-dependent equation for the state vector �(t). For
establishing a connection between quantum mechanical formalisms and classical
mechanics, as well as for investigating relativistic solutions, the Heisenberg
picture appears to be the most convenient. This picture of quantum mechanics
is particularly adapted for the examination of free fields. There are two essential
reasons supporting this assertion. First, with the help of Fourier transformations,
dynamic differential linear equations can be solved exactly. Second, although

2 The Dirac picture, as a synonym for the interaction picture, should not be confused with the Dirac
transformation method, better known as the so-called bra and ket state vector formalism, which will
otherwise be fully explored throughout.

Copyright 2004 IOP Publishing Ltd



Time evolution of quantum systems 35

there is a time–spatial dependence of the thus obtained solutions, the physical
interpretation of quantum scattering theory relies upon the stationary character of
the collision event. This means that the total energy and impulse are the quantities
which are independent of the time and spatial coordinates. Furthermore, the
eigenvalues and eigenfunctions of the associated operators of energy and impulse
can be easily found. Introduction of the spin into the formalism would not alter
the chief meaning of these introductory remarks, because now the three dynamic
observables, such as coordinate (X), impulse (P) and spin (S) operators do not
depend upon time.

The customary wave-mechanical version of quantum theory is obtained if
we choose, e.g., in the framework of the Schrödinger picture to work with
the coordinate representation (configuration space). In such a case, the action
of the coordinate operator X of one particle is reduced to multiplication by
the corresponding variable x, i.e. X is a multiplicative operator. However,
impulse operator P of the same particle is proportional to the directed derivative
(gradient), so that we are speaking about a differential operator: P = −i∇x .
Hence, Xψ(x, t) = xψ(x, t) and Pψ(x, t) = −i∇xψ(x, t). Both basic
operators X and P are otherwise obviously time independent. In the configuration
space, the time-dependent potential V (t) will be represented by an operator,
i.e. an operator function V (t, X), with an explicit dependence upon time t .
Since, however, in the coordinate representation, the quantity X represents the
multiplicative operator, we shall adhere to a simpler notation, such as V (t, x),
instead of V (t, X). Analogous to this, in the impulse representation, the
coordinate operator becomes a gradient X = i∇ p, whereas this time, the quantity
P plays the role of a multiplicative operator, i.e. its action is equal to the
multiplication by variable p, so that again we are encountering two stationary
operators X and P . As to the time-dependent potential V (t), it is associated with
operator V (t, i∇ p) in the impulse space.

In these remarks, as well as throughout, under the notion observable, we
shall understand a physical quantity which can be measured in an experiment,
with a real number (or, more precisely, a rational number) as an outcome. Possible
results of measurements on a quantum system are called eigenvalues. To each
of the latter values corresponds one or more eigenstates. If one eigenvalue is
associated with only one eigenstate, we are then talking about the so-called non-
degenerate state. In such a case, even the result of the measurement is called
a non-degenerate finding. An eigenstate is degenerate when more than one
eigenstate correspond to a single eigenvalue. For example, a hydrogen atom
possesses a degenerate binding energy En = −1/(2n2), as an eigenvalue of
the Hamilton operator H = −∇2

r /(2µ) − 1/r , where µ is the reduced mass
of the electron and proton. This energy is the same for all the eigenstates
ψn�m(r), characterized by the principal quantum number n, irrespective of the
corresponding values of the orbital (�) and magnetic (m) quantum numbers.
Starting from these eigenvalues and eigenstates, one can, for any observable �,
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construct a corresponding linear Hermitean operator A, i.e.

�←→ A �̂ ≡ A. (2.1)

This operator will then mathematically describe a given observable, analogous
to the description of a physical system by a state vector. Since we are dealing
here with a symmetric correspondence (single-valued transformations in both
directions)—observable (�) ←→ operator (A)—we shall in the future employ
the linguistic dualism ‘observable-operator’, whenever there is no possibility of
confusion. In practice, however, one most frequently considers, for a given
observable �, a certain function f (�), where f is any mapping. In such a
case, we shall say that quantity f (�) is measured, if one measures� and applies
the transformation f to the result of the measurement. Therefore, an operator
function f (A)will have the same eigenstates as the ones belonging to the operator
A, with the corresponding eigenvalues f (α), where α is the eigenvalue of A:

A|ψ〉 = α|ψ〉 therefore f (A)|ψ〉 = f (α)|ψ〉. (2.2)

For example, if we take a power function of the type f (A) = An , where n belongs
to the set of natural numbers �, then operator An has the same effect upon the
given eigenstate |ψm〉 as if operator A had been applied n times onto the same
state: An|ψm〉 = αn

m |ψm〉. This implies:

�̂n |ψm〉 = (�̂)n |ψm〉 = An|ψm〉 = αn
m |ψm〉, (2.3)

where convention (2.1) was utilized. Since the set of eigenfunctions {|ψm〉} is
complete, relation (2.3) will hold true for an arbitrary element ψm of the set, so
that

�̂n = (�̂)n = An. (2.4)

In a more general case of a polynomial function (finite number of power
functions), we shall have

�f (�)|ψm〉 = f̂ (�)|ψm〉 = f (A)|ψm〉 = f (αm)|ψm〉. (2.5)

From this it follows that

�f (�) = f̂ (�) = f (A) (2.6)

in agreement with the general expression (2.2). Namely, in a case which is
more general than a power operator, when f is not a polynomial but an arbitrary
mapping, relations (2.2) and (2.6) serve for definition of the operator function
f (A). For two observables� and �, we say that they are compatible if and only
if their associated operators A and B commute with each other: [A, B] = 0. In
the experiment, compatibility of observables� and � means that measurement of
one variable does not affect measurement of the other observable. We can take
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notice of this fact only if we perform at least three measurements: first we measure
�, then � and again �. If this second measurement of � yields the same value
(in the statistical sense) which was obtained for � in the first measurement, then
observables� and� will be mutually compatible. Observables and the associated
operators are often called q-numbers, after the suggestion by Dirac, who wanted
to emphasize that their algebra is different from the one characteristic for elements
of set � of complex numbers, which are usually termed as the c-numbers. Thus,
for example, in contrast to c-numbers, the product of the two q-numbers can
depend on the order in which they are multiplied. In the general case, q-numbers
are non-commutative with respect to multiplication, whereas regarding the same
operation, the c-numbers are always commutative. With the exception of the
multiplication operation, the q- and c-numbers otherwise satisfy the same rules.
We also point out that Dirac’s q-algebra in quantum mechanics is equivalent to
the Born–Heisenberg–Jordan matrix algebra [75].

Copyright 2004 IOP Publishing Ltd



Chapter 3

The Schrödinger picture

Whenever we are talking about the problems of time evolution of physical
systems, it is unavoidable to encounter the question of causality. On the level
of quantum phenomena, there is no precise possibility of separating an examined
physical system from a measuring instrument. This fact lends support to the
assertion that the evolution of a quantum system ceases to be rigorously causal
from the moment when the system is subjected to investigation. Here under
the notion of measurement, we understand a selective, complex procedure of
‘preparing the conditions of the experiment and its effective performance’, with
the purpose of obtaining the desired results. Stated more precisely, measurement
(classical or quantal) means the following: a given apparatus, i.e. an instrument,
is made to interact with the examined object in such a way that certain features
of that object are reflected in the properties of the measuring device. This
procedure should give certain results in the form of numbers, which are called
the measured findings or experimental data. A quantum measurement is special
in that it always causes a jump in the system under study to an eigenstate of
the considered variable. Consequently, the result of measurement is given by an
eigenvalue which corresponds to that eigenstate. Information about the space1

will be acquired by bringing the measuring apparatus into the given field2. Such
an act is, of course, assumed not to alter the examined space. When the latter
condition is not fulfilled, the problem becomes complex and one may become
caught in a vicious circle. Namely, from a physical point of view, gnoseological
perceptions about a field can be obtained solely via an experimental apparatus,
which, however, alters the very object of the investigation. The result of such a
change can, in principle, be evaluated but the importance of the phenomena by far
exceeds the possibility of its quantitative assessment. The fact that, by repeating
1 Here by the term space we understand the word ‘space’ with its original semantic significance but
not a mathematically determined notion of space.
2 A physical field is obtained when a given physical feature is attributed to each point of a space in
which the process under study is developing. For example, a magnetic field which appears in the
space around a magnet is introduced by associating the magnetic induction B to the points of the
surrounding space.
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an experiment immediately after the first measurement and observing that the
considered system is no longer in the same state, possesses an extraordinary value
in itself. Such measurements are known as experiments of the second kind. As
an example, we mention here measurements of the momentum of a particle by
observing its collision with a certain known mass or measurements in which one
would determine the polarization of a given photon flux, by observing its passage
through a polaroid filter. In contrast to this, there is the usual class of experiments
of the first kind, where the result in one measurement coincides with certain
findings from the experiment, repeated immediately after the first observation3.
The complexity of the experiment of the second kind arises from the fact that
it is no longer clear what can be attributed to the nature of the studied object
and what emerges from the interaction between the apparatus and the observed
system. Of course, here it would be possible to go one step further and consider
an examination of the system not only through the previously mentioned notion
of measurement but also the path from the human brain centres could be taken
as a portion of the measuring instrument. Nevertheless, in order not to enter
into the particular discipline known as the theory of measurement and to avoid
altogether the area of investigations which are outside of physics, the notion
of the detector will be understood as a certain intermediary object (apparatus)
from the subject of the measurement to the human senses. Possible interactions
between the measuring and measured objects will be neglected, so that a given
quantum system, which is free from any disturbances, e.g. measurements or other
perturbations, will evolve in a rigorously predictable manner. In such a case, the
time-dependent Schrödinger equation:

i∂t�(t) = H�(t) ∂t ≡ ∂/∂ t (3.1)

which is postulated in the theory, completes the general scheme of description
of quantum phenomena4. This determinism means that the state vector �(t) will
be known for all times t, if the state of the physical system was specified at any
former, fixed moment t0. This causality is a direct consequence of the fact that
the Schrödinger law (3.1) represents a differential equation of the first order with
respect to the time variable t . The basic equation (3.1) of quantum mechanics
offers information about the time evolution of a physical system, whose quantum
state is described by the state vector �(t), for the given Hamilton operator H .
The quantity H is a self-adjoint linear operator of the total energy E , which plays
the role of the dynamic variable. Globally speaking, such a quantum-mechanical
scheme of description of physical phenomena can be summarized by introducing
the so-called Schrödinger picture.
3 Let � be a given experiment. We assume that in measurement � of a variable, one obtains a result
α. Suppose that immediately after the first measurement, the examined system finds itself in one and
only one, i.e. non-degenerate eigenstate, corresponding to value α. We shall then consider � as being
an experiment of the first kind. Such a measurement does not disturb the observed object.
4 In the future, whenever an explicit dependency upon the spatial coordinate, impulse or any other
variable is not shown in a solution of given differential equation, the partial time derivative ∂/∂t ≡ ∂t
will be substituted by the total derivative d/dt ≡ dt .
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Let us assume now that, at an initial moment t0, we are given a state of
the system described by the wavefunction |�(t0)〉. Here, while investigating the
dynamic properties of a given system, one is immediately faced with the central
question: how to find the state |�(t)〉 of the system at another later moment t?
The entire time evolution of the studied system is contained in the manner in
which one is passing from the initial state |�(t0)〉 to some later state |�(t)〉.
One of the fundamental postulates of quantum mechanics is that a state of the
investigated physical system at time t is completely determined by knowing the
state vector �(t) in that moment. Here under the notion state vector, as an
element of a complex Hilbert vector space�,we do not imply any of the possible
concrete representations. Namely, all the assertions which will be put forward
will hold true in any realization of quantum mechanics, such as coordinate or
momentum representation, etc5. In the first place we postulate that the principle
of superposition of states is conserved in time. Therefore, the connection between
|�(t)〉 and |�(t0)〉 will be linear and defined by a certain linear operator. Such
an operator must also be unitary, since the probability must be conserved. A
given operator A is unitary, if and only if A† A = AA† = 1. Hence, if A is
unitary, its adjoint operator A† is equal to the inverse operator A−1. For two fixed
moments t and t0, the states |�(t0)〉 and |�(t)〉 are interrelated through a well-
defined correspondence in both directions (one-to-one correspondence), i.e. there
exists the determinism

|�(t)〉 = U(t, t0)|�(t0)〉. (3.2)

This correspondence is made possible through the so-called evolution operator
U(t, t0), for a given physical system6. Here the one-to-one correspondence
implies that the inverse operator U−1(t, t0) exists and is well defined. Substituting
expression (3.2) into (3.1), we find that the operator U satisfies the following
operator differential equation:

i∂t U(t, t0) = HU(t, t0). (3.3a)

In order to solve this equation, it is necessary to impose the initial conditions. By
imposing these conditions upon the whole class of infinitely numerous possible
solutions, we actually select those solutions which properly describe the physical
system under consideration. The boundary condition for (3.3a) will be settled by
observing that the state |�(t)〉 becomes identical to |�(t0)〉, for t = t0. This
means, according to (3.2), that U(t, t0) is reduced to the unity operator 1̂, in the
initial moment t0:

U(t0, t0) = 1, (3.3b)
5 Here the term coordinate representation of the state �(t, r), should be understood in the sense of a
‘realization’ of the wavefunction |�(t)〉 in the Euclid space through the usual system of the three real
coordinate axis : �(t, r) = 〈r|�(t)〉.
6 Note that classical mechanics could also be founded in the operator formalism but the classical
evolution operator, obtained through the equation of motion of classical physics, would not be linear.
Such a classical mechanics in the operator formalism would then be more complicated than quantum
mechanics and, therefore, useless from the practical point of view.
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where it is understood7 that the scalar unity is multiplied by 1̂. Evolution operator
U(t, t0) is of immense importance for the theory, since every physical law of time
development of a physical system is expressed through this operator. By applying
the definition (3.2) twice in succession, it follows that

U(t, t0) = U(t, t ′)U(t ′, t0) (3.3c)

U−1(t, t0) = U†(t, t0) = U(t0, t) (3.3d)

from which one can see that the operator U possesses the so-called group
property. Conservation of probability requires that

〈�(t)|�(t)〉 = 〈�(t0)|�(t0)〉. (3.4a)

If in this equation, we insert (3.2), it will be noted that

〈�(t)|�(t)〉 = 〈�(t0)|U†(t, t0)U(t, t0)|�(t0)〉 (3.4b)

from which it follows that

U†(t, t0)U(t, t0) = 1. (3.4c)

However, since the operator U−1(t, t0) exists, we have that |�(t0)〉 =
U−1(t, t0)|�(t)〉 = U †(t, t0)|�(t)〉, so that substituting the vector |�(t0)〉 into
(3.2) yields

〈�(t0)|�(t0)〉 = 〈�(t)|U(t, t0)U
†(t, t0)|�(t)〉 (3.4d)

so that
U(t, t0)U

†(t, t0) = 1. (3.4e)

Hence, from equations (3.4c) and (3.4e), we conclude that the operator U(t, t0)
is unitary, i.e. U†(t, t0)U(t, t0) = U(t, t0)U†(t, t0) = 1. In order to comply with
the request about the stationarity of probability with respect to t , it is sufficient
and necessary that the norm of the vector |�(t)〉 remains constant in time. For
this to be true, we only need H to be a Hermitean operator (H † = H ). We
emphasize that the Hermitean character of the operator H implies the unitarity
of U, namely the probability conservation. We can readily convince ourselves
of the validity of this statement by multiplying the adjoint Schrödinger equation
−i∂t�

∗(t) = �∗(t)H , from the left by �(t) and subtracting the obtained
expression from i�∗(t)∂t�(t) = �∗(t)H�(t), which gives

i∂t {�∗(t)�(t)} = 0 (3.5a)

and, therefore,

�∗(t)�(t) ≡ |�(t)|2 = constant ∀t ∈ � (QED). (3.5b)
7 In this study we shall adhere to the general convention, according to which the product of the scalar
λ with the zero operator (̂0) and with the unity operator (̂1) will be represented simply as 0̂λ ≡ 0 and
1̂λ ≡ λ, except when stated otherwise. Thus, e.g., the operator (z · 1̂ − H )−1 will be written in a
shortened notation as: (z − H )−1, where z is a complex number.
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Within the relation which exists between the operators U and H , it is illustrative
to analyse the change in operator U caused after an arbitrarily small amount of
time δt has elapsed. In such a case, the operator equation (3.3a) yields

i[U(t0 + δt, t0)− U(t0, t0)] = HU(t0 + δt, t0)δt . (3.6)

Using the boundary condition (3.3b), then developing the right-hand side (rhs) of
equation (3.6) in a power series and retaining only the first-order terms in δt , we
arrive at

U(t0 + δt, t0) � 1 − iH δt . (3.7)

Consistently ignoring every further term of the order of or less than (δt)2, it is
easily seen from (3.7) that, if H is Hermitean, then U must be a unitary operator
and vice versa. Moreover, it is observed that H is the generator of an infinitesimal
unitary transformation, described by the evolution operator U(t0 + δt, t0).

If the initial state of the examined system is experimentally prepared, its
final state after the measurement will not be uniquely defined, i.e. we shall have
the whole spectrum or a distribution of the results of any experiment performed
on the system at any given moment t . In other words, we will not know in which
state the system will be found, once the given physical process has taken place.
Instead, we shall only know with which probability the system will be in one of
the states from the available distribution of states. Let us denote by α a non-
degenerate result of measuring a certain observable� for a given system. Let �α

be a normalized state vector, which describes the eigenstate associated with the
value α. When the system is in the state � , we search for the probability W that
by measuring the same observable�, we experimentally obtain the value α. This
probability W is given by the expression

W = |〈�α|�(t)〉|2 = |〈�α|U(t, t0)|�(t0)〉|2 (3.8)

where the wavefunction � is normalized to unity. This way of describing
quantum phenomena bears the name the Schrödinger picture. From the pragmatic
standpoint, it is most important to find an explicit expression for the operator U,
for a given time-independent Hamiltonian H (conservative systems). There are
several means of arriving at the same result. From the theory of linear differential
equations, it is well known that an equation with the constant coefficients
immediately provides a solution of equation (3.3a) in the operator form:

U(t, t0) = e−iH(t−t0). (3.9)

Thus, the state vector |�(t)〉 from equation (3.2) becomes

|�(t)〉 = e−iH(t−t0)|�(t0)〉. (3.10)

The action of the exponential operator is given in the standard way through the
development in a power series:

e−iH(t−t0) =
∞∑

n=0

(t − t0)n

n! (−iH )n (3.11)
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where H does not depend upon time t and all the power operators H n are
defined in the sense of equations (2.3) and (2.4). That (3.10) is indeed a solution
of equation (3.1), can readily be proven, e.g. by developing the state vector
exp{−iH (t − t0)}|�(t0)〉 in a power series and afterwards differentiating (3.10)
with respect to t , term by term. This is justified due to the uniform convergence
of the power series of the exponential function (3.11).

However, it is also possible to carry out an inverse procedure, through the
development of the state vector |�(t)〉 at another arbitrary moment t , in the Taylor
series around the point t0:

|�(t)〉 = |�(t0)〉 + t − t0
1! {∂t |�(t)〉}t=t0 +

(t − t0)2

2! {∂2
t |�(t)〉}t=t0 + · · ·

=
∞∑

n=0

(t − t0)n

n! {∂n
t |�(t)〉}t=t0 (3.12a)

where all the derivatives are immediately found from the Schrödinger
equation (3.1) in the form

{∂n
t |�(t)〉}t=t0 = (−iH )n|�(t0)〉 (n ∈ �). (3.12b)

Thus, the obtained Taylor expansion (3.12a) is, in fact, the development of the
exponential function, so that it follows at once that |�(t)〉 = exp{−iH (t −
t0)}|�(t0)〉, which coincides with the already recorded expression (3.10).

All of the discussed methods for solving equation (3.1) are based upon the
assumption that the Hamiltonian H is a stationary operator. In the case when H
explicitly depends upon time, through a predetermined form V = V (t, r) of the
interaction potential, it is necessary to apply some other alternative methods. We
mention here only one of them, known to be of a great importance for scattering
theory. It is based upon the following self-evident formula:∫ t

t0
dτ

d

dτ
f (τ ) = f (t)− f (t0) (3.13a)

where the function f (τ ) possesses the first derivative in τ for ∀τ ∈ [t, t0].
Rewriting the identity (3.13a) in the form

f (t) = f (t0)+
∫ t

t0
dτ

d

dτ
f (τ ) (3.13b)

we recognize the so-called integral equation for f (t). Let now the first derivative
with respect to f (t) be given by the product h(t) f (t), i.e.

d

dt
f (t) = h(t) f (t) (3.13c)

where h(t) is a certain given function of t . Then equation (3.13b) is reduced to

f (t) = f (t0)+
∫ t

t0
dτ h(τ ) f (τ ) (3.13d)
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where it is understood that h(τ ) is a continuous function of τ for ∀τ ∈ [t, t0].
An equation in which the unknown (sought) function f also appears as a part of
the integrand, as is the case in (3.13d), is called an integral equation. There is an
essential difference between general differential and integral equations. It consists
of the fact that differential equations must always be explicitly accompanied by
the boundary conditions for the sought solution, whereas the integral equations
already implicitly contain the boundary conditions. In the case of (3.13d), this
is obvious from the separated homogeneous term f (t0). In fact, the integral
equation (3.13d) does not provide a direct solution for f (t) in the strict sense
of the word but rather we are talking here merely about a transformed, purely
formal expression for the differential equation (3.13c), because the unknown
function f (t) also appears in the ‘solution’ on the rhs of equation (3.13d), through
the part of the integrand f (τ ). However, the formal expression (3.13d) can be
of a considerable practical importance if the rhs of equation (3.13d) is iterated
by the method of successive substitutions, which will be illustrated in several
parts of this book. Otherwise, integral equations are extraordinarily useful in
scattering theory, whenever it is necessary to arrive at certain qualitative solutions,
which simultaneously carry a valuable estimate about possible errors of the
computation. Analogous remarks also hold true for operators, so that in our case
the concretization of equation (3.13b) reads as

U(t, t0) = U(t0, t0)+
∫ t

t0
dτ

d

dτ
U(τ, t0). (3.14a)

However, we have from (3.3a) that dtU(t, t0) is identical to operator−iHU(t, t0),
so that

U(t, t0) = 1 − i
∫ t

t0
dτ HU(τ, t0) (3.14b)

where we have employed the boundary condition (3.3b). In this integral equation
for U(t, t0), operator H can (but need not necessarily) be dependent on time. If
H is a stationary operator, then from the integral equation (3.14b), by the method
of successive substitutions, one easily finds the expression (3.9), which we have
previously obtained in a direct way. One of the approximate procedures of solving
equation (3.14b) is the iterative method of successive substitutions, which consists
of using the unity operator U(t0, t0) in the integrand in (3.14b) instead of U(τ, t0),
as the first approximation. The result thus obtained and termed U (1)(t, t0) is
afterwards substituted in place of U(τ, t0) in the rhs of equation (3.14b), etc.
In this manner, we generate an infinite series of successive approximations
{U (0)(t, t0),U (1)(t, t0), . . .} for U(t, t0), where U (0)(t, t0) ≡ 1. Such a procedure
will be illustrated later in more detail in the interaction (Dirac) picture of quantum
mechanics, where H , just like every other operator, by definition, depends upon
time. We emphasize again that the entire time dependence in the Schrödinger
picture is given through the time dependence of the state vectors, whereas the
operators are stationary.
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Chapter 4

The Heisenberg picture

We can arrive at the Heisenberg picture of quantum mechanics by formally
accomplishing a time-dependent transformation of state vectors and operators of
the Schrödinger picture. By so doing, however, the transformed quantities must
have the same physical meaning as the preceding ones from which we started.
The original Schrödinger eigenstate vector |�S(t)〉 will now be transformed into
a new one, the so-called Heisenberg state vector |�H(t)〉. We shall require from
the assumed transformation that the new operator AH in the Heisenberg picture
possesses the same spectrum of the eigenvalues as its counterpart AS from the
Schrödinger picture. In addition to that, we shall ask that the algebraic relations,
the scalar product and the commutation relations remain invariant with respect
to the transformation from one picture to the other. All of these requests are
not imposed ad hoc but rather stem naturally from the knowledge that these
state vectors and operators cannot be directly measured in an experiment. As
an illustration, let us assume that the operator A of the observable � has the
spectrum {αm} of the eigenvalues associated with the corresponding eigenstate
vectors {|ψm〉}. In other words, we suppose that the eigenvalue problem A|ψn〉 =
αn |ψn〉 is solved. If, before beginning the measurement of the observable �,
the studied system was described by the state vector |ψ〉 with unit norm, the
probability of finding the value αm will be given by the expression |〈ψm |ψ〉|2.
Since the probability, which is derived from the scalar product, represents the
most fundamental quantity of quantum mechanics, it is clear that the probabilistic
interpretation of this branch of physics must be thoroughly preserved. In
other words, any new picture of quantum mechanics will be acceptable, if the
Schrödinger state vectors and operators are subjected to a transformation, which
does not alter: (a) the spectrum of the eigenvalues of the operators and (b) the
scalar product of an arbitrary state vector with the eigenstate vectors. These two
conditions are easily fulfilled by means of the unitary transformations. We recall
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here that a unitary operator represents an isomorph mapping1 of a certain unitary
vector space onto itself. Since the physical quantities measured in the experiment
are, in fact, a measure of the scalar product, as implied by the definition of the
probability W through the scalar product in (3.8), it is clear that the predictions
based upon the new, Heisenberg picture must be identical to those obtained in
the Schrödinger picture. The following concise reasoning will yield a formal
expression associated with these assertions. Let us assume that we are given the
operator A and let us consider two elements of the Hilbert space |ψ〉, |φ〉 ∈ � for
which the following relations are valid:

A|ψ〉 = |φ〉 (4.1)

where ψ ∈ �A and φ ∈ �A . Here �A and �A are the domain of the definition
(or briefly domain) and the range of the images (or briefly range) of the operator
A, respectively. Let us further introduce a unitary operator U which associates
the state vector |ψ ′〉 with each particular vector |ψ〉, i.e.

U |ψ〉 = |ψ ′〉. (4.2a)

Unitarity of the operator U guarantees the existence of the one-to-one
correspondence |ψ〉 ←→ |ψ ′〉, which means that there also exists the inverse
operator U−1 = U†, so that

〈ψ ′| = 〈ψ|U†. (4.2b)

Relations analogous to the expressions (4.2a) and (4.2b) can be established also
for the vectors |φ〉 and 〈φ′|, implying that

U |φ〉 = |φ′〉 (4.2c)

〈φ′| = 〈φ|U†. (4.2d)

Next we take another operator A′, for which there exits a mapping similar to
equation (4.1), namely

A′|ψ ′〉 = |φ′〉. (4.3)

Since, according to the assumptions (4.1) and (4.2a), the vectors |φ〉 and |ψ ′〉
respectively coincide with A|ψ〉 and U |ψ〉, it follows that the equality (4.3) can
be rewritten in the form

A′U |ψ〉 = U |φ〉 = U A|ψ〉. (4.4a)

Due to the fact that the vector |ψ〉 is an arbitrary element from the Hilbert space
�, we shall have

A′U = U A. (4.4b)

1 The mapping f between the two vector spaces � and �′, symbolized as f : � −→ �′ is an
isomorph transform if we have that: (a) f is a one-to-one correspondence and (b) f (λx) = λ f (x),
f (x + y) = f (x)+ f (y), ∀x ∈ �, ∀y ∈ �′, ∀λ ∈ � .

Copyright 2004 IOP Publishing Ltd



The Heisenberg picture 47

Multiplying this equality from the left or the right by U−1, we will obtain the
so-called similarity relations:

A = U−1 A′U = U† A′U (4.4c)

A′ = U AU−1 = U AU† (4.4d)

because the operator U is unitary:

UU† = 1 = U†U. (4.5)

In this derivation, the primed quantities |ψ ′〉 and A′ relate to the new picture,
whereas the corresponding unprimed ones |ψ〉 and A are linked to the picture
from which we have started. The role of the similarity relation between the
operators A and A′ of the two pictures is essential, especially when comparing
the two respective eigenvalue problems:

A|ψm〉 = αm |ψm〉 A′|ψ ′
m〉 = α′m |ψ ′

m〉. (4.6a)

Hence, using (4.2a) and (4.4c), followed by the substitutions |ψ〉 ≡ |ψm〉 and
|ψ ′〉 ≡ |ψ ′

m〉 in (4.1) and (4.3), respectively, we find from (4.6a) that

αm |ψm〉 = A|ψm〉 = U† A′U |ψm〉 = U† A′|ψ ′
m〉 = U†α′m |ψ ′

m〉 = α′m U†|ψ ′
m〉

αm |ψm〉 = α′m |ψm〉 (4.6b)

which gives2

α′m = αm . (4.6c)

In other words, the spectrum of the eigenvalues remains invariant to the
transformation from one picture to the other, in accordance with the previous
condition (a). The second condition (b), which requires that the probability
amplitude is conserved while changing the picture, is also satisfied, namely

〈ψ ′
m |� ′〉 = 〈ψm |U†|� ′〉 = 〈ψm |U†U |�〉 = 〈ψm |�〉 (QED) (4.7)

where we have utilized the unitarity relation (4.5), as well as equations (4.2a) and
(4.2b) for |ψ〉 ≡ |�〉 and |ψ ′〉 ≡ |� ′〉 or, equivalently, for |ψ〉 ≡ |ψm〉 and
|ψ ′〉 ≡ |ψ ′

m〉.
In the preceding demonstration, the unitary operator U was not specified,

by which we wanted to stress that, in fact, there are infinitely many choices of
different operators U , yielding infinitely many equivalent pictures of quantum
mechanics. Thus, e.g., the Heisenberg picture is obtained from that of
Schrödinger, by making the following choice of the operator U :

U ≡ U†
S(t, t0) = US(t0, t). (4.8)

2 Here we have employed the relation U†|� ′〉 = |�〉, which is obtained by multiplying both sides of
the equation U |�〉 = |� ′〉 from the left by U†, and using the unitarity U†U = 1.
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According to expression (4.2a), the vector state |�H〉 in the Heisenberg picture is
obtained from its counterpart |�S〉 in the Schrödinger picture, with the help of the
relation

|�H〉 = U†
S (t, t0)|�S(t)〉. (4.9a)

However, the time evolution of the state |�S(t)〉 develops in the Schrödinger
picture according to the prescription |�S(t)〉 = US(t, t0)|�S(t0)〉. The existence
of the inverse operator U−1

S (t, t0) = U†
S (t, t0) guarantees that each state vector

|�S(t0)〉 is related to |�S(t)〉 via

|�S(t0)〉 = U†
S (t, t0)|�S(t)〉. (4.9b)

The rhs of equations (4.9a) and (4.9b) now coincide, implying that this must also
occur in the corresponding left-hand side (lhs) of the same equations. This means
that the state vectors in the Heisenberg picture are constant in time, i.e. fixed for
every moment t:

|�H〉 = |�S(t0)〉. (4.9c)

In contrast to this, it follows from (4.4d) that a given operator AH in the
Heisenberg picture always depends on time, even when AS is not an explicit
function of t:

AH(t) = U†
S (t, t0)ASUS(t, t0). (4.10)

From the point of view of quantum scattering theory, it is most important to obtain
the probability of the transition from the initial to the final state of the examined
system. This fundamental quantity is deduced from the scalar product, implying
that for a given operator, it is of primary importance to know the expected values,
which in the Heisenberg picture are defined by the expression

〈AH〉 = 〈�H|AH|�H〉. (4.11a)

A connection between 〈AH〉 and 〈AS〉 ≡ 〈�S|AS|�S〉 can be found by means of
the relations (4.4d), (4.9a) and (4.10), so that

〈AH〉 = 〈�H|AH|�H〉 = 〈�S|US(U
†
S ASUS)U

†
S |�S〉

= 〈�S|(USU†
S )AS(USU†

S)|�S〉 = 〈�S|AS|�S〉
〈AH〉 = 〈AS〉 (4.11b)

where the unitarity of the Schrödinger operator US is employed according to
relations (3.4c) and (3.4e). Hence, just exactly the way it should be, the two
expected values 〈AH〉 and 〈AS〉 coincide with each other. For the collision
phenomenon, at the initial moment t0, the examined system is in a certain
eigenstate |a(t0)〉 of the operator A. The problem which we are solving here is
the calculation of the probability of finding the system at a certain later time t , in
the eigenstate |b(t)〉 of the operator B . Such probability WS is possible to obtain
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directly in the Schrödinger picture through equation (3.8), i.e. by projecting the
Schrödinger state |aS(t)〉 at time t onto the bra-vector 〈bS(t)|:

WS = |〈bS(t)|aS(t)〉|2 = |〈bS(t)|US(t, t0)|aS(t0)〉|2. (4.12a)

Furthermore, in the Heisenberg picture, the corresponding probability WH for the
same problem reads as

WH = |〈bH|aH〉|2 = |〈bS(t)U
†
S (t, t0)|U†

S(t, t0)aS(t)〉|2
= |〈bS(t)|US(t, t0)U

†
S (t, t0)|aS(t)〉|2 = |〈bS(t)|aS(t)〉|2

WH = WS (4.12b)

where we have used the relation (4.9a), as well as the unitarity (3.4e) of
the operator US(t, t0). Therefore, it follows from expression (4.12b) that the
probabilities WS and WH are identical to each other, as expected, because of the
unitarity of the transformation, which interrelates the two pictures. An additional
reason for such a result is provided by the formula (4.9c), from which it is seen
that the state vectors in the Heisenberg picture are stationary.

At the end of this chapter, let us investigate the time evolution of the
general operator A and its expected value 〈A〉. Differentiating both sides of
equation (4.10) with respect to t , we find that

idt AH(t) = i(∂tU
†
S )ASUS + iU†

S(∂t AS)US + iU†
S AS∂t US. (4.13a)

Using equation (3.3a) here, as well as its corresponding adjoint counterpart
−i∂tU

†
S = U†

S HS, we obtain the Heisenberg equation of motion of the operator
AH:

idt AH(t) = [AH, HH] + i∂t AH. (4.13b)

where

HH = U†
S(t, t0)HSUS(t, t0) (4.13c)

∂t AH = U†
S(t, t0)(∂t AS)US(t, t0). (4.13d)

Let us now show that there exists a general property of stationarity of
the expected values of the given operator A = A(t), if it commutes with the
Hamiltonian H . For the given observable �, the associated operator A has the
so-called expected, i.e. average, value 〈A〉 defined by the relation

� = 〈A〉 = 〈�(t)|A|�(t)〉 (4.14a)

where the state vector |�(t)〉 ≡ |�S(t)〉, normalized to unity, satisfies the
Schrödinger equation (3.1). Applying the operator idt onto both sides of
equation (4.14a), we find that

idt 〈A〉 = 〈−i∂t�(t)|A|�(t)〉 + 〈�(t)|i∂t A|�(t)〉 + 〈�(t)|A|i∂t�(t)〉
= 〈−H�(t)|A|�(t)〉 + i〈�(t)|∂t A|�(t)〉 + 〈�(t)|AH |�(t)〉.
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An equivalent expression for the obtained result is derived through the
commutator [A, H ] as

idt 〈A〉 = 〈�(t)|[A, H ]|�(t)〉 + i〈�(t)|∂t A|�(t)〉 (4.14b)

because H † = H . The derived equation (4.14b) determines the time evolution
of the expected values 〈A〉 of the operator A. If A does not explicitly depend
upon time, then the second term in (4.14b) becomes exactly equal to zero, as
∂t A = 0. In such a case, a sufficient and necessary condition for the observable�
(associated with the operator A) to be the constant of motion is expressed through
the commutator:

� = constant ⇐⇒ [A, H ] = 0 (QED). (4.14c)

Here, of course, the Hamilton operator H can be explicitly dependent on time
but this is not necessary. In other words, we only require that the operator A
is stationary in order that the observable � be a constant of motion. From the
physical point of view, commutation of A with H means that the two operators
have a common basis, i.e. that their respective observables � and E can, in
principle, be simultaneously measured. Certainly, we know that the total energy
E of the system, playing the role of the eigenvalue of the Hamilton operator
H , represents a constant of motion, since according to the request (4.14c), i.e.
[H, H ] = 0, the operator H commutes with itself. We shall throughout say
that for an arbitrary observable �, as well as for its associated operator A, they
are both the constant of motion, as is justified from (4.13b). Otherwise, when
the operator relation (4.13b) is valid, then according to (4.14b) we have that the
expected value 〈A〉 remains constant in time. This is physically the most relevant
information, since the quantity |〈A〉|2 can be experimentally measured.
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Chapter 5

The Dirac picture

The two analysed pictures of quantum mechanics are not the only possible ones.
Quite the opposite, all the unitary transformations carried out on the state vectors
and the observables of the Schrödinger picture, in fact, define a new formalism
of quantum mechanics. There are infinitely many such formalisms but they are
all rigorously equivalent. For any particular problem, we should adopt a picture
which is most efficient in providing adequate solutions. However, among all of the
possible, alternative pictures of quantum mechanics, of particular importance for
scattering theory is the so-called interaction picture, which was first introduced
by Dirac. Hence, the alternative name: the Dirac picture. We emphasize here the
crucial importance of the unitary operators. This is most directly noticed in the
fact that all the relevant predictions of the theory are given by the matrix elements
of the evolution operator U(t, t0).

The central problem of scattering theory is the search for solutions of the
differential equation satisfied by the evolution operator U(t, t0). An important
contribution to this research field is the investigation of the interaction among
various constituents of a physical system. Let us suppose that the total
Hamiltonian H can be written in the additive form (1.1), i.e. H = H0 + V .
In other words, we assume here that the operator H can be given as the sum of
the ‘unperturbed’ Hamiltonian H0 and ‘perturbation’ V . Hence, the first term H0
describes a system, whose parts do not interact, whereas the operator V accounts
for the interaction among the constituents of the whole system. Such a situation
is encountered precisely in the scattering problem. Thus, e.g., in a scattering of
one particle on another, the entire system would consist of two particles, whereas
its constituent parts are either one or the other particle. Hence, here in the remote
past, as well as in the distant future, we would suppose that the particles do not
mutually interact. In such a situation, the operator H0 would simply represent the
sum of the Hamiltonians of the two individual particles1. In the scattering region,
when the particles approach each other, their interaction V becomes decisive for

1 When we assert that the total unperturbed Hamiltonian H0 is comprised of the free kinetic energy
operators of the two particles, we have in mind that we are dealing with conservative systems.
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determining the final state in which the system will be found when the collision
is over.

If the interaction operator V is small in comparison with H0, we will then
deal with perturbation theory. Physical interpretation of such a relation between V
and H0 is very clear and we would say that the interaction among the constituents
only slightly changes their state, which existed in the absence of the interaction
field. Since we have V �= 0, it is meaningful to look for certain corrections to
the states, which belong to the spectrum of Hamiltonian H0. For the perturbation
theory, it is customary to separate the Hamiltonian H in the form

H = H0 + λV (5.1)

where we assume that λ � 1, whereas V and H0 are of the same order of
magnitude. As an illustration, we quote the example of moderately heavy atoms,
where the inter-electron Coulomb repulsive potentials could be considered as a
perturbation with regard to the interaction between the nucleus and the electrons.
However, if λV and H0 are approximately of the same order of magnitude,
then we must resort to a mathematically more complicated treatment of the non-
perturbative kind. Here, there occurred some disturbances of the free states, so
that we are facing the problem of strong interactions. These represent a research
field on their own merit. In such a case, due to the mutual interactions of the
particles, we are no longer in a position to recognize the initial states.

In order to illuminate the phenomenon of interactions better, we stress
the problem of the preparation of the wave packet. Namely, a wave packet
is considered to be well prepared, if we know the solutions of the eigenvalue
equation for the free Hamiltonian H0. Then, taking into account the additive
form (1.1) of the operator H , the knowledge of the solutions of the unperturbed
Hamiltonian H0 acquires its full meaning. Namely, these unperturbed solutions
could be extracted from the total problem defined by H . This allows one to infer
the consequences of the genuine interaction, which is truly of primary importance
for the theory. Stated in terms of quantum-mechanical language, we suppose that
the stationary Schrödinger equation is solved for the case V = 0, i.e.

H0|�α〉 = Eα|�α〉. (5.2)

Here the index α is related to the whole information about the state of the free
(unperturbed) system. This information is obtained by adding a complete set
of mutually commuting observables onto the spectrum of the operator H0. In
the scattering problem, we ask that the incident beam be experimentally well
prepared, i.e. that we know precisely certain of its important characteristics,
such as the angular momentum, spin, etc. This emphasis offers the possibility
of separating the free motion of the system from the corresponding dynamics
developed under the influence of the interaction. In order to investigate this point
in practice, we should follow the time evolution of a certain concrete physical
system. We have already stressed that various pictures of quantum mechanics are
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interrelated by the unitary transformations. Let such a transformation between the
Schrödinger and Heisenberg picture be denoted by R(t, t0), i.e.

|�S(t)〉 = R(t, t0)|�I(t)〉. (5.3)

Here we want the operator R(t, t0) to include the full information about the given
system. In other words, the operator equation

i∂t R(t, t0) = H0 R(t, t0) R(t0, t0) = 1 (5.4)

should yield information equivalent to the very Schrödinger equation (3.3a), but
with the operator H0 instead of H . Thus it follows from (5.4) that

R(t, t0) = e−iH0(t−t0) (5.5)

since operator H0 is independent of time. A motivation for introducing the
operator R(t, t0), defined through the Hamiltonian H0, is that we want to remove
the already known information related to the system without any interaction. In
this way, expression (5.5) explicitly defines a new state vector in the interaction
picture:

|�I(t)〉 = eiH0(t−t0)|�S(t)〉. (5.6)

Hence, if we a priori set up equation (5.4), which yields the solution (5.5), we are
inquiring about which equation will be satisfied by the resulting state vector (5.3).
We know that the dynamic equation (3.1) in the Schrödinger picture reads as

i∂t |�S(t)〉 = (H0 + V )|�S(t)〉 (5.7)

where V = VS, whereas operators H0 and V are not dependent upon time. By
using (5.3), (5.4) and (5.5), we easily arrive at the so-called Tomonaga–Schwinger
equation:

i∂t |�I(t)〉 = VI(t)|�I(t)〉 (5.8a)

where
VI(t) = R−1(t, t0)VS R(t, t0). (5.8b)

Result (5.8a) indicates that if the theory includes all the knowledge linked to the
situation with V = 0, then the state vectors develop in time in such a way that
the role of the Hamiltonian is played by the operator VI. Therefore, this operator
is often called the perturbation Hamiltonian in the interaction picture. Hence,
in this picture, the state vectors are time dependent but this dependence entirely
stems from the interaction. Of course, an expression of the type (5.8b) is not only
related to the interaction operator V but also to any other operator A:

AI = R−1(t, t0)AS R(t, t0). (5.8c)

This expression can be useful in arriving at the equation of motion for the
operators in the interaction picture. By repeating the derivation analogous to
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equation (4.13b) in the Heisenberg picture but this time with evolution operator
(5.5), we find that

idt AI = [AI, H0] + i∂t AI (5.9a)

with
∂t AI = R−1(t, t0){∂t AS} R(t, t0). (5.9b)

Note that equation (5.9a) is identical to the expression (4.13b) from the
Heisenberg picture, but without interaction V , since the commutator (5.9a)
contains the term H0 instead of H . Thus, in the interaction picture, both the
state vectors and the operators are time dependent. However, the kinematic and
dynamic components of the total evolution of the system are neatly separated from
each other. The evolution of the observables appears to be purely kinema tical,
since it depends only on the free Hamiltonian H0. However, the time variation of
the state vectors, i.e. th e d yn a mics, are controlled exclusively by the interaction V .
This separation is particularly suitable for scattering theory in the single-channel
case. It then follows from the preceding analysis that the interaction picture is
intermediary to the Schrödinger and Heisenberg formalism.

It remains to show that the expected values of a certain operator are the same
in the Dirac and Schrödinger pictures. Starting from the definition

〈 AI〉 = 〈�I(t)| AI|�I(t)〉 (5.10a)

and using the relations (5.3) and (5.8c), we obtain

〈 AI〉 = 〈R−1(t, t0)�S(t)| AI| R−1(t, t0)�S(t)〉
= 〈�S(t)| R(t, t0) AI R

−1(t, t0)|�S(t)〉 = 〈�S(t)| AS|�S(t)

〈 AI〉 = 〈AS〉 (QED) (5.10b)

where the expression AS = R(t, t0) AI R−1(t, t0) is used, which we find by
multiplying equation (5.8c) from the left by R(t, t0) and from the right by
R−1(t, t0). It immediately follows from the preceding arguments that the
Schrödinger, Heisenberg and Dirac pictures coincide with each other at the
moment t = t0. It is customary to choose 0 or −∞ for the initial time t0, so
that

R(t, 0) ≡ R(t). (5.11)

Just as in the case of chapters 3 and 4, we again ask the most important question
of the type: if the state of a system is known at a given time t ′, how will the state
vector look in the interaction picture at another later moment t? The answer to
this question is provided by the unitary operator UI(t, t ′):

|�I(t)〉 = UI(t, t ′)|�I(t
′)〉. (5.12a)

The connection between the evolution operators UI and US is possible to establish
if we use equations (3.2) and (5.3):

|�I(t)〉 = R−1(t, t0)|�S(t)〉 = R−1(t, t0)US(t, t ′)|�S(t
′)〉

|�I(t)〉 = {R−1(t, t0)US(t, t ′)R(t ′, t0)}|�I(t
′)〉. (5.12b)
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By comparing expressions (5.12a) and (5.12b), we arrive at

UI(t, t ′) = R−1(t, t0)US(t, t ′)R(t ′, t0). (5.13a)

If, for t0, we choose the zero time point and employ the abbreviated notation
(5.11), we will have

UI(t, t ′) = R−1(t)US(t, t ′)R(t ′) = eiH0tUS(t, t ′)e−iH0t ′ . (5.13b)

Finally, in the case when the total Hamiltonian does not depend upon time, we
can utilize (3.9), so that the expression (5.13b) is simplified as

UI(t, t ′) = eiH0t {e−iH(t−t ′)}e−iH0t ′ (5.13c)

where HS = HH = HI = H . The following so-called group properties of the
operator UI can be obtained directly from equation (5.13c):

UI(t, t) = UI(t0, t0) = 1 (5.14a)

UI(t, t ′)UI(t
′, t0) = UI(t, t0) (5.14b)

U−1
I (t, t0) = UI(t0, t) = U†

I (t, t0). (5.14c)

Similarly to the proof of the unitarity of the evolution operator US in the
Schrödinger picture, we find that the operator UI is also unitary:

U†
I (t, t ′)UI(t, t ′) = 1 = UI(t, t ′)U†

I (t, t ′). (5.14d)

The operator UI(t, t ′) is of particular importance to scattering theory, since
the expression (5.13c) clearly describes the physical situation in a collision
phenomenon. Namely, in a scattering problem, the colliding particles are free
(V = 0) before and after the encounter, so that their evolution in time takes place
under the action of the unperturbed Hamiltonian H0. This is precisely reflected
through the presence of the propagators exp (iH0t) and exp (−iH0t ′) in (5.13c).
In the region of the particle scattering where V �= 0, the dynamics of the complete
system are determined by the total Hamiltonian H . This is adequately represented
by the evolution operator exp {−iH (t − t ′)} in equation (5.13c).

The differential equation satisfied by the evolution operator UI can be found
by taking the partial derivative with respect to t of both sides of the defining
expression (5.12a). Performing such a procedure and using equation (5.8a), we
find:

i∂tUI(t, t ′) = VI(t)UI(t, t ′). (5.15a)

The boundary condition for this equation is given by the expression (5.14a). An
equivalent, integral equation for the operator UI is obtained by integrating both
sides of equation (5.15a) over t in the interval from t ′ to t:

i{UI(t, t ′)− UI(t
′, t ′)} =

∫ t

t ′
dt1 VI(t1)UI(t1, t ′). (5.15b)
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The homogeneous term UI(t ′, t ′) of this integral equation coincides with the
boundary condition (5.14a), so that

UI(t, t ′) = 1 − i
∫ t

t ′
dt1 VI(t1)UI(t1, t ′). (5.15c)

If we now start from the evolution operator UI(t, t ′) and take the twofold time
limit, we will arrive at the so-called S-operator, which represents one of the most
important quantities in quantum mechanics:

S ≡ UI(+∞,−∞) = Lim
t→+∞ Lim

t ′→−∞
UI(t, t ′)

S = Lim
t→+∞ Lim

t ′→−∞
eiH0t e−iH(t−t ′)e−iH0t ′ . (5.16)

This is, of course, valid only if the double limit exists. Here, the label Lim
symbolizes the so-called strong limit, which presumes convergence in the norm.
In more concrete terms, if the operator A(t) converges strongly to the operator B
as e.g. t → +∞, i.e. Limt→+∞ A(t) = B , then this explicitly means that there
exits the following limit: limt→+∞ ‖A(t)ψ − Bψ‖ = 0, for every state vector
ψ from the domains of definition �A(t) and �B of A(t) and B , respectively.
Here, we have used a standard notation for the norm of a state vector χ defined
through the square root of the scalar product of χ with itself: ‖χ‖ = +√〈χ |χ〉.
The process of collision assumes that the two particles are free in the remote
past (t ′ → −∞) before scattering, as well as in the distant future (t → +∞)

after scattering. In other words, in these two asymptotic situations, the scattering
particles propagate merely under the influence of the unperturbed Hamiltonian
H0. Their dynamics in the interaction region, however, are governed by the total
Hamiltonian H . Such an adequate description of the collision problem is obvious
from the definition (5.16), so that it is justified to associate the name scattering
operator with the S-operator, as is usual in the literature. Taking into account the
definitions (5.16) and (5.12a), it is clear that we will have

|�I(+∞)〉 = S|�I(−∞)〉. (5.17)

In other words, the S-operator transforms the initial asymptotic state |�I(−∞)〉
into the final asymptotic state |�I(+∞)〉 of the entire system. Accounting for
the fact that only these two asymptotic states are directly connected with the
physical observables, i.e. measured quantities, it follows that the S-operator yields
the full information about the examined quantum scattering system. Stated more
precisely, starting from the S-operator, we further derive the S-matrix elements,
whose square of the absolute value is directly proportional to the experimentally
measurable quantities, e.g. the differential cross sections associated with the
probability transition from the initial to the final state of the total system.
Therefore, we can rightly assert that the entire relevant information about the
physics of quantum scattering systems is contained in the S-matrix elements. This
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possibility has already been announced in chapter 1. Using the relations (5.14d)
and (5.16), we see that the S-matrix is unitary:

S†S = 1 = SS†. (5.18)

Unitarity is one of the most important properties of the S-matrix, because it
guarantees the conservation of probability. The operators associated with the
conserved observables must commute with the S-operator. Consequently, these
observables are the constant of motion.

We now return to definition (5.17), from which one should note that the S-
matrix transforms one given initial state |�I(−∞)〉 ≡ |�i 〉 into all possible final
states of the system. In other words, the object S|�i 〉 represents the superposition
of all the possible final states of the whole system. This introduction of the S-
matrix is correct, since the interaction among the particles of a certain system can
be studied solely through such experiments which provide the essential condition
that before and after the interaction the particles behave as free. Hence, we here
recognize the scattering experiment. Of course, in these experiments with free
particles, the only subject of measurement is a change in those observables which
are considered as the asymptotic constant of motion (spin, impulse, etc). Such a
change occurs as a consequence of scattering. For example, let �α be a certain
general label for the quoted dynamic quantity. We emphasize that the quantity�α
does not represent a constant of motion for the interacting system. In fact, the time
evolution of such an observable obeys the following law of classical mechanics:

d�′
α(t)

dt
= {�′

α,�tot} (5.19a)

where �tot is the total Hamilton function given as the sum of the kinetic and the
potential energies. Here the quantity �′

α is related to the bound particles and the
curly parentheses represent the so-called Poisson brackets:

{�,�} =
∑

k

(
∂�

∂qk

∂�

∂pk
− ∂�

∂qk

∂�

∂pk

)
. (5.19b)

We can digress for a moment and, in analogy to the quantum case, formulate here
the scattering problem from the standpoint of classical physics. Then we would
look for a solution of the equation (5.19a) of motion of a bound state, for which
the quantity�′

α(t) takes certain initial values at the initial moment t = −∞:

�′
α(−∞) = �α. (5.19c)

An analogous constant of motion after the collision will be given by the
expression �′

α(+∞). A scattering problem devised in this way is meaningful
only if the interaction among the constituents decreases sufficiently fast as the
interparticle distance is infinitely augmented (at least as r−2, where r is the
distance from the centre of the interaction field). Calling upon the correspondence
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principle, the quantum-mechanical scattering problem would be quite analogous
to the mentioned classical model. The alteration consists of substituting the
Poisson brackets with the corresponding commutators. Namely, it can be shown
that the following strict eq u a lity holds true:

[ A′
α, H ] = i� �{�′

α,�tot} (5.20)

where, according to the usual convention � ←→ A from (2.1), we passed from
the observables to the operators. Knowing that the quantities �α represent the
constant of motion, we assert that the associated operators in the Heisenberg
picture will be stationary.

Introduction of the S-operator enables us, through the associated S-matrix,
to define suitably the transition probability for finding the system in any given
final state |� f 〉. The S-matrix is given by

Si f  = 〈�  f | S|�i 〉. (5.21)

In this way, the probability amplitude for a transition from the given initial
state |�i 〉 into a certain final state |�  f 〉 is expressed through the S-matrix
taken with the wavefunctions for these states. Quantum mechanics is founded
on the concept of probability, which is obtained from the matrix elements
(5.21). This fact undoubtedly promotes the S-matrix as a quantity of decisive
importance for the theory. The general expression (5.21) for the probability
will be physically meaningful only if it does not contradict the requirement that
the total energy of the system is conserved. That this indeed holds true, will
be shown in chapter 6. Here we shall quote an intuitive but quite convincing
argument. Namely, from the definition (5.17) of the S-operator, it follows that
there exists an infinitely large interval between the initial and final asymptotic
state. Such an infinite indeterminacy in time (�t = ∞) implies, according to the
Heisenberg uncertainty principle �E�t ≥ 1, a complete determinacy in energy,
i.e. (�E = 0). In other words, the expression (5.21) guarantees that we will have
�E = Ei − E f = 0, which is precisely the energy conservation law

Ei = E f ≡ E (5.22)

where Ei and E f are the values of the total energy of the system in the initial
and final state, respectively. When the S-matrix is introduced in such a way that
equation (5.22) holds true, we are then sure that definition (5.21) is given on the
energy shell. In such a case, the conservation of the total energy can be expressed
through the factored Dirac δ-function:

〈� f |S|�i 〉 = −2π iδ(Ei − E f )〈� f |S|�i 〉. (5.23)

Here, part of the matrix element 〈� f |S|�i 〉, which remained after the term
−2π iδ(Ei − E f ) has been factored out, is denoted by S. An explicit form of
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the matrix element from the rhs of equation (5.23) will be given in chapter 6.
Now the transition probability W for the infinite time interval acquires the form

W = |〈� f | S|�i 〉|2
= 4π2δ2( E i − E f )|〈�  f |S|�i 〉|2

= 4π2δ(  E i − E f )

{
lim

T→∞
1

2π

∫ T/2

− T/2
d t ei( E i− E f ) t

}
|〈� f |S|�i 〉|2

= 2πδ(Ei − E f )

{
lim

T→∞

∫ T/2

− T/2
d t

}
|〈� f |S|�i 〉|2

W = 2πδ(Ei − E f )|〈�  f |S|�i 〉|2 lim
T→∞ T . (5.24a)

Here, one δ-function from the quadratic term δ2( Ei − E f ) is replaced by the
defining integral representation:

δ(  Ei − E f ) = 1

2π

∫ +∞

−∞
d t ei( E i− E f ) t . (5.24b)

Furthermore, the rhs of the expression in the third line of the sequel before
equation (5.24a), is simplified by setting Ei− E f = 0, as implied by the remaining
δ-function from δ2( Ei − E f ). Thus, the result (5.24a) obviously describes the
fact that the transition is taking place only between the initial and final state of
the same energy. The intensity of such a transition is seen to be proportional to
the total time interval from −∞ to +∞, which is covered by the action of the
effective interaction VI(t). This intensity is infinitely large. Nevertheless, for a
realistic experiment, the only relevant quantity is the rate of the increase of the
transition probability, which corresponds to the total probability per unit time:

w ≡ W

limT→∞ T
= 2πδ(Ei − E f )|〈�  f |S|�i 〉|2. (5.24c)

This interpretation involving the square of the Dirac δ-function is quite standard,
but nevertheless it would be desirable to arrive at the same result (5.24c) in
another, more explicit, way. This will be accomplished in chapter 8.

Copyright 2004 IOP Publishing Ltd



Chapter 6

The Dyson perturbation expansion of the
evolution operator

The dynamical equation (5.15c) could be formally solved by iteration, i.e. with the
help of the method of successive substitutions. We start with the so-called zero-
order approximation U (0)

I (t, t ′). This is an approximation of the exact operator
UI(t, t ′) obtained by retaining only the homogeneous term in equation (5.15c),
i.e. the unity

U (0)
I (t, t ′) = 1. (6.1a)

Next, by inserting U (0)
I (t1, t ′) in the integrand in (5.15c) in place of UI(t1, t ′), we

find the first-order approximation U (1)
I (t, t ′):

U (1)
I (t, t ′) = 1 − i

∫ t

t ′
dt1 VI(t1). (6.1b)

In an analogous procedure of the substitution of the integrand UI(t1, t ′) in (5.15c)
by U (1)

I (t1, t ′), the second-order approximation is deduced as

U (2)
I (t, t ′) = 1 − i

∫ t

t ′
dt1 VI(t1)+ (−i)2

∫ t

t ′
dt1 VI(t1)

∫ t1

t ′
dt2 VI(t2). (6.1c)

Under the assumption that series U (0)
I ,U (1)

I ,U (2)
I , . . . converges to the exact

evolution operator UI, we can write

UI(t, t ′) = 1 +
∞∑

n=1

Un(t, t ′), (6.2a)

where Un(t, t ′) ≡ U (n)
I (t, t ′) and

Un(t, t ′) = (−i)n
∫ t

t ′
dt1 VI(t1)

∫ t1

t ′
dt2 VI(t2) · · ·

∫ tn−1

t ′
dtn VI(tn). (6.2b)
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This iterative solution is known as the Liouville–Neumann expansion in the
theory of integral equations. When a development of this type is applied to
the c-numbers, for which a commutative algebra is valid, then convergence is
always guaranteed for the Volterra-type equation. In our case, however, the
situation is more complex because we are working with the q-numbers (operators,
matrices, etc), which obey a non-commutative algebra. In such a circumstance,
convergence of the Liouville–Neumann expansion of the q-numbers must be
separately investigated and proven. We have generated, through the expressions
(6.2a, b), an expansion of the evolution operator UI in powers of the interaction
VI. The obtained result (6.2a) seems convenient, although its physical meaning
cannot be immediately established. The lower limits in the multiple integral
(6.2b) are all mutually identical, which, in itself, represents quite a convenient
property. However, the upper limits of these integrations are inhomogeneous,
which disadvantageously complicates the explicit calculation of the operator UI
from the formula (6.2a). In order to formally overcome this difficulty, Dyson
suggested the following procedure. We first introduce the operator P, known as
the chronological product, according to the prescription

P[VI(t1)VI(t2)] =
{

VI(t1)VI(t2) t1 > t2
VI(t2)VI(t1) t2 > t1.

(6.3a)

The goal of the action of the operator P is to place the interaction operators
into a chronological order in such a way that their time arguments decrease when
going from the left to the right. The physical meaning of the appearance of
the times t1 and t2 consists of successive inclusion of the interactions. In this
manner, the time ordering becomes a relevant point in the analysis. Of course,
the procedure (6.3a) would not be necessary if the operators VI(t1) and VI(t2)
commute with each other. However, it is easy to convince oneself that these
operators are not commutative. Thus, e.g., by using the definition (5.8b) for VI(t)
with t0 = 0 and developing the exponents in the power expansion, we find that
the operators VI(t1) and VI(t2) do not commute:

VI(t1)VI(t2) = V 2 + it1[H0, V ]V + it2V [H0, V ] + · · · (6.3b)

VI(t2)VI(t1) = V 2 + it1V [H0, V ] + it2[H0, V ]V + · · · . (6.3c)

The definition (6.3a) could readily be extended to a product of more operators, as
follows:

P[VI(t1)VI(t2) · · · VI(tn)] =
{

VI(t1)VI(t2) · · · VI(tn) t1 > t2 > · · · tn
VI(tn) · · ·VI(t2)VI(t1) t1 < t2 < · · · tn . (6.3d)

Since we have n permutations of the set of the time variables {t1, t2, . . . , tn}, it
then follows by induction that

Un(t, t ′) = (−i)n

n!
∫ t

t ′
dt1

∫ t

t ′
dt2 · · ·

∫ t

t ′
dtn P[VI(t1)VI(t2) · · ·VI(tn)]. (6.4a)
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In this way, both the lower and upper limits of all the integrals become
homogeneous and the chronological product P brings the time points into
their natural, causal order. By inserting expression (6.4a) into (6.2a), we can
immediately recover the expansion of the exponential function in the series, so
that

UI(t, t ′) = P

{
exp

[
− i

∫ t

t ′
dt ′′ VI(t

′′)
]}
. (6.4b)

Of course, the Dyson solution is only a formal one, unless we could eventually
find an explicit expression for the chronological product. Such an expression
might be obtained from the commutator relations of the interaction operators.
Thus, for example,

[VI(t1), VI(t2)] = F(t1, t2) (6.4c)

where F(t1, t2) is an unknown operator. We then find that

P[VI(t1)VI(t2)] = VI(t1)VI(t2)−�(t2 − t1)F(t1, t2) (6.4d)

with �(x) being the Heaviside step-function:

�(x) =
{

1 x > 0

0 x < 0.
(6.5)

A generalization of this expression to the case encompassing more than two
operators is trivial. We mention that eliminating the chronological product is
known as a reduction to the normal form. Such a procedure is of particular
importance in field theory.

The formal expansion (6.2a) does not contain any assumptions. A physical
meaning of such a development is customarily established by calculating the
concrete matrix elements based upon equation (6.2a). The obtained result could
also be adjusted to the case of the S-operator, by recalling that, here, the time
interval [t ′, t] should be replaced with [−∞,+∞], according to (5.16). Hence,

S = 1 +
∞∑

n=1

Sn (6.6a)

where

Sn = (−i)n

n!
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 · · ·

∫ +∞

−∞
dtn P[VI(t1)VI(t2) · · ·VI(tn)]. (6.6b)

Expression (6.6a) represents the covariant perturbation expansion of the
scattering S-operator. An alternative representation of this result is obtained from
(6.4b):

S = P

{
exp

[
− i

∫ +∞

−∞
dt VI(t)

]}
. (6.6c)
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The formulae (6.6a) and (6.6c) are concise but at this step in the analysis, their
physical interpretations are completely unclear and, moreover, we do not know
whether they could be of any practical importance. In order to attribute a certain
physical meaning to these results, let us choose an arbitrary initial time t0 to be
t0 = 0, in which case the interaction is reduced to

VI(t) = R−1(t)VS R(t) = eiH0t VSe−iH0t . (6.7)

Let us suppose that the asymptotic states are, in fact, the stationary eigenstates of
the unperturbed Hamiltonian H0. Then it follows that

H0|�i 〉 = Ei |�i 〉 (6.8a)

H0|� f 〉 = E f |� f 〉 (6.8b)

where the conservation law (5.22) holds true for the total energy. In other words,
the asymptotic states �i and � f are on the energy shell, where the energy is
conserved according to (5.22). Furthermore, let all the intermediate states |�m〉
also belong to the spectrum of the operator H0, i.e.

H0|�m〉 = Em |�m〉 (6.8c)

where Em is the corresponding energy of the virtual experimentally unmeasurable
state |�m〉. In the general case, we have

Em �= E (6.8d)

which means that the intermediate states are off the energy shell. In the future,
we shall assume that the spectrum of the Hamiltonian H0 is complete. We write
the S-matrix element in the form

Si f ≡ 〈� f |S|�i 〉 = δ(Ei − E f )δi f +
∞∑

n=1

S(n)i f (6.9a)

where
S(n)i f = 〈� f |Sn |�i 〉. (6.9b)

with the quantity Sn being defined in equation (6.6b). In order to obtain the
individual contributions S(1)i f , S(2)i f , . . . explicitly, which will be further elaborated
later on, let us introduce the following equivalent form:

Sn = (−i)n
∫ +∞

−∞
dt1 VI(t1)

∫ t1

−∞
dt2 VI(t2) · · ·

∫ tn−1

−∞
dtn VI(tn). (6.9c)

The symbol δi f from (6.9a) becomes strictly identical to zero as soon as i �= f , for
which the S-matrix exhibits the vanishing contribution from the term describing
the transition between two different states. The only exception where this term
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is present is the purely elastic collision at the zero-scattering angle (the forward
direction). The appearance of the multiplicative factor δ(Ei −E f ) guarantees that
the expression δ(Ei − E f )δi f is in accordance with the energy conservation law
(5.22). Here, however, the first difficulty with the S-matrix formalism emerges,
since in the case of coincidence between the initial and final state, the Dirac
function δ(Ei−E f ) becomes infinite, implying the divergence of the development

(6.9a). This problem could be solved if every term S(n)i f (n ≥ 1) would also factor
out the Dirac function δ(Ei −E f ). In this manner, the Si f -matrix could be written
in the form of the product of the δ(Ei − E f ) function and a remainder taken at
Ei = E f . This remainder could further be declared as the regularized Si f -matrix.
Let us now show that this is indeed the case. Using equations (6.7) and (6.9c), we
find the first correction S(1)i f in the form:

S(1)i f = − i
∫ +∞

−∞
dt 〈� f |VI(t)|�i 〉 = −i

∫ +∞

−∞
dt 〈� f |R−1(t)V R(t)|�i 〉

= − i
∫ +∞

−∞
dt 〈� f |eiE f t V e−iEi t |�i 〉 = −i〈� f |V |�i 〉

∫ +∞

−∞
dt ei(E f −Ei )t

S(1)i f = − 2π iδ(E f − Ei )〈� f |V |�i 〉 (6.10)

where V ≡ VS. This result is clear from the physical point of view. Namely the
function δ(E f −Ei ) appears as a multiplicative term. Furthermore, the remaining

term 〈� f |V |�i 〉 of the first correction S(1)i f represents the contribution to the total
Si f -matrix due solely to the direct mechanism for the transition i → f , caused
by the interaction V . In other words, in this order of the perturbation expansion,
which bears the name the first Born approximation, the probability amplitude
for the transition from the initial to the final state is given through the overlap
integral between �i and � f , weighted with the interaction potential V . This
overlap integral 〈� f |V |�i 〉 is originally defined over the entire configuration
space. However, due to the presence of the weight function, only a portion of
this space gives a non-negligible contribution, associated with a region where V
is appreciably different from zero. Hence, the first correction in the S-matrix
expansion possesses quite an obvious physical interpretation, because it directly
involves the asymptotic conditions in the scattering experiment. That is to say, the
two particles in a well-defined state �i of the whole system propagate first as free
and then they are allowed to interact with each other. Their direct interaction V
is exclusively responsible for the fact that the whole system is found in the final
state � f . In the centre-of-mass system, a collision between the two particles of
masses m1 and m2, whose interaction is given by the operator V , is reduced to
a scattering of one particle of a reduced mass, µ = m1m2/(m1 + m2), the so-
called reduced particle, on the potential V , taken as the centre of the interaction
field. Therefore, the matrix element 〈� f |V |�i 〉 describes, through the state �i ,

a free propagation of the reduced particle towards the interaction region, where
µ scatters on the potential V . After this step, the reduced particle continues
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further to travel freely, as properly described by the unperturbed state � f . Hence,
this model for describing a collisional event is simple, since it cannot distinguish
between any of the intermediate states. The particle can, in principle, be in these
intermediate states before it is finally found in the exit channel, which is directly
accessible to measurement. At first sight, one could have the impression that
this simple model is everything one really needs, because the experiment does not
offer any direct information about a detailed time development of the microscopic
processes of the scattering type. Namely, as we have already emphasized, only the
asymptotic states of the total system are accessible to experimental observations,
due to the exceedingly short duration of the collision. These asymptotic states are
then constituted after practically infinite time, as compared with typical periods
of the events at, e.g., the atomic scale. An experimentalist records a definite
change in the total state of a system, whereas the intermediate states of the
scattering phenomenon are hidden away from a direct observation. Although
these effects in the intermediate stage of collision cannot be recorded at the
present level of sophistication of measurement, this certainly does not mean that
they do not introduce themselves in a certain averaged or convoluted form within
the recorded experimental data. This is in sharp contrast with the first Born
approximation S(1)i f , which definitely does not include any of the intermediate
states. In numerous practical problems, the first Born approximation has been
shown to be insufficient for a quantitative explanation of the experimental data.
This, nevertheless, must not be interpreted as the failure of the perturbation
method for the scattering problem. In such a case, we should rather say that
the role of the intermediate states becomes important. They should then be
successively included in order to obtain a systematic improvement in the theory.
This goal could be reached consistently by including the higher orders in the
perturbation expansion, provided that convergence exists. In such a case, we
could quantitatively improve the term S(1)i f by taking into account the second-
and higher-order terms in the development (6.9a). The second-order correction
S(2)i f can be obtained through a calculation analogous to (6.10), by using (6.9c)
together with the closure relation∑

m

|�m〉〈�m | = 1 (6.11)

so that

S(2)i f = (−i)2
∫ +∞

−∞
dt1

∫ t1

−∞
dt2 〈� f |VI(t1)VI(t2)|�i 〉

= (−i)2
∑

m

∫ +∞

−∞
dt1

∫ t1

−∞
dt2 〈� f |VI(t1)|�m〉〈�m |VI(t2)|�i 〉

S(2)i f = (−i)2
∑

m

〈� f |V |�m〉〈�m |V |�i 〉
∫ +∞

−∞
dt1 ei(E f −Em )t1
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×
∫ t1

−∞
dt2 ei(Em−Ei )t2 . (6.12a)

For Em − Ei > 0, the integral over t2 in (6.12a) becomes divergent in the lower
limit. However, it is possible to overcome this difficulty through the following
procedure of Dyson. Here, the integral

∫ t1
−∞ dt2 exp {i(Em − Ei )t2} should be

replaced by
∫ t1
−∞ dt2 exp {i(Em − Ei − iε)t2}, where ε is an infinitesimally small

positive quantity, which is allowed to tend to zero, once the integration has been
performed. The new integral is obviously well defined for ε > 0, since the
oscillations of the integrand are damped at infinity, i.e. exp (εt2)−→t2→−∞ 0.
For this reason, the ε-factor is often called the damping factor. In order to acquire
a physical interpretation of this procedure, we could state that potential VI(t2) is
multiplied by the term exp (εt2). Hence, the original interaction VI(t2) is, in fact,
replaced by exp (εt2)VI(t2). In this way, we intuitively introduce the so-called
adiabatic switching of the interaction as t2 → −∞. The rigorous foundation
of this concept and the associated adiabatic theorem is an important subject to
address. The outlined Dyson procedure has also been used by Lippmann and
Schwinger [4]. Proceeding further with a study along these line, we shall have∫ t1

−∞
dt2 ei(Em−Ei−iε)t2 = i

exp {i(Em − Ei − iε)t1}
Ei − Em + iε

(6.12b)

which implies, together with equation (6.12a), that

S(2)i f = −2π iδ(Ei − E f )
∑

m

〈� f |V |�m〉〈�m |V |�i 〉
Ei − Em + iε

. (6.12c)

Here we also encounter the factored Dirac δ(Ei − E f ) function, which expresses
the energy conservation law (5.22). As mentioned, the experiment does not
distinguish the intermediate states. This fact is partially accounted for in (6.12c),
through summation over the intermediate states {�m}. Here, we emphasize the
word ‘partially’, because only the second order in the perturbation expansion is
incorporated in (6.12c). Which physical meaning could be associated with the
mth intermediate term 〈� f |V |�m〉〈�m |V |�i 〉/(E − Em + iε)? Here we have
a product of the two probability amplitudes 〈� f |V |�m〉 and 〈�m |V |�i 〉. Each
of these matrix elements is of the first Born approximation type but defined in a
general case (6.8d) off the energy shell, where the total energy of the whole system
is not conserved, in contrast to (6.10). This time, therefore, the reduced particle
of mass µ undergoes double scattering on the interaction potential. By reasoning
in terms of, e.g., the coordinate representation, we would state that the reduced
particle, after its free propagation in the state �i , first scatters on the potential
V (r1) at a certain point r1 of the configuration space. After this first collision,
the particle µ is found in the intermediate state �m and this step is described by
the probability amplitude 〈�m |V |�i 〉. Moving further in the interaction domain,
the reduced particle arrives at a certain point r2, where it experiences the second
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scattering at the potential V (r2). Finally, the particle leaves the interaction zone
propagating freely in the final state � f , as described by the probability amplitude
〈� f |V |�m〉. The factor 1/(E−Em+iε) yields information about the intermediate
propagation of the particle of the energy Em . Since, in the entire spectrum of the
intermediate states, we will surely find the value E , it is obvious that the energy
denominator E − Em shall vanish identically at Em = E . This would lead to
a divergence of the term S(2)i f , if the factor iε were absent from the denominator
E − Em + iε. This factor, however, is non-zero and serves precisely to avoid the
pole at Em = E in the complex energy plane. The prescription of avoiding this
singularity depends upon whether we are looking for the incoming or outgoing
scattered wave. It is now important to see whether we could calculate explicitly
the sum over the intermediate states in (6.12c). To achieve this goal, we shall
utilize the eigenvalue problem (6.8c), so that∑

m

〈� f |V |�m〉〈�m |V |�i 〉
E − Em + iε

=
∑

m

〈� f |V |�m〉〈�m | 1

E − H0 + iε
|�m〉〈�m |V |�i 〉. (6.13a)

Here the following so-called resolvent eigenvalue problem is employed:

G+
0 (E)�m = (E − Em + iε)−1�m (6.13b)

where G+
0 (E) is the Green operator

G+
0 (E) ≡

1

E − H0 + iε
ε → 0+. (6.13c)

Expression (6.13b) directly stems from equations (2.2) and (6.8c). The upper
index (+) in the resolvent (6.13c) indicates the so-called advanced Green
operator, which describes the propagation of the free particle under the influence
of the unperturbed Hamiltonian H0. With this Green function, the outgoing wave
is associated at infinity through the presence of the factor +iε in the denominator
of the resolvent G+

0 (E). Such a wave is leaving the interaction region in the
direction from the scattering centre towards the detector. Since, now, besides the
intermediate states, there are no other factors in (6.13a) which depend upon m, it
is possible to carry out the summation over m with the help of the closure relation
(6.11) and the final result is:

S(2)i f = −2π iδ(Ei − E f )〈� f |V G+
0 (E)V |�i 〉. (6.13d)

This result is, in fact, only another formal expression for the sum over m,
which appears in (6.12c). Nevertheless, this alternative form possesses certain
advantages over (6.12c), since there is a number of convenient formulae for the
operator G+

0 (E). For example, various integral representations are much more
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useful in applications than the infinite summation in (6.12c). From a formal
point of view, due to the inclusion of the intermediate states through the second
order in the perturbation expansion in powers of the interaction potential, the
expression S(1)i f + S(2)i f could represent a better starting point for description of

scattering than S(1)i f . Would this indeed be the case in the computation for a given

concrete problem? In other words, would the correction S(2)i f lead to a significant
quantitative improvement over the first-order result? An answer to this question
will critically depend upon (1) the eventual importance of the intermediate states
in the concrete case under investigation and (2) the convergence rate of the
perturbation expansion.

By repeating a similar procedure for the higher orders in the perturbation,
we arrive at

Si f = δ(Ei − E f )

{
δi f − 2π i

[
〈� f |V |�i 〉 +

∑
m1

〈� f |V |�m1〉〈�m1 |V |�i 〉
Ei − Em1 + iε

+
∑
m1

∑
m2

〈� f |V |�m1〉〈�m1 |V |�m2〉〈�m2 |V |�i 〉
(Ei − Em1 + iε)(Ei − Em2 + iε)

+ · · ·
]}
. (6.14a)

Elimination of the sum over all the intermediate states by means of the eigenvalue
problem (6.8c) for m = m1,m2, . . . will imply that

Si f = δ(Ei − E f ){δi f − 2π i[〈� f |V |�i 〉 + 〈� f |V G+
0 (E)V |�i 〉

+ 〈� f |V G+
0 (E)V G+

0 (E)V |�i 〉 + · · · ]}. (6.14b)

This expression is known as the Born perturbation expansion of the S-matrix
in powers of the interaction potential. The function δ(Ei − E f ), whose zero-
value argument expresses the total energy conservation law, appears as an overall
multiplying term. Therefore, the remainder in the curly brackets in the expression
(6.14b) represents the regularized Si f -matrix. By induction, an arbitrary nth term
in the Si f -matrix expansion is physically interpreted by stating that it represents
the probability amplitude for the nth scattering of the reduced particle on the
interaction potential. Thus, the total Si f -matrix (6.14b) is modelling the studied
collision by assuming that the reduced particle is experiencing infinitely many
scatterings on the given potential, before it is finally found in its free state in the
exit channel. Besides the restriction (1.1) to those Hamiltonians H which can be
written in the additive form H0 + V , the expansion (6.14b) does not contain any
other assumptions. This means that the obtained result for the Si f -matrix is exact.
Does such a general procedure have a chance of adequately describing a scattering
experiment? In an attempt to answer this question qualitatively, let us consider
certain incident particles characterized by a given set of quantum numbers.
Let these projectiles then arrive at a given interaction domain. Furthermore,
let us assume that the incident beam behaves as a collection of free particles
before and after interaction with the potential. Hence, this is recognized as a
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scattering experiment. We suppose that a monitor is placed at the entrance into
the interaction domain, so that the intensity of the impinging beam could be
measured before the collision takes place. The necessary collimation of this beam
is achieved by letting the incident particle flux traverse one or more collimators,
e.g. certain holes of small dimensions on a collimator diaphragm. Around the
interaction region, but at an asymptotically large distance from the target, we
would place an analyser in order to detect the spectrum of the scattered particles at
a given angle. If, to this set of instruments, we add a certain standard counter, we
would be able to measure the angular distribution of the scattered particles. These
are the basic contours of a scattering experiment, when we are concerned with its
conceptual set-up. Of course, the practical execution of an experiment is much
more complex, since this concept must be converted into an electronic–technical–
technological procedure, which would be capable of yielding the observables
directly proportional to the transition probability, e.g. the differential cross
sections. With this, a significant step in the study of a scattering phenomenon
seems to be successfully accomplished. Yet the most fundamental question still
remains open: how to describe that part of the scattering event which is left out
of reach of our measuring devices. This gnoseological ‘vacuum’ is considered
as the experimentally unmeasurable, virtual intermediate states of the particle
flux. For this problem, Si f -matrix formalism (6.14b) provides an acceptable
solution. This model could be visualized by imagining that a given interaction
region is locally subdivided by splitting a ‘smooth curve’ of the particle into a
certain complicated broken line, which would resemble the Brownian motion.
Then a precisely determined probability amplitude would be directly associated
with each of the zig-zag segments of the line between the two adjacent parts of
the broken line, i.e. between the two vertex points. Such a visual representation
of the intermediate states is not only suitable for the purpose of illustration but
is also of practical significance, since properly defined probability amplitudes
can be represented by the diagrams. As Feynman pointed out, these graphical
presentations are not only convenient symbols but also could be considered as
good candidates for an adequate description of realistic physical observables in
scattering events. Thus, for example, in field theory, the places where the partial
segments of the zig-zag lines stop, in fact, become the media of the physical
events, i.e. the energy and impulse are conserved at these vertices. With this, we
have completed one of the possible formal answers to these questions, related to
the theoretical description of the intermediate states, which are out of reach of a
measuring apparatus. This discussion should certainly be ended by a comment
on the theme of experimental impossibility to distinguish any of the intermediate
states. Let us now provisionally imagine a coincidence measurement, which is
aimed at ‘offering definite experimental data about a certain virtual state’. To
this end, we place a certain standard detector between two electronically coupled
spectrometers. Then absorption and emission, e.g., of photons in two given
points, would be registered by our electronic apparatus as the appearance of
the two voltage impulses, i.e. the two signals. However, if these two events are
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indistinguishable for our time scale, we would then be in a position to register only
one signal. Here, it is tempting to state that only the sensitivity threshold of the
present day instruments precludes the measurement of the observables associated
with the virtual states. In other words, one might think that the intermediate
states could in principle be accessed from the experimental point of view but the
practical reasons are not favourable to proceed successfully towards this goal.
However, the contrary statement is true: the energy of a virtual state cannot be
measured in principle, irrespective of the resolution power of any measuring
devices. This can be simply explained in terms of the Heisenberg uncertainty
principle, �E�t ≥ 1, by supposing that the lifetime of a virtual state is very
short (�t → 0). This immediately implies that the uncertainty in the energy
becomes infinitely large. Hence, the energy itself of the virtual state is unknown.
The assumption �t ≈ 0 is realistic, since the lifetime of a virtual state is equal
to the time interval between the two voltage impulses from the two vertex points.
As an illustration of the phenomenon of virtuality, we quote the de-excitation of
a nucleus through the internal conversion. Here, a nucleus is de-excited and this
is accompanied by emission of a virtual photon. This photon could subsequently
be absorbed by an electron from the K-shell of the atomic levels. The electron
now becomes excited and spends a short time on a higher energy level. When
descending to its former ground state, the electron emits a real photon. Here, a
justification of the adjective ‘virtual’ for the absorbed photon by the K -electron
would be appropriate, if the time interval, which follows absorption and emission
of the photon by the electron, is unmeasurable. The fact that the energy of virtual
states is not an observable does not diminish their importance at all. On the
contrary, the role of the virtual particles is of unsurpassed importance in physics.
Thus, e.g., in quantum electrodynamics (QED), the interaction among the charged
particles is treated through emission and absorption of the virtual photons.

Work with infinite summations of the matrix elements of the type
encountered in equation (6.14b) is undoubtedly very cumbersome, since the
calculation of the perturbation corrections beyond the second-order becomes
exceedingly difficult. In addition, from a purely theoretical standpoint, which
departs from the study of the analytical properties of the S-matrix in the complex
energy plane, it would be of considerable importance to sum up the series in
(6.14b) explicitly. This can be achieved by first observing that the infinite series
in Si f represents a binomial operator expansion:

Si f = δ(Ei − E f ){δi f − 2π i[〈� f |V + V G+
0 (E)V

+ V G+
0 (E)V G+

0 (E)V + · · · |�i 〉]}

= δ(Ei − E f )

{
δi f − 2π i〈� f |

∞∑
n=0

[V G+
0 (E)]nV |�i 〉

}
Si f = δ(Ei − E f ){δi f − 2π i〈� f |[1 − V G+

0 (E)]−1V |�i 〉}. (6.15a)
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Of course, the following equivalent expression also exists:

Si f = δ(Ei − E f ){δi f − 2π i〈� f |
∞∑

n=0

V [G+
0 (E)V ]n|�i 〉}

Si f = δ(Ei − E f ){δi f − 2π i〈� f |V [1 − G+
0 (E)V ]−1|�i 〉}. (6.15b)

From here, we deduce the final compact closed form of the Si f -matrix to be

Si f = δ(Ei − E f )[δi f − 2π iT+
i f (E)] (6.15c)

where
T+

i f (E) = 〈� f |T+(E)|�i 〉, (6.16a)

and T+(E) is an abbreviated notation for the operator

T+(E) ≡ [1 − V G+
0 (E)]−1V = V [1 − G+

0 (E)V ]−1. (6.16b)

Multiplying both sides of the expression (6.16b) from the left by 1 − V G+
0 (E)

and from the right by 1 − G+
0 (E)V , we arrive at the important integral equations

for the transition T+− operator

T+(E) = V + V G+
0 (E)T

+(E) = V + T+(E)G+
0 (E)V . (6.16c)

These equations can formally be solved using the obvious identities:

E−H+iε = [1−V G+
0 (E)](E−H0+iε) = (E−H0+iε)[1−G+

0 (E)V ]. (6.17a)

By inverting these identities through the relation of the type (P Q)−1 = Q−1 P−1,
we find that

G+(E) = G+
0 (E)[1 − V G+

0 (E)]−1 = [1 − G+
0 (E)V ]−1G+

0 (E) (6.17b)

where G+(E) is the total Green operator,

G+(E) = 1

E − H + iε
ε → 0+. (6.18a)

Multiplying both sides of equation (6.17b) from the right by V and calling upon
the definition (6.16b) will result in

G+
0 (E)T

+(E) = G+(E)V (6.18b)

T+(E)G+
0 (E) = V G+(E). (6.18c)

If we now employ equations (6.18b, c), it will be immediately seen that the two
expressions contained in (6.16b) are, in fact, reduced to a single formula:

T+(E) = V + V G+(E)V . (6.18d)
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There are two, very different, additive terms in the result (6.15c) for Si f . The
first term, given by δi f , describes the situation associated with the interaction
which is ‘switched off’ ( V = 0). The second term, given by T+( E), depends
upon the potential V �= 0. Thus, the expression (6.15c) suggests, in fact, how
the interaction among the particles should be studied. Namely, the first term δi f

signifies that ‘nothing really happened’. Thus, such a term is not interesting for
further consideration and should be left out. Hence, the tra n sitio n i → f is
described by the operator T+( E), which is therefore naturally called the tra n sitio n
opera to r or, briefly, the T -operator. Hence, the central working formula of
perturbation theory is that of the T+

i f  -matrix, which according to (6.18d), acquires
the following form:

T+
i f  = 〈�  f | V + V G+( E) V |�i 〉. (6.19)

We shall see later that the square of the absolute value of the matrix element T+
i f

is proportional to the differential cross section, which represents an observable
accessible to direct measurements in scattering experiments.

The obtained expression (6.19) is ex a c t. The same result is otherwise
derived in the literature in a standard and entirely different non-perturbative
manner. We recall that we have presently started from the in tera ctio n picture
and applied the Dyson perturbative development for the evolution operator in
powers of the potential VI to derive the su mma tio n fo rmu la e. However, these
summation rules of the studied perturbation expansion yield a general result
(6.19), which does not contain anything which would remind us of a perturbative
method for the scattering problem. Therefore, our initial perturbative assumption
could finally be relaxed and then abandoned as superfluous. Nevertheless, the
preceding derivation of the summation formulae from the starting perturbative
approach is based upon a number of formal transformations with the expansions
of the matrix elements. Therefore, agreement with the exact result must be
considered as fortuitous, before convergence of the perturbation expansion has
been proven. The much broader and more general problem of establishing criteria
for convergence of the Born–Neumann expansions of the operators, state vectors
and matrix elements is analysed in chapter 11.

We have already mentioned that the expression contained in (6.18d)
represents only a formal solution to the integral equation for the T+-operator
from (6.16c). This is clear, if we recall that dealing with the total Green operator
G+(E) is as difficult as the calculation of the T -operator from its starting integral
equations. Nevertheless, the result (6.19) is exceptionally convenient, since it tells
us directly that the full information about the physical features of the quantum
systems is contained in the total Green operator G+(E). In fact, we do not
ever need to solve the Schrödinger equation (H − E)� = 0 explicitly, since
the complete spectrum of the Hamiltonian H can be obtained from the spectral
analysis of the operator G+(E). The poles of this Green operator on the negative
part of the real axis in the complex energy plane correspond to the bound states
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associated with H . However, the continuum spectrum of the same Hamiltonian
H is directly related to the branch points of the operator G+(E). The collection
of these points creates a cut on the positive part of the real E-axis.

Explicit expressions for the eigenfunctions of the discrete and continuum
parts of the spectrum of the operator H can be obtained from the T -matrix
elements. Through this avenue, we announce the possibility offered by the Green
operator G+(E) for investigating crucially important analytic properties of the
T - and S-matrices in the complex energy plane. A detailed spectral analysis of
the operators, relevant for scattering theory, is a very important subject to study.
Both the concept of the spectrum, as well as of the analytic properties of the
Green operator, require systematic investigations. Needless to say, in the general
case, spectral analysis of the resolvent operators is a very difficult problem and,
therefore, resorting to approximations becomes inevitable. Exact result (6.19)
represents a starting point from which further methods can be devised based
upon either perturbative (the Born expansion) or non-perturbative schemes, e.g.
variational principles, expansion methods, etc. A small number of problems
in physics could be rigorously solved, which implies that the development of
approximative methods becomes of the utmost practical importance.
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Chapter 7

Time-dependent scattering theory

In time-dependent scattering theory, the collision problem is described by
assuming that a particle was localized outside the interaction domain where V =
0. Such a situation implies, in quantum mechanics, that this particle is represented
by a wave packet. This is necessary in order to comply with the Heisenberg
uncertainty principle �x�p ≥ 1, which predicts that a precise knowledge of the
particle position yields a complete indeterminacy in the associated impulse. After
collision, there exists a definite probability that the particle is deflected from its
impact direction at a certain scattering angle. This probability cannot be directly
observed in experiments but is still indirectly accessible to measurements through
differential cross sections. In practice, this is accomplished by placing a detector
at a position where it is reasonable to assume that the potential V is approximately
equal to zero (the asymptotic region of scattering).

We start from the Hamiltonian H given by equation (1.1), where H0 is taken
as the Hamiltonian in the absence of the interaction between the two colliding
structureless particles. In other words, the operator H0 is purely the kinetic
energy, whereas V is the corresponding interaction potential. Here it is important
to emphasize that, for a scattering experiment, the eigenvalues of H0 represent the
energy of the free particles, when they are at infinite separation from each other.
Moreover, V can be taken to be the potential energy of the reduced particle in the
region of the fixed interaction field as is customarily done in potential scattering.

The potential V from (1.1) will be supposed to be different from zero in a
given finite range of space. Stated more precisely, we shall assume that the two-
particle interaction potential V is limited at infinity:

|V (r)| ≤ C r ≥ C ′ (0 < C,C ′ <∞). (7.1a)

In other words, this potential is locally square integrable,∫
r≤R

dr |V (r)|2 <∞ (7.1b)
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so that we are dealing with short-range interactions. Let us suppose that the
Hamilton operator H does not depend upon time, which is true for conservative
systems. In such a case, we can introduce the state vector �0(t) to describe the
free particles through the Schrödinger equation:

i∂t�0(t) = H0�0(t). (7.2a)

Analogously, the total wavefunction�(t) of the system is defined as a solution of
the full dynamic problem

i∂t�(t) = H�(t). (7.2b)

In order to solve the Schrödinger equation (7.2b), we introduce the following four
Green operators G±

0 (t) and G±(t), associated with the Hamiltonians H0 and H ,
respectively:

(i∂t − H0)G
±
0 (t) = δ(t) (7.2c)

(i∂t − H )G±(t) = δ(t) (7.2d)

where δ(t) is the usual Dirac δ-function. The adequate solutions of the differential
equations (7.2c, d) can be found by imposing the boundary conditions:

G+
0 (t) = 0 = G+(t) t < 0 (7.3a)

G−
0 (t) = 0 = G−(t) t > 0. (7.3b)

The physical meaning of these boundary conditions stems from the causality
principle. Thus, e.g., the advanced Green operator G+

0 (t
′ − t) is equal to zero

for t ′ < t , which guarantees that particle propagation is occurring in the positive
sense of the time axis. Equations (7.2c, d) will be solved by using the Heaviside
� step-function (6.5) with the following results:

G+
0 (t) = − i�(t) exp (−iH0t) (7.4a)

G−
0 (t) = + i�(t) exp (−iH0t) (7.4b)

G+(t) = − i�(t) exp (−iH t) (7.4c)

G−(t) = + i�(t) exp (−iH t) (7.4d)

where
�(t) = 1 −�(t). (7.5)

That the solutions (7.4a, b) and (7.4c, d) satisfy equations (7.2c) and (7.2d),
respectively, can be checked by a direct substitution, with the help of the relation
(d/dt)�(t) = δ(t), which follows from (6.5). Note that all the solutions
from (7.4a–d) contain imaginary unity i, as a multiplicative term. This is first
justified by the fact that a product of the solution by an arbitrary constant (real or
complex) also satisfies the given linear differential equation. The choice of factor
i for that multiplicative constant makes certain standard expressions of the state

Copyright 2004 IOP Publishing Ltd



76 Time-dependent scattering theory

vectors compatible with the Green operators. Here we think about the Huygens
principle and its very useful presentation of the solutions of the Schrödinger
equation (7.2b) through certain homogeneous integral equations based upon the
Green propagators (see chapter 9). Of course, it is clear that the ‘solutions’ (7.4a–
d) are of a purely formal nature, since they are given as the exponential operators
through H0 or H . It is not, therefore, immediately obvious that these solutions
are indeed more useful than the very defining equations (7.2c, d). Moreover,
it is customarily thought that these exponential forms for G±

0 (t) and G±(t) are
not of great use either, in the practical computations of the associated matrix
elements. This is because, at first glance, one is inclined to exclusively apply
the power series expansions of the operators exp (−i H0 t) and exp (−i H t), as in
(3.11). However, that this is not necessarily so will be illustrated in chapter 9, in
the example of the resolvent G0(t), which is easily calculated in an explicit form
starting precisely from the formal exponential prescription (7.4a). Now it is seen
from (7.4a–d) that the operators G±

0 and G± satisfy the following commutation
relations:

[ G±
0 , H0] = 0 (7.6a)

[ G±, H ] = 0. (7.6b)

Of course, these properties are also obvious from the defining differential
equations (7.2c) and (7.2d) for the Green operators G±

0 and G±, respectively. For
physical reasons, we require that the Hamiltonian H0 and H must be Hermitean,
so that

G+†
0 (t) = G−

0 (− t) (7.6c)

G+†(t) = G−(− t) (7.6d)

which clearly follows from (7.4a–d). The differential equations (7.2c, d) are
completely defined by introducing the boundary conditions (7.3a, b). However,
very frequently it is convenient to incorporate these conditions into certain other
defining equations. Such are, as we have already seen in chapter 3, the integral
equations, which can be derived from (7.2c, d) by means of the following lemma.

Lemma 7.1. If we are given the following couple of differential equations:

A(t) f0(t − t ′) = δ(t − t ′) (7.7a)

A(t) f (t − t ′) = g(t − t ′) (7.7b)

where A(t) is a certain linear operator, whereas f0 and f are two functions from
its domain of definition �A(t), then we shall have

f (t − t ′) =
∫ +∞

−∞
dt ′′ f0(t − t ′′)g(t ′′ − t ′). (7.7c)
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Proof. We will suppose that the expression (7.7c) is valid. By applying the linear
operator A(t) to both sides of equation (7.7c) and using (7.7a), we then find:

A(t) f (t − t ′) =
∫ +∞

−∞
d t ′′ { A(t) f0(t − t ′′)} g(t ′′ − t ′)

=
∫ +∞

−∞
d t ′′ δ(t − t ′′) g(t ′′ − t ′)

A(t) f (t − t ′) = g(t − t ′) (QED). (7.7d)

Writing (7.2d) in the equivalent form (i∂t − H0) G±(t) = δ(t) + V G±(t), the
quantities encountered in equations (7.7a, b) are readily identified. Therefore,
in the case (7.2c, d), the expression (7.7c) acquires the form of the following
Volterra-type integral equations:

G±(t − t ′) = G±
0 (t − t ′)+

∫ +∞

−∞
d t ′′ G±

0 (t − t ′′) V G±(t ′′ − t ′) (7.8a)

G±(t − t ′) = G±
0 (t − t ′)+

∫ +∞

−∞
d t ′′ G±(t − t ′′) V G±

0 (t
′′ − t ′). (7.8b)

Although the corresponding sets of the differential and integral equations are
mutually equivalent, it is immediately noted that there could be an extra problem
with convergence of the integrals with the infinite limits in (7.8a, b). However,
this additional difficulty is only apparent, since the boundary conditions (7.3a, b)
limit the integration range to t ′′ ∈ [t, t ′] for G+ and to t ′′ ∈ [t ′, t] for G−. Also,
it is trivial to verify that the integral equations (7.8a, b) satisfy the differential
equation (7.2d) and the corresponding boundary condition (7.3a). Considering,
e.g., only t > 0, we can write

G+(t) = G+
0 (t)+

∫ t

0
d t ′ G+

0 (t − t ′) V G+(t ′) (t > 0). (7.8c)

It can immediately be seen from here that we are indeed dealing with the Volterra
integral equation involving the operator ke r n e l of the form K ≡ G+

0 (t − t ′) V , for
which a unique solution always exists.

The operators G+
0 and G+ are known by the name of the propagators,

since they describe a time propagation of the state vectors in the future under
the influence of the Hamiltonians H0 and H , respectively. Analogously, the
operators G−

0 and G− describe a propagation of the waves in the past. Hence,
the upper indices ± denote here the so-called advanced/retarded Green operator,
respectively. In order to gain a deeper insight into these operators, let us return to
the Schrödinger equations (7.2a, b) for the state vectors �0(t) and �(t). Starting
from the expression �0(t) = exp {−iH0(t − t ′)}�0(t ′) ≡ U0(t, t ′)�0(t ′),
�(t) = exp {−i H (t − t ′)}�(t ′) ≡ U(t, t ′)�(t ′) quoted in chapter 3 and using
G±

0 and G±, we can, for t ′ > t or t ′ < t , express the wavefunctions �0(t ′) and
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�(t ′) via their values at t ′ = t , i.e.

�0(t
′) = ± i G±

0 (t
′ − t)�0(t) (7.9a)

�(t ′) = ± i G±(t ′ − t)�(t) (7.9b)

where the indices ± correspond to t<>  t
′, respectively. The quantities ±i G±

0 (t
′ −

t) and ±i G±(t ′ − t) represent the evolution operators U0(t, t ′) and U(t, t ′)
encountered earlier in chapter 3. Thus, e.g., i G+(t ′ − t) yields the value of the
wavefunction �(t ′), if we know �(t) at an earlier time t ( t < t ′). It is easy to
check that, for example, �0(t ′) from (7.9a) verifies equation (7.2a) for t ′ > t .
In other words, the formal solutions of equations (7.2a, b) can be written as in
(7.9a, b). Also, the state vector�0(t ′) from the lhs of equation (7.9a) tends to the
function �0(t) from the rhs of the same equation in the limit t ′ −→ t+. Here
the upper index (+) signifies that t ′ tends to t through the positive times. The
propagators G±

0 (t) and G±(t) are unitary for t>< 0, because

G±†
0 (t) G±

0 (t) = 1 = G±
0 (t) G

±†
0 (t) (7.10a)

G±†(t) G±(t) = 1 = G±(t) G±†(t) (7.10b)

which is obvious from (7.4a–d).
It is essential to understand fully the meaning of the state vector �0(t),

whose existence should be p o stu la ted when describing the collision problem.
In the scattering experiment, we expect that �0(t) describes a collimated beam,
which is represented by a wave packet. Thus, in a theoretical approach to the
problem, such a beam cannot be monochromatic1, i.e. monoenergetic, due to
certain purely mathematical problems of convergence of the scattering integrals.
We have already encountered this difficulty in chapter 6, while introducing the
Dyson damping factor iε. The function �0(t) should contain the full information
with regard to the manner in which the associated wave packet is prepared, i.e.
controlled in the remote past. Once such information is available, we would
know that, e.g., a particle of the incident beam is sent towards the target in a
given direction, with an approximately determined value of the impulse p of the
spin along the x-axis, etc. Thus, in order to specify �0(t) as a free state of the
system before the collision, it is necessary to associate with this state a collective
label, e.g. α, which is comprised of a certain set of the quantum numbers or
eigenvalues of the operators commuting with H0. We can also state that α denotes
a complete set of the quantum numbers, which enumerate the eigenvalues of
the operator H0. We can further make this argument more obvious by writing

1 The general notion ‘monochromatic’ means that certain waves are regularly repeated with a
precisely determined frequency and wavelength. If a wave is exactly monochromatic, it is also
automatically coherent, meaning that the manner and form of its propagation remain constant in large
spatial and time intervals. These are the familiar notions from classical wave mechanics but they can
be directly transferred to the abstract waves of quantum mechanics. Whenever useful, we shall employ
this kind of terminological analogy.
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an explicit dependence of the function �0(t) upon α as �0α(t). An analogous
nomenclature will also be introduced for the total wavefunction �±

α (t), which
satisfies equation (7.2b). The additional indices ± in the function �(t) indicate
that �(t) tends to �0(t) when t → ∓∞. Here, the quantity α is temporarily
taken as being the same for �0 and � . Such an α is associated with the operators
which commute with the Hamiltonian H0 but not obligatorily with H . We can
now derive the integral equations for �±

α (t) by first partially differentiating the
expression iG±

0 (t − t ′)�±
α (t

′) with respect to t ′. Thus, it follows that

i∂t ′ [G±
0 (t − t ′)�±

α (t
′)]

= −i∂t ′G
±
0 (t − t ′)�±

α (t
′)+ G±

0 (t − t ′)i∂t ′�
±
α (t

′)
= [−H0G±

0 (t − t ′)− δ(t − t ′)]�±
α (t

′)+ G±
0 (t − t ′)(H0 + V )�±

α (t
′)

= {[G±
0 (t − t ′), H0] − δ(t − t ′)}�±

α (t
′)+ G±

0 (t − t ′)V�±
α (t

′)
i∂t ′ [G±

0 (t − t ′)�±
α (t

′)]
= −δ(t − t ′)�±

α (t
′)+ G±

0 (t − t ′)V�±
α (t

′), (7.11a)

where we used the property of commutation (7.6a) as well as the relation (7.2c).
Integrating the obtained expression over t ′ in the limits from −∞ to +∞, we
obtain

iG±
0 (t − t ′)�±

α (t
′)|t ′=+∞t ′=−∞ = −�±

α (t)+
∫ +∞

−∞
dt ′ G±

0 (t − t ′)V�±
α (t

′). (7.11b)

The integrated parts G±
0 (t − t ′)�±

α (t
′) become zero at t ′ → ±∞, respectively,

due to the boundary conditions (7.3a, b) for the Green operator G±
0 . In this way,

the final results become

�+
α (t) = �iα(t)+

∫ +∞

−∞
dt ′ G+

0 (t − t ′)V�+
α (t

′) (7.11c)

�−
α (t) = � f α(t)+

∫ +∞

−∞
dt ′ G−

0 (t − t ′)V�−
α (t

′) (7.11d)

where

�+
iα(t) ≡ Lim

t ′→−∞
iG+

0 (t − t ′)�+
α (t

′) (7.12a)

�−
f α(t) ≡ − Lim

t ′→+∞
iG−

0 (t − t ′)�−
α (t

′). (7.12b)

Introducing the asymptotic states �+
iα(t) and �−

f α(t) enabled us, in fact, to avoid
the use of the same label �0α(t) for the two different homogeneous parts of the
integral equations (7.11c) and (7.11d). Nevertheless, for a shortened notation
in the future, whenever there is no possibility of confusion, we shall use the
common label �0α(t) for both of the free states associated with (7.11c) and
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(7.11d). We will, however, always keep in mind that under �0α(t) we understand
�+

iα or �−
f α depending upon whether we are dealing with the in itia l or final

asymptotic configuration of the state vector of the total system. Due to the
boundary conditions (7.3a, b), we have that G±

0 (t − t ′) = 0 for t � t ′, so that
(7.11c, d) can be written, with the help of equations (7.4a–d), in the form of the
integrals with the semi-infinite limits:

�+
α (t) = �  iα(t)− i

∫ t

−∞
d t ′ e−i H0( t−t ′) V�+

α (t
′) (7.13a)

�−
α (t) = �  f α(t)− i

∫ ∞

t
d t ′ e−i H0( t−t ′) V�−

α (t
′). (7.13b)

The most obvious physical interpretation of these equations can be obtained by
solving them using the iteration method2:

�+
α (t) = �  iα(t)+

∫ t

−∞
d t ′ G+

0 (t − t ′) V� iα(t
′)

+
∫ t

−∞
d t ′
∫ t ′

−∞
d t ′′ G+

0 (t − t ′) V G+
0 (t

′ − t ′′) V� iα(t
′′)+ · · · .

(7.13c)

Hence, we see that the total wavefunction �+
α (t) differs from the asymptotic

(free) state �iα(t) by an additional series of terms. Thus, e.g., the term∫ t
−∞ d t ′ G+

0 (t − t ′) V� iα(t ′) describes the free state � iα(t ′), which interacts
only once with the potential V at the time t ′, after which it propagates freely
under the action of G+

0 (t − t ′) until the moment t . Analogously, the term∫ t
−∞ d t ′

∫  t ′
−∞ d t ′′ G+

0 (t − t ′) V G+
0 (t

′ − t ′′) V� iα(t ′′) is related to the free state
�iα(t ′′), which is exposed, at the time t ′′, to the interaction V . Afterwards, this
state propagates freely until the moment t ′ under the influence of G+

0 (t
′ − t ′′).

Subsequently, the interaction potential V again becomes ‘switched on’ before the
state finally exhibits a free propagation, until time t under the action of G+

0 (t− t ′).
A similar interpretation could be obtained for the higher-order terms, which
describe the multiple scattering at the potential V , followed by the successive
free propagations of the particle. An entirely analogous discussion can also be
carried out for the outgoing wave �−

α (t).
Obviously, the relations (7.12a, b) can be inverted in the sense that the

total state vector �(t), which evolves under the influence of the Hamiltonian H ,
acquires two equivalent forms:

�+
α (t) = Lim

t ′→−∞
iG+(t − t ′)�0α(t

′) (7.14a)

�−
α (t) = − Lim

t ′→+∞
iG−(t − t ′)�0α(t

′). (7.14b)

2 In so doing, we leave the important question of convergence for a general analysis, which will be
developed in chapter 11.
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With the help of these expressions, the following pair of the equations is
immediately obtained from (7.11c, d):

�+
α (t) = �0α(t)+

∫ +∞

−∞
dt ′ G+(t − t ′)V�0α(t

′) (7.14c)

�−
α (t) = �0α(t)+

∫ +∞

−∞
dt ′ G−(t − t ′)V�0α(t

′). (7.14d)

Employing now equations (7.9a) and (7.14c, d), we easily find that

�±
α (t) = �±�0α(t) (7.15a)

where�0α(t) and�±
α (t) are the solutions of the Schrödinger equations (7.2a) and

(7.2b), respectively. Here, the quantities �± represent the so-called Møller wave
operators, which are time independent:

�± = 1 ∓ i
∫ ∞

−∞
dt ′ G±(t − t ′)V G∓

0 (t
′ − t) = 1 ∓ i

∫ ∞

−∞
dt G±(−t)V G∓

0 (t)

�± = 1 − i
∫ 0

∓∞
dt eiHt V e−iH0t . (7.15b)

The integration over t can be performed by means of the following evident
relation:

d

dt
(eiHt e−iH0t ) = ieiHt (H − H0)e−iH0t = ieiHt V e−iH0t (7.15c)

which finally yields

�± = 1 −
∫ 0

∓∞
dt

d

dt
(eiHt e−iH0t ) = Lim

t→∓∞{U†(t)U0(t)} (7.15d)

where U0(t) and U(t) are the evolution operators:

U(t) = e−iHt (−∞ < t < +∞) (7.16a)

U0(t) = e−iH0t (−∞ < t < +∞). (7.16b)

The domain of the definition of the operators U(t) and U0(t) is the entire Hilbert
space�. The family of the operators U(t) satisfies the relation

U(t)U(t ′) = U(t + t ′) = U(t ′)U(t). (7.16c)

This is a representation of the additive group of real numbers, since t ∈ �.
It is frequently stated that U(t) also represents the transformation group of the
system. In the case of the operator U0(t), there exists a relation analogous to
the expression (7.16c). The family of operators U0(t) represents a group, which
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describes the free motion of the system in the absence of the interaction V .
The Hermitean character of the Hamiltonians H0 and H implies the following
properties of the unitary operators:

U†(t) = U(− t) U †
0 (t) = U0(− t). (7.17a)

This results in the unitarity of the one-parameter groups U(t) and U0(t):

U†(t)U(t) = 1 = U(t)U †(t) (7.17b)

U†
0 (t)U0(t) = 1 = U0(t)U

†
0 (t). (7.17c)

It is advantageous to work with the evolution operators U0(t) and U(t), because
they are defined in the whole Hilbert space � . In contrast to this, the Hamiltonians
H0 and H are defined in the lin ea r m a n ifo ld s, which are otherwise everywhere
dense sets in � . A certain vector subspace � ⊂ � is everywhere dense in the
space � , if for each element ξ ∈ � and ε > 0, there exists ζ ∈ �, such that
we have ‖ξ − ζ‖ < ε. An exceptionally important consequence of this fact is
that we can freely execute the multiplications of two evolution operators, since
the domain of one of them is always contained in the range of the other operator.
Therefore, there will be no need to specially indicate the domain of the definition
of the evolution operators. The limiting procedure in equation (7.15d) should be
understood in the sense of th e stro n g limit. This means that convergence in the
norm is valid for each vector |ψ〉 ∈ � :

‖{U†(t)U0(t)−�±}ψ‖ −→
t→∓∞ 0. (7.18)

In addition to the strong limits, th e wea k limit also exists. The sequence {ψ(t)} ⊆
� converges weakly to the zero-vector ∅ when t → +∞ and this is symbolized
by ψ(t)−→t→+∞ ∅ assuming that the scalar product between the vector ψ(t)
and any other fixed element φ ∈ � tends to zero: 〈φ|ψ(t)〉−→t→+∞ 0.
Strong topology implies weak topology by the argument of the Schwartz
inequality |〈�|U†(t)U0(t)|ψ〉 − 〈�|�±|ψ〉| ≤ ‖�‖ · ‖U†(t)U0(t)ψ −�±ψ‖ ≤
‖U†(t)U0(t)ψ − �±ψ‖ for any normalizeable state � (see chapter 9 for more
details).

The meaning of the operators�± is evident from (7.15a), where we see that,
e.g., �+ relates one total state vector �+

α (t) to each function �0α(t). This total
state is known to coincide with �0α(t) at t → −∞. The main properties of the
Møller operators�± are:

�†� = 1 (7.19a)

H� = �H0 (7.19b)

where � denotes either �+ or �−. The feature of isometry (7.19a) signifies that
the operators �± do not change the length of a vector upon which they act, i.e.
they preserve the norm ‖�‖:

‖��‖2 = 〈��|��〉 = 〈�|�†��〉 = 〈�|�〉 = ‖�‖2. (7.20a)
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The expression (7.19b) is known as the intertwining relation. The following
statement holds true:

U†(τ )� = �U†
0 (τ ) � = �+,�− (7.20b)

where U and U0 are defined in (7.16a) and (7.16b), respectively. This is proven
via

U†(τ )�± = eiHτ
{

Lim
t→∓∞ eiHt e−iH0t

}
= Lim

t→∓∞
{

eiH(τ+t)e−iH0t
}

=
{

Lim
t→∓∞ eiH(τ+t)e−iH0(τ+t)

}
eiH0τ

=
{

Lim
t ′→∓∞

eiHt ′e−iH0t ′
}

eiH0τ = �±eiH0τ

U†(τ )�± = �±U†
0 (τ ) (QED). (7.20c)

Differentiating equation (7.20b) with respect to the parameter τ and setting τ = 0
in the obtained expression, we find that H�± = �±H0 (QED). With the help of
the isometry of the operators�±, we can immediately rewrite the relation (7.19b)
in the form

�† H� = H0. (7.20d)

Thus, �± can also be interpreted as the operators whose symmetric action onto
the total Hamiltonian H yields the kinetic energy operator H0. This clearly shows
that, in a general case, � cannot be a unitary operator. If that were the case,
then the spectra of the operators H and H0 would be identical to each other.
This, however, would eliminate the eventual bound states from the spectrum of
the Hamiltonian H . Hence, only if the potential V does not support the bound
states, the spectra of the operators H and H0 would mutually coincide, leading
to the unitarity of the operator �. In fact, it is essential to point out that the
relation H0� = �H , which would be an inverse expression with respect to
equation (7.19b), in the sense that H and H0 interchange their places, does not
necessarily hold true. Let �0α(E) represent an eigenfunction of the operator
H0, associated with the corresponding eigenvalue E , where α is any other set
of the quantum numbers required for removing the degeneracy. Then we know
from (7.19b) that ��0α(E) is an eigenvector of the operator H , corresponding
to the same eigenvalue E . However, proceeding in the opposite direction by
selecting the state vector �α and the eigenenergy E of the total Hamiltonian
H , it follows that it would not be always possible to find a counterpart in the
spectrum of H0 with the same E . This is because the energies E of H0 are always
positive, whereas the eigenvalues of H can be negative for those potentials V
which support the bound states:

H {��0α(E)} = �H0�0α(E) = �E�0α(E) = E{��0α(E)}. (7.21a)

However, H�α(E) = E�α(E), so that equation (7.21a) gives

��0α(E) = �α(E) (7.21b)
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in accordance with (7.15a), as it should be. If a Hermitean adjoint of
equation (7.21b), i.e. �∗

0α�
† = �∗

α is multiplied from the right by �, it will
result in �∗

0α = �∗
α�, where the isometry (7.19a) is used. When an adjoint of

this expression is taken, we shall have:

�†�α(E) = �0α(E) (E > 0). (7.21c)

Here we underline that E > 0, since equations (7.21b, c) are derived with the
help of (7.21a), where E is understood to be an eigenvalue of the kinetic energy
operator H0. The relation (7.21c) can be extended also to those values E, which
belong to the spectrum of the Hamiltonian H, (but not to H0), i.e. to the discrete
values (E < 0), by a complementary redefinition:

�†�α(E) = 0 (E < 0). (7.21d)

We can also arrive at equation (7.21d) by taking the Hermitean adjoint of the
expression (7.19b). In so doing, we will employ the Hermitean property of
the operators H and H0 to obtain H0�

† = �† H . Application of both sides
of this operator identity on �α(E), with E being in the spectrum of H , yields
H0[�†�α(E)] = �† H�α(E) = �† E�α(E) = E[�†�α(E)]:

H0{�†�α(E)} = E{�†�α(E)}. (7.22a)

This equation will be satisfied, in the case E < 0, only if �†�α(E) = 0,
since there is no such eigenfunction of the operator H0, which would have the
eigenvalue from the discrete spectrum. Hence, we arrive again at the same
equation (7.21d) by a different procedure. The result (7.21d) can be rewritten
in the following operator form

�†� = 0, (7.22b)

where � is the projector onto the subspace spanned by the bound states of the
operator H . Thus, the operator � maps the entire Hilbert space � onto the
subspace of the continuum states of the Hamiltonian H . In other words, the
subspace of the bound space cannot be realized by the action of the operator
�. This implies that the inverse operator �−1 cannot be defined for the whole
space �. However, in the subspace � (� ⊂ �) of the continuum states of
the Hamiltonian H , we have that �† represents the inverse of the operator �.
Simultaneously, according to equation (7.22b), the operator �† annihilates the
subspace of a part of� spanned by the set of the bound states. Therefore, for the
whole space�, it follows that

��† = 1 −�, (7.22c)

where it can be seen that the projector� represents a measure of the departure of
the Møller operator from unitarity. Due to the completeness of the unity operator,
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it follows that 1 −� is, in fact, the projector onto the subspace of the continuum
states of the Hamiltonian H . The expressions (7.22b) and (7.22c) are mutually
consistent. This can indeed be verified by multiplying equation (7.22c) with the
operator �† and using the isometry (7.19a): �†��† = �† = �† − �†� = �†

(QED).
This consideration can be also summarized in the following manner. Let �

represent a set of elements |ψ〉 ∈ �, for which we have

〈�†ψ|φ〉 = 〈ψ|�φ〉 ∀|φ〉 ∈ �. (7.23a)

Here the fact that � is a bounded operator3 in the whole space � enables us to
define the adjoint operator�† everywhere in �, as a bounded and linear operator
with the property (7.22b). Taking into account equation (7.23a), it follows that
the feature |ψ〉 ∈ � also implies that |ψ〉 ∈ �⊥, where �⊥ is the orthogonal
complement (ortho-complement) of the set � of the continuum state vectors. In
other words, �⊥ = �, with � being the space of the bound state vectors. In this
way, the standard decomposition of the Hilbert space � onto the direct sum �⊕�
gains its full meaning. Similarly, if |ψ〉 ∈ �⊥, it then follows that

〈�†ψ|φ〉 = 0 ∀|φ〉 ∈ �. (7.23b)

This yields
�†|ψ〉 = 0, (7.23c)

which means that |ψ〉 ∈ � and, therefore, � = �⊥. However, if |ψ〉 ∈ �, then
there exists a certain state |φ〉 ∈ � for which we have �|φ〉 = |ψ〉. Thus, due to
isometry (7.19a),

�†|ψ〉 = �†�|φ〉 = |φ〉. (7.23d)

This means that the operator�†� is defined everywhere in the whole space � so
that it represents th e p ro jecto r �(≡ ��) with respect to � . This can be stated
equivalently as: ��† = 1 − � and �†� = 1, which is previously quoted in
(7.22c) and (7.19a). It is important to emphasize that the expressions (7.19a)
and (7.22c) do not depend upon the signs (+) or (−) of the associated Møller
operators �,�†. This is a direct consequence of the Kato condition (c) from
chapter 1: ��− = ��+ ≡ �, which defines the one-channel collisional system.
Furthermore, the defining relation (7.23a) of the set� enables us to write directly

�†� = �� = 0 (7.23e)

which has already been announced in (7.22b). This will be of use in connection
with the unitarity of the S-scattering operator.

Let us resolve here a paradox about the non-unitarity or, more precisely, of
the semi-unitarity of the Møller wave operators �±:

�†� = 1 �= ��† (7.24a)
3 An operator A is bounded, if we have ‖Aψ‖ ≤ M‖ψ‖, where M <∞ is a positive finite constant,
ψ ∈ �A and ‖ψ‖ <∞.
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in a general case when the bound states are possible for a given potential V .
Namely, at first glance, it could seem bizarre that the operators�± are not unitary,
despite the fact that, according to equation (7.15d), they represent the limits of the
product of the unitary evolution operators�(t) ≡ U†(t)U0(t). Let us first analyse
isometry (7.19a):

1 = �±†�± = Lim
t ′→∓∞

�±†(t ′) · Lim
t→∓∞�±(t).

We apply these operators onto an arbitrary fixed eigenvector ψ ∈ � of the
Hamiltonian H . The whole Hilbert space is given by the direct su m � ⊕ �

(= �) of the subspaces � and � associated with the discrete and continuous
states, respectively. This means that any vector ψ ∈ � can be expanded onto two
mutually orthogonal componentsψ = ψD+ψC, with the property 〈ψD|ψC〉 = 0,
where ψD ∈ � and ψC ∈ � are the projections of the state vector ψ onto
the subspaces � and � , respectively. The physical meaning of the weak limit
is obvious, e.g., in the coordinate representation 〈 r|ψ(t)〉 = ψ(t, r) of the
state vector ψ(t). Here ψ(t, r) represents the probability amplitude of finding
a particle of the given reduced mass µ at the point r at the time t . When we
are dealing with a bound state, then it is expected that for each t, the function
ψD(t, r) takes the most significant values in the vicinity of the coordinate origin.
In contrast to this, the state ψC(t, r) represents a wave packet, which has spread
out far from the coordinate origin for very large values of t . The probability
amplitude of this wave packet decreases as |t|−3 at a given fixed point in space
(see chapter 9). The action of the short-range potential V ( r) will not have any
significant influence after a sufficiently large time has elapsed. When this is true,
then it is most probable that the reduced particle µ will find itself far away from
the centre of the interaction field V . In other words, it is possible to find a solution,
say ψ0(t, r), of the free-wave equation: H0ψ0(t, r) = i∂tψ0(t, r), such that the
following weak limit exists:

lim
t→+∞{ψ(t, r)− ψ0(t, r)} = lim

t→+∞{ψC(t, r)− ψ0(t, r)} = ∅.
Let us return now to the relation (7.24a). We first apply the operator �(t) onto
ψ(t), yielding the image: φ(t) = �(t)ψ = U †(t)U0(t)ψ , whose components in
the subspace � ⊂ � of the bound states will be progressively less significant as
the time t increases. Therefore, as t → +∞, we will observe that φ(t) ∈ �, since
the Møller operator�maps the whole space� onto the subspace� . This means
that, due to the relation �†�ψ = �†(�ψ) = �†φ, there exists the following
simple connection between the Hermitean adjoint operator �† and its inverse
counterpart �−1, i.e. �†φ = �−1φ for every element φ ∈ �. Since the state
vector φ is an arbitrary element from�, we can write a stronger operator relation
between �−1 and �† as:

�† = �−1 on� (7.24b)

which is equivalent to �†� = 1 on the subspace �. Let us now assume that
the state vector φ is orthogonal onto the subspace �, or stated symbolically
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φ ⊥ �, i.e. φ is the element of the ortho-complement �⊥ = �. This implies
that 〈φ|ξ〉 = 0 for each element ξ ≡ �ψ ∈ �. It then follows from here that
〈ψ|�†|φ〉∗ = 0 for ∀ψ ∈ �, i.e.

�†φ = ∅. (7.24c)

This is true because, by definition, the Hermitean, adjoint operator �† is
introduced through the relation 〈ψ|�†φ〉 = 〈φ�|ψ〉∗. Since the expression
(7.24c) is valid for an arbitrary state vector φ ∈ �⊥, we will have

�† = 0 on�⊥ = �. (7.24d)

Next we examine the inequality (7.24a), by using the vector �(t)�†(t)ψ . The
Hermitean adjoint operator �†(t) will converge strongly to �−† as t → +∞ in
the subspace� of the continuum states but, simultaneously, convergence will be
weak in the subspace �. In other words, when we apply the operator �†(t) onto
a given bound state ψD of the energy E from the spectrum of the Hamiltonian
H , we will obtain the wave packet χD(t) ≡ �†(t)ψD = U†

0 (t)U(t)ψ
D =

e−iEt U†
0 (t)ψ

D. This packet spreads out as time increases. Nevertheless, its norm
remains constant. This means that the strong limit does not exist, in the sense of
the strong convergence with respect to the norm. Namely, such a norm cannot be
made arbitrarily small as t → +∞. However,

lim
t→+∞‖ψD(t)‖ = constant. (7.25a)

An entirely analogous reasoning could be repeated also for t → −∞. The
relation (7.25a) states that the sought strong limit does not exist for a potential
which supports bound states. This non-existence of the strong limit of the operator
�(t)�†(t) as |t| → ∞ resolves the outlined paradox. Namely, for unitarity of
the Møller operator �±†�± = 1 = �±�±†, it is necessary that both operators
�†(t)�(t) and�(t)�†(t) possess the strong limits as t → ∓∞. The background
of this feature, that isometry of the wave operators does not imply unitarity, lies in
the fact that scattering theory employs the infinite-dimensional Hilbert space �,
due to the presence of the continuous part of the spectrum of the Hamiltonian H ,
which exhibits infinite degeneracy. Only in the finite-dimensional vector spaces, a
certain isometric operator O† O = 1 is automatically unitary O O† = 1 = O† O.
Nevertheless, the operator �†(t)�(t) possesses a weak limit as |t| → ∞. To
prove this, it is sufficient to make reference to the well-known Riemann–Lebesgue
lemma, which asserts that the following relation is valid for a given square
integrable function φ(ζ ):∫ ∞

0
dζ φ(ζ )eiζ t −→

t→∞ 0 t > 0 (7.25b)

regardless of the fact that the function exp (iζ t) obviously does not have a finite
limiting value as t → +∞. Hence, applying the Riemann–Lebesgue lemma
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(7.25b) to our case, we see that the sequence of the vectors {χD(t)} converges
weakly to zero when t → +∞, since the scalar product 〈φ|χD(t)〉 of the vector
χD(t) with any fixed element φ becomes progressively smaller with the increase
of time t . When we claim that the set {χD(t)} represents a sequence of the
state vectors χD(t), then we understand that time t, as a real variable, takes its
value t1, t2, . . . from the interval t ∈ [−∞, 0] or t ∈ [0,+∞]. In an analogous
nomenclature, the set of the natural numbers � could be symbolically represented
by { n} ≡ {n}∞n=1.

The relation of isometry (7.19a) can be useful in discussing the norm of
the wavefunction �α( E). Namely, the assumed co mp leten e ss of the set �0α( E)
means that

〈�0α( E)|�0,α′( E
′)〉 = δ(  E − E ′)δαα′ (7.26a)

where the Kronecker δαα′-symbol should be replaced by the Dirac δ-function
for continuous values of the quantum numbers. Thus, with the help of
equations (7.19a) and (7.21b), the following result emerges:

〈�α( E)|�α′( E
′)〉 = 〈�0α( E)�|��0α′( E

′)〉 = 〈�0α( E)|�†��0α′( E
′)〉

= 〈�0α( E)|�0,α′( E
′)〉

〈�α( E)|�α′( E
′)〉 = δ(  E − E ′)δαα′. (7.26b)

It is seen from here that the state �α(E) possesses the proper normalization.
Let us concentrate now on the S-scattering operator, which we already

encountered in chapters 5 and 6. We suppose that in the remote past (t → −∞),
the given physical system was in the state �0α(t). Its actual state is described
by the wavefunction �+

α (t). Then the central question which is asked in the
scattering problem is the following: what is the probability that in the distant
future (t → +∞), the studied system finds itself in the state �0β(t)? Evidently,
the result is linked to the projection of the state |�+

α (t)〉 onto 〈�−
β (t)| in the

following way:

W = |〈�−
β (t)|�+

α (t)〉|2 = |〈�−�0β(t)|�+�0α(t)〉|2
= |〈�0β(t)|�−†�+�0α(t)〉|2

W = |〈�0β(t)|S�0α(t)〉|2 (7.26c)

where S denotes the scattering operator,

S = �−†�+. (7.27)

The operator S is time-independent and its matrix elements, taken between the
eigenstates of the Hamiltonian H0, i.e. the free states, constitute the S-matrix.
Probability (7.26c) does not depend upon time. Namely, since H and H0 are
Hermitean operators, it is at once found from (7.19b) that

�+H0 = H�+ (7.28a)

H0�
−† = �−† H (7.28b)

�−†�+H0 = H0�
−†�+. (7.28c)

Copyright 2004 IOP Publishing Ltd



Time-dependent scattering theory 89

The expression (7.28c) is obtained by multiplying both sides of equation (7.28a)
from the left with �−† and afterwards employing (7.28b): �−†�+ H0 =
(�−† H )�+ = H0�

−†�+, i.e.  SH0 = H0 S. Thus, the operators S and H0
commute with each other:

[ S, H0] = 0. (7.28d)

This implies that the S-matrix elements between the eigenstates of the operator
H0 are stationary in time (see chapter 4).

We return again to the previously introduced state vectors iG±
0 (t − t ′)�(t ′),

which for t>< t ′ evolve under the action of the Hamiltonian H0. At the time t = t ′,
these vectors coincide with the state �(t ′), since we have according to (7.4a, b)
that:

Lim
t→0±

G±
0 (t) = ∓î1 and Lim

t→0±
G±(t) = ∓î1.

These wavefunctions are now subjected to the limit t ′ −→ ∓∞, which defines
the vector �i, f (t), according to (7.12a, b). The wavefunctions �i, f (t) represent
the free asymptotic state vectors, which all the time evolve under the influence
of the kinetic energy operator H0. However, these state vectors were, in both the
remote past and distant future, equal to the wavefunction �(t) of the complete
interacting system:

�±(t) =⇒
t→∓∞�i, f (t) (7.29a)

or, equivalently,
Lim

t→∓∞�(t) = Lim
t→∓∞�i, f (t) (7.29b)

where the symbol ⇒ denotes the strong limit. The existence of the so-
called asymptotic states �i, f (t) represents, in fact, a special and very essential
assumption for the examined collision system, as we have already pointed out.
We are talking here about a physically plausible assumption: in the remote past
and in the distant future, the two particles are sufficiently far from each other so
that their mutual interaction can be neglected. The boundary conditions contained
in (7.29a) can suitably be utilized for a search for an answer to the previously
mentioned central question in the scattering problem. We are looking for the
probability of finding the collision system in the final state �0β(t) in the distant
future (t → +∞), if the state of the system in the remote past was �0α(t).
The state of the total system is described by the state vector �+

α (t) at the actual
moment t . The probability amplitude is then evidently given by the expression:

lim
t→+∞〈�0β(t)|�α(t)〉 = lim

t→+∞〈�0β(t)|�0α(t)〉 = 〈�0β(t)|S�iα(t)〉
lim

t→+∞〈�0β(t)|�+
α (t)〉 = 〈�0β(t)|S�0α(t)〉 (7.29c)

where 〈�0β(t)|S�iα(t)〉 is independent of time as stated before. In (7.29c), the
wavefunction �iα(t) is re-labelled as �0α(t) to emphasize that this is a free state
with quantum numbers denoted collectively by α.
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It is seen from here that the boundary conditions (7.29a) play a crucial role,
without which a definition of the S-matrix becomes impossible.

With the help of the already defined Møller operators �±, the asymptotic
states �i, f (t) can be presented as

�i (t) = �+†�(t) (7.30a)

� f (t) = �−†�(t). (7.30b)

Since, however, according to (7.15a), we have that �±(t) = �±�i, f (t), the
following results emerge immediately from the definition (7.27):

� f (t) = S�i (t) (7.30c)

�i (t) = S†� f (t). (7.30d)

These relations have already been announced in (1.2). The fundamental character
of, e.g., equation (7.30c) is obvious, since it directly communicates the key
task in the scattering problem: obtaining the final asymptotic state � f (t) for a
given initial wavefunction �i (t). Since it is possible to observe free motions
only asymptotically, we see that the S-operator contains the full information
relevant for the scattering experiment. Therefore, if we knew how to compute
the S-operator, the scattering problem would be completely solved. Needless to
say, however, obtaining the explicit expressions for the S-operator represents an
exceptionally difficult task, which is exactly solvable only in a small number of
cases.

Let us suppose that the sets {�i (t)} and {� f (t)} are complete. Then if we
insert equation (7.30c) into (7.30d) and vice versa, unitarity of the S-operator will
follow:

S†S = 1 = SS†, (7.31)

irrespective of whether the operators �± are unitary or not. Hence, the
proof of this property critically depends upon the assumed so-called asymptotic
completeness. If the S-operator is unitary, then, e.g., the relation � f (t) =
S�i (t) implies that for every normalized state vector �i (t), there exists a unique
normalized wavefunction � f (t) and vice versa. Due to linearity of the S-
operator, correspondence of the type (7.30c, d) between the states � f (t) and
�i (t), preserves the superposition of the states. This means that each state vector
�i (t) = a� ′

i(t) + b� ′′
i (t) will have a counterpart � f (t) = a� ′

f (t) + b� ′′
f (t),

where a and b are certain arbitrary constants from the set of the complex numbers
� . The expression (7.31) can be useful while proving the relation (7.28d),
which expresses the fact that, in the scattering experiment, the total energy is
conserved. Namely, the average initial Ei and final E f energies of the whole
system associated respectively with the states |�i 〉 and |� f 〉 = S|�i 〉 are given
through the following expected values:

Ei ≡ 〈�i |H0|�i 〉 (7.32a)

E f ≡ 〈� f |H0|� f 〉 = 〈�i |S† H0S|�i 〉. (7.32b)
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However, multiplying the commutator (7.28d) from the left with S† and taking
into account unitarity (7.31) will give

H0 = S† H0 S (7.32c)

and, therefore, according to equation (7.32b):

E f = Ei (QED). (7.32d)

Here it remains only to provide an explanation for the claim that the quantities
〈�i | H0|�  i〉 and 〈� f | H0|�  f 〉 indeed represent the initial and final energy of the
to ta l system. Namely, it is anticipated that the actual total energy E for a certain
state � is, in fact, the expected value of the Hamiltonian H :

E = 〈�| H |�〉. (7.33a)

However, since we have� = ��0, where�0 is the eigenfunction of the operator
H0, it will be

E = 〈�| H |�〉 = 〈�0|�† H��0〉 = 〈�0| H0|�0〉. (7.33b)

Here we have used the relation (7.20b), so that the quantities Ei and E f are
indeed the expected values of the energy of the total system in the initial and final
state, respectively.

Unitarity of the S-matrix can also be intuitively understood from the
following brief consideration. We have already stressed that the quantities�± are
the isometric operators, which map the entire Hilbert space � onto the subspace
� ( � ⊂ � ) of the scattering states. This means that �+ and �− are the
linear operators, which preserve the norm. The mapping �+ is effected in the
direction from � onto � , whereas �−† is the inverse mapping from � onto
� . It then follows from here that the S-operator represents a linear one-to-one
correspondence between � and � , such that the norm remains unaltered. In
other words, the transformation S is a unitary operator. Of course, this argument
is only a q u a lita tive understanding of the unitarity of the S-operator, since we still
have to prove that both mappings�+ and �− realize the subspace � of th e sa m e
range. We mention here that Kato and Kuroda [76] were able to show that the
S-mapping is not unitary if the ranges ��+ and ��− of the operators �+ and
�− are different, despite the fact that the quantities �± exist. However, if the
invariance of the time irreversibility holds true, then the special cases for which
we have that ��+ �= ��− are automatically eliminated (see chapter 10). If the
condition of asymptotic completeness is fulfilled, it is then easy to verify that the
S-operator is unitary, since using equations (7.22b, c) we find that

SS† = �−†�+�+†�− = �−†(1 −�)�− = �−†�− −�−†��− = 1

(7.34a)

S†S = �+†�−�−†�+ = �+†(1 −�)�+ = �+†�+ −�+†��+ = 1.

(7.34b)
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As mentioned, the unitarity of the operator S is one of the most important
properties of the S-matrix theory of scattering. Of course, the study of the S-
matrix will greatly be facilitated by the knowledge that the S-operator belongs
to a narrower class of the unitary operators. Thus, e.g., for application of the
dispersion relations, as a powerful method of scattering theory, unitarity of the
S-operator is of exceptional significance.

It is seen from expression (7.26c) that finding the probability W becomes
possible only if the Møller operators �± exist, as well as if the asymptotic state
vectors�i (t) and� f (t) are defined. The behaviour of these asymptotic vectors is
governed by the unperturbed Hamiltonian H0. Therefore, in the future analysis, it
will always be necessary to insist upon a concrete definition of both the operator
�± and the associated asymptotic vectors, in accordance with the concept of the
asymptotic convergence of the states.

Instead of the previous S-operator, it is possible to define another alternative
scattering operator S′ as

S′ = �+�−† (7.35)

�+
α (t) = S′�−

α (t) (7.36a)

�−
α (t) = S′†�+

α (t). (7.36b)

The first motivation in having the relation (7.35) is in a generalization of the
scattering theory to multi-particle problems, which can be accomplished by means
of the scattering operator S′ and not by S. Let us note that the product �+�−†

in this ordering in which it appears in equation (7.35) is well defined, since �
and �† are the bounded operators in the whole space �. Due to this fact, we are
entitled to create, without any difficulty, the following products:

S′S′† = �+�−†�−�+† = �+�+† = 1 −� (7.37a)

S′† S′ = �−�+†�+�−† = �−�−† = 1 −� (7.37b)

where the isometry (7.19a) is used. Thus, in a general case, the S′-operator is not
unitary:

S′†S′ = 1 −� = S′S′†. (7.38a)

A connection between the two scattering operators S and S′ can be derived if the
defining relation (7.35) is multiplied from the left by �† and from the right by �,
where� = �+ or� = �−. In this way, employing equations (7.19a) and (7.27),
we find that

�+†S′�+ = S = �−†S′�−. (7.38b)

Similarly, multiplication of both sides of equation (7.35) from the left by �−† and
from the right by �+, together with taking into account (7.27), yields

�−†S′�+ = S2. (7.38c)
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In an analogous manner, multiplying equation (7.35) from the left by �+† and
from the right by �− will result in

�+†S′�− = 1. (7.38d)

Furthermore, with the help of the intertwining relations (7.28a, b), we find that

S′H − H S′ = �+�−† H − H�+�−† = �+H0�
−†−�+H0�

−† = 0. (7.39a)

Therefore, the operators S′ and H commute with each other:

[S′, H ] = 0. (7.39b)

This is in contrast to the S-operator which, according to the relation (7.28d),
commutes with H0. We then conclude, from the commutation relation (7.39b)
that the S′-operator is a constant of motion. Moreover, its expected values over
the eigenfunctions of the Hamiltonian H are independent of time. In contrast to
this, as we have already pointed out, the S-operator is an asymptotic constant of
motion and its expected values are taken over the eigenstates of the unperturbed
Hamiltonian H0. Replacing τ with −t in equation (7.20b) and using (7.17a), we
immediately arrive at the result:

U(t)� = �U0(t) � = �+,�−. (7.40a)

Similarly, taking the adjoint of the intertwining relation (7.20b) and afterwards
putting τ = t , together with application of the expression (7.17a), will imply that

�†U(t) = U0(t)�
† � = �+,�−. (7.40b)

With the help of these results, the following relation emerges:

S′U(t) = �+�−†U(t) = �+U0(t)�
−† = U(t)�+�−† = U(t)S′. (7.41a)

Therefore, the operators S′ and U(t) commute with each other:

[S′,U(t)] = 0. (7.41b)

Since U0(t) does not commute with S′, it follows that the operator U†
0 (t)S

′U0(t)
depends upon time. Let such an operator be denoted by S′(t), i.e.

S′(t) ≡ U†
0 (t)S

′U0(t). (7.41c)

We now want to prove that the following important relation holds true:

S′(−∞) = S = S′(+∞). (7.41d)

Of course, these limits of the operators are taken in the sense of the limits of strong
topology. In other words, the expression (7.41d) means that, for every |ψ〉 ∈ �,
we have

‖{S′(t)− S}ψ‖ −→
t→∓∞ 0. (7.42)
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This formula can be checked if we first prove the following lemma:

Lemma 7.2. Suppose that we are given one-parameter operators of the type�±(t)
such that

�±(t) = U†
0 (t)�

±U0(t). (7.43)

Here �± are the standard, time-independent Møller wave operators. Then there
exist certain limiting values of the operators �±(t) as t → ∓∞ in the particular
form:

Lim
t→−∞�+(t) = 1 = Lim

t→+∞�−(t) (7.44a)

Lim
t→+∞�+(t) = S (7.44b)

Lim
t→−∞�−(t) = S†. (7.44c)

Proof. We shall first use the intertwining relation (7.40a) to rewrite (7.43) as

�±(t) = U†
0 (t){�±U0(t)} = {U†

0 (t)U(t)}�±. (7.45)

This expression is very convenient for searching the limiting values as t → ∓∞,

since the last term�± from the rhs of equation (7.45) does not depend upon time.
Furthermore, in the product U†

0 (t)U(t), we can directly use the definition (7.15d)
of the Møller operators. Hence, we obtain the following from (7.45)

Lim
t→−∞�+(t) = �+†�+ = 1 (7.46a)

Lim
t→+∞�−(t) = �−†�− = 1 (7.46b)

Lim
t→+∞�+(t) = �−†�+ = S (7.47a)

Lim
t→−∞�−(t) = �+†�− = S† (QED). (7.47b)

This completes the proof of lemma 7.2. In such a way, we obtain the two
equivalent forms (7.44b) and (7.44c) of the S-scattering operator. There exists
yet another alternative definition of the operator S′(t) given by the product:

S′(t) = �+(t)�−†(t). (7.48)

This can be verified with the help of the unitarity relation (7.17c) of the operator
U0(t), together with the definition (7.35) for S′:

S′(t) = �+(t)�−†(t) = {U†
0 (t)�

+U0(t)}{U†
0 (t)�

−†U0(t)}
= U †

0 (t)�
+{U0(t)U

†
0 (t)}�−†U0(t) = U †

0 (t)�
+�−†U0(t)

S′(t) = U†
0 (t)S

′U0(t) (QED). (7.49a)
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Employing now equations (7.48), we shall split the difference S′(t)− S as

S′(t)− S = �+(t){�−†(t)− 1} + {�+(t)− S} (7.49b)

and use the fact that �(t) is a bounded operator to write

‖{S′(t)− S}ψ‖ ≤ ‖�+(t)‖ · ‖{�−†(t)− 1}ψ + {�+(t)− S}ψ‖
≤ ‖{�−†(t)− 1}ψ‖ + ‖{�+(t)− S}ψ‖. (7.49c)

Due to the relations (7.46b) and (7.47a), we now have that both of the terms from
the rhs of the inequality (7.49c) tend to zero as t → +∞, which implies that

lim
t→+∞‖{S′(t)− S}ψ‖ = 0 (QED). (7.49d)

Certainly, in the case of potential scattering, we can also use the operator S′ to
formulate the fundamental question of the scattering problem properly. In such a
case, employing the relations (7.6a, b), we will see that the probability W ′ for the
transition from the initial to the final state reads as

W ′ = |〈�−
β (t)|�+

α (t)〉|2 = |〈�−
β (t)|S′�−

α (t)〉|2. (7.50a)

However, an explicit calculation of the matrix elements of the S′-operator
according to equation (7.50a) is much more complex than in the case of the
corresponding probability W , which is introduced in (7.26c) in terms of the
scattering operator S. This is because relation (7.50a) needs to be calculated with
the total wavefunctions �−

β (t) and �−
α (t). In the former case (7.26c) involving

the S-operator, however, we only need to employ the free states �0β(t) and
�0α(t). This question of feasibility of the computation is certainly of paramount
importance in applications of scattering theory. Nevertheless, the final results for
the probability must be the same, irrespective of whether one is using the operator
S′ or S, i.e.

W = W ′. (7.50b)

For the proof of this equality, we shall use the relations (7.15a) and (7.38b):

W ′ = 〈�−
β (t)|S′�−

α (t)〉 = 〈�−�0β(t)|S′�−�0α(t)〉
= 〈�0β(t)|{�−†S′�−}�0α(t)〉 = 〈�0β(t)|S�0α(t)〉

and, therefore,
W ′ = W (QED). (7.50c)
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Chapter 8

Time-independent scattering theory

Passage from the time-dependent to time-independent (stationary) scattering
theory is customarily carried out by means of the Fourier transform of the Green
operators:

G±
0 (E) =

∫ +∞

−∞
dt eiEt G±

0 (t) (8.1a)

G±(E) =
∫ +∞

−∞
dt eiEt G±(t). (8.1b)

Here we use the same labels for the time-dependent and stationary quantities,
e.g. G±(t) and G±(E). Strictly speaking, this should mean that both G±(t)
and G±(E) have the same functional dependence as their respective arguments
t and E . However, this is certainly not true in the general case and we should
have used some other labels, e.g. F±

0 (E) and F±(E) instead of G±
0 (E) and

G±(E), respectively. The reason for the adopted notation in equations (8.1a, b)
is to avoid introducing an exceedingly large number of new labels. Due to the
boundary conditions (7.3a, b), the integrals (8.1a) and (8.1b) for G+

0 (E) and
G+(E) are, in fact, taken in the interval from 0 to +∞. An analogous situation
is valid for G−

0 (E) and G−(E), where the integration limits from t = −∞ to
t = 0 are encountered. However, because of these remaining infinite limits,
it is obvious that these integrals are not well defined from the view point of
convergence. Nevertheless, their existence is possible to secure by introducing
the Dyson damping factors e∓εt (ε > 0) in the integrands for G±

0 (E) and
G±(E). Substitution of the symbolic solutions (7.4a–d) into (8.1a, b), makes
the integration over t trivial, with the following formal solution:

G±
0 (E) = (E − H0 ± iε)−1 (8.2a)

G±(E) = (E − H ± iε)−1 (8.2b)

where it is understood that ε tends to zero through the positive numbers (ε −→
0+). For further analysis, it will prove convenient that the infinitesimally small
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imaginary part in the denominator of the expressions (8.2a) and (8.2b) is absorbed
into the quantity E . Then the operators:

G0(E) = (E − H0)
−1 (8.3a)

G(E) = (E − H )−1 (8.3b)

can be considered as the operator functions of the complex variable E . Such
operators G0(E) and G(E) are known under the name the resolvents of the
operators H0 and H , respectively. Singularities of these resolvents determine
the spectrum of the associated Hamiltonian. Thus, as mentioned e.g., the poles
of the resolvent G(E) correspond to the discrete eigenvalues of the operator
H . However, the branch points are the singularities of the operators G0(E) and
G(E), associated with the continuous spectrum of H0 and H . The entire spectrum
of the operator H0 lies in the continuum, i.e. E ∈ [0,+∞]. Therefore, G0(E) is
an analytic function of E , regular in the whole, finite complex E-plane with a cut
on the positive part of the real axis from E = 0 to E = +∞. This property will
also be reminiscent of G(E), if the potential V does not support any bound states,
in which case the spectra of the operators H and H0 would coincide with each
other. The resolvents G0(E) and G(E) can be connected with the Green operators
G±

0 (E) and G±(E), if we allow that the imaginary part Im E to tend to zero in the
expressions1 (8.3a) and (8.3b). However, this limiting procedure in G0(E) and
G(E)will have two different values G±

0 (E) and G±(E), depending upon whether
Im E tends to zero through the positive or negative numbers (Im E → 0±). In the
case Im E → 0+ or Im E → 0−, one will find oneself on the top or bottom part
of the Riemann sheet in the complex energy plane. In this way, we arrive at the
proper meaning of the infinitesimally small number ε introduced in (8.2a) and
(8.2b), so that

G±
0 (E) = lim

Im E→0±
G0(E) (8.4a)

G±(E) = lim
Im E→0±

G(E). (8.4b)

The difference between the limiting values G+
0 (E) and G−

0 (E) is found by using
the well-known Cauchy expression:

(x − x0 ± iε)−1 = � 1

x − x0
∓ iπδ(x − x0) (8.5a)

where the symbol � signifies the so-called principal Cauchy value. The meaning
of the formula (8.5a) acquires its full sense only under the integral sign, i.e.

lim
ε→0+

∫ b

a
dx

f (x)

x − x0 ± iε
= �

∫ b

a
dx

f (x)

x − x0
∓ iπ f (x0) (8.5b)

1 The label Im z denotes the imaginary part of the given complex number z.
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where

�

∫ b

a
dx

f (x)

x − c
= lim

ε→0+

[ ∫ c−ε

a
dx

f (x)

x − c
+
∫ b

c+ε
dx

f (x)

x − c

]
. (8.5c)

The significance of the additional limit (ε → 0) in equation (8.5c) consists
of eliminating the singularity at x = c from the integration domain. In the
expressions (8.5b) and (8.5c), it is understood that the integrand f (x) is regular
at x = c. Hence,

G−
0 (E)− G+

0 (E) = 2iπδ(E − H0) (8.6a)

G−(E)− G+(E) = 2iπδ(E − H ). (8.6b)

Here the operator δ-function acts according to the definition (2.2), i.e.

δ(E − H0)�0(E
′) = δ(E − E ′)�0(E

′) (8.7a)

δ(E − H )�(E ′) = δ(E − E ′)�(E ′) (8.7b)

where �0(E ′) and �(E ′) are the eigenstates of the operators H0 and H ,
respectively, with the corresponding eigenvalue E ′. Since the Hamiltonians H0
and H are Hermitean operators, it is clear that we will have

G±
0 (E) = G∓†

0 (E) (8.8a)

G±(E) = G∓†(E). (8.8b)

Taking the Fourier transform of the expressions (7.8a, b) for the Green operators,
we will arrive at the so-called operator Lippmann–Schwinger equations:

G±(E) = G±
0 (E)+ G±(E)V G±

0 (E) = G±
0 (E)+ G±

0 (E)V G±(E). (8.9a)

Note that, once the expressions (8.2a) and (8.2b) are derived for the stationary
Green operators G±

0 (E) and G±(E), then the equations contained in (8.9a) can
be easily obtained from the following operator identities:

1

A
− 1

B
= 1

A
(B − A)

1

B
= 1

B
(B − A)

1

A
. (8.9b)

Putting here 1/A = G±(E) and 1/B = G±
0 (E), we immediately deduce

equation (8.9a), since H − H0 = V . We will also perform the Fourier analysis
for the state vectors:

�i, f (E) =
∫ +∞

−∞
dt eiEt�i, f (t) �i, f (t) = 1

2π

∫ +∞

−∞
dE e−iEt�i, f (E)

(8.10a)

�(E) =
∫ +∞

−∞
dt eiEt�(t) �(t) = 1

2π

∫ +∞

−∞
dE e−iEt�(E). (8.10b)
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Multiplying the formulae (7.13a, b) for �(t) by eiEt and integrating the obtained
results over t , with the help of (8.10b), we readily observe that the following
relation holds true:

�(E) = �i, f (E)+ G±
0 (E)V�(E). (8.11a)

The formal solution of these Lippmann–Schwinger equations for the total
wavefunction �(E) of the system is given by

�(E) = �i, f (E)+ G±(E)V�i, f (E). (8.11b)

As we have already emphasized, there are two kinds of states of the total system
and they are both absorbed in the single abbreviated label �(E):

(i) One state is described by the wavefunction �+ whose initial boundary
conditions at t → −∞, in the time-dependent scattering theory, are
determined by �i (t). This initial state �i (t) is prepared as an eigenstate
of an operator A, which commutes with H0, e.g. spin, whereas the
corresponding eigenvalue is denoted by α. The Fourier transform of the
state �iα(t) is �iα(E), which can also be written as �0α(E), since we are
dealing with the free state determined by the set of the quantum numbers
(E, α). When �iα(E) is known, then the previously mentioned kind of state
�+
α (E), as the Fourier transform of the wavefunction�+

α (t), is given by

�+
α (E) = �0α(E)+ G+

0 (E)V�
+
α (E) = �0α(E)+ G+(E)V�0α(E).

(8.12a)
(ii) There also exists another state �−(E), which is obtained by a reasoning

analogous to that of the preceding case and, therefore,

�−
α (E) = �0α(E)+ G−

0 (E)V�
−
α (E) = �0α(E)+ G−(E)V�0α(E).

(8.12b)

In regard to �−, the state �0α(E) appearing in equation (8.12b) plays the role
of the final state ′ f ′, i.e. �0α(E) = � f α(E). The same label �0α(E) was also
used in (8.12a), but there, in regard to �+, the wavefunction �0α(E) represents
the initial state ′i ′, namely �0α(E) = �iα(E). In both quoted cases (i) and (ii),
we have that α relates to the inhomogeneity of the integral equations, whereas
the signs ± reflect the boundary conditions of the Green operators, associated
with the outgoing/incoming wave, respectively. The difference between the states
�+
α (E) and �−

α (E) can be found with the help of the relations (8.6a) and (8.6b),
so that

�+
α (E)−�−

α (E) = −2iπδ(E − H )V�0α(E). (8.13)

Time-independent state vectors �0(E) and �(E) also satisfy the
Schrödinger differential equations. Explicit forms of these equations, which, of
course, do not depend upon time, are obtained by taking the Fourier transform of
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the corresponding time-dependent equations (7.2a, b). Thus, e.g. multiplying both
sides of equation (7.2a) with exp (iEt) and integrating the obtained expressions
over t in the limit t ∈ [−∞,+∞], we find that∫ +∞

−∞
dt eiEt H0�0(t) = H0

∫ +∞

−∞
dt eiEt�0(t) = H0�0(E)

= i
∫ +∞

−∞
dt eiEt∂t�0(t)

= i
∫ +∞

−∞
dt eiEt∂t

1

2π

∫ +∞

−∞
dE ′ e−iE ′t�0(E

′)

=
∫ +∞

−∞
dE ′ E ′�0(E

′) 1

2π

∫ +∞

−∞
dt ei(E−E ′)t

=
∫ +∞

−∞
dE ′ E ′δ(E − E ′)�0(E

′)∫ +∞

−∞
dt eiEt H0�0(t) = E�0(E). (8.14a)

In this way, the unperturbed Hamiltonian H0 can be written as

H0�0(E) = E�0(E). (8.14b)

An analogous procedure is also valid for the total non-stationary Schrödinger
equation (7.2b), so that we will finally have

H�(E) = E�(E). (8.14c)

Hence, �0(E) and �(E) are the eigenstates of the Hamiltonians H0 and H ,
respectively, whereas E is the corresponding eigenenergy. In order to find the
solutions of these equations, we must specify the boundary conditions of the
problem. The first requirement which we impose is that the solutions must be
normalizable, since otherwise they could not represent the proper physical states.
Something like this is, however, impossible for the case when the energy E
belongs to the continuous spectrum of the Hamiltonian. The Hermitean character
of the operators H0 and H leads to the orthogonality of the corresponding
eigenstates, i.e.

〈�0(E)|�0(E
′)〉 = Cδ(E − E ′) (8.15a)

〈�(E)|�(E ′)〉 = Cδ(E − E ′) (8.15b)

where C is a constant. However, even when this constant is determined, it is not
sure that we will have a unique solution of the problem. The continuous spectrum
of the Hamiltonian is infinitely degenerate, i.e. when the energy E is positive,
there are infinitely many different eigenstates for each given value E > 0. In such
a circumstance, the adequate scattering state vectors, which properly describe
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the physical problem under study, can be obtained only if the correct boundary
conditions are invoked.

As to the free state �0(E), we will limit ourself to a particular class of
solutions to equation (8.14a), which can describe a collimated beam of the
incident particles in a certain specific direction. In other words, �0(E) should be
an eigenstate of the operator of the linear momentum (impulse) of the projectile.
However, this condition is not necessarily sufficient for a complete elimination
of degeneracy. Thus, e.g., if there are some additional degrees of freedom, such
as the momentum of the spin or isospin, as well as their projections, or certain
other quantum numbers, then it is necessary to introduce a sufficiently large set
of commuting variables for a complete removal of degeneracy. All other cases,
including the linear momentum, are covered by the common label α. There
exists another class of solutions to equation (8.14a), namely the eigenstates of the
angular momentum operator. These are often more useful than the wavefunctions
associated with the linear momentum. If necessary, the angular momentum
operator can also be combined with some additional operators in order to form
a complete set of variables.

The total wavefunction � and the free state �0 are denoted by the same
quantum numbers, which, however, are not necessarily associated with the
eigenvalues of an operator whose commutator with H vanishes. A physical
meaning of the solution � is based upon the boundary conditions, which are
implicitly included in the integral equations (8.12a) and (8.12b). At first glance,
there exists an additional degree of freedom which is contained in � and which
is absent from �0. Namely, as we have already emphasized, �α(E) appears in a
twofold role, as the incoming �+

α (E) or outgoing �−
α (E) wave. In the relation

with �+
α (E) and �−

α (E), the wavefunction �0α(E) becomes the initial �iα(E)
and final � f α(E) state, respectively. However, this does not mean that there are
twice as many total state vectors � than free wavefunctions�0, since for a given
E , each �−

α (E) can be written as a linear combination of various �+
α′(E) and

vice versa. This follows from the fact that the operators S′ and H commute with
each other, as well as from the defining relations (7.35) and (7.36a, b) for the
S′-scattering operator.

Finally, let us specify the normalization of a wavefunction. It is certainly
sufficient to do this only for �0, since the Lippmann–Schwinger equations
determine � uniquely. We will normalize �0 according to the relation (7.25a).
Then the normalization of the total wavefunction � from the integral equations
(7.13a, b) is automatically the same as that of �0. Hence, when E and E ′ lie in
the continuum, we shall have

〈�±
α (E)|�±

α′(E
′)〉 = δ(E − E ′)δαα′ (8.16)

which is already obtained in (7.25b). Here there exists, however, an
inconvenience, since the state vectors normalized as in (8.16) do not represent the
Fourier transforms of the normalizable wavefunctions. Nevertheless, in order to
create the necessary wave packets with the states normalized according to (8.15a),
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we ought to introduce a certain suitable weight function w(  E) in the integrands.
Then the wave packet acquires the form

�0α(t) = 1

2π

∫ ∞

0
d E w(  E)e−i Et�0α( E) (8.17)

which should be used in place of the state vector �0α(t).
A connection of the state vectors�0α( E) and�(E), in the time-independent

theory is accomplished by taking the Fourier transforms of (7.15a). Since the
Møller wave operators are stationary, we then obtain

�±
α ( E) = �±�0α( E) (8.18a)

where �± do not depend upon α. According to (8.18a), the operators �± yield
directly the total wavefunctions �±

α ( E) of the system, starting from the free
state �0α( E). This was previously found to be the content of equations (7.21b).
Multiplying (8.18a) from the left by �±† and using isometry (7.19a) of the
operators�±, we discover a way by which�0α( E) can be restored from �±

α ( E),
i.e.

�0α( E) = �±†�±
α ( E). (8.18b)

Furthermore, since the scattering operators S and S′ are also time-
independent, the Fourier transforms of equations (7.30c) and (7.36a) directly
yield:

� f ( E) = S� i ( E) (8.19a)

�+
α ( E) = S′�−

α ( E). (8.19b)

The to ta l state �−
α ( E) will, in the distant future, be controlled and characterized

by the quantum numbers contained in the common label α. This state is
connected, through the expression (8.19b), with the state which, in the remote
past, was prepared using the same quantum numbers α. However, the relation
(8.19a) correlates th e fre e states � f ( E) and � i ( E). In stating this, we shall have
in mind that the exact wavefunction will evolve in the future towards � f ( E),
starting from �i ( E) in the past.

In the preceding analysis, we saw that the S-matrix has the central role,
since it offers an answer to the key question of scattering theory. Namely, in
the scattering problem, the transition amplitude is determined by the S-matrix
elements taken over the basis set of the free states, i.e.

〈�−
β (Eβ)|�+

α (Eα)〉 = 〈�0β(Eβ)|S�0α(Eα)〉 ≡ Sαβ . (8.20)

As we already know from (7.28d), the operators S and H0 commute with each
other, so that the rhs of equations (8.20) is reduced to a product of the δ-function
δ(Eα − Eβ) and a certain remainder. This was also encountered in chapter 6. In
fact, in the trivial example when there is no scattering at all (H = H0), i.e. for
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S = 1, it is immediately seen that equations (7.25a) and (8.20) coincide with each
other. This suggests that, in a general case, H �= H0, we can write the S-operator
in the form:

S = S(0) + S(V). (8.21)

Here S(0) = 1 symbolizes that, in fact, ‘nothing happened’, i.e. that the free
particle continues to move as if the centre of the interaction field does not exist
(V = 0). However, the operator S(V) describes the transition governed by the
interaction V �= 0. Hence, using the normalization (7.25a), we find that

Sαβ = δ(Eα − Eβ)δαβ + S(V)αβ (8.22a)

where the second addendum is given by the expression

S(V)αβ = 〈�0β(Eβ)|S(V)�0α(Eα)〉. (8.22b)

An explicit expression for S(V)αβ can be identified from (8.22a), as follows. We first
rewrite (8.13) in the equivalent form:

�±
α (E) = �∓

α (E)∓ 2iπδ(E − H )V�0α(E). (8.23)

Inserting �+
α (E) or �−

α (E) from (8.23) into (8.20) and employing (8.7b) as well
as (8.16), we derive:

Sαβ = 〈�+
β (Eβ)|�+

α (Eα)〉 − 2iπδ(Eα − Eβ)T
+
αβ(E)

= 〈�−
β (Eβ)|�−

α (Eα)〉 − 2iπδ(Eα − Eβ)T
−
αβ(E)

Sαβ = δ(Eα − Eβ)δαβ − 2iπδ(Eα − Eβ)T
+
αβ(E)

= δ(Eα − Eβ)δαβ − 2iπδ(Eα − Eβ)T
−
αβ(E) (8.24)

where

T+
αβ(E) = 〈�0β(E)|V |�+

α (E)〉 (8.25a)

T−
αβ(E) = 〈�−

β (E)|V |�0α(E)〉. (8.25b)

A comparison of the result (8.24) with (8.22a) yields

S(V) = −2iπδ(Eα − Eβ)T
+
αβ(E) = −2iπδ(Eα − Eβ)T

−
αβ(E). (8.26)

With the help of the Lippmann–Schwinger integral equations (8.12a, b), we will
have

T+
αβ(E) = 〈�0β(E)|V |�0α(E)〉 + R+

αβ(E) (8.27a)

T−
αβ(E) = 〈�0β(E)|V |�0α(E)〉 + R−

αβ(E) (8.27b)
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where the matrix element 〈�0β(E)|V |�0α(E)〉 represents the first Born
approximation and:

R+
αβ(E) = 〈�0β(E)|V G+(E)V |�0α(E)〉 (8.28a)

R−
αβ(E) = 〈�0β(E)|V G−†(E)V |�0α(E)〉. (8.28b)

Now an inspection of the expressions (8.28a) and (8.28b), will reveal through
using the property (8.8b) of the Green operator, that

R+
αβ(E) = R−

αβ(E) (8.29)

and, therefore,
T+
αβ(E) = T−

αβ(E) ≡ Tαβ(E). (8.30)

This equality between the so-called prior T−
αβ(E) and post T+

αβ(E) transition
amplitudes is valid only on the energy shell, where the total energy of the system
before (Eα) and after (Eβ) scattering is conserved:

Eα = Eβ = E . (8.31)

The two alternative ways (8.25a, b) of calculating the T -matrix correspond to
the two different but equivalent, i.e. equally valid, physical presentations of
scattering. In the expression (8.25a) for T+

αβ(E), we use the total state vector
�+
α (E), which was, in the remote past, prepared as the free wave �0α(E) with

the set of quantum numbers α. This implies, when we are dealing with the
coordinate representation, that �+

α (E) represents a state whose incoming wave
was controlled, i.e. prepared. However, the behaviour of the state �+

α (E) in the
distant future, i.e. of its outgoing wave, is uncontrolled and under the influence
of the interaction in the scattering zone. Such a state �+

α (E) is, according
to the formula (8.25a), projected together with the weight function V onto
�0β(E). Only the physical observables associated with the free states are directly
measurable. Hence, the physical concept of the scattering experiment must be
such that it offers an answer to the key question: which ‘fraction’ of the total
wavefunction�+

α (E) is found in the free state�0β(E)with the quantum numbers
β. In a realization of this concept of measurement, we would place an appropriate
detector at a certain asymptotic position, with the goal of measuring the number
of particles which leave the scattering centre in a given fixed direction.

However, in the expression (8.25b) for T−
αβ(E), we have the total

wavefunction �−
β (E), which becomes a controlled state in the distant future.

This means that, in the case of coordinate representation, the outgoing wave from
�−
β (E) is controlled, i.e. known, and simultaneously its incoming wave, namely

the asymptotic form in the remote past, is unknown. This time we would envisage
an experiment in such a way that we could retroactively learn which ‘fraction’ of
�−
β (E) was in the free state �0α(E) in the past, with the quantifier α. According

to this interpretation, the transition amplitude T+
αβ(E) is closer to our physical
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intuition than the matrix element T−
αβ( E). This is particularly clear by referring

to the causality principle. Nevertheless, it should still be pointed out that both
the prior and post form of the T -matrix descriptions of the scattering problem
are equivalent to each other. The latter statement is supported by the principle of
detailed balancing, which is another name for the micro-reversibility of quantum
collisions (see chapter 10).

Let us now rewrite equation (8.30) in the following more concise form:

Tαβ(E) = 〈�0β(E)|T (E)|�0α(E)〉 (8.32a)

where, as in (6.18d), the object T (E) represents the transition operator:

T (E) = V + V G+(E)V . (8.32b)

Using (8.9a), we immediately arrive at the integral equations for the T -operator:

T = V + V G+
0 (E)T (E) = V + T (E)G+

0 (E)V (8.32c)

in accord with the results from (6.16c). The transition amplitude T±
αβ(E) is, by

definition, referred only to one energy E . However, it is clear that the states
�±
α (Eα), �

±
β (Eβ), �0α(Eα) and �0β(Eβ) can be taken from the expressions

(8.12a) and (8.12b) with different energies:

Eα �= Eβ �= E . (8.33)

In such a case, we introduce the transition amplitudes T±
αβ(Eα, Eβ) defined off the

energy shell, where the total energy of the system is not conserved in accordance
with (8.33):

T+
αβ(Eα, Eβ) = 〈�0β(Eβ)|V |�+

α (Eα)〉 (8.34a)

T−
αβ(Eα, Eβ) = 〈�−

β (Eβ)|V |�0α(Eα)〉. (8.34b)

When the relation (8.33) holds true, we assert that there is the so-called post–prior
discrepancy:

T+
αβ(Eα, Eβ) �= T−

αβ(Eα, Eβ). (8.35)

It would be possible to find many other ways to introduce off-shell generalizations
of the transition amplitudes but the two forms quoted here are the most frequently
encountered expressions in the literature. However, in any experiment, the total
energy E of the system must be conserved. Moreover, the main observables in a
scattering experiment, e.g. cross sections, are directly based upon the transition
amplitudes. Therefore, it is clear that only the on-shell quantities T±

αβ(E) could
possess a physical meaning. Hence, the off-shell transition amplitudes would
have a correct physical interpretation only if at the end of the calculation the
appropriate limits Eα → E, Eβ → E are taken, leading smoothly towards the
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energy shell. In this manner, we should obtain the corresponding on-sh ell T -
matrices:

T±
αβ( Eα, Eβ) −→

Eα,β→ E
T±
αβ( E). (8.36)

However, the problem of the Coulomb potential scattering represents a specific
exception, since here the off-sh ell transition amplitude does not have the correct
on-sh ell limit. Moreover, instead of the expected Rutherford law, one obtains
the troublesome logarithmic divergencies, which are characteristic for long-range
interactions [77–80]. In such a circumstance, a special analysis is required with
the purpose of performing the so-called regularization of the off-shell Coulomb
T -matrix. The interest in considering the off-sh ell transition amplitudes is far
from being merely academic. Namely, as is well known, the th ree-body problem
can be exactly solved by means of the Faddeev integral equations [33–35], which
are expressed though the two-particle off-shell transition amplitudes.

In chapter 5, we announced that equation (5.24c) for the transition
probability per unit time can be obtained in an alternative way, which will
be outlined here within the formalism developed in the current and preceding
chapters. To this end, we shall start from the following expression:

w = ∂

∂ t
|〈�0β |U(t)�0α〉|2. (8.37a)

The rhs of equation (8.37a) represents an increase, per unit time, of the probability
for the transition of the system from its initial to the final state, where U(t) ≡
UI(t). We then find that

w = ∂

∂ t
{〈�0β |U(t)�0α〉〈�0β |U(t)�0α〉∗}

= 〈�0β |∂tU(t)|�0α〉〈�0β |U(t)�0α〉∗ + 〈�0β |U(t)�0α〉〈�0β |∂t U(t)|�0α〉∗
= − i〈�0β |VI(t)U(t)�0α〉〈�0β |U(t)�0α〉∗

+ i〈VI(t)U(t)�0α|�0β〉〈�0β |U(t)�0α〉
w = i〈VI(t)U(t)�0α|�0β〉〈�0β |U(t)�0α〉 + c.c. (8.37b)

where the abbreviation c.c. denotes the complex conjugate part of the matrix
element i〈VI(t)U(t)�0α|�0β〉〈�0β |U(t)�0α〉. Substituting the expression (5.8b)
for the interaction potential VI(t) in (8.37b) and using the integral equation (5.15c)
for the evolution operator U(t), we deduce for i �= f :

w = 〈eiH0t V e−iH0tU(t)�0α|�0β〉〈�0β |
∫ t

−∞
dt ′ VI(t

′)U(t ′)�0α〉 + c.c.

=
∫ t

−∞
dt ′ 〈V e−iH0t U(t)�0α|e−iH0t�0β〉

× 〈�0βe−iH0t ′ |V e−iH0t ′U(t ′)�0α〉 + c.c.
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=
∫ t

−∞
dt ′ 〈V e−iH0t U(t)�0α|e−iEβ t�0β〉

× 〈�0βe−iEβ t ′ |V e−iH0t ′U(t ′)�0α〉 + c.c.

=
∫ t

−∞
dt ′ 〈eiEβ t V e−iH0t U(t)�0α|�0β〉〈�0β |eiEβ t ′V e−iH0t ′U(t ′)�0α〉 + c.c.

w =
∫ t

−∞
dt ′ 〈ei(Eβ−H0)tU(t)�0α|V�0β〉〈�0β |V ei(Eβ−H0)t ′U(t ′)�0α〉 + c.c.

(8.37c)

where the Hermitean property V † = V of the potential operator is employed.
Furthermore, inserting the standard relation

e−iH0tU(t)�0α = e−iEα t�+
α (8.38)

into equation (8.37c) yields

w = 〈�+
α |V�0β〉〈�0β |V�+

α 〉
∫ t

−∞
dt ′ ei(Eα−Eβ )(t−t ′) + c.c.

= |T+
αβ |2

{ ∫ t

−∞
dt ′ ei(Eα−Eβ )(t−t ′) +

∫ t

−∞
dt ′ ei(Eβ−Eα)(t−t ′)

}
= |T+

αβ |2
{ ∫ +∞

0
dt ei(Eα−Eβ )t +

∫ 0

−∞
dt ei(Eα−Eβ )t

}
= |T+

αβ |2
∫ +∞

−∞
dt ei(Eα−Eβ )t

w = |T+
αβ |22πδ(Eα − Eβ) (8.39)

where T+
αβ is the post matrix given by equation (8.25a). Now the expression for

the transition probability per unit time acquires the following form:

w = ∂

∂ t
|〈�0β |U(t)�0α〉|2 = 2πδ(Eα − Eβ)|T+

αβ |2. (8.40)

Hence, the obtained result coincides with the previous equation (5.24c), but this
time the derivation is done in a more explicit manner. An analogous derivation
can also be accomplished in the case of the prior form T−

αβ but the result (8.39) for
the probabilityw will remain the same, since the presence of the Dirac δ-function
δ(Eα− Eβ) guarantees that the transition α −→ β takes place on the energy shell
(8.31), where there is no post–prior discrepancy, according to (8.30).

Stationary Schrödinger equations (8.14b, c) are obtained from the
corresponding time-dependent expressions (7.2a, b) through the Fourier
transforms. However, there exists an alternative way of introducing the concept
of stationary states, which is of primary importance for quantum mechanics.
Assuming that the Hamiltonian H does not depend upon time, i.e. considering
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a conservative physical system, we shall write the solutions of the equation
i(∂/∂ t)ψ(t) = Hψ(t) in the form of the state vectorψ(t) = a(t)ψ(0). Here, a(t)
is a certain ordinary scalar function, which is independent of the coordinate of the
particle described by H . In this way, the non-stationary Schrödinger problem
becomes [1/ψ(0)]Hψ(0) = i[1/a(t)](d/dt)a(t). The solution of this equation is
readily found by applying the usual procedure of the separation of the variables.
In so doing, we equate each of the terms with a certain constant, e.g., E , i.e.
[1/ψ(0)]Hψ(0) = i[1/a(t)](d/dt)a(t) = E . Thus, we find that

Hψ(0) = Eψ(0) (8.41a)

where, obviously, the function ψ(0) ≡ �(E) depends upon E , in accordance
with the stationary Schrödinger equation (8.14c). Simultaneously, the following
equation is also satisfied: (d/dt) ln a(t) = −iEt , from which it follows: a(t) =
e−iEt . This finally implies:

ψ(t) = e−iEtψ(0), (8.41b)

or, equivalently,
�(t) = e−iEt�(E). (8.41c)

This result can also be obtained by starting from the Schrödinger time evolution
of the conservative system, for which we have ψ(t) = U(t)ψ(0) = e−iHtψ(0).
Writing here ψ(t) = U(t)ψ(0) in the form of the eigenvalue problem of
the evolution operator U(t), i.e. U(t)ψ(0) = b(t)ψ(0), where ψ(0) satisfies
equation (8.41a), we find, through the use of the general property (2.2), that
b(t) = e−iEt . In other words ψ(t) = U(t)ψ(0) = e−iEtψ(0), which is again
the previous equation (8.41b). The total energy E of the system is an observable,
since the corresponding Hamiltonian H commutes with itself. If the system
should have energy E , it must be in an eigenstate of that observable. In such
a case, equation (8.41a) implies that the state vector ψ(t) at time t differs from
the vector ψ(0) at t = 0 only by the phase factor e−iEt , which is a c-number.
Therefore, these two vectors ψ(t) and ψ(0) describe the same physical state
of the considered system. Thus, the state of the system does not change with
time, i.e. it is the same for t = 0 and for any other later moment t . For this
reason, the object ψ(t) from equation (8.41b) is rightly called the stationary state
vector. Hence, an explicit appearance of t in the argument of ψ(t) is superfluous.
Stationary states conserve energy and, therefore, they are of great importance for
the stability of isolated physical systems. Spectroscopy is concerned with the
experimental discovery of discrete eigenvalue En of the Schrödinger equation:
H�n(E) = E�n(E). A search for the solutions to the latter equation is also
the basic task of quantum mechanics in studying atoms, molecules and solid
state bodies. The data obtained for En are important, since they can help us in
an a posteriori learning about the internal structure of physical systems which
possess these energies. Moreover, due to their simple time dependence e−iEt ,
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the stationary state vectors (8.41b) can be useful in formulating a description of
the time evolution of non-stationary physical systems. Due to these facts, it is
then clear why the concept of stationary states plays such a prominent role in the
physics of bound systems.

As to collisional systems, owing to their natural time-dependent dynamics,
it does not seem to be clear why here the stationary states would be of any
importance. Nevertheless, there are two essential reasons for which this is
indeed the case. First, stationary states are unavoidable from the practical
viewpoint, since all the computations of observables, such as cross sections and
other experimentally measurable physical quantities, are carried out within time-
independent scattering theory. Second, despite their undeniable time-dependent
dynamics, collisional events nevertheless belong to the class of stationary physical
phenomena. This is confirmed by scattering experiments themselves, through
checking that the measured distributions of the probability of the asymptotic
constants of motion (e.g. momentum, internal coordinates such as spin, isospin,
etc) of the incident and scattered projectiles do not differ from each other. In a
scattering experiment, one attempts to determine the momentum of the impact
projectile as precisely as possible. However, in the standard formulation of
scattering theory, one tries to reach the same ideal goal by identifying the initial
state in the remote past with the plane wave 〈r|ki 〉 = (2π)−3/2eiki ·r . The latter
wave is a solution of the unperturbed equation (7.2a), where H0 is the operator
of kinetic energy. However, the spectrum of the Hamiltonian H0 is always
continuous and the corresponding eigenfunctions are not normalizable, i.e. they
do not belong to the Hilbert space �. Therefore, these wavefunctions cannot
represent the proper states of a physical system. Due to this fact, the plane waves
as well as all other vectors of infinite length which are not elements of �, will
be hereafter called generalized or improper state vectors. For example, although
the operator of the position vector X does not possess any proper eigenstates,
in contrast to the elements from �, it is nevertheless customary that standard
scattering theory deals with the generalized states |x〉. This is accomplished
through the equation X |x〉 = x|x〉, so that it becomes feasible to reproduce, as
closely as possible, the usual and well-known properties of an ortho-normalized
discrete basis. In such a case, the ortho-normalization condition becomes

〈x′|x〉 = δ(x′ − x) ≡ (2π)−3
∫

d p ei p·(x′−x) (8.42a)

so that the expansion of an arbitrary proper state vector |�〉 ∈ � acquires the
form

|�(t)〉 =
∫

dx�(t, x)|x〉. (8.42b)

The expansion coefficients �(t, x) are obtained by means of the relation (8.42a),
in the recognizable form of the wavefunction in the coordinate representation:
〈x′|�(t)〉 = ∫

dx�(t, x)〈x ′|x〉 = ∫
dx�(t, x)δ(x′ − x) = �(t, x′), namely

�(t, x) = 〈x|�(t)〉. (8.42c)
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We see then in which sense the object �(t, x) can be considered as a certain
‘generalized coordinate’ of the wavefunction |�(t)〉 in a special ‘coordinate
frame’ of the vector space �, namely in the representation in which the operator
X is diagonal. If |�(t)〉 represents a solution of the Schrödinger equation (7.2b),
then the standard Heisenberg–Born interpretation can be given to the appropriate
coordinate representation �(t, x). Namely, according to the relation (8.42c),
the vector �(t, x) represents the probability amplitude 〈x|�(t)〉 for finding the
particle of a definite, fixed mass at the point x at the time t .

When we are dealing with momentum, the corresponding eigenvectors | p〉
are introduced in an analogous manner, first through the ortho-normalization:
〈 p′| p〉 = δ( p′ − p). Then any vector |�(t)〉 ∈ � can be developed in a way
similar to (8.42b) as

|�(t)〉 =
∫

d p �̃(t, p)| p〉. (8.43a)

Here the expansion coefficients �̃(t, p) are obtained in the way entirely
analogous to the preceding case. Thus, the quantity

�̃(t, p) = 〈 p|�(t)〉 (8.43b)

represents the usual momentum or impulse representation of the wavefunction
|�(t)〉. A connection between these two equivalent representations can be easily
established. With the adopted ortho-normalization, the coordinate representation
of the momentum generalized state vector | p〉 possesses the form of a plane wave:

〈x| p〉 = (2π)−3/2ei p·x . (8.43c)

Inserting the closure relation
∫

dx |x〉〈x| = 1 into (8.43b), we immediately
arrive at the sought connection between the momentum �̃(t, p) and coordinate
�(t, x) representation of the wavefunction |�(t)〉:

�̃(t, p) = 〈 p|�(t)〉 = 〈 p|
∫

dx |x〉〈x|�(t)〉 =
∫

dx 〈 p|x〉〈x|�(t)〉

�̃(t, p) = (2π)−3/2
∫

dx e−i p·x�(t, x). (8.43d)

Using the ortho-normalization (8.42a), we obtain the so-called convolution
theorem: ∫

d p |�̃(t, p)|2 =
∫

dx |�(t, x)|2. (8.43e)

This result is known as the Plancherel or Parseval formula, which is extremely
useful in numerous computations of the cross sections for collisional problems.
Although, strictly speaking, only the proper state vectors from � represent the
physically realizable states of a system, improper vectors should, nevertheless, be
retained in the formalism. Their usage is, however, meaningful only when applied
as auxiliary mathematical objects, as certain constructions through which the
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proper state vectors |�(t)〉 are expanded according to prescription (8.42b). This
discrimination between the notions of the proper from the improper state vectors
should be consistently made in the case of non-collisional systems. Of course,
such a distinction is particularly essential in scattering theory, where certain
evidently correct results for a given proper, physical state become erroneous for
improper state vectors. For example, one of the central results of scattering theory
asserts that any state vector, which describes the evolution of a given collisional
system encompassing only short-range potentials, must behave as a vector state
of the free particle for a long time before and after collision. This result, however,
is not valid any more for the improper state vectors, as will be proven later in
this chapter. Therefore, the problem of the asymptotic convergence of scattering
states cannot be formulated in the same way for both proper and improper state
vectors.

In addition to the generalized vectors | p〉 of the free states, associated with
the kinetic energy operator2 H0 = −∇2

r /(2µ):

H0| p〉 = E p| p〉 E p = p2

2µ
(8.44a)

in the standard stationary scattering theory, one introduces the generalized
vectors | p±〉, as the solutions of an extended eigenvalue problem3 of the total
Hamiltonian H , with the same eigenenergy E p:

H | p±〉 = E p| p±〉. (8.44b)

An example of such a wavefunction in the coordinate representation has already
been given in the equation (α) from the Introduction, with the following notation:

�+
k (r) ≡ 〈r|k+〉 −→

r→∞(2π)
−3/2[eik·r + f (θ, φ)r−1eikr ].

By combining the generalized state vectors | p〉 and | p±〉, we can introduce the
following formal counterpart to the expression (7.15a):

| p±〉 ≡ �±| p〉 (8.45a)

with the same meaning (7.15d) for the Møller wave operators�±. This definition
is in agreement with the eigenvalue problem (8.44b), as can be verified by using
(8.44a) and the intertwining relation (7.19b):

H | p±〉 = H�±| p〉 = �±H0| p〉 = �±E p| p〉 = E p �
±| p〉

H | p±〉 = E p| p±〉. (8.45b)
2 Recall that a collision of two particles is reduced, in the centre-of-mass system, to the scattering of
one particle of the reduced mass µ on a given potential.
3 Here the term ‘generalized’ is expected rather than ‘extended’. This is avoided since the standard
term ‘generalized eigenvalue problem’ is used in expansion methods with non-orthogonal basis
functions.
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Thus, at first glance, there is nothing unusual in regard to the improper state
vectors, since they formally satisfy certain basic equations, e.g. (8.44b) and
(8.45a), which are of the same type as that encountered in the case of the proper
state vectors. However, for collision theory, it is most important to find out
whether the noted analogy could be extended to the central problem (7.29a) of
the asymptotic convergence of scattering states:

U(t)|�±〉 =⇒
t→∓∞U0(t)|�0i,0 f 〉 (8.45c)

where the relations |�±(t)〉 = U(t)|�±〉 ≡ U(t)|�±(0)〉 and |�0i,0 f (t)〉 =
U0(t)|�0i,0 f 〉 ≡ U0(t)|�0i,0 f (0)〉 are used. Unless there is a reason for
confusion, we shall employ the common label �0 for �0i and �0 f . The
generalized state vectors | p〉 and | p±〉 respectively satisfy the eigenvalue
problems (8.44a) and (8.44b) of the Hamiltonians H0 and H with the same
eigenenergy E p . This fact, together with (2.2), implies that

U0(t)| p〉 = e−iE pt | p〉 (8.45d)

U(t)| p±〉 = e−iE pt | p±〉. (8.45e)

We see from equations (8.45d, e) that the improper vectors | p〉 and | p±〉 describe
stationary states in regard to the respective time evolution operators U0(t)
and U(t), respectively. This circumstance again violates the correct boundary
condition of the type (8.45c). Here, instead of (8.45c), we shall have

U(t)| p±〉 /=⇒
t→∓∞

U0(t)| pi, f 〉 (8.46a)

where | pi, f 〉 are the solutions of equation (8.45d). Stationarity of the states
U0(t)| p〉 and U(t)| p±〉 can be expressed in a more explicit manner if the relation
(8.45e) is rewritten as U(t)| p±〉 ≡ | p± (t)〉 = e−iE pt | p±(0)〉. From here, one
can see that state vectors | p±(t)〉 at the time t differ from the corresponding
vector | p±(0)〉 at t = 0 only by the phase factor e−iE pt , which is a c-
number. Hence, the improper vectors | p±(t)〉 and | p±(0)〉 describe the same
generalized state. We then see from (8.46a) that the formalism with the plane
waves is not only a mathematical idealization but, moreover, it is incapable of
providing an adequate formulation of one of the key scattering problems, i.e.
the asymptotic convergence of states, without which the collisional phenomenon
cannot be physically interpreted. Otherwise, it is obvious even without referring
to (8.46a) that the plane wave represents a physical ‘fiction’, since it describes
a particle which is present everywhere in the space. In principle, an analogous
criticism could also be given to the introduction of the Dirac function δ(r − r0),
which describes a particle whose position r0 is known with an infinite precision.
Nevertheless, despite their idealizations, the plane waves and the Dirac δ-function,
as convenient mathematical tools, play a very important role in scattering theory.

Obviously, we should now find a way through which the formalism with
plane waves could be easily modified, so that instead of the relation (8.46a),
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we again have the correct expression of the type (8.45c). With this goal,
considering the plane waves | p〉 merely as auxiliary mathematical objects, which
are physically meaningful only when used for expansions of the proper vectors
|�(t)〉 in terms of the basis set {| p〉} according to the relation (8.43a), we shall
have

|�0〉 =
∫

d p �̃0( p)| p〉 (8.46b)

|�±〉 = �±|�0〉 = �±
∫

d p �̃0( p)| p〉 =
∫

d p �̃0( p)�±| p〉

|�±〉 =
∫

d p �̃0( p)| p±〉 (8.46c)

where equation (8.45a) is used together with the linearity of the operators
�±. With the help of the expressions (8.46b, c) and linearity of the operators
U(t),U0(t), relation (8.45c) for the definition of the problem of the asymptotic
convergence of the proper state vectors is reduced to

U(t)|�±〉 = U(t)
∫

d p �̃0i,0 f ( p)| p±〉 =
∫

d p �̃0i,0 f ( p){U(t)| p±〉}

=⇒
t→∓∞U0(t)|�0i,0 f 〉 =⇒

t→∓∞ U0(t)
∫

d p �̃0i,0 f ( p)| p〉

so that,

U(t)|�±〉 =⇒
t→∓∞

∫
d p �̃0i,0 f ( p){U0(t)| p〉} (8.46d)∫

d p �̃0i,0 f ( p){U(t)| p±〉} =⇒
t→∓∞

∫
d p �̃0i,0 f ( p){U0(t)| p〉}. (8.47)

In the mathematical literature, there exists an expression which is quite analogous
to the relation (8.47). That is the well-known Riemann–Lebesgue lemma (7.25b),
which asserts that

∫∞
0 d p φ(p) eipt −→t→∞ 0 (t > 0), for any square integrable

function φ(p). Here we see that the function eipt tends to zero as t → ∞ only
with the help of the integral operator

∫∞
0 d p φ(p). In the same limit, it is clear

that the function eipt itself does not possess any limiting value for a real p. It
follows from the relation (8.47), that the improper state vectors | p±〉 and | p〉
satisfy the correct boundary conditions of the type (8.45c), provided that they
are averaged via the integral operator

∫
d p �̃0( p). It is only in this sense that

the formalism with the plane waves can be justified. If the integral operator is
discarded from (8.47) in an attempt to analyse the generalized vectors themselves,
then expression (8.47) would be transformed into (8.46a). In such a case, the
improper state vectors | p±(t)〉 would not converge strongly as t → ∓∞. This is
not surprising, since these generalized vectors do not represent any true physical
states. However, as can be seen from (8.46b, c), the very same integral operator
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d p �̃0( p) from (8.47), transforms the generalized vectors | p〉 and | p±〉 into the

proper state vectors |�0〉 and |�±〉, respectively. It is then clear that work with the
plane waves becomes highly problematic and, therefore, the wave packets emerge
as a more acceptable starting concept.

We have already mentioned that the set {|  p〉} represents a basis in the Hilbert
space � , comprised of the solutions of the eigenvalue problem (8.44a). However,
since according to equation (8.45a) the operators �± map the space � onto the
subspaces �± ≡ ��± ⊂ � of the scattering states | p±〉, we expect that the sets
of vectors {|  p+〉} and {|  p−〉} span subspaces �+ and �−, respectively. In other
words, the sets {|  p±〉} should represent the bases in their respective spaces �±.
Indeed, using the definition (8.45a), together with the isometry relation (7.19a)
for the operators �±, we find that

〈 p±| q±〉 = 〈 p|�±†�±| q〉 = 〈 p| q〉 = δ(  p − q). (8.48a)

In addition, the expression (8.46c) indicates that any proper state vectors can be
expanded in terms of the generalized vectors {|  p±〉}, so that these latter objects
represent the bases in �±. Moreover, each of the sets of the stationary states
{|  p+〉} or {|  p−〉} together with the bound state set {|n〉} represent a basis in
the whole space � associated with the solutions of the Schrödinger eigenvalue
problem with the total Hamiltonian H . In this manner, the space � can be
expressed as the direct sum of the subspaces� and � of the scattering and bound
states, respectively:

� = �⊕ �. (8.48b)

Here we used the relation �+ = �− ≡ �, which represents the Kato condition
(c) from chapter 1 in connection with the completeness of the Møller operators
as well as with the definition of the quantum scattering system. Each of the state
vectors from � is orthogonal onto an arbitrary element from �. Therefore, it is
possible to perform the following expansion of the unity operator in the whole
space�, i.e.

1̂ =
∫

d p | p〉〈 p| =
∫

d p | p±〉〈 p±| +
∑

n

|n〉〈n| (n ∈ �). (8.49)

The existence of the two different bases {| p+〉, |n〉} and {| p−〉, |n〉} in the space
� is a consequence of the infinite degeneracy of the continuous spectrum of the
Hamiltonian H . Relation (8.48b) is reduced on � = � only if the potential V
does not support any bound states. It is only in this case that the Møller operators
�± are unitary. In a general case, when there is a discrete spectrum of the operator
H = H0 + V , the number of bound states represents a measure of departure of
the wave operators �± from the condition of unitarity. We emphasize that in
scattering theory, the unitarity of the operators �± is not required. However, it is
imperative that these operators possess the property of isometry (7.19a), which
enables a one-to-one mapping of the type � ↔ �, according to (8.18a) or
(8.45a).
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The closing part of this chapter will be devoted to obtaining the correct
asymptotic behaviour (α), as quoted in the Introduction, for the generalized state
vector �+

k (r) = 〈r|�+
k 〉, when r → ∞. Proceeding towards this goal, we

shall always have in mind that we are dealing with a subsidiary mathematical
object. Namely, considered in its own right, the vector �+

k (r) does not have
any physical meaning. Its full appreciation is achieved only when used in the
context of the expansions of the type: |�±〉 = ∫

dr �±(r)|r〉 for the proper
state vectors |�±〉. The expressions �± = �0 + G±

0 (E)V�
± from (8.12a, b)

are known as the integral Lippmann–Schwinger equations for scattering states
�±. Here �0 is the unperturbed state vector, which satisfies the eigenvalue
problem H0�0 = E�0, whereas G±

0 (E) are the advanced/retarded Green free-
particle operators, respectively. The adjective ‘integral’, which was used before in
relation to the Lippmann–Schwinger equations, will acquire its full justification
if these equations are rewritten in, e.g., the coordinate representation 〈r|�±〉 =
�±(r). Thus, inserting the relation of completeness

∫
dr |r〉〈r| = 1 into the

inhomogeneous terms G±
0 (E)V�

± from (8.12a, b), we immediately arrive at the
following results, in the case of scattering of a spinless ‘reduced’ particle of mass
µ on the local potential V ≡ V (r):

�±(r) = �0(r)+
∫
�3

dr ′ G±
0 (E; r, r ′)V (r ′)�±(r ′) (8.50a)

where G±
0 (E; r, r ′) are the Green functions with the boundary conditions in the

form of the outgoing/incoming wave, respectively:

G±
0 (E; r, r ′) = 〈r|G±

0 (E)|r ′〉. (8.50b)

In the case under study, the free Hamiltonian H0 represents the operator of the
kinetic energy. Therefore, the solution of the corresponding eigenvalue problem
H0�0(r) = E�0(r) is given by the plane wave �0(r) according to (8.44a), i.e.
�0(r) = (2π)−3/2ei p·r , where E ≡ E p = p2/(2µ). For our future analysis, it is
necessary to have an explicit form of the resolvent

G0(z) = 1

z − H0
z ∈ � . (8.50c)

The Green operators G±
0 (E) in the coordinate representation have the form of the

Green functions (8.50b), which satisfy the following differential equations:(
1

2µ
∇2

r + E

)
G±

0 (E; r, r ′) = δ(r − r ′). (8.51a)

The relation δ(r − r ′) = δ(r ′ − r) implies that the Green functions G±
0 (E; r, r ′)

will have the symmetry property G±
0 (E; r, r ′) = G±

0 (E; r′, r) = G±
0 (E; r− r ′).

An expression for the Green function can be obtained by employing the resolvent
(8.50c) and considering the complex energy plane z = E + iε: G0(z; r) =
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−2µ(2π)−3
∫

dq eiq·r(q2 − η2)−1, where η2 = 2µz and ε > 0 represents an
infinitesimally small positive number, which is set to zero once the calculation
has been performed. This factor ε is introduced to avoid the divergence of
the resolvent function G0(z; r) at the points q = ±√η2 for the given integral
representation. Namely, strictly speaking, the quoted integral for G0(z; r) is
divergent, since its integrand possesses the poles at q = ±√η2. This integral
should, in fact, be considered as a Fourier transform of the object (q2 − η2)−1,
taken in the sense of a generalized function, i.e. a distribution. Stated more
precisely, it is necessary to define the manner in which the singularities should
be avoided in order to attach a sound mathematical meaning to this integral
representation for G0(z; r). We shall do this by resorting to a physical criterion,
namely the boundary condition (α) from the Introduction. Thus, on comparing
the asymptotic behaviour (α) for �+(r) with the corresponding Lippmann–
Schwinger integral equation (8.50a), it clearly follows that the Green resolvent
function G0(z; r) must lead to the outgoing spherical wave as r → ∞. It is easy
to see, when passing from the quoted representation for G0(z; r) in the form of
the real integral to the complex q-plane, that there exists only one way to define the
Green function G+

0 (E, r), if a purely outgoing wave is required at infinitely large
distances from the scattering centre. Then using the Cauchy residual method, we
arrive at the following result: G0(z; r) = −[µ/(2π)]eiηr/r (Im η > 0). From
here, one determines the Green functions G±

0 (z; r) by imposing the physical
boundary conditions, as follows. A square root of a complex quantity τ 2 = u
is a twofold function, since it possesses two Riemann sheets corresponding to
the signs ± in front of the term

√
u. Only one is the physical Riemann sheet

and, therefore, we ought to have an adequately prescribed manner with which to
choose this physical sheet. In our analysis of the asymptotic behaviour of the
function �+(r) at r → ∞, it follows that

η2 = 2µz z = E p + iε = p2/(2µ)+ iε (p > 0).

The correct boundary conditions for the Green function G+
0 (z; r) require that the

inequality Im η > 0 must be fulfilled for obtaining the spherically outgoing wave.
Such a boundary condition represents the required prescription for the choice of
the physical branch of the square root:

η = ±(p2 + iε′)1/2 ε′ = 2µε (Im η > 0).

From here, we shall find the quantity η, by developing (p2 + iε′)1/2, as ε′ → 0+,
in the Taylor expansion and discarding all the terms of the type (ε′)n for n ≥ 2:

η = ± (p2 + iε′)1/2 = ±p(1 + iε′′)1/2 = ±p(1 + iε′′/2 + · · · )
≈ ± p(1 + iε′′/2) = ±p ± ipε′′/2 (ε′′ = ε′/p2, p > 0).

Hence, only the upper sign (+) fulfils the condition Im η > 0, so that the physical
Riemann sheet is determined by η = +√p2 + 2µiε. This yields: limε→0+ η = p.
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In this way, the Green functions, which lead to the incoming or outgoing spherical
wave in the total scattering state vector, possess the following explicit forms:

G±
0 (E; r − r ′) = − µ

2π

e±ip|r−r ′|

|r − r ′| (8.51b)

which imply that

�+(r) = (2π)−3/2ei p·r − µ

2π

∫
dr ′ eip|r−r ′|

|r − r ′| V (r ′)�+(r ′). (8.51c)

The obtained result (8.51c) is exact. Next we are interested in the asymptotic
behaviour of the wavefunction �+(r) as r → ∞. Expression (8.51c) formally
looks to be more complicated than the starting Schrödinger equation H�+(r) =
E�+(r). Nevertheless, the form (8.51c) exhibits great advantages, since it
explicitly contains the correct boundary condition and enables one to obtain the
transition amplitude f (ϑ, ϕ). Namely, all we need for obtaining the quantity
f (ϑ, ϕ) is the asymptotic form of the exact wavefunction (8.51c) as r → ∞.
Since the potential V (r ′) is short range, it is clear that only finite values of the
variable r ′ will contribute to the integral over r ′ in equation (8.51c). Thus, for a
fixed and finite value of the position vector r ′ we have

|r− r ′| =
√
(r − r ′)2 −→

r→∞ r(1− r̂ · r ′) and ip|r − r ′| −→
r→∞ ipr− i p f · r ′.

Here, we introduce the final wavevector p f as

p f = p̂r = (p, ϑ, ϕ). (8.51d)

Then the wavefunction�+(r) from (8.51c) now becomes

�+(r) −→
r→∞(2π)

−3/2ei p·r − µ

2π

eipr

r

∫
dr ′ e−i p f ·r ′V (r ′)�+(r ′). (8.52a)

Here, the vector p f from (8.51d) is directed towards the detector and, therefore,
its spherical coordinates are ( p f ,�i ), where �i = (ϑ, ϕ) is the solid angle
in which the particle is scattered. It is seen from (8.51d) that the momentum
p f = p r/r is expressed as the unit vector r̂ of the position vector r . This might
seem, at first glance, as being in contradiction with the Heisenberg uncertainty
principle: �p · �r ≥ 1. Nevertheless, this is not the case, since the relation
(8.51d) should be considered in the context of the formula (8.52a), which is valid
only for r → ∞. In such a circumstance, indeterminacy in r , which should
be tolerated in order that the momentum p f becomes quite well defined, will
not significantly alter the ratio r/r . In addition, p f depends only upon the
direction r/r of the vector r and not upon its intensity r = |r|. The coefficient,
which appears in (8.52a) as the multiplier of the outgoing spherical wave r−1eipr ,
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represents the amplitude f (ϑ, ϕ) for the transition from the initial to the final state
p(≡ ki ≡ k) −→ p′(≡ k f ≡ k′), so that

�+(r) ≡ �+
k (r) −→r→∞(2π)

−3/2

[
eik·r + f (ϑ, ϕ)

eikr

r

]
(8.52b)

where,

f (ϑ, ϕ) = − µ

2π
(2π)3/2

∫
dr ′ e−ik′·r ′V (r ′)�+

k (r
′)

f (ϑ, ϕ) = −(2π)2µ〈�k′ |V |�+
k 〉 (8.52c)

with the label �k′ used for the plane wave of the final generalized state:

〈r|�k′ 〉 = �k′(r) = (2π)−3/2eik′·r .

For the considered case, the post form of the transition amplitude (8.25a) is given
by the expression T+

i f = 〈�k′ |V |�+
k 〉. It then follows from here that the result

(8.52c) can be brought into connection with T+
i f in a very simple manner as

f (ϑ, ϕ) = −(2π)2µT+
i f . (8.52d)

In addition, the result (8.52b) offers the possibility of identifying the well-known
asymptotics (α) for the wavefunction �+(r) from the Introduction. Note that
the correct asymptotic behaviour of �+(r) resulted from the physical boundary
conditions imposed on the free Green function. This major feature of the
Green function establishes its central role in determining the scattering amplitude
f (ϑ, ϕ). The free Green function G+

0 (E, r, r ′) possesses a cut on the positive
part of the real E-axis. This is necessary in order to avoid the branch-point
singularities ±√

2µE . The passage ε −→ 0+ is of decisive importance for
the physical aspect of a scattering problem, since such a limit indicates which
side of the cut must be selected in order to fulfil the correct boundary condition
(α). Thus the sign (+) in (8.52b) corresponds to the physical boundary condition
of the outgoing scattered spherical wave r−1e+ikr . Hence the name the physical
Riemann sheet. Here the word physical denotes that the state vector�+(r) can be
physically interpreted, since it indicates that the corresponding state of the system
is experimentally prepared before the collision of the two particles. Of course,
in connection with our earlier remark, the vector �+(r) represents a generalized
state, so that its quoted physical meaning is understood only in the context of the
expansion |�±〉 = ∫

dr�±(r)|r〉 of the proper state vector |�±〉. However, the
sign (−) refers to the experimentally unfeasible situation (since it corresponds to
the spherical wave which is going away from the detector towards the scattering
centre), in which the collimated incident beam finds itself after the collision:

�−(r) ≡ �−
k (r) −→r→∞(2π)

−3/2

[
eik·r + f ′(ϑ, ϕ)

e−ikr

r

]
(8.52e)
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where the quantity f ′(ϑ, ϕ) is proportional to the prior form of the transition
amplitude T−

i f . For a collision occurring on the energy shell, the expression
for f ′(ϑ, ϕ) coincides with the transition amplitude f (ϑ, ϕ) from (8.52d). Our
derivation of the results (8.52c) and (8.52e) clearly shows that the obtained
asymptotics for �±(r) are applicable only to short-range potentials. These
expressions, however, do not encompass the Coulomb potential Vγ (r ′) = γ /r ′, as
the most prominent representative of the very important long-range interactions.

From the asymptotic behaviour (8.52b) of the total wavefunction�+
k (r), one

can obtain the differential cross section by considering the particle flux  , i.e. the
probability flux according to the well-known quantum-mechanical expression:

 = 1

2iµ
[�∗

κ (r)∇r�κ (r)−�κ (r)∇r�
∗
κ (r)]. (8.53a)

Thus, if�κ (r) is considered as the sum of the incident (2π)−3/2eik·r and scattered
(2π)−3/2 f (ϑ, ϕ)eikr/r waves both taken at κ = k, we shall obtain the following
results for their respective probability flux  in and  sc:

in =  in · k̂ = (2π)−3v (8.53b)

sc =  sc · r̂ = (2π)−3v · | f (ϑ, ϕ)|2
r2

(8.53c)

where v = k/µ is the vector of the incident velocity and v = |v|. The expressions
(8.53b, c) are used in obtaining the differential cross sections. These are defined as
the ratio of the infinitesimal number of outgoing particles per unit time dsc, which
after colliding with the N target centres of scattering4 find themselves falling onto
an infinitesimal surface dSd = r2 d� perpendicular to the radial direction, i.e.

(2π)3dsc/N = {vr−2| f (�)|2} dSd = {vr−2| f (�)|2}(r2 d�) = v · | f (�)|2 d�.

It then follows from here that

dsc

N
= in| f (�)|2 d� (8.54a)

where the result (8.53b) is used. The differential cross section encountered in
the experiment is defined in an analogous manner, under the assumption that
the coherent effects among the individual particles can be neglected. Then the
quantity dsc represents an infinitesimal scattered flux, i.e. the number of outgoing
particles, which can be found in the infinitesimal solid angle d� per unit time,
after they left the N target centres of scattering:

dsc

N
= in P(�) d� (8.54b)

4 The centres of scattering for a given target are all its individual, structureless particles, which collide
with the constituents of the projectile.
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where P(�) ≡ dQ/d�. A direct comparison between the expressions (8.54a)
and (8.54b) immediately gives: in P(�) d� = in| f (�)|2 d�. In this relation, all
the quantities are positive, so that the differential cross section P(�) can readily
be identified as

dQ

d�
= | f (�)|2 (8.54c)

which has the same form as the earlier formula (ω), given in the Introduction for
the short-range potentials. The total cross section Q is obtained by integration of
the function dQ/d� over the entire solid angle:

Q =
∫
(4π)

d�
dQ

d�
=
∫ 2π

0
dϕ
∫ π

0
dϑ sinϑ

dQ

d�
. (8.54d)

The expression (8.54c) is valid for ϑ �= 0◦. In such a case, one can easily find
out that the cross term, which comes from the interference of the incident and
scattered spherical wave, becomes identically equal to zero. The special case of
the forward elastic scattering (ϑ = 0◦) should be treated by a separate analysis,
which readily provides the so-called optical theorem:

Q = 4

πk
Im f (0◦) (8.55)

as a direct consequence of the conservation of the probability flux. The optical
theorem is a convenient way of computing the total cross section Q, when one
knows the value of the imaginary part of the scattering amplitude in the forward
direction. The relation (8.54d) stems from the destructive interference between
the two additive constituents of the asymptotics (8.52b) of the total scattering state
vector �+

k (r) behind the scattering region (ϑ ≈ 0◦). Stated equivalently, the
‘shadow’ which the target casts in the forward direction diminishes the intensity
of the incident beam. In this way, the scattered particles are moved away from
the incident beam for a certain amount which is proportional to the value of the
total cross section Q. Thus, except for the case ϑ = 0◦, the interference term
which originates from the incident plane wave and scattered spherical wave of the
asymptotics (8.52b) for �+

κ (r) can be left out from the analysis. This justifies
the procedure of a separate calculation of the incoming and outgoing flux. This
brief analysis also shows under which circumstances one can confidently use
the one-particle scattering theory in an adequate description of realistic collision
experiments. In addition to this, one should not forget our general emphasis upon
the fact that the vector (8.52b) represents only an improper state. The true, proper
physical state is subsequently obtained from the generalized vector �+

κ (r) by
forming an appropriate wave packet with a certain weight function w(κ). It is
then easy to demonstrate that the chief observables of the scattering problem,
i.e. the cross sections, remain invariant to a change of the otherwise arbitrary
weight function. In so doing, we need to impose only one restriction to the weight
function, by requiring that w(κ) should be strongly peaked around the value of
the initial wavevector κ ≈ k.
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Chapter 9

The problem of asymptotic convergence of
scattering states

In this chapter, we shall analyse the problem of the asymptotic convergence of
scattering states for a collision of two structureless particles. In other words,
working in the centre-of-mass frame, we consider a scattering of one particle of
the reduced mass µ on a fixed local short-range potential:

V = V ( r). (9.1a)

The potential V ( r) does not depend explicitly upon time t . This follows from the
fact that the position vector r represents an independent variable, which does not
include t directly. In the total Hamiltonian (1.1), i.e. H = H0 + V = H0 + V ( r)
the operator of the kinetic energy H0, which describes the unperturbed motion
of the isolated reduced particle, possesses the following form in the coordinate
representation:

H0 = −  
1

2µ
∇2

r . (9.1b)

We emphasize that in this equation and, therefore, in all the resulting expressions,
the quantities t and r appear as the two independent variables. This implies:
∂t ≡ ∂t ]r and ∇r ≡ ∇r ]t , where the symbol O]ξ denotes that the operator O
must be applied by keeping the variable ξ constant, as already pointed out in
chapter 2. We shall assume that the potential V can, in principle, support bound
states. Thus, we will understand that the operator H can also possess a discrete
spectrum. Of course, the presence of the operator H0 guarantees that Hamiltonian
H of the collision system, whose essential feature is the rigorous preservation
of the positive value of the the total energy E > 0, certainly has a continuous
spectrum irrespective of the given potential1. The state vector�(t, r) = 〈r|�(t)〉
1 The quoted property need not hold true for bound systems. The most remarkable example of this is
the so-called Sturmian eigenvalue problem [81] for the Coulomb potential. It is well known that the
spectrum of the Sturmian operator is complete, although entirely discrete (E < 0).
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in the coordinate representation represents a solution of the full time-dependent
Schrödinger equation:

(i∂t − H )�(t, r) = 0. (9.2a)

This vector �(t, r) belongs to the Hilbert space � = L2 of the square
integrable, normalizable functions. According to the Heisenberg–Born physical
interpretation of the wavefunction, the state vector �(t, r) represents the
amplitude of the probability to find the particle at the spatial point r at time
t . Whenever it appears unnecessary, we shall omit an explicit dependence
of the wavefunction upon the position vector r. For conservative systems,
the Hamiltonian H is independent of time, so that a general solution of
equation (9.2a) reads as

|�(t)〉 = U(t)|�〉 |�〉 ≡ |�(0)〉 (9.2b)

where U(t) = e−iHt is the evolution operator or the group of the time translation.
The Hamiltonian H represents the infinitesimal generator of the group U(t). We
recall that the momentum operator P = −i∇r is the infinitesimal generator of
the translation group eir·P . It is seen from (9.2b) that the operator U(t) maps
the state vector |�〉 at t = 0 into the corresponding state vector |�(t)〉 at the
instant t . Thus, the evolution operator determines the dynamics of the considered
physical system. The self-adjointness of the Hamiltonian H implies the unitarity
of the operator U(t). Under the notion ‘a free particle’, we understand a particle
which continues to move as if the centre of the interaction field did not exist at
all (V = 0). In such a case, the object U(t) is reduced to the operator of the free
evolution U0(t) = e−iH0t . A solution �0(t, r) = 〈r|�0(t)〉, which corresponds
to the unperturbed Schrödinger equation:

(i∂t − H0)�0(t, r) = 0 (9.3a)

for the free particle, is given by

|�0(t)〉 = U0(t)|�0〉 |�0〉 ≡ |�0(0)〉. (9.3b)

We assume now that the state vector U(t)|�〉 describes the evolution of a certain
scattering experiment, which can indirectly observe only the free states. This
means that at a time long after the collision (t → +∞), the bound wave packet
U(t)|�〉 was localized far away from the scattering centre (r → ∞). Because
of that, the incident particle behaved as a free wave packet U0(t)|�0〉. Hence, on
the basis of these plausible physical arguments, we expect that the following limit
should be valid:

U(t)|�〉 =⇒
t→+∞U0(t)|�0〉 ∃� ∈ �, ∀�0 ∈ �. (9.4a)

This implies that the difference between the two state vectors tends to zero, so
that the actual state U(t)|�〉 of the system is experimentally indistinguishable
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from the free state U0(t)|�0〉, as t → +∞. An analogous consideration also
holds true for t → −∞. In fact, the existence of a limit for the case t → −∞
is automatically guaranteed, if the corresponding limit exists as t → +∞ and
vice versa, due to the invariance of the examined scattering system under the
transformation of the time inversion. The latter is true for the case of the
potential scattering of a spinless particle, which will be discussed in chapter 10.
Because of this circumstance, we shall perform the analysis only for t → +∞
or t → −∞, but not for both cases. Through these remarks, we define the
asymptotic boundary conditions, which assert that, for every�0 ∈ �, there exists
a solution U(t)|�〉 = |�(t)〉 of the Schrödinger equation (9.2a), which, in the
limit t → +∞, possesses the asymptotic behaviour U0(t)|�0〉 = |�0(t)〉. More
precisely, we have the so-called strong limit in (9.4a), which explicitly means that

lim
t→+∞‖�(t)−�0(t)‖ = 0 ∃�(t) ∈ �, ∀�0(t) ∈ �. (9.4b)

Hence, the limit (9.4a) can be written in the following equivalent form:

Lim
t→+∞{U(t)|�〉 − U0(t)|�0〉} = ∅. (9.4c)

This implies that, e.g., in the coordinate representation, not only the difference
�(t, r) ≡ �(t, r)−�0(t, r) tends to the zero state vector ∅ as t → +∞ but also
the following condition is fulfilled, according to (9.4b):

lim
t→+∞

∫
dr |�(t, r)|2 = 0. (9.4d)

In other words, restating (9.4a) through the relation (9.4b) leads to the genuine
meaning of the expression (9.4c). Namely, according to (9.4c), it is not sufficient
that only the difference �(t, r) tends to the zero state vector as t → +∞ (since
this would already be the case when the elements �(t, r) and �0(t, r) each
vanished at any spatial point r in the same limit t → +∞), but it is necessary
that the condition (9.4d) is also fulfilled. In order to understand the essence
of these limits from the physical standpoint and explain more closely what the
term ‘experimentally unresolved states’ really means, we should first notice that
a certain true state described by |�〉 will be completely identified, if we measure
the quantity |〈�|�〉|, for any normalizable function |�〉(‖�‖ = 1). The real
number |〈�|�〉|2 represents the ‘overlap probability’ that the system, which is in
the state |�〉,will be observed later in another state |�〉. It is easy to verify that the
measurement of these numerical values for every function |�〉 will determine |�〉
up to an arbitrary phase factor. A phase factor δ of a single vector |�〉 does not
have any physical meaning but this is untrue for the relative phase of two vectors.
In other words, if for δ ∈ � we have |δ| = 1, then the matrix element |〈δ�|� ′〉|
will be constant with respect to δ. At the same time, however, the complex number
|〈�1 + δ�2|� ′〉| depends upon the phase δ. Arbitrariness in the phase of a state
vector leads to additional difficulties, e.g. the implication that the true eigenstate
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space is not the Hilbert space � but rather its counterpart �′, known as the ray
space, which, in the mathematical literature, is also called the complex projective
space. It is possible to carry out the full analysis in the space�′ and, in this way,
alleviate the arbitrariness of the phase as well of the normalization. Nevertheless,
along the lines of previous chapters, we shall also choose here to work within
the most convenient procedure, according to which the proper state vectors |�〉
will be considered as elements of the Hilbert space �. These vectors should
be subsequently normalized in the course of some concrete calculations. If we
employ the Schwartz inequality

|〈�|�〉| ≤ ‖�‖ · ‖�‖ (9.5a)

we shall deduce the following result:

|〈�|�(t)〉 − 〈�|�0(t)〉| = |〈�|{|�(t)〉 − |�0(t)〉}| ≤ ‖�‖ · ‖�(t)− �0(t)‖
≤ ‖�(t)−�0(t)‖

|〈�|�(t)〉 − 〈�|�0(t)〉| ≤ ‖�(t)−�0(t)‖. (9.5b)

In other words, the numbers |〈�|�(t)〉 − 〈�|�0(t)〉| do not depend upon the
chosen state |�〉. Moreover, these numbers tend to zero as t → +∞, provided
that (9.4b) is valid. Thus, taking |t| as sufficiently large, we could always
arrange that, for any normalized vector |�〉, the difference between 〈�|�(t)〉
and 〈�|�0(t)〉 becomes smaller than a prescribed infinitesimal number ε >

0. We shall then assert that the states |�(t)〉 and |�0(t)〉 are experimentally
unresolved or indistinguishable. The inequality which emerges from (9.5b), i.e.
|〈�|�(t)〉 − 〈�|�0(t)〉| ≤ ‖�(t) − �0(t)‖, clearly indicates that, if we have
|�(t)〉=⇒t→+∞ |�0(t)〉, then it follows that 〈�|�(t)〉−→t→+∞〈�|�0(t)〉, for
an arbitrary fixed vector |�〉. Stated equivalently, if |�(t)〉 converges strongly,
then this will also be the case with all its components in any fixed ‘direction’,
i.e. representation of the abstract space of states. For example, if |�〉 converges
strongly, then the same assertion will also be valid for the wavefunction �(r) in
the configuration space, where �(r) = 〈r|�〉. The opposite statement is always
true in finite- but not in infinite-dimensional Hilbert spaces. This consideration is,
in fact, the concept of the weak limit in the Hilbert space �. As we have already
pointed out, a given sequence {�(t)} ⊆ � is said to converge weakly and this is
symbolized by

�(t) −→
t→∞�0(t) (9.5c)

if and only if
〈�|�(t)〉 −→

t→∞〈�|�0〉 ∀� ∈ �. (9.5d)

It follows directly from the Schwartz inequality (9.5a) that strong convergence
always implies weak convergence but the opposite statement does not hold true.
For scattering theory, convergence of state vectors and operators is required to be
strong, as a more stringent condition than weak convergence.
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Thus far, we have emphasized on many occasions that the asymptotic
boundary conditions represent the most essential feature of the scattering
problem. It is precisely this characteristic which makes the collision phenomenon
so fundamentally different from the standard counterpart of finding the bound
states of a given physical system for a fixed interaction among the constituents.
The expression (9.4a) exhibits certain crucial consequences from the physical
point of view. This is because, the limit (9.4a) is the most important element
for a critical valuation of the theory, in the context of a consistent acquisition of
predictions for the major observables, such as the squared moduli of the S-matrix
elements, i.e. the probability for a transition from the initial to the final state of
the system, cross sections, rate coefficients, etc. In order to convince ourselves
that this key statement indeed emerges from the asymptotic boundary conditions,
let us reduce (9.4a) to the following equivalent form:

|�〉 −�(t)|�0〉 =⇒
t→+∞∅ (9.6a)

where
�(t) = U†(t)U0(t). (9.6b)

The expression (9.6a) is obtained if we multiply (9.4a) from the left by U†(t)
and make use of the unitarity property of the evolution operator (U†U = 1 =
UU†). However, all physically relevant information available from the scattering
experiment can also be found in the S-matrix:

〈�0|S|�0〉 ≡ 〈�0|�−†�+|�0〉 (9.7a)

where �± are the Møller wave operators,

�± = Lim
t→∓∞�(t) = Lim

t→∓∞U†(t)U0(t) = Lim
t→∓∞ eiHt e−iH0t . (9.7b)

Hence, in order to arrive at the relevant theoretical predictions, which are sound
from the mathematical standpoint, in the sense that the S-matrix could be defined
at all, the Møller operators �± must exist. More precisely, the mathematical
formalism of scattering theory is meaningful only if we prove the existence of the
operators �± along the lines of the strong limit:

lim
t→∓∞‖�(t)�0 −�±�0‖ = 0. (9.8a)

The limiting procedure in (9.7b) can also be written in another equivalent form of
the following operator strong limit:

�(t) =⇒
t→∓∞�± (9.8b)

which is interpreted by resorting to equation (9.8a). Next, we should prove that
the limit (9.8a) also implies the limit (9.4b). The latter is indeed true, since we
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have

‖�(t)�0 −�+�0‖ = ‖U†(t)U0(t)�0 −�+�0‖
= ‖U†(t){U0(t)�0 − U(t)�+�0}‖
= ‖U†(t){�0(t)− U(t)�+�0}‖
= ‖U†(t){�0(t)−�+U0(t)�0}‖
= ‖U†(t){�0(t)−�+�0(t)}‖ = ‖U †(t){�0(t)− �(t)}‖
= ‖U†(t)‖ · ‖�0(t)−�(t)‖

‖�(t)�0 −�+�0‖ = ‖�0(t)−�(t)‖ (QED). (9.9)

Here, besides equation (7.19b), we have also employed the relation �0(t) =
U0(t)�0, �(t) = �+�0(t), together with the unitarity and boundedness of the
evolution operator (‖U‖ = 1).

It follows now from the preceding discussion that the proof of the existence
of the transition amplitude (9.7a) and S-operator critically depends upon the
existence of the wave operators �± in the sense of the strong limit, i.e. as the
limiting values of the objects �(t) as t → ∓∞. Hence, in such a procedure, an
adequate investigation of the asymptotic behaviour of the operators �(t) appears
to be of crucial importance. When proving the existence of the Møller wave
operators �±, one must pay special attention to the appropriate convergence test.
However, it is clear a priori that, if we use (9.8a), then the problem becomes
undetermined in the sense of a circulus viciosus. Namely, irrespective of the
smallness of the chosen factor ε, the difference ‖�(t)�0−�±�0‖ cannot become
arbitrarily small, as t → ∓∞, without the a priori prescribed limiting values
�±�0, which are otherwise the endpoint of the proof. A similar situation also
exists in the mathematical theory of limiting values of series of real or complex
numbers. Here, according to the Cauchy convergence criterion, a given function
γt possesses the limit γ as t → ∞, if and only if |γt − γt ′ | −→ 0, as t, t ′ → ∞.
An analogous convergence test can also be applied in the Hilbert space�. In fact,
one of the defining axioms, namely the completeness, of the Hilbert space� is the
requirement that all the Cauchy, i.e. fundamental, sequences converge strongly. In
the Hilbert space, every convergent series is simultaneously the Cauchy sequence
and vice versa, which is not true in the general case of an arbitrary normalized
vector space. A given series {ψn}∞n=1, comprised of the vectors ψn ∈ � (n ∈ �),
is said to be a Cauchy sequence if, for every ε > 0, there exists a certain N(ε),
such that the following inequality is satisfied: ‖ψn − ψm‖ < ε; n,m > N(ε),
where n,m, N(ε) ∈ �. Thus, the state vector �(t)|�0〉 possesses the limiting
value as t → +∞ if and only if

‖�(t1)�0 −�(t2)�0‖ −→
t1,2→+∞ 0. (9.10a)

In other words, if the number ‖�(t1)�0−�(t2)�0‖ can become arbitrarily small
as t1,2 → +∞, then the series �(t)|�0〉 will represent the Cauchy sequence.
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Consequently, such a sequence is strongly convergent for ∀�0 ∈ �. Such an
assertion could eventually be true only for a given class of functions. In order
to have an idea about an explicit form of these functions, we shall employ the
following obvious identity of the type (3.13a), i.e.

‖�(t1)�0 −�(t2)�0‖ =
∥∥∥∥ ∫ t2

t1
dt ∂t {�(t)�0}

∥∥∥∥. (9.10b)

It is clear that the rhs of this equation will tend to zero for t1,2 → +∞, if the
derivatives ∂t {�(t)�0} are such that they (i) exist, (ii) belong to the Hilbert space
L2 and are (iii) continuous with respect to the variable t in the L2-norm. The
properties (i)–(iii) effectively define a set 	0 of a class of functions |ψ0〉 ∈ 	0.
However, we shall still select another larger set, say 	. The elements |ψ0(t)〉 of
the set 	 ⊃ 	0 represent certain functions which are (a) infinitely many times
differentiable with respect to all three components x, y, z of the vector r and (b)
have quickly decreasing derivatives in the asymptotic spacial region (r → ∞).
This latter condition explicitly means that for any values of the non-negative
integer numbers ν, λ,µ and n we have

rn
∣∣∣∣ ∂ν+λ+µ

∂xν∂yλ∂zµ
ψ0(t, r)

∣∣∣∣ ≤ Cn
νλµ <∞. (9.10c)

Here Cn
νλµ is a certain finite positive constant, which does not necessarily have to

be the same for all the numbers ν, λ,µ and n. It should be pointed out that the
Fourier transforms ψ̃0(t, κ) of the functionsψ0(t, r) ∈ 	 also fulfil the conditions
(a) and (b). We recall that for every f (r) ∈ L2, the Fourier transform f̃ (q) is
defined by the expression:

f̃ (q) = (2π)−3/2
∫

dr e−iq·r f (r), (9.10d)

which can be inverted in a symmetric form, i.e.

f (r) = (2π)−3/2
∫

dqeiq·r f̃ (q). (9.10e)

According to equation (8.43e), the so-called convolution or Plancherel/Parseval
relation is valid:

∫
dq | f̃ (q)|2 = ∫

dr | f (r)|2. For the functions ψ0(t) ∈ 	, the
rhs of equation (9.10b) is certainly meaningful, so that we shall have

‖�(t1)ψ0 −�(t2)ψ0‖ =
∥∥∥∥ ∫ t2

t1
dt ∂t {�(t)ψ0}

∥∥∥∥. (9.11a)

Hence, now the limit (9.10a) reads as

‖�(t1)ψ0 −�(t2)ψ0‖ −→
t1,2→+∞ 0. (9.11b)
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This is the relation, which we set to prove first. Moreover, it will become evident
that we will not need anything else to complete the proof. More precisely, the
relation (9.11b) implies (9.10a), since it can easily be verified that the set 	 is
everywhere dense in �. We also have 	 ⊆ �. The rhs of expression (9.11a) will
be estimated by using a Schwartz inequality of the type:

‖ψ + φ‖ ≤ ‖ψ‖ + ‖φ‖, (9.11c)

which yields ∥∥∥∥ ∫ dt f (t)

∥∥∥∥ ≤ ∫
dt ‖ f (t)‖. (9.11d)

In this way, we find that

‖�(t1)ψ0 −�(t2)ψ0‖ =
∥∥∥∥ ∫ t2

t1
dt ξ(t)

∥∥∥∥ ≤ ∫ t2

t1
dt ‖ξ(t)‖ (9.12a)

where
ξ(t) = ∂t {�(t)ψ0}. (9.12b)

Comparing equations (9.11a) and (9.12a), it follows that convergence of the
integral (9.11a) with respect to t, i.e.

∫ t2
t1

dt ξ(t), where the integrand represents
the state vector ξ(t) ≡ ∂t {�(t)ψ0}, is converted into convergence of another
type of integral (9.12a) with respect to the same variable t . The integrand of
the new integral (9.12a) belongs to the set of the scalar, i.e. numerical values
‖∂t {�(t)ψ0}‖, taken over the interval t ∈ [t1, t2]. Hence, it follows from the
preceding analysis that, for the real positive variable t , the series {ψ0(t)} will
converge according to the Cauchy criterion if∥∥∥∥ ∫ t2

t1
dt ξ(t)

∥∥∥∥ −→ 0 (9.13a)

where it is understood that the two times t1 and t2 are sufficiently large. The limit
(9.13a) will certainly hold true if we have, for t1,2 → ∞,∫ t2

t1
dt ‖ξ(t)‖ −→ 0. (9.13b)

For this to be true, it is sufficient and necessary that the integral I (t0, ξ), which is
defined by

I (t0, ξ) =
∫ ∞

t0
dt ‖ξ(t)‖ (9.13c)

exists for a certain t0 > 0, i.e.

I (t0, ξ) <∞ ∃t0 > 0. (9.13d)

With this, as we already emphasized, an important step forward is made towards
the final proof, since the consideration of the series of the state vectors {|ψ0(t)〉}
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is replaced by the analysis of the sequence of real numbers. The latter sequence
has been by far more frequently examined and is much closer to simple notions
than the treatment of the former series of abstract elements. It is then clear that
application of the Cauchy convergence test for the number series in scattering
theory has an extraordinary importance.

Furthermore, using the relation (9.6b), we arrive at the following expression:

ξ(t) = iU†(t)V U0(t)ψ0 (9.14a)

so that the potential V is incorporated into the relation (9.12a) according to

‖�(t1)ψ0 −�(t2)ψ0‖ =
∫ t2

t1
dt ‖U†(t)V U0(t)ψ0‖ =

∫ t2

t1
dt ‖V U0(t)ψ0‖

(9.14b)
since U†(t) is a unitary and bounded operator (‖U†(t)‖ = 1). Thus, the integral
(9.13c) becomes

I (t0, ξ) =
∫ ∞

t0
dt ‖ξ(t)‖ =

∫ ∞

t0
dt ‖V U0(t)ψ0‖. (9.14c)

A further step in proving the relation (9.11b) depends upon the possibility of
calculating the norm ‖V U0(t)ψ0‖ as a function of the time variable t .

In order to obtain a concrete expression for the key quantity ‖V U0(t)ψ0‖,
let us take an arbitrary function χ from the space� and calculate the wave packet
U0(t)χ = e−iH0tχ . In fact, we need an explicit formula for the time evolution of
that wave packet in the coordinate representation, i.e.

[U0(t)χ](r) ≡ 〈r|U0(t)χ〉 = 〈r|χ(t)〉 = χ(t, r) (9.15a)

where U0(t) = e−iH0t is the free evolution operator. The non-stationary wave
packet can be formed in a standard way through the inverse Fourier transform:

χ(t1, r1) = (2π)−3/2
∫

d p χ̃(t1, p)ei p·r1 = (2π)−3/2
∫

d p χ̃( p)ei( p·r1−Et1)

(9.15b)
where the energy E ≡ E( p) is the single-valued function of the momentum p, in
both quantum and classical mechanics. The expansion coefficients χ̃ ( p) can be
obtained as

(2π)−3/2
∫

dr1 χ(t1, r1)e−i( p′·r1−E ′ t1)

= (2π)−3
∫

dr1

∫
d p χ̃( p)ei( p− p′)·r1−i(E−E ′)t1

=
∫

d p χ̃( p)ei(E ′−E)t1δ( p − p′)

(2π)−3/2
∫

dr1 χ(t1, r1)e−i( p′·r1−E ′ t1) = χ̃( p′). (9.15c)
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In examining the time evolution of this wave packet, the following question
emerges: if we are given the state χ(t1, r1) at the four-dimensional-spatial-
time point (t1, r1), which functional dependence will be reminiscent of the
quantity χ(t2, r2) at a later instant t2(> t1) and at another fixed point r2 in the
configuration space? The required sequential time ordering t2 > t1 preserves
causality, as a physically indispensable principle. There are several ways to
answer this question. Here, we shall resort to the universal Huygens principle,
which is valid for every kind of waves, e.g. sound, light, mechanical as well
as electromagnetic waves, etc, including also the abstract quantum-mechanical
waves. According to Huygens’ principle, during a propagation of an arbitrary
wave, every point of the traversing medium hit by the wave itself becomes a
source of additional secondary spherical waves. Hence, this principle suggests
that the wave χ(t2, r2), which propagates from the point (t1, r1) towards (t2, r2),
will have the amplitude proportional to the amplitude of the incident wave
χ(t1, r1). More precisely, we can write

χ(t2, r2) = (2π)−3/2
∫

d p χ̃( p)ei( p·r2−Et2)

= (2π)−3
∫

d p ei( p·r2−Et2)
∫

dr1 χ(t1, r1)e−i( p·r1−Et1)

χ(t2, r2) =
∫

dr1 K0(t2 − t1, r2 − r1)χ(t1, r1) (9.15d)

where K0(t, r) is the free propagator function defined by the expression

K0(t, r) = (2π)−3
∫

d p ei( p·r−Et). (9.16)

In non-relativistic collisions, which are the subject of this book, the velocity
of the scattering particles is negligible with respect to the speed of light c. In
such a case, we can use the purely classical expression for the kinetic energy
E ≡ E p = p2/(2m). In this way, it is possible to obtain a closed analytic formula
for the function K0. We first pass to the Descartes coordinates of the vector p,
i.e. p = (px, py, pz) and then complete the exponential term in (9.16) to the full
quadratic form. This enables us to employ the well-known Poisson integral:∫ +∞

−∞
dζ e−iζ 2 = 2

∫ ∞

0
dζ e−iζ 2 = 2 lim

ε→0+

∫ +∞

0
dζ e−(ε+i)ζ 2 =

√
π

i
(9.17a)

which implies,∫ +∞

−∞
d px eipx x−it p2

x/(2m) = eimx2/(2t)
∫ +∞

−∞
d px e−it (px−mx/t)2/(2m)

= eimx2/(2t)
√

2m/t
∫ +∞

−∞
dPx e−iP2

x

∫ +∞

−∞
d px eipx x−it p2

x/(2m) =
√

2πm

it
eimx2/(2t) (9.17b)
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where the following abbreviation is introduced Px = √
t/(2m)(px − mx/t).

Consequently,

K0(t, r) = K0(t, r) =
( m

2π it

)3/2
eimr2/(2t) (9.18a)

where t > 0. An appropriate physical interpretation of the propagator function
(9.18a) is now readily obtained as follows. At time t = 0, we are given the
classical free particle of the mass m at the coordinate origin. The velocity
spectrum of this particle is given by the squared modulus of the Fourier transform
f̃ (mv) of the square integrable function f (r). Then, according to the Liouville
equation of motion of a free particle, the amplitude [K0(t) f ](v) of the probability
density at the later instant t is given by the expression

[K0(t) f ](v) =
(

m

i|t|
)3/2

eimv2t/2 f̃ (mv) (9.18b)

where v = r/t . Hence, the classical probability distribution |[K0(t) f ](v)|2 at
time t reads as (m/|t|)3 · | f̃ (mr/t)|2. During the derivation of the expression
(9.18a), the boundary conditions are rigorously respected. These conditions
coincide, in the time-dependent formalism, with the causality (t2 > t1). This
can be explicitly emphasized in the final result by introducing the Heaviside �-
function (6.5). In such a case, we would associate the signs ± with the wave χ
for t<>0, respectively,

χ±(t2, r2) =
∫

dr1 G±
0 (t2 − t1, r2 − r1)χ

±(t1, r1) (9.19)

where G+
0 and G−

0 are the retarded and advanced Green functions defined as

G+
0 (t2 − t1, r2 − r1) ≡ − i�(t2 − t1)K0(t2 − t1, r2 − r1)

G+
0 (t2 − t1, r2 − r1) = − i

[
m

2π i(t2 − t1)

]3/2

�(t2 − t1)e
1
2 im|r2−r1|2/(t2−t1)

(9.20a)

G−
0 (t2 − t1, r2 − r1) ≡ + i�(t1 − t2)K0(t2 − t1, r2 − r1)

G−
0 (t2 − t1, r2 − r1) = + i

[
m

2π i(t2 − t1)

]3/2

�(t1 − t2)e
1
2 im|r2−r1|2/(t2−t1).

(9.20b)

Formally speaking, we can consider the quantity t as a complex variable. Then
we might carry out an analytic continuation of the obtained results (9.20a, b), in
such a way that the pair (t1, t2) is substituted with (−imλ2t1,−imλ2t2), where λ
is a certain real parameter. In such a case, we must choose the evolution towards

Copyright 2004 IOP Publishing Ltd



132 The problem of asymptotic convergence of scattering states

the future and retain only the function G+
0 (t2 − t1, r2 − r1):

G+
B (t2 − t1, r2 − r1) ≡ − i�(t2 − t1)K B(t2 − t1, r2 − r1)

G+
B (t2 − t1, r2 − r1) = − i

[
1

2πλ2(t2 − t1)

]3/2

�(t2 − t1)e−|r2−r1|2/[2λ2(t2−t1)]

(9.20c)

where the index B denotes the mentioned analytical continuation of the results
(9.18a) and (9.20a). It is then easily checked that K B(t2 − t1, r2 − r1) tends to
δ(r2 − r1) as t2 − t1 → 0+. In other words, as time t increases, the propagator
K B(t2 − t1, r2 − r1) describes a diffusion of the local initial pulse in the form
of the Dirac δ-function. Due to this fact, it does not appear surprising at all that
the propagator K B(t2 − t1, r2 − r1) can be recognized as the corresponding well-
known expression from the theory of the Brownian motion. In this latter motion,
K B(t2 − t1, r2 − r1) represents the amplitude of the probability that the particle
from the point (t1, r1) will arrive at the point (t2, r2) under the influence of
random perturbations. This observation is not a matter of coincidence, as can be
verified by noting that the same analytical continuation t → −imλ2t transforms
the Schrödinger equation (9.2a) into the standard diffusion equation(

1

2
∇2

r +
1

λ2

)
K B(t, r) = 0. (9.20d)

It can be easily checked that K B(t, r) from (9.20c) indeed satisfies
equation (9.20d). Alternatively, it is possible to solve equation (9.20d) by means
of the Fourier or Laplace transform and show that the resulting expression for the
propagator K B(t, r) coincides with (9.20c). We notice that the quantity K B(t, x)
is also known from the problem of the one-dimensional heat equation, where
K B(t, x) represents the temperature, whereas λ2/2 is the heat conductivity. Could
this formal analogy between the Brownian motion and quantum phenomena
possibly have any physical meaning at all? The answer is affirmative, as
can be seen by resorting to Einstein’s explanation of Brownian motion in
terms of molecular collisions, as quoted in the Introduction. Alternatively,
Brownian particle motion can be understood also from the standpoint of stochastic
phenomena. For illustration, let us consider the one-dimensional case and denote
by xt the displacement of the given particle from its initial position along a certain
fixed axis at the time t . Then the difference �x(t, t ′) ≡ xt − xt ′ will represent
the displacement which occurred in the interval [t ′, t]. The quantity �x(t, t ′) can
be taken as the sum of a large number of infinitesimal displacements. Then the
central limit theorem of stochastic events suggests that �x(t, t ′) should possess
a normal distribution which is given by the well-known Gaussian function.
Furthermore, we assume that the probability distribution for �x(t, t ′) depends
only upon the difference t − t ′, i.e. �x (t, t ′) = �x(t ′ − t). In such a case,
we can apply the Wiener condition, which a process must satisfy in order to fall
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into the category of stochastic phenomena. This finally yields the result which is
identical to equation (9.20c). In this way, the analogy between Brownian motion
and the Feynman graph method for describing collisions is indeed complete (see
chapter 7). We emphasize here that a certain process is considered to be a Wiener-
type phenomenon xt if the following conditions are fulfilled: (1) the increment
xt+t ′ − xt ′ is normally distributed with a zero mean value and the variance given
by λ2t , where λ is a constant; (2) for any set of real numbers, t1 < t ′1 ≤ t2 ≤ t ′2 <
t3 ≤ · · · ≤ tn < t ′n , the random variables xt ′1 − xt1, xt ′2 − xt2, . . . , xt ′n − xtn are
mutually independent; and (3) x0 = 0.

We shall now return to the preceding analysis, which provides us with an
important conclusion that the wave packet (9.15a) evolves in time following the
law

〈r| e−iH0t |χ〉 = 〈r|U0|χ〉 = 〈r|χ(t)〉 = χ(t, r) =
∫

dr ′ K0(t, r − r ′)χ(r ′)

〈r|e−iH0t |χ〉 =
( m

2π it

)3/2
∫

dr ′eim|r−r ′|2/(2t)χ(r ′) (9.21a)

where
χ(r ′) ≡ χ(0, r ′). (9.21b)

For the analysis of the asymptotic convergence, which is the central theme of this
chapter, it is necessary to investigate the behaviour of the wave packet (9.21a) as
t → ∞. With this goal, let us utilize the identity |r − r ′|2 = r2 − 2r · r ′ + r ′2 to
rewrite equation (9.18a) in the form

K0(t, r − r ′) =
( m

2π it

)3/2
eimr2/(2t)[e−imr·r ′/t + I (t, r, r ′)] (9.22a)

where
I (t, r, r ′) = e−imr·r ′/t [eimr ′2/(2t) − 1]. (9.22b)

Substituting (9.22a) into (9.21a), we find that

χ(t, r) =
(m

it

)3/2
eimr2/(2t)[χ̃(mr/t)+ R(t, r)] (9.23a)

where χ̃(mr/t) is the Fourier transform of the wave packet χ(r ′) from (9.21b),
i.e.

χ̃(mr/t) = (2π)−3/2
∫

dr ′ e−imr ·r ′/tχ(r ′). (9.23b)

Here, the so-called residual function R(t, r) has the form

R(t, r) = (2π)−3/2
∫

dr ′ e−imr·r ′/t [eimr ′2/(2t) − 1]χ(r ′). (9.23c)

The auxiliary integral R(t, r) can be bounded from above by applying the Euler
formula for eiθ , i.e. by setting |eiθ − 1| = √

2 − 2 cos θ . Identifying θ , we see
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that the limit t → ∞ corresponds to the search of the asymptotics for θ → 0.
Therefore, it follows that |eiθ − 1| ≤ |θ |, i.e.

|eimr ′2/(2t) − 1| ≤ mr ′2

2|t| . (9.24)

A subsequent application of this result to the residual function R(t, r) from
(9.23c) obviously depends upon the possibility of entering with the absolute value
under the integral sign. This is readily achieved by employing the well-known
inequality: ∣∣∣∣ ∫

�3
dr f (r)

∣∣∣∣ ≤ ∫
�3

dr | f (r)| (9.25a)

which is, in fact, a counterpart to the Schwartz relation (9.11d). Thus, we shall
now have

|R(t, r)| ≤ (2π)−3/2
∫

dr ′ |{eimr ′2/(2t) − 1}χ(r ′)|

= (2π)−3/2
∫

dr ′ |eimr ′2/(2t) − 1| · |χ(r ′)|

≤ (2π)−3/2
∫

dr ′ mr ′2

2|t| |χ(r
′)|

|R(t, r) ≤ C ′

|t| (9.25b)

where C ′ is a finite positive constant given by the expression

C ′ = m

2
(2π)−3/2

∫
dr ′ r ′2|χ(r ′)| <∞. (9.25c)

In this way, we can write

|χ(t, r)| =
(

m

|t|
)3/2

|χ̃(mr/t)+ R(t, r)| ≤
(

m

|t|
)3/2

{|χ̃(mr/t)| + |R(t, r)|}

|χ(t, r) ≤
(

m

|t|
)3/2 {

|χ̃(mr/t)| + C ′

|t|
}
. (9.25d)

The accomplished analysis is of direct use for studying the asymptotic
convergence of scattering states. Namely, the integral representation (9.21a) of
the wave packet 〈r|U0(t)χ〉, as well as its asymptotic form (9.25d) as |t| → +∞,
can also be automatically employed for the state vectorψ0(r) = 〈r|ψ0〉, since the
latter element belongs to the space 	 ⊆ �. Hence, we observe that

〈r|U0(t)ψ0〉 =
( m

2π it

)3/2
∫

dr ′ eim|r−r ′|2/(2t)ψ0(r ′) (9.26a)
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and also the following inequality holds true:

|〈r|U0(t)ψ0〉| ≤
(

m

|t|
)3/2 {

|ψ̃0(mr/t)| + C ′

|t|
}
. (9.26b)

Here, the constant C ′ is given by equation (9.25c) but with ψ0 instead of χ . In
other words, the function 〈r|U0(t)ψ0〉 is bounded. More precisely, this function
behaves as t−3/2 at any point r , i.e.

|〈r|U0(t)ψ0〉| ≤ C

t3/2
(t > 0) (9.26c)

where C is a positive constant. This enables us to write

‖V U0(t)ψ0‖ ≤ C

t3/2
‖V ‖ (9.26d)

which implies that

I (t0, ψ0) =
∫ ∞

t0
dt ‖ξ(t)‖ ≤ C‖V ‖

∫ ∞

t0
dt t−3/2 = 2

C‖V ‖
t1/2
0

≡ C0‖V ‖
t1/2
0

I (t0, ψ0) <∞ (t0 > 0). (9.27)

Hence, in the case of short-range potentials (‖V ‖ < ∞), the integral I (t0, ψ0)

exists for a certain t0 > 0. Then, the relations (9.14b, c) and (9.27) give

‖�(t0)ψ0 −�(∞)ψ0‖ ≤ I (t0, ψ0) ≤ C0‖V ‖
t1/2
0

<∞ (9.28a)

which means that the series {�(t)ψ0} converges strongly as t → ∞, for the class
of functions ψ0 ∈ 	. The proof is entirely analogous for t → −∞. The result
(9.28a) can also be understood from the viewpoint of the stationary phase method.
Namely, putting ψ0(t, r) ≡ 〈r|U0(t)ψ0〉, we can write the usual inverse Fourier
transform:

ψ0(t, r) = (2π)−3/2
∫

d p ei p·rψ̃0(t, p) = (2π)−3/2
∫

d p ei p·r−ip2t/(2m)ψ̃0( p)

(9.28b)
where ψ̃0( p) is the wavefunction in momentum space. If we again limit ourselves
to the functions which are infinitely many times differentiable, we will note
that they form a dense set. Linear combinations of the elements of such a set
can be used to represent approximately any other state vector with an arbitrary
accuracy. Thus, the stationary phase method can be applied to a sufficiently
smooth function ψ̃0( p), since it is clear that quantityψ0(t, r) from (9.28b) attains
its maximal value when the corresponding phase p · r − p2t/(2m) becomes
practically constant:

ψ0(t, r) = eim[r2/(2t)−π/4]

×
{(m

t

)3/2
ψ̃0

(mr
t

)
− i

2

(m

t

)5/2 ∇2
pψ̃0

(mr
t

)
+ · · ·

}
. (9.28c)
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From here, keeping only the term of the order 1/t, the following result emerges:

‖Vψ0‖2 =
(m

t

)3
∫

dr |V (r)|2
∣∣∣ψ̃0

(mr
t

)∣∣∣2 . (9.28d)

If the potential V (r) is singular, then we shall assume that this will be the case
only at the coordinate origin (r = 0) and that the singularity is not stronger
than 1/r . In addition, it is understood that the given potential does not exhibit
an asymptotic long-range Coulomb behaviour, i.e. at large distances from the
scattering centre, the interaction V (r) decreases faster than 1/r1+ε (ε > 0).
Under this assumption, it follows that t2+2ε‖V U0(t)ψ0‖−→t→∞ 0, i.e. the
norm of the vector V U0(t)ψ0 vanishes faster than 1/t at large values of time
t . Consequently, the integration over t in (9.14c) can be carried out and the
integral is then found to tend to zero with increasing t0. We can arrive at the
same conclusion if we restrict ourselves to a vector of a certain concrete form,
e.g. a purely Gaussian unnormalized wavefunction2, i.e.

ψ0(r) = 〈r|ψ0〉 = e−|r−c|2/(2λ2) (9.29a)

where the centre c and the width λ are arbitrary. Using (9.26a), we can easily find
the result of the action of the free evolution operator U0(t) upon ψ0:

|〈r|U0(t)ψ0〉|2 = (1 + b2t2)−3/2e−|r−c|2/(λ2+a2t2) (9.29b)

where a = 1/(mλ) and b = a/λ. Therefore, the norm of the vector V U0(t)ψ0
becomes

‖V U0(t)ψ0‖2 =
∫

dr |〈r|U0(t)ψ0〉|2|V (r)|2

= (1 + b2t2)−3/2
∫

dr |V (r)|2e−|r−c|2/(λ2+a2t2)

≤ (1 + b2t2)−3/2
∫

dr |V (r)|2

‖V U0(t)ψ0‖2 ≤ (1 + b2t2)−3/2‖V ‖2 (9.29c)

where we have utilized the relation e−x ≤ 1 (x ≥ 0). Inserting the obtained
bound (9.29c) for the norm ‖V U0(t)ψ0‖ into the integral (9.14c), we derive the
following expression:

I (t0, ψ0) =
∫ ∞

t0
dt ‖V U0(t)ψ0‖ ≤ ‖V ‖

∫ ∞

t0
dt (1 + b2t2)−3/4

I (t0, ψ0) <∞ (9.29d)

2 Of course, the proof (9.28a) is of a general nature, since it does not specify any concrete form for
the wavefunction.
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which was set up to prove in (9.13d). Moreover, the result of the remaining
integral over t in the line preceding (9.29d) becomes very simple for t0 = 0
as known from, e.g., [82]:

I (0, ψ0) ≤ ‖V ‖
∫ ∞

0
dt (1 + b2t2)−3/4 = ‖V ‖

2b
B(1/2, 1/4) (9.29e)

where B(x, y) is the so-called beta-function, which is defined through the ratio of
the gamma-functions: B(x, y) =  (x) (y)/ (x + y). Hence, the well-known
t−3/2 spreading of the Gaussian wave packet represents a firm guarantee that the
critical integral I (t0, ψ0) converges, which is the condition for convergence of the
state vector �(t)ψ0 according to the requirement (9.6a). In this illustration, we
made use only of the spreading effect which, following the t−3/2-law, contributes
to a decrease in the integrand in I (t0, ψ0). However, a more adequate estimate,
which includes both the spreading and the fact that the centre of gravity of the
wave packet moves, would yield an even faster decrease in the integrand in
I (t0, ψ0) than the t−3/2 behaviour. Moreover, a decrease in the norm ‖V U0(t)ψ0‖
as t → ∞, is dominantly determined by the motion of the centre of gravity of the
wave packet and not the corresponding spreading effect.

It still remains to show that the sequence {�(t)�0} is strongly convergent
for any function �0 ∈ L2. This will be done if we remark that the subspace 	 is
everywhere dense in the space L2, i.e. for each �0 ∈ L2 and ε′ > 0 there exists
a certain ψ0 ∈ 	, such that ‖ψ0 − �0‖ < ε′. Using this fact, together with the
isometry of the operator �(t), we will find that, for any �0 ∈ L2 and ε > 0, the
following relations are valid:

‖�(t1)�0 −�(t2)�0‖ = ‖{�(t1)�0 −�(t1)ψ0} + {�(t1)ψ0 −�(t2)ψ0}
+ {�(t2)ψ0 −�(t2)�0}‖

≤ ‖�(t1)�0 −�(t1)ψ0‖ + ‖�(t1)ψ0 −�(t2)ψ0‖
+ ‖�(t2)ψ0 −�(t2)�0‖

= ‖�(t1)‖ · ‖�0 − ψ0‖ + ‖�(t1)ψ0 −�(t2)ψ0‖
+ ‖�(t2)‖ · ‖ψ0 −�0‖

≤ ‖�(t1)ψ0 −�(t2)ψ0‖ + ε

3
+ ε

3
≤ ε

3
+ ε

3
+ ε

3
= ε

‖�(t1)�0 −�(t2)�0‖ ≤ ε. (9.30a)

It then follows, because the series of state vectors {�(t)ψ0 : ∀ψ0 ∈ 	} represents
a fundamental sequence with the following property ‖�(t1)ψ0 − �(t2)ψ0‖ ≤
ε/3, that the series {�(t)�0 : ∀�0 ∈ L2} is also a strongly convergent sequence.
Hence, the series of the operators {�(t)} converges strongly in the entire Hilbert
space L2:

Lim
t→∓∞�(t) = �±. (9.30b)

The procedure explained here conclusively demonstrates that the strong limits in
(9.8b) exist. In other words, the existence of the Møller wave operators �± is
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proven for short-range potentials in the case of the one-channel non-relativistic
scattering problem.

An adequate physical interpretation of the obtained results is now in
order. To achieve this goal, we make use of the conclusion of Ikebe [69, 70],
who examined the asymptotic convergence problem associated with potential
scattering, under more severe restrictions imposed onto the short-range interaction
V ( r) than in the present analysis. We consider the wavefunctions of the
type �±

κ ( r) in the coordinate representation. These wavefunctions represent
stationary scattering states with the appropriate incoming or outgoing wave
for a given collision involving the short-range potential V ( r). Let us choose
such a normalization that �±

κ ( r) possesses the leading plane wave of the form
(2π)−3/2eiκ· r . Then, both of the sets 	+ ≡ {�+

κ ( r)} and 	− ≡ {�−
κ ( r)} will

be complete in the L2-space, provided that the set of bound-state wavefunctions
is added to 	±, in the case when the potential V ( r) supports the bound states.
Furthermore, let g( r) represent a wave packet, whose Fourier transform g̃(κ) is
given by the usual integral of the type (9.10d). Then, the following important
relation is proven in [69, 70]:

〈 r|�± g〉 = (2π)−3/2
∫

dκ �±
κ ( r)g̃(κ). (9.31a)

Referring to chapter 8, we see that the relations of the type (8.20) and (8.24)
acquire the form of a symbolic expression:

〈�−
κ ′ |�+

κ 〉 = δ(κ − κ ′)− 2iπδ(κ2 − κ ′2)
 (κ, κ ′) (9.31b)

where 
 (κ, κ ′) is the transition amplitude from κ to κ ′. The results (9.31a, b),
which emerge from the time-independent scattering theory, are now in full
accord with the corresponding analysis from chapter 7 in the context of the
time-dependent formalism. In fact, equation (9.31a) now becomes even more
important, because it can be shown that every function ζ ∈ L2, which does not
have any components of the bound state, can be reduced to the expression

ζ = �±h± h± ∈ L2. (9.31c)

Such a relation is possible, since each element ζ can be written in the form
of the rhs of equation (9.31a). This might be utilized to show that each
scattering state U(t)ζ = e−iHtζ of the total Schrödinger equation (9.2a) becomes
asymptotically free, in the sense that U(t)ζ tends to the corresponding solution
of the Schrödinger equation (9.3a) for the free waves U0(t)ζ = e−iH0tζ , when |t|
acquires very large values3. This can be proven by using (9.8a) and (9.31c), as

3 This remark is exceptionally important for an extension of the concept of the asymptotic
convergence onto the Coulomb potential.
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follows:

lim
t→∓∞‖U(t)ζ − U0(t)h

±‖ = lim
t→∓∞‖U(t)�±h± − U0(t)h

±‖
= lim

t→∓∞‖U(t)‖ · ‖�±h± − U†(t)U0(t)h
±‖

= lim
t→∓∞‖�±h± − U†(t)U0(t)h

±‖
= lim

t→∓∞‖�±h± −�±(t)h±‖
lim

t→∓∞‖U(t)ζ − U0(t)h
±‖ = 0 (QED). (9.31d)

Here, we make use of the fact that the relation (9.8a) holds true for h± ∈ �,
as was also the case analysed earlier for �0 ∈ �. The described asymptotic
freedom of scattering states U(t)ζ is necessary for an adequate description of the
experimental conditions of scattering in which only the free states of particles
can be detected. This concept yields a very clear and also the only physically
acceptable interpretation of the total scattering state U(t)χ . Based upon such a
concept, it is expected that one can devise a consistent S-matrix scattering theory,
in which the existence of the Møller wave operators �± and the resulting correct
boundary conditions of the wavefunctions of the scattering states would play a
crucial role.

The performed proof of the existence for the wave operators �± suggests
the following picture for the scattering problem. At large negative times −|t|,
there exists a free wave packet U0(t)�0i (�0i ∈ L2), as a representative of the
particle which has just left the collimator. In such a circumstance, the main
physical information which is relevant for the scattering phenomenon is given
by the probability of finding a free wave packet U0(t)�0 f (�0 f ∈ L2) also at
large positive times |t|. Here, it is assumed that, in the meantime, i.e. between the
two large extreme times ∓|t|, the time dependence of the dynamics of the given
particle develops under the influence of the total Hamiltonian H = H0 + V . In
order to find that probability, we shall select certain fixed large values, of both
negative t1 and positive t2 times. This will enable us to define two solutions
�±

1,2(t) of the total Schrödinger equation (9.2a), such that �±
1,2(t) coincide with

U0(t)�0i,0 f for t = t1,2 respectively. Namely, in a general case, the time
evolution of the total state is given by the expression

�(t) = U(t − t ′)�(t ′) (9.32)

where t ′ is an arbitrary time t ′ < t . In the past, for large negative values t ′ ≡ t1,
the correct boundary conditions require that �(t ′) is reduced to the free wave
packet U0(t)�0i . An entirely analogous situation is also encountered in the
future; for another particular value of the positive time t ′ ≡ t2, the function �(t ′)
coincides with the free wave packet U0(t)�0 f , so that

�+
1 (t) = U(t − t1)U0(t1)�0i (9.33a)

�−
2 (t) = U(t − t2)U0(t2)�0 f . (9.33b)
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The overlap integral of the wavefunctions �+
1 (t) and �−

2 (t) is given by the
following matrix element:

T (t1, t2) ≡ 〈�−
2 (t)|�+

1 (t)〉
= 〈U(t − t2)U0(t2)�0 f |U(t − t1)U0(t1)�0 i 〉
= 〈U(t)U †(t2)U0(t2)�0 f |U(t)U †(t1)U0(t1)�0 i 〉
= 〈U†(t2)U0(t2)�0 f |U†(t)U(t)|U †(t1)U0(t1)�0 i〉
= 〈U†(t2)U0(t2)�0 f |U†(t1)U0(t1)�0 i 〉

T (t1, t2) = 〈�(t2)�0 f |�(t1)�0 i〉 (9.33c)

where the unitarity of the evolution operator U(t) is used. In this analysis, the
times t1 and t2 are large but they are also considered provisionally as being finite.
This, however, does not prevent us here to take the limits t1,2 → ∓∞, for which
the wave packets Limt→∓∞�(t1,2)�0 i,0 f converge strongly to their respective
limiting values. These latter values are physically acceptable wave packets of the
Møller operators �±. Their explicit forms are given by �±�0 i,0 f . Hence, the
sought probability amplitude W will be defined by the expression

Wi f  ≡ lim
t1,2→∓∞ 

T (t1, t2) = lim
t1,2→∓∞〈�(t2)�0 f |�(t1)�0 i〉 (9.34)

provided that the indicated double limit exists. The limits t1 → −∞ and t2 →
+∞ are independent of each other, so that the double limit will exist in (9.34),
if the two series {�±�0 i,0 f } converge strongly. Since this latter convergence is
proven, it follows that the defining expression (9.34) for the probability amplitude
Wi f  becomes

Wi f  = 〈�−�0 f |�+�0 i〉 = 〈�0 f |�−†�+�0 i 〉. (9.35a)

The existence of the wave operators �−† and �+ now allows the introduction of
the S-scattering operator as in (7.27), i.e. S ≡ �−†�+, so that

Wi f = 〈�0 f |S�0i〉 ≡ Si f (9.35b)

where the S-matrix elements are denoted by the usual label Si f . Hence, we obtain
a standard expression (7.26c). However, while according to equation (7.15d)
from chapter 7, existence of the Møller wave operators�± is only assumed, here
this existence is rigorously proven. At the same time, this step in the analysis
provides a strict proof of the necessary condition for the completeness of the S-
matrix theory. However, we still lack the sufficient condition, which consists of
providing a proof for the unitarity of the S-matrix.

It clearly follows from our analysis that the so-called ‘asymptotic freedom’
associated with scattering states U(t)� establishes, in a physically plausible
manner, the correctness and consistency of the exposed concept for studying
the scattering problem. This concept is fully compatible with the indispensable
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experimental requirement, which demands that, in both the remote past and
distant future, the examined system must remain unperturbed. In other words,
at these two extreme times, the system moves only under the influence of
the operator of the kinetic energy H0. It is only in this way that, for these
asymptotic times, we can be sure of having prepared the free wave packets
U0(t)�0i and U0(t)�0 f , which, in the meantime, evolve under the action of the
total Hamiltonian H (= H0 + V ). These asymptotically free scattering states,
which are introduced here in an unambiguous manner, will become of decisive
importance for a proper physical interpretation of the obtained results. It is only
with this definition of the asymptotically free states that we are in a position to
assert that we could distinctly separate the two situations ‘before’ and ‘after’
collision. Such an achievement allows us to guarantee that a transition from
the initial to the final state of the system occurs solely under the influence of
the interaction potential V . If that were not the case, we could not talk at all
about the free wave packet as t → ∓∞. This means that neither the initial
nor the final state of the system could be prepared, i.e. controlled, in which case
the very definition of a scattering phenomenon would cease to have any meaning.
However, the previously outlined concept is not applicable to Coulomb scattering.
Namely, in the case of long-range Coulombic interactions, the asymptotic form
of the wave packet is given by the function Uc(t)� , where Uc(t) differs from the
total evolution operator U(t). In such a case, we speak about a departure from
the notion of the ‘asymptotic freedom’ in the conventional quantum-mechanical
sense, which is analysed earlier in the case of short-range potentials.

Here, it is very important to see how the quantum-mechanical free wave
packet U0(t)χ propagates at asymptotic times |t| → ∞. In other words, we are
interested in a quantity to which the state vector U0(t)χ would tend in the strong
limit as t → ∓∞. The answer to this question is, in fact, already contained in
one of the intermediate steps of the proof of the existence for the wave operators
�±. More precisely, this is the relation (9.25d), whose meaning becomes clear
when it is rewritten in terms of strong topology. Namely, repeating entirely the
same procedure as in the derivation of the result (9.25d), we will obtain, for large
finite values of time t ,∥∥∥∥U0(t)χ −

(m

it

)3/2
eimr2/(2t)χ̃

(mr
t

)∥∥∥∥ ≤ C0

|t| (9.36a)

where

C0 = m

2
(2π)−3/2

∫
dr ′ r ′2|χ(r ′)| <∞. (9.36b)

In the limit |t| → ∞ the inequality (9.36a) can be simplified even more as
follows:

lim
t→∓∞

∥∥∥∥U0(t)χ −
(m

it

)3/2
eimr2/(2t)χ̃

(mr
t

)∥∥∥∥ = 0 (9.36c)
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or, equivalently,

〈r|U0(t)χ〉 =⇒
t→∓∞

(m

it

)3/2
eimr2/(2t)χ̃

(mr
t

)
. (9.36d)

Taking into account the earlier result (9.18b) and the convolution Plancherel
relation

∫
d p |χ̃(t, p)|2 = ∫

dr |χ(t, r)|2, we can easily give a physical
interpretation of the expression (9.36d). Let |χ(t, r)|2 represents the probability
for finding the particle m at the point r at time t . Then, according to the Plancherel
relation, the quantity |χ̃(t, p)|2 determines the probability for finding the same
particle in momentum space in the four-dimensional point (t, p). It then follows
from the results (9.18b) and (9.36c) that for large positive and negative times
(|t| → ∞), the quantum-mechanical free wave packet U0(t)χ propagates in such
a way that its probability density |U0(t)χ |2 becomes indistinguishable from the
classic probability density of a free particle (m/|t|)3|χ̃(mr/t)|2. The multiplying
exponential term in (9.36c, d) coincides with the well-known phase factor
connected with the classical energy, since exp [imr2/(2t)] = exp (imv2t/2) =
exp [ik2t/(2m)] = exp (iEkt), where v and k are the velocity and the wavevectors
(k = mv). We specially emphasize that this conclusion should not be confused
with the fact that the centre of gravity of a general quantum-mechanical wave
packet of arbitrary shape moves according to the dynamics of the classical
Hamilton–Jacobi equations. The obtained strong limit (9.36d) of the quantum-
mechanical free wave packet U0(t)χ represents a physically intuitive criterion for
the asymptotic freedom, which encompasses the essential requirements imposed
on the outgoing and incoming wave packets. This analogy with classical
dynamics can also be extended to Coulomb scattering. The wave packet Uc(t)χ
in the Coulomb field possesses a corresponding purely ‘classical’ asymptotic
behaviour at large |t|, despite the fact that Uc(t)χ does not reduce to U0(t)χ0
in the limit |t| → ∞.
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Chapter 10

The principle of detailed balance

This chapter is devoted to the problem of invariance of scattering systems with
respect to time inversion. This subject is closely related to the principle of detailed
balance. In order to examine this matter, we shall first introduce the notions of
the anti-linear and anti-unitary operators. Thus, a given operator A is said to be
anti-linear, if we have:

A(αψ + βφ) = α∗Aψ + β∗Aφ (10.1a)

for all vectors φ,ψ ∈ �A and α, β ∈ � . If A1 and A2 are two anti-linear
operators, it follows that their product is a linear operator, since according to
(10.1a) we have:

A1 A2(αψ + βφ) = A1{α∗A2ψ + β∗A2φ} = αA1 A2ψ + βA1 A2φ. (10.1b)

If A is an anti-linear operator, which maps � onto � (A : � −→ �) and
preserves the norm:

‖Aψ‖ = ‖ψ‖ �A = �, �A = � (10.1c)

then hereafter A will be called an anti-unitary operator. Does an anti-unitary
operator also satisfy a relation of the type (7.17b), i.e. U†U = UU† = 1, as
is the case with the unitary operator U? In order to answer this question, it is
necessary to recall the genuine meaning of the Dirac ‘bra–ket’ symbolic notation.
Namely, the action of a given operator A within the matrix element 〈φ|A|ψ〉 can
be represented in the following two equivalent manners:

〈φ|A|ψ〉 = 〈φ|Aψ〉 = 〈φA†|ψ〉 (10.1d)

provided that A is a linear operator. In this way, we define the adjoint operator
A† for a given linear operator A. However, these two alternative representations
of the matrix element 〈φ|A|ψ〉 are no longer equivalent to each other, if instead
of A, we consider an anti-unitary operator A from (10.1a). This can easily be
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understood if we call upon the fact that the scalar product 〈φ|ψ〉 is linear, and anti-
linear with respect toψ and φ, respectively: 〈φ|αψ1+βψ2〉 = α〈φ|ψ1〉+β〈φ|ψ2〉
and 〈αφ1 + βφ2|ψ〉 = α∗〈φ1|ψ〉 + β∗〈φ2|ψ〉. It would be instructive to see what
precisely should be redefined in order that the defining relation (10.1d) for an
adjoint operator could also encompass the anti-linear operator A. To this end,
let us conveniently transform the matrix elements 〈αφ|Aβψ〉 and 〈A†αφ|βψ〉.
For linear operators A and A†, it follows that 〈αφ|Aβψ〉 = α∗β〈φ|Aψ〉 and
〈A†αφ|βψ〉 = α∗β〈A†φ|ψ〉, which is compatible with (10.1d). However, for an
anti-linear operator A, we find that

〈αφ|Aβψ〉 = (αβ)∗〈φ|Aψ〉 (10.2a)

〈A†αφ|βψ〉 = αβ〈A†φ|ψ〉. (10.2b)

It then follows from here that, in contrast to (10.1d), the definition of the adjoint
operator A† must proceed through taking the complex conjugate of the matrix
element 〈A†φ|ψ〉, i.e.

〈φ|Aψ〉 = 〈A†φ|ψ〉∗. (10.2c)

The expression (10.2c) is the sought definition of the adjoint operator A†, for a
given anti-linear operator A. Therefore, when dealing with an anti-linear operator
A, it is important to keep in mind that the matrix elements 〈φ|Aψ〉 and 〈A†φ|ψ〉
are not the same. If A is an anti-linear operator, then this will also be the case with
the operator A†, for which we have �A† = �, �A† = � and ‖A†ψ‖ = ‖ψ‖.
Furthermore, taking into account the definition (10.2c) of an adjoint anti-linear
operator A† for a given anti-linear operator A and recalling that A maps � onto
� by preserving the norm, we find that

‖ψ‖2 = ‖Aψ‖2 = 〈Aψ|Aψ〉〈Aψ|Aψ〉∗
‖ψ‖2 = 〈A† Aψ|ψ〉∗〈A† Aψ|ψ〉 = ‖A† Aψ‖2 � A† A = 1 (10.2d)

‖ψ‖2 = ‖A†ψ‖2 = 〈A†ψ|A†ψ〉〈A†ψ|A†ψ〉∗
‖ψ‖2 = 〈AA†ψ|ψ〉∗〈AA†ψ|ψ〉 = ‖AA†ψ‖2 � AA† = 1 (10.2e)

because �A = �,�A = �, �A† = � and�A† = �. Hence,

A† A = AA† = 1. (10.2f)

Of course, the products AA† and A† A of anti-linear operators A and A†

themselves represent linear operators, according to (10.1b). This is in accordance
with (10.2f), where these products coincide with the unity operator, which is
certainly linear. The relation (10.2f) is formally identical to the usual request
(7.17b) for unitarity of an operator. However, in contrast to unitarity, the property
of anti-unitarity (10.2f) presumes that the operators A and A† are anti-linear.

Operator T of the time inversion is introduced in such a way that its action
changes the signs of the impulse and spin of all the particles of the studied
system, whereas their position vectors are left unaltered. In other words, if
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q = (q1, q2, q3) and p = (p1, p2, p3) are the position and impulse operators
of a given particle, we shall set

T †qkT = qk T † pkT = −pk (1 ≤ k ≤ 3). (10.3a)

According to the Wigner theorem [83], any symmetry of a quantum-mechanical
system can be specified through either a unitary (U ) or anti-unitary (A) operator
in �. Namely, if a certain symmetry transforms the state vector ψ ∈ � into a
new element ψ ′ ∈ �, then it is possible to adjust the phase of ψ ′ in such a way
that one of two mutually excluding cases takes place: ψ ′ = Uψ or ψ ′ = Aψ for
∀ψ ∈ �. In either of these two variants, Z† Z = Z Z† = 1, where Z = U, A.
Here, in the case Z = A, it is additionally assumed that the condition (10.1a) for
anti-linearity is fulfilled. If either of the two mentioned cases is applicable to T ,
then the Wigner theorem implies that

T †T = T T † = 1. (10.3b)

Multiplying both relations from (10.3a) from the left by T and using (10.3b), we
shall obtain

[T, qk]− = 0 [T, pk]+ = 0 (1 ≤ k ≤ 3) (10.3c)

where the symbols [A, B]− and [A, B]+ denote the commutator [A, B]− ≡
[A, B] = AB − B A and anti-commutator [A, B]+ = AB + B A. Of course,
the following general relations hold true for commutators:

[T, f (qk)] = 0 [T, g(p2n
k )] = 0 (n ∈ �) (10.3d)

where f (qk) and g(p2n
k ) are arbitrary operator functions. In order to see whether

T is a unitary or anti-unitary operator, we shall employ the relation [q j , pk] =
iδ j k . Multiplying this commutator from the left by T † and from the right by T , it
follows, with the help of (10.3b), that

T †[q j , pk]T = T †q j pkT − T † pkq j T = T †q j 1̂pkT − T † pk 1̂q j T

= (T †q j T )(T † pkT )− (T † pkT )(T †q j T ) = −q j pk + pkq j

T †[q j , pk]T = − [q j , pk] (10.4a)

T †[q j , pk]T = − [q j , pk] = T †iδ j kT . (10.4b)

In this manner, the basic commutator relation of quantum mechanics [q j , pk] =
iδ j k becomes invariant with respect to the T -transformation:

T †[q j , pk]T = [q j , pk] (10.5a)

provided that the following condition is satisfied: T †iδ j kT = −iδ j kT †T =
−iδ j k . Here, we have made use of the expression (10.3b), together with the fact
that the Kronecker δ-symbol is a real quantity. Hence, it ought to be

T †iT = −i (10.5b)
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which can be valid only if T is an anti-unitary operator. Thus, the operator T
possesses the general property (10.1a) of anti-linear operators. Combining the
relations (10.2c) and (10.3b) will result in 〈Tφ|Tψ〉 = 〈T †Tφ|ψ〉∗ = 〈φ|ψ〉∗, so
that:

〈φT |ψT 〉 = 〈φ|ψ〉∗ (10.5c)

where
|�T 〉 = T |�〉. (10.5d)

Let us demonstrate how the state vectors |�T 〉 can be obtained in the coordinate
�T (r) and impulse �̃T ( p) representation, where

�T (r) ≡ 〈r|�T 〉 �̃T ( p) ≡ 〈 p|�T 〉. (10.5e)

Up to an arbitrary phase factor, which has no physical significance, we can write

T |r〉 = |r〉 T | p〉 = | − p〉 (10.6a)

where |r〉 and | p〉 are the generalized state vectors. Any state vector |�〉 can
be expanded in terms of either the basis {|r〉} or {| p〉}, as follows: |�〉 =∫

dr |r〉〈r |�〉 = ∫
dr �(r)|r〉. Since T is an anti-linear operator, i.e. Tλ|r〉 =

λ∗T |r〉, we shall have

|�T 〉 = T |�〉 = T
∫

dr �(r)|r〉 =
∫

dr �∗(r)T |r〉 =
∫

dr �∗(r)|r〉.

It then follows from here that

〈r ′|�T 〉 =
∫

dr �∗(r)〈r ′|r〉 =
∫

dr�∗(r)δ(r ′ − r) = �∗(r ′)

which yields
�T (r) = �∗(r). (10.6b)

However, in the impulse representation, starting from the expression

|�T 〉 = T |�〉 = T
∫

d p 〈 p|�〉| p〉 = T
∫

d p �̃( p)| p〉

=
∫

d p �̃∗( p)T | p〉 =
∫

d p�̃∗( p)| − p〉

we derive the following result:

〈 p′|�T 〉 =
∫

d p �̃∗( p)〈 p′| − p〉 =
∫

d p �̃∗( p)δ( p′ + p) = �̃∗(− p).

Therefore,
�̃T ( p) = �̃∗(− p). (10.6c)
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The results (10.6b, c) are in accordance with the definition of the adjoint operator
A† from (10.2c). Namely, putting A = T , ψ = � in (10.2c) and using the
representation |φ〉 = |r〉 or |φ〉 = | p〉, together with (10.6a), we shall have

�  T ( r) = 〈r|�  T 〉 = 〈r| T�〉 = 〈T † r|�〉∗ = 〈r|�〉∗ = �∗( r)

or

�̃ T ( p) = 〈 p|�  T 〉 = 〈 p| T�〉 = 〈T † p|�〉∗ = 〈− p|�〉∗ = �̃∗(− p)

which is in agreement with (10.6b) or (10.6c).
In connection with the operator T , there exists an important property, which

is known as the micro - reversib ility of physical processes. Namely, a given
quantum-mechanical system described by the Hamiltonian H will be invariant
with respect to the operator T of the time inversion, if we have

[ T, H ] = 0. (10.7a)

Suppose we are given a spinless particle, whose Hamiltonian H contains a local
interaction potential V ( r), i.e.  H = H0 + V ( r) = p2/(2 m) + V ( r), where
p2 = p2

1 + p2
2 + p2

3. It then follows from (10.3d) that

[ T, H0] = 0 [ T, V ( r)] = 0 (10.7b)

which explicitly leads to the commutator relation (10.7a). Thus far, we have seen
in the preceding chapters that commutation of a linear operator A with the total
Hamiltonian H always results in conservation of the observable � associated with
A. Is it possible to give any analogous physical interpretation of the commutator
relation (10.7b) encompassing the anti-unitary operator T ? We shall see that this
question is of great importance, since it is directly linked to the fundamental
quantum-mechanical concept of micro-reversibility of physical processes. In
order to explain this concept in some simple terms, let us first remark that the
definition of the operator T of the time inversion according to (10.3a) does not
directly justify the name of this operator. Namely, as we pointed out in chapter 2,
operators q and p do not depend explicitly upon time. Therefore, it seems more
natural to bring the operator T into an immediate relation with a certain relevant
operator function of time. Such a function would transparently picture the action
of T, in accordance with the notion ‘time inversion’. It is then suggestive to
make a first trial with the operator U(t) = e−iHt of time evolution. In so doing,
we notice that the commutator relation (10.7a) also holds true in a more general
form: [T, f (H )] = 0, where f (H ) is an arbitrary operator function. Keeping this
in mind, together with the relation (10.5b), we find that T · eiHt = e−iHt · T , i.e.

T U†(t) = U(t)T . (10.7c)

Since the evolution operator U(t) possesses the property (7.17a), i.e. U †(t) =
U(−t) for H † = H , we can rewrite equation (10.7a) as

T U(−t) = U(t)T . (10.7d)
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Of course, entirely analogous reasoning can also be applied to the free evolution
operator U0(t) = e−iH0t , for which the expression (10.7b) implies that

T U†
0 (t) = U0(t)T T U0(−t) = U0(t)T . (10.7e)

Hence, equation (10.7d) is the sought expression, from which it follows that
the action of the operator T is indeed accomplished through the time inversion
t ↔ −t but with the simultaneous passing of the evolution operator U from
the lhs to the rhs of T . The obtained relation (10.7d) is particularly suggestive
in the scattering problem. Here, for large values of time, the transformation
t ↔ −t implies that the propagators from the remote past and distant future
mutually exchange their positions. However, in the general case, the entrance
and exit channels of scattering differ from each other. Therefore, it is obvious
that the sole transformation t ↔ −t will not suffice, since it would destroy the
existing symmetry of the initial and final configuration of the system. Hence,
a compensation should exist for the broken symmetry, i.e. it is necessary that
together with the transformation t ↔ −t , the initial and final configuration
interchange with each other. This could be brought only into connection with
the fact that the position of the operator U in (10.7d) is inverted in regard to T .
In order to investigate this point, we shall apply the operator T onto the Møller
wave operators �± from (9.7b). Namely, using (9.6b) and (10.7d, e), we shall
have T�(t) ≡ T U†(t)U0(t) = U(t)T U0(t) = U(t)U †

0 (t)T :

T�(t) = �(−t)T �(t) = U†(t)U0(t). (10.8a)

This, together with the definition of the wave operators �±, directly implies that

T�± = �∓T (10.8b)

where �± = Limt→∓∞�(t). Taking into account the property (10.3b) of the
operator T and multiplying equation (10.8b) from the left by T †, we obtain the
so-called similarity relation:

�± = T †�∓T . (10.8c)

Hence, the result of action of T onto the wave operators �± consists of the inter-
exchange: �+ ↔ �−. Furthermore, since the S-scattering operator is, according
to the definition (7.27), given by the product of the operator �−† with �+, it is
easy to find the result of application of T onto S:

T S ≡ T�−†�+ = �+†T�+ = �+†�−T

T S = S†T . (10.8d)

Utilizing (10.3b), we can also obtain the similarity relation for the operators S and
T :

T S = S†T S = T †S†T . (10.8e)
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It follows from here that the action of the operator of time inversion is reduced to
the conversion of S into its adjoint operator S†. This finding enables us directly
to conceive a result of action of the operator T when we are concerned with the
most relevant physical information, i.e. the S-matrix elements for the transition
′i ′(α) −→ ′ f ′(β) from the initial to the final state of the system:

Sα→β ≡ 〈�0β(t)| S|�0α(t)〉 = 〈�0β(t)| T † S† T |�0α(t)〉
= 〈T�0β(t)| S†| T�0α(t)〉∗
= 〈�  T0β(t)| S†|�  T0α(t)〉∗ = 〈�  T0α(t)| S|�  T0β(t)〉

Sα→β = Sβ  T →α T . (10.9a)

Here, we employed the property 〈φ| T †ψ〉 = 〈Tφ|ψ〉∗ of the operator T
according to (10.2c) from the so-called Hermitean symmetry of the scalar product:
〈φ|ψ〉∗ = 〈ψ|φ〉. The result (10.9a), known as the T - invariance, shows that the
S-matrix remains unaltered under the action of the operator T of time inversion.
In such a case, the probability for the scattering event is automatically the same
for the original transition α → β from the initial to the final state and for the
inverse process β T → α T . In the inverse process, the initial and final state not
only inter-exchange their roles but also are subject to the time inversion:

| Sα→β |2 ≡ Wα→β = Wβ  T →α T ≡ |Sβ  T →α T |2. (10.9b)

This is the so-called prin ciple o f d etailed balance, which precisely asserts that
the transition p robabilities for a g iven process and its inverse are a lways equal to
each other. This is also known under a more general name micro - reversib ility of
physical processes. Naturally, an equivalent consideration can also be carried out
for the S′-scattering operator from (7.35), with the result

T S′ ≡ T�+�−† = �−T�−† = �−�+†T

T S′ = S′†T . (10.10a)

We saw in chapter 7, that the S′-matrix elements are defined in terms of the
total scattering states �−

α (t) and �−
β (t), which are the solutions to the eigenvalue

problem of the full Hamiltonian H :

S′α→β ≡ 〈�−
β (t)|S′|�−

α (t)〉 = 〈�−
β (t)|T †S′†T |�−

α (t)〉
= 〈T�−

β (t)|S′†|T�−
α (t)〉∗

= 〈�(−)T
β (t)|S′†|�(−)T

α (t)〉∗ = 〈�(−)T
α (t)|S′|�(−)T

β (t)〉
S′α→β = S′

βT →αT (10.10b)

with

�(±)T
γ (t) = T�±

γ (t) = T�±�0γ (t) = �∓T�0γ (t)

�(±)T
γ (t) = �∓�T

0γ (t) (10.10c)

Copyright 2004 IOP Publishing Ltd



150 The principle of detailed balance

where equations (7.15a) and (10.8b) are used. Hence, resorting to the principle
of detailed balance, the physical interpretation of the action of operator T in the
S′-matrix element (10.10b) is the same as in the S-matrix from (10.9a).

The principle of detailed balance cannot be expected to hold true in quantum
mechanics, if perturbation theory ceases to be applicable. Nevertheless, in such a
case, this principle can still be shown to be valid provided that the average over
the spin variables is carried out. Previously, we give a definition of the principle
of detailed balance though equating the transition probabilities of a direct and
the inverse process. However, this definition needs a precise specification of
the inverse of a given process. Is it justified to simply say that β −→ α is the
inverse of the direct transition α −→ β, as is customarily done in the research
literature [84]? If the answer should be affirmative, then the principle of detailed
balance would imply the symmetry property of the S-matrix. In general, such a
property cannot be expected to take place. In our discussion, however, there is
no symmetry constraint on the S-matrix, since we define the inverse of a given
process by applying the time reversal operation. In other words, if α −→ β is
a direct process, then its inverse will be βT −→ αT , where the superscript T
denotes the operation of time inversion. This implies that the principle of detailed
balance becomes a simple consequence of the invariance of the interaction V
under reversal of time. Let p be the collective label for the momenta of all the
particles of a given quantum system and let s stands for their spin variables. Then
generalizing the definition (10.6c), we shall write:

T �̃(p, s; t) = Us�̃
∗(−p,−s; −t) (10.11a)

where we have introduced time t explicitly as one of the arguments of the
wavefunction. We shall alternatively use the Dirac notation |p, s, t〉 for the proper
state vectors from (10.11a). Moreover, whenever it appears convenient, time t
will be left out from these bra–ket symbols, which should not be confused with
improper state vectors | p〉 and | p±〉. The object Us represents a unitary operator,
which acts only upon the spin variables and is defined by

Us =
{
σ2 s = 1/2

−1 s = 1
σ2 =

(
0 −i
i 0

)
(10.11b)

where σ2 is the usual Pauli matrix. We saw that the similarity transformation
plays a central role in the application of the time reversal operator T . Thus, in the
most general case, we need only the form of the product of one-particle operators.
Then, since Us is a Hermitean operator, as is obvious from (10.11b), we shall have

(Us AUs)
† = Us A†Us . (10.11c)

Here, A is an arbitrary operator, which does not change the number of fermions
(s = 1/2) by an odd number. The same property will consequently hold true
for the interaction Hamiltonian and the S-matrix. In the Dirac (or interaction)
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picture of quantum mechanics, the invariance of the Hamiltonian H (t) under time
reversal, can be formulated by

〈 p′, s′| H (t)| p, s〉 = 〈p′, s′| T † H (t) T | p, s〉
〈 p′, s′| H (t)| p, s〉 = 〈−p′,− s′|Us H (− t)Us| −  p,− s〉∗. (10.11d)

However, since Hamiltonian H is Hermitean and Us is a unitary operator, it
follows that

〈 p′, s′| H (t)| p, s〉 = 〈−p,− s|Us H (− t)Us| −  p′,− s′〉. (10.11e)

This relation can be extended to encompass the product of k operators
H (tk) · · ·  H (t1), in the form

〈 p′, s′| H (tk) · · ·  H (t1)| p, s〉 = 〈−p,− s|Us H (− t1) · · ·  H (− tk)Us | −  p′,− s′〉.
(10.11f)

Precisely the same type of product H (tk) · · · H (t1) is encountered in the
perturbative treatment of the S-matrix, which reads as (see chapter 6):

S = 1 +
∞∑

k=1

(−i)k
∫

dtk · · ·
∫

dt1 �(tk − tk−1) · · ·�(t2 − t1)H (tk) · · · H (t1)

(10.12a)
where �(t2 − t1) ≡ �(t2, t1) is the Heaviside � step-function (6.5), with the
feature

�(t2, t1) = �(−t1,−t2). (10.12b)

Using equations (10.11b, f) and (10.12a, b), we obtain

〈p′, s′|S|p, s〉 = 〈−p,−s|Us SUs | − p′,−s′〉
〈p′, s′|S|p, s〉 = ± 〈−p,−s|S| − p′,−s′〉 (10.12c)

where we have used the fact that the S-operator does not change the number of
fermions by an odd number. The relation (10.12c) implies that the probabilities
for the transitions (p, s) −→ (p′, s′) and (−p′,−s′) −→ (−p,−s) are equal to
each other. This proves the general validity of the principle of detailed balance,
within the previously adopted definition of the inverse process, provided that the
interaction potential is invariant under time reversal. Furthermore, if we perform
the summation over the spin variables in the squared moduli of the S-matrix
elements, we easily find that∑

s

∑
s ′

|〈−p,−s|S| − p′,−s′〉|2 =
∑

s

∑
s ′

|〈p, s|S|p′, s′〉|2 (10.12d)

since the transition amplitude is invariant under the reflection of the coordinate
axes. Finally, inserting (10.12c) into equation (10.12d), will yield∑

s

∑
s ′

|〈p, s|S|p′, s′〉|2 =
∑

s

∑
s ′

|〈p′, s′|S|p, s〉|2. (10.12e)
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This completes the proof about the universal validity of the principle of detailed
balance, irrespective of whether the perturbation theory for the S-matrix holds
true or not, provided that the average of the spin variables is carried out [85, 86].
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Chapter 11

Convergence of series of operators, state
vectors and matrix elements

Generally speaking, in scattering theory one employs certain expansions of
operators, state vectors (or vectors, for short) and matrix elements. In operator
expansions, every term is an operator, which is understood in the sense of its
action on elements of an appropriate vector space. Similarly, in the case of a
vector series, every term represents an element of the given space of vectors.
However, the series of matrix elements are complex numbers obtained by the
action of operators on certain vectors followed by their projection onto some
other vectors. This distinction is possible, not only for two-particle but also for
many-particle collision problems. Obviously, this classification and examination
of convergence of these series, which is the subject of this chapter, possesses much
more complicated repercussions in phenomena related to a many-body problem.
In this latter case, one encounters certain additional asymptotic states, which lead
to some new branch cuts in the complex energy plane, not seen previously in a
potential scattering. Certainly, from the physical point of view, it is most relevant
to study the convergence or divergence of series of some matrix elements, since
the corresponding transition amplitudes are given in terms of the overlap integrals
between the final scattering states and the initial asymptotic states weighted with
the perturbation potential for a collision system under investigation. The exact
calculation of the matrix elements is extraordinarily difficult beyond the second
order in a perturbation expansion. Therefore, it is of crucial importance to
examine the operator and vector series, with the purpose of gaining some insight
into convergence of the pertinent physical matrix elements. In order to make
these introductory remarks more concrete and more plausible, let us consider the
T -matrix of a potential scattering:

T+
i f (E) = 〈� f |V |�+

i 〉 (11.1a)

where V is the interaction potential, E is the total energy of the two particles
and �+

i represents the scattering state of the complete system in the initial
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configuration, which corresponds to an outgoing spherical state at infinity from
the scattering centre. In addition, we have the initial �i and final � f asymptotic
states given by

�+
i, f = �i, f + G+(E)V�i, f (11.1b)

where G+(E) = (E−H +i0)−1 is the total Green operator, H = H0+V denotes
the complete Hamiltonian, whereas H0 is the operator of the kinetic energy of two
particles. By inserting equation (11.1b) into (11.1a), we arrive at the following
expression for the T -matrix, which is convenient for the perturbation expansion:

T+
i f (E) = 〈� f |V |�i 〉 + 〈� f |V G+(E)V |�i 〉. (11.1c)

As we emphasized earlier, the possibility of obtaining the general results is offered
by the T -matrix calculated via the resolvent G(µ), instead of the Green operator
G+(E), i.e.

T+
i f (µ) = 〈� f |V |�i 〉 + 〈� f |V G(µ)V |�i 〉 µ ∈ � (11.2)

where G(µ) = (µ − H )−1. The relevant operator series is obtained when the
resolvent G(µ) is expanded in powers of the ‘collision kernel’ K (µ):

G(µ) =
∞∑

n=0

K n(µ)G0(µ) (11.3)

where G0(µ) = (µ− H0)
−1 represents the free-particle resolvent and

K (µ) = G0(µ)V = (µ− H0)
−1V . (11.4a)

A corresponding expansion of vectors is found by application of G(µ)V onto
element �i and using series (11.3):

χ(µ) =
∞∑

n=0

χn(µ) (11.4b)

where

χ(µ) = G(µ)V�i (11.4c)

χn(µ) = K n(µ)G0(µ)V�i . (11.4d)

Finally, a series of the matrix elements can be derived directly from (11.2), with
the help of (11.3):

T+
i f (µ) = 〈� f |V |�i 〉 +

∞∑
n=0

〈� f |V |χn(µ)〉. (11.5)
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All three series (11.2), (11.3) and (11.5) are of the Neumann type and they are
known as the Born expansions in scattering theory. Although all three series
describe the same physical problem, it is immediately clear that they will possess
very different mathematical properties. Here a fundamental question arises: is
there any relation between the convergence radii of these three series under study?
In order to answer this question, let us first introduce a more general resolvent
G(λ, µ):

G(λ, µ) = (µ− H0 − λ V )−1 λ,µ ∈ � . (11.6)

In the particular case λ = 0, equation (11.6) coincides with G0(µ) from (11.4a).
One of the essential conclusions of the upcoming analysis will be given through
the following expression [87]:

ρop ≤ ρve ≤ ρme (11.7)

with ρx being the convergence radius and x ≡ op, ve, me where abbreviations
op, ve and me stand for operators, vectors and matrix elements, respectively.
In other words, convergence of an operator expansion obligatorily implies the
convergence of the associated series of vectors and matrix elements. However, the
reverse ordering is also valid, i.e. the divergence of the series of matrix elements
inevitably leads to the divergence of the corresponding expansions of vectors
and operators. For practical purposes, however, a far-reaching consequence of
inequality (11.7) is that the divergence o f a n opera to r series does not obligatorily
cause the divergence o f the related expansions of vectors and matrix elements.
From the physical viewpoint, the most important expansions are matrix elements
which enable transition probabilities to be calculated from an initial to a final
state, leading to cross sections as the key observables. In addition to these
most important questions about the convergence or divergence of the Neumann
expansions, there also exists a whole sequence of other problems in scattering
theory, such as the convergence rate and acceleration of slowly converging series,
or even inducing convergence into divergent perturbation expansions (the so-
called re-summation of diverging series via the concept of analytical continuation
of the type of, e.g., the Padé approximant, the continued fractions or other
nonlinear transformations, etc).

Starting from the analytical properties of a linear operator A(λ) and the
corresponding abstract vector ψ(λ), taken as functions of the complex variable
λ, let us first study the convergence of power series expansions of these q-
numbers. Here we have especially in mind the Lippmann–Schwinger equation
for a scattering state and also the appropriate Green resolvent. These two subjects
were analysed in chapters 6 and 7. In that context, we encountered linear integral
equations of the general type

A(λ) = K + λK A(λ) = K + λA(λ)K (11.8a)

where λ ∈ � represents the coupling strength, whereas K is a linear operator,
the domain of which coincides with the whole Hilbert space, i.e. �K = � and
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�A(λ) = �. There also exists another equivalent expression which will be useful
for our further analysis and which can be obtained via multiplication of (11.8a)
by −λ and through addition of the term 1 + λ A(λ):

(1 − λ K )[1 + λ A(λ)] = [1 + λ A(λ)](1 − λ K ). (11.8b)

If here we again utilize equation (11.8a), it will readily follow that

1 = (1 − λ K )[1 + λ A(λ)] = [1 + λ A(λ)](1 − λ K ). (11.8c)

In the case of the Lippmann–Schwinger integral equations, the operators A(λ)
and K can be identified as the following objects:

A(λ) = (µ− H0−λ V )−1 V = G(λ, µ)  V K = G0(µ)  V λ = 1. (11.8d)

Inserting (11.8d) into (11.8a) results in

G(λ, µ)  V = G0(µ)  V + λ G0(µ)  V G(λ, µ)  V

which becomes, for V �= 0,

G(λ, µ) = G0(µ)+ λ G0(µ)  V G(λ, µ).

This is, for λ = 1, the standard Lippmann–Schwinger equation for the total
resolvent G(µ), which coincides with the corresponding Green operator (8.9a)
as Imλ → 0+. The summation formulae derived in chapter 7, starting from the
perturbation theory with the result of the exact Lippmann–Schwinger equations,
were based on the formal transformations on operator power series expansions.
One of the ways used for solving equation (11.8a) was, in fact, based on the
Neumann perturbation expansion

A(λ) = K + λK 2 + λ2 K 3 + · · · . (11.8e)

Here, it is important to establish under which conditions the rhs of
equations (11.8a) and (11.8d) can be considered identical to each other. This
problem is easily solved in the case of finite-dimensional vector spaces, for which
the series (11.8d) represents the solution of equation (11.8a), if and only if |λ|
is smaller than the magnitude of the least eigenvalue of operator K . Such a
statement is strictly correct only for a special class of operators, the so-called
completely continuous operators [88]. An operator K is completely continuous
or compact, if for any arbitrary infinite collection of bounded vectors1 {ψk}∞k=1,
set {Kψk}∞k=1 becomes compact, i.e. it contains a strongly convergent sub-series.
There exists another equivalent definition of this notion: a given linear operator K
is completely continuous if there exists an operator finite sequence {Kn}, which
converges uniformly to K . The major results of the theory of operator functions
1 A vector ψ is bounded if we have ‖ψ‖ < M, where M is a finite, positive constant (M <∞).
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relevant to the analysis in this chapter can be most elegantly presented through the
spectral properties of these operators [89]. In the spirit of the preceding chapters,
we will turn our attention to the most essential operator RK (α) = (α− K )−1, i.e.
the resolvent of operator K , where α is a complex variable which belongs to the
spectrum �(K ) of operator K . For some finite matrices, operator K is bounded,
so that its spectrum lies in a given limited region of the complex α-plane. Defining
the spectral radius rα(K ) of the kernel K as:

rα(K ) = sup
α∈�(K )

|α| = lim
n→∞‖K n‖1/n ≤ ‖K‖ (11.9a)

and the convergence radius ρα(K ) as

ρα(K ) = 1

rα(K )
= lim

n→∞‖K n‖−1/n ≥ ‖K‖ (11.9b)

it can be shown that the resolvent RK (α) is analytic in the complex α-plane
for |α| > rα(K ) or, equivalently, for |α| < ρα(K ). Stated descriptively, the
convergence radius ρα(K ) at any point α of the resolvent set σ(K ) represents
the distance between α and the closest element of the spectrum �(K ). In other
words, ρα(K ) is the largest radius which guarantees that all the points z of an
open circle:

|z − α| < ρα(K ) (11.9c)

belong to the resolvent set σ(K ). Here, it could happen that the quantity ρα(K )
may be infinite2 but the convergence radius is never zero, due to the following
inequality:

ρα(K ) ≥ 1

‖A(α)‖ . (11.9d)

For bounded operators (‖A‖ < ∞), the rhs of inequality (11.9d) is obviously
never zero.

In this analysis, we have used the notion of analyticity of an operator relying
upon the following definition:

Definition 11.1. A general operator A(λ), which depends upon the complex
parameter λ, is said to be analytic inside a finite open domain � of the complex
λ-plane, if every matrix element 〈φ|A(λ)|ψ〉 represents an analytic function of λ
for each λ ∈ �, for fixed but otherwise arbitrary vectors φ,ψ ∈ �.

The analyticity of the resolvent RK (α) implies that the following Taylor
series is possible:

RK (α) ≡ (α − K )−1 =
∞∑

n=0

α1−n K n (11.10a)

2 The case of an infinite convergence radius is routinely encountered in Volterra integral equations.
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which converges uniformly and absolutely in the region |α| > rα(K ).
Here, uniform convergence has a twofold meaning according to: (1) uniform
convergence in regard to the parameter α and (2) convergence in the uniform
operator topology (convergence on the average). Setting α = 1/λ formally,
equation (11.10a) becomes:

(1 − λK )−1 =
∞∑

n=0

λn K n = 1 + λK + λ2 K 2 + · · · . (11.10b)

This series converges uniformly and absolutely for |λ| < ρλ(K ). In other words,
the convergence radius ρα(K ) of this series is given by expression (11.9b). Hence,
an operator Neumann series is convergent for a given fixed energy E if, for
the same value of energy, the kernel K ≡ K (E) does not possess a spectrum
outside the unit circle in the complex α-plane. In the mentioned case of a finite-
dimensional vector space, i.e. of a finite matrix representation of operator K , we
arrived at a criterion for the convergence of its resolvent RK (λ). Thus, it only
remains to see how the operator (1 − λK )−1 is related to A(λ) from the defining
expression (11.8a). If equation (11.8a) is rewritten in the form

(1 − λK )A(λ) = K (11.11a)

we will obtain the following result with the help of (11.8d):

A(λ) = (1 − λK )−1 K = K + λK 2 + λ2 K 3 + · · · =
∞∑

n=0

λn K n+1 (11.11b)

which represents exactly the required Neumann series (11.8d). In this analysis,
emphasis is placed on a relation which exists between the analytical structure of
the resolvent (1−λK )−1, as a function of the complex variable λ, and the location
of the spectrum of operator K . The outlined procedure exhibits some advantages
but also shows some drawbacks. A great advantage is that convergence
of an operator expansion automatically guarantees the convergence of the
corresponding series of vectors and matrix elements. In so doing, the analyticity
of operator A(λ) is required in the region � for weak convergence, whereas the
boundedness of A(λ) is necessary for strong and uniform convergence.

It follows from the foregoing analysis that the development of the matrix
elements

〈φ|(1 − K )−1|ψ〉 =
∞∑

n=0

〈φ|K n |ψ〉 (11.12)

converges for any choice of vectors φ,ψ from a finite-dimensional Hilbert vector
space. This fact can be very helpful. For example, contrary to the conclusion
of [90], if an operator series is divergent, one cannot a priori claim with certainty
that the resulting expansion of vectors and matrix elements will be divergent or
convergent. We shall see later that it is possible to make a judicious choice of
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vectors φ,ψ which would lead to the convergence of vectors and matrix elements
from (11.12) despite the divergence of the appropriate perturbation expansion of
the operator (1 − K )−1 (see also [91]).

We want now to find out whether the operator series (11.8d) converges. In
accordance with the analysis from the preceding chapters, we should consider
strong and weak convergence. However, here these operators are considered
as functions of complex variable λ and it is sufficient to investigate only
uniform convergence of series (11.8d) with respect to λ. It can be shown that
uniform convergence implies strong convergence and this, as we already know,
automatically leads to weak convergence. If A(λ) is an analytical operator for
each λ ∈ �, we know from the analysis of ordinary functions of complex
variables that all the derivatives of any matrix element 〈φ|A(λ)|ψ〉 will be
analytical in �. Moreover, these derivatives can be used for construction of the
Taylor expansion of matrix elements 〈φ|A(λ)|ψ〉 in a series expansion in terms
of powers of λ around point λ0 ∈ �. This latter series will converge inside
any circle around λ0, provided that this circle is entirely contained in domain �.
Can an analogous conclusion be drawn for an operator series? The following
fundamental theorem answers this question affirmatively, provided that operator
A(λ) is bounded and analytical in domain �.

Theorem 11.1. If a given operator A(λ) is bounded and analytical in a finite
region�, then the derivatives A(n)(λ) will exist and they all will also be bounded
analytical operators for each λ ∈ � such that the following relation is satisfied:

〈φ|A(λ)|ψ〉 = dn

dλn
〈φ|A(λ)|ψ〉 (11.13a)

for any fixed vectors φ,ψ ∈ �. Moreover, if circle |λ − λ0| = r lies entirely
in �, then operator A(λ) will be given by the following Taylor expansion for the
values λ inside that circle:

A(λ) =
∞∑

n=0

(λ− λ0)
n

n! A(n)(λ0) (11.13b)

where A(n)(λ0) ≡ [(dn/dλn)A(λ)]λ=λ0 = (dn/dλn
0)A(λ0). The series (11.13b)

converges uniformly, which is symbolized as

Rk(λ) $−→
k→∞ 0̂ (11.13c)

with the meaning
‖Rk(λ)‖ −→

k→∞ 0 (11.13d)

where Rk(λ) is the remainder of expansion (11.13b):

Rk(λ) ≡ A(λ)−
k∑

n=0

(λ− λ0)
n

n! A(n)(λ0). (11.14a)
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The operator series (11.13b) converges absolutely, if

k∑
n=0

|λ− λ0|n
n! ‖A(n)(λ0)‖ <∞ (11.14b)

holds. Here, the existence of uniform convergence guarantees the existence of the
strong and weak limits:

Rk(λ) $−→
k→∞ 0̂ � Rk(λ) =⇒

k→∞ 0̂ � Rk(λ) −→
k→∞ 0̂ (11.14c)

or, equivalently,

‖Rk(λ)‖ −→
k→∞ 0 � ‖Rk(λ)ψ‖ −→

k→∞ 0 � ‖〈φ|Rk(λ)|ψ〉‖ −→
k→∞ 0

(11.14d)
for all vectors φ,ψ ∈ �. The inverse sequence of the implications in (11.14c, d)
does not hold true.

Proof. The lhs of equation (11.13a), i.e. the matrix element 〈φ|A(λ)ψ〉, defines
a bilinear functional gφ(ψ), which is linear in ψ and anti-linear in φ. This
definition has a meaning at any point λ = λ0 in which the operator A(λ) is
analytic. In the case of infinite-dimensional vector spaces, the most essential
feature of functionals is their boundedness. To show that the bilinear functional
〈φ|A(λ)ψ〉 is bounded, let us employ the Cauchy theorem of residuum

dn

dλn
〈φ|A(λ)|ψ〉 = n!

2π i

∮
C

dz
〈φ|A(z)|ψ〉
(z − λ0)n+1 (11.15a)

where C is an arbitrary circle

|z − λ0| ≤ r ∀z ∈ � (11.15b)

the circumference of which lies entirely inside the region �. In this way, part
of the integrand in (11.15a), i.e. the matrix element 〈φ|A(z)|ψ〉, is an analytic
function of z on contour C . This part is also bounded on the same contour and
that follows from an inequality of the type (9.5a), i.e.

|〈φ|A(z)|ψ〉| ≤ ‖φ‖ · ‖ψ‖ · ‖A(z)‖. (11.15c)

A direct consequence of the fact that the matrix element 〈φ|A(z)|ψ〉 is an analytic
function on C is its uniform boundedness, which means that there exists a number
‖A(C)‖,

‖A(C)‖ = sup
z∈C

‖A(z)‖ (11.15d)

such that

|〈φ|A(z)|ψ〉| ≤ ‖φ‖ · ‖ψ‖ · ‖A(C)‖ ∀z ∈ C. (11.16a)
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In this way, using relations (11.15a, b) and (11.15d), we find that∣∣∣∣ dn

dλn
0
〈φ|A(λ0)|ψ〉

∣∣∣∣ ≤ n!
rn

‖φ‖ · ‖ψ‖ · ‖A(C)‖ ∀z ∈ C. (11.16b)

The lhs of equation (11.15a) is a bilinear functional and, therefore, an operator
A(n)(λ) must exist with the property (11.13a) so that

‖A(n)(λ)‖ ≤ n!
rn

‖A(C)‖. (11.16c)

In addition, operator A(n)(λ) is analytic which trivially follows from (11.13a), due
to the analyticity of A(λ) and definition 11.1.

Furthermore, it should be demonstrated that the Taylor expansion (11.13b)
can be applied in the considered cases. We shall accomplish this by means of the
Cauchy residue theorem:

〈φ|Rk(λ)|ψ〉 = (λ− λ0)
k+1

2π i

∮
C

dz
〈φ|A(z)ψ〉

(z − λ0)k+1(z − λ)
(11.17a)

where operator Rk(λ) is defined in (11.14a) and C is again circle (11.15b) but this
time chosen in such a way that λ is inside the circle:

|λ− λ0| < r. (11.17b)

Employing the inequality (11.16b), we obtain the following result from
equation (11.17a):

|〈φ|Rk(λ)|ψ〉| ≤
∣∣∣∣λ− λ0

r

∣∣∣∣k+1 ( r

d

)
‖φ‖ · ‖ψ‖ · ‖A(C)‖ <∞ (11.17c)

where d is the minimal distance between λ and C . Since φ,ψ are some arbitrary
and fixed vectors of finite norm from �, inequality (11.17c) implies that the
operator Rk(λ) is also bounded:

‖Rk(λ)‖ ≤
∣∣∣∣λ− λ0

r

∣∣∣∣k+1 ( r

d

)
‖A(C)‖ <∞ ∀k ∈ �. (11.17d)

From here it immediately follows that ‖Rk(λ)‖−→k→∞ 0, since quantity r is
chosen to be greater than |λ−λ0|, i.e. the relation (11.17b) holds true. This is the
proof of uniform convergence of operator A(λ), which was required in (11.13d).
However, for an arbitrary vector φ ∈ �, we have, according to (11.17c),

‖ψk(λ)‖ ≤
∣∣∣∣λ− λ0

r

∣∣∣∣k+1 ( r

d

)
‖A(C)‖ · ‖ψ‖ <∞ ∀k ∈ � (11.18a)

where
ψk(λ) ≡ Rk(λ)ψ. (11.18b)
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Since the rhs of inequality (11.18a) tends to zero as k → ∞, due to relation
(11.17b), it follows from (11.14a) that the condition for strong convergence is
fulfilled, i.e.

lim
k→∞

∥∥∥∥�(λ)− k∑
n=0

(λ− λ0)
n

n! �n(λ0)

∥∥∥∥ = 0 (11.18c)

with
�(λ) = A(λ)ψ �n(λ) = A(n)(λ0)ψ. (11.18d)

From here weak convergence follows since strong convergence is proven. Finally,
absolute convergence (11.14d) is immediately implied by (11.16c), since

∞∑
n=0

|λ− λ0|n
n! ‖A(n)(λ0)‖ ≤ ‖A(C)‖

∞∑
n=0

|λ− λ0|n
rn

<∞ (11.19)

where we have used inequalities ‖A(C)‖ <∞ and r > |λ− λ0|. In this way, the
proof of theorem 11.1 is completed (QED).

According to theorem 11.1, we know that the convergence radius of the
development of any operator in a series in powers of λ − λ0 is determined by
a region in which the given operator is bounded and analytical. In our special
case (11.8a) of operator A(λ), boundedness implies analyticity. We can at once
see that, if operator A(λ) exists according to (11.8a), then it will be unique. To
prove this assertion, let us employ equation (11.8c), i.e.

1 = [1 + λA(λ)](1 − λK ) (11.20a)

1 = (1 − λK )[1 + λB(λ)]. (11.20b)

If we multiply equation (11.20b) from the left by 1 + λA(λ) and utilize (11.20a),
it will follow that

1 + λA(λ) = {[1 + λA(λ)](1 − λK )}[1 + λB(λ)] = 1 + λB(λ) (11.20c)

which yields,
B(λ) = A(λ) (QED). (11.20d)

The resolvent set σ(A) represents an open set, provided that the boundedness and
analyticity of operator A(λ) is established. This is precisely the subject of the
following basic theorem.

Theorem 11.2. If λ0 belongs to the resolvent set σ(A) of operator A(λ), i.e.
λ0 ∈ σ(A), then this will also hold true with all the other points of the circle

|λ− λ0| < ‖A(λ0)‖−1 (11.21a)

where A(λ) is the operator from (11.8a). Then it follows that for all the points λ
of the resolvent set, operator A(λ) is bounded and analytical. In addition, all its
derivatives satisfy the relation:

A(n)(λ) = dn

dλn
A(λ) = n! An(λ). (11.21b)

Copyright 2004 IOP Publishing Ltd



Convergence of series of operators, state vectors and matrix elements 163

Proof. A formal power series expansion for operator A(λ) can be obtained by
using (11.8c) for λ, λ0 ∈ � , from which we first have

A(λ)− A(λ0) = K [λA(λ)− λ0 A(λ0)]. (11.22a)

Transforming the rhs of this equation with the help of relation A(λ) = K (1 −
λK )−1, which is obtained directly from (11.8a), we arrive at

A(λ) = A(λ0)+ (λ− λ0)A(λ)A(λ0). (11.22b)

Then, iteration of the rhs of this equation in terms of A(λ) will yield the following
result:

A(λ) = A(λ0)+ (λ− λ0)[A(λ0)+ (λ− λ0)A(λ)A(λ0)]A(λ0)

A(λ) = A(λ0)+ (λ− λ0)A
2(λ0)+ (λ− λ0)

2 A(λ)A2(λ0) (11.22c)

and, by induction, we finally arrive at

A(λ) =
∞∑

n=0

(λ− λ0)
n An+1(λ0). (11.23a)

In this way, operator A(λ) at the point λ is expressed through a combination of
powers (n ≥ 1) of the same operator, taken at another point λ0. However, such
a formal representation of operator A(λ) will only have a meaning provided that
the summation from the rhs of expression (11.23a) converges to the result which
is identical to A(λ). In order to check these two conditions, let us introduce the
following operator partial sum:

Ak(λ) =
k∑

n=0

(λ− λ0)
n An+1(λ0). (11.23b)

Using the Schwartz inequalities (9.5a) and (9.11c), we shall have, for k > κ and
for an arbitrary two fixed vectors φ,ψ ∈ �,

|〈φ|Ak(λ)|ψ〉 − 〈φ|Aκ(λ)|ψ〉| =
∣∣∣∣ k∑

n=κ+1

(λ− λ0)
n〈φ|An+1(λ0)|ψ〉

∣∣∣∣
≤

k∑
n=κ+1

|λ− λ0|n · |〈φ|An+1(λ0)|ψ〉|

≤
k∑

n=κ+1

|λ− λ0|n‖A(λ0)‖n+1 · ‖φ‖ · ‖ψ‖

|〈φ|Ak(λ)|ψ〉 − 〈φ|Aκ(λ)|ψ〉| ≤ ‖A(λ0)‖ · ‖φ‖ · ‖ψ‖
k∑

n=κ+1

{ |λ− λ0|
‖A(λ0)‖−1

}n

.

(11.23c)

Copyright 2004 IOP Publishing Ltd



164 Convergence of series of operators, state vectors and matrix elements

When λ fulfils condition (11.21a), the rhs of inequality (11.23c) becomes
arbitrarily small for arbitrarily large values of k, κ ∈ �. This implies, according
to the Cauchy criterion of convergence, that 〈φ|Ak(λ)|ψ〉 tends to certain limiting
values 〈φ|A∞(λ)|ψ〉, as k → ∞:

〈φ|Ak(λ)|ψ〉 −→
k→∞〈φ|A∞(λ)|ψ〉. (11.23d)

The result (11.23d) represents a bilinear functional of vectors φ andψ . Moreover,
here we are dealing with a bounded bilinear functional and this can be
immediately shown by setting formally κ = −1 in the expression3 (11.23c):

|〈φ|Ak(λ)|ψ〉| ≤ ‖A(λ0)‖ · ‖φ‖ · ‖ψ‖
k∑

n=0

{ |λ− λ0|
‖A(λ0)‖−1

}n

≤ ‖A(λ0)‖
1 − |λ− λ0| · ‖A(λ0)‖‖φ‖ · ‖ψ‖

|〈φ|Ak(λ)|ψ〉| <∞ (11.24a)

where we have employed relation (11.21a) and the usual binomial expansion. It
then follows that operator A∞(λ) exists with its matrix elements defined as

〈φ|A∞(λ)|ψ〉 =
∞∑

n=0

(λ− λ0)
n〈φ|An+1(λ0)|ψ〉. (11.24b)

This is a bounded operator, since

‖A∞‖ ≤ ‖A(λ0)‖
1 − |λ− λ0| · ‖A(λ0)‖ . (11.24c)

Hence, according to the relations (11.24b, c), the operator A∞(λ) is bounded and
analytical in any circle of the type

|λ− λ0| ≤ r0 < ‖A(λ0)‖−1. (11.24d)

Therefore, by means of theorem 11.1, we conclude that the following equation is
satisfied:

A(n)∞ (λ0) = n!An+1(λ0). (11.25a)

Furthermore, when inequality (11.24d) is fulfilled, then according to
theorem 11.1, the following development is valid:

A∞(λ) =
∞∑

n=0

(λ− λ0)
n An+1(λ0) (11.25b)

3 Here we use the standard convention:
∑−1

n=0 an ≡ 0.
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and, therefore, the obtained convergence is uniform and absolute. Finally, it
should be shown that A∞(λ) = A(λ). In order to achieve this, let us first
derive an auxiliary relation, which is satisfied by partial sum Ak(λ) from (11.23b).
Multiplying Ak(λ) from the left by operator [1 − (λ− λ0)A(λ0)], we find that

[1 − (λ− λ0)A(λ0)]Ak(λ)

= [1 − (λ− λ0)A(λ0)]
k∑

n=0

(λ− λ0)
n An+1(λ0)

=
k∑

n=0

(λ− λ0)
n An+1(λ0)−

k+1∑
n=1

(λ− λ0)
n An+1(λ0)

=
[

A(λ0)+
k∑

n=1

(λ− λ0)
n An+1(λ0)

]

−
[ k∑

n=1

(λ− λ0)
n An+1(λ0)+ (λ− λ0)

k+1 Ak+2(λ0)

]
[1 − (λ− λ0)A(λ0)]Ak(λ) = A(λ0)− (λ− λ0)

k+1 Ak+2(λ0) (11.25c)

or, equivalently,

Ak(λ)− A(λ0)− (λ− λ0)A(λ0)Ak(λ) = −(λ− λ0)
k+1 Ak+2(λ0). (11.25d)

If, to the lhs of this equation, we add and subtract the term (λ−λ0)A(λ0)A∞(λ)−
A∞(λ), we shall have

A∞(λ)− A(λ0)− (λ− λ0)A(λ0)A∞(λ)
= −(λ− λ0)

k+1 Ak+2(λ0)+ [1 − (λ− λ0)A(λ0)] · [A∞(λ)− Ak(λ)].
(11.25e)

Taking the norm of both sides of this equation and applying the Schwartz
triangular inequality (9.11c) will result in

‖A∞(λ)− A(λ0)− (λ− λ0)A(λ0)A∞(λ)‖ ≤ |λ− λ0|k+1‖A(λ0)‖k+2

+ ‖1 − (λ− λ0)A(λ0)‖ · ‖A∞(λ)− Ak(λ)‖. (11.26a)

Letting now k → ∞, we see that the first term from the rhs of inequality
(11.26a) tends to zero, due to the relation (11.24d), and that the second term
‖A∞(λ)− Ak(λ)‖ will also vanish identically, since the series (11.25b) converges
uniformly. Thus, we obtain from (11.26a), as k → ∞,

A∞(λ) = A(λ0)+ (λ− λ0)A(λ0)A∞(λ). (11.26b)

If now we repeat the same procedure but this time by adding and subtracting term
(λ − λ0)A∞(λ)A(λ0) − A∞(λ) in equation (11.25d), we will end up with the
result

A∞(λ) = A(λ0)+ (λ− λ0)A∞(λ)A(λ0). (11.26c)

Copyright 2004 IOP Publishing Ltd



166 Convergence of series of operators, state vectors and matrix elements

According to the initial assumption, we have that A(λ0) satisfies equation (11.8a)
for λ = λ0. Therefore, we can multiply the equation 0̂ = A(λ0)−K −λ0 K A(λ0),
i.e. (11.8a), from the right by 1 + (λ− λ0)A∞(λ) and use (11.26b) to find that

0̂ = [A(λ0)− K − λ0 K A(λ0)] · [1 + (λ− λ0)A∞(λ)]
= (1 − λ0 K )[A(λ0)+ (λ− λ0)A(λ0)A∞(λ)] − K [1 + (λ− λ0)A∞(λ)]
= (1 − λ0 K )A∞A(λ)− K [1 + (λ− λ0)A∞(λ)]

0̂ = A∞(λ)− K − λK A∞(λ). (11.26d)

Entirely analogously, multiplying equation 0̂ = A(λ0) − K − λ0 A(λ0)K , i.e.
equation (11.8a), from the left by 1 + (λ − λ0)A∞(λ) and employing (11.26c),
we derive

0̂ = A∞(λ)− K − λA∞(λ)K . (11.27a)

Hence, A∞(λ) fulfils both equations from (11.8a), so that

A∞(λ) = A(λ) (11.27b)

which implies, according to (11.25a),

A(n)(λ0) = n! A(n+1)(λ0). (11.27c)

Thus, we have proven that operator A(λ) exists, as well as that it is bounded and
analytic in and on the circle (11.24d) with the centre at λ0. We have also shown
that this operator has derivatives with respect to λ0 and that they are all given by
(11.27c). This establishes the proof that the resolvent set σ(A) is open and that
was the first part of the assertion of theorem 11.2. Do the boundedness, analyticity
and possession of the nth derivative of the operator A(λ) hold only for the region
defined via circle (11.24d)? The answer is negative! The reason for this lies in
the fact that the chosen point λ0 is an arbitrary element of the resolvent set σ(A).
Thus, the operator A(λ) is bound, analytical and differentiable in the entire open
resolvent set σ(A). This completes the proof of theorem 11.2 (QED).

We concluded from theorems 11.1 and 11.2 that the operator A(λ) can be
represented by its Taylor series expansion (11.23a) in terms of powers of λ− λ0,
with the properties of uniform and absolute convergence for each λ inside the
circle of the convergence radius ρλ(K ):

|λ− λ0| < ρλ(K ). (11.28a)

Note that, for λ0 = 0, operator A(λ0 = 0) from equation (11.8a) is reduced to the
kernel K :

A(0) = K . (11.28b)

In this way, the Taylor series for A(λ) is an expansion in powers of λ, obtained
from (11.23a) as

A(λ) =
∞∑

n=0

λn K n+1 (11.29a)
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in accordance with the solution (11.11b). In such a case, if K is a bounded
operator, then the point λ = 0 belongs to the resolvent set σ(K ) and the
convergence radius (11.29a) has the property

ρ0(K ) ≥ 1

‖K‖ . (11.29b)

In relation to our earlier descriptive definition of the convergence radius at an
arbitrary point λ, we can now say that ρ(0) represents the distance between the
coordinate beginning of the λ-plane and the closest point of the λ-spectrum at
which |λ| is the least. One can see from (11.29b) that, in the general case,
ρ0(K ) is, rigorously speaking, greater than ‖K‖−1. However, the equality sign in
(11.29b) holds only if K is a self-adjoint operator, in which case the convergence
radius is obviously the smallest. In the introductory remarks in this chapter, we
quoted a definition of the convergence radius in terms of condition (11.9b), which
is more stringent than the one from relation (11.29b) and this clearly comes out
from the following theorem.

Theorem 11.3. Let the kernel K be a bounded operator and let λn belong to the
resolvent set of the operators K n for (n = 2, 3, . . .), i.e. λn ∈ σ(K n). Then λ
will belong to the resolvent set of the operator K : λ ∈ σ(K ). In addition, the
following condition holds:

ρ0(K ) ≥ ‖K n‖−1/n . (11.30)

Proof. If we have λ ∈ σ(K n) (n ≥ 2), then the operator (1− λn K n)−1 exists and
it is bounded. This operator commutes with K :

[K , (1 − λn K n)−1] = 0 (11.31a)

since K commutes with itself and, therefore, it also does with 1−λn K n . Because
of these features, it is possible to construct a bounded operator 1 + λA′(λ) in the
following manner:

1+ λA′(λ) ≡ (1− λn K n)−1
n−1∑
m=0

λm K m =
n−1∑
m=0

λm K m(1− λn K n)−1. (11.31b)
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Also, there exists the following identity:

(1 − λK )
n−1∑
m=0

λm K m ≡
n−1∑
m=0

λm K m(1 − λK )

=
n−1∑
m=0

λm K m −
n∑

m=1

λm K m

=
n−1∑
m=0

λm K m +
[

1 −
n−1∑
m=0

λm K m − λn K n
]

(1 − λK )
n−1∑
m=0

λm K m = 1 − λn K n. (11.31c)

If now we multiply equation (11.31b) from the left by 1−λK and employ identity
(11.31c), we shall have

(1 − λK )[1 + λA′(λ)] = (1 − λK )
n−1∑
m=0

λm K m(1 − λn K n)−1

=
{ n−1∑

m=0

λm K m(1 − λK )

}
(1 − λn K n)−1

= (1 − λn K n) · (1 − λn K n)−1

(1 − λK )[1 + λA′(λ)] = 1. (11.31d)

However, multiplication of equation (11.31b) from the right with 1−λK , followed
by the use of (11.31c) leads to

[1 + λA′(λ)](1 − λK )(1 − λK ) = (1 − λn K n)−1
{ n−1∑

m=0

λm K m(1 − λK )

}
= (1 − λn K n)−1(1 − λn K n)

[1 + λA′(λ)](1 − λK )(1 − λK ) = 1. (11.31e)

Hence, the operator A′(λ) from (11.31b) satisfies equations (11.8b, c), since,
according to equations (11.31d, e),

(1 − λK )[1 + λA′(λ)] = [1 + λA′(λ)](1 − λK ) = 1.

Assumption λn ∈ σ(K n), as the condition of theorem 11.3, means that all the
points λn of the resolvent set of the operator K n fulfil the relation ‖λn K n‖ < 1
or, equivalently: |λn | < ‖K n‖−1. This implies that all these points also belong to
the resolvent set of the operator K , i.e. λn ∈ σ(K ) (QED). Moreover, it can be
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shown [87] that ρ0(K ) is, in fact, the limiting value of ‖K n‖−1/n when n → ∞,
as we have already quoted in (11.9b).

Let us now connect theorems 11.1–11.3 with the Lippmann–Schwinger
resolvent equations and their solutions in the form of the Neumann series. This is
the essence of the following theorem.

Theorem 11.4. Suppose we are given the Taylor series of the modified total
resolvent (11.6), i.e.

G(λ, µ) =
∞∑

n=0

λn K n(µ)G0(µ) (11.32)

where K (µ) = G0(µ)V . Then for those points λ which belong to a circle of the
convergence radius (11.32), operator G(λ, µ) satisfies the modified Lippmann–
Schwinger operator equation: G(λ, µ) = G0(µ)+ λK (µ)G(λ, µ).

Proof. The proof of uniform and absolute convergence of series (11.11b) for the
operator A(λ) from (11.8a–c) is also automatically valid in the particular case
(11.32). This is because a specification which would lead to the Lippmann–
Schwinger equation ought to proceed via the application of equation (11.8d), i.e.
A(λ) = G(λ, µ)V . Since it can be shown that the resolvent G(λ, µ) is bounded,
we conclude that the same holds true for operator A(λ), if V represents a short-
range potential (‖V ‖ < ∞). Let us use symbol Gk(λ, µ) to denote the partial
sum of the series (11.32):

Gk(λ, µ) =
k∑

n=0

λn K n(µ)G0(µ). (11.33a)

Multiplying Gk(λ, µ) from the left by the bounded operator 1 − λK , yields4

(1 − λK )Gk(λ, µ) = (1 − λK )
k∑

n=0

λn K n(µ)G0(µ)

=
k∑

n=0

λn K n(µ)G0(µ)−
k+1∑
n=1

λn K n(µ)G0(µ)

=
[

G0(µ)+
k∑

n=1

λn K n(µ)G0(µ)

]

−
[ k∑

n=1

λn K n(µ)G0(µ)+ λk+1 K k+1G0(λ)

]
(1 − λK )Gk(λ, µ) = G0(µ)− λk+1 K k+1G0(λ). (11.33b)

4 If the kernel K , is bounded, then the operator 1 − λK will also be bounded when λ belongs to the
circle (11.29b), i.e. |λ| · ‖K‖ < 1, which follows from the Schwartz triangular inequality (9.5a) for
each vector ψ ∈ �, i.e. ‖(1 − λK )ψ‖ ≤ 1 + |λ| · ‖K‖ · ‖ψ‖ <∞.
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Adding and subtracting operator (1 − λK )G(λ, µ), we derive the following
formula:

(1−λK )G(λ, µ)−G0(µ) = −λk+1 K k+1G0(λ)+(1−λK )[G(λ, µ)−Gk(λ, µ)].
(11.33c)

We apply now these operators onto vector ψ ∈ � and take the appropriate norm
with the subsequent help of the Schwartz inequality (9.5a):

‖(1 − λK )G(λ, µ)ψ − G0(µ)ψ‖ ≤ |λ|k+1 · ‖K k+1‖ · ‖G0(λ)‖ · ‖ψ‖
+ ‖1 − λK‖ · ‖G(λ, µ)ψ − Gk(λ, µ)ψ‖.

(11.33d)

When we let k → ∞, then the first term on the rhs of inequality (11.33d) will
tend to zero for λ within the convergence radius (11.29b) of series (11.32), and
the same thing will happen with the second term ‖G(λ, µ)ψ − Gk(λ, µ)ψ‖
due to uniform and absolute convergence of the series (11.32). Under these
circumstances, the lhs of equation (11.33d) becomes equal to zero and this implies
that (1 − λK )G(λ, µ)ψ − G0(µ)ψ = ∅, with the following meaning due to the
arbitrariness of vector ψ:

G(λ, µ) = G0(µ)+ λK (µ)G(λ, µ) = G0(µ)+ λG0(µ)V G(λ, µ). (11.33e)

This is the sought Lippmann–Schwinger equation for the total resolvent G(λ, µ)
(QED). Note that for long-range potentials, such as the Coulomb interaction, V is
an unbounded operator and this poses some serious difficulties while deriving the
Lippmann–Schwinger equations.

Based upon this exposé on operator series and the role of a resolvent,
we can now address the question of a spectrum, with the purpose of arriving
at a convenient presentation of this important physical concept. Let us
begin by commenting on the meaning of equations (11.8a–c). For example,
equation (11.8c) suggests that, for an arbitrary element � ∈ �, the following
definition of a state vector � ′ is valid:

� ′ = (1 − λK )� ∀� ∈ �. (11.34a)

Clearly, element � ′ belongs to the domain of the operator 1 − λK , i.e. � ′ ∈
�1−λK ≡ �(λ). It is easy to show that the set �1−λK represents a linear
manifold. In addition, this range is not equal to an empty set, i.e. � ′ ∈
�(λ) �= %, except in the trivial case for K = −λ̂1, which we exclude from the
analysis. Namely, in the latter case we would find that the rhs of the defining
equation (11.34a) is equal to a zero vector which leads to � ′ = ∅. A zero
vector ∅ cannot describe any physical state, since if it did, vector ∅ could be a
multiplier of the scalar zero (0) with every state. Needless to say, it would be
meaningless that any given vector would represent every state. Furthermore, the
range � ′ ∈ �(λ) can be such that it does not contain all the limiting values of

Copyright 2004 IOP Publishing Ltd



Convergence of series of operators, state vectors and matrix elements 171

its convergent sequences, meaning that this range does not necessarily need to
be a complete vector subspace. Relation (11.8c) suggests that the action of the
operator 1 + λA(λ) onto the vector � ′ ∈ �(λ) can be defined in the following
manner:

[1 + λA(λ)]� ′ ≡ � � ∈ �. (11.34b)

However, since the same vector� ∈ � also appears in the preceding definition of
element � ′, then relation (11.34b) will be meaningful, i.e. it will be in harmony
with (11.8a–c) only if the correspondence between (11.34a) and � ′ and � is
reciprocal (one-to-one). In such a case, for each � ∈ �, we have, according to
(11.8c) and (11.34a),

[1 + λA(λ)]� ′ = [1 + λA(λ)](1 − λK )� = 1̂� = � ∀� ∈ �. (11.34c)

Analogously, if for each � ′ ∈ �(λ) we multiply [1 + λA(λ)]� ′ by 1 − λK and
employ (11.8c), we will find that

(1 − λK )[1 + λA(λ)]� ′ = 1̂� ′ = � ′ ; ∀� ′ ∈ �(λ), (11.34d)

i.e. relation (11.8c) is valid in the range �(λ). In this way, we can state that a
given point λ will belong to a resolvent set σ(K ) if and only if the following three
mutually excluding conditions are fulfilled:

(a) the mapping between � ′ and � realized through definition (11.34a) is
unique;

(b) range�(λ) ≡ �1−λK coincides with the whole Hilbert space �; and
(c) operator A(λ) defined via expression (11.34a) is bounded.

It can be shown that the spectrum �(K ) is complementary to the resolvent
set σ(K ). Therefore, with the following three statements which are diametrically
opposite to the just quoted conditions (a)–(c), we can define the spectrum of
operator A(λ):

(a′) Operator A(λ) is not well defined, in the sense that relation (11.34) does
not introduce vector � ∈ � in a unique manner, i.e. there exist two or three such
vectors �,�′, . . . ∈ �, which all satisfy equation (11.34). Let � and �′ be such
two vectors from�, with the property:

� ′ = (1 − λK )� = (1 − λK )�′. (11.35a)

Denoting their difference with � ≡ �′ − �, we will obtain the following
expression from (11.35a):

K� = λ−1�. (11.35b)

This is the eigenvalue problem of operator K , where � represents an eigenvector
which is normalizable (0 < ‖�‖ <∞) and λ−1 is the corresponding eigenvalue.
Then the inverse of that eigenvalue, i.e. λ is said to belong to the discrete spectrum
of operator K . That such a definition is in accordance with (11.6), as well as with
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the corresponding Schrödinger eigenvalue problem ( H0 + λ V )� = µ� , can be
seen by using (11.4a):

λ−1� = K� = 1

µ− H0
V�

V� = λ−1(µ− H0)� � ( H0 + λ V − µ)� = ∅, (QED). (11.35c)

(b′) There is n o eigenvector � wh ich wo u l d sa tisfy equation (11.34a) and,
additionally, the range �(λ)  is not everywhere dense in � , i.e. �(λ) �= � . We
recall that a given subspace 	 of the Hilbert space � is everywhere dense in � ,
if its closure 	, i.e. the union of set 	 and the collection of all the limiting values
of convergent sequences from 	, is equal to the whole Hilbert space 	 = � .
Thus, in the case (b′), the range �(λ) represents rigorously a subspace of � ,
i.e. �(λ) ⊂ � . Then with the help of the well-known projection theorem, we
conclude that there must exist a vector � , which is orthogonal to �(λ) and,
therefore, orthogonal to every vector � ′ ∈ �(λ) of the form (11.34):

〈�|1 − λ K |�〉 = 0. (11.35d)

This implies the existence of the ‘bra’ vector 〈�| or �† with the property

〈�| K = λ−1〈�| (11.35e)

such that equation (11.34a) is not simultaneously satisfied. Expression (11.35e)
can be rewritten in an equivalent diadic notation as �† K = λ−1�†. In su ch
a case, we shall say that point λ lies in the residual sp ectru m o f opera to r K .
If a given scattering problem is invariant with respect to the time inversion
( t −→ − t) as in, e.g., a collision of a spinless particle on a local potential from
chapter 10, then relation (11.35e) implies (11.35b), which means the exclusion of
the possibility of a residual spectrum.

(c′) There is no vector � , which satisfies equation (11.34a) or (11.35e), and,
moreover, operator A(λ) is unbounded, although it is properly defined according
to (11.8a–c) with the range �(λ) everywhere dense in �. It then follows that
operator 1 + λA(λ) is also unbounded, so that for each n ∈ �, no matter how
large, there exists a state �n with the feature:

‖{1 + λA(λ)}�n‖ ≥ n‖�n‖. (11.36a)

Nevertheless, it is possible to introduce another vector �n , which is normalized
to unity, as

�n ≡ {1 + λA(λ)}�n

‖{1 + λA(λ)}�n‖ ‖�n‖ = 1. (11.36b)

Applying operator 1 − λK to both sides of identity (11.36b) and using (11.8c),
we will obtain

(1 − λK )�n = (1 − λK ){1 + λA(λ)}�n

‖{1 + λA(λ)}�n‖ = �n

‖{1 + λA(λ)}�n‖ (11.36c)
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which implies that

‖(1 − λK )�n‖ = ‖�n‖
‖{1 + λA(λ)}�n‖ ≤ 1

n
. (11.37a)

If here we let n tend to infinity, then it follows that

lim
n→∞‖(1 − λK )�n‖ = 0. (11.37b)

In the sense of strong convergence, this result is equivalently written as

K�n − λ−1�n =⇒
n→∞∅. (11.37c)

Hence, although there is no vector�n which fulfils (11.34a) or (11.35e), it is still
possible to find a series of normalizable vectors, which all approximately satisfy
(11.34a) and, as seen from (11.37a, c), a choice of a sufficiently large number n
permits an improvement of such an approximation to any desired accuracy. In this
situation, we state that point λ belongs to the continuous spectrum of operator K .
Equivalently, a continuous spectrum of operator K is said to be comprised of all
the points λ for which there exists an ‘approximate vector’ �ε for a given ε > 0
with the characteristics

‖(1 − λK )�ε‖ ≤ ε ‖�ε‖ = 1 (11.37d)

but to which the formulae (11.34a) and (11.35e) are inapplicable.
Do the three preceding conditions (a′)–(c′) exhaust all the possibilities

for defining a spectrum �(K ) of operator K , such that the corresponding
requirements (a)–(c) are negated while introducing the resolvent set σ(K )?
Strictly speaking, the answer to this question is negative. Namely, there exists
one and only one more possibility, which consists of the following combination.
It is not possible to find any vector � , which satisfies (11.34a) or (11.35e) either
exactly or approximately in the sense of (11.37a–d) and, furthermore, the operator
A(λ) is bounded such that equations (11.8a–c) are fulfilled on the range �(λ),
which is everywhere dense in �, but nevertheless�(λ) �= �. Then, although an
arbitrary vector � ∈ �(λ) cannot be written in the form (11.34a), the fact that
�(λ) is everywhere dense in � allows this vector to be expressed as the limiting
value of the series {�k}∞k=1 of vectors�1,�2, . . . , �n, . . . ,where each individual
term satisfies relation (11.34a):

�k = (1 − λK )�k . (11.38a)

Here, due to the one-to-one correspondence between �k and �k , we have

�k = [1 + λA(λ)]�k . (11.38b)

If A(λ) is a bounded operator, sequence {�k}∞k=1 must converge when k → ∞
to the limiting value � and this permits a definition of the action of the operator
A(λ) onto � as

[1 + λA(λ)]� ≡ �. (11.38c)
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Inserting (11.38a) into (11.38b), we will have �k = [1 + λA(λ)](1 − λK )�k ,
which is an equation of type (11.34c) ∀� ∈ �, meaning that the boundedness of
the operator A(λ) is extended onto the entire Hilbert space�. However, inserting
(11.38b) into (11.38a) yields: �k = (1−λK )[1+λA(λ)]�k, which means that an
equation of the type (11.34d) is satisfied but still only for� ∈ �(λ) ⊂ �. In order
to eliminate this cumbersome combination in the spectrum of the operator K , one
usually limits oneself to a closed kernel K . In such a case, sequence {K�k}∞k=1
converges strongly to K� when sequence {�k}∞k=1 possesses a weak limit �, so
that equation (11.38a) obviously gives � = (1 − λK )�. Hence, we clearly have
� ∈ �(λ) and that is in contradiction with the assumption that � �∈ �(λ). Every
bounded operator is obviously closed, due to its continuity, and each closed kernel
K , which is defined in the whole space �, is bounded. In this way, partition of a
spectrum into its discrete, residual and continuous parts is the only possibility for
bounded operators. Of course, the residual and continuous parts of a spectrum
are absent when K is a finite matrix, in which case only a discrete spectrum
will appear. Recall that each finite matrix is necessarily bounded. A continuous
spectrum, which is of utmost importance for scattering theory, is characterized
by infinite-dimensional matrices K . With this remark, we will finish our analysis
of a spectrum from a standpoint which is equally easily applicable to each of the
three manifestations, i.e. its discrete, residual and continuous parts.

Next, we shall examine convergence of series of vectors. First, in the case
that the corresponding operator series diverges, it will be necessary to find a
motivation justifying a subsequent analysis of the convergence or divergence
of vector expansions based upon an associated singular operator. Note that the
operator [1 − λK (µ)]−1 (λ, µ ∈ � ) becomes undefined when λ tends to a
certain point in a spectrum of the kernel K (µ). This has a consequence that
every expansion of the operator K ≡ K (µ) in powers of λ must diverge at any
point of spectrum �(K ). However, irrespective of this, vector

φ′µ(λ) = [1 − λK (µ)]−1φ, (11.38d)

can still be well defined at a given point of the spectrum of the operator K ,
provided we choose element φ without any reference to that singular point of
the spectrum of K (µ). Such a situation is not difficult to realize at all, since
if, e.g., λ tends to the eigenvalue λn of the operator K (µ) and φ represents an
eigenvector φm of K (µ) with the corresponding eigenvalue λm (�= λn), then
obviously vector [1 − λK (µ)]−1φm will be well defined as λ → λn . This is
precisely the sought motivation for studying the convergence of the vector series,
despite the divergence of the associated operator expansions. The importance of
the quoted motivation is in offering an indication that it is, in principle, possible to
construct vector expansions which are independent of singularities of the operator
[1 − λK (µ)]−1. This indication has some far-reaching consequences, since it
allows one to completely bypass the concept of compact operators, where we
solely encounter the so-called isolated singularities. The usual procedure of
divergence of the Neumann expansions initiated by Weinberg [89] and Lovelace
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[92] critically depends upon the possibility of the introduction of compact
operators with completely continuous kernels [88]. However, in the three-body
problem, kernels of the Neumann operator expansions cannot be reduced to a
compact form, so that the power series cannot be adequately analysed5. Stated
differently, such a method of examining the convergence of vector series can also
establish their convergence or divergence in the case with corresponding non-
compact operators. We will illustrate this by means of a simple example at the
end of this chapter. Using the Taylor expansion (11.10a) for resolvent (1−λK )−1,
we obtain, from (11.38d),

φ′(λ) =
∞∑

n=0

λn K nφ ≡
∞∑

n=0

λnφn (11.38e)

where φn ∈ � for each n ∈ �. As we did with operator series (11.11), here
also it will be most important to establish the existence or non-existence of
the convergence of (11.38e). Again, it will be sufficient to consider uniform
convergence with respect to λ ∈ � and, in this way, establish the status of
convergence of all the three types, since for state vector series also, uniform
convergence implies the existence of strong and weak limits. Considering
sequence {ψk(λ)}∞k=1, we shall form the following linear combination:

ψn(λ) =
n∑

k=0

λkφk λ ∈ � (11.39a)

where φk = K nφ ∈ � and introduce the definition of the analyticity of a vector
function.

Definition 11.2. Vector ψ(λ) is an analytic function of complex variable λ at a
certain finite open region � of complex λ-plane, if the ordinary function 〈φ|ψ(λ)〉
is analytic for each λ ∈ � and for every vector φ ∈ �.

Note that in definition 11.2 we, in fact, encounter a linear functional, i.e.
fφ(ψλ) = 〈φ|ψ(λ)〉, whereψλ ≡ ψ(λ). Let us now formulate and prove the three
fundamental theorems, which are concerned with the convergence of a vector
series.

5 Nevertheless, within the Faddeev–Lovelace formalism of the three-body problem, one can construct
some operators with their completely continuous kernels, so that the ensuing Born–Neumann
perturbation expansions would exhibit only the connected Feymann diagrams. This is the Dodd–
Greider [93] distorted wave theory. In other words, this would alleviate the disconnected or dangerous
diagrams which describe a situation where two particles interact with each other while the third body
propagates freely. The price which is paid for such reformulated operators is the introduction of some
auxiliary channels and loss of the usual clear picture about the notion of perturbation interactions. An
alternative could be to resort to the formalism of Nakano [94], who also deals with distorted waves
but does not invoke any disconnected diagrams or artificial potential operators.
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Theorem 11.5. If ψ(λ) is an analytic vector for a certain λ in a given finite and
open region � , then there will exist bounded and analytic derivatives ψ(n)(λ0)

(n ∈ �) for λ0 ∈ � , where

〈φ|ψ(n)(λ)〉 =
[

dn

dλn
〈φ|ψ(λ)〉

]
λ=λ0

∀φ ∈ �. (11.39b)

Moreover, if circle |λ − λ0| ≤ r is contained in � , then vector ψ(λ) can be
presented in the form of a Taylor expansion:

ψ(λ) =
∞∑

n=0

(λ− λ0)
n

n! ψ(n)(λ0) (11.39c)

which converges uniformly and absolutely inside the mentioned circle. Uniform
and absolute convergence exist, provided that the following conditions are
fulfilled:

lim
k→∞

∥∥∥∥ψ(λ)− k∑
n=0

(λ− λ0)
n

n! ψ(n)(λ0)

∥∥∥∥ = 0 (11.39d)

lim
k→∞

k∑
n=0

|λ− λ0|n
n! ‖ψ(n)(λ0)‖ = 0. (11.39e)

Proof. This theorem supposes that ψ(λ) is an analytic function for every λ ∈ �
and this means, according to definition 11.2, that the linear functional 〈φ|ψ(λ)〉
is an analytic function for each λ ∈ � . Applying the Cauchy residuum theorem,
we find that

dn

dλn
0
〈φ|ψ(λ0)〉 = n!

2π i

∮
C

dz
〈φ|ψ(z)〉
(z − λ0)n+1 λ0 ∈ � (11.40a)

where the closed contour C represents the circle |z−λ0| = r . Taking the absolute
value of the lhs and the rhs of equation (11.40a) and using the Schwartz inequality
of types (9.5a) and (9.11c), we obtain∣∣∣∣ dn

dλn
0
〈φ|ψ(λ0)〉

∣∣∣∣ ≤ n!
rn

‖φ‖ · ‖ψ(C)‖ <∞ (11.40b)

where
‖ψ(C)‖ = sup

z∈C
‖ψ(z)‖. (11.40c)

Derivatives (dn/dλn
0)〈φ|ψ(λ0)〉 are uniformly bounded, since the vector ψ(λ) is

analytic on the contour C . The bounded linear functional fφ(ψλ0) = 〈φ|ψ(λ0)〉
guarantees the existence of a bounded vector ψ(n)(λ0) such that

〈φ|ψ(n)(λ0)〉 = dn

dλn
0
〈φ|ψ(λ0)〉. (11.40d)
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Since 〈φ|ψ(λ0)〉 is an analytic function for an arbitrary λ ∈ � , the same is
obviously also valid for (dn/dλn

0)〈φ|ψ(λ0)〉. Therefore, according to (11.40d),
we have that 〈φ|ψ(n)(λ)〉 is also an analytic function for every λ ∈ � , since
(11.40d) holds true for an arbitrary λ0 ∈ � . Furthermore, since according to the
Schwartz inequality (9.5a),

|〈φ|ψ(n)(λ0)〉| ≤ ‖φ‖ · ‖ψ(n)(λ0)‖, (11.41a)

we shall obtain, from (11.40b, d),

‖ψ(n)(λ0)‖ ≤ n!
rn+1

‖ψ(C)‖. (11.41b)

This use of Taylor series (11.39b) can be justified by means of the Cauchy theorem
of residuum. First, assuming that (11.39b) is valid, let us introduce the remainder
of the series ξk(λ) as

ξk(λ) = ψ(λ) − χk(λ) (11.41c)

where

χk(λ) =
k∑

n=0

(λ− λ0)
n

n! ψ(n)(λ0). (11.41d)

For an arbitrary vector φ ∈ �, we form a scalar product

〈φ|ξk(λ)〉 = (λ− λ0)
k+1

2π i

∮
C

dz
〈φ|ψ(z)〉

(z − λ0)k+1(z − λ)
(11.42a)

where C is the circle |z−λ0| = r contained in � and |λ−λ0| < r . It then follows
from here that

|〈φ|ξk(λ)〉| = |λ− λ0|k+1

rk+1

( r

d

)
‖φ‖ · ‖ψ(C)‖ <∞ ∀φ ∈ �, (11.42b)

where d is the shortest distance between λ and C . Applying the Schwartz
inequality (9.5a) onto the lhs of relation (11.42b), we will have

‖ξk(λ)‖ = |λ− λ0|k+1

rk+1

( r

d

)
‖ψ(C)‖ <∞ (11.42c)

which means that the vector ξk(λ) is bounded for every λ ∈ � . It is further
obvious from (11.42c) that

lim
k→∞‖ξk(λ)‖ = 0. (11.42d)

This result implies, according to (11.41c), that the following relation is satisfied:

lim
k→∞

∥∥∥∥ψ(λ) − k∑
n=0

(λ− λ0)
n

n! ψ(n)(λ0)

∥∥∥∥ = lim
k→∞‖ξk(λ)‖ = 0. (11.43a)
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Thus, taking into account (11.39d), it follows that (11.39c) converges uniformly.
Absolute convergence of the series (11.39c) is proved by applying the Cauchy
theorem of residuum in the case of the scalar product 〈φ|χk(λ)〉, where the vector
χk(λ) is given by the expression (11.41d):

〈φ|χk(λ)〉 =
k∑

n=0

(λ− λ0)
n

n! 〈φ|ψ(n)(λ0)〉 =
k∑

n=0

(λ− λ0)
n

2π i

∮
C

dz
〈φ|ψ(z)〉
(z − λ0)n+1

(11.43b)
and from here we obtain

|〈φ|χk(λ)〉| ≤ ‖φ‖ · ‖ψ(C)‖1 − |λ−λ0|k
rk

1 − |λ−λ0|
r

. (11.43c)

The Schwartz inequality (9.5a) applied to the lhs of (11.43c) leads to

‖χk(λ)‖ ≤ ‖ψ(C)‖1 − |λ−λ0|k
rk

1 − |λ−λ0|
r

. (11.43d)

Observing that |λ− λ0| < r and letting k → ∞ in (11.43d), we immediately find
that

lim
k→∞‖χk(λ)‖ ≤ ‖ψ(C)‖

1 − |λ−λ0|
r

<∞, (11.43e)

which is precisely condition (11.39e) for the absolute convergence of series
(11.39c). In this way, we have finished the proof of theorem 11.5 (QED).

Furthermore, it would be of a special importance to find out whether the
coefficients ψn in the Taylor series expansion of a given vector ψ(λ) in powers of
λ − λ0 are analytic functions in the convergence circle. The answer is provided
by the theorem which is stated as follows.

Theorem 11.6. Any expansion of a vector series in powers of λ − λ0 of the type
ψ(λ) = ∑∞

n=0(λ − λ0)
nψn(λ0) defines an analytic function ψ(λ) in an open set

|λ− λ0| < s of the complex λ-plane, where:

s =
(

lim
k→∞‖ψk‖1/k

)−1
(11.44a)

with lim being the limit superior6.

Proof. Let us first take the partial vector sum given by the expression

ζk(λ) =
k∑

n=0

(λ− λ0)
nψn(λ0). (11.44b)

6 The largest from all of the possible limiting values of a given convergent sequence is called the limit
superior. According to the Bolcano–Weierstrass theorem, every bounded sequence possesses at least
one limiting value.

Copyright 2004 IOP Publishing Ltd



Convergence of series of operators, state vectors and matrix elements 179

For k > κ , by application of the Schwartz inequalities (9.5a) and (9.11c), we find
that

|〈φ|ζk(λ)− ζκ(λ)〉| =
∣∣∣∣ k∑

n=κ+1

(λ− λ0)
n〈φ|ψn(λ0)〉

∣∣∣∣
≤

k∑
n=κ+1

|λ− λ0|n · |〈φ|ψn(λ0)〉|

≤ ‖φ‖
k∑

n=κ+1

|λ− λ0|n · ‖ψn(λ0)‖

|〈φ|ζk(λ)− ζκ(λ)〉| ≤ ‖φ‖
k∑

n=κ+1

|λ− λ0|n · ‖ψn(λ0)‖. (11.44c)

Furthermore, using the Schwartz relation (9.5a) in the lhs of (11.44c) will lead to

‖ζk(λ)− ζκ(λ)‖ ≤
k∑

n=κ+1

|λ− λ0|n · ‖ψn(λ0)‖. (11.44d)

The rhs of this inequality will tend to zero for sufficiently large values of the
indices k and κ , if λ is chosen to fulfil the condition

|λ− λ0| < ‖ψn(λ0)‖−1/n (11.45a)

for large n. This relation will be valid in the limit n → ∞, provided

|λ− λ0| < lim
n→∞‖ψn‖−1/n ≡ s. (11.45b)

Note that condition (11.45a) is compatible with the finiteness of the norm of the
vector ζk(λ):

‖ζk(λ)‖ ≤
k∑

n=0

( |λ− λ0|
‖ψn‖−1/n

)n

<∞. (11.45c)

Relation (11.45c) enables an interpretation of result (11.44d) in terms of the
Cauchy convergence test, which implies that a sequence of linear functionals
{〈φ|ζk(λ)〉}∞k=0 converges to a linear and bounded functional fφ(ψλ), where
ψλ ≡ ψ(λ). Then, according to a corollary of the Ries–Freshe theorem [95],
there exists a unique bounded vector ψ(λ) such that the form of the functional
fφ(ψλ) is given by the projection of ψ(λ) onto φ:

fφ(ψλ) = 〈φ|ψ(λ)〉 =
∞∑

n=0

(λ− λ)n〈φ|ψn(λ0)〉. (11.45d)
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Calling upon definition 11.2, we conclude that vector ψ(λ) is of an analytic kind
inside the circle (11.45b), since 〈φ|ψ(λ)〉 as an ordinary function of λ, is also
analytic in the same region (11.45b). This completes the proof of theorem 11.6
(QED).

Employing now theorem 11.3, vector ψn(λ0) from (11.44b) can be uniquely
determined as

ψn(λ0) = 1

n!ψ
(n)(λ0) = 1

n!
dn

dλn
0
ψ(λ0) (11.46a)

so that the series

ψ(λ) =
∞∑

n=0

(λ− λ0)
nψn(λ0) =

∞∑
n=0

(λ− λ0)
n

n! ψ(n)(λ0) (11.46b)

converges uniformly and absolutely within the convergence circle (11.44b).
Moreover, the Taylor variant of the series expansion of vector ψ(λ) in powers
of the coupling constant λ, satisfies the standard Lippmann–Schwinger equation,
as ensured by the following theorem.

Theorem 11.7. Let �i (λ) denote vector ψ(λ) from theorem 11.6 whose Taylor
series expansion in powers of λ is of type (11.46b) for λ0 = 0:

�i (λ) =
∞∑

n=0

λn�n (11.47a)

where

�n = K n�i �i ∈ � ‖K‖ <∞. (11.47b)

Then for the values of λ inside the convergence circle of the power series
expansion (11.47a), vector �i (λ) will satisfy the Lippmann–Schwinger integral
equation:

�i (λ) = �i + λK�i (λ). (11.47c)

Proof. Let ϒk(λ) label the partial summation of the series from
equation (11.47a):

ϒk(λ) =
k∑

n=0

λn�n, (11.47d)

where λ lies in the convergence circle of expansion (11.47a):

|λ| < lim
n→∞‖�n‖−1/n (11.48a)
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as provided by theorem 11.6. Applying the operator 1−λK onto the vectorϒk(λ)

from (11.47d) will yield the following result:

(1 − λK )ϒk(λ) = (1 − λK )
k∑

n=0

λn�n

=
k∑

n=0

λn K n�i −
k+1∑
n=1

λn K n�i

=
[
�i +

k∑
n=1

λn K n�i

]
−
[ k∑

n=1

λn K n�i + λk+1 K k+1�i

]
(1 − λK )ϒk(λ) = �i − λk+1 K k+1�i . (11.48b)

If, to this expression, we add and subtract term (1 − λ)�i (λ), the result will be:

(1 − λK )�i (λ)−�i = −λk+1�k+1 + (1 − λK )[�i (λ)− ϒk(λ)]. (11.48c)

Furthermore, projecting the vector (1 − λK )�i (λ) − �i onto � ∈ � we find,
with the help of the Schwartz inequalities (9.5a) and (9.11c), that

|〈�|(1−λK )�i(λ)−�i〉| ≤ ‖�‖·{|λk+1‖�k+1‖+‖1−λK‖·‖�i(λ)−ϒk(λ)‖}.
(11.48d)

A transformation of the lhs of (11.48d) through the use of the Schwartz inequality
(9.5a) will result in

‖(1−λK )�i (λ)−�i‖ ≤ |λk+1|·‖�k+1‖+‖1−λK‖·‖�i (λ)−ϒk(λ)‖. (11.49a)

Since, according to our assumption, K is a bounded operator, so also will 1−λK
be for λ in the convergence circle (11.48a) and, therefore, in the limit k → ∞,
the rhs of the inequality (11.49a) will become zero. This happens since in the
convergence circle (11.48a), the first term |λk+1| · ‖�k+1‖ from (11.49a) tends
to zero as t → ∞. The second term ‖�i (λ) − ϒk(λ)‖ ≡ D from (11.49a)
also becomes zero-valued in the limit k → ∞, since D = 0 is the condition
(11.39d) for uniform convergence inside the circle (11.48a). Such convergence
has otherwise been established previously in theorem 11.6 for a more general
Taylor series (11.46b). Thus, in the limit k → ∞, we have strong convergence in
(11.49b), which implies

(1 − λK )�i (λ)−�i = ∅ (11.49b)

in accordance with (11.47e), which is the Lippmann–Schwinger equation (QED).
The same result is also valid for a case where 1 − λK is not a bounded operator,
provided that the range�(1−λK )† is everywhere dense in the Hilbert space�.

From the foregoing analysis, a vector Born series could be obtained as
a special case with λ = 1, i.e. �i (µ) = ∑∞

n=0 �n = ∑∞
n=0 K n(µ)�i and
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its convergence is then established for limn→∞‖�n‖1/n < 1. It is then clear
that such a convergence condition is less restrictive than in the case of the
corresponding operator expansion. Namely, for a vector series, compactness of
the operator K is not required, but only its boundedness.

Next, we shall examine in some detail a connection which exists between
operator and vector expansions, thus establishing the quoted relation (11.7) of
the corresponding convergence radii. As to the convergence of series of the
associated matrix elements (the weak limit), we have already seen in (11.4c, d)
that uniform convergence automatically implies the existence of the strong limit,
which guarantees weak convergence. In this way, we can immediately write the
following relation:

lim
k→∞

∣∣∣∣ k∑
n=0

〈� f |V K n�i 〉 − 〈� f |V |�i 〉
∣∣∣∣ = 0 (11.50a)

where �i is the total scattering state in the initial configuration. Is it, however,
meaningful to investigate the convergence of a series of matrix elements if, for
example, one already established that the corresponding expansion of vectors
diverges? Here, the situation is not hopeless either, just like the previous case
of studying the convergence of vector series, despite a possible divergence of the
underlying operator expansions. This is because by considering an expansion
of the type

∑∞
n=0〈φ|Vψn〉, we have thus far always required its convergence

for every vector φ ∈ �. Such a requirement is certainly too strong, since in
each concrete example of scattering, a final state φ ≡ � f is not an arbitrary
element from� but rather a specified vector, which describes a given asymptotic
configuration of a physical system. This also corresponds precisely to situations
encountered in scattering experiments, so that this realistic framework reduces
the convergence problem of series of the matrix elements

∑∞
n=0〈� f |V�n〉 to

the case with a certain fixed vector � f . However, this is an excellent example
which illustrates two different goals of research: abstract and pragmatic. An
abstract approach considers some arbitrary final vectors φ ∈ �, instead of certain
concrete ones � f , so that we remain all the time in the framework of functional
analysis. From the physical viewpoint, this corresponds to a situation in which a
studied system, after its good initial preparation, can be found in any final state,
and that is a strict probabilistic interpretation of the results of a collision event. A
pragmatic approach a priori makes a selection of a final state, so that the necessity
for functional analysis is no longer a prerequisite, since in the case of a fixed � f

we are dealing with a power series expansion
∑∞

n=0 anλ
n with the coefficients

an = 〈� f |V |�n〉 for which the application of ordinary analysis of functions (and
not state vectors) of the complex variable λ is sufficient. In such a case, writing

∞∑
n=0

anλ
n = ‖V †� f ‖ ·

∞∑
n=0

bnλ
n (11.50b)
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where

bn ≡ 〈�′
f |K n|�i 〉 �′

f =
1

‖V †� f ‖V †� f (11.50c)

it is easy to see that the series
∑∞

n=0 bnλ
n converges uniformly and absolutely for

every λ inside the circle
|λ| < lim

n→∞|bn|−1/n . (11.50d)

Here, absolute and uniform convergence have the same meaning as in the case of
vector series, provided that we replace the norm by the absolute value. Finally,
analysis of ordinary functions of complex variable in the quoted pragmatic
approach shows that the Born series (λ = 1) of matrix elements converges,
provided

lim
n→∞|bn|1/n < 1. (11.51a)

Let us now devote our attention to a comparative analysis of the convergence
radii of series of operators, vectors and matrix elements. By definition, the
convergence radii of operator and vector Neumann series are, respectively, given
by the equations

ρop(K ) = lim
n→∞ sup

ψ∈�
‖K nψ‖−1/n ‖ψ‖ = 1 (ψ ∈ �) (11.51b)

ρve(K , φi ) = lim
n→∞‖K nφi‖−1/n ‖φi‖ = 1 (φi ∈ �). (11.51c)

From these defining relations, the following inequalities are obviously valid:

‖K n‖ = sup
ψ∈�

‖K nψ‖ ≥ ‖K nφi‖ (11.52a)

‖K n‖−1/n ≤ ‖K nφi‖−1/n . (11.52b)

Thus, comparing (11.51b, c) and (11.52a, b), it follows that the convergence
radius of an operator series is smaller than the one for the associated vector
expansions:

ρop(K ) ≤ ρve(K , φi ) (11.52c)

where φi is an arbitrary vector φi ∈ � (‖φi‖ = 1). This implies the following
convergence criterion of the Born vector series: ρve(K , φi ) > 1 or ρop(K ) > 1.
In other words, it could happen that a Born vector expansion converges even
when the corresponding operator series is divergent, as we mentioned earlier
(see also [87] and [91]). An analogous comparison can also be made between
expansions of vectors and matrix elements. The pertinent convergence radius of
the series of matrix elements is defined as

ρme(K ;φi , φ f ) = lim
n→∞|〈φ′f |K nφi 〉|−1/n φ′f = 1

‖V †φ f ‖V †φ f . (11.53a)
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However, the Schwartz inequality (9.5a) implies

|〈φ′f |K nφi 〉‖ ≤ ‖φ′f ‖ · ‖K nφi‖ = ‖K nφi‖ (11.53b)

so that
|〈φ′f |K nφi 〉|−1/n | ≥ ‖φ′f ‖ · ‖K nφi‖−1/n . (11.53c)

Thus, we obtain from (11.51c) and (11.53c) that the convergence radius of matrix
elements series is greater than the one for the corresponding vector expansions:

ρve(K , φi ) ≤ ρme(K ;φi , φ f ). (11.53d)

Since the ordering symbol≤ represents an equivalence relation, we conclude from
(11.52c) and (11.53d) that the following expression is valid:

ρop(K ) ≤ ρve(K , φi ) ≤ ρme(K ;φi , φ f ) (11.54)

which is the required result (11.7) (QED).
The preceding analysis is general in character and holds true for both

two- and many-particle collisions. Nevertheless, it is worth emphasizing some
special circumstances which occur in the case of a potential scattering. In
a two-body problem, the convergence radius of a Taylor operator series is
ρop(K ) = 1/{supα∈σ(K ) |αi |} = 1/|αi |, where αi is an eigenvalue, which
corresponds to eigenvector φi normalized to the unity of the operator K (µ), i.e.
Kφi = αiφi . If we choose φi as an initial vector from series {K nφi }∞k=0, then the
convergence radius of the corresponding vector expansion will be ρve(K , φi ) =
limn→∞‖K n‖−1/n = |αi |−1. Thus, we have: ρop(K ) = ρve(K , φi ). However, if
the initial state were selected to be φi ′ (‖φi ′ ‖ = 1) but such that its corresponding
eigenvalue αi ′ is different from αi , we would have the following ordering:
ρop(K ) = |αi | < |αi ′ | = ρve(K , φi ′ ), i.e. the convergence radius of the vector
series is greater than the one of the operator expansion. In such a case, the
considered Born vector series would converge for |αi ′ | < 1, even when the
corresponding Born operator expansion diverges for |αi | > 1. In the case of
scattering theory, however, this discussion has a certain conditional interpretation,
since the mentioned initial vector φ or φi ′ is not generally an eigenvector of the
operator K . For two-particle collisions, equation (11.4a) tells us that the kernel
K (µ) = G0(µ)V = (µ − H0)

−1V is a compact operator for a short-range
potential V (‖V ‖ < ∞), since the corresponding Green resolvent G0(µ) is a
bounded operator for µ ∈ σ(H0). In such a case, the initial vector φi is always an
approximate eigenvector associated with the continuum spectrum of the kinetic
energy operator H0, in the sense that there exist ε > 0 entering φi , such that
for a certain energy E0 we have ‖(E0 − H0)φi‖ < ε. Even when we allow φi

to be a strict eigenvector of Hamiltonian H0, i.e. H0φi = Eφi , the function φi

could not be a solution of the eigenvalue problem of the operator K . That this is
true, we can convince ourselves if we suppose the opposite, i.e. that φi satisfies
equation (11.33b):

λK (µ)φi = φi . (11.55a)
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Inserting here the operator K from (11.4a), we find that

∅ = [λK (µ)− 1]φi = [λG0(µ)V − 1]φi = G0(µ)(H0 + λV − µ)φi (11.55b)

which implies
‖G0(µ)‖ · ‖(H0 + λV − µ)φi‖ = 0. (11.55c)

From here we conclude, since G0(µ) is a bounded operator for µ ∈ σ(H0), that

‖(H0 + λV − µ)φi‖ = 0, (11.56a)

which is fulfilled if and only if

(H0 + λV )φi = µφi . (11.56b)

However, equation (11.56b) is in contradiction with the requirement that φi is
a solution of the unperturbed problem H0φi = µφi and this could only mean
that our starting supposition (11.55a) is wrong, i.e. φi cannot be a solution of the
eigenvalue problem of the operator K . The only exception would be for λ = 0,
in which case the total Hamiltonian H0 + λV and H0 coincide with each other.
However, this is impossible since it would then follow from (11.55a) that φi = ∅
and φi , as a zero vector, would not be able to describe any physical state. In
addition, since φi should also satisfy the unperturbed eigen-problem, it is clear
that the zero energy value of the system means, in fact, the absence of collision.

The importance of the convergence problem of the Neumann–Born
expansions based upon the outlined concept of a comparative study of series of
operators, vectors and matrix elements is in its application to the cases when
the kernel K is not a compact operator. Let us illustrate this on a simple
example. Let the operator K be defined by the relation: K = −d2/dx2 and
let it act on some real functions u(x) ∈ �, which are square integrable for
x ∈ [0,∞], i.e.

∫∞
0 dx u2(x) < ∞. In addition, the range �K of this operator is

assumed to be a set of functions having continuous derivatives with the following
properties: u(0) = 1 and

∫∞
0 dx [K u(x)]2 < ∞. In this example, K as

a one-dimensional kinetic energy operator, is semi-bounded from below and
possesses a continuous spectrum on the positive part of the real axis in complex
λ-plane. This latter property implies that K is not a compact operator, so that
the standard Faddeev–Lovelace or Weinberg criterion of convergence of series
based upon these operators is inapplicable. However, using the principles of
this chapter, it is possible to investigate convergence, despite the fact that K is
a non-compact operator. Let series

∑∞
n=0 λ

nχn be given with χn = K nφ. If we
choose vector φ in the form φ = e−x/2, it is easy to calculate the convergence
radius of this series and establish the existence of convergence in the circle
|λ| < 2. Therefore, the ensuing Born vector series

∑∞
n=0 χn converges to the

result (4/5)e−x/2 = (1 − K )−1φ. This, however, does not mean at all that
the quoted series converges for any choice φ. For example, for the selection
φ = e−x , the Born vector series diverges. This simple example illustrates the
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importance of the role of the initial state φ in the process of establishing the
convergence of vector series7. This conclusion becomes even more powerful
for more complicated and more realistic situations. Here we emphasize that in
a scattering problem with the participation of n particles, the kernel K (µ), as
an operator which generates the Born series, formally retains its general form
K (µ) = G0(µ)V from (11.4a), with the potential V appearing as a sum of two-
particle interactions Vij , i.e. V = ∑n

i j Vi j . In this case G0(µ) represents the
free-particle Green operator in the n-body Hilbert space �, given as the tensor
product of one-particle Hilbert spaces.

7 Let us mention that the discussed example is not a strict analogy to the situation usually encountered
in a collision problem, since to facilitate the calculation we chose φ, as a solution of the eigenvalue
problem of the operator K , associated with a discrete eigenvalue and that is a type of a discretized
continuum. A ‘discretization of continuum’ is a procedure which is often used in practical applications
of scattering theory, within the methods for developing the total wavefunctions in terms of some
pseudo-states, the Sturmian basis sets, etc.
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Chapter 12

Recapitulation of the selected main
principles of quantum scattering theory

In the preceding chapters 1–11, we have expounded a subset of the basic
principles of non-relativistic quantum-mechanical scattering theory for short-
range potentials. This was achieved within the so-called standard formalism,
devised with time-dependent and stationary treatments, which are interrelated
through the customary Fourier integral transform. The standard formulation of
scattering theory is presented in a mathematically strict and simple framework,
accompanied by an intuitive description of the physical aspects of the collision
problem. In chapter 1, certain fundamental notions were introduced in a
systematic manner along with the key features of the scattering phenomenon.
There, we have also listed some of the fundamental themes of research in
quantum scattering theory. A particular emphasis is put onto the most critical
properties, which make the collision phenomenon substantially different from
the corresponding problem of bound states in quantum mechanics. The most
important characteristic of a scattering problem with respect to all other dynamic
systems is in the requirement that the total sc a tte rin g states �± must be reduced
to the asymptotically free unperturbed vectors �i, f as t → ∓∞. The role of
the so-called asymptotic convergence p roblem of the full scattering state vectors
is specially pointed out in chapter 1 in light of the quoted key features (Kato)
of quantum collision systems. In order to elaborate these treatments further in
the course of the presented analysis, it was necessary to employ the quantum-
mechanical entities, such as the equations of time evolution, as well as the state
vectors and the Hilbert space of eigenstates. The optimal approach to the time-
dependent scattering theory cannot be developed without a preceding examination
of the time evolution of general quantum systems (see chapter 2). For this
purpose, we presented in the chapters 3–5 the main aspects of the Schrödinger,
Heisenberg and Dirac (or interaction) pictures of quantum mechanics, from a
particular viewpoint relevant to scattering theory. Since all the three pictures
are mutually interrelated through certain unitary transformations, it is clear
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that these formalisms will give the same transition probability. Therefore, one
might ask why it is necessary to discuss several equivalent pictures. However,
as mentioned, the answer lies in the observation that all the mathematically
equivalent formalisms need not necessarily be equally well adapted to the
concrete problem under study. A given picture of quantum mechanics can be
more practical than another formalism for the examined physical phenomenon.
Hence, the choice of the optimal picture of quantum mechanics becomes a
matter of considerable practical importance. Thus, the presentation of the
three mentioned pictures of quantum mechanics is accomplished in chapters 3–5
with the accompanied comparative analysis, showing for which purpose a given
formalism is the most efficient. For example, the interaction picture of Dirac is
specially convenient for the description of one-channel collisions, i.e. potential
scatterings. A further elaboration of the Dirac picture, in the direction of the
perturbative presentation of the resulting S-matrix elements, is most efficiently
done within the Dyson formalism, which is thoroughly discussed in chapter 6.
Furthermore, in chapters 7 and 8, the standard formalism of time-dependent and
stationary scattering theory is developed, respectively. This was performed in
the context of the Lippmann–Schwinger integral equations for scattering states
and Green propagators, with a particular accent on their physical interpretation.
In chapter 8, the notion of generalized or improper states was presented and
discussed in relation to physical proper state vectors. Moreover, the major
observables of the scattering problem, such as the differential and total cross
sections, are introduced in chapter 8. The correct asymptotic behaviour of the full
scattering states for both proper and improper vectors was examined in chapter 9.
The probabilistic character of the presented scattering theory was conceptually
devised according to the notion of the probability that the system goes from the
initial to final state under certain conditions quoted in chapter 1, which are typical
of the scattering phenomenon. We have shown why the Møller wave operators
�± are of decisive importance for scattering theory and why, without them, it
is impossible to build the concept of the Heisenberg–Willer S-matrix scattering
theory. Moreover, we saw that the S-matrix elements, whose squared moduli are
directly connected with the probability of transition from the initial to one of the
final states of the system, do not exist before the existence and completeness of
the wave operators �± are established. In addition, we stressed the importance
of the unitarity of the S-matrix, in the context of the conservation of probability
and total energy, as the unquestioned physical condition imposed to the scattering
problem. The central part of chapter 9 was devoted to the fundamental problem
of the asymptotic convergence o f scattering states for short-range potentials.
The analysis was carried out in a manner which simultaneously enables one to
anticipate the chief difficulties related to the long-range potentials. This was done
with the purpose of tracing the road to a generalization to the Coulomb interaction.
In chapter 10, the principle of detailed balance was analysed within the general
context of micro-reversibility of physical processes. Finally, in chapter 11 we
studied the convergence problem of operators, state vectors and matrix elements.
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Here, the key feature is that divergence of series of operators or state vectors does
not necessarily imply the divergence of matrix elements that are the most relevant
physical quantities associated with the corresponding observables.

The dynamics of the scattering problem of two particles are described by the
time-dependent Schrödinger equation i∂t�

+(t) = H�+(t), where H is the total
Hamiltonian of the system. Here, the superscript ‘+’ indicates that we are dealing
with the outgoing scattered wave. In other words, the vector �+(t) describes the
state of the system, which is allowed, after the experimental preparation before
scattering, to evolve in time under the influence of the interaction V = H − H0.
Here, H0 represents the unperturbed Hamilton operator of the kinetic energy
of the relative motion of the scattering particles. Of course, we assume that
the state vector �+(r) ≡ �+

i (r) implicitly contains a certain index, e.g., i ,
which denotes a set of quantum numbers associated with the initial state of the
system. Although an analogous wavefunction �−

f (r) of the final state of the
system looks perfectly symmetric with respect to the initial configuration, its
physical interpretation is nevertheless entirely different. The sign ‘−’ relates to
an experimentally uncontrolled situation in which the collimated beam is found
after scattering. For conservative systems, Hamiltonians do not depend upon
time, so that a solution of the non-stationary Schrödinger equation is given by
the expression �+

i (t) = e−iHt�+
i , where �+

i is the time-independent wave
packet, i.e. �+

i ≡ �+
i (0). In such a circumstance, the initial boundary conditions

of the scattering problem can be summarized as follows: the scattering state
�+

i (t), at a certain arbitrary time t , is necessarily obtained from the wave packet
�0i , which is free in the remote past. This free wave packet is characterized
by the set of the quantum numbers collectively denoted by ‘i ’ and linked to
the situation beyond the influence of the potential (V = 0). The word ‘free’
also indicates that the amplitude of the wave packet �+

0i (t) is annulled in the
interaction zone, where V �= 0. This clear and physically justified condition is
mathematically formulated by requiring that the dynamics of the wave packet
�0i (t) develop outside of the influence of the interaction field (V = 0), i.e.
under the action of the operator H − V , which is the unperturbed stationary
free Hamiltonian H0. In this manner, the following request naturally emerges:
�0i (t) = e−iH0t�0i , where �0i = �0i(0). The correct initial boundary condition
imposes, in the infinitely remote past, that the total scattering state of the system is
described by the wave packet �+

i (t), which must coincide with the asymptotics
�0i (t), i.e. �+

i (t)=⇒t→−∞�0i(t). However, since with the passage of time,
the wave packets are spread out in space, it would be meaningless to ask that
the previously mentioned asymptotic agreement is indeed achieved on the level
of the state vectors themselves, i.e. between the wave packets �+

i and �0i . This
is because each of these two wave packets might individually tend to zero as
t → ∓∞. Therefore, instead of asking that the two state vectors should coincide
with each other, we require that the norm of their difference tends to zero in
the sense of the strong limit: lim

t→−∞‖e−iHt�+
i − e−iH0t�0i‖ = 0. This is
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also more natural from the viewpoint that the state vectors are not observables,
unlike their norms. In this way, the latter strong limit indicates that the total state
vector e−iHt�+

i and the asymptotic wavefunction e−iH0t�0i of the system differ
from each other in the norm for an arbitrarily small number, provided that t is
sufficiently large. Hence, the strong limit possesses a deep physical meaning.
Among all the possible theoretical models, the strong limit is capable of selecting
only those formalisms which can guarantee a proper physical interpretation of
the total scattering state �+

i (t) at t → −∞. This interpretation conceives the
object�+

i (t) as being experimentally indistinguishable from the free wave packet
�0i (t) at t → −∞, in the sense that the norm of their difference can be made
arbitrarily small with any prescribed accuracy. Here, the words ‘experimentally
indistinguishable’ are employed to recall that the scattering experiment is defined
only with respect to the free asymptotic states of colliding particles. The quoted
limit in the norm can also be rewritten in another equivalent form, such as: �+

i =
Limt→−∞ eiHt e−iH0t�0i ≡ �+�0i , where �+ is the Møller wave operator1. An
analogous relation can be established for the final state, i.e. in the case of the
exit channel of the process: �−

f = Limt→+∞ eiHt e−iH0t�0 f ≡ �−�0 f . In
these relations, the special limiting procedure ‘Lim’ possesses the meaning of the
strong limit, which means, e.g., that the norm of the difference of the two vectors
�+

i and�0i tends to zero as t → −∞. The crucial meaning of the wave operators
�± is immediately appreciated by observing that their action onto the asymptotic
free states �0i, f ∈ �, as the elements of the Hilbert space �, yields the images
�±�0i, f , which represent the total scattering states �±

i, f , respectively. Thus, if,
e.g., the wave operator�+ exists, then the sought central mapping reads as

�+ : �0i =⇒
t→−∞�+

i . (12.1)

Such a mapping connects the total scattering state at an arbitrary time with the
asymptotically free initial state of the system. In this way, the physical request
about the correct boundary conditions in the entrance channel of the scattering
problem is mathematically formulated with rigour. The initial state �0i is
experimentally prepared, i.e. characterized by means of the impulse, polarization,
spin, isospin and other internal quantum numbers of the constituent parts of
the scattering system. In other words, we are talking about a well-prepared
initial wave packet, which can be experimentally controlled. The mentioned
observables must be stationary at large values of the positive and negative times.
This is indispensable in order to provide an adequate description of the scattering
problem, which indeed represents a stationary phenomenon, where the main
observables (energy E , etc) are constants of motion. Of course, in order to be
sure, e.g., that �0i could provide a full characterization of the initial state of the
system, we must have at least one complete set of commuting observables. In
the concept outlined in the present study, this goal is achieved through the choice

1 The operators H0 and H do not commute with each other, so that: eiH t e−iH0t �= ei(H−H0)t .
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of the S-scattering operator, as the chief ingredient of the theory. According to
the relation (7.28d), the S-operator commutes with the unperturbed Hamiltonian
H0. This guarantees that all the constants of free motion governed by the free
evolution operator U0(t) become, at asymptotically large times, simultaneously
the constants of actual motion under the influence of the operator U(t) of the
total evolution of the system. Such an observation can be nicely seen from the
existence of the strong limit: �± = Limt→∓∞�(t), where the operator �(t) ≡
U†(t)U0(t) becomes stationary in both the remote past (t → −∞) and distant
future (t → +∞). This means that the Møller wave operators do not depend
upon time. In contrast to the entrance channel, i.e. the initial configuration of
the system, the scattering state �−

f obviously cannot be experimentally prepared.
Nevertheless, this state is necessary for a rigorous description of a measurement,
as well as for the complete symmetry of the problem with respect to time inversion
and micro-reversibility. That is why we introduce the Møller wave operator �−,
as the mapping which is symmetric in regard to (12.1):

�− : �0 f =⇒
t→−∞�−

f . (12.2)

In so doing, the transformation from the initial �+
i to the final �−

f scattering

state vector is performed through the S-operator: S�+
i = �−

f . Since micro-
reversibility holds true for the studied scattering phenomenon (see chapter 10),
the problem can also be considered symmetrically inverse with respect to the
preceding situation. Namely, it is perfectly allowable to investigate an entirely
opposite situation by starting from the exit channel, which is assumed as being
known in the sense of providing an experimentally prepared wave packet � f . In
this picture, the initial state would now be uncontrolled and, as such, a subject
of detection as well as reconstruction. This equivalent manner of treating the
scattering problem would be given by the mapping �−

f onto �+
i , which is

accomplished via the S†−operator, i.e. S†�−
f = �+

i . It then follows from here
that these two ways of describing the collision phenomenon are equivalent, in the
sense that their predictions are identical to each other, according to the probability
conservation, if and only if the S-operator is unitary, i.e. SS† = S†S = 1. Hence,
the necessary and sufficient condition for the proof of unitarity of the S-scattering
operator is reduced to the following two requirements:

��+ = ��− = � (12.3)

��+ = ��− = �ac (12.4)

where�ac ⊂ � is the subspace of the absolutely continuous part of the spectrum
of the total Hamiltonian H . The first condition (12.3) expresses the existence of
the wave operators �±, whereas their completeness is contained in the request
(12.4). As we have seen in the preceding chapters, the role of the S-operator
is indeed central, since it represents an isomorph mapping between the two
asymptotically free states in the entrance and exit channel of the scattering
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problem. This prescription also determines the way by which the potential V
acts onto the evolution of the whole system. Thus, knowledge of the S-operator
enables us to examine the time evolution of the system in the entire interval
t ∈ [−∞,+∞]. In this discussion, an explicit reference is not made to the
range of the given potential for which the theory is applicable. Nevertheless,
this essential information is implicitly contained in the concept of convergence
in the norm. Namely, strong convergence is meaningful only if the defining
integral from the norm extends over the whole spatial region. Such a treatment,
recalling the definition of the free wave packet, assumes that the state of the total
system is completely unperturbed in a spatial region limited by a certain finite
radius. In other words, the outlined picture of the scattering process is based
upon the possibility of identifying a certain radius of the interaction potential,
after which the effect of the perturbation of the system becomes completely
negligible. Such a physical limitation is mathematically achieved through the
assertion that the quoted strong limit does not exist in all generality but only
for a given class of potentials, which are of a short-range type, i.e. falling
off faster than 1/ r with an increase in the distance r between the scattering
aggregates. This condition obviously cannot be fulfilled for the case of the
Coulomb potential Vγ ( r) = γ /r , where γ is the interaction strength. The theory
exposed in the preceding chapters, as already emphasized in chapter 1, is well
adapted to the square integrable interactions, which satisfy the Kato conditions.
However, the Coulomb potential Vγ (r), for which a particular criterion should
be established on the fundamental level of the asymptotic convergence, is not
square integrable. Due to this peculiarity, almost none of the vital elements of
the outlined concept of scattering is applicable to the Coulomb interaction. In
this case, which is important for the entire physics and particularly for atomic and
molecular physics, the most important substrate of scattering theory, namely the
concept of asymptotic convergence of state vectors, must be reformulated from
the onset [7,15]. The reason for this is easily understood, if we recall that the free
states can no longer be introduced in the manner used in the presently studied
wave operators �±, since the Coulomb potential never vanishes, not even in the
asymptotic spatial region.
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Chapter 13

Summary to part I

The most important physical aspects of quantum mechanics are interactions in
bound systems and predictions relevant to particle scatterings. In the first theme,
an especially important place is reserved for the properties of the energy levels
of certain compact, isolated physical systems, e.g. elementary particles, atoms,
ions, molecules, i.e. some general particles. The other type of research problem
describes collisions among these general particles, as one of the most universal
methods for investigating the structure of matter. These latter problems were the
subject of our concern, which is restricted in this book to non-relativistic energies.

For modern scattering theory, the following two principal questions emerge:
the existence and completeness of the Møller wave operators. They directly imply
the unitarity of the S-matrix and the correctness of the boundary conditions. Such
a general and versatile methodological concept largely surpasses the frames of
scattering theory. This is because an entirely similar concept is also encountered
in classical mechanics, as well as in mechanics of continual media and in quantum
mechanics. That is why these two questions have been chosen to be one of the
main subjects of investigation in the present work. They unify all the individually
studied fields of scattering theory, irrespective of whether we are dealing with a
general analysis of principles and concepts or with concrete physical phenomena.

We have seen that the role of the S-scattering matrix, as one of the most
fundamental quantities of quantum scattering theory, can be examined both
rigorously and simply from the standpoint of the existence of the so-called strong
limit of the product of two Møller wave operators. In immediate connection with
this concept, the asymptotic convergence problem is thoroughly elucidated, as the
crucial criterion of the validity of the theory. These conditions are comprised of
the natural physical requirement that the wave packets of scattering states, whose
evolution is under the influence of the examined potential (V �= 0), coincide
before and after collision with the corresponding wave packets generated beyond
the reach of the given interaction field (V = 0).

A special accent is placed upon the foundation of quantum scattering theory
from the first principles of physics, without resorting to any free parameters.
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Such a complete theory, which is autonomously and consistently devised on
a rigorous mathematical basis, represents a genuine modern candidate for a
powerful predictor of real events in experiments. In this way, the physical theory
is elevated above models, since the former explains the laws of nature, whereas
the latter merely interprets the analysed experimental data.
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PART II

SELECTED APPLICATIONS OF
NON-RELATIVISTIC QUANTUM
SCATTERING THEORY TO
ENERGETIC INELASTIC COLLISIONS
OF IONS WITH ATOMS

The main goal of part II of this book is to highlight the numerical relevance of
certain basic principles of quantum scattering theory, such as the correct boundary
conditions for scattering wavefunctions, the proper links for perturbation
potentials with scattering states and the like. To this end, we select four leading
theories for non-relativistic high-energy inelastic collisions of nuclei with atomic
targets and carry out a state-of-the art critical review. The focus is on the
central aspects of several of the key processes encompassing charge exchange,
ionization and detachment in the scattering of fast protons with atomic hydrogen,
helium and negative hydrogen ions. The methods used include the impulse
approximation (IA), the reformulated impulse approximation (RIA), the exact
boundary-corrected second Born (CB2 or B2B) approximation and the continuum
distorted wave (CDW) approximation. Regarding three-body problems, we
analyse our recent results from the most comprehensive computations to date
on both differential (dQ/d�) and total (Q) cross sections for proton–hydrogen
charge exchange at impact energies ranging from 25 keV to 7.5 MeV. Throughout
this energy range, for which measured results exist, the quantitative agreement
between the RIA and the available experimental data is found to be systematically
excellent. Moreover, the RIA consistently outperforms the IA, CB2 and CDW
approximations. As to four-body problems, the analysis is centred on single-
electron capture and transfer ionization as well as on one-electron detachment
involving two-electron target ions. For single-charge exchange and transfer
ionization in proton–helium collisions, the emergence of dynamic electron
correlations is shown by their progressively rising importance with increasing
incident energies. Static electron correlations are found to be crucial for accurate
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quantitative predictions on electron detachment in collisions of protons with
negative hydrogen ions. Above all, the major role in detachment is attributed to
consistency between the perturbation potentials and the corresponding scattering
wavefunctions. The usefulness of perturbative distorted-wave collision theories
critically depends upon a judicious intertwining of a powerful set of analytical
tools from mathematical physics with highly accurate and efficient computational
methods. The presently analysed methods of scattering theory deal with two- and
three-centre bound-free atomic form factors evaluated with the Cauchy complex
contour integration technique followed by the Feynman–Dalitz–Lewis integrals.
The final numerical task is reduced to the evaluation of integrals of dimensions
ranging from one to thirteen (1D–13D). For the higher dimensions (6D–13D)
that are encountered in the present book, stochastic methods are employed and
especially the adaptive and iterative exact Monte Carlo code VEGAS proves to be
remarkably useful. For lower dimensions (1D–5D), deterministic quadrature rules
are advantageously used and particularly the multi-variate fast Padé transform
(FPT) is firmly established as a well-suited and robust method for benchmark
computations. The FPT remarkably accelerates slowly converging multi-variate
Riemann partial sums of varying length from the trapezoidal quadrature rule by
using the Padé approximant. This method can be operationally implemented
through, e.g., the Wynn recursive epsilon algorithm with the benefits of having
a stable, efficient and low storage computational method of unprecedented
accuracy. The formalism of quantum collision theory from the present book can
be extended directly and naturally to resonant scattering and spectroscopy for
versatile applications across interdisciplinary research fields.
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Chapter 14

The physics of double scatterings

Here we analyse highly correlated events in ion–atom collisions from low to high
non-relativistic energies. Special attention is paid to both the Thomas double
scatterings of electron(s) on two Coulomb centres and the dynamic inter-electron
collisional correlations. This is accomplished by analysis of the available multiple
scattering theories and performing a feasibility study for the new generation
of recoil ion momentum spectroscopy experiments. En route, a variationally
unified theory is introduced for atomic collisions at arbitrary impact energies.
This method is particularly promising in the intermediate energy range, which
is one of the priorities of the discipline, due to the comparable role played
by excitation, capture and ionization. Possibilities for atom transfer via the
Thomas mechanism in very slow ‘in flight’ reactive collisions between two
beams of simultaneously stored cold atomic and molecular ions are explicated.
Rearranging collisions, such as charge exchange and/or ionization encompassing
ultra-cold Bose–Einstein condensates and cold circulating ions are elucidated as
a storage ring prospect in the near future. A succinct discussion is given of
some recent usage of atomic ionizing collisions in several interdisciplinary areas
including astrophysics, plasma physics, fusion research, biophysics, biochemistry
and medical physics. This is placed within the broader context of interactions of
very diverse scattering aggregates such as ion–atom, ion–solid, ion–molecule as
well as ion–organic matter under irradiation.

In 1924 the landmark experiment by Rutherford [96] intertwined nuclear
and atomic physics. This single measurement might be thought of as representing
the very birth of these two branches of physics, since it determined the size of
the nucleus which, in turn, inaugurated the planetary model of the atom. Such a
revolutionary insight into the structure of matter was made possible by the general
method of scattering which is, in principle, capable of probing every distance
all the way down to the Planck scale ∼10−32 cm, provided that sufficiently
energetic particle beams are available. The underlying collision in Rutherford’s
work [96] was electron transfer, which occurred during the passage of swift alpha-
particles through various substances. This experiment also initiated a longlasting
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controversy about the possible mechanisms for high-energy electron transfer.
The issue centred on the relative importance of single and double scattering was
resolved in favour of the latter mechanism in 1983 by the experiment by Horsdal-
Pedersen et al [97] on electron capture from He and H2 by fast protons. The
confirmation of a dominant role of two successive binary encounters in a genuine
three-body H+–H charge exchange at high energies was provided in 1986 by the
experiment by Vogt et al [98].

In fact, the story began earlier in 1922 with the experiment by Henderson
[99] on the capture and loss of electrons by alpha-particles traversing matter.
Intuitively, the alpha-particle is expected to capture electrons mainly near the end
of the traversed path, i.e. at the Bragg peak, where its high incident velocity v
is considerably reduced. Much to their surprise, however, both Henderson [99]
and later Rutherford [96] discovered that an electron could be captured rather
efficiently by an alpha-particle already in the early part of its trajectory, where
the energy of the projectile is still large due to a comparatively small number of
collisions. In contrast to [96,99], previous attempts were severely limited by poor
vacuum conditions which actually prevented measurement of high-energy capture
probabilities. An insufficient vacuum allows electrons from the residual gas to be
captured by projectiles and this severely corrupts the main signal.

One could argue that this unexpectedly larger probability could be due to a
cumulative effect of multiple scatterings of an alpha-particle on many atoms in
the target. This is not the case, however, since such an effect was confidently
controlled in [96, 99] by optimizing the thickness of the target. Furthermore, the
comment by Rutherford [96] ‘that capture does occasionally take place as the
result of an encounter of an alpha-particle with a single atom’ from the target,
led him to contemplate the possibility of two successive collisions of the electron
to be captured. This fact, which we shall elaborate on, was clearly stated on
p 300 in [96] but surprisingly went uncredited in the past literature. In 1927
Thomas [100] quantitatively revisited this Rutherford conjecture (but without an
explicit reference to it) on the double-scattering mechanism and found that it
should lead to the v−11 behaviour of the total cross section Q for ground-to-
ground state electron capture from atomic hydrogen by fast protons.

The measured competitive process of electron loss was quantitatively
analysed by Rutherford [96] using a theoretical two-body purely classical
formalism. However, his attempt to employ a similar model for electron transfer
has not met with success, since it did not offer any explanation of the underlying
mechanism. It was, therefore, concluded in [96] that the two-body description
is inappropriate, since ‘a collision which results in capture must involve at least
three particles’1. Rutherford [96] also asserted that ‘in a non-radiative collision
between an isolated electron and an alpha-particle, capture can never occur’.

1 This was re-emphasized in 1948 by Bohr [101] in his study of the penetration of atomic particles
through matter: ‘In contrast to electron loss which can be compared with a simple ionization process,
electron capture is obviously a more complicated phenomenon involving the interaction of at least
three particles’.
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The implied reason is in the impossibility of simultaneous conservation of the
total momentum and energy of the two-particle system2. To see this more directly,
we give the following intuitive arguments:

(1) The primary condition for an electron initially at rest (ve � v) to catch a
fast moving projectile would be that these two particles should emerge from their
collision with approximately commensurate velocities (ve ≈ v). This plausible
picture also follows from an elementary geometrical presentation of the velocity
vector diagram. Clearly, such a stringent velocity-matching requirement implies
that an electron and a bare nucleus, e.g. He++, would travel alongside each other.
However, subsequent formation of He+ in the considered case would necessitate
an obligatory transformation of an open electronic trajectory into a closed orbit
evolving around the projectile He++. This would be possible only if the electron
could lose the greater part �E of its translation kinetic energy, allowing the
attractive interparticle potential to bind them together. Since the disappearance
of �E is precluded without the presence of a third body or a field, the bound
system He+ cannot be formed in a radiationless collision between a free electron
and a point structureless alpha-particle.

(2) Alternatively, one could imagine that a swift electron of velocity −v

is captured by an alpha-particle considered as being initially at rest. In such a
hypothetical experiment, a stream of fast electrons would be shot at the stationary
alpha-particle. Naturally, in the area of the interparticle approach, the energetic
electron should slow down considerably in order to bend its trajectory around the
alpha-particle. Consequently, the electron must dispose its excess energy �E
in order to be captured by an immobile alpha-particle in a spiral orbit. This is
strictly impossible in an isolated two-particle closed system e–He++, since no
other object is present which could absorb the surplus energy �E . One is then
saying that the energy conservation law is violated precisely by the value�E . The
outlined situation on energy conservation can be salvaged only if a third body or
a field is present to carry off the amount �E .

Naturally, one would assume that it would be easiest for the electron to get rid
of its excess kinetic energy�E through emission of a photon γ from He+ via the
process known as radiative recombination (RR) [102]: e + He++ −→ He+ + γ .
Detected He+ ions could originate either from non-radiative electron capture
(NEC) in collisions between the He++ particles and the traversed matter or from
the RR process. Therefore, whenever the photons went undetected in coincidence
with He+, one should estimate the contribution QRR and subtract it from the
measured apparent value QNEC as background noise, in order to obtain the data
QNEC for the true capture cross sections. This implicit argument motivated
Oppenheimer [103] in 1928 to consider the possible RR path in Rutherford’s
data [96]: ‘Part of the excess of energy of the electron in its initial state over

2 Of course, in a general free two-body collisional system, the energy conservation can be satisfied,
if one and/or both free particles could undergo an internal transition. Such a transition, however,
is impossible in the Rutherford e–He++ collision, where the two free species are considered as
structureless particles.

Copyright 2004 IOP Publishing Ltd



200 The physics of double scatterings

that of its final state may be given off as spontaneous radiation; this may
increase the probability of capture, in particular of capture into the normal
state of He+’. This was overlooked by Shakeshaft and Spruch who in their
review paper published in 1979 [104] stated: ‘Oppenheimer (1928) discusses
both non-radiative charge transfer and the radiative recombination of electrons
and protons, but never notes that the result for radiative recombination is relevant
to charge transfer’. Oppenheimer [103] used the quantum-mechanical first Born
approximation without the internuclear potential and found QNEC ∼ v−12 and
QRR ∼ v−5. The asymptote QNEC ∼ v−12 was reproduced in 1930 by
Brinkman and Kramers [13] for the 1s −→ 1s transition and generalized to
arbitrary hydrogenic states as QNEC ∼ v−12−2�α−2�β , where �α and �β are the
initial and final angular momentum quantum numbers. The result QRR ∼ v−5

was confirmed by Bethe and Salpeter [105] in 1950, as well as in the context
of radiative electron capture (REC) within the first-order perturbation theory
by Kienle et al [106] in 1973 and later by Briggs and Dettmann [106] in
1974. The finding QREC ∼ v−5 was discussed more thoroughly in [96–98].
It follows from the asymptotic formulae that the RR dominates over NEC at
Einc ≥ 9 MeV amu−1 [106]. However, for the energy range considered in
Rutherford’s [96] experiment, the RR channel gives a completely negligible
contribution.

In fact, while estimating QNEC for, e.g., He++ +H −→ He+ +H+, it is not
the RR process itself which should be considered, but rather the corresponding
REC: He++ + H −→ He+ + H+ + γ . However, at sufficiently high impact
energies, the role of the target nucleus in determining QREC is only marginal
and merely limited to providing the Compton profile which, in turn, permits one
to consider the attendant electron in H as being essentially a free or a quasi-
free particle. This is prescribed by Kienle et al’s [106] factored relation which
separates the projectile and target data via: QREC ∼ QRR

∫
d p |ϕ̃α( p)|2δ(�ω −

v2/2 − Q̃ − p · v), where ϕ̃α( p) is the initial bound-state wavefunction in
momentum space, ω is the radiation frequency and Q̃ is the inelasticity factor
Q̃ ≡ �E = Eα − Eβ . The presence of the Dirac δ-function in the Compton
profile ϕ̃α( p)δ(�ω − v2/2 − Q̃ − v · p), can be intuitively understood by the
following argument. We provisionally consider the electron as being incident
with the velocity −v on a stationary projectile nucleus. The presence of the
target nucleus makes REC differ from RR in the initial step of the analysis. In
particular, the energy conservation v2/2 = �ω + Eβ encountered in RR can
no longer be used in REC. However, this difference can readily be modelled
by conceiving the electron as a quasi-free particle whose interaction with the
projectile is assisted by the target nucleus. Here, the target nucleus potential
VTe is assumed to provide only the initial distribution of the electron before
its encounter with the projectile. Hereafter, P and T denote the projectile and
target nucleus whose charges and masses will be labelled as ZP, ZT and mP, mT,
respectively. Let pα be an intrinsic momentum of the electron in the potential
VTe. Then the final energy �ω + Eβ should be equal to its initial counterpart
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comprised of the sum of the electronic kinetic energy ( pα − v)2/2 relative to
the projectile–target nucleus and the potential energy Ũα of the electron in the
field VTe. However, VTe supports bound states of the discrete energy Eα, which
is introduced by summing the internal kinetic p2

α/2 and potential Ũα energy of
the electron. Therefore, the initial energy of the electron in the field of the
two nuclei is ( pα − v)2/2 + Ũα = Eα + v2/2 − pα · v. Matching the latter
relation with the final energy �ω+Eβ of the system yields the following equation:
�ω = v2/2 + Q̃ − pα · v. This formula coincides with the argument of the Dirac
δ-function in the previously quoted Compton profile.

Once the electron is no longer considered as being initially free, one
might wonder whether the target nucleus could absorb the energy �E and
recoil subsequently? The answer is no. The energy �E is large and grows
up indefinitely with increasing value of the incident velocity v. The electron
could only transfer a small, limited amount of energy to a heavy nucleus, since
me/mT � 1. However, �E is the amount by which the total energy of the
whole system e–He++ is violated and, therefore, one could hope that the alpha-
particle might be more effective via the interaction VPT in transferring the He+
surplus energy to the target nucleus. However, this is not so, due to the inequality
me � mP,T. The Coulomb interaction VPT(R) = ZP ZT/R strictly depends
upon the internuclear separation R. Due to the relation, me � mP,T, it follows
that R is equivalent to the distance ri between the two centres of masses of the
projectile and the target. An arbitrary potential depending exclusively upon ri

could cause only an elastic collision which, by its very definition Q̃ = 0, cannot
lead to any rearrangement channel. The two electronic collisions in the Thomas
capture are also elastic and yet they result in producing a rearrangement channel.
However, here we are dealing with the pure electronic coordinates between e
and P in VPe as well as between e and T in VTe. Another viewpoint is based
upon the observation that VPT(R) could appreciably alter the electronic transition
only if µv2/2 � VPT(Rm), where Rm is the distance of the closest approach
and µ is the reduced mass of the two nuclei µ = mPmT/(mP + mT). For such
large values of the kinetic energy of the relative motion, the nuclear trajectory
would be almost rectilinear. This means that electronic capture will be dominated
by small scattering angles. However, this angular range is inaccessible to the
close Rutherford encounters of the two nuclei, corresponding classically to large
scattering angles3.

Having ruled out a single contact classical binary collision from the
list of possible mechanisms for high-energy electron transfer, Rutherford [96]
mentioned the possibility of two independent successive encounters of the
electron. This original idea of Rutherford was borne from the following
reasoning. He deduced that the electron should be scattered by the alpha-particle

3 The same status of VPT vis-à-vis the capture probability ought to remain valid quantum-
mechanically. Indeed, it has been analytically demonstrated by Belkić et al [15] that the exact
quantum-mechanical transition amplitude for electron transfer in ion–atom collisions is the same with
and without the internuclear potential VPT for me � mPT.
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through the angle ϑe = cos−1(2v/v′e), which is limited to ϑe ≤ 60◦ for v′e ≥ v,
where v′e is the velocity of the electron after its collision with the projectile.
Since a single binary encounter could not determine ϑe more precisely than just
locating the interval ϑe ≤ 60◦, Rutherford first thought that perhaps two such
successive encounters of the electron in an atom would be helpful. Of course,
it is implicitly assumed here that there is empirical evidence for collisions of
the alpha-particle with a single atom. Multiple scattering of the projectile on
several atoms is considered as having only a marginal importance by dealing with,
e.g., a thin target foil. Moreover, the major result from Rutherford’s analysis
of backward scattering yielded the dimension ∼10−12 cm for a typical atomic
nucleus, in sharp contrast to the previously believed ∼10−8 cm. This could
only be possible if an alpha-particle undergoes a direct head-on collision with
the nucleus of a single atom. Occasionally, however, capture of an electron
also takes place in a single atom from a multi-atom target and, therefore, in
Rutherford’s words ‘we are driven to conclude that the interactions of other
charged bodies involved are intimately connected with the mechanism of capture’.
He immediately concretized this viewpoint by saying

For example, it is easily seen that the ultimate direction of escape
of the electron [i.e. the value of the angle ϑe] may depend on a
second collision with the nucleus or other electron before escape from
the atom. The velocity of the electron is not seriously altered by a
nuclear collision, but will always be reduced by a collision with another
electron. Following this line of argument, we can see in a general way
that electrons of a velocity within the range of an alpha-particle may
occasionally be captured, if their velocity and direction can be altered
by a second collision. No doubt the idea of two successive collisions
in the atom, each more or less independent of each other, is somewhat
artificial.

This apparent artificiality led Rutherford to discard double scattering of the
electron arguing: ‘It is much more likely that capture results from what may
be regarded as a single encounter between an alpha-particle and two or more
charged bodies’.

Later Thomas [100] re-investigated Rutherford’s [96] conjecture on two
successive collisions of the electron and obtained the long-disputed purely
classical result for the ground-to-ground state cross section Q ∼ v−4v−4v−3 =
v−11 as v � ve. According to Thomas, the electron first collides with the
projectile and then with the target nucleus. These two independent sequential
Rutherford scatterings each proportional to v−4 occur elastically through 60◦ in
the laboratory reference system, according to the energy-momentum conservation
laws. The additional v−3 kinematical factor in the Thomas asymptote Q comes
from the volume element in the velocity space into which the electron must escape
from its parent nucleus. The overall v−11 behaviour of the classical Thomas
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cross section is radically different from the Brinkman–Kramers (BK1) first-order
quantal result Q(BK1) ∼ v−12.

Quite understandably, the latter theoretical finding was preferred by the
followers of quantum mechanics, which was just about to emerge in 1925 as
a novel and highly promising theory. If one tries to isolate a single emblem
which could symbolize the marked distinction between quantum and classical
mechanics, the words ‘interference effect’ would first come to mind. This effect
was selected by Bohr [101] to give his rationale for discarding Thomas’ [100]
result:

It must be realized, however, that the capture phenomenon is more than
just simply two separate collisions whose individual effects are defined
by the wave-functions at large distances from the scattering centre.
On the contrary, electron capture is an intricate collision process in
which the interference of the scattered wavelets during the overlapping
of the atomic fields may be decisive. In fact, as shown by Brinkman
and Kramers (1930) in their detailed treatment of this phenomenon
by means of Born’s approximation, the probability of capture is
negligible, except in the collisions where the two nuclei pass each
other at distances comparable with the wavelength λ corresponding
to an electron with velocity v. It is, therefore, not surprising that
their calculation gives a dependence of QNEC on the charges of the
nuclei and on their relative velocity which differs essentially from that
obtained by classical mechanics.

However, there are no such interference effects within the BK1 model when
calculating Q(BK1)

NEC . Interference does exist but between, e.g., the first I1 =
〈�β |Vβ |�α〉 and the second I2 = 〈�β |VβG+

0 (E)Vα|�α〉 Born matrix elements
where �α and �β are the initial and final asymptotic channel states, respectively
[107]. However, the cross term 2 Re (I1 I ∗2 ) in the transition probability amplitude
TB2 ∼ |I1 + I2|2 yields the v−12 behaviour of Q as does TB1 ∼ |I1|2.
Since classical mechanics operates directly with transition probabilities and not
with probability amplitudes, the interference between two successive Thomas
collisions is a priori absent. In Thomas’ formalism, the double binary collisions
are mutually independent and the overall probability for capture is obtained as the
product of two elementary probabilities for each event. In 1955 Drisco [108]
finally resolved the dilemma by showing that, indeed, it is solely the matrix
element 〈�β |VTeG+

0 (E)VPe|�α〉, which is one of the four terms in I2, that
secures the v−11 asymptote of the quantum-mechanical cross section.

Thomas’ derivation is not without pitfalls, however. He considered only
ground-to-ground state capture and the obtained coefficient of proportionality
γ (ds) between the cross section and its asymptote v−11 is by an order of
magnitude smaller than the corresponding Drisco’s finding. Here the acronym
‘ds’ abbreviates the ‘double scattering’. For the radial electronic distribution,
Thomas chose the simplest v-independent spherically symmetric shell model
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δ(r − a0), where the Bohr radius a0 was the only quantum-mechanical input into
the classical double-scattering mechanism. The Heisenberg uncertainty principle
is violated in Thomas’ demonstration. Moreover, Bates and Mapleton [109] have
pointed out that Thomas replaced capture probability by an approximation which
exceeds unity for small values of distance r . The modification proposed in [109]
leads to an asymptotic cross section which behaves as v−9 or even v−7. Another
basic objection to Thomas’ derivation is the fact that the hydrogen-like ground
state is not classically describable. In addition, Thomas did not justify the use
of purely classical mechanics for electron motion in between two collisions with
the nuclei. Given these numerous drawbacks, it is tempting to consider, at least
provisionally, any agreement between Thomas and Drisco as fortuitous. However,
this is not quite so for reasons that run as follows:

(i) Bates and Mapleton’s cross section behaving as v−9 or v−7 is unacceptable,
since a simple dimensional analysis of Thomas has shown that the cross
section for the double classical scattering must behave as v−11. This rules
out any coefficient γ (ds) which is dependent upon v.

(ii) From the onset, the uncertainty principle in momentum and distance
�p�r ≥ � is foreign to classical mechanics as a whole. Therefore, there
is no reason for which the Thomas double scattering should be singled out
as an example. Notions such as trajectory, force and the like are the very
basic ingredients of classical mechanics and yet, by their definitions, they
violate the momentum–position uncertainty principle. Nevertheless, if the
Thomas derivation is ‘updated for the uncertainty principle’, by starting from
a quantum-mechanical expression and resorting to its classical limit via the
correspondence principle, one again obtains the same v−11 result [104].

(iii) It is undeniable that a hydrogenic ground state is far from being a classical
construct, so that the question of an eventual full agreement between
classical and quantal double scattering formalism in this case is somewhat
ill posed. However, there should be no doubt that a high Rydberg state can
be justifiably used in classical mechanics. Here, the classical and quantal
coefficients multiplying the v−11 are in exact agreement [104].

Let us return to the trajectory question for an electron in classical mechanics.
Bohr [101] introduced a parameter κ = bm/λdB to quantitatively draw a limit
to the applicability of classical mechanics for a collision between two particles
of charges Z1,2e and masses m1,2. Here, λdB = h/(µ12v) is the de Broglie
length, bm = 2Z1 Z2e2/(µ12v

2) is the minimum distance of approach of a
head-on collision, v is the relative velocity and µ12 is the reduced mass µ12 =
m1m2/(m1 + m2). Interestingly, the critical Bohr parameter κ is independent
of the mass, since κ = 2Z1Z2e2/(hv). Bohr [101] stated that ‘we thus have
κ � 1 as the necessary and sufficient condition for justification of the classical
considerations leading to the Rutherford formula’. Since the Rutherford formula
for distinguishable particles happens also to be the exact quantum-mechanical
result, the Bohr’s citation should be interpreted as follows: if κ � 1, one could
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apply the concept of a classical trajectory, path or an orbit. Recall that bm is
a particular value (also known as the ‘collision diameter’ [101]) of the general
‘impact parameter’ b. The impact parameter b is defined as the distance at which
the particles would pass each other if no forces acted between them [101].

After summarizing briefly the classical Thomas double scatterings, Bohr
wrote:

Since in each of these processes [the two successive binary collisions
through 60◦] we have to do with large angle deflections, one might have
expected that such a calculation would give essentially correct results,
even if quantity κ is small compared with unity, and classical pictures,
therefore, are inadequate in analysing the details of the collision.

On the one hand, ϑe = 60◦ is indeed a large scattering angle resulting from close
encounters of the electrons with the nuclei and this is necessary for a classical
picture. But, on the other hand, for large v one would have κ � 1, contradicting
the Bohr criterion for a trajectory. Nevertheless, this still does not invalidate
Thomas’ classical description of free motion of the electron in between two
successive collisions on the projectile and target nucleus. The apparent paradox
is resolved by abandoning altogether Bohr’s derived relation κ = 2Z1Z2e2/(hv)
and returning to the original definition κ = bm/λdB. The electron emerges from
both collisions on the nuclei with a large momentum which is of the order ∼ mev.
This information, in itself, means that each of the two collisions of the electron
represents a close encounter with the resulting large values of ϑe. At the same
time, the de Broglie wavelengths λdB = h/(µPev) = h/(µTev), associated with
each collision are very small for large v. Here, µPe = mPme/(mP + me) ≈ me
and µTe = mTme/(mT + me) ≈ me. The wavelength h/(mev) is very much
smaller than the separation of the nuclei for practically all the relevant values
of the impact parameter b. Therefore, the electron motion in between collisions
with the nuclei is essentially classical in nature. This implies that each of the
two collisions is genuinely binary in character. Consequently, the interference
effects between the two encounters of the electron are completely negligible. In
particular, this justifies direct work with transition probabilities rather than with
probability amplitudes. In general, as long as the momentum–energy conservation
law is obeyed and the scattering is elastic, the details of the actual microscopic
scattering phenomenon, which may be quantum in nature, are quite irrelevant
and we can employ the classical description. This analysis illustrates that the
condensed expression κ = h/(µ12v) should be used with caution, when trying to
assess whether or not a given formalism is classical4.

4 Another example is a collision between two identical particles, which even for the most favourable
case κ � 1 evade the classical Rutherford description. The reason is in the truly quantum-mechanical
exchange effect, known as Mott scattering [110]. Here, one has a kind of uncertainty principle between
the diffraction and exchange effects. Any effort by, e.g., a suitable set of diaphragms to separate the
trajectories of the colliding partners with the purpose of reduction from a quantum to a classical aspect
(i.e. exclusion of exchange phenomena) would be hampered by diffraction.
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Chapter 15

The leading experimental methods for
double scatterings

In fast collisions of fully or partially stripped projectiles with a hydrogen or
helium target, much attention has recently been devoted to Thomas’ [100] double-
scattering events involving transitions of one or two electrons [97, 98, 111–115].
In a broader context, considerable focus within the past two decades has been
placed on experiments on single or double ionization, excitation or capture, as
well as on certain hybrid phenomena including transfer ionization (TI) or transfer
excitation (TE) in its resonant (RTE) or non-resonant (NTE) forms [116–120].
These elementary processes fall into a larger category of general interactive
dynamics of ions and atoms or molecules. Understanding the mechanisms
behind the ion–atom collisions is essential for achieving progress in predicting
the evolution of quantum scattering systems. Until essentially 20 years ago, most
atomic collision experiments were technologically limited to measurements of
only a few observables. Due to a paucity of experimental data on the majority
of the subtle and detailed features of collision phenomena, the adequacy and
reliability of theoretical models could rarely be thoroughly tested. However,
recent technological advances, such as storage ring accelerators and versatile
recoil ion momentum spectrometers, have made the goal of the so-called complete
experiment practically a reality. This includes, e.g., a full specification of the
initial and final states of the scattering partners, angular and/or energy distribution
of reaction fragments, polarization of photons emitted by fluorescence, detecting
the previously hidden structures in the dielectronic and dissociative recombination
cross sections and rate coefficients through acquisition of data at storage ring
accelerators with electron or laser cooling.

A breakthrough has recently been achieved in determining the complete
momentum kinematics of colliding particles with unprecedented precision
through the cold target recoil ion momentum spectroscopy (COLTRIMS)
[121–124], accompanied with a pre-cooled supersonic gas-jet target [125].
Heavy projectiles mainly scatter forward and, therefore, it is very difficult to
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experimentally determine angular distributions at very high incident energies
Einc, where the most intriguing Thomas multiple scatterings take place. Under
such circumstances, COLTRIMS exploits an alternative idea of bypassing
altogether the direct measurements of the scattered projectile parameters through
recording all the components of the recoil momentum of the target residual, as
well as of the ejected electrons for ionizing collisions. The inverse transformation
via energy and momentum conservation enables one to retrieve the differential
cross sections for the scattered projectiles. The impressive power of this method
lies in the fact that its almost 100% detector efficiency (∼4π) successfully
combines with very high momentum (�p) and energy transfer (�Q̃) resolutions
irrespective of Einc. Moreover, this technique exhibits only a very weak
dependence upon the energy spread and divergence of the beam. This is in sharp
contrast with the customary translational spectroscopy (TS), which measures the
energy loss or gain of the projectile, where any improvement in the detector
efficiency is automatically compromised with deterioration in energy resolution
[126]. The TS records a change in the value of Einc and, hence, relies heavily
upon the quality of the projectile beam, its divergence and energy spread.

Installing COLTRIMS into a storage ring, with the electron or laser cooling
of both the incoming beam and the target appears to be of primary importance
in yielding the additional experimental data on higher-order electron–nuclei and
inter-electron Thomas multiple scatterings. This could provide the most stringent
test of atomic collision theory at large Einc beyond the reach of the corresponding
single-pass experiments [97, 98, 111–115]. In fact, COLTRIMS with an internal
helium gas-jet has recently been built at the Stockholm storage ring CRYRING
(under the acronym CRYJET [127]), where a reduction by another order of
magnitude in the scattering angle resolution�ϑP, as well as in �Q̃, was achieved
in 1997. The success of COLTRIMS depends critically upon the possibility of
high momentum resolution�p of the recoiled target ion to within a fraction of an
atomic unit. At room temperature, such precision is impossible, since the required
�p would lie in the range of random thermal motion of the target constituents.
The difficulty is overcome by cooling the target, so that at the currently reached
temperature ∼10 mK, the achieved momenta in all three directions and energy
resolutions are �p ≈ ±0.025 au and �Q̃ ≈ ±6 eV, respectively. Such accuracy
in, e.g., the transverse momentum component of the recoiled ion leads to the
resolution �ϑP ≈ ±1 µrad at ∼1 MeV in H+–He one-electron transfer [123].
This represents a remarkable achievement in comparison to the �ϑP ∼ 30 µrad
and�Q̃ ≈ ±50 eV reached by conventional TS [126]. Such an angular resolution
by COLTRIMS provides a unique opportunity to unfold the hidden structures in
the differential cross sections at high energies allowing access to various Thomas
multiple scatterings. For example, an inspection of the existing experimental data
on H+–H and H+–He single charge exchange reveals a wider Thomas peak for
helium than for an atomic hydrogen target [97,98]. Such a phenomenon has been
shown [19, 128] to be due to an additional peak originating from the Thomas
P–e–e ≡ ZP–e–e double scattering. In the P–e–e mechanism of single charge
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exchange in the H+–He collision, transfer is mediated by the dynamic correlation
of the electron to be captured with the remaining electron of the target residual
He+, which absorbs the energy excess and recoils backward to conserve the total
energy and momentum of the whole system. This structure at ϑPee

P takes place
at the same critical angle ϑPeT

P = 0.47 mrad = 0.027◦ of the standard Thomas
P–e–T ≡ ZP–e–ZT double collision. In the mentioned experiments [97, 98], the
P–e–e mechanism revealed itself indirectly through widening the observed P–e–
T peak. The Thomas P–e–e double scattering was originally observed in H+–
He transfer ionization in a single-pass experiment [113]. We shall address this
problem later in the light of some new opportunities offered by storage rings.

Both Thomas collisions P–e–e and P–e–T are intrinsically correlated in
nature. The former manifests the pure dielectronic correlation, whereas in the
latter scattering, the target nucleus is the object of correlation. This phenomenon
belongs to a class of generalized correlation concepts involving only one electron
and the other arbitrary centre of ‘force’, which is the target nucleus T in e.g.
the H+–He single charge exchange. Obviously, highly correlated events in
atomic collisions need not necessarily encompass two electrons. The previously
mentioned improvements in�ϑP at CRYJET [127] allows one to separate the two
pathways P–e–e and P–e–T from each other in an attempt to assess the relative
role of these competitive mechanisms behind charge exchange in the high energy
regime ∼(2–10) MeV amu−1.

Complementary to these large values of Einc, there exists a remarkable
opportunity for very low-energy Thomas double reactive collisions [129–133],
barely exceeding the relative energy of ∼10 eV amu−1 between, e.g., an atomic
(D+, He++, He+, C+ or Ar+) and a molecular ion (D+

2 , HeD+, CH+
5 , OH+ or

CO+). This problem will also be in our focus while referring to the transfer of
an atom or a radical from a target to a projectile via Thomas double scattering.
Such collisions could be enabled by simultaneous injection of two particle beams,
e.g. D+ and CH+

2 into a storage ring. A heavy particle exchange, such as
D+ + CH+

2 −→ HD+ + CH+ could then take place in flight, via the two
merged beams which are themselves immersed in an electron cooling flux [134].
At low relative energies, cross sections are large and, in addition, the REC is
negligible. Storage rings with electron cooling [125] would be more efficient
than previous single-pass experiments because of the better qualities of both
beams. Cooling extends the lifetime of molecular ions, permitting the survival
of the solely lowest vibrational states and this greatly simplifies comparisons with
theory. In conventional measurements, one always encounters a complex target
state with rotational and vibrational degrees of freedom.

We shall also discuss feasibilities of collisions involving stored ions with an
ultra-cold internal target in the form of a Bose–Einstein condensate (BEC), which
could be subsequently ionized and/or excited. A magneto-optical trap (MOT)
producing a gaseous BEC could be envisaged to be installed in a storage ring
with the purpose of providing an ultra-cold target [134]. For example, general
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rearranging collisions, including charge transfer, between such a target and a
stored cold ions would be a highly welcome subject of study. This is particularly
interesting, in view of the available experimental evidence [135, 136], which
indicates that a BEC, as a whole, behaves like a quasi-particle, which represents a
genuine image of the confining potential applied to produce the invoked quantum
degenerate gas. It is of paramount importance to examine, both experimentally
and theoretically, the behaviour of such a quasi-particle subjected to collisions
and/or to some other external centres of force or field.
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Chapter 16

The two main theoretical frameworks for
ion–atom collisions from low to high
energies

Here, we shall primarily discuss the basic collisional processes of the following
general type:

Pq+ + T −→ P(q−nc)+ + T(nc+ni)+ + niei (16.1)

where as before the projectile P and target T are any atomic aggregates, q is
the charge state, whereas nc and ni are the number of the ‘active’ electrons
in the target, which are captured and ionized, respectively. These processes
contain a complexity of the possible final states leading to multiple charge
exchange, multiple ionization, transfer excitation, transfer ionization, etc. The
other electrons (say ep) are provisionally considered as being ‘passive’ since they
do not participate directly in the transitions of the electrons nc and ni. Let np be
the number of the electrons ep.

At low energies (El ≤ a few keV amu−1), single charge exchange (also
known as electron capture and electron transfer) dominates the other processes
and the close coupling (CC) method employing a molecular basis set appears as
the most appropriate for detailed theoretical studies [137, 138]. In this method,
the perturbation interactions are taken into account exactly, i.e. through all others.
In contrast, the complete scattering wavefunction, expanded on a set of some
basis orbitals, is necessarily truncated to a final number of intermediate states.
However, at high energies (Eh ≤ a few 10 MeV amu−1), the contribution from
the ionization channel becomes dominant and the perturbation theory would
be appropriate. Here, the total propagator in the Tαβ -matrix is developed in
terms of the perturbation potentials yielding the series of the Born–Neumann
or Dodd–Greider [93] types. Here, α and β are the initial and final channel
states, respectively. The high-energy perturbation treatments do not truncate the
asymptotic outgoing and incoming scattering waves. However, the inclusion
of multiple collisions of ‘active’ electrons on the perturbation potentials is
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severely hampered due to the practical limitations of computations of higher-
order terms in a perturbation series. For instance, an exact computation of the
Born approximations beyond the second-order perturbation expansion has not
been reported thus far in the literature. It follows from these remarks that, in
the Eh energy domain, the strategy is diametrically opposed to the one adopted
for the El range. Neglect of the remainder of a perturbation expansion of the T -
matrix beyond a given order means that the invoked potential is ‘truncated’, as
opposed to the approach of the CC method.

In contrast to these two extreme circumstances El and Eh, the situation in the
middle energy range (Em ≤ a few MeV amu−1) indicates that charge exchange
and ionization are of comparable importance. In such a case of competition
between these two major processes, neither the close coupling nor the perturbation
expansion method is valid. It might then be advantageous at Em to introduce, e.g.,
a variational unification of the previously mentioned methods borrowed from the
regions El and Eh. The stationary nature of this universally useful variational
theory, whose features shall be expounded at a later stage of our analysis, will
allow one to achieve the principal goal of developing a scattering model valid at
arbitrary values of Einc.

The reactions of the type (16.1) play a very important role in the study
of charge equilibrium and energy exchange during the passage of fast ions
through any medium, such as atoms, molecules, organic matter or solids [139].
These processes are the subject of very intensive experimental activities, relating
particularly to accelerators of multiple charged ions [140, 141]. The heating,
stability and lifetimes of ionic beams are chiefly determined by the phenomena
encompassed in (16.1) for both linear and circular accelerators, irrespective of
whether they are used for applications in nuclear, atomic or molecular physics,
etc. The conclusions drawn from the examinations of (16.1) are essential not
only for nuclear, atomic and molecular physics, but also for plasma physics
and astrophysics whenever modelling and/or simulations of collective effects
are necessary. Moreover, knowledge of angular distributions of electron-
production cross sections is of great importance in several related areas, such
as the technology of x-ray lasers as well as in biochemistry, biophysics and
medical physics when dealing with (i) energy deposition of heavy ions in organic
matter, (ii) charged particle detection, (iii) the relative biological effectiveness
of secondary electrons (δ-rays), (iv) ionizing phenomena and DNA break-up,
(v) proton radiation therapy, etc [142–150]. Atomic collisions are of equally
crucial importance to technological applications in the field of thermonuclear
fusion, where electron capture could partially neutralize the plasmas and seriously
aggravate their stability [141]. Moreover, the results obtained in atomic physics
are of great current interest in applications in biology and medicine, where
ionization processes are essential for the evaluation of heavy particle mobility
and energy loss during passage through tissue. An impressive number of recent
experimental studies show the timeliness of this subject of research [142–150].
In many multidisciplinary applications, the ionization rates were estimated in
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a purely empirical manner, without even resorting to the plane-wave Born
(PWB) approximation or its simplification known as the Bethe model. This
is unnecessary, since atomic physics already offered several solid theories for
ionization, which are sufficiently simple to employ [59, 151–153]. Further effort
would be welcome to explore this possibility systematically and provide realistic
ionization rates for applications in biology and medicine.
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Chapter 17

Basic mechanisms behind elementary
atomic processes

The principal observables measured in (16.1) are the differential dQαβ/d� and
total Qαβ cross sections, the reaction rates, the polarizations of the rays emitted
after the collision as a result of cascading to lower stable energy level, etc.
The very same quantities are also calculable theoretically and the common
experience already acquired on this research theme clearly shows the capital
role of the theory in triaging among the possible processes and determining
the physical interpretations of the elementary mechanisms hidden behind the
experimental observations. Here, we insist upon the concept of ‘mechanism’,
as the major pathway which is capable of achieving the ultimate goal of
investigations on (16.1). The objective is to assess the importance of intermediate
channels for a given final state, as a function of Einc and/or ϑP. Due to the
extremely short collision time of the order of 10−15 s, scattering experiments
are always effectively carried out in the asymptotic region when the collision
has been completed. This precludes any direct experimental observation of
the effects of the intermediate stage of a scattering. Nevertheless, information
about the transitory states could be transmitted indirectly to the measured
physical quantities, and theoretical models have an irreplaceable role in providing
inferences from the first principles of physics about the events in the collision
region.

The fact that ionization dominates other high-energy channels indicates that
even a small contribution of continuum intermediate states could considerably
change the capture probability. Indeed, the electron transfer is never described
properly by any of the first-order approximations of the perturbation expansions,
since here only the direct potentials ZP−ncec between the electron to be captured
ncec and the projectile nucleus ZP are kept in the analysis. In other words, it
is necessary to pass at least to the second-order and describe charge exchange
through the following two Thomas-like stages:
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(I) The captured electrons ncec, which are initially bound to the nucleus ZT of
the target, are first scattered on the projectile ZP.

(II) In the second stage, the same particles ncec undergo another collision but
this time with ZT and find themselves detached from their parent nucleus
and subsequently bound to the projectile P .

For sufficiently large v � ve, such a double collision ZP–ec–ZT, for instance,
between only one active electron and the two nuclei, exhibits the Thomas peak at
the critical angle ϑc = (me/mP)

√
3/2, which depends solely upon the ratio of the

electron and incident nucleus mass me/mP. This was experimentally confirmed at
E ∼ (3–7) MeV by measuring dQαβ/d� around the scattering angle ϑc for single
capture by protons from helium and hydrogen [97, 98]. Such a fact clearly shows
that the rearranging collisions demand a certain symmetry between the nuclei ZP
and ZT in a manner which provides evidence of the two-centre Coulombic effects
onto each of the active electrons ncec. The corresponding situation is much more
complicated than the direct collisions (e.g. excitation and the like), which are
sufficiently well described by the one-step ZP − ncec mechanism.

The symmetry of the two Coulomb centres demands a three-body formalism
for charge exchange irrespective of whether one is dealing with the first or
higher orders in a perturbation expansion. Even if we ignore the Thomas
double scattering by considering, e.g., intermediate energies Em of the order of
MeV amu−1, the active electron would still move under a combined influence
of both ZP and ZT. At Em, the condition for capture is matching between
the incident velocity v and the change in the momenta κP and κT of the
commuting electron around the target and projectile, respectively. Considering
specifically, e.g., the hydrogenic state around ZP and ZT, the corresponding
electronic distributions take the well-known form: |ϕ̃α(κT)|2 ≈ Z5

Tκ
−8−2�α
T

and |ϕ̃β(κP)|2 ≈ Z5
Pκ

−8−2�β
P . These expressions are valid for large momentum

components κP,T � ZP,T, which are required in the direct ‘velocity matching’
mechanism. Capture is non-negligible only in the area of considerable overlap
between the initial and final momentum space wavefunctions, i.e. at v ≈ κT + κP.
In particular, for symmetric collisions (ZP = ZT), we have κT ≈ κP ≈ v/2,
which clearly shows that the active electron feels the potentials of the target and
projectile in a symmetric manner. In a highly asymmetric case, e.g. ZP � ZT, the
previous condition for capture is satisfied at v ≈ κT. Consequently, the general
momentum matching v ≈ κT + κP is reduced to κP � v, which indicates that
the active electron ec moves slowly with respect to the projectile. This could only
mean that ec is strongly influenced by ZP and this again promotes the active role
of both nuclei in spite of ZP � ZT. Such a fact clearly illustrates that misleading
conceptions could easily arise by considering only the ratio ZP/ZT as a small
parameter in perturbation expansions, as proposed in [154] and subsequently
‘implemented’ within the divergent strong-potential Born (SPB) approximation
[155].
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Could one hope to relate ionization to capture in a straightforward manner?
It is tempting to instantaneously give a positive answer, if one could only use
the continuity of an atomic spectrum when passing from its discrete to the
continuum part and vice versa. However, this positive answer is unjustified
unless the three-body nature of capture is properly incorporated in ionization.
To remedy this difficulty, the so-called ‘electron capture to continuum’ (ECC)
was proposed [156] as an indirect mechanism of second-order ionization whose
probability should be added to that of the usual direct ionization to obtain the total
contribution for ionization. This is unjustified for two reasons:

(a) As soon as there are competitive processes, they should not be considered as
mutually independent, since the most intriguing interference pattern will be
lost.

(b) Summing the probabilities also signifies that the invoked elementary
reactions are independent whereas, in fact, there is only one ionization
process.

The problem here is to make a distinction between the two involved cases: one
demanding at least a second-order theory and the other necessitating merely
a first-order model. In fact, the genuine need for a second-order theory of
ionization is only present in a special circumstance where the velocity vectors
of the scattered projectiles and ejected electron are nearly parallel to each other
(v ≈ ve). This is the so-called cusp effect, traditionally associated with a charged
projectile, which ionizes an atom [155,156]. The signature of this phenomenon is
a sharp peak in the vicinity of v ≈ ve, which is superimposed upon the otherwise
smooth curve of the energy distribution of the ejected electrons from the threshold
to the tail. The ubiquitous interpretation of the cusp effect is associated with
the electron continuum state solely around the projectile. The resulting term
‘capture into the continuum’ would then mean that the projectile and the freed
target electron travel together with the commensurate velocity v ≈ ve. Such a
situation is reminiscent of the ‘velocity matching mechanism’ for electron capture
into a bound state of projectile. Here, one is trying to use the continuity between
the bound and continuum spectrum across the ionization limit in an inconsistent
manner. Any appeal of ionization to capture must necessarily invoke a three-
body treatment, as the indispensable ingredient of charge transfer. This means,
in particular, that the projectile and target nucleus must be active irrespective of
the relative importance of their coupling strengths ZP and ZT. Hence, relying
upon the projectile field only, would not justify the notion ‘electron capture to
continuum’. Even if one disregards this basic inconsistency, it appears ironic
to attempt to explain ionization in terms of bound-state capture. Rather, it is
the latter which is substantially enriched by making reference to the former,
since any description of, e.g., high-energy charge exchange would fail completely
without inclusion of the intermediate ionization continuum. Evidently, the cusp
effect is not important for the ionizing high-energy total cross sections Qαβ ,
which are predominantly determined by small values of the ejected electron
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energies. The ideal would be to devise a simple second-order theory, which could
simultaneously contain both direct and indirect channels, also encompassing
their possible constructive or destructive interference. The first attempt along
this line of thought can be found in [59] by extending the continuum distorted
wave (CDW) method to ionization. At present, the optimal choice obeying
this interference requirement seems to be the so-called reformulated impulse
approximation (RIA) [19, 157], which will be discussed later on. In the next
few chapters, by virtue of an illustration, we shall outline in more concrete detail
various competitive mechanisms of single charge exchange in H+–He collisions.
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Chapter 18

Direct momentum matching

The genuine four-body nature of the basic one-electron transfer H+ +
He(1s2) −→ H(1s) + He+(1s) offers the intriguing task of establishing the
relative importance of the inter-electron and electron–projectile potentials. In
principle, both interactions can lead to one-electron capture but the invoked
mechanisms differ considerably from each other. Let s1,2 and x1,2 be the relative
vectors of e1,2 with respect to ZP,T. The interaction potential Vp1 = −1/s1 of
the ‘active’ electron e1 to be captured by the incident proton H+ ≡ p leads to
single-charge exchange and forms the basis of the so-called ‘direct momentum
matching’ mechanism. This mechanism can be best conceived by resorting to a
first-order Born-type transition probability in terms of the initial ϕ̃nα�αmα and final
ϕ̃nβ�βmβ bound state wavefunctions in momentum space. When a fast impinging
proton p of mass mp passes by the helium target with a large momentum mpvp and
velocity v ≡ vp, the electron e1 of mass me � mp, which is orbiting about the
alpha-particle with the classical velocity ve1 � vp, could be captured via the p–e1
collision. This is assisted by the target nucleus1 only if considerable momentum
of the order of mevp is imparted onto e1. Since this displacement mevp in the
momentum components of ϕ̃nβ�βmβ will increase with augmentation of vp, it is
clear that only the largest components of the momentum space wavefunctions
would be able to provide the ‘direct momentum matching’ which, in turn, would
yield a non-vanishing overlap of the initial and final orbitals. Nevertheless, the
resulting probability is exceedingly small, yielding the cross section with the

typical behaviour v
−12−2�α−2�β
p for large vp, since both orbitals ϕ̃nα�αmα and

ϕ̃nβ�βmβ fall off too rapidly with increasing values of their momentum variables.
A large momentum mevp could be transferred to e1 only if the impinging proton p
comes close to the electron e1, which possesses a very small initial momentum in
the target (meve1 � mevp). Hence, the ‘direct momentum matching’ mechanism
is expected to be operative mainly at small impact parameters b. One then expects
that the matching velocity condition v ≈ ve and the appropriate value of b

1 As pointed out before, the single binary scattering p–e1 cannot yield a bound state of atomic
hydrogen, since energy and momentum conservation would be violated.
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should appear as the product bv in the probability bPB1(b) ∼ exp(−bv) for,
e.g., the 1s −→ 1s electron transfer in hydrogenic systems. This exponential
decline is prescribed by the spatial probability distribution of the electron in the
initial hydrogen-like ground state. Such a common feature is encountered in all
the first-Born-type models [13, 103, 158]. By contrast, the leading term in the
second Born approximation represents the quantal counterpart of the classical
Thomas double scattering and, therefore, bPB2(b) ∼ exp(−8b/

√
3). Here, the

projectile must search for the electron at a very precise spatial position, leading to
a dominant value of b, which is obtainable from the classical relation between the
impact parameter and the critical Thomas angle ϑc. In the classical Thomas [100]
model, capture takes place essentially at a single critical value of the impact
parameter bϑc ∼ r

√
3/2, when the electron is initially at the distance r from

the target nucleus. The electronic radial distribution in atomic hydrogen is given
by exp(−2r), which gives an estimate exp(−4b/

√
3) of the probability for the

Thomas capture at r = bc. This intuitive argument agrees satisfactorily with the
previously mentioned prediction bPB2(b). The difference within a factor of two
in the exponents of these two estimates is not essential for this rough estimate.
However, the crucial point is that, unlike bPB1(b), the second-order probability
bPB2(b) drops off exponentially in a manner which is completely independent of
the incident velocity v.

As an alternative to the first-Born-type models, one could alternatively
choose the potential Vp1 as a perturber of the asymptotic state �α in the entrance
channel, where�α is given by the product of the two-electron target wavefunction
ϕα(x1, x2) and the plane wave for the relative motion of the projectile. This is
accomplished through the usual multiplication of�α by the appropriate Coulomb
wave and an automatic cancellation of Vp1 from the entrance channel perturbation
Vα in the transition T−

αβ -matrix, which consequently acquires a non-local two-
centre operator in the standard kinematical form ∇x1 lnϕα(x1, x2) · ∇s1 . This
procedure is reminiscent of the four-body continuum distorted wave (CDW-4B)
theory [159, 160], which represents a rigorous first-order approximation of the
Dodd and Greider [93] distorted-wave perturbation expansion. In such a model,
the projectile does not directly impart a large momentum of the order ∼ mevp
onto the ‘active’ electron e1. Instead, this momentum is transferred indirectly
via the long-range distortion effects and, hence, close encounters between p and
e1 are not mandatory any longer. This illustrates that the small size of the impact
parameter b cannot be used as an unambiguous signature of the ‘direct momentum
matching’ mechanism. In addition, b is not an observable in the sense of being a
physical quantity which is directly measured in a collision experiment. However,
a clearer situation emerges from the analysis of recoiled particle He+ of the target
remainder. Namely, in order to conserve the total momentum of the whole four-
body collision system, the residual He+ ion in the exit channel must recoil in the
backward direction. This is readily observed by means of COLTRIMS [121–125].
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Indirect momentum matching

In addition, the interaction potential Vp2 = −1/s2 of the presumably ‘passive’
electron e2 with the projectile can also lead to capture of electron e1. Here,
the electron e2 receives a large momentum mevp, which is afterwards transferred
onto e1. This is possible only if the static correlation of the two electrons in the
helium target plays a non-negligible role. The relative importance of this so-called
‘indirect momentum matching’ mechanism has recently been estimated within
the CDW-4B method [128]. This was done by employing a mixed formalism in
which the electron e1 fully distorts both asymptotic channel states �α and �β on
two Coulomb centres, whereas e2 enters the transition T -operator and the T−

αβ -
matrix only as the electrostatic compound potential �Vp2 ≡ Vp2 − V∞

p2 . Here,
V∞

p2 = 1/R = 1/|x2− s2| is the asymptotic value of Vp2 at very large distances s2

between p and e2. The tail V∞
p2 must appear along with the genuine potential Vp2

in the transition T -operator, as a consequence of the correct boundary condition
in the exit channel. The difference �Vp2 = 1/R − 1/s2 is of short range at
large distances s2. Therefore, �Vp2 can make the scattering occur, since such a
potential vanishes in the asymptotic region R −→ ∞, as strictly prescribed by
collision theory [7, 15, 161, 162]. This prescription is based upon the fact that,
due to the extremely small collision time, the scattering experiment is effectively
always carried out in the asymptotic region (both space-wise R −→ ∞ and time-
wise t −→ ∞) where the aggregates must behave as genuinely free particles.
Here, one recognizes the universal concept of ‘asymptotic freedom’ [7], enabling
a consistent control of the situation ‘before’ collision and simultaneously allowing
a multitude of possible final states ‘after’ scattering. This framework of free wave
packets in the asymptotic region has far-reaching consequences for the collision
experiment. Otherwise, one could not be able to distinguish the situations ‘before’
(t −→ −∞) and ‘after’ (t −→ +∞) scattering at all. Clearly, when some
residual Coulombic potentials are present in the asymptotic region, scattering
aggregates cannot move as free particles. This is due to the fact that a Coulombic
interaction never ceases to exist even at infinitely large inter-particle distances
and this, in turn, always distorts the plane wave via appropriate dressing with the

Copyright 2004 IOP Publishing Ltd



220 Indirect momentum matching

logarithmic phase factor [7, 15, 107, 161]. However, a proper introduction of the
distortion of a free wave would automatically modify the long-range Coulomb
perturbation through the emergence of an overall short-range potential which will
then restore the usual concept of scattering [7, 15, 161, 162].

Copyright 2004 IOP Publishing Ltd



Chapter 20

Dynamic electron correlations

The role of the inter-electronic (e1–e2) potential V12 = 1/x12 = 1/|x1− x2| from
the dynamic point of view has recently been studied in the ‘post’ formalism of the
CDW-4B method [128] for single charge exchange in the p–He fast collisions,
with the appropriate full perturbation V f = �Vp2+�V12−∇s1 ln ϕ∗β(s1) ·∇x1 in

the transition T -matrix T+
αβ . Here, ϕβ(s1) is the final bound-state wavefunction of

atomic hydrogen and �V12 ≡ V12 − V∞
12 , with V∞

12 = 1/x1 being the asymptotic
value of V12 for x1 � x2. Note that x2 is of the order of the Bohr radius a0, since
the electron e2 is bound in He+(1s). The electron e1 in the atomic hydrogen H(1s)
of the exit channel is experiencing the field of singly charged positive ion He+.
Hence, the asymptotically correct Coulomb wave ϕ−−vp

(x1) of the mixed CDW-
4B formalism of [128] is centred at the screened helium target nuclear charge
ZT − 1 = 1. Here, again the term ‘mixed’ is used to indicate that the electrons
e1 and e2 are treated in an asymmetric manner, as far as one is concerned with
modifications of potentials or wavefunctions. This electron screening of the net
charge of the alpha-particle must be compensated, according to the well-known
‘asymptotic convergence problem’ of Dollard [7], by an explicit subtraction of
V∞

12 from V12 in the transition T -operator. Hence, the emergence of the compound
potential �V12 = 1/x12 − 1/x1 of short range at large distances, furnishing the
previously mentioned strict condition for scattering to occur, in a similar fashion
as previously noted for�Vp2. The mechanism of the dynamic electron correlation
does not necessitate close encounters with a projectile. Moreover, when the
dynamic correlations are operating, the target remainder He+ is at rest as a mere
spectator and this is in contrast to the backward recoil in the ‘direct momentum
matching’ mechanism.

In [128], influence of the dynamic electron correlation effects on total cross
sections for single capture in the p–He collisions, particularly with respect to
the increasing values of Einc was investigated. The goal was to monitor the
interplay between the single step ‘direct momentum matching’ mechanisms and
the dynamic electron correlations, with the purpose of determining their relative
importance. Here, the electron dynamics enter the composite process under
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investigation via a two-step p–e1–e2 Thomas-type mechanism, which corresponds
to the propagator V12G+

0 Vp1 of the second-Born approximation. The first p–
e1 step in the CDW-4B method is not accomplished directly via an explicit
appearance of the electrostatic interaction Vp1 in the transition T -operator but
rather indirectly through dressing of the unperturbed states �α and �β with
the Coulomb waves centred on H+ and He++, respectively. The transfer of
large momentum mevp from p to e1, mediated by these long-range distortions
of the asymptotic channel states, enables the two electrons to interact strongly
in the second e1–e2 step of the previous p–e1–e2 mechanism via the explicit V12
potential in the Vβ perturbation of the exit channel. Although e2 remains on the
target residual He+, as opposed to the TI, the e1–e2 scattering should be able
to considerably relax the ‘momentum matching’ condition of the preceding p–e1
step.

In a search for the signature of the underlying p–e1–e2 mechanism, one could
also be in a position to verify whether a four-body distorted wave formalism,
such as the CDW-4B model for the p–He single capture, would be of comparable
adequacy vis-à-vis the results of a previously reported study on double-charge
exchange for the same colliding system [159, 160]. This is important in view
of some disturbing evidence within another four-body formalism known as the
forced impulse approximation (FIA), which is successful for double ionization
but has recently been reported to break down for single ionization in the p–He
collisions [163].

The obtained total cross sections of [128] for the p–He one-electron capture
have been found to be in good agreement with the available experimental
data. Such a finding could also be used as an a posteriori justification of the
physical assumptions of the original formulation of the CDW-4B model for
more complex problems involving two active electrons. This is not surprising
since the four-body version of the CDW approximation is obtained as a direct
extension of its well established three-body counterpart [107, 161]. Both three-
and four-body formalisms of the same CDW theory are consistently derived as
a first-order approximation of their respective Dodd–Greider [93] perturbation
expansions. Such expansions are convergent and this guarantees a meaningful
interpretation of their first-order estimates. However, the employed CDW-4B
method for single-electron transfer is not unique, due to a multitude of choices
for distorting potentials. Hence, the need for a judicious choice of the prior
and post perturbations Vα and Vβ . The selection of these perturbations, which
are responsible for the transition studied in [128], is guided by the correct
boundary conditions as well as by the relative role of the competitive mechanisms
of ‘momentum matching’ (electron–projectile) and dynamic correlation effect
(electron–electron). The reported theoretical data from [128] provide evidence of
the prevailing importance of the inter-electron potential over the electron–nucleus
interaction at high impact energies. This invalidates the widely accepted concept
of considering the non-captured electron as being ‘passive’ in proton–helium
single-charge exchange. This conclusion has been reached on the level of both
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total and differential cross sections [19, 128]. The P–e–e Thomas peak appears at
all impact energies at ϑPee

c = 0.47 mrad = ϑPeT
c , as opposed to the corresponding

P–e–T maximum which emerges only at v � ve. It is hoped that the findings of
[128] would motivate further experimental studies on similar collisional systems
at high energies, especially by means of storage rings equipped with recoil ion
momentum spectroscopy.
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Thomas double scatterings of the active
electron with two atomic nuclei

Clearly the previously listed ‘direct and indirect momentum matching’
mechanisms, as well as the dynamic electron correlation effect, should be
completed by the already mentioned Thomas [100] double scattering (P–e1–
T). In this two-step mechanism of the p–He single capture, the electron e1 first
collides with the incident proton p and then with the alpha-particle of the target,
acquiring finally the ejection momentum mevp, which is sufficient to form an
atomic hydrogen. Such a mechanism operates only at very large Einc of the order
∼10 MeV amu−1 for electronic transitions and is included properly in the CDW-
4B theory through the quoted two-centre potential operators ∇x1 ln ϕα(x1, x2) ·
∇s1 and ∇s1 ln ϕ∗β(s1) · ∇x1 in the prior (Vα) and post (Vβ) perturbations,
respectively. As discussed before, this Thomas mechanism is comprised of
two consecutive Rutherford scatterings, each yielding the v−4 behaviour of the
cross section. When the ensuing result v−8 is further multiplied by the volume
element v−3 of momentum space, the overall Thomas cross section v−11 is
obtained. The second-Born approximation describes this remarkable classical
effect by means of the transition operator VT1G+

0 Vp1. Here, VT1 = −2/x1 is
the Coulomb interaction between the alpha-particle and e1, whereas G+

0 is the
free-particle Green’s operator. A slower decrease of the Thomas cross section
with rising vp in comparison with the ‘direct momentum matching’ mechanism
can be mathematically interpreted as an enlarged overlap between the initial and
final bound states. This is also expected from the physical viewpoint, since the
stringent condition for momentum matching in the p–e1 encounter is partially
relaxed via the subsequent e1–ZT collision, where the target nucleus could carry
some excess energy through its recoil. Clearly, the alpha-particle would be only
slightly affected by the received excess energy and momentum due to the heavy
mass of the target nucleus. Much more pronounced reduction of the cross section,
however, is expected if the energy excess is taken, e.g., by a photon, which indeed
yields the v−5

p behaviour [106] of the cross sections for the ensuing REC.
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It is tempting to use a similar argument to anticipate a considerably weaker
dependence than the v−11

p asymptote [164] of the second Born cross section
for the TI in the p–He collision, where e1 is captured by proton and e2 is
simultaneously ionized. Here, the second electron e2 could readily carry away
the excess energy and momentum and, therefore, this might maximally relax the
strict ‘momentum matching’ requirement. Indeed, a recent experiment by Mergel
et al [115] indicates that the total cross sections for the TI in the p–He collision
behave like v−7.4±1

p as a function of vp in the limited impact energy range (0.3–
1.4) MeV. However, at higher energies (2.5–4.5) MeV, a more recent experiment
by Schmidt et al [115] shows that the total cross sections for TI behave like v−11

p .
Thus far only two quantum-mechanical four-body theories have been proposed in
the literature for TI and these are the distorted wave methods acronymed as CDW-
4B and RIA-4B (see chapter 26 for references). The CDW-4B is in very good
accord with the experimental data on TI in the ZP–He collisions for ZP = 2 and
ZP = 3. Moreover, our preliminary computations on TI in the H+–He collisions
show that the CDW-4B overestimates the measured data of Mergel et al [115]
at Einc = (0.3–1.4) MeV but agrees quite well with the experimental finding
of Schmidt et al [115] at Einc = (2.5–4.5) MeV. However, the RIA-4B agrees
excellently with both experimental data from Mergel et al [115] and Schmidt et
al [115]. Otherwise, these two sets of measured cross sections are in mutual
agreement and, furthermore, their respective asymptotes Q ∼ v−7.4±1

p (Mergel

et al ) and Q ∼ v−11
p (Schmidt et al) go smoothly into each other from the

corresponding energy intervals (0.3–1.4) MeV to (2.5–4.5) MeV.
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The impulse hypothesis

The standard impulse approximation (IA) is chiefly based upon the following two
assumptions [165]:

(a) Only the projectile nuclear charge ZP plays an active role in the perturbation
of the target T , whereas ZT remains passive and merely furnishes the initial
electronic distribution of the electrons to be captured and/or ionized.

(b) The multiple scattering effects are neglected altogether.

Usually, (a) is attributed to the so-called ‘impulse hypothesis’ which is explicitly
associated with the neglect of the commutator [VT, ζ ] between the target potential
VT and an integral form ζ of the total Green’s operator G+. Similarly, neglect of a
commutator of ζ with other perturbation potentials is in the origin of assumption
(b). An impulsive force in classical mechanics is conceived of as a force of an
infinitely large intensity experienced over a short time interval. Consequently, any
other force present in the examined physical system could rightly be neglected. Of
course, the concept of a force (and likewise that of a trajectory) does not exist in
quantum mechanics, due to the uncertainty principle. Nevertheless, the ‘impulse
hypothesis’ could still quantum-mechanically be understood as an interaction
ZP–ncec of huge strength over a small interval of time. This would justify the
omission of the potential between ZT and ncec for the case ZP � ZT. Such
a domain is subject to sudden changes in the electronic states and this picture
could intuitively be anticipated as being potentially valid at large Einc for very
asymmetric collisions. Ironically, however, the atomic physics version of the IA
has first been implemented to the symmetric H+–H charge exchange from 25
to 1000 keV [165]. The results for Q(IA)

αβ are found to severely underestimate
the experimental data below 350 keV. In addition to (a) and (b) listed earlier,
the most serious fundamental deficiencies of the IA are: (c) non-respect of
the exact boundary conditions in all the channels and (d) the introduction of
the non-existent solution of the Lippmann–Schwinger equation for the scattered
wavefunction in the field of a pure Coulombic potential. It has been shown [157]
that it is sufficient to lift constraint (a) to achieve a simultaneous elimination
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of limitations (b), (c) and (d). Such a procedure, which is coherent with the
strict requirement of the formal scattering theory [7, 15, 161, 162], establishes
the RIA of [157] on a firm theoretical basis. Its superiority over the IA is clear,
since the RIA satisfies the correct boundary conditions in all the channels and
everywhere throughout the whole Hilbert space of proper state vectors. All the
scattering wavefunctions of the RIA are normalized to unity [157]. Moreover,
all the multiple scattering effects ignored in the IA are automatically included
within the RIA and this is also of great importance for light impact particles
(e.g. positrons e+). The intrinsic significance of these ameliorations of the RIA
over the IA from the viewpoint of formal concept of scattering is the basis of
the necessary reliability test of the theory. This is, however, insufficient since
the validity of any intrinsically coherent and self-contained theoretical model
in physics is considered as established with certainty only when successfully
tested against measurements. It has been found [19, 157] that the results for
Q(RIA)
αβ and dQ(RIA)

αβ /d� systematically show a substantial improvement over

the corresponding findings for Q(IA)
αβ and dQ(IA)

αβ /d�, including the Thomas
double scattering at Eh. The RIA and virtually all the existing experimental
data are in very favourable and systematic mutual agreement throughout a
tremendously large interval E = 25–10 500 keV. Varying Einc over three
orders of magnitude, the cross sections Q(RIA)

αβ change through some 12 orders
of magnitude and impressively remain in overall excellent agreement with the
available experimental data [19, 157]. These first tests of the RIA against the
experiments were carried out with completely stripped projectiles impinging on
atomic hydrogen and helium in the case of the SC and the TI. Nonetheless, the
very encouraging results of these comparisons are important since they permit
an assessment of the theory’s validity without any ambiguity due to availability
of either exact (atomic hydrogen) or highly accurate (helium) variational bound-
state wavefunctions. These three- or four-particle models are also of immediate
utility for a whole series of collisions between more complex aggregates P and T
possessing a greater number of electrons in (16.1).
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Chapter 23

Drawbacks of the continuum distorted
wave method and its ‘derivatives’

There exist a number of other models at high energies, such as the exact
second-Born approximation corrected for the proper boundary conditions (CB2
or B2B) [10] in terms of the free-particle Green’s operator G+

0 , the CDW
method [15, 107, 161] and its ‘derivatives’ known as the hybrid-type models that
are called the continuum distorted wave-eikonal initial state (CDW-EIS), the
continuum distorted wave-eikonal final state (CDW-EFS) and the Born distorted
wave (BDW) [166]. The CB2 approach is computationally the most difficult
to apply even for the simplest H+–H and H+–He charge exchange collisional
systems, so that its practical usefulness is indeed extremely limited. Moreover,
our recent computations of dQ(CB2)

αβ /d� for the p–H charge exchange show that
the CB2 method becomes progressively less reliable with decreasing incident
energy Einc [19]. For example, at Einc = 25 keV, we have found that dQ(CB2)

αβ /d�

almost coincides with dQ(CB1)
αβ /d�, where CB1 (≡B1B) is the acronym for the

boundary-corrected first-Born approximation [158]. However, the differential
cross sections dQ(CB1)

αβ /d� have a basic defect of a non-physical dip due to the
nearly complete cancellation of the two opposite contributions from an attractive
and a repulsive part of the full perturbation potential [158]. Nevertheless, the
role of the CB2 method is important in presenting the gold standard against
which other models should be tested at large Einc. This is particularly true for
the Thomas double scattering as a function of a number of parameters, e.g. the
incident energy, the nuclear charges and the quantum numbers of the initial as
well as the final bound states.

The CDW method, as one of the most frequently employed high-energy
models, shows an undeniable success in a large number of tests against the
measurements [15–18, 107]. Nevertheless, this model is not without fundamental
deficiencies, such as the following ones.
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(1) The probability at large values of the impact parameters b is incorrect, since
P(CDW)
αβ (b) disagree with the proper value of P(CB2)

αβ (b) at b � 1.

(2) P(CDW)
αβ (b) is occasionally larger than one and, therefore, unitarity is not

preserved.
(3) The initial and final complete scattering wavefunctions are not normalized

and this causes the non-conservation of the particle flux. This is incompatible
with the standard definition of the differential cross section dQαβ/d�,
according to the experimental conditions, as the ratio of the incoming and
outgoing flux of particles.

(4) The comparisons between Q(CDW)
αβ and the experimental data are much more

satisfactory in the case of the pure s-states (�β = 0) than for the sub-levels
with non-zero angular momentum values (�β �= 0) [15, 107]. Moreover,
this discrepancy becomes progressively worse with increasing magnitude of
�β �= 0, indicating that the description of capture into these high sub-levels
is not adequate due to the deficiency from item (1). Nevertheless, this should
not invalidate the treatment of transfer of an electron to an energy level with
the given principal quantum number (nβ ), summed-up over �β and mβ , since
the s-states dominate at high-impact energies.

(5) The asymptotic behaviour Q(CDW)
αβ ≈ γ

(CDW)
αβ v−11, manifesting Thomas’

double scattering at large values of the incident velocity v coincide with
Q(CB2)
αβ ≈ γ

(CB2)
αβ v−11 only for the ground hydrogenic states (α = 1s,

β = 1s). A complete agreement between the proportionality coefficients
γ
(CDW)
αβ and γ

(CB2)
αβ is obtained if the second-order in the Dodd–Greider

perturbation series is taken into account [167]. However, this renders the
CDW approximation even more unmanageable, in practice, than the CB2
method.

(6) The Thomas peak in dQ(CDW)
αβ /d� is always split into two adjacent maximae

separated by an extremely shallow dip which is not supported by any
experimental data [107, 168]. Such a splitting is exclusively caused by
the perturbation operator, which is given as the scalar product of the two
gradient derivatives applied to the initial bound ϕα and continuum states
∇x ln ϕα · ∇s lnχ+(CDW)

α . This is a non-local transition operator, which
depends upon ϕα and the incident velocity v. Its action, e.g., for α = 1s = β

in the prior T−(CDW)
αβ -matrix, yields two terms and each of them gives a

separate Thomas peak at the same critical angle ϑc. The phases of these
two terms, however, are opposite to each other, differing by π , and this
produces a destructive interference pattern at∼ϑc with a characteristic, albeit
unphysical, dip [107, 168]. This experimentally unobserved structure is not
fully masked by inclusion of the contribution from the excited states (nβ ≥
1). If one performs a test computation replacing the scalar product of the
gradients of the CDW model by the unity operator, the resulting differential
cross section would display only one unsplit Thomas peak at ∼ϑPeT

c . This is
due to the presence of the two-centre continuum intermediate states, which
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distort the asymptotic channels. A perturbation potential containing only
genuinely electronic coordinates is, in fact, a weight function between the
distorted waves 〈χ−(CDW)

β | and |χ+(CDW)
α 〉 in the transition amplitude and, as

such, can only modify the Thomas peak already present in the integral of the
T -matrix-type 〈χ−(CDW)

β |χ+(CDW)
α 〉. The presence of this dip additionally

complicates the interpretation of yet another neighbouring Thomas peak at
ϑPee

c due to the correlated encounters ZP–ec–ei in the TI [115] or ZP–ec–ep
in single capture (SC) [19, 128].

(7) The so-called propensity rule is not satisfied at large values of impact
parameter b. According to this rule, first established at low impact
energies within the CC method [169], the state population after capture
is predominantly provided by the magnetic sub-levels mβ = −�β . This
takes place if the quantization axis is chosen to lie in a plane containing
the initial kα and final kβ wavevectors. This plane is perpendicular to the
usual scattering plane, where the quantization axis along kα predetermines
the major contribution from mβ = 0. In this latter case, the cross sections
obtained for +mβ and −mβ are identical to each other. The mechanism
hidden behind the propensity rule at low energies is in the tendency of the
captured electron to follow the rotation of the internuclear axis closely and
remain in the collision plane as long as possible.

(8) The results for dQ(CDW)
αβ /d� regularly exhibit undulations which are not

experimentally confirmed in any recorded angular distributions [107].

The CDW-EIS and CDW models coincide with each other in the exit channel.
In the entrance channel, the CDW-EIS approximation employs the eikonal phase
factor,

ϕ
+(eik)
C = e−iνP ln(vs+v·s) (23.1)

in place of the full Coulomb wave,

ϕ+C = N+(νP)e−iv·s
1 F1(iνP; 1; ivs + iv · s) (23.2)

used in the CDW method, where N+(νP) =  (1− iνP)eπνP/2 and νP = ZP/v. At
large values of the argument |vs +v · s| of the confluent hyper-geometric function
1 F1, we have

ϕ+C ≈ ϕ
+(eik)
C (23.3)

which, at first glance, should be progressively more accurate as v increases.
If no other term appears directly in the ‘prior’ transition amplitude T−

αβ to
compensate for the additional approximation (23.3), the CDW-EIS model should
be necessarily considered as being a priori inferior to the CDW method. This is
best appreciated by considering the typical bound-free atomic form factor:

I =
∫

ds eiq·s−λs
1 F1(iνP; 1; ivs + iv · s) (23.4a)
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which, after scaling s −→ s/q , can be rewritten as

I = 1

q3

∫
ds eîq·s−λs/q

1 F1(iνP; 1; ius + iu · s) (23.4b)

where u = v/q (u = |u|). From here, it is clear that the substitution of the
phase ϕ+(eik)

C in place of ϕ+C would be inappropriate whenever u is of the order
of unity. This circumstance would invalidate the use of the relation (23.3) inside
I , as well as in the T -matrices, since the integral (23.4a) extends over all the
configuration s space. The only hope one could still have in justifying (23.3) for
u ≈ 1 is that the integral I would be dominated by large values of s. However,
this could hardly be the case, since any non-zero contribution to I is cut off by
the exponentially decaying bound-state wavefunction ∼ exp(−λs), where λ > 0.
It is interesting that, at v � ve, one precisely has the case u ≈ 1 in fast ion–
atom collisions. For example, in high-energy charge exchange, the magnitudes of
both the transverse q⊥ = η and longitudinal q‖ = (v/2 − Q̃/v)̂v components of
the momentum transfer q are proportional to v and, therefore, u is close to 1 at
v � ve. As stated before, the quantity Q̃ ≡ �E is the so-called inelasticity factor
given as the difference between the initial (Eα) and final (Eβ) electronic binding
energies. The Q̃-factor is the major observable in the standard TS providing
information about the energy gain (Q̃ > 0) or loss (Q̃ < 0) of the projectile
in its encounter with the target. The value of Q̃ is negligible for v � ve, which
implies q‖ ≈ v/2. Also, an inspection of, e.g., T−(CDW)

αβ would immediately

reveal that the leading Thomas term Q(CDW)
αβ ≈ γ

(CDW)
αβ v−11 at v � ve is

provided by an integral over the transverse momentum transfer η peaking around
the critical value qc⊥ = ηc ≈ √

3mev/2 = mev sin(60◦). Here, the electron
scattering angle of 60◦ is the well-known signature of the correlated event of the
Thomas double elastic scattering P–e–T of e on ZP and ZT through π/3. Both
intermediate scatterings of the electrons are elastic and yet the overall rearranging
collision is taking place. Such a phenomenon could then be given the intricate
name of elastic rearranging collision (ERC). Due to its large mass, the projectile
P is simultaneously deflected from the initial direction only slightly through the
scattering angle ϑc given as the ratio between qc⊥ and the momentum pi = mPv

of the projectile, yielding ϑPeT
c = qc

⊥/pi = (
√

3/2)(me/mP), as already quoted.
It is precisely approximation (23.3) which is responsible for the absence of any
Thomas double scatterings in the so-called eikonal approximation (EA) [170],
which is the atomic physics equivalent of the Glauber model [170]. The same
remark also holds true for the symmetric eikonal (SE) approximation [171], which
employs (23.3) together with a similar phase exp[i(ZT/v) ln(vx + v · x)] for the
final scattering state. The difficulties with (23.3) within the CDW-EIS model
[153, 166] for charge exchange in the context of the Thomas double scattering
will be outlined later on.
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Chapter 24

Coulomb–Born-type methods for electron
detachment

In 1973, relation (23.3) was used in H+–H− single detachment [172] without any
compensation in the ‘prior’ T−

αβ -matrix. The ensuing model called the eikonal
Coulomb–Born (ECB) approximation was shown later to overestimate grossly,
by three orders of magnitude, the experimental data which became available in
1976 through [173] for the same collision problem. Moreover, Q−(ECB)

αβ saturates
at high energies tending to a constant value, at variance with the proper Bethe
asymptotic behaviour v−2 ln(v2), which has been confirmed experimentally at
v � ve. These failures of the ECB model could have easily been revealed by
rescaling (to the equivalent proton energies) the earlier 1970 data Qαβ from [174]
on e–H− single detachment. However, it was not until recently [175] in 1997
that the real origin of the basic deficiency in the ECB model was identified
and properly corrected. The trouble lay in the inconsistency between the state
χ
+(eik)
C = �αϕ

+(eik)
C and the perturbation potential in the ECB model. More

precisely, the correct perturbation potential causing the transition in T−(ECB)
αβ was

not identified from the indispensable term ψ+
α ≡ (H − E)χ+(eik)

C , where H and
E are the full Hamiltonian and the total energy of the whole system, respectively.
Instead, in [172], the ZP–ei Coulomb interaction was simply multiplied with
χ
+(eik)
C which is completely different from the uniquely defined ψ+

α for the given

χ
+(eik)
C . The correction of this drawback led to the so-called modified Coulomb–

Born (MCB) theory [175], which is in excellent agreement with the experimental
data from the threshold to the high energy range with the correct Bethe asymptote
Q(−MCB)
αβ ∼ v−2 ln(v2) at v � ve.

In 1983, the hybrid CDW-EIS model was proposed [153] through the use of
equation (23.3) for ionization of an atomic hydrogen by a fast proton. Unlike the
self-contained derivation of the MCB method from [175], the CDW-EIS model
was obtained in [153] by using equation (23.3) in the framework of the CDW
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approximation [59] for H+–H ionization:

T+(CDW)
αβ = 〈ξ−(CDW)

β |χ+(CDW)
α 〉 (24.1)

with ξ−(CDW)
β = ∇s ln ϕβ ·∇x lnχ−(CDW)

β , where ϕβ is the final bound state. The
final reduction of (24.1) is then [153]:

T+(CDW−EIS)
αβ = 〈ξ−(CDW)

β |χ+(eik)
α 〉. (24.2)

As it stands, T+(CDW−EIS)
αβ is undoubtedly a further approximation to T+(CDW)

αβ

with all the weaknesses of (23.3) outlined in connection with the form factor
(23.4a). Such an interpretation is unavoidable if one uses the eikonal continuum
initial state (23.3) in connection with the ‘post’ form of the transition amplitude
T+(CDW−EIS)
αβ . However, as in the case of detachment [172, 175], this does not

mean that (23.3) is not an appropriate ansatz in its own right for H+–H ionization.
On the contrary, it is sufficient to start from the ‘prior’ form T−

αβ , which would
then uniquely define the perturbation potential which produces the transition.
In turn, such a consistent derivation would automatically compensate for the
difference between ϕ+(eik)

C and ϕ+C , since an additional perturbation will emerge
in the form of the kinetic energy operator −∇2

x/2. Alternatively, one could start
from the T -matrix in the distorted wave hypervirial form 〈χ−

β |H − E |χ+
α 〉 and

apply the operator H − E to either the initial χ+
α or final χ−

β distorted wave. The
results are the same only for a genuinely three-body problem, such as the p–H
collision, for which the exact bound and continuum wavefunctions are known. In
general, however, for, e.g., helium-like targets, the T -matrix elements 〈χ−

β |ξ+α 〉
and 〈ξ−β |χ+

α 〉 lead to two different approximations, where ξ+α = (H − E)χ+
α and

ξ−β = (H − E)χ−
β . For this reason, the CDW-EIS [153] model applied to, e.g.,

H+–H− detachment differs from the MCB method [175].
Considering charge exchange, the CDW-EFS model has been introduced

[166] by an analogous reasoning through using the full Coulomb wave in the
entrance channel and the eikonal final state exp[iνT ln(vx + v · x)], where
νT = ZT/v. The electronic kinetic energy term −∇2

s /2 has also been included
as part of the perturbation potential. The Q(CDW-EIS)

αβ results for, e.g., the p–H

and the p–He single electron transfer appear to be better than Q(CDW)
αβ in the

vicinity of the so-called Massey maximum near (50–100) keV amu−1. At these
impact energies, the typical curves of the CDW model continue to rise with the
diminution of Einc, whereas those from the CDW-EIS approximation exhibit
characteristic bending towards the lower values of Einc. This is, however, not
the case at all with the CDW-EFS model which diverges from the experimental
data around the peak value, in a fashion which is worse than in the case of the
CDW method [17, 18, 107, 161]. For the excited states, the values of Q(CDW-EFS)

αβ

overestimate Q(CDW)
αβ at all energies Einc and show a huge disagreement with
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the measurements. Using an asymmetry coefficient γ̃ ≡ (ZP/ZT)
3(nα/nβ)2

in [166], it was attempted to determine the domains of validity of CDW-EIS and
CDW-EFS empirically with the aim of performing a combined computation (also
involving CDW) to achieve satisfactory agreement with the measurements.

Obviously, it would be better to have a unified method which would cover
equally well all the possible combinations of the values of the coefficient γ̃ ,
instead of artificially combining the models of different validity domains. Such
a variationally unified distorted wave theory will be presented later on. In
addition to the varied success of the CDW-EIS and CDW-EFS models in the
complementary regions of γ̃ , these two approximations predict a substantial
depression of the Thomas peak for �α,β �= 0, since Q(CDW-EIS)

1s,nβ�β
∼ v−11−2�β and

Q(CDW-EFS)
nα�α,1s ∼ v−11−2�α , at variance with the purely v−11 behaviour of the CDW

and CB2 methods for the general nα�αmα −→ nβ�βmβ transition with arbitrary
�α,β . Recall that the first-order theories such as CB1 ≡ B1B [158], Brinkman–
Kramers (BK1) [13, 103] or Jackson–Schiff (JS1) [13] yield the v−12−2�α−2�β

asymptote at v � ve without any Thomas peak [100]. In the CDW and CB2
methods, the first- and second-order contributions do not interfere with each other
in the Thomas angular range around ϑc, thus leaving the double scattering v−11

term unaltered. This is obviously not the case with the CDW-EIS and CDW-EFS
models.

The earlier quoted high-energy asymptote Q(BK1) ∼ v−12−2�α−2�β for
electron capture from a hydrogen-like atom (ZT, e)α by a bare nucleus ZP with
subsequent creation of the bound state (ZP, e)β is readily understood from the
underlying direct momentum matching mechanism. The probability�1 to find the
electron ec to be captured from the initial state with high momentum components
commensurate with the projectile velocity v is given by �1 = |ϕ̃α(mev)|2 ≈
Z5

Tκ
−8−2�α
T for v � ZT. The large momentum mev is transferred to ec via the

Rutherford collision ZP–ec, the probability �2 of which is proportional to �2 ∼
v−4. Finally, the probability�3 of forming the final bound state ϕβ(s) is obtained
by requiring that the electron of momentum mev accompany the projectile at a
distance of the order ŝ/(mev) from ZP, namely �3 = |ϕβ(ŝ/[mev])|2 ∼ v−2�β .
Classically, the distance ŝ/(mev) corresponds to very small values of the impact
parameter b at large v. The overall probability � for capture is then obtained as
the product �1�2�3, with the result ∼(ZPZT)

5v−12−2�α−2�β , as quoted before.
This intuitive sketch of a more detailed derivation also provides an explanation
for the fact that capture predominantly takes place in the 1s–1s transition. The
condition for occurrence of capture to high-internal or high-orbital momentum
components of the initial and final states could only be satisfied at small distances
of the order ∼1/(mev). Such distances are most likely reached if both the initial
and final bound states are the ground 1s states.

It follows from the previous formulae that Q(BK1)
αβ −→ 0, if �α and/or �β

tend to infinity. This is in accord with the fact that capture cannot be described
by a first-order purely classical model. Thomas [100] was the first to inquire as to
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whether electron transfer could be treated in terms of a classical binary encounter.
His answer provides evidence that it is possible to obtain the non-zero result from
classical mechanics only if such two consecutive collisions could take place. The
Thomas classical double-scattering cross section for electron transfer decreases
as v−11 at v � ve. For a long time, this result was considered to be inadequate,
due to an alleged lack of interference effects [101] ‘included’ in the quantum-
mechanical BK1 model [13, 103]. However, this is incorrect, since Drisco [108]
confirmed the Thomas prediction by including the second-order B2 operator
VTeG+

0 VPe in the Born series. The B2 operator describes the double scattering
of the electron on ZP and ZT. In between these two consecutive scatterings,
the electron motion is governed by the on-shell free-particle propagator G+

0 (E),
where E is the total energy of the system. The high-momentum components of the
initial and final bound states play no role whatsoever in an adequate description
of the quantum-mechanical double scattering. This is obvious from the v−11

asymptote of Q(CB2)
nα�αmα;nβ�βmβ

, which is independent of �α,β at v � ve. In

contrast, the results Q(CDW-EIS)
1s,nβ�β

∼ v−11−2�β and Q(CDW-EFS)
nα�α,1s ∼ v−11−2�α vanish

identically as �β or �α tend to infinity. Such asymptotes do not correspond to
the Thomas classical double scattering. The presence of the additional depression
factor v−2�β in, e.g., Q(CDW-EIS)

1s,nβ�β
at v � ve originates from the use of the eikonal

distortion phase (23.3), which subsequently appears in the final state form factor
〈ϕnβ�β |�ϕ+(eik)

C 〉, where � is an operator. Such a matrix element is proportional
to the corresponding part of the T -matrix in the BK1 element and this leads to the
extra v−2�β term in Q(CDW-EIS)

1s,nβ�β
. An analogous symmetric reasoning would explain

the appearance of v−2�α in Q(CDW-EFS)
nα�α,1s .

Despite the pure first-order framework of the BK1 model, electron transfer
cannot be described as a single binary collision between ZP and e. Such a collision
takes place far from the energy shell and, therefore, a third body is required to
simultaneously conserve the total energy and momentum of the colliding system.
In the radiationless capture under discussion, such a third particle is the target
nucleus, which recoils and carries away the excess energy and momentum. This
again manifests the indispensible two-centre nature of charge exchange even in a
first-order treatment. However, for radiative transitions, the third body could be
a photon, which would enable the formation of a bound state in a single binary
collision of a free electron and a bare nucleus via radiative recombination (RR).
If the electron to be captured is not free initially but bound to ZT, one would
have the REC, where the target nucleus would be a mere spectator providing
only the initial distribution of the commuting electrons. This is reminiscent of
the IA, with precisely the same treatment of the target nucleus. The IA for
radiationless charge exchange convolutes the off-energy-shell ionization form
factor with the momentum wavefunction of the target, which is otherwise passive.
This convoluting function is also known as the Compton profile of the target. In
exactly the same fashion of the underlying impulse hypothesis, the cross sections
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QREC
αβ for the REC are obtained by folding QRR

αβ for the RR with the target
Compton profile. Such a procedure could also be extended to encompass a similar
relation between the dielectronic recombination (DR) and the RTE. In the DR, a
projectile takes the form of, e.g., a hydrogen-like ion (ZP, eP), which impinges
upon a free electron eT as a target. After capture, a helium-like ion (ZP; eP, eT) is
formed in a double excited state with simultaneous emission of photons. Unlike
the RR, it appears that the DR is resonant in nature, possessing a threshold. If
eT is not free, but bound to ZT, we have the RTE in which the target nucleus
plays a passive role as in the case of the REC. Consequently, the detailed resonant
structure of QRTE

αβ could be accurately described in terms of QDR
αβ convoluted with

the target Compton profile.

The fact that, at the lower edge of the intermediate energies, due to the effect
of the normalization of the initial scattering state, the curves for Q(CDW-EIS)

αβ are

bent down as opposed to Q(CDW)
αβ should not be given too much significance, since

this is, at any rate, the domain of inapplicability of the first and second orders
in the perturbation expansions. As a matter of fact, such a bending of the cross
section curves should be considered as quite fortuitous, since it does not take place
at all in Q(CDW-EFS)

αβ , despite the same type of assumption invoked in the CDW-EFS
and CDW-EIS models. More dramatic, however, is the loss of the fine features
of the Thomas double scattering for non-zero values of the angular momentum
quantum numbers �α, �β in both the CDW-EIS and CDW-EFS models. It would
then appear to be much more advantageous to search for alternative ways of
obtaining the normalized scattering wavefunctions, which would, at the same
time, be able to preserve the intact Thomas double scattering for arbitrary �α,β .
Both of these requests are simultaneously satisfied by the RIA, which works
consistently well for both single- and double-electron transitions [19, 115, 157]
such as those from the SC and TI. Regarding two-electron transitions, the CDW-
EIS model has been found to break down for, e.g., double-electron capture [160].
Moreover, all of the previously listed defects from items (1), (2) and (4)–(8) of
the CDW method are also shared by the CDW-EIS and CDW-EFS models.

The motivation for proposing the CDW-EIS model is to have the
initial scattering state properly normalized. However, this ad hoc one-sided
normalization in the theory is physically ambiguous, since the final scattering
state is kept unnormalized. The particle flux conservation emphasized in item
(3) is preserved only if both the incoming and outgoing scattering states are
normalized at all times in the whole configuration place. This is precisely the case
in RIA, which, in fact, does not possess any of the deficiencies from items (1)–(8)
characteristic for the CDW, CDW-EIS or CDW-EFS models and the like. This
justifies the emergence of the RIA as one of the most reliable theories from the
first-principle standpoint, as far as one is concerned with at least Eh. Therefore,
in order to descend to the region of El via Em, it would be reasonable to try to
join the RIA with an expansion-type method in terms of some square integrable
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(L2) bases set functions. This attempt will be now briefly summarized using the
general framework of a variational unification of high- and low-energy methods.
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Chapter 25

A variational unification of low- and
high-energy methods

The close coupling methods, valid at low energies El and developed on a
molecular basis set, are known to largely overestimate the experimental results at
moderate Em and high Eh impact energies [137, 138]. This is due to the inability
of a restricted basis set, truncated for the practical reasons of numerically solving
a large number of the coupled differential equations, to describe the continuum
adequately, which becomes rapidly important with augmentation of Einc. The
situation is diametrically opposite to the high-energy perturbative methods, which
systematically overestimate the measurements at El and the lower portion of Em
due to an excessive account of the continuum [107].

The ultimate goal would be to connect the low- and high-energy models in
order to cover the entire energy region and particularly the critical domain of
Em where none of the existing treatments is applicable. This liason ought to
be established in a judicious manner, which would preserve the good properties
of the constitutive models in their validity domain �El (respect. �Eh ) and
simultaneously eliminate their weaknesses at the complementary domain of
energies �Eh (respect. �El ), where they are not valid. Of course, this junction
of two very different methods for El and Eh should not be carried out in
an artificial way. Instead, considering the general process (16.1) and using a
stationary functional for the T -matrix [176], the variational Padé approximant
(VPA) emerges from a variationally unified theory, which naturally connects
a successful distorted wave perturbation model (PM) with an efficient close
coupling (CC′) method:

T (VPA)
αβ = T (PM)

αβ + T (CC′)
αβ (25.1)

with

T (PM)
αβ = 〈χ−

β |eiδ|ξ+α 〉 (25.2)

T (CC′)
αβ =

∑
j,k

〈ξ−β |eiδ|�+
j 〉D jk〈�−

k |ξ+α 〉 (25.3)
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and

(Dkj )
−1 = 〈�k |G+

0 − G+
0 V ′G+

0 |� j 〉 (25.4)

V ′ = V − V∞
α (R) (25.5)

|ξ+α 〉 = {Vα − V∞
α (R)− Uα}|χ+

α 〉 (25.6)

|ξ−β 〉 = {Vβ − V∞
β (R)− Uβ}|χ−

β 〉 (25.7)

|�+
j 〉 = G+

0 |� j 〉 |�−
k 〉 = G−

0 |�k〉 (25.8)

δ =
∫ Zα

−∞
dZ V∞

α (R)+
∫ +∞

Zβ
dZ V∞

β (R) (25.9)

where Z is the Z -component of the internuclear axis R = √
ρ2 + Z2 and Zα, Zβ

are some arbitrary finite constants. The vector ρ is the projection of R onto the
X OY -plane. Vector ρ does not necessarily need to be identified as the impact
parameter b. Here, as before, Vα and Vβ are the perturbation potentials in the
entrance and exit channels, G+

0 is the free-particle Green’s operator, V is the
total interaction, Uα and Uβ are the initial and final distorting potential operators,
V∞
α (R) and V∞

β (R) are the asymptotic values of Vα and Vβ at infinitely large
values of the separation R. In particular, V∞

α (R) and V∞
β (R) explicitly contain

the internuclear potential VPT = ZP ZT/R, as do Vα , Vβ and V . Therefore,
Vα − V∞

α (R), Vβ − V∞
β (R) and V − V∞

α (R) include only the interelectron
potentials as well the interactions of the electrons with the nuclei ZP and ZT.
This implies that the initial χ+

α and final χ−
β distorted waves, as well as the

intermediate channel states � j and �k describe purely electronic configurations.
The variational estimate given by equation (25.1) is derived using a stationary
functional [2] for the exact T -matrix T (EX)

αβ in a consistent manner, which enables

T (PM)
αβ and T (CC′)

αβ to merge smoothly into a single transition amplitude T (VPA)
αβ .

There are many particular forms of the VPA depending on the choice adopted
for the model perturbations Uα and Uβ . In this way, every presently available
distorted wave model could possess its own variational extension and they would
differ from each other only in the matrix elements T (PM)

αβ , 〈ξ−β |eiδ|�+
k 〉 and

〈�−
j |ξ+α 〉. Moreover, they would all have the common matrix D jk to be inverted.

The matrix element T (CC′)
αβ represents a contribution where the total propagator or

Green’s operator G+ is expanded in terms of the two basis sets {| j〉}∞ and {〈k|}∞
of the square integrable L2-functions | j〉 and 〈k|. In principle, an infinite number
of elements could fill these two bases, which are not preconditioned in any way to
be complete or identical to each other. We are free to choose these basis sets to be
centred on one or two nuclear centres ZT and/or ZP. The explicit fractional form

(25.3) of T (CC′)
αβ does not depend on the norm or the asymptotic behaviour of the

trial functions, in contrast to other variational principles, notably that of Kohn or
Sil [177, 178].
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In practice, the summation over j, k in T (CC′)
αβ is truncated by using {| j〉}n

and {〈k|}m with the finite numbers n and m of the basis functions | j〉 and 〈k|. As
a net result, the first-order error δ� on the level of the scattering wavefunction
� becomes progressively smaller by increasing the number of elements in the
two bases {| j〉}n and {〈k|}m . Due to the stationary and variational nature of
the functional T (VPA)

αβ , the error invoked on the level of the T -matrix element

is of the second-order (δ�)2. Furthermore, the very choice of the intermediate
states � j and �k retained in the computation could be an essential element
determining the rate of convergence of the VPA. In other words, the constancy of
the results should be monitored while increasing the indices j and k via the sums
in equation (25.3). In this way, the size of the basis sets would be systematically
enlarged by introducing the most essential physical effects for, e.g., excitation,
charge exchange and/or ionization. Obviously, one should always try to choose
those intermediate states � j and �k which are strongly coupled to the physical
unperturbed channel states �α and�β under study. This close coupling, which is
formally labelled as CC′ in (25.1), contains the same physics as the conventional
CC method, with the distinct advantage of bypassing altogether the difficulties of
handling a large system of differential equations.

The form of T (VPA)
αβ from (25.1) could, in fact, provide guidance towards

the final goal. In general, we know that T (PM)
αβ from (25.2) leads to the total

cross sections Q(PM)
αβ which are considerably larger than the measured findings in

the low-energy domain El. This is due to the fact that the continuum electronic
states, which appear intermediately in T (PM)

αβ , by necessity of a proper description
at Eh, are excessively taken into account in the El range. Hence, it would be
mandatory to compensate for this excess with the help of the contribution from

T (CC′)
αβ . Evidently, this ultimate goal could be accomplished only if T (CC′)

αβ is
expanded onto these bases which largely cover the continuum. This is precisely
provided by the well-known Sturmian atomic bases, which are discrete but
nevertheless complete [81, 179]. The negative energy parameter in, e.g., the one-
electron Sturmian eigenvalue problem could be chosen to make all the nodeless
configurations coincide with the corresponding physical hydrogenic states (2p,
3d, 4f, etc) [179]. Other pseudo-states � j and �k would mimic the continuum
and since the Sturmian basis is complete, the convergence rate of the VPA would
be greatly enhanced. The remarkable power of the VPA, combined with the two
Sturmian basis sets {| j〉}∞ and {〈k|}∞ centred respectively on ZT and ZP is in
the complete analytical calculation of the key matrix element D jk , despite the
appearance of the two Green’s operators G+

0 . Moreover, the scattering integrals

T (PM)
αβ , 〈ξ−β |eiδ|�+

j 〉 and 〈�−
k |ξ+α 〉 are also readily obtainable via semi-analytical

forms for a number of the distorted wave models (e.g. CDW, CDW-EIS, CDW-
EFS and the like). Thus, once all the elements of the matrix D jk are available,
one could simultaneously carry out several computations with different PM inputs
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and determine which variational estimates are the best in comparison with the
measurements.

Of course, the optimal choice would be to select the CB2 ≡ B2B model
for the perturbation theory T (PM)

αβ , as suggested in [176]. This is because the
second Born approximation provides the leading order to the perturbation Born
series at high energies [104, 107]. However, as mentioned earlier, this model is
the least manageable for practical computations. On the other hand, the results
for both differential and total cross sections obtained by means of the RIA are
closest to the CB2=B2B model [19, 157]. This circumstance, together with the
mentioned fundamental advantages from items (1)–(8) of the RIA over the CDW
approximation and its derivatives (CDW-EIS, CDW-EFS), suggests the natural
usage of T (RIA)

αβ in the role of T (PM)
αβ . In fact, we already know that T (RIA)

αβ for, e.g.,
charge exchange furnishes an acceptable order of magnitude in the El domain
and, therefore, a relatively small number of Sturmians should be sufficient to
arrive at a good result. This would not be the case with the CDW or CDW-EFS
approximation used as an T (PM)

αβ input in equation (25.1), since T (CDW)
αβ grossly

overestimates the experimental data at El [107]. It then seems reasonable to
expect that the variational RIA in the form (25.1) could be the optimal candidate
for a unified theory, which would simultaneously cover the low El, medium Em
and high Eh impact energies. Of course, one could use other simpler perturbation
models to derive their variational counterparts via equation (25.1). One possibility
would be the CDW-EIS method. However, the failure of the CDW-EIS and CDW-
EFS models to describe fully Thomas double scattering might not be easy to

rectify by the contribution from the stationary part T (CC′)
αβ .
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Thomas-like dielectronic scatterings in
transfer ionization

At most impact energies Em of practical interest, the total cross sections Qαβ

could be computed rather accurately by distorted wave models which either
omit altogether or describe only qualitatively the Thomas double scattering.
Nevertheless, this remarkable phenomenon is very important on its own, since
it promotes the multiple scattering mechanisms, which are of great importance
especially at high energies Eh. Such a scattering event is not limited solely to
highly correlated encounters of an electron in the Coulomb field of the two nuclei
ZP and ZT. The double Thomas scattering could also take place in, e.g., the
correlated transfer ionization via the ZP–ec–ei interaction or in single-electron
capture mediated by the ZP–ec–ep pathway of the ZP–He single charge exchange.
Even a genuinely third-order effect of the Thomas triple collision ZP–ec–ec–ZT
is possible in double capture by, e.g., a completely stripped projectile from a
helium-like target [180]. A recent computation on dQαβ/d� for single capture
(SC) in ZP–He [19] or the TI [115] treated respectively by the CDW-4B and
the RIA-4B shows that the Thomas peak from the dynamic electron correlation
V12 = 1/r12 in ZP–ec–ep (SC) or ZP–ec–ei (TI) occurs at considerably lower
energies than the corresponding ZP–ec–ZT structure. This was also seen in two
recent experiments by Mergel et al [115] and Schmidt et al [115], dealing with
the TI in the H+–He collisions. The experimental findings dQ/d� of Mergel
et al [115] recorded at Einc = (0.3–1.4) MeV were subsequently fitted with
two Gaussians for the binary ‘velocity-matching’ BK1-type maximum and the
second-order ZP − ec − ei Thomas peak. Through integration at each measured
Einc one of the two Gaussians could yield the total cross sections due to the
H+–ec–ei mechanism alone. The extracted ‘experimental’ total cross sections
of Mergel et al [115] exhibit the v−7.4±1 behaviour in the investigated energy
range (0.3–1.4) MeV. The experiment of Schmidt et al [115] covers the larger
energies (2.5–4.5) MeV and demonstrates that here the total cross sections for TI
behave as v−11 in accordance with the peaking second-order Brinkman–Kramers
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(BK2) approximation from [164]. Nevertheless, for a quantitative comparison
with the experiment of Schmidt et al [115] one must go beyond the peaking
BK2 model [164]. To this end, it would be very important to perform an exact
numerical computation of the cross sections by using the four-body boundary
corrected second-Born (CB2-4B) approximation. This is necessary since past
experience with, e.g., SC has already demonstrated that even the exact BK2
approximation overestimates the experimental data by one- or two-orders of
magnitude [181]. A number of intriguing multiple scattering effects could further
be revealed in studying double ionization (DI) as well as double capture (DC).
Here, measurements of the ratios of the cross sections for the TI and the SC or
DI and DC would be among the most desirable on both dQαβ/d� and Qαβ .
However, observing certain distinct structures in the ratios of dQαβ/d� for
various reactions are not the only signatures of multiple scattering effects. The
energy dependence of the ratios of total cross sections Qαβ for various processes
would also be very instructive to measure. Such experiments could critically test,
e.g. the so-called ‘shake-off’ and ‘shake-over’ mechanisms in the DC and the TI
at Eh by checking the theoretically predicted special energy behaviour of total
cross sections and their invoked ratios [182]. A series of experiments would be
most welcome on the SC, DC, DI or TI by changing the values of Einc, as well as
the strengths of the nuclear charges ZP and ZT. In turn, the intensity as well as
the dynamics of the particle interactions and the perturbations would be altered,
passing from a weak adiabatic domain to a regime of strong sudden limits.

The first measurement aimed at detecting the dynamic electron correlations
(DEC) in the TI was carried out by Horsdal et al [112] on the angular distribution
of scattered projectiles in the collision H+ + He −→ H + He++ + e at four
impact energies 200, 300, 400 and 500 keV. More specifically, they intended to
determine whether there could be any experimental evidence of the Thomas P–e–
e scattering. This effect is expected to manifest itself through a peak in the angular
distribution of scattered projectiles at the critical angle ϑPeT

P = 0.55 mrad in the
laboratory system of reference. Horsdal et al [112] measured the angle-dependent
probabilities for the production of He++ in the mentioned TI and observed a
strong enhancement around ϑP ≈ 0.5 mrad ≡ ϑHorsdal

P . This enhancement of
the recorded relative yield (say  ) for capture of one electron with and without
ionization of the other electron occurred at ϑHorsdal

P which is close to ϑPeT
P and this

led Horsdal et al [112] to consider their data as the first evidence of the dynamic
electron–electron correlation in the TI. However, this turned out to be false,
since it so happened that the same signature at ϑHorsdal

P could also be reproduced
within the independent particle model (IPM) of the CDW theory, i.e. CDW-
IPM [183], which excludes the DEC altogether from the onset. The enhancement
at ∼ϑHorsdal

P obtained in the CDW-IPM is due to a phase interference of the impact
parameter transition probability amplitudes for independent electron transfer
�

±(T)
αβ (b) and ionization �±(I)

αβ (κ, b). The quantities �±(T)
αβ (b) and �±(I)

αβ (κ, b)
are obtained by applying the Fourier transforms to the corresponding quantum-
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mechanical three-body T -matrices T±(T)
αβ (η) and T±(I)

αβ (κ, η), which are available,

e.g., from [107, 161]. Analogous with the IPM probability �±(T I )
αβ (κ, b) =

�
±(T)
αβ (b)�±(I)

αβ (κ, b), the full b-dependent probability amplitude�±(T I )
αβ (κ, b) for

the composed TI process is given by the product�±(T)
αβ (b)�±(I)

αβ (κ, b). However,

the differential cross section d5 Q/(dκ d�P), as a Hankel transform, requires an
integration of �±(T)

αβ (b)�±(I)
αβ (κ, b) over all b ∈ [0,∞] weighted with the Bessel

function Jm(ηb) and the full internuclear contribution b2iZP ZT/v:

d5 Q±(T I )
αβ

dκ d�P
(a2

0sr−1) =
∣∣∣∣iµv ∫ ∞

0
db b1+iZP ZT/v�

±(T I )
αβ (κ, b)Jm(ηb)

∣∣∣∣2
=
∣∣∣∣iµv ∫ ∞

0
db b1+iZP ZT/v�

±(T)
αβ (b)�±(I)

αβ (κ, b)Jm(ηb)

∣∣∣∣2
(26.1)

where m = mβ − mα and mα,β are the usual magnetic quantum numbers of the

initial and final bound states, respectively. Since in the CDW-IPM, both�±(T)
αβ (b)

and �±(I)
αβ (κ, b) are complex numbers, their phases can combine and produce an

interference pattern. Such a coherent interference yields an enhancement in  and
this occurs at nearly the same scattering angle (say ϑCDW-IPM

P ) as the value ϑHorsdal
P

from [112]. Thus, Horsdal et al [112] did not, in fact, provide any evidence
of the Thomas P–e–e double scattering, since the same structure in the angular
distribution could also be obtained in the IPM without any recourse to the dynamic
inter-electron correlation. A phase of any wavefunction has no physical meaning
by itself. However, a phase difference of two wavefunctions can be measured
experimentally and, therefore, could represent a physical observable. Hence, a
coherent interference of phase factors in equation (26.1) for the CDW-IPM might
lead to a physical effect. In equation (26.1), one does not directly encounter
phases of wavefunctions (since the spatial integrations are already carried out)
but various phase factors of the b-dependent transition probability amplitudes
with a final cumulative effect, which leads to the mentioned enhancement in  
at ϑCDW-IPM

P . Of course, the relation ϑCDW-IPM
P ≈ ϑHorsdal

P might be fortuitous.
Nevertheless, the clear independent-particle mechanism behind ϑCDW-IPM

P serves
as a counter-example to the conjectured Thomas P–e–e correlated scattering as
the sole reason for enhancement in  at ϑHorsdal

P . As a consequence of this
counter-argument provided by the CDW-IPM [183], the measurement of Horsdal
et al [112] needs to be re-interpreted.

A subsequent work on the angular and/or energy distributions of ejected
electrons within the TI has been undertaken by Pálinkás et al [113]. In contrast
to [112], which dealt with the singly differential cross sections, [113] was
concerned with the cross section d2 Q/(dEe dϑe), which is differential in two
observables, the energy Ee and the angle ϑe of the ejected electron. This
double differential cross section is integrated over the scattering angles ϑP of the
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projectile. Concentrating on the cusp condition of equal velocities (v ≈ ve) of the
projectile and the ionized electron in the collision H+ + He −→ H + He++ + e,
Pálinkás et al [113] searched for yet another signature of the Thomas P–e–e
double collision, namely a maximum in d2 Q/(dEe dϑe) at ϑe = 90◦. This
Thomas P–e–e peak was indeed experimentally confirmed in a conclusive manner
at the energy EP = 1 MeV of the incident proton corresponding to Ee =
600 eV of the ejected electron [113]. Pálinkás et al [113] also recorded another
maximum in d2 Q/dEe dϑe at ϑe = 58◦. The mechanism behind this structure
is the interaction of the projectile P with each of the target electrons leading to
simultaneous single capture and ionization, which is predicted theoretically to
occur at ϑe = 60◦. Here, independent ionization is followed by the so-called
kinematic capture, based upon the velocity matching mechanism ve ≈ vP.

Recently, Mergel et al [115] used COLTRIMS for the TI in H+–He and
confirmed the results in [113]. Their goal, however, was to assess the relative
role of the previously mentioned binary kinematic capture accompanied with
independent ionization and the correlated P–e–e mechanism. They found an
experimental evidence at E ≥ 1 MeV that the Thomas P–e–e scattering could
well dominate the independent event of the kinematic capture and ionization. It
is pertinent to recall here, that dominance of the eP–eT interaction over the P–eT
or the T–eP potentials (the so-called anti-screening effect) has previously been
experimentally detected in, e.g., collisions between two hydrogen-like atomic
systems (eP and eT are the electrons of the projectile and target, respectively)
[184]. The experiment of Mergel et al [115] estimates the behaviour Q ∼ v−7.4±1

at Einc = (0.3–1.4) MeV of the total cross section Q for the TI. More recently,
Schmidt et al [115] carried out a measurement on the TI process in the H+–
He collision at higher energies, (2.5–4.5) MeV, and estimated the behaviour
Q ∼ v−11 of the total cross section. This asymptotic v−11 velocity dependence
found by Schmidt et al [115] is in accord with the corresponding prediction of
the Thomas classical model [100] as well as with the high-energy limit of the
peaking BK2 approximation [164]. However, these two latter models are valid
at v � ve and for a quantitative comparison with experimental data from [115]
more detailed quantum-mechanical computations are required within, e.g., the
RIA-4B [19]. In addition to differential cross sections, it is often very important
to acquire information on the impact-parameter-dependent transition probability
�(κ, b) for, e.g., DI or TI. Such a task is not straightforward for ionizing
collisions investigated within COLTRIMS because of the non-uniqueness of the
transformation between the transverse momentum transfer η = 2µv sin(ϑP/2)
and b. This problem has recently been studied by Wong et al [122].
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Chapter 27

Projectile and target merged cold beams for
highly correlated events

Among the experimental methods designed for studying the previously discussed
processes, COLTRIMS [121–125] seems to be optimal as has already been
demonstrated in a number of kinematically complete measurements with
unsurpassed precision. The idea behind this powerful technique was borne
out from the insurmountable difficulties of conventional methods such as the
TS [126] in measuring cross sections and/or branching ratios at very large
values of Einc. Clearly, due to their heavy mass, the multiply charged ions
as projectiles deviate only slightly from their incident direction. The largest
scattering angles reach only a small fraction of a mrad at Eh and this forward
cone becomes progressively narrower with increasing Einc. Hence, at very large
Einc, where the most interesting multiple scattering events are expected, the
measurement of dQαβ/d� or branching ratio as a function of the scattering angle
ϑP becomes infeasible. However, this serious obstacle in the TS is circumvented
by resorting to COLTRIMS, which via a crossed-beam technique concentrates
on the parameters of a recoiled target residual rather than on those associated
with a projectile. For example, applying COLTRIMS to single-charge exchange
between P and T, one would measure the time-of-flight (TOF) of T+ from the
scattering zone of intersection of the projectile and target beams to a position
sensitive detector (PSD). The PSD comprises micro-channel plates equipped with
resistive anodes. The observed TOF and the intensity of a weak electric field,
applied to guide the T+ ion towards the PSD, would enable one to calculate the
transverse qR⊥ and longitudinal qR‖ components of the recoiled ion momentum.
Hence, at a given value of Einc, one could obtain, e.g., the differential cross
section dQαβ/dqR⊥. This result together with the relation qR⊥ = −qP⊥ readily
provides the desired angular distribution dQαβ/dϑP of scattered projectiles P.
Of course, the connection between the cross sections that are differential in
scattering parameters of a projectile and a recoiled ion is less straightforward
if charge exchange is simultaneously accompanied by ionization. Bypassing a
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direct measurement of dQαβ/dϑP is the key feature of COLTRIMS which is, to
second order, independent of the quality of the incident ion beam, as opposed to
the TS. Furthermore, solid angle detection in COLTRIMS is nearly 4π , while any
improvement in the resolution power of the TS inevitably leads to a degradation
of the detector efficiency. The typical values of ϑP at Eh lie in the mrad–
µrad range, which demand momentum imaging with a resolution of the order
of µeV/c. Such a request for determining momenta of the order of the atomic
unit with high resolution would interfere with the uncertainty due to the random
motion of the target constituents at room temperature. Therefore, cooling the
target is necessary to achieve the required resolution. The current temperature
of the helium gas-jet target in COLTRIMS of the order of 10 mK represents a
critical improvement over the value ∼300 K of the earlier variants of the same
technique. This cooling is achieved through an adiabatic expansion of the target
beam through a small nozzle mounted on the tip of a cryogenic pump [121–125].
The target density is ∼1012 atoms cm−3 and the vacuum with the pressure
reaching 10−8 torr is maintained by several turbo-molecular pumps. Despite this
substantial achievement, COLTRIMS, which belongs to the category of single-
pass experiments, is presently limited to Einc below ∼1.5 MeV amu−1 primarily
because of large systematic errors and small values of cross sections. However,
such energies are not large enough for a clear emergence of the Thomas multiple
scattering in, e.g., double-charge exchange. It is anticipated from the theory [180],
that double and triple Thomas scatterings should significantly contribute to the
high-energy cross sections. It is also argued in the same work [180] that the
optimal way of inferring the relative importance of various first-, second- and
third-order effects and the underlying mechanisms in double capture from helium
by a fast bare projectile would be to determine, very accurately, the transverse
component of the alpha-particle recoil momentum, which is perpendicular to
the incident beam direction. The signatures of these weak scattering events
are expected to emerge unambiguously at Einc = (2–10) MeV amu−1, with
the ensuing cross sections Qαβ of the order of ∼10−27 cm2. Measurements
of such small cross sections would be virtually precluded with the traditional
COLTRIMS, because of the intolerably large statistical errors and exceedingly
small count rates of the appropriate signals in a single pass of a projectile beam
through a target. This obstacle could be surmounted by a suitable combination of
COLTRIMS and a cooled heavy-ion storage ring [127].

Installing a COLTRIMS spectrometer into a storage ring would sizeably
reduce the scattering zone to a fraction of ∼1 mm between the intersecting beams
of the multiple charged ions and helium target atoms. This could be achieved
by cooling both the target and the projectile beams [134]. The projectile beam
could efficiently be cooled by, e.g., being immersed into a parallel beam of cold
electrons, the transverse temperature Te⊥ of which is currently 0.01 eV/kB in
several existing storage rings (kB denotes the Boltzmann constant). In a fraction
of a second, the original spread of the order of 2 cm of the circulating projectile
beam of Ni ≈ 1014 ions s−1 shrinks to approximately 1 mm; hence providing the

Copyright 2004 IOP Publishing Ltd



248 Projectile and target merged cold beams for highly correlated events

excellent quality of the incident beam, necessary for dQαβ/dϑP at very small
values of the scattering angle ϑP. The necessary cooling of electrons is first
produced in an electron gun via the usual cathode emission of the temperature
∼0.1 eV/kB, which corresponds to ∼800 K. The subsequent reduction of Te⊥ to
∼0.01 eV/kB is accomplished by the adiabatic expansion [125] of the electron
beam, applying the standard principles of the kinetic theory of gases. Yet another
order of magnitude lower Te⊥ has been achieved in 1997 in the storage ring
CRYRING at Stockholm by the installation of superconducting magnets. In such
a way, the combined device CRYJET [127] is able to reduce the projectile–target
interaction volume to a fraction of 1 mm3. The corresponding angular spread is
≤0.1 mrad and this should enable one to detect collisional events with the angular
resolution of ϑP ≤ µrad. To be able to measure Qαβ ∼ 10−27 cm2 at the critical
energies Einc = (2–10) MeV for a variety of multiple charged ions in a storage
ring, a luminosity of ∼ 10−26 cm−2 s−1 is required during a multiple passage
of the projectile beam through the internal gas-jet target. This is precisely the
case in the CRYJET facility with a target density of ∼1012 atoms cm−2 and an
average circulating ion current of ∼20 µA, corresponding to the quoted value
of Ni . Clearly, this machine complex should pay special attention to avoid any
significant deterioration in otherwise excellent vacuum conditions with a pressure
of the order of 10−11 torr. Such a high vacuum is necessary to maximally
eliminate the competitive background process of capture from the rest gas. The
device COLTRIMS is equipped with a PSD not only for the recoiled target ions
but also for the electrons if ionization takes place in (16.1). In other words,
CRYJET also involves high-resolution electron spectroscopy.

The internal helium gas-jet target in CRYJET has a diameter ∼1 mm,
which matches very well the size of the cooled ion beam. The intersection area
of the target and projectile beams is viewed by COLTRIMS via weak electric
and magnetic fields applied to steer recoil ions and/or ejected electrons towards
the PSDs. However, the fundamental limit in the momentum resolution �p
predetermined by the gas-jet temperature, defines the spread in the momenta of
the target atoms before the collision. The expected T‖ ≈ 10 mK of the helium
target at CRYJET would yield the momentum and energy resolutions of the order
∼0.05 au and ∼5 µeV, respectively. The transverse target temperature should
be much lower T⊥ < 0.5 mK. As an illustration of the implications of these
conditions for the resolution of the inelasticity Q̃-factor, let us take the example
of the H+–He single electron transfer at, e.g., Einc = 1 MeV. Using the general
relations pR‖ = −v/2 − Q̃/v and pR⊥ = −mPv tan(ϑP), the resolution of the
Q̃-factor becomes �Q̃ ≈ v�pR‖, since the variation of the incident velocity v is
negligibly small in the cooled ion beam. Hence, the resulting value of�Q̃ is about
0.9 eV at Einc = 1 MeV. Moreover, the expected transverse recoil-ion momentum
resolution pR⊥ of the order ∼0.05 au would provide a scattering angle resolution
�ϑP of 5 µrad. This should be contrasted with the �ϑP ≈ 0.2 mrad reached in
conventional single-pass experiments [97, 98]. Such capabilities of CRYJET are
well suited for experimental investigations of Thomas double encounters in the TI
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in H+–He and the DC in He++–H. The pilot TI single-pass experiment [115] at
Einc = (0.5–1.4) MeV has been successful in separating two leading mechanisms.
At these intermediate energies, according to the theory [180, 185], transfer of
one electron from the target to the projectile accompanied with simultaneous
ionization of the other electron from helium should proceed via two major
mechanisms: (i) independent interactions of the projectile with each of the target
electrons and (ii) correlated Thomas double scattering (P–e–e). Both (i) and (ii)
are two-step mechanisms but the former is uncorrelated due to the absence of
DEC from the onset. As a consequence, (i) could be well described by a first-
order theory based upon the direct momentum matching formalism. However,
description of the Thomas P–e–e double scattering necessitates a second-order
perturbation expansion. In the first event, the projectile collides with one of the
target electrons (say e1), which scatters through 45◦ with respect to the other
electron (e2) acquiring the velocity

√
2v. This is followed by the second collision

between the two target electrons e1–e2, while the target nucleus remains a mere
spectator. The kinematical conditions for simultaneous capture of e1 by the
projectile P and ionization of e2 mean that e1 must scatter through 135◦ to attain
velocity v for P, whereas e2 ought to be ejected at the right angle with respect to
the incident beam. Mechanisms (i) and (ii) exhibit markedly different signatures
in the pR‖, pR⊥-plane. The uncorrelated process (i) gives a substantial recoil
momentum of the order pR‖ ≈ −3 au in the backward direction with respect
to the incident beam. At the same time, the correlated event (ii) leaves the
recoiled target nucleus at rest. In the experiment of Mergel et al [115], a tentative
velocity dependence Q ∼ v−7.4±1 of the total cross section for the Thomas P–
ec–ei double scattering was extracted from the sum of the contributions from (i)
and (ii) in a rather limited interval of Einc = (0.3–1.4) MeV. Such a velocity
dependence of Q is in agreement with the RIA-4B [19] at these intermediate
energies. The corresponding asymptotic behaviour of the BK2 cross section is
Q ∼ v−11 at v � ve [164]. One of the important motivations for the continuation
of the TI experiments at CRYJET is to test whether the asymptote Q ∼ v−7.4±1

found by Mergel et al in [115] would also hold true at larger incident energies.
However, this velocity dependence was not confirmed at Einc = (2.5–4.5) MeV
in a recent experiment by Schmidt et al [115] who instead found the Thomas-
like v−11 behaviour of Q at these higher energies. Both the BK2 [164] and
the RIA-4B [19] also predict the v−11 behaviour at sufficiently large energies.
The main interest in experimental studies of the DC in the symmetric resonant
He+++He −→ He+He++ collision at CRYJET is in determining the relevance
of the three different mechanisms proposed theoretically [180] via at least one
Thomas double scattering:

(a) Capture of e1 as the first-order one-step path mediated by the He++–e1
potential and transfer of e2 through the Thomas P–e1–T double scattering
involving two consecutive interactions He+–e2 and e2–He++.
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(b) Commuting of both e1 and e2 from T to P by means of the two Thomas
double scatterings P–e1–T and P–e2–T.

(c) The Thomas triple P–e1–e2–T scattering.

Only (c) involves the DEC and represents a genuine third-order effect. In the
first collision (c1), the electron e1 is scattered by P though 45◦ towards e1 with
the velocity

√
2v. The second step (c2) is completed via a scattering of e1 by e2

through 135◦ with the emerging velocity v of e1 resulting in its capture by P. As
a part of (c2), the electron e2 recoils from the e1–e2 encounter towards the target
nucleus He++ at 90◦ with velocity v. Finally, the third step (c3) is accomplished
by means of elastic scattering between e2 and He++, resulting in ejection of e2
with velocity v and, therefore, the capture of e2 by P takes place. In particular, the
previously quoted processes (a) and (b) could be distinguished from each other
by CRYJET, since they would yield sufficiently different values for the transverse
recoil momentum pR⊥.
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Thomas double scatterings of atoms in
ion–molecule collisions

Thomas billiard-type collisions are not limited exclusively to electronic transfer.
A heavy particle could also undergo transfer from a target to a projectile via
Thomas double scatterings. For instance, a whole atom or a radical from a
molecular target (MT) might be captured by the incident particle through two
consecutive encounters P–A–C′. Here, the molecular target MT = (C′,A)α
is comprised of an atom A to be transferred and a core C′. Adopting the
purely classical Thomas picture and assuming that MT is at rest, it becomes
immediately evident that capture via the P–A–C′ mechanism would only be
possible if the momenta of the projectile P and the transferred atom are sufficiently
commensurate, similarly to the electronic counterpart. In the first collision, P
knocks A towards C′. The second event is followed consecutively via a scattering
between A and C′. Both intermediate encounters are elastic. As a result, A is
ejected from MT into the continuum with the velocity ∼v of P and capture can
take place yielding the new bound system (P,A)β . If one neglects the molecular
binding and assumes that no electron transfer occurs, the cross section for atomic
capture P+(C′,A)α −→ (P,A)β+C′ would fall off like v−11 at v � ve, as in the
case of electron transfer. The Thomas critical angle ϑPAC′

c depends on the concrete
reaction constituents. It is equal to ∼45◦ in the laboratory system relative to the
incident direction for e.g. H++CH4 −→ H+

2 +CH3, where A is atomic hydrogen
H [129–133]. This theoretical prediction has been experimentally verified at the
proton energies 70, 85, 100 and 150 eV [131]. More recent experiments [133]
provided evidence of Thomas double scatterings in ion–molecule encounters
under the cusp conditions. In addition to an enormously larger critical angle
ϑPAC′

c � ϑPeT
c , the striking difference between electron and atom transfer is

in the asymptotic velocity region where the two-step pathway is expected to
dominate over other competitive mechanisms. For electron capture in an ion–
atom collision P + (T+, e)α −→ (P, e)β + T+, the condition v � ve> demands
that Einc attains at least a few MeV amu−1. Here, ve> = max{veα, veβ } is the
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larger of the two orbital velocities veα and veβ of the commuting electron in the
atomic bound systems (T+, e)α and (P, e)β . However, the analogous constraint
v � vA> of having a sufficiently ‘fast’ projectile P in a P–MT rearranging
collision P + (C′,A)α −→ (P,A)β + C′, would require that the asymptotic
values of Einc should be fully reached already at ∼100 eV amu−1. This is set
up by the low value of the ‘orbital’ speed vA> = max{vAα, vAβ}, where vAα
and vAβ are the initial and final vibrational velocities of the transferred atom A.
Measurements on high-energy radiationless electron transfer are hampered by a
sizeable contribution from REC, which becomes dominant above 10 MeV amu−1

[106]. Such a difficulty does not exist in experiments on atomic transfer, since
REC is completely negligible at ∼100 eV amu−1. The theoretical total cross
sections [130] based upon the Thomas P–A–C′ mechanism overestimate the
experimental data [131] by a factor of ∼30. The situation is somewhat improved
by a quantum-mechanical asymptotic transcription [132] of the Thomas collision,
but satisfactory accord with the measurements is yet to be obtained. It is timely to
investigate atomic transfer in the P–MT collision by devising molecular versions
of CDW and RIA, with the purpose of providing quantitative agreement with the
experimental cross sections. Several attempts have already been made in the past
to treat P–MT rearranging collisions but they were limited to one-step first-Born
type mechanisms [186].

Previous theoretical simple estimates of molecular Thomas cross sections
Qαβ for P–MT atomic transfer ignored the electronic structure of A, which
was assumed to be comprised solely of a nucleus of charge ZA [130, 132].
Furthermore, interactions of A with the lighter atoms or ions from the core C′ of
MT were neglected and the second Thomas step was limited solely to scattering
of A by the heavier remainder of C′. For example, in the H+–CH4 case, the
methane target CH4 is conceived of as a loose cluster of atoms CH4 = C + 4H,
with the core C′ given by C+3H. This is recognized as the Bragg sum rule which
approximates the cross sections for a molecule as a sum of cross sections for the
constituent atoms. After the first elastic collision with P = H+, the ‘active’ H
from CH4 = (C′,H) was supposed to scatter only on carbon C and the presence
of the 3H remainder of C′ is ignored. However, a variety of dynamic atomic
correlations could be envisaged, by splitting the final Thomas step into two parts,
where the captured H could undergo an intermediate collision on one of the three
available atomic hydrogens from C′ resulting in, e.g., hybrid transitions of the
type ‘transfer dissociation’ (TD): H+ +CH4 −→ H+

2 +CH2 +H or double atom
capture H+ + CH4 −→ H+

3 + CH2.
Storage rings could be advantageously used to pursue further studies of

molecular Thomas scatterings. To this end, one could undertake injection
of two ions into a ring, one atomic and the other molecular, e.g. {D+,D+

2 },{D+,HeD+}, {He+,HeD+}, {Ar+,D+}, {Ar+,HeD+} or a combination of
positively and negatively charged ionic species, etc [134]. The quality of both
beams would be greatly improved and their lifetimes increased by cooling via
multiple passage through the electron cooler section of the ring. This would
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result in decay of all the excited states of the colliding beams, with the survival
of solely the lowest vibrational levels of molecular ions. Such a circumstance
would provide the cleanest experimental conditions for two consecutive binary
collisions, which is one of the prerequisites for emergence of the Thomas peak
at ϑPAC′

c in the angular distribution of the P–MT atomic transfer. Clearly, the
maximal energies of the two ionic beams should be tuned to reach the relative
asymptotic energy of the order of ∼100 eV amu−1, at which molecular Thomas’
double scattering should take place. Under these storage ring conditions, it
appears that the Thomas collisions between atomic and molecular ions are more
favourable for experimental investigations due to both larger critical scattering
angles and smaller incident energies than in the case of the corresponding
electronic transitions. In these future ring experiments, the binary collisions
of an atom to be transferred would be reinforced and the electronic transitions
suppressed. This, together with the fact that at sufficiently large Einc of the
order of ∼100 eV amu−1, the polarization potentials and chemical binding in
a molecular ion are negligible, would justify the use of the binary concepts built
into, e.g., impulse-type approximations.
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Collisions of cold ions and Bose–Einstein
condensates

A further improvement in lowering the target temperature could be envisaged by
installing a magneto-optical trap (MOT) in a storage ring to study collisions of
circulating multiple charged ions with targets in the form of a Bose–Einstein
condensate (BEC). As is well known, in 1923, de Broglie put forward the
principle of duality of matter and waves. He conjectured that under special
circumstances, every particle, irrespective of its mass, ought to exhibit its wave
nature. The duality is such that the matter and wave properties of the same
species are never manifested simultaneously. A well-known relation exists which
establishes the inverse proportionality between the so-called de Broglie wave
length λdB and the particle velocity v. This duality principle was confirmed
experimentally in the landmark diffraction pattern experiment by Davisson and
Germer in 1927. In 1924, Bose and Einstein independently arrived at a theoretical
prediction that a novel state of matter would become feasible to create by cooling
an assembly of atoms to zero absolute temperature, without any restriction on
the particle density. Cooling atoms to the lowest possible temperature would
result in a collective collapse or condensation of all the atoms with T = 0 K
into their ground state. The ensuing single configuration of the formed BEC
with the lowest conceivable energy could host any number of atoms, which are
then said to obey the Bose–Einstein statistics of particles with the integer values
of spin. This is diametrically opposite to the Fermi–Dirac statistics of particles
with half integer spins, prohibiting formation of any particular state occupied by
two species with all the same quantum numbers (the Pauli exclusion principle).
However, zero absolute temperature is experimentally unreachable and, therefore,
a critical condition must exist for occurrence of the BEC. For example, lowering
the temperature to the ∼ nK domain of all the atoms under study would necessitate
a critical density enabling a fraction of some ∼106 atoms localized in the
condensate. At such low temperatures, the internal and external degrees of
freedom of condensated atoms are tremendously reduced. This is clear from the
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general statistical definition of the temperature which is directly proportional to
the average velocity 〈v〉 of the translational motion convoluted with a prescribed
particle distribution. The critical temperature of ∼ nK yields remarkably small
values of 〈v〉 of the condensate. These special circumstances are favourable for
the wave manifestation of atoms according to the duality principle. Therefore,
the corresponding de Broglie length λdB deduced from 〈v〉 will become larger
than the average distance between the atoms. As a result, the overlaps between
two wavefunctions of any individual pair of neighbouring atoms is increased
to such an extent that these atoms become mutually indistinguishable. Since
this is true for any two randomly-selected, adjacent atoms, the wavefunctions
of every pair must necessarily coincide with each other. This leads to the single
wavefunction for the whole BEC. Such a wavefunction should have the form of
the potential applied to atoms for their confinement. The signature of this special
phase transition from an ordinary assembly of atoms to a BEC is the emergence
of a sharp narrow peak superimposed onto the centre of broad background of the
isotropic Boltzman distribution. The surface under the peak is equal to the number
of atoms which have collapsed into the same ground state. Of course, some of the
condensated atoms will be in excited states but their number is expected to be
exceedingly small. Another physically transparent synonym for the BEC is the
quantum ideal gas, which indicates that the interactions among the constituents of
the condensate are nearly extinguished. In the theoretical limit of the exact zero
temperature, these interactions cease to exist altogether.

Several groups in the USA and Europe have searched intensively over the
last 25 years to confirm experimentally the BEC in gaseous media. The results
were reported in 1993 in a gas of excitons in a semiconductor host [187] and
in ultra-cold trapped atomic gases of rubidium, lithium and sodium [135, 136].
The interactions among excitons might appear as being sufficiently weak to
qualify for a quasi-ideal quantum gas but they are poorly understood from the
theoretical viewpoint and this prevents an unambiguous interpretation of the BEC
experimental data [187]. Surely, the BEC was observed much earlier while
studying superfluidity in helium and superconductivity in metals. However, in
crystals, atoms are packed tightly together in lattice structures and interactions
among them are hardly negligible, which partially obscures the signature for a
BEC. By contrast, dilute gaseous atoms at the critical conditions of the phase
transition in the BEC represent a prerequisite for a more direct experimental
realization of a nearly ideal non-interacting quantum gas. An unambiguous
detection of a characteristic sharp peak of the BEC has been recorded in 1995
with rubidium and sodium atoms in an impressive manner by JILA and MIT
[135,136] researchers. Here, MOTs have been used for particle confinement with
a quadrupole potential. More recently, the coherence pattern of two BECs as well
as the so-called atom laser have been demonstrated [135,136] at 0.5 nK, which is
the coldest temperature ever reached in laboratories.

These advances offer a promising possibility of having in the near future a
nano-Kelvin condensate in the role of a target beam. One could then envisage the
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insertion of an MOT into a storage ring [134] with the purpose of investigating
scatterings of ultra-cold BECs with circulating cold ions. For example, single
or multiple capture from a target condensate and/or its ionization by fast cold
ions come to mind as one of very challenging experiments. Injecting, e.g. a
molecular ion beam CH3I+ into a storage ring equipped with an MOT providing
a crossed-beam target of, e.g., a dilute BEC of rubidium, one could study Thomas
double scattering in molecular capture: Rb + CH3I+ −→ RbI + CH+

3 . Such
measurements would necessarily be destructive since each time the projectile
beam would pass through the MOT, the BEC would be partially or completely
destroyed. This requires that the target should be ‘refreshed’ with a newly created
BEC after each cycle of the circulating ionic beam. This coordination between
the two beams might eventually be infeasible due to a small circulating period in
the ring. In such a case, a way of prohibiting an interaction between the target
and projectile beams should be established during each periodic formation of
the BEC. The BEC experiments with dilute gaseous atoms require a standard
vacuum, typically ∼10−8 torr. Obviously, this would jeopardize the excellent
vacuum conditions in storage rings (∼10−11 torr), so that the MOT surrounding
ought to be equipped with additional pumping devices, such as turbo-molecular
pumps.
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Chapter 30

Fundamental reasons for the equivalence
between the classical Thomas successive
binary collisions and quantal double
scatterings

Highly accurate experiments on non-relativistic energetic ion–atom rearranging
collisions are of paramount importance, since they could directly check the
foundation of a few-particle collision theory. A number of concrete suggestions
are presented throughout our analysis and discussion. Disentangling the
most basic principles from other accompanying phenomena, which often yield
obscuring repercussions, is a rather formidable task especially at intermediate and
low energies. However, the high-energy domain is more manageable in practice.
Moreover, this latter domain is of a special significance, since it offers an ergodic-
type circumstance, where the truly essential features of scattering theory as a
whole are well ingrained in its limiting case of a small sequence of elastic classical
Thomas multiple encounters.

In general, at sufficiently high impact energies, as long as the momentum–
energy conservation law is strictly obeyed and scatterings are elastic, the details of
the actual microscopic collision event, which may be quantum in nature, are quite
irrelevant and a purely classical description should suffice in yielding a genuinely
correct answer. This remains valid also for inelastic collisions, provided they
could be conceived of as a succession of several on-shell elastic scatterings
between each pair of constituents of the whole system.

This plausible and intuitive argument has its full support in the analytical
properties of a full quantum-mechanical three-body transition probability
amplitude [188]. Such an amplitude exhibits a special kind of ‘kinematical
singularity’ on the real axis of the complex energy plane. These are poles which
arise from the kinematical possibility of the two-body subsystems undergoing
a finite number of successive classical binary contact collisions at any spatial
inter-separations. The number of these binary ‘re-scatterings’ or ‘rebounds’
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is predetermined by the mass ratios of the invoked colliding particles [188].
Nevertheless, one could make this number of successive collisions arbitrarily
large by varying the mass ratio of the invoked particles. This could be achieved
by imagining the case of a light particle, e.g. an electron bouncing back and
forth in between two other particles whose masses are increased indefinitely.
However, there could be only three such collisions for three-point particles of
equal masses [188].

The full dispersion relations, as the discontinuity across these ‘re-scattering’
cuts, can be explicitly expressed in terms of the on-shell two-body physical
T -matrices. Such an exact three-particle perturbative transition probability
amplitude can also be calculated from the Faddeev coupled integral equations in
terms of two-body off-shell T -matrices. But the solution of the Faddeev equations
also contains the ‘kinematical singularities’ whose associated discontinuities
can again be expressed via the on-shell two-particle physical T -matrices for
ionization. This implies that the ‘re-scattering singularities’ will be encountered
in a general class of rearranging collisions, e.g. ionization (bound-state break-
up), knock-out (exchange effects) and genuine capture (pick-up) or ‘capture into
continuum’ (cusp effects).

These ‘re-scattering singularities’ are intimately connected with the classical
problem of successive binary collisions of each of the pairs of a three-particle
system. Quite remarkably, an iteration of the Faddeev equations for, e.g., three
particles of the same mass reveals that the ‘re-scattering singularities’ are absent
in all the terms of the order higher than three. This precisely corresponds to the
fact that three equal-mass structureless point particles can have, at most, three
successive binary contact classical collisions [188]. More generally, the nth-
order term in the iteration series of the Faddeev equations will have ‘kinematical
singularities’ if and only if the equivalent three classical point particles of
arbitrary masses can kinematically undergo n successive binary contact collisions.
This follows from examining the classical collision problem through the action
principle, by splitting the entire process into n successive scatterings, which
formally corresponds to iteration of the Faddeev equations. Then, interestingly,
the sufficient and necessary condition for classically realizable binary collisions
coincides with the criterion for the existence of the ‘re-scattering singularity’ in
the quantum-mechanical Faddeev counterpart. In other words, the constraints for
impossibility of n successive binary classical collisions are the same as those for
the absence of the ‘kinematical singularities’ in the n term of the iterated Faddeev
equations [188].
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Chapter 31

Multiple ionization in fast ion–atom and
ion–molecule collisions

We have recently shown [128] that the importance of the dynamic electron
correlations increases as the impact energy is augmented. This enhances the
probabilities for double and multiple electron transitions. Larger chances for
multi-electron transitions also exist at intermediate energies, for a different reason
(a comparable role for excitation, capture and ionization). Recently, a series of
new experiments have been carried out at GANIL (France) measuring differential
cross sections for multiple ionization of gaseous targets by fast heavy ions using
COLTRIMS [124]. It was found that the rate of multiple ionization, including
seven electrons ejected from argon by Xe+44 at 6 and 7 MeV amu−1 as well as
six and eight electrons ejected from neon and argon at 3 and 6 amu−1, reaches
some ∼40% of the total ionization yield. Here, the standard perturbative theories
cannot be applied due to a very high charge state of the projectile. This could
be an excellent test case for the non-perturbative variational theory (25.1). In the
perturbative regime, for other experimental data, a detailed study of ionization is
needed within, e.g., the RIA and CDW model. The latter method is alternatively
denoted in the literature by the CDW-CDW approximation [59], since it includes
the CDW model in both channels as an extension of its successful counterpart in
charge exchange [15, 161].

At present, collision theories involving molecular targets are rather crude
and exclusively limited to the first-order Born-type approximations [186]. These
models neglect completely molecular dynamics and resort to an independent par-
ticle model for the constituent atoms. Experiments are also in a quite preliminary
stage. Nevertheless, available experimental data suggest that the degree of exci-
tation of some simple diatomic and triatomic molecules is larger for heavy-ion
impact than for photons of equivalent energies. This finding is awaiting a theo-
retical description. The available first-order molecular models cannot predict the
branching ratios for different fragmentation channels of a molecule. Hence, it is
timely to develop proper molecular versions of the second-order theories (CDW,
RIA, etc) to fill in the gap and secure further progress in this discipline.
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Chapter 32

Recapitulation on double scattering
mechanisms

It is fascinating that double scattering provides a more efficient pathway than a
more straightforward single three-body collision for high-energy non-relativistic
charge exchange. This was readily explained by Thomas in 1927 [100] but his
ingenious mechanism of a billiard-like purely classical collision laid dormant
and was widely unaccepted for nearly 30 years until Drisco’s confirmation in
1955 [108] within the second Born approximation. Interestingly, even though
quantum mechanics had already been discovered in 1925, Thomas resorted to
pure classical physics to answer a basic, albeit simple, question: could a genuine
three-body problem of electron capture from a hydrogen-like atom by a bare
nucleus of high incident velocity v be treated in terms of binary collisions?
The answer was negative, if there were only one such classic binary encounter,
due to a lack of simultaneous conservation of the total energy and momentum
of the whole system. When the condition v � ve is fulfilled, the electron
of an orbital velocity ve would behave as a quasi-free particle. However,
such an essentially free electron cannot be captured by a completely stripped
ion in a radiationless process, since the conservation laws of the total energy
and momentum are violated by a large amount which grows as v increases.
The electron–projectile collision takes place in the presence of a third body.
Could then the target nucleus as a spectator absorb the huge excess energy and
momentum to salvage the conservation laws? If that should happen, the target
nucleus would convert the received kinetic energy into internal binding with the
electron and, therefore, prevent its escape. In order to suddenly switch from one
Coulomb centre to another, the electron must receive a large momentum of the
order ∼ mev. Such a transition is possible in a single binary collision, only
if the initial electronic distribution could provide high momentum components
of the order ∼ mev. This is classically unachievable, since the momentum of
an electron moving in an elliptic orbit is of a limited range. The ground-state
hydrogenic orbital is definitely outside the classical concept but the Rydberg
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levels are certainly not. Hence, one could hope that a classical first-order result
for high-energy Rydberg capture could be retrieved from its quantum-mechanical
counterpart. This is, however, not the case, since all the first-order quantal cross
sections tend to zero for infinitely high angular momentum Rydberg levels at
v � ve. Despite inclusion of solely projectile–electron interaction, the first-
order BK1 model is capable of describing capture via the ‘momentum matching
mechanism’. The initial and final quantum-mechanical wavefunctions possess the
indispensable high-momentum components ±mev/2. These components, which
originate from the electronic translation factors in the configuration representation
of the unperturbed channel orbitals �α,β , are present in both initial and final
momentum–space bound-state wavefunctions.

Discarding a single encounter as a classical pathway for charge exchange,
Thomas [100] proposed a double-scattering mechanism by splitting the three-
body problem into two consecutive binary elastic collisions, each preserving
the momentum and energy law. There could be three different groups of such
double collisions. The most important sequence is the one where the electron
(e) participates in both ‘elementary’ collisions bouncing between the two nuclei
like a billiard ball. First, the electron is struck by the ‘projectile’ P of velocity
v towards the ‘target’ T nucleus through the laboratory angle ϑe = 60◦. This
prescribes the fate of the electron in the second collision with T yielding again
ϑe = 60◦. The electron propagates freely between the two binary Rutherford
scattering with the velocity v of P, since both encounters are elastic. Finally,
the electron emerges from the two collisions with a velocity nearly parallel to
that of projectile and capture takes place via the attractive VPe potential. Solely
the momentum–energy conservation predetermines the elastic character of both
collisions as well as the concrete values of ϑe = 60◦ and the projectile scattering
angle ϑc = (me/mP) sin 60◦. The critical value ϑc depends only upon the
ratio me/mP � 1 of the electron and projectile mass without any reference
to the target mass mT, since P does not collide with T in this sequence. It is
remarkable that ϑc is independent of any other collisional parameters, such as
the incident velocity v, momentum transfers, quantum numbers or energies of
the initial or final state, etc. Absence of v comes simply from the definition
of tanϑc ≈ ϑc through the ratio between the transverse ke⊥ = mev sinϑc
and parallel kP‖ = mPv components of the electron and projectile momenta.
At asymptotic non-relativistic velocities v � ve, Thomas [100] obtained the
total cross section of classical double scattering Q(ds)

αβ ∼ v−11, for ground-

to-ground capture. Moreover, the same behaviour ∼v−11 of Q(ds)
αβ persists for

arbitrary initial and final states [104]. Later, Oppenheimer in 1928 [103] as well
as Brinkman and Kramers in 1930 [13] challenged this classical finding by the
quantum-mechanical result Q(BK1)

αβ ∼ v−12−2�α−2�β of the first-order perturbation
model (BK1). For the pure s–s states, the quantal cross sections were smaller
by 1/v than the classical data and became zero for infinitely large values of the
initial or final angular momentum �α,β . Nevertheless, for a long time Q(BK1)

αβ was
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favoured over Q(ds)
αβ and as late as 1948, Bohr [101] justified this by an alleged

inclusion of quantum interference effects in BK1 but this was not the case.

An explicit calculation of Drisco [108] showed that the second-order term
dominates over the first- and third-order contribution in the Born perturbation
series. Agreement between Thomas and Drisco is expected on the basis of
the appropriate Feynman diagram, which reveals that the pertinent second Born
propagator VTeG+

0 VPe corresponds to the electron being scattered first by the
projectile VPe and then by the target nucleus potential VTe, just as in the case of
the classical Thomas capture. The analogy is even more complete by observing
that the whole leading contribution to the second Born approximation is provided
by the two electron deflections through 60◦ ingrained in the energy denominator
of the free three-particle Green’s operator G+

0 . The characteristic signature of
Thomas capture is a maximum in the angular distribution centred around the
projectile scattered angle ϑc ≈ (me/mP) sin 60◦. This critical value, ϑc, which
was confirmed experimentally [97, 98, 111], is predetermined exclusively by the
ratio of the electron and projectile masses and the elastic nature of the two
successive electron collisions imposed by the momentum–energy conservation
law.

At large values of the impact energy, many more interesting higher-order
Thomas-like encounters are possible with the inclusion of two or more active
electrons from the target. For example, in double capture or transfer ionization,
which occurs during collisions between a bare nucleus and a helium-like target,
the dynamic dielectronic correlation effects become increasingly more important
via Thomas scatterings. In this way, high-energy non-relativistic two-electron
transfer could efficiently be proceeded via a triple Thomas scattering. Here,
unlike single capture, one would observe interference between the first- and
second-order effects at the very height of one of the Thomas peaks. This would
occur when one of the target electrons is captured via the velocity matching
mechanism of the BK1 type [13, 103], while the other electron is transferred
through the customary double Thomas scattering. In addition, both electrons
could be simultaneously captured when each of them undergoes a double Thomas
scattering. Finally, a novel third Thomas peak would emerge from an intermediate
electron–electron scattering in the presence of the incident and target nucleus.
First, one of the electrons (say e1) collides elastically with the projectile through
45◦ with respect to the incident direction towards the other electron (e2). Second,
e1 scatters elastically off e2 in such a way that it becomes ionized with the velocity
of the projectile. Capture of e1 by the projectile takes place since their attractive
interaction is sufficient for binding the two particles together. As part of the
second collision, the electron e2 recoils by 90◦ relative to the incident beam
towards the target nucleus. Third, there will be an elastic collision between e2 and
the target nucleus deflecting the second electron in direction of incident beam,
which is sufficient for capture by the projectile. Since the three collisions are
elastic and conform to the momentum–energy conservation law, they are truly
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of the binary kind and mutually independent1. Hence, despite participation of the
electron as a light particle in all of these collisions, they are describable in a purely
classical way in terms of non-interfering Rutherford transition probabilities. This
implies that it is not indispensable to carry out, e.g., the second Born-type
computation, which includes the interference effects, since quantum mechanics
operates with transition probability amplitudes and not directly with the transition
probabilities.

The mechanism of Thomas electron–electron double scattering was
confirmed experimentally in transfer ionization during proton–helium collisions
[113, 115]. The most interesting circumstance is that there could well be a
possibility for overall dominance by dielectronic Thomas double scattering in
the field of two nuclei over conventional Thomas scattering of a single electron
off the projectile and target Coulomb centres. Furthermore experiments of this
type would be highly desirable for double capture with an anticipated detection
of three distinct Thomas peaks. This would assess the validity of the independent
particle model, which yields only two Thomas maxima and discards altogether the
dynamic electron correlations from the onset. Confirming these highly intriguing
structures in angular distributions through measurements is very important in view
of the necessary stringent testing of the discussed mechanisms within the existing
theories. The importance of these experiments is considerable, since they could
directly check the most fundamental principles of a-few-particle collision theory.

Conventional single-pass experiments based upon the projectile scattering
angle are extremely difficult due to exceedingly small cross sections and
intolerably large statistical errors. However, a real breakthrough has recently been
achieved by performing kinematically complete experiments with unprecedented
accuracy through deducing the outgoing momenta of all free particles in
coincidence with the recoil of the target residual. Here, a clear separation
of the various competitive mechanisms could be unambiguously accomplished
within a necessary fraction of the momentum atomic unit, only after cooling the
target to the temperature of the order ∼10 mK. Nevertheless, huge statistical
uncertainties preclude this technique from measuring differential cross sections
beyond ∼1.5 MeV amu−1. However, the most valuable information about these
multiple scattering effects at high energies is expected from measurements which
judiciously combine the two powerful techniques of cooled heavy-ion storage
rings and cold target recoil-ion momentum spectroscopy [121–125,127, 140]. We
presently elaborated these unique opportunities, which should facilitate a new

1 Each of the two-particle collision in the sequence projectile-nucleus–electron–electron–target-
nucleus, will involve a large momentum transfer of the order mev to the commuting electron(s),
where v is the incident velocity of the projectile. This circumstance favours close collisions and large
scattering angles, which are a prerequisite of pure classical mechanics. Additionally, the wavelength of
each of the electrons between two successive collisions is comparable to 1/(mev), which is very much
smaller than the internuclear separation for nearly all the relevant values of the impact parameters b.
Consequently, the motion of the electrons in between successive collisions essentially qualifies for a
classical description.
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generation of experiments aiming to record previously undetectable weak signals
corresponding to differential cross sections of the order of ∼10−27 cm2.
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Chapter 33

The reasons for the inadequacy of the
standard impulse approximation

The remaining part of this book deals with applications of quantum scattering
theory to inelastic processes/reactions encompassing single-charge exchange,
transfer ionization and single-electron detachment in collisions of fast nuclei with
one- and two-electron atomic systems. As to electron capture from hydrogen-like
targets by completely stripped projectiles, we study multiple scattering effects
within the impulse hypothesis introduced in the eikonal exact T -matrix. In
practice, the impulse hypothesis is accomplished through neglect of a commutator
involving the target binding potential VT and an integral operator associated with
intermediate states. The standard impulse approximation (IA) of Chew [189],
derived originally for nuclear collisions, also invokes the impulse hypothesis but
completely neglects multiple scattering effects. In the IA, the total scattering
wavefunction is allowed to be distorted only by the field of the projectile, whereas
the target nucleus is assumed to merely generate a momentum distribution of
the initial electronic bound state. The IA of Chew for short-range interactions
has attracted a great deal of attention in nuclear physics, since agreement with
experimental data was consistently good. However, extension of the IA to
atomic collisions carried out first by Pradhan [190] and rectified subsequently
by Coleman and McDowell [191] as well as by Cheshire [192] did not meet
with success. Their ‘atomic physics version’ of the IA suffers from two major
drawbacks:

(i) lack of the correct asymptotic behaviour for the total scattering wavefunction
precisely in the channel in which electronic intermediate states are taken into
account; and

(ii) mathematical non-existence of the single-centre Coulomb wave stemming
from the action of a Møller wave operator onto a three-particle intermediate
plane wave [79].

Limitation (i) must be corrected in view of the conclusive arguments
[15–19, 158, 161] about the crucial importance of proper boundary conditions for
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atomic collisions. The ‘boundary condition problem’, which is also known as the
‘asymptotic convergence problem’ in formal scattering theory [7], is considered
to be adequately solved only if both initial and final scattering state vectors
exhibit exact behaviour at infinitely large inter-aggregate distances. The basic
shortcoming (ii) is also encountered in a number of previous attempts [193–198]
aimed at generalizing the IA. Comparisons with measurements on the total cross
sections for charge exchange in proton–atomic hydrogen collision revealed that
the IA significantly underestimates the experimental data at intermediate energies
(20–350) keV, which fall well within the range of the validity of the method.
From the present work, a novel derivation of a whole family of impulse-type
approximations can readily be extracted for different choices of the distorting
potential in the exit channel. These approximations are all based upon the
introduction of a Møller wave operator for two opposite Coulomb potentials
with the same interaction strength. Such a difference between an attractive and
a repulsive Coulomb potential, appearing in the key equation for continuum
states of an intermediate stage of collision, leads to a mathematically justified
double continuum. The resulting total scattering wavefunction possesses exact
asymptotic behaviour at large values of the inter-particle separation. In this way,
both constraints (i) and (ii) are consistently circumvented. As an illustration,
as well as for the purpose of assessing the validity and utility of the so-called
‘reformulated impulse approximation’ (RIA) [19, 157, 199] in comparisons with
the IA, detailed computations of both differential and total cross sections are
carried out for the prototype H+–H charge exchange at intermediate and high
energies. We have also performed the same type of computations using the
other two leading second-order theories, the continuum distorted wave (CDW)
approximation [15, 161] and the exact boundary-corrected second Born (CB2
or B2B) approximation [10]. In addition to the internal theoretical consistency
regarding the first principles of physics, the reliability of all the present results
emerging from the four employed approximations (RIA, IA, CB2, CDW) is
checked by using the entire set of the experimental data available in the
literature on this subject. In addition to these purely three-body problems, the
present book examines several of the most intriguing single- and double-electron
transitions involving collisions of nuclei with two-electron targets. Here we
study the consistency between distorting potentials and the total scattering states.
Moreover, we investigate the dynamic and static inter-electron correlations that
can shed new light onto high-energy ion–atom collisions.

In the present book we are also concerned with a detailed analysis of
the computational methods used for obtaining the theoretical data for dQ/d�
and Q. We discuss both deterministic and stochastic methods for numerical
computation of certain multi-dimensional integrals of generic type encountered in
many fields, e.g. quantum electrodynamics, lattice nuclear magnetic resonance in
crystallography, statistical physics, quantum chemistry, optimizations in inverse
reconstruction problems in medical physics, etc. For this purpose a new general
method called the fast Padé transform (FPT) [200] is implemented and tested
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against the exact results and proved to be remarkably accurate and efficient. In
all the presented illustrations, atomic units will be used unless explicitly stated
otherwise.

Copyright 2004 IOP Publishing Ltd



Chapter 34

The reformulated impulse approximation
(RIA)

We investigate the following prototype of atomic charge exchange in collisions of
completely stripped projectiles with hydrogen-like targets:

ZP + (ZT, e)i −→ (ZP, e) f + ZT (34.1)

where the parentheses symbolize the bound states, with ZP,T being the charges
of the {P,T} nucleus and {i, f } are the collective labels for the sets of the usual
quantum numbers {ni, f , �i, f ,mi, f }. We label by s and x the position vectors of
the electron e relative to ZP and to ZT, respectively. Furthermore, R will denote
the vector of the inter-nuclear axis directed from ZT to ZP. We also introduce
r i as the relative vector of ZP with respect to the centre of mass of (ZT, e)i .
Similarly, r f will represent the relative vector of ZT with respect to the centre of
mass of (ZP, e) f in the exit channel of process (34.1). Consequently, r i = bx− s
and r f = as − x, where a = mP/(mP + 1) and b = mT/(mT + 1), with mP,T
being the mass of the {P, T } nucleus in the units of the electron mass, me = 1.
In solving approximately the key three-particle differential equations as well as
in calculations of certain multi-dimensional scattering integrals, we shall employ
two sets of independent variables, {x, r i } and {s, r f }. The exact post transition
amplitude 
 +

i f for process (34.1) is given by [15]


 +
i f = 〈�−

f |ω−†
f U†

f (1 + �+Ui )ω
+
i |�+

i 〉 (34.2)

with

Ui, f = Vi, f − Wi, f �+ ≡ �+(E) = 1

E − H + iε
(ε −→ 0+) (34.3)

where E and H stand for the total energy and the complete Hamiltonian of the
whole system, respectively, and ε is an infinitesimally small positive number. The

Copyright 2004 IOP Publishing Ltd



The reformulated impulse approximation (RIA) 269

perturbation potentials Vi, f in the entrance and exit channels are:

Vi = VPT + VP V f = VPT + VT

VPT = ZP ZT

R
VP = − ZP

s
VT = − ZT

x
. (34.4)

Distorting potential operators Wi, f are defined as

Wi, f = wi, f + W D
i, f (34.5a)

and they contain certain strictly short-range interactionswi, f and the remainders,

W D
i, f = W S

i, f + V∞
i, f (34.5b)

that exhibit both short-range behaviours

W S
i −→

ri→∞�
(

νi

2kir2
i

)
W S

f −→
r f →∞�

(
ν f

2k f r2
f

)
(34.5c)

and the Coulombic tails

V∞
i = ZP(ZT − 1)

ri
V∞

f = ZT(ZP − 1)

r f
(34.5d)

for the general case of charged scattering aggregates. Note that V∞
i, f are the

asymptotic values of the perturbations Vi, f , that is to say, Vi, f −→ri, f →∞ V∞
i, f .

Quantities ki and k f represent the initial and final wavevectors, whereas

νi = ZP(ZT − 1)

vi
ν f = ZT(ZP − 1)

v f
(34.6a)

with vi, f = ki, f /µi, f andµi, f = mP,T(mT,P+1)/(mP+mT+1). As a conserved
observable, the total energy E of the whole system is the same in the entrance and
exit channel:

E = k2
i

2µi
+ Ei =

k2
f

2µ f
+ E f , (34.6b)

where Ei and E f are the initial and final binding energies, respectively. The
Møller wave operators ω±

i, f featuring in equation (34.2) are given by

ω±
i, f = 1 + �±i, f wi, f �±i, f ≡ �±i, f (E) =

1

E − Hi, f − Wi, f ± iε
. (34.6c)

The channel Hamiltonians Hi, f read as

Hi, f = H − Vi, f = H0 + (VP + VT + VPT)− Vi, f = H0 + VT,P (34.6d)
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where V = VP + VT + VPT is the full interaction potential and H0 is the total
kinetic energy operator:

H0 = Ki + hi = K f + h f Ki, f = − 1

2µi, f
∇2

ri, f

hi = − 1

2b
∇2

x h f = − 1

2a
∇2

s . (34.7a)

The asymptotic channel states �±
i, f stand for

�±
i, f = �i, f e±iνi, f ln(ki, f ri, f −ki, f ·r i, f ) ≡ �i, f g±i, f �i, f = ϕi, f e±iki, f ·r i, f

(34.7b)
where ϕi ≡ ϕi (x) and ϕ f ≡ ϕ f (s) are the initial and final bound-state
wavefunctions,

(hi + VT − Ei )ϕi (x) = 0 (h f + VP − E f )ϕ f (s) = 0 (34.7c)

and Ei, f are the corresponding eigenenergies. The unperturbed channel states
�i, f from (34.7b) satisfy the eigenvalue equations

(Hi, f − E)�i, f = 0. (34.7d)

The asymptotic initial and final state vectors �±
i, f from equation (34.7b) can be

equivalently defined by

(H D
i, f − E)�±

i, f = 0 H D
i, f = Hi, f + W D

i, f . (34.8a)

An explicit calculation shows that the plane waves exp (±iki, f · r i, f ) distorted by
the logarithmic Coulomb phase factors g±i, f from (34.7b) are the solutions of the
following equations:(

Ki, f −
k2

i, f

2µi, f

)
f ±i, f = V∞

i, f

(
νi, f

ki, f ri, f − ki, f · r i, f
− 1

)
f ±i, f (34.8b)

where
f ±i, f = e±iki, f ·r i, f g±i, f . (34.8c)

Therefore, insertion of (34.7b) into equation (34.8a), followed by the use of
(34.7c) and (34.8b) will permit a direct identification of distorting potentials W D

i, f :

W D
i, f =

(
1 − νi, f

ki, f ri, f − ki, f · r i, f

)
V∞

i, f . (34.8d)

Given the definitions in (34.5b), we can now extract the potential operators W S
i, f

from (34.8a) in the following particular forms, whose asymptotic behaviours
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agree with the general requirement (34.5c) about the short-range features of these
interactions:

W S
i, f = −ZP ZT

νi, f

ki, f ri, f − ki, f · r i, f
V∞

i, f −→
ri, f →∞−ZP ZT

νi, f

2ki, f r2
i, f

. (34.9a)

From now on, we shall adopt the well-known eikonal approximation, which is
based upon the mass limit µi, f � 1 and the resulting small-angle scattering,
k̂i ≈ k̂ f :

k̂i ≈
µi, f →∞ k̂ f . (34.9b)

This approximation is justified for ionic projectiles whose heavy masses cause
only a slight deflection from the incident direction along the vector k̂i . Hence,
application of the eikonal approximation (34.9b) means that state vectors, T -
matrices and the related quantities are calculated through the first order in 1/µi, f .
As the first consequence of the eikonal approximation, the heavy particle kinetic
energy can be linearized. When the eikonal hypothesis holds true, the action of
the momentum operators,

pi = −i∇ri p f = −i∇r f (34.10a)

will produce noticeable results only in the direction determined by the vectors
k̂i and k̂ f , respectively. Therefore, we can develop Ki, f = p2

i, f /(2µi, f ) in
the Taylor expansion around ki, f using the general expression for functions of
vectorial variables, e.g.

F( pi ) = F(ki )+ ( pi − ki ) · ∇ki F(ki )+ · · · (34.10b)

and likewise for a function of p f . In the case, F( pi, f ) = Ki, f = p2
i, f /(2µi, f ),

it is sufficient to keep only the first two terms in the expansion (34.10b). This is
because the higher-order terms are smaller than the first two leading contributions
by a factor of 1/µn

i, f (n ≥ 1). Such a procedure yields the following linearized
kinetic energy operators of the relative motion of heavy particles:

Ki, f ≈
µi, f →∞ Kie, f e ≡

k2
i, f

2µi, f
− vi, f · (ki, f ± i∇ri, f ). (34.10c)

Hence, the kinetic energy operators Kie, f e are obtained by applying an eikonal-
type peaking approximation to Ki, f in the predominant region pi, f ≈ ±ki, f and
retaining only two leading terms. Thus the corresponding eikonal kinetic energy
operator for three particles can be written as

H ie
0 = Kie + hi H f e

0 = K f e + h f (34.10d)

and this leads to the following Green operator,

�+(E) ≈
µi→∞�

+
e (E) ≡

1

E − H ie
0 − V + iε

. (34.11a)
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The difference between H ie
0 and H f e

0 is of the order of 1/µi, f so that, within the
eikonal mass limit, we can write

H ie
0 ≈
µi, f →∞ H f e

0 . (34.11b)

In equation (34.11a) and throughout the present analysis, the electronic kinetic
energy operators, hi, f , are kept in their exact, unaltered forms available from
equation (34.7a) as second-order differential operators. Within the eikonal limit,
equation (34.2) is now reduced to


 +
i f ≈

µi, f →∞ T+
i f (34.11c)

where
T+

i f = 〈χ−
f e|U†

f (1 + �+e Ui )|χ+
ie 〉. (34.12)

Here, the functions χ±
ie, f e are the eikonal distorted waves introduced by

|χ±
ie, f e〉 = ω±

ie, f e|�±
i, f 〉, (34.13a)

where

ω±
ie, f e = 1 + �±ie, f ewi, f �±ie, f e ≡ �±ie, f e(E) =

1

E − Hie, f e − Wi, f ± iε
(34.13b)

and
Hie = H ie

0 + VT H f e = H f e
0 + VP. (34.13c)

In the limit ε −→ 0+, the state vectors from (34.13a) satisfy the equations

(E − Hie, f e − Wi, f )|χ±
ie, f e〉 = 0 (34.13d)

with the exact three-particle boundary conditions

|χ±
ie, f e〉 −→

ri, f →∞ |�±
i, f 〉. (34.14a)

In the entrance channel, we search for χ+
ie in the factored form according to

|χ+
ie 〉 = |�i F+

ie 〉. (34.14b)

Applying the eikonal Green operator �+ie from equation (34.13b) to both sides of
this equation and letting ε −→ 0+, we obtain

(ivi · ∇ri − Wi )F
+
ie = 0 F+

ie −→
ri→∞ f +i (34.14c)

where use is made of the equations,

(Hie − E)�i = 0 (H f e − E)� f = 0. (34.14d)
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Inspecting (34.7b) and (34.7d), one observes that the unperturbed channel states
�i, f are invariant under the replacement of H0 by H ie, f e

0 . This is because
the use of Kie, f e in place of Ki, f leaves the energy conservation law (34.6b)
unaltered, as can be readily checked. The term �+e Ui |χ+

ie 〉 = �+e Ui |�i F+
ie 〉 from

equation (34.12) can be transformed according to

�+e Ui |χ+
ie 〉 = F+

ie G+
e Ui |�i 〉 (34.15a)

with

G+
e ≡ G+

e (E) =
1

E − H ie
0 − V + Wi + iε

. (34.15b)

The identity (34.15a) is proven as follows. We apply the inverse operator [�+e ]−1

from equation (34.11a) to both sides of the assumed identity (34.15a) in which
Wi and Ui are considered as multiplicative operators in the variable r i so that

Ui�i F+
ie = (E − H ie

0 − V + iε)[F+
ie G+

e Ui�i ]
= {Ei − hi − V + vi · (ki + i∇ri )+ iε)}[F+

ie G+
e Ui�i ]

= (Ei − hi − V + vi · ki + iε)[F+
ie G+

e Ui�i ] + ivi · ∇ri [F+
ie G+

e Ui�i ]
= F+

ie (Ei − hi − V + vi · ki + iε)[G+
e Ui�i ]

+ G+
e Ui�i [ivi · ∇ri F+

ie ] + F+
ie {ivi · ∇ri [G+

e Ui�i ]}
= F+

ie (Ei − hi − V + vi · ki + iε)[G+
e Ui�i ]

+ G+
e Ui�i [Wi F+

ie ] + F+
ie {ivi · ∇ri [G+

e Ui�i ]}
= F+

ie (Ei − hi − V + vi · ki + iε + Wi + ivi · ∇ri )[G+
e Ui�i ]

= F+
ie (E − H ie

0 − V + Wi + iε)G+
e Ui�i = F+

ie [G+
e ]−1G+

e Ui�i

= F+
ie Ui�i = Ui�i F+

ie (QED).

Using equation (34.15a), we can now rewrite (34.12) in the form

T+
i f = 〈χ−

f e|U†
f F+

ie�
+
e |�i 〉 (34.16)

where
�+

e ≡ �+
e (E) = 1 + G+

e Ui . (34.17)

This is our starting expression for the eikonal T -matrix. Due to the linearity
of Kie, the distorted wave F+

ie associated with the potential Wi in the entrance
channel is passed from the rhs to the lhs of the Møller operator �+

e in
equation (34.16). Within the first order in 1/µi, f , equation (34.16) has both
conceptual and computational advantages over the otherwise formally equivalent
expressions (34.2) and (34.12). For example, the Green’s operator (E − H ie

0 −
V + Wi + iε)−1 from (34.15b) is flexible due to the presence of the general
distorting potential Wi . This is in sharp contrast with the corresponding resolvents
(E−H0−V+iε)−1 and (E−H ie

0 −V+iε)−1 from (34.2) and (34.12), respectively,
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where the total potential V is fixed by V = VP+VT+VPT. Moreover, in studying
the intermediate states through multiple scattering effects, one frequently inserts
the complete set of three-particle plane waves that are subjected to the operator
�+

e . The overlap integrals between these plane waves and the unperturbed states
�i are the two-centre integrals. The latter quantity can be analytically calculated
as the product of the three-dimensional δ-function and the momentum–space
representation of the initial bound-state wavefunction ϕi . Obviously, this greatly
simplifies the final evaluation of the eikonal T -matrix from (34.16). However, the
corresponding overlap involving plane waves and Coulomb distorted asymptotic
channel state �+

i encountered in (34.2) and (34.12) represents a three-centre
integral which cannot be calculated analytically. Clearly, the absence of the δ-
function in this case renders the subsequent numerical computation much more
difficult than in (34.16). We now proceed by introducing the complete set of
three-particle plane waves {|ξτ 〉} such that

〈r f s|ξτ 〉 = (2π)−3eiq·s+i p·r f (34.18a)

where index τ denotes a collective label for the pair of two intermediate momenta,
τ ≡ { p, q}. The corresponding eigenvalue equation for the plane wave |ξτ 〉 from
(34.18a) is:

(H f e
0 − Eτ )|ξτ 〉 = 0 (34.18b)

with

Eτ = Ep + Eq Ep = k2
f

2µ f
− v f · (k f + p) Eq = q2

2a
(34.18c)

and the closure relation reads:∫
dτ |ξτ 〉〈ξτ | = 1

∫
dτ ≡

∫ ∫
d p dq. (34.18d)

Using the well-known Chew–Goldberger operator identity,

1

A
= 1

B
+ 1

A
(B − A)

1

B
(34.19a)

with

1

A
= G+

e (E)
1

B
= G+

ie(Eτ ) G+
ie(Eτ ) =

1

Eτ − H ie
0 − Ui + iε

(34.19b)
we shall have, in the eikonal limit starting from equations (24.3), (34.15b) and
(34.19b),

B − A = (Eτ − H ie
0 − Ui + iε)− (E − H ie

0 − Vi − VT + Wi + iε)

= (Eτ − E)− (Ui − Vi + Wi )+ VT

= (Eτ − E)+ VT,

Copyright 2004 IOP Publishing Ltd



The reformulated impulse approximation (RIA) 275

so that

G+
e (E) = G+

ie(Eτ )+ G+
e (E)[(Eτ − E)+ VT]G+

ie(Eτ ). (34.19c)

Projecting both sides of this operator equation on the state vector, Ui |�i 〉, and
using subsequently the closure relation (34.18d) for the plane waves {|ξτ 〉}, we
obtain the result

G+
e (E)Ui |�i 〉 = {G+

e (E)
∫

dτ (Eτ − E)ζ+ie (Eτ )|ξτ 〉〈ξτ |�i 〉}
+ [1 + G+

e (E)VT]ζ+ie |�i 〉 (34.19d)

where ζ+ie is the solution of the following integral operator equation:

ζ+ie ≡ ζ+ie (E) =
∫

dτ ζ+ie (Eτ )|ξτ 〉〈ξτ | (34.20a)

and

ζ+ie (Eτ ) = �+
ie(Eτ )− 1 �+

ie(Eτ ) = 1 + G+
ie(Eτ )Ui . (34.20b)

The term Eτ − E , which is present in G+
e (E)Ui |�i 〉 from equation (34.19d)

through the corresponding integral over τ , can be eliminated using
equations (34.7d) and (34.18b) as well as

〈ξτ |Eτ = 〈ξτ |H ie
0 = 0 E |�i 〉 = (H ie

0 + VT)|�i 〉 (34.20c)

so that
(E − Eτ )〈ξτ |�i 〉 = 〈ξτ |VT|�i 〉 (34.20d)

and, therefore,
G+

e (E)Ui = ζ+ie + G+
e (E)[VT, ζ

+
ie ]. (34.21a)

Now the total Møller wave operator�+
e from equation (34.17) acquires the form

�+
e = �+

ie + G+
e (E)[VT, ζ

+
ie ] (34.21b)

where

�+
ie =

∫
dτ �+

ie(Eτ )|ξτ 〉〈ξτ | = 1 + ζ+ie (34.21c)

and the corresponding eikonal transition amplitude T+
i f from equation (34.16)

becomes

T+
i f = 〈χ−

f |U†
f F+

ie�
+
ie|�i 〉 + 〈χ−

f |U†
f F+

ie G+
e [VT, ζ

+
ie ]|�i〉. (34.22)

Next we resort to the standard impulse-type hypothesis, which consists of
neglecting the commutator [VT, ζ

+
ie ]. This does not mean that the potential

VT is weak. We simply assume that VT ≡ VT(x) is a sufficiently slowly
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varying function of the coordinate x in the part of the configuration space which
contributes dominantly to the T -matrix element. Obviously, if such an assumption
were perfectly true, i.e. if VT = constant, the commutator [VT, ζ

+
ie ] would be

identically equal to zero. Hence, within the eikonal hypothesis, the T -matrix
(34.22) is reduced to

T+
i f ≈ 〈χ−

f |U†
f |�+

ie〉 (34.23)

where
|�+

ie〉 = |F+
ie φ

+
ie〉 (34.24a)

and
|φ+ie〉 ≡ |φ+ie(E)〉 = �+

ie|�i 〉. (34.24b)

We re-emphasize that T+
i f from equation (34.23) represents an eikonal T -matrix,

which consistently neglects every term of the order of or smaller than 1/µi, f . The
same feature must also be preserved for any particular approximation to each of
the three constituents χ−

f , U f and �+
ie of equation (34.23). Next, we rewrite the

operator�+
ie in the following form:

�+
ie =

∫
dτ |φ+ie(Eτ )〉〈ξτ | (34.25)

where
|φ+ie(Eτ )〉 = �+

ie(Eτ )|ξτ 〉. (34.26)

Then applying the inverse operator {G+
ie(Eτ )}−1 to both sides of equation (34.26),

we obtain
(H ie

0 + Ui − Eτ )|φ+ie(Eτ )〉 = iε|φ+ie(Eτ )〉. (34.27)

In the limit ε −→ 0+, it follows:

(Eτ − H ie
0 − Ui )|φ+ie(Eτ )〉 = 0 (34.28)

provided that
lim
ε→0+

{iε|φ+ie(Eτ )〉} = 0 (34.29)

which holds true only for a short-range potential, Ui . In our analysis, we employ
the distorting potential Ui in the form given by equations (24.3) and (34.5a), i.e.

Ui = Vi − Wi = Vi −wi − W S
i − V∞

i

=
[

ZP

(
1

ri
− 1

s

)
+ ZP ZT

(
1

R
− 1

ri

)]
− V S

i (34.30a)

where
V S

i = wi + W S
i . (34.30b)

As mentioned before, wi is a general short-range interaction operator and W S
i

is given by (34.9a), so that the potential V S
i is obviously short range. Using
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the Taylor expansion of 1/R or 1/ri , it follows that both ZP(1/ri − 1/s)
and ZP ZT(1/R − 1/ri) behave as short-range interactions at large values of
inter-aggregate separations. Hence, Ui from (34.30a) is also a short-range
general potential operator, which guarantees that equation (34.28) possesses a
mathematically justified solution. Note that an explicit form of wi depends
upon a particular ansatz adopted for the scattering state vector |φ+ie(Eτ )〉 from
equation (34.28).

In solving equation (34.28), we need to employ the set {r f , s} of independent
variables. Appropriate potentials in these variables can be provided by simply
rewriting equation (34.30a) as:

Ui = ZP

(
1

r f
− 1

s

)
−
{

V S
i −

[
ZP ZT

(
1

R
− 1

ri

)
+ ZP

(
1

ri
− 1

r f

)]}
−→
R→∞�

(
1

R2

)
.

(34.30c)

The actual perturbation potential generating the two-centre distorted waves is
provided by the first two terms ZP(1/r f − 1/s) from equation (34.30c). These
two potentials separate the independent variables {r f , s} in equation (34.28). The
other terms from Ui , clustered in the square brackets of equation (34.30c), will be
part of the present choice for the general short-range potential V S

i . If necessary,
any other eventual short-range term can be subsequently included in V S

i in order
to solve equation (34.28) exactly with a particular selection made for φ+ie(Eτ ).
Note that potential ZP(1/ri − 1/r f ) from equation (34.30c) is also short range,
which can be easily checked by using the Taylor series expansion for 1/r f around
ri . The first term in such an expansion will be cancelled by −1/ri , whereas the
higher-order terms will be of the form 1/rn

i , with n ≥ 2. It should be recalled
here that Coleman [194] also attempted to include the multiple scattering effects
in the initial channel within the IA. However, in his so-called extended impulse
approximation (EXIA), instead of using the correct short-range potential (34.30c)
or at least ZP(1/R − 1/s) in equation (34.28) for any ZP, he considered the
Coulomb-like interaction ZP ZT/R − ZP/s, which overlooks the most important
condition (34.29), without which |φ+ie(Eτ )〉 does not exist [79]. In addition, the
final scattering wavefunction in Coleman’s model [194] is simply given by the
unperturbed state � f , which is inconsistent with the correct boundary conditions
for the general case of arbitrary nuclear charges. More recently, McCann [196]
re-derived the so-called distorted wave impulse approximation (DWIA) from a
different formalism by using the same non-existent double Coulomb wave already
encountered in Coleman’s [194] paper. Therefore, DWIA suffers from the same
drawback as EXIA. Such a status of McCann’s [196] model remains unaltered
despite the fact that DWIA uses the asymptotically correct final scattering state
of Cheshire’s [161] continuum distorted wave (CDW) theory in the entrance
channel. It is the treatment of the scattering wave in the initial channel, which
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is mathematically unsound and, consequently, the derivation of the whole model
is unsatisfactory. Here, it should be recalled that the final expression for the
T -matrix of DWIA represents a straightforward extension of a much earlier
result of McCarroll and Salin [198] from the case with ZP = ZT = 1 to
arbitrary values of the projectile and target nuclear charges. Moreover, the T -
matrix of DWIA is identical to the previously derived semi-generalized impulse
approximation (SGIA) of Gravielle and Miraglia [193]. Although two different
frameworks were employed in [196, 198], the standard and Dodd–Greider’s [93]
formalism, respectively, they both rely upon the relation E = Eτ , where Eτ from
equation (34.18c) represents the total energy of the intermediate state. However,
such a forced energy conservation law is, in general, invalid as pointed out before
in [15]. Based upon comparisons with experimental data on total cross sections,
Q, for asymmetric charge exchange, it has been concluded in [193] that the prior
SGIA or, equivalently, the prior DWIA does not lead to any improvements relative
to IA. Here the situation is somewhat improved by using the post SGIA/DWIA as
discussed in [196]. However, the differential cross sections, (d/d�)Q(DWIA)−,
for electron transfer in the H+–H collisions at Einc = 125 keV and 5 MeV
are inferior to (d/d�)Q(RIA)+ from [199] when compared to experimental data.
For example, at Einc = 125 keV, the DWIA/SGIA overestimates the measured
angular distribution in the vicinity of the forward direction and underestimates the
measured differential cross sections at larger angles, ϑc.m. ≥ 1 mrad [196], where
c.m. = centre-of-mass. In this case even an approximate IA, which is known as
the peaking IA, compares more favourably with the measurement than the DWIA
as has been reported in [196]. Moreover, using the results for (d/d�)Q(DWIA)− at
Einc = 5 MeV from [196] one could readily check that the standard IA is in much
better agreement with the experiment than the DWIA, especially in the vicinity of
the critical angle for the Thomas double scattering. Therefore, the overall status
of DWIA=SGIA should be systematically re-examined, not via comparisons with
the peaking IA as in [196], but rather with the exact IA and especially with the
RIA from [199].

The key reason for presently arriving at the correct equation (34.28) is simply
in using expression (34.16) rather than (34.2), as the starting point of the analysis.
We have already stated that the main advantage of (34.16) over (34.2) is in having
a more flexible Green’s operator (E − H ie

0 − V + Wi + iε)−1 with the general
distorting potential Wi instead of the rigid resolvent operator (E−H ie

0 −V+iε)−1.
It is precisely a convenient choice of Wi , which can assure that the difference
Vi − Wi is a short-range potential. This difference is exactly equal to Ui from
equation (34.3). However, if one starts from (34.2), then it will appear impossible
to fulfil the correct boundary condition and, at the same time, to obtain the
mathematically meaningful twofold Coulomb wave. This assertion holds true
irrespective of whether or not one is subsequently resorting to the formalism of
Dodd and Greider [93].
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Next, we look for a solution of equation (34.28) in the factorized form

|φ+ie(Eτ )〉 = C+
i |ϕ+p ϕ+q 〉 = C+

i |ϕ+p 〉|ϕ+q 〉 (34.31a)

the coordinate representation of which reads as

〈r f s|φ+ie(Eτ )〉 = 〈r f |ϕ+p 〉〈s|ϕ+q 〉. (34.31b)

The overall constant C+
i will be fixed by the normalization condition and the

correct asymptotic behaviour at large distances. The specific choices of the
wavefunctions 〈r f |ϕ+p 〉 and 〈s|ϕ+q 〉 are:

〈r f |ϕ+p 〉 = ϕ+p (r f ) = (2π)−3/2ei p·r f +iνp ln(pr f − p·r f ) (34.32a)

and

〈s|ϕ+q 〉 = ϕ+q (s) = (2π)−3/2N+(νq )eiq·s
1 F1(iνq; 1; iqs − iq · s) (34.32b)

with

N+(νq) =  (1 − iνq)eπνq/2 νq = λP/q νp = µ f λP/p λP = a ZP
(34.32c)

where 1 F1 is the confluent Kummer hypergeometric function. The Coulomb-
distorted plane wave (34.32a) and Coulomb wave (34.32b) satisfy, respectively,
the following equations:

(K f e + UP − Ep)ϕ
+
p (r f ) = 0 (34.33a)

and
(h f + VP − Eq)ϕ

+
q (s) = 0 (34.33b)

where

UP = aupWP ≈
mP→∞ upWP up = k f · p̂r f − k f · r f

pr f − p · r f
WP = ZP

r f
.

(34.33c)
Inserting (34.32a, b) into equation (34.28) will lead to

(Eτ − H ie
0 − Ui −�V S

i )φ
+
ie(Eτ ) = 0 (34.34a)

where

�V S
i = V S

i −
[

ZP ZT

(
1

R
− 1

ri

)
+ ZP

(
1

ri
− up

r f

)]
. (34.34b)

Hence, the scattering state (34.31b) will satisfy equation (34.28) exactly, if we set
�V S

i ≡ 0 which corresponds to the following choice of the short-range potential,
V S

i :

V S
i = ZP ZT

(
1

R
− 1

ri

)
+ ZP

(
1

ri
− up

r f

)
. (34.35a)

Copyright 2004 IOP Publishing Ltd



280 The reformulated impulse approximation (RIA)

The potential operator (34.35a) will be of short range provided that up is of
the order of unity, which will indeed be the case within the eikonal hypothesis.
For up ≈ 1, the interaction ZP(1/ri − up/r f ) ≈ ZP(1/ri − 1/r f ) decreases
at least as 1/r2

i as ri −→ ∞, which was mentioned earlier in connection
with equation (34.30c). Thus, using up ≈ 1 and applying the eikonal limits
consistently, R ≈ r i at mT � 1 and r f ≈ −r i at µi, f � 1, it follows from
equation (34.35a) that

V S
i ≈
µi, f →∞ 0. (34.35b)

However, we have, by definition, V S
i = wi + W S

i , as stated in equation (34.30b).
Hence, equations (34.30b) and (34.35b) yield Wi ≈ V∞

i , so that

F+
ie = g+i (34.35c)

and, therefore,

Ui ≈
µi, f →∞ ZP

(
1

r f
− 1

s

)
. (34.35d)

A further specification of the state vector |φ+ie〉 from equation (34.24b) proceeds
through the use of (34.18d) and (34.25):

|φ+ie〉 =
∫ ∫

d p dq|φ+ie(Eτ )〉〈ξτ |�i 〉. (34.36)

The overlap 〈ξτ |�i 〉 can be readily calculated with the result:

〈ξτ |�i 〉 = (2π)3δ(ki + a p + q)ϕ̃i ( p + bki ) (34.37)

where δ(κ) is the Dirac δ-function:

δ(κ) = (2π)−3
∫

dr eiκ·r = δ(−κ) (34.38a)

and f̃ (κ) is the Fourier transform of the function f (r) given by

f̃ (κ) = (2π)−3
∫

dr eiκ ·r f (r). (34.38b)

The presence of the Dirac function in (34.37) permits writing

〈ξτ |�i 〉 = (2π)3δ(ki + a p + q)ϕ̃i (−q/a − vi ) (34.38c)

since the following relation holds true exactly:

1 − ab = a

µi
= b

µ f
. (34.39)
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Furthermore, the p integral in (34.36) can be carried out by means of the δ-
function from equation (34.38c) so that

〈r f s|φ+ie〉 = C+
i

∫
dq ϕ̃i (−q/a − v)eiq·x/a−iki ·r f /a N+(νq )

× 1 F1(iνq; 1; iqs − iq · s)(qir f + qi · r f )
iζ (34.40)

where
qi = q + ki ζ = µ f λP/qi v ≡ vi . (34.41)

Thus, the initial scattering state vector (34.24a) in the RIA is given by the
expression

〈r f s|�+
ie〉 =

∫
dq ϕ̃i (−q/a − v)〈r f s|ψ+

ie 〉 (34.42)

where equation (34.35c) is used and

ψ+
ie = C+

i g+i eiq·x/a−iki ·r f /a N+(νq) 1 F1(iνq; 1; iqs − iq · s)(qir f + qi · r f )
iζ .

(34.43)
Inserting the result (34.42) into equation (34.23), we arrive at the result

T+
i f =

∫
dq ϕ̃i (−q/a − v)〈χ−

f |U†
f |ψ+

ie 〉. (34.44)

The key point now is to show that the wavefunction φ+ie from equation (34.40)
reduces to the correct asymptotic scattering state �i at large values of the inter-
aggregate distance. This must be the case, since the associated potential Ui from
equation (34.30c) is short range. The proof is facilitated by the fact that heavy
projectiles are deflected only slightly during collision due to their large mass, mP,
in comparison to the electron mass, me. This was the reason for application of the
eikonal approximation (34.9b) thus far. Moreover, such an approximation also
implies that the Fourier transforms of every function in the integrand of (34.40)
will provide a non-negligible contribution to the integral over q only for those
values of their momenta which are of the order of −aki/µi . In such a case,
substituting the expressions, q ≈ −aki/µi , and (34.39) into equation (34.41) for
qi we have

qi ≈ abki ≈
mP,T→∞ ki (34.45)

which is justified for heavy particle collisions. Thus by employing the well-
known asymptotic form of the Kummer function, it is at once seen that product
N+(νq) 1 F1(iνq; 1; iqs − iq · s) exactly cancels out the Coulomb phase factor
(bµi )

−iνP(qir f + q i · r f )
iζ at large values of �i ≡ qs − q · s. Therefore, at

q ≈ −aki/µi , we shall have ζ ≈ νP, so that

N+(νq) 1 F1(iνq; 1; iqs − iq · s)(qir f + qi · r f )
iζ −→
�i→∞(bµi)

iνP (34.46)
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where νP = λP/v. The limit in (34.46) is valid due to

N+(νq) 1 F1(iνq ; 1; iqs − iq · s)(qir f + qi · r f )
iζ

−→
�i→∞(qs − q · s)−iνq (qir f + qi · r f )

iζ

−→
µi, f →∞(bµi)

iνP(kis + ki · s)−iνP(kir f + ki · r f )
iνP

−→
r f ,s→∞(bµi )

iνP (QED)

where we have used the relation,

lim
r f ,s−→∞

ki s + ki · s
kir f + ki · r f

= 1.

With the help of (34.45), the asymptotic behaviour of φ+ie is found to be identical
to that of �i :

φ+ie −→
�i ;µi, f →∞�i . (34.47)

The asymptote (34.47) is obtained through the demonstration,

φ+ie −→
�i ;µi, f →∞

C+
i (bµi )

iνPe−iki ·r f /a
∫

dq eiq·x/aϕ̃i (−q/a − v)

= C+
i (bµi )

iνPa3eiki ·r iϕi (x) = eiki ·r iϕi (x) = �i

where the relation r f = −a(ri + x/µi ) is employed and the constant C+
i is

chosen according to

C+
i = (bµi )

−iνP
1

a3
|C+

i | = 1

a3
≈

mP→∞ 1 (34.48)

or, in the eikonal limit,

a, b ≈
mP,T→∞ 1 C+

i ≈
mP,T→∞µ

−iνP
PT µPT = mPmT

mP + mT
. (34.49)

The outlined analysis gives the correct asymptote ofψ+
ie , since equations (34.24a),

(34.35c) and (34.47) imply

�+
ie = g+i φ

+
ie −→

r f ,s→∞ g+i �i = �+
i . (34.50)

Moreover, in the eikonal limit, the total scattering state �+
ie from

equation (34.24a) is properly normalized to unity:

〈�+
ie |�+

ie〉 = 〈φ+ie|φ+ie〉 ≈
µi→∞ 1 (34.51)
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where the normalizations of the bound and continuum hydrogen-like
wavefunctions are utilized. The proof for normalization of �+

ie runs as follows:

〈�+
ie |�+

ie〉 = 〈φ+ie |φ+ie〉
=
∫ ∫

dq dq′ ϕ̃i (−q/a − v)ϕ̃∗i (−q′/a − v)〈ψ+
ie |ψ+

ie 〉

= |C+
i |2

∫ ∫
dq dq′ ϕ̃i (−q/a − v)ϕ̃∗i (−q′/a − v)

×
∫

ds ϕ+q (s)ϕ+∗q ′ (s) exp[−iqi · r f /a + iq′i · r f /a]
× exp[iζ ln(qir f + qi · r f )− iζ ′ ln(q ′

ir f + q ′
i · r f )]

≈
µi→∞ |C+

i |2
∫ ∫

dq dq′ ϕ̃i (−q/a − v)ϕ̃∗i (−q′/a − v)

×
∫

ds ϕ+q (s)ϕ
+∗
q ′ (s)

= |C+
i |2

∫ ∫
dq dq′ ϕ̃i (−q/a − v)ϕ̃∗i (−q′/a − v)δ(q′ − q)

= |C+
i |2

∫
dq |ϕ̃i (−q/a − v)|2 = |C+

i |2a3
∫

dq |ϕ̃i (q)|2

=
∫

dx |ϕi (x)|2 = 1

where we set a ≈ 1 and used the Coulomb wave normalization,

〈ϕ+q ′ |ϕ+q 〉 =
∫

ds ϕ+∗q′ (s)ϕ
+
q (s) = δ(q′ − q).

In (34.45), we employ (34.51) as well as ζ ′ = µ f λP/q ′
i and q′i ≡ q′ + ki ≈ ki .

The same proof as before for the normalization would also be valid when carried
out within the IA, except that the two logarithmic Coulomb phase factors would
be missing from the onset. In other words, due to the relation (34.45), the term
(qir f + qi · r f )

iζ plays no role in the proof of the normalization. By contrast, this
phase is of crucial importance for preservation of the exact boundary conditions of
the total scattering state in the entrance channel. Had we neglected the Coulomb
phase (qir f + qi · r f )

iζ , from the onset as customarily done in the standard IA,
we would have obtained the asymptotically incorrect scattering state ψ+

ie . We re-
emphasize that a dominant contribution to the q integral in (34.44) comes from
the region around q ≈ −av, because we are dealing with fast heavy particle
collisions as stated in (34.45). This should not be confused with the so-called
peaking approximation, which would imply that the dominant contribution to the
rhs of equation (34.44) is provided by the region around q ≈ −av, due to the
alleged largest values of the function ϕ̃i (−q/a − v) at −q/a − v = 0. That such
an argument is not valid in general, it is sufficient to note that, in fact, the Fourier
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transform ϕ̃i (−q/a − v) vanishes identically at the zero value of the vectorial
variable, q/a + v, for all the non-spherically symmetric bound states (�i �= 0).
The present equation (34.28) of the intermediate state possesses a proper solution
in terms of the product of two Coulomb waves, because we deal with scattering
involving two potentials ZP/r f and −ZP/s of the same interaction strength ZP.
Such a treatment guarantees fulfilment of condition (34.29), which is essential for
the existence of a solution of equation (34.28). For comparison, this condition is
ignored in the standard IA [193–198]. This is due to the fact that, starting from
equation (34.2), the IA uses a development for �+, which is different from the
present perturbation expansion and, subsequently, considers merely single-centre
scattering in the intermediate stage, encompassing only the Coulomb potential
VP = −ZP/s in the basic equation of the IA:(

H ie
0 − ZP

s
− Eτ

)
|φ̂+ie(Eτ )〉 = iε|φ̂+ie(Eτ )〉. (34.52)

In other words, the IA employs(
Eτ − H ie

0 + ZP

s

)
|φ̂+ie(Eτ )〉 = 0 (34.53)

instead of the correct input given by equation (34.28) but still assumes the validity
of the condition of the type (34.29):

lim
ε→0+

{iε|φ̂+ie(Eτ )〉} = 0 (34.54)

which is invalid for the Coulomb potential, VP = −ZP/s. All the previous
derivations of the IA and its variants [193–198] suffer from a common defect,
which consists of writing the solution of equation (34.52) in the form of a single
Coulomb wave |φ̂+ie(Eτ )〉 = |ϕ+q 〉. This solution is, however, non-existent,
since such a single Coulomb wave cannot satisfy the primary condition (34.29).
However, the previous extensions of the IA based upon inclusion of the two-
centre effects [194, 196] dealt with the double continuum, which does not exist
either due to the use of the overall Coulombic interaction ZP ZT/R − ZP/s in
equation (34.28) rather than the short-range potential operator Ui from (34.30c).
In addition to being free from this chief drawback, the present theoretical
framework is much more versatile, since we do not specify the exit channel at all.
In other words, various multiple scattering distorted wave models can be derived
from the main expression (34.44) by making different choices for the potential
U f , in accordance with the correct boundary conditions of the final scattering
state.

Recently, Gravielle and Miraglia [193] attempted to improve the treatment
of the exit channel by using the so-called eikonal final state, χ̃−

f =
� f exp [i(ZT/v) ln(vx + v · x)], instead of � f in the standard prior form of the
IA with the single-centre intermediate Coulomb state |φ̂+ie(Eτ )〉. Their derivation
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of the so-called eikonal impulse approximation (EIA) as well as that of SGIA
are unsatisfactory for the same reason used against the usual IA. The EIA and
SGIA disobey the correct boundary conditions in both the entrance and exit
channels for every collisional system. This is the case even for one of the simplest
H+ − (ZT, e)i charge transfers, for which the EIA employs χ̃−

f as the final
scattering state and, as such, does not preserve the exact asymptotic behaviour
of the total wavefunction, ψ−

f e. The same remarks apply to another model of
Miraglia [193] called the generalized impulse approximation (GIA), where the
scattering wavefunctions of the standard IA are used in both entrance and exit
channel. In the GIA, the initial and final scattering states are placed on a single
Coulomb centre in their respective channels and, as such, are non-existent, since
equation (34.54) does not hold true.

We shall now specify the exit channel by making only one choice of the
distorting potential U f for the purpose of illustration. Other choices have been
discussed in [199]. Let w f be selected in the form

w f = V∞
f − W D

f = −W S
f (34.55)

which yields
U f = V f − V∞

f (34.56)

so that

U f = ZP ZT

(
1

R
− 1

r f

)
− ZT

(
1

x
− 1

r f

)
. (34.57)

Using the appropriate Taylor expansions in (34.57), one can immediately see that
U f represents a short-range potential, whose leading term is 1/r2

f as r f −→ ∞.
In the consistent eikonal limit applied to the exit channel as well, we can write

U f = VT − V∞
T V∞

T = −ZT/R (34.58)

where we set r f ≈µ f →∞ R. We further require that

|χ−
f 〉 = |ϕ f F−

f 〉. (34.59)

In the limit ε −→ 0+, it follows that

(E − H f − V∞
f )|χ−

f 〉 = 0 (34.60)

which implies (
k2

f

2µ f
− K f − V∞

f

)
|F−

f 〉 = 0 (34.61)

where the eigenvalue problem (E f − h f − VP)|ϕ f 〉 = 0 from (34.7c) is
employed. The exact solution of equation (34.61) is the complete Coulomb wave
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for the relative motion of heavy scattering aggregates in the exit channel. In the
consistent eikonal limit, this solution reduces to the Coulomb phase:

F−
f ≡ F−

f (r f ) = g−f (r f ) (34.62)

where g−f (r f ) is given in equation (34.7b) and, therefore,

χ−
f = �−

f (34.63)

which is precisely the exit channel state with the correct asymptotic behaviour at
r f −→ ∞. The resulting model, which is known as the reformulated impulse
approximation (RIA) [19, 157, 199], yields the following transition amplitude
from equation (34.44):

T (RIA)+
i f =

∫
dq ϕ̃i (−q/a − v)〈�−

f |VT − V∞
T |ψ+

ie 〉. (34.64)

This can be rewritten in a compact form of the final working formula for the T -
matrix:

T (RIA)+
i f =

∫
dq ϕ̃i (−q/a − v)[�(VT)−�(V∞

T )] (34.65)

where�(Y ) ≡ 〈�−
f |Y |ψ+

ie 〉 and

�(Y ) =
∫ ∫

dr f ds ϕ∗f (s)eiκ·r f +iq·x/aMS
i f Y 1 F1(iνq ; 1; iqs − iq · s) (34.66)

with Y = VT or Y = V∞
T . Here, vector κ is a momentum transfer:

κ = ak f − ki ≈
µi, f →∞ η − (

v

2
− �E

v
)̂v �E = Ei − E f (34.67)

where η = (η, φη) is the transversal component of κ:

η = (η cosϕη, η sinϕη, 0) η · v = 0. (34.68)

The function MS
i f in equation (34.66) is a multiple scattering term defined as

MS
i f = g−∗f (qir f + qi · r f )

iζ g+i . (34.69)

This expression can be simplified by using (34.45) together with the mass limit,
mP,T � 1, to write, (qir f + qi · r f )

iζ ≈ (kir f + ki · r f )
iνP . With the help of this

latter term and exploiting further the eikonal limit, while simultaneously keeping
arbitrary values of the nuclear charges ZP and ZT, the overall phase, MS

i f , from
equation (34.69) is reduced to

MS
i f = (µPTvρ)

2iνPT(k f r f − k f · r f )
−iνT (34.70)
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where ρ is the component of the inter-nuclear vector R in the X OY plane such
that ρ · v = 0,

νPT = ZP ZT

v
(34.71)

and

(kiri − ki · r i )
iνPT(k f r f − k f · r f )

iνPT ≈
µi, f →∞(µPTvρ)

2iνPT (34.72)

with the reduced mass µPT given in equation (34.49). The differential
(d/d�)Q(RIA)+

i f and total Q(RIA)+
i f cross sections for process (34.1) in the RIA

are defined by

dQ(RIA)+
i f

d�
=
(µPT

2π

)2 |T (RIA)+
i f |2 (34.73)

and

Q(RIA)+
i f =

∫
dη

∣∣∣∣∣T
(RIA)+

i f

2πv

∣∣∣∣∣
2

. (34.74)

The common constituent of both equations (34.73) and (34.74) can be written as

|T (RIA)+
i f |2 =

∣∣∣∣ ∫ dq ϕ̃i (−q/a − v){Iη(VT; νPT, νT, v)− Iη(V
∞
T ; νPT, νT, v)}

∣∣∣∣2
(34.75)

with
Iη(Y ; νPT, νT, v) = 〈φ−f e|ρ2iνPTY |ψ+

ie 〉 (34.76)

where Y = VT or Y = V∞
T and

φ−f e = � f eiνT ln(k f r f −k f ·r f ). (34.77)

It is easy to show that the inter-nuclear phase factor ρ2iνPT disappears altogether
from equation (34.74) so that

Q(RIA)+
i f =

∫
dη

∣∣∣∣∣ R(RIA)+
i f (η)

2πv

∣∣∣∣∣
2

(34.78)

where

R(RIA)+
i f (η) =

∫
dq ϕ̃i (−q/a − v)[I+η (VT; νT, v)− I+η (V∞

T ; νT, v)] (34.79)

with I+η (Y ; νT, v) = Iη(Y ; 0, νT, v) :

I+η (Y ; νT, v) = 〈φ−f e|Y |ψ+
ie 〉 Y = VT, V∞

T . (34.80)
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This implies that in the eikonal limit the total cross section Q(RIA)+
i f is the same

with and without the inclusion of the inter-nuclear potential, VPT. However,
the inter-nuclear phase ρ2iνPT must be consistently retained in the evaluation
of the differential cross sections as done in our numerical computations with
the results presented in section 38.2. This latter term becomes dominant at
larger scattering angles, as expected from the role of the Rutherford nucleus–
nucleus scattering compared to the electron–nucleus collision. The scattering
state φ−f e from equation (34.77) can be considered as a dressed state � f in
the exit channel, where the intermediate state propagation of the electron in the
continuum is not free but rather proceeds through the accumulation of the phase
exp [iνT ln(k f r f − k f · r f )] due to the potential ZT/R = VPT − V∞

f , where
V∞

f is the asymptotic value of the perturbation potential V f at R −→ ∞, as is

clear from equation (34.5d). In addition to the extra phase, (vR + v · R)−iνT,
appearing in the total cross section Q(RIA)+

i f , the essential difference between the
RIA and the IA is in the very derivation of the main working formulae. In the
RIA, the T -matrix contains the initial and final scattering wavefunctions with
the correct asymptotic behaviours. Moreover, the RIA solves the intermediate
state eigenvalue problem (34.28) for two potentials ZP(1/r f −1/s), thus yielding
the mathematically sound double Coulomb wave |φ+ie〉 = C+

i |ϕ+p ϕ+q 〉 from
equation (34.31a). Moreover, the IA violates the proper boundary conditions in
both entrance and exit channels and makes use of the non-existent single Coulomb
wave ‘solution’ |φ̂+ie〉 = |ϕ+q 〉 of equation (34.53) by ignoring the fact that the
primary condition (34.54) for the scattering problem under study is not satisfied.
These fundamental differences are also of great numerical relevance as will
be thoroughly documented in section 38.2 which deals with explicit numerical
computations where we obtain a substantial improvement in the RIA over the IA.
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Chapter 35

An analytical calculation of the main
scattering integral

The explicit six-dimensional spatial integral I+η (Y ; νT, v) from equation (34.80)
can be rewritten in the following form which is necessary for the computation of
Q(RIA)+

i f :

I+η (Y ; νT, v) = N+(νq)

∫ ∫
dx dR eiq·x−iu·R(vR + v · R)−iνTYϕ∗f (s)

× 1 F1(iνq ; 1; iqs − iq · s) (35.1)

where
u = ak f − ki ≈ η + uz v̂ (mP,T � 1) (35.2)

and

uz = −
(
v

2
− �E

v

)
�E = Ei − E f . (35.3)

In order to carry out integrations over s and R analytically, we shall write the
target potential VT as the inverse Fourier transform:

VT(x) =
∫

d p e−i p·x ṼT( p) = − ZT

2π2

∫
d p

e−i p·x

p2
. (35.4)

By explicitly considering, e.g., the ground-to-ground state transition i(= 1s) −→
f (= 1s), we obtain

I+η (VT; νT, v) = −ZT

√
λ3

P

π

{
∂2

∂ν∂µ
J+
νλµ

}
ν=λP,λ=0,µ=0

(35.5a)

and

I+η (V∞
T ; νT, v) = −ZT

√
λ3

P

π

{
∂2

∂ν∂λ
J+
νλµ

}
ν=λP,λ=0,µ=0

(35.5b)
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where J+
νλµ ≡ J+

νλµ(0, νT, u, v) is a general three-centre bound–free form factor-
type distribution integral:

J+
νλµ = N+(νq)

∫ ∫
dR dx

e−iu·R+iq·x−νs−λx−µR

xs R
(vR + v · R)−iνT

× 1 F1(iνq; 1; iqs − iq · s). (35.6)

The calculation of J+
νλµ will be carried out by employing the following integral

representation for the logarithmic Coulomb phase factors (vR + v · R)−iνT :

(vR + v · R)−iνT = −� (νT)

2π i

∫ (0+,∞+)

C1

dt1 (−t1)
iνT−1e−i(vR+v·R)t1 (35.7)

where
� (νT) =  (1 − iνT)e−πνT/2. (35.8)

The label C1 in (35.7) represents an open contour encircling counterclockwise
(positive direction) the branch point singularity at t1 = 0. There is a
branch cut along the positive real axis in the complex t1-plane connected with
equation (35.7). The confluent hypergeometric function 1 F1(iνq , 1, iqs − iq · s)
from (35.1) will also be expressed through the contour integral:

1 F1(iνq ; 1; iqs− iq · s) = 1

2π i

∮ (0+,1+)

C2

dt2 t
iνq−1
2 (t2−1)−iνq eit2(qs−q·s). (35.9)

The contour C2 in equation (35.9) is closed and encircles, in the positive direction,
the two branch point singularities at t2 = 0 and t2 = 1. In connection with
equation (35.9), the complex t2-plane possesses a branch cut along the segment
from 0 to 1 on the positive part of the real axis. Furthermore, at the point where
the contour crosses the real axis to the right-hand side of t2 = 1, we have
arg t2 = 0 = arg(1 − t2). With the help of equations (35.6), (35.7) and (35.9),
the six-dimensional integral over x and R in equation (35.6) can be reduced to a
one-dimensional quadrature to be done numerically. To this end, we first express
equation (35.6) as:

J+
νλµ = − 4π2λT

b

(
λP

π

)3/2 N+(νq)

2π i

� (νT)

2π i

∫ (0+,∞+)

C1

dt1

×
∮ (0+,1+)

C2

dt2�
+
νλµ(t1, t2) (35.10)

with λT = bZT, where �+
νλµ(t1, t2) is the Feynman–Dalitz–Lewis integral,

�+
νλµ(t1, t2) = 2

π

∫
d p

1

p2(| p − p1|2 + λ2
1)(| p − p2|2 + λ2

2)
(35.11a)
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and

p1 = q − u − t1v λ1 = µ+ ivt1 p2 = (1 − t2)q λ2 = ν − iqt2.
(35.11b)

The result for the integral (35.11a) can be obtained in a closed form which
is, however, inconvenient for our further analysis. Instead, we shall utilize an
intermediate integral representation for �+

νλµ(t1, t2), which is available from,
e.g., [201] in the form

�+
νλµ(t1, t2) = 2π2

∫ ∞

0
dt

1

A′t2 + 2B ′t + C ′ (35.12a)

where

A′ = | p1 − p2|2 + (λ1 + λ2)
2 B ′ = λ2(p2

1 + λ2
1)+ λ1(p2

2 + λ2
2)

C ′ = (p2
1 + λ2

1)(p2
2 + λ2

2). (35.12b)

Alternatively, the result (35.12a) can be rewritten as

�+
νλµ(t1, t2) = −2π

∫ ∞

0
dt

1

(δ − β)t1t2 + βt1 + (α − γ )t2 − α
(35.13a)

where

α = b4t + 1
2 (c4 + a4t2) β = b1t + 1

2 (c1 − a1t2) (35.13b)

γ = b2t − 1

2
(c2 + a2t2)+ α δ = b3t − 1

2 (c3 − a3t2)+ β (35.13c)

with

a1 = 2(u · v + ivνµ) a2 = 2(q · u + iqνµ) (35.14a)

a3 = 2(q · v − qv) a4 = α2 + ν2
µ (35.14b)

b1 = ν(2qα · v − 2iµv − iνv) − ivq2 b2 = iq(2iµq − q2
α − µ2 − 2νµ)

(35.15a)

b3 = 2q(iqv − νv − µv − iqα · v) b4 = ν(q2
α + µ2)+ µ(q2 + ν2)

(35.15b)

c1 = 2(ν2 + q2)(qα · v − iµv) c2 = 2q(q + iν)(q2
α + µ2) (35.16a)

c3 = 4q(q + iν)(qα · v − iµv) c4 = (ν2 + q2)(q2
α + µ2) (35.16b)

qα = q − u νµ = ν + µ. (35.16c)

Having accomplished this step, we can write equation (35.10) as follows:

J+
νλµ = −4(πλ3

P)
1/2
∫ ∞

0
dt +

νλµ(t) (35.17a)
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where

+
νλµ(t) = 2π

N+(νq)

2π i

� (νT)

2π i

∫ (0+,∞+)

C1

dt1

×
∮ (0+,1+)

C2

dt2
(−t1)iνT−1t

iνq−1
2 (t2 − 1)−iνq

(δ − β)t1t2 + βt1 + (α − γ )t2 − α
. (35.17b)

Here, we first carry out the integral over t1. To this end, we shall write the
denominator in (35.17b) as

(δ − β)t1t2 + βt1 + (α − γ )t2 − α = [(δ − β)t2 + β](t1 − τ1) (35.18a)

where τ1 is a simple pole given by

τ1 = α + (γ − α)t2
β + (δ − β)t2

. (35.18b)

Then the entire integrand of the t1 integral is of the form (−t1)iνT−1/(t1 − τ1) ≡
f (t1), so that∫ (0+,∞+)

C1

dt1
(−t1)iνT−1

t1 − τ1
= − 2π i(−τ1)

iνT−1

= 2π ieπνT[α + (γ − α)t2]iνT−1[(δ − β)t2 + β]1−iνT.

(35.18c)

Before arriving to the first equality in (35.18c), we replaced the original open
contour C1 by the new closed contour C ′

1, which encircles clockwise the simple
pole τ1. Such a procedure is justified on the grounds that the t1 integrand is a
single-valued function, which behaves asymptotically like �(1/t2

1 ) as t1 −→
+∞. This step is afterwards followed by application of the Cauchy residue
theorem in stating that the lhs of (35.18c) is equal to −2π i Res{ f (t1)}t1=τ1 . The
minus sign comes from the use of contour C ′

1 whose sign is opposite to the one
for C1. Inserting the rhs of the second equality from (35.18c) into (35.17b) and
changing the variable in the remaining t2 integral according to t2 −→ 1/t2, we
arrive at

+
νλµ(t) = 2πN+(νT)

N+(νq)

2π i

∮ (t+α ,t+β )

C ′
2

dt2 (1 − t2)
−iνq

× (αt2 + γ − α)iνT−1(δ − β + βt2)
−iνT (35.19a)

where N+(νT) =  (1 − iνT) exp (iπνT/2). Here, C ′
2 is the new contour which

excludes the point t2 = 1 and encloses the two singularities at t2 = tα , t2 = tβ in
the positive sense (counterclockwise), with tα = (α − γ )/α and tβ = (β − δ)/β.
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The integral over t2 in (35.19a) can be evaluated by making one more change of
variable t2 −→ τ such as 1 − t2 = γ (1 − τ )/α, so that

+
νλµ(t) =

2π

α
N+(νT)

N+(νq )

2π i

(
α

β

)iνT
(
α

γ

)iνq

×
∮ (0+,z+)

C
dτ τ iνq−1(1 − τ )−iνT(τ − z)−iνq (35.19b)

where contour C encircles two singularities at τ = 0 and τ = z, with

z = 1 − αδ

βγ
. (35.19c)

Finally, employing the well-known integral representation for the hypergeometric
Gauss function 2 F1 [202]:

2 F1(a, b; c; x) =  (c) (b − c + 1)

2π i (b)

∮ (0+,z+)

C
dτ τ a−c(1 − τ )c−b−1(τ − z)−a

(35.20a)
we derive the following result:

+
νλµ(t) =

2π

α
N+(νq)N

+(νT)

(
α

β

)iνT
(
α

γ

)iνq

2 F1(iνT, iνq ; 1; z). (35.20b)

With this expression at hand, the result for the auxiliary integral J+
νλµ is obtained

directly from equation (35.17a). After carrying out the partial differentiation as
indicated in, e.g., equation (35.5a) and letting ν = λP, λ = 0 and µ = 0, we
arrive at the final result for I+η (VT; νT, v) in the form

I+η (VT; νT, v) = −8

b
λT(πλP)

3/2 N+(νq )N
+(νT)

∫ ∞

0
dt �+

η (q, t) (35.21)

where
�+
η (q, t) = ξ(ζ0�

+
0 + ζ1�

+
1 + ζ2�

+
2 ) (35.22)

and

�+n = (iνT)n(iνq)n

n! 2 F1(n + iνT; n + iνq; n + 1; z) (35.23)

with (u)n being the Pochhammer symbol or, equivalently, the raising factorial

(u)n =  (u + n)

 (u)
= u(u + 1)(u + 2) · · · (u + n − 1) (u)0 = 1. (35.24)

The argument z of the function 2 F1 in (35.23) is given in equation (35.19c)
where parameters α, β, γ and δ retain the same form as in (35.13b) and (35.13c).
However, the quantities an , bn and cn for n = 1–4 from (35.14a)–(35.16b) will
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acquire particular values for ν = λP, λ = 0 and µ = 0. Nevertheless, for
simplicity, we shall retain the same labels as before:

a1 = 2(u · v + iλPv) a2 = 2(q · u + iλPq)

a3 = 2(q · v − qv) a4 = α2 + λ2
P

(35.25)

b1 = λP(2qα · v − iλPv)− ivq2 b2 = −iqq2
α

b3 = 2q(iqv − λPv − iqα · v) b4 = λPq2
α

(35.26)

c1 = 2(q2 + λ2
P)qα · v c2 = 2q(q + iλP)q2

α

c3 = 4q(q + iλP)qα · v c4 = (q2 + λ2
P)q

2
α

(35.27)

with

ξ = 1

α

(
α

β

)iνT
(
α

γ

)iνq

(35.28)

where vector qα is defined in equation (35.16c). The quantities, ζk (k = 0, 1, 2),
appearing in equation (35.22) are given by

ζ0 = ω + ω′ + ω′′ ζ1 = ρ′ + ω′z′′ + z′ω′′ ζ2 = z′z′′ (35.29)

where

ω′ = (iζ ′ − 1)ρ′α − iνTρ
′
β − iνqρ

′
γ ω′′ = (iζ ′ − 1)ρ′′α − iνTρ

′′
β − iνqρ

′′
γ

(35.30)

ω = (iζ ′ − 1)(Aα − ρ′αρ′′α − iνT(Bβ − ρ′βρ′′β)− iνq (Cγ − ρ′γ ρ′′γ ) (35.31)

ρ′α = α′/α ρ′β = β ′/β ρ′γ = γ ′/γ ρ′δ = δ′/δ (35.32a)

ρ′′α = α′′/α ρ′′β = β ′′/β ρ′′γ = γ ′′/γ ρ′′δ = δ′′/δ (35.32b)

Aα = A/α Bβ = B/β Cγ = C/γ Dδ = D/δ (35.33a)

A = (2λP + t)t B = −2iv(λP + t) C = A − 2iqt D = B − 2qv
(35.33b)

with ζ ′ = νT + νP and,

ρ′ = (ρ′α − ρ′β − ρ′γ + ρ′δ)z′′

+ (Aα − Bβ − Cγ + Dδ − ρ′αρ′′α + ρ′βρ′′β + ρ′γ ρ′′γ − ρ′δρ′′δ )(z − 1)
(35.34)

z′ = (ρ′α − ρ′β − ρ′γ + ρ′δ)(z − 1) z′′ = (ρ′′α − ρ′′β − ρ′′γ + ρ′′δ )(z − 1)
(35.35)

α′ = q2
α t + λP(q

2
α + t2) β ′ = 2λPqα · v + 2(qα · v − iλPv)t − ivt2

(35.36a)

γ ′ = α′ − iq(q2
α + t2) δ′ = β ′ − 2q(vt + iqα · v) (35.36b)

α′′ = (q2 + λ2
P + λPt)t β ′′ = −iv(t2 + 2λPt + q2 + λ2

P) (35.37a)

γ ′′ = α′′ + iqt (2iq − 2λP − t) δ′′ = β ′′ − 2qv(t − iq + λP). (35.37b)
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In the calculation of the differential cross section, (d/d�)Q(RIA)+
i f , in the general

case with arbitrary nuclear charges ZP and ZT all the phases due to the relative
motion of nuclei must be taken into account. In particular, this amounts to
the evaluation of the matrix element, Iη(VT; νPT, νT, v), from equation (34.76)
for some fixed non-zero values of the parameter νPT. The situation simplifies
considerably for protons as projectiles, that will be the subject of our illustrations
in section 38.2. In this case, we have ZP = 1, so that the net effect of the
overall relative motion of the nuclei is the survival of only one Coulombic phase
according to the transformation:

(µPTvρ)
2iνPT(k f r f − k f · r f )

−iνT = (kiri − ki · r i )
iνT (35.38)

where equation (34.72) is used. Therefore, ignoring the unimportant constant
phase factor, (µPTv)

−iνT , we can write the T -matrix T (RIA)+
i f as

T (RIA)+
i f (η) = − ZT

√
λ3

P

π

∫
dq ϕ̃i (−q/a − v)

×
{(

∂2

∂ν∂µ
− ∂2

∂ν∂λ

)
K+
νλµ

}
ν=λP,λ=0,µ=0

(35.39)

where K+
νλµ ≡ K+

νλµ(0, νT, u, v) and

K+
νλµ(0, νT, u, v) = J+

νλµ(0,−νT, u,−v). (35.40)

Here, it is understood that during the calculation of integral J+
νλµ(0, νT, u, v)

from (35.6), the vector parameter u is kept independent of the incident velocity
v. The calculation of I+η (V∞

T , νT, v) from equation (35.5b) could proceed in
an entirely similar fashion as with I+η (VT, νT, v). Nevertheless, there is no
need to do this, since it can be easily shown that in the eikonal limit, the
contribution of I+η (V∞

T , νT, v) to T (RIA)+
i f (η) or R(RIA)+

i f (η) is exactly zero due
to the orthogonality of the hydrogen-like bound and continuum wavefunctions
for the potential VP = −ZP/s. Therefore, all our numerical results presented in
section 38.2 will be obtained by using only the contribution from I+η (VT, νT, v)

for both (d/d�)Q(RIA)+
i f and Q(RIA)+

i f .
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Chapter 36

Correlated electronic dynamics at all
energies

Thus far we were concerned with a purely three-body problem (34.1). In
this and subsequent chapters, we shall widen our focus to encompass certain
leading aspects of four-body problems dealing with bound–bound and bound–free
transitions. The present chapter will be confined to two such selected problems
that include fast protons scattered on a helium target. First we shall discuss single
capture (SC),

H+ + He(1s2) −→ H(1s)+ He+(1s) (36.1)

and then transfer ionization (TI),

H+ + He(1s2) −→ H(1s)+ He+(1s)+ e. (36.2)

In both processes, (36.1) and (36.2), we shall mention the important issue
of the so-called dynamic inter-electron correlation effects from low through
intermediate to high impact energies. Recently, this phenomenon has been studied
theoretically in [128] where the CDW approximation has been extended to four-
body problems and acronymed as CDW-4B. We shall use the same notation,
CDW, as in the three-body case, since indeed there is no risk for confusion.
In analogy with (34.1), we shall give the main working expressions for a more
general type of these processes,

ZP + (ZT; e1, e2)i −→ (ZP, e1) f1 + (ZT, e) f2 (36.3)

and
ZP + (ZT; e1, e2)i −→ (ZP, e1) f1 + ZT + e2. (36.4)

Let the inter-nuclear and inter-electronic distances be denoted by R and x12,
respectively. Furthermore, the distances between the j th electron and the nuclei
ZP and ZT will be denoted by s j and x j ( j = 1, 2), respectively. Note that a post–
prior discrepancy exists for processes (36.3) and (36.4) due to the unavailability of
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the exact wavefunctions for two-electron systems. The post form of the T -matrix
is far more important to study, since it contains the electron–electron interaction,
V12 = 1/x12, in the perturbation potential V f in the exit channel. The final
expressions describing the differential and total cross sections for process (36.3)
in the post form, Q(CDW)+

i f , of the four-body CDW approximation are [128]:

dQ(CDW)+
i f

d�
=
(µPT

2π

)2 |T (CDW)+
i f (η)|2 (36.5a)

and

Q(CDW)+
i f =

∫
dη

∣∣∣∣∣ R(CDW)+
i f (η)

2πv

∣∣∣∣∣
2

(36.5b)

where η is the same transverse momentum transfer which we used before in
equation (34.68), such that η ·v = 0. The integral R(CDW)+

i f (η) in equation (36.5b)
is defined by the following matrix element:

R(CDW)+
i f (η) = �

∫ ∫ ∫
dR ds1 ds2 eiq f ·s1+iq i ·x1ϕi (x1, x2)ϕ

∗
f2
(x2)

× 1 F1(iνP; 1; ivs1 + iv · s1)V f ϕ
∗
f1
(s1)

× 1 F1(iνT; 1; ivx1 + iv · x1) (36.6)

where V f is the complete post perturbation potential operator,

V f = �VP2 +�V12 − ∇s1 ln ϕ∗f1
(s1) · ∇x1 (36.7)

with

�VP2 = ZP

(
1

R
− 1

s2

)
�V12 = 1

x12
− 1

x1
. (36.8)

As before, the symbol 1 F1 in equation (36.6) denotes the confluent
hypergeometric Kummer function, whereas ϕi and ϕ f j ( j = 1, 2) are the initial

and final bound-state wavefunctions, respectively. The quantity� in R(CDW)+
i f (η)

is given by

� = N+(νP)N
−∗(νT) N±(νK ) =  (1 ∓ iνK )e

πνK /2 (K ≡ P,T)
(36.9)

where N±(νK ) is the standard normalization Coulomb constant with the
Sommerfeld parameter νK , which is equal to νP = ZP/v and νT = (ZT − 1)/v.
The two momentum transfers qi and q f in equation (36.6) are defined as

qi = η −
(
v

2
− �E

v

)
v̂ q f = −η −

(
v

2
+ �E

v

)
v̂

�E = Ei − (E f1 + E f2) (36.10)
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where Ei and E f1,2 are the initial (helium) and final (hydrogenic) binding
energies, respectively. The e1–e2 potential is a constituent part of the interaction
potential V f , since V12 emerges in the definition of the exit channel perturbation
through the difference between the total interaction V = ZP ZT/R − ZP/s1 −
ZP/s2 − ZT/x1 − ZT/x2+1/x12 and the binding potentials in the non-interacting
hydrogenic atomic systems (ZP, e1) f1 and (ZT, e2) f2 . The residual potential
1/x1, featuring as the limiting value of V12 at infinitely large x1 and finite x2, also
enters the expression for V f from equations (36.7) and (36.8). This is because
at infinitely large x1, the ‘active’ electron e1 from (ZP, e1) f1 cannot discern
the individual constituents in (ZT, e2) f2 which is, therefore, conceived as the
net point charge ZT − 1. In order to account for this correct screened nuclear
charge, the genuine potential VT1 = −ZT/x1 is written as −ZT/x1 ≡ −(ZT −
1)/x1 − 1/x1. Here, the term −(ZT − 1)/x1 is used to produce the distortion
 (1 + iνT)eπνT/2

1 F1(iνT; 1; ivx1 + iv · x1) with νT = (ZT − 1)/v, whereas
the potential 1/x1 is joined together with V12 to yield �V12 in equation (36.8).
For the two-electron initial state, ϕi , we employ the configuration interaction (CI)
wavefunction (1s1s′) of Silverman et al [203]:

ϕi (x1, x2) = Nab

π
(e−ax1−bx2 + e−bx1−ax2) (36.11)

where N−2
ab = 2[(ab)−3 + (a/2 + b/2)−6]. Despite its extreme simplicity,

the open-shell orbital of the helium ground-state wavefunction (36.11) includes
the radial correlations to within approximately 95%. The illustrations of the
results obtained for (d/d�)Q(CDW)+

i f and Q(CDW)+
i f for the process (36.1) will be

discussed in section 38.2 with the emphasis on the role of the dynamic electron
correlations.

The derivation of the T -matrix for the TI process, (36.2), in the four-body
version of the CDW approximation has been carried out in [185]. The final result
can also be obtained directly from equation (36.6) through replacement of the
bound-state wavefunction, ϕ f2(x2), by the corresponding Coulomb wave. In the
case of the total cross section, the same formula (36.5b) for SC can also be used
for TI provided that R(CDW)+

i f (η) is redefined as stated above so that:

R(CDW)+
i f (η) =�

∫ ∫ ∫
dR ds1 ds2 eiq f ·s1+iq i ·x1−iκ ·x2ϕi (x1, x2)

× 1 F1(iνP, 1, ivs1 + iv · s1)

× 1 F1(iζ, 1, ipx2 + i p · x2)V f ϕ
∗
f1
(s1)

× 1 F1(iνT, 1, ivx1 + iv · x1) (36.12)

where κ is the ejected electron momentum relative to the target nucleus. Here, the
constant� reads as:

� = (2π)−3/2 N+(νP)N
−∗(νT)N

−∗(ζ ) (36.13)
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where N−(νK ) (K ≡ P,T) is given in equation (36.9) and, furthermore,

N−(ζ ) =  (1 + iζ )eπζ/2 ζ = ZP

p
p = κ + v. (36.14)

The momentum transfers qi and q f are of the same form as in equation (36.10)
provided that the energy difference �E is redefined according to: �E = Ei −
(E f1 + Eκ) where Eκ is the ejected electron energy, Eκ = κ2/2. In the explicit
calculations, the initial bound-state wavefunction ϕi (x1, x2) is chosen in the one-
parameter form given by Hylleraas [202]:

ϕi (x1, x2) = N2
effe

−Zeff(x1+x2) (36.15)

where Neff = (Z3
eff/π)

1/2. After detailed calculations using the expression

(36.12), the total cross section Q(CDW)+
i f for process (36.4) is reduced to a seven-

dimensional numerical quadrature that is carried out by three different methods
with the same result to be discussed in section 38.1. An illustration of the
dynamic electronic correlations for TI in proton–helium collisions will be given
in section 38.2.
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Correct links between scattered waves and
transition operator potentials

The subject of the preceding chapter will now be extended to single-electron
detachment by protons from a negative hydrogen ion:

H+ + H−(1s2) −→ H+ + H(1s)+ e (37.1)

where we intend to emphasize the key role of a proper connection between the
distorted wave scattering functions and the associated distorting potential. In
process (37.1) we are interested in devising a theory for electron detachment
valid from the threshold to the high Bethe limit of large velocities v ≡ vinc.
A theoretical treatment, called the eikonal Coulomb–Born (ECB) model, has
been introduced for (37.1) in [172] three decades ago, in 1973. From the
onset, the ECB approximation differs from the proper plane-wave Born (PWB)
method by inclusion of the long-range Coulombic effects between the active
electron and the proton in both the entrance and exit channels through the
distorted waves χ+

i and χ−
f . However, in the original derivation of the ECB,

certain additional approximations have been made in [172] so that the following
transition amplitude is obtained in the final form:

T (ECB)−
i f = 〈χ−

f |VECB|χ+
i 〉. (37.2)

Here, the potential, VECB = VP = −1/s1, as the Coulomb interaction VP
between the incident proton and the electron to be ejected (e1), represents the
only perturbation causing the transition in (37.1). In the ECB model, the ansatz
for the distorted wave scattering state χ+

i in the entrance channel is given by

χ+
i = �i gν(s1) (37.3)

with ν = 1/v. The wavefunction�i is the unperturbed state

�i = ϕi (x1, x2)eiki ·r i (37.4)
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and the quantity gν(s1) is the logarithmic Coulomb phase factor

gν(s1) = e−iν ln(vs1+v·s1) (37.5)

which describes an asymptotic continuum state of e1 in the field of the incident
proton. Let vector κ be the ejected electron momentum with respect to the target
proton. Then, the final scattering state χ−

f takes the form:

χ−
f = � f eπζ/2 (1 + iζ ) 1 F1(−iζ ; 1; −ips1 − i p · s1) p = κ − v (37.6)

where ζ = 1/p and

� f = (2π)−3/2ϕ f (x2)eik f ·r i+iκ ·x1 . (37.7)

The corresponding prior ‘plane wave Born’ (PWB#) approximation from [172]
follows from the ECB model by setting ν = 0 and ζ = 0:

T (PWB#)−
i f = 〈� f |VECB|�i 〉. (37.8)

Here, the superscript # associated with the acronym PWB# indicates that the so-
called ‘plane wave Born’ model used in the analytical and numerical calculations
in [172] is different from the standard PWB approximation which reads as:

T (PWB)−
i f = 〈� f |�VP1+�VP2|�i 〉 �VP j = 1

R
− 1

s j
( j = 1, 2). (37.9)

Due to the predominance of forward scattering of projectiles, the perturbation
�VP2 can be ignored in all cross sections that are integrated over the transverse
momentum transfer, η. Of importance is that both potentials�VP j ( j = 1, 2) are
short range and so is their sum. This latter sum appears in the PWB method (37.9)
as the total perturbation interaction, which produces the transition i −→ f in
process (37.1). By contrast, in the PWB# model in [172], the transition potential
operator, VECB = VP1 = −1/s1, is a long-range Coulomb interaction. This
is unacceptable from the correct scattering theory viewpoint [7], as Coulombic
potentials do not vanish even in the asymptotic region, so that the channel states
will remain perturbed at all distances. Hence, the PWB# model cannot represent
the proper PWB approximation for process (37.1), so that PWB# �=PWB. As a
direct consequence of using the Coulombic transition potential, VECB, it has been
found in [172] that PWB# gives a constant at large incident velocities v ≡ vinc
rather than to the correct Born–Bethe limit v−2 ln(v2) of the usual PWB method.
In fact, [172] was mislead by the good agreement obtained between PWB# and
ECB models at high energies. The crux of the matter is that the PWB# method
itself is unphysical, since it does not yield the Born–Bethe asymptotic behaviour.
By implication, the ECB model from [172] suffers from the same defect as will
be further illuminated in section 38.2. The potential VECB in equation (37.2)
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is associated with the asymptotic channel state �i . However, any distortion of
�i by the interaction between the projectile and e1 must be compensated by
an appropriate modification of VECB in T (ECB)−

i f . In other words, the integral

〈χ−
f |VECB|χ+

i 〉 in equation (37.2) does not represent a genuine T -matrix, which
is instead given by

T−
i f = 〈χ−

f |ξ+i 〉 (37.10)

with
|ξ+i 〉 = (H − E)|χ+

i 〉 (37.11)

where, as usual, H and E are the total Hamiltonian and the complete energy of
the whole system, respectively. In particular, the replacement of �i by �i gν(s1)

in the T -matrix 〈χ−
f |VECB|�i 〉 from equation (37.2) must simultaneously be

accompanied by changing VECB to VMCB with

VMCB = V ′
ECB +�V2 V ′

MCB = VECB − VD − ∇x1 ln ϕi · ∇s1 (37.12)

where �V2 = 1/R − 1/s2 is the perturbation from the passive electron, e2 and

VD =
(

1 + ν

vs1 + v · s1

)
VECB. (37.13)

Here, the acronym MCB stands for the modified Coulomb approximation
introduced in [175], whereas the suffix D in (37.12) and (37.13) is used merely to
indicate VD is a distorting potential. It is clear from equation (37.12) that the first
term of VD cancels the potential VECB so that

V ′
MCB = − ν

vs1 + v · s1
VECB − ∇x1 lnϕi · ∇s1 . (37.14)

Hence, a proper revision of the entrance channel would result in changing the
previous T (ECB)−

i f from equation (37.2) to the MCB model as in [175] whose
prior T -matrix is given by

T (MCB)−
i f = 〈χ−

f |V ′
MCB +�V2|χ+

i 〉 (37.15)

where

V ′
MCBχ

+
i = ν

eiki ·ri

s1
(vs1+v · s1)

−iν−1[1+ i(vs1+vs1) ·∇1]ϕi (x1, x2). (37.16)

As they stand, equations (37.2) and (37.8) neglect a contribution from the
perturbation �VP2 = 1/R − 1/s2, which is small for every cross section
integrated over η and, under the same circumstance, this potential can also be
dropped from equations (37.9) and (37.15) as mentioned before. Then neglecting
�V2 in equation (37.15), the remaining matrix element containing only the
potential operator, V ′

MCB, in the transition amplitude, T (MCB)−
i f , can be evaluated
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analytically without any difficulties, by using, e.g., the standard real integral
representations [202] for the Coulomb phase function (vs1+v·s1)

−iν−1. A similar
analysis carried out with the post form of the transition amplitude, T (MCB)+

i f ,
yields the final result [175]:

T (MCB)+
i f = 〈χ−

f |�V12 +�V2|χ+
i 〉 (37.17)

where �V12 = 1/x12 − 1/x1. A related model known as the CDW-eikonal initial
state (CDW-EIS) approximation [153] was originally been formulated using
the post form of the T -matrix, T (CDW−EIS)+

i f . This latter transition amplitude

coincides with T (MCB)+
i f from equation (37.17), provided that one neglects

perturbation �V2 in the MCB method. It has been shown in [175] that the post
and prior forms of the MCB method are in excellent agreement with each other
by using the two-parameter target wavefunction, ϕi (x1, x2), of Silverman et al
[203] from equation (36.11). This is a very satisfactory feature of the MCB
approximation.
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Chapter 38

Illustrations

We shall present this chapter in a stratified way by dividing it into two sections:
one which deals with the computational methods and the other which is concerned
with the collision physics problems.

38.1 Computational methods

The key mathematical problem in many advanced perturbation theories for
scattering phenomena is the numerical evaluation of multi-dimensional integrals
(quadratures). Presently we encounter such integrals of dimensions ranging from
one (1D) to thirteen (13D). The central input to the integrands of these complex
integrals in the RIA is the triple of the hypergeometric functions featuring in
equations (35.22) and (35.23). After performing the partial differentiation in
equation (35.5a), the Gauss hypergeometric functions 2 F1(n + iνT, n + iνq ; n +
1; z) with n = 1, 2, 3 are obtained in equation (35.23) with the complex
argument z = 1 − αδ/(βγ ), such that both cases |z| > 1 and |z| ≤ 1 are
encountered along the multiple integration domain. All the computations are
performed in double precision. Very efficient and highly accurate algorithms
are devised by utilizing a number of formulae for the analytical continuations
of 2 F1 including the special case νq = νT. All the integrals encountered not only
in the RIA and the IA but also in the CB2/B2B and the CDW approximations
are presently computed by means of both deterministic and stochastic methods.
For example, 4D and 5D quadratures over the variables, {q = (q, ϑ, ϕ), t}, and
{q = (q, ϑ, ϕ), t, η} are encountered in the differential (d/d�)Q(RIA)+

i f and total

Q(RIA)+
i f cross sections, respectively. As a feasibility study, the total cross sections

Q(RIA)+
i f have alternatively been computed through a 13D quadrature using a

highly accurate stochastic method. This illustration opens up an entirely novel
avenue for perturbation theories that have thus far been severely hampered by the
lack of reliable methods for precise evaluations of multi-dimensional integrals.
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38.1.1 Deterministic methods

All the present illustrations involve only ground states of bound atomic systems in
both the entrance and exit channels of every considered process. In such a case,
each integral over the azimuthal angle of the vector η is done analytically with
a result which equals 2π . Within deterministic techniques with well-controlled
errors, we use two completely different and independent algorithms: (i) classical
numerical Gauss-type quadrature rules, such as the Gauss–Mehler (ϕ), Gauss–
Legendre (ϑ) and Gauss–Laguerre integrations (q, t) with varying numbers of
integration points, {(q j , ϑ j , ϕ j ), t j , η j }; and (ii) an alternative algorithm called
the fast Padé transform (FPT) [200], based upon the Riemann partial sums from
the trapezoidal-type quadrature rule, which is subsequently accelerated by means
of the Wynn ε-recursive algorithm [204]. The present computations within the
RIA, IA, CB2 and CDW at all studied energies are carried out until convergence is
reached within a prescribed number of decimal places. In practice, for the purpose
of obtaining both differential and total cross sections, two decimal places are
largely sufficient. This is not only because of a predominantly graphical display of
the results but also because the employed theories are of the eikonal type, which is
fully justified for heavy particles that mainly scatter in the forward direction. This
means that the cross sections of such theories will be self-consistent only if they
are numerically computed through discarding every term of the order of or smaller
than 1/µPT ≤ 5× 10−4, where µPT from equation (34.49) is the reduced mass of
the heavy projectile and target nuclei. Hence, achieving two decimals in dQi f /d�
and Qi f appears as satisfactory for the purpose of comparisons among various
theories and experimental data. Nevertheless, when it comes to the FPT aimed
at certain general applications with no reference to the present context of atomic
physics theories (e.g. signal/image processing), the number of desired decimal
places can be considerably extended so that, in principle, the final results could
reach machine accuracy, as will be demonstrated here in the case of 1D, 2D and
3D numerical quadratures (see also [200]).

The classical quadrature rules of Gaussian type are standard and need not
be described in any detail. Nevertheless, we should emphasize a very important
point regarding the Gauss–Laguerre rule for the q, t integrals in dQ/d� and Q.
This latter quadrature rule normally applies to integrals with limits from zero to
infinity and it gives very good results for integrands that decline exponentially, as
do the Laguerre polynomials themselves. However, even under these favourable
conditions of the integrand, the Gauss–Laguerre rule can fail badly if the order
of integration is increased without simultaneously scaling the integration points,
say {q j , t j }, for their relocation within the range of the maximum values of the
integrand. An illustration of this feature can be found in, e.g., a recent study of the
electron struggling within the Vavilov probability distribution function in particle
transport physics [205]. This is because an increased order of the Gauss–Laguerre
rule also augments the upper integration limit and, hence, samples the function
with nearly the same rate throughout the integration range. Obviously this is not

Copyright 2004 IOP Publishing Ltd



306 Illustrations

acceptable for integrands that decrease exponentially, as too many points at the tail
of the functions would be sampled with a nearly zero contribution to the integral,
whereas a relatively small number of the pivots would remain in the vicinity where
the integrand peaks. This obstacle can readily be circumvented by scaling the
integration variables {q j , t j } according to, {q j , t j } −→ {q j/ q , t j/ t }. Here,
the parameters  q,t are real positive numbers that vary with the order of the
quadrature in such a way that the majority of the integration pivots is concentrated
in the region which gives the maximum contribution to the integral. This is the
main feature of the so-called importance sampling, which could be significantly
improved by using adaptive iterations in a fashion similar to that in the Monte
Carlo code VEGAS which will be discussed later on.

Next we describe implementation of the multi-dimensional FPT which has
recently been introduced in [200]. The starting point of the FPT is the definition
of a multi-dimensional Fourier integral of a function weighted with a complex
multi-variate exponential. For simplicity and clarity of the presentation, we shall
give the analysis in the 3D case and the extension of the main working expression
to an arbitrary number of dimensions can be accomplished automatically with no
additional effort. Let such a 3D spatial two-sided Fourier integral be denoted by
S(kx , ky, kz) which has the function ρ(r) ≡ ρ(x, y, z) for its integrand:

S(k) ≡ S(kx , ky, kz) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dz ρ(x, y, z)e2iπ(kx x+ky y+kz z)

(38.1a)
where the momenta {kx , ky, kz} and coordinate positions {x, y, z} represent the
most common two sets of the conjugate variables with the scalar product, k · r =
kx x + ky y + kzz. We choose the momentum and position vectors, {k, r}, as the
conjugate variable. However, the entire subsequent analysis remains unaltered
if the pair {k, r} is renamed and selected to represent any other two conjugate
variables. For definiteness, we assume that the quantity S(k) is known, so that the
function ρ(r) is sought and, for this purpose, the inverse 3D Fourier transform is
used:

ρ(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkx dky dkz S(kx , ky, kz)e−2iπ(kx x+ky y+kz z).

(38.1b)
In practice, the numerical quadratures are done by discretizing the integration
variables on, e.g., equidistant grids:

kx,y,z = nx,y,z�kx,y,z x = mx�x y = my�y z = mz�z (38.2a)

where

�kx,y,z = 1

Lx,y,z
�x = Lx

2N
�y = L y

2N
�z = Lz

2N
N = 2m .

(38.2b)
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Here, we have −N ≤ nx,y,z ≤ N − 1 and −N ≤ mx,y,z ≤ N − 1, where
2N is the length of the sampled data. To facilitate the application of the fast
Fourier transform (FFT), we choose N to be a composed number given as a non-
negative integer power of two according to the Tukey–Cooley prescription [206],
N = 2m (m = 0, 1, 2, 3, . . .). The quantities Lx,y,z are the total integration
lengths along the associated coordinate axis, {x, y, z}, respectively. Hereafter,
the discretized integrals in equation (38.1a, b) will be abbreviated by Snx ,ny ,nz ≡
S(nx�kx , ny�ky, nz�kz) and ρnx ,ny ,nz ≡ ρ(nx�x, ny�y, nz�z). In reality, the
lengths, Lx,y,z , are all finite, so that both equations (38.1a, b) must be modified to
represent the definite two-sided symmetric triple Fourier integrals, such as

S(kx , ky, kz) = 1

Lx L y Lz

∫ Lx

−Lx

∫ L y

−L y

∫ Lz

−Lz

dx dy dz ρ(x, y, z)e2iπ(kx x+ky y+kz z)

(38.3)
and likewise for equation (38.1b). Discretization of this integral leads to the well-
known discrete Fourier transform (DFT) [206]. This latter transform is a variant
of the simple trapezoidal quadrature rule for equation (38.3) with the Fourier grid
points selected for the conjugate variables k = (kx , ky, kz) and r = (x, y, z):

S(kx , ky, kz) = 1

23m+6

2m−1∑
mx=−2m

2m−1∑
my=−2m

2m−1∑
mz=−2m

ρmx ,my ,mz

× e2iπ(mxkx�x+myky�y+mzkz�z) (38.4a)

and

ρ(x, y, z) =
2m−1∑

nx=−2m

2m−1∑
ny=−2m

2m−1∑
nz=−2m

Snx ,ny ,nz e−2iπ(nx x�kx+ny y�ky+nz z�kz).

(38.4b)
As mentioned before, the reason for resorting to the Fourier grid sampling in
the momentum k-space is motivated by the possibility of using the FFT for
computations of the DFT. The FFT is obtained from the DFT by employing
the special length N = 2m together with the Cooley-Tukey fast algorithm [206]
which, e.g., in the 1D case can significantly reduce the number of multiplications
from N2 to only N log2 N . The FFT is a fast algorithm for a fixed length N
but, nevertheless, the sequence of FFTs created with different values of N slowly
converges with increasing N . The convergence rate of the one–dimensional
FFT is only 1/N , pointing to the basically low efficiency of the Fourier method
regarding the augmentation of the input data length, N . This will presently be
illustrated with several typical examples dealing with 1D, 2D and 3D numerical
quadratures.

To cope with this slow convergence problem of the FFT with increasing
length, N , one can employ either linear (Euler, Romberg, etc) [206] or nonlinear
(Padé, Levin, etc) [204, 207] accelerators. We experimented with a large number
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of such accelerators and arrived at the conclusion that the Padé approximant (PA)
is among the most useful generic methods. When a given sequence of FFTs
of different lengths is available, the application of the PA with the purpose of
acceleration leads to the FPT [200]. Due to the main features of the PA, clearly the
FPT is also a nonlinear accelerator of slowly converging series or sequences with
an enhanced convergence rate relative to the original expansions. This feature
alone is useful in practice, since it suggests that shorter acquisition intervals
of one of the conjugate variables may suffice for the FPT relative to the FFT
to achieve the required accuracy. The digitized equations (38.4a, b) will now
be modified to take advantage of the FPT. As it stands, equations (38.4a, b)
are tri-variate polynomials. However, such polynomial approximations to
functions of three variables are good only for relatively smooth regions but are
otherwise inadequate for discontinuous functions with pronounced periodicity,
sharp variations and integrable singularities. In such cases, rational functions that
represent convenient nonlinear approximations prove to be more accurate than
polynomials. The FPT is one particular example of such rational representations,
since it approximates a given multi-variate function f (x1, x2, . . . , xn) by a ratio
of two multi-polynomials, A(x1, x2, . . . , xn) and B(x1, x2, . . . , xn) that are non-
separable in variables x1, x2, . . . , xn:

f (x1, x2, . . . , xn) ≈ A(x1, x2, . . . , xn)

B(x1, x2, . . . , xn)
. (38.5)

There is no need for an explicit generation of the numerator and denominator
polynomials, A and B , of the n-dimensional Padé approximant (nD-PA). This
is because the nD-PA defined in equation (38.5) can equivalently be computed
by means of the Wynn ε-recursion in the general nD case, yielding directly the
quotient A(x1, x2, . . . , xn)/B(x1, x2, . . . , xn) without the necessity to compute
the polynomials A and B [200, 204]. In the 3D example (38.4b) under study, the
preparatory work for the Wynn recursive algorithm consists of computation of
the sequence of partial sums {ρµ(x, y, z)}m

µ=0 whose members are all obtained by
means of the FFT according to

ρµ(x, y, z) =
2µ−1∑

nx=−2µ

2µ−1∑
ny=−2µ

2µ−1∑
nz=−2µ

Snx ,ny ,nz unx
x u

ny
y unz

z (38.6)

with the property, limµ→m ρµ(x, y, z) = ρ(x, y, z) where µ = 0, 1, 2, 3, . . . ,m.
Here, ux = exp (2iπx�kx), uy = exp (2iπy�ky) and uz = exp (2iπz�kz)

where �x,�y,�z and �kx,�ky,�kz are given in equations (38.2a, b) but with
the important replacement of the full input data length N = 2m by the partial
one, N = 2µ. Acceleration of the sequence of partial sums, {ρµ} (0 ≤ µ ≤ m),
within the FPT is accomplished by means of the ε-algorithm, which is known to
be stable, robust and remarkably simple for straightforward programming via the
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following four-term recursion relation [204]:

ε
(µ)
ν+1 = ε

(µ+1)
ν−1 + 1

ε
(µ+1)
ν − ε

(µ)
ν

(ν, µ > 0) (38.7a)

where the sole initialization is provided by the sequence of the partial sums,
{ρµ(x, y, z)}m

µ=0, from equation (38.6):

ε
(µ)
−1 = 0 ε

(µ)
0 = ρµ(x, y, z) (µ = 0, 1, 2, . . . ,m). (38.7b)

The ε-recursion retains exactly the same form as in equation (38.7a) for a more
general nD (n ≥ 4) case, except that the 3D partial sums in the initialization
(38.7b) are replaced by the appropriate nD partial sums, ρµ(x1, x2, x2, . . . , xn)

[200, 204]. The latter quantities are the multi-dimensional Riemann partial
sums that can be obtained by a straightforward extension of the 3D case of
equation (38.6) to its nD (n ≥ 4) counterpart. The recursion in (38.7a, b) is
carried out at the fixed point (x, y, z) = (nx�x, ny�y, nz�z). The computation
is repeated for any other Fourier mesh points to scan the entire area within the
given boundaries ±Lx,y,z . Thus, at a selected position (x, y, z), we first generate

the ε-sequence, {ε(µ)ν }, and then continue by monitoring its convergence with
respect to the even numbered subscripts only, ν = 2 j ( j = 1, 2, 3, . . .). The
limit of this latter subsequence of the ε-arrays represents the estimate of the
FPT for ρ(x, y, z). The FPT is a low-storage method, since it involves only 1D
arrays. The ε-entries, {ε(µ)ν }, are defined as two-dimensional matrices per se, but
nevertheless the Wynn recursion (38.7a, b) represents a very simple 1D algorithm.
This is because certain intermediate results can safely be overwritten without
affecting the possibility of obtaining the odd subscript sequence {ε(µ)2 j−1} together

with the main result {ε(µ)2 j } at each spatial point (x, y, z). To take advantage of
the FFT, the sequence of partial sums, {ρµ(x, y, z)}m

µ=0, from equation (38.6)
is computed only at the Fourier grid points for the spatial coordinates (x, y, z).
Of course, the PA is not necessarily restricted to the Fourier mesh for (x, y, z)
and, in principle, any other spatial sampling can be selected. However, in such
a case the computation of the partial sums, {ρµ(x, y, z)}m

µ=0, would have the
scaling of the DFT with the increased N , as opposed to the more favourable
N log2 N computational efficiency of the FFT. Critical to the evaluation of multi-
dimensional numerical integrals is the accuracy and speed of computations, as
well as stability and robustness of the algorithm. Accuracy is the weakest
point of FFT but the other three mentioned features are not a problem. It is
these three latter good properties that the FPT shares with the FFT. One of
the novel characteristics brought by the FPT to the field of multi-dimensional
quadratures and beyond is an improved accuracy which could be enhanced by
orders of magnitude relative to the conventional FFT as exemplified later. Since
equation (38.1b) is a direct quadrature for ρ(x, y, z) with the known integrand
S(kx , ky, kz), the performance of the FPT will be most clearly tested on some
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exactly solvable triple integrals. To proceed towards this goal, we consider the
evaluation of the following triple finite Fourier-type integral:∫ b1

a1

∫ b2

a2

∫ b3

a3

d x d y d z e2iπ k· r F( x, y, z)

≈ �1�2�3

2 m−1∑
m1=0

2 m−1∑
m2=0

2 m−1∑
m3=0

W 
m x , m y , m z
m1, m2, m3

× F(a1 + m1�1, a2 + m2�2, a3 + m3�3) (38.8)

where � j = (b j − a j )/2 m , k = (k x , k y, k z), r = ( x, y, z), W 
m x , m y , m z
m1, m2, m3 =

eiπ(m x m1+m y m2+m z m3)/2 m−1 
and m j = 0, 1, 2, . . . , 2 m ( j = 1, 2 and 3).

The special 1D and 2D cases of equation (38.8) are obtained by suppressing
{ y, z;�2,�3} and { z;�3}, so that the resulting integrals over the functions F( x)
and F( x, y) finally lead to the single and double summation, respectively. As
it stands, the threefold quadrature in equation (38.8) is replaced by the Riemann
sum which, in the case of its convergence, gives the exact result as m reaches
its infinitely large value. In practice, we use the FFT in equation (38.8) with,
e.g., m = 0, 1, . . . , 10. Here, for compactness of presentation, we shall give the
results that correspond to the origin of the discretized momentum kx, y, z, namely
(nx , n y, n z) = (0, 0, 0). Our findings are depicted in tables 38.1–38.3 for a
set of the selected 1D, 2D and 3D quadratures. The columns headed by the
labels ‘Fourier’ and ‘Padé’ represent the results of FFT and FPT, respectively.
The data of the FPT are obtained from the FFT sequence of different length,
N = 2m (m = 0, 1, 2, . . . , 10), i.e. N = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
and 1024. This latter FFT sequence is accelerated by the Wynn’s ε-algorithm
(38.7a, b) throughout the 3D grid (nx , ny, nz), but the results are displayed in
tables 38.1–38.3 only at the selected point (nx , ny, nz) = (0, 0, 0) to avoid
dealing with complex numbers that are not essential for the chosen illustrations.
Moreover, the exact and simple analytical expressions for the selected 1D, 2D
and 3D integrals are available at (nx , ny, nz) = (0, 0, 0) and this facilitates the
necessary precise testings of the FPT and FFT. Of practical importance is to
emphasize that the speed of the FPT is proportional to that of the FFT, since the
Wynn recursion (38.7a, b) takes no time at all. This is the direct consequence
of the present way of forming the partial sums, say 	m , via the prescription,
	m ≡ ∑2m−1

k=0 ck rather than through its usual counterpart, 	m ≡ ∑m−1
k=0 ck .

Clearly, with such an approach the number of m-terms in the set of the partial
sums, {	m}, is greatly reduced. The results of the FFT exhibit poor accuracy
and unfavourable convergence properties with the increasing number N of the
integration points, despite quite simple regular and singular functions selected in
all the 1D, 2D and 3D quadratures displayed in tables 38.1–38.3. By contrast,
the FPT is seen in the same tables to be highly satisfactory, since its convergence
is indeed impressively fast and the achieved improvement in accuracy relative to
the FFT is spectacular. For example, using N = 1024 (m = 10), the FFT barely
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secures one or at most two decimal places relative to 12 exact decimal places
obtained by the FPT. Even N = 256(m = 8) suffices for the FPT to yield at
least seven decimal places of accuracy. Tables 38.1–38.3 deal with 2 m ≤ 1024
(m ≤ 10) but we checked that the results of the FPT for N = 1024 agree
with those for N > 1024 at least to within 12 exact decimal places. Yet, this
essential improvement is obtained with no explicit computation of the quadrature
themselves but rather through a post-analysis of the results of the trapezoidal-
type numerical integrations. These latter results, therefore, inherently contain the
exact 12 decimal places that are otherwise masked by the straightforward addition
of partial sums. It is fascinating that such a negative effect of simple additions is
efficiently cancelled by the powerful procedure of the FPT. In the context of the
process (34.1), the FPT encounters the cases of the 1D–5D numerical quadratures
in the RIA and they are all computed without difficulty by the Padé–Wynn
recursive algorithm (35.7a, b). The same FPT is also used with equal success
in the remaining three approximations (IA, CB2, CDW) that demand the 1D–4D
numerical quadratures for differential and total cross sections, dQ/d� and Q.

38.1.2 Stochastic methods

As to stochastic quadratures, we employ a method called VEGAS, which has
a unique value, since it is an adaptive and iterative Monte Carlo (MC) code
with the importance sampling [208]. Despite its inherently statistical nature,
VEGAS always yields results with a guaranteed standard deviation σ , which
is accompanied with the simultaneously performed χ2-test. As a preparatory
analytical work for VEGAS, we developed a completely different way of
calculating T (RIA)+

i f from equation (34.64) by taking the Fourier transform of

(vR ± v · R)∓iνT and using VEGAS to evaluate the differential and total cross
sections, (d/d�)Q(RIA)+

i f and Q(RIA)+
i f , through multi-dimensional quadratures.

All the integration variables must first be scaled to the interval [0, 1]. Then,
VEGAS starts the computation by doing the conventional ‘crude’ MC, in which
the integrand is evaluated at each point of a selected set of M random numbers,
available from a computer random number generator in the interval [0, 1]. The
result of the crude MC is then simply given by the sum of M values of the
integrand divided by M and that is the usual arithmetic average value. The term
‘crude’ is quite appropriate here, since this average value is obtained with the
uniform distribution function for all the random numbers. This could, however,
be a serious drawback, especially for those integrands that have an irregular and
oscillatory structure. Such a deficiency is circumvented in VEGAS, which uses
the ‘crude’ MC only as an initial estimate, which is the first iteration whose
purpose is to scan a given multi-dimensional integrand and locate the region
of possible dominant contributions. With this information, VEGAS performs
a number of iterations with non-uniform distributions that are generated from
the maximal values of the integrand. These distributions are altered after each
iteration with the goal of re-scaling the multi-grid to the area of the maximal

Copyright 2004 IOP Publishing Ltd



312
Illustrations

Table 38.1. Fast Fourier transform (FFT) and fast Padé transform (FPT) for numerical computations of one-dimensional quadratures∫
R1 dx e2iπqx x F(x). The headings denoted as Fourier and Padé refer to the FFT and FPT methods, respectively. The number of integration points

is given by the Tukey–Cooley prescription, N = 2m . The first column headed with the integer m represents the power m of 2 in N (0 ≤ m ≤ 10).
The second/third and fourth/fifth columns represent the results for the integrals∫ π

0
dx e2iπqx x x√

1 − 9
16 sin2 x

and
∫ 1

0
dx e2iπqx x e5/4−x

1 + 1
4 x2

cos

(
11

4
x

)
respectively. The obtained results are displayed with the underlined significant figures, typically, 1.234567 . . .(02), where (02) shows the number
of the exact decimals. The results are given only for the origin of the momentum component, qx = nx�qx , with nx = 0 because, in this case,
both integrals can be calculated exactly in the analytical forms and, hence, the corresponding numerical values are available to any desired accuracy
which enables the most reliable tests for the FPT and the FFT. At m = 12 which corresponds to N = 2048 = 2K (not shown) the FFT secures only
two and three accurate decimal places in the second and fourth columns (Fourier), respectively.

F(x): x(1 − 9
16 sin2 x)−1/2 x(1 − 9

16 sin2 x)−1/2 cos(11x/4)
1+x2/4

e5/4−x cos(11x/4)
1+x2/4

e5/4−x

R1: x ∈ [0, π] x ∈ [0, π] x ∈ [0, 1] x ∈ [0, 1]
Exact: 6.003 551 456 295 6.003 551 456 295 0.740 942 995 086 0.740 942 995 086
m Fourier Padé Fourier Padé

0 0.000 000 000 000(00) 0.000 000 000 000(00) 3.490 342 957 462(00) 3.490 342 957 462(00)
1 3.730 359 826 267(00) 1.938 986 773 340(00)
2 4.775 567 471 877(00) 5.182 419 280 988(00) 1.315 999 242 551(00) 0.897 939 604 147(00)
3 5.386 708 258 550(00) 1.023 339 035 556(00)
4 5.695 126 318 776(00) 6.023 177 766 031(01) 0.880 907 101 501(00) 0.743 781 874 211(02)
5 5.849 338 887 528(00) 0.810 619 572 852(00)
6 5.926 445 171 912(00) 6.003 555 951 607(04) 0.775 705 101 784(00) 0.740 952 222 970(04)
7 5.964 998 314 103(00) 0.758 305 014 540(01)
8 5.984 274 885 199(00) 6.003 551 456 295(12) 0.749 619 247 067(01) 0.740 942 995 805(08)
9 5.993 913 170 747(00) 0.745 279 931 685(02)

10 5.998 732 313 521(00) 6.003 551 456 295(12) 0.743 111 166 041(02) 0.740 942 995 086(12)
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Table 38.2. Fast Fourier transform (FFT) and fast Padé transform (FPT) for numerical computation of two-dimensional quadratures (2D):∫∫
R2 dx dy e2iπ(qx x+qy y)F(x, y). The headings denoted as Fourier and Padé refer to the FFT and FPT, respectively. The number of integration points is given

by the Tukey–Cooley prescription, N = 2m . The first column headed with the integer m represents the power m of 2 in N (0 ≤ m ≤ 10). The second/third and

fourth/fifth columns represent the results for the integrals,∫ ∞
0

∫ ∞
0

dx dy e2iπ(qx x+qy y) 1

(1 + x2 + y2)2
and

∫ 1

0

∫ 1

0
dx dy e2iπ(qx x+qy y)e3|x+y−1|/4 cos

(
3

x + y

4

)
respectively. Before doing computations, both variables x and y in the first double integral with the infinite upper limits are changed according to x = tan(ϑx/2)

and y = tan(ϑy/2). This leads to the more convenient finite integration limits from zero to π in the ensuing quadratures over ϑx and ϑy . The obtained results are

displayed with the underlined significant figures, typically, 1.234 567 . . .(02), where (02) shows the number of the exact decimals. The results are given only for the

origin of the momentum components, qx,y = nx,y�qx,y , with nx = ny = 0 because in this case both integrals can be calculated exactly in the analytical forms and,

hence, the corresponding numerical values are available to any desired accuracy which enables the most reliable tests for the FPT and the FFT. At m = 12 which

corresponds to N = 2048 = 2K (not shown) the FFT still yields only two correct decimal places in both the second and fourth columns (Fourier), respectively.

F(x, y): (1 + x2 + y2)−2 (1 + x2 + y2)−2 e3|x+y−1|/4 cos x+y
4/3 e3|x+y−1|/4 cos x+y

4/3
R2: x&y ∈ [0,∞] x&y ∈ [0,∞] x&y ∈ [0, 1] x&y ∈ [0, 1]
Exact 0.785 398 163 398 0.785 398 163 398 0.901 478 755 468 0.901 478 755 468
m Fourier Padé Fourier Padé

0 2.467 401 100 272(00) 2.467 401 100 272(00) 2.117 000 016 613(00) 2.117 000 016 613(00)
1 1.507 856 227 944(00) 1.389 112 521 931(00)
2 1.119 941 722 172(00) 0.856 698 772 545(01) 1.122 430 033 074(00) 0.968 226 264 761(00)
3 0.946 125 607 242(00) 1.007 177 844 469(00)
4 0.864 132 279 031(00) 0.786 753 599 558(02) 0.953 254 902 981(00) 0.902 177 481 063(02)
5 0.824 358 208 418(01) 0.927 113 791 131(01)
6 0.804 776 456 771(01) 0.785 398 758 165(06) 0.914 234 941 779(01) 0.901 476 883 858(05)
7 0.795 061 879 301(01) 0.907 841 757 638(02)
8 0.790 223 663 747(02) 0.785 398 160 060(08) 0.904 656 514 100(02) 0.901 478 759 061(08)
9 0.787 809 324 177(02) 0.903 066 702 961(02)

10 0.786 603 346 439(02) 0.785 398 163 398(12) 0.902 272 496 733(02) 0.901 478 755 468(12)
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Table 38.3. Fast Fourier transform (FFT) and fast Padé transform (FPT) for numerical computations of three-dimensional quadratures (3D):∫∫∫
R3 dx dy dz e2iπ(qx x+qy y+qz z)F(x, y, z). The headings denoted as Fourier and Padé refer to the FFT and FPT, respectively. The number of integration points is

given by the Tukey–Cooley prescription, N = 2m . The first column headed with the integer m represents the power m of 2 in N (0 ≤ m ≤ 10). The second/third and

fourth/fifth columns represent the results for the integrals,∫ 1

0

∫ 1

0

∫ 1

0
dx dy dz e2iπ(qx x+qy y+qz z) cos

(
3

x + y + z

4

)
and

∫ π
2

0

∫ π
2

0

∫ π
2

0
dx dy dz e2iπ(qx x+qy y+qzz)e−x−y−z sin (x + y + z)

x + y + z
respectively. The obtained results are displayed with the underlined significant figures, typically, 1.234 567 . . .(02), where (02) shows the number of the exact decimals.

The results are given only for the origin of the momentum components, qx,y,z = nx,y,z�qx,y,z , with nx = ny = nz = 0 because, in this case, both integrals can be

calculated exactly in the analytical forms and, hence, the corresponding numerical values are available to any desired accuracy which enables the most reliable tests

for the FPT and the FFT. At m = 12 which corresponds to N = 2048 = 2K (not shown) the FFT yields only three correct decimal places in both the second and

fourth columns (Fourier), respectively.

F(x, y, z): cos x+y+z
4/3 cos x+y+z

4/3 e−x−y−z sin (x+y+z)
x+y+z e−x−y−z sin (x+y+z)

x+y+z
R3: x, y&z ∈ [0, 1] x, y&z ∈ [0, 1] x, y&z ∈ [0, π/2] x, y&z ∈ [0, π/2]
Exact 0.401767070469 0.401767070469 0.268816517890 0.268816517890
m Fourier Padé Fourier Padé

0 1.000 000 000 000(00) 1.000 000 000 000(00) 3.875 784 585 037(00) 3.875 784 585 037(00)
1 0.802 220 748 645(00) 1.287 211 242 493(00)
2 0.622 059 037 873(00) −1.220 323 096 771(00) 0.639 907 314 212(00) 0.424 067 939 992(00)
3 0.516 205 759 811(00) 0.425972045364(00)
4 0.459 965 527 350(00) 0.401 202 019 496(02) 0.341 001 545 981(01) 0.274 447 992 301(02)
5 0.431 099 105 429(01) 0.303 395 132 999(01)
6 0.416 489 780 171(01) 0.401 773 155 873(05) 0.285 737 649 156(01) 0.268 849 809 913(04)
7 0.409 142 408 901(01) 0.277 186 311 929(01)
8 0.405 458 211 846(01) 0.401 767 071 568(08) 0.272 978 880 143(02) 0.268 816 557 031(06)
9 0.403 613 506 228(02) 0.270 892 085 034(02)

10 0.402 690 504 245(02) 0.401 767 070 469(12) 0.269 852 900 426(02) 0.268 816 517 890(12)
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contribution to the computed integral. It is in this importance sampling that
VEGAS exhibits its capacity of adapting to any structures of the integrand,
including highly oscillating functions with moving integrable singularities. This
algorithm is self-controlled through computation of the standard deviation σ and
also via reliance upon the χ2-test for each iteration. It is then not surprising
that VEGAS can give exact results for multi-dimensional integrals within the
estimated values for the pair, {σ, χ2}. We have used this algorithm over the
years [10, 209], especially within the CB2/B2B approximation, always observing
excellent agreement with the deterministic method for relatively low-dimensional
integrals, e.g., 3D or 4D. Researchers across the science and engineering literature
are virtually unaware of the algorithm VEGAS, which originates from studies of
multi-dimensional Feynman integrals in quantum electrodynamics. For example,
only a few studies have reported on the use of VEGAS in atomic physics [10,
209, 210]. We presently pay special attention when applying VEGAS to the most
challenging 6- and 13-dimensional (6D, 13D) integrals encountered respectively
in (d/d�)Q(RIA)+

i f and Q(RIA)+
i f . Performance of VEGAS is illustrated in

table 38.4 where we show the result for the 13D numerical integral of the total
cross section, Q(RIA)+

i f , for the prototype of process (34.1), namely the ground-
to-ground state charge exchange in H+–H collision at two selected energies,
Einc = 700 and 1500 keV. As can be seen from table 38.4, VEGAS is extremely
powerful despite a highly oscillatory nature of the integrand with movable and
integrable logarithmic branch point singularities. To achieve two exact decimal
places, VEGAS needs some M = 107 integration points or function evaluations.
This is in sharp contrast to, e.g., 2013 ≈ 8 × 1017 function evaluations that
are necessary for a deterministic method like the Gauss–Legendre quadrature
rule with only 20 points per each of 13 integration axes. For high-dimensional
integrals, VEGAS appears to be one of the most adequate methods.

To summarize section 38.1 on computational strategies, we emphasize that
we used both deterministic and stochastic methods. Within the latter category, we
employ the adaptive and iterative MC algorithm VEGAS [208]. This is done by
applying the arithmetic average as a crude MC in the first iteration in which the
uniform distribution of random numbers is used to scan the integrand throughout
the multi-dimensional grid with the purpose of detecting the regions, where the
multi-variate function attains its maximae. With this information at hand, we
subsequently rescale the multi-grid to obtain a new set of mesh points located
in the domains that provide the maximum contribution to the multi-dimensional
quadrature. This effectively redefines the initial uniform distribution of random
numbers so that the subsequent application of the MC code is done with an
adaptive distribution of random numbers. Here, one recognizes the importance
sampling, which in the second iteration gives an improved result relative to the
crude MC. The iterations are continued further and in each new step the multi-
grid is refined gradually through the importance sampling and this is the essence
of the adaptive and iterative MC code VEGAS. This is a ‘black-box’, user-friendly

Copyright 2004 IOP Publishing Ltd



316 Illustrations

Table 38.4. Adaptive and iterative Monte Carlo (MC) method VEGAS [208] for the 13D quadrature given as the

total cross section Q(RIA)+
1s,1s ≡ I in the reformulated impulse approximation (RIA) applied to charge exchange:

H+ + H(1s) −→ H(1s) + H+ at two incident energy, Einc = 700 and 1500 keV. The notation, e.g., 2.088,−05,

means: 2.088 × 10−5. The first column represents the iteration number j . The estimates of VEGAS for the cross

sections and the corresponding standard deviations per iteration j are denoted by I j and σ j , respectively. As usual,

given a random variable, ξ , the standard deviation is defined as the difference between the expected value of ξ2

and the square of the expected value of ξ . The quantities I and σ are the cumulative values of the cross sections

and the standard deviation given by, I = ∑
j I j J 2

j /
∑

j J 2
j and σ = I/J , respectively, where J j = I j /σ j and

J = (
∑

j J 2
j )

1/2. The goodness-of-fit is denoted by χ2 and it is defined as, χ2 =∑
j [(I j − I )/I ]2 J 2

j . All the cross

sections and standard deviations are expressed in the units of πa2
0 ≈ 8.797 × 10−17 cm2. If the cumulative results

I after ten iterations are multiplied by 1.202 to approximately account for the contribution from all bound states

of the newly formed atomic hydrogen in the exit channel of the considered H+–H charge exchange, the following

values for the cross sections Q(RIA)+ are obtained: 1.806 × 10−21 cm2 and 2.753 × 10−23 cm2 at Einc = 700

and 1500 keV, respectively. These latter results are exact within the second rounded decimal places. Initially, the

number of uniformly distributed random numbers is chosen to be, M = 106, and the sought accuracy was two exact

decimal places. With each successive iteration j the number M is increased by another million pivots, so that the

final estimate for I j after ten iterations uses M = 107 to achieve the preassigned accuracy for one of the most highly

oscillatory 13D quadratures with moving integrable logarithmic singularities. This should be compared to a totally

unmanageable number of pivots, e.g., 2013 ≈ 8 × 1017, if one were thinking of using only 20 points per each of 13

integration axes in any classical deterministic quadrature rules such as the Gauss–Legendre or the like.

Accumulated
Iteration Standard Accumulated standard
number Integral deviation integral deviation Goodness-of-fit
j I j σ j I σ χ2

(a) Incident energy: Einc = 700 keV
1 2.088,−05 4.12,−06 2.088,−05 4.12,−06 0.0
2 1.614,−05 6.54,−07 1.633,−05 6.48,−07 2.1
3 1.984,−05 2.54,−06 1.664,−05 6.30,−07 4.5
4 1.559,−05 9.50,−07 1.635,−05 5.26,−07 5.4
5 1.685,−05 2.14,−07 1.678,−05 1.98,−07 5.9
6 1.785,−05 5.80,−07 1.690,−05 1.87,−07 9.2
7 1.717,−05 1.05,−06 1.691,−05 1.84,−07 9.2
8 1.708,−05 2.48,−07 1.697,−05 1.48,−07 9.4
9 1.718,−05 1.36,−07 1.708,−05 1.00,−07 10.3

10 1.705,−05 4.13,−07 1.708,−05 9.75,−08 10.3

(b) Incident energy: Einc = 1500 keV
1 4.088,−07 2.63,−07 4.088,−07 2.63,−07 0.0
2 1.826,−07 2.41,−08 1.917,−07 2.47,−08 3.2
3 2.522,−07 1.12,−08 2.459,−07 1.03,−08 5.2
4 2.618,−07 4.07,−09 2.598,−07 3.79,−09 6.6
5 2.565,−07 3.04,−09 2.578,−07 2.37,−09 7.2
6 2.596,−07 1.75,−09 2.590,−07 1.41,−09 7.5
7 2.615,−07 2.00,−09 2.598,−07 1.15,−09 8.5
8 2.684,−07 8.03,−09 2.600,−07 1.14,−09 9.6
9 2.711,−07 1.01,−08 2.602,−07 1.13,−09 10.9

10 2.633,−07 4.59,−09 2.604,−07 1.11,−09 11.3
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code whose performance is optimally adapted in an automatic self-guided fashion
to any particular nature of multi-variate functions including those with integrable
singularities along the investigated multi-grid. In our case, typically about ten
iterations with a set of random numbers of a modest size of the order of ∼ 105 per
each iteration can secure one accurate decimal place for, e.g., very complicated
13D integrals in the total cross section, Q(RIA)+

i f . For the same 13D quadratures,
we found that VEGAS can give the results with two accurate decimal places by
using as much as ∼106 random numbers per iteration for, at most, 10 iterations.
A desired threshold of accuracy of the result is prescribed prior to application of
VEGAS.

When it comes to deterministic methods for multi-dimensional numerical
integrations, we use the classical Gauss–Mehler, Gauss–Legendre and Gauss–
Laguerre quadrature rules. The former two techniques apply directly to the
angular variables ϕ ∈ [0, 2π] and ϑ ∈ [0, π]without undue difficulties. However,
the application of the Gauss–Laguerre rule to the integral over q ∈ [0,∞] in the
momentum space, as well as in the parametrized Feynman–Dalitz–Lewis three-
denominator integral over the variable t ∈ [0,∞], meets with instabilities with
increasing order of the quadrature due to the highly oscillatory nature of the
multi-variate integrand. This is successfully regularized in a spirit reminiscent of
the importance sampling by rescaling both variables, q and t , so as to relocate
the mesh points predominantly in the region where the integrand reaches its
maximum values.

Of course, deterministic methods for multi-dimensional quadratures are not
exhausted by the use of classical orthogonal polynomials. An alternative which
is implemented in the present work is provided by the fast Padé transform
(FPT) from [200]. The FPT is an iterative integration method which has two
main steps. In the first iteration, the FPT computes a sequence of the multi-
dimensional fast Fourier transforms (FFT) of increasing length, N = 2m (0 ≤
m ≤ M). Afterwards, this latter FFT sequence, which converges slowly with
increasing N , is accelerated by means of the Padé approximant (PA) implemented
operationally through the Wynn iterative ε-algorithm. These iterations are
recursive and, moreover, once they are initiated with the FFTs in the role of
partial Riemann sums, the whole sequence of iterative solutions can be generated
almost instantaneously. This is achieved by defining the order of the ε-algorithm
to coincide with the integer m in the length of the FFTs, N = 2m . Consequently,
even some exceedingly long FFTs of the length N = 1024K that correspond to
N = 1048 576 = 220, would lead to a very short ε-sequence with only M = 20
elements, where 1K = 1024 denotes the kilobyte. This circumstance provides the
conditions for the extreme stability and robustness of the ε-algorithm (38.7a, b).
In the full productive runs, the comprehensive set of all the cross sections from
the computations of 1D to 5D numerical quadratures, encountered within four
leading distorted wave theories analysed in the present work (RIA, IA, CB2 and
CDW), is accurately and efficiently obtained by using the FPT. In addition, several
stringent tests of the FPT are performed against the exactly known results for
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certain 1D, 2D and 3D integrals with regular integrands as well as functions that
possess integrable singularities in the integration domains. In all such test cases
the FPT is shown to achieve the unprecedented 12 decimal places of accuracy by
using barely N = 1K relative to, at most, two decimals of the corresponding FFT
with the same N . The FPT deals exclusively with acceleration of the given FFT
sequence for different values of N = 2m with no additional information needed.
Due to this circumstance, the enhanced accuracy of the FPT, in fact, indicates that
the FFT of the same length, N = 1K, also inherently possesses these 12 decimal
places of accuracy but is unable to make this fact transparent. Such inability
stems from a low convergence rate, ∼1/N , of, e.g., the one-dimensional FFT
sequence with the varying length N . The subsequent application of the Padé–
Wynn acceleration to this sequence is capable of unfolding the exact result from
the FFT of basically low lengths. Another way of interpreting this finding is to
say that the FPT is able to extract the exact machine accurate results that were
otherwise buried in the FFT background.

38.2 Atomic collision problems

To illustrate the usefulness of the presented quantum scattering theories, we have
used the impulse approximation (IA), the reformulated impulse approximation
(RIA), the boundary-corrected second Born approximation (CB2/B2B) and
the continuum distorted wave (CDW) approximation to carry out detailed
computations of the differential and total cross sections for the homonuclear case
of reaction (34.1) with ZP = ZT = 1, i.e.:

H+ + H(1s) −→ H(1s)+ H+. (38.9)

Hereafter, only ground-to-ground state transitions are considered. There is no
‘post–prior’ discrepancy in charge transfer process (38.9), so that

dQ+
i f

d�
= dQ−

i f

d�
≡ dQi f

d�
= dQ1s,1s

d�
(38.10)

Q+
i f = Q−

i f ≡ Qi f = Q1s,1s. (38.11)

The cross sections dQ/d� and Q summed up over all the final excited states f
will be approximated via the Oppenheimer scaling law by the following formulae:

dQ

d�
= 1.202

dQ1s,1s

d�
Q = 1.202Q1s,1s. (38.12)

With a particular emphasis on assessing the validity of the RIA, the incident
energies are chosen in a large interval, [20, 7500] keV, at which the experimental
data are available. The complete set of results for the differential cross sections,
dQ/d�, obtained presently by using four second-order methods (IA, RIA, CB2
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and CDW) at 25, 60, 125, 2000, 2800 and 5000 keV is shown in figures 38.1–
38.10. The total cross sections Q are also reported covering the energy range
from 25 to 7500 keV and they are displayed on figure 38.11. Overall, it
can be seen from figures 38.1–38.10 on d Q/d� that the RIA compares more
favourably with the experimental data [98,211] than the IA, the CB2 and the CDW
approximations. On figures 38.1–38.3 relating to Einc = 25, 60 and 125 keV,
the IA underestimates the measurement at intermediate scattering angles ϑ . This
discrepancy is the worst at larger values of ϑ , associated with the Rutherford inter-
nuclear scattering, which is completely ignored in the IA. Such a neglect can be
partially remedied by including the inter-nuclear potential through the term ρ2iνPT,
once the appropriate ρ-dependent transition amplitude �(IA)+i f (ρ) is obtained via

the Hankel transform of {T (IA)+
i f }VPT=0. The resulting model, which could be

called the Coulomb impulse approximation (Coulomb IA) in the terminology
of [212], yields,

dQ(Coulomb IA)+
i f

d�
=
∣∣∣∣iµPTv

∫ ∞

0
dρ ρ1+2iνPT�

(IA)+
i f (ρ)J�m(ηρ)

∣∣∣∣2 (38.13)

where �m = mi − m f . This was done, e.g., in [213], where computations
were carried out at high impact energies. Such a procedure is a straightforward
adoption of an earlier idea, which was implemented within the so-called
Coulomb–Brinkman–Kramers (CBK) approximation [212]. The original
motivation for introduction of the CBK model was an observation that the
conventional first-order Brinkman–Kramers (BK1) approximation for H+–Ar
charge exchange at, e.g., 6 MeV yields the differential cross sections which,
at larger scattering angles, underestimate the experimental data [214] by orders
of magnitude. This situation is substantially improved by allowing for the
full eikonal Coulombic distortions φ+i,PT ≡ (vR − v · R)iνPT and φ−f,PT ≡
(vR + v · R)−iνPT due to the inter-nuclear interaction in entrance and exit
channel, respectively, where φ−∗f,PTφ

+
i,PT = (µPTvρ)

2iνPT . This last remaining
Coulomb phase together within the BK1 model yields the CBK approximation,
which is then calculated in the same fashion as given by equation (38.13).
The improvement in the CBK over the BK1 method is expected, since the
heavy masses mP,T cause a striking dominance of the nucleus–nucleus potential
in comparison with the electron–nucleus interaction during close encounters,
which classically correspond to large scattering angles. However, despite their
apparent success, neither the Coulomb BK [212] nor the Coulomb IA [213]
are acceptable, since they both disregard the correct boundary conditions. For
this fundamental reason, the Coulomb IA [213] cannot compete at all with
the RIA and this is further supported by our explicit computations performed
as an additional check. The RIA is seen in figures 38.1–38.3 to reproduce
quite well the measured findings. The CB2 also compares favourably with
the measurement, excepting intermediate scattering angles, where this theory
exhibits an experimentally unobserved minimum as especially noticeable at
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Einc = 25 keV (see figure 38.1(b)). This minimum is due to a strong cancellation
of the contributions from two opposite potentials ZP/ R and − ZP/s within the
CB1 matrix element, which is the first-order term of the CB2 approximation. We
recall that the CB2 method is a second-order theory with the correct boundary
conditions and with the exact inclusion of the inter-nuclear potential in the
eikonal limit [10]. This is also true for the CDW approximation [15, 161],
which is always computed from the Hankel-type transform (38.13). We presently
use the Padé approximant and the related continued fraction (CF) method to
evaluate the highly oscillatory integral (38.13). However, it can be seen from
figures 38.1–38.3, that the CDW model is much less satisfactory than the RIA
in comparison with the experimental data. The angular distributions shown
in figures 38.1–38.3 are due to Martin et al [211], who refer to their results
as to the ‘true’ differential cross sections. These ‘true’ experimental data are
obtained by de-convolving the ‘apparent’ differential cross sections, that include
the inherent integration over the acceptance angle of the detector. Martin et
al [211] found that the difference between the ‘apparent’ and ‘true’ differential
cross sections is small, becoming practically non-existent at scattering angles
ϑ ≡ ϑc.m. larger than 1.2 mrad. Nevertheless, one should exercise great caution
in deconvolution procedures. Since the ‘apparent’ angular distributions possess
certain experimental errors, it can be shown that obtaining the ‘true’ cross sections
by deconvolution (i.e. unfolding) is not only non-unique but also subject to
severe oscillations [215]. One way of circumventing this difficulty would be
to use, e.g., certain nonlinear iterative deconvolution techniques [216, 217]. An
alternative approach would consist of comparing the ‘apparent’ cross sections
with the theoretical results folded using an experimental convolution function.
Unfortunately, this folding function is unavailable from Martin et al [211] and so
are the ‘apparent’ differential cross sections. For this reason, one is left with only
one possibility and that is to compare the unaltered (original) theoretical results
with the de-convoluted experimental data from [211], and this is what we have
done in figures 38.1–38.3.

The influence of the Thomas double scattering, ZP–e– ZT, on angular
distributions of scattered projectiles is analysed in figures 38.4–38.10. At the
impact energies 2, 2.8 and 5 MeV, the RIA predicts a clear peak at a laboratory
angle, ϑ = ϑds ≈ 0.47 mrad, due to Thomas double scattering (ds), which is
also given in the IA at a scattering angle shifted in the forward direction. As
seen in figures 38.8 and 38.9 relating to 2 and 2.8 MeV around the Thomas
angle, the experimental data from [98] exhibit only a flat plateau instead of a
peak. However, as displayed in figure 38.10, the peak is detected experimentally
in a clear way at 5 MeV by Vogt  et al [98] and also in this case, the RIA
is seen to be very satisfactory. The convolution of the theoretical results has
been done using the experimental finite angular resolution [98]. This folding is
generally seen in figures 38.4–38.7 to reduce the differential cross sections in the
forward direction and to fill in the minimum around 0.3 mrad in the theoretical
curves. The peak near 0.47 mrad at, e.g., 5 MeV is only slightly lowered and the
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Figure 38.1. Differential cross sections dQ/d� ≡ (dQ/d�)c.m. at impact energy
E ≡ Einc = 25 keV for electron capture by H+ from H(1s) as a function of the
scattering angle ϑ ≡ ϑc.m. in the centre-of-mass (c.m.) frame of reference. Theory [19];
full lines (a, b, c): the reformulated impulse approximation (RIA), broken lines: (a) the
impulse approximation (IA), (b) the exact boundary-corrected second Born (CB2/B2B)
approximation, (c) the continuum distorted wave (CDW) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Martin et al [211].
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Figure 38.2. Differential cross sections dQ/d� ≡ (dQ/d�)c.m. at impact energy
E ≡ Einc = 60 keV for electron capture by H+ from H(1s) as a function of the
scattering angle ϑ ≡ ϑc.m. in the centre-of-mass (c.m.) frame of reference. Theory [19];
full lines (a, b, c): the reformulated impulse approximation (RIA), broken lines: (a) the
impulse approximation (IA), (b) the exact boundary-corrected second Born (CB2/B2B)
approximation, (c) the continuum distorted wave (CDW) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Martin et al [211].

Copyright 2004 IOP Publishing Ltd



Atomic collision problems 323

10– 6

10– 5

10– 4

10– 3

10– 2

10– 1

0.0 0.5 1.0 1.5 2.0

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n 
dQ

/d
Ω

 (
10

– 
9  c

m
2  s

r– 
1 )

Scattering angle  ϑ (mrad)

H+ + H(1s)        H(Σ) + H+

E = 125 keV

RIA
(a)

IA

10– 6

10– 5

10– 4

10– 3

10– 2

10– 1

0.0 0.5 1.0 1.5 2.0

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n 
dQ

/d
Ω

 (
10

– 
9  c

m
2  s

r– 
1 )

Scattering angle  ϑ (mrad)

H+ + H(1s)        H(Σ) + H+

E = 125 keV

RIA
(b)

CB2

10– 6

10– 5

10– 4

10– 3

10– 2

10– 1

0.0 0.5 1.0 1.5 2.0

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n 
dQ

/d
Ω

 (
10

– 
9  c

m
2  s

r– 
1 )

Scattering angle  ϑ (mrad)

H+ + H(1s)        H(Σ) + H+

E = 125 keV

RIA
(c)

CDW

Figure 38.3. Differential cross sections dQ/d� ≡ (dQ/d�)c.m. at impact energy
E ≡ Einc = 125 keV for electron capture by H+ from H(1s) as a function of the
scattering angle ϑ ≡ ϑc.m. in the centre-of-mass (c.m.) frame of reference. Theory [19];
full lines (a, b, c): the reformulated impulse approximation (RIA), broken lines: (a) the
impulse approximation (IA), (b) the exact boundary-corrected second Born (CB2/B2B)
approximation, (c) the continuum distorted wave (CDW) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target): (•) Martin et al [211].
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Figure 38.4. Differential cross sections dQ/d� ≡ (dQ/d�)lab at three impact energies
E ≡ Einc for electron capture by H+ from H(1s) as a function of the scattering angle
ϑ ≡ ϑlab in the laboratory (lab) frame of reference: (a) E = 2 MeV, (b) E = 2.8 MeV
and (c) E = 5 MeV. The arrow indicates the location of the critical angle from the
Thomas double scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory
system. Theory [19]: the full and broken lines respectively represent the folded and
unfolded results of the reformulated impulse approximation (RIA). Explicit account is
taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Vogt et al [98].
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Figure 38.5. Differential cross sections dQ/d� ≡ (dQ/d�)lab at three impact energies
E ≡ Einc for electron capture by H+ from H(1s) as a function of the scattering angle
ϑ ≡ ϑlab in the laboratory (lab) frame of reference: (a) E = 2 MeV, (b) E = 2.8 MeV
and (c) E = 5 MeV. The arrow indicates the location of the critical angle from the Thomas
double scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory system. Theory
[19]: the full and broken lines respectively represent the folded and unfolded results of
the impulse approximation (IA). Explicit account is taken only for the 1s −→ 1s transition
and the Oppenheimer scaling is used to roughly estimate a contribution from all the excited
final states via, dQ/d� ≈ 1.202dQ1s,1s/d�. Experimental data (atomic hydrogen target)
(•), Vogt et al [98].
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Figure 38.6. Differential cross sections dQ/d� ≡ (dQ/d�)lab at three impact energies
E ≡ Einc for electron capture by H+ from H(1s) as a function of the scattering angle
ϑ ≡ ϑlab in the laboratory (lab) frame of reference: (a) E = 2 MeV, (b) E = 2.8 MeV
and (c) E = 5 MeV. The arrow indicates the location of the critical angle from the
Thomas double scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory system.
Theory [19]: the full and broken lines respectively represent the folded and unfolded results
of the exact boundary-corrected second-Born (CB2/B2B) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Vogt et al [98].
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Figure 38.7. Differential cross sections dQ/d� ≡ (dQ/d�)lab at three impact energies
E ≡ Einc for electron capture by H+ from H(1s) as a function of the scattering angle
ϑ ≡ ϑlab in the laboratory (lab) frame of reference: (a) E = 2 MeV, (b) E = 2.8 MeV
and (c) E = 5 MeV. The arrow indicates the location of the critical angle from the
Thomas double scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory system.
Theory [19]: the full and broken lines respectively represent the folded and unfolded
results of the continuum distorted wave (CDW) approximation. Explicit account is taken
only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Vogt et al [98].
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Figure 38.8. Differential cross sections dQ/d� ≡ (dQ/d�)lab at impact energy
E ≡ Einc = 2 MeV for electron capture by H+ from H(1s) as a function of the
scattering angle ϑ ≡ ϑlab in the laboratory (lab) frame of reference. The arrow
indicates the location of the critical angle from the Thomas double scattering (ds), i.e.
ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory system. Theory with the folding [19]:
upper lines (a, b, c): the reformulated impulse approximation (RIA), lower lines: (a) the
impulse approximation (IA), (b) the exact boundary-corrected second Born (CB2/B2B)
approximation, (c) the continuum distorted wave (CDW) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target): (•), Vogt et al [98].
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Figure 38.9. Differential cross sections dQ/d� ≡ (dQ/d�)lab at impact energy
E ≡ Einc = 2.8 MeV for electron capture by H+ from H(1s) as a function of
the scattering angle ϑ ≡ ϑlab in the laboratory (lab) frame of reference. The arrow
indicates the location of the critical angle from the Thomas double scattering (ds), i.e.
ϑ(ds) ≡ ϑds = 0.47 mrad, in the laboratory system. Theory with the folding [19]:
upper lines (a, b, c): the reformulated impulse approximation (RIA), lower lines: (a) the
impulse approximation (IA), (b) the exact boundary-corrected second Born (CB2/B2B)
approximation, (c) the continuum distorted wave (CDW) approximation. Explicit account
is taken only for the 1s −→ 1s transition and the Oppenheimer scaling is used to roughly
estimate a contribution from all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�.
Experimental data (atomic hydrogen target) (•), Vogt et al [98].
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Figure 38.10. Differential cross sections dQ/d� ≡ (dQ/d�)lab at impact energy
E ≡ Einc = 5 MeV for electron capture by H+ from H(1s) as a function of the scattering
angle ϑ ≡ ϑlab in the laboratory (lab) frame of reference. The arrow indicates the location
of the critical angle from the Thomas double scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.47 mrad,
in the laboratory system. Theory with the folding [19]: full lines (a, b, c): the reformulated
impulse approximation (RIA); broken lines: (a) the impulse approximation (IA), (b)
the exact boundary-corrected second Born (CB2/B2B) approximation, (c) the continuum
distorted wave (CDW) approximation. Explicit account is taken only for the 1s −→ 1s
transition and the Oppenheimer scaling is used to roughly estimate a contribution from
all the excited final states via, dQ/d� ≈ 1.202dQ1s,1s/d�. Experimental data (atomic
hydrogen target) (•), Vogt et al [98].
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Figure 38.11. Total cross section Q for electron capture by H+ from H(1s) as a function
of the laboratory incident energy E = Einc. Theory [19]; the upper line: RIA (the
reformulated impulse approximation), the lower line: IA (the impulse approximation).
Explicit account is taken only for the 1s −→ 1s transition and the Oppenheimer
scaling is used to roughly estimate a contribution from all the exited final states via,
Q ≈ 1.202Q1s,1s. Experimental data (some of the results are for the H2-target and a
conversion from [15] is used to plot the data for the H-target): &, Stier and Barnett [218];
�, Barnett and Reynolds [219]; �, Fite et al [220]; ', McClure [221]; �, Wittkower et
al [222]; ◦ , Gilbody and Ryding [223]; &·, Schryber [224]; �, Toburen et al [225]; • ,
Welsh [226]; �, Williams [227]; �, Bayfield [228]; and (, Schwab et al [229].
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large angle tails of the curves are somewhat raised upward by the convolution.
The RIA is further compared with the IA, CB2 and CDW approximations in
figures 38.8–38.10 and the superiority of the RIA is clearly established. Among
the four second-order theories presently analysed, the CDW model is the least
satisfactory around the Thomas angle ϑds = 0.47 mrad. The shallow dip in
(d/d�)  Q(CDW) splits the Thomas peak into two asymmetric maximae, that are
not confirmed experimentally (see figure 38.7). As opposed to three other second-
order results displayed in figures 38.8–38.10, only those due to the RIA exhibit
the Thomas peak quite precisely at the critical angle ϑds = 0.47 mrad. An
asymptotic analysis of the T -matrix in the CB2 approximation would reveal
that the corresponding differential cross section would peak exactly at ϑds =
0.47 mrad only at an in fi n itely large incident velocity. At such an extreme
velocity, the shape of the Thomas peak would then closely resemble to that of the
Dirac δ-function. Moreover, the CB2 approximation predicts that the dip situated
between the forward (0 mrad) and the Thomas peak (0.47 mrad) should occur at
ϑdip ≈ 0.27 mrad, at infinite incident velocity, at which (d/d�)  Q(CB2) should
attain zero value. This dip is partially due to interference between the single and
double scattering effects in the T (CB2)+

i f  . The dip is also present in the RIA, but
shifted towards 0.34 mrad at the two higher energies under consideration, that
are equal to 2.8 and 5 MeV. This dip seems to converge quite slowly towards
the limiting value 0.27 mrad with the increasing incident velocity, reaching only
ϑdip ≈ 0.33 mrad at, e.g., 5 MeV (see figure 38.10). This convergence is
somewhat faster in the CB2 model, where ϑdip is approximately equal to 0.30
and 0.29 mrad at 2.8 and 5 MeV, respectively. Otherwise, the peak-to-dip ratios
of the corresponding differential cross sections in the CB2 model and in the
RIA are very close to each other. However, the RIA compares more favourably
with the experimental data than the CB2 approximation not only at 2 MeV but
also at 2.8 and 5 MeV (see figures 38.8–38.10). This is an indication of the
relative importance (especially around ϑdip and ϑds) of the third-order effect,
which is approximately accounted for in the RIA and is completely missing from
the IA, CB2/B2B and CDW models1. The total cross sections are depicted on
figure 38.11. It is observed in this figure that the difference between the IA
and RIA is the most pronounced at lower and intermediate energies. Given
the foundations of the IA and the RIA, it follows that the multiple scattering
effects are the most important in the intermediate energy region. Moreover, the
values of Q(IA) considerably underestimate the experimental data in the interval
[20, 350] keV. However, it can be observed from figure 38.11 that the findings for
Q(RIA) are in excellent agreement with the measurements [218–229] throughout
the energy range [20, 7500] keV. In particular, at energies (2–6) MeV there is
a perfect agreement with the recent measurement of Schwab al [229]. A slight
deviation seen in figure 38.11 at 7.5 MeV between the RIA and the experimental

1 An important higher-order CDW model in the Dodd–Greider [93] series has recently been
introduced in [167].
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data [229] might be caused by the fact that the RIA does not include the channel
of the radiative electron capture, which becomes dominant at energies, Einc ≥
10 MeV [230]. Note that even at these high energies, the IA underestimates
the measured values from [229] by a factor ∼1.5. The CDW approximation
(not shown in figure 38.11 to avoid clutter) underestimates the experimental data
in [229] by ∼30%.

We shall conclude this subsection with the highlights of the performance
of the leading distorted wave theories with a special focus on the reformulated
impulse approximation (RIA) for pure three-body charge exchange (38.9). We re-
emphasize that the high-energy impulse approximation (IA), which has originally
been proposed for short-range interactions, enjoys a respectable status in nuclear
physics due to its sound basis and subsequent good agreement with experimental
data. However, extension of the IA to atomic collisions was unsuccessful.
This is because of the two major drawbacks: (i) lack of the correct asymptotic
behaviour of the total scattering wavefunction precisely in the channel in which
the electronic continuum intermediate states are taken into account; and (ii)
mathematical non-existence of the single-centre Coulomb wave stemming from
application of the Møller wave operator onto the three-particle plane wave.
Comparison with measurements on the total cross sections for charge exchange
in a proton–atomic hydrogen collision reveals that the IA severely underestimates
the experimental data at intermediate energies (20–350) keV, which fall well
within the range of the validity of the method. Until recently [199], the reason
for this unexpected failure of the IA had not been explained in the literature.
In the present book, a detailed analysis of an impulse-type approximation is
further elaborated through the RIA. It is based upon the introduction of the
Møller wave operator for two Coulomb potentials with the same interaction
strength but the opposite signs. Such a difference in the attractive and repulsive
Coulomb potentials leads to a mathematically sound twofold Coulomb wave in
one or both channels. The resulting total scattering wavefunction exhibits the
exact asymptotic behaviour at large inter-particle separations. In this way, both
constraints (i) and (ii) are consistently lifted thus leading to the RIA. These
basic theoretical improvements have remarkable numerical repercussions. This
is because the RIA is found to be consistently in excellent agreement with the
available experimental data on both differential and total cross sections from
intermediate to high non-relativistic energies. Furthermore, the RIA compares
more favourably with measurements than the other three leading second-order
theories, the IA, the exact boundary-corrected second Born (CB2/B2B) method
and the continuum distorted wave (CDW) approximation.

Next we turn our attention to single-electron transitions in four-body
problems. The first such process to be discussed within, e.g., the four-body CDW
approximation will be one-electron capture from helium by protons (36.1). There
are three distinct contributions to the post form of the T -matrix, T (CDW)+

i f , from
the perturbation in the exit channel, V f = �VP2 + �V12 − ∇s1 lnϕ∗f1

(s1) · ∇x1 ,
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given in equation (36.7). In the term � VP2 = ZP(1/ R − 1/s2) the interaction
− ZP/s2 is the Coulomb potential between the projectile ZP and the passive
electron e2. The asymptotic tail of this potential is − ZP/ R so that the difference
� VP2 between these two latter interactions is short range as R −→ ∞ . The
active electron e1 can be captured by the projectile without its direct interaction
with ZP. Instead, the passive electron e2 interacts directly with ZP and the
subsequent transfer of e1 to the projectile is made possible through the static e1–
e2 correlations in the ground state of helium. This latter effect is termed the ‘static
correlation’, since it exists in helium as one of its spectroscopic features without
any reference to collision. By contrast, the dynamic inter-electronic correlation
is part of the collision and the corresponding interaction 1/ x12 is also screened
at large distances x1 � x2 by the potential 1/ x1. This latter potential is the
asymptotic value of 1/ x12 at x1 � x2. The difference between the potentials,
1/ x12 and 1/ x1, is the short-range potential � V12 which is the second constituent
of V f in equation (36.7). Finally there is the third member of V f and that is the
non-local potential operator, Vop ≡ ∇  s1 ln ϕ

∗
f1
( s1) · ∇  x1 . Due to this latter term,

the corresponding T -matrix (36.6) acquires a contribution from the two-centre
function, ∼∇s1ϕ

∗
f1
( s1) · ∇ x1 1 F1(iνT; 1; iv x1 + iv · x1) which couples the final

bound state of e1 on ZP with its simultaneous continuum state in the field of ZT.
Except in [128], all the previous computations on single capture from helium-like
targets used only the potential operator Vop in the T -matrix (36.6) of the CDW
approximation. The interaction � VP2 yields a negligibly small contribution in
the forward direction which determines predominantly the total cross sections,
Q(CDW)+

i f  . This potential is significant only at larger scattering angles in the

differential cross sections, (d/d�)  Q(CDW)+
i f  . In any case, a contribution from

� VP2 to both (d/d�)  Q(CDW)+
i f  and Q(CDW)+

i f  rapidly diminishes with increasing
values of the incident energy, Einc. Hereafter, in comprehensive computations,
we shall consider only ground-to-ground state transitions for processes (36.1)
and (36.2). The same convention (38.12) used for process (38.9) shall also be
used for reactions (36.1) and (36.2). In other words, (d/d�)  Q+ ≡ d Q/d� and
Q+ ≡ Q would represent the post cross sections that are approximately summed
up over all the bound states of the hydrogen atom via the Oppenheimer scaling
law. Detailed computations on (d/d�)Q(CDW) reveal that a contribution from
�V12 increases with augmentation of the incident energy. The potential �V12
yields two maximae in (d/d�)Q(CDW): one in the forward direction (ϑ = 0);
and the other in the vicinity of the critical Thomas angle, ϑds = 0.027 deg in
the centre-of-mass frame as shown in figures 38.12 and 38.13 at Einc = 0.293,
2.0 and 7.4 MeV. The maximum at ϑds = 0.027 deg is due to the double elastic
collision of the electron e1 which first scatters on ZP and then on e2 before it
finally gets bound to the projectile nucleus. The difference between the heights
of the peaks at zero angle and ϑds decreases with increasing Einc such that the
relative importance of the Thomas double scattering increases as compared with
the forward collision. For example, at Einc = 2 MeV the height of the forward
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peak is larger than the one at ϑds by about a factor of 12 and this difference
is reduced to only 3.5 at Einc = 50 MeV. The latter data at 50 MeV are not
shown to avoid clutter. The Thomas peak also exists at energies lower than those
shown in figure 38.13 but they are shifted to angles larger than 0.027 deg. For
example, the peak at the critical angle due to the double binary collision ZP–e1–
e2 becomes comparable to the forward maximum at Einc = 50 keV. Moreover,
we have checked, but not displayed on figure 38.13, that near ϑ ≈ 0.54 deg at
Einc = 25 keV the same ZP–e1–e2 mechanism yields a peak which is an order
of magnitude larger than the one at zero degree. It is also important to discuss
the relative significance of two Thomas double collisions, ZP–e1–e2 and ZP–e1–
ZT. The critical angle of the double binary scattering of e1 depends only on
the ratio me/ mP of the masses of the electron and projectile. Thus the angle
ϑds = 0.027 deg is the same irrespective of whether e1 scatters on the target
nucleus ZT or on the ‘passive’ electron e2 in the second collision. In the CDW
approximation, the ZP–e1– ZT double binary collision is included through the
term Vop whose contribution to (d/d�)  Q(CDW) near ϑ ≈ ϑds is very different
from the one due to the � V12 potential for the ZP–e1–e2 Thomas peak. As
seen in figure 38.12, while the ZP–e1–e2 mechanism produces an unsplit Thomas
peak at ϑds, the  ZP–e1– ZT double collision yields a narrow dip near ϑ ≈ ϑds
much in the same fashion as seen previously in figure 38.7 for H+–H charge
exchange. Within the four-body CDW model for process (36.1), the splitting of
the Thomas peak is caused by a destructive interference at ϑ ≈ ϑds between two
terms contained in the function, ∇s1ϕ

∗
1s( s1) · ∇  x1 1 F1(iνT; 1; iv x1 + iv · x1) =

( ZT − 1) ZPϕ
∗
1s( s1)̂s1 · (̂x1 + v̂) 1 F1(1 + iνT; 2; iv x1 + iv · x1). However, the

split Thomas peak has no physical significance for a positively charged projectile
impinging on helium and indeed it has never been observed experimentally. The
only purpose of figure 38.13 is to provide the first quantitative evidence of a clear
Thomas peak at ϑds = 0.027 deg due to the ZP–e1–e2 double binary collision
in single capture from helium by protons. At present, there are no experimental
data that could isolate this mechanism, but measurements should be feasible in
the near future within COLTRIMS [231]. The overall rising importance of the
dynamic correlation �V12 with increasing incident energy is also clearly visible
on the level of the total cross sections Q(CDW) that are displayed on figure 38.14.
The theoretical results with and without the inter-electron potential �V12 are
compared with the available experimental data in a large energy range from 25
to 10 500 keV. The results Q(CDW) that neglect �V12 are seen in figure 38.14 to
disagree with the measurements. The situation is significantly improved when the
potential �V12 is taken into account within the four-body CDW approximation
which is in excellent accord with the experimental data from [224, 226, 227]
and [232–235] (see figure 38.14). For convenience, only the results of the CDW
approximation are displayed in figures 38.12–38.14, but we have also carried out
the computations using the four-body RIA with quite similar conclusions.

Next we consider transfer ionization (TI) in proton–helium collisions (36.2).
This process has previously been examined both experimentally and theoretically
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Figure 38.12. Differential cross section d Q/d� ≡ (d Q/d�)c.m. for single electron
capture by H+ from He(1s2) as a function of the scattering angle ϑ ≡ ϑc.m. in the
centre-of-mass reference frame at E ≡ Einc = 7.4 MeV. In the computations for this
process, H+ + He(1s2) −→ H(�) + He+(1s), only the ground states of H and He+ are
explicitly considered. The obtained theoretical cross sections are afterwards multiplied
by 1.202 to approximately account for a contribution from the excited states of H via the
Oppenheimer scaling law. The label� in H(�) denotes the sum over all the bound states of
H. The arrow indicates the location of the critical angle from the Thomas double scattering
(ds), i.e. ϑ(ds) ≡ ϑds = 0.027 deg in the centre-of-mass frame. This angle is the same
as ϑds = 0.47 mrad in the laboratory system used in figures 38.4–38.10. Both the broken
and the full lines refer to the post form of the four-body CDW approximation of Belkić
et al [128]. The full line corresponds to the case in which the perturbation potential V f
in the exit channel contains only the electron–electron dynamic correlation �V12 from
equation (36.8) and this describes the Thomas double scattering H+–e1–e2. The broken
line is the result of replacing the total perturbation V f from equation (36.7) by the non-local
potential operator, ∇s1 ln ϕ∗f1

(s1)·∇x1 which at sufficiently high energy Einc describes the

double Thomas scattering, H+–e1–He2+. Thus the broken line corresponds to the case in
which the terms�V12 and �VP2 are ignored from equation (36.7) for V f as has been done
previously in all the applications of the CDW model to collisions involving two-electron
targets except in [128].
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Figure 38.13. Differential cross section d Q/d� ≡ (d Q/d�)c.m. for single electron
capture by H+ from He(1s2) as a function of the scattering angle ϑ ≡ ϑc.m. in the
centre-of-mass reference frame at E ≡ Einc = 0.293, 2 and 7.4 MeV. In the computations
for this process, H++He(1s2) −→ H(�)+He+(1s), only the ground states of H and He+
are explicitly considered. The obtained theoretical cross sections are afterwards multiplied
by 1.202 to approximately account for a contribution from the excited states of H via
the Oppenheimer scaling law. The label � in H(�) denotes the sum over all the bound
states of H. The arrows indicate the location of the critical angle from the Thomas double
scattering (ds), i.e. ϑ(ds) ≡ ϑds = 0.027 deg in the centre-of-mass frame. This angle is
the same as ϑds = 0.47 mrad in the laboratory system used in figures 38.4–38.10. The
angle ϑds is independent of the incident energy. Both the broken and full lines refer to
the post form of the four-body continuum distorted wave (CDW) approximation of Belkić
et al [128]. The full line corresponds to the case in which the perturbation potential V f
contains only the electron–electron dynamic correlation �V12 from equation (36.8) and
this describes the Thomas double scattering H+–e1–e2. The broken line is associated
with the use of the full perturbation V f from equation (36.7) which among other effects
contains the double Thomas scattering, H+–e1–He2+, described by the non-local potential
operator, ∇s1 lnϕ∗f1

(s1) · ∇x1 .
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Figure 38.14. Total cross section Q for single capture from helium by protons as
a function of the laboratory impact energy E = Einc. In the computations for this
process, H+ + He(1s2) −→ H(�) + He+(1s), only the ground states of H and He+ are
explicitly considered. The theoretical cross sections are afterwards multiplied by 1.202 to
approximately account for a contribution from the excited states of H via the Oppenheimer
scaling law. The label� in H(�) denotes the sum over all the bound states of H. The target
wave function ϕi of Silverman et al [203] from equation (36.11) is used. The full and
broken lines obtained by means of the four-body CDW approximation [128] correspond
to the cases where the potential �V12 given by equation (36.8) is included and excluded
from the complete perturbation V f , respectively. Experimental data: ), Schryber [224];
', Shah et al [232];◦ , Shah and Gilbody [233]; &, Berkner et al [234]; �, Williams [227];• , Horsdal-Pedersen et al [97]; �, Martin et al [235]; �, Welsh et al [226].
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in [115] where we used the four-body RIA in its post form with potential V f

given by equation (36.7). We recall that our explicit computations include only
the ground-to-ground state transition of the captured electron. The contribution
from the excited states of hydrogen are taken into account approximately via
the Oppenheimer scaling law with an overall multiplicative factor 1.202 as in
equation (38.12). In the case of process (36.2), experimental data are available
from [115] for total cross sections that isolate a contribution from the dynamic
inter-electron correlation, � V12. Our previous computations reported in [115]
have been extended in [19] to higher incident energies up to about 10 MeV
and a fraction of the obtained set of the cross sections, Q(RIA), is displayed
in figure 38.15 along with the corresponding second-order peaking Brinkman–
Kramers (BK2) cross sections, Q(BK2), [164] and the experimental data of Mergel
et al [115]. It is seen in figure 38.15 that at intermediate energies (0.3–1.4) MeV,
the experimentally measured total cross sections exhibit the ∼ v−7.4±1 behaviour
for the H+–e1–e2 double binary collisions. At higher energies (2.5–4.5) MeV
experimental data by Schmidt et al [115] (not shown in figure 38.15) for the same
collision possess the v−11 dependence. The quantum-mechanical four-body RIA
is seen in figure 38.15 to reproduce quantitatively the v−7.4±1 pattern of Mergel et
al ’s [115] cross sections Q measured at (0.3–1.4) MeV. Also the beginning of the
asymptotic tail of the curve due to the RIA shown in figure 38.15 is observed to
follow the v−11 behaviour above 2 MeV as in Schmidt et al ’s experiment [115].
According to the classical Thomas result [100], which is also the prediction of the
quantal BK2 approximation [164], the cross sections Q for the discussed process
have the v−11 asymptote at very high incident velocities v � ve.

The results for the final example of our analysis are special due to a
large interval extending from low to high velocities. These data are devoted to
process (37.1) which is single-electron detachment in collisions of protons with
negative hydrogen ions. In chapter 37 the T -matrices and cross sections for this
reaction are given for four methods in the prior form of their four-body quantum-
mechanical formulations. Two of them are the incorrect [172] and correct
[175] versions of the plane-wave Born approximation acronymed as PWB# and
PWB, respectively. The initial and final plane waves of the relative motion of
heavy particles and the associated short range perturbation potentials are treated
consistently in the standard PWB approximation. This is not the case in the PWB#

model used in [172] where the computed cross sections are obtained from a T -
matrix which contains only the long-range Coulomb potential VP1 = −1/s1. The
remaining two models outlined in chapter 37 are the distorted wave methods
called the eikonal Coulomb–Born (ECB) [172] and modified Coulomb–Born
(MCB) [175] approximation. The ECB and MCB share the common initial and
final scattering states χ+

i and χ−
f from equations (37.3) and (37.6), respectively.

However, these two latter methods differ in the perturbation potential operators
that lead to detachment in process (37.1). The ECB model has an incorrect
distorting potential VP1 = −1/s1 which does not satisfy the corresponding
Schrödinger equation for χ+

i . In the MCB method, the perturbation potentials
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Vi, f in both the entrance and exit channels of process (37.1) are consistent with
the distorted waves χ±

i, f , respectively. The goal of the upcoming discussion
will be to enlighten the issue of the relevance of the consistency between Vi, f

and χ±
i f  from the practical standpoint along the lines of [175]. To this end, we

shall presently limit ourselves to comparisons between the total cross sections
obtained theoretically and experimentally. Once this issue is discussed, we shall
concentrate on the role of the static correlations in the target, H−(1s2). It is well
known that a number of major spectroscopic characteristics of this fundamental
two-electron atomic system are extremely sensitive to electronic correlations. A
similar sensitivity of cross sections for electron detachment (37.1) has previously
been found in [175].

All the computations to be discussed that relate to process (37.1) include
only the ground state of the target residual H(1s) in the exit channel. Unlike
processes with electron transfer, no multiplicative factor is included in cross
sections for reaction (37.1). We shall consider the prior cross sections only and
use the abbreviation, Q−

i f ≡ Qi f  = Q1s2,1s ≡ Q. The net quantitative result
of including all the Coulombic effects of free charged particles is that the total
prior cross sections Q(ECB) computed with the two-parameter (1s1s′) radially
correlated wavefunctionϕi ( x1, x2) of Silverman et al [203] from equation (36.11)
are considerably smaller than Q(PWB#) at low energies, as can be seen from
figure 38.16. At intermediate and high energies, the results Q(ECB) and Q(PWB#)

are very close to each other and they both tend to the same constant value at
the highest Einc at variance with the correct Born–Bethe asymptotic behaviour
∼ E−1 ln( E) for large Einc ≡ E . This is the first warning that the inconsistency
between scattering states and perturbation potentials encountered in both PWB#

and ECB has the undesired repercussions. In 1976 the experimental data became
available from the measurement carried out by Peart et al [173] for the H+–H−
detachment process (37.1). The situation was then clarified as it was discovered
that the ECB model overestimates the measured total cross sections Q by two
orders of magnitude at Einc = (1.49–35.20) keV. This could have also been
inferred from the earlier 1970 experimental data of Peart et al [174] on e+H− −→
e + H + e through rescaling the incident energies. The measurement from [174]
extends all the way up to 918.06 keV of the equivalent proton energy at which
the ECB model exceeds the experimental findings by three orders of magnitude
(see table 38.5 and figure 38.16). The reason for such a huge discrepancy was not
known until recently in 1997 when the problem was re-investigated in [175] where
it has been found that χ+

i and VECB = −1/s1 are not consistent with each other.
As a result, the MCB method emerged from [175] as the most adequate theory to
date for detachment process (37.1). The total cross sections Q(MCB) obtained with
the same two-parameter wavefunction ϕi as in Silverman et al [203] are displayed
in figure 38.16. It is seen that the results Q(MCB) are by two to three orders
of magnitude smaller than Q(ECB). Moreover, the two cross sections exhibit
a completely different dependence upon the incident energy. The discrepancy
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Figure 38.15. Total cross section Q for transfer ionization (TI) in proton–helium collisions
as a function of the laboratory impact energy E ≡ Einc. In the computations for this
process, H+ + He(1s2) −→ H(�) + He2+ + e, only the ground states of H is explicitly
considered. The obtained theoretical post cross sections are afterwards multiplied by
1.202 to approximately account for a contribution from the excited states of H via the
Oppenheimer scaling law. The label � in H(�) denotes the sum over all the bound states
of H. Both theories and experimental data refer only to the contribution to TI from the
Thomas double scattering, H+–e1–e2. The target wave function ϕi of Hylleraas et al [203]
from equation (36.15) is used. The broken line is the result of Briggs and Taulbjerg [164]
obtained in the second-order Brinkman Kramers (BK2) approximation. The full line
from [19] has been computed by means of the four-body RIA, i.e. the RIA-4B by using only
the potential �V12 from equation (36.8) in the exit channel perturbation V f . Experimental
data (•), Mergel et al [115]. The results of Schmidt et al [115] (not shown) at energies
(2.5–4.5) MeV amu−1 are in excellent quantitative agreement with the displayed full line
(RIA-4B).
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Table 38.5. Three methods for total cross sections Q of the electron detachment process, H+ + H− −→ H+ + H + e: (plane-wave Born
(PWB#), eikonal Coulomb–Born (ECB) and modified Coulomb–Born (MCB) as a function of the centre of mass incident energy E = Einc
(keV). The acronyms PWB#, ECB and MCB stand for the incorrect ‘plane wave Born’ [172], the eikonal Coulomb–Born [172] and the modified
Coulomb–Born [175] approximation, respectively. The heading ‘CI wf’ denotes the configuration interaction wavefunction, ϕi (x1, x2), of the target
with a fixed number N of variationally determined parameters (N = 2 and 3, [203]; N = 61, [237]). The last row labelled as ‘Exper.’ represents the
experimental data for proton [173] (1.49–35.20 keV) and electron [174] impact (scaled to the equivalent proton energies 93.64–918.06 keV). The

theoretical ‘prior’ cross sections Q(PWB#)−
i f , Q(ECB)−

i f and Q(MCB)−
i f include only H(1s), whereas the experiments [173, 174] relate to all states

H(�) of the target residual in the exit channel.

Q\Einc 1.49 9.22 26.03 35.20 93.64 459.03 918.06
CI wf 2 parameters

PWB# 358 422 429 430 432 433 433
ECB 94 351 410 418 430 433 433
MCB 12.31 15.22 8.58 6.99 3.34 0.877 0.478

CI wf 3 parameters

PWB# 116 159 165 165 167 167 167
ECB 16 125 155 159 165 167 167
MCB 2.50 7.61 4.61 3.80 1.85 0.498 0.273

CI wf 61 parameters

PWB# 88 125 129 130 131 132 132
ECB 10 97 121 125 130 132 132
MCB 1.70 6.72 4.16 3.43 1.69 0.456 0.258

Exper. 0.45 ± 0.65 4.37 ± 0.19 2.98 ± 0.20 2.73 ± 0.20 1.76 ± 0.21 0.465 ± 0.05 0.292 ± 0.05
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Figure 38.16. Total cross sections Q(100π a2
0 ) for the electron detachment process

H+ + H−(1s2) −→ H+ + H(�) + e, as a function of the incident velocity v ≡ vinc
in atomic units (au). The acronyms PWB#, ECB and MCB stand for the incorrect
‘plane-wave Born’ [172], eikonal Coulomb–Born [172] and the modified Coulomb–Born
[175] approximation, respectively. The PWB#, ECB and MCB theories are used in
the prior form within their four-body formalisms. The integer N in the parentheses
associated with these three theories denotes the number of the variational parameters in
the configuration interaction (CI) orbitals for the ground-state wavefunction of H−(1s2)

with N = 2 and 3, [203] and N = 61, [236]. The ECB cross sections for N = 61 (not
shown in this figure to avoid clutter, but the corresponding results are given in table 38.5)
tend to a constant as does the displayed ECB line for N = 2 and both of these results are
at variance with the well-established Born–Bethe limit, v−2 ln(v2), as well as with all the
available experiments [173, 174]. Experimental data: • , proton impact [238]; �, proton
impact [173]; and◦ , electron impact [174]. All the theoretical cross sections include only
the ground state of H, whereas the experimental data relate to all states of H as symbolized
by H(�) in the exit channel of the investigated process.
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Figure 38.17. Total cross sections Q(100πa2
0 ) for the electron detachment process

H+ +H−(1s2) −→ H+ +H+ e, as a function of the incident velocity v ≡ vinc in atomic
units (au): theory, MO (molecular orbitals), full line [240]; AO (atomic orbitals with 29 and
36 functions), broken lines [241]; PWB (plane-wave Born), full line [239]; MCB (modified
Coulomb–Born), full line [175]. The MCB and PWB prior cross sections originate from
the highly correlated target wave function of Joachain–Terao [237] and Rotenberg and
Stein [238] with 61 and 33 variationally determined parameters, respectively. Experimental
data (proton impact only): • , Melchert et al [238]; �, Peart et al [173]. The PWB and
MCB cross sections include only the ground state of H(1s) whereas the experimental data
relate to all states of H as symbolized by H(�) in the exit channel of the investigated
process.

between these models is most dramatic at larger values of the incident velocity
v ≡ vinc for which Q(MCB) possesses the correct behaviour v−2 ln(v2) in sharp
contrast to the constant limiting value of the high-energy asymptote for Q(ECB).
Quantitatively, Q(MCB) still exceeds the experimental data [173, 174] in the
absolute value by a factor ranging from 2.9 to 1.6 at Einc ∈ [26.03, 918.06] keV.
This situation can greatly be improved by including the static angular correlations
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[(1s1s′) + λ(2p)] via the Silverman et al’s [203] three-parameter wavefunction
ϕi . Such a remarkably simple configuration-interaction (CI) orbital is capable of
bringing Q(MCB) into good agreement with the measured values Q (see table 38.5
and figure 38.16). We also examined the influence of higher radial and angular
electronic correlations through the CI wavefunctions ϕi of Tweed [237] (with 21,
31 and 41 parameters) as well as Joachain and Terao [236] (with 61 parameters).
These CI orbitals further reduce Q(MCB) yielding excellent agreement with the
measurements [173, 174] at intermediate and high energies. At the same time,
even the 61-parameter CI orbitals of Joachain and Terao [236] give a constant
high-energy value for Q(ECB), which still overestimates the measured data for Q
by three orders of magnitude (see table 38.5). This disproves the conjecture by
Bell et al [239] that the failure of the ECB model to reproduce the experimental
results [173,174] could be due to the inaccurate bound-state wavefunction ϕi used
in [172]. Finally, in figure 38.17 we compare theoretical cross sections for process
(37.1) with the most recent experimental data of Melchert et al [238] from 1999.
The results of the two earlier computations carried out using the close coupling
methods are also displayed. The expansion method in terms of molecular orbitals
(MO) from [240] underestimate the experimental data throughout the considered
energy range from figure 38.17. The atomic orbital (AO) expansion from [241]
approximately reproduces only the measured cross sections at very low energies
near the threshold, whereas the experimental data at intermediate and high
velocities are underestimated (see figure 38.17). In addition, the AO method
with 29 and 36 orbitals do not converge to each other in the overlapping velocity
region around the maximum of the cross sections. The results of the MCB method
and the true PWB approximation from equation (37.9) agree closely with each
other at high velocity as expected, since they both contain the correct Bethe limit.
The PWB curve from figure 38.17 has previously been given in [239] where the
highly correlated Rotenberg–Stein [239] wavefunction for the target is used with
33 variational parameters. The MCB curve from figure 38.17 has been obtained
in [175] using the highly correlated Joachain-Terao [236] CI wavefunction for
H−(1s2) with 61 variational parameters. The PWB model largely overestimates
the measurement at incident velocities v below 1 au. However, the MCB method
is seen in figure 38.17 to reproduce the experimental data remarkably well from
low through intermediate to high velocities. Note that, in figure 38.17, we
plotted only the experimental data from different measurements that consistently
agree with each other. This analysis of process (37.1) conclusively demonstrates
the need for great care in establishing a proper connection between the long-
range Coulomb distortion effects and the accompanying perturbation potential,
for otherwise unphysical results could easily be incurred as in [172]. In
addition, the discussed results show that quantitatively good agreement between
the MCB theory and the available experimental data is only possible by using the
bound-state wavefunction of H−(1s2) with a high degree of static inter-electron
correlations (see table 38.5 and figure 38.16).
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Chapter 39

Summary to part II

The impulse approximation (IA), originally proposed for short-range interactions,
is well established in nuclear physics due to its sound principles and good
agreement with experiments. Nevertheless, the IA ignores multiple scattering
effects altogether. In addition, the binding target interactions are considered
as unimportant, except for generating the momentum distribution of the initial
electronic state. In atomic collisions, the IA is also one of the most
frequently employed tools. However, the IA in atomic physics suffers from
two major drawbacks: (i) incorrect boundary conditions in all channels and
(ii) mathematically non-existent solutions of the central dynamic equation for
continuum intermediate states. Most of the previous attempts have not succeeded
in improving this situation by overcoming both limitations (i) and (ii) at the
same time. This has been accomplished only within the reformulated impulse
approximation (RIA). The crux of the achievement is in consistently considering
the electron as being simultaneously in the field of two-point nuclear charges,
with proper account taken of all the long-range Coulomb effects. As a net result
of solving the two longstanding problems (i) and (ii), the RIA is established
on a firm mathematical and physical basis. The lifting of the constraints (i)
and (ii) is equivalent to including all the multiple scattering effects that are
discarded in the IA. Previous investigations show that the IA yields total cross
sections that are too low for, e.g., the prototype H+ + H −→ H + H+ charge
exchange at intermediate energies, (20–350) keV. However, the present numerical
computations for the same process of electron capture from atomic hydrogen by
proton impact show that the RIA is in excellent agreement with the available
experimental data over a large interval of incident energies ranging from 20
to 7500 keV. Substantial improvements in the RIA over IA are also obtained
for differential cross sections even at energies where Thomas double scattering
becomes important. The overall conclusion which emerges from the present
study lends support to the documented evidence that multiple scattering effects
play an essential role in determining both differential and total cross sections for
charge exchange at intermediate and high energies. The detailed comparisons
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with experiments prove that the RIA is much more adequate not only than the IA
but also than other leading second-order models, such as the continuum distorted
wave (CDW) method and the boundary-corrected exact second Born (CB2 or
B2B) approximation.

In addition, using several accurate distorted wave methods, we have
considered a number of inelastic collisions of heavy nuclei with two-electron
targets. Special attention is focused on single-electron capture (SC) and transfer
ionization (TI) in H+–He collisions, as well as on one-electron detachment in
the H+–H− scattering. Here, three distinct and important effects are studied
such as dynamic as well as static inter-electronic correlations and the consistency
between the full scattering states and the perturbation potentials in the transition
matrices. It is found that the dynamic electron–electron correlations in SC and
TI play a leading role which is progressively enhanced with increased incident
energy. For the first time, the inter-electron interaction is shown to yield the
Thomas peak at both intermediate and high energies in the SC. Such a prominent
structure is kinematically well separated from other competitive first- and second-
order mechanisms. This circumstance should facilitate a new generation of
experiments on storage ring accelerators with cold target recoil ion momentum
spectroscopy and thus enable detection of this theoretically predicted signature of
the proton–electron–electron binary collision in the SC. A single-pass experiment
of this kind for the TI in the H+–He collisions at Einc = (0.3–1.4) MeV has
recently been carried out by Mergel et al [115] reporting the v−7.4±1 behaviour
of the total cross sections Q for successfully isolated double binary proton–
electron–electron collisions. Such a v−7.4±1 dependence of Q at intermediate
velocities has subsequently been observed in a multiple pass experiment at a
storage ring by Schmidt et al [115] to continue smoothly onto the v−11 behaviour
in the range (2.5–4.5) MeV which corresponds to v = (10–13.4)ve. This latter
velocity range satisfies approximately the relationship v � ve for which the v−11

asymptotic form of the classical double-scattering mechanism has been originally
established by Thomas [100] and confirmed by the quantum-mechanical second-
order Brinkman–Kramers (BK2) approximation [164]. The four-body RIA from
[19] reproduces quantitatively both the experimental data of Mergel et al [115]
and that of Schmidt et al [115] in their respective energy regions.

As far as the computational methods of the presented theories are concerned,
the numerical algorithms encounter a considerable challenge in accurate and
efficient evaluations of multi-dimensional integrals ranging from one to thirteen
dimensions (1D–13D). We used both deterministic (preassigned pivots and
weights) and stochastic (Monte Carlo, MC) methods for this purpose. In general,
for low dimensions, nD (n ≤ 5), deterministic methods are recommended
and especially so if high accuracy is required. For larger dimensions, say
n ≥ 6, stochastic methods are preferred. Specifically, we employed the MC
code VEGAS with implementation of the importance sampling. Despite its
statistical nature, we have shown that VEGAS can robustly yield the exact results
within the computed standard deviation σ and the accompanied goodness of
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fit or, equivalently, the χ2-test. The uniqueness of VEGAS is in its iterative
adaptiveness to generic integrands. Both σ and χ2 are contained in the list of the
outcomes from the computation within VEGAS in each iteration. The final results
undergo a twofold scrutiny, such as the preassigned accuracy (as checked against
the estimated values for σ ) and the χ2 test. In particular, the χ2 value should be
close to N j − 1 where N j is the total number of the performed iterations, j , that
need not be larger than 10.

For low dimensions that are most frequently used in practice, ranging from,
e.g., 1D to 5D, there is a strong need for deterministic methods other than those
based upon classical polynomials. One such alternative method is the fast Padé
transform (FPT) which has been recently introduced. The FPT is an iterative
integration method which consists of two major steps. In the first iteration, the
FPT collects a sequence of multi-dimensional fast Fourier transforms (FFT) of
increasing length. In the second step, this latter FFT sequence, which converges
slowly with its augmented length, is afterwards accelerated by means of the Padé
approximant implemented operationally through the Wynn iterative ε-algorithm
which is stable, robust and efficient. Such iterations are recursive and the whole
sequence of iterative solutions can be generated almost instantaneously with an
unprecedented accuracy.
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Chapter 40

Outlook

In the more general context of the utility of atomic collisions, common
experience shows that the processes of excitation, capture and ionization
find rich areas of applications across a number of interdisciplinary fields.
These include fusion research, condensed matter physics, biophysics, chemical
physics, medical physics, etc. The conclusions drawn from the examinations
of processes considered in the present book as well as from other related
studies are essential not only for nuclear, atomic and molecular physics but
also for plasma physics, astrophysics and condensed matter physics whenever
modelling and/or simulations of collective phenomena are necessary. Moreover,
knowledge of angular distributions of electron-production cross sections is of
great importance in several adjacent areas, such as the technology of x-ray
lasers as well as in biochemistry, biophysics and medical physics when dealing
with the energy deposition of light or heavy ions in organic matter, charged
particle detection, relative biological effectiveness of secondary electrons (δ-
rays), ionizing phenomena and DNA break-up, hadron radiation therapy, etc
[142–149,242]. At intermediate and high energies, K- and L-shell excitation and
ionization of a few-electron ionic projectile by neutral atomic or molecular targets
could potentially trigger radiation damage in biological media. For example,
creation of K-vacancies in a multi-electron atom (C, N, P or O) of the DNA
skeleton can lead, via Auger electrons and Coulomb explosion, to double strand
breaks, aberration, inactivation and mutation of cells. In order to investigate the
mechanisms behind these complex phenomena, one could advantageously use
the atomic physics theories analysed in this work. In particular, it is important to
verify whether these methods can quantitatively explain the experimental finding
[139] that, just like the K-shell atomic ionization, inactivation cross sections also
reach their maxima for the matching condition between the incident velocity and
the K-shell electron orbital velocity. It would be useful to derive some closed
asymptotic formulae from the presently examined theories with the purpose of
modelling the response of various material to passage of ions with large values
of the so-called linear energy transfer (LET). The same type of computations,
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that are relatively simpler than Monte Carlo simulations, could also be performed
to determine the consequences of passage of swift light or heavy ions through
molecules of water or other more complicated tissue-equivalent substances.

Atomic collisions are also important to technological applications in the field
of thermonuclear fusion, where electron capture could partially neutralize the
plasmas and seriously aggravate their stability [141]. Furthermore, the results
obtained in atomic physics are of considerable current interest in applications
in biology and medicine, where ionization processes are essential for evaluation
of the heavy particle mobility and the energy loss during their passage through
matter. For a deeper understanding of the response of organic, biological
target systems to ionizing radiations, a more thorough knowledge of the spatial
distribution of energy deposition is necessary. An impressive number of
recent experimental studies show the timeliness of this subject of research
[143–150]. In many multidisciplinary applications, the ionization rates were
estimated in a purely empirical manner, without even resorting to the plane-
wave Born (PWB) approximation or its simplification known as the Bethe
model. This is unnecessary, since atomic physics already offered several solid
theories for ionization [59,151–153,175], that are sufficiently simple for versatile
applications. Quite recently atomic collision physicists began to contribute
significantly to these interdisciplinary fields [139, 143, 145]. Furthermore, effort
would be welcome to explore this possibility systematically and provide more
realistic ionization rates for applications in biology and medicine. It would be
very important to use the theories from the present book for computations of
stopping powers of charged particles in matter (atoms, molecules, solids, organic
matter). Inokuti and Berger [243] rightly pointed out that no deeper insight could
be achieved in particle transport physics without securing the data bases with the
reliable stopping powers based upon the most accurate cross sections from the
leading atomic physics theories.

Electron capture from surfaces by fast grazing heavy projectiles was recently
studied within the IA [139] and a huge disagreement with experiments was found
by considering only the free electron gas in metallic targets. The situation was
somewhat improved by making allowance for capture of electrons which are
bound to atoms of a crystal surface. However, given the basic deficiencies of
the IA for atomic gas targets, it would be highly desirable to re-investigate this
issue by using the RIA. In particular, more work should be done to clarify the
role of a collective response of a surface to the passage of multiply charged heavy
ions (dynamic screening, equilibrium charge states, induced strong electric fields
via polarization, etc). It is customary to use the jellium model to describe a solid
target. There is a possibility of treating the bound and free electrons in a solid
target on the same footing and this could be accomplished by accounting for
the jellium inhomogeneities via higher order terms of the jellium model. The
present knowledge of ion–surface scatterings is quite asymmetric with respect
to the information from the projectile and the target after the collision. In
particular, there exist some reliable techniques for modelling the global charge
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state distributions of the incident ions at their exit from a surface for varying
thickness of the target. The situation is, however, much less satisfactory for
the stopping power of ions through solids, due to the complexity of ab initio
computations of the corresponding energy loss. This problem is customarily
approached through the following two strategies: (i) binary collisions and (ii)
collective responses. In (i), one describes the deceleration of the impinging ions
via a sequence of their binary collisions with electrons and atoms of the surface.
In contrast, in (ii) the target electrons respond collectively to the passage of the
projectile and, e.g., a collective coherent excitation of the electron plasma of the
solid would necessitate a many-body theoretical model [139]. It is, therefore, not
surprising that the two concepts (i) and (ii) yield very different predictions. As
to the fate of a dense target (polymer, liquid or solid) after its interaction with
traversing ions, the major outcome consists of creation of a very strong excitation
density. If this is accomplished via the energy confinement, the target would
inevitably deteriorate to various degrees depending upon its stopping power,
incident velocity, projectile charge state, etc. It would be important to study
this problem as a series of binary collisions and investigate a collective response
to a passage of a heavy fast ion through dense matter. This could be done
systematically, by first examining some primary processes of the type of single
excitation through adjusting, e.g., the best distorted wave theories which have
been successful in dealing with gaseous targets. For a subsequent many-body
approach to collective excitations, it would be advantageous to use the well-
established random phase approximation (RPA). Ultimately, one could attempt
to devise a theory in which both of these mechanisms, i.e. binary processes and
collective responses, would be incorporated into a unified framework.

We have seen in the present study that the importance of the dynamic
electron correlations increases as the impact energy is augmented. This enhances
the probabilities for double and multiple electron transitions. Larger opportunities
for multi-electron transitions also exist at intermediate energies, for a different
reason which is the comparable role of excitation, capture and ionization.
Recently, a series of new experiments have begun at GANIL (France) by
measuring differential cross sections for multiple ionization of gaseous targets
by fast heavy ions using the recoil ion momentum spectroscopy [124]. It was
found that the rate of multiple ionization, including seven electrons ejected from
argon by Xe+44 at 6 and 7 MeV amu−1, as well as six and eight electrons ejected
from neon and argon by Au53+ at 3 and 6 MeV amu−1, reaches some ∼40% of
the total ionization yield. These experimental results await a reliable quantitative
theoretical confirmation and the theories discussed in our analysis could be used
to perform the corresponding detailed computations.

At present, collision theories involving molecular targets are rather crude
and exclusively limited to the first-order Born-type approximations [186]. These
methods completely neglect molecular dynamics and resort to an independent
particle model for the constituent atoms. Experiments are also in a quite
rudimentary stage. Nevertheless, available experimental data suggest that the
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degree of excitation of some simple diatomic and triatomic molecules is larger
for heavy-ion impact than for photons of equivalent energies. This finding
necessitates a proper theoretical description. The available first-order molecular
models cannot predict the branching ratios for different fragmentation channels
of a molecule. Hence, it is timely to develop proper molecular versions of the
leading boundary-corrected second-order theories analysed in the present book
(RIA, CB2/B2B, CDW), to fill in the gap and to help progress in this discipline
whose priorities are at intermediate incident energies.
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[19] Belkić Dž 2001 J. Comput. Meth. Sci. Eng. (JCMSE) 1 1
[20] Mott N F and Massey H S W 1933 The Theory of Atomic Collisions, 1st Edition,

The International Series of Monographs on Physics (Oxford: Clarendon)

Copyright 2004 IOP Publishing Ltd



354 References

[21] Wheeler J A 1937 Phys. Rev. 52 1107
[22] Heisenberg W 1943 Z. Phys. 120 513
[23] Møller C 1945 Det. Kgl. Danske Vidensk. Selskab, Math-Fys. Medd. 23 no 1
[24] Gellmann M and Goldberger M L 1953 Phys. Rev. 91 398
[25] Ekstein H 1956 Phys. Rev. 101 880
[26] Epstein S T 1957 Phys. Rev. 106 598
[27] Wigner E P 1946 Phys. Rev. 70 660
[28] Breit G 1957 Phys. Rev. 107 1612
[29] Khuri N 1957 Phys. Rev. 107 1148
[30] Carter D S 1952 PhD Thesis Princeton University, unpublished
[31] Jauch J M 1957 Helv. Phys. Acta 31 129
[32] Jauch J M 1958 Helv. Phys. Acta 31 661
[33] Faddeev L D 1961 Sov. Phys.–JETP 12 1014
[34] Faddeev L D 1961 Sov. Phys. Dokl. 6 384
[35] Faddeev L D 1963 Sov. Phys. Dokl. 7 600
[36] Rutherford E 1911 Phil. Mag. 21 669
[37] Bohr N 1913 Phil. Mag. 25 10
[38] Franck F and Hertz G 1914 Verhandl. Deut. Phys. Ges. 16 459
[39] Davisson C J and Germer L H 1927 Phys. Rev. 30 705
[40] Rutherford E, Chadwick J and Ellis C 1930 Radiation from Radioactive Substances

(New York: McMillan)
[41] Lattes C M G, Muirhead H, Occhialini G P S and Powell C F 1947 Nature 159 694
[42] Lattes C M G, Occhialini G P S and Powell C F 1947 Nature 160 453
[43] Yukawa H 1935 Proc. Phys. Math. Soc. (Japan) 17 48
[44] Weinberg S 1980 Rev. Mod. Phys. 52 515
[45] Salam A 1980 Rev. Mod. Phys. 52 525
[46] Glashow S L 1980 Rev. Mod. Phys. 52 539
[47] Salvini G and Silverman A 1988 Phys. Rep. 171 231
[48] Eichten E, Gottfried K, Kinoshita T, Lane K D and Yan T M 1978 Phys. Rev. D 17

3090
[49] Agostini P, Barjot G, Mainfray G, Manus C and Thebault J 1970 IEEE J. Quantum

Electron. 6 782
[50] Lambropoulous P 1976 Adv. At. Mol. Phys. 12 87
[51] Bayfield J E 1979 Phys. Rep. 51 317
[52] Gay J C (ed) 1992 Irregular Atomic Systems and Quantum Chaos (Montreux:

Gordon and Breach Science)
[53] Ruderman M 1979 Physics of Dense Matter, Communication at the IAU Sympos.

No 53 ed C Hansen (Boston, MA: Reider) p 117
[54] Barnett C F, Ray J A, Ricci E, Wilker M I, McDaniel E W, Thomas E W and Gilbody

H B 1977 Oak Ridge National Laboratory Report No ORNL 5206 1 unpublished
[55] 1989 ITER Concept Definition, ITER Documentation Series, No 3 (Vienna: IAEA)
[56] Byron F W Jr, Joachain C J and Piraux B 1986 J. Phys. B: At. Mol. Phys. 19 1201
[57] Katz R and Kobetich E J 1967 Phys. Rev. 170 401
[58] Kobetich E J and Katz R 1970 Phys. Rev. 170 391
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13 2601
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Schmidt-Böcking H 2000 Phys. Rep. 330 95

Ullrich J, Moshammer R , Dorn A, Dörner R, Schmidt L Ph H and Schmidt-Böcking
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Belkić Dž 2003 J. Comp. Meth. Sci. Eng. (JCMSE) 3 109
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