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Preface

The geometry of quantum states is a highly interesting subject in itself, but it
is also relevant in view of possible applications in the rapidly developing fields
of quantum information and quantum computing.

But what is it? In physics words like ‘states’ and ‘system’ are often used.
Skipping lightly past the question of what these words mean – it will be
made clear by practice – it is natural to ask for the properties of the space
of all possible states of a given system. The simplest state space occurs in
computer science: a ‘bit’ has a space of states that consists simply of two
points, representing on and off. In probability theory the state space of a
bit is really a line segment, since the bit may be ‘on’ with some probability
between zero and one. In general the state spaces used in probability theory
are ‘convex hulls’ of a discrete or continuous set of points. The geometry
of these simple state spaces is surprisingly subtle – especially since different
ways of distinguishing probability distributions give rise to different notions
of distance, each with their own distinct operational meaning. There is an old
idea saying that a geometry can be understood once it is understood what
linear transformations are acting on it, and we will see that this is true here
as well.

The state spaces of classical mechanics are – at least from the point of view
that we adopt – just instances of the state spaces of classical probability theory,
with the added requirement that the sample spaces (whose ‘convex hull’ we
study) are large enough, and structured enough, so that the transformations
acting on them include canonical transformations generated by Hamiltonian
functions.

In quantum theory the distinction between probability theory and mechanics
goes away. The simplest quantum state space is these days known as a ‘qubit’.
There are many physical realizations of a qubit, from silver atoms of spin 1/2
(assuming that we agree to measure only their spin) to the qubits that are
literally designed in today’s laboratories. As a state space a qubit is a three-
dimensional ball; each diameter of the ball is the state space of some classical
bit, and there are so many bits that their sample spaces conspire to form a
space – namely the surface of the ball – large enough to carry the canonical
transformations that are characteristic of mechanics. Hence the word quantum
mechanics.

It is not particularly difficult to understand a three-dimensional ball, or to
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see how this description emerges from the usual description of a qubit in terms
of a complex two-dimensional Hilbert space. In this case we can take the word
geometry literally: there will exist a one-to-one correspondence between pure
states of the qubit and the points of the surface of the Earth. Moreover, at least
as far as the surface is concerned, its geometry has a statistical meaning when
transcribed to the qubit (although we will see some strange things happening
in the interior).

As the dimension of the Hilbert space goes up, the geometry of the state
spaces becomes very intricate, and qualitatively new features arise – such as
the subtle way in which composite quantum systems are represented. Our
purpose is to describe this geometry. We believe it is worth doing. Quantum
state spaces are more wonderful than classical state spaces, and in the end
composite systems of qubits may turn out to have more practical applications
than the bits themselves already have.

A few words about the contents of our book. As a glance at the table of
contents will show, there are 15 chapters, culminating in a long chapter on
‘entanglement’. Along the way, we take our time to explore many curious
byways of geometry. We expect that you – the reader – are familiar with the
principles of quantum mechanics at the advanced undergraduate level. We do
not really expect more than that, and should you be unfamiliar with quantum
mechanics we hope that you will find some sections of the book profitable
anyway. You may start reading any chapter: if you find it incomprehensible
we hope that the cross-references and the index will enable you to see what
parts of the earlier chapters may be helpful to you. In the unlikely event that
you are not even interested in quantum mechanics, you may perhaps enjoy our
explanations of some of the geometrical ideas that we come across.

Of course there are limits to how independent the chapters can be of each
other. Convex set theory (Chapter 1) pervades all statistical theories, and
hence all our chapters. The ideas behind the classical Shannon entropy and
the Fisher–Rao geometry (Chapter 2) must be brought in to explain quantum
mechanical entropies (Chapter 12) and quantum statistical geometry (Chapters
9 and 13). Sometimes we have to assume a little extra knowledge on the part
of the reader, but since no chapter in our book assumes that all the previous
chapters have been understood, this should not pose any great difficulties.

We have made a special effort to illustrate the geometry of quantum mechanics.
This is not always easy, since the spaces that we encounter more often than
not have a dimension higher than three. We have simply done the best we
could. To facilitate self-study each chapter concludes with problems for the
reader, while some additional geometrical exercises are presented in Appendix
3.

We limit ourselves to finite-dimensional state spaces. We do this for two
reasons. One of them is that it simplifies the story very much, and the other
is that finite-dimensional systems are of great independent interest in real
experiments.

The entire book may be considered as an introduction to quantum entanglement.
This very non-classical feature provides a key resource for several modern
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Figure 0.1. Black and white version of the cover picture which shows the
entropy of entanglement for a 3-D cross section of the 6-D manifold of pure
states of two qubits. The hotter the colour, the more entangled the state. For
more information study Sections 15.2 and 15.3 and look at Figures 15.1 and
15.2.

applications of quantum mechanics including quantum cryptography, quantum
computing and quantum communication. We hope that our book may be useful
for graduate and postgraduate students of physics. It is written first of all for
readers who do not read the mathematical literature everyday, but we hope
that students of mathematics and of the information sciences will find it useful
as well, since they also may wish to learn about quantum entanglement.

We have been working on the book for about five years. Throughout this
time we enjoyed the support of Stockholm University, the Jagiellonian University
in Kraków, and the Center for Theoretical Physics of the Polish Academy of
Sciences in Warsaw. The book was completed at Waterloo during our stay at
the Perimeter Institute for Theoretical Physics. The motto at its main entrance
– AΣΠOY∆AΣTOΣ ΠEPI ΓEΩMETPIAΣ MH∆EIΣ EIΣITΩ1 – proved
to be a lucky omen indeed, and we are pleased to thank the Institute for
creating optimal working conditions for us, and to thank all the knowledgable
colleagues working there for their help, advice and support. We also thank
the International Journal of Modern Physics A for permission to reproduce a
number of figures.

We are grateful to Erik Aurell for his commitment to Polish–Swedish collaboration;
without him the book would never have been started. It is a pleasure to
thank our colleagues with whom we have worked on related projects: Johan
Brännlund, Åsa Ericsson, Sven Gnutzmann, Marek Kuś, Florian Mintert,

1 Let no one uninterested in geometry enter here.
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Magdalena SinolÃȩcka, Hans-Jürgen Sommers and Wojciech SlÃomczyński. We
are grateful to them and to many others who helped us to improve the
manuscript. If it never reached perfection, it was our fault, not theirs. Let us
mention some of the others: Robert Alicki, Anders Bengtsson, Iwo BialÃynicki-
Birula, RafalÃ Demkowicz-Dobrzański, Johan Grundberg, Sören Holst, Göran
Lindblad and Marcin Musz. We have also enjoyed constructive interactions
with Matthias Christandl, Jens Eisert, Peter Harremoës, MichalÃ, PawelÃ and
Ryszard Horodeccy, Vivien Kendon, Artur LÃ oziński, Christian Schaffner, Paul
Slater and William Wootters.

Five other people provided indispensable support: Martha and Jonas in
Stockholm, and Jolanta, Jaś and Marysia in Kraków.

Ingemar Bengtsson Karol Życzkowski
Waterloo
12 March 2005



1 Convexity, colours and statistics

What picture does one see, looking at a physical theory from a distance, so
that the details disappear? Since quantum mechanics is a statistical theory,
the most universal picture which remains after the details are forgotten is
that of a convex set.

Bogdan Mielnik

1.1 Convex sets

Our object is to understand the geometry of the set of all possible states of
a quantum system that can occur in nature. This is a very general question,
especially since we are not trying to define ‘state’ or ‘system’ very precisely.
Indeed we will not even discuss whether the state is a property of a thing, or
of the preparation of a thing, or of a belief about a thing. Nevertheless we can
ask what kind of restrictions are needed on a set if it is going to serve as a
space of states in the first place. There is a restriction that arises naturally
both in quantum mechanics and in classical statistics: the set must be a convex
set. The idea is that a convex set is a set such that one can form ‘mixtures’
of any pair of points in the set. This is, as we will see, how probability enters
(although we are not trying to define ‘probability’ either).

From a geometrical point of view a mixture of two states can be defined as a
point on the segment of the straight line between the two points that represent
the states that we want to mix. We insist that given two points belonging to
the set of states, the straight line segment between them must belong to the set
too. This is certainly not true of any set. But before we can see how this idea
restricts the set of states we must have a definition of ‘straight lines’ available.
One way to proceed is to regard a convex set as a special kind of subset of
a flat Euclidean space En. Actually we can get by with somewhat less. It is
enough to regard a convex set as a subset of an affine space. An affine space is
just like a vector space, except that no special choice of origin is assumed. The
straight line through the two points x1 and x2 is defined as the set of points

x = µ1x1 + µ2x2 , µ1 + µ2 = 1 . (1.1)

If we choose a particular point x0 to serve as the origin, we see that this is a
one parameter family of vectors x − x0 in the plane spanned by the vectors
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Figure 1.1. Three convex sets in two dimensions, two of which are affine
transformations of each other. The new moon is not convex. An observer in
Singapore will find the new moon tilted but still not convex, since convexity is
preserved by rotations.

x1 − x0 and x2 − x0. Taking three different points instead of two in Eq. (1.1)
we define a plane, provided the three points do not belong to a single line. A
k-dimensional plane is obtained by taking k + 1 generic points, where k < n.
An (n−1)-dimensional plane is known as a hyperplane. For k = n we describe
the entire space En. In this way we may introduce barycentric coordinates into
an n-dimensional affine space. We select n + 1 points xi, so that an arbitrary
point x can be written as

x = µ0x0 + µ1x1 + · · · + µnxn , µ0 + µ1 + · · · + µn = 1 . (1.2)

The requirement that the barycentric coordinates µi add up to one ensures that
they are uniquely defined by the point x. (It also means that the barycentric
coordinates are not coordinates in the ordinary sense of the word, but if we
solve for µ0 in terms of the others then the remaining independent set is a
set of n ordinary coordinates for the n-dimensional space.) An affine map is a
transformation that takes lines to lines and preserves the relative length of line
segments lying on parallel lines. In equations an affine map is a combination
of a linear transformation described by a matrix A with a translation along a
constant vector b, so x′ = Ax + b, where A is an invertible matrix.

By definition a subset S of an affine space is a convex set if for any pair of
points x1 and x2 belonging to the set it is true that the mixture x also belongs
to the set, where

x = λ1x1 + λ2x2 , λ1 + λ2 = 1 , λ1, λ2 ≥ 0 . (1.3)

Here λ1 and λ2 are barycentric coordinates on the line through the given pair
of points; the extra requirement that they be positive restricts x to belong to
the segment of the line lying between the pair of points.

It is natural to use an affine space as the ‘container’ for the convex sets
since convexity properties are preserved by general affine transformations.
On the other hand it does no harm to introduce a flat metric on the affine
space, turning it into an Euclidean space. There may be no special significance
attached to this notion of distance, but it helps in visualizing what is going
on. From now on, we will assume that our convex sets sit in Euclidean space,
whenever it is convenient to do so.

Intuitively a convex set is a set such that one can always see the entire
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Figure 1.2. The convex sets we will consider are either convex bodies (like the
simplex on the left or the more involved example in the centre) or convex cones
with compact bases (an example is shown on the right).

set from whatever point in the set one happens to be sitting at. They can
come in a variety of interesting shapes. We will need a few definitions. First,
given any subset of the affine space we define the convex hull of this subset
as the smallest convex set that contains the set. The convex hull of a finite
set of points is called a convex polytope. If we start with p + 1 points that are
not confined to any (p− 1)-dimensional subspace then the convex polytope is
called a p-simplex. The p-simplex consists of all points of the form

x = λ0x0 + λ1x1 + · · · + λpxp , λ0 + λ1 + · · · + λp = 1 , λi ≥ 0 . (1.4)

(The barycentric coordinates are all non-negative.) The dimension of a convex
set is the largest number n such that the set contains an n-simplex. In discussing
a convex set of dimension n we usually assume that the underlying affine space
also has dimension n, to ensure that the convex set possesses interior points
(in the sense of point set topology). A closed and bounded convex set that has
an interior is known as a convex body.

The intersection of a convex set with some lower dimensional subspace of
the affine space is again a convex set. Given an n-dimensional convex set S
there is also a natural way to increase its dimension by one: choose a point
y not belonging to the n-dimensional affine subspace containing S. Form the
union of all the rays (in this chapter a ray means a half line), starting from
y and passing through S. The result is called a convex cone and y is called
its apex, while S is its base. A ray is in fact a one-dimensional convex cone. A
more interesting example is obtained by first choosing a p-simplex and then
interpreting the points of the simplex as vectors starting from an origin O not
lying in the simplex. Then the (p + 1)-dimensional set of points

x = λ0x0 + λ1x1 + · · · + λpxp , λi ≥ 0 (1.5)

is a convex cone. Convex cones have many appealing properties, including an
inbuilt partial order among its points: x ≤ y if and only if y − x belongs to
the cone. Linear maps to R that take positive values on vectors belonging to
a convex cone form a dual convex cone in the dual vector space. Since we are
in the Euclidean vector space En, we can identify the dual vector space with
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Figure 1.3. Left: a convex cone and its dual, both regarded as belonging to
Euclidean 2-space. Right: a self dual cone, for which the dual cone coincides
with the original. For an application of this construction see Figure 11.6.

Figure 1.4. A convex body is homeomorphic to a sphere.

En itself. If the two cones agree the convex cone is said to be self dual. One
self dual convex cone that will appear now and again is the positive orthant or
hyperoctant of En, defined as the set of all points whose Cartesian coordinates
are non-negative. We use the notation x ≥ 0 to denote the fact that x belongs
to the positive orthant.

From a purely topological point of view all convex bodies are equivalent
to an n-dimensional ball. To see this choose any point x0 in the interior and
then for every point in the boundary draw a ray starting from x0 and passing
through the boundary point (as in Figure 1.4). It is clear that we can make a
continuous transformation of the convex body into a ball with radius one and
its centre at x0 by moving the points of the container space along the rays.

Convex bodies and convex cones with compact bases are the only convex
sets that we will consider. Convex bodies always contain some special points
that cannot be obtained as mixtures of other points: whereas a half space does
not! These points are called extreme points by mathematicians and pure points
by physicists (actually, originally by Weyl), while non-pure points are called
mixed. In a convex cone the rays from the apex through the pure points of the
base are called extreme rays; a point x lies on an extreme ray if and only if
y ≤ x ⇒ y = λx with λ between zero and one. A subset F of a convex set
that is stable under mixing and purification is called a face of the convex set.
This phrase means that if

x = λx1 + (1− λ)x2 , 0 ≤ λ ≤ 1 (1.6)

then x lies in F if and only if x1 and x2 lie in F . A face of dimension k is a
k-face. A 0-face is an extremal point, and an (n − 1)-face is also known as a
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facet. It is interesting to observe that the set of all faces on a convex body form
a partially ordered set; we say that F1 ≤ F2 if the face F1 is contained in the
face F2. It is a partially ordered set of the special kind known as a lattice, which
means that a given pair of faces always has a greatest lower bound (perhaps
the empty set) and a lowest greater bound (perhaps the convex body itself).

To stem the tide of definitions let us quote two theorems that have an
‘obvious’ ring to them when they are stated abstractly but which are surprisingly
useful in practice:

Theorem 1.1 (Minkowski’s) Any convex body is the convex hull
of its pure points.

Theorem 1.2 (Carathéodory’s) If X is a subset of Rn then any
point in the convex hull of X can be expressed as a convex combination of at
most n + 1 points in X.

Thus any point x of a convex body S may be expressed as a convex combination
of pure points:

x =
p∑

i=1

λixi, λi ≥ 0 , p ≤ n + 1 ,
∑

i

λi = 1 . (1.7)

This equation is quite different from Eq. (1.2) that defined the barycentric
coordinates of x in terms of a fixed set of points xi, because – with the
restriction that all the coefficients be non-negative – it may be impossible
to find a finite set of xi so that every x in the set can be written in this new
form. An obvious example is a circular disc. Given x one can always find a
finite set of pure points xi so that the equation holds, but that is a different
thing.

It is evident that the pure points always lie in the boundary of the convex
set, but the boundary often contains mixed points as well. The simplex enjoys
a very special property, which is that any point in the simplex can be written
as a mixture of pure points in one and only one way (as in Figure 1.5). This is
because for the simplex the coefficients in Eq. (1.7) are barycentric coordinates
and the result follows from the uniqueness of the barycentric coordinates of
a point. No other convex set has this property. The rank of a point x is the
minimal number p needed in the convex combination (Eq. (1.7)). By definition
the pure points have rank one. In a simplex the edges have rank two, the faces
have rank three, and so on, while all the points in the interior have maximal
rank. From Eq. (1.7) we see that the maximal rank of any point in a convex
body in Rn does not exceed n + 1. In a ball all interior points have rank two
and all points on the boundary are pure, regardless of the dimension of the
ball. It is not hard to find examples of convex sets where the rank changes as
we move around in the interior of the set (see Figure 1.5).

The simplex has another quite special property, namely that its lattice of
faces is self dual. We observe that the number of k-faces in an n-dimensional
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Figure 1.5. In a simplex a point can be written as a mixture in one and only
one way. In general the rank of a point is the minimal number of pure points
needed in the mixture; the rank may change in the interior of the set as shown
in the rightmost example.

Figure 1.6. Support hyperplanes of a convex set.

simplex is

(
n + 1
k + 1

)
=

(
n + 1
n− k

)
. (1.8)
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Hence the set of (n − k − 1)-dimensional faces can be put in one-to-one
correspondence with the set of k-faces. In particular, the pure points (k = 0)
can be put in one-to-one correspondence with the set of facets (by definition,
the (n−1)-dimensional faces). For this, and other, reasons its lattice of subspaces
will have some exceptional properties, turning it into what is technically known
as a Boolean lattice.1

There is a useful dual description of convex sets in terms of supporting
hyperplanes. A support hyperplane of S is a hyperplane that intersects the set
and is such that the entire set lies in one of the closed half spaces formed by
the hyperplane (see Figure 1.6). Hence a support hyperplane just touches the
boundary of S, and one can prove that there is a support hyperplane passing
through every point of the boundary of a convex body. By definition a regular
point is a point on the boundary that lies on only one support hyperplane, a
regular support hyperplane meets the set at only one point, and the entire
convex set is regular if all its boundary points as well as all its support
hyperplanes are regular. So a ball is regular, while a convex polytope or a
convex cone is not – indeed all the support hyperplanes of a convex cone pass
through its apex. Convex polytopes arise as the intersection of a finite number
of closed half spaces in Rn, and any pure point of a convex polytope saturates
n of the inequalities that define the half spaces; again a statement with an
‘obvious’ ring that is useful in practice.

In a flat Euclidean space a linear function to the real numbers takes the
form x → a · x, where a is some constant vector. Geometrically, this defines a
family of parallel hyperplanes. The following theorem is important:

Theorem 1.3 (Hahn–Banach separation) Given a convex body
and a point x0 that does not belong to it, then one can find a linear function
f that takes positive values for all points belonging to the convex body, while
f(x0) < 0.

This is again almost obvious if one thinks in terms of hyperplanes.2

We will find much use for the concept of convex functions. A real function
f(x) defined on a closed convex subset X of Rn is called convex, if for any
x,y ∈ X and λ ∈ [0, 1] it satisfies

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) . (1.9)

The name refers to the fact that the epigraph of a convex function, that is
the region lying above the curve f(x) in the graph, is convex. Applying the
inequality k − 1 times we see that

f
( k∑

j=1

λjxj

)
≤

k∑
j=1

λjf(xj), (1.10)

1 Because it is related to what George Boole thought were the laws of thought; see Varadarajan’s
book on quantum logic (Varadarajan, 1985).

2 To readers who wish to learn more about convex sets – or who wish to see proofs of the various
assertions that we have left unproved – we recommend Eggleston (1958).
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Figure 1.7. (a) the convex function f(x) = x ln x, and (b) the concave function
g(x) = −x ln x. The names stem from the shaded epigraphs of the functions
which are convex and concave, respectively.

where xj ∈ X and the non-negative weights sum to unity,
∑k

j=1 λj = 1. If a
function f from R to R is differentiable, it is convex if and only if

f(y)− f(x) ≥ (y − x)f ′(x) . (1.11)

If f is twice differentiable, it is convex if and only if its second derivative is
non-negative. For a function of several variables to be convex, the matrix of
second derivatives must be positive definite. In practice, this is a very useful
criterion. A function f is called concave if −f is convex.

One of the main advantages of convex functions is that it is (comparatively)
easy to study their minima and maxima. A minimum of a convex function is
always a global minimum, and it is attained on some convex subset of the
domain of definition X. If X is not only convex but also compact, then the
global maximum sits at an extreme point of X.

1.2 High-dimensional geometry

In quantum mechanics the spaces we encounter are often of very high dimension;
even if the dimension of Hilbert space is small, the dimension of the space of
density matrices will be high. Our intuition, on the other hand, is based on two-
and three-dimensional spaces, and frequently leads us astray. We can improve
ourselves by asking some simple questions about convex bodies in flat space.
We choose to look at balls, cubes and simplices for this purpose. A flat metric
is assumed. Our questions will concern the inspheres and outspheres of these
bodies (defined as the largest inscribed sphere and the smallest circumscribed
sphere, respectively). For any convex body the outsphere is uniquely defined,
while the insphere is not – one can show that the upper bound on the radius of
inscribed spheres is always attained by some sphere, but there may be several
of those.

Let us begin with the surface of a ball, namely the n-dimensional sphere Sn.



1.2 High-dimensional geometry 9

In equations, a sphere of radius r is given by the set

X2
0 + X2

1 + · · · + X2
n = r2 (1.12)

in an (n + 1)-dimensional flat space En+1. A sphere of radius one is denoted
Sn. The sphere can be parametrized by the angles φ, θ1, . . . , θn−1 according to





X0 = r cosφ sin θ1 sin θ2 . . . sin θn−1

X1 = r sinφ sin θ1 sin θ2 . . . sin θn−1

X2 = r cos θ1 sin θ2 . . . sin θn−1
...

...
...

Xn = r cos θn−1

0 < θi < π
0 ≤ φ < 2π

. (1.13)

The volume element dA on the unit sphere then becomes

dA = dφdθ1 . . . dθn−1 sin θ1 sin2 θ2 . . . sinn−1 θn−1 . (1.14)

We want to compute the volume vol(Sn) of the n-sphere, that is to say its
‘hyperarea’ – meaning that vol(S2) is measured in square metres, vol(S3) in
cubic metres, and so on. A clever trick simplifies the calculation: consider the
well-known Gaussian integral

I =
∫

e−X2
0−X2

1− ··· −X2
n dX0dX1 . . . dXn = (

√
π)n+1 . (1.15)

Using the spherical polar coordinates introduced above our integral splits into
two, one of which is related to the integral representation of the Euler Gamma
function, Γ(x) =

∫∞
0

e−ttx−1 dt, and the other is the one we want to do:

I =
∫ ∞

0

dr

∫

Sn

dAe−r2
rn =

1
2
Γ

(
n + 1

2

)
vol(Sn) . (1.16)

We do not have to do the integral over the angles. We simply compare these
results and obtain (recalling the properties of the Gamma function)

vol(Sn) = 2
π

n+1
2

Γ(n+1
2

)
=





2(2π)p

(2p−1)!!
if n = 2p

(2π)p+1

(2p)!!
if n = 2p + 1

, (1.17)

where double factorial is the product of every other number, 5!! = 5 · 3 · 1 and
6!! = 6 · 4 · 2. An alarming thing happens as the dimension grows. For large x
we can approximate the Gamma function using Stirling’s formula

Γ(x) =
√

2πe−xxx− 1
2

(
1 +

1
12x

+ o(
1
x2

)
)

. (1.18)

Hence for large n we obtain

vol(Sn) ∼
√

2
(

2πe
n

)n
2

. (1.19)
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This is small if n is large! In fact the ‘biggest’ unit sphere – in the sense that
it has the largest hyperarea – is S6, which has

vol(S6) =
16
15

π3 ≈ 33.1 . (1.20)

Incidentally Stirling’s formula gives 31.6, which is already rather good. We
hasten to add that vol(S2) is measured in square metres and vol(S6) in (metre)6,
so that the direct comparison makes no sense.

There is another funny thing to be noticed. If we compute the volume of the
n-sphere without any clever tricks, simply by integrating the volume element
dA using angular coordinates, then we find that

vol(Sn) = 2π
∫ π

0

dθ sin θ

∫ π

0

dθ sin2 θ . . .

∫ π

0

dθ sinn−1 θ

(1.21)

= vol(Sn−1)
∫ π

0

dθ sinn−1 θ .

As n grows the integrand of the final integral has an increasingly sharp peak
close to the equator θ = π/2. Hence we conclude that when n is high most
of the hyperarea of the sphere is confined to a ‘band’ close to the equator.
What about the volume of an n-dimensional unit ball Bn? By definition it
has unit radius and its boundary is Sn−1. Its volume, using the radial integral∫ 1

0
rn−1 dr = 1/n and the fact that Γ(x + 1) = xΓ(x), is

vol(Bn) =
vol(Sn−1)

n
=

π
n
2

Γ(n
2

+ 1)
∼ 1√

2π

(
2πe
n

)n
2

. (1.22)

Again, as the dimension grows the denominator grows faster than the numerator
and therefore the volume of a unit ball is small when the dimension is high.
We can turn this around if we like: a ball of unit volume has a large radius if
the dimension is high. Indeed since the volume is proportional to rn, where r
is the radius, it follows that the radius of a ball of unit volume grows like

√
n

when Stirling’s formula applies.
The fraction of the volume of a unit ball that lies inside a radius r is rn. We

assume r < 1, so this is a quickly shrinking fraction as n grows. The curious
conclusion of this is that when the dimension is high almost all of the volume
of a ball lies very close to its surface. In fact this is a crucial observation in
statistical mechanics. It is also the key property of n-dimensional geometry:
when n is large the ‘amount of space’ available grows very fast with distance
from the origin.

In some ways it is easier to see what is going on if we consider hypercubes
¤n rather than balls. Take a cube of unit volume. In n dimensions it has 2n

corners, and the longest straight line that we can draw inside the hypercube
connects two opposite corners. It has length L =

√
12 + · · · + 12 =

√
n. Or

expressed in another way, a straight line of any length fits into a hypercube of
unit volume if the dimension is large enough. The reason why the longest line
segment fitting into the cube is large is clearly that we normalized the volume
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Figure 1.8. Regular simplices in two, three and four dimensions. For ∆2 we
also show the insphere, the outsphere, and the angle discussed in the text.

to one. If we normalize L = 1 instead we find that the volume goes to zero like
(1/
√

n)n. Concerning the insphere (the largest inscribed sphere, with inradius
rn) and the outsphere (the smallest circumscribed sphere, with outradius Rn),
we observe that

Rn =
√

n

2
=
√

nrn . (1.23)

The ratio between the two grows with the dimension, ζn ≡ Rn/rn =
√

n.
Incidentally, the somewhat odd statement that the volume of a sphere goes
to zero when the dimension n goes to infinity can now be interpreted: since
vol(¤n) = 1 the real statement is that vol(Sn)/vol(¤n) goes to zero when n
goes to infinity.

Now we turn to simplices, whose properties will be of some importance later
on. We concentrate on regular simplices ∆n, for which the distance between
any pair of corners is one. For n = 1 this is the unit interval, for n = 2 a regular
triangle, for n = 3 a regular tetrahedron, and so on. Again we are interested in
the volume, the radius rn of the insphere, and the radius Rn of the outsphere.
We will also compute χn, the angle between the lines from the ‘centre of mass’
to a pair of corners. For a triangle it is arccos(−1/2) = 2π/3 = 120◦, but it
drops to arccos(−1/3) ≈ 110◦ for the tetrahedron. A practical way to go about
all this is to think of ∆n as a (part of) a cone having ∆n−1 as its base. It is
then not difficult to show that

Rn = nrn =
√

n

2(n + 1)
and rn =

√
1

2(n + 1)n
, (1.24)

so their ratio grows linearly, ζ = Rn/rn = n. The volume of a cone is V =
Bh/n, where B is the area of the base, h is the height of the cone and n is the
dimension. For the simplex we obtain

vol(∆n) =
1
n!

√
n + 1
2n

. (1.25)

We can check that the ratio of the volume of the largest inscribed sphere to the
volume of the simplex goes to zero. Hence most of the volume of the simplex
sits in its corners, as expected. The angle χn subtended by an edge as viewed
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from the centre is given by

sin
χn

2
=

1
2Rn

=

√
n + 1
2n

⇔ cosχn = − 1
n

. (1.26)

When n is large we see that χn tends to a right angle. This is as it should be.
The corners sit on the outsphere, and for large n almost all the volume of the
circumsphere lies close to the equator – hence, if we pick one corner and let
it play the role of the north pole, all the other corners are likely to lie close
to the equator. Finally it is interesting to observe that it is known for convex
bodies in general that the radius of the circumsphere is bounded by

Rn ≤ L

√
n

2(n + 1)
, (1.27)

where L is the length of the longest line segment contained in the body. The
regular simplex saturates this bound.

The effects of increasing dimension are clearly seen if we look at the ratio
between surface (hyper) area and volume for bodies of various shapes. Rather
than fixing the scale, let us study the dimensionless quantities ζn = Rn/rn and
η(X) ≡ R vol(∂X)/vol(X), where X is the body, ∂X its boundary, and R its
outradius. For n-balls we get

ηn(Bn) = R
vol(∂Bn)
vol(Bn)

= R
vol(Sn−1)
vol(Bn)

=
Rn

R
= n . (1.28)

Next consider a hypercube of edge length L. Its boundary consists of 2n facets,
that are themselves hypercubes of dimension n− 1. This gives

ηn(¤n) = R
vol(∂¤n)
vol(¤n)

=
√

nL

2
2n vol(¤n−1)

vol(¤n)
=

n3/2L

L
= n3/2 . (1.29)

A regular simplex of edge length L has a boundary consisting of n + 1 regular
simplices of dimension n− 1. We obtain the ratio

ηn(∆n) = R
vol(∂∆n)
vol(∆n)

= L

√
n

2(n + 1)
(n + 1)vol(∆n−1)

vol(∆n)
= n2 . (1.30)

In this case the ratio ηn grows quadratically with n, reflecting the fact that
simplices have sharper corners than those of the cube.

The reader may know about the five regular Platonic solids in three dimensions.
When n > 4 there are only three kinds of regular solids, namely the simplex,
the hypercube, and the cross-polytope. The latter is the generalization to
arbitrary dimension of the octahedron. It is dual to the cube; while the cube
has 2n corners and 2n facets, the cross-polytope has 2n corners and 2n facets.
The two polytopes have the same values of ζn and ηn.

These results are collected in Table 14.2. We observe that ηn = nζn for all
these bodies. There is a reason for this. When Archimedes computed volumes,
he did so by breaking them up into cones and using the formula V = Bh/n,
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where V is the volume of the cone and B is the area of its base. Then we get

ηn = R

∑
cones B

(
∑

cones B) h/n
=

nR

h
. (1.31)

If the height h of the cones is equal to the inradius of the body, the result
follows.3

1.3 Colour theory

How do convex sets arise? An instructive example occurs in colour theory, and
more particularly in the psychophysical theory of colour. (This means that we
will leave out the interesting questions about how our brain actually processes
the visual information until it becomes a percept.) In a way tradition suggests
that colour theory should be studied before quantum mechanics, because this is
what Schrödinger was doing before inventing his wave equation.4 The object of
our attention is colour space, whose points are the colours. Naturally one might
worry that the space of colours may differ from person to person but in fact it
does not. The perception of colour is remarkably universal for human beings
(colour-blind persons not included). What has been done experimentally is to
shine mixtures of light of different colours on white screens; say that three
reference colours consisting of red, green and blue light are chosen. Then what
one finds is that by adjusting the mixture of these colours the observer will be
unable to distinguish the resulting mixture from a given colour C. To simplify
matters, suppose that the overall brightness has been normalized in some way,
then a colour C is a point on a two-dimensional chromaticity diagram. Its
position is determined by the equation

C = λ0R + λ1G + λ2B . (1.32)

The barycentric coordinates λi will naturally take positive values only in this
experiment. This means that we only get colours inside the triangle spanned
by the reference colours R, G and B. Note that the ‘feeling of redness’ does
not enter into the experiment at all.

But colour space is not a simplex, as designers of TV screens learn to
their chagrin. There will always be colours C ′ that cannot be reproduced as a
mixture of three given reference colours. To get out of this difficulty one shines
a certain amount of red (say) on the sample to be measured. If the result is
indistinguishable from some mixture of G and B then C ′ is determined by the
equation

C ′ + λ0R = λ1G + λ2B . (1.33)

If not, repeat with R replaced by G or B. If necessary, move one more colour
to the left-hand side. The empirical finding is that all colours can be assigned

3 Consult Ball (1997) for more information on the subject of this section. For a discussion of
rotations in higher dimensions consult Section 8.3.

4 Schrödinger (1926b) wrote a splendid review of the subject. Readers who want a more recent
discussion may enjoy the book by Williamson and Cummins (1983).
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Figure 1.9. Left: the chromaticity diagram, and the part of it that can be
obtained by mixing red, green and blue. Right: when the total illumination is
taken into account, colour space becomes a convex cone.

a position on the chromaticity diagram in this way. If we take the overall
intensity into account we find that the full colour space is a three-dimensional
convex cone with the chromaticity diagram as its base and complete darkness
as its apex (of course this is to the extent that we ignore the fact that very
intense light will cause the eyes to boil rather than make them see a colour).
The pure colours are those that cannot be obtained as a mixture of different
colours; they form the curved part of the boundary. The boundary also has a
planar part made of purple.

How can we begin to explain all this? We know that light can be characterized
by its spectral distribution, which is some positive function I of the wave length
λ. It is therefore immediately apparent that the space of spectral distributions
is a convex cone, and in fact an infinite-dimensional convex cone since a general
spectral distribution I(λ) can be defined as a convex combination

I(λ) =
∫

dλ′I(λ′)δ(λ− λ′) , I(λ′) ≥ 0 . (1.34)

The delta functions are the pure states. But colour space is only three-dimensional.
The reason is that the eye will assign the same colour to many different spectral
distributions. A given colour corresponds to an equivalence class of spectral
distributions, and the dimension of colour space will be given by the dimension
of the space of equivalence classes. Let us denote the equivalence classes by
[I(λ)], and the space of equivalence classes as colour space. Since we know that
colours can be mixed to produce a third quite definite colour, the equivalence
classes must be formed in such a way that the equation

[I(λ)] = [I1(λ)] + [I2(λ)] (1.35)

is well defined. The point here is that whatever representatives of [I1(λ)] and
[I2(λ)] we choose we always obtain a spectral distribution belonging to the
same equivalence class [I(λ)]. We would like to understand how this can be
so.

In order to proceed it will be necessary to have an idea about how the eye
detects light (especially so since the perception of sound is known to work
in a quite different way). It is reasonable – and indeed true – to expect that
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Figure 1.10. To the left, we see the MacAdam ellipses, taken from MacAdam,
Journal of the Optical Society of America 32, p. 247 (1942). They show the
points where the colour is just distinguishable from the colour at the centre of
the ellipse. Their size is exaggerated by a factor of ten. To the right, we see how
these ellipses can be used to define the length of curves on the chromaticity
diagram – the two curves shown have the same length.

there are chemical substances in the eye with different sensitivities. Suppose
for the sake of the argument that there are three such ‘detectors’. Each has
an adsorption curve Ai(λ). These curves are allowed to overlap; in fact they
do. Given a spectral distribution each detector then gives an output

ci =
∫

dλ I(λ)Ai(λ) . (1.36)

Our three detectors will give us only three real numbers to parametrize the
space of colours. Equation (1.35) can now be derived. According to this theory,
colour space will inherit the property of being a convex cone from the space of
spectral distributions. The pure states will be those equivalence classes that
contain the pure spectral distributions. On the other hand the dimension of
colour space will be determined by the number of detectors, and not by the
nature of the pure states. This is where colour-blind persons come in; they are
missing one or two detectors and their experiences can be predicted by the
theory. By the way, frogs apparently enjoy a colour space of four dimensions
while lions make do with one.

Like any convex set, colour space is a subset of an affine space and the
convex structure does not single out any natural metric. Nevertheless colour
space does have a natural metric. The idea is to draw surfaces around every
point in colour space, determined by the requirement that colours situated
on the surfaces are just distinguishable from the colour at the original point
by an observer. In the chromaticity diagram the resulting curves are known
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as MacAdam ellipses. We can now introduce a metric on the chromaticity
diagram which ensures that the MacAdam ellipses are circles of a standard
size. This metric is called the colour metric, and it is curved. The distance
between two colours as measured by the colour metric is a measure of how
easy it is to distinguish the given colours. On the other hand this natural
metric has nothing to do with the convex structure per se.

Let us be careful about the logic that underlies the colour metric. The
colour metric is defined so that the MacAdam ellipses are circles of radius ε,
say. Evidently we would like to consider the limit when ε goes to zero (by
introducing increasingly sensitive observers), but unfortunately there is no
experimental justification for this here. We can go on to define the length
of a curve in colour space as the smallest number of MacAdam ellipses that
is needed to completely cover the curve. This gives us a natural notion of
distance between any two points in colour space since there will be a curve
between them of shortest length (and it will be uniquely defined, at least if
the distance is not too large). Such a curve is called a geodesic. The geodesic
distance between two points is then the length of the geodesic that connects
them. This is how distances are defined in Riemannian geometry, but it is
worthwhile to observe that only the ‘local’ distance as defined by the metric
has a clear operational significance here. There are many lessons from colour
theory that are of interest in quantum mechanics, not least that the structure
of the convex set is determined by the nature of the detectors.

1.4 What is ‘distance’?

In colour space distances are used to quantify distinguishability. Although our
use of distances will mostly be in a similar vein, they have many other uses
too – for instance, to prove convergence for iterative algorithms. But what are
they? Though we expect the reader to have a share of inborn intuition about
the nature of geometry, a few indications of how this can be made more precise
are in order. Let us begin by defining a distance D(x,y) between two points
in a vector space (or more generally, in an affine space). This is a function of
the two points that obeys three axioms:

(1) The distance between two points is a non-negative number D(x,y) that
equals zero if and only if the points coincide.

(2) It is symmetric in the sense that D(x,y) = D(y,x).
(3) It satisfies the triangle inequality D(x,y) ≤ D(x, z) + D(z,y).

Actually both axiom (2) and axiom (3) can be relaxed – we will see what can
be done without them in Section 2.3 – but as is often the case it is even more
interesting to try to restrict the definition further, and this is the direction that
we are heading in now. We want a notion of distance that meshes naturally
with convex sets, and for this purpose we add a fourth axiom:

(4) It obeys D(λx, λy) = λD(x,y) for non-negative numbers λ.
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A distance function obeying this property is known as a Minkowski distance.
Two important consequences follow, neither of them difficult to prove. First,
any convex combination of two vectors becomes a metric straight line in the
sense that

z = λx+(1−λ)y ⇒ D(x,y) = D(x, z)+D(z,y) , 0 ≤ λ ≤ 1 . (1.37)

Second, if we define a unit ball with respect to a Minkowski distance we find
that such a ball is always a convex set.

Let us discuss the last point in a little more detail. A Minkowski metric is
naturally defined in terms of a norm on a vector space, that is a real valued
function ||x|| that obeys

i) ||x|| ≥ 0 , and ||x|| = 0 ⇔ x = 0 .

ii) ||x + y|| ≤ ||x||+ ||y|| . (1.38)
iii) ||λx|| = |λ| ||x|| , λ ∈ R .

The distance between two points x and y is now defined as D(x,y) ≡ ||x−y||,
and indeed it has the properties (1)–(4). The unit ball is the set of vectors x
such that ||x|| ≤ 1, and it is easy to see that

||x|| , ||y|| ≤ 1 ⇒ ||λx + (1− λ)y|| ≤ 1 . (1.39)

So the unit ball is convex. In fact the story can be turned around at this point
– any centrally symmetric convex body can serve as the unit ball for a norm,
and hence it defines a distance. (A centrally symmetric convex body K has
the property that, for some choice of origin, x ∈ K ⇒ −x ∈ K.) Thus the
opinion that balls are round is revealed as an unfounded prejudice. It may
be helpful to recall that water droplets are spherical because they minimize
their surface energy. If we want to understand the growth of crystals in the
same terms, we must use a notion of distance that takes into account that the
surface energy depends on direction.

We need a set of norms to play with, so we define the lp-norm of a vector
by

||x||p ≡ (|x1|p + |x2|p + · · · + |xn|p)
1
p , p ≥ 1 . (1.40)

In the limit we obtain the Chebyshev norm ||x||∞ = maxixi. The proof of the
triangle inequality is non-trivial and uses Hölder’s inequality

N∑
i=1

|xiyi| ≤ ||x||p||y||q ,
1
p

+
1
q

= 1 , (1.41)

where p, q ≥ 1. For p = 2 this is the Cauchy–Schwarz inequality. If p < 1
there is no Hölder inequality, and the triangle inequality fails. We can easily
draw a picture (namely Figure 1.11) of the unit balls Bp for a few values of
p, and we see that they interpolate beween a hypercube (for p → ∞) and
a cross-polytope (for p = 1), and that they fail to be convex for p < 1.
We also see that in general these balls are not invariant under rotations, as
expected because the components of the vector in a special basis were used in
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Figure 1.11. Left: points at distance 1 from the origin, using the l1-norm for
the vectors (the inner square), the l2-norm (the circle) and the l∞-norm (the
outer square). The l 1

2
-case is shown dashed – the corresponding ball is not

convex because the triangle inequality fails, so it is not a norm. Right: in three
dimensions one obtains, respectively, an octahedron, a sphere and a cube. We
illustrate the p = 1 case.

the definition. The topology induced by the lp-norms is the same, regardless
of p. The corresponding distances Dp(x,y) ≡ ||x − y||p are known as the
lp-distances.

Depending on circumstances, different choices of p may be particularly
relevant. The case p = 1 is relevant if motion is confined to a rectangular grid
(say, if you are a taxi driver on Manhattan). As we will see (in Section 13.1) it
is also of particular relevance to us. It has the slightly awkward property that
the shortest path between two points is not uniquely defined. Taxi drivers know
this, but may not be aware of the fact that it happens only because the unit
ball is a polytope, that is it is convex but not strictly convex. The l1-distance
goes under many names: taxi cab, Kolmogorov, or variational distance.

The case p = 2 is consistent with Pythagoras’ theorem and is the most useful
choice in everyday life; it was singled out for special attention by Riemann
when he made the foundations for differential geometry. Indeed we used a
p = 2 norm when we defined the colour metric at the end of Section 1.3.
The idea is that once we have some coordinates to describe colour space then
the MacAdam ellipse surrounding a point is given by a quadratic form in
the coordinates. The interesting thing – that did not escape Riemann – is the
ease with which this ‘infinitesimal’ notion of distance can be converted into the
notion of geodesic distance between arbitrary points. (A similar generalization
based on other lp-distances exists and is called Finslerian geometry, as opposed
to the Riemannian geometry based on p = 2.)

Riemann began by defining what we now call differentiable manifolds of
arbitrary dimension;5 for our purposes here let us just say that this is something

5 Riemann lectured on the hypotheses which lie at the foundations of geometry in 1854, in order
to be admitted as a Dozent at Göttingen. As Riemann says, only two instances of continuous
manifolds were known from everyday life at the time: the space of locations of physical objects,
and the space of colours. In spite of this he gave an essentially complete sketch of the foundations
of modern geometry. For a more detailed account see (for instance) Murray and Rice (1993). A
very readable, albeit old-fashioned, account is by our Founding Father: Schrödinger (1950). For
beginners the definitions in this section can become bewildering; if so our advice is to ignore them,
and look at some examples of curved spaces first.
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Figure 1.12. The tangent space at the origin of some coordinate system. Note
that there is a tangent space at every point.

that locally looks like Rn in the sense that it has open sets, continuous functions
and differentiable functions; one can set up a one-to-one correspondence between
the points in some open set and n numbers θi, called coordinates, that belong
to some open set in Rn. There exists a tangent space Tq at every point q in
the manifold; intuitively we can think of the manifold as some curved surface
in space and of a tangent space as a flat plane touching the surface at some
point. By definition the tangent space Tq is the vector space whose elements
are tangent vectors at q, and a tangent vector at a point of a differentiable
manifold is defined as the tangent vector of a smooth curve passing through
the point. Intuitively, it is a little arrow sitting at the point. Formally, it is a
contravariant vector (with index upstairs). Each tangent vector V i gives rise
to a directional derivative

∑
i V i∂i acting on the functions on the space; in

differential geometry it has therefore become customary to think of a tangent
vector as a derivative operator. In particular we can take the derivatives in
the directions of the coordinate lines, and any directional derivative can be
expressed as a linear combination of these. Therefore, given any coordinate
system θi, the derivatives ∂i with respect to the coordinates form a basis for
the tangent space – not necessarily the most convenient basis one can think
of, but one that certainly exists. To sum up, a tangent vector is written as

V =
∑

i

V i∂i , (1.42)

where V is the vector itself and V i are the components of the vector in the
coordinate basis spanned by the basis vectors ∂i.

It is perhaps as well to emphasize that the tangent space Tq at a point q
bears no a-priori relation to the tangent space Tq′ at a different point q′, so
that tangent vectors at different points cannot be compared unless additional
structure is introduced. Such an additional structure is known as ‘parallel
transport’ or ‘covariant derivatives’, and will be discussed in Section 3.2.
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At every point q of the manifold there is also a cotangent space T∗
q , the

vector space of linear maps from Tq to the real numbers. Its elements are
called covariant vectors. Given a coordinate basis for Tq there is a natural
basis for the cotangent space consisting of n covariant vectors dθi defined by

dθi(∂j) = δi
j , (1.43)

with the Kronecker delta appearing on the right-hand side. The tangent vector
∂i points in the coordinate direction, while dθi gives the level curves of the
coordinate function. A general element of the cotangent space is also known
as a one-form. It can be expanded as U = Uidθi, so that covariant vectors
have indices downstairs. The linear map of a tangent vector V is given by

U(V) = Uidθi(V j∂j) = UiV
jdθi(∂j) = UiV

i . (1.44)

From now on the Einstein summation convention is in force, which means
that if an index appears twice in the same term then summation over that
index is implied. A natural next step is to introduce a scalar product in the
tangent space, and indeed in every tangent space. (One at each point of the
manifold.) We can do this by specifying the scalar products of the basis vectors
∂i. When this is done we have in fact defined a Riemannian metric tensor on
the manifold, whose components in the coordinate basis are given by

gij = 〈∂i, ∂j〉 . (1.45)

It is understood that this has been done at every point q, so the components
of the metric tensor are really functions of the coordinates. The metric gij is
assumed to have an inverse gij. Once we have the metric it can be used to
raise and lower indices in a standard way (Vi = gijV

j). Otherwise expressed it
provides a canonical isomorphism between the tangent and cotangent spaces.

Riemann went on to show that one can always define coordinates on the
manifold in such a way that the metric at any given point is diagonal and has
vanishing first derivatives there. In effect – provided that the metric tensor is
a positive definite matrix, which we assume – the metric gives a 2-norm on the
tangent space at that special point. Riemann also showed that in general it is
not possible to find coordinates so that the metric takes this form everywhere;
the obstruction that may make this impossible is measured by a quantity called
the Riemann curvature tensor. It is a linear function of the second derivatives
of the metric (and will make its appearance in Section 3.2). The space is said
to be flat if and only if the Riemann tensor vanishes, which is if and only
if coordinates can be found so that the metric takes the same diagonal form
everywhere. The 2-norm was singled out by Riemann precisely because his
grandiose generalization of geometry to the case of arbitrary differentiable
manifolds works much better if p = 2.

With a metric tensor at hand we can define the length of an arbitrary curve
xi = xi(t) in the manifold as the integral

∫
ds =

∫ √
gij

dxi

dt

dxj

dt
dt (1.46)
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along the curve. The shortest curve between two points is called a geodesic, and
we are in a position to define the geodesic distance between the two points just
as we did at the end of Section 1.3. The geodesic distance obeys the axioms
that we laid down for distance functions, so in this sense the metric tensor
defines a distance. Moreover, at least as long as two points are reasonably
close, the shortest path between them is unique.

One of the hallmarks of differential geometry is the ease with which the
tensor formalism handles coordinate changes. Suppose we change to new coordinates
xi′ = xi′(x). Provided that these functions are invertible the new coordinates
are just as good as the old ones. More generally, the functions may be invertible
only for some values of the original coordinates, in which case we have a pair
of partially overlapping coordinate patches. It is elementary that

∂i′ =
∂xj

∂xi′
∂j . (1.47)

Since the vector V itself is not affected by the coordinate change – which is
after all just some equivalent new description – Eq. (1.42) implies that its
components must change according to

V i′∂i′ = V i∂i ⇒ V i′(x′) =
∂xi′

∂xj
V j(x) . (1.48)

In the same way we can derive how the components of the metric change when
the coordinate system changes, using the fact that the scalar product of two
vectors is a scalar quantity that does not depend on the coordinates:

gi′j′U
i′V j′ = gijU

iV j ⇒ gi′j′ =
∂xk

∂xi′
∂xl

∂xj′
gkl . (1.49)

We see that the components of a tensor, in some basis, depend on that
particular and arbitrary basis. This is why they are often regarded with feelings
bordering on contempt by professionals, who insist on using ‘coordinate free
methods’ and think that ‘coordinate systems do not matter’. But in practice
few things are more useful than a well-chosen coordinate system. And the
tensor formalism is tailor made to construct scalar quantities invariant under
coordinate changes.

In particular the formalism provides invariant measures that can be used
to define lengths, areas, volumes, and so on, in a way that is independent
of the choice of coordinate system. This is because the square root of the
determinant of the metric tensor,

√
g, transforms in a special way under

coordinate transformations:
√

g′(x′) =
(

det
∂x′

∂x

)−1√
g(x) . (1.50)

The integral of a scalar function f ′(x′) = f(x), over some manifold M, then
behaves as

I =
∫

M

f ′(x′)
√

g′(x′) dnx′ =
∫

M

f(x)
√

g(x) dnx (1.51)
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Figure 1.13. Here is how to measure the geodesic and the chordal distances
between two points on the sphere. When the points are close these distances
are also close; they are consistent with the same metric.

– the transformation of
√

g compensates for the transformation of dnx, so that
the measure

√
gdnx is invariant. A submanifold can always be locally defined

via equations of the general form x = x(x′), where x′ are intrinsic coordinates
on the submanifold and x are coordinates on the embedding space in which
it sits. In this way Eq. (1.49) can be used to define an induced metric on the
submanifold, and hence an invariant measure as well. Equation (1.46) is in fact
an example of this construction – and it is good to know that the geodesic
distance between two points is independent of the coordinate system.

Since this is not a textbook on differential geometry we leave these matters
here, except that we want to draw attention to some possible ambiguities.
First there is an ambiguity of notation. The metric is often presented in terms
of the squared line element,

ds2 = gijdxidxj . (1.52)

The ambiguity is this: in modern notation dxi denotes a basis vector in
cotangent space, and ds2 is a linear operator acting on the tensor product
T ⊗ T. There is also an old-fashioned way of reading the formula, which
regards ds2 as the length squared of that tangent vector whose components
(at the point with coordinates x) are dxi. A modern mathematician would
be appalled by this, rewrite it as gx(ds,ds), and change the label ds for the
tangent vector to, say, A. But a liberal reader will be able to read Eq. (1.52) in
both ways. The old-fashioned notation has the advantage that we can regard
ds as the distance between two ‘nearby’ points given by the coordinates x
and x + dx; their distance is equal to ds plus terms of higher order in the
coordinate differences. We then see that there are ambiguities present in the
notion of distance too. To take the sphere as an example, we can define a
distance function by means of geodesic distance. But we can also define the
distance between two points as the length of a chord connecting the two points,
and the latter definition is consistent with our axioms for distance functions.
Moreover both definitions are consistent with the metric, in the sense that the
distances between two nearby points will agree to lowest order. However, in
this book we will usually regard it as understood that once we have a metric



1.5 Probability and statistics 23

we are going to use the geodesic distance to measure the distance between two
arbitrary points.

1.5 Probability and statistics

The reader has probably surmised that our interest in convex sets has to
do with their use in statistics. It is not our intention to explain the notion
of probability, not even to the extent that we tried to explain colour. We
are quite happy with the Kolmogorov axioms, that define probability as a
suitably normalized positive measure on some set Ω. If the set of points is
finite, this is simply a finite set of positive numbers adding up to one. Now
there are many viewpoints on what the meaning of it all may be, in terms
of frequencies, propensities and degrees of reasonable beliefs. We do not have
to take a position on these matters here because the geometry of probability
distributions is invariant under changes of interpretation.6 We do need to fix
some terminology however, and will proceed to do so.

Consider an experiment that can yield N possible outcomes, or in mathematical
terms a random variable X that can take N possible values xi belonging to a
sample space Ω, which in this case is a discrete set of points. The probabilities
for the respective outcomes are

P (X = xi) = pi . (1.53)

For many purposes the actual outcomes can be ignored. The interest centres
on the probability distribution P (X) considered as the set of N real numbers
pi such that

pi ≥ 0 ,
N∑

i=1

pi = 1 . (1.54)

(We will sometimes be a little ambiguous about whether the index should be up
or down – although it should be upstairs according to the rules of differential
geometry.) Now look at the space of all possible probability distributions for
the given random variable. This is a simplex with the pi playing the role of
barycentric coordinates; a convex set of the simplest possible kind. The pure
states are those for which the outcome is certain, so that one of the pi is equal
to one. The pure states sit at the corners of the simplex and hence they form
a zero-dimensional subset of its boundary. In fact the space of pure states is
isomorphic to the sample space. As long as we keep to the case of a finite
number of outcomes – the multinomial probability distribution as it is known
in probability theory – nothing could be simpler.

Except that, as a subset of an n-dimensional vector space, an n-dimensional
simplex is a bit awkward to describe using Cartesian coordinates. Frequently
it is more convenient to regard it as a subset of an N = (n + 1)-dimensional

6 The reader may consult the book by von Mises (1957) for one position, and the book by Jaynes
(2003) for another. Jaynes regards probability as quantifying the degree to which a proposition is
plausible, and finds that

√
pi has a status equally fundamental as that of pi.
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Figure 1.14. For N = 2 we show why all the lp-distances agree when the
definition (Eq. 1.55) is used. For N = 3 the l1-distance gives hexagonal
‘spheres’, arising as the intersection of the simplex with an octahedron. For
N = 4 the same construction gives an Archimedean solid known as the
cuboctahedron.

vector space instead, and use the unrestricted pi to label the axes. Then we can
use the lp-norms to define distances. The meaning of this will be discussed in
Chapter 2; meanwhile we observe that the probability simplex lies somewhat
askew in the vector space, and we find it convenient to adjust the definition a
little. From now on we set

Dp(P,Q) ≡ ||P −Q||p ≡
(

1
2

N∑
i=1

|pi − qi|p
) 1

p

, 1 ≤ p . (1.55)

The extra factor of 1/2 ensures that the edge lengths of the simplex equal
1, and also has the pleasant consequence that all the lp-distances agree when
N = 2. However, it is a little tricky to see what the lp-balls look like inside
the probability simplex. The case p = 1, which is actually important to us, is
illustrated in Figure 1.14; we are looking at the intersection of a cross-polytope
with the probability simplex. The result is a convex body with N(N − 1)
corners. For N = 2 it is a hexagon, for N = 3 a cuboctahedron, and so on.

The l1-distance has the interesting property that probability distributions
with orthogonal support – meaning that the product piqi vanishes for each
value of i – are at maximal distance from each other. One can use this
observation to show, without too much effort, that the ratio of the radii of
the in- and outspheres for the l1-ball obeys

rin

Rout

=

√
2
N

if N is even ,
rin

Rout

=

√
2N

N2 − 1
if N is odd . (1.56)

Hence, although some corners have been ‘chopped off’, the body is only marginally
more spherical than is the cross-polytope. Another way to say the same thing
is that, with our normalization, ||p||1 ≤ ||p||2 ≤ Rout||p||1/rin.

We end with some further definitions, that will put more strain on the
notation. Suppose we have two random variables X and Y with N and M
outcomes and described by the distributions P1 and P2, respectively. Then
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there is a joint probability distribution P12 of the joint probabilities,

P12(X = xi, Y = yj) = pij
12 . (1.57)

This is a set of NM non-negative numbers summing to one. Note that it is not
implied that pij

12 = pi
1p

j
2; if this does happen the two random variables are said

to be independent, otherwise they are correlated. More generally K random
variables are said to be independent if

pij...k
12...K = pi

1 pj
2 . . . pk

K , (1.58)

and we may write this schematically as P12...K = P1P2 . . . PK . A marginal
distribution is obtained by summing over all possible outcomes for those random
variables that we are not interested in. Thus a first order distribution, describing
a single random variable, can be obtained as a marginal of a second order
distribution, describing two random variables jointly, by

pi
1 =

∑
j

pij
12 . (1.59)

There are also special probability distributions that deserve special names.
Thus the uniform distribution for a random variable with N outcomes is
denoted by Q(N) and the distributions where one outcome is certain are
collectively denoted by Q(1). The notation can be extended to include

Q(M) = (
1
M

,
1
M

, . . . ,
1
M

, 0, . . . , 0) , (1.60)

with M ≤ N and possibly with the components permuted.
With these preliminaries out of the way, we will devote Chapter 2 to the

study of the convex sets that arise in classical statistics, and the geometries
that can be defined on them – in itself, a preparation for the quantum case.

Problems

¦ Problem 1.1 Helly’s theorem states that if we have N ≥ n + 1
convex sets in Rn and if for every n + 1 of these convex sets we find that they
share a point, then there is a point that belongs to all of the N convex sets.
Show that this statement is false if the sets are not assumed to be convex.

¦ Problem 1.2 Compute the inradius and the outradius of a simplex,
that is prove Eq. (1.24).
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Some people hate the very name of statistics, but I find them full of beauty
and interest.

Sir Francis Galton

In quantum mechanics one often encounters sets of non-negative numbers that
sum to unity, having a more or less direct interpretation as probabilities.
This includes the squared moduli of the coefficients when a pure state is
expanded in an orthonormal basis, the eigenvalues of density matrices, and
more. Continuous distributions also play a role, even when the Hilbert space
is finite dimensional. From a purely mathematical point of view a probability
distribution is simply a measure on a sample space, constrained so that the
total measure is one. Whatever the point of view one takes on this, the space
of states will turn into a convex set when we allow probabilistic mixtures of
its pure states. In classical mechanics the sample space is phase space, which
is typically a continuous space. This leads to technical complications but the
space of states in classical mechanics does share a major simplifying feature
with the discrete case, namely that every state can be expressed as a mixture
of pure states in a unique way. This was not so in the case of colour space, nor
will it be true for the convex set of all states in quantum mechanics.

2.1 Majorization and partial order

Our first aim is to find ways of describing probability distributions; we want
to be able to tell when a probability distribution is ‘more chaotic’ or ‘more
uniform’ than another. One way of doing this is provided by the theory of
majorization.1 We will regard a probability distribution as a vector ~x belonging
to the positive hyperoctant in RN , and normalized so that the sum of its
components is unity.

The set of all normalized vectors forms an (N − 1)-dimensional simplex
∆N−1. We are interested in transformations that take probability distributions
into each other, that is transformations that preserve both positivity and the
l1-norm of positive vectors.

1 This is a large research area in linear algebra. Major landmarks include the books by Hardy,
Littlewood and Pólya (1929), Marshall and Olkin (1979), and Alberti and Uhlmann (1982). See
also Ando (1989); all unproved assertions in this section can be found there.
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Figure 2.1. Idea of majorization: in panel (a) the vector ~x = {x1, . . . , x10} (◦)
is majorized by ~y = {y1, . . . , y10} (4). In panel (b) we plot the distribution
functions and show that Eq. (2.1) is obeyed.

Now consider two positive vectors, ~x and ~y. We order their components in
decreasing order, x1 ≥ x2 ≥ · · · ≥ xN . When this has been done we may write
x↓i . We say that ~x is majorized by ~y, written

~x ≺ ~y if and only if





(i):
∑k

i=1 x↓i ≤
∑k

i=1 y↓i for k = 1, . . . , N

(ii):
∑N

i=1 xi =
∑N

i=1 yi .
(2.1)

We assume that all our vectors are normalized in such a way that their
components sum to unity, so condition (ii) is automatic. It is evident that
~x ≺ ~x (majorization is reflexive) and that ~x ≺ ~y and ~y ≺ ~z implies ~x ≺ ~z
(majorization is transitive) but it is not true that ~x ≺ ~y and ~y ≺ ~x implies
~x = ~y, because one of these vectors may be obtained by a permutation of the
components of the other. But if we arrange the components of all vectors in
decreasing order then indeed ~x ≺ ~y and ~y ≺ ~x does imply ~x = ~y; majorization
does provide a partial order on such vectors. The ordering is only partial
because given two vectors it may happen that none of them majorize the
other. Moreover there is a smallest element. Indeed, for every vector ~x it is
true that

~x(N) ≡ (1/N, 1/N, . . . , 1/N) ≺ ~x ≺ (1, 0, . . . , 0) ≡ ~x(1) . (2.2)

Note also that

~x1 ≺ ~y and ~x2 ≺ ~y ⇒ (a~x1 + (1− a)~x2) ≺ ~y (2.3)

for any real a ∈ [0, 1]. Hence the set of vectors majorized by a given vector
is a convex set. In fact this set is the convex hull of all vectors that can be
obtained by permuting the components of the given vector.

Vaguely speaking it is clear that majorization captures the idea that one
vector may be more ‘uniform’ or ‘mixed’ than another, as seen in Figure 2.1.
We can display all positive vectors of unit l1-norm as a probability simplex;
for N = 3 the convex set of all vectors that are majorized by a given vector
is easily recognized (Figure 2.2). For special choices of the majorizing vector
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Figure 2.2. The probability simplex for N = 3 and the shaded convex set that
is formed by all vectors that are majorized by a given vector; its pure points
are obtained by permuting the components of the given vector.

Figure 2.3. Panel (a) shows the probability simplex for N = 4. The set of
vectors majorized by a given vector gives rise to the convex bodies shown in
(b)–(f); these bodies include an octahedron (d), a truncated octahedron (e),
and a cuboctahedron (f).

we get an equilateral triangle or a regular tetrahedron; for N = 4 a number
of Platonic and Archimedean solids appear in this way (an Archimedean solid
has regular but not equal faces (Cromwell, 1997)). See Figure 2.3.

Many processes in physics occur in the direction of the majorization arrow
(because the passage of time tends to make things more uniform). Economists
are also concerned with majorization. When Robin Hood robs the rich and
helps the poor he aims for an income distribution that is majorized by the
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original one (provided that he acts like an isometry with respect to the l1-
norm, that is that he does not keep anything in his own pocket). We will need
some information about such processes and we begin by identifying a suitable
class of transformations. A stochastic matrix is a matrix B with N rows, whose
matrix elements obey

(i): Bij ≥ 0

(ii):
∑N

i=1 Bij = 1 .
(2.4)

A bistochastic or doubly stochastic matrix is a square stochastic matrix obeying
the additional condition2

(iii):
∑N

j=1 Bij = 1 . (2.5)

Condition (i) means that B preserves positivity. Condition (ii) says that the
sum of all the elements in a given column equals one, and it means that B
preserves the l1-norm when acting on positive vectors, or in general that B
preserves the sum

∑
i xi of all the components of the vector. Condition (iii)

means that B is unital, that is it leaves the ‘smallest element’ ~x(N) invariant.
Hence it causes some kind of contraction of the probability simplex towards
its centre, and the classical result by Hardy et al. (1929) does not come as a
complete surprise:

Lemma 2.1 (Hardy, Littlewood and Pólya’s (HLP)) ~x ≺ ~y if
and only if there exists a bistochastic matrix B such that ~x = B~y.

For a proof see Problem 2.4. The product of two bistochastic matrices is again
bistochastic; they are closed under multiplication but they do not form a group.

A general 2× 2 bistochastic matrix is of the form

T =
[

t 1− t
1− t t

]
, t ∈ [0, 1] . (2.6)

In higher dimensions there will be many bistochastic matrices that connect
two given vectors. Of a particularly simple kind are T -transforms (‘T’ as in
transfer), that is matrices that act non-trivially only on two components of
a vector. It is geometrically evident from Figure 2.4 that if ~x ≺ ~y then it
is always possible to find a sequence of not more than N − 1 T -transforms
such that ~x = TN−1TN−2 . . . T1~y. (Robin Hood can achieve his aim using
T -transforms to transfer income.) On the other hand (except for the 2 × 2
case) there exist bistochastic matrices that cannot be written as sequences of
T -transforms at all.

A matrix B is called unistochastic if there exists a unitary matrix U such
that Bij = |Uij|2. (No sum is involved – the equality concerns individual
matrix elements.) In the special case that there exists an orthogonal matrix
O such that Bij = (Oij)2 the matrix B is called orthostochastic. Due to the
unitarity condition every unistochastic matrix is bistochastic, but the converse

2 Bistochastic matrices were first studied by Schur (1923).
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Figure 2.4. How T -transforms, and sequences of T -transforms, act on the
probability simplex. The distribution (3/4, 1/4, 0) is transformed to the uniform
ensemble with an infinite sequence of T -transforms, while for the distribution
(14, 7, 3)/24 we use a finite sequence (T2T1).

does not hold, except when N = 2. On the other hand we have the following
(Horn, 1954):

Lemma 2.2 (Horn’s) ~x ≺ ~y if and only if there exists an orthostochastic
matrix B such that ~x = B~y.

There is an easy to follow algorithm for how to construct such an orthostochastic
matrix (Bhatia, 1997), which may be written as a product of (N − 1) T -
transforms acting in different subspaces. In general, however, a product of
an arbitrary number of T -transforms needs not be unistochastic (Poon and
Tsing, 1987).

A theme that will recur is to think of a set of transformations as a space in
its own right. The space of linear maps of a vector space to itself is a linear
space of its own in a natural way; to superpose two linear maps we define

(a1T1 + a2T2)~x ≡ a1T1~x + a2T2~x . (2.7)

Given this linear structure it is easy to see that the set of bistochastic matrices
forms a convex set and in fact a convex polytope. Of the equalities in Eq. (2.4)
and Eq. (2.5) only 2N −1 are independent, so the dimension is N2−2N +1 =
(N − 1)2. We also see that permutation matrices (having only one non-zero
entry in each row and column) are pure points of this set. The converse holds:

Theorem 2.1 (Birkhoff’s) The set of N ×N bistochastic matrices
is a convex polytope whose pure points are the N ! permutation matrices.

To see this note that Eq. (2.4) and Eq. (2.5) define the set of bistochastic
matrices as the intersection of a finite number of closed half spaces in R(N−1)2 .
(An equality counts as the intersection of a pair of closed half spaces.) According
to Section 1.1 the pure points must saturate (N − 1)2 = N2 − 2N + 1 of the
inequalities in condition (i). Hence at most 2N−1 matrix elements can be non-
zero; therefore at least one row (and by implication one column) contains one
unit and all other entries zero. Effectively we have reduced the dimension one
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step, and we can now use induction to show that the only non-vanishing matrix
elements for a pure point in the set of bistochastic matrices must equal 1, which
means that it is a permutation matrix. Note also that using Carathéodory’s
theorem (again from Section 1.1) we see that every N ×N bistochastic matrix
can be written as a convex combination of (N − 1)2 permutation matrices,
and it is worth adding that there exist easy-to-follow algorithms for how to
actually do this.

Functions which preserve the majorization order are called Schur convex;

~x ≺ ~y implies f(~x) ≤ f(~y). (2.8)

If ~x ≺ ~y implies f(~x) ≥ f(~y) the function is called Schur concave. Clearly
−f(~x) is Schur concave if f(~x) is Schur convex, and conversely. The key
theorem here is:

Theorem 2.2 (Schur’s) A differentiable function F (x1, . . . , xN) is
Schur convex if and only if F is permutation invariant and if, for all ~x,

(x1 − x2)
(

∂F

∂x1

− ∂F

∂x2

)
≥ 0 . (2.9)

Permutation invariance is needed because permutation matrices are (the only)
bistochastic matrices that have bistochastic inverses. The full proof is not
difficult when one uses T -transforms (Ando, 1989). Using Schur’s theorem,
and assuming that ~x belongs to the positive orthant, we can easily write down
a supply of Schur convex functions. Indeed any function of the form

F (~x) =
N∑

i=1

f(xi) (2.10)

is Schur convex, provided that f(x) is a convex function on R (in the sense
of Section 1.1). In particular, the lp-norm of a vector is Schur convex. Schur
concave functions include the elementary symmetric functions

s2(~x) =
∑
i<j

xixj , s3(~x) =
∑

i<j<k

xixjxk, (2.11)

and so on up to sN(~x) =
∏

i xi.
This concludes our tour of the majorization order and the transformations

that go with it. Since we laid so much stress on bistochastic matrices, let us
end with an interesting theorem that applies to stochastic matrices in general.
We quote it in an abbreviated form (see Bhatia (1997) for more):

Theorem 2.3 (Frobenius–Perron’s) An irreducible N×N matrix
whose matrix elements are non-negative has a real, positive and simple eigenvalue
and a corresponding positive eigenvector. The modulus of any other eigenvalue
never exceeds this.

For a stochastic matrix the leading eigenvalue is 1 and all others lie in the
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unit disc of the complex plane – all stochastic matrices have an invariant
eigenvector, although it need not sit in the centre of the probability simplex.

Stochastic maps are also called Markov maps. A Markov chain is a sequence
of Markov maps and may be used to provide a discrete time evolution of
probability distributions. It is not easy to justify why time evolution should
be given by linear maps, but Markov maps are useful in a wide range of
physical problems. In classical mechanics it is frequently assumed that time
evolution is governed by a Hamiltonian. This forces the space of pure states
to be infinite dimensional (unless one adopts finite number fields (Wootters,
1987)). Markovian evolution does not require this, so we will see a lot of Markov
maps in this book. Another context in which stochastic matrices appear is the
process of coarse graining (or randomization, as it is known in the statistical
literature): suppose that we do not distinguish between two of three outcomes
described by the probability distribution ~p. Then we may map (p0, p1, p2) to
(q0, q1) ≡ (p0, p1 + p2) and this map is effected by a stochastic matrix. In this
book we will be much concerned with functions that are monotonely increasing,
or decreasing, under stochastic maps.

2.2 Shannon entropy

Let P be a probability distribution for a finite number N of possible outcomes,
that is we have a vector ~p whose N components obey pi ≥ 0 and

∑
i pi = 1.

We ask for functions of the variables pi that can tell us something interesting
about the distribution. Perhaps surprisingly there is a single choice of such a
function that (at least arguably) is more interesting than any other. This is
the Shannon entropy

S(P ) = −k

N∑
i=1

pi ln pi , (2.12)

where k is a positive number that we usually set equal to 1. Note that the
entropy is associated to a definite random variable X and can be written
as S(X), but the only property of the random variable that matters is its
probabilitity distribution P . The reason why it is called entropy was explained
by Shannon in a disarming way:

My greatest concern was what to call it. I thought of calling it ‘information’,
but the word was overly used, so I decided to call it ‘uncertainty’. When I
discussed it with John von Neumann, he had a better idea. Von Neumann
told me, “You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechanics under that
name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have
an advantage.”3

3 Quoted by Tribus and McIrvine (1971); Shannon’s original work (Shannon, 1948) is available in
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Entropy is a concept that has evolved a long way from its thermodynamic
origins – and as so often happens a return to the origin may be difficult,
but this will not concern us much in this book. The Shannon entropy can
be interpreted as a measure of the uncertainty about the outcome of an
experiment that is known to occur according to the probability distribution P ,
or as the amount of information needed to specify the outcome that actually
occurs, or very precisely as the expected length of the communication needed
for this specification. It takes the value zero if and only if one outcome is
certain (that is for a pure state, when one component of ~p equals one) and
its maximum value k ln N when all outcomes are equally likely (the uniform
distribution). In this section only we set k = 1/ ln 2, which in effect means
that we use logarithms to the base 2 in the definition of S:

S(P ) = −
N∑

i=1

pi log2 pi . (2.13)

With this choice the entropy is said to be measured in units of bits. If we have
N = 2a possible outcomes we see that the maximum value of S is log2 N = a
bits, which is the length of the string of binary digits one can use to label the
outcomes. If the outcomes occur with unequal probabilities it will pay, on the
average, to label the more likely outcomes with shorter strings, and indeed the
entropy goes down.

The context in which the Shannon entropy has an absolutely precise interpretation
along these lines is when we have a source that produces outcomes of an infinite
sequence of independent and identically distributed random variables. Suppose
we want to code the outcomes of a set of such i.i.d. events as a string of binary
digits (zeros and ones). We define a code as a map of a sequence of outcomes
into strings of binary numbers. The coding has to be done in such a way that
a given string has an unambiguous interpretation as a sequence of outcomes.
Some examples will make this clear: if there are four possible outcomes then we
can code them as 00, 01, 10 and 11, respectively. These are code words. Without
ambiguity, the string 0100010100 then means (01, 00, 01, 01, 00). Moreover it
is clear that the length of string needed to code one outcome is always equal
to 2 bits. But other codes may do better, in the sense that the average number
of bits needed to encode an outcome is less than 2; we are interested in codes
that minimize the expected length

L =
∑

i

pili , (2.14)

where li is the length of the individual code words (in bits). In particular,
suppose that p1 ≥ p2 ≥ p3 ≥ p4, and label the first outcome as 0, the second
as 10, the third as 110 and the fourth as 111. Then the string we had above is
replaced by the shorter string 10010100, and again this can be broken down in
only one way, as (10, 0, 10, 10, 0). That the new string is shorter was expected

book form as Shannon and Weaver (1949). A version of Eq. (2.12), with all the pi equal to 1/W ,
is engraved on Boltzmann’s tombstone.
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Figure 2.5. ‘Code trees’ for four possible outcomes. The one on the right gives
a shorter expected length if p1 > p3 + p4.

because we used a short code word to encode the most likely outcome, and we
can read our string in an unambiguous way because the code has the prefix
property: no code word is the prefix of any other. If we use both 0 and 1 as
code words the prefix property is lost and we cannot code for more than two
outcomes. See Figure 2.5 for the structure of the codes we use.

We are now faced with the problem of finding an optimal code, given the
probability distribution. The expected length L∗ of the code words used in an
optimal code obeys L∗ ≤ L, where L is the expected length for an arbitrary
code. We will not describe the construction of optimal codes here, but once
it is admitted that such a code can be found then we can understand the
statement given in the next theorem:

Theorem 2.4 (Shannon’s noiseless coding theorem) Given a
source distribution P , let L∗ be the expected length of a code word used in an
optimal code. Then

S(P ) ≤ L∗ ≤ S(P ) + 1 . (2.15)

For the proof of this interesting theorem – and how to find an optimal code –
we must refer to the literature (Cover and Thomas, 1991). Our point is that
the noiseless coding theorem provides a precise statement about the sense in
which the Shannon entropy is a measure of information. (It may seem as if L∗
would be a better measure. It is not for two reasons. First, we do not have a
closed expression for L∗. Second, as we will see below, when many code words
are being sent the expected length per code word can be made equal to S.)

The Shannon entropy has many appealing properties. Let us make a list:

• Positivity. Clearly S(P ) ≥ 0 for all discrete probability distributions.
• Continuity. S(P ) is a continuous function of the distribution.
• Expansibility. We adopt the convention that 0 ln 0 = 0. Then it will be

true that S(p1, . . . , pN) = S(p1, . . . , pN , 0).
• Concavity. It is a concave function in the sense of convex set theory; mixing

of probability distributions increases the entropy.
• Schur concavity. As explained in Section 2.1 the Shannon entropy is

Schur concave, so it tells us something about the majorization order that
we imposed on the set of all probability distributions.

• Additivity. If we have a joint probability distribution P12 for two random
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Figure 2.6. The recursion property illustrated; to the right it is used to
determine S(3

8 , 3
8 , 1

4 ) in terms of the Shannon entropy for uniform distributions.

variables and if they are independent, so that the joint probabilities are
products of the individual probabilities, then

S(P12) = S(P1) + S(P2). (2.16)

In words, the information needed to describe two independent random
variables is the sum of the information needed to describe them separately.4

• Subadditivity. If the two random variables are not independent then

S(P12) ≤ S(P1) + S(P2) , (2.17)

with equality if and only if the random variables are independent. Any
correlation between them means that once we know the result of the first
trial the amount of information needed to specify the outcome of the second
decreases.

• The recursion property. Suppose that we coarse grain our description in
the sense that we do not distinguish between all the outcomes. Then we are
dealing with a new probability distribution Q with components

q1 =
k1∑

i=1

pi , q2 =
k2∑

i=k1+1

pi , . . . , qr =
N∑

i=N−kr+1

pi , (2.18)

for some partition N = k1 + k2 + · · · + kr. It is easy to show that

S(P ) = S(Q)+q1S

(
p1

q1

, . . . ,
pk1

q1

)
+ · · · +qrS

(
pkN−kr+1

qr

, . . . ,
pN

qr

)
. (2.19)

This is the recursion property and it is illustrated in Figure 2.6; it tells us
how a choice can be broken down into successive choices.

The recursion property can be used as an axiom that singles out the Shannon
entropy as unique.5 Apart from the recursion property we assume that the

4 In the statistical mechanics community additivity is usually referred to as extensitivity.
5 Increasingly elegant sets of axioms for the Shannon entropy were given by Shannon and Weaver

(1949), Khinchin (1957) and Faddejew (1957). Here we only give the key points of the argument.
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Figure 2.7. The Shannon entropy for N = 2 (solid curve). In panel (a) we show
the simple power bounds (Eq. 2.24), and in panel (b) some bounds provided
by the Rényi entropies from Section 2.7, upper bounds with q = 1/5 (dotted)
and 1/2 (dashed) and lower bounds with q = 2 (dashed, concave) and 5 (not
concave).

entropy is a positive and continuous function of P , so that it is enough to
consider rational values of pi = mi/M , where M =

∑
i mi. We also define

A(N) = S(1/N, 1/N, . . . , 1/N) . (2.20)

Then we can start with the equiprobable case of M outcomes and, using Eq.
(2.19), obtain S(P ) in an intermediate step:

A(M) = S(P ) +
N∑

i=1

piA(mi) . (2.21)

In the special case that M = Nm and all the mi are equal to m we get

A(Nm) = A(N) + A(m) . (2.22)

The unique solution6 of this equation is A(N) = k lnN and k must be positive
if the entropy is positive. Shannon’s formula for the entropy then results by
solving Eq. (2.21) for S(P ).

The argument behind Shannon’s coding theorem can also be used to define
the Shannon entropy, provided that we rely on additivity as well. Let the
source produce the outcomes of N independent events. These can be regarded
as a single outcome for a random variable described by a joint probability
distribution and must be provided by a code word. Let LN

∗ be the expected
length for the code word used by an optimal code. Because the Shannon
entropy is additive for independent distributions we get

NS(P ) ≤ LN
∗ ≤ NS(P ) + 1 . (2.23)

If we divide through by N we get the expected length per outcome of the
original random variable – and the point is that this converges to S(P ), exactly.
By following this line of reasoning we can give a formulation of the noiseless
coding theorem that is more in line with that used later (in Section 12.2). But

6 This is the tricky point: see Rényi (1961) for a comparatively simple proof.
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here we confine ourselves to the observation that, in this specific sense, the
Shannon entropy is exactly what we want a measure of information to be!

Now what does the function look like? First we switch back to using the
natural logarithm in the definition (we set k = 1), then we take a look at the
Shannon entropy for N = 2. Figure 2.7 also shows that

2 ln 2 min{x, 1− x} ≤ S(x) ≤ 2 ln 2
√

x(1− x) . (2.24)

Much sharper power (and logarithmic) bounds have been provided by Topsøe
(2001). Bounds valid for N = 2 only are more interesting than one might
think, as we will see when we prove the Pinsker inequality in Section 13.1.

2.3 Relative entropy

The Shannon entropy is a function that tells us something about a probability
distribution. We now consider two probability distributions P and Q, and
we look for a measure of how different they are – a distance between them,
or at least a distinguishability measure. Information theory offers a favoured
candidate: the relative entropy

S(P ||Q) =
N∑

i=1

pi ln
pi

qi

. (2.25)

It is also known as the Kullback–Leibler entropy or the information divergence.7

In terms of lengths of messages, the relative entropy S(P ||Q) measures how
much the expected length of a code word grows, if the coding is optimal but
made under the erroneous assumption that the random variable is described by
the distribution Q. Relative entropy is not a distance in the sense of Section 1.4
since it is not symmetric under interchange of P and Q. Nevertheless it
does provide a measure of how different the two distributions are from each
other. We should be clear about the operational context in which a given
distinguishability measure is supposed to work; here we assume that we have a
source of independent and identically distributed random variables, and we try
to estimate the probability distribution by observing the frequency distribution
of the various outcomes. The Law of Large Numbers guarantees that in the
limit when the number N of samplings goes to infinity the probability to obtain
any given frequency distribution not equal to the true probability distribution
vanishes. It turns out that the relative entropy governs the rate at which this
probability vanishes as N increases.

A typical situation that one might want to consider is that of an experiment
with N outcomes, described by the probability distribution Q. Let the experiment
be repeated N times. We are interested in the probability P that a frequency
distribution P (different from Q) will be observed. To simplify matters, assume
N = 2. For instance, we may be flipping a biased coin described by the

7 The relative entropy was introduced by Kullback and Leibler (1951), and even earlier than that by
Jeffreys in 1939 (Jeffreys, 1961). Sanov’s theorem (Sanov, 1957) appeared in 1957. In mathematical
statistics an asymmetric distance measure is referred to as a divergence.
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(unknown) probability distribution Q = (q, 1 − q). With Jakob Bernoulli,
we ask for the probability P that the two outcomes occur with frequencies
P = (m/N, 1 − m/N). This is a matter of counting how many strings of
outcomes there are with each given frequency, and the exact answer is

P
(m

N

)
=

(
N

m

)
qm(1− q)N−m . (2.26)

For large N we can approximate this using Stirling’s formula, in the simplified
form lnN! ≈ N ln N − N. For N ≈ 100 it is accurate within a per cent or so.
The result is

ln (P(m/N)) ≈ −N
[m

N

(
ln

m

N
− q

)
+ (1− m

N
)
(
ln (1− m

N
)− ln (1− q)

)]

(2.27)

and we recognize the relative entropy on the right-hand side. Indeed the
probability to obtain the frequency distribution P is

P(P ) ≈ e−NS(P ||Q) . (2.28)

This simple exercise should be enough to advertise the fact that relative
entropy means something.

There are more precise ways of formulating this conclusion. We have the
following theorem:

Theorem 2.5 (Sanov’s) Let an experiment with N outcomes described
by the probability distribution Q be repeated N times, and let E be a set
of probability distributions for N outcomes such that E is the closure of its
interior. Then, for N large, the probability P that a frequency distribution
belonging to E will be obtained is

P(E) ∼ e−NS(P∗||Q) , (2.29)

where P∗ is that distribution in E that has the smallest value of S(P ||Q).
That E is the closure of its interior means that it is a ‘nice’ set, without
isolated points, ‘spikes’, and so on. An important ingredient in the proof is
that the number of frequency distributions that may be realized is bounded
from above by (N + 1)N , since any one of the N outcomes can occur at most
N + 1 times. On the other hand the number of possible ordered strings of
outcomes grows exponentially with N. But this is all we have to say about the
proof; our main concern is the geometrical significance of relative entropy, not
to prove the theorems of information theory.8

The relative entropy is always a positive quantity. In fact

S(P ||Q) =
N∑

i=1

pi ln
pi

qi

≥ 1
2

N∑
i=1

(pi − qi)2 = D2
2(P, Q) . (2.30)

8 All unproved assertions in this section are proved in the book by Cover and Thomas (1991). A
number of further results can be found in their chapter 10.
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Figure 2.8. Measures of distinguishability between probability distributions
P = (p, 1 − p) and Q = (q, 1 − q): (a) Euclidean distance, (b) Bhattacharyya
distance (see Section 2.5), (c) and (d) relative entropies S(P ||Q) and S(Q||P ).

To prove this, note that any smooth function f obeys

f(x) = f(y) + (x− y)f ′(y) +
1
2
(x− y)2f ′′(ξ) , ξ ∈ (x, y) . (2.31)

Now set f(x) = −x lnx, in which case f ′′(x) ≤ −1 when 0 ≤ x ≤ 1. A little
rearrangement proves that the inequality (2.30) holds term by term, so that
this is not a very sharp bound.

The relative entropy is asymmetric. That this is desirable can be seen if we
consider two coins, one fair and one with heads on both sides. Start flipping
one of them to find out which is which. A moment’s thought shows that if
the coin we picked is the fair one, this will most likely be quickly discovered,
whereas if we picked the other coin we can never be completely sure – after
all the fair coin can give a sequence of a thousand heads, too. If statistical
distance is a measure of how difficult it will be to distinguish two probability
distributions in a repeated experiment then this argument shows that such a
measure must have some asymmetry built into it. Indeed, using notation from
Eq. (1.60),

S(Q(N)||Q(1)) = ∞ and S(Q(1)||Q(N)) = lnN . (2.32)

The asymmetry is pronounced. For further intuition about this, consult Section
13.1. The asymmetry can also be studied in Figures 2.8(c) and (d) for N = 2
and in Figure 2.9 for N = 3.

There is a kind of ‘Pythagorean theorem’ that supports the identification
of relative entropy as a (directed) distance squared:

Theorem 2.6 (‘Pythagorean’) The distribution P lies in a convex
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Figure 2.9. Contour lines of the relative entropy S(Q||P ) (a) and S(P ||Q) for
Q = (0.6, 0.4, 0.1) (+) as a function of P . Panel (c) shows an analogous picture
for S(Q(3)||P ), while the contours of S(P ||Q(3)) consisting of points of the same
Shannon entropy are shown in Figure 2.14(c).

Figure 2.10. A Pythagorean property of relative entropy (left), and the same
property in Euclidean geometry where D2

PQ ≥ D2
PP∗ + D2

P∗Q. The angle is
obtuse because the set to which P belongs is convex (right).

set E and Q lies outside E. Choose a distribution P∗ on the boundary of the
convex set such that S(P∗||Q) assumes its minimum value for P∗ belonging to
E and fixed Q. Then

S(P ||Q) ≥ S(P ||P∗) + S(P∗||Q) . (2.33)

To prove this, consider distributions on the straight line Pλ = λP +(1−λ)P∗,
which lies inside E because E is convex. A minor calculation shows that

λ = 0 ⇒ d
dλ

S(Pλ||Q) = S(P ||Q)− S(P ||P∗)− S(P∗||Q) . (2.34)

But the derivative cannot be negative at λ = 0, by the assumption we made
about P ∗, and the result follows. It is called a Pythagorean theorem because,
under the same conditions, if we draw Euclidean straight lines between the
points and measure the Euclidean angle at P∗ then that angle is necessarily
obtuse once P∗ has been chosen to minimize the Euclidean distance from the
convex set to Q. If DPQ denotes the Euclidean distance between the points then
Pythagoras’ theorem in its usual formulation states that D2

PQ ≥ D2
PP∗ +D2

P∗Q.
In this sense the relative entropy really behaves like a distance squared.
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The convexity properties of the relative entropy are interesting. It is jointly
convex. This means that when λ ∈ [0, 1] it obeys

S(λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λS(P1||Q1) + (1− λ)S(P2||Q2) .

(2.35)

Convexity in each argument separately is an easy consequence (set Q1 = Q2).
Moreover relative entropy behaves in a characteristic way under Markov maps.
Let T be a stochastic map (that is, a matrix that takes a probability vector
to another probability vector). Then we have the following property:

• Monotonicity under stochastic maps.

S(TP ||TQ) ≤ S(P ||Q) . (2.36)

In words, the relative entropy between two probability distributions always
decreases in a Markov chain, so that the distinguishability of two distributions
decreases with time. It is really this property that makes relative entropy such
a useful concept; functions of pairs of probability distributions that have this
property are known as monotone functions. The increase of entropy follows
if T is also bistochastic, that is to say that it leaves the uniform probability
distribution invariant. The uniform distribution is denoted Q(N). Clearly

S(P ||Q(N)) =
∑

i

pi ln (Npi) = lnN − S(P ) . (2.37)

Since TQ(N) = Q(N) the decrease of the relative entropy implies that the
Shannon entropy of the distribution P is increasing with time; we are getting
closer to the uniform distribution. (And we have found an interesting way to
show that S(P ) is a Schur concave function.)

The entropy increase can also be bounded from above. To do so we first
define the entropy of a stochastic matrix T with respect to some fixed probability
distribution P as

SP (T ) ≡
N∑

i=1

piS(~Ti) ; ~Ti = (T1i, T2i, . . . , TNi) . (2.38)

(Thus ~Ti are the column vectors of the matrix, which are probability vectors
because T is stochastic.) One can prove that (SlÃomczyński, 2002)

SP (T ) ≤ S(TP ) ≤ SP (T ) + S(P ) . (2.39)

Again, this is a result that holds for all stochastic matrices.

2.4 Continuous distributions and measures

The transition from discrete to continuous probability distributions appears
at first sight to be trivial – just replace the sum with an integral and we arrive
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at the Boltzmann entropy

SB = −
∫ ∞

−∞
dx p(x) ln p(x) . (2.40)

This is a natural generalization of Shannon’s entropy to continuous probability
distributions, but depending on the behaviour of the distribution function p(x)
it may be ill-defined, and it is certainly not bounded from below in general,
since p(x) need not be bounded from above. To see this let p(x) be a step
function taking the value t−1 for x ∈ [0, t] and zero elsewhere. The entropy SB

is then equal to ln t and goes to negative infinity as t → 0. In particular a pure
classical state corresponds to a delta function distribution and has SB = −∞.
In a way this is as it should be – it takes an infinite amount of information to
specify such a state exactly.

The next problem is that there is no particular reason why the entropy
should be defined in just this way. It is always a delicate matter to take the
continuum limit of a discrete sum. In fact the formula as written will change
if we change the coordinate that we are using to label the points on the real
line. In the continuous case random variables are scalars, but the probability
density transforms like a density. What this means is that

〈A〉 =
∫

dx p(x)A(x) =
∫

dx′ p′(x′)A′(x′) , (2.41)

where A′(x′) = A(x). Hence p′(x′) = J−1p(x), where J is the Jacobian of the
coordinate transformation. This means that the logarithm in our definition
of the Boltzmann entropy will misbehave under coordinate transformations.
There is a simple solution to this problem, consisting in the observation that
the relative entropy with respect to some prior probability density m(x) does
behave itself. In equations,

SB = −
∫ ∞

−∞
dx p(x) ln

p(x)
m(x)

(2.42)

is well behaved. The point is that the quotient of two densities transforms
like a scalar under coordinate changes. Now, depending on how we take the
continuum limit of the Shannon entropy, different densities m(x) will arise.
Finding an appropriate m(x) may be tricky, but this should not deter us
from using continuous distributions when necessary. We cannot avoid them
in this book, because continuous distributions occur also in finite-dimensional
quantum mechanics. In most cases we will simply use the ‘obvious’ translation
from sums to integrals along the lines of Eq. (2.40), but it should be kept in
mind that this really implies a special choice of prior density m(x).

At this point we begin to see why mathematicians regard probability theory
as a branch of measure theory. We will refer to expressions such as dµ(x) ≡
p(x)dx as measures. Mathematicians tend to use a slightly more sophisticated
terminology at this point. Given a suitable subset A of the space coordinatized
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by x, they define the measure as a real valued function µ such that

µ(A) ≡
∫

A

dµ(x) . (2.43)

The measure measures the volume of the subset. This terminology can be very
helpful, but we will not use it much.

When the sample space is continuous the space of probability distributions
is infinite dimensional. But in many situations we may be interested in a finite-
dimensional subset. For instance, we may be interested in the two-dimensional
submanifold of normal distributions

p(x; µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (2.44)

with the mean µ and the standard deviation σ serving as coordinates in
the submanifold. In general a finite-dimensional submanifold of the space
of probability distributions is defined by the function p(x; θ1, . . . , θn), where
θa are coordinates in the submanifold. When we think of this function as a
function of θa it is known as the likelihood function. This is a setup encountered
in the theory of statistical inference, that is to say the art of guessing what
probability distribution governs an experiment, given only the results of a finite
number of samplings, and perhaps some kind of prior knowledge. (The word
‘likelihood’ is used because, to people of resolutely frequentist persuasions,
there can be no probability distribution for θa.) The likelihood function is
a hypothesis about the form that the probability distribution takes. This
hypothesis is to be tested, and we want to design experiments that allow
us to make a ‘best guess’ for the values of the parameters θa. As a first step we
want to design a statistical geometry that is helpful for this kind of question.

A somewhat idiosyncratic notation is used in the statistical literature to
represent tangent spaces. Consider the log-likelihood function

l(x; θ) = ln p(x; θ) . (2.45)

Here x denotes coordinates on the sample space Ω and θ are coordinates on
a subspace of probability distributions. The idea is to describe tangent space
through the natural isomorphism between its basis vectors ∂a (used in Section
1.4) and the score vectors la, which are the derivatives with respect to the
coordinates θa of the log-likelihood function. That is to say

∂a ≡ ∂

∂θa
↔ la ≡ ∂l

∂θa
. (2.46)

For this to make any sense we must assume that the score vectors form a set of
n linearly independent functions. (It is not supposed to be self-evident why one
should use precisely the log-likelihood function here, but it is an interesting
function to consider – the Shannon entropy is nothing but its expectation
value.) The expectation values of the score vectors vanish. To see this recall
that the expectation value is a sum over the sample space which we denote
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schematically as an integral:

〈la〉 ≡
∫

Ω

dx p(x; θ)la(x; θ) =
∫

Ω

dx ∂ap(x; θ) =
∂

∂θa

∫

Ω

dx p(x; θ) = 0 . (2.47)

It is assumed that the interchange of the order of integration with respect to
x and differentiation with respect to θ is allowed. A general tangent vector
A(x) = Aala(x) is a linear combination of score vectors; as such it is a
random variable with expectation value zero. These at first sight peculiar
definitions actually achieve something: sets of probability distributions are
turned into manifolds, and random variables are turned into tangent vectors.
In the next section we will see that scalar products between tangent vectors
have a statistical meaning, too.

2.5 Statistical geometry and the Fisher–Rao metric

One way of introducing a metric on the space of probability distribution is to
consider the situation where a large number N of samplings are made from a
given probability distribution P , at first assumed to be discrete. This case is
sufficiently simple so that we can do all the details. We ask if we can find out
what P actually is, given only the result of the N samplings. We considered
this problem in Section 2.3; when there are only two possible outcomes the
probability to obtain the frequencies (f1, f2) = (m/N, 1−m/N) is

P
(m

N

)
=

(
N

m

)
pm(1− p)N−m . (2.48)

We give the answer again because this time we denote the true probability
distribution by P = (p, 1− p). When N is large, we can use Stirling’s formula
to approximate the result; in textbooks on probability it is usually given as

P
(m

N

)
=

1√
2πNp(1− p)

e−
N
2
(m

N
−p)2

p(1−p) =
1√

2πNp1p2

e−
N
2

∑2
i=1

(fi−pi)
2

pi . (2.49)

This is consistent with Eq. (2.28) when the observed frequencies are close to
P . The error that we have committed is smaller than k/N, where k is some
real number independent of N; we assume that N is large enough so that this
does not matter. Figure 2.11 shows that the Gaussians are strongly peaked
when the outcomes of the experiment are nearly certain, while they are much
broader in the middle of the probability simplex. Statistical fluctuations are
small when we are close to pure states; in some sense the visibility goes up
there.

The result is easily generalized to the case of N outcomes; we obtain the
normal distribution

P(F ) ∝ e−
N
2

∑N
i=1

(fi−pi)2

pi . (2.50)

We raised all indices, because we will be doing differential geometry soon!
Our question is: given only the frequencies f i, do we dare to claim that the
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Figure 2.11. Bernoulli’s result: the shapes of the Gaussians will determine how
easily points can be distinguished.

probabilities take the values pi = f i, rather than some other values qi? This is
clearly a matter of taste. We may choose some number ε and decide that we
dare to do it if the probability vector ~q lies outside an ellipsoid centred at the
point ~p in the probability simplex, consisting of all probability vectors of the
form ~p + d~p, where

N∑
i=1

dpidpi

pi
≤ ε2 . (2.51)

The analogy to the MacAdam ellipses of colour theory should be clear – and
if ε is small we are doing differential geometry already. The vector d~p is a
tangent vector, and we introduce a metric tensor gij through the equation

ds2 =
∑
i,j

gijdpidpj =
1
4

N∑
i=1

dpidpi

pi
⇔ gij =

1
4

δij

pi
. (2.52)

(For clarity, we do not use Einstein’s summation convention here.) This Riemannian
metric is known as the Fisher–Rao metric, or as the Fisher information matrix.9

What is it? To see this, we will try to deform the probability simplex into
some curved space, in such a way that all the little ellipsoids become spheres
of equal size. A rubber model of the two-dimensional case would be instructive
to have, but since we do not have one let us do it with equations. We introduce
new coordinates X i , all of them obeying X i ≥ 0, through

X i =
√

pi ⇒ dX i =
dpi

2
√

pi
. (2.53)

Then the Fisher–Rao metric takes the very simple form

ds2 =
N∑

i=1

dX idX i . (2.54)

9 The factor of 1/4 is needed only for agreement with conventions that we use later on. The
Fisher–Rao metric was introduced by Rao (1945), based on earlier work by Fisher (1925) and
Bhattacharyya (1943).
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Figure 2.12. The convex (flat) and statistical (round) geometry of a simplex
when N = 3.

All the little error ellipsoids have become spheres. If we remember the constraint
N∑

i=1

pi =
N∑

i=1

X iX i = 1 , (2.55)

then we see that the geometry is that of a unit sphere. Because of the restricted
coordinate ranges we are in fact confined to the positive hyperoctant of SN−1.
Figure 2.12 illustrates the transformation that we made.

Section 3.1 will provide more details about spheres if this is needed. But we
can right away write down the geodesic distance DBhatt between two arbitary
probability distributions P and Q, now regarded as the length of the great
circle between them. This is simply the angle between two vectors, with
components X i =

√
pi and Y i =

√
qi. Hence

cosDBhatt =
N∑

i=1

√
piqi = B(P,Q) . (2.56)

In statistics this distance is known as the Bhattacharyya distance. The right-
hand side of the equation is known as the Bhattacharyya coefficient, and it
looks intriguingly similar to the scalar product in quantum mechanics. Its
square is known as the classical fidelity. Alternatively we can define the chordal
distance DH as the distance between the points in the flat embedding space
where the round hyperoctant sits, that is

DH =

(
N∑

i=1

(√
pi −

√
qi

)2
) 1

2

. (2.57)

In statistics this is known as the Hellinger distance. It is clearly a monotone
function of the Bhattacharyya distance.

In writing down these distances we have allowed the geometry to run ahead
of the statistics. The infinitesimal Fisher–Rao distance does have a clear cut
operational significance, in terms of the statistical distinguishability of nearby
probability distributions, in the limit of a large number of samplings. But this
is not really the case for the finite Bhattacharyya and Hellinger distances, at
least not as far as we know. The Kullback–Leibler relative entropy is better in
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Figure 2.13. For N = 2 the space of discrete probabilities reduces to (a) a
straight line segment along which all the lp distances agree, or (b) a quarter of
a circle equipped with the Bhattacharyya distance, measured by the angle θ.

this respect, and should be connected to the Fisher–Rao metric in some way.
Let us assume that two probability distributions are close, and let us expand
the relative entropy (Eq. 2.25) to lowest order. We find

S(P ||P + dP ) =
∑

i

pi ln
pi

pi + dpi
≈ 1

2

∑
i

dpidpi

pi
. (2.58)

Expanding S(P +dP ||P ) gives the same result – the asymmetry present in the
relative entropy does not make itself felt to lowest order. So the calculation
simply confirms the feeling that developed in Section 2.3, namely that relative
entropy should be thought of as a distance squared. Infinitesimally, this distance
is precisely that defined by the Fisher–Rao metric. Note that we can also regard
the Fisher–Rao metric as the Hessian matrix of the Shannon entropy:

gij = −1
4
∂i∂jS(p) =

1
4
∂i∂j

N∑
k=1

pk ln pk . (2.59)

The fact that Shannon entropy is concave implies that the Fisher–Rao metric
is positive definite. In Section 3.2 we will tell the story backwards and explain
that relative entropy exists precisely because there exists a ‘potential’ whose
second derivatives form the components of the Riemannian metric.

As we made clear in Section 1.4 there are many ways to introduce the
concept of distance on a given space, and we must ask in what sense, if any,
our concept of statistical distance is unique? There is a clear cut answer to this
question. We will consider maps between two probability distributions P and
Q of the form Q = TP , where T is a stochastic matrix. We define a monotone
function as a function of pairs of probability distributions such that

f(TP, TQ) ≤ f(P, Q) . (2.60)

Then there is a comfortable result:

Theorem 2.7 (Čencov’s) For multinomial distributions the Fisher–
Rao metric is (up to normalization) the only metric whose geodesic distance
is a monotone function.
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In this desirable sense the Fisher–Rao metric is unique. It is not hard to see
that the Fisher–Rao metric has the desired property. We must show that the
length of an arbitrary tangent vector dpi at the point pi decreases under a
stochastic map, that is to say that

||Tdp||2 ≤ ||dp||2 ⇔
N∑

i=1

(Tdp)i(Tdp)i

(Tp)i
≤

N∑
i=1

dpidpi

pi
. (2.61)

To do so, we first prove that
(∑

j

Tijdpj

)2

≤
(∑

j

Tij

dpjdpj

pj

)(∑
j

Tijpj

)
. (2.62)

Looking closely at this expression (take square roots!) we see that it is simply
the Cauchy–Schwarz inequality in disguise. Dividing through by the rightmost
factor and summing over i we find – precisely because

∑
i Tij = 1, that is

because the map is stochastic – that Eq. (2.61) follows.10

It often happens that one is interested in some submanifold of the probability
simplex, coordinatized by a set of coordinates θa. The Fisher–Rao metric will
induce a metric on such submanifolds, given by

gab =
∑
i,j

∂pi

∂θa

∂pj

∂θb
gij =

1
4

∑
i

∂ap
i∂bp

i

pi
. (2.63)

As long as the submanifold – the statistical model, as it may be referred to
here – is finite dimensional, this equation is easily generalized to the case of
continuous probability distributions p(x), where the probability simplex itself
is infinite dimensional:

gab =
1
4

∫

Ω

dx
∂ap∂bp

p
. (2.64)

This metric is unaffected by reparametrizations of the sample space, that is to
say by changes to new coordinates x′(x) – and indeed obviously so since the
derivatives are with respect to θ.

The odd-looking notation using score vectors comes into its own here. Using
them we can rewrite Eq. (2.64) as

gab =
1
4

∫

Ω

dx plalb ≡ 1
4
〈lalb〉 . (2.65)

The components of the metric tensor are the scalar products of the basis
vectors in tangent space. A general tangent vector is, in the language we now
use, a random variable with vanishing mean, and the scalar product of two
arbitrary tangent vectors becomes

1
4
〈A(x)B(x)〉 =

1
4

∫

Ω

dx p(x)A(x)B(x) . (2.66)

10 We do not prove uniqueness here, but in Section 13.1 we show that the flat metric is not monotone.
Unfortunately Čencov’s proof is difficult (Čencov, 1982); for an accessible proof of his key point see

Campbell (1986). By the way, Čencov will also appear in our book under the name of Chentsov.
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Except for the annoying factor of 1/4, this is the covariance of the two random
variables.

In order to get used to these things let us compute the Fisher–Rao metric
on the two-dimensional family of normal distributions, with the mean µ and
variance σ as coordinates. See Eq. (2.44). We have two score vectors

lµ = ∂µ ln p(x;µ, σ) =
x− µ

σ2
lσ = ∂σ ln p(x; µ, σ) =

(x− µ)2

σ3
− 1

σ
.

(2.67)

Taking the appropriate expectation values we find (after a short calculation)
that the statistical metric on the normal family is

ds2 =
1

4σ2
(dµ2 + 2dσ2) . (2.68)

This is a famous metric of constant negative curvature, known as the Poincaré
metric on the upper half plane. The µ-axis itself consists of the pure states,
and points there are infinitely far away from any point in the interior of the
upper half plane; if the outcome is certain (so that the standard deviation σ
is zero) then it is trivial to distinguish this distribution from any other one.

As our parting shot in this section, consider a statistical inference problem
where we want to find the values of the parameters θa from samplings of some
random variable. A random variable ξa is said to be an unbiased estimator
of the parameter θa if 〈ξa〉 = θa. So, there are no systematic errors in the
experiment. Still, there is a limit on how well the unbiased estimators can
perform their task:

Theorem 2.8 (Cramér–Rao’s) The variance of an unbiased estimator
obeys

〈ξaξb〉 − 〈ξa〉〈ξb〉 ≥ 1
4
gab . (2.69)

The inequality means that the left-hand side minus the right-hand side is a
positive semi-definite matrix.11

2.6 Classical ensembles

Let us define an ensemble as a set equipped with a probability measure.
Choosing a probability simplex as our set, we obtain an ensemble of probability
distributions, or states, characterized by a distribution P (~p). The physical
situation may be that of a machine producing an unlimited set of independent
and identically distributed copies of a physical system each characterized by
the same unknown probability distribution ~p, in which case P (~p) tells us
something about the machine, or about our knowledge of the machine.

We seem to be on the verge of breaking our promise not to commit ourselves
11 We have left much unsaid here. Amari (1985) contains a highly recommended book length

discussion of statistical geometry. We also recommend the review by Ingarden (1981).
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to any particular interpretation of probability, since we appear to imply that
the original probability ~p is an inherent property of the individual physical
systems that are being produced. We have not introduced any agent whose
degree of reasonable belief can reasonably be said to be quantified by ~p.
Closer inspection reveals that the subjective interpretation of probability can
be saved. To do so one observes that there is really only one thing that
we are ignorant of, namely the full sequence of observations. But beyond
that we make use of some prior assumptions that specify exactly what we
mean by ‘independent and identically distributed copies’. Then de Finetti’s
theorem tells us that this situation can be treated as if it was described by the
distribution P (~p) on the probability simplex. This is a subtle point, and we
refer to the literature for a precise account of our ignorance.12

We have now explained one setting in which a distribution P (~p ) arises.
Others can be imagined. From the subjective point of view, the prior should
summarize whatever information we have before the data have been analysed,
and it should be systematically updated as the observations are coming in. The
prior should obey one important requirement: it should lead to manageable
calculations in practice. What we want to do here is much simpler. We ask
what we should expect to observe if the state of a physical system is picked
‘at random’. A random state is a state picked from the probability simplex
according to some measure, and that measure is now to be chosen in a way
that captures our idea of randomness. Hence we ask for the uniform prior
corresponding to complete ignorance. But we are using an alarmingly vague
language. What is complete ignorance?

Presumably, the uniform prior is such that the system is equally likely to be
found anywhere on the simplex, but there are at least two natural candidates
for what this should mean. We could say that the simplex is flat. Then we use
the measure

dP∆ = (N − 1)! δ

(
N∑

i=1

pi − 1

)
dp1dp2 . . .dpN . (2.70)

(At the cost of a slight inconsistency, we have lowered the index on pi again.
We find this more congenial!) This probability measure is correctly normalized,
because we get one when we integrate over the positive cone:

∫

RN
+

dP∆ = (N − 1)!
∫ 1

0

dp1

∫ 1−p1

0

dp2 . . .

∫ 1−p1−···−pN−2

0

dpN−1

=
∫ 1

0

dp1

∫ 1

0

dp2 . . .

∫ 1

0

dpN−1 = 1 . (2.71)

The volume of the simplex is 1/(N−1)! times the volume of the parallelepiped
spanned by its edges.

But if we use the Fisher–Rao rather than the flat metric, then the simplex is
12 For an engaging account both backwards (with references to earlier literature) and forwards (to

quantum information theory) see Caves, Fuchs and Schack (2001b). But note that from now on
we will use whatever language we find convenient, rather than get involved in issues like this.
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round rather than flat, and the appropriate density to integrate is proportional
to the square root of the determinant of the Fisher–Rao metric. The measure
becomes

dPFR =
Γ

(
N
2

)

πN/2
δ

(
N∑

i=1

pi − 1

)
dp1dp2 . . .dpN√

p1p2 . . . pN

. (2.72)

To check the normalization we first change coordinates to X i =
√

pi, and then
use the fact that we already know the volume of a round hyperoctant – namely
1/2N times the volume of SN−1, given in Eq. (1.17). This choice of prior is
known as Jeffreys’ prior and is generally agreed to be the best choice. Jeffreys
arrived at his prior through the observation that for continuous sample spaces
the corresponding expression has the desirable property of being invariant
under reparametrizations of the sample space. Note the implication: somehow
Jeffreys is claiming that ‘most’ of the probabilities that we encounter in the
world around us are likely to be close to one or zero.

Further choices are possible (and are sometimes made in mathematical
statistics). Thus we have the Dirichlet distribution

dPs ∝ δ

(
N∑

i=1

pi − 1

)
(p1p2 . . . pN)s−1 dp1dp2 . . .dpN , (2.73)

which includes the flat and round measures for s = 1 and s = 1/2, respectively.
To find a simple way to generate probability vectors according to these distributions
study Problem 2.5.

2.7 Generalized entropies

The Shannon entropy is arguably the most interesting function of ~p that one
can find. But in many situations the only property that one really requires is
that the function be Schur concave, that is consistent with the majorization
order. For this reason we are willing to call any Schur concave function a
generalized entropy. Similarly a generalized relative entropy must be monotone
under stochastic maps. Equation (2.10), when adjusted with a sign, provides
us with a liberal supply of Schur concave functions. To obtain a supply of
generalized monotone entropies, let g be a convex function defined on (0,∞)
such that g(1) = 0. Then the expression

Sg(P ||Q) =
∑

i

pi g(qi/pi) (2.74)

is monotone under stochastic maps. The choice g(t) = − ln t gives the Kullback–
Leibler relative entropy that we have already studied. All of these generalized
relative entropies are consistent with the Fisher–Rao metric, in the sense that

Sg(P ||P + dP ) =
∑

i

pig

(
1 +

dpi

pi

)
≈ g′′(1)

2

∑
i

dpidpi

pi

. (2.75)
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As long as we stay with classical probability theory the Fisher–Rao geometry
itself remains unique.

We will study generalized entropies in some detail. We define the moments
of a probability distribution as

fq(~p) =
N∑

i=1

pq
i . (2.76)

They are Schur concave for q ≤ 1, and Schur convex for q ≥ 1. The set of
moments fq(~p) for q = 2, . . . , N determines the vector ~p up to a permutation of
its components, just as knowing the traces, TrAk, k = 1, . . . , N , of a Hermitian
matrix A one can find its spectrum. The analogy is exact: in Chapter 12 we
will think of classical probability distributions as diagonal matrices, and face
the problem of generalizing the definitions of the present chapter to general
Hermitian matrices. Instead of the Shannon entropy, we will have the von
Neumann entropy that one can calculate from the spectrum of the matrix.
But it is much easier to raise a matrix A to some integer power, than to
diagonalize it. Therefore it is easier to compute the moments than to compute
the von Neumann entropy.

When q = 2 the moment f2 is also known as the purity (because it vanishes
if and only if the state is pure) or as the index of coincidence (because it
gives the probability of getting identical outcomes from two independent and
equally distributed events). The linear entropy is defined as SL = 1− f2 and
the participation number as R = 1/f2 (it varies between zero and N and is
interpreted as the ‘effective number of events’ that contribute to it).

In order to bring the moments closer to the Shannon entropy we can define
the Havrda–Charvát entropies 13 as

SHC
q (P ) ≡ 1

1− q

[ N∑
i=1

pq
i − 1

]
. (2.77)

We now get the Shannon entropy in the limit q → 1. These entropies are Schur
concave but not recursive. They are not additive for independent random
variables; when P ij

12 = pi
1 pj

2 we have

SHC
q (P12) = SHC

q (P1) + SHC
q (P2) + (1− q)SHC

q (P1)SHC
q (P2) . (2.78)

To ensure additivity a logarithm can be used in the definition. A one parameter
family of Schur concave and additive entropies are the Rényi entropies 14

Sq(P ) ≡ 1
1− q

ln
[ N∑

i=1

pq
i

]
. (2.79)

We assume that q ≥ 0. An added advantage of the Rényi entropies is that
13 They were first studied by at Havrda and Charvát (1967); in statistical physics they go under the

name of Tsallis entropies. For a review of their uses, see Tsallis (2002) or Kapur (1994).
14 Rényi (1961) introduced them as examples of functions that are additive, and obey all of

Khinchin’s axioms for an entropy except the recursion property.
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Table 2.1. Properties of generalized entropies

Entropy Shannon Rényi Havrda–Charvát

Formula −∑N
i=1 pi ln pi

1
1−q ln

(∑N
i=1 pq

i

)
1

1−q

(∑N
i=1 pq

i − 1
)

Recursivity yes no no
Additivity yes yes no
Concavity yes for 0 < q ≤ 1 for q > 0

they are normalized in a uniform way, in the sense that they vanish for pure
states and attain their maximal value lnN at the uniform distribution.

We summarize some properties of generalized entropies in Table 2.1. There
we see a possible disadvantage of the Rényi entropies for q > 1, which is
that we cannot guarantee that they are concave in the ordinary sense. In fact
concavity is lost for q > q∗ > 1, where q∗ is N dependent.15

Special cases of the Rényi entropies include q = 0, which is the logarithm
of the number of non-zero components of the distribution and is known as
the Hartley entropy.16 When q → 1, we have the Shannon entropy (sometimes
denoted S1), and when q → ∞ the Chebyshev entropy S∞ = − ln pmax, a
function of the largest component pmax. Figure 2.14 shows some iso-entropy
curves in the N = 3 probability simplex; equivalently we see curves of constant
fq(~p). The special cases q = 1/2 and q = 2 are of interest because their iso-
entropy curves form circles, with respect to the Bhattacharyya and Euclidean
distances, respectively. For q = 20 we are already rather close to the limiting
case q → ∞, for which we would see the intersection of the simplex with a
cube centred at the origin in the space where the vector ~p lives – compare the
discussion of lp-norms in Chapter 1. For q = 1/5 the maximum is already rather
flat. This resembles the limiting case S0, for which the entropy reflects the
number of events which may occur: it vanishes at the corners of the triangle,
is equal to ln 2 at its sides and equals ln 3 for any point inside it.

For any given probability vector P the Rényi entropy is a continuous, non-
increasing function of its parameter,

St(P ) ≤ Sq(P ) for any t > q . (2.80)

To show this, introduce the auxiliary probability vector ri ≡ pq
i /

∑
i pq

i . Observe
that the derivative ∂Sq/∂q may be written as −S(P ||R)/(1 − q)2. Since the
relative entropy S(P ||R) is non–negative, the Rényi entropy Sq is a non-
increasing function of q. In Figure 2.7(b) we show how this fact can be used
to bound the Shannon entropy S1.

In a similar way one proves (Beck and Schlögl, 1993) analogous inequalities

15 Peter Harremoës has informed us of the bound q∗ ≤ 1 + ln(4)/ ln(N − 1).
16 The idea of measuring information regardless of its contents originated with Hartley (1928).
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Figure 2.14. The Rényi entropy is constant along the curves plotted for (a)
q = 1/5; (b) q = 1/2; (c) q = 1; (d) q = 2; (e) q = 5 and (f) q = 20.

valid for q ≥ 0:

d
dq

[
q − 1

q
Sq

]
≥ 0 ,

d2

dq2
[(1− q)Sq] ≥ 0 . (2.81)

The first inequality reflects the fact that the lq-norm is a non–increasing
function. It allows one to obtain useful bounds on Rényi entropies,

q − 1
q

Sq(P ) ≤ s− 1
s

Ss(P ) for any q ≤ s . (2.82)

Due to the second inequality the function (1 − q)Sq is convex. However, this
does not imply that the Rényi entropy itself is a convex function of q;17 it is
non-convex for probability vectors P with one element dominating.

The Rényi entropies are correlated. For N = 3 we can see this if we
superpose the various panels of Figure 2.14. Consider the superposition of
the iso-entropy curves for q = 1 and 5. Compared with the circle for q = 2
the isoentropy curves for q < 2 and q > 2 are deformed (with a three-fold
symmetry) in the opposite way: together they form a kind of David’s star
with rounded corners. Thus if we move along a circle of constant S2 in the
direction of decreasing S5 the Shannon entropy S1 increases, and conversely.

The problem, what values the entropy Sq may admit, provided St is given,
has been solved by Harremoës and Topsøe (2001). They proved a simple but
not very sharp upper bound on S1 by S2, valid for any distribution P ∈ RN

S2(P ) ≤ S1(P ) ≤ ln N + 1/N − exp
(−S2(P )

)
. (2.83)

The lower bound provided by a special case of Eq. (2.80) is not tight. Optimal
17 As erroneously claimed in Życzkowski (2003).
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Figure 2.15. Rényi entropies Sq for N = 20 probability vectors: (a) convex
function for a power–law distribution, pj ∼ j−2; (b) non-convex function for
P = 1

100 (43, 3, . . . , 3).

bounds are obtained18 by studying both entropies along families of interpolating
probability distributions

Q(k,l)(a) ≡ aQ(k) + (1− a)Q(l) with a ∈ [0, 1] . (2.84)

For instance, the upper bound for Sq as a function of St with t > q can be
derived from the distribution Q(1,N)(a). For any value of a we compute St,
invert this relation to obtain a(St) and arrive at the desired bound by plotting
Sq[a(St)]. In this way we may bound the Shannon entropy by a function of S2,

S1(P ) ≤ (1−N)
1− a

N
ln

1− a

N
− 1 + a(N − 1)

N
ln

1 + a(N − 1)
N

, (2.85)

where a = [(N exp[−S2(P )]/(N−1)]1/2. This bound is shown in Figure 2.16(c)
and (d) for N = 3 and N = 5, respectively. Interestingly, the set MN of
possible distributions plotted in the plane Sq versus St is not convex. All Rényi
entropies agree at the distributions Q(k), k = 1, . . . , N . These points located
at the diagonal, Sq = St, belong to the lower bound. It consists of N − 1 arcs
derived from interpolating distributions Q(k,k+1) with k = 1, . . . , N − 1. As
shown Figure 2.16 the set MN resembles a medusa19 with N arms. Its actual
width and shape depends on the parameters t and q (Życzkowski, 2003).

Problems

¦ Problem 2.1 The difference Sstr ≡ S1−S2, called structural entropy,
is useful to characterize the non–homogeneity of a probability vector (Pipek
and Varga, 1992). Plot Sstr for N = 3, and find its maximal value.

¦ Problem 2.2 Let ~x, ~y and ~z be positive vectors with components in
decreasing order and such that ~z ≺ ~y. Prove that ~x · ~z ≤ ~x · ~y.
18 This result (Harremoës and Topsøe, 2001) was later generalized (Berry and Sanders, 2003) for

other entropy functions.
19 Polish or Swedish readers will know that a medusa is a (kind of) jellyfish.
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Figure 2.16. The set MN of all possible discrete distributions for N = 3 and
N = 5 in the Rényi entropies plane Sq and St: S1/5 and S1 (a and b); S1 and
S2 (c and d), and S1 and S∞ (e and f). Thin dotted lines in each panel stand
for the lower bounds (Eq. (2.80)), dashed-dotted lines in panels (a) and (b)
represent bounds between S0 and S1, while bold dotted curves in panel (c) and
(d) are the upper bounds (Eq. (2.83)).

¦ Problem 2.3 (a) Show that any bistochastic matrix B written as a
product of two T -transforms is orthostochastic. (b) Show that the product
of (N − 1) T -transforms of size N acting in different subspaces forms an
orthostochastic matrix.

¦ Problem 2.4 Prove the Hardy–Littlewood–Pólya lemma.

¦ Problem 2.5 Take N independent real (complex) random numbers zi

generated according to the real (complex) normal distribution. Define normalized
probability vector P , where pi ≡ |zi|2/

∑N

i=1 |zi|2 with i = 1, . . . , N . What is
its distribution on the probability simplex ∆N−1?

¦ Problem 2.6 To see an analogy between the Shannon and the Havrda–
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Charvát entropies prove that (Abe, 1997)

S(P ) ≡ −
∑

i

pi ln pi = −
[ d
dx

(∑
i

px
i

)]∣∣∣
x=1

(2.86)

SHC
q (P ) ≡ 1

1− q

(∑
i

pq
i − 1

)
= −

[
Dq

(∑
i

px
i

)]∣∣∣
x=1

, (2.87)

where the ‘multiplicative’ Jackson q-derivative reads

Dq

(
f(x)

) ≡ f(qx)− f(x)
qx− x

, so that lim
q→1

Dq(f(x)) =
df(x)

dx
. (2.88)

¦ Problem 2.7 For what values of q are the Rényi entropies concave

when N = 2?



3 Much ado about spheres

He who undertakes to deal with questions of natural sciences without the
help of geometry is attempting the infeasible.

Galileo Galilei

In this chapter we will study spheres, mostly two- and three-dimensional
spheres, for two reasons: because spheres are important, and because they
serve as a vehicle for introducing many geometric concepts (such as symplectic,
complex and Kähler spaces, fibre bundles and group manifolds) that we will
need later on. It may look like a long detour, but it leads into the heart of
quantum mechanics.

3.1 Spheres

We expect that the reader knows how to define a round n-dimensional sphere
through an embedding in a flat (N = n+1)-dimensional space. Using Cartesian
coordinates, the n-sphere Sn is the surface

X ·X =
n∑

I=0

XIXI = (X0)2 + (X1)2 + · · ·+ (Xn)2 = 1 , (3.1)

where we gave a certain standard size (unit radius) to our sphere and also
introduced the standard scalar product in RN . The Cartesian coordinates
(X0, X1, . . . , Xn) = (X0, X i) = XI , where 1 ≤ i ≤ n and 0 ≤ I ≤ n, are
known as embedding coordinates. They are not intrinsic to the sphere but
useful anyway.

Our first task is to introduce a few more intrinsic coordinate systems on
Sn, in addition to the polar angles used in Section 1.2. Eventually this should
lead to the insight that coordinates are not important, only the underlying
space itself counts. We will use a set of coordinate systems that are obtained
by projecting the sphere from a point on the axis between the north and
south poles to a plane parallel to the equatorial plane. Our first choice is
perpendicular projection to the equatorial plane, known as orthographic projection
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Figure 3.1. Three coordinate system that we use. To the left, orthographic
projection from infinity of the northern hemisphere into the equatorial plane.
In the middle, stereographic projection from the south pole of the entire sphere
(except the south pole itself) onto the equatorial plane. To the right, gnomonic
projection from the centre of the northern hemisphere onto the tangent plane
at the north pole.

among mapmakers. The point of projection is infinitely far away. We set

X i = xi X0 =
√

1− r2 , r2 ≡
n∑

i=1

xixi < 1 . (3.2)

This coordinate patch covers the region where X0 > 1; we need several
coordinate patches of this kind to cover the entire sphere. The metric when
expressed in these coordinates is

ds2 = dX0dX0 +
n∑

i=1

dX idX i =
1

1− r2

[
(1− r2)dx · dx + (x · dx)2

]
, (3.3)

where

x · dx ≡
n∑

i=1

xidxi and dx · dx ≡
n∑

i=1

dxidxi . (3.4)

An attractive feature of this coordinate system is that, as a short calculation
shows, the measure defined by the metric becomes simply

√
g = 1/X0.

An alternative choice of intrinsic coordinates – perhaps the most useful one
– is given by stereographic projection from the south pole to the equatorial
plane, so that

xi

X i
=

1
1 + X0

⇔ X i =
2xi

1 + r2
X0 =

1− r2

1 + r2
. (3.5)

A minor calculation shows that the metric now becomes manifestly conformally
flat, that is to say that it is given by a conformal factor Ω2 times a flat metric:

ds2 = Ω2δijdxidxj =
4

(1 + r2)2
dx · dx . (3.6)
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This coordinate patch covers the region X0 > −1, that is to say the entire
sphere except the south pole itself. To cover the entire sphere we need at
least one more coordinate patch, say the one that is obtained by stereographic
projection from the north pole. In the particular case of S2 one may collect
the two stereographic coordinates into one complex coordinate z; the relation
between this coordinate and the familiar polar angles is

z = x1 + ix2 = tan
θ

2
eiφ . (3.7)

We will use this formula quite frequently.
A third choice is gnomonic or central projection. (The reader may want to

know that the gnomon being referred to is the vertical rod on a primitive
sundial.) We now project one half of the sphere from its centre to the tangent
plane touching the north pole. In equations

xi =
X i

X0
⇔ X i =

xi

√
1 + r2

X0 =
1√

1 + r2
. (3.8)

This leads to the metric

ds2 =
1

(1 + r2)2
[
(1 + r2)dx · dx− (x · dx)2

]
. (3.9)

One hemisphere only is covered by gnomonic coordinates. (The formalism
presented in Section 1.4 can be used to transform between the three coordinate
systems that we presented, but it was easier to derive each from scratch.)

All coordinate systems have their special advantages. Let us sing the praise
of stereographic coordinates right away. The topology of coordinate space is
Rn, and when stereographic coordinates are used the sphere has only one
further point not covered by these coordinates, so the topology of Sn is the
topology of Rn with one extra point attached ‘at infinity’. The conformal factor
ensures that the round metric is smooth at the added point, so that ‘infinity’
in coordinate space lies at finite distance on the sphere. One advantage of
these coordinates is that all angles come out correctly if we draw a picture
in a flat coordinate space, although distances far from the origin are badly
distorted. We say that the map between the sphere and the coordinate space
is conformal, that is it preserves angles. The stereographic picture makes it
easy to visualize S3, which is conformally mapped to ordinary flat space in
such a way that the north pole is at the origin, the equator is the unit sphere,
and the south pole is at infinity. With a little training one can get used to this
picture, and learn to disregard the way in which it distorts distances. If the
reader prefers a compact picture of the 3-sphere this is easily provided: use the
stereographic projection from the south pole to draw a picture of the northern
hemisphere only. This gives the picture of a solid ball whose surface is the
equator of the 3-sphere. Then project from the north pole to get a picture of
the southern hemisphere. The net result is a picture consisting of two solid
balls whose surfaces must be mentally identified with each other.

When we encounter a new space, we first ask what symmetries it has, and
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Figure 3.2. A circle is the sum of two intervals, a 2-sphere is the sum of two
discs glued together along the boundaries, and the 3-sphere is the sum of two
balls again with the boundaries identified. In the latter case the gluing cannot
be done in three dimensions. See Appendix 3 for a different picture in the same
vein.

what its geodesics are. Here the embedding coordinates are very useful. An
infinitesimal isometry (a transformation that preserves distances) is described
by a Killing vector field pointing in the direction that points are transformed.
We ask for the flow lines of the isometry. A sphere has exactly n(n + 1)/2
linearly independent Killing vectors at each point, namely

JIJ = XI∂J −XJ∂I . (3.10)

(Here we used the trick from Section 1.4 to represent a tangent vector as
a differential operator.) On the 2-sphere the flow lines are always circles at
constant distance from a pair of antipodal fixed points where the flow vanishes.
The situation gets more interesting on the 3-sphere, as we will see.

A geodesic is the shortest curve between any pair of nearby points on itself.
On the sphere a geodesic is a great circle, that is the intersection of the sphere
with a two-dimensional plane through the origin in the embedding space. Such
a curve is ‘obviously’ as straight as it can be, given that it must be confined
to the sphere. (Incidentally this means that gnomonic coordinates are useful,
because the geodesics will appear as straight lines in coordinate space.) The
geodesics can also be obtained as the solutions of the Euler–Lagrange equations
coming from the constrained Lagrangian

L =
1
2
Ẋ · Ẋ + Λ(X ·X − 1) , (3.11)

where Λ is a Lagrange multiplier and the overdot denotes differentiation with
respect to the affine parameter along the curve. We rescale the affine parameter
so that Ẋ · Ẋ = 1, and then the general solution for a geodesic takes the form

XI(τ) = kI cos τ + lI sin τ , k · k = l · l = 1 , k · l = 0 . (3.12)
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Figure 3.3. Killing flows and geodesics on the 2-sphere.

The vectors kI and lI span a plane through the origin in RN . Since XI(0) = kI

and ẊI(0) = lI , the conditions on these vectors say that we start on the sphere,
with unit velocity, in a direction tangent to the sphere. The entire curve is
determined by these data.

Let us now choose two points along the geodesic, with different values of
the affine parameter τ , and compute

X(τ1) ·X(τ2) = cos (τ1 − τ2) . (3.13)

With the normalization of the affine parameter that we are using |τ1 − τ2| is
precisely the length of the curve between the two points, so we get the useful
formula

cos d = X(τ1) ·X(τ2) , (3.14)

where d is the geodesic distance between the two points. It is equal to the
angle between the unit vectors XI(τ1) and XI(τ2) – and we encountered this
formula before in Eq. (2.56).

3.2 Parallel transport and statistical geometry

Let us focus on the positive octant (or hyperoctant) of the sphere. In the
previous chapter its points were shown to be in one-to-one correspondence
to the set of probability distributions over a finite sample space, and this set
was sometimes thought of as round (equipped with the Fisher metric) and
sometimes as flat (with convex mixtures represented as straight lines). How
can we reconcile these two ways of looking at the octant? To answer this
question we will play a little formal game with connections and curvatures.1

Curvature is not a very immediate property of a space. It has to do with
how one can compare vectors sitting at different points with each other, and
we must begin with a definite prescription for how to parallel transport vectors
from one point to another. For this we require a connection and a covariant
derivative, such as the Levi–Civita connection that is defined (using the metric)
in Appendix A1.2. Then we can transport a vector V i along any given curve

1 In this section we assume that the reader knows some Riemannian geometry. Readers who have
forgotten this can refresh their memory with Appendix A1.2. Readers who never knew about it
may consult, say, Murray and Rice (1993) or Schrödinger (1950) – or take comfort in the fact that
Riemannian geometry is used in only a few sections of our book.
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Figure 3.4. A paradox? On the left we parallel transport a vector around the
edge of the flat probability simplex. On the right the same simplex is regarded
as a round octant, and the obvious (Levi–Civita) notion of parallel transport
gives a different result. It is the same space but two different affine connections!

with tangent vector X i by solving the ordinary differential equation Xj∇jV
i =

0 along the curve. But there is no guarantee that the vector will return to itself
if it is transported around a closed curve. Indeed it will not if the curvature
tensor is non-zero. It must also be noted that the prescription for parallel
transport can be changed by changing the connection. Assume that in addition
to the metric tensor gij we are given a totally symmetric skewness tensor Tijk.
Then we can construct the one-parameter family of affine connections

(α)

Γ ijk = Γijk +
α

2
Tijk . (3.15)

Here Γijk is the ordinary Levi–Civita connection (with one index lowered using
the metric). Since Tijk transforms like a tensor all α-connections transform as
connections should. The covariant derivative and the curvature tensor will
be given by Eqs. (A1.5) and (A1.10), respectively, but with the Levi–Civita
connection replaced by the new α-connection. We can also define α-geodesics,
using Eq. (A1.8) but with the new connection. This is affine differential
geometry; a subject that at first appears somewhat odd, because there are
‘straight lines’ (geodesics) and distances along them (given by the affine parameter
of the geodesics), but these distances do not fit together in the way they would
do if they were consistent with a metric tensor.2

In statistical geometry the metric tensor has a potential, that is to say that
there is a convex function Φ such that the Fisher–Rao metric is

gij(p) =
∂2Φ

∂pi∂pj
≡ ∂i∂jΦ(p) . (3.16)

In Eq. (2.59) this function is given as minus the Shannon entropy, but for
the moment we want to play a game and keep things general. Actually the
definition is rather strange from the point of view of differential geometry,
because it uses ordinary rather than covariant derivatives. The equation will

2 The statistical geometry of α-connections is due to Čencov (1982) and Amari (1985).
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therefore be valid only with respect to some preferred affine coordinates that
we call pi here, anticipating their meaning; we use an affine connection defined
by the requirement that it vanishes in this special coordinate system. But if
we have done one strange thing we can do another. Therefore we can define a
totally symmetric third rank tensor using the same preferred affine coordinate
system, namely

Tijk(p) = ∂i∂j∂kΦ(p) . (3.17)

Now we can start the game.
Using the definitions in Appendix A1.2 it is easy to see that

Γijk =
1
2
∂i∂j∂kΦ(p) . (3.18)

But we also have an α-connection, namely
(α)

Γ ijk =
1 + α

2
∂i∂j∂kΦ(p) = (1 + α)Γijk . (3.19)

A small calculation is now enough to relate the α-curvature to the usual one:
(α)

R ijkl = (1− α2)Rijkl . (3.20)

Equation (3.19) says that the α-connection vanishes when α = −1, so that the
space is (−1)-flat. Our preferred coordinate system is preferred in the sense
that a line that looks straight in this coordinate system is indeed a geodesic
with respect to the (−1)-connection. The surprise is that Eq. (3.20) shows that
the space is also (+1)-flat, even though this is not obvious just by looking at
the (+1)-connection in this coordinate system.

We therefore start looking for a coordinate system in which the (+1)-
connection vanishes. We try the functions

ηi =
∂Φ
∂pi

. (3.21)

Then we define a new function Ψ(η) through a Legendre transformation, a
trick familiar from thermodynamics:

Ψ(η) + Φ(p)−
∑

i

piηi = 0 . (3.22)

Although we express the new function as a function of its ‘natural’ coordinates
ηi, it is first and foremost a function of the points in our space. By definition

dΨ =
∑

i

pidηi ⇒ pi =
∂Ψ
∂ηi

. (3.23)

Our coordinate transformation is an honest one in the sense that it can be
inverted to give the functions pi = pi(η). Now let us see what the tensors gij

and Tijk look like in the new coordinate system. An exercise in the use of the
chain rule shows that

gij(η) =
∂pk

∂ηi

∂pl

∂ηj
gkl

(
p(η)

)
=

∂pj

∂ηi
=

∂2Ψ
∂ηi∂ηj

≡ ∂i∂jΨ(η) . (3.24)
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For Tijk a slightly more involved exercise shows that

Tijk(η) = −∂i∂j∂kΨ(η) . (3.25)

To show this, first derive the matrix equation
n∑

k=1

gik(η) gkj(p) = δij . (3.26)

The sign in Eq. (3.25) is crucial since it implies that
(+1)

Γ ijk = 0; in the new
coordinate system the space is indeed manifestly (+1)-flat.

We now have two different notions of affine straight lines. Using the (−1)-
connection they are

ṗj
(−1)

∇ j ṗ
i = p̈i = 0 ⇒ pi(t) = pi

0 + tpi . (3.27)

Using the (+1)-connection, and working in the coordinate system that comes
naturally with it, we get instead

η̇j
(+1)

∇ j η̇
i = η̈i = 0 ⇒ ηi(t) = ηi

0 + tηi . (3.28)

We will see presently what this means.
There is a final manoeuvre that we can do. We go back to Eq. (3.22), look

at it, and realize that it can be modified so that it defines a function of pairs of
points P and P ′ on our space, labelled by the coordinates p and η′, respectively.
This is the function

S(P ||P ′) = Φ
(
p(P )

)
+ Ψ

(
η′(P ′)

)−
∑

i

pi(P ) η′i(P ′) . (3.29)

It vanishes when the two points coincide, and since this is an extremum the
function is always positive. It is an asymmetric function of its arguments. To
lowest non-trivial order the asymmetry is given by the skewness tensor; indeed

S(p||p + dp) =
∑
i,j

gij dpidpj −
∑
i,j,k

Tijk dpidpjdpk + · · · (3.30)

S(p + dp||p) =
∑
i,j

gij dpidpj +
∑
i,j,k

Tijk dpidpjdpk + · · · (3.31)

(We are of course entitled to use the same coordinates for both arguments, as
we just did, provided we do the appropriate coordinate transformations.)

To bring life to this construction it remains to seed it with some interesting
function Φ and see what interpretation we can give to the objects that come
with it. We already have one interesting choice, namely minus the Shannon
entropy. First we play the game on the positive orthant RN

+ , that is to say we
use the index i ranging from 1 to N , and assume that all the pi > 0 but leave
them otherwise unconstrained. Our input is

Φ(p) =
N∑

i=1

pi ln pi . (3.32)
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Our output becomes

ds2 =
N∑

i=1

dpidpi

pi
=

N∑
i=1

dxidxi ; 4pi = (xi)2 , (3.33)

ηi = ln pi + 1 , (3.34)

Ψ(η) =
N∑

i=1

pi , (3.35)

S(p||p′) =
N∑

i=1

pi ln
pi

p′i
+

N∑
i=1

(p′i − pi) , (3.36)

(+1)-geodesic : pi(t) = pi(0)et[ln pi(1)−ln pi(0)] . (3.37)

In Eq. (3.33) the coordinate transformation pi = 4(xi)2 shows that the Fisher–
Rao metric on RN

+ is flat. To describe the situation on the probability simplex
we impose the constraint

N∑
i=1

pi = 1 ⇔
N∑

i=1

xixi = 4 . (3.38)

Taking this into account we see that the Fisher–Rao metric on the probability
simplex is the metric on the positive octant of a round sphere with radius 2.
For maximum elegance, we have chosen a different normalization of the metric,
compared with what we used in Section 2.5. The other entries in the list have
some definite statistical meaning, too. We are familiar with the relative entropy
S(p||p′) from Section 2.3. The geodesics defined by the (−1)-connection, that is
to say the lines that look straight in our original coordinate system, are convex
mixtures of probability distributions. The (−1)-connection is therefore known
as the mixture connection and its geodesics are (one-dimensional) mixture
families. The space is flat with respect to the mixture connection, but (in
a different way) also with respect to the (+1)-connection. The coordinates
in which this connection vanishes are the ηi. The (+1)-geodesics, that is the
lines that look straight when we use the coordinates ηi, are known as (one-
dimensional) exponential families and the (+1)-connection as the exponential
connection. Exponential families are important in the theory of statistical
inference; it is particularly easy to pin down (using samplings) precisely where
you are along a given curve in the space of probability distributions, if that
curve is an exponential family. We notice one interesting thing: it looks reasonable
to define the mean value of pi(0) and pi(1) as pi(1/2), where the parameter
is the affine parameter along a geodesic. If our geodesic is a mixture family,
this is the arithmetic mean, while it will be the geometric mean pi(1/2) =√

pi(0)pi(1) if the geodesic is an exponential family.
Since we have shown that there are three different kinds of straight lines on

the probability simplex – mixture families, exponential families, and geodesics
with respect to the round metric – we should also show what they look like.
Figure 3.5 is intended to make this clear. The probability simplex is complete
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Figure 3.5. Here we show three different kinds of geodesics – mixture (m),
exponential (e) and metric (0) – on the simplex; since the mixture coordinates
pi are used only the mixture geodesic appears straight in the picture.

with respect to the exponential connection, meaning that the affine parameter
along the exponential geodesics goes from minus to plus infinity – whereas the
mixture and metric geodesics cross its boundary at some finite value of the
affine parameter.

Our story is almost over. The main point is that a number of very relevant
concepts – Shannon entropy, Fisher–Rao metric, mixture families, exponential
families and the relative entropy – have appeared in natural succession. But
the story can be told in different ways. Every statistical manifold has a totally
symmetric skewness tensor built in. Indeed, following Section 2.4, we can use
the score vectors li and define, using expectation values,

gij = 〈lilj〉 and Tijk = 〈liljlk〉 . (3.39)

In particular, a skewness tensor is naturally available on the space of normal
distributions. This space turns out to be (±1)-flat, although the coordinates
that make this property manifest are not those used in Section 2.5. Whenever
a totally symmetric tensor is used to define a family of α-connections one can
show that

Xk∂k(gijY
iZj) = gijX

k
(α)

∇kY
iZj + gijY

iXk
(−α)

∇ kZ
j . (3.40)

What this equation says is that the scalar product between two vectors remains
constant if the vectors are parallel transported using dual connections (so that
their covariant derivatives along the curve with tangent vector X i vanish by
definition). The 0-connection, that is the Levi–Civita connection, is self dual
in the sense that the scalar product is preserved if both of them are parallel
transported using the Levi–Civita connection. It is also not difficult to show
that if the α-connection is flat for any value of α then the equation

(α)

R ijkl =
(−α)

R ijkl (3.41)

will hold for all values of α. Furthermore it is possible to show that if the space
is α-flat then it will be true, in that preferred coordinate system for which the
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α-connection vanishes, that there exists a potential for the metric in the sense
of Eq. (3.96). The point is that Eq. (3.40) then implies that

(−α)

Γ jki = ∂kgij and
(−α)

Γ [jk]i = 0 ⇒ ∂jgki − ∂kgji = 0 . (3.42)

The existence of a potential for the metric follows:

gij = ∂iVj and g[ij] = 0 ⇒ Vj = ∂jΦ . (3.43)

At the same time it is fair to warn the reader that if a space is compact, it is
often impossible to make it globally α-flat (Ay and Tuschmann, 2002).

3.3 Complex, Hermitian and Kähler manifolds

We now return to the study of spheres in the global manner and forget about
statistics for the time being. It turns out to matter a lot whether the dimension
of the sphere is even or odd. Let us study the even-dimensional case n = 2m,
and decompose the intrinsic coordinates according to

xi = (xa, xm+a) , (3.44)

where the range of a goes from 1 to m. Then we can, if we wish, introduce the
complex coordinates

za = xa + ixm+a , z̄ā = xa − ixm+a . (3.45)

We delibarately use two kinds of indices here (barred and unbarred) because
we will never contract indices of different kinds. The new coordinates come in
pairs connected by complex conjugation,

(za)∗ = z̄ā . (3.46)

This equation ensures that the original coordinates take real values. Only the
za count as coordinates and once they are given the z̄ā are fully determined.
If we choose stereographic coordinates to start with, we find that the round
metric becomes

ds2 ≡ gabdzadzb + 2gab̄dzadz̄b̄ + gāb̄dz̄ādz̄b̄ =
4

(1 + r2)2
δab̄ dzadz̄b̄ . (3.47)

Note that we do not make the manifold complex. We would obtain the complexified
sphere by allowing the coordinates xi to take complex values, in which case
the real dimension would be multiplied by two and we would no longer have a
real sphere. What we actually did may seem like a cheap trick in comparison,
but for the 2-sphere it is anything but cheap, as we will see.

To see if the introduction of complex coordinates is more than a trick
we must study what happens when we try to cover the entire space with
overlapping coordinate patches. We choose stereographic coordinates and add
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a patch that is obtained by projection from the north pole; we do it in this
way:

x′a =
Xa

1−X0
, x′n+a =

−Xm+a

1−X0
. (3.48)

Now the whole sphere is covered by two coordinate systems. Introducing
complex coordinates in both patches, we observe that

z′a = x′a + ix′m+a =
Xa − iXm+a

1−X0
=

2(xa − ixm+a)
1 + r2 − 1 + r2

=
z̄a

r2
. (3.49)

These are called the transition functions between the two coordinate systems.
In the special case of S2 we can conclude that

z′(z) =
1
z

. (3.50)

Remarkably, the transition functions between the two patches covering the
2-sphere are holomorphic (that is complex analytic) functions of the complex
coordinates. In higher dimensions this simple manoeuvre fails.

There is another peculiar thing that happens for S2, but not in higher
dimensions. Look closely at the metric:

gzz̄ =
2

(1 + |z|2)2 =
2

1 + |z|2
(

1− |z|2
1 + |z|2

)
= 2∂z∂z̄ ln (1 + |z|2) . (3.51)

Again a ‘potential’ exists for the metric of the 2-sphere. Although superficially
similar to Eq. (3.16) there is a difference – Eq. (3.16) is true in very special
coordinate systems only, while Eq. (3.51) is true in every complex coordinate
system connected to the original one with holomorphic coordinate transformations
of the form z′ = z′(z). Complex spaces for which all this is true are called
Kähler manifolds.

The time has come to formalize things. A differentiable manifold is a space
which can be covered by coordinate patches in such a way that the transition
functions are differentiable. A complex manifold is a space which can be covered
by coordinate patches in such a way that the coordinates are complex and the
transition functions are holomorphic.3

Any even-dimensional manifold can be covered by complex coordinates in
such a way that, when the coordinate patches overlap,

z′ = z′(z, z̄) , z̄′ = z̄′(z, z̄) . (3.52)

The manifold is complex if and only if it can be covered by coordinate patches
such that

z′ = z′(z) , z̄′ = z̄′(z̄) . (3.53)

Since we are using complex coordinates to describe a real manifold a point
in the manifold is specified by the n independent coordinates za – we always
require that

z̄ā ≡ (za)∗ . (3.54)
3 A standard reference on complex manifolds is Chern (1979).
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Figure 3.6. A flat torus is a parallelogram with sides identified; it is also
defined by a pair of vectors, or by the lattice of points that can be reached
by translations with these two vectors.

A complex manifold is therefore a real manifold that can be described in
a particular way. Naturally one could introduce coordinate systems whose
transition functions are non-holomorphic, but the idea is to restrict oneself
to holomorphic coordinate transformations (just as, on a flat space, it is
convenient to restrict oneself to Cartesian coordinate systems).

Complex manifolds have some rather peculiar properties caused ultimately
by the ‘rigidity properties’ of analytic functions. By no means all even-dimensional
manifolds are complex, and for those that are there may be several inequivalent
ways to turn them into complex manifolds. Examples of complex manifolds
are Cn = R2n and all orientable two-dimensional spaces, including S2 as we
have seen. An example of a manifold that is not complex is S4. It may be
difficult to decide whether a given manifold is complex or not; an example of
a manifold for which this question is open is the 6-sphere.4

An example of a manifold that can be turned into a complex manifold
in several inequivalent ways is the torus T2 = C/Γ. Here Γ is some discrete
isometry group generated by two (commuting) translations, and T2 will inherit
the property of being a complex manifold from the complex plane C. A better
way to say this is that a flat torus is made from a flat parallelogram by gluing
opposite sides together. It means that there is one flat torus for every choice
of a pair of vectors. The set of all possible tori can be parametrized by the
relative length and the angle between the vectors, and by the total area.
Since holomorphic transformations cannot change relative lengths or angles
this means that there is a two parameter family of tori that are inequivalent
as complex manifolds. In other words the ‘shape space’ of flat tori (technically
known as Teichmüller space) is two dimensional. Note though that just because
two parallelograms look different we cannot conclude right away that they
represent inequivalent tori – if one torus is represented by the vectors u and
v, then the torus represented by u and v + u is intrinsically the same.

Tensors on complex manifolds are naturally either real or complex. Consider
vectors: since an n complex dimensional complex manifold is a real manifold

4 As we go to press, a rumour is afoot that S.-S. Chern proved, just before his untimely death at
the age of 93, that S6 does not admit a complex structure.
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as well, it has a real tangent space V of dimension 2n. A real vector (at a
point) is an element of V and can be written as

V = V a∂a + V̄ ā∂ā , (3.55)

where V̄ ā is the complex conjugate of V a. A complex vector is an element of
the complexified tangent space VC, and can be written in the same way but
with the understanding that V̄ ā is independent of V a. By definition we say
that a real vector space has a complex structure if its complexification splits
into a direct sum of two complex vector spaces that are related by complex
conjugation. This is clearly the case here. We have the direct sum

VC = V(1,0) ⊕V(0,1) , (3.56)

where
V a∂a ∈ V(1,0) V̄ ā∂ā ∈ V(0,1) . (3.57)

If V is the real tangent space of a complex manifold, the space V(1,0) is known
as the holomorphic tangent space. This extra structure means that we can talk
of vectors of type (1, 0) and (0, 1), respectively; more generally we can define
both tensors and differential forms of type (p, q). This is well defined because
analytic coordinate transformations will not change the type of a tensor, and
it is an important part of the theory of complex manifolds.

We still have to understand what happened to the metric of the 2-sphere.
We define an Hermitian manifold as a complex manifold with a metric tensor
of type (1, 1). In complex coordinates it takes the form

ds2 = 2gab̄ dzadz̄b̄ . (3.58)

The metric is a symmetric tensor, hence

gāb = gbā . (3.59)

The reality of the line element will be ensured if the matrix gab̄ (if we think of
it that way) is also Hermitian,

(gab̄)∗ = gbā . (3.60)

This is assumed as well.
Just to make sure that you understand what these conditions are, think of

the metric as an explicit matrix. Let the real dimension 2n = 4 in order to be
fully explicit: then the metric is

[
0 gab̄

gāb 0

]
=




0 0 g11̄ g12̄

0 0 g21̄ g22̄

g1̄1 g1̄2 0 0
g2̄1 g2̄2 0 0


 . (3.61)

It is now easy to see what the conditions on the Hermitian metric really are.
By the way gab̄ is not the metric tensor, it is only one block of it.

An Hermitian metric will preserve its form under analytic coordinate transformations,
hence the definition is meaningful because the manifold is complex. If the
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metric is given in advance the property of being Hermitian is non-trivial, but
as we have seen S2 equipped with the round metric provides an example. So
does Cn equipped with its flat metric.

Given an Hermitian metric we can construct a differential form

J = 2igab̄ dza ∧ dz̄b̄ . (3.62)

This trick – to use an n × n matrix to define both a symmetric and an anti-
symmetric tensor – works only because the real manifold has even dimension
equal to 2n. The imaginary factor in front of the form J is needed to ensure
that the form is a real 2-form. The manifold is Kähler – and J is said to be a
Kähler form – if J is closed, that is to say if

dJ = 2igab̄,c dzc ∧ dza ∧ dz̄b̄ + 2igab̄,c̄ dz̄c̄dza ∧ dz̄b̄ = 0 , (3.63)

where the comma stands for differentiation with respect to the appropriate
coordinate. Now this will be true if and only if

gab̄,c̄ = gac̄,b̄ , gab̄,c = gcb̄,a . (3.64)

This implies that in the local coordinate system that we are employing there
exists a scalar function K(z, z̄) such that the metric can be written as

gab̄ = ∂a∂b̄K . (3.65)

This is a highly non-trivial property because it will be true in all allowed
coordinate systems, that is in all coordinate systems related to the present
one by an equation of the form z′ = z′(z). In this sense it is a more striking
statement than the superficially similar Eq. (3.16), which holds in a very
restricted class of coordinate systems only. The function K(z, z̄) is known
as the Kähler potential and determines both the metric and the Kähler form.

We have seen that S2 is a Kähler manifold. This happened because any 2-
form on a two-dimensional manifold is closed by default (there are no 3-forms),
so that every Hermitian two-dimensional manifold has to be Kähler.

The Levi–Civita connection is constructed in such a way that the length of
a vector is preserved by parallel transport. On a complex manifold we have
more structure worth preserving, namely the complex structure: we would like
the type (p, q) of a tensor to be preserved by parallel transport. We must ask if
these two requirements can be imposed at the same time. For Kähler manifolds
the answer is ‘yes’. On a Kähler manifold the only non-vanishing components
of the Christoffel symbols are

Γ c
ab = gcd̄gd̄a,b , Γ c̄

āb̄ = gādgdā,b̄ . (3.66)

Now take a holomorphic tangent vector, that is a vector of type (1, 0) (such
as V = V a∂a). The equation for parallel transport becomes

∇XV a = V̇ a + XbΓ a
bc V c = 0 , (3.67)

together with its complex conjugate. If we start with a vector whose components
V̄ ā vanish and parallel transport it along some curve, then the components
V̄ ā will stay zero since certain components of the Christoffel symbols are zero.
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In other words a vector of type (1, 0) will preserve its type when parallel
transported. Hence the complex structures on the tangent spaces at two different
points are compatible, and it follows that we can define vector fields of type
(1, 0) and (0, 1), respectively, and similarly for tensor fields.

All formulae become simple on a Kähler manifold. Up to index permutations
the only non-vanishing components of the Riemann tensor are

Rab̄cd̄ = gd̄d Γ d
ac ,b̄ . (3.68)

Finally, a useful concept is that of of holomorphic sectional curvature. Choose
a 2-plane in the complexified tangent space at the point z such that it is left
invariant by complex conjugation. This means that we can choose coordinates
such that the plane is spanned by the tangent vectors dza and dz̄ā (and here
we use the old-fashioned notation according to which dza are the components
of a tangent vector rather than a basis element in the cotangent space). Then
the holomorphic sectional curvature is defined by

R(z,dz) =
Rab̄cd̄ dzadz̄b̄dzcdz̄d̄

(ds2)2
. (3.69)

Holomorphic sectional curvature is clearly analogous to ordinary scalar curvature
on real manifolds and (unsurprisingly to those who are familiar with ordinary
Riemannian geometry) one can show that, if the holomorphic sectional curvature
is everywhere independent of the choice of the 2-plane, then it is independent
of the point z as well. Then the space is said to have constant holomorphic
sectional curvature. Since there was a restriction on the choice of the 2-planes,
constant holomorphic sectional curvature does not imply constant curvature.

3.4 Symplectic manifolds

Kähler manifolds have two kinds of geometry: Riemannian and symplectic.
The former concerns itself with a non-degenerate symmetric tensor field, and
the latter with a non-degenerate anti-symmetric tensor field that has to be a
closed 2-form as well. This is to say that a manifold is symplectic only if there
exist two tensor fields Ωij and Ωij (not related by raising indices with a metric
– indeed no metric is assumed) such that

Ωij = −Ωji , ΩikΩkj = δi
j . (3.70)

This is a symplectic 2-form Ω if it is also closed,

d Ω = 0 ⇔ Ω[ij,k] = 0 . (3.71)

These requirements are non-trivial: it may well be that a (compact) manifold
does not admit a symplectic structure, although it essentially always admits
a metric. Indeed S2 is the only sphere that is also a symplectic manifold.

A manifold may have a symplectic structure even if it is not Kähler. Phase
spaces of Hamiltonian systems are symplectic manifolds, so that – at least
in the guise of Poisson brackets – symplectic geometry is quite familiar to
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physicists.5 The point is that the symplectic form can be used to associate a
vector field with any function H(x) on the manifold through the equation

V i
H = Ωij∂jH . (3.72)

This is known as a Hamiltonian vector field, and it generates canonical transformations.
These transformations preserve the symplectic form, just as isometries generated
by Killing vectors preserve the metric. But the space of canonical transformations
is always infinite dimensional (since the function H is at our disposal), while
the number of linearly independent Killing vectors is always rather small –
symplectic geometry and metric geometry are analogous but different. The
Poisson bracket of two arbitrary functions F and G is defined by

{F, G} = ∂iFΩij∂jG . (3.73)

It is bilinear, anti-symmetric, and obeys the Jacobi identity precisely because
the symplectic form is closed. From a geometrical point of view the role of
the symplectic form is to associate an area with each pair of tangent vectors.
There is also an interesting interpretation of the fact that the symplectic form
is closed, namely that the total area assigned by the symplectic form to a
closed surface that can be contracted to a point (within the manifold itself) is
zero. Every submanifold of a symplectic manifold inherits a 2-form from the
manifold in which it sits, but there is no guarantee that the inherited 2-form
is non-degenerate. In fact it may vanish. If this happens to a submanifold of
dimension equal to one half of the dimension of the symplectic manifold itself,
the submanifold is Lagrangian. The standard example is the subspace spanned
by the coordinates q in a symplectic vector space spanned by the coordinates
q and p, in the way familiar from analytical mechanics.

A symplectic form gives rise to a natural notion of volume, invariant under
canonical transformations; if the dimension is 2n then the volume element is

V =
1
n!

(
1
2
Ω) ∧ (

1
2
Ω) ∧ . . . (

1
2
Ω) . (3.74)

The numerical factor can be chosen at will – unless we are on a Kähler mani-
fold where the choice just made is the only natural one. The point is that
a Kähler manifold has both a metric and a symplectic form, so that there
will be two notions of volume that we want to be consistent with each other.
The symplectic form is precisely the Kähler form from Eq. (3.62), Ω = J .
The special feature of Kähler manifolds is that the two kinds of geometry are
interwoven with each other and with the complex structure. On the 2-sphere

dV =
1
2
Ω =

2i

(1 + |z|2)2 dz ∧ dz̄ =
4

(1 + r2)2
dx ∧ dy = sin θ dθ ∧ dφ . (3.75)

This agrees with the volume form as computed using the metric.

5 For a survey of symplectic geometry by an expert, see Arnold (2000).
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3.5 The Hopf fibration of the 3-sphere

The 3-sphere, being odd-dimensional, is neither complex nor symplectic, but
like all the odd-dimensional spheres it is a fibre bundle. Unlike all other spheres
(except S1) it is also a Lie group. The theory of fibre bundles was in fact created
in response to the treatment that the 3-sphere was given in 1931 by Hopf and
by Dirac, and we begin with this part of the story. (By the way, Dirac’s concern
was with magnetic monopoles.)

The 3-sphere can be defined as the hypersurface

X2 + Y 2 + Z2 + U 2 = 1 (3.76)

embedded in a flat four-dimensional space with (X, Y, Z, U) as its Cartesian
coordinates. Using stereographic coordinates (Section 3.1) we can visualize the
3-sphere as R3 with the south pole (U = −1) added as a point ‘at infinity’. The
equator of the 3-sphere (U = 0) will appear in the picture as a unit sphere
surrounding the origin. To get used to it we look at geodesics and Killing
vectors.

Using Eq. (3.12) it is easy to prove that geodesics appear in our picture
either as circles or as straight lines through the origin. Either way – unless
they are great circles on the equator – they meet the equator in two antipodal
points. Now rotate the sphere in the X–Y plane. The appropriate Killing
vector field is

JXY = X∂Y − Y ∂X = x∂y − y∂x , (3.77)

where x, y (and z) are the stereographic coordinates in our picture. This looks
like the flow lines of a rotation in flat space. There is a geodesic line of fixed
points along the z-axis. The flow lines are circles around this geodesic, but with
one exception they are not themselves geodesics because they do not meet the
equator in antipodal points. The Killing vector JZU behaves intrinsically just
like JXY , but it looks quite different in our picture (because we singled out
the coordinate U for special treatment). It has fixed points at

JZU = Z∂U − U∂Z = 0 ⇔ Z = U = 0 . (3.78)

This is a geodesic (as it must be), namely a great circle on the equator. By
analogy with JXY the flow lines must lie on tori surrounding the line of fixed
points. A somewhat boring calculation confirms this; the flow of JZU leaves
the tori of revolution

(ρ− a)2 + z2 = a2 − 1 > 0 , ρ2 ≡ x2 + y2 , (3.79)

invariant for any a > 1. So we can draw pictures of these two Killing vector
fields, the instructive point of the exercise being that intrinsically these Killing
vector fields are really ‘the same’.

A striking thing about the 3-sphere is that there are also Killing vector fields
that are everywhere non-vanishing. This is in contrast to the 2-sphere; a well-
known theorem in topology states that ‘you can’t comb a sphere’, meaning
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Figure 3.7. Flow lines and fixed points of JXY and JZU .

to say that every vector field on S2 has to have a fixed point somewhere. An
example of a Killing field without fixed points on S3 is clearly

ξ = JXY + JZU ; ||ξ||2 = X2 + Y 2 + Z2 + U 2 = 1 . (3.80)

Given our pictures of Killing vector fields it is clear that this combination must
have flow lines that lie on the tori that we drew, but which wind once around
the z-axis each time they wind around the circle ρ = 1. This will be our key
to understanding the 3-sphere as a fibre bundle.

Remarkably, all the flow lines of the Killing vector field ξ are geodesics as
well. We will prove this in a way that brings complex manifolds back in. The
point is that the embedding space R4 is also the complex vector space C2.
Therefore we can introduce the complex embedding coordinates

[
Z1

Z2

]
=

[
X + iY
Z + iU

]
. (3.81)

The generalization to n complex dimensions is immediate. Let us use P , Q,
R, . . . to denote vectors in complex vector spaces. The scalar product in R2n

becomes an Hermitian form on Cn, namely

P · Q̄ = δαᾱP αQ̄ᾱ = P αQ̄α . (3.82)

Here we made the obvious move of defining

(Zα)∗ = Z̄ᾱ ≡ Z̄α , (3.83)

so that we get rid of the barred indices.
The odd-dimensional sphere S2n+1 is now defined as those points in Cn+1

that obey

Z · Z̄ = 1 . (3.84)

Translating the formula (3.12) for a general geodesic from the real formulation
given in Section 3.1 to the complex one that we are using now we find

Zα(σ) = mα cosσ +nα sinσ , m · m̄ = n · n̄ = 1 , m · n̄+n · m̄ = 0 , (3.85)

where the affine parameter σ measures distance d along the geodesic,

d = |σ2 − σ1| . (3.86)
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If we pick two points on the geodesic, say

Zα
1 ≡ Zα(σ1) Zα

2 ≡ Zα(σ2) , (3.87)

then a short calculation reveals that the distance between them is given by

cos d =
1
2
(Z1 · Z̄2 + Z2 · Z̄1) . (3.88)

This is a useful formula to have.
Now consider the family of geodesics given by

nα = imα ⇒ Zα(σ) = eiσmα . (3.89)

Through any point on S2n+1 there will go a geodesic belonging to this family
since we are free to let the vector mα vary. Evidently the equation

Żα = iZα (3.90)

holds for every geodesic of this kind. Its tangent vector is therefore given by

∂σ = Żα∂α + ˙̄Z ᾱ∂ᾱ = i(Zα∂α − Z̄ᾱ∂ᾱ) = JXY + JZU = ξ . (3.91)

But this is precisely the everywhere non-vanishing Killing vector field that
we found before. So we have found that on S2n+1 there exists a congruence –
a space-filling family – of curves that are at once geodesics and Killing flow
lines. This is a quite remarkable property; flat space has it, but very few curved
spaces do.

In flat space the distance between parallel lines remains fixed as we move
along the lines, whereas two skew lines eventually diverge from each other. In
a positively curved space – like the sphere – parallel geodesics converge, and
we ask if it is possible to twist them relative to each other in such a way that
this convergence is cancelled by the divergence caused by the fact that they
are skew. Then we would have a congruence of geodesics that always stay at
the same distance from each other. We will call the geodesics Clifford parallels
provided that this can be done. A more stringent definition requires a notion
of parallel transport that takes tangent vectors of the Clifford parallels into
each other; we will touch on this in Section 3.7.

Now the congruence of geodesics given by the vector field ξ are Clifford
parallels on the 3-sphere. Two points belonging to different geodesics in the
congruence must preserve their relative distance as they move along the geodesics,
precisely because the geodesics are Killing flow lines as well. It is instructive
to prove this directly though. Consider two geodesics defined by

P α = eiσP α
0 , Qα = ei(σ+σ0)Qα

0 . (3.92)

We will soon exercise our right to choose the constant σ0. The scalar product
of the constant vectors will be some complex number

P0 · Q̄0 = reiφ . (3.93)
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Figure 3.8. The Hopf fibration of the 3-sphere.

The geodesic distance between two arbitrary points, one on each geodesic, is
therefore given by

cos d =
1
2
(P · Q̄ + Q · P̄ ) = r cos (φ− σ0) . (3.94)

The point is that this is independent of the affine parameter σ, so that the
distance does not change as we move along the geodesics (provided of course
that we move with the same speed on both). This shows that our congruence
of geodesics consists of Clifford parallels.

The perpendicular distance d0 between a pair of Clifford parallels is obtained
by adjusting the zero point σ0 so that cos d0 = r, that is so that the distance
attains its minimum value. A concise way to express d0 is by means of the
equation

cos2 d0 = r2 = P0 · Q̄0Q0 · P̄0 = P · Q̄Q · P̄ . (3.95)

Before we are done we will see that this formula plays an important role in
quantum mechanics.

It is time to draw a picture – Figure 3.8 – of the congruence of Clifford
parallels. Since we have the pictures of JXY and JZU already this is straightforward.
We draw a family of tori of revolution surrounding the unit circle in the z = 0
plane, and eventually merging into the z-axis. These are precisely the tori
defined in Eq. (3.79). Each torus is itself foliated by a one parameter family
of circles and they are twisting relative to each other as we expected; indeed
any two circles in the congruence are linked (their linking number is one).
The whole construction is known as the Hopf fibration of the 3-sphere, and
the geodesics in the congruence are called Hopf circles. It is clear that there
exists another Hopf fibration with the opposite twist, that we would arrive at
through a simple sign change in Eq. (3.80). By the way the metric induced on
the tori by the metric on the 3-sphere is flat (as you can easily check from Eq.
(3.98) below, where a torus is given by θ = constant); you can think of the
3-sphere as a one parameter family of flat tori if you please, or as two solid
tori glued together.
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Now the interesting question is: how many Hopf circles are there altogether,
or more precisely what is the space whose points consists of the Hopf circles? A
little thinking gives the answer directly. On each torus there is a one parameter
set of Hopf circles, labelled by some periodic cordinate φ ∈ [0, 2π[. There is
a one parameter family of tori, labelled by θ ∈]0, π[. In this way we account
for every geodesic in the congruence except the circle in the z = 0 plane and
the one along the z-axis. These have to be added at the endpoints of the θ-
interval, at θ = 0 and θ = π, respectively. Evidently what we are describing
is a 2-sphere in polar coordinates. So the conclusion is that the space of Hopf
circles is a 2-sphere.

It is important to realize that this 2-sphere is not ‘sitting inside the 3-sphere’
in any natural manner. To find such an embedding of the 2-sphere would entail
choosing one point from each Hopf circle in some smooth manner. Equivalently,
we want to choose the zero point of the coordinate σ along all the circles in
some coherent way. But this is precisely what we cannot do; if we could we
would effectively have shown that the topology of S3 is S2⊗S1 and this is not
true (because in S2⊗S1 there are closed curves that cannot be contracted to a
point, while there are no such curves in the S3). We can almost do it though.
For instance, we can select those points where the geodesics are moving down
through the z = 0 plane. This works fine except for the single geodesic that
lies in this plane; we have mapped all of the 2-sphere except one point onto
an open unit disc in the picture. It is instructive to make a few more attempts
in this vein and see how they always fail to work globally.

The next question is whether the 2-sphere of Hopf circles is a round 2-sphere
or not, or indeed whether it has any natural metric at all. The answer turns
out to be ‘yes’. To see this it is convenient to introduce the Euler angles, which
are intrinsic coordinates on S3 adapted to the Hopf fibration. They are defined
by

[
Z1

Z2

]
=

[
X + iY
Z + iU

]
=

[
e i

2 (τ+φ) cos θ
2

e i
2 (τ−φ) sin θ

2

]
, (3.96)

where

0 ≤ τ < 4π , 0 ≤ φ < 2π , 0 < θ < π . (3.97)

We have seen that the periodic coordinate τ goes along the Hopf circles, in fact
τ = 2σ in the congruence (3.89). (Making τ periodic with period 2π gives the
Hopf fibration of real projective 3-space – checking this statement is a good
way of making sure that one understands the Hopf fibration.) The coordinate φ
runs along Hopf circles of the opposite twist. Finally a little calculation verifies
that the coordinate θ labels the tori in Eq. (3.79), with cos (θ/2) = 1/a. The
intrinsic metric on the 3-sphere becomes

ds2 = |dZ1|2 + |dZ2|2 =
1
4
(dτ 2 + dθ2 + dφ2 + 2 cos θ dτdφ) . (3.98)

Here it is easy to see that the tori at θ = constant are flat.
To continue our argument: since the coordinates θ and φ label the 2-sphere’s
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worth of geodesics in the congruence we can try to map this S2 into S3 through
an equation of the form

τ = τ(θ, φ). (3.99)

But we have already shown that no such map can exist globally, and therefore
this is not the way to define a natural metric on our 2-sphere. We still do not
know if it is a round 2-sphere in any natural way!

Nevertheless the space of Clifford parallels is naturally a round 2-sphere.
We simply define the distance between two arbitrary Clifford parallels as the
perpendicular distance d0 between them. This we have computed already,
and it only remains to rewrite Eq. (3.95) in terms of the Euler angles. If
the coordinates of the two points on the 2-sphere are (θ1, φ1) and (θ2, φ2) we
obtain

cos2 d0 =
1
2

(1 + cos θ1 cos θ2 + cos (φ1 − φ2) sin θ1 sin θ2) . (3.100)

This formula should be familiar from spherical trigonometry. If the two points
are infinitesimally close to each other we can expand the left-hand side as

cos2 d0 ≈ 1− d2
0 ≡ 1− ds2 . (3.101)

A short calculation then verifies that that the metric is

ds2 =
1
4
(dθ2 + sin2 θ dφ2) . (3.102)

Precisely one quarter of the usual round metric. From now on, when we talk
about the Hopf fibration it will be understood that the 2- and 3-spheres are
equipped with the above metrics.

3.6 Fibre bundles and their connections

Let us now bring in the general theory of fibre bundles.6 By definition the
fibre of a map P → M between two spaces is the set of points in P that are
mapped to a given point in M . The situation gets more interesting if all fibres
are isomorphic. The definition of a fibre bundle also requires that there is a
group acting on the fibres: a fibre bundle over a base manifold M consists of
a bundle space P and a structure group G acting on the bundle space in such
a way that the base manifold is equal to the quotient P/G (a point in M is
an orbit of G in P ; the orbits are assumed to be isomorphic to each other).
In this way we get a canonical projection Π : P → M . The set of points that
project to a particular point p on M is known as the fibre F over p. It is also
required that the bundle space is locally equal to a Cartesian product, that is
to say that P can be covered by open sets of the form U × F , where U is an
open set in M . A principal fibre bundle is a fibre bundle such that the fibres
are copies of the group manifold of G.

6 A standard reference for connections and fibre bundles (and for a taste of the precision used
in modern differential geometry) is Kobayashi and Nomizu (1963). There are many readable
introductions for physicists; examples can be found in Shapere and Wilczek (1989).
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Figure 3.9. Left: the definition of a fibre bundle, including a fibred bundle space
P , a base manifold M and a projection Π. Right: a section of the bundle, that
is an embedding of the base manifold in the bundle space (which may fail to
exist globally).

A Cartesian product M × F (as in R2 ≡ R × R) is a trivial example of a
fibre bundle. The 3-sphere on the other hand is non-trivial because it is not
just a Cartesian product of S2 and S1, although locally it behaves like that.
It should be clear from the previous discussion that the 3-sphere really is a
principal fibre bundle with structure group U(1), whose group manifold is
indeed a circle. The fact that the structure group is Abelian is a simplifying
feature; in general the fibres can be many-dimensional and the structure group
can be non-Abelian.

For many purposes it is convenient to introduce a local coordinate system
on the bundle that is adapted to the bundle structure. Schematically, let xa

be some coordinates on the base manifold and τ a coordinate along the fibres,
assumed one-dimensional for simplicity. A full set of coordinates is then given
by xi = (τ, xa). On S3 the coordinates θ and φ play the part of xa while τ
is the fibre coordinate. Now the idea is to restrict oneself to coordinates that
can be reached from xa, τ through coordinate transformations of the general
form

x′a = x′a(x) , τ ′ = τ ′(x, τ) . (3.103)

Such ‘triangular’ coordinate transformations appear because there is no natural
way of identifying the fibres with each other.

To take a section of the bundle means to specify the fibre coordinate τ as a
function of xa,

τ = τ(x) . (3.104)

Locally this defines an embedding of the base manifold into the bundle. In
coordinate independent terms, a section is defined as an embedding of the
base manifold into the bundle such that if we follow it up with the projection
down to the base we get back to the point we started out from. For a non-trivial
bundle such as the 3-sphere no global section exists, but it is possible to take
local sections on the coordinate patches U . In the overlap regions where two
different local sections are defined one can go from one to the other provided
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that one moves along the fibres according to

τ = τ(x) → τ ′ = τ ′(x) . (3.105)

Such a transformation along the fibres is known as a local gauge transformation,
for reasons that will become clear later. A key theorem is the following:

Theorem 3.1 A principal fibre bundle admits a global section if and
only if it is a trivial Cartesian product.

Another important fact about fibre bundles is that if one knows all the coordinate
patches U × F as well as the local gauge transformations needed to go from
one patch to another, then one can reconstruct the bundle. It is not always
the case that one can see what the entire bundle looks like, in the intimate
manner that one can see the 3-sphere!

Fibre bundles which are not principal are also of interest. An example is
the vector bundle, where the fibres consist of vector spaces on which the group
G acts, rather than of G itself. Note that the theorem that a fibre bundle
has the trivial product topology if and only if it admits a global section holds
for principal bundles, and only for principal bundles. A famous example of a
non-trivial vector bundle that admits a global section is the Möbius strip; the
group G that acts on the fibre is the finite group Z2 and indeed the principal
bundle does not admit a global section. It is so well known how to construct
a Möbius strip made of paper that we simply recommend the reader to make
one and check these statements. The tangent bundle over a space M is also a
vector bundle. The fibre over a point q is the tangent space Tq at this point.
The group of general linear transformations acts on the fibres of the tangent
bundle. A section of the tangent bundle – one element of the fibre at each
point in the base space – is just a vector field.

One often wants to lift a curve in the base manifold M to the bundle P .
Since many curves in the bundle project down to the same curve in M , this
requires a further structure, namely a connection on the bundle. The idea
is to decompose the tangent space of the bundle into vertical and horizontal
directions, that is directions along the fibres and ‘perpendicular’ to the fibres,
respectively. Then the idea is that the horizontal lift of a curve threads its way
in the horizontal directions only. The problem is that there may be no notion
of ‘perpendicular’ available, so this must be supplied. To a mathematician, a
connection is a structure that defines a split of the tangent space into vertical
and horizontal. To a physicist, a connection is like the vector potential in
electrodynamics, and it takes a little effort to see that the same structure is
being referred to. The key fact that must be kept in mind throughout the
discussion is that if there is an embedding of one manifold into another, then
a differential form on the latter automatically defines a differential form on
the former (see Appendix A1.3).

We simplify matters by assuming that the fibres are one-dimensional, and
let the coordinate τ run along the fibres. We want to decompose tangent space
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Figure 3.10. Horizontal lifts of a curve in the base manifold, using a notion of
‘horizontal subspaces’.

so that

Tp = Vp ⊕Hp . (3.106)

Any tangent vector can then be written as the sum of one vector belonging
to the vertical subspace Vp and one belonging to the horizontal subspace Hp.
Since the vertical vector points along the fibres it must be proportional to

∂τ ∈ Vp . (3.107)

But it is not so clear what a horizontal vector should look like. The trick is to
choose a special 1-form ω (that is a covariant vector ωi) and to declare that a
horizontal vector hi is any vector that obeys

hi ∈ Hp ⇔ ωih
i = 0 . (3.108)

Such a statement does not require any metric. But how do we choose ω? The
obvious guess dτ has a problem since we are permitting coordinate transformations
under which

dτ =
∂τ

∂τ ′
dτ ′ +

∂τ

∂x′a
dx′a . (3.109)

Hence the naive definition of the horizontal subspace is tied to a particular set
of coordinates. There will be many ways to perform the split. A priori none of
them is better than any other. This is something that we will have to accept,
and we therefore simply choose an ω of the general form

ω = dτ + U = dτ + Uadxa . (3.110)

In this way a connection, that is a decomposition of the tangent space, is
equivalent to the specification of a special 1-form on the bundle.

With a connection in hand, we define parallel transport as follows: Fix a
curve xa(σ) in the base manifold. Lift this curve to a curve in the bundle by
insisting that the 1-form induced on the lifted curve by the connection 1-form
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Figure 3.11. Holonomy. For the 3-sphere, the holonomy τf − τi is proportional
to the area surrounded by the loop in the base manifold (i.e. the 2-sphere).

ω vanishes. Thus

ω = dτ + U =
(

dτ

dσ
+ Ua

dxa

dσ

)
dσ = 0 . (3.111)

This leads to an ordinary differential equation that always admits a solution (at
least for some range of the parameter σ), and it follows that we can associate
a unique family of curves

(
τ(σ), xa(σ)

)
in the bundle to any curve in the base

manifold. Through any point in the fibre there passes a unique curve. This is
the horizontal lift of the curve in the base manifold.

There are two things to notice. First, that this notion of parallel transport is
somewhat different than that discussed in Section 3.2. There we were transporting
vectors, here we are transporting the position along the fibres. (Actually,
the parallel transport defined in Section 3.2 is a special case, taking place
in the tangent bundle.) Second, it may seem that we now have the means
to identify the fibres with each other. But this is false in general, because
parallel transport may depend on the path – and it may do so even if the
bundle is topologically trivial. Indeed the condition that parallel transport be
independent of the path, or in other words that the horizontal lift of a closed
curve is itself closed, is (by Stokes’ theorem, see Appendix A1.1)

∮

C

ω =
∫

S

dω = 0 , (3.112)

where S is any surface enclosed by a curve C that projects to a given closed
curve in the base manifold. The 2-form

Ω ≡ dω = dU =
1
2

(∂aUb − ∂bUa) dxa ∧ dxb (3.113)

is known as the curvature 2-form. The point is that when the curvature 2–form
is non-zero, and when Stokes’ theorem applies, Eq. (3.112) will not hold. Then
parallel transport along a closed curve will give rise to a shift along the fibre,
known to mathematicians as a holonomy.
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Throughout, the connection is a 1-form that is defined on the bundle space
– not on the base manifold. If we take a section of the bundle we have an
embedding of the base manifold into the bundle, and the connection on the
bundle will induce a definite 1-form on the base manifold. This is what happens
in electrodynamics; in this way the physicist’s connection is recovered from
that of the mathematician. There is a catch: if the section is not globally
defined, the connection on the base manifold will be ill-defined in some places.
On the other hand there is no such problem with the curvature 2-form – Ω
does exist globally on the base manifold.

Formula (3.113) is valid in this simple form for the case of one-dimensional
fibres only. But in physics we often need many-dimensional fibres – and a
non-Abelian group G. The main novelty is that the connection takes values
in the Lie algebra of G; since the dimension of the Lie algebra is equal to the
dimension of the fibres this will be enough to single out a unique horizontal
subspace. One difficulty that arises is that it is hard to get explicit about
holonomies – Stokes’ theorem is no longer helpful because the line integrals
must be path ordered due to the fact that the connections at different points
along the curve do not commute with each other.

Coming back to the 3-sphere, we observe that the fibres are the Hopf circles
and the base manifold is a 2-sphere. Now the 3-sphere is not just any fibre
bundle. Its bundle space is equipped with a metric, which means that there is
a preferred connection singled out by the requirement that the vertical and the
horizontal subspaces be orthogonal in the sense of that metric. If the horizontal
lift of a curve in the base manifold is parametrized by σ its tangent vector is

∂σ = τ̇ ∂τ + θ̇∂θ + φ̇∂φ ≡ hi∂i . (3.114)

The tangent vector of a fibre is ∂τ ≡ vi∂i. We require

gijv
ihj = gττ τ̇ + gτθθ̇ + gτφφ̇ = τ̇ + cos θφ̇ = 0 , (3.115)

where we used Eq. (3.98) for the metric. Hence the metrically preferred connection
is

ω = dτ + cos θ dφ . (3.116)

The curvature of this connection is non-vanishing; indeed if parallel transport
occurs along a closed curve ∂S, bounding a surface S in the base manifold,
then the holonomy is

τfinal − τinitial =
∫

dτ = −
∮

∂S

cos θ dφ =
∫

S

sin θ dθ dφ . (3.117)

This is proportional to the area of the enclosed surface on S2, so the interplay
between parallel transport and the metric is intimate.

We will now take a section of S3, since we wish to view the base manifold
S2 as an embedded submanifold of the 3-sphere so that ω induces a 1-form
on the 2-sphere. We will work in some coordinate patch, say using the Euler
angles. One local section is defined by the equation

τ = φ . (3.118)
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It picks out one point on every fibre except – and here we have to recall how the
Euler angles were defined – for that fibre which corresponds to the north pole
of the 2-sphere. The form that is induced by the connection on the 2-sphere is

ω+ = (1 + cos θ) dφ . (3.119)

When looking at this expression we must remember that we are using a
coordinate system on S2 that is ill-defined at the poles. But we are particularly
interested in the behaviour at the north pole, where we expect this form to
be singular somehow. If, with a little effort, we transform from θ and φ to our
standard complex coordinate system on S2 we find that

ω+ =
i

1 + |z|2
(
−dz

z
+

dz̄

z̄

)
. (3.120)

This is indeed ill-defined at the north pole (z = 0). On the other hand there is
no problem at the south pole; transforming to complex coordinates that cover
this point (z → z′ = 1/z) we find that

ω+ =
i

1 + |z′|2 (z̄′dz′ − z′dz̄′) , (3.121)

and there is no problem at the south pole (z′ = 0).
By taking a different section (say τ = −φ) another form is induced on S2.

If we choose τ = −φ we obtain

ω− = (cos θ − 1) dφ . (3.122)

This turns out to be well defined everywhere except at the south pole. In the
region of the 2-sphere where both sections are well defined – which happens
to be the region where the polar coordinates are well defined – the forms are
related by

ω+ − ω− = 2dφ . (3.123)

This is a local gauge transformation in the ordinary sense of the word as used
in electrodynamics.

In spite of the little difficulties there is nothing wrong with the connection;
we have only confirmed the conclusion that no global section of the bundle
exists. The curvature 2-form

Ωθφ = sin θ (3.124)

is an everywhere regular 2-form on the base manifold, and in fact equal to
the symplectic form on S2. Quite incidentally, if we regard the 2-sphere as a
sphere embedded in Euclidean 3-space our curvature tensor corresponds to a
radially directed magnetic field. There is a magnetic monopole sitting at the
origin – and this is what Dirac was doing in 1931, while Hopf was fibreing the
3-sphere.
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3.7 The 3-sphere as a group

The 3-sphere is not only a fibre bundle, it is also a group. More precisely it
is a group manifold, that is to say a space whose points are the elements of a
group. Only two spheres are group manifolds – the other case is S1, the group
manifold of U(1). What we are going to show for the 3-sphere is therefore
exceptional as far as spheres are concerned, but it is typical of all compact
semi-simple Lie groups. Compact means that the group manifold is compact;
semi-simple is a technical condition which is obeyed by the classical groups
SO(N), SU(N) and Sp(N), with the exception of SO(2) = U(1). What we
tell below about SU(2) will be typical of all the classical groups, and this is
good enough for us.7

The classical groups are matrix groups consisting of matrices obeying certain
conditions. Thus the group SU(2) is by definition the group of unitary 2× 2
matrices of determinant one. An arbitrary group element g in this group can
be parametrized by two complex numbers obeying one condition, namely as

g =
[

Z1 Z2

−Z̄2 Z̄1

]
, |Z1|2 + |Z2|2 = 1 . (3.125)

This means that there is a one-to-one correspondence between SU(2) group
elements on the one hand and points on the 3-sphere on the other, that is to
say that whenever X2 + Y 2 + Z2 + U 2 = 1 we have

(X, Y, Z, U) ↔ g =
[

X + iY Z + iU
−Z + iU X − iY

]
. (3.126)

We begin to see the 3-sphere in a new light.
Given two points in a group the group law determines a third point, namely

g3 = g1g2. For a matrix group it is evident that the coordinates of g3 will be
given by real analytic functions of the coordinates of g1 and g2. This property
defines a Lie group. Now a unitary matrix g of unit determinant can always
be obtained by exponentiating a traceless anti-Hermitian matrix m. We can
insert a parameter τ in the exponent and then we get

g(τ) = eτm . (3.127)

From one point of view this is a one parameter subgroup of SU(2), from another
it is a curve in the group manifold S3. When τ = 0 we are sitting at a point
that is rather special from the first viewpoint, namely at the unit element 1
of the group. The tangent vector of the curve at this point is

ġ(τ)|τ=0 = m . (3.128)

In this way we see that the vector space of traceless anti-Hermitian matrices
make up the tangent space at the unit element of the group. (Physicists usually
prefer to work with Hermitian matrices, but here anti-Hermitian matrices
are more natural – to convert between these preferences just multiply by i.

7 There are many good books on group theory available where the reader will find a more complete
story; an example that leans towards quantum mechanics is Gilmore (1974).
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Incidentally, the, at first sight, confusing habit of viewing a matrix as an
element of a vector space will grow upon us.) This tangent space is called the
Lie algebra of the group, and it is part of the magic of Lie groups that many
of their properties can be reliably deduced from a study of their Lie algebras.
A reminder about Lie algebras can be found in Appendix 2.

A group always acts on itself. A group element g1 transforms an arbitrary
group element g by left translation g → g1g, by right translation g → gg−1

1 , and
by the adjoint action g → g1gg−1

1 . (The inverse occurs on the right-hand side to
ensure that g → gg−1

1 → gg−1
1 g−1

2 = g(g2g1)−1.) Fix a one parameter subgroup
g1(σ) and let it act by left translation; g → g1(σ)g. This defines a curve through
every point of S3, and moreover the group laws ensure that these curves cannot
cross each other, so that they form a congruence. The congruence of Clifford
parallels that we studied in Section 3.5 can be viewed in this light. To do
so consider the one parameter subgroup obtained by exponentiating m = iσ3,
where σi denotes a Pauli matrix. It gives rise to an infinitesimal transformation
δg = mg at every point g. If we use the coordinates (X,Y, Z, U) to describe g
we find that this equation becomes

[
δ(X + iY ) δ(Z + iU)
−δ(Z + iU) δ(X − iY )

]
=

[
i 0
0 −i

] [
X + iY Z + iU
−Z + iU X − iY

]
. (3.129)

Working this out we find it to be the same as

(δX, δY, δZ, δU) = (JXY + JZU)(X, Y, Z, U) . (3.130)

This is precisely the Killing vector field that points along a congruence of Hopf
circles. Choosing m = iσ1 and m = iσ2 will give us a total of three nowhere
vanishing linearly independent vector fields. They are

J1 = JXU + JY Z , J2 = JXZ + JUY , J3 = JXY + JZU (3.131)

and they form a representation of the Lie algebra of SU(2). Their number
is the same as the dimension of the manifold. We say that the 3-sphere is
parallelizable. All group manifolds are parallelizable, for the same reason,
but among the spheres only S1, S3 and S7 are parallelizable, so this is an
exceptional property shared by all group manifolds. Such everywhere non-
vanishing vector fields can be used to provide a canonical identification of
tangent spaces at different points of the group manifold. One can then modify
the rules for parallel transport of vectors so that it respects this identification
– in fact we can use Eq. (3.15) but with the totally antisymmetric structure
constants of the Lie algebra in the role of the tensor Tijk. For the 3-sphere,
this allows us to give a more stringent definition of Clifford parallels than the
one we gave in Section 3.5.

So much for left translation. Right translations of the group also give rise,
in an analogous way, to a set of three linearly independent vector fields

J̃1 = JXU − JY Z , J̃2 = JXZ − JUY , J̃3 = JXY − JZU . (3.132)

These three represent another SU(2) Lie algebra and they commute with the
previous three, that is those in Eq. (3.131).
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A useful fact about group manifolds is that one can always find a Lie
algebra valued 1-form that is invariant under (say) right translation. This
is the Maurer–Cartan form dgg−1. That it takes values in the Lie algebra is
clear if we write g as an exponential of a Lie algebra element as in Eq. (3.127).
That it is invariant under right translation by a fixed group element g1 is
shown by the calculation

dg g−1 → d(gg1) (gg1)−1 = dg g1 g−1
1 g−1 = dg g−1 . (3.133)

Given a basis for the Lie algebra the Maurer–Cartan form can be expanded.
For SU(2) we use the Pauli matrices multiplied with i for this purpose, and
get

dg g−1 = iσ1Θ1 + iσ2Θ2 + iσ3Θ3 . (3.134)

Doing the explicit calculation, that is multiplying two 2× 2 matrices, we can
read off that

Θ1 = −UdX − ZdY + Y dZ + XdU = 1
2
(sin τ dθ − cos τ sin θ dφ)

Θ2 = −ZdX + UdY + XdZ − Y dU = 1
2
(cos τ dθ + sin τ sin θ dφ)

Θ3 = −Y dX + XdY − UdZ + ZdU = 1
2
(dτ + cos θ dφ) .

(3.135)

In the last step we use Euler angles as coordinates; Θ3 is evidently our familiar
friend, the connection from Eq. (3.116). There exists a left invariant Maurer–
Cartan form g−1 dg as well.

It is now natural to declare that the group manifold of SU(2) is equipped
with its standard round metric; the round metric is singled out by the requirement
that left and right translations correspond to isometries. Since left and right
translations can be performed independently, this means that the isometry
group of any Lie group G equipped with its natural metric is G × G, with a
discrete factor divided out. For the 3-sphere the isometry group is SO(4), and
it obeys the isomorphism

SO(4) = SU(2)× SU(2)/Z2 . (3.136)

The Z2 in the denominator arises because left and right translations with −1
cancel each other. It is this peculiar isomorphism that explains why the 3-
sphere manages to serve as the manifold of a group; no other SO(N) group
splits into a product in this way. In general (for the classical groups) the
invariant metric is uniquely, up to a constant, given by

ds2 = −1
2

Tr(dg g−1dg g−1) = −1
2
Tr(g−1dgg−1dg) = Θ2

1 + Θ2
2 + Θ2

3 . (3.137)

In the second step we rewrote the metric in terms of the left invariant Maurer–
Cartan form, so it is indeed invariant under G×G. The final step is for SU(2)
only. The square root of the determinant of this metric is the Haar measure
on the group manifold, and will figure prominently in Chapter 14.
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Entirely by the way, but not uninterestingly, we observe that we can insert
a real parameter α into the 3-sphere metric:

ds2 = Θ2
1 + Θ2

2 + αΘ2
3 . (3.138)

For α = 1 this is the metric on the group and for α = 0 it is the metric on
the 2-sphere since it does not depend on the fibre coordinate τ . Because it is
made from right invariant forms it is an SO(3) invariant metric on S3 for any
intermediate value of α. It is said to be the metric on a squashed 3-sphere;
3-spheres that are squashed in this particular way are called Berger spheres.

The three everywhere non-vanishing Killing vector fields in Eq. (3.131) do
not commute and therefore it is impossible to introduce a coordinate system
such that all three coordinate lines coincide with the Killing flow lines. But
they are linearly independent, they form a perfectly good basis for the tangent
space at every point, and any vector can be written as a linear combination
of the JI , where I runs from one to three. We can introduce a basis ΘI in the
dual cotangent space through

ΘI(JJ) = δIJ . (3.139)

The ΘI are precisely the three forms given in Eq. (3.135). There is no globally
defined function whose differential is our connection Θ3 because we are no
longer using a coordinate basis.

We do have a number of coordinate systems especially adapted to the group
structure at our disposal. The coordinate lines will arise from exponentiating
elements in the Lie algebra. First we try the canonical parametrization

g = ei(xσ1+yσ2+zσ3) . (3.140)

If we switch to spherical polars after performing the exponentiation we obtain

g =
[

X + iY Z + iU
−Z + iU X − iY

]
=

[
cos r + i sin r cos θ i sin r sin θ e−iφ

i sin r sin θ eiφ cos r − i sin r cos θ

]
.

(3.141)

The metric when expressed in these coordinates becomes

ds2 = dr2 + sin2 r(dθ2 + sin2 θ dφ2) . (3.142)

So these are geodesic polar coordinates – the parameter r is the arc length
along geodesics from the origin. The Euler angles from Section 3.5 is another
choice; following in Euler’s footsteps we write an arbitrary group element as

g = e
iτ
2 σ3e

iθ
2 σ2e

iφ
2 σ3 =

[
e i

2 (τ+φ) cos θ
2

e i
2 (τ−φ) sin θ

2

−e− i
2 (τ−φ) sin θ

2
e− i

2 (τ+φ) cos θ
2

]
. (3.143)

Equation (3.96) results. It seems fair to warn the reader that although similar
coordinate systems can be erected on all classical group manifolds, the actual
calculations involved in expressing, say, the metric tensor in terms of coordinates
tend to become very long, except for SU(2).
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3.8 Cosets and all that

We have already used the notion of quotient spaces such as M/H quite freely.
The idea is that we start with a space M and a group H of transformations of
M ; the quotient space is then a space whose points consists of the orbits of G,
that is to say that by definition a point in M/H is an equivalence class of points
in M that can be transformed into each other by means of transformations
belonging to H. We have offered no guarantees that the quotient space is a
‘nice’ space however. In general no such guarantee can be given. We are in a
better position when the space M is a Lie group G and H is some subgroup
of G. By definition a left coset is a set of elements of a group G that can be
written in the form gh, where h is an any element of a fixed subgroup H. This
gives a partition of the group into disjoint cosets, and the space of cosets is
called the coset space and denoted by G/H. The points of the coset space are
written schematically as gH; they are in fact the orbits of H in G under right
action. For coset spaces there is a comfortable theorem saying that G/H is
always a manifold of dimension

dim(G/H) = dim(G)− dim(H) . (3.144)

Right cosets and right coset spaces can be defined in an analogous way.
A description of a space as a coset space often arises as follows: we start with

a space M that is a homogeneous space, which means that there is a group G
of isometries such that every point in M can be reached from any given point
by means of a transformation belonging to G. Hence there is only one G orbit,
and, since G is a symmetry group, the space looks the same at each point.
The technical term here is that the group G acts transitively on M . Now fix
a point p and consider the isotropy or little group at this point; by definition
this is the subgroup H ⊂ G of transformations h that leave p invariant. In this
situation it follows that M = G/H. At first sight it may seem that this recipe
depends on the choice of the point where the isotropy group was identified but
in fact it does not; if we start from another point p′ = gp where g ∈ G then
the new little group H ′ is conjugated to H in the sense that H ′ = gHg−1. The
coset spaces G/H and G/H ′ are then identical, it is only the description that
has changed a little.

A warning: the notation G/H is ambiguous unless it is specified which
particular subgroup H (up to conjugation) that is meant. To see how an
ambiguity can arise consider the group SU(3). It has an Abelian subgroup
consisting of diagonal matrices

h =




eiα 0 0
0 eiβ 0
0 0 e−i(α+β)


 . (3.145)

In the group manifold this is a two-dimensional surface known as the Cartan
torus. Now consider the coset space SU(3)/U(1), where the subgroup U(1)
forms a circle on the Cartan torus. But there are infinitely many different
ways in which a circle can wind around on a 2-torus, and the coset space will
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get dramatically different properties depending on the choice one makes. On
the other hand the space SU(3)/U(1)×U(1) suffers from no such ambiguities
– any two-dimensional Abelian subgroup of SU(3) is related by conjugation
to the subgroup of diagonal matrices.

It is interesting to ask again why the 2-sphere of Hopf fibres is naturally
a round 2-sphere, this time adopting our new coset space view of things. We
can write a point in the coset space as Ωh, where Ω is the coset representative
and h is an element in H. The group SU(2)/Z2 = SO(3) acts naturally on
this coset space through left action;

g → g1 g ⇒ Ωh → g1Ωh . (3.146)

It is therefore natural to select a coset space metric that is invariant under
SO(3), and for S2 the round metric is the answer. In general this construction
gives rise also to a uniquely defined measure on the coset space, induced by
the Haar measure on the group manifold.

If we take stock of the situation we see that we now have a rich supply
of principal fibre bundles to play with, since any coset space G/H is the
base manifold of a principal bundle with bundle space G and fibre H. This
construction will occur again and again. To see how common it is we show that
every sphere is a coset space. We start from an orthogonal matrix belonging
to SO(N). Its first column is a normalized vector in RN and we can choose
coordinates so that it takes the form (1, 0, . . . , 0). The group SO(N) clearly
acts transitively on the space of all normalized vectors (that is, on the sphere
SN−1), and the isotropy group of the chosen point consists of all matrices of
the form

h =




1 0 . . . 0
0
... SO(N − 1)
0


 . (3.147)

It follows that

SN−1 = SO(N)/SO(N − 1) = O(N)/O(N − 1) , (3.148)

with the subgroup chosen according to Eq. (3.147). The round metric on SN−1

arises naturally because it is invariant under the group SO(N) that acts on
the coset space. A similar argument in CN , where a column of a unitary matrix
is in effect a normalized vector in R2N , shows that

S2N−1 = SU(N)/SU(N − 1) = U(N)/U(N − 1) . (3.149)

And with this observation we finally know enough about spheres.

Problems

¦ Problem 3.1 Derive the intrinsic metric of the sphere using stereographic
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projection. For the sake of variety, project from the south pole to the tangent
plane at the north pole rather than to the equatorial plane.

¦ Problem 3.2 A coordinate patch covering part of the sphere – a
map from the sphere to the plane – can be obtained by projecting from
an arbitrary point in space. Show geometrically (by drawing a figure!) that
the only conformal projection – a projection that preserves angles – is the
stereographic projection from a point on the sphere.

¦ Problem 3.3 On the complex plane, identify points connected by
x → x + 1 and also y → y + 1. Do the same for x → x + 1 and y → y + 2.
Show that the two quotient spaces are inequivalent as complex manifolds.

¦ Problem 3.4 Show that the Poisson brackets obey the Jacobi identity
because the symplectic form is closed.

¦ Problem 3.5 Verify that the geodesics on S3 meet the equator in two
antipodal points.

¦ Problem 3.6 The coordinates τ and φ run along Hopf circles, and they
appear symmetrically in the metric (3.98). But 0 ≤ τ < 4π and 0 ≤ φ < 2π.
Why this difference?

¦ Problem 3.7 Take sections of the Hopf bundle by choosing τ = −φ,
τ = φ and τ = φ + π respectively, and work out what they look like in the
stereographic picture.

¦ Problem 3.8 Everybody knows how to make a Möbius strip by means
of a piece of paper and some glue. Convince yourself that the Möbius strip is a
fibre bundle and show that it admits a global section. Identify the group acting
on its fibres and construct its principal bundle. Show that the principal bundle
does not admit a global section, and hence that the bundle is non-trivial.
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In the house of mathematics there are many mansions and of these the
most elegant is projective geometry.

Morris Kline

An attentive reader of Chapter 3 will have noticed that there must exist a
Hopf fibration of any odd-dimensional sphere; it is just that we studiously
avoided to mention what the resulting base space is. In this chapter it will be
revealed that

CPn = S2n+1/S1. (4.1)

The space on the left-hand side is called complex projective space or – when
it is used as a space of pure states in quantum mechanics – projective Hilbert
space. It is not a sphere unless n = 1. The study of projective spaces was
actually begun by artists during the Renaissance, and this is how we begin
our story.

4.1 From art to mathematics

Painters, engaged in projecting the ground (conveniently approximated as a
flat plane) onto a flat canvas, discovered that parallel lines on the ground
intersect somewhere on a vanishing line or line at infinity that exists on the
canvas but not on the ground, where parallel lines do not meet. Conversely, a
line exists on the ground (right below the artist) that does not appear on the
canvas at all. When the subject was taken over by mathematicians this led to
the theory of the projective plane or real projective 2-space RP2. The idea is to
consider a space whose points consists of the one-dimensional subspaces of a
three-dimensional vector space R3. Call them rays. The origin is placed at the
eye of the artist, and the rays are his lines of sight. The ground and the canvas
serve as two affine coordinate planes for RP2. A projective line is a certain
one parameter family of points in the projective plane, and is defined as the
space of rays belonging to some two-dimensional subspace R2. In itself, this is
the real projective 1-space RP1. To see how all this works out in formulae, we
observe that any triple of real numbers defines a one-dimensional subspace of
R3. But the latter does not determine the triple of numbers uniquely. Hence
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Figure 4.1. Affine coordinates for (almost all of) the projective plane.

a point of RP2 is given by an equivalence class

(X0, X1, X2) ∼ k(X0, X1, X2) ; k ∈ R k 6= 0 . (4.2)

The numbers Xα are known as homogeneous coordinates on RP2. If we want to
use true coordinates, one possibility is to choose a plane in R3 such as X0 = 1,
representing an infinite canvas, say. We think of this plane as an affine plane (a
vector space except that the choice of origin and scalar product is left open).
We can then label a ray with the coordinates of the point where it intersects
the affine plane. This is an affine coordinate system on the projective plane;
it does not cover the entire projective plane since the rays lying in the plane
X0 = 0 are missing. But this plane is a vector space R2, and the space of rays
lying in it is the projective line RP1. Hence the affine coordinates display the
projective plane as an infinite plane to which we must add an extra projective
line ‘at infinity’.

Why did we define our rays as one-dimensional subspaces, and not as
directed lines from the origin? The answer does not matter to the practising
artist, but for the mathematician our definition results in simple incidence
properties for points and lines. The projective plane will now obey the simple
axioms that

(1) Any two different points lie on a unique line.
(2) Any two different lines intersect in a unique point.

There are no exceptional cases (such as parallel lines) to worry about. That
axiom (2) holds is simply the observation that two planes through the origin
in R3 always intersect, in a unique line.

There is nothing special about the line at infinity; the name is just an
artefact of a special choice of affine coordinates. Every projective line is the
space of rays in some two-dimensional subspace of R3, and it has the topology
of a circle – to its image in the affine plane we must add one point ‘at infinity’.
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Figure 4.2. Renaissance painter, engaged in changing affine coordinates.

Figure 4.3. Real projective space is the sphere with antipodal points identified.

It is interesting to observe that the space of all lines in RP2 is another RP2

since one can set up a one-to-one correspondence between rays and planes
through the origin in R3. In fact there is a complete duality between the space
of points and the space of lines in the projective plane. The natural way to
select a specific one-to-one correspondence between RP2 and the dual RP2 is
to introduce a metric in the underlying vector space, and to declare that a
ray in the vector space is dual to that plane through the origin to which it is
orthogonal. But once we think of the vector space as a metric space as well as
a linear one we will be led to the round metric as the natural metric to use on
RP2. Indeed a moment’s reflection shows that RPn can be thought of as the
sphere Sn with antipodal points identified,

RPn = Sn/Z2 . (4.3)

This is one of the reasons why the real projective plane is so famous: it is
a space of constant curvature where every pair of geodesics intersect once
(as opposed to twice, as happens on a sphere). In fact all of Euclid’s axioms
for points and straight lines are valid, except the fifth, which shows that the
parallel axiom is independent of the others.

In general a specific one-to-one map between a projective space and its dual
is known as a polarity, and choosing a polarity singles out a particular metric
on the projective space as being the most natural one.

There are other geometrical figures apart from points and lines. A famous
example is that of the conic section. Consider a (circular, say) cone of rays



4.1 From art to mathematics 97

Figure 4.4. Polarity: a metric for the projective plane.

with its vertex at the origin of R3. In one affine coordinate system the points
of intersection of the cone with the affine plane will appear as a circle, in
another as a hyperbola. Hence circles, ellipses and hyperbolae are projectively
equivalent. In homogeneous coordinates such a conic section appears as

(X1)2 + (X2)2 = (X0)2 . (4.4)

This equation defines a submanifold of RP2 because it is homogeneous in
the Xα, and therefore unaffected by scaling. If we use affine coordinates for
which X0 = 1 it appears as a circle, but if we use affine coordinates for which
X1 = 1 it appears as a hyperbola. We can use this fact to give us some further
insight into the somewhat difficult topology of RP2: if we draw our space as
a disc with antipodal points on the boundary identified – this would be the
picture of the topology implied by Figure 4.3 – then we see that the hyperbola
becomes a topological circle because we are adding two points at infinity. Its
interior is an ordinary disc while its exterior is a Möbius strip because of the
identifications at the boundary – if you glue a disc to the boundary of a Möbius
strip you obtain a projective plane. By the way RP2, unlike RP1, is a non-
orientable space; this means that a ‘right-handed’ basis in the tangent space
can be turned into a ‘left-handed’ one by moving it around so that in fact the
distinction between right- and left-handedness cannot be upheld. See Figure
4.5.

If you think a little bit further about the RP2 topology you will also notice
a – possibly reassuring – fact, namely that there is a topological difference
between projective lines and conic sections. Although they are both circles
intrinsically, the conic sections have the property that they can be continually
deformed to a point within the projective plane, while the lines cannot. Indeed
if you cut the projective plane open along a projective line it remains connected,
while it splits into two pieces if you cut along a conic section.

We could go on to discuss n-dimensional real projective spaces RPn, but
we confine ourselves to two topological remarks: that RPn = Sn/Z2 (obvious),
and that RP2n+1 is orientable while RP2n is not (easy to prove).

We can change our field from the real numbers R to rational, complex or
quaternionic numbers. In fact one can also use finite fields, such as the integers
modulo p where p is some prime number. If we repeat the construction of
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Figure 4.5. The topology of the real projective plane. For a different view, see
Figure 4.12.

the projective plane starting from a three-dimensional vector space over the
field of integers modulo p then we will obtain a projective plane with exactly
p + 1 points on each line. This is an interesting construction, but like real and
quaternionic projective spaces it is of only secondary importance in quantum
mechanics, where complex projective space occupies the centre of the stage.

4.2 Complex projective geometry

Complex projective space is in some respects easier to study than is its real
cousin, mainly because the complex numbers form a closed field (that is to
say, every polynomial equation has a root). The most effective presentation of
CPn starts directly in the vector space CN = Cn+1, known as Hilbert space in
quantum mechanics; our convention is always that N = n + 1. By definition
CPn is the space of rays in Cn+1, or equivalently the space of equivalence
classes of n + 1 complex numbers, not all zero, under

(Z0, Z1, . . . , Zn) ∼ λ(Z0, Z1, . . . , Zn) ; λ ∈ C λ 6= 0 . (4.5)

We will use Greek indices to label the homogeneous coordinates. We can cover
CPn with affine coordinate patches like

Zα = (1, z1, . . . , zn) , Zα = (zn′ , 1, z1′ , . . . , z(n−1)′) (4.6)

and so on. This leads to two important observations. The first is that one
coordinate patch covers all of CPn except that subset which has (say)

Zα = (0, Z1, . . . , Zn) . (4.7)

But the set of all such rays is a CPn−1. Hence we conclude that topologically
CPn is like Cn with a CPn−1 attached ‘at infinity’. Iterating this observation
we obtain the cell decomposition

CPn = Cn ∪ Cn−1 ∪ · · · ∪ C0 . (4.8)

Evidently CP0 is topologically a point and CP1 is a 2-sphere, while for n > 1
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we get something new that we will have to get used to as we proceed. The
second observation is that in a region where the coordinate systems overlap,
they are related by (say)

za′ =
Za+1

Z1
=

Z0

Z1

Za+1

Z0
=

za+1

z1
, (4.9)

which is clearly an analytic function on the overlap region. Hence CPn is a
complex manifold.

The linear subspaces of CPn are of major importance. They are defined as
the images of the subspaces of Cn+1 under the natural map from the vector
space to the projective space. Equivalently they are given by a suitable number
of linear equations in the homogeneous coordinates. Thus the hyperplanes are
(n− 1)-dimensional submanifolds of CPn defined by the equation

PαZα = 0 (4.10)

for some fixed set of n + 1 complex numbers Pα. This definition is unaffected
by a change of scale for the homogeneous coordinates, and also by a change of
scale in Pα. Hence the n+1 complex numbers Pα themselves are homogeneous
coordinates for a CPn; in other words the hyperplanes in a projective n-space
can be regarded as the points of another projective n-space which is dual to
the original.

If we impose a set of m ≤ n independent linear equations on the Zα we
obtain a linear subspace of complex dimension n−m which is itself a CPn−m.
Geometrically this is the intersection of m hyperplanes. The space whose
points consist of all such (n − m)-dimensional subspaces of CPn is known
as a Grassmannian – it is only in the case of hyperplanes (and the trivial
case of points) that the Grassmannian is itself a CPn. A linear subspace of
complex dimension one is known as a complex projective line, a linear subspace
of dimension two is a complex projective plane and so on, while CP0 is just a
point. The complex projective line is a CP1 – topologically this is a sphere and
this may boggle some minds, but it is a line in the sense that one can draw
a unique line between any pair of points (this is essentially the statement
that two vectors in Cn+1 determine a unique two-dimensional subspace). It
also behaves like a line in the sense that two projective lines in a projective
space intersect in a unique point if they intersect at all (this is the statement
that a pair of two-dimensional subspaces are either disjoint or they share
one common ray or they coincide). In general the intersection of two linear
subspaces A and B is known as their meet A ∩ B. We can also define their
join A ∪ B by taking the linear span of the two subspaces of the underlying
vector space to which A and B correspond, and then go back down to the
projective space. These two operations – meet and join – turn the set of linear
subspaces into a partially ordered structure known as a lattice, in which every
pair of elements has a greatest lower bound (the meet) and a least upper bound
(the join). This is the starting point of the subject known as quantum logic
(Jauch, 1968; Varadarajan, 1985). It is also the second time we encounter a
lattice – in Section 1.1 we came across the lattice of faces of a convex body.
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In Chapter 8 we will find a convex body whose lattice of faces agrees with the
lattice of subspaces of a vector space. By then it will be a more interesting
lattice, because we will have an inner product on CN , so that a given subspace
can be associated with its orthogonal complement.

But we have not yet introduced any inner product in CN , or any metric
in CPn. In fact we will continue to do without it for some time; projective
geometry is precisely that part of geometry that can be done without a metric.
There is an interesting group theoretical view of this, originated by Felix Klein.
All statements about linear subspaces – such as when two linear subspaces
intersect – are invariant under general linear transformations of CN . They form
the group GL(N,C), but only a subgroup acts effectively on CPn. (Recall that
N = n+1. A transformation is said to act effectively on some space if it moves
at least one point.) Changing the matrix with an overall complex factor does
not change the transformation effected on CPn, so we can set its determinant
equal to one and multiply it with an extra complex Nth root of unity if we
wish. The projective group is therefore SL(n + 1,C)/ZN .

According to Klein’s conception projective geometry is completely characterized
by the projective group; its subgroups include the group of affine transformations
that preserves the CPn−1 at infinity and this subgroup characterizes affine
geometry. A helpful fact about the projective group is that any set of n + 2
points can be brought to the standard position (1, 0, . . . , 0), . . . , (0, . . . , 0, 1),
(1, 1, . . . , 1) by means of a projective transformation. For CP1 this is the
familiar statement that any triple of points on the complex plane can be
transformed to 0, 1, and ∞ by a Möbius transformation.

4.3 Complex curves, quadrics and the Segre embedding

The equation that defines a subspace of CPn does not have to be linear;
any homogeneous equation in the homogeneous coordinates Zα gives rise to a
well-defined submanifold. Hence in addition to the linear subspaces we have
quadrics, cubics, quartics and so on, depending on the degree of the defining
polynomial. The locus of a number of homogeneous equations

w1(Z) = w2(Z) = · · · = wm(Z) = 0 (4.11)

is also a subspace known as an algebraic (or projective) variety, and we move
from projective to algebraic geometry.1 Chow’s theorem states that every non-
singular algebraic variety is a complex submanifold of CPn, and conversely
every compact complex submanifold is the locus of a set of homogeneous
equations. On the other hand it is not true that every complex manifold can
be embedded as a complex submanifold in CPn.

There are two kinds of submanifolds that are of immediate interest in
quantum mechanics. One of them is the complex curve; by definition this is
a map of CP1 into CPn. In real terms it is a 2-surface in a 2n-dimensional

1 A standard reference, stressing the setting of complex manifolds, is Griffiths and Harris (1978).
For an alternative view see the book by Harris alone (Harris, 1992).
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space. This does not sound much like a curve, but once it is accepted that CP1

deserves the name of line it will be admitted that the name curve is reasonable
here. Let us first choose n = 2, so that we are looking for a complex curve
in the projective plane. Using (u, v) as homogeneous coordinates on CP1 we
clearly get a map into CP2 if we set

(u, v) → (u2, uv, v2) . (4.12)

(In Section 6.4 we will adjust conventions a little.) This is a well-defined map
because the expression is homogeneous in the u and v. Evidently the resulting
complex curve in CP2 obeys the equation

Z0Z2 = Z1Z1 . (4.13)

Hence it is a quadric hypersurface as well, and indeed any quadric can be
brought to this form by projective transformations. In the projective plane a
quadric is also known as a conic section.

In higher dimensions we encounter complex curves that are increasingly
difficult to grasp since they are not quadrics. The next simplest case is the
twisted cubic curve in CP3, defined by

(u, v) → (u3, u2v, uv2, v3) . (4.14)

We leave it aside for the moment though.
A class of submanifolds that is of particular interest in quantum mechanics

arises in the following way. Suppose that the complex vector space is given as
a tensor product

Cn+1 ⊗ Cm+1 = C(n+1)(m+1) . (4.15)

Then there should be an embedded submanifold

CPn × CPm ∈ CP(n+1)(m+1)−1 . (4.16)

Indeed this is true. In terms of homogeneous coordinates the submanifold can
be parametrized as

Zα = Zµµ′ = P µQµ′ , (4.17)

in a fairly obvious notation – the P µ and Qµ′ are homogeneous coordinates on
CPn and CPm, respectively. The construction is known as the Segre embedding.
The submanifold is a Cartesian product with (complex) dimension n+m, and
it follows from Chow’s theorem that it can be defined as the locus of nm
homogeneous equations in the large space. Indeed it is easy to see from the
definition that the submanifold will be the intersection of the quadrics

Zµµ′Zνν′ − Zµν′Zνµ′ = 0 . (4.18)

In quantum mechanics – and in Section 15.2 – the Segre submanifold reappears
as the set of separable states of a composite system.

Let us consider the simplest case

CP1 × CP1 ∈ CP3 , (4.19)
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Figure 4.6. The real Segre embedding: a hyperboloid ruled by straight lines.

when only one equation is needed. Write

(Z0, Z1, Z2, Z3) = (Z00′ , Z01′ , Z10′ , Z11′) . (4.20)

Then the submanifold CP1 × CP1 is obtained as the quadric surface

Z0Z3 − Z1Z2 = 0 . (4.21)

In general the non-degenerate quadrics inCP3 are in one-to-one correspondence
to all possible embeddings of CP1 × CP1. It is interesting to consider the
projection map from the product manifold to one of its factors. This means
that we hold Qµ′ (say) fixed and vary P µ. Then the fibre of the map – the
set of points on the quadric that are projected to the point on CPm that is
characterized by that particular Qµ′ – will be given by the equations

Z00′

Z01′
=

P 0Q0′

P 0Q1′
=

Q0′

Q1′
=

P 1Q0′

P 1Q1′
=

Z10′

Z11′
. (4.22)

Since Qµ′ is fixed this implies that there is a complex number λ such that

Z0 = λZ1 and Z2 = λZ3 . (4.23)

This pair of linear equations defines a projective line in CP3. Projecting down
to the other factor leads to a similar conclusion. In this way we see that the
quadric is ruled by lines, or in other words that through any point on the
quadric there goes a pair of straight lines lying entirely in the quadric.

For visualization, let us consider the real Segre embedding

RP1 × RP1 ∈ RP3 . (4.24)

This time we choose to diagonalize the quadric; define

Z0 = X + U , Z1 = X − U , Z2 = V + Y , Z3 = V − Y . (4.25)
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We then obtain

Z0Z3 − Z1Z2 = X2 + Y 2 − U2 − V 2 = 0 . (4.26)

Now let us choose affine coordinates by dividing through with V . The quadric
becomes

x2 + y2 − u2 = 1 . (4.27)

This is a hyperboloid of one sheet sitting in a three-dimensional real space.
The fact that such a surface can be ruled by straight lines is a surprising fact
of elementary geometry (first noted by Sir Christopher Wren).

4.4 Stars, spinors and complex curves

The stellar representation is a delightful way of visualizing CPn in real terms.
It works for any n and simplifies some problems in a remarkable way.2 Here
we will develop it a little from a projective point of view, while Chapter 7
discusses the same construction with the added benefit of a metric. The idea
is that vectors in Cn+1 are in one-to-one correspondence with the set of nth
degree polynomials in one complex variable z, such as

w(z) = Z0zn + Z1zn−1 + · · ·+ Zn . (4.28)

(The important point is that we have a polynomial of the nth degree; in
Chapter 7 we will have occasion to polish the conventions a little.) We can
rescale the vector Zα so that Z0 = 1; therefore points in CPn will be in one-to-
one correspondence with unordered sets of n complex numbers, namely with
the complex roots of the equation

Z0zn + Z1zn−1 + · · ·+ Zn+1 = 0 = Z0(z − z1)(z − z2) . . . (z − zn) . (4.29)

Multiple roots are allowed. If Z0 = 0 then infinity counts as a root (of
multiplicity m if Z1 = · · · = Zm−1 = 0). Finally, by means of a stereographic
projection the roots can be represented as unordered sets of n points on an
ordinary 2-sphere – the points are called ‘stars’ and thus we have arrived at the
stellar representation, in which points in CPn are represented by n unordered
stars on a ‘celestial’ sphere. As a mathematical aside it follows that CP1 = S2,
CP2 = S2 × S2/S2 and in general that CPn = S2 × S2 × · · · × S2/Sn, where
Sn is the symmetric group of permutations of n objects.

There is a piece of notation that is conveniently introduced at this juncture.
Let us denote the homogeneous coordinates on CP1 by

ζA = (u, v) . (4.30)

So we use a capital Latin letter for the index and we will refer to ζA as a

2 The first reference appears to be to Majorana (1932). The result has been rediscovered many
times within (Bacry, 1974) and without (Penrose, 1960) the context of quantum mechanics.
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Figure 4.7. Any state from CP3 may be represented by three stars on the
sphere. Some special cases, where the stars coincide, are shown on the right.

spinor. The overall scale of the spinor is irrelevant to us, so we can introduce
an affine coordinate z by

z =
v

u
: ζA ∼ (1, z) . (4.31)

A spinor for which u = 0 then corresponds to the south pole on the Riemann
sphere. We will use the totally anti-symmetric tensor εAB (the symplectic
structure on S2, in fact) to raise and lower indices according to

ζA ≡ ζBεBA ⇔ ζA = εABζB . (4.32)

Due to the fact that εAB is anti-symmetric there is a definite risk that sign
errors will occur when one uses its inverse εAB. Simply stick to the convention
just made and all will be well. Note that ζAζA = 0. So far then a spinor simply
denotes a vector in C2. We do not think of this as a Hilbert space yet because
there is no inner product. On the contrary the formalism is manifestly invariant
under the full projective group SL(2,C)/Z2. A special linear transformation
on C2 gives rise to a Möbius transformation on the sphere;

ζA →
[

u′

v′

]
=

[
α β
γ δ

] [
u
v

]
⇒ z → z′ =

αz + β

γz + δ
, (4.33)

where αδ−βγ = 1 is the condition (on four complex numbers) that guarantees
that the matrix belongs to SL(2,C) and that the transformation preserves
εAB. The group of Möbius transformations is exactly the group of projective
transformations of CP1.

We can go on to consider totally symmetric multispinors

ΨAB = Ψ(AB) , ΨABC = Ψ(ABC) (4.34)

and so on. (The brackets around the indices mean that we are taking the
totally symmetric part.) It is easy to see that when the index ranges from
zero to one then the number of independent components of a rank n totally
symmetric multispinor is n + 1, just right so that the multispinor can serve
as homogeneous coordinates for CPn. To see that this works, consider the
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equation
ΨAB...MζAζB . . . ζM = 0 . (4.35)

If we now choose the scale so that ζA = (1, z) then the above equation turns
into an nth degree polynomial in z, having n complex roots. We can use this
fact together with Eq. (4.29) to translate between the ΨAB...M and the Zα,
should this be needed. We can also use the fundamental theorem of algebra to
rewrite the polynomial as a product of n factors. In analogy with Eq. (4.29)
we find that

ΨAB...MζAζB . . . ζM = 0 = (α0 + α1z)(β0 + β1z) . . . (µ0 + µ1z) . (4.36)

The conclusion is that a rank n multispinor can be written – uniquely except
for an overall factor of no interest to us – as a symmetrized product of n
spinors:

ΨAB...MζAζB . . . ζM = αAζAβBζB . . . µMζM ⇒ ΨAB...M = α(AβB . . . µM) .

(4.37)

The factors are known as principal spinors, and they are of course the n
unordered points (note the symmetrization) on the sphere in slight disguise.

The stellar representation, or equivalently the spinor notation, deals with
linear subspaces in an elegant way. Consider a complex projective line (a CP1)
in CP2 for definiteness. A general point in CP2 is described by a pair of
unordered points on the 2-sphere, or equivalently as a spinor

ΨAB = α(AβB) ≡ 1
2
(
αAβB + αBβA

)
. (4.38)

Evidently we get a complex projective line by holding one of the points fixed
and letting the other vary, that is by holding one of the principal spinors (say
βA) fixed and letting the other vary.

The spinor notation also deals elegantly with complex curves in general.
Thus we get a conic section in CP2 as the set of points for which the principal
spinors coincide. That is to say that

ΨAB = ΨAΨB (4.39)

for some spinor ΨA. Through any point on the quadric (for which ΨA = αA

say) there goes a complex projective line

ΨAB = ζ(AαB) (4.40)

(where ζA varies). This line is tangent to the quadric since it touches the
quadric in a unique point αAαB. It is moreover rather easy to see that a pair
of tangent lines always intersect in a unique point. See Figure 4.8.

4.5 The Fubini–Study metric

Now we want a notion of distance, and indeed a Riemannian metric, in CPn.
How do we do it? Pick an arbitrary pair of points. The distance between them
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Figure 4.8. A conic section in CP2 and a pair of tangent lines.

will be the length of the geodesic curve connecting them. On the other hand
we know that there is a unique projective line connecting them; topologically
this is CP1 = S2. Suppose that we insist that this 2-sphere is a round 2-sphere,
with the ordinary round metric. Let us also insist that the metric on CPn is
such that the projective lines are totally geodesic. Technically a submanifold is
said to be totally geodesic if a geodesic with respect to the induced metric on
the submanifold is also a geodesic with respect to the metric on the embedding
space, or equivalently if a geodesic that starts out parallel to the submanifold
stays in the submanifold. But a geodesic on a complex projective line is simply
a great circle on a 2-sphere, so we have found a way to define geodesics between
two arbitrary points in CPn. The resulting notion of distance is called the
Fubini–Study distance.3

It only remains to make this definition of the metric on CPn explicit. Since
the geodesic lives on some complex projective line, we can write down its
equation using nothing but the results of Chapter 3. Let us recall Eq. (3.85)
for a geodesic on an odd-dimensional sphere:

Zα(σ) = Zα(0) cosσ + Żα(0) sinσ , (4.41)

where

Z(0) · Z̄(0) = Ż(0) · ˙̄Z(0) = 1 , Z(0) · ˙̄Z(0) + Ż(0) · Z̄(0) = 0 . (4.42)

If Żα(0) = iZα(0) this is a Hopf circle, and projects to a point on CP1 CP1 =
S2. In general we can write

Zα(0) ≡ mα , Żα(0) = mα cos a + nα sin a , m · n̄ = 0 . (4.43)

Since the constant vectors mα and nα have been chosen orthogonal, they
lie antipodally on the particular complex projective line that they span. We
can now appeal to the fibre bundle perspective (Section 4.8) to see that this
curve is horizontal, and hence projects to a geodesic on CP1, if and only if

3 It was first studied by two leading geometers from a century ago; Fubini (1903) and Study (1905).
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Ż · Z̄ = 0, that is to say if and only if cos a = 0. Alternatively we can use a
direct calculation to show that for general a they project to latitude circles,
and to great circles if and only if cos a = 0. Either way, we conclude that our
definition implies that a geodesic on CPn is given by

Zα(σ) = mα cosσ + nα sinσ , m · m̄ = n · n̄ = 1 , m · n̄ = 0 . (4.44)

More precisely, this is the horizontal lift of a geodesic on CPn to the odd-
dimensional sphere S2n+1, in the fibre bundle CPn = S2n+1/S1.

We will now use this set-up to define the Fubini–Study distance DFS between
any two points on CPn. Since everything takes place within a complex projective
line, which lifts to a 3-sphere, we can use the expression for the distance arrived
at in our discussion of the Hopf fibration of S3, namely Eq. (3.95). The Fubini–
Study distance DFS must be given by

cos2 DFS = κ , (4.45)

where the projective cross-ratio between two points P α and Qα is given by

κ =
P · Q̄ Q · P̄
P · P̄ Q · Q̄ . (4.46)

We give the same formula in standard quantum mechanical notation in Eq.
(5.16). There is one new feature: in Section 3.5 we assumed that P · P̄ =
Q · Q̄ = 1, but this assumption has now been dropped. As in Section 4.1 there
is a polarity – that is to say a map from the space of points to the space of
hyperplanes – hidden here: the polarity maps the point P α to that special
hyperplane consisting of all points Qα with

Q · P̄ ≡ QαP̄α = 0 . (4.47)

Interestingly complex conjugation appears here for the first time. Another
interesting fact is that our definitions imply that CPn is a Cπ manifold:
all geodesics are closed, and have the same circumference. This is a quite
exceptional property, related to the fact that the isotropy group – the subgroup
of isometries leaving a given point invariant – is so large that it acts transitively
on the space of directions there. Spheres have this property too. The circumference
of a geodesic on CPn equals π because CP1 is a 2-sphere of radius 1/2; the
geodesic on S2n+1 has circumference 2π and doubly covers the geodesic on
CPn. We also note that the maximal distance between two points is equal to
π/2 (when the two vectors are orthogonal), and that all geodesics meet again
at a point of maximal distance from their point of origin.

To obtain the line element in a local form we assume that

Qα = P α + dP α (4.48)

and expand to second order in the vector dP α (and to second order in DFS).
The result is the Fubini–Study metric

ds2 =
dP · dP̄ P · P̄ − dP · P̄ P · dP̄

P · P̄ P · P̄ . (4.49)
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Before we are done we will become very familiar with this expression.
It is already clear that many formulae will be simplified if we normalize our

vectors so that P · P̄ = 1. In quantum mechanics, where the vectors are the
usual Hilbert space state vectors, this is usually done. In this chapter we will
use normalized vectors now and then in calculations, but on festive occasions
– say when stating a definition – we do not.

An important definition follows immediately, namely that of the 2-form

Ω = i
P · P̄ dP · ∧dP̄ − dP · P̄ ∧ P · dP̄

P · P̄ P · P̄ . (4.50)

This is clearly a relative of the metric and the suggestion is that it is a (closed)
symplectic form and that CPn is a Kähler manifold for all n. And this is
true. To prove the Kähler property it is helpful to use the affine coordinates
from Section 4.2. When expressed in terms of them the Fubini–Study metric
becomes

ds2 =
1

1 + |z|2
(

dzadz̄a − z̄adzadz̄bz
b

1 + |z|2
)
≡ 2gab̄ dzadz̄b̄ , |z|2 ≡ zaz̄a .

(4.51)
(We are using δab̄ to change z̄ā into z̄a.) Now

2gab̄ =
1

1 + |z|2
(

δab̄ −
z̄azb̄

1 + |z|2
)

= ∂a∂b̄ ln (1 + |z|2) . (4.52)

Or more elegantly

gab̄ =
1
2
∂a∂b̄ lnZ · Z̄ , (4.53)

where it is understood that the homogeneous coordinates should be expressed
in terms of the affine ones. As we know from Section 3.3 this proves that CPn

is a Kähler manifold. Every complex submanifold is Kähler too. For n = 1 we
recognize the metric on S2 written in stereographic coordinates.

We will use a different choice of coordinate system to explore the space in
detail, but the affine coordinates are useful for several purposes, for instance
if one wants to perform an explicit check that the curve (4.44) is indeed a
geodesic, or when one wants to compute the Riemann curvature tensor. Thus:

gab̄ = 2(1 + |z|2)(δab̄ + zaz̄b̄) (4.54)

Γ a
bc = − 1

1 + |z|2 (δa
b z̄c + δa

c z̄b) (4.55)

Rab̄cd̄ = −2(gab̄gcd̄ + gad̄gcb̄) (4.56)

Rab̄ = 2(n + 1)gab̄ . (4.57)

All components not related to these through index symmetries or complex
conjugation are zero. From the expression for the Ricci tensor Rab̄ we see
that its traceless part vanishes; the Fubini–Study metric solves the Euclidean
Einstein equations with a cosmological constant. The form of the full Riemann
tensor Rab̄cd̄ shows that the space has constant holomorphic sectional curvature
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(but it does not show that the curvature is constant, and in fact it is not – our
result is weaker basically because gab̄ is just one ‘block’ of the metric tensor).
There is an important theorem that says that a simply connected complex
manifold of constant holomorphic sectional curvature is necessarily isometric
with CPn or else it has the topology of an open unit ball in Cn, depending on
the sign of the curvature. (If it vanishes the space isCn.) The situation is clearly
analogous to that of simply connected two-dimensional manifolds of constant
sectional curvature, which are either spheres, flat spaces, or hyperbolic spaces
with the topology of a ball.

We observe that both the Riemannian and the symplectic geometry relies
on the Hermitian form Z · Z̄ = ZαZ̄α in CN . Therefore distances and areas are
invariant only under those projective transformations that preserve this form.
These are precisely the unitary transformations, with anti-unitary transformations
added if we allow the transformations to flip the sign of the symplectic form.
In quantum mechanics this theorem goes under the name of Wigner’s theorem
(Wigner, 1959):

Theorem 4.1 (Wigner’s) All isometries of CPn arise from unitary
or anti-unitary transformations of CN .

Since only a part of the unitary group acts effectively the connected component
of the isometry group is in fact SU(N)/ZN . For N = 2 we are dealing with a
sphere and SU(2)/Z2 = SO(3), that is the group of proper rotations. The
full isometry group O(3) includes reflections and arises when anti-unitary
transformations are allowed.

We obtain an infinitesimal isometry by choosing an Hermitian matrix – a
generator of U(N) – and writing

i Żα = Hα
βZβ . (4.58)

This equation – to reappear as the Schrödinger equation in Section 5.1 –
determines a Killing flow on CPn. A part of it represents ‘gauge’, that is
changes in the overall phase of the homogeneous coordinates. Therefore we
write the projective equation

iZ [αŻβ] = Z [αHβ]
γZ

γ , (4.59)

where the brackets denote anti-symmetrization. This equation contains all
the information concerning the Killing flow on CPn itself, and is called the
projective Schrödinger equation (Hughston, 1995, p. 59). The fixed points of the
flow occur when the right-hand side vanishes. Because of the anti-symmetrized
indices this happens when Zα is an eigenvector of the Hamiltonian,

Hα
βZβ = EZα . (4.60)

A picture will be given later.
There are other ways of introducing the Fubini–Study metric. We usually

understand CP1, that is the 2-sphere, as a subset embedded in R3. Through
the Hopf fibration we can also understand it as the base space of a fibre bundle
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whose total space is either S3 or C2 with the origin excluded. Both of these
pictures can be generalized to CPn for arbitrary n. The fibre bundle picture
will be discussed in more detail later. The embedding picture relies on an
embedding into R(n+1)2−1. The dimension is rather high but we will have to
live with this. To see how it works, use homogeneous coordinates to describe
CPn and form the matrix

ρα
β ≡ ZαZ̄β

Z · Z̄ . (4.61)

This is a useful way to represent a point in CPn since the reduncancy of the
homogeneous coordinates has disappeared. The resulting matrix is Hermitian
and has trace unity. Hence we have an embedding of CPn into the space
of Hermitian N × N matrices with trace unity, which has the dimension
advertised, and can be made into a flat space in a natural way. We simply
set

D2(A,B) =
1
2
Tr(A−B)2 . (4.62)

This expression defines a distance D between the matrices A and B (equal to
the Hilbert–Schmidt distance introduced in Chapter 8). It is analogous to the
chordal distance between two points on the sphere when embedded in a flat
space in the standard way.

To see that the embedding gives rise to the Fubini–Study metric we take
two matrices representing different points of CPn, such as

ρα
P β =

P αP̄β

P · P̄ ρα
Q β =

QαQ̄β

Q · Q̄ , (4.63)

and compute

D2(ρP , ρQ) = 1− κ = 1− cos2 DFS , (4.64)

where κ is the projective cross-ratio (4.46) and DFS is the Fubini–Study
distance between P and Q along a curve lying within the embedded CPn.
If the points are very close we can expand the square of the cosine to second
order and obtain

D = DFS + higher order terms . (4.65)

This proves our point. The Riemannian metric

ds2 =
1
2

Tr dρ dρ, (4.66)

is precisely the Fubini–Study metric, provided that it is evaluated at a point
where the matrix ρ is an outer product of two vectors – and dρ is the ‘infinitesimal’
difference between two such matrices, or more precisely a tangent vector to
CPn. This embedding will reappear in Chapter 8 as the embedding of pure
states into the space of density matrices.
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4.6 CPn illustrated

At this point we still do not know what CPn ‘looks like’, even in the modest
sense that we feel that we know what an n-sphere ‘looks like’ for arbitrary n.
There is a choice of coordinate system that turns out to be surprisingly helpful
in this regard (Barros e Sá, 2001a; Bengtsson, Brännlund and Życzkowski,
2002). Define

(Z0, Z1, . . . , Zn) = (n0, n1eiν1 , . . . , nneiνn) , (4.67)

where 0 ≤ νi < 2π and the real numbers n0, ni are non-negative, n0 ≥ 0 , ni ≥
0, and obey the constraint

n2
0 + n2

1 + · · ·+ n2
n = 1 . (4.68)

We call such coordinates octant coordinates, because n0, n1, . . . clearly form
the positive hyperoctant of an n-sphere. The phases νi form an n-torus, so we
already see a picture of the topology of CPn emerging: we have a set of tori
parametrized by the points of a hyperoctant, with the proviso that the picture
breaks down at the edges of the hyperoctant, where the phases are undefined.4

To go all the way to a local coordinate system we can set




n0 = cosϑ1 sinϑ2 sinϑ3 . . . sinϑn

n1 = sin ϑ1 sinϑ2 sinϑ3 . . . sinϑn

n2 = cosϑ2 sinϑ3 . . . sinϑn

...
...

...
nn = cosϑn

0 < ϑi <
π

2
. (4.69)

This is just like Eq. (1.13), except that the range of the coordinates has
changed. We can also use ni as orthographic coordinates. Alternatively we
can set

yi = n2
i (4.70)

and use the n coordinates yi. This looks contrived at this stage but will suggest
itself later. If we also define y0 = n2

0 we clearly have

y0 + y1 + · · ·+ yn = 1 . (4.71)

A probability interpretation is not far behind . . . .
To see how it all works, let us consider CP2. The point is that octant

coordinates are quite well adapted to the Fubini–Study metric, which becomes

ds2 = dn2
0 + dn2

1 + dn2
2

+ n2
1(1− n2

1) dν2
1 + n2

2(1− n2
2) dν2

2 − 2n2
1n

2
2 dν1 dν2 . (4.72)

The first piece here, given Eq. (4.68), is recognizable as the ordinary round
metric on the sphere. The second part is the metric on a flat torus, whose shape
depends on where we are on the octant. Hence we are justified in thinking of

4 There is an entire branch of mathematics called ‘toric geometry’ whose subject matter, roughly
speaking, consists of spaces that can be described in this way. See Ewald (1996) for more on this.
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Figure 4.9. CP2 may be visualized as the positive octant of a 2-sphere. Each
point inside the octant represents a torus T 2 spanned by the phases (ν1, ν2)
(b). Each point at the edges of the octant denotes a circle, so each of three
edges representes a 2-sphere. For comparison we plot CP1 in the same manner,
in panel (a). A realistic view of CP1 is shown in panel (c); an analogous view
of CP2 would be more difficult (d).

CP2 as a set of flat 2-tori parametrized by a round octant of a 2-sphere. There
is an evident generalization to all n, and in fact we can draw accurate pictures
of CP3 if we want to.

For n = 1 we obtain a one parameter family of circles that degenerate to
points at the end of the interval; a moment’s thought will convince the reader
that this is simply a way to describe a 2-sphere. Just to make sure, use the
angular coordinates and find that Eq. (4.72) becomes

ds2 = dϑ2
1 +

1
4

sin2 (2ϑ1) dν2
1 =

1
4

(dθ2 + sin2 θ dφ2) , (4.73)

where we used θ = 2ϑ1 and φ = ν1 in the second step.
To make the case n = 2 quite clear we make a map of the octant, using

a stereographic or a gnomonic projection (Section 3.1). The latter is quite
useful here and it does not matter that only half the sphere can be covered
since we need to cover only one octant anyway. It is convenient to centre the
projection at the centre of the octant and adjust the coordinate plane so that
the coordinate distance between a pair of corners of the resulting triangle
equals one. The result is shown in Figure 4.10.

This takes care of the octant. We obtain a picture of CP2 when we remember
that each interior point really represents a flat torus, conveniently regarded as
a parallelogram with opposite sides identified. The shape of the parallelogram
– discussed in Section 3.3 – is relevant. According to Eq. (4.72) the lengths of
the sides are

L1 =
∫ 2π

0

ds = 2πn1

√
1− n2

1 and L2 = 2πn2

√
1− n2

2 . (4.74)



4.6 CPn illustrated 113

Figure 4.10. In (a) we indicate how the torus lying over each interior point
changes with position in the octant. The position in the octant is given by an
unnormalized vector. At the edges the tori degenerate to circles so edges are
complex projective lines. The corners of the octant represent orthogonal points.
It may be convenient to perform some cutting and gluing of the parallelogram
before thinking about the shape of the torus it defines, as indicated with dashed
lines for the torus lying over the point (1, 4, 1). The size of the octant relative
to that of the tori is exaggerated in the picture. To bring this home we show,
in (b), the largest torus – the one sitting over (1, 1, 1) – decorated with three
times three points (marked with crosses and filled or unfilled dots). Each such
triple corresponds to an orthogonal basis. The coordinates (ν1, ν2) are given
for one of the triples.

The angle between them is given by

cos θ12 = − n1n2√
1− n2

1

√
1− n2

2

. (4.75)

The point is that the shape depends on where we are on the octant. So does
the total area of the torus,

A = L1L2 sin θ12 = 4π2n0n1n2 . (4.76)

The ‘biggest’ torus occurs at the centre of the octant. At the boundaries the
area of the tori is zero. This is because there the tori degenerate to circles. In
effect an edge of the octant is a one parameter family of circles, in other words
it is a CP1.

It is crucial to realize that there is nothing special going on at the edges and
corners of the octant, whatever the impression left by the map may be. Like
the sphere, CPn is a homogeneous space and looks the same from every point.
To see this, note that any choice of an orthogonal basis in a three-dimensional
Hilbert space gives rise to three points separated by the distance π/2 from
each other in CP2. By an appropriate choice of coordinates we can make any
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Figure 4.11. Killing vector flows on CP2. Stereographic coordinates are used
for the octant.

such triplet of points sit at the corners of an octant in a picture identical to
the one shown in Figure 4.11.

To get used to the picture we begin by looking at some one real dimensional
curves in it. We choose to look at the flow lines of an isometry – a Killing field.
Since the isometries are given by unitary transformations of CN , we obtain an
infinitesimal isometry by choosing an Hermitian matrix. Any such matrix can
be diagonalized, so we can choose a basis in which the given Hermitian 3× 3
matrix takes the form

Hα
β =




E0 0 0
0 E1 0
0 0 E2


 . (4.77)

We can therefore arrange our octant picture so that the fixed points of the flow
– determined by the eigenvectors – occur at the corners. If we exponentiate
Eq. (4.58) we find that the isometry becomes




n0

n1eiν1

n2eiν2


 →




e−iE0t 0 0
0 e−iE1t 0
0 0 e−iE2t







n0

n1eiν1

n2eiν2


 (4.78)

where t is a parameter along the flow lines. Taking out an overall phase, we
find that this implies that

nI → nI , ν1 → ν1 + (E0 − E1)t , ν2 → ν2 + (E0 − E2)t . (4.79)

Hence the position on the octant is preserved by the Killing vector flow; the
movement occurs on the tori only. At the edges of the octant (which are
spheres, determined by the location of the fixed points) the picture is the
expected one. At a generic point the orbits wind around the tori and, unless
the frequencies are rational multiples of each other, they will eventually cover
the tori densely. Closed orbits are exceptional.

We go on to consider some submanifolds. Every pair of points in the complex
projective plane defines a unique complex projective line, that is a CP1,
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Figure 4.12. Using stereographic coordinates we show how the octant picture of
the real submanifold RP2 is related to the standard description as a hemisphere
with antipodal points on the equator identified.

containing the pair of points. Conversely a pair of complex projective lines
always intersect at a unique point. Through every point there passes a 2-
sphere’s worth of complex projective lines, conveniently parametrized by the
way they intersect the line at infinity, that is the set of points at maximal
distance from the given point. This is easily illustrated provided we arrange
the picture so that the given point sits in a corner, with the line at infinity
represented by the opposite edge. An interesting fact about CP2 follows from
this, namely that it contains incontractible 2-spheres – a complex projective
line can be deformed so that its radius grows, but it cannot be deformed so
that its radius shrinks because it has to intersect the line at infinity in a point.
(The topological reasons for this can be seen in the picture.)

Another submanifold is the real projective plane RP2. It is defined in a
way analogous to the definition of CP2 except that real rather than complex
numbers are used. The points of RP2 are therefore in one-to-one correspondence
with the set of lines through the origin in a three-dimensional real vector space
and also with the points of S2/Z2, that is to say the sphere with antipodal
points identified. In its turn this is a hemisphere with antipodal points on the
equator identified. RP2 is clearly a subset of CP2. It is illuminating to see how
the octant picture is obtained, starting from the stereographic projection of a
hemisphere (a unit disc) and folding it twice.

Next choose a point. Adjust the picture so that it sits at a corner of the
octant. Surround the chosen point with a 3-sphere consisting of points at
constant distance from that point. In the picture this will appear as a curve in
the octant, with an entire torus sitting over each interior point on the curve.
This makes sense: from the Hopf fibration we know that S3 can be thought
of as a one parameter family of tori with circles at the ends. The 3-sphere is
round if the tori have a suitable rectangular shape. But as we let our 3-sphere
grow, its tori get more and more ‘squashed’ by the curvature of CP2, and the
roundness gradually disappears. When the radius reaches its maximum value
of π/2 the 3-sphere has collapsed to a 2-sphere, namely to the projective line



116 Complex projective spaces

Figure 4.13. The set of points at constant distance from a corner form a
squashed 3-sphere. In (a) we show how such a submanifold appears in the
octant. All points in the torus lying over a point on the curve are included. In
(b) we show how the size and shape of the torus change as we move along the
curve in the octant; at the ends of the interval the tori collapse to circles. For
comparison, in (c) we show the corresponding picture for a round 3-sphere.

at infinity. In equations, set

n1 = sin r cos
θ

2
, n2 = sin r sin

θ

2
, τ = ν1 + ν2 , φ = ν1 − ν2 , (4.80)

where 0 ≤ r ≤ π/2, 0 ≤ θ ≤ π. When we express the Fubini–Study metric
in these coordinates we find that they are geodesic polar coordinates with
the coordinate r measuring the distance from the origin – curves with affine
parameter equal to r are manifestly geodesics. Indeed

ds2 = dr2 + sin2 r (Θ2
1 + Θ2

2 + cos2 r Θ2
3) , (4.81)

where the ΘI are the invariant forms introduced in Section 3.7; our squashed
spheres at constant distance are Berger spheres, as defined in the same section.

Finally, a warning: the octant picture distorts distances in many ways. For
instance, the distance between two points in a given torus is shorter than it
looks, because the shortest path between them is not the same as a straight
line within the torus itself. Note also that we have chosen to exaggerate the
size of the octant relative to that of the tori in the pictures. To realize how
much room there is in the largest torus we note that one can find four sets
of orthonormal bases in the Hilbert space C3 such that the absolute value of
the scalar product between members of different bases is 1/

√
3 – a kind of

sphere packing problem in CP2. If one basis is represented by the corners of
the octant, the remaining 3×3 basis vectors are situated in the torus over the
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centre of the octant,5 as illustrated in Figure 4.10. The message is that the
biggest torus is really big.

4.7 Symplectic geometry and the Fubini–Study measure

So far the symplectic form has not been illustrated, but the octant coordinates
are very useful for this purpose too. If we use n1, n2, . . . , nn as orthographic
coordinates on the octant we find that the symplectic form (4.50) is

Ω = 2(n1dn1 ∧ dν1 + · · ·+ nndnn ∧ dνn) . (4.82)

Even better, we can use yi = n2
i as coordinates. Then Ω takes the canonical

form

Ω = dy1 ∧ dν1 + · · ·+ dyn ∧ dνn . (4.83)

In effect (yi, νi) are action-angle variables.
Given a symplectic form we can construct a phase space volume by wedging

it with itself enough times. This is actually simpler than to compute the
determinant of the metric tensor, and the two notions of volume – symplectic
and metric – agree because we are on a Kähler manifold. Thus, in form
language, the Fubini–Study volume element on CPn is

dΩ̃n =
1
n!

(
1
2
Ω) ∧ (

1
2
Ω) ∧ · · · ∧ (

1
2
Ω) , (4.84)

where we take n wedge products. Equivalently we compute the square root of
the determinant of the metric. We have decorated the volume element with
a tilde because in Section 7.6 we will divide it with the total volume of CPn

to obtain the Fubini–Study measure dΩn, which is a probability distribution
whose integral over CPn equals unity. Any measure related to the Fubini–
Study volume element by a constant is distinguished by the fact that it gives
the same volume to every ball of given radius, as measured by the Fubini–
Study metric, and by the fact that it is unitarily invariant, in the sense that
vol(A) = vol

(
U(A)

)
for any subset A of CPn.

It is a volume element worth studying in several coordinate systems. Using
octant coordinates we obtain

dΩ̃n = n0n1 . . . nn dVSn dν1 . . .dνn , 0 < νi < 2π (4.85)

where dVSn is the measure on the round n-sphere. If we use orthographic
coordinates on the round octant, remember that

√
g = 1/n0 in these coordinates,

and use the coordinates yi = n2
i , we obtain

dΩ̃n = n1 . . . nn dn1 . . .dnn dν1 . . . dνn =
1
2n

dy1 . . .dyn dν1 . . . dνn . (4.86)

5 It is not known to what extent this property generalizes to arbitrary Hilbert space dimension.
Ivanović (1981) and Wootters and Fields (1989) have shown that N + 1 orthonormal bases with

the modulus of the scalar product between members of different bases always equal to 1/
√

N can
be found if the dimension N = pk, where p is a prime number.
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All factors in the measure have cancelled out! As far as calculations of volumes
are concerned CPn behaves like a Cartesian product of a flat simplex and a
flat torus of a fixed size.

The angular coordinates ϑ can also be used on the octant. We just combine
Eqs. (4.85) with Eq. (1.14) for the measure on the round octant. Computing
the total volume of CPn with respect to its Fubini–Study volume element then
leads to an easy integral:

vol(CPn) =
∫

CPn

dΩ̃n =
n∏

i=1

∫ π
2

0

dϑi

∫ 2π

0

dνi cosϑi sin2i−1 ϑi =
πn

n!
. (4.87)

We fixed the linear scale of the space by the requirement that a closed geodesic
has circumference π. Then the volume goes to zero when n goes to infinity.
Asymptotically the volume of CPn even goes to zero somewhat faster than
that of S2n, but the comparison is not fair unless we rescale the sphere until
the great circles have circumference π. Having done so we find that the volume
of CPn is always larger than that of the sphere (except when n = 1, when
they coincide).

It is curious to observe that

vol(CPn) = vol(∆n)× vol(Tn) =
vol(S2n+1)

vol(S1)
. (4.88)

The first equality expresses the volume as the product of the volumes of a flat
simplex and a flat torus and is quite surprising, while the second is the volume
of S2n+1, given in Eq. (1.17), divided by the volume 2π of a Hopf circle as one
would perhaps expect from the Hopf fibration. The lesson is that the volume
does not feel any of the more subtle topological properties involved in the fibre
bundle construction of CPn.

4.8 Fibre bundle aspects

Although we did not stress it so far, it is clear that CPn is the base manifold of
a bundle whose total space is S2n+1 or even CN = Cn+1 with its origin deleted.
The latter bundle is known as the tautological bundle for fairly obvious reasons.
A lightning review of our discussion of fibre bundles in Chapter 3 consists, in
effect, of the observation that our expression for the Fubini–Study metric is
invariant under

dP α → dP α + zP α , (4.89)

where z = x + iy is some complex number. But the vector xP α is orthogonal
to the sphere, while iyP α points along its Hopf fibres. Because it is unaffected
by changes in these directions the Fubini–Study metric really is a metric on
the space of Hopf fibres. In some ways it is convenient to normalize our vectors
to Z · Z̄ = 1 here because then we are dealing with a principal bundle.
The tautological bundle is not a principal bundle; technically it is called a
Hermitian line bundle.
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A fibre bundle can always be equipped with a connection that allows us to
lift curves in the base manifold to the bundle space in a unique manner. Here
the preferred choice is

ω =
i
2

Z · dZ̄ − dZ · Z̄
Z · Z̄ = −i dZ · Z̄ . (4.90)

In the last step we used normalized vectors. The equation ω = 0 now expresses
the requirement that dZα be orthogonal to Zα, so that the lifted curve will be
perpendicular to the fibres of the bundle. A minor calculation confirms that

dω = Ω , (4.91)

where Ω is the symplectic 2-form defined in Eq. (4.50).
Let us lift some curves on CPn to Hilbert space. We have already done so

for a geodesic on the base manifold – the result is given in Eq. (4.44). Since
Ż · Z̄ = 0 along this curve, it follows that ω = 0 along it, so indeed it is
a horizontal lift. Another example that we have encountered already: in Eq.
(4.58) we wrote the Schrödinger equation, or equivalently the flow line of some
isometry, as

i dZα = Hα
βZβdt . (4.92)

Evidently

ω =
1
2
(ZαH̄ β

α Z̄β − Z̄αHα
βZβ) dt = 0 (4.93)

along the resulting curve in the bundle, so that this is the horizontal lift of
a curve defined in the base manifold by the projective Schrödinger equation
(4.59).

Now consider an arbitrary curve C(σ) in CPn, and an arbitrary lift of it to
CN . Let the curve run from σ1 to σ2. Define its geometric phase as

φg = arg
(
Z(σ2) · Z̄(σ1)

)−
∫

C

ω . (4.94)

From now on we assume that the length of the curve is less than π/2 so that
the argument that defines the total phase – the first term on the right-hand
side – of the curve is well defined. Suppose that we change the lift of the curve
by means of the transformation

Zα → eiλZα ⇒ ω → ω + dλ , (4.95)

where λ is some function of σ. Although both the connection and the total
phase change under this transformation, the geometric phase does not. Indeed
it is easy to see that

φg → φg + λ(σ2)− λ(σ1)−
∫ σ2

σ1

dλ = φg . (4.96)

The conclusion is that the geometric phase does not depend on the particular
lift that we use. Hence it is genuinely a function of the original curve in
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CPn itself. The total phase on the other hand is not – although it equals
the geometric phase for a horizontal lift of the curve.

An interesting observation, with consequences, is that if we compute the
total phase along the horizontal lift (4.44) of a geodesic in CPn we find that
it vanishes. This means that the geometrical phase is zero for any lift of a
geodesic. A geodesic is therefore a null phase curve. The converse is not true
– we will find further examples of null phase curves in Chapter 6. To see what
the consequences are, consider a geodesic triangle in CPn, that is three points
P , Q and R connected with geodesic arcs not longer than π/2. In flat space
the lengths of the sides determine the triangle uniquely up to isometries, but
in curved spaces this need not be so. As it happens a geodesic triangle in
CPn is determined up to isometries by its side lengths and its symplectic area,
that is the integral of the symplectic form Ω over any area bounded by the
three geodesic arcs (Brehm, 1990). To such a triangle we can associate the
Bargmann invariant 6

∆3(P, Q,R) =
P · Q̄Q · R̄R · P̄
P · P̄Q · Q̄R · R̄ = cosDPQ cosDQR cosDRP e−iΦ . (4.97)

Here DPQ is the Fubini–Study distance between the points whose homogeneous
coordinates are P and Q, and so on. But what is the phase Φ? Since each side
of the triangle is a geodesic arc the geometric phase of each side is zero, and
by Eq. (4.94) the total phase of the side is equal to the integral along the arc
of ω. Adding the contribution of all the sides (and normalizing the vectors)
we get

argP · Q̄Q · R̄R · P̄ = −argQ · P̄ − argR · Q̄− argP · R̄ = −
∮

∂∆

ω . (4.98)

It follows from Stokes’ theorem that the phase Φ is the symplectic area of the
triangle,

Φ =
∫

∆

Ω . (4.99)

We can go on to define Bargmann invariants for four, five and more points in
the same cyclic manner and – by triangulation – we find that their phases are
given by the symplectic area of the geodesic polygon spanned by the points.

The geometric phase also goes under the name of the Berry phase; the case
that Berry studied was that of an eigenstate of a Hamiltonian H that is carried
around a loop by adiabatic cycling of H.7

6 It is invariant under phase changes of the homogenous coordinates and attracted Bargmann’s
attention (Bargmann, 1964) because, unlike the Fubini–Study distance, it is a complex valued
function defined on CPn. Blaschke and Terheggen (1939) considered this early on. That its
argument is the area of a triangle was proved by both physicists (Mukunda and Simon, 1993) and
mathematicians (Hangan and Masala, 1994).

7 The original paper by Berry (1984) is reprinted in a book edited by Shapere and Wilczek (1989).
See Anandan and Aharonov (1990) and Mukunda and Simon (1993) for the point of view that
we take here, and Chruściński and JamioLÃ kowski (2004) for much more.
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Figure 4.14. A flag may consist of a one-dimensional subspace of a two-
dimensional subspace of a three-dimensional space – it is clear why it is called
that!

4.9 Grassmannians and flag manifolds

Projective space is only the first of its kind. Starting from an N -dimensional
vector space V , real or complex, we can consider nested sequences of subspaces
Vi of dimension di, such that V1 ⊂ V2 ⊂ · · · ⊂ Vr. This is called a flag of
subspaces (as explained in Figure 4.14). The space of all flags of a given kind
is known as a flag manifold and denoted by F(N)

d1...dr
; projective space is the

easy case where a flag consists of a single one-dimensional subspace only. The
next simplest case is that where the flags consist of a single M -dimensional
subspace; such a flag manifold is known as the Grassmannian F(N)

M = GrCM,N .
The notation also tells us which field (R or C) we are using; if there is no label
then the complex numbers are implied.

To see how this works let us consider the case of Gr2,4, which is the space
of 2-planes in a four-dimensional vector space. We fix a 2-plane in C4 by fixing
two linearly independent vectors spanning that plane, and collect them into a
rank two N × 2 matrix




Z0,0 Z0,1

Z1,0 Z1,1

Z2,0 Z2,1

Z3,0 Z3,1


 ∼




1 0
0 1

z2,0 z2,1

z3,0 z3,1


 . (4.100)

The entries in the matrix on the left are homogeneous coordinates on the
Grassmannian. Then we exercised our right to perform linear combinations and
rescalings of the columns to get the matrix in a standard form. The remaining
four complex numbers serve as affine coordinates on the four complex dimensional
Grassmannian. Note that if the upper two rows were linearly dependent this
form could not have been reached, but since the matrix as a whole has rank
two we can introduce a similar coordinate system by singling out another pair
of rows. (Indeed it is not hard to see that the Grassmannian is a complex
manifold that can be completely covered by six coordinate patches of this
kind.) From a geometrical point of view it is sometimes advantageous to think
of the Grassmannian of 2-planes as the space of projective lines in a projective
space of dimension N − 1; it is an interesting exercise to convince oneself
directly that the space of lines in 3-space is four-dimensional. On the other
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hand the use of an N ×M matrix as homogeneous coordinates for GrM,N has
advantages too and leads to an immediate proof that it is a complex manifold
of M(N −M) complex dimensions.8

When we get to more involved examples of flag manifolds any kind of explicit
description of the space will get involved, too. For this reason it is a good idea
to fall back on a description as coset spaces. Let us begin with F(4)

1 = CP3.
The group GL(4,C) acts transitively on the underlying vector space. Pick any
point, say p = (1, 0, 0, 0) and find its isotropy group – that subgroup of the
transitive group that leaves the given point invariant. Here the isotropy group
consists of all matrices h of the form

h =




• • • •
0 • • •
0 • • •
0 • • •


 , (4.101)

where • is any complex number. This defines a subgroup of GL(4,C), and we
can now define CP3 as a coset space following the recipe in Section 3.8. We
can use SL(4,C) as our starting point instead; the resulting coset will be the
same once the form of h is restricted so that it has unit determinant. Call the
resulting isotropy group P

(4)
1 . Indeed we can restrict ourselves to U(N) since

the unitary subgroup of GL(4,C) also acts transitively; when h is restricted to
belong to U(N) it becomes a block diagonal matrix representing U(1)×U(3).
The argument clearly generalizes to any dimension, so that we have proved
that

F(N)
1 ≡ CPN−1 =

SL(N,C)

P
(N)
1

=
U(N)

U(1)× U(N − 1)
. (4.102)

For real projective space we just have to replace SL(C) with SL(R) and the
unitary groups by orthogonal groups.

The same argument repeated for the Grassmannian Gr2,4 reveals that the
isotropy group can be written as the set P

(4)
2 of special linear matrices of the

form

h =




• • • •
• • • •
0 0 • •
0 0 • •


 , (4.103)

or as block diagonal unitary matrices belonging to U(2)×U(2) if only unitary
transformations are considered. For the flag manifold F(N)

1,2,3 the isotropy group
is a Borel subgroup B of SL(4,C); by definition the standard Borel subgroup is
the group of upper triangular matrices and a general Borel subgroup is given
by conjugation of the standard one. If the group is U(N) the Borel subgroup
is the subgroup U(1)×U(1)×U(1)×U(1), given by diagonal matrices in the
standard case. The isotropy groups considered above are examples of parabolic

8 The affine coordinates are particularly useful if one wants to discuss the natural (Fubini–Study
like) metric properties of the Grassmannians. See Wong (1967) for this.
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subgroups P of the group G, represented by ‘block upper triangular’ matrices
such that B ⊂ P ⊂ G. Thus we can write, in complete generality,

F(N)
d1d2...dr

=
SL(N,C)

P
(N)
d1d2...dr

=
U(N)

[U(k1)× U(k2) . . . U(kr+1)]
, (4.104)

where k1 = d1 and ki+1 = di+1 − di (and dr+1 = N). Given that the real
dimension of U(N) is N2 the real dimension of an arbitrary flag manifold is

dim(F(N)
d1d2...dr

) = N2 −
r+1∑
i=1

k2
i . (4.105)

Equivalently it is simply twice the number of zeroes in the complex matrices
representing the parabolic subgroup P

(N)
d1d2...dr

. For real flag manifolds, replace
the unitary groups with orthogonal groups.

The two descriptions of flag manifolds given in Eq. (4.104) are useful in
different ways. To see why we quote two facts: the quotient of two complex
groups is a complex manifold, and the quotient of two compact groups is a
compact manifold. Then the conclusion is that all flag manifolds are compact
complex manifolds. Indeed they are also Kähler manifolds. This has to do
with another way of arriving at them, based on adjoint orbits in a Lie algebra.
This aspect of flag manifolds will be discussed at length in Chapter 8 but let
us reveal the point already here. The Lie algebra of the unitary group is the
set of Hermitian matrices, and such matrices can always be diagonalized by
unitary transformations. The set of Hermitian matrices with a given spectrum
(λ1, λ2, . . . , λN) can therefore be written as

Hλ1λ2...λN
= UHdiagU

−1 . (4.106)

This is an adjoint orbit and a little bit of thinking reveals that it is also a flag
manifold F(N); which particular one depends on whether there are degeneracies
in the spectrum. For the special case when λ1 = 1 and all the others are zero
we came across this fact when we embedded CPn in the flat vector space
of Hermitian matrices; see Eq. (4.61). The theme will be further pursued in
section 8.5.9

A variation on the theme deserves mention too. A Stiefel manifold is by
definition the space of sets of M orthonormal vectors in an N -dimensional
vector space. It is not hard to see that these are the complex (real) homogeneous
spaces

St
(C)
M,N =

U(N)
U(N −M)

and St
(R)
M,N =

O(N)
O(N −M)

. (4.107)

This is not quite the same as a Grassmannian since the definition of the latter
is insensitive to the choice of basis in the M -dimensional subspaces that are
the points of the Grassmannian. As special cases we get St

(C)
1,N = S2N−1 and

St
(R)
1,N = SN−1; see Section 3.8.

9 For further information on flag manifolds, in a form accessible to physicists, consult Picken (1990).
The adjoint orbits should really be coadjoint, but the distinction is irrelevant here.
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Problems

¦ Problem 4.1 Consider n + 2 ordered points on the plane, not all of
which coincide. Consider two such sets equivalent if they can be transformed
into each other by translations, rotations and scalings. Show that the topology
of the resulting set is that of CPn. What does CPn have to do with archaeology?

¦ Problem 4.2 If you manage to glue together a Möbius strip and a
hemisphere you get RP2. What will you obtain if you glue two Möbius strips
together?

¦ Problem 4.3 Carry through the argument needed to prove that
a complex projective line cannot be shrunk to a point within CPn, using
formulae, and using the octant picture.



5 Outline of quantum mechanics

Quantum mechanics is like a pot: it is almost indestructible and extremely
rigid, but also very flexible because you can use any ingredients for your
soup.

Göran Lindblad

5.1 Quantum mechanics

Although our first four chapters have been very mathematical, quantum mechanics
has never been very far away. Let us recall how the mathematical structure
of quantum mechanics is usually summarized at the end of a first course in
the subject. First of all the pure states are given by vectors in a Hilbert
space. If that Hilbert space is finite dimensional it is simply the vector space
CN equipped with a scalar product of the particular kind that we called a
Hermitian form in Eq. (3.82). Actually a pure state corresponds to an entire
equivalence class of vectors; this is usually treated in such a way that the
vectors are normalized to have length one and afterwards vectors differing by
an overall phase eiφ are regarded as physically equivalent. In effect then the
space of pure states is the complex projective space CPn; as always in this
book n = N − 1. The notation used in quantum mechanics differs from what
we have used so far. We have denoted vectors in CN by Zα, while in quantum
mechanics they are usually denoted by a ket vector |ψ〉. We can think of the
index α as just a label telling us that Zα is a vector, and then these two
notations are in fact exactly equivalent. It is more common to regard the
index as taking N different values, and then Zα stands for the N components
of the vector with respect to some chosen basis, that is

|ψ〉 =
n∑

α=0

Zα |eα〉 . (5.1)

To each vector Zα there corresponds in a canonical way a dual vector Z̄α; in
Dirac’s notation this is a bra vector 〈ψ|. Given two vectors there are then two
kinds of objects that can be formed: a complex number 〈φ|ψ〉, and an operator
|ψ〉〈φ| that can be represented by a square matrix of size N .

The full set of states includes both pure and mixed states. To form mixtures
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we first write all pure states as operators, that is we define

ρ = |ψ〉〈ψ| ⇔ ρα
β = ZαZ̄β , (5.2)

where the state vector is assumed to be normalized to length one and our
two equivalent notations have been used. This is a Hermitian matrix of trace
one and rank one, in other words it is a projection operator onto the linear
subspace spanned by the original state vector; note that the unphysical phase
of the state vector has dropped out of this formula so that we have a one-to-
one correspondence between pure states and projection operators onto rays.
Next we take convex combinations of K pure states, and obtain expressions
of the form

ρ =
K∑

i=1

pi |ψi〉〈ψi| . (5.3)

This is a density matrix, written as a convex mixture of pure states.1 The set
M of all states, pure or mixed, coincides with the set of Hermitian matrices
with non-negative eigenvalues and unit trace, and the pure states as defined
above form the extreme elements of this set (in the sense of Section 1.1).

The time evolution of pure states is given by the Schrödinger equation. It
is unitary in the sense that the scalar product of two vectors is preserved by
it. In the two equivalent notations it is given by

i~ ∂t|ψ〉 = H|ψ〉 ⇔ i~ Żα = Hα
β Zβ , (5.4)

where H is an Hermitian matrix that has been chosen as the Hamiltonian
of the system and Planck’s constant ~ has been explicitly included. We will
follow the usual custom of defining our units so that ~ = 1. In the geometrical
language of Section 4.6 the Hamiltonian is a generator of a Killing field on
CPn. By linearity, the unitary time evolution of a density matrix is given by

iρ̇ = [H, ρ] = Hρ− ρH . (5.5)

A system that interacts with the external world can change its state in other
and non-unitary ways as well; how this happens is discussed in Chapter 10.

It remains to extract physical statements out of this formalism. One way
to do this is to associate the projection operators (5.2) to elementary ‘yes/no’
questions. In this view, the transition probability |〈ψ|φ〉|2 is the probability that
a system in the state |φ〉 answers ‘yes’ to the question represented by |ψ〉 – or
the other way around, the expression is symmetric in |φ〉 and |ψ〉. Hermitian
operators can be thought of as weighted sums of projection operators – namely
those projection operators that project onto the eigenvectors of the operator.
They can also be thought of as random variables. What one ends up with is an
association between physical observables, or measurements, on the one hand,
and Hermitian operators on the other hand, such that the possible outcomes

1 The density matrix was introduced by von Neumann (1927). He refers to it as the statistical
operator (von Neumann, 1955). The word density matrix was first used by Dirac, in a slightly
different sense. According to Coleman (1963) quantum chemists and statistical physicists came
to an agreement on nomenclature in the early 1960s.
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of a measurement are in one-to-one correspondence with the eigenvalues of the
operator, and such that the expectation value of the measurement is

〈A〉 = TrρA . (5.6)

When the state is pure, as in Eq. (5.2), this reduces to

〈A〉 = 〈ψ|A|ψ〉 . (5.7)

There is more to be said about measurements – and we will say a little bit
more about this tangled question, in Section 10.1.

The role of the state is to assign probabilities to measurements. Note that,
even if the state is pure, probabilities not equal to one or zero are present as
soon as [ρ,A] 6= 0. There is a sample space for every non-degenerate Hermitian
matrix, and the quantum state ρ has to assign a probability distribution for
each and every one of these. A pure quantum state ρ is classically pure only
with respect to the very special observables that commute with ρ. This is the
reason (or at least the beginning of a reason) for why quantum mechanics is
so much more subtle than classical statistics, where the set of pure states itself
has the trivial structure of a discrete set of points.

Two disclaimers must be made. First, if infinite-dimensional Hilbert spaces
are allowed then one must be more careful with the mathematical formulation.
Second, the interpretation of quantum mechanics is a difficult subject. For
the moment we ignore both points, but we do observe that using optical
devices it is possible to design an experimental realization of arbitrary N ×N
unitary matrices (Reck, Zeilinger, Bernstein and Bertani, 1994). Therefore the
formalism must be taken seriously in its entirety.

5.2 Qubits and Bloch spheres

It is not enough to say that CPn is the space of pure states. We have to
know what physical states are being referred to. Like the sphere, CPn is a
homogeneous space in which a priori all points are equivalent. Therefore it
cannot serve as a space of states without further embellishments, just as a
sphere is a poor model of the surface of the Earth until we have decided which
particular points are to represent Kraków, Stockholm, and so on. The claim is
that every physical system can be modelled by CPn for some (possibly infinite)
value of n, provided that a definite correspondence between the system and
the points of CPn is set up.

But how do we set up such a correspondence, or in other words how do
we tie the physics of some particular system to the mathematical framework?
The answer depends very much on the system. One case which we understand
very well is that of a particle of spin 1/2 that we can perform Stern–Gerlach
experiments on. The idea is that to every pure state of this particle there
corresponds a unique direction in space such that the spin is ‘up’ in that
direction. Therefore its space of pure states is isomorphic to the set of all
directions in space – ordinary physical Space – and hence to S2 = CP1. In
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this connection the sphere is known as the Bloch sphere; from the way it is
defined it is evident that antipodal points on the Bloch sphere correspond to
states that have spin up in opposite directions, that is to orthogonal states as
usually defined. The Bloch ball, whose boundary is the Bloch sphere, is also
of interest and in fact it corresponds to the space of density matrices in this
case. Indeed an arbitrary Hermitian matrix of unit trace can be parametrized
as

ρ =
[

1
2

+ z x− iy
x + iy 1

2
− z

]
. (5.8)

It is customary to regard this as an expansion in terms of the Pauli matrices
~σ = (σx, σy, σz), so that

ρ =
1
2
1+ ~τ · ~σ . (5.9)

The vector ~τ is known as the Bloch vector, and its components are coordinates
in the space of matrices with unit trace. The matrix ρ is a density matrix if
and only if its eigenvalues are non-negative, and this is so if and only if

x2 + y2 + z2 ≤ 1
4

. (5.10)

This is indeed a ball, with the Bloch sphere as its surface. We will study density
matrices in depth in Chapter 8; meanwhile let us observe that if the physics
singles out some particular spatial direction as being of special importance –
say because the particle is in a magnetic field – then the homogeneous Bloch
sphere begins to acquire an interesting geography.

Note that we are clearly oversimplifying things here. A real spin 1/2 particle
has degrees of freedom such as position and momentum that we ignore. Our
description of the spin 1/2 particle is therefore in a way a caricature, but like
all good caricatures it does tell us something essential about its subject.

Another well-understood case is that of a photon of fixed momentum. Here
we can measure the polarization of the photon, and it is found that the states
of the photon are in one-to-one correspondence to the set of all oriented
ellipses (including the degenerate cases corresponding to circular and linear
polarization). This set at first sight does not seem to be a sphere. What we
can do is regard every ellipse as the projection down to a plane of an oriented
great circle on the sphere, and associate a point on the sphere to a vector
through the origin that is orthogonal to the given great circle. Unfortunately
to every oriented ellipse – except the two special ones representing circular
polarization – there now correspond two points on the sphere, so this cannot
be quite right. The solution is simple. Start with the Riemann sphere and
represent its points with a complex number

z = x + iy =
sin θeiφ

1 + cos θ
= tan

θ

2
eiφ . (5.11)

Here x and y are the stereographic coordinates defined in Section 3.1, while
φ and θ are the latitude and longitude (counted from the north pole). Let
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Figure 5.1. The Bloch ball, with a reminder about the coordinates that we are
using. Also the auxiliary sphere used to establish the correspondence to photon
polarization.

0 and ∞ – the north and south poles of the sphere – correspond to circular
polarization. Now take the square root w =

√
z and introduce another Riemann

sphere whose points are labelled with w. For every point except 0 and ∞ there
are two distinct points w for every z. Finally associate an oriented ellipse with
the second sphere as originally indicated. The pair of points w that correspond
to the same z now give rise to the same ellipse. In this way we obtain a one-
to-one correspondence between oriented ellipses, that is to the states of the
photon, and the points z on the first of the Riemann spheres. Hence the state
space is again CP1, in this connection known as the Poincaré sphere. Note that
antipodal points on the equator of the Poincaré sphere correspond to states
that are linearly polarized in perpendicular directions. For an arbitrary state
the ratio of the minor to the major axis of the polarization ellipse is (with the
angle α defined in Figure 5.1)

cosα =
1− tan2 α

1 + tan2 α
=

1− tan θ
2

1 + tan θ
2

=
1− |z|
1 + |z| . (5.12)

The reader may now recognize the Stokes’ parameters from textbooks on optics
(Born and Wolf, 1987).

The spin 1/2 particle and the photon are examples of two-level systems,
whose defining property is that a (special kind of) measurement that we can
perform on the system yields one of two possible results. In this respect a
two-level system behaves like the ‘bit’ of computer science. However, quantum
mechanics dictates that the full space of states of such a system is a CP1, a
much richer state space than that of a classical bit. It is a qubit. Two-level
systems often appear when a sufficiently drastic approximation of a physical
system is made; typically we have a potential with two degenerate minima and
a high barrier between them. There are then four points on the sphere that
have a clear interpretation: the north and south poles correspond to states
where the system sits in one of the minima of the potential, and the east
and west poles correspond to eigenstates of the Hamiltonian. We may not
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have sufficient control over the system to interpret the remaining states of the
qubit, but quantum mechanics dictates them to be there.

When the dimension of the Hilbert space goes up we encounter first three-
level systems or qutrits and then N-level systems or quNits.2 The quantum
mechanical formalism treats all quNits in the same way, but its meaning
depends on how the formalism is tied to the physics of the problem; it may
be a spin system, it may be an atom with N relevant energy levels, or the
number N may appear simply because we have binned our experimental data
into N separate bins.

5.3 The statistical and the Fubini–Study distances

We now turn to the physical interpretation of the Fubini–Study metric. There
is a very good reason to consider this particular geometry, namely that it gives
the statistical distance between states, in the sense of Section 2.5. But the
definition of statistical distance in quantum mechanics requires some thought.
Suppose that we wish to distinguish between two quantum states by means of
a finite set of experiments. It will then be necessary to choose some specific
measurement to perform, or in mathematical terms to choose some Hermitian
operator to describe it. We can use the result of this measurement to define the
statistical distance between the given states, but it is clear that this distance
will depend on the operator as well as on the states. By varying the operator
we should be able to define the least possible statistical distance between
the states in a unique manner, and by definition this will be the distance
between the states. What we see here reflects the fact that each non-degenerate
observable defines its own sample space. The situation is simple only if the
states are orthogonal. Then the optimal measurement is one having the two
states as eigenvectors. In general no such operator will exist, and the pure
states therefore have a much more interesting geometry than the pure states
in classical statistics, which are just an equidistant set of corners of a simplex.

Suppose that the two states are |ψ〉 and |φ〉. Choose an operator A, and
observe that it has n + 1 orthogonal eigenstates |i〉 in terms of which we can
expand

|ψ〉 =
n∑

i=0

ci|i〉 and |φ〉 =
n∑

i=0

di|i〉 . (5.13)

For convenience we normalize all state vectors to unity. The probability to
obtain a given outcome of the measurement is given by the standard interpretation
of quantum mechanics – for the ith outcome to occur when the state is |ψ〉 it is
|ci|2. According to Section 2.5 the statistical Bhattacharyya distance between

2 The name ‘qubit’ was born in conversations between Wootters and Schumacher, and first used in
print by the latter (Schumacher, 1995). The name ‘bit’ is due to John Tukey, consulting for Bell
Labs in the 1940s. Whether anyone deserves credit for the name ‘quNit’ is unclear. Authors who
work with Hilbert spaces of dimension d talk of ‘qudits’, which is perhaps marginally better as a
name.
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the given states, given the operator, can be computed from the square roots
of the probabilities:

cos dA =
n∑

i=0

|ci| |di| =
n∑

i=0

|〈ψ|i〉| |〈φ|i〉| . (5.14)

According to the definition of distance between quantum mechanical states
we should now choose the operator A in such a way that dA becomes as small
as possible, that is to say that the right-hand side should be as close to one
as it can get. As noted in Problem 5.1 there are several operators that give
the same answer; one solution is to let A have either |ψ〉 or |φ〉 as one of its
eigenstates, in which case the expression collapses to

cosDFS = |〈ψ|φ〉| . (5.15)

But this is precisely the geodesic distance between the two states as computed
by means of the Fubini–Study metric. It was given in projectively invariant
form in Eqs. (4.45)–(4.46); in the present notation

cos2 DFS = κ =
|〈ψ|φ〉|2

〈ψ|ψ〉 〈φ|φ〉 . (5.16)

We have therefore established that the Fubini–Study metric measures the
distinguishability of pure quantum states in the sense of statistical distance.3

The projective cross-ratio κ is more often referred to as the transition probability
or, in quantum communication theory, as the fidelity function (Jozsa, 1994).

More precisely the Fubini–Study distance measures the experimental distinguishability
of two quantum states under the assumption that there are no limitations on
the kind of experiments we can do. In practice a laboratory may be equipped
with measurement apparatus corresponding to a small subset of Hermitian
operators only, and this apparatus may have various imperfections. An atomic
physicist confronted with three orthogonal states of the hydrogen atom, say
the ground state n = 1, and two states with n = 100 and n = 101, respectively,
may justifiably feel that the latter two are in some sense closer even though all
three are equidistant according to the Fubini–Study metric. (They are closer
indeed with respect to the Monge metric discussed in Section 7.7.) The Fubini–
Study geometry remains interesting because it concerns what we can know in
general, without any knowledge of the specific physical system.

An instructive sidelight on the role of the Fubini–Study metric as a distinguishability
measure is thrown by its appearance in the Aharonov–Anandan time–energy
uncertainty relation (Anandan and Aharonov, 1990). In geometrical language
this is a statement about the velocity of the Killing flow. Using homogeneous
coordinates to express the metric as (4.49) together with the projective Schrödinger
equation (4.59) we can write

(
ds

dt

)2

= 2
Z [αdŻβ] Z̄[αd ˙̄Zβ]

Z̄ · Z Z̄ · Z = 〈H2〉 − 〈H〉2 , (5.17)

3 This very precise interpretation of the Fubini–Study metric was first given by Wootters (1981),
although similar but less precise interpretations were given earlier.
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where brackets denote anti-symmetrization, a minor calculation precedes the
last step and

〈H〉 ≡ Z̄αHα
β Zβ

Z̄ · Z (5.18)

and so on. The final result is pleasing:

ds

dt
=

√
〈H2〉 − 〈H〉2 . (5.19)

This is indeed a precise version of the time–energy uncertainty relation: the
system is moving quickly through regions where the uncertainty in energy is
large.

5.4 A real look at quantum dynamics

Why is the Hilbert space complex? This is a grand question that we will not
answer. But an interesting point of view can be found if we ‘take away’ the
imaginary number i and think of the complex vector space CN as the real
vector space R2N with some extra structure on it.4 The notation that is used
for complex vector spaces, whether bras or kets or our index notation, actually
hides some features that become transparent when we use real notation and
keep careful track of whether the indices are upstairs or downstairs. The thing
to watch is how the observables manage to play two different roles. They form
an algebra, and in this respect they can cause transformations of the states,
but they also provide a map from the states to the real numbers. Let us call the
vectors XI . A linear observable capable of transforming this vector to another
vector must then be written as AI

J so that XI → AI
JXJ . On the other hand

the matrix should be able to transform the vector to a real number, too. This
can be done if we regard the observable as a quadratic form, in which case it
must have both its indices downstairs: XI → XIAIJXJ . We therefore need
a way of raising and lowering indices on the observable. A metric tensor gIJ

seems to be called for, but there is a problem with this. The metric tensor
must be a very special object, and therefore it seems natural to insist that it is
not changed by transformations caused by the observables. In effect then the
observables should belong to the Lie algebra of the orthogonal group SO(2N).
But using the metric to lower indices does not work because then we have

0 = δgIJ = gIKAK
J + gKJAK

I ⇔ AIJ = −AJI . (5.20)

The problem is that in its other role as a quadratic form AIJ needs to be
symmetric rather than anti-symmetric in its indices. The metric will play a
key role, but it cannot play this particular one!

But let us begin at the beginning. We split the complex numbers Zα into

4 This has been urged by, among others, Dyson (1962), Gibbons and Pohle (1993) and Hughston
(1995).
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real and imaginary parts and collect them into a 2N -dimensional real vector
XI :

Zα = xα + iyα → XI =
[

xα

yα

]
. (5.21)

The imaginary number i then turns into a matrix JI
J :

JI
J =

[
0 −1
1 0

]
⇒ J2 = −1 . (5.22)

The existence of a matrix J that squares to minus one provides the 2N -
dimensional vector space with a complex structure. (This definition is equivalent
to, and more straightforward than, the definition given in Section 3.3.)

If we write everything out in real terms further structure emerges. The
complex valued scalar product of two vectors becomes

〈X|Y 〉 = XIgIJY J + iXIΩIJY J , (5.23)

where we had to introduce two new tensors

gIJ =
[
1 0
0 1

]
ΩIJ =

[
0 1
−1 0

]
. (5.24)

The first is a metric tensor, the second is a symplectic form (in the sense of
Section 3.4). Using the inverse of the symplectic form,

ΩIKΩKJ = δI
J , (5.25)

we observe the key equation

JI
J = ΩIKgKJ ⇔ gIJ = ΩIKJK

J . (5.26)

Thus, the complex, metric, and symplectic structures depend on each other.
In fact we are redoing (for the case of a flat vector space) the definition of
Kähler manifolds that we gave in Section 3.3.

We can use the symplectic structure to define Poisson brackets according
to Eq. (3.73). But we will be interested in Poisson brackets of a rather special
set of functions on our phase space. Let OIJ = OJI be a symmetric tensor and
define

〈O〉 ≡ XIOIJXJ . (5.27)

Such tensors can then play one of the two key roles for observables, namely
to provide a map from the state vectors to the real numbers. But observables
play another role too. They transform states into new states. According to the
rules for how tensor indices may be contracted this means that they must have
one index upstairs. We therefore need a way of raising and lowering indices
on the observables-to-be. We have seen that the metric is not useful for this
purpose, so we try the symplectic form:

ÕI
J ≡ ΩIKOKJ . (5.28)

The observables now form an algebra because they can be multiplied together,
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Õ1Õ2 = ÕI
1KÕK

2J . Note that, according to Eq. (5.26), the complex structure is
the transformation matrix corresponding to the metric tensor: J = g̃.

We can work out some Poisson brackets. Using Eq. (3.73) we find that

{XI , 〈O〉} = 2ÕI
JXJ = ΩIJ∂J〈O〉 (5.29)

{〈O1〉, 〈O2〉} = 2〈[Õ1, Õ2]〉 where [Õ1, Õ2] ≡ Õ1Õ2 − Õ2Õ1 . (5.30)

The Poisson bracket algebra is isomorphic to the commutator algebra of the
matrices Õ – even though there is no classical limit involved.

The observables as defined so far are too general. We know that we should
confine ourselves to Hermitian operators, but why? What is missing is a
requirement that is built into the complex formalism, namely that operators
commute with the number i. In real terms this means that our observables
should obey

[J, Õ] = 0 ⇔ OIJ =
[

m −a
a m

]
, (5.31)

where m is a symmetric and a an anti-symmetric matrix. From now on only
such observables are admitted. We call them Hermitian. There is a ‘classical’
way of looking at this condition. We impose the constraint that the states be
normalized,

〈g〉 − 1 ≡ XIgIJXJ − 1 = 0 . (5.32)

According to the rules of constrained Hamiltonian dynamics we must then
restrict our observables to be those that Poisson commute with this constraint,
that is to say that Eq. (5.30) forces us to impose Eq. (5.31). Technically, this
is a moment map.

Finally we select a specific observable, call it H, and write down Hamilton’s
equations:

ẊI = {X i, 〈H〉} = 2H̃I
JXJ = ΩIJ∂J〈H〉 . (5.33)

Using Eqs. (5.21) and (5.31) reveals that, in complex notation, this is precisely

Żα = ẋα + iẏα = 2i(m + ia)α
β(xβ + iyβ) ≡ −iHα

βZβ . (5.34)

This is Schrödinger’s equation, with a complex matrix H that is Hermitian in
the ordinary sense. In this way we learn that Schrödinger’s equation is simply
Hamilton’s equation in disguise.5 Note also that the constraint (5.32) generates
a Hamiltonian flow

ẊI = {XI , 〈g〉 − 1} = 2JI
JXJ ⇔ Żα = 2iZα . (5.35)

According to the theory of constrained Hamiltonian systems this is an unobservable
gauge motion, as indeed it is. It just changes the unphysical phase of the
complex state vector.

In a sense then quantum mechanics is classical mechanics onCPn, formulated
as a constrained Hamiltonian system on CN . But there is a key difference that

5 It appears that this interesting point was first made by Kibble (1979). Further studies were made
by, among others, Gibbons (1992), Ashtekar and Schilling (1998) and Brody and Hughston (2001).
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we have so far glossed over. In classical mechanics arbitrary functions on phase
space are used as observables, and each such function defines a Hamiltonian
flow via Hamilton’s equations. In our discussion we restricted ourselves at the
outset to quadratic functions of the state vectors, leading to linear equations
of motion. The reason for this restriction is that we require the Hamiltonian
flow to leave not only the symplectic form but also the metric invariant. From
Section 4.5 we know that the Killing vector fields of CPn are generated by
Hermitian matrices, and this is precisely the set of Hamiltonian flows that we
ended up with. The unitary group U(N), or the isometry group that acts on
Hilbert space, is a subgroup of the orthogonal group SO(2N); instead of the
unfortunate Eq. (5.20) we now have

gIK ÕK
J + gKJ ÕK

I = 0 ⇔ [J, Õ] = 0 . (5.36)

Hence the transformations effected by our observables preserve the metric.
From this point of view then quantum mechanics appears as a special case
of classical mechanics, where the phase space is special (CPn) and the set
of observables is restricted to be those that give rise to Hamiltonian vector
fields that are also Killing vector fields. Unlike classical mechanics, quantum
mechanics has a metric worth preserving.

The restriction that leads to quantum mechanics – that the Hamiltonian flow
preserves the metric – can be imposed on any Kähler manifold, not just on
CPn. It has often been asked whether this could lead to a viable generalization
of quantum mechanics. In fact several problems arise almost immediately.
If the resulting formalism is to be of any interest one needs a reasonable
large number of Hamiltonian Killing vector fields to work with. Some Kähler
manifolds do not have any. If the dimension is fixed the maximal number
of linearly independent Killing vector fields occurs if the Kähler space has
constant holomorphic sectional curvature. But as noted in Section 4.5 if the
space is also compact and simply connected this condition singles out CPn

uniquely.
There are other reasons why CPn appears to be preferred over general

Kähler spaces, notably the existence of the Segre embedding (Section 4.3).
The fact that this embedding is always available makes it possible to treat
composite systems in just the way that is peculiar to quantum mechanics,
where the dimension of the state space of the composite system is surprisingly
large. These dimensions are being used to keep track of entanglement – correlations
between the subsystems that have no classical counterpart – and it is entanglement
that gives quantum mechanics much of its special flavour (see Chapter 15).
In some sense it is also the large dimension of the quantum mechanical state
space that enables general symplectic manifolds to arise in the classical limit;
although we have argued that quantum mechanics is (in a way) a special case
of classical mechanics we must remember that quantum mechanics uses a much
larger phase space than the classical theory – when the Hilbert space is finite
dimensional the set of pure states of the corresponding classical theory is a
finite set of points, while theories with finite-dimensional classical phase spaces
require an infinite-dimensional quantum ‘phase space’.
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5.5 Time reversals

The operation of time reversal is represented by an anti-unitary rather than a
unitary operator, that is to say by an isometry that is a reflection rather than
a rotation.6 A complex conjugation is then involved, and it is again helpful to
think of the state space as a 2N -dimensional real manifold. In some situations
we can see that the choice of a complex structure on the real vector space is
connected to the direction of time. The point is that any matrix J that squares
to −1 can be choosen as a complex structure on a real 2N -dimensional vector
space. Regarded as an SO(2N) transformation such a matrix can be thought
of as producing quarter turns in N suitably chosen orthogonal two-dimensional
planes. But the Hamiltonian is an SO(2N) matrix as well, and it is chosen to
commute with J , so that it generates rotations in the same N planes. If the
Hamiltonian is also positive definite it defines a sense of direction for all these
rotations, and it is natural to require that the quarter turns effected by J takes
place in the same directions. This then singles out a unique J . It follows that
if we reverse the direction of time then the complex structure changes sign –
which is why time reversal will be represented in quantum mechanics by an
anti-unitary transformation.7

Wigner’s theorem states that every isometry of CPn can be effected by
a transformation of CN that is either unitary or anti-unitary. The latter
possibility arises only when discrete isometries are concerned (since the square
of an anti-unitary transformation is unitary), but as we have seen it includes
the interesting case of time reversal. Let us see what this looks like in real
terms. Since all we require is that the Fubini–Study metric is preserved it is
enough to ensure that the projective cross-ratio as derived from the Hermitian
form is preserved. This will be so if the transformation is effected by a matrix
which obeys either

UgUT = g , UΩUT = Ω (5.37)

(the unitary case) or

ΘgΘT = g , ΘΩΘT = −Ω (5.38)

(the anti-unitary case). Hence anti-unitary transformations are anti-canonical.
Note by the way that the equation that defines an anti-unitary transformation,
namely

〈ΘX|ΘY 〉 = 〈Y |X〉 , (5.39)

indeed follows from the definition (5.23) of the Hermitian form.
Two options are still open for Θ:

Θ2 = ±1 . (5.40)

The choice of sign depends on the system. For spin systems the choice of sign
6 The standard reference on time reversal is Wigner (1959). The usefulness of the real point of view

was emphasized by Dyson (1962).
7 See Ashtekar and Magnon (1975) and Gibbons and Pohle (1993) for elaborations of this point.
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is made in an interesting way. The physical interpretation requires that the
angular momentum operators J are odd under time reversals, so that

ΘJ + JΘ = 0 . (5.41)

An anti-unitary operator can always be written in the form

Θ = UK , (5.42)

where K denotes the operation of complex conjugation and U is a unitary
operator. In the standard representation of the angular momentum operators
– Eqs. (B.4)–(B.5), where Jy is imaginary and the others real – the unitary
operator U must obey

UJx + JxU = UJz + JzU = UJy − JyU = 0 . (5.43)

These equations determine U uniquely up to an irrelevant phase factor; the
answer is

U =




0 0 0 0 (−1)N

· · · · · · · · · · · · 0
0 0 1 · · · 0
0 −1 0 · · · 0
1 0 0 · · · 0




. (5.44)

It then follows, with no ambiguity, that

N odd, n even ; ⇒ Θ2 = 1 N even, n odd ⇒ Θ2 = −1 . (5.45)

Time reversals therefore work quite differently depending on whether the spin
is integer (even n) or half-integer (odd n). For even n there will be a subspace
of states that are left invariant by time reversal. In fact they form the real
projective space RPn.

Odd n is a different matter. There can be no Θ invariant states. This means
that |P 〉 and Θ|P 〉 must be distinct points in CP2n+1 and therefore they define
a unique projective line LP ; in fact they are placed on opposite poles of this
projective line, regarded as a 2-sphere. Moreover it is not hard to show that the
resulting projective line transforms onto itself under Θ. Now consider a point
|Q〉 not lying on LP . Together with Θ|Q〉 it determines another projective
line LQ. But LP and LQ cannot have a point in common (because if they
had then their intersection would also contain the time-reversed point, and
therefore they would coincide, contrary to assumption). It follows that CP2n+1

can be foliated by complex projective lines that never touch each other. It
is a little hard to see this directly, but a similar statement is true for real
projective spaces of odd dimension. Then the real projective lines that never
touch each other are precisely the Clifford parallels in the Hopf fibration of
S2n+1, restricted to RP2n+1; see Section 3.5.

Keeping n odd, suppose that we restrict ourselves throughout to time-
reversal invariant operators. This means that we decide to probe the system
by means of time-reversal invariant observables only. Such observables obey

[Õ, Θ] = 0 . (5.46)
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The theory when subject to a restriction of this kind is said to be obey
a superselection rule. The first observation is that all such observables are
degenerate, since all points on a time-reversal invariant 2-sphere have the
same eigenvalues of Õ. (This is known as Kramer’s degeneracy.) The second
observation is that this restriction of the observables effectively restricts the
state space to be the base manifold of the fibre bundle whose bundle space is
CP2n+1 and whose fibres are CP1. This is analogous to how CPn arises as the
state space when we restrict ourselves to observables that commute with the
complex structure.

What is this new state space? To see this, let us go back to the real vector
space of states that we analysed in Section 5.4. We know that

ΘJ + JΘ = 0 , (5.47)

where J is the complex structure. We define

i = J j = Θ k = JΘ . (5.48)

It follows that

i2 = j2 = k2 = −1 , ij = k jk = i ki = j . (5.49)

This is the algebra of quaternions.8 Quaternions are best regarded as a natural
generalization of complex numbers. A general quaternion can be written in
terms of four real numbers as

q = a0 + a1i + a2j + a3k . (5.50)

For every quaternion there is a conjugate quaternion

q̄ = a0 − a1i− a2j− a3k (5.51)

and the quantity |q|2 ≡ q̄q = qq̄ is a real number called the absolute value
squared of the quaternion. The absolute value of a product is the product of
the absolute values of the factors. In general two quaternions do not commute.
Like the real numbers R and the complex numbers C the quaternions form
a normed associative division algebra, that is to say that they share the
algebraic structure of the real number field except that multiplication is not
commutative. Moreover these three are the only division algebras over the real
numbers that exist – a statement known as Frobenius’ theorem. (Multiplication
of octonions is not associative.) For the moment the main point is that we
can form quaternionic vector spaces and quaternionic projective spaces too,
provided we agree that multiplication with scalars – that are now quaternions
– always takes place from the left (say); we must be careful to observe this
rule since the scalars no longer commute with each other.

Since we are dealing with CP2n+2 we are working in a real vector space
of dimension 4n + 4. We can regard this as a quaternionic vector space of

8 Denoted H after Hamilton who invented them. It was Dyson (1962) who first noted that
quaternions arise naturally in standard quantum mechanics when time reversals are considered.
For further elaborations see Avron, Sadun, Segert and Simon (1989) and Uhlmann (1996). For a
review of just about every other aspect of quaternions, see Gürsey and Tze (1980).
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quaternionic dimension n + 1. For n = 1 this means that an arbitrary vector
is written as a two component object

Za = (Z0 + Z3j, Z2 + Z1j) , (5.52)

where the Zα are complex numbers and we must remember that the imaginary
unit i anticommutes with j. It is straightforward to check that time reversal as
defined above is effected by a left multiplication of the vector by j. Since
we have imposed the superselection rule that multiplication of the vector
with an overall quaternion leaves the state unchanged we can now form the
quaternionic projective space HP1. Topologically this is R4 +∞ = S4.

Everything works out in such close analogy to the real and complex projective
spaces that we need not give the details. Let us just quote the salient points:
starting from a real vector space of dimension 4n + 4 we first normalize the
vectors to unity, and then we impose the superselection rules

[Õ, i] = 0 ⇒ CPn [Õ, j] = 0 ⇒ HPn . (5.53)

This is known as the Hopf fibration of the 4n+3 sphere. In two steps S4n+3 →
CP2n+1 with fibre S1 and CP2n+1 → HPn with fibre S2, or in one step
S4n+3 → HPn with fibre S3. The base spaces inherit natural metrics from this
construction. In the case of HP1 this happens to be the round metric of the 4-
sphere. When equipped with their natural metrics the projective spaces RPn,
CPn and HPn share some crucial features, notably that all their geodesics are
closed.

Occasionally it is suggested that quaternionic quantum mechanics can offer
an alternative to the standard formalism, but we see that the quaternionic
projective space has a role to play as a state space also within the latter.

5.6 Classical and quantum states: a unified approach

Some remarks on how quantum mechanics can be axiomatized may not be
out of place – even if they will be very incomplete. There is a choice whether
observables or states should be regarded as primary. The same choice occurs
when classical mechanics is defined, for the same reason: observables and states
cooperate in producing the real numbers that constitute the predictions of the
theory. These real numbers are the result of real-valued linear maps applied
to a vector space, and the space of such maps is itself a vector space. The
end result is a duality between observables and states, so that either can be
taken as primary. Just as one can take either the hen or the egg as primary.
Let us try to summarize similarities and differences between states in classical
and quantum mechanics, or perhaps more accurately in classical and quantum
probability theory. A classical state is described by a probability vector or by
an element from the set of all probability measures on the classical phase space.
The space of quantum states consists of density matrices. What features are
common for these different frameworks?

Let us start by considering a convex cone V + in a vector space V . Elements



140 Outline of quantum mechanics

Table 5.1. Classical and quantum states: a comparison

Framework States Positivity Normalization

i) probability vectors ~p ∈ RN pi ≥ 0
∑

i pi = 1
ii) probability measures µ ∈ Ω(X) µ(Y ) ≥ 0

∫
X

dµ(x) = 1
iii) density operators ρ ∈ M(N) ρ ≥ 0 Trρ = 1
iv) states on C∗ algebra ω on A ω(x∗x) ≥ 0 ω(1) = 1

x belonging to V + will be called positive. Let e : V → R be a linear functional
on V . The space of all states is then defined as a cross section of the positive
cone, consisting of elements that obey the normalization condition e(x) =
1. As shown in Table 5.1 both classical and quantum states fit well into
this scheme. Let us be a little bit more explicit: in the classical case the
vector space has arbitrary dimension and V + consists of positive vectors.
The functional e is given by the l1-norm of the vector ~p, or by the integral
over phase space in the continuous case; in the table Y denotes an arbitrary
subset of the classical phase space X. This is the case discussed at length in
Chapter 2. In the quantum case the vector space is the space of Hermitian
matrices, V + is the space of positive operators, and the functional e is the
trace. Classical probability theory can be obtained from quantum mechanics
through a restriction to diagonal matrices.

The similarities between the classical and quantum cases are made very
transparent in Segal’s axiomatic formulation.9 Then the axioms are about a
set A of objects called observables. The axioms determine what an observable
is – reflection on what one observes in experiments comes in at a later stage.
The set A has a distinguished subset M whose elements ρ are called states.
We assume

I) The observables form a real linear space.
II) The observables form a commutative algebra.

III) There exists a bilinear map from M×A to the real numbers.
IV) The observables form a Lie algebra.

We see that a state can be thought of as a special kind of linear map from the
observables to the real numbers – and this is characteristic of Segal’s approach,
even if at first sight it appears to be taking things in the wrong order!

These axioms do not characterize quantum mechanics completely. Indeed
they are obeyed by both classical and quantum mechanics. (As far as we are
aware no one knows if there is a third kind of mechanics also obeying Segal’s
axioms.) In classical mechanics states are probability distributions on phase
space, observables are general functions on phase space, and their algebras are
given by pointwise multiplication (axiom II) and by Poisson brackets (axiom

9 For further study we recommend the original paper by Segal (1947). For a simplified account, see
Currie, Jordan and Sudarshan (1963).
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IV). This means that the extreme points of the convex set form a symplectic
manifold; unless rather peculiar measures are taken (Wootters, 1987) this is a
continuous manifold and the set of all states becomes infinite dimensional.

In quantum mechanics states are density matrices acting on some Hilbert
space. The observables A are Hermitian matrices – since we assume that the
Hilbert space is finite dimensional we need no further precision. The algebra in
axiom II is given by a commutative but non-associative Jordan algebra, to be
discussed in Section 8.6. The Lie bracket of axiom IV is given by the imaginary
unit i times the commutator of the observables. The bilinear map required by
axiom III is the trace of the product of ρ and A; this is the quantum mechanical
expectation value 〈A〉 = TrρA. When we think of states as real-valued maps
from the observables, we write ρ(A) = TrρA. Note that Trρ = 1 then becomes
the statement that ρ(1) = 1. In both classical and quantum mechanics the
states are defined so that they form a convex set, and it becomes important to
identify the pure states. In quantum mechanics they are projection operators
onto rays in a complex Hilbert space, and can therefore also be thought of as
equivalence classes of vectors.

Segal’s axioms are rather even handed in their choice between observables
and states. In the C∗-algebra approach the algebra of observables occupy the
centre of the stage. The states are defined as positive and normalized linear
functionals ω on a suitable algebra A. Both classical and quantum mechanics
fit into this mould, since the states may also be viewed as functionals. In case
(i), the state ~p maps the vector ~y ∈ RN to ~p · ~y ∈ R. In case (ii), the state µ
acts on an arbitrary integrable function, µ : f(X) → ∫

X
f(x) dµ(x), while in

case (iii), the state ρ acts on an Hermitian operator, ρ : A → TrAρ. The most
essential difference between the classical cases (i) or (ii) and the quantum case
(iii) concerns commutativity: classical observables commute, but this is not so
in quantum mechanics.10

Although we do not intend to pursue the algebraic approach, we observe
that once states are defined as linear functionals on a suitable algebra, the set
of all states will be a convex set. We are then inevitably drawn to the converse
question: what properties must a convex set have, if it is to arise as the state
space of an operator algebra? The answer to this question is known, but it is
not a short answer and this is not the place to give it.11

To demonstrate further similarities between the classical and the quantum
cases let us replace the sum in Eq. (5.3) by an integral over the space of pure
states,

ρ̂ =
∫

CP N−1

ρs(ψ) |ψ〉〈ψ| dΩ(ψ) . (5.54)

Here dΩ(ψ) stands for the Fubini–Study measure (see Section 4.7), while ρs(ψ)
is a normalized probability distribution, and we decorated the density matrix
itself with a hat – a notation that we use occasionally to distinguish operators.

10 For an account of the algebraic approach to quantum mechanics consult Emch (1972). See Section
8.6 for a glimpse.

11 We refer to Alfsen and Shultz (2001) and Alfsen and Shultz (2003). Their answer takes 843 pages!
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Thus a state may be considered as a probability measure on the space of pure
states (Mielnik, 1969). If ρs(ψ) is a δ-function then Eq. (5.54) represents a
pure state. The unitary time evolution of the density matrix,

dρ̂

dt
= i [ρ̂, H] , (5.55)

is equivalent to the Liouville equation for the distribution function ρs,

dρs

dt
= {〈H〉, ρs} . (5.56)

So far classical and quantum mechanics look similar.
But there are differences too. One key difference concerns the pure states.

The classical set of pure states can be discrete. The set of pure quantum
states is always continuous, and indeed it is always a symplectic manifold. In
particular there always exists a continuous reversible transformation joining
any two pure quantum states.12 A related fact is that the representation (5.54)
is not unique. There are many ρs for each ρ̂; quantum theory identifies two
probability distributions if their barycentres are equal. The result is a kind
of projection of the infinite-dimensional space of probability distributions ρs

into the compact (N 2−1)-dimensional space M(N) of density matrices. This is
completely foreign to the classical theory, and it happens because of the severe
restriction on allowed observables that is imposed in quantum mechanics. It
is similar to the situation encountered in the theory of colours: the detector
system of the eye causes a projection of the infinite-dimensional space of all
possible spectral distributions down to the three-dimensional cone of colours.

Note that we just studied a hidden variable theory. By definition, this is a
classical model from which quantum mechanics arises through some projection
reminiscent of the projection in colour theory. Indeed we studied this model in
detail when we developed quantum mechanics as a form of classical mechanics
in Section 5.4. Quantum mechanics arose once we declared that most classical
variables were hidden. But for various reasons this model is not the model
that people dream about.13

To end our slightly unsystematic tour of fundamentals, we point out that
the amount of choice that one has in choosing how probability distributions
emerge from the formalism is severely limited. There is a theorem that comes
into play once it has been decided that we are in the Hilbert space framework,
and try to assign a probability distribution over its subspaces. More precisely
the probabilities are functions on the (real or complex) projective space, that
is of the rays in Hilbert space. The assumptions that we have to make are the
following:

• Normalization. The elements |ei〉 of every orthonormal basis are assigned
probabilities pi such that

12 An axiomatic approach to quantum mechanics developed by Hardy (n.d.) takes this observation
as its starting point.

13 For an interesting discussion of hidden variables from this point of view, see Holevo (2001).
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N∑
i=1

pi|ei〉〈ei| = 1 . (5.57)

• Non-contextuality. Every vector is an element of many orthonormal bases.
The probability of its ray is independent of how the remaining vectors of
the basis are chosen.

That is all (although it may be remarked that the non-contextuality assumption
is not really a self-evident one). Nevertheless we now have the following:

Theorem 5.1 (Gleason’s) Under the conditions stated, and provided
the dimension N of the Hilbert space obeys N > 2, there exists a density matrix
ρ such that pi = Trρ |ei〉〈ei|.
So the density matrix and the trace rule (5.6) have been forced upon us –
probability can enter the picture only in precisely the way that it does enter
in conventional quantum mechanics. The remarkable thing is that no further
assumptions are needed to prove the theorem – it is proved, not assumed, that
the probability distribution is a continuous function on the projective space.14

Problem

¦ Problem 5.1 Two pure states sit on the Bloch sphere separated by an
angle θ. Choose an operator A whose eigenstates sit on the same great circle
as the two pure states; the diameter defined by A makes an angle θA with the
nearest of the pure states. Compute the Bhattacharyya distance between the
two states for the measurement associated with A.
14 The theorem is due to Gleason (1957). Its proof is famous for being difficult; a version that is

comparatively easy to follow was given by Pitowsky (1998).
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Coherent states are the natural language of quantum theory.

John R. Klauder

In this chapter we study how groups act on the space of pure states, and
especially the coherent states that can be associated to the group.

6.1 Canonical coherent states

The term ‘coherent state’ means different things to different people, but all
agree that the canonical coherent states1 form the canonical example, and
with this we begin – even though it is somewhat against our rules in this book
because now the Hilbert space is infinite dimensional. A key feature is that
there is a group known as the Heisenberg–Weyl group that acts irreducibly on
our Hilbert space.2 The coherent states form a subset of states that can be
reached from a special reference state by means of transformations belonging
to the group. The group theoretical way of looking at things has the advantage
that generalized coherent states can be defined in an analogous way as soon
as one has a group acting irreducibly on a Hilbert space.

But let us begin at the beginning. The Heisenberg algebra of the operators
q̂ and p̂ together with the unit operator 1 is defined by

[q̂, p̂] = i ~ 1 . (6.1)

It acts on the infinite-dimensional Hilbert space H∞ of square integrable
functions on the real line. In this chapter we will have hats on all the operators
(because we will see much of the c-numbers q and p as well). Planck’s constant
~ is written explicitly because in this chapter we will be interested in the limit
in which ~ cannot be distinguished from zero. It is a dimensionless number
because it is assumed that we have fixed units of length and momentum and
use these to rescale the operators q̂ and p̂ so that they are dimensionless as

1 Also known as Glauber states. They were first described by Schrödinger (1926a), and then, after
an interval, by Glauber (1963). For their use in quantum optics see Klauder and Sudarshan (1968)
and Mandel and Wolf (1995).

2 This is the point of view of Perelomov and Gilmore, the inventors of generalized coherent states.
Useful reviews include Perelomov (1977), Zhang, Feng and Gilmore (1990) and Ali, Antoine and
Gazeau (2000); a valuable reprint collection is Klauder and Skagerstam (1985).
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well. If the units are chosen so that the measurement precision relative to this
scale is of order unity, and if ~ is very small, then ~ can be safely set to zero. In
SI units ~ = 1.054 · 10−34 joule seconds. Here our policy is to set ~ = 1, which
means that classical behaviour may set in when measurements can distinguish
only points with a very large separation in phase space.

Equation (6.1) is the Lie algebra of a group. First we recall the Baker–
Hausdorff formula

eÂeB̂ = e
1
2 [Â,B̂]eÂ+B̂ = e[Â,B̂]eB̂eÂ , (6.2)

which is valid whenever [Â, B̂] commutes with Â and B̂. Thus equipped we
form the unitary group elements

Û(q, p) ≡ ei(pq̂−qp̂) . (6.3)

To find out what group they belong to we use the Baker–Hausdorff formula
to find that

Û(q1, p1)Û(q2, p2) = e−i(q1p2−p1q2) Û(q2, p2) Û(q1, p1) . (6.4)

This equation effectively defines a faithful representation of the Heisenberg
group.3 This group acts irreducibly on the Hilbert space H∞ (and this happens
to be the only unitary and irreducible representation that exists, although this
fact is incidental to our purposes). Since the phase factor is irrelevant in the
underlying projective space of states it is also a projective representation of
the Abelian group of translations in two dimensions.

Now we can form creation and annihilation operators in the standard way,

â =
1√
2
(q̂ + ip̂) , â† =

1√
2
(q̂ − ip̂) , [a, a†] = 1 , (6.5)

we can define the vacuum state |0〉 as the state that is annihilated by â, and
finally we can consider the two-dimensional manifold of states of the form

|q, p〉 = Û(q, p)|0〉 . (6.6)

These are the canonical coherent states with the vacuum state serving as the
reference state, and q and p serve as coordinates on the space of coherent
states. Our question is: why are coherent states interesting? To answer it we
must get to know them better.

Two important facts follow immediately from the irreducibility of the representation.
First, the coherent states are complete in the sense that any state can be
obtained by superposing coherent states. Indeed they form an overcomplete set
because they are much more numerous than the elements of an orthonormal
set would be – hence they are not orthogonal and do overlap. Second, we have
the resolution of the identity

1
2π

∫
dq dp |q, p〉〈q, p| = 1 . (6.7)

3 This is really a three-dimensional group, including a phase factor. The name Weyl group is more
appropriate, but too many things are named after Weyl already. The Heisenberg algebra was
discovered by Born and is engraved on his tombstone.
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The overall numerical factor must be calculated, but otherwise this equation
follows immediately from the easily ascertained fact that the operator on the
left-hand side commutes with Û(q, p); because the representation of the group
is irreducible Schur’s lemma implies that the operator must be proportional to
the identity. Resolutions of identity will take on added importance in Section
10.1, where they will be referred to as ‘POVMs’.

The coherent states form a Kähler manifold (see Section 3.3). To see this
we first bring in a connection to complex analyticity that is very helpful in
calculations. We trade q̂ and p̂ for the creation and annihilation operators and
define the complex coordinate

z =
1√
2
(q + ip) . (6.8)

With some help from the Baker–Hausdorff formula, the submanifold of coherent
states becomes

|q, p〉 = |z〉 = ezâ†−z∗â|0〉 = e−|z|
2/2

∞∑
n=0

zn

√
n!
|n〉 . (6.9)

We assume that the reader is familiar with the orthonormal basis spanned by
the number or Fock states |n〉 (see, for example, Leonhardt, 1997).

We have reached a convenient platform from which to prove a number of
elementary facts about coherent states. We can check that the states |z〉 are
eigenstates of the annihilation operator:

â|z〉 = z|z〉 . (6.10)

Their usefulness in quantum optics has to do with this fact since light is usually
measured by absorption of photons. In fact a high quality laser produces
coherent states. A low quality laser produces a statistical mixture of coherent
states – producing anything else is rather more difficult.

In x-space a coherent state wave function labelled by q and p is

ψ(x; q, p) = 〈x|q, p〉 = π−1/4e−ipq/2+ipx−(x−q)2/2 . (6.11)

The shape is a Gaussian centred at x = q. The overlap between two coherent
states is

〈q2, p2|q1, p1〉 = e−i(q1p2−p1q2)/2e−[(q2−q1)
2+(p2−p1)

2]/4 . (6.12)

It shrinks rapidly as the coordinate distance between the two points increases.
Let us now think about the space of coherent states itself. The choice of

labels (q and p) is not accidental because we intend to regard the space of
coherent states as being in some sense an embedding of the phase space of
the classical system – whose quantum version we are studying – into the
space of quantum states. Certainly the coherent states form a two-dimensional
space embedded in the infinite-dimensional space of quantum states and it
will therefore inherit both a metric and a symplectic form from the latter. We
know that the absolute value of the overlap is the cosine of the Fubini–Study
distance DFS between the two states (see Section 5.3), and for infinitesimally
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nearby coherent states we can read off the intrinsic metric ds2 on the embedded
submanifold. From Eq. (6.12) we see that the metric on the space of coherent
states is

ds2 = dzdz̄ =
1
2
(dq2 + dp2) . (6.13)

It is a flat space – indeed a flat vector space since the vacuum state forms
a natural point of origin. From the phase of the overlap we can read off the
symplectic form induced by the embedding on the submanifold of coherent
states. It is non-degenerate:

Ω = idz ∧ dz̄ = dq ∧ dp . (6.14)

It is the non-degenerate symplectic form that enables us to write down Poisson
brackets and think of the space of coherent states as a phase space, isomorphic
to the ordinary classical phase space spanned by q and p. The metric and the
symplectic form are related to each other in precisely the way that is required
for a Kähler manifold – although in a classical phase space the metric plays no
particular role in the formalism. It is clearly tempting to try to argue that in
some sense the space of coherent states is the classical phase space, embedded
in the state space of its quantum version. A point in the classical phase space
corresponds to a coherent state. The metric on phase space has a role to play
here because Eq. (6.12) allows us to say that if the distance between the two
points is large as measured by the metric, then the overlap between the two
coherent states is small so that they interfere very little. Classical behaviour is
clearly setting in; we will elaborate this point later on. Meanwhile we observe
that the overlap can be written

〈q2, p2|q1, p1〉 = e−i2(area of triangle) e−
1
2 (distance)2 , (6.15)

where the triangle is defined by the two states together with the reference
state. This is clearly reminiscent of the properties of geodesic triangles in CPn

that we studied in Section 4.8, but the present triangle lies within the space
of coherent states itself. The reason why the phase equals an area is the same
in both cases, namely that geodesics in CPn as well as geodesics within the
embedded subspace of canonical coherent states share the property of being
null phase curves (in the sense of Section 4.8) (Rabei, Arvind, Simon and
Mukunda, 1990).

There is a large class of observables – self adjoint operators on Hilbert space
– that can be associated with functions on phase space in a natural way. In
general we define the covariant symbol 4 of the operator Â as

A(q, p) = 〈q, p|Â|q, p〉 . (6.16)

This is a function on the space of coherent states, that is on the would-be
classical phase space. It is easy to compute the symbol of any operator that
can be expressed as a polynomial in the creation and annihilation operators.

4 The contravariant symbol will appear presently.
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Figure 6.1. The overlap of two coherent states is determined by geometry: its
modulus by the Euclidean distance d between the states and its phase by the
(oriented) Euclidean area A of the triangle formed by the two states together
with the reference state.

In particular

〈q, p|q̂|q, p〉 = q 〈q, p|q̂2|q, p〉 = q2 +
1
2

(6.17)

(and similarly for p̂). This implies that the variance, when the state is coherent,
is

(∆q)2 = 〈q̂2〉 − 〈q̂〉2 =
1
2

(6.18)

and similarly for (∆p)2, so it follows that ∆q∆p = 1/2; in words, the coherent
states are states of minimal uncertainty in the sense that they saturate Heisenberg’s
inequality. This confirms our suspicion that there is ‘something classical’ about
the coherent states. Actually the coherent states are not the only states that
saturate the uncertainty relation; the coherent states are singled out by the
extra requirement that ∆q = ∆p.

We have not yet given a complete answer to the question why coherent
states are interesting – to get such an answer it is necessary to see how they
can be used in some interesting application – but we do have enough hints.
Let us try to gather together some key features:

• The coherent states form a complete set and there is a resolution of unity.
• There is a one-to-one mapping of a classical phase space onto the space of

coherent states.
• There is an interesting set of observables whose expectation values in a

coherent state match the values of the corresponding classical observables.
• The coherent states saturate an uncertainty relation and are in this sense

as classical as they can be.

These are properties that we want any set of states to have if they are to be
called coherent states. The generalized coherent states defined by Perelomov
(1977) and Zhang et al. (1990) do share these properties. The basic idea is
to identify a group G that acts irreducibly on the Hilbert space and define
the coherent states as a particular orbit of the group. If the orbit is chosen
suitably the resulting space of coherent states is a Kähler manifold. We will
see how later; meanwhile let us observe that there are many alternative ways
to define generalized coherent states. Sometimes any Kähler submanifold of
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Figure 6.2. Music scores resemble Wigner functions.

CPn is referred to as coherent, regardless of whether there is a group in the
game or not. Other times the group is there but the coherent states are not
required to form a Kähler space. Here we require both simply because it is
interesting to do so. Certainly a coherence group formed by all the observables
of interest for some particular problem arises in many applications, and the
irreducible representation is just the minimal Hilbert space that allows us to
describe the action of that group. Note that the coherence group is basically
of kinematical origin; it is not supposed to be a symmetry group.

6.2 Quasi-probability distributions on the plane

The covariant symbol of an operator, as defined in Eq. (6.16), gives us the
means to associate a function on phase space to any ‘observable’ in quantum
mechanics. In classical physics an observable is precisely a function on phase
space, and moreover the classical state of the system is represented by a
particular such function – namely by a probability distribution on phase space.
Curiously similar schemes can work in quantum mechanics too. It is interesting
to think of music in this connection. Music, as produced by orchestras and sold
by record companies, is a certain function of time. But this is not how it is
described by composers, who think of music5 as a function of both time and
frequency. Like the classical physicist, the composer can afford to ignore the
limitations imposed by the uncertainty relation that holds in Fourier theory.
The various quasi-probability distributions that we will discuss in this section
are musical scores for quantum mechanics, and, remarkably, nothing is lost in
this transcription. For the classical phase space we use the coordinates q and
p. They may denote the position and momentum of a particle, but they may
also define an electromagnetic field through its ‘quadratures’.6

Quantum mechanics does provide a function on phase space that gives the
probability distribution for obtaining the value q in a measurement associated
to the special operator q̂. This is just the familiar probability density for a pure
state, or 〈q|ρ̂|q〉 for a general mixed state. We ask for a function W (q, p) such
that this probability distribution can be recovered as a marginal distribution,

5 The sample shown is by Józef Życzkowski, 1895–1967.
6 A good general reference for this section is the survey of phase space methods given in the

beautifully illustrated book by Leonhardt (1997). Note that factors of 2π are distributed differently
throughout the literature.
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in the sense that

〈q|ρ̂|q〉 =
1
2π

∫ ∞

−∞
dp W (q, p) . (6.19)

This can be rewritten as an equation for the probability to find that the value
q lies in an infinite strip bounded by the parallel lines q = q1 and q = q2,
namely

P (q1 ≤ q ≤ q2) =
1
2π

∫

strip

dq dp W (q, p) . (6.20)

In classical physics (as sketched in Section 5.6) we would go on to demand
that the probability to find that the values of q and p are confined to an
arbitrary phase space region Ω is given by the integral of W (q, p) over Ω, and
we would end up with a function W (q, p) that serves as a joint probability
distribution for both variables. This cannot be done in quantum mechanics.
But it turns out that a requirement somewhat in-between Eq. (6.20) and
the classical requirement can be met, and indeed uniquely determines the
function W (q, p), although the function will not qualify as a joint probability
distribution because it may fail to be positive.

For this purpose consider the operators

q̂θ = q̂ cos θ + p̂ sin θ p̂θ = −q̂ sin θ + p̂ cos θ . (6.21)

Note that q̂θ may be set equal to either q̂ or p̂ through a choice of the phase
θ, and also that the commutator is independent of θ. The eigenvalues of q̂θ

are denoted by qθ. These operators gain in interest when one learns that the
phase can actually be controlled in quantum optics experiments. We now have
the following theorem (Bertrand and Bertrand, 1987):

Theorem 6.1 (Bertrand and Bertrand’s) The function W (q, p)
is uniquely determined by the requirement that

〈qθ|ρ̂|qθ〉 =
1
2π

∫ ∞

−∞
dpθ Wθ(qθ, pθ) (6.22)

for all values of θ. Here Wθ(qθ, pθ) = W
(
q(qθ, pθ), p(qθ, pθ)

)
.

That is to say, as explained in Figure 6.3, we now require that all infinite strips
are treated on the same footing. We will not prove uniqueness here, but we
will see that the Wigner function W (q, p) has the stated property.

A convenient definition of the Wigner function is

W (q, p) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
dudv W̃ (u, v) eiuq+ivp , (6.23)

where the characteristic function is a ‘quantum Fourier transformation’ of the
density matrix,

W̃ (u, v) = Trρ̂ e−iuq̂−ivp̂ . (6.24)
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Figure 6.3. Left: in classical mechanics there is a phase space density such that
we obtain the probability that p and q is confined to any region in phase space
by integrating the density over that region. Right: in quantum mechanics we
obtain the probability that p and q is confined to any infinite strip by integrating
the Wigner function over that strip.

To express this in the q-representation we use the Baker–Hausdorff formula
and insert a resolution of unity to deduce that

e−iuq̂−ivp̂ = e
i
2 uve−iuq̂e−ivp̂ =

∫ ∞

−∞
dq e−iuq|q +

v

2
〉〈q − v

2
| . (6.25)

We can just as well work with the operators in Eq. (6.21) and express everything
in the qθ-representation. We assume that this has been done – effectively it
just means that we add a subscript θ to the eigenvalues. We then arrive, in a
few steps, at Wigner’s formula7

Wθ(qθ, pθ) =
∫ ∞

−∞
dx 〈qθ − x

2
|ρ̂|qθ +

x

2
〉 eixpθ . (6.26)

Integration over pθ immediately yields Eq. (6.22).
It is interesting to play with the definition a little. Let us look for a phase

point operator Âqp such that

W (q, p) = Trρ̂Âqp =
∫ ∞

−∞
dq′

∫ ∞

−∞
dq′ 〈q′|ρ̂|q′〉 〈q′|Âqp|q′〉 . (6.27)

That is to say that we will define the phase point operator through its matrix
elements in the q-representation. The solution is

〈q′|Âqp|q′〉 = δ
(
q − q′ + q′

2

)
ei(q′−q′)p . (6.28)

This permits us to write the density matrix in terms of the Wigner function
as

ρ̂ =
1
2π

∫
dq dp W (q, p) Âqp (6.29)

(as one can check by looking at the matrix elements). Hence the fact that
7 Wigner (1932) originally introduced this formula, with θ = 0, as ‘the simplest expression’ that he

(and Szilard) could think of.
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the density matrix and the Wigner function determine each other has been
made manifest. This is interesting because, given an ensemble of identically
prepared systems, the various marginal probability distributions tied to the
rotated position (or quadrature) operators in Eq. (6.21) can be measured –
or at least a sufficient number of them can, for selected values of the phase
θ – and then the Wigner function can be reconstructed using an appropriate
(inverse) Radon transformation. This is known as quantum state tomography
and is actually being performed in laboratories.8

The Wigner function has some remarkable properties. First of all it is clear
that we can associate a function WA to an arbitrary operator Â if we replace
the operator ρ̂ by the operator Â in Eq. (6.24). This is known as the Weyl
symbol of the operator and is very important in mathematics. If no subscript
is used it is understood that the operator ρ̂ is meant, that is W ≡ Wρ. Now
it is straightforward to show that the expectation value for measurements
associated to the operator Â is

〈Â〉ρ̂ ≡ Trρ̂Â =
1
2π

∫
dq dp WA(q, p)W (q, p) . (6.30)

This is the overlap formula. Thus the formula for computing expectation values
is the same as in classical physics: integrate the function corresponding to
the observable against the state distribution function over the classical phase
space. Classical and quantum mechanics are nevertheless very different. To see
this, choose two pure states |ψ1〉〈ψ1| and |ψ2〉〈ψ2| and form the corresponding
Wigner functions. It follows (as a special case of the preceding formula, in
fact) that

|〈ψ1|ψ2〉|2 =
1
2π

∫
dq dp W1(q, p)W2(q, p) . (6.31)

If the two states are orthogonal the integral has to vanish. From this we
conclude that the Wigner function cannot be a positive function in general.
Therefore, even though it is normalized, it is not a probability distribution.
But somehow it is ‘used’ by the theory as if it were.

On the other hand the Wigner function is subject to restrictions in ways
that classical probability distributions are not – this must be so since we are
using a function of two variables to express the content of the wave function,
which depends on only one variable. For instance, using the Cauchy–Schwarz
inequality one can show that

|W (q, p)| ≤ 2 . (6.32)

It appears that the only economical way to state all the restrictions is to say
that the Wigner function arises from a Hermitian operator with trace unity
and positive eigenvalues via Eq. (6.24). We can formulate quantum mechanics

8 The Wigner function was first measured experimentally by Smithey, Beck, Raymer and Faridani
(1993) in 1993, and negative values of W were reported soon after. See Nogues, Rauschenbeutel,
Osnaghi, Bertet, Brune, Raimond, Haroche, Lutterbach and Davidovich (2000) and references
therein.
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in terms of the Wigner function, but it is difficult to make this formulation
stand on its own legs.

To clarify how Wigner’s formulation associates operators with functions we
look at the moments of the characteristic function. Specifically, we observe
that

Trρ̂(uq̂ + vp̂)k = ik
(

d
dσ

)k

Trρ̂ e−iσ(uq̂+vp̂)|σ=0 = ik
(

d
dσ

)k

W̃ (σu, σv)|σ=0 .

(6.33)
But if we undo the Fourier transformation we can conclude that

Trρ̂(uq̂ + vp̂)k =
1
2π

∫
dq dp (uq + vp)k W (q, p) . (6.34)

By comparing the coefficients we see that the moments of the Wigner function
give the expectation values of symmetrized products of operators, that is to
say that

Trρ̂(q̂mp̂n)sym =
1
2π

∫
dq dp W (q, p) qmpn , (6.35)

where (q̂p̂)sym = (q̂p̂ + p̂q̂)/2 and so on. Symmetric ordering is also known as
Weyl ordering, and the precise statement is that Weyl ordered polynomials in
q̂ and p̂ are associated to polynomials in q and p.

Finally, let us take a look at some examples. For the special case of a coherent
state |q0, p0〉, with the wavefunction given in Eq. (6.11), the Wigner function
is a Gaussian,

W|q0,p0〉(q, p) = 2 e−(q−q0)
2−(p−p0)

2
. (6.36)

That the Wigner function of a coherent state is positive again confirms that
there is ‘something classical’ about coherent states. Actually the coherent
states are not the only states for which the Wigner function is positive –
this property is characteristic of a class of states known as squeezed states.9 If
we superpose two coherent states the Wigner function will show two roughly
Gaussian peaks with a ‘wavy’ structure in between, where both positive and
negative values occur; in the quantum optics literature such states are known
(perhaps somewhat optimistically) as Schrödinger cat states. For the number
(or Fock) states |n〉, the Wigner function is

W|n〉(q, p) = 2 (−1)n e−q2−p2
Ln(2q2 + 2p2) , (6.37)

where the Ln are Laguerre polynomials. They have n zeroes, so we obtain
n + 1 circular bands of alternating signs surrounding the origin, concentrated
within a radius of about q2 + p2 = 2n + 1. Note that both examples saturate
the bound (6.32) somewhere.

To see how the Wigner function relates to other quasi-probability distributions

9 This was shown in 1974 by Hudson (1974). As the name suggests squeezed states are Gaussian,

but ‘squeezed’. A precise definition is |η, z〉 ≡ exp[η(â†)2 − η∗â2]|z〉, with η ∈ C (see Leonhardt,
1997).
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that are in use we again look at its characteristic function, and introduce a one-
parameter family of characteristic functions by changing the high frequency
behaviour (Cahill and Glauber, 1969):

W̃ (s)(u, v) = W̃ (u, v) es(u2+v2)/4 . (6.38)

This leads to a family of phase space distributions

W (s)(q, p) =
1
2π

∫
dudv W̃ (s)(u, v) eiuq+ivp . (6.39)

For s = 0 we recover the Wigner function, W = W (0). We are also interested
in the two ‘dual’ cases s = −1, leading to the Husimi or Q-function (Husimi,
1940), and s = 1, leading to the Glauber–Sudarshan or P -function (Glauber,
1963; Sudarshan, 1963). Note that, when s > 0, the Fourier transformation of
the characteristic function may not converge to a function, so the P -function
will have a distributional meaning. Using the Baker–Hausdorff formula, and
the definition (6.24) of W̃ (u, v), it is easily seen that the characteristic functions
of the Q- and P -functions are, respectively,

Q̃(u, v) ≡ W̃ (−1)(u, v) = Trρ̂ e−iη∗âe−iηâ† (6.40)

P̃ (u, v) ≡ W̃ (1)(u, v) = Trρ̂ e−iηâ†e−iη∗â, (6.41)

where η ≡ (u + iv)/
√

2. Equation (6.35) is now to be replaced by

Trρ̂ ânâ†m =
1
2π

∫
dq dp Q(z, z̄) znz̄m (6.42)

Trρ̂ â†mân =
1
2π

∫
dq dp P (z, z̄) znz̄m (6.43)

where z ≡ (q+ip)/
√

2 as usual. Thus the Wigner, Q- and P -functions correspond
to different ordering prescriptions (symmetric, anti-normal and normal, respectively).

The Q-function is a smoothed Wigner function,

Q(q, p) =
1
2π

∫
dq′ dp′ W (q′, p′) 2 e−(q−q′)2−(p−p′)2 , (6.44)

as was to be expected because its high frequency behaviour was suppressed. It
is also a familiar object. Using Eq. (6.36) for the Wigner function of a coherent
state we see that

Q(q, p) =
1
2π

∫
dq′ dp′ Wρ(q′, p′) W|q,p〉(q′, p′) (6.45)

Using the overlap formula (6.30) this is

Q(q, p) = Trρ̂ |q, p〉〈q, p| = 〈q, p|ρ̂|q, p〉 . (6.46)

This is the symbol of the density operator as defined in Eq. (6.16). The Q-
function has some desirable properties that the Wigner function does not
have, in particular it is everywhere positive. Actually, as should be clear from
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the overlap formula together with the fact that density matrices are positive
operators, we can use the Wigner function of an arbitrary state to smooth a
given Wigner function and we will always obtain a positive distribution. We
concentrate on the Q-function because in that case the smoothing has been
done with a particularly interesting reference state.

Since the integral of Q over phase space equals one the Husimi function
is a genuine probability distribution. But it is a probability distribution of
a somewhat peculiar kind, since it is not a probability density for mutually
exclusive events. Instead Q(q, p) is the probability that the system, if measured,
would be found in a coherent state whose probability density has its mean at
(q, p). Such ‘events’ are not mutually exclusive because the coherent states
overlap. This has in its train that the overlap formula is not as simple as
(6.30). If QA is the Q-function corresponding to an operator Â, and PB the
P -function corresponding to an operator B̂, then

TrÂB̂ =
1
2π

∫
dq dp QA(q, p)PB(q, p) . (6.47)

This explains why the Q-function is known as a covariant symbol – it is dual
to the P -function which is then the contravariant symbol of the operator.
The relation of the P -function to the density matrix is now not hard to see
(although unfortunately not in a constructive way). It must be true that

ρ̂ =
1
2π

∫
dq dp |q, p〉P (q, p)〈q, p| . (6.48)

This does not mean that the density matrix is a convex mixture of coherent
states since the P -function may fail to be positive. Indeed in general it is not
a function, and may fail to exist even as a tempered distribution. Apart from
this difficulty we can think of the P -function as analogous to the barycentric
coordinates introduced in Section 1.1.

Compared to the Wigner function the Q-function has the disadvantage that
one does not recover the right marginals, say |ψ(q)|2 by integrating over p.
Moreover the definition of the Q-function (and the P -function) depends on the
definition of the coherent states, and hence on some special reference state in
the Hilbert space. This is clearly seen in Eq. (6.45), where the Wigner function
of the reference state appears as a filter that is smoothing the Wigner function.
But this peculiarity can be turned to an advantage. The Q-function may be the
relevant probability distribution to use in a situation where the measurement
device introduces a ‘noise’ that can be modelled by the reference state used to
define the Q-function.10 And the Q-function does have the advantage that it
is a probability distribution. Unlike classical probability distribitutions, which
obey no further constraints, it is also bounded from above by 1/2π. This is an
interesting property that can be exploited to define an entropy associated to

10 There is a discussion of this, with many references, in Leonhardt (1997) (and a very brief glimpse
in our Section 10.1).
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any given density matrix, namely

SW = − 1
2π

∫
dq dp Q(q, p) ln Q(q, p) . (6.49)

This is the Wehrl entropy (Wehrl, 1978). It is a concave function of the density
matrix ρ as it should be, and it has a number of other desirable properties
as well. Unlike the classical Boltzmann entropy, which may assume the value
−∞, the Wehrl entropy obeys SW ≥ 1, and attains its lower bound if and
only if the density matrix is a coherent pure state.11 If we take the view that
coherent states are classical states then this means that the Wehrl entropy
somehow quantifies the departure from classicality of a given state. It will be
compared to the quantum mechanical von Neumann entropy in Section 12.4.

6.3 Bloch coherent states

We will now study the Bloch coherent states.12 In fact we have already done
so – they are the complex curves, with topology S2, that were mentioned in
Section 4.3. But this time we will develop them along the same lines as the
canonical coherent states were developed. Our coherence group will be SU(2),
and our Hilbert space will be any finite-dimensional Hilbert space in which
SU(2) acts irreducibly. The physical system may be a spin system of total
spin j, but it can also be a collection of n two-level atoms. The mathematics is
the same, provided that n = 2j; a good example of the flexibility of quantum
mechanics. In the latter application the angular momentum eigenstates |j, m〉
are referred to as Dicke states, and the quantum number m is interpreted as
half the difference between the number of excited and unexcited atoms. The
dimension of Hilbert space is N , and throughout N = n + 1 = 2j + 1.

We need a little group theory to get started. We will choose our reference
state to be |j, j〉, that is it has spin up along the z-axis. Then the coherent
states are all states of the form D|j, j〉, where D is a Wigner rotation matrix.
Using our standard representation of the angular momentum operators (in
Appendix 2) the reference state is described by the vector (1, 0, . . . , 0), so the
coherent states are described by the first column of D. The rotation matrix
can still be coordinatized in various ways. The Euler angle parametrization is
a common choice, but we will use a different one that brings out the complex
analyticity that is waiting for us. We set

D = ezJ−e− ln (1+|z|2)J3e−z̄J+eiτJ3 . (6.50)

Because our group is defined using 2×2 matrices, we can prove this statement
11 This was conjectured by Wehrl (1978) and proved by Lieb (1978). The original proof is quite

difficult and depends on some hard theorems in Fourier analysis. The simplest proof so far is due
to Luo (2000), who relied on properties of the Heisenberg group. For some explicit expressions for
selected states, see OrlÃowski (1993).

12 Also known as spin, atomic, or SU(2) coherent states. They were first studied by Klauder (1960)
and Radcliffe (1971). Bloch had, as far as we know, nothing to do with them but we call them
‘Bloch’ so as to not prejudge which physical application we have in mind.
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using 2 × 2 matrices; it will be true for all representations. Using the Pauli
matrices from Appendix 2 we can see that

ezJ−e− ln (1+|z|2)J3e−z̄J+ =
1√

1 + |z|2
[
1 −z̄
z 1

]
(6.51)

and we just need to multiply this from the right with eiτJ3 to see that we have
a general SU(2) matrix. Of course the complex number z is going to be a
stereographic coordinate on the 2-sphere.

The final factor in Eq. (6.50) is actually irrelevant: we observe that when
eiτJ3 is acting on the reference state |j, j〉 it just contributes an overall constant
phase to the coherent states. In CPn the reference state is a fixed point of the
U(1) subgroup represented by eiτJ3 . In the terminology of Section 3.8 the
isotropy group of the reference state is U(1), and the SU(2) orbit that we
obtain by acting on it is the coset space SU(2)/U(1) = S2. This coset space
will be coordinatized by the complex stereographic coordinate z. We choose
the overall phase of the reference state to be zero. Since the reference state is
annihilated by J+ the complex conjugate z̄ does not enter, and the coherent
states are

|z〉 = ezJ−e− ln (1+|z|2)J3e−z̄J+ |j, j〉 =
1

(1 + |z|2)j
ezJ− |j, j〉 . (6.52)

Using z = tan θ
2
eiφ we are always ready to express the coherent states as

functions of the polar angles; |z〉 = |θ, φ〉.
Since J− is a lower triangular matrix, that obeys (J−)2j+1 = (J−)n+1 = 0,

it is straightforward to express the unnormalized state in components. Using
Eqs. (A2.4)–(A2.6) from Appendix 2 we get

ezJ− |j, j〉 =
j∑

m=−j

zk

√(
2j

j + m

)
|j,m〉 . (6.53)

That is, the homogeneous coordinates – that do not involve the normalization
factor – for coherent states are

Zα = (1,
√

2jz, . . . ,

√(
2j

j + m

)
zj+m, . . . , z2j) . (6.54)

We can use this expression to prove that the coherent states form a sphere of
radius

√
j/2, embedded in CP2j. There is an intelligent way to do so, using the

Kähler property of the metrics (see Section 3.3). First we compare with Eq.
(4.6), and read off the affine coordinates za(z) of the coherent states regarded
as a complex curve embedded in CP2j. For the coherent states we obtain

Z(z) · Z̄(z̄) = (1 + |z|2)2j (6.55)

(so that, with the normalization factor included, 〈z|z〉 = 1). The Kähler
potential for the metric is the logarithm of this expression, and the Kähler
potential determines the metric as explained in Section 4.5. With no effort
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therefore, we see that on the coherent states the Fubini–Study metric induces
the metric

ds2 = ∂a∂̄b ln
(
Z(z) · Z̄(z̄)

)
dzadz̄b = ∂∂̄ ln (1 + |z|2)2jdzdz̄ =

j

2
dΩ2 , (6.56)

where we used the chain rule to see that dza∂a = dz∂z, and dΩ2 is the metric
on the unit 2-sphere written in stereographic coordinates. This proves that
the embedding into CP2j turns the space of coherent states into a sphere of
radius

√
j/2, as was to be shown. It is indeed a complex curve as defined in

Section 4.3. The symplectic form on the space of coherent states is obtained
from the same Kähler potential.

This is an important observation. At the end of Section 6.1 we listed four
requirements that we want a set of coherent states to meet. One of them is
that we should be able to think of the coherent states as forming a classical
phase space embedded in the space of quantum mechanical pure states. In the
case of canonical coherent states that phase space is the phase space spanned
by q and p. The 2-sphere can also serve as a classical phase space because, as
a Kähler manifold, it has a symplectic form that can be used to define Poisson
brackets between any pair of functions on S2 (see Section 3.4). So all is well
on this score. We also note that as j increases the sphere grows, and will in
some sense approximate the flat plane with better and better accuracy.

Another requirement, listed in Section 6.1, is that there should exist a
resolution of unity, so that an arbitrary state can be expressed as a linear
combination of coherent states. This also works here. Using Eq. (6.53), this
time with the normalization factor from Eq. (6.52) included, we can prove that

2j + 1
4π

∫
dΩ|z〉〈z| = 2j + 1

4π

∫ ∞

0

dr

∫ 2π

0

dφ
4r

(1 + r2)2
|z〉〈z| = 1 , (6.57)

where dΩ is the round measure on the unit 2-sphere, that we wrote out using
the fact that z is a stereographic coordinate and the definition z = riφ. It
follows that the coherent states form a complete, and indeed an overcomplete,
set. Next we require a correspondence between selected quantum mechanical
observables on the one hand and classical observables on the other. Here we
can use the symbol of an operator, defined in analogy with the definition for
canonical coherent states. In particular the symbols of the generators of the
coherence group are the classical phase space functions

Ji(θ, φ) = 〈z|Ĵ i|z〉 = jni(θ, φ) , (6.58)

where ni(θ, φ) is a unit vector pointing in the direction labelled by the angles
θ and φ. This is the symbol of the operator Ĵ i.

Our final requirement is that coherent states saturate an uncertainty relation.
But there are several uncertainty relations in use for spin systems, a popular
choice being

(∆Jx)2(∆Jy)2 ≥ − 1
4
〈[Ĵx, Ĵy]〉2 =

〈Ĵz〉2
4

. (6.59)
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(Here (∆Jx)2 ≡ 〈Ĵ2
x〉 − 〈Ĵx〉2 as usual.) States that saturate this relation are

known (Aragone, Gueri, Salamó and Tani, 1974) as intelligent states – but
since the right-hand side involves an operator this does not mean that the
left-hand side is minimized. The relation itself may be interesting if, say, a
magnetic field singles out the z-direction for attention. We observe that a
coherent state that has spin up in the z-direction satisfies this relation, but
for a general coherent state the uncertainty relation itself has to be rotated
before it is satisfied. Another measure of uncertainty is

∆2 ≡ (∆Jx)2 + (∆Jy)2 + (∆Jz)2 = 〈Ĵ2〉 − 〈Ĵ i〉〈Ĵ i〉 . (6.60)

This has the advantage that ∆2 is invariant under SU(2), and takes the same
value on all states in a given SU(2) orbit in Hilbert space. This follows because
〈Ĵ i〉 transforms like an SO(3) vector when the state is subject to an SU(2)
transformation.

One can now prove13 that

j ≤ ∆2 ≤ j(j + 1) . (6.61)

It is quite simple. We know that 〈Ĵ2〉 = j(j + 1). Moreover, in any given orbit
we can use SU(2) rotations to bring the vector 〈Ĵ i〉 to the form

〈Ĵ i〉 = 〈Ĵz〉 δi3 . (6.62)

Expanding the state we see that

|ψ〉 =
j∑

m=−j

cm|m〉 ⇒ 〈Ĵz〉 =
j∑

m=−j

m|cm|2 ⇒ 0 ≤ 〈Ĵz〉 ≤ j (6.63)

and the result follows in easy steps. It also follows that the lower bound in
Eq. (6.61) is saturated if and only if the state is a Bloch coherent state, for
which 〈L̂z〉 = j. The upper bound will be saturated by states in the RP2

orbit when it exists, and also by some other states. It can be shown that ∆2

when averaged over CPn, using the Fubini–Study measure from Section 4.7,
is j(j + 1

2
). Hence for large values of j the average state is close to the upper

bound in uncertainty.
In conclusion, Bloch coherent states obey all four requirements that we

want coherent states to obey. There are further analogies to canonical coherent
states to be drawn. Remembering the normalization we obtain the overlap of
two coherent states as

〈z′|z〉 =
∑n

k=0

(
n
k

)
(zz̄′)k

(
√

1 + |z|2
√

1 + |z′|2)n
=

(
1 + zz̄′√

1 + |z|2
√

1 + |z′|2

)2j

. (6.64)

The factorization is interesting. On the one hand we can write

〈z′|z〉 = e−2iA cosDFS , (6.65)

where DFS is the Fubini–Study distance between the two states and A is a
13 As was done by Delbourgo (1977) and further considered by Barros e Sá (2001b).
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Table 6.1. Comparison of the canonical coherent states on the plane and the
Bloch coherent states on the sphere, defined by the Wigner rotation matrix

D
(j)
θ,φ. The overlap between two canonical (Bloch) coherent states is a function
of the distance between two points on the plane (sphere), while the phase is

determined by the area A of a flat (spherical) triangle.

Hilbert space H Infinite Finite, N = 2j + 1

phase space plane R2 sphere S2

commutation
relations

[q̂, p̂] = i [Ji, Jj ] = i εijk Jk

basis Fock {|0〉, |1〉, . . . } Jz eigenstates |j, m〉,
m = (−j, . . . , j)

reference state vacuum |0〉 north pole |κ〉 = |j, j〉
coherent states |q, p〉 = exp[i(pq̂ − qp̂)] |0〉 |θ, φ〉 = D

(j)
θ,φ |j, j〉

POVM 1
2π

∫
R2 |q, p〉〈q, p|dq dp = 1 2j+1

4π

∫
Ω
|θ, φ〉〈θ, φ| dΩ = 1

overlap e−2iA exp
[− 1

2

(
DE

)2] e−2iA
[
cos

(
1
2DR

)]2j

Husimi
representation Qρ(q, p) = 〈q, p|ρ|q, p〉 Qρ(θ, φ) = 〈θ, φ|ρ|θ, φ〉
Wehrl entropy SW − 1

2π

∫
R2 dq dpQρ ln[Qρ] − 2j+1

4π

∫
Ω

dΩ Qρ ln[Qρ]
Wehrl–Lieb
conjecture SW (|ψ〉〈ψ|) ≥ 1 SW (|ψ〉〈ψ|) ≥ 2j

2j+1

phase factor that, for the moment, is not determined. On the other hand the
quantity within brackets has a natural interpretation for j = 1/2, that is, on
CP1. Indeed

〈z′|z〉 =
(〈z′|z〉|j= 1

2

)2j
. (6.66)

But for the phase factor inside the brackets it is true that

arg〈z′|z〉|j= 1
2

= arg〈z′|z〉|j= 1
2
〈z|+〉|j= 1

2
〈+|z′〉|j= 1

2
= −2A1 , (6.67)

where |+〉 is the reference state for spin 1/2, Eq. (4.97) was used, and A1

is the area of a triangle on CP1 with vertices at the three points indicated.
Comparing the two expressions we see that A = 2jA1 and it follows that A is
the area of a triangle on a sphere of radius

√
2j/2 =

√
j/2, that is the area of

a triangle on the space of coherent states itself. The analogy with Eq. (6.15)
for canonical coherent states is evident. This is a non-trivial result and has
to do with our quite special choice of reference state; technically it happens
because geodesics within the embedded 2-sphere of coherent states are null
phase curves in the sense of Section 4.8, as a pleasant calculation confirms.14

Quasi-probability distributions on the sphere can be defined in analogy to
those on the plane. In particular, the Wigner function can be defined and it
is found to have similar properties to that on the plane. For instance, a Bloch
coherent state |θ, φ〉 has a positive Wigner function centred around the point
(θ, φ). We refer to the literature for details (Agarwal, 1981; Dowling, Agarwal
14 This statement remains true for the SU(3) coherent states discussed in Section 6.4; Berceanu

(2001) has investigated things in more generality.
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and Schleich, 1994). The Husimi Q-function on the sphere will be given a
detailed treatment in the next chapter. The Glauber–Sudarshan P -function
exists for the Bloch coherent states whatever the dimension of the Hilbert
space (Mukunda, Arvind, Chaturvedi and Simon, 2003); again a non-trivial
statement because it requires the complex curve to ‘wiggle around’ enough
inside CP2j so that, once the latter is embedded in the flat vector space of
Hermitian matrices, it fills out all the dimensions of the latter. It is like the
circle that one can see embedded in the surface of a tennis ball. The P -function
will be positive for all mixed states in the convex cover of the Bloch coherent
states.

To wind up the story so far we compare the canonical and the SU(2) Bloch
coherent states in Table 6.1.

6.4 From complex curves to SU(K) coherent states

In the previous section we played down the viewpoint that regards the Bloch
coherent states as a complex curve, but now we come back to it. Physically,
what we have to do (for a spin system) is to assign a state to each direction
in space. These states then serve as ‘spin up’ states for given directions.
Mathematically this is a map from S2 = CP1 into CPn, with n = 2j = N − 1,
that is a complex curve in the sense of Section 4.3. To describe the sphere of
directions in space we use the homogeneous coordinates

(u, v) ∼ (cos
θ

2
, sin

θ

2
eiφ) ∼ (1, tan

θ

2
eiφ) . (6.68)

As we know already, the solution to our problem is

(u, v) → (un,
√

nun−1v, . . . ,

√(
n

k

)
un−kvk, . . . , vn) . (6.69)

As we also know, the Fubini–Study metric on CPn induces the metric

ds2 =
n

4
(dθ2 + sin2 θ dφ2) (6.70)

on this curve, so it is a round sphere with a radius of curvature equal to
√

n/2.
The fact that already for modest values of n the radius of curvature becomes
larger than the longest geodesic distance between two points in CPn is not a
problem since this sphere cannot be deformed to a point, and therefore it has
no centre.

We have now specified the m = j eigenstate for each possible spatial
direction by means of a specific complex curve. It is remarkable that the
location of all the other eigenstates is determined by the projective geometry
of the curve. The location of the m = −j state is evidently the antipodal point
on the curve, as defined by the metric just defined. The other states lie off the
curve and their location requires more work to describe. In the simple case of
n = 2 (that is j = 1) the complex curve is a conic section, and the m = 0 state
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lies at the intersection of the unique pair of lines that are tangent to the curve
at m = ±1, as described in Section 4.3. Note that the space of singlet states
is an RP2, since any two antipodal points on the m = 1 complex curve defines
the same m = 0 state. The physical interpretation of the points of CP2 is now
fixed. Unfortunately it becomes increasingly difficult to work out the details
for higher n.15

So far we have stuck to the simplest compact Lie algebra SU(2). But, since
the full isometry group of CPn is SU(n+1)/Zn+1, it is clear that all the special
unitary groups are of interest to us. For any K, a physical application of SU(K)
coherent states may be a collection of K-level atoms.16 For a single K-level
atom we would use a K-dimensional Hilbert space, and for the collection the
dimension can be much larger. But how do we find the orbits under, say,
SU(3) in some CPn, and more especially what is the SU(3) analogue of the
Bloch coherent states? The simplest answer (Gitman and Shelepin, 1993) is
obtained by a straightforward generalization of the approach just taken for
SU(2): since SU(3) acts naturally on CP2 this means that we should ask for
an embedding of CP2 into CPn. Let the homogeneous coordinates of a point
in CP2 be P α = (u, v, w). We embed this into CPn through the equation

(u, v, w) → (um, . . . ,

√
m!

k1!k2!k3!
uk1vk2wk3 , . . . ) ; k1 +k2 +k3 = m . (6.71)

Actually this puts a restriction on the allowed values of n, namely

N = n + 1 =
1
2
(m + 1)(m + 2) . (6.72)

For these values of n we can choose the components of a symmetric tensor of
rank m as homogeneous coordinates for CPn. The map from P α ∈ CP2 to a
point in CP5 is then defined by

P α → T αβ = P (αP β) . (6.73)

In effect we are dealing with the symmetric tensor representation of SU(3).
(The brackets mean that we are taking the totally symmetric part; compare
this to the symmetric multispinors used in Section 4.4.)

Anyway we now have an orbit of SU(3) in CPn for special values of n. To
compute the intrinsic metric on this orbit (as defined by the Fubini–Study
metric in the embedding space) we again take the short cut via the Kähler
potential. We first observe that

Z · Z̄ =
∑

k1+k2+k3=m

m!
k1!k2!k3!

|u|2k1 |v|2k2 |w|2k3 =(|u|2 + |v|2 + |w|2)m =(P · P̄ )m .

(6.74)
Since the logarithm of this expression is the Kähler potential expressed in
affine coordinates, we find that the induced metric on the orbits becomes

ds2 = ∂a∂b̄ ln
(
P (z) · P̄ (z̄)

)m
dzadz̄b̄ = m dŝ2 , (6.75)

15 See Brody and Hughston (2001) for the n = 3 case.
16 Here we refer to SU(K) rather than SU(N) because the letter N = n + 1 is otherwise engaged.
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where dŝ2 is the Fubini–Study metric on CP2 written in affine coordinates.
Hence, just as for the Bloch coherent states, we find that the intrinsic metric
on the orbit is just a rescaled Fubini–Study metric. Since the space of coherent
states is Kähler the symplectic form can be obtained from the same Kähler
potential, using the recipe in Section 3.3.

The generalization to SU(K) with an arbitrary K should be obvious. The
Hilbert spaces in which we can represent SU(K) using symmetric tensors of
rank m have dimension

NK,m ≡ dim(HK,m) =
(

K + m− 1
m

)
=

(K + m− 1)!
m! (K − 1)!

. (6.76)

which is the number of ways of distributing m identical objects in K boxes.
For K = 3 it reduces to Eq. (6.72). The coherent states manifold itself is now
CPK−1, and the construction embeds it into CPNK,m−1.

But the story of coherent states for SU(K) is much richer than this for
every K > 2.

6.5 SU(3) coherent states

Let us recall some group theory. In this book we deal mostly with the classical
groups SU(K), SO(K) and Sp(K) and in fact mostly with the special unitary
groups SU(K). There are several reasons for this. For one thing the isometry
group of CPK−1 is SU(K)/ZK , for RPK−1 it is the special orthogonal group
SO(K) and for the quaternionic projective space HPK−1 it is the symplectic
group Sp(K)/Z2, so these groups are always there. Also they are all, in the
technical sense, simple and compact groups and have in many respects ana-
logous properties. In particular, most of their properties can be read off from
their Lie algebras, and their complexified Lie algebras can be brought to the
standard form

[Hi, Hj] = 0 , [Hi, Eα] = αiEα , (6.77)

[Eα, Eβ] = NαβEα+β , [Eα, E−α] = αiHi . (6.78)

where αi is a member of the set of root vectors and Nαβ = 0 if αi + βi is
not a root vector. The Hi form a maximal commuting set of operators and
span what is known as the Cartan subalgebra. Of course αi and Nαβ depend
on the group; readers not familiar with group theory will at least be able to
see that SU(2) fits into this scheme (if necessary, consult Appendix 2, or a
book on group theory (Gilmore, 1974)). A catalogue of the irreducible unitary
representations can now be made by specifying a highest weight vector |µ〉
in the Hilbert space, with the property that it is annihilated by the ‘raising
operators’ Eα (for all positive roots), and it is labelled by the eigenvalues of
the commuting operators Hi. Thus

Eα|µ〉 = 0 , α > 0 ; Hi|µ〉 =
1
2
mi|µ〉 , (6.79)
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where mi are the components of a weight vector. For SU(2) we expect every
reader to be familiar with this result. For SU(3) we obtain representations
labelled by two integers m1 and m2, with the dimension of the representation
being

dimH[m1,m2] =
1
2
(m1 + 1)(m2 + 1)(m1 + m2 + 2) . (6.80)

We will concentrate on SU(3) because the main conceptual novelty – compared
to SU(2) – can be seen already in this case.

In accordance with our general scheme we obtain SU(3) coherent states by
acting with SU(3) on some reference state. It turns out that the resulting
orbit is a Kähler manifold if and only if the reference state is a highest weight
vector of the representation (Perelomov, 1977; Zhang et al., 1990) – indeed the
reason why the S2 orbit of SU(2) is distinguished can now be explained as a
consequence of its reference state being a highest weight vector. What is new
compared to SU(2) is that there are several qualitatively different choices of
highest weight vectors. There is more news on a practical level: whereas the
calculations in the SU(2) case are straightforward, they become quite lengthy
already for SU(3). For this reason we confine ourselves to a sketch.17 We begin
in the defining representation of SU(3) by introducing the 3× 3 matrices

Sij = |i〉〈j| . (6.81)

If i < j we have a ‘raising operator’ Eα with positive root, if i > j we have
a ‘lowering operator’ E−α with negative root. We exponentiate the latter and
define

b−(z) = ez3S31 ez1S21 ez2S32 , (6.82)

where the γi are complex numbers and no particular representation is assumed.
In the defining representation this is the lower triangular 3× 3 matrix,

b−(z) =




1 0 0
z1 1 0
z3 z2 1


 . (6.83)

Upper triangular matrices b+ are defined analogously (or by Hermitian conjugation)
and will annihilate the reference state that we are about to choose. Then we
use that the fact that almost all (in the sense of the Haar measure) SU(3)
matrices can be written in the Gauss form

A = b−Db+ , (6.84)

where D is a diagonal matrix (obtained by exponentiating the elements of the
Cartan subalgebra). Finally we define the coherent states by

|z〉 = N(z) b−(z) |µ[m1,m2]〉 , (6.85)

where the reference state is a highest weight vector for the irreducible representation
that we have chosen. This formula is clearly analogous to Eq. (6.52). The
17 For full details consult Gnutzmann and Kuś (1998), from whom everything that we say here has

been taken.
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Figure 6.4. A reminder about representation theory: we show the root vectors
of SU(3) and four representations – the idea is that one can get to every point
(state) by subtracting one of the simple root vectors α1 or α2 from the highest
weight vector. For the degenerate representations (0,m) there is no way to go
when subtracting α1; this is the reason why Eq. (6.90) holds. The corresponding
picture for SU(2) is shown inserted.

calculation of the normalizing factor N is again straightforward but is somewhat
cumbersome compared to the calculation in the K = 2 case. Let us define

γ1 ≡ 1 + |z1|2 + |z3|2 (6.86)

γ2 ≡ 1 + |z2|2 + |z3 − z1z2|2 . (6.87)

Then the result is

N(z) =
√

γ−m1
1 γ−m2

2 . (6.88)

With a view to employing affine coordinates in CPn we may prefer to write
the state vector in the form Zα = (1, . . . ) instead. Then we find

Z(z) · Z̄(z̄) = γm1
1 γm2

2 . (6.89)

Equipped with this Kähler potential we can easily write down the metric and
the symplectic form that is induced on the submanifold of coherent states.

There is, however, a subtlety. For degenerate representations, namely when
either m1 or m2 equals zero, the reference state is annihilated not only by Sij

for i < j but also by an additional operator. Thus

j2 = 0 ⇒ S31|µ〉 = 0 and m1 = 0 ⇒ S32|µ〉 = 0 . (6.90)

Readers who are familiar with the representation theory of SU(3) see this
immediately from Figure 6.4. This means that the isotropy subgroup is larger
for the degenerate representations than in the generic case. Generically the
state vector is left invariant up to a phase by group elements belonging to
the Cartan subgroup U(1) × U(1), but in the degenerate case the isotropy
subgroup grows to SU(2)× U(1).

The conclusion is that for a general representation the space of coherent
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states is the six-dimensional space SU(3)/U(1)×U(1), with metric and symplectic
form derived from the Kähler potential given in Eq. (6.89). However, if m2 = 0
the space of coherent states is the four-dimensional space SU(3)/SU(2) ×
U(1) = CP2, with metric and symplectic form again given by Eq. (6.89).
This agrees with what we found in the previous section, where the Kähler
potential was given by Eq. (6.74). For m1 = 0 the space of coherent states is
again CP2; the Kähler potential is obtained from Eq. (6.89) by setting z1 = 0.
Interestingly, the ‘classicality’ of coherent states now gives rise to classical
dynamics on manifolds of either four or six dimensions (Gnutzmann, Haake
and Kuś, 2000).

The partition of unity – or, the POVM – becomes

1 =
(m1 + 1)(m2 + 1)(m1 + m2 + 2)

π3

∫
d2z1 d2z2 d2z3

1
γ2

1γ
2
2

|z〉〈z| (6.91)

in the generic case and

1 =
(m1 + 1)(m1 + 2)

π2

∫
d2z1 d2z3

1
γ3

1

|z〉〈z| for m2 = 0 , (6.92)

1 =
(m2 + 1)(m2 + 2)

π2

∫
d2z2 d2z3

1
γ3

2

|z〉〈z| for m1 = 0 , (6.93)

where the last integral is evaluated at z1 = 0.
In conclusion the SU(3) coherent states differ from the SU(2) coherent

states primarily in that there is more variety in the choice of representation,
and hence more variety in the possible coherent state spaces that occur. As it is
easy to guess, the same situation occurs in the general case of SU(K) coherent
states. Let us also emphasize, that it may be useful to define generalized
coherent states for some more complicated groups. For instance, in Chapter
15 we analyse pure product states of a composite N ×M system, which may
be regarded as coherent with respect to the group SU(N)× SU(M). The key
point to observe is that if we use a maximal weight vector as the reference state
from which we build coherent states of a compact Lie group then the space of
coherent states is Kähler, so it can serve as a classical phase space, and many
properties of the Bloch coherent states recur, for example there is an invariant
measure of uncertainty using the quadratic Casimir operator, and coherent
states saturate the lower bound of that uncertainty relation (Delbourgo and
Fox, 1977).

Problems

¦ Problem 6.1 Compute the Q- and P -distributions for the one-photon
Fock state.

¦ Problem 6.2 Compute the Wehrl entropy for the Fock states |n〉.



7 The stellar representation

We are all in the gutter, but some of us are looking at the stars.

Oscar Wilde

We have already, in Section 4.4, touched on the possibility of regarding points
in complex projective space CPN−1 as unordered sets of n = N − 1 stars
on a ‘celestial sphere’. There is an equivalent description in terms of the n
zeros of the Husimi function. Formulated either way, the stellar representation
illuminates the orbits of SU(2), the properties of the Husimi function, and the
nature of ‘typical’ and ‘random’ quantum states.

7.1 The stellar representation in quantum mechanics

Our previous discussion of the stellar represenation was based on projective
geometry only. When such points are thought of as quantum states we will
wish to take the Fubini–Study metric into account as well. This means that we
will want to restrict the transformations acting on the celestial sphere, from
the Möbius group SL(2,C)/Z2 to the distance preserving subgroup SO(3) =
SU(2)/Z2. So the transformations that we consider are

z → z′ =
αz − β

β∗z + α∗
, (7.1)

where it is understood that z = tan θ
2
eiφ is a stereographic coordinate on the

2-sphere. Recall that the idea in Section 4.4 was to associate a polynomial to
each vector in CN , and the roots of that polynomial to the corresponding point
in CPN−1. The roots are the stars. We continue to use this idea, but this time
we want to make sure that an SU(2) transformation really corresponds to an
ordinary rotation of the sphere on which we have placed our stars. For this
purpose we need to polish our conventions a little: we want a state of spin ‘up’
in the direction given by the unit vector n to be represented by n = 2j points
sitting at the point where n meets the sphere, and more generally a state that
is an eigenstate of n · L with eigenvalue m to be represented by j + m points
at this point and j − m points at the antipode. Now consider a spin j = 1
particle and place two points at the east pole of the sphere. In stereographic
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coordinates the east pole is at z = tan π
4

= 1, so the east pole polynomial is

w(z) = (z − 1)2 = z2 − 2z + 1 . (7.2)

The eigenvector of Lx with eigenvalue +1 is Zα = (1,
√

2, 1), so if we are to
read off this vector from Eq. (7.2) we must set

w(z) ≡ Z0z2 −
√

2Z1z + Z2 . (7.3)

After a little experimentation like this it becomes clear that to any point in
CPn, given by the homogeneous coordinates Zα, we want to associate the n
unordered roots of the polynomial

w(z) ≡
n∑

α=0

(−1)αZα

√(
n

α

)
zn−α . (7.4)

The convention for when ∞ counts as a root is as described in Section 4.4.
The factors and signs have been chosen precisely so that the eigenstate of the
operator n · L with eigenvalue m, where n = (sin θ cosφ, sin θ sinφ, cos θ), is
represented by j + m points at z = tan θ

2
eiφ and j−m points at the antipodal

point (see Figure 4.7). It is interesting to notice that the location of the stars
has an operational significance. A spin system, say, cannot be observed to have
spin up along a direction that points away from a star on our celestial sphere.

With these conventions the stellar representation behaves nicely under rotations,
in the sense that if we apply a rotation operator to CPn the effect in the picture
is simply to rotate the sphere containing the n unordered points.1 The action
of a general unitary transformation, not belonging to the SU(2) subgroup that
we have singled out for attention, is of course not transparent in the stellar
representation. On the other hand the anti-unitary operation of time reversal,
as defined in Section 5.5, is nicely described. For n = 1 we find that

Θ
[

Z0

Z1

]
=

[ −Z̄1

Z̄0

]
⇒ Θz = −1

z̄
(7.5)

(since z ≡ Z1/Z0). This is just an inversion of the sphere through the origin.
But this works for all n. From the transformation properties of Zα together
with Eq. (7.4) it follows that a state that is pictured as n points located at
the n positions zi will go over to the state that is pictured by n points located
at the inverted positions −1/z̄i. Since no configuration of an odd number of
points can be invariant under such a transformation it immediately follows
that there are no states invariant under time reversal when n is odd.

For even n there will be a subspace of states left invariant under time
reversal. For n = 2 it is evident that this subspace is the real projective space
RP2, because the stellar representation of a time reversal invariant state is a
pair of points in antipodal position on S2. This is not the RP2 that we would
obtain by choosing all coordinates real, rather it is the RP2 of all possible

1 The resemblance to Schwinger’s harmonic oscillator representation of SU(2) (Schwinger, 1965)
is not accidental. He was led to his representation by Majorana’s description of the stellar
representation (Majorana, 1932).
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Figure 7.1. In the stellar representation a time reversal moves the stars to
their antipodal positions; time-reversal invariant states can therefore occur only
when the number of stars is even (as it is in the rightmost case, representing a
point in RP4).

m = 0 states. For higher n the story is less transparent, but it is still true
that the invariant subspace is RPn, and we obtain a stellar representation of
real projective space into the bargain – a point in the latter corresponds to a
configuration of stars on the sphere that is symmetric under inversion through
the origin.

7.2 Orbits and coherent states

The stellar representation shows its strength when we decide to classify all
possible orbits of SU(2)/Z2 = SO(3) in CPn.2 The general problem is that of
a group G acting on a manifold M ; the set of points that can be reached from
a given point is called a G-orbit. In itself the orbit is the coset space G/H,
where H is the subgroup of transformations leaving the given point invariant.
H is called the isotropy group. We want to know what kinds of orbits there
are and how M is partitioned into G-orbits. The properties of the orbits will
depend on the isotropy group H. A part of the manifold M where all orbits
are similar is called a stratum, and in general M becomes a stratified manifold
foliated by orbits of different kinds. We can also define the orbit space as the
space whose points are the orbits of G in M ; a function of M is called G-
invariant if it takes the same value at all points of a given orbit, which means
that it is automatically a well-defined function of the orbit space.

In Section 6.3 we had M = CPn, and, by choosing a particular reference
state, we selected a particular orbit as the space of Bloch coherent states. This
orbit had the intrinsic structure of SO(3)/SO(2) = S2. It was a successful
choice, but it is interesting to investigate if other choices would have worked
as well. For CP1 the problem is trivial: we have one star and can rotate it to
any position, so there is only one orbit, namely CP1 itself. For CP2 it gets
more interesting. We now have two stars on the sphere. Suppose first that
they coincide. The little group – the subgroup of rotations that leaves the
configuration of stars invariant – consists of rotations around the axis where

2 This was done by Bacry (1974). By the way his paper contains no references whatsoever to prior
work.
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the pair is situated. Therefore the orbit becomes SO(3)/SO(2) = O(3)/O(2) =
S2. Every state represented by a pair of coinciding points lies on this orbit.
Referring back to Section 6.4, we note that the states on this orbit can be
regarded as states that have spin up in some direction, and we already know
that these form a sphere inside CP2. But now we know it in a new way.
The next case to consider is when the pair of stars are placed antipodally
on the sphere. This configuration is invariant under rotations around the axis
defined by the stars, but also under an extra turn that interchanges the two
points. Hence the little group is SO(2)× Z2 = O(2) and the orbit is S2/Z2 =
O(3)/[O(2) × O(1)] = RP2. For any other pair of stars the little group has a
single element, namely a discrete rotation that interchanges the two. Hence the
generic orbit is SO(3)/Z2 = O(3)/[O(1)×O(1)]. Since SO(3) = RP3 = S3/Z2

we can also think of this as a space of the form S3/Γ, where Γ is a discrete
subgroup of the isometry group of the 3-sphere. Spaces of this particular kind
are called lens spaces by mathematicians.

To solve the classification problem for arbitrary n we first recall that the
complete list of subgroups of SO(3) consists of e (the trivial subgroup consisting
of just the identity); the discrete groups Cp (the cyclic groups, with p some
integer), Dp (the dihedral groups), T (the symmetry group of the tetrahedron),
O (the symmetry group of the octahedron and the cube) and Y (the symmetry
group of the icosahedron and the dodecahedron); also the continuous groups
SO(2) and O(2). This is well known to crystallographers and to mathematicians
who have studied the regular polyhedra. Recall, moreover, that the tetrahedron
has four vertices, six edges and four faces so that we may denote it by {4, 6, 4}.
Similarly the octahedron is {6, 12, 8}, the cube {8, 12, 6}, the dodecahedron
{12, 30, 20} and the icosahedron is {20, 30, 12}. The question is: given the
number n, does there exist a configuration of n stars on the sphere invariant
under the subgroup Γ? The most interesting case is for Γ = SO(2) which occurs
for all n, for instance when all the stars coincide. For O(2) the stars must divide
themselves equally between two antipodal positions, which can happen for all
even n. The cyclic group Cp occurs for all n ≥ p, the groups D2 and D4 for
all even n ≥ 4, and the remaining dihedral groups Dp when n = p + pa + 2b
with a and b non-negative integers. For the tetrahedral group T , we must have
n = 4a+6b with a non-negative (this may be a configuration of a stars at each
corner of the tetrahedron and b stars sitting ‘above’ each edge midpoint – if
the latter stars only are present the symmetry group becomes O). Similarly
the octahedral group O occurs when n = 6a + 8b and the icosahedral group
Y when n = 12a + 20b + 30c, a, b and c being integers. Finally configurations
with no symmetry at all appear for all n ≥ 3. The possible orbits are of the
form SO(3)/Γ; if Γ is one of the discrete groups this is a three-dimensional
manifold. Indeed among the orbits only the exceptional SO(3)/SO(2) = S2

orbit is a Kähler manifold, and it is the only orbit that can serve as a classical
phase space. Hence this is the orbit that we will use to form coherent states.

Since the orbits have rather small dimensions the story of how CPn can be
partitioned into SU(2) orbits is rather involved when n is large, but for n = 2
it can be told quite elegantly. There will be a one parameter family of three-
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Figure 7.2. An orbit of SU(2) acting on CP2. We use orthographic coordinates
to show the octant, in which the orbit fills out a two-dimensional rectangle. Our
reference state is at its upper left-hand corner. In the tori there is a circle and
we show how it winds around its torus; its precise position varies. When σ → 0
the orbit collapses to S2 and when σ → π/4 it collapses to RP2.

dimensional orbits, and correspondingly a one parameter choice of reference
vectors. A possible choice is

Zα
0 (σ) =




cosσ
0

sinσ


 , 0 ≤ σ ≤ π

4
. (7.6)

The corresponding polynomial is w(z) = z2 + tanσ and its roots will go from
coinciding to antipodally placed as σ grows. If we act on this vector with a
general 3×3 three-rotation matrix D – parametrized say by Euler angles as in
Eq. (3.143), but this time for the three-dimensional representation – we will
obtain the state vector

Zα(σ, τ, θ, φ) = Dα
β(τ, θ, φ)Zβ

0 (σ) , (7.7)

where σ labels the orbit and the Euler angles serve as coordinates within the
orbit. The range of τ turns out to be [0, π[. Together these four parameters
serve as a coordinate system for CP2.

By means of lengthy calculations we can express the Fubini–Study metric
in these coordinates; in the notation of Section 3.7

ds2 = dσ2 + 2(1 + sin 2σ)Θ2
1 + 2(1− sin 2σ)Θ2

2 + 4 sin2 2σΘ2
3 . (7.8)

On a given orbit σ is constant and the metric becomes the metric of a 3-sphere
that has been squashed in a particular way. It is in fact a lens space rather
than a 3-sphere because of the restricted range of the periodic coordinate τ .
When σ = 0 the orbit degenerates to a (round) 2-sphere, and when σ = π/4
to real projective 2-space. The parameter σ measures the distance to the S2

orbit.
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Another way to look at this is to see what the orbits look like in the octant
picture (Section 4.6). The answer turns out to be quite striking (Barros e
Sá, 2001a) and is given in Figure 7.2.

7.3 The Husimi function

Scanning our list of orbits we see that the only orbit that is a symplectic space,
and can serve as a classical phase space, is the exceptional SO(3)/SO(2) = S2

orbit. These are the Bloch coherent states that we will use, and we will now
proceed to the Husimi or Q-function for such coherent states. In Section 6.2 it
was explained that the Husimi function is a genuine probability distribution on
the classical phase space and that, at least in theory, it allows us to reconstruct
the quantum state. Our notation will differ somewhat from that of Section 6.3,
so before we introduce it we recapitulate what we know so far. The dimension
of the Hilbert space HN is N = n + 1 = 2j + 1. Using the basis states
|eα〉 = |j, m〉, a general pure state can be written in the form

|ψ〉 =
n∑

α=0

Zα|eα〉 (7.9)

and a (normalized) Bloch coherent state in the form

|z〉 =
1

(1 + |z|2)n
2

n∑
α=0

(
n

α

)
zα |eα〉 . (7.10)

(The notation here is inconsistent – Zα is a component of a vector, while zα

is the complex number z raised to a power – but quite convenient.) At this
point we introduce the Bargmann function. Up to a factor it is again an nth
order polynomial uniquely associated to any given state. By definition

ψ(z) = 〈ψ|z〉 =
1

(1 + |z|2)n
2

n∑
α=0

Z̄α

√(
n

α

)
zα . (7.11)

It is convenient to regard our Hilbert space as the space of functions of this
form, with the scalar product

〈ψ|φ〉 =
n + 1
4π

∫
dΩ ψφ̄ ≡ n + 1

4π

∫
4 d2z

(1 + |z|2)2 ψ φ̄ . (7.12)

So dΩ is the usual measure on the unit 2-sphere. That this is equivalent to
the usual scalar product follows from our formula (6.57) for the resolution of
unity.3

Being a polynomial the Bargmann function can be factorized. Then we
obtain

ψ(z) =
Z̄n

(1 + |z|2)n
2

(z − ω1)(z − ω2) . . . (z − ωn) . (7.13)

3 This Hilbert space was presented by V. Bargmann (1961) in an influential paper.
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The state vector is uniquely characterized by the zeros of the Bargmann
function, so again we have stars on the celestial sphere to describe our states.
But the association is not quite the same that we have used so far. For instance,
we used to describe a coherent state by the polynomial

w(z) = (z − z0)n . (7.14)

(And we know how to read off the components Zα from this expression.) But
the Bargmann function of the same coherent state |z0〉 is

ψz0(z) = 〈z0|z〉 =
z̄n
0

(1 + |z|2)n
2 (1 + |z0|2)n

2
(z +

1
z̄0

)n . (7.15)

Hence ω0 = −1/z̄0. In general the zeros of the Bargmann function are antipodally
placed with respect to our stars. As long as there is no confusion, no harm is
done.

With the Husimi function for the canonical coherent states in mind, we rely
on the Bloch coherent states to define the Husimi function as4

Qψ(z) = |〈ψ|z〉|2 =
|Zn|2

(1 + |z|2)n
|z − ω1|2|z − ω2|2 . . . |z − ωn|2 . (7.16)

It is by now obvious that the state |ψ〉 is uniquely defined by the zeros of its
Husimi function. It is also obvious that Q is positive and, from Eqs. (7.12)
and (6.57), that it is normalized to one:

n + 1
4π

∫
dΩ Qψ(z) = 1 . (7.17)

Hence it provides a genuine probability distribution on the 2-sphere. It is
bounded from above. Its maximum value has an interesting interpretation: the
Fubini–Study distance between |ψ〉 and |z〉 is given by DFS = arccos

√
κ, where

κ = |〈ψ|z〉|2 = Qψ(z), so the maximum of Qψ(z) determines the minimum
distance between |ψ〉 and the orbit of coherent states.

A convenient way to rewrite the Husimi function is

Q(z) = kn σ(z, ω1)σ(z, ω2) . . . σ(z, ωn) , (7.18)

where

σ(z, ω) ≡ |z − ω|2
(1 + |z|2)(1 + |ω|2) =

1− cos d

2
= sin2 d

2
=

d2
ch

4
, (7.19)

d is the geodesic and dch is the chordal distance between the two points z and
ω. (To show this, set z = tan θ

2
eiφ and ω = 0. Simple geometry now tells us

that σ(z, ω) is one quarter of the square of the chordal distance dch between
the two points, assuming the sphere to be of unit radius. See Figure 7.3.) The
factor kn in Eq. (7.18) is a z-independent normalizing factor. Unfortunately it
is a somewhat involved business to actually calculate kn when n is large. For

4 Some authors prefer the definition Qψ(z) = (n + 1)|〈ψ|z〉|2.
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Figure 7.3. We know that σ(z, ω) = sin2 d
2 ; here we see that sin d

2 equals one
half of the chordal distance dch between the two points.

low values of n one finds, using the notation σkl ≡ σ(ωk, ωl), that

k−1
2 = 1− 1

2
σ12 (7.20)

k−1
3 = 1− 1

3
(σ12 + σ23 + σ31) (7.21)

k−1
4 = 1 − 1

4
(σ12 + σ23 + σ31 + σ14 + σ24 + σ34)

+
1
12

(σ12σ34 + σ13σ24 + σ14σ23) . (7.22)

For general n the answer can be given as a sum of a set of symmetric functions
of the squared chordal distances σkl (Lee, 1988).

To get some preliminary feeling for Q we compute it for the Dicke states
|ψk〉, that is for states that have the single component Zk = 1 and all others
zero. We find

Q|ψk〉(z) =
(

n

k

) |z|2k

(1 + |z|2)n
=

(
n

k

)(
cos

(θ

2
))2(n−k) (

sin
(θ

2
))2k

, (7.23)

where we switched to polar coordinates on the sphere in the last step. The
zeros sit at z = 0 and at z = ∞, that is at the north and south poles of the
sphere – as we knew they would. When k = 0 we have an m = j state, all
the zeros coincide, and the function is concentrated around the north pole.
This is a coherent state. If n is even and k = n/2 we have an m = 0 state,
and the function is concentrated in a band along the equator. The indication,
then, is that the Husimi function tends to be more spread out the more the
state differs from being a coherent one. As a first step towards confirming this
conjecture we will compute the moments of the Husimi function. But before
doing so, let us discuss how it can be used to compose two states.

The tensor product of an N = (n + 1)-dimensional Hilbert space with itself
is

HN ⊗HN = H2N−1 ⊕H2N−3 ⊕ · · · ⊕H1 . (7.24)

Given two states |ψ1〉 and |ψ2〉 in HN we can define a state |ψ1〉 ¯ |ψ2〉 in the
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Figure 7.4. Composing states by adding stars.

tensor product space by the equation

Q|ψ1〉¯|ψ2〉 ∝ Q|ψ1〉Q|ψ2〉 . (7.25)

We simply add the stars of the original states to obtain a state described
by 2(N − 1) stars. This state clearly sits in the subspace H2N−1 of the tensor
product space. This operation becomes particularly interesting when we compose
a coherent state with itself. The result is again a state with all stars coinciding,
and moreover all states with 2N−1 coinciding stars arise in this way. Reasoning
along this line one quickly sees that

2n + 1
4π

∫
dΩ |z〉|z〉〈z|〈z| = 12N−1 , (7.26)

where 12N−1 is the projector, in HN ⊗HN , onto H2N−1. Similarly

3n + 1
4π

∫
dΩ |z〉|z〉|z〉〈z|〈z|〈z| = 13N−2 . (7.27)

And so on. These are useful facts.
Thus equipped we turn to the second moment of the Husimi function:

n + 1
4π

∫
dΩ Q2 =

n + 1
2n + 1

〈ψ|〈ψ|2n + 1
4π

∫
dΩ |z〉|z〉〈z|〈z|ψ〉|ψ〉 ≤ n + 1

2n + 1
(7.28)

with equality if and only if |ψ〉|ψ〉 ∈ H2N−1, that is by the preceding argument
if and only if |ψ〉 is a coherent state. For the higher moments one shows in the
same way that

n + 1
4π

∫
dΩ Qp ≤ n + 1

pn + 1
i.e.

pn + 1
4π

∫
dΩ Qp ≤ 1 . (7.29)

We will use these results later.5 For the moment we simply observe that if we
define the Wehrl participation number as

R =
(

n + 1
4π

∫
dΩ Q2

)−1

, (7.30)

and if we take this as a first measure of delocalization, then the coherent states

5 Note that a somewhat stronger result is available; see Bodmann (2004).



176 The stellar representation

have the least delocalized Husimi functions (Schupp, 1999; Gnutzmann and
Życzkowski, 2001).

The Husimi function can be defined for mixed states as well, by

Qρ(z) = 〈z|ρ|z〉 . (7.31)

The density matrix ρ can be written as a convex sum of projectors |ψi〉〈ψi|,
so the Husimi function of a mixed state is a sum of polynomials up to a
common factor. It has no zeros, unless there is a zero that is shared by all the
polynomials in the sum. Let us order the eigenvalues of ρ in descending order,
λ1 ≥ λ2 ≥ · · · ≥ λN . The largest (smallest) eigenvalue gives a bound for the
largest (smallest) projection onto a pure state. Therefore it will be true that

max
z∈S2

Qρ(z) ≤ λ1 and min
z∈S2

Qρ(z) ≥ λN . (7.32)

These inequalites are saturated if the eigenstate of ρ corresponding to the
largest (smallest) eigenvalue happens to be a coherent state. The main conclusion
is that the Husimi function of a mixed state tends to be flatter than that of a
pure state, and generically it is nowhere zero.

7.4 Wehrl entropy and the Lieb conjecture

We can go on to define the Wehrl entropy (Wehrl, 1978; Wehrl, 1979) of the
state |ψ〉 by

SW (|ψ〉〈ψ|) ≡ −n + 1
4π

∫

Ω

dΩ Qψ(z) lnQψ(z) . (7.33)

One of the key properties of the Q-function on the plane was that (as proved by
Lieb) the Wehrl entropy attains its minimum for the coherent states. Clearly
we would like to know whether the same is true for the Q-function on the
sphere. Consider the coherent state |z0〉 = |j, j〉 with all stars at the south
pole. Its Husimi function is given in Eq. (7.23), with k = 0. The integration
(7.33) is easily performed (try the substitution x = cos2

(
θ
2

)
!) and one finds

that the Wehrl entropy of a coherent state is n/(n+1). The Lieb conjecture
(Lieb, 1978) states that

SW (|ψ〉〈ψ|) ≥ n

n + 1
=

2j

2j + 1
(7.34)

with equality if and only if |ψ〉 is a coherent state. It is also easy to see that the
Wehrl entropy of the maximally mixed state ρ∗ = 1

n+1
1 is SW (ρ∗) = ln (n + 1);

given that that the Wehrl entropy is concave in ρ this provides us with a rough
upper bound.

The integral that defines SW can be calculated because the logarithm factorizes
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the integral.6 In effect

SW = −n + 1
4π

∫

Ω

dΩ Q(z)

(
ln kn +

n∑
i=1

ln
(
σ(z, ωi)

)
)

. (7.35)

The answer is again given in terms of various symmetric functions of the
squares of the chordal distances. We make the definitions:

©| =
∑
i<j

σij (7.36)

©∠ =
n∑

k=1

∑
i<j

σikσjk (7.37)

©a =
n∑

l=1

∑
i<j<k

σilσjlσkl . (7.38)

The notation is intended to make it easier to remember the structure of the
various functions (Schupp, 1999). As n grows we will need more of them. For
n = 4:

©‖ = σ12σ34 + σ13σ24 + σ14σ23 (7.39)

For arbitrary n, sum over all quadratic terms such that all indices are different;
but it is becoming evident that it will be labourious even to write down all
the symmetric functions that occur for high values of n (Lee, 1988). Anyway,
with this notation

n = 2 : SW = k2

(
2
3

+
1
6
σ12

)
− ln k2 = k2

(
2
3

+
1
6
©|
)
− ln k2 , (7.40)

n = 3 : SW = k3

(
3
4

+
1
12
©| −1

6
©∠

)
− ln k3 , (7.41)

n = 4 : SW = k4

(
4
5

+
1
20
©| − 13

180
©‖ − 1

12
©∠ − 1

24
©a

)
− ln k4 . (7.42)

For n = 2 it is easy to see that SW assumes its minimum when σ12 = 0, that is
when the zeros coincide and the state is coherent (Scutaru, n.d.). In fact one
can also show that Lieb’s conjecture is true for n = 3 (Schupp, 1999). The first
non-trivial case is n = 4: we are facing a very difficult optimization problem
because the σkl are constrained by the requirement that they can be given in
terms of the chordal distances between n points on a sphere.

From a different direction Bodmann (2004) has shown that

SW ≥ n ln
(

1 +
1

n + 1

)
. (7.43)

The conjecture therefore holds in the limit of large n, not surprisingly since in
some sense it then goes over to the known result for canonical coherent states.
But in general the Lieb conjecture remains open.

6 This feat was performed by Lee (1988). Unfortunately the answer looks so complicated that we
do not quote it in full here. We will however sketch his proof that SW assumes a local minimum
at the coherent states.
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A complementary problem is to ask for states that maximize the Wehrl
entropy. For n = 1 all pure states are coherent, so the question does not
arise; Smin = Smax = 1/2. For n = 2 the maximal Wehrl entropy Smax =
5/3 − ln 2 is achieved for states whose stars are placed antipodally on the
sphere. For n = 3 it is states whose stars are located on an equilateral triangle
inscribed in a great circle and Smax = 21/8 − 2 ln 2. Problem 7.2 provides
some further information, but the general problem of finding such maximally
delocalized states for arbitrary n is still open. In this direction let us also
observe that three stars placed on an equilateral triangle on a great circle of
the sphere correspond to states that saturate the upper limit of the uncertainty
relation (6.61). This is also true for four stars placed at the corner of a regular
tetrahedron, but the story becomes more complicated when n ≥ 5 (Davis,
Delbourgo and Jarvis, 2000).

It may be remarked that considerable effort has been spent on a problem
with a somewhat similar flavour, namely that of optimizing the potential
energy

Es =
∑
k<l

σs
kl (7.44)

for n points on the sphere. The case s = − 1
2

corresponds to electrostatic
interaction and is of interest both to physicists concerned with Thomson’s
‘plum pudding’ model of the atom (assuming anyone is left) and to chemists
concerned with buckminster fullerenes (molecules like C60).7 Although this
problem appears to be much simpler than the Lieb conjecture it has many
open ends. The minima do tend to be regular configurations, but as a matter
of fact neither the cube (for n = 8) nor the dodecahedron (for n = 12) are
minima. It is also known that when the number of point charges is large there
tends to be many local minima of nearly degenerate energy. If the experience
gained from this problem, and others like it, is to be trusted then we expect
states that maximize the Wehrl entropy to form interesting and rather regular
patterns when looked at in the stellar representation.

With this background information in mind we can sketch Lee’s proof that
the coherent states provide local minima of the Wehrl entropy. For this it is
enough to expand SW to second order in the σij and this can be done for all
n. The answer is

SW =
n

n + 1
+

1
2n2

©| ©| − n− 2
n(n− 1)2

©‖ − 1
n(n− 1)

©∠ + o
(
σ3

il

)
. (7.45)

Next we expand the position (θi, φi) of the n zeros around their average
position (θ0, φ0), using polar angles as coordinates. Thus

∆θi = θi − θ0 ⇒
∑

i

∆θi =
∑

i

θi − nθ0 = 0 , (7.46)

and similarly for ∆φi. To lowest non-trivial order a short calculation gives

σil = sin2 dil

2
≈ 1

4
(∆θi −∆θl)2 +

1
4

sin2 θ0(∆φi −∆φl)2 . (7.47)

7 For a review of this problem, with entries to the literature, see Saff and Kuijlaars (1997).
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Finally a long calculation gives (Lee, 1988)

SW ≈ n

n + 1
+

1
32(n− 1)2

(F1 − F3)2 +
1

8(n− 1)2
F 2

2 , (7.48)

where

F1 =
∑

i

(∆θi)2, F2 = sin θ0

∑
i

(∆θi)(∆φi), F3 = sin2 θ0

∑
i

(∆φi)2 .

(7.49)

Evidently Eq. (7.48) implies that the coherent states form a (quite shallow)
local minimum of SW .

7.5 Generalized Wehrl entropies

One can also formulate the Lieb conjecture for the generalized entropies discussed
in Section 2.7, which provide alternative measures of localization of a quantum
state in the phase space. All generalized entropies depend on the shape of the
Husimi function only, and not on where it may be localized.

For instance, one may consider the Rényi–Wehrl entropies, defined according
to (2.79),

SRW
q (ψ) =

1
1− q

ln
[
n + 1
4π

∫

Ω

dΩ
(
Qψ(z)

)q
]

, (7.50)

and conjecture that their minima are attained for coherent states. A proof
for all q would imply the proof of the original Lieb conjecture (in the limit
q → 1) and would be difficult, but it is encouraging that this modified Lieb
conjecture has been proved for q = 2, 3, . . . , and moreover in two different
ways (Schupp, 1999; Gnutzmann and Życzkowski, 2001).

The easy way is to rely on Eq. (7.29). For q positive the Rényi–Wehrl entropy
is smallest when the qth moment of the Q-function is maximal, and for q =
2, 3, . . . we already know that this happens if and only if the state is coherent.
In this way we get

SRW
q (|z〉) ≥ 1

1− q
ln

( n + 1
qn + 1

)
, q = 2, 3, . . . , (7.51)

with equality if and only if the state is coherent.
Before we go on, let us define the digamma function

Ψ(x) =
Γ′(x)
Γ(x)

. (7.52)

For any integer m > n it enjoys the property that

Ψ(m)−Ψ(n) =
m−1∑
k=n

1
k

. (7.53)

When x is large it is true that Ψ(x + 1) ∼ lnx + 1/2x (Spanier and Oldham,
1987).
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Figure 7.5. Rényi–Wehrl entropy Sq of the Jz eigenstates |j,m〉 for a) j = 3
and b) j = 20. For m = j the states are coherent, and the crosses show integer
values of q, for which the generalized Lieb conjecture is proven.

To get some feeling for how the Wehrl entropies behave, let us look at the
eigenstates |j, m〉 of the angular momentum operator Jz. We computed their
Husimi functions in eq. (7.23). They do not depend on the azimuthal angle φ,
which simplifies things. Direct integration (Gnutzmann and Życzkowski, 2001)
gives

SW (|j,m〉) =
2j

2j + 1
− ln

(
2j

j −m

)
+ 2j Ψ(2j + 1) (7.54)

− (j + m)Ψ(j + m + 1)− (j −m)Ψ(j −m + 1) ,

and

SRW
q (|j, m〉) =

1
1− q

ln
[ 2j + 1
2qj + 1

(
2j

j −m

)q Γ[q(j + m) + 1]Γ[q(j −m) + 1]
Γ(2qj + 1)

]
,

(7.55)

For m = 0 the state is localized on the equator of the Bloch sphere. A Stirling-
like expansion (Spanier and Oldham, 1987), ln(k!) ≈ (k+1/2) ln k−k+ln

√
2π,

allows us to find the asymptotes, S|m=0〉 ∼ 1
2
ln N + 1

2
(1+lnπ/2). Interestingly,

the mean Wehrl entropy of the eigenstates of Jz behaves similarly;

1
2j + 1

m=j∑
m=−j

SW (|j, m〉) = j − 1
2j + 1

m=j∑
m=−j

ln
(

2j

j −m

)
≈ 1

2
ln N + ln(2π)− 1

2
.

(7.56)

A plot of some Rényi–Wehrl entropies obtained for the angular momentum
eigenstates is shown in Figure 7.5. Any Rényi entropy is a continuous, non-
increasing function of the Rényi parameter q. The fact that it attains minimal
values for coherent states, may suggest that for these very states the absolute
value of the derivative dS/dq|q=0 is maximal.

So far we had SU(2) coherent states in mind, but the treatment is easily
generalized to the (rather special) SU(K) coherent states |z(K)〉 from Section
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6.4. Then our ‘skies’ are CPK−1, and they contain m stars if the dimension of
the representation is NK,m, as defined in Eq. (6.76). The Husimi function is
normalized by

NK,m

∫

ΩK−1

dΩK−1(z) |〈ψ|z(K)〉|2 = 1 , (7.57)

where dΩK−1 is the FS measure on CPK−1, normalized so that
∫
Ωn

dΩn = 1.
The moments of the Husimi function can be bounded from above, using the

same method that was used for SU(2). In particular

M2(ψ) ≡ NK,n

∫

ΩK−1

dΩK−1(z)|〈z|ψ〉|4 (7.58)

=
NK,n

NK,2n

NK,2n

∫

ΩK−1

dΩK−1(z)|〈z ⊗ z|ψ ⊗ ψ〉|2 =
NK,n

NK,2n

||P2n|ψ ⊗ ψ〉||2,

where P2n projects the space NK,n⊗NK,n into NK,2n. The norm of the projection
||P2n|ψ ⊗ ψ〉||2 is smaller than ||ψ ⊗ ψ〉||2 = 1 unless |ψ〉 is coherent, in which
case |ψ⊗ψ〉 = |ψ¯ψ〉 ∈ HNK,2n

. Therefore M2(|ψ〉) ≤ NK,n/NK,2n. The same
trick (Schupp, 1999; Sugita, 2003; Sugita, 2002) works for any integer q ≥ 2,
and we obtain

Mq(ψ) = NK,n

∫

ΩK−1

dΩK−1(z)|〈z|ψ〉|2q ≤ NK,n

NK,qn

=

(
K+n−1

n

)
(

K+qn−1
qn

) , (7.59)

with equality if and only if the state |ψ〉 is coherent. By analytical continuation
one finds that the Rényi–Wehrl entropy of an SU(K) coherent state is

SRW
q (|z(K)〉) =

1
1− q

ln
[
Γ(K + n)Γ(qn + 1)
Γ(K + qn)Γ(n + 1)

]
. (7.60)

In the limit q → 1 one obtains the Wehrl entropy of a coherent state (SlÃomczyński
and Życzkowski, 1998; Jones, 1990),

SW

(|z(K)〉) = n [Ψ (n + K)−Ψ(n + 1)] . (7.61)

Using Eq. (7.53) for the digamma function, the right-hand side equals n/(n+1)
for K = 2, as we knew already. It is natural to conjecture that this is an upper
bound for the Wehrl entropy also for K > 2.

7.6 Random pure states

Up until now we were concerned with properties of individual pure states. But
one may also define an ensemble of pure states and ask about the properties of a
typical (random) state. In effect we are asking for the analogue of Jeffrey’s prior
(Section 2.6) for pure quantum states. There is such an analogue, determined
uniquely by unitary invariance, namely the Fubini–Study measure that we
studied in Section 4.7, this time normalized so that its integral over CPn

equals one. Interestingly the measure splits into two factors, one describing a
flat simplex spanned by the moduli squared yi = |〈ei|ψ〉|2 of the state vector,
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and another describing a flat torus of a fixed size, parametrized by the phases.
In fact

dΩn =
n!

(2π)n
dy1 . . . dyn dν1 . . . dνn , (7.62)

or using our octant coordinates (4.69),

dΩn =
1
πn

n∏
k=1

cosϑk (sinϑk)2k−1 dϑk dνk . (7.63)

Integrating out all but one variable we obtain the probability distribution
P (y) = n(1− y)n−1, which is a special, β = 2 case of the general formula

Pβ(y) =
Γ
(
(n + 1)β/2

)

Γ
(
β/2

)
Γ
(
nβ/2

)yβ/2−1(1− y)nβ/2−1 . (7.64)

For β = 1 this gives the distribution of components of real random vectors
distributed according to the round measure on RPn, while for β = 4 and n+1
even it describes the quaternionic case (Kuś, Mostowski and Haake, 1988).
For large N = n + 1 these distributions approach the χ2 distributions with β
degrees of freedom,

Pβ(y) ≈ Nχ2
β(Ny) =

(βN

2

)β/2 1
Γ(β/2)

yβ/2−1 exp
(
−βN

2
y
)

. (7.65)

When we use octant coordinates the distribution of independent random variables
reads

P (ϑk) = k sin(2ϑk)(sinϑk)2k−2, P (νk) =
1
2π

. (7.66)

One may convince oneself that y = cos2 ϑn, the last component of Eq. (4.69),
is distributed according to P

(
y) = n(sin2 ϑn)n−1 = (N − 1)(1 − y)N−2, in

agreement with Eq. (7.64) for β = 2. To generate a random quantum state
it is convenient to use auxiliary independent random variables ξk distributed
uniformly in [0, 1] and to set ϑk = arcsin

(
ξ
1/2k
k

)
.

Random pure states may be generated by:

• selecting 2n random variables according to Eq. (7.66) and using them as
octant coordinates;

• taking the first row (column) of a random unitary matrix U distributed
according to the Haar measure on U(N);

• taking an eigenvector of a random Hermitian (unitary) matrix pertaining
to GUE8 or CUE9 and multiplying it with a random phase;

• picking a set of N independent complex random numbers zi, drawn according
to the normal distribution, and rescaling them as ci = zi/

(∑N

i=1 |zi|2
)1/2

(Życzkowski and Sommers, 2001);
8 Gaussian unitary ensemble of Hermitian matrices consisting of independent Gaussian entries; such

a probability measure is invariant with respect to unitary rotations. As an introduction to random
matrices we recommend the book by Mehta (1991) or a more recent opus by Forrester (2005).

9 Circular unitary ensemble of unitary matrices distributed according to Haar measure on U(N).
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Figure 7.6. Husimi functions on the sphere (in Mercator’s projection) for a
typical eigenstate of a unitary operator describing (a) regular dynamics, (b)
chaotic dynamics, and (c) a random pure state for N = 60. The Wehrl entropies
read 2.05, 3.67, and 3.68, respectively. The maximal entropy is ln N ≈ 4.094.

• taking a row (column) of a random Hermitian matrix pertaining to GUE,
normalizing it as above, and multiplying by a random phase.

To obtain real random vectors, distributed according to the Fubini–Study
measure on RPn, we use orthogonal matrices, or eigenvectors of random
symmetric matrices, or we take a vector of N independent real Gaussian
variables and normalize it.

Random pure states may be analysed in the Husimi representation. If the
Fubini–Study measure on CPn is used, the states should not distinguish any
part of the sphere; therefore the averaged density of zeros of the Husimi
function for a random state will be uniform on the sphere (Lebœuf, 1991;
Bogomolny, Bohigas and Lebœuf, 1992; Bogomolny, Bohigas and Lebœuf,
1996). However, this does not imply that each zero may be obtained as an
independent random variable distributed uniformly on the sphere. On the
contrary, the zeros of a random state are correlated as shown by Hannay
(1996). In particular, the probability to find two zeros at small distance s
behaves as P (s) ∼ s2 (Lebœuf and Shukla, 1996), while for independent
random variables the probability grows linearly, P (s) ∼ s.

The statistical properties of the Husimi zeros for random states are shared by
the zeros representing eigenstates of unitary operators that give the one-step
time evolution of quantized versions of classically chaotic maps (Lebœuf, 1991).
Such states are delocalized, and their statistical properties (Haake, 2001)
coincide with the properties of random pure states. Eigenstates of unitary
operators giving the one-step time evolution of a regular dynamical system
behave very differently, and their Husimi functions tend to beconcentrated
along curves in phase space (Lebœuf and Voros, 1990; Życzkowski, 2001).
Figure 7.6 shows a selected eigenstate of the unitary operator U = exp(ipJz) exp(ikJ2

x/2j),
representing a periodically kicked top (Kuś et al., 1988; Haake, 2001; Życzkowski,
2001) for j = 29, 5, p = 1.7 and the kicking strength k = 0.7 (a) and k = 10.0
(b). When k = 0 we have an angular momentum eigenstate, in which case
the Husimi function assumes its maximum on a latitude circle; as the kicking
strength grows the curve where the maximum occurs begins to wiggle and the
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zeros start to diffuse away from the poles – and eventually the picture becomes
similar to that for a random state.10

If the system in question enjoys a time-reversal symmetry, the evolution
operator pertains to the circular orthogonal ensemble (COE), and the distribution
of Husimi zeros of the eigenstates is no more uniform. The time-reversal
symmetry induces a symmetry in the coefficients of the Bargmann polynomial
(7.13), causing some zeros to cluster along a symmetry line on the sphere
(Bogomolny et al., 1992; Prosen, 1996a; Braun, Kuś and Życzkowski, 1997).11

The time evolution of a pure state may be translated into a set of equations
of motion for each star (Lebœuf, 1991). Parametric statistics of stars was
initiated by Prosen (1996b), who found the distribution of velocities of stars
of random pure states, while Hannay (1998) has shown how the Berry phase
(discussed in Section 4.8) can be related to the loops formed by the stars
during a cyclic variation of the state. Let us emphasize that the number of the
stars of any quantum state in a finite-dimensional Hilbert space is constant
during the time evolution (although they may coalesce), while for the canonical
harmonic oscillator coherent states some zeros of the Husimi function may
‘jump to infinity’, so that the number of zeros may vary in time (see e.g.
Korsch, Müller and Wiescher, 1997).

Let us now compute the generalized Wehrl entropy of a typical random pure
state |ψ〉 ∈ HN . In other words we are going to average the entropy of a pure
state with respect to the Fubini–Study measure on CPn. The normalization
constant Nn+1,1 is defined in (6.76) and the Husimi function is computed with
respect to the standard SU(2) coherent states, so the average Wehrl moments
are

M̄q = Nn+1,1

∫

CPn

dΩn(ψ)Mq(ψ) = Nn+1,1

∫

CPn

dΩn(ψ)
[
N2,n

∫

CP1

dΩ1(z)|〈z|ψ〉|2q
]
.

(7.67)

It is now sufficient to change the order of integrations

M̄q = N2,n

∫

CP1

dΩ1(z)
[
Nn+1,1

∫

CPn

dΩn(ψ)|〈z|ψ〉|2q
]

= Mq(|z(K)〉) , (7.68)

and to notice that the integrals factorize: the latter gives the value of the
Rényi moment (7.59) of a SU(K) coherent state with K = n + 1, while the
former is equal to unity due to the normalization condition. This result has
a simple explanation: any state in an N = (n + 1)-dimensional Hilbert space
can be obtained by the action of SU(N) on the maximal weight state. Indeed
all states of size N are SU(N) coherent. Yet another clarification: the state
|ψ〉 is specified by n = N − 1 points on the sphere, or by a single point on
CPn. Equation (7.68) holds for any integer Rényi parameter q and due to

10 Similar observations were reported for quantization of dynamical systems on the torus (Lebœuf
and Voros, 1990; Nonnenmacher, 1989).

11 Mark Kac (1943) has considered a closely related problem: what is the expected number of real
roots of a random polynomial with real coefficients? For a more recent discussion of this issue
consult the very readable paper by Edelman and Kostlan (1995).
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Figure 7.7. Range of the Wehrl entropy SW for different dimensions N = n+1
of the Hilbert space; γ is Euler’s constant ≈ 0.58.

concavity of the logarithmical function we obtain an upper bound for the
average entropies of random pure states in CPn

S̄q ≡
〈
Sq

(|ψ〉)〉CPN−1 ≤ Sq(|z(N)〉) =
1

1− q
ln

[
Γ(N + 1)Γ(q + 1)

Γ(N + q)

]
, (7.69)

where the explicit formula (7.60) was used. Thus the Wehrl participation
number of a typical random state is 1/M̄2 = (N + 1)/2. In the limit q → 1 we
can actually perform the averaging analytically by differentiating the averaged
moment with respect to the Rényi parameter q,

S̄W = 〈− lim
q→1

∂

∂q
Mq(ψ)〉 =

∂

∂q
|q=1〈Mq(ψ)〉 = Ψ(N + 1)−Ψ(2) =

N∑
k=2

1
k
.

(7.70)

This result gives the mean Wehrl entropy of a random pure state (SlÃomczyński
and Życzkowski, 1998). In the asymptotic limit N →∞ the mean entropy S̄W

behaves as lnN +γ−1, where γ ≈ 0.5772 . . . is the Euler constant. Hence the
average Wehrl entropy comes close to its maximal value lnN , attained for the
maximally mixed state.

The Wehrl entropy SW allows us to quantify the global properties of a
state in the classical phase space, say of an eigenstate |φk〉 of an evolution
operator U . To get information concerning local properties one may expand
a given coherent state |z〉 in the eigenbasis of U . The Shannon entropy S(~yz)
of the vector yk = |〈z|φk〉|2 provides some information on the character of the
dynamics in the vicinity of the classical point z (Życzkowski, 1990; Wootters,
1990; Haake, 2001). As shown by Jones (1990) the mean entropy, 〈S〉CPN−1 ,
averaged over the FS measure on the set of complex random vectors given by
Eq. (7.63) is just equal to Eq. (7.70), which happens to be the continuous,
Boltzmann entropy (2.40) of the distribution (7.64) with β = 2. Since the
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variance 〈(∆S)2〉CPN−1 behaves like (π2/3 − 3)/N (Wootters, 1990; Mirbach
and Korsch, 1998), the relative fluctuations of the entropy decrease with the
size N of the Hilbert space. Based on these results one may conjecture that if
the corresponding classical dynamics in vicinity of the point z is chaotic, then
the Shannon entropy of the expansion coefficients of the coherent state |z〉 is
of order of 〈S〉CPN−1 . In the opposite case, a value of S(~yz) much smaller than
the mean value minus ∆S ∼ 1/

√
N may be considered as a signature of a

classically regular dynamics in the fragment of the phase space distinguished
by the point z ∈ Ω.

A generic evolution operator U has a non-degenerate spectrum, and the
entropy S(~yz) acquires another useful interpretation (Thiele and Stone, 1984;
Mirbach and Korsch, 1998): it is equal to the von Neumann entropy of the
mixed state ρ̄ obtained by the time average over the trajectory initiated from
the coherent state,

ρ̄ = lim
T→∞

1
T

T∑
t=1

U t|z〉〈z|(U †)t . (7.71)

To show this it is sufficient to expand the coherent state |z〉 in the eigenbasis
of the evolution operator U and observe that the diagonal terms only do not
dephase.

Let us return to the analysis of global properties of pure states in the classical
phase space Ω. We have shown that for N À 1 the random pure states are
delocalized in Ω. One can ask, if the Husimi distribution of a random pure
state tends to the uniform distribution on the sphere in the semiclassical limit
N → ∞. Since strong convergence is excluded by the presence of exactly
N − 1 zeros of the Husimi distribution, we will consider weak convergence
only. To characterize this convergence quantitatively we introduce the L2

distance between the Husimi distribution of the analysed state |ψ〉 and the
uniform distribution Q∗ = 1/N , normalized as N

∫
Q∗dΩ1 = 1, representing

the maximally mixed state ρ∗ = 1/N ,

L2(ψ) ≡ L2(Qψ, Q∗) =
(
N

∫

Ω

[
Qψ(z)− 1

N

]2

dΩ1(z)
)1/2

= M2(ψ)− 1
2j + 1

.

(7.72)

Applying the previous result (7.68) we see that the mean L2 distance to the
uniform distribution tends to zero in the semiclassical limit,

〈L2(ψ)〉CP2j =
2j

(2j + 1)(2j + 2)
→ 0 as j →∞. (7.73)

Thus the Husimi distribution of a typical random state tends, in the weak
sense, to the uniform distribution on the sphere.

The L2 distance to Q∗ may be readily computed for any coherent state |z〉,

L2(|z〉) ≡ L2(Q|z〉, Q∗) =
j

2j + 1
→ 1

2
, as j →∞. (7.74)

This outcome differs qualitatively from (7.73), which emphasizes the fact
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that coherent states are exceedingly non-typical states in a large dimensional
Hilbert space. For random states the n stars cover the sphere uniformly, but
the stars must coalesce in a single point to give rise to a coherent state. From
the generalized Lieb conjecture proved for q = 2 it follows that the L2 distance
achieves its maximum for coherent states.

7.7 From the transport problem to the Monge distance

The stellar representation allows us to introduce a simple metric in the manifold
of pure states with an interesting ‘classical’ property: the distance between
two spin coherent states is equal to the Riemannian distance between the two
points on the sphere where the stars of the states are situated. We begin the
story be formulating a version of the famous transport problem:

Let n stars be situated at the n not necessarily distinct points xi. The stars
are moved so that they occupy n not necessarily distinct points yi. The cost of
moving a star from xi to yj is cij. How should the stars be moved if we want
to minimize the total cost

T =
n∑

i=1

ciπ(i) (7.75)

where π(i) is some permutation telling us which star goes where?12

To solve this problem it is convenient to relax it, and consider the linear
programming problem of minimizing

T̃ =
N∑

i,j=1

cijBij , (7.76)

where Bij is any bistochastic matrix (Section 2.1). The minimum always occurs
at a corner of the convex polytope of bistochastic matrices, that is for some
permutation matrix, so a solution of the relaxed problem automatically solves
the original problem. Since there are n! permutation matrices altogether one
may worry about the growth of computer time with n. However, efficient
algorithms exist where the amount of computer time grows as n3 only (Wu
and Coppins, 1981).

We can now try to define the distance between two pure states in a finite-
dimensional Hilbert space as the minimal total cost Tmin of transporting their
stars into each other, where the cost cij is given by the geodesic distance
between the stars on a sphere of an appropriate radius (chosen to be 1/2j if
the dimension of the Hilbert space is 2j +1). If we wish we can formulate this
as a distance between two discrete probability distributions,

DdM(|ψ〉, |φ〉) ≡ Tmin

(
P1(|ψ1〉), P2(|ψ2〉)

)
, (7.77)

12 The problem is often referred to as the assignment problem. Clearly ‘cost’ suggests some
application to economics; during the Second World War the setting was transport of munitions
to fighting brigades.
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where any state is associated with the distribution P =
∑n

i=1
1
n
δ(z − zi),

where zi are the zeros of the Husimi function Qψ. This is a legitimate notion
of distance because, by construction, it obeys the triangle inequality (Rachev
and Rüschendorf, 1998). We refer to this as the discrete Monge distance DdM

between the states (Życzkowski and SlÃomczyński, 2001), since it is a discrete
analogue of the continuous Monge distance that we will soon introduce. We
observe that the discrete Monge distance between two coherent states (each
represented by 2j coinciding stars) then becomes equal to the usual distance
between two points on the unit sphere. In fact, locally the set of pure states
will now have the same geometry as a product of 2-spheres almost everywhere,
although the global properties are quite different.

Some further properties are worth noting. The discrete Monge distance
between the states |j, m〉 and |j,m′〉 becomes

DdM(|j, m〉, |j, m′〉) =
π

2j
|m−m′| . (7.78)

The set of eigenstates of Jz therefore form a metric line with respect to DdM ,
while they form the corners of a simplex with respect to the Fubini–Study
distance. It is also easy to see that all the eigenstates of Jx are situated at
the distance π/2 from any eigenstate of Jz. Finally, consider two uncorrelated
random states |ψrand〉 and |φrand〉. Since the states are random their respective
stars, carrying the weight 1/2j each, will be evenly distributed on the sphere.
Its surface can be divided into 2j cells of diameter ∼ (2j)−1/2 and given a
star from one of the states the distance to the nearest star of the other will
be of the same order. Hence the discrete Monge distance between two random
states will behave as

DdM(|ψrand〉, |φrand〉) ∼ 2j

(2j)3/2
=

1
(2j)1/2

→ 0 as j →∞ . (7.79)

The discrete Monge distance between two random states goes to zero in the
semiclassical limit.

Using similar ideas, a more sophisticated notion of distance can be introduced
between continuous probability distributions. The original Monge problem,
formulated in 1781, emerged from studying the most effective way of transporting
soil (Rachev, 1991):

Split two equally large volumes of soil into infinitely small particles and then
associate them with each other so that the sum of the paths of the particles over
the volume is least. Along which paths must the particles be transported and
what is the smallest transportation cost?

Let P1(x, y) and P2(x, y) denote two probability densities, defined on the
Euclidean plane, that describe the initial and the final location of the soil.
Let the sets Ω1 and Ω2 denote the supports of both probability distributions.
Consider smooth one-to-one maps T : Ω → Ω which generate volume preserving
transformations Ω1 into Ω2, that is

P1 (x, y) = P2

(
T (x, y)

) |T ′(x, y)| (7.80)
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Figure 7.8. Monge transport problem: How to shovel a pile of soil P1(x, y) into
a new location P2(x, y), minimizing the work done?

for all points in Ω, where T ′(x, y) denotes the Jacobian of the map T at the
point (x, y). We shall look for a transformation giving the minimal displacement
integral (see Figure 7.8), and then we define the Monge distance between two
probability distributions as (Rachev, 1991)

DM(P1, P2) ≡ inf
∫

Ω

| ~W (x, y)| P1(x, y) dxdy , (7.81)

where | ~W (x, y)| = |(x, y)− T (x, y)| denotes the length of the path travelled –
the Euclidean distance between a point in Ω1 and its image. The infimum is
taken over all volume preserving transformations T . The optimal transformation
need not be unique; its existence can be guaranteed under reasonably general
conditions. The generalization to curved spaces is straightforward; we just
replace the Euclidean distance with the appropriate Riemannian one.

Note that in this formulation of the problem the vertical component of the
soil movement is neglected, so perhaps the definition does not capture the
essence of moving soil around. But we can use it to define the Monge distance
between two probability distributions, as well as the Monge distance between
pairs of quantum states as the Monge distance between their Husimi functions.
A decided advantage is that, since the Husimi function exists for any density
matrix, the definition applies to pure and mixed states alike:

DMon(ρ, σ) ≡ DM

(
Qρ(z), Qσ(z)

)
. (7.82)

The definition depends on the choice of reference state for a set of coherent
states, and it is not unitarily invariant. But in some circumstances this may
be a desirable feature.

A price we have to pay is that the Monge distance is, in general, difficult
to compute (Rachev, 1991; Rachev and Rüschendorf, 1998). Some things can
be said right away however. If two Husimi functions have the same shape
then the optimal transformation T is just a rigid translation, and the Monge
distance becomes equal to the Riemannian distance with which our classical
phase space is equipped. In particular this will be the case for pairs of coherent
states. In some cases one may use symmetry to reduce the two-dimensional
Monge problem to the one-dimensional case, for which an analytical solution
due to Salvemini is known (see Problem 7.6). In this way it is possible to
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compute the Monge distance between two arbitrary Fock states (Życzkowski
and SlÃomczyński, 1998). An asymptotic result, DMon

(|n〉, |m〉) ≈ 1
2

∑m

k=n+1 1/
√

k,
has an intuitive interpretation: although all Fock states are orthogonal, and
hence equidistant according to the Fubini–Study metric, the Monge distance
shows that the state |100〉 is much closer to |101〉 than to the vacuum state |0〉.
Using Bloch coherent states to define the Monge distance in finite-dimensional
state spaces, one finds that the eigenstates of Jz form a metric line in the sense
that

DMon

(|j,−j〉, |j, j〉) =
j∑

m=−j+1

DMon

(|j, m− 1〉, |j, m〉) = π
[
1−

(
2N

N

)
21−2N

]
.

(7.83)

This is similar to the discrete Monge distance defined above (and very different
from the Fubini–Study distance).

As in the discrete case the task of computing the Monge distance is facilitated
by a relaxation of the problem (in this case due to Kantorovich (1942)),
which is explicitly symmetric with respect to the two distributions. Using
discretization one can make use of the efficient numerical methods that have
been developed for the discrete Monge problem.

So what is the point? One reason why the Monge distance may be of interest
is precisely the fact that it is not invariant under unitary transformations.
This resembles the classical situation, in which two points in the phase space
may drift away under the action of a given Hamiltonian system. Hence the
discrete Monge distance (for pure states) and the Monge distance (for pure and
mixed states) may be useful to construct a quantum analogue of the classical
Lyapunov exponent and to elucidate various aspects of the quantum–classical
correspondence.13

Problems

¦ Problem 7.1 For the angular momentum eigenstates |j,m〉, find the
minimal Fubini–Study distance to the set of coherent states.

¦ Problem 7.2 For N = 2, 3, 4, 5, compute the Wehrl entropy SW and
the Wehrl participation number R for the Jz eigenstates, and for the states
|ψ4〉, three stars in a equilateral triangle, and |ψtetr.〉, four stars forming a
regular tetrahedron.

¦ Problem 7.3 Show that the squared moduli of components yi =
|〈i|ψ〉|2 of a complex random vector (7.66) in CPn are distributed uniformly
in ∆n.

¦ Problem 7.4 Show that the mean Fubini–Study distance of a random

13 For further details consult Życzkowski and SlÃomczyński (2001).
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state |ψrand〉 to any selected pure state |1〉 reads

〈
DFS(|1〉, |ψrand〉)

〉
CPn =

π

2
−
√

π Γ(n + 1/2)
2 Γ(n + 1)

, (7.84)

which equals π/4 for n = 1 and tends to π/2 in for n →∞.

¦ Problem 7.5 Show that the average discrete Monge distance of a
random state |ψrand〉 to the eigenstates |j,m〉 of Jz reads (Życzkowski and
SlÃomczyński, 2001)

〈
DdM(|j,m〉, |ψrand〉)

〉
CP2j = χ sinχ + cosχ, where χ =

mπ

2j
. (7.85)

¦ Problem 7.6 Prove that the Monge distance, in the one-dimensional
case, Ω = R, is given by the Salvemini solution (Salvemini, 1943; Rachev,
1991; Życzkowski and SlÃomczyński, 1998).

DM(P1, P2) =
∫ +∞

−∞
|F1(x)− F2(x)| dx , (7.86)

where the distribution functions are Fi(x) ≡ ∫ x

−∞ Pi(t) dt for i = 1, 2.

¦ Problem 7.7 Making use of the Salvemini formula (7.86) analyse the
space of N = 2 mixed states form the point of view of the Monge distance:
(a) prove that DMon(ρ+, ρ−) = π/4, DMon(ρ+, ρ∗) = π/8, and in general (b)
prove that the Monge distance between any two mixed states of a qubit is
proportional to their Hilbert–Schmidt distance and generates the geometry of
the Bloch ball (Życzkowski and SlÃomczyński, 2001).



8 The space of density matrices

Over the years, the mathematics of quantum mechanics has become more
abstract and, consequently, simpler.

V. S. Varadarajan

We have already introduced density matrices and made use of some of their
properties. In general a complex N ×N matrix is a density matrix if it is

i) Hermitian, ρ = ρ† ,

ii) positive, ρ ≥ 0 , (8.1)
iii) normalized, Trρ = 1 .

The middle equation is shorthand for the statement that all the eigenvalues
of ρ are non-negative. The set of density matrices will be denoted M(N). It is
a convex set sitting in the vector space of Hermitian matrices, and its pure
states are density matrices obeying ρ2 = ρ. As explained in Section 4.5 the
pure states form a complex projective space.

Why should we consider this particular convex set for our state space?
One possible answer is that there is a point in choosing vectors that are also
matrices, or a vector space that is also an algebra (a different way of saying the
same thing). In effect our vectors now have an intrinsic structure, namely their
spectra when regarded as matrices, and this enables us to define a positive
cone, and a set of pure states, in a more interesting way than that used in
classical probability theory. We will cast a glance at the algebraic framework
towards the end of this chapter, but first we explore the structure as it is given
to us.

8.1 Hilbert–Schmidt space and positive operators

This section will be devoted to some basic facts about complex matrices,
leading up to the definition of the space M(N). We begin with an N complex-
dimensional Hilbert space H. There is then always a dual Hilbert space H∗

defined as the space of linear maps from H to the complex numbers; in the
finite-dimensional case these two spaces are isomorphic. Another space that
is always available is the space of operators on H. This is actually a Hilbert



8.1 Hilbert–Schmidt space and positive operators 193

space in its own right when it is equipped with the Hermitian form

〈A,B〉 = cTrA†B , (8.2)

where c is a real number that sets the scale. This is Hilbert–Schmidt space HS;
an alternative notation is B(H) where B stands for ‘bounded operators’. All
our operators are bounded, and all traces exist, but this is so only because all
our Hilbert spaces are finite dimensional. The scalar product gives rise to an
Euclidean distance, the Hilbert–Schmidt distance

D2
2(A,B) ≡ 1

2
Tr[(A−B)(A† −B†)] ≡ 1

2
D2

HS(A,B) . (8.3)

In this chapter we set the scale with c = 1/2, and work with the distance D2,
while in Chapter 9 we use DHS. As explained in Section 4.5 this ensures that
we agree with standard conventions in quantum mechanics.

Chapter 9 will hinge on the fact that

HS = H ⊗H∗ . (8.4)

This is a way of saying that any operator can be written in the form

A = a|P 〉〈Q|+ b|R〉〈S|+ · · · , (8.5)

provided that enough terms are included in the sum. Given H, the N2 complex-
dimensional space HS – also known as the algebra of complex matrices – is
always with us.

Some brief reminders about (linear) operators may prove useful. First we
recall that an operator A can be diagonalized by a unitary change of bases, if
and only if it is normal, that is if and only if [A,A†] = 0. Examples include
Hermitian operators for which A† = A and unitary operators for which A† =
A−1. A normal operator is Hermitian if and only if it has real eigenvalues. Any
normal operator can be written in the form

A =
r∑

i=1

zi|ei〉〈ei| , (8.6)

where the sum includes orthogonal projectors corresponding to the r non-
vanishing eigenvalues zi. The eigenvectors |ei〉 span a linear subspace supp(A)
known as the support (or range) of the operator. There is an orthogonal
subspace kern(A) called the kernel, consisting of all vectors |ψ〉 such that
A|ψ〉 = 0. For normal operators the kernel is the subspace spanned by all
eigenvectors with zero eigenvalues, and it has dimension N−r. The full Hilbert
space may be expressed as the direct sum H = kern(A)⊕ supp(A).

The vector space HM of Hermitian operators is an N2 real-dimensional
subspace of Hilbert–Schmidt space. It can also – and this will turn out to be
important – be thought of as the Lie algebra of U(N). The (N2−1)-dimensional
subspace of Hermitian operators with zero trace is the Lie algebra of the group
SU(N). In Appendix 2 we give an explicit basis for the latter vector space,
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orthonormal with respect to the scalar product (8.2). If we add the unit matrix
we see that a general Hermitian matrix can be written in the form

A = τ0

√
2
N
1+

N2−1∑
i=1

τiσi ⇔ τ0 =
TrA√
2N

, τi =
1
2
TrσiA , (8.7)

where σi are generators of SU(N) obeying

σiσj =
2
N

δij + dijkσk + ifijkσk . (8.8)

Here fijk is totally anti-symmetric in its indices and dijk is totally symmetric
(and vanishing if and only if N = 2). The use of the notation (τ0, τi) for the
Cartesian coordinates in this basis is standard. Of course there is nothing
sacred about the basis that we have chosen; an orthonormal basis consisting
of N2 elements of equal trace may be a better choice.

We will now use the ‘internal structure’ of our vectors to define a positive
cone. By definition, a positive operator P is an operator such that 〈ψ|P |ψ〉 is
real and non-negative for all vectors |ψ〉 in the Hilbert space. This condition
actually implies that the operator is Hermitian, so we can equivalently define
a positive operator as a Hermitian matrix with non-negative eigenvalues. (To
see this, observe that any matrix P can be written as P = X + iY , where
X and Y are Hermitian – the argument fails if the vector space is real, in
which case a positive operator is usually defined as a symmetric matric with
non-negative eigenvalues.) The condition that an operator be positive can be
rewritten in a useful way:

P ≥ 0 ⇔ 〈ψ|P |ψ〉 ≥ 0 ⇔ P = AA† , (8.9)

for all vectors |ψ〉 and for some matrix A. The set P of positive operators obeys

P ⊂ HM dim[P] = dim[HM] = N2 . (8.10)

Since it is easy to see that a convex combination of positive operators is again
a positive operator, the set P is a convex cone (in the sense of Section 1.1).

A positive operator admits a unique positive square root
√

P ,

(
√

P )2 = P . (8.11)

For an arbitrary (not necessarily Hermitian) operator A we can define the
positive operator AA†, and then the absolute value |A|:

|A| ≡
√

AA† (8.12)

This is in itself a positive operator. Furthermore, any linear operator A can
be decomposed into polar form, which means that

A = |A|U =
√

AA† U , (8.13)

where U is a unitary operator which is unique if A is invertible. This polar
decomposition is analogous to the representation z = reiφ of a complex number.
The modulus r is non-negative; so are the eigenvalues of the positive operator



8.2 The set of mixed states 195

|A|, which are known as the singular values of A. (There exists an alternative
left polar decomposition, A = U

√
A†A, which we will not use. It leads to the

same singular values.) The polar decomposition can be used to prove that any
operator, normal or not, admits a singular values decomposition (SVD)

A = UDV , (8.14)

where U and V are unitary, and D is diagonal with non-negative entries which
are precisely the singular values of A.1

Evidently the question whether a given Hermitian matrix is positive is
raising its head – an ugly head since generally speaking it is not easy to
diagonalize a matrix and investigate its spectrum. A helpful fact is that the
spectrum can be determined by the traces of the first N powers of the matrix.
To see how, look at the characteristic equation

det(λ1−A) = λN − s1λ
N−1 + s2λ

N−2 − · · ·+ (−1)NsN = 0 . (8.15)

If the matrix is in diagonal form the coefficients sk – that clearly determine
the spectrum – are the elementary symmetric functions of the eigenvalues,

s1 =
∑

i

λi , s2 =
∑
i<j

λiλj , s3 =
∑

i<j<k

λiλjλk , . . . (8.16)

and so on. If the matrix is not in diagonal form we can still write

s1 = TrA s2 =
1
2
(s1TrA− TrA2) (8.17)

and in general, iteratively,

sk =
1
k
(sk−1TrA− sk−2TrA2 + · · ·+ (−1)k−1TrAk) . (8.18)

(Proof: Diagonalize the matrix. Since the traces are not affected by diagonalization
it is only a matter of comparing our two expressions for the coefficients.)
Returning to the question whether A is positive, it can be proved that A is
positive if and only if all the coefficients sk in the characteristic equation are
positive. This is encouraging since the criterion only requires the calculation
of traces, but it remains a lengthy business to apply it to a given A. There is
no easy way.

8.2 The set of mixed states

Finally we come to the density matrices. The set of density matrices consists
of all positive operators ρ with unit trace, Trρ = 1. We denote it by M, or by
M(N) if we want to emphasize that it consists of N × N matrices. M is the
intersection, in the space of Hermitian matrices, of the positive cone P with a
hyperplane parallel to the linear subspace of traceless operators. It is a convex

1 In popular numerical routines for computing the SVD of an arbitrary matrix one obtains the
vector of singular values as well as the matrices U and V . An interesting review of properties of
SVD may be found in Horn and Johnson (1985, 1991).
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set in its own right, whose pure states are projectors onto one-dimensional
subspaces in H, that is density matrices of the form

ρ = |ψ〉〈ψ| ⇔ ρα
β = Zα Z̄β ⇔ ρ2 = ρ . (8.19)

In this chapter we assume that the vectors are normalized. As we observed in
Section 4.5 this is an isometric embedding of CPN−1 in HM.

Two different ways of coordinatizing M(N) spring to mind. We can set

ρ =
1
N
1+

N2−1∑
i=1

τiσi . (8.20)

What we have done is to identify M(N) with a subset of the Lie algebra of
SU(N), by shifting the origin of HM from the zero matrix to the matrix

ρ? ≡ 1
N
1 . (8.21)

This is a special density matrix known as the maximally mixed state; it is
also known as the tracial state or, familiarly, as the ‘matrix of ignorance’. The
components τi of the Bloch vector serve as Cartesian coordinates in M(N) and
are also known as mixture coordinates. A convex combination of two density
matrices lies on a manifestly straight line, when these coordinates are used.
Moreover the definition (8.3), with (A2.9), implies that

D2(ρ, ρ′) = D2

(∑
i

τiσi,
∑

j

τ ′jσj

)
=

√∑
i

(τi − τ ′i)2 , (8.22)

which is the familiar formula in an Euclidean space.
There is another way of identifying M(N) with a subset of the Lie algebra

of SU(N), namely to set

ρ =
e−βH

Tre−βH
; H =

N2−1∑
i=1

xiσi . (8.23)

The coordinates xi are known as exponential coordinates; the real number β
is known as the inverse temperature and serves as a reminder of the role these
coordinates play in statistical mechanics. They are consistent with their own
notion of straight line – the analogue of the exponential families of classical
statistics that we studied in Section 3.2.

We would like to draw a more detailed picture of the set of density matrices
than that offered in Figure 8.1. If we choose to work over the real rather than
the complex numbers, then we can investigate the space of real symmetric
2× 2 matrices. This has only three dimensions. The condition that the trace
be unity defines a two-dimensional plane in this space, and we can literally
see how it intersects the convex cone of positive matrices in a circular disc,
which is the two-dimensional space of rebits. Physics requires complex qubits
but rebits are simpler to look at. But already for N = 3 the set of real density
matrices has dimension 5, which is too high for easy visualization.
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Figure 8.1. The spaces discussed in this chapter. Hilbert–Schmidt space HS
only serves as background for the linear subspace HM of Hermitian matrices,
that contains the positive cone P and the set of density matrices M. But
compare with Figure 9.1 in the next chapter!

Figure 8.2. The cone of positive real symmetric 2 × 2 matrices and its
intersection with the plane of Hermitian matrices of unit trace.

Moving on to qubits, we find that the space M(2) has three real dimensions.
This is the Bloch ball discussed in Section 5.2. There is no particular difficulty
in understanding a ball as a convex set. Physically however there is much to
think about, because we now have two different ways of adding two pure states
together. We can form a complex superposition (another pure state) and we
can form a statistical mixture (a mixed state). In the other direction, any
given point in the interior can be obtained as a mixture of pure states in many
different ways. We are confronted with an issue that does not arise in classical
statistics at all: any mixed state can be expressed as a mixture of pure states
in many different ways, indeed in as many ways as a point in a ball can be
thought of as the ‘centre of mass’ of a mass distribution on the surface of the
ball. Physically it is a basic tenet of quantum mechanics that there does not
exist an operational procedure to distinguish different ensembles of pure states
if they yield the same density matrix – otherwise quantum correlations between
separated systems could be used for instantaneous signalling (Herbert, 1982).

Quantum mechanics is a significant generalization of classical probability
theory. When N = 2 there are two possible outcomes of any measurement



198 The space of density matrices

described by a Hermitian operator, or put in another way the sample space
belonging to a given observable consists of two points. They correspond to
two orthogonal pure states, placed antipodally on the surface of the Bloch
ball. Each pair of antipodal points on the surface corresponds to a new sample
space coexisting with the original.

The Bloch ball is a convenient example to keep in mind since it is easy to
visualize, but in some respects it is quite misleadingly simple. We begin to see
this if we ask what conditions one has to put on the Bloch vector in order for
a density matrix to describe a pure state. Using Eq. (8.8) it is straightforward
to deduce that

ρ2 = ρ ⇔




τ 2 = N−1
2N

(~τ ? ~τ)i ≡ dijkτjτk = N−2
N

τi

. (8.24)

The first condition implies that the Bloch vector of a pure state is confined
to an (N 2 − 2)-dimensional outsphere. The second condition arises only for
N > 2, and it says that the pure states form a certain well-defined subset of
the surface of the outsphere.2 We know that this subset is a complex projective
space, of real dimension 2(N − 1). When N > 2 this is a rather small subset
of the outsphere.

8.3 Unitary transformations

It is convenient to think of the set of density matrices as a rigid body in RN2−1.
We think of RN2−1 as an Euclidean space. When N > 2 our rigid body is not
spherical, and we must try to understand its shape. The first question one asks
about a rigid body is: what is its symmetry? What subgroup of rotations leaves
it invariant? Unless the body is spherical, the symmetry group is a proper
subgroup of the group of rotations. For the Platonic solids, the symmetry
groups are discrete subgroups of SO(3). Our case is subtler; although pure
quantum states form only a small subset of the outsphere, they do form a
continuous manifold, and the symmetry group is not discrete. As it happens
there is an analogue of Wigner’s theorem (Section 4.5) that applies to density
matrices, and answers our question. Its assumptions concern only the convex
structure, not the Euclidean distance:

Theorem 8.1 (Kadison’s) Let there be a map Φ from M to M

which is one-to-one and onto, and which preserves the convex structure in the
sense that

Φ
(
pρ1 + (1− p)ρ2

)
= pΦ(ρ1) + (1− p)Φ(ρ2) . (8.25)

2 The elegant ‘star product’ used here occurs now and then in the literature, for instance in Arvind,
Mallesh and Mukunda (1997). As a general reference for this section we suggest Mahler and
Weberruß (1995, (2nd. ed.) 1998).
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Then the map must take the form

Φ(ρ) = Uρ U−1 , (8.26)

where the operator U is either unitary or anti-unitary.

In infinitesimal form a unitary transformation takes the form

ρ̇ = i [ρ,H] , (8.27)

where H is an Hermitian operator (say, a Hamiltonian) that determines the
one parameter family of unitary operators U(t) = e−iHt.

It is easy to see why something like this must be true.3 Because the map
preserves the convex structure it must be an affine map, and it must map pure
states to pure states. For N = 2 the pure states form a sphere, and the only
affine maps that preserve the sphere are rotations; the map must belong to
SO(3) = SU(2)/Z2, that is, it must take the form (8.26). For N > 3 the pure
states form just a subset of a sphere, and the rotation must be a rather special
one – in particular, it must give rise to an isometry of the space of its pure
states. The last condition points right at the unitary group.

In a sense Kadison’s theorem answers all our questions, but we must make
sure that we understand the answer. Because the body of density matrices
sits in a vector space that we have identified with the Lie algebra of SU(N),
and because the only unitary transformations that have any effect on density
matrices are those that belong to SU(N), we have here an example of an
adjoint action of a group on its own Lie algebra. What sets the scene is that
SU(N)/ZN is a subgroup of SO(N 2 − 1). An explicit way to see this goes as
follows: let ρ be defined as in Eq. (8.20) and let

ρ′ = Uρ U † =
1
N
1+

∑
i

τiUσiU
† ≡ 1

N
1+

∑
i

τ ′iσi . (8.28)

Here τ ′i is the rotated Bloch vector. We compute that

τ ′i =
1
2
Trρ′σi =

1
2

∑
j

Tr(σiUσjU
†)τj ≡

∑
j

Oijτj , (8.29)

where the matrix O by definition has the matrix elements

Oij ≡ Tr
(
σiUσjU

†) . (8.30)

This must be an orthogonal matrix, and indeed it is. It is easy to check that the
elements are real. Using the completeness relation (A2.10) for the generators
it is fairly easy to check also that

(OOT )ij =
∑

k

Oik Ojk = δij . (8.31)

In this way we have exhibited SU(N)/ZN as a subgroup of the rotation group
SO(N2 − 1).

3 We will not give a strict proof of Kadison’s theorem; a complete and elementary proof was given
by Hunziker (1972).



200 The space of density matrices

Figure 8.3. Rotations can be represented with 2 × 2 rotation matrices along
the diagonal, or pictorially as rotations in totally orthogonal 2-planes. We show
(a) an SO(3) rotation, (b) a generic SO(8) rotation, and (c) a generic SU(3) ∈
SO(8) rotation.

Another way to see what goes on is to observe that rotations preserve the
distance to the origin – in this case, to ρ∗. This means that they preserve

D2
2 (ρ, ρ?) =

1
2

Tr (ρ− ρ?)
2 =

1
2

Trρ2 − 1
2N

. (8.32)

Therefore all rotations preserve Trρ2. But unitary transformations preserve the
additional traces Trρ, Trρ3, Trρ4 and so on, up to the last independent trace
TrρN . We are dealing with very special rotations that preserve the spectrum
of every density matrix.

Since rotations in arbitrary dimensions may be unfamiliar, let us first discuss
the action of a generic rotation matrix. With a suitable choice of basis it can
always be block diagonalized, that is to say it can be written with 2×2 rotation
matrices occurring along the diagonal and zeros elsewhere. If the dimension
is odd, we add an extra 1 on the diagonal. What this means is that for any
rotation of Rn we can choose a set of totally orthogonal 2-planes such that the
rotation can be described as independent rotations in these 2-planes; if n is
odd there will always be, as Euler pointed out, an axis that is not affected by
the rotation at all. A typical flow line is not a circle. If the dimension is either
2n or 2n + 1 it will wind around a flat torus of dimension n, since there are
n totally orthogonal 2-planes involved. Unless the rotations in these 2-planes
are carefully adjusted, the resulting curve will not even be closed. (We came
across this kind of thing in Section 4.6, and tried to draw it in Figure 4.11.
Now we offer Figure 8.3.) A generic rotation has only one fixed point if the
dimension of the space is even, and only one fixed axis if it is odd.

The SU(N)/ZN subgroup of SO(N2− 1) that we are dealing with does not
describe generic rotations, and the picture changes as follows: after choosing
a basis in which the SU(N) matrix is diagonal, the latter belongs to a Cartan
subgroup of dimension N − 1. Generically therefore its flow lines will lie on
a torus of dimension N − 1; quite a bit smaller than the torus that occurs
for a generic SO(N2 − 1) rotation. The set of fixed points consists of all
density matrices that commute with the given SU(N) matrix. When all the
eigenvalues of the latter are different, the set of fixed points consists of all
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density matrices that are diagonal in the chosen basis. This set is the (N −
1)-dimensional eigenvalue simplex, to be discussed in the next section. The
eigenvalue simplex contains only N pure states: the eigenstates of the SU(N)
matrix that describes the rotation. The set of fixed points is of larger dimension
if degeneracies occur in the spectrum of the SU(N) matrix.

The action of SU(N) on M(N) contains a number of intricacies that will
occupy us later in this chapter, but at least now we have made a start.

8.4 The space of density matrices as a convex set

Let us state some general facts and definitions.4 The dimension of M(N) is
N2 − 1. The pure states are the projectors

ρ2 = ρ ⇔ ρ = |ψ〉〈ψ| . (8.33)

The space of pure states is CPN−1. As we observed in Section 4.5 this space
is isometrically embedded in the set of Hermitian matrices provided that we
define distance as the Hilbert–Schmidt distance (8.3). The pure states form a
2(N − 1)-dimensional subset of the (N2 − 2)-dimensional boundary of M(N).
To see whether a given density matrix belongs to the boundary or not, we
diagonalize it and check its eigenvalues. If one of them equals zero we are on
the boundary.

Any density matrix can be diagonalized. The set of density matrices that
are diagonal in a given basis {|ei〉} can be written as

ρ =
N∑

i=1

λi|ei〉〈ei| , ρ|ei〉 = λi|ei〉 ,

N∑
i=1

λi = 1 . (8.34)

This set is known as the eigenensemble or as the eigenvalue simplex. It forms
a special (N − 1)-dimensional cut through the set of density matrices, and
every density matrix sits in some eigenvalue simplex. It is a simplex since the
eigenvalues are positive and add to one – indeed it is a copy of the (N − 1)-
dimensional simplex with N corners that we studied in classical probability
theory. It is centred at the maximally mixed state ρ?.

In Section 1.1 we defined the rank of a point in a convex set as the minimum
number r of pure points that are needed to express it as a convex combination
of pure states. It is comforting to observe that this definition coincides with
the usual definition of the rank of a Hermitian matrix: a density matrix of
matrix rank r can be written as a convex sum of no less than r projectors
(as is obvious when the matrix is diagonalized). Hence the maximal rank of a
mixed state is equal to N , much less than the upper bound N2 provided by
Carathéodory’s theorem (Section 1.1).

The distance between an arbitrary density matrix ρ and the centre ρ? was
given in Eq. (8.32), where we saw that Trρ2 determines the distance from ρ?.

4 Some elementary properties of the convex set of density matrices were discussed by Bloore (1976)
and by Harriman (1978).
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Figure 8.4. This picture shows the eigenvalue simplex for N = 3 with
its insphere and its circumsphere, and indicates what happens if we apply
SU(3)/Z3 transformations to obtain the eight-dimensional space of density
matrices.

It happens that Trρ2 ≤ 1 with equality if and only if the state is pure, so as
expected the pure states lie at maximal distance from ρ?. This observation
determines the radius Rout of the outsphere or circumsphere (the smallest
ball containing M). To compute the radius rin of the insphere (the largest
ball inscribed in M), we observe that every density matrix belongs to some
eigenvalue simplex. It follows that the radius of the insphere of M(N) will equal
that of a simplex ∆N−1, and this we computed in Section 1.2. So we find

Rout =

√
N − 1
2N

and rin =

√
1

2N(N − 1)
. (8.35)

The maximally mixed state ρ? is surrounded by a ball of radius rin consisting
entirely of density matrices. These deliberations are illustrated in Figure 8.4,
which shows the eigenvalue simplex for a qutrit.

In Eq. (1.26) we computed the angle subtended by two corners of a simplex
and found that it approaches 90◦ when N becomes large. The corners of the
eigenvalue simplex represent pure states at maximal distance from each other,
so if χ denotes the angle subtended by two pure states at ρ? then

cosχ ≤ − 1
N − 1

, (8.36)

with equality if and only if the states are at maximal distance from each other,
that is to say if and only if they are orthogonal. When N is large this means
that all pure states in the hemisphere opposite to a given pure state (with
respect to ρ?) lie very close to the equator. This is not surprising since almost
all the area of the circumsphere is concentrated around the equator for large
N (see Section 1.2). But it is very different from the N = 2 case, where to
every pure state there corresponds an antipodal pure state.

For the N = 3 case we have to think in eight dimensions. This is not easy,
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Figure 8.5. An attempt to visualize M(3). We rotate the eigenvalue simplex
to obtain a cone, then we rotate it in another dimension to turn the base of
the cone into a Bloch ball rather than a disc. That is a maximal face of M(3).
On the right, we imagine that we have done this to all the three edges of the
simplex. In each maximal face we have placed three equidistant points – it
happens that when these points are placed correctly on all the three spheres,
they form a regular simplex inscribed in M(3).

but we can try. By looking at Figure 8.4 we can see the in- and outspheres,
but because M(3) is left invariant only under quite special rotations – those
that move a given corner of the simplex through a two complex-dimensional
projective space embedded in R8 – it is not so easy to imagine what the
full structure looks like. An example of an allowed rotation is a rotation of
the eigenvalue simplex around an axis joining a corner to ρ∗. This turns the
simplex into a cone (see Figure 8.5). In fact, if we could imagine just one more
dimension, we could see a four-dimensional slice of M(3), which would be a
cone whose base is a three-dimensional ball, having one of the edges of the
simplex as its diameter. This ball is one of the faces of M(3).

Perhaps we should recall, at this point, that a face of a convex body is defined
as a convex subset stable under purification and mixing. Contemplation of
Figure 8.5 shows that there is a face opposite to each pure state, consisting
of all density matrices that are mixtures of pure states that are orthogonal to
the given pure state. This is to say that M(3) has faces that in themselves are
Bloch balls. There is an interesting way to look at this, which goes as follows:
Pick a pure state |Z〉 and study the equation

Trρ |Z〉〈Z| = Z̄ρZ = c , c ∈ [0, 1] . (8.37)

For fixed |Z〉 this is an affine functional representing a family of parallel
hyperplanes in the space of Hermitian matrices of unit trace; when c = 1 the
hyperplane intersects M(3) in a single pure state and when c = 0 in the face
opposite to that pure state. It is interesting to observe that for intermediate
values of c the hyperplane intersects the pure states in one of the squashed
Berger spheres, depicted in Figure 4.13.

It is clear that we are far from understanding the shape of the set of
qutrit states – one can try various devices, such as looking at two-dimensional
(Jakóbczyk and Siennicki, 2001) or three-dimensional (Bloore, 1976) sections
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through the body, but the dimension is too high for easy comprehension. Since
N = 3 does not bring any great simplification, we will from now on discuss
the case of arbitrary N .

The maximally mixed state ρ? can be obtained as a mixture of pure states
by putting equal weight (in the sense of the Fubini–Study measure) on all pure
states, or by putting equal weight on each corner in an eigenvalue simplex, and
also in many other ways. A similar non-uniqueness afflicts all mixed states.
Interestingly this non-uniqueness can be expressed in a precise way as follows:5

Theorem 8.2 (Schrödinger’s mixture) A density matrix ρ having
the diagonal form

ρ =
N∑

i=1

λi |ei〉〈ei| (8.38)

can be written in the form

ρ =
M∑
i=1

pi|ψi〉〈ψi| ,
M∑
i=1

pi = 1 , pi ≥ 0 (8.39)

if and only if there exists a unitary M ×M matrix U such that

|ψi〉 =
1√
pi

N∑
j=1

Uij

√
λj |ej〉 . (8.40)

Here all states are normalized to unit length but they need not be orthogonal
to each other.

Given ρ, this theorem supplies all the ways in which ρ can be expressed as
an ensemble of pure states. Observe that the matrix U does not act on the
Hilbert space but on vectors whose components are state vectors, and also that
we may well have M > N . But only the first N columns of U appear in the
equation – the remaining M −N columns are just added in order to allow us
to refer to the matrix U as a unitary matrix. What the theorem basically tells
us is that the pure states that make up an ensemble are linearly dependent
on the N vectors |ei〉 that make up the eigenensemble. Moreover an arbitrary
state in that linear span can be included. For definiteness we assume that all
density matrices have rank N so that we consider ensembles of M pure states
in an N -dimensional Hilbert space.

It is straightforward to prove that Eq. (8.39) and Eq. (8.40) imply Eq. (8.38).
To prove the converse, define the first N columns of the unitary matrix U by

Uij ≡
√

pi√
λj

〈ej|ψi〉 ⇒
N∑

j=1

Uij

√
λj |ej〉 =

√
pi |ψi〉 . (8.41)

5 This theorem has an interesting history. Schrödinger (1936) published it with no claim to priority.
When the time was ripe it was rediscovered by (among others) Gisin (1989) and Hughston, Jozsa
and Wootters (1993); it is now often known as the GHJW lemma.



8.4 The space of density matrices as a convex set 205

The remaining N−M columns can be chosen at will, consistent with unitarity
of the matrix. The matrix will be unitary because

M∑
i=1

U †
kiUij =

M∑
i=1

pi√
λjλk

〈ej|ψi〉〈ψi|ek〉 =
1√
λjλk

〈ej|ρ|ek〉 = δjk . (8.42)

This concludes the proof of the mixture theorem. Since only a rectangular
submatrix of U is actually used in the theorem we could leave it like that and
refer to U as a ‘right unitary’ or isometry matrix if we wanted to, but the
extra columns do no harm. In fact they are helpful. We can deduce that

pi =
N∑

j=1

|Uij|2 λj . (8.43)

Thus ~p = B~λ, where B is a unistochastic, and hence bistochastic, matrix. In
the language of Section 2.1, the vector ~p is majorized by the eigenvalue vector
~λ.

To see how useful the mixture theorem is, consider the face structure of
M(N). Recall (from Section 1.1) that a face is a convex subset of a convex set
that is stable under mixing and purification. But the mixture theorem tells
us that a density matrix is always a mixture of pure states belonging to that
subspace of Hilbert space that is spanned by its eigenvectors. What this means
is that every face is a copy of M(K), the body of density matrices for a system
whose Hilbert space has dimension K. If K < N the face is a proper face, and
belongs to the boundary of M(N).

On closer inspection, we see that the face structure of M(N) reveals ‘crystalline’
regularities. A given face corresponds to some subspace HK of Hilbert space.
Introduce a projector E that projects down to that subspace. In full analogy
to Eq. (8.37) we can consider the affine functional

TrρE = c , c ∈ [0, 1] . (8.44)

Again, this defines a family of parallel hyperplanes in the space of Hermitian
matrices of unit trace. For c = 1 it defines a face of density matrices with
support in HK , and for c = 0 it defines an opposing face with support in the
orthogonal complement of that subspace. There is a straight line between the
‘centres of mass’ of these two faces, passing through the ‘center of mass’ of
M(N) (i.e. through ρ?).

Next, we recall from Section 1.1 that the faces of a convex body always form
a partially ordered structure known as a lattice, and from Section 4.2 that the
set of subspaces of a Hilbert space also forms a lattice. The following is true:

Theorem 8.3 The lattice of faces of M(N) is identical to the orthocomplemented
lattice of subspaces in HN .

The identity of the two lattices is by now obvious, but interesting nevertheless.
A lattice is said to be orthocomplemented if and only if there is a map a → a′
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of the lattice L onto itself, such that

(a′)′ = a a ≤ b ⇒ b′ ≤ a′ a ∩ a′ = 0 a ∪ a′ = L (8.45)

for all a, b ∈ L, where ∩ and ∪ denote, respectively, the greatest lower and
the smallest upper bound of a pair of elements (for the lattice of subspaces of
HN , they are, respectively, the intersection and the linear span of the union
of a pair of subspaces). In our lattice, two opposing faces of M(N) are indeed
related by a map a → a′. It is possible to single out further properties of this
lattice, and to use them for an axiomatic formulation of quantum mechanics
– this is the viewpoint of quantum logic.6

Let us mention in passing that there is another angle from which we can try
to view the structure: we choose a convex polytope that we feel comfortable
with, let it have the same outradius as the body of density matrices itself, and
ask if it can be inscribed in M(N). The obvious choice is a regular simplex. The
simplex ∆8 can be inscribed in M(3), and Figure 8.5 indicates how. (To avoid
misunderstanding: this ∆8 does not have edges of unit length. The largest
simplex with edge lengths equal to one that can be placed inside M(N) is
∆N−1.) Oddly enough it is not as easy to do this for N > 3, but at least
for moderately small N it can be done, and so our intuition has a little more
material to work with.7

8.5 Stratification

Yet another way to organize our impressions of M(N) is to study how it is
partitioned into orbits of the unitary group (recall Section 7.2). We will see
that each individual orbit is a flag manifold (Section 4.9) and that the space of
orbits has a transparent structure.8 We begin from the fact that any Hermitian
matrix can be diagonalized by a unitary rotation,

ρ = V ΛV † . (8.46)

where Λ is a diagonal density matrix that fixes a point in the eigenvalue
simplex. We obtain a U(N) orbit from Eq. (8.46) by letting the matrix V
range over U(N). Before we can tell what the result is, we must see to what
extent different choices of V can lead to the same ρ. Let B be a diagonal
unitary matrix. It commutes with Λ, so

ρ = V ΛV † = V BΛB†V †. (8.47)

In the case of non-degenerate spectrum this is all there is; the matrix V is
determined up to the N arbitrary phases entering B, and the orbit will be the

6 Further details can be found in the books by Jauch (1968) and Varadarajan (1985); for a version
of the story that emphasizes the geometry of the convex set one can profitably consult Mielnik
(1981).

7 The N2 corners of such a simplex define what is known as a symmetric informationally complete
POVM. See Renes, Blume-Kohout, Scott and Caves (2004); it is likely, but not proven, that such
POVMs exist for any N . See Wootters and Fields (1989) for another choice of the convex polytope.

8 A general reference for this section is Adelman, Corbett and Hurst (1993).
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coset space U(N)/U(1) × U(1) × · · · × U(1). From Section 4.9 we recognize
this as the flag manifold F(N)

1,2,...,N−1. If degeneracies occur in the spectrum of ρ,
the matrix B need not be diagonal in order to commute with Λ, and various
special cases ensue. In the language of Section 7.2, the isotropy group changes,
and so does the nature of the orbit.

Let us discuss the case of N = 3 in detail to see what happens; our
deliberations are illustrated in Figure 8.6(b). The space of diagonal density
matrices is the simplex ∆2. However, using unitary permutation matrices we
can change the order in which the eigenvalues occur, so that without loss of
generality we may assume that λ1 ≥ λ2 ≥ λ3 ≥ 0. This corresponds to dividing
the simplex ∆2 into 3! parts, and to picking one of them. Denote it by ∆̃2. We
call it a Weyl chamber, with a terminology borrowed from group theory. It is
the Weyl chamber that forms the space of orbits of U(3) in M(3).

The nature of the orbit will depend on its location in the Weyl chamber.
Depending on the degeneracy of the spectrum, we decompose ∆̃2 into four
parts (Adelman et al., 1993; Życzkowski and SlÃomczyński, 2001) (see also
Figure 8.6(b)):

(a) a point K3 representing the state ρ∗ with triple degeneracy {1/3, 1/3, 1/3};
the isotropy group is U(3);

(b) a one-dimensional line K12 representing the states with double degeneracy,
λ2 = λ3; the isotropy group is U(1)× U(2);

(c) a one-dimensional line K21 representing the states with double degeneracy,
λ1 = λ2; the isotropy group is U(2)× U(1);

(d) the two-dimensional part K111 of the generic points of the simplex, for
which no degeneracy occurs; the isotropy group is U(1)× U(1)× U(1).

Since the degeneracy of the spectrum determines the isotropy group it also
determines the topology of the U(3) orbit. In case (a) the orbit is U(3)/U(3),
that is, a single point, namely the maximally mixed state ρ∗. In the cases (b)
and (c) the orbit is U(3)/[U(1)× U(2)] = F(3)

1 = CP2. In the generic case (d)
we obtain the generic flag manifold F(3)

1,2.
Now we are ready to tackle the general problem of N ×N density matrices.

There are two things to watch: the boundary of M(N), and the stratification of
M(N) by qualitatively different orbits under U(N). It will be easier to follow
the discussion if Figure 8.6 is kept in mind.

The diagonal density matrices form a simplex ∆N−1. It can be divided into
N ! parts depending on the ordering of the eigenvalues, and we can select
one of these parts to be the Weyl chamber ∆̃N−1. The Weyl chamber is the
(N − 1)-dimensional space of orbits under U(N). The nature of the orbits is
determined by the degeneracy of the spectrum, so we decompose the Weyl
chamber into parts Kk1,...,km

where the largest eigenvalue has degeneracy k1,
the second largest degeneracy k2, and so on. Clearly k1 + · · ·+ km = N . Each
of these parts parametrize a stratum (see Section 7.2) of M(N), where each



208 The space of density matrices

Figure 8.6. The eigenvalue simplex and the Weyl chamber for N = 2, 3 and 4.
The Weyl chamber ∆̃N−1, enlarged on the right-hand side, can be decomposed
according to the degeneracy into 2N−1 parts.

orbit is a flag manifold

F(N)
k1,k2,...,km−1

=
U(N)

U(k1)× · · · × U(km)
. (8.48)

See Section 4.9 for the notation. The generic case is K1,1,...,1 consisting of the
interior of ∆̃N−1 together with one of its (open) facets corresponding to the
case of one vanishing eigenvalue. This means that, except for a set of measure
zero, the space M(N) is equal to

M1,...,1 ∼
[U(N)

T N

]
×K1,1,...,1 = F(N)

1,2,...,N−1 ×GN . (8.49)

Here we used T N to denote the product of N factors U(1), topologically a
torus, and we also used GN ≡ K1,1,...,1. The equality holds in a topological
sense only, but, as we will see in Chapter 14, it is also accurate when computing
volumes in M.

There are exceptional places in the Weyl chamber where the spectrum is
degenerate. In fact there are 2N−1 different possibilities for Kk1,...,km

, because
there are N − 1 choices between ‘larger than’ or ‘equal’ when the eigenvalues
are ordered. Each Kk1,...,km

forms an (m− 1)-dimensional (irregular) simplex
that we denote by Gm. Each Gm can be realized in

(
N−1
m−1

)
different ways (e.g.
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for N = 4 the set G2 can be realized as K3,1, K2,2, K1,3). In this way we get
a decomposition of the Weyl chamber as

∆̃N−1 =
⋃

k1+···+km=N

Kk1,...,km
, (8.50)

and a topological decomposition of the space of density matrices as

M(N) ∼
⋃

k1+···+km=N

[
U(N)

U(k1)× · · · × U(km)

]
×Kk1,...,km

, (8.51)

where the sum ranges over all partitions of N into sums of positive integers.
The total number of such partitions is 2N−1. However, the orbits sitting over,
say, K1,2 and K2,1 will be flag manifolds of the same topology. To count the
number of qualitatively different flag manifolds that appear, we must count
the number of partitions of N with no regard to ordering, that is we must
compute the number p(N) of different representations of the number N as
the sum of positive integers. For N = 1, 2, . . . , 10 the number p(N) is equal
to 1, 2, 3, 5, 7, 11, 15, 22, 30, and 42, while for large N the asymptotic Hardy–
Ramanujan formula (Hardy and Ramanujan, 1918) gives p(N) ' exp

(
π
√

2N/3
)

/4
√

3N .
Figure 8.6 and Table 8.1 summarize these deliberations for N ≤ 4.

Let us now take a look at the boundary of M(N). It consists of all density
matrices of less than maximal rank. The boundary as a whole consists of
a continuous family of maximal faces, and each maximal face is a copy of
M(N−1). To every pure state there corresponds an opposing maximal face, so
the family of maximal faces can be parametrized by CPN−1. It is simpler to
describe the orbit space of the boundary, because it is the base of the Weyl
chamber and has dimension N − 2. It is clear from Figure 8.6 that the orbit
space of the boundary ∂M(N) is the same as the orbit space of M(N−1), but
the orbits are different because the group that acts is larger. Generically there
will be no degeneracies in the spectrum, so except for a set of measure zero
the boundary has the structure (U(N)/T N)×GN−1.

Alternatively, the boundary can be decomposed into sets of matrices with
different rank. It is not hard to show that the dimension of the set of states of
rank r = N − k is equal to N2 − k2 − 1.

The main message of this section has been that the Weyl chamber gives a
good picture of the set of density matrices, because it represents the space of
orbits under the unitary group. It is a very good picture, because the Euclidean
distance between two points within a Weyl chamber is equal to the minimal
Hilbert–Schmidt distance between the pair of orbits that they represent. In
equations, let U and V denote arbitrary unitary matrices of size N . Then

DHS(Ud1U
†, V d2V

†) ≥ DHS(d1, d2) , (8.52)

where d1 and d2 are two diagonal matrices with their eigenvalues in decreasing
order. The proof of this attractive observation is simple, once we know something
about the majorization order for matrices. For this reason its proof is deferred
to Problem 12.5.



210 The space of density matrices

Table 8.1. Stratification of M(N). U(N) is the unitary group, T k is a
k-dimensional torus, and Gm stands for a part of the eigenvalue simplex

defined in the text. The dimension d of the strata equals dF + dS, where dF is
the even dimension of the complex flag manifold F, while dS = m− 1 is the

dimension of Gm.

N Label Subspace
Part of the

Weyl chamber
Topological
structure

Flag
manifold

Dimension
d = dF +dS

1 M1 λ1 point [U(1)/U(1)]×G1 = {ρ∗} F
(1)
0 0 = 0 + 0

2
M11 λ1 > λ2 line with left edge [U(2)/T 2]×G2 F

(2)
1 3 = 2 + 1

M2 λ1 = λ2 right edge [U(2)/U(2)]×G1 = {ρ∗} F
(2)
0 0 = 0 + 0

M111 λ1 > λ2 > λ3

triangle with
base

without corners

[U(3)/T 3]×G3 F
(3)
12 8 = 6 + 2

3
M12 λ1 > λ2 = λ3 edges with

[U(3)/(U(2)× T )]×G2

F
(3)
1 5 = 4 + 1

M21 λ1 = λ2 > λ3 lower corners F
(3)
2

M3 λ1 = λ2 = λ3 upper corner [U(3)/U(3)]×G1 = {ρ∗} F
(3)
0 0 = 0 + 0

M1111 λ1 > λ2 > λ3 > λ4

interior of
tetrahedron with

bottom face

[U(4)/T 4]×G4 F
(4)
123 15 = 12 + 3

M112 λ1 > λ2 > λ3 = λ4 F
(4)
12

M121 λ1 > λ2 = λ3 > λ4
faces without

side edges
[U(4)/(U(2)× T 2)]×G3 F

(4)
13 12 = 10 + 2

4
M211 λ1 = λ2 > λ3 > λ4 F

(4)
23

M13 λ1 > λ2 = λ3 = λ4

[U(4)/(U(3)× T )]×G2

F
(4)
1 7 = 6 + 1

M31 λ1 = λ2 = λ3 > λ4
edges with lower

corners
F

(4)
3

M22 λ1 = λ2 > λ3 = λ4 [U(4)/(U(2)× U(2))]×G2 F
(4)
2 9 = 8 + 1

M4 λ1 = λ2 = λ3 = λ4 upper corner [U(4)/U(4)]×G1 = {ρ∗} F
(4)
0 0 = 0 + 0

8.6 An algebraic afterthought

Quantum mechanics is built around the fact that the set of density matrices is a
convex set of a very special shape. From the perspective of Chapter 1 it seems
a strange set to consider. There are many convex sets to choose from. The
simplex is evidently in some sense preferred, and leads to classical probability
theory and – ultimately, once the pure states are numerous enough to form a
symplectic manifold – to classical mechanics. But why the convex set of density
matrices? A standard answer is that we want the vector space that contains the
convex set to have further structure, turning it into an algebra.9 (By definition,
an algebra is a vector space where vectors can be multiplied as well as added.)

9 The algebraic viewpoint was invented by Jordan; key mathematical results were derived by Jordan,
von Neumann and Wigner (1934). To see how far it has developed, see Emch (1972) and Alfsen
and Shultz (2003).
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At first sight this looks like an odd requirement: the observables may form an
algebra, but why should the states sit in one? We get an answer of sorts if
we think of the states as linear maps from the algebra to the real numbers,
because then we will obtain a vector space that is dual to the algebra and can
be identified with the algebra. Some further hints will emerge in Chapter 11.
For now, let us simply accept it. The point is that if the algebra has suitable
properties then this will give rise to new ways of defining positive cones –
more interesting ways than the simple requirement that the components of
the vectors be positive.

To obtain an algebra we must define a product A ◦ B. We may want the
algebra to be real in the sense that

A ◦A + B ◦B = 0 ⇒ A = B = 0 . (8.53)

We do not insist on associativity, but we insist that polynomials of operators
should be well defined. In effect we require that An ◦ Am = An+m where
An ≡ A ◦ An−1. Call this power associativity. With this structure in hand
we do have a natural definition of positive vectors, as vectors A that can
be written as A = B2 for some vector B, and we can define idempotents as
vectors obeying A2 = A. If we can also define a trace, we can define pure states
as idempotents of unit trace. But by now there are not that many algebras
to choose from. To make the algebra real in the above sense we would like
the algebra to consist of Hermitian matrices. Ordinary matrix multiplication
will not preserve Hermiticity, and therefore matrix algebras will not do as they
stand. However, because we can square our operators we can define the Jordan
product

A ◦B ≡ 1
4
(A + B)2 − 1

4
(A−B)2 . (8.54)

There is no obvious physical interpretation of this composition law, but it does
turn the space of Hermitian matrices into a (commutative) Jordan algebra. If
A and B are elements of a matrix algebra this product is equal to one half
of their anti-commutator, but we need not assume this. Jordan algebras have
all the properties we want, including power associativity. Moreover all simple
Jordan algebras have been classified, and there are only four kinds (and one
exceptional case). A complete list is given in Table 8.2.10

The case that really concerns us is JCN . Here the Jordan algebra is the space
of complex valued Hermitian N×N matrices, and the Jordan product is given
by one half of the anti-commutator. This is the very algebra that we have –
implicitly – been using, and with whose positive cone we are by now reasonably
familiar. We can easily define the trace of any element in the algebra, and the
pure states in the table are assumed to be of unit trace. One can replace the
complex numbers with real or quaternionic numbers, giving two more families
of Jordan algebras. The state spaces that result from them occur in special
quantum mechanical situations, as we saw in Section 5.5. The fourth family
of Jordan algebras are the spin factors J2(Vn). They can also be embedded
10 For a survey of Jordan algebras, see McCrimmon (1978).
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Table 8.2. Jordan algebras

Jordan algebra Dimension Norm Positive cone Pure states

JRN N(N + 1)/2 det M Self dual RPN−1

JCN N2 det M Self dual CPN−1

JHN N(2N − 1) det M Self dual HPN−1

J2(Vn) n + 1 ηIJXIXJ Self dual Sn−1

JO3 27 det M Self dual OP2

in matrix algebras, their norm uses a Minkowski space metric ηIJ , and their
positive cones are the familiar forward light cones in Minkowski spaces of
dimension n + 1. Their state spaces occur in special quantum mechanical
situations too (Uhlmann, 1996), but this is not the place to go into that.
(Finally there is an exceptional case based on octonions, that need not concern
us).

So what is the point? One point is that very little in addition to the quantum
mechanical formalism turned up in this way. This is to say: once we have
committed ourselves to finding a self dual positive cone in a finite-dimensional
real algebra, then we are almost (but not quite) restricted to the standard
quantum mechanical formalism already. Another point is that the positive cone
now acquires an interesting geometry. Not only is it self dual (see Section 1.1),
it is also foliated in a natural way by hypersurfaces for which the determinant
of the matrix is constant. These hypersurfaces turn out to be symmetric coset
spaces SL(N,C)/SU(N), or relatives of that if we consider a Jordan algebra
other than JCN . Given the norm N on the algebra, there is a natural looking
metric

gij = −1
d

∂i∂j ln Nd/N . (8.55)

where d is the dimension of the algebra. (Since the norm is homogeneous
of order N , the exponent ensures that the argument of the logarithm is
homogeneous of order d.) This metric is positive definite for all the Jordan
algebras, and it makes the boundary of the cone sit at an infinite distance
from any point in the interior. If we specialize to diagonal matrices – which
means that the Jordan algebra is no longer simple – we recover the positive
orthant used in classical probability theory, and the natural metric turns out
to be flat, although it differs from the ‘obvious’ flat metric on RN .

We doubt that the reader feels compelled to accept the quantum mechanical
formalism only because it looms large in a Jordan algebra framework. Another
way of arguing for quantum mechanics from (hopefully) simple assumptions
is provided by quantum logic. This language can be translated into convex set
theory (Mielnik, 1981), and turns out to be equivalent to setting conditions
on the lattice of faces that one wants the underlying convex set to have. From
a physical point of view it concerns the kind of ‘yes/no’ experiments that one
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expects to be able to perform; choosing one’s expectations suitably (Araki,
1980) one can argue along such lines that the state spaces that will emerge are
necessarily state spaces of Jordan algebras, and we are back where we started.

But there is a further algebraic structure waiting in the wings, and it is
largely this additional structure that Chapter 9 and passim are about.

8.7 Summary

Let us try to summarize basic properties of the set of mixed quantum states
M(N). As before ∆N−1 is an (N − 1)-dimensional simplex, ∆̃N−1 is a Weyl
chamber in ∆N−1, and F(N) is the complex flag manifold F(N)

1,2,...,N−1.

• M(N) is a convex set of N2 − 1 dimensions. It is topologically equivalent to
a ball and does not have pieces of lower dimensions (‘no hairs’).

• The set M(N) is inscribed in a ball of radius R2
out = (N−1)/2N , and contains

a maximal ball of radius r2
in = [2N(N − 1)]−1.

• It is neither a polytope nor a smooth body. Its faces are copies of M(K) with
K < N .

• It is partitioned into orbits of the unitary group, and the space of orbits is
a Weyl chamber ∆̃N−1.

• The full measure of M(N) has locally the structure of F(N) ×∆N−1.
• The boundary ∂M(N) contains all states of less than maximal rank.
• The boundary has N2 − 2 dimensions. Almost everywhere it has the local

structure of F(N) ×∆N−2.

In this summary we have not mentioned the remarkable way in which composite
systems are handled by quantum theory. The discussion of this topic starts in
the next chapter and culminates in Chapter 15.

Problems

¦ Problem 8.1 Prove that the polar decomposition of an invertible
operator is unique.

¦ Problem 8.2 Consider a square matrix A. Perform an arbitrary
permutation of its rows and/or columns. Will its (a) eigenvalues, (b) singular
values change?

¦ Problem 8.3 What are the singular values of (a) a Hermitian matrix,
(b) a unitary matrix, (c) any normal matrix A (such that [A,A†] = 0)?

¦ Problem 8.4 A unitary similarity transformation does not change
the eigenvalues of any matrix. Show that this is true for the singular values as
well.

¦ Problem 8.5 Show that Tr(AA†)Tr(BB†) ≥ |Tr(AB†)|2, always.
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¦ Problem 8.6 Show that the diagonal elements of a positive operator
are positive.

¦ Problem 8.7 Take a generic vector in RN2−1. How many of its
components can you set to zero, if you are allowed to act only with an SU(N)
subgroup of the rotation group?

¦ Problem 8.8 Transform a density matrix ρ of size 2 into ρ′ = UρU †

by a general unitary matrix U =
[

cosϑeiφ sinϑeiψ

− sinϑe−iψ cosϑe−iφ

]
. What is the

orthogonal matrix O ∈ SO(3) which transforms the Bloch vector ~τ ? Find the
rotation angle t and the vector ~Ω determining the orientation of the rotations
axis.



9 Purification of mixed quantum states

In this significant sense quantum theory subscribes to the view that ‘the
whole is greater than the sum of its parts’.

Hermann Weyl

In quantum mechanics the whole, built from parts, is described using the
tensor product that defines the composition of an N -dimensional vector space
V and an M -dimensional vector space V ′ as the NM -dimensional vector
space V ⊗ V ′. One can go on, using the tensor product to define an infinite-
dimensional tensor algebra. The interplay between the tensor algebra and the
other algebraic structures is subtle indeed. In this chapter we study the case
of two subsystems only. The arena is Hilbert–Schmidt space (real dimension
2N2), but now regarded as the Hilbert space of a composite system. We will
use a partial trace to take ourselves from Hilbert–Schmidt space to the space
of density matrices acting on an N -dimensional Hilbert space. The result is
the quantum analogue of a marginal probability distribution. It is also like a
projection in a fibre bundle, with Hilbert–Schmidt space as the bundle space
and the group U(N) acting on the fibres, while the positive cone serves as the
base space (real dimension 2N2−N2 = N2). Physically, the important idea is
that of purification; a density matrix acting on H is regarded as a pure state
in H⊗H∗, with some of its details forgotten. We could now start an argument
whether all mixed quantum states are really pure states in some larger Hilbert
space, but we prefer to focus on the interesting geometry that is created on
the space of mixed states by this construction.1

9.1 Tensor products and state reduction

The tensor product of two vector spaces is not all that easy to define. The
easiest way is to rely on a choice of basis in each of the factors.2 We are
interested in the tensor product of two Hilbert spaces H1 and H2, with dimensions
N1 and N2, respectively. The tensor product space will be denoted H12, and

1 For an eloquent defence of the point of view that regards density matrices as primary, see Mermin
(1998). With equal eloquence, Penrose (2004) takes the opposite view.

2 This is the kind of procedure that mathematicians despise; the basis independent definition can be
found in Kobayashi and Nomizu (1963). Since we tend to think of operators as explicit matrices,
the simple-minded definition is good enough for us.
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it will have dimension N1N2. The statement that the whole is greater than its
parts is related to the fact that N1N2 > N1 + N2 (unless N1 = N2 = 2).

We expect the reader to be familiar with the basic features of the tensor
product, but to fix our notation let us choose the bases {|m〉}N1

m=1 in H1,
and {|µ〉}N2

µ=1 in H2. Then the Hilbert space H12 ≡ H1 ⊗ H2 is spanned by
the basis formed by the N1N2 elements |m〉 ⊗ |µ〉 = |m〉|µ〉, where the sign
⊗ will be written explicitly only on festive occasions. The basis vectors are
direct products of vectors in the factor Hilbert spaces, but by taking linear
combinations we will obtain vectors that cannot be written in such a form –
which explains why the composite Hilbert space H12 is so large. Evidently we
can go on to define the Hilbert space H123, starting from three factor Hilbert
spaces, and indeed the procedure never stops. By taking tensor products of
a vector space with itself, we will end up with an infinite-dimensional tensor
algebra. Our concern, however, is with bipartite systems that use only the
Hilbert space H12. In many applications of quantum mechanics, a further
elaboration of the idea is necessary: it may be that the subsystems are indistinguishable
from each other, in which case one must take symmetric or anti-symmetric
combinations of H12 and H21, leading to bosonic or fermionic subsystems, or
perhaps utilize some less trivial representation of the symmetric group that
interchanges the subsystems. But we will not need this elaboration either.

The matrix algebra of operators acting on a given Hilbert space is itself a
vector space – the Hilbert–Schmidt vector space HS studied in Section 8.1.
We can take tensor products also of algebras. If A1 acts on H1, and A2 acts
on H2, then their tensor or Kronecker product A1⊗A2 is defined by its action
on the basis elements:

(A1 ⊗A2)|m〉 ⊗ |µ〉 ≡ A1|m〉 ⊗A2|µ〉 . (9.1)

Again, this is not the most general operator in the tensor product algebra
since we can form linear combinations of operators of this type. For a general
operator we can form matrix elements according to

Amµ
nν = 〈m| ⊗ 〈µ|A|n〉 ⊗ |ν〉 . (9.2)

On less festive occasions we may write this as Amµ,nν .
Everything works best if the underlying field is that of the complex numbers

(Araki, 1980): let the space of observables, that is Hermitian operators, on
a Hilbert space H be denoted HM(H). The dimensions of the spaces of
observables on a pair of complex Hilbert spaces H1 and H2 obey

dim[HM(H1 ⊗H2)] = dim[HM(H1)] dim[HM(H2)] . (9.3)

That is, (N1N2)2 = N2
1 N2

2 . If we work over the real numbers the left-hand side
of Eq. (9.3) is larger than the right-hand side, and if we work over quaternions
(using a suitable definition of the ternsor product) the right-hand side is the
largest. As an argument for why we should choose to work over the complex
numbers, this observation may not be completely compelling. But the tensor
algebra over the complex numbers has many wonderful properties.

Most of the time we think of vectors as columns of numbers, and of operators
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as explicit matrices – in finite dimensions nothing is lost and we gain concreteness.
We organize vectors and matrices into arrays, using the obvious lexicographical
order. At least, the order should be obvious if we write it out for a simple
example: if

A =
[

A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]

then

A⊗B =
[

A11B A12B
A21B A22B

]
=




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22


 . (9.4)

Contemplation of this expression should make it clear what lexicographical
ordering that we are using. At first sight one may worry that A and B are
treated quite asymmetrically here, but on reflection one sees that this is only
a matter of basis changes, and does not affect the spectrum of A ⊗ B. See
Problems 9.1–9.5 for further information about tensor products.

The tensor product is a main theme in quantum mechanics. We will use it
to split the world into two parts; a part 1 that we study and another part 2
that we may refer to as the environment. This may be a physical environment
that must be taken into account when doing experiments, but not necessarily
so. It may also be a mathematical device that enables us to prove interesting
theorems about the system under study, with no pretence of realism as far
as the environment is concerned. Either way, the split is more subtle than it
used to be in classical physics, precisely because the composite Hilbert space
H12 = H1 ⊗ H2 is so large. Most of its vectors are not direct products of
vectors in the factor spaces. If not, the subsystems are said to be entangled.

Let us view the situation from the Hilbert space H12. To compute the
expectation value of an arbitrary observable we need the density matrix ρ12.
It is assumed that we know exactly how H12 is defined as a tensor product
H1 ⊗ H2, so the representation (9.2) is available for all its operators. Then
we can define reduced density matrices ρ1 and ρ2, acting on H1 and H2,
respectively, by taking partial traces. Thus

ρ1 ≡ Tr2 ρ12 where (ρ1)m
n =

N2∑
µ=1

(ρ12)mµ
nµ , (9.5)

and similarly for ρ2. This construction is interesting, because it could be that
experiments are performed exclusively on the first subsystem, in which case
we are only interested in observables of the form

A = A1 ⊗ 12 ⇔ Amµ
nν = (A1)m

n δµ
ν . (9.6)

Then the state ρ12 is more than we need; the reduced density matrix ρ1 acting
on H1 is enough, because

〈A〉 = Trρ12A = Tr1ρ1A1 . (9.7)
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Here Tr1 denotes the trace taken over the first subsystem only. Moreover ρ1 =
Tr2ρ12 is the only operator that has this property for every operator of the
form A = A1 ⊗ 12; this observation can be used to give a basis independent
definition of the partial trace.

Even if ρ12 is a pure state, the state ρ1 will in general be a mixed state.
Interestingly, it is possible to obtain any mixed state as a partial trace over
a pure state in a suitably enlarged Hilbert space. To make this property
transparent, we need some further preparations.

9.2 The Schmidt decomposition

An exceptionally useful fact is the following:3

Theorem 9.1 (Schmidt’s) Every pure state in the Hilbert space
H12 = H1 ⊗H2 can be expressed in the form

|Ψ〉 =
N∑

i=1

√
λi|ei〉 ⊗ |fi〉 , (9.8)

where {|ei〉}N1
i=1 is an orthonormal basis for H1, {|fi〉}N2

i=1 is an orthonormal
basis for H2, and N ≤ min{N1, N2}.
This is known as the Schmidt decomposition or Schmidt’s polar form of a
bipartite pure state. It should come as a surprise, because there is only a
single sum; what is obvious is only that any pure state can be expressed in
the form

|Ψ〉 =
N1∑
i=1

N2∑
j=1

Cij|êi〉 ⊗ |f̂j〉 , (9.9)

where C is some complex-valued matrix and the bases are arbitrary. The
Schmidt decomposition becomes more reasonable when it is observed that the
theorem concerns a special state |Ψ〉; changing the state may force us to change
the bases used in Eq. (9.8).

To deduce the Schmidt decomposition we assume, without loss of generality,
that N1 ≤ N2. Then we observe that we can rewrite Eq. (9.9) by introducing
the states |φ̂i〉 =

∑
j Cij|f̂j〉; these will not be orthonormal states but they

certainly exist, and permit us to write the state in H12 as

|Ψ〉 =
N∑

i=1

|êi〉|φ̂i〉 . (9.10)

3 The original Schmidt’s theorem, that appeared in 1907 (Schmidt, 1907), concerns infinite-
dimensional spaces. The present formulation was used by Schrödinger (1936) in his analysis of
entanglement, by Everett (1957) in his relative state (or many worlds) formulation of quantum
mechanics, and in the 1960s by Carlson and Keller (1961) and Coleman (1963), and Coleman
and Yukalov (2000). Simple expositions of the Schmidt decomposition are provided by Ekert and
Knight (1995) and by Aravind (1996).
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Taking a partial trace of ρΨ = |Ψ〉〈Ψ| with respect to the second subsystem,
we find

ρ1 = Tr2

(|Ψ〉〈Ψ|) =
N1∑
i=1

N1∑
j=1

〈φ̂j|φ̂i〉 |êi〉〈êj| . (9.11)

Now comes the trick. We can always perform a unitary transformation to a
new basis |ei〉 in H1, so that ρ1 takes the diagonal form

ρ1 =
N1∑
i=1

λi|ei〉〈ei| , (9.12)

where the coefficients λi are real and non-negative. Finally we go back and
repeat the argument, using this basis from the start. Taking the hats away,
we find

〈φj|φi〉 = λiδij . (9.13)

That is to say, we can set |φi〉 =
√

λi|fi〉. The result is precisely the Schmidt
decomposition.

An alternative way to obtain the Schmidt decomposition is to rely on the
singular value decomposition (8.14) of the matrix C in Eq. (9.9). In Section
8.1 we considered square matrices, but since the singular values are really the
square roots of the eigenvalues of the matrix CC† – which is square in any
case – we can lift that restriction here. Let the singular values of C be

√
λi.

There exist two unitary matrices U and V such that

Cij =
∑
k,l

Uik

√
λk δklVlj . (9.14)

Using U and V to effect changes of the bases in H1 and H2 we recover the
Schmidt decomposition (9.8). Indeed

ρ1 ≡ Tr2ρ = CC† and ρ2 ≡ Tr1ρ = CT C∗ . (9.15)

In the generic case all the singular values λi are different and the Schmidt
decomposition is unique up to phases, which are free parameters determined
by any specific choice of the eigenvectors of U and V . The bases used in
the Schmidt decomposition are distinguished because they are precisely the
eigenbases of the reduced density matrices, one of them is given in Eq. (9.12)
and the other being

ρ2 = Tr1

(|Ψ〉〈Ψ|) =
∑

i

λi |fi〉〈fi| . (9.16)

When the spectra of the reduced density matrices are degenerate the bases
may be rotated in the corresponding subspace.

At this point we introduce some useful terminology. The real numbers λi

that occur in the Schmidt decomposition (9.8) are called Schmidt coefficients,4

4 We find this definition convenient. Others (Nielsen and Chuang, 2000) use this name for
√

λi.
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and they obey ∑
i

λi = 1 , λi ≥ 0 . (9.17)

The set of all possible vectors ~λ forms an (N−1)- dimensional simplex, known
as the Schmidt simplex. The number r of non-vanishing λi is called the Schmidt
rank of the state |Ψ〉. It is equal to the rank of the reduced density matrix.
The latter describes a pure state if and only if r = 1. If r > 1 the state |Ψ〉 is
an entangled state of its two subsystems (see Chapter 15).

A warning concerning the Schmidt decomposition is appropriate: there is
no similar strong result available for Hilbert spaces that are direct products
of more than two factor spaces.5 This is evident because if there are M factor
spaces, all of dimension N , then the number of parameters describing a general
state grows like NM , while the number of unitary transformations one can use
to choose basis vectors within the factors grows like M×N2. But we can look at
the Schmidt decomposition through different glasses. The Schmidt coefficients
are not changed by local unitary transformations, – that is to say, in the
Hilbert space H ⊗H, where both factors have dimension N , transformations
belonging to the subgroup U(N) ⊗ U(N), acting on each factor separately.
When there are many factors, we can ask for invariants under the action of
U(N)⊗U(N)⊗ · · · ⊗U(N), characterizing the orbits of that group – but this
is an active research subject6 that we do not go into.

9.3 State purification and the Hilbert–Schmidt bundle

With the Schmidt decomposition in hand we can discuss the opposite of state
reduction: given any density matrix ρ on a Hilbert space H, we can use Eq.
(9.8) to write down a pure state on a larger Hilbert space whose reduction
down to H is ρ. The key statements are the following:

Lemma 9.1 (Reduction) Let ρ12 be a pure state on H12. Then the
spectra of the reduced density matrices ρ1 and ρ2 are identical, except possibly
for the degeneracy of any zero eigenvalue.

Lemma 9.2 (Purification) Given a density matrix ρ1 on a Hilbert
space H1, there exists a Hilbert space H2 and a pure state ρ12 on H1⊗H2 such
that ρ1 = Tr2ρ12.

These statements follow trivially from Schmidt’s theorem, but they have far-
reaching consequences. It is notable that any density matrix ρ acting on a
Hilbert space H can be purified in the Hilbert–Schmidt space HS = H⊗H∗,
that we introduced in Section 8.1. Any attempt to use a smaller Hilbert space

5 A kind of generalization of the Schmidt decomposition for three qubits is provided in (Carteret,
Higuchi and Sudbery, 2000; Aćın, Andrianov, Costa, Jané, Latorre and Tarrach, 2000).

6 To learn about invariants of local operations for three qubits see (Grassl, Rötteler and Beth, 1998;
Sudbery, 2001; Barnum and Linden, 2001).
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will fail in general, and, mathematically, there is no point in choosing a larger
space since the purified density matrices will always belong to a subspace
that is isomorphic to the Hilbert–Schmidt space. Hence Hilbert–Schmidt space
provides a canonical arena for the purification of density matrices. We will try
to regard it as a fibre bundle, along the lines of Chapter 3. Let us see if we
can.

The vectors of HS can be represented as operators A acting on H, and there
is a projection down to the cone P of positive operators defined by

Π : A −→ ρ = AA† . (9.18)

The fibres will consist of operators projecting to the same positive operator,
and the unitary group acts on the fibres as

A −→ A′ = AU . (9.19)

We could have used the projection A −→ ρ′ = A†A instead. More interestingly,
we could have used the projection A −→ ρ′ = AA†/TrAA†. This would take
us all the way down to the density matrices (of unit trace), but the projection
(9.18) turns out to be more convenient to work with.

Do we have a fibre bundle? Not quite, because the fibres are not isomorphic.
We do have a fibre bundle if we restrict the bundle space to be the open set
of Hilbert–Schmidt operators with trivial kernel. The boundary of the base
manifold is not really lost, since it can be recovered by continuity arguments.
And the fibre bundle perspective is really useful, so we will adopt it here.7 The
structure group of the bundle is U(N) and the base manifold is the interior
of the positive cone. The bundle projection is given by Eq. (9.18). From a
topological point of view this is a trivial bundle, admitting a global section

τ : ρ −→ √
ρ . (9.20)

The map τ is well defined because a positive operator admits a unique positive
square root, it is a section because Π

(
τ(ρ)

)
= (

√
ρ)2 = ρ, and it is global

because it works everywhere.
What is interesting about our bundle is its geometry. We want to think of

Hilbert–Schmidt space as a real vector space, so we adopt the metric

X · Y =
1
2
(〈X, Y 〉+ 〈Y, X〉) =

1
2
Tr(X†Y + Y †X) , (9.21)

where X and Y are tangent vectors. (Because we are in a vector space, the
tangent spaces can be identified with the space itself.) This is the Hilbert–
Schmidt bundle. A matrix in the bundle space will project to a properly
normalized density matrix if and only if it sits on the unit sphere in HS. The
whole setting is quite similar to that encountered for the 3-sphere in Chapter
3. Like the 3-sphere, the Hilbert–Schmidt bundle space has a preferred metric,
and therefore there is a preferred connection and a preferred metric on the
base manifold.

7 From this point on, this chapter is mostly an account of ideas developed by Armin Uhlmann
(Uhlmann, 1992, 1993, 1995) and his collaborators. For this section, see also Da̧browski and
Jadczyk (1989).
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Figure 9.1. The Hilbert–Schmidt bundle. It is the unit sphere in HS that
projects down to density matrices.

According to Section 3.6, a connection is equivalent to a decomposition of
the bundle tangent space into vertical and horizontal vectors. The vertical
tangent vectors pose no problem. By definition they point along the fibres;
since any unitary matrix U can be obtained by exponentiating an Hermitian
matrix H, a curve along a fibre is given by

AU(t) = A eiHt . (9.22)

Therefore every vertical vector takes the form iAH for some Hermitian matrix
H. The horizontal vectors must be defined somehow, and we do so by requiring
that they are orthogonal to the vertical vectors under our metric. Thus, for a
horizontal vector X, we require

TrX(iAH)† + Tr(iAH)X† = i Tr(X†A−A†X)H = 0 (9.23)

for all Hermitian matrices H. Hence X is a horizontal tangent vector at the
point A if and only if

X†A−A†X = 0 . (9.24)

Thus equipped, we can lift curves in the base manifold to horizontal curves in
the bundle.

In particular, suppose that we have a curve ρ(s) in M(N). We are looking
for a curve A(s) such that AA†(s) = ρ(s), and such that its tangent vector Ȧ
is horizontal, that is to say that

Ȧ†A = A†Ȧ . (9.25)

It is easy to see that the latter condition is fulfilled if

Ȧ = GA , (9.26)
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where G is an Hermitian matrix. To find the matrix G, we observe that

AA†(σ) = ρ(σ) ⇒ ρ̇ = Gρ + ρG . (9.27)

As long as ρ is a strictly positive operator this equation determines G uniquely
(Sylvester, 1884; Bhatia and Rosenthal, 1997), and it follows that the horizontal
lift of a curve in the base space is uniquely determined. We could go on to
define a mixed state generalization of the geometric phase discussed in Section
4.8, but in fact we will turn to somewhat different matters.8

9.4 A first look at the Bures metric

Out of our bundle construction comes, not only a connection, but a natural
metric on the space of density matrices. It is known as the Bures metric, and
it lives on the cone of positive operators on H, since this is the base manifold
of our bundle. Until further notice then, ρ denotes a positive operator, and we
allow Trρ 6= 1. The purification of ρ is a matrix A such that ρ = AA†, and A
is regarded as a vector in the Hilbert–Schmidt space.

In the bundle space, we have a natural notion of distance, namely the
Euclidean distance defined (without any factor 1/2) by

d2
B(A1, A2) = ||A1 −A2||2HS = Tr(A1A

†
1 + A2A

†
2 −A1A

†
2 −A2A

†
1) . (9.28)

If A1, A2 lie on the unit sphere we have another natural distance, namely the
geodesic distance dA given by

cos dA =
1
2

Tr(A1A
†
2 + A2A

†
1) . (9.29)

Unlike the Euclidean distance, which measures the length of a straight chord,
the second distance measures the length of a curve that projects down, in its
entirety, to density matrices of unit trace. In accordance with the philosophy
of Chapter 3, we define the distance between two density matrices ρ1 and ρ2

as the length of the shortest path, in the bundle, that connects the two fibres
lying over these density matrices. Whether we choose to work with dA or dB,
the technical task we face is to calculate the root fidelity9

√
F (ρ1, ρ2) ≡ 1

2
max Tr(A1A

†
2 + A2A

†
1) = max|TrA1A

†
2| . (9.30)

The optimization is with respect to all possible purifications of ρ1 and ρ2. Once
we have done this, we can define the Bures distance DB,

D2
B(ρ1, ρ2) = Trρ1 + Trρ2 − 2

√
F (ρ1, ρ2) , (9.31)

8 Geometric phases were among Uhlmann’s motivations for developing the material in this chapter
(Uhlmann, 1992; Uhlmann, 1995). Other approaches to geometric phases for mixed states exist
(Ericsson, Sjöqvist, Brännlund, Oi and Pati, 2003); for a recent review see Chruściński and
JamioLÃ kowski (2004).

9 Its square was called fidelity by Jozsa (1994). Later several authors, including Nielsen and Chuang
(2000), began to refer to our root fidelity as fidelity. We have chosen to stick with the original
names, partly to avoid confusion, partly because experimentalists prefer a fidelity to be some kind
of a probability – and fidelity is a kind of transition probability, as we will see.
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and the Bures angle DA,

cosDA(ρ1, ρ2) =
√

F (ρ1, ρ2) . (9.32)

The Bures angle is a measure of the length of a curve within M(N), while the
Bures distance measures the length of a curve within the positive cone. By
construction, they are Riemannian distances – and indeed they are consistent
with the same Riemannian metric. Moreover they are both monotoneously
decreasing functions of the root fidelity.10

Root fidelity is a useful concept in its own right and will be discussed in
some detail in Section 13.3. It is so useful that we state its evaluation as a
theorem:

Theorem 9.2 (Uhlmann’s fidelity) The root fidelity, defined
as the maximum of |TrA1A

†
2| over all possible purifications of two density

matrices ρ1 and ρ2, is
√

F (ρ1, ρ2) = Tr|√ρ2

√
ρ1| = Tr

√√
ρ2 ρ1

√
ρ2 . (9.33)

To prove this, we first use the polar decomposition to write

A1 =
√

ρ1 U1 and A2 =
√

ρ2 U2 . (9.34)

Here U1 and U2 are unitary operators that move us around the fibres. Then

TrA1A
†
2 = Tr(

√
ρ1 U1U

†
2

√
ρ2) = Tr(

√
ρ

2

√
ρ1 U1U

†
2 ) . (9.35)

We perform yet another polar decomposition
√

ρ2

√
ρ1 = |√ρ2

√
ρ1|V , V V † = 1 . (9.36)

We define a new unitary operator U ≡ V U1U
†
2 . The final task is to maximize

Tr(|√ρ2

√
ρ1|U) + complex conjugate (9.37)

over all possible unitary operators U . In the eigenbasis of the positive operator
|√ρ2

√
ρ1| it is easy to see that the maximum occurs when U = 1. This proves

the theorem; the definition of the Bures distance, and of the Bures angle, is
thereby complete.

The catch is that root fidelity is difficult to compute. Because of the square
roots, we must go through the labourious process of diagonalizing a matrix
twice. Indeed, although our construction makes it obvious that

√
F (ρ1, ρ2) is

a symmetric function of ρ1 and ρ2, not even this property is obvious just by
inspection of the formula – although in Section 13.3 we will give an elegant
direct proof of this property. To come to grips with root fidelity, we work it out
in two simple cases, beginning with the case when ρ1 = diag(p1, p2, . . . , pN)

10 The Bures distance was introduced, in an infinite-dimensional setting, by Bures (1969), and then
shown to be a Riemannian distance by Uhlmann (1992). Our Bures angle was called Bures length
by Uhlmann (1995), and angle by Nielsen and Chuang (2000).
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and ρ2 = diag(q1, q2, . . . , qN), that is when both matrices are diagonal. We also
assume that they have trace one. This is an easy case: we get

√
F (ρ1, ρ2) =

N∑
i=1

√
piqi . (9.38)

It follows that the Bures angle DA equals the classical Bhattacharyya distance,
while the Bures distance is given by

D2
B(ρ1, ρ2) = 2− 2

N∑
i=1

√
piqi =

N∑
i=1

(
√

pi −√qi)2 = D2
H(P, Q) , (9.39)

where DH is the Hellinger distance between two classical probability distributions.
These distances are familiar from Section 2.5. Both of them are consistent with
the Fisher–Rao metric on the space of classical probability distributions, so this
is our first hint that what we are doing will have some statistical significance.

The second easy case is that of two pure states. The good thing about a
pure density matrix is that it squares to itself and therefore equals its own
square root. For a pair of pure states a very short calculation shows that

√
F

(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|
)

= |〈ψ1|ψ2〉| =
√

κ , (9.40)

where κ is the projective cross-ratio, also known as the transition probability.
It is therefore customary to refer to fidelity, that is the square of root fidelity,
also as the Uhlmann transition probability, regardless of whether the states are
pure or not. Anyway, we can conclude that the Bures angle between two pure
states is equal to their Fubini–Study distance.

With some confidence that we are studying an interesting definition, we
turn to the Riemannian metric defined by the Bures distance. It admits a
compact description that we will derive right away, although we will not use
it until Section 14.1. It will be convenient to use an old-fashioned notation
for tangent vectors, so that dA is a tangent vector on the bundle, projecting
to dρ, which is a tangent vector on M(N). The length squared of dρ is then
defined by

ds2 = min
[
TrdA dA†] , (9.41)

where the minimum is sought among all vectors dA that project to dρ, and
achieved if dA is a horizontal vector (orthogonal to the fibres). According to
Eq. (9.26) this happens if and only if dA = GA, where G is a Hermitian
matrix. As we know from Eq. (9.27), as long as ρ is strictly positive, G will be
determined uniquely by

dρ = Gρ + ρG . (9.42)

Pulling the strings together, we find that

ds2 = TrGAA†G = TrGρG =
1
2

TrGdρ . (9.43)

This is the Bures metric. Its definition is somewhat implicit. It is difficult to do
better though: explicit expressions in terms of matrix elements tend to become
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so complicated that they seem useless – except when ρ and dρ commute, in
which case G = dρ/(2ρ), and except for the special case N = 2 to which we
now turn.11 A head on attack on Eq. (9.43) will be made in Section 14.1.

9.5 Bures geometry for N = 2

It happens that for the qubit case, N = 2, we can get fully explicit results
with elementary means. The reason is that every 2× 2 matrix M obeys

M2 −M TrM + detM = 0 . (9.44)

Hence
(TrM)2 = TrM2 + 2detM . (9.45)

If we set

M ≡
√√

ρ1ρ2

√
ρ1 , (9.46)

we find, as a result of an elementary calculation, that

F = (TrM)2 = Trρ1ρ2 + 2
√

det ρ1 det ρ2 , (9.47)

(where the fidelity F is used for the first time!). The N = 2 Bures distance is
now given by

D2
B(ρ1, ρ2) = Trρ1 + Trρ2 − 2

√
Trρ1ρ2 + 2

√
det ρ1 det ρ2 . (9.48)

It is pleasing that no square roots of operators appear in this expression.
It is now a matter of straightforward calculation to obtain an explicit

expression for the Riemannian metric on the positive cone, for N = 2. To
do so, we set

ρ1 =
1
2

[
t + z x− iy
x + iy t− z

]
, ρ2 = ρ1 +

1
2

[
dt + dz dx− idy
dx + idy dt− dz

]
. (9.49)

It is elementary (although admittedly a little labourious) to insert this in Eq.
(9.48), and expand to second order. The final result, for the Bures line element
squared, is

ds2 =
1
4t

(
dx2 + dy2 + dz2 +

(xdx + ydy + zdz − tdt)2

t2 − x2 − y2 − z2

)
. (9.50)

In the particular case that t is constant, so that we are dealing with matrices
of constant trace, this is recognizable as the metric on the upper hemisphere
of the 3-sphere, of radius 1/2

√
t, in the orthographic coordinates introduced

in Eq. (3.2). Indeed we can introduce the coordinates

X0 =
√

t2 − x2 − y2 − z2 , X1 = x , X2 = y , X3 = z . (9.51)
11 In the N = 2 case we follow Hübner (1992). Actually Dittmann (1999a) has provided an expression

valid for all N , which is explicit in the sense that it depends only on matrix invariants, and does
not require diagonalization of any matrix.
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Figure 9.2. Left: a faithful illustration of the Hilbert–Schmidt geometry of a
rebit (a flat disc, compare with Figure 8.2). Right: the same for its Bures
geometry (a round hemisphere). Above the rebit we show exactly how it sits
in the positive cone. On the right the latter appears very distorted, because we
have adapted its coordinates to the Bures geometry.

Then the Bures metric on the positive cone is

ds2 =
1
4t

(dX0dX0 + dX1dX1 + dX2dX2 + dX3dX3) , (9.52)

where

Trρ = t =
√

(X0)2 + (X1)2 + (X2)2 + (X3)2 . (9.53)

Only the region for which X0 ≥ 0 is relevant.
Let us set t = 1 for the remainder of this section, so that we deal with

matrices of unit trace. We see that, according to the Bures metric, they form a
hemisphere of a 3-sphere of radius 1/2; the pure states sit at its equator, which
is a 2-sphere isometric with CP1. Unlike a 2-sphere in Euclidean space, the
equator of the 3-sphere is a totally geodesic surface – by definition, a surface
such that a geodesic within the surface itself is also a geodesic in the embedding
space. We can draw a picture (Figure 9.2) that summarizes the Bures geometry
of the qubit. Note that the set of diagonal density matrices appears as a
semicircle in this picture, not as the quarter circle that we had in Figure 2.13.
Actually, because this set is one-dimensional, the intrinsic geometries on the
two circle segments are the same, the length is π/2 in both cases, and there is
no contradiction.

Finally, the qubit case is instructive, but it is also quite misleading in some
respects – in particular the case N = 2 is especially simple to deal with.

9.6 Further properties of the Bures metric

When N > 2 it does not really pay to proceed as directly as we did for the
qubit, but the fibre bundle origins of the Bures metric mean that much can
be learned about it with indirect means. First, what is a geodesic with respect
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to the Bures metric? The answer is that it is a projection of a geodesic in the
unit sphere embedded in the bundle space HS, with the added condition that
the latter geodesic must be chosen to be orthogonal to the fibres of the bundle.
We know what a geodesic on a sphere looks like, namely (Section 3.1)

A(s) = A(0) cos s + Ȧ(0) sin s , (9.54)

where

TrA(0)A†(0) = TrȦ(0)Ȧ†(0) = 1 , Tr
(
A(0)Ȧ†(0) + Ȧ(0)A†(0)

)
= 0 . (9.55)

The second equation just says that the tangent vector of the curve is orthogonal
to the vector defining the starting point on the sphere. In addition the tangent
vector must be horizontal; according to Eq. (9.24) this means that we must
have

Ȧ†(0)A(0) = A†(0)Ȧ(0) . (9.56)

That is all. An interesting observation – we will see why in a moment – is
that if we start the geodesic in a point where A, and hence ρ = AA†, is block
diagonal, and if the tangent vector Ȧ at that point is block diagonal too, then
the entire geodesic will consist of block diagonal matrices. The conclusion is
that block diagonal density matrices form totally geodesic submanifolds in the
space of density matrices.

Now let us consider a geodesic that joins the density matrices ρ1 and ρ2, and
let them be projections of A1 and A2, respectively. The horizontality condition
says that A†

1A2 is a Hermitian operator, and in fact a positive operator if the
geodesic does not hit the boundary in between. From this one may deduce
that

A2 =
1√
ρ1

√√
ρ1ρ2

√
ρ1

1√
ρ1

A1 . (9.57)

The operator front of A1 is known as the geometric mean of ρ−1
1 and ρ2; see

Section 12.1. It can also be proved that the geodesic will bounce N times from
the boundary of M(N), before closing on itself (Uhlmann, 1995). The overall
conclusion is that we do have control over geodesics and geodesic distances
with respect to the Bures metric.

Concerning symmetries, it is known that any bijective transformation of the
set of density matrices into itself which conserves the Bures distance (or angle)
is implemented by a unitary or an anti-unitary operation (Molnár, 2001). This
result is a generalization of Wigner’s theorem concerning the transformations
of pure states that preserve the transition probabilities (see Section 4.5).

For further insight we turn to a cone of density matrices in M(3), having a
pure state for its apex and a Bloch ball of density matrices with orthogonal
support for its base. This can be coordinatized as

ρ =
[

tρ(2) 0
0 1− t

]
=




t(1 + z)/2 t(x− iy)/2 0
t(x + iy)/2 t(1− z)/2 0

0 0 1− t


 . (9.58)
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This is a submanifold of block diagonal matrices. It is also simple enough so
that we can proceed directly, as in the Section 9.5. Doing so, we find that the
metric is

ds2 =
dt2

4t(1− t)
+

t

4
d2Ω , (9.59)

where d2Ω is the metric on the unit 3-sphere (in orthographic coordinates, and
only one half of the 3-sphere is relevant). As t → 0, that is as we approach the
tip of our cone, the radii of the 3-spheres shrink, and their intrinsic curvature
diverges. This does not sound very dramatic, but in fact it is, because by
our previous argument about block diagonal matrices these 3-hemispheres
are totally geodesic submanifolds of the space of density matrices. Now it
is a fact from differential geometry that if the intrinsic curvature of a totally
geodesic submanifold diverges, then the curvature of the entire manifold also
diverges. (More precisely, the sectional curvatures, evaluated for 2-planes that
are tangent to the totally geodesic submanifold, will agree. We hope that
this statement sounds plausible, even though we will not explain it further.)
The conclusion is that M(3), equipped with the Bures metric, has conical
curvature singularities at the pure states. The general picture is as follows
(Dittmann, 1995):

Theorem 9.3 (Dittmann’s) For N ≥ 2, the Bures metric is
everywhere well defined on submanifolds of density matrices with constant
rank. However, the sectional curvature of the entire space diverges in the
neighbourhood of any submanifold of rank less than N − 1.

For N > 2, this means that it is impossible to embed M(N) into a Riemannian
manifold of the same dimension, such that the restriction of the embedding to
submanifolds of density matrices of constant rank is isometric. The problem
does not arise for the special case N = 2, and indeed we have seen that
M(2) can be embedded into the 3-sphere. Some further facts are known. Thus,
the curvature scalar R assumes its global minimum at the maximally mixed
state ρ∗ = 1/N . It is then natural to conjecture that the scalar curvature is
monotone, in the sense that if ρ1 ≺ ρ2, that is if ρ1 is majorized by ρ2, then
R(ρ1) ≤ R(ρ2). However, this is not true.12

This is perhaps a little disappointing. To recover our spirits, let us look at
the Bures distance in two cases where it is very easy to compute. The Bures
distance to the maximally mixed state is

D2
B(ρ, ρ∗) = 1 + Trρ− 2√

N
Tr
√

ρ . (9.60)

To compute this it is enough to diagonalize ρ. The distance from an arbitrary
density matrix ρ to a pure state is even easier to compute, and is given
by a single matrix element of ρ. Figure 9.3 shows where density matrices
equidistant to a pure state lie on the probability simplex, for some of the
12 The result here is due to Dittmann (1999b), who also found a counter-example to the conjecture

(but did not publish it, as far as we know).
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Figure 9.3. The eigenvalue simplex for N = 3. The curves consist of points
equidistant from the pure state (1, 0, 0) with respect to (a) Hilbert–Schmidt
distance, (b) Bures distance, (c) trace distance (Section 13.2) and (d) Monge
distance (Section 7.7).

metrics that we have considered. In particular, the distance between a face
and its complementary, opposite face – that is, between density matrices of
orthogonal support – is constant and maximal, when the Bures metric is used.

We are not done with fidelity and the Bures metric. We will come back to
these things in Section 13.3, and place them in a wider context in Section 14.1.
This context is – as we have hinted already – that of statistical distinguishability
and monotonicity under appropriate stochastic maps. Precisely what is appropriate
here will be made clear in the next two chapters.

Problems

¦ Problem 9.1 Check that:

(a) A⊗ (B + C) = A⊗B + A⊗ C;
(b) (A⊗B)(C ⊗D) = (AC ⊗BD);
(c) Tr(A⊗B) = Tr(B ⊗A) = (TrA)(TrB);
(d) det (A⊗B) = (detA)M(detB)N ;
(e) (A⊗B)T = AT ⊗BT ;

where N and M denote sizes of A and B, respectively (Horn and Johnson,
1985, 1991).

¦ Problem 9.2 Define the Hadamard product C = A◦B of two matrices
as the matrix whose elements are the products of the corresponding elements
of A and B, Cij = AijBij. Show that (A⊗B) ◦ (C ⊗D) = (A ◦C)⊗ (B ◦D).

¦ Problem 9.3 Consider any matrix of size 4 written in standard basis
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in terms of four 2× 2 blocks

G =
[

A B
C D

]
, (9.61)

and two local unitary operations V1 = 1 ⊗ U and V2 = U ⊗ 1, where U is
arbitrary unitary matrix of size 2. Compute G1 = V1GV †

1 and G2 = V2GV †
2 .

¦ Problem 9.4 Let A and B be square matrices with eigenvalues αi

and βi, respectively. Find the spectrum of C = A⊗B. Use this to prove that
C ′ = B ⊗ A is unitarily similar to C, and also that C is positive definite
whenever A and B are positive definite.

¦ Problem 9.5 Show that the singular values of a tensor product satisfy
the relation {sv(A⊗B)} = {sv(A)} × {sv(B)}.
¦ Problem 9.6 Let ρ be a density matrix and A and B denote any
matrices of the same size. Show that |Tr(ρAB)|2 ≤ Tr(ρAA†)× Tr(ρBB†).
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There is no measurement problem. Bohr cleared that up.

Stig Stenholm

So far we have described the space of quantum states. Now we will allow some
action in this space: we shall be concerned with quantum dynamics. At first
sight this seems to be two entirely different issues – it is one thing to describe
a given space and another to characterize the way you can travel in it – but
we will gradually reveal an intricate link between them.

In this chapter we draw on results from the research area known as open
quantum systems. Our aim is to understand the quantum analogue of the
classical stochastic maps, because with their help we reach a better understanding
of the structure of the space of states. Stochastic maps can also be used to
provide a kind of stroboscopic time evolution; much of the research on open
quantum systems is devoted to understanding how continuous time evolution
takes place, but for this we have to refer to the literature.1

10.1 Measurements and POVMs

Throughout, the system of interest is described by a Hilbert space HN of
dimension N . All quantum operations can be constructed by composing four
kinds of transformations.

The dynamics of an isolated quantum system are given by i) unitary
transformations. But quantum theory for open systems admits non-unitary
processes as well. We can ii) extend the system and define a new state in
an extended Hilbert space H = HN ⊗HK ,

ρ → ρ′ = ρ⊗ σ . (10.1)

The auxiliary system is described by a Hilbert space HK of dimension K (as
yet unrelated to N). It represents an environment, and is often referred to as
the ancilla.2 The reverse of this operation is given by the iii) partial trace

1 Pioneering results in this direction were obtained by Gorini, Kossakowski and Sudarshan (1976)
and by Lindblad (1976). Good books on the subject include Alicki and Lendi (1987), Streater
(1995), Ingarden, Kossakowski and Ohya (1997), Breuer and Petruccione (2002) and Alicki and
Fannes (2001).

2 In Latin an ancilla is a maidservant. This not 100 per cent politically correct expression was
imported to quantum mechanics by Helstrom (1976) and has become widely accepted.
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and leads to a reduction of the size of the Hilbert space,

ρ → ρ′ = TrKρ so that TrK(ρ⊗ σ) = ρ . (10.2)

This corresponds to discarding the redundant information concerning the fate
of the ancilla. Transformations that can be achieved by a combination of these
three kinds of transformation are known as deterministic or proper quantum
operations.

Finally, we have the iv) selective measurement, in which a concrete
result of a measurement is specified. This is called a probabilistic quantum
operation.

Let us see where we get using tranformations of the first three kinds. Let
us assume that the ancilla starts out in a pure state |ν〉, while the system we
are analysing starts out in the state ρ. The entire system including the ancilla
remains isolated and evolves in a unitary fashion. Adding the ancilla to the
system (ii), evolving the combined system unitarily (i), and tracing out the
ancilla at the end (iii), we find that the state ρ is changed to

ρ′ = TrK

[
U

(
ρ⊗ |ν〉〈ν|)U †

]
=

K∑
µ=1

〈µ|U |ν〉ρ〈ν|U †|µ〉 . (10.3)

where {|µ〉}K
µ=1 is a basis in the Hilbert space of the ancilla – and we use Greek

letters to denote its states. We can then define a set of operators in the Hilbert
space of the original system through

Aµ ≡ 〈µ|U |ν〉 . (10.4)

We observe that
K∑

µ=1

A†
µAµ =

∑
µ

〈ν|U †|µ〉〈µ|U |ν〉 = 〈ν|U †U |ν〉 = 1N , (10.5)

where 1N denotes the unit operator in the Hilbert space of the system of
interest.

In conclusion, first we assumed that an isolated quantum system evolves
through a unitary transformation,

ρ → ρ′ = UρU † , U †U = 1 . (10.6)

By allowing ourselves to add an ancilla, later removed by a partial trace, we
were led to admit operations of the form

ρ → ρ′ =
K∑

i=1

AiρA†
i ,

K∑
i=1

A†
iAi = 1 , (10.7)

where we dropped the subscript on the unit operator and switched to Latin
indices, since we are not interested in the environment per se. Formally, this
is the operator sum representation of a completely positive map. Although a
rather special assumption was slipped in – a kind of Stoßzahlansatz whereby
the combined system started out in a product state – we will eventually adopt
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this expression as the most general quantum operation that we are willing to
consider.

The process of quantum measurement remains somewhat enigmatic. Here
we simply accept without proof a postulate concerning the collapse of the wave
function. It has the virtue of generality, not of preciseness:

Measurement postulate. Let the space of possible measurement outcomes
consist of k elements, related to k measurement operators Ai, which satisfy
the completeness relation

k∑
i=1

A†
iAi = 1 . (10.8)

The quantum measurement performed on the initial state ρ produces the
ith outcome with probability pi and transforms ρ into ρi according to

ρ → ρi =
AiρA†

i

Tr(AiρA†
i )

with pi = Tr
(
AiρA†

i

)
. (10.9)

The probabilities are positive and sum to unity due to the completeness
relation. Such measurements, called selective since concrete results labelled by
i are recorded, cannot be obtained by the transformations (i)–(iii) and form
another class of transformations (iv) on their own. If no selection is made
based on the outcome of the measurement, the initial state is transformed
into a convex combination of all possible outcomes – namely that given by Eq.
(10.7).

Note that the ‘collapse’ happens in the statistical description that we are
using. Similar ‘collapses’ occur also in classical probability theory. Suppose
that we know that either Alice or Bob is in jail, but not both. Let the
probability that Bob is in jail be p. If this statement is accepted as meaningful,
we find that there is a collapse of the probability distribution associated to Bob
as soon as we run into Alice in the cafeteria – even though nothing happened to
Bob. This is not a real philosophical difficulty, but the quantum case is subtler.
Classically the pure states are safe from collapse, but in quantum mechanics
there are no safe havens. Also, a classical probability distribution P (X) can
collapse to a conditional probability distribution P (X|Yi), but if no selection
according to the outcomes Yi is made classical probability theory informs us
that ∑

i

P (X|Yi) P (Yi) = P (X) . (10.10)

Thus nothing happens to the probability distribution in a non-selective measurement,
while the quantum state is severely affected also in this case. A non-selective
quantum measurement is described by Eq. (10.7), and this is a mixed state
even if the initial state ρ is pure. In general one cannot receive any information
about the fate of a quantum system without performing a measurement that
perturbs its unitary time evolution.



10.1 Measurements and POVMs 235

In a projective measurement the measurement operators are orthogonal
projectors, so Ai = Pi = A†

i , and PiPj = δijPi for i, j = 1, . . . , N . A projective
measurement is described by an observable – an Hermitian operator O. Possible
outcomes of the measurement are labelled by the eigenvalues of O, which for
now we assume to be non-degenerate. Using the spectral decomposition O =∑

i λiPi we obtain a set of orthogonal measurement operators Pi = |ei〉〈ei|,
satisfying the completeness relation (10.8). In a non-selective projective measurement,
the initial state is transformed into the mixture

ρ → ρ′ =
N∑

i=1

PiρPi . (10.11)

The state has been forced to commute with O.
In a selective projective measurement the outcome labelled by λi occurs

with probability pi; the initial state is transformed as

ρ → ρi =
PiρPi

Tr(PiρPi)
, where pi = Tr

(
PiρPi

)
= Tr

(
Piρ

)
. (10.12)

The expectation value of the observable reads

〈O〉 =
N∑

i=1

piλi =
N∑

i=1

λiTrPiρ = Tr(Oρ) . (10.13)

A key feature of projective measurements is that they are repeatable, in the
sense that the state in Eq. (10.12) remains the same – and gives the same
outcome – if the measurement is repeated.3

Most measurements are not repeatable. The formalism deals with this by
relaxing the orthogonality constraint on the measurement operators. This leads
to Positive Operator Valued Measures (POVM), which are defined by any
partition of the identity operator into a set of k positive operators Ei acting
on an N -dimensional Hilbert space HN . They satisfy

k∑
i=1

Ei = 1 and Ei = E†
i , Ei ≥ 0 , i = 1, . . . , k. (10.14)

A POVM measurement applied to the state ρ produces the ith outcome
with probability pi = TrEiρ. Note that the elements of the POVM – the
operators Ei – need not commute. The name POVM refers to any set of
operators satisfying (10.14), and suggests correctly that the discrete sum may
be replaced by an integral over a continuous index set, thus defining a measure
in the space of positive operators. Indeed the coherent states resolution of
unity (6.7) is the paradigmatic example, yielding the Husimi Q-function as the
resulting probability distribution. POVMs fit into the general framework of the
measurement postulate, since one may choose Ei = A†

iAi. Note however that
the POVM does not determine the measurement operators Ai uniquely (except
in the special case of a projective measurement). Exactly what happens to the

3 Projective measurements are also called Lüders–von Neumann measurements (of the first kind),
because of the contributions by von Neumann (1955) and Lüders (1951).
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Figure 10.1. Two informationally complete POVMs for a rebit; we show first
a realistic picture in the space of real Hermitian matrices, and then the affine
map from the rebit to the probability simplex.

state when a measurement is made depends on how the POVM is implemented
in the laboratory.4

The definition of the POVM ensures that the probabilities pi = TrEiρ sum
to unity, but the probability distribution that one obtains is a constrained
one. (We came across this phenomenon in Section 6.2, when we observed that
the Q-function is a very special probability distribution.) This is so because
the POVM defines an affine map from the set of density matrices M(N) to the
probability simplex ∆k−1. To see this, use the Bloch vector parametrization

ρ =
1
N
1+

∑
a

τaσa and Ei = ei01+
∑

a

eiaσa . (10.15)

Then an easy calculation yields

pi = TrEiρ = 2
∑

a

eiaτa + ei0 . (10.16)

This is an affine map. Conversely, any affine map from M(N) to ∆k−1 defines
a POVM. We know from Section 1.1 that an affine map preserves convexity.
Therefore the resulting probability vector ~p must belong to a convex subset
of the probability simplex. For qubits M(2) is a ball. Therefore its image is
an ellipsoid, degenerating to a line segment if the measurement is projective.
Figure 10.1 illustrates the case of real density matrices, for which we can draw
the positive cone. For N > 2 illustration is no longer an easy matter.

A POVM is called informationally complete if the statistics of the POVM
uniquely determine the density matrix. This requires that the POVM has N2

elements – a projective measurement will not do. A POVM is called pure if
4 POVMs were introduced by Jauch and Piron (1967) and they were explored in depth in the books

by Davies (1976) and Holevo (1982). Holevo’s book is the best source of knowledge that one can
imagine. For a more recent discussion, see Peres and Terno (1998).
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Figure 10.2. Any POVM is equivalent to an ensemble representing the
maximally mixed state. For N = 4 ρ∗ is situated in the centre of the tetrahedron
of diagonal density matrices; (a) a pure POVM – in the picture a combination
of four projectors with weights 1/4, (b) and (c) unpure POVMs.

each operator Ei is of rank one, so there exists a pure state |φi〉 such that
Ei is proportional to |φi〉〈φi|. An impure POVM can always be turned into
a pure POVM by replacing each operator Ei by its spectral decomposition.
Observe that a set of k pure states |φi〉 defines a pure POVM if and only if the
maximally mixed state ρ∗ = 1/N may be decomposed as ρ∗ =

∑k

i=1 pi|φi〉〈φi|,
where {pi} form a suitable set of positive coefficients. Indeed any ensemble
of pure or mixed states representing ρ∗ defines a POVM (Hughston et al.,
1993). For any set of operators Ei defining a POVM we take quantum states
ρi = Ei/TrEi and mix them with probabilities pi = TrEi/N to obtain the
maximally mixed state:

k∑
i=1

piρi =
k∑

i=1

1
N

Ei =
1
N
1 = ρ∗ . (10.17)

Conversely, any such ensemble of density matrices defines a POVM (see Figure 10.2).
Arguably the most famous of all POVMs is the one based on coherent states.

Assume that a classical phase space Ω has been used to construct a family of
coherent states, x ∈ Ω → |x〉 ∈ H. The POVM is given by the resolution of
the identity ∫

Ω

|x〉〈x| dx = 1 , (10.18)

where dx is a natural measure on Ω. Examples of this construction were given
in Chapter 6, and include the ‘canonical’ phase space where x = (q, p). Any
POVM can be regarded as an affine map from the set of quantum states to a
set of classical probability distributions; in this case the resulting probability
distributions are precisely those given by the Q-function. A discrete POVM
can be obtained by introducing a partition of phase space into cells,

Ω = Ω1 ∪ · · · ∪ Ωk . (10.19)

This partition splits the integral into k terms and defines k positive operators
Ei that sum to unity. They are not projection operators since the coherent
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states overlap, and thus

Ei ≡
∫

Ωi

dx |x〉〈x| 6=
∫

Ωi

dx

∫

Ωi

dy |x〉〈x|y〉〈y| = E2
i . (10.20)

Nevertheless they do provide a notion of localization in phase space; if the
state is ρ the particle will be registered in cell Ωi with probability

pi = Tr(Eiρ) =
∫

Ωi

〈x|ρ|x〉 dx =
∫

Ωi

Qρ(x) dx . (10.21)

These ideas can be developed much further, so that one can indeed perform
approximate but simultaneous measurements of position and momentum.5

The final twist of the story is that POVM measurements are not only more
general than projective measurements, they are a special case of the latter
too. Given any pure POVM with k elements and a state ρ in a Hilbert space
of dimension N , we can find a state ρ ⊗ ρ0 in a Hilbert space H ⊗ H′ such
that the statistics of the original POVM measurement is exactly reproduced
by a projective measurement of ρ ⊗ ρ0. This statement is a consequence of
Naimark’s theorem:

Theorem 10.1 (Naimark’s) Any POVM {Ei} in the Hilbert space
H can be dilated to an orthogonal resolution of identity {Pi} in a larger Hilbert
space in such a way that Ei = ΠPiΠ, where Π projects down to H.

For a proof, see Problem 10.1. The next idea is to choose a pure state ρ0 such
that, in a basis in which Π is diagonal,

ρ⊗ ρ0 =
[

ρ 0
0 0

]
= Πρ⊗ ρ0Π . (10.22)

It follows that TrPiρ⊗ ρ0 = TrPiΠρ⊗ ρ0Π = TrEiρ.
We are left somewhat at a loss to say which notion of measurement is

the fundamental one. Let us just observe that classical statistics contains the
notion of randomized experiments: equip an experimenter in an laboratory with
a random number generator and surround the laboratory with a black box.
The experimeter has a choice between different experiments, and will perform
them with different probabilites pi. It may not sound like a useful notion, but
it is. We can view a POVM measurement as a randomized experiment in which
the source of randomness is a quantum mechanical ancilla. Again the quantum
case is more subtle than its classical counterpart; the set of all possible POVMs
forms a convex set whose extreme points include the projective measurements,
but there are other extreme points as well. The symmetric POVM shown in
the upper panel in Figure 10.1, reinterpreted as a POVM for a qubit, may
serve as an example.

5 A pioneering result is due to Arthurs and Kelly, Jr (1965); for more, see the books by Holevo
(1982), Busch, Lahti and Mittelstaedt (1991) and Leonhardt (1997).
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10.2 Algebraic detour: matrix reshaping and reshuffling

Before proceeding with our analysis of quantum operations, we will discuss
some simple algebraic transformations that one can perform on matrices. We
also introduce a notation that we sometimes find convenient for work in the
composite Hilbert space HN ⊗HM , or in the Hilbert–Schmidt (HS) space of
linear operators HHS.

Consider a rectangular matrix Aij, i = 1, . . . , M and j = 1, . . . , N . The
matrix may be reshaped by putting its elements in lexicographical order (row
after row)6 into a vector ~ak of size MN ,

~ak = Aij where k = (i− 1)N + j, i = 1, . . . ,M, j = 1, . . . N .

(10.23)

Conversely, any vector of length MN may be reshaped into a rectangular
matrix. The simplest example of such a vectorial notation for matrices reads

A =
[

A11 A12

A21 A22

]
←→ ~a = (A11, A12, A21, A22) . (10.24)

The scalar product in Hilbert–Schmidt space (matrices of size N) now looks
like an ordinary scalar product between two vectors of size N2,

〈A|B〉 ≡ TrA†B = ~a∗ ·~b = 〈a|b〉 . (10.25)

Thus the Hilbert–Schmidt norm of a matrix is equal to the norm of the
associated vector, ||A||2HS = TrA†A = |~a|2.

Sometimes we will label a component of ~a by aij. This vector of length MN
may be linearly transformed into a′ = Ca by a matrix C of size MN ×MN .
Its elements may be denoted by Ckk′ with k, k′ = 1, . . . , MN , but it is also
convenient to use a four index notation, Cmµ

nν
where m,n = 1, . . . , N while

µ, ν = 1, . . . , M . In this notation the elements of the transposed matrix are
CT

mµ
nν

= Cnν
mµ

, since the upper pair of indices determines the row of the matrix,
while the lower pair determines its column. The matrix C may represent an
operator acting in a composite space H = HN ⊗HM . The tensor product of
any two bases in both factors provides a basis in H, so that

Cmµ
nν

= 〈em ⊗ fµ|C|en ⊗ fν〉 , (10.26)

where Latin indices refer to the first subsystem, HA = HN , and Greek indices
to the second, HB = HM . For instance the elements of the identity operator
1NM ≡ 1N ⊗ 1M are 1mµ

nν
= δmnδµν . The trace of a matrix reads TrC =

Cmµ
mµ

, where summation over repeating indices is understood. The operation
of partial trace over the second subsystem produces the matrix CA ≡ TrBC
of size N , while tracing over the first subsystem leads to an M ×M matrix
CB ≡ TrAC,

CA
mn = Cmµ

nµ
, and CB

µν = Cmµ
mν

. (10.27)

6 Some programs like MATLAB offer a built-in matrix command reshape, which performs such a
task. Storing matrix elements column after column leads to the anti-lexicographical order.
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If C = A ⊗ B, then Cmµ
nν

= AmnBµν . This form should not be confused with
a product of two matrices C = AB, the elements of which are given by a
double sum over repeating indices, Cmµ

nν
= Amµ

lλ
B lλ

nν
. Observe that the standard

product of three matrices may be rewritten by means of an object Φ,

ABC = ΦB where Φ = A⊗ CT . (10.28)

This is a telegraphic notation; since Φ is a linear map acting on B we might
write Φ(B) on the right-hand side, and the left-hand side could be written as
A ·B ·C to emphasize that matrix multiplication is being used there. Equation
(10.28) is a concise way of saying all this. It is unambiguous once we know the
nature of the objects that appear in it.

Consider a unitary matrix U of size N2. Unitarity of U implies that its N2

columns ~ak = Uik k, i = 1, . . . N2 reshaped into square N ×N matrices Ak as
in (10.24), form an orthonormal basis in HHS, since 〈Ak|Aj〉 := TrA†

kAj = δkj.
Alternatively, in a double index notation with k = (m − 1)N + µ and j =
(n− 1)N + ν this orthogonality relation reads 〈Amµ|Anν〉 = δmnδµν . Note that
in general the matrices Ak are not unitary.

Let X denote an arbitrary matrix of size N 2. It may be represented as a
double (quadruple) sum,

|X〉 =
N2∑
k=1

N2∑
j=1

Ckj|Ak〉 ⊗ |Aj〉 = Cmµ
nν
|Amµ〉 ⊗ |Anν〉 , (10.29)

where Ckj = Tr((Ak ⊗ Aj)†X). The matrix X may be considered as a vector
in the composite Hilbert–Schmidt space HHS ⊗HHS, so applying its Schmidt
decomposition (9.8) we arrive at

|X〉 =
N2∑
k=1

√
λk |A′

k〉 ⊗ |A′′
k〉 , (10.30)

where
√

λk are the singular values of C, that is the square roots of the non-
negative eigenvalues of CC†. The sum of their squares is determined by the
norm of the operator,

∑N2

k=1 λk = Tr(XX†) = ||X||2HS.
Since the Schmidt coefficients do not depend on the initial basis, let us

choose the basis in HHS obtained from the identity matrix, U = 1 of size
N2, by reshaping its columns. Then each of the N2 basis matrices of size N
consists of only one non-zero element which equals unity, Ak = Amµ = |m〉〈µ|,
where k = N(m− 1) + µ. Their tensor products form an orthonormal basis
in HHS ⊗HHS and allow us to represent an arbitrary matrix X in the form
(10.29). In this case the matrix of the coefficients C has a particularly simple
form, Cmµ

nν
= Tr[(Amµ ⊗Anν)X] = Xmn

µν
.

This particular reordering of a matrix deserves a name, so we shall write
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XR ≡ C(X) and call it reshuffling.7 Using this notion our findings may be
summarized in the following lemma:

Lemma 10.1 (Operator Schmidt decomposition) The Schmidt
coefficients of an operator X acting on a bipartite Hilbert space are equal to
the squared singular values of the reshuffled matrix, XR.

More precisely, the Schmidt decomposition (10.30) of an operator X of size
MN may be supplemented by a set of three equations




{λk}N2

k=1 =
{
SV(XR)

}2
: eigenvalues of (XR)†XR

|A′
k〉 : reshaped eigenvectors of (XR)†XR

|A′′
k〉 : reshaped eigenvectors of XR(XR)†

, (10.31)

where SV denotes singular values and we have assumed that N ≤ M . The
initial basis is transformed by a local unitary transformation Wa ⊗Wb, where
Wa and Wb are matrices of eigenvectors of matrices (XR)†XR and XR(XR)†,
respectively. If and only if the rank of XR(XR)† equals one, the operator can
be factorized into a product form, X = X1 ⊗ X2, where X1 = Tr2X and
X2 = Tr1X.

To get a better feeling for the reshuffling transformation, observe that
reshaping each row of an initially square matrix X of size MN according to Eq.
(10.23) into a rectangular M ×N submatrix, and placing it in lexicographical
order block after block, one produces the reshuffled matrix XR. Let us illustrate
this procedure for the simplest case N = M = 2, in which any row of the
matrix X is reshaped into a 2× 2 matrix

Ckj = XR
kj ≡




X11 X12 X21 X22

X13 X14 X23 X24

X31 X32 X41 X42

X33 X34 X43 X44


 . (10.32)

In the symmetric case with M = N , N 3 elements of X (typeset boldface) do
not change position during reshuffling, while the remaining N4−N3 elements
do. Thus the space of complex matrices with the reshuffling symmetry X = XR

is 2N4 − 2(N4 −N3) = 2N3 dimensional.
The operation of reshuffling can be defined in an alternative way, say the

reshaping of the matrix A from (10.23) could be performed column after
column into a vector ~a′. In the four indices notation introduced above the
two reshuffling operations take the form

XR
mµ
nν

≡ Xmn
µν

and XR′
mµ
nν

≡ X νµ
nm

. (10.33)

Two reshuffled matrices are equivalent up to permutation of rows and columns
and transposition, so the singular values of XR′ and XR are equal.

7 In general one may reshuffle square matrices, if their size K is not prime. The symbol XR has
a unique meaning if a concrete decomposition of the size K = MN is specified. If M 6= N
the matrix XR is a N2 × M2 rectangular matrix. Since (XR)R = X we see that one may also
reshuffle rectangular matrices, provided both dimensions are squares of natural numbers. Similar
reorderings of matrices were considered by Oxenrider and Hill (1985) and Yopp and Hill (2000).
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Table 10.1. Reorderings of a matrix X representing an operator which acts
on a composite Hilbert space. The arrows denote the indices exchanged.

Preserves Preserves
Transformation Definition Symbol Hermiticity spectrum

transposition XT
mµ
nν

= Xnν
mµ

ll yes yes

partial XTA
mµ
nν

= Xnµ
mν

l . yes no

transpositions XTB
mµ
nν

= Xmν
nµ

. l yes no

reshuffling XR
mµ
nν

= Xmn
µν

↗↙ no no

reshuffling ′ XR′
mµ
nν

= X νµ
nm

↖↘ no no

swap XS
mµ
nν

= Xµm
νn

↔↔ yes yes

partial XS1
mµ
nν

= Xµm
nν

↔. no no

swaps XS2
mµ
nν

= Xmµ
νn

.↔ no no

For comparison we provide analogous formulae showing the action of partial
transposition: with respect to the first subsystem, TA ≡ T⊗1 and with respect
to the second, TB ≡ 1⊗ T ,

XTA
mµ
nν

= Xnµ
mν

and XTB
mµ
nν

= Xmν
nµ

. (10.34)

Note that all these operations consist of exchanging a given pair of indices.
However, while partial transposition (10.34) preserves Hermiticity, the reshuffling
(10.33) does not. There is a related swap transformation among the two
subsystems, XS

mµ
nν

≡ Xµm
νn

, the action of which consists in relabelling certain
rows (and columns) of the matrix, so its spectrum remains preserved. Note
that for a tensor product X = Y ⊗ Z one has XS = Z ⊗ Y . Alternatively,
define a SWAP operator

S ≡
N∑

i,j=1

|i, j〉〈j, i| so that Smµ
nν

= δmνδnµ . (10.35)

Observe that S is symmetric, Hermitian, and unitary and the identity XS =
SXS holds. In full analogy to partial transposition we use also two operations
of partial swap, XS1 = SX and XS2 = XS.

All the transformations listed in Table 10.1 are involutions, since performed
twice they are equal to identity. It is not difficult to find relations between
them, for example XS1 = [(XR′)TA ]R

′
= [(XR)TB ]R. Since XR′ = [(XR)S]T =

[(XR)T ]S, while XTB = (XTA)T and XS1 = (XS2)S, thus the spectra and
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singular values of the reshuffled (partially transposed, partially swapped) matrices
do not depend on the way, each operation has been performed, that is eig(XR) =
eig(XR′) and SV(XR) = SV(XR′), while eig(XS1) = eig(XS2) and SV(XS1) =
SV(XS2).

10.3 Positive and completely positive maps

Thus equipped, we return to physics. We will use the notation of Section 10.2
freely, so an alternative title for this section is ‘Complete positivity as an
exercise in index juggling’. Let ρ ∈ M(N) be a density matrix acting on an
N -dimensional Hilbert space. What conditions need to be fulfilled by a map
Φ : M(N) → M(N), if it is to represent a physical operation? One class of
maps that we will admit are those given in Eq. (10.7). We will now argue that
nothing else is needed.

Our first requirement is that the map should be a linear one. It is always
hard to argue for linearity, but at this level linearity is also hard to avoid, since
we do not want the image of ρ to depend on the way in which ρ is presented as
a mixture of pure states – the entire probabilistic structure of the theory is at
stake here.8 We are thus led to postulate the existence of a linear superoperator
Φ,

ρ′ = Φρ or ρmµ
′ = Φmµ

nν
ρnν . (10.36)

Summation over repeated indices is understood throughout this section. Inhomogeneous
maps ρ′ = Φρ + σ are automatically included, since

Φmµ
nν

ρnν + σmµ =
(
Φmµ

nν
+ σmµδnν)ρnν = Φ′mµ

nν
ρnν (10.37)

due to Trρ = 1. We deal with affine maps of density matrices.
The map should take density matrices to density matrices. This means that

whenever ρ is (i) Hermitian, (ii) of unit trace, and (iii) positive, its image ρ′

must share these properties.9 These three conditions impose three constraints
on the matrix Φ:

(i) ρ′ = (ρ′)† ⇔ Φmµ
nν

= Φ∗µm
νn

so Φ∗ = ΦS, (10.38)

(ii) Trρ′ = 1 ⇔ Φmm
nν

= δnν (10.39)
(iii) ρ′ ≥ 0 ⇔ Φmµ

nν
ρnν ≥ 0 when ρ > 0 . (10.40)

As they stand, these conditions are not very illuminating.
The meaning of our three conditions becomes much clearer if we reshuffle

Φ according to (10.33) and define the dynamical matrix 10

DΦ ≡ ΦR so that Dmn
µν

= Φmµ
nν

. (10.41)

8 Non-linear quantum mechanics is actually a lively field of research; see Mielnik (2001) and
references therein.

9 Any map Φρ can be normalized according to ρ → Φρ/Tr
[
Φρ

]
. It is sometimes convenient to work

with unnormalized maps, but the a-posteriori normalization procedure may spoil linearity.
10 This concept was introduced by Sudarshan, Mathews and Rau (1961), and even earlier (in the

mathematics literature) by Schatten (1950).
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The dynamical matrix DΦ uniquely determines the map Φ. It obeys

DaΦ+bΨ = aDΦ + bDΨ , (10.42)

that is to say it is a linear function of the map.
In terms of the dynamical matrix our three conditions become

(i) ρ′ = (ρ′)† ⇔ Dmn
µν

= D†
mn
µν

so DΦ = D†
Φ , (10.43)

(ii) Trρ′ = 1 ⇔ Dmn
mν

= δnν (10.44)
(iii) ρ′ ≥ 0 ⇔ Dmn

µν
ρnν ≥ 0 when ρ > 0 . (10.45)

Condition (i) holds if and only if DΦ is Hermitian. Condition (ii) also takes a
familiar form – the partial trace with respect to the first subsystem is the unit
operator for the second subsystem:

Dmn
mν

= δnν ⇔ TrAD = 1 (10.46)

Only condition (iii), for positivity, requires further unravelling.
The map is said to be a positive map if it takes positive matrices to positive

matrices. To see if a map is positive, we must test if condition (iii) holds.
Let us first assume that the original density matrix is a pure state, so that
ρnν = znz∗ν . Then its image will be positive if and only if, for all vectors xm,

xmρ′mµx∗µ = xmzn Dmn
µν

x∗µz∗ν ≥ 0 . (10.47)

This means that the dynamical matrix itself must be positive when it acts on
product states in HN2 . This property is called block-positivity. We have arrived
at the following (JamiolÃkowski, 1972):

Theorem 10.2 (JamiolÃkowski’s theorem) A linear map Φ is
positive if and only if the corresponding dynamical matrix DΦ is block-positive.

The converse holds since condition (10.47) is strong enough to ensure that
condition (10.45) holds for all mixed states ρ as well.

Interestingly, the condition for positivity has not only one but two drawbacks.
First, it is difficult to work with. Second, it is not enough from a physical point
of view. Any quantum state ρ may be extended by an ancilla to a state ρ⊗σ of
a larger composite system. The mere possibility that an ancilla may be added
requires us to check that the map Φ⊗1 is positive as well. Since the map leaves
the ancilla unaffected this may seem like a foregone conclusion. Classically it
is so, but quantum mechanically it is not. Let us state this condition precisely:
a map Φ is said to be completely positive if and only if for an arbitrary
K-dimensional extension

HN → HN ⊗HK the map Φ⊗ 1K is positive. (10.48)

This is our final condition on a physical map.11

11 The mathematical importance of complete positivity was first noted by Stinespring (1955); its
importance in quantum theory was emphasized by Kraus (1971), Accardi (1976) and Lindblad
(1976).
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In order to see what the condition of complete positivity says about the
dynamical matrix we will backtrack a little, and introduce a canonical form
for the latter. Since the dynamical matrix is an Hermitian matrix acting on
HN2 , it admits a spectral decomposition

DΦ =
r∑

i=1

di |χi〉 〈χi| so that Dmn
µν

=
N2∑
i=1

di χi
mnχ̄i

µν . (10.49)

The eigenvalues di are real, and the notation emphasizes that the matrices
χi

mn are (reshaped) vectors in HN2 .
Now we are in a position to investigate the conditions that ensure that the

map Φ⊗ 1 preserves positivity when it acts on matrices in HS = H⊗H′. We
pick an arbitrary vector znn′ in HS, and act with our map on the corresponding
pure state:

ρ′mm′µµ′ = Φmµ
nν

δm′µ′
n′ν′

znn′ z
∗
νν′ = Dmn

µν
znm′ z∗νµ′ =

∑
i

diχ
i
mnznm′(χi

µνzνµ′)∗ .

(10.50)

Then we pick another arbitrary vector xmm′ , and test whether ρ′ is a positive
operator:

xmm′ ρ′mm′µµ′ x
∗
µµ′ =

∑
i

di |χi
mnxmn′znm′ |2 ≥ 0 . (10.51)

This must hold for arbitrary xmm′ and zmm′ , and therefore all the eigenvalues
di must be positive (or zero). In this way we have arrived at Choi’s theorem:

Theorem 10.3 (Choi’s) A linear map Φ is completely positive if
and only if the corresponding dynamical matrix DΦ is positive.

There is some fine print. If condition (10.48) holds for a fixed K only, the map
is said to be K-positive. The map will be completely positive if and only if it
is N -positive – which is the condition that we actually investigated.12

It is striking that we obtain such a simple result when we strengthen the
condition on the map from positivity to complete positivity. The set of completely
positive maps is isomorphic to the set of positive matrices DΦ of size N2. When
the map is also trace preserving we add the extra condition (10.46), which
implies that TrDΦ = N . We can therefore think of the set of trace preserving
completely positive maps as a subset of the set of density matrices in HN2 ,
albeit with an unusual normalization. This analogy will be further pursued
in Chapter 11, where (for reasons that will become clear later) we will also
occupy ourselves with understanding the way in which the set of completely
positive maps forms a proper subset of the set of all positive maps.

The dynamical matrix is positive if and only if it can be written in the form

DΦ =
∑

i

|Ai〉 〈Ai| so that Dmn
µν

=
∑

i

Ai
mnĀ

i

µν , (10.52)

12 ‘Choi’s theorem’ is theorem 2 in Choi (1975a). Theorem 1 (the existence of the operator sum
representation) and theorem 5 follow below. The paper contains no theorems 3 or 4.
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where the vectors Ai are arbitrary to an extent given by Schrödinger’s mixture
theorem (see Section 8.4). In this way we obtain an alternative characterization
of completely positive maps. They are the maps that can be written in the
operator sum representation:

Theorem 10.4 (Operator sum representation) A linear map Φ
is completely positive if and only if it is of the form

ρ → ρ′ =
∑

i

AiρA†
i . (10.53)

This is also known as the Kraus or Stinespring form, since its existence follows
from the Stinespring dilation theorem.13 The operators Ai are known as Kraus
operators. The map will be trace preserving if and only if condition (10.44)
holds, which translates itself to

∑
i

A†
iAi = 1N . (10.54)

We have recovered the class of operations that were introduced in Eq. (10.7),
but our new point of view has led us to the conclusion that this is the most
general class that we need to consider. Trace preserving completely positive
maps go under various names: deterministic or proper quantum operations,
quantum channels, or stochastic maps. They are the sought for analogue of
classical stochastic maps.

The convex set of proper quantum operations is denoted CPN . To find its
dimension we note that the dynamical matrices belong to the positive cone
in the space of Hermitian matrices of size N2, which has dimension N4; the
dynamical matrix corresponds to a trace preserving map if only if its partial
trace (10.46) is the unit operator, so it is subject to N 2 conditions. Hence the
dimension of CPN equals N4 −N2.

Since the operator sum representation does not determine the Kraus operators
uniquely we would like to bring it to a canonical form. The problem is quite
similar to that of introducing a canonical form for a density matrix – in
both cases, the solution is to present an Hermitian matrix as a mixture of
its eigenstates. Such a decomposition of the dynamical matrix was given in
Eq. (10.49). A set of canonical Kraus operators can be obtained by setting
Ai =

√
diχi. The following results:

Theorem 10.5 (Canonical Kraus form) A completely positive
map Φ : M(N) → M(N) can be represented as

ρ → ρ′ =
r≤N2∑
i=1

di χiρχ†i =
r∑

i=1

AiρA†
i , (10.55)

13 In physics the operator sum representation was introduced by Kraus (1971), based on an earlier
(somewhat more abstract) theorem by Stinespring (1955), and independently by Sudarshan et al.
(1961). See also Kraus (1983) and Evans (1984).
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where

TrA†
iAj =

√
didj 〈χi|χj〉 = di δij . (10.56)

If the map is also trace preserving then

∑
i

A†
iAi = 1N ⇒

r∑
i=1

di = N . (10.57)

If DΦ is non-degenerate the canonical form is unique up to phase choices for
the Kraus operators. The Kraus rank of the map is the number of Kraus
operators that appear in the canonical form, and equals the rank r of the
dynamical matrix.

The operator sum representation can be written

Φ =
N2∑
i=1

Ai ⊗ Āi =
N2∑
i=1

di χi ⊗ χ̄i. (10.58)

The CP map can be described in the notation of Eq. (10.28), and the operator
sum representation may be considered as a Schmidt decomposition (10.30) of
Φ, with Schmidt coefficients λi = d2

i .

10.4 Environmental representations

We began this chapter by adding an ancilla (in the state σ) to the system,
evolving the composite system unitarily, and then removing the ancilla through
a partial trace at the end. This led us to the environmental representation of
the map Φ, that is to

ρ → ρ′ = Trenv

[
U

(
ρ⊗ σ

)
U †

]
; (10.59)

see Figure 10.3. We showed that the resulting map can be written in the Kraus
form, and now we know that this means that it is a completely positive map.
What was missing from the argument was a proof that any CP map admits
an environmental representation, and indeed one in which the ancilla starts
out in a pure state σ = |ν〉〈ν|. This we will now supply.14

We are given a set of K Kraus operators Aµ (equipped with Greek indices
because we use such letters to denote states of the ancilla). Due to the completeness
relation (10.54) we can regard them as defining N orthogonal columns in a
matrix U with NK rows,

Aµ
mn = 〈m,µ|U |n, ν〉 = Umµ

nν
⇔ Aµ = 〈µ|U |ν〉 . (10.60)

Here ν is fixed, but we can always find an additional set of columns that turns
U into a unitary matrix of size NK. By construction then, for an ancilla of

14 Originally this was noted by Arveson (1969) and Lindblad (1975).
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Figure 10.3. Quantum operations represented by (a) unitary operator U of size
NK in an enlarged system including the environment, (b) black box picture.

dimension K,

ρ′ = Trenv

[
U

(
ρ⊗ |ν〉〈ν|)U †

]
=

K∑
µ=1

〈µ|U |ν〉ρ〈ν|U †|µ〉 =
K∑

µ=1

AµρA†
µ .

(10.61)

This is the Kraus form, since the operators Aµ satisfy the completeness relation

K∑
µ=1

A†
µAµ =

K∑
µ=1

〈ν|U †|µ〉〈µ|U |ν〉 = 〈ν|U †U |ν〉 = 1N . (10.62)

Note that the ‘extra’ columns that we added to the matrix U do not influence
the quantum operation in any way.

Although we may choose an ancilla that starts out in a pure state, we do
not have to do it. If the initial state of the environment in the representation
(10.59) is a mixture σ =

∑r

ν=1 qν |ν〉〈ν|, we obtain an operator sum representation
with rK terms,

ρ → ρ′ = Trenv

[
U

(
ρ⊗

r∑
ν=1

qν |ν〉〈ν|
)
U †

]
=

rK∑
l=1

AlρA†
l (10.63)

where Al =
√

qν〈µ|U |ν〉 and l = µ + ν(K − 1).
If the initial state of the ancilla is pure the dimension of its Hilbert space

needs not exceed N2, the maximal number of Kraus operators required. More
precisely its dimension may be set equal to the Kraus rank of the map. If the
environment is initially in a mixed state, its weights qν are needed to specify
the operation. Counting the number of parameters one could thus speculate
that the action of any quantum operation may be simulated by a coupling
with a mixed state of an environment of size N . However, this is not the case:
already for N = 2 there exist operations which have to be simulated with
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a three-dimensional environment (Terhal, Chuang, DiVincenzo, Grassl and
Smolin, 1999; Zalka and Rieffel, 2002). The general question of the minimal
size of Henv remains open.

It is illuminating to discuss the special case in which the initial state of
the N -dimensional environment is maximally mixed, σ = 1N/N . The unitary
matrix U of size N2, defining the map, may be treated as a vector in the
composite Hilbert–Schmidt space HA

HS ⊗HB
HS and represented in its Schmidt

form U =
∑N2

i=1

√
λi|Ãi〉⊗|Ã′

i〉, where λi are eigenvalues of (UR)†UR. Since the
operators Ã

′
i (reshaped eigenvectors of (UR)†UR) form an orthonormal basis

in HHS, the procedure of partial tracing leads to a Kraus form with N2 terms:

ρ′ = ΦUρ = Trenv

[
U(ρ⊗ 1

N
1N) U †

]

= Trenv

[ N2∑
i=1

N2∑
j=1

√
λiλj

(
ÃiρÃ

†
j

)⊗ ( 1
N

Ã
′
iÃj

′†)]
(10.64)

=
1
N

N2∑
i=1

λiÃiρÃ
†
i .

The standard Kraus form is obtained by rescaling the operators, Ai =
√

λi/NÃi.
Operations for which there exist a unitary matrix U providing a representation
in the above form, we shall call unistochastic channels.15 Note that the matrix
U is determined up to a local unitary matrix V of size N , in the sense that U
and U ′ = U(1N ⊗ V ) generate the same unistochastic map, ΦU = ΦU ′ .

One may consider analogous maps with an arbitrary size of the environment.
Their physical motivation is simple: not knowing anything about the environment
(apart from its dimensionality), one assumes that it is initially in the maximally
mixed state. In particular we define generalized,K-unistochastic maps 16, determined
by a unitary matrix U(NK+1), in which the environment of size NK is initially
in the state 1NK /NK .

A debatable point remains, namely that the combined system started out in
the product state. This may look like a very special intitial condition. However,
in general it not so easy to present a well-defined procedure for how to assign
a state of the composite system, given only a state of the system of interest
to start with. Suppose ρ → ω is such an assignment, where ω acts on the
composite Hilbert space. Ideally one wants the assignment map to obey three
conditions: (i) it preserves mixtures, (ii) Trenvω = ρ, and (iii) ω is positive for
all positive ρ. But it is known17 that these conditions are so stringent that the
only solution is of the form ω = ρ⊗ σ.

15 In analogy to classical transformations given by unistochastic matrices, ~p′ = T~p, where Tij =

|Uij |2.
16 Such operations were analysed in the context of quantum information processing (Knill and

Laflamme, 1998; Poulin, Blume–Kohout, Laflamme and Olivier, 2004), and, under the name
‘noisy maps’, when studying reversible transformations from pure to mixed states (Horodecki,
Horodecki and Oppenheim, 2003a). By definition, 1–unistochastic maps are unistochastic.

17 See the exchange between Pechukas (1994) and Alicki (1995).
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Table 10.2. Quantum operations Φ : M(N) → M(N): properties of the
superoperator Φ and the dynamical matrix DΦ = ΦR. For the coarse graining

map consult Eq. (12.77) while for the entropy S see Section 12.6.

Matrices Superoperator Φ = (DΦ)R Dynamical matrix DΦ

Hermiticity No Yes
Trace spectrum is symmetric Tr DΦ = N

⇒ Tr Φ ∈ R
Eigenvectors invariant states

(right) or transient corrections Kraus operators
|zi| ≤ 1, weights of Kraus

Eigenvalues − ln |zi| = decay rates operators, di ≥ 0

Unitary evolution ||ΦU ||2HS = N2 S(DU ) = 0
DU = (U ⊗ U∗)R

Coarse graining ||ΦCG||2HS = N S(DCG) = ln N
Complete depolarization ||Φ∗||2HS = 1 S(D∗) = 2 ln N

10.5 Some spectral properties

A quantum operation Φ is uniquely characterized by its dynamical matrix,
but the spectra of these matrices are quite different. The dynamical matrix
is Hermitian, but Φ is not and its eigenvalues zi are complex. Let us order
them according to their moduli, |z1| ≥ |z2| ≥ · · · ≥ |zN2 | ≥ 0. The operation Φ
sends the convex compact set M(N) into itself. Therefore, due to the fixed-point
theorem, the transformation has a fixed point – an invariant state σ1 such that
Φσ1 = σ1. Thus z1 = 1 and all eigenvalues fulfil |zi| ≤ 1, since otherwise the
assumption that Φ is positive would be violated. These spectral properties are
similar to those enjoyed by classical stochastic matrices (Section 2.1).

The trace preserving condition, applied to the equation Φσi = ziσi, implies
that if zi 6= 1 then Trσi = 0. If R = |z2| < 1, then the matrix Φ is primitive
(Marshall and Olkin, 1979); under repeated applications of the map all states
converge to the invariant state σ1. If Φ is diagonalizable (its Jordan decomposition
has no non-trivial blocks, so that the number of right eigenvectors σi is equal
to the size of the matrix), then any initial state ρ0 may be expanded in the
eigenbasis of Φ,

ρ0 =
N2∑
i=1

ciσi while ρt = Φtρ0 =
N2∑
i=1

ciz
t
iσi . (10.65)

Therefore ρ0 converges exponentially fast to the invariant state σ1 with a decay
rate not smaller than − ln R and the right eigenstates σi for i ≥ 2 play the
role of the transient traceless corrections to ρ0. The superoperator Φ sends
Hermitian operators to Hermitian operators, ρ†1 = ρ1 = Φρ0 = Φρ†0, so

if Φχ = zχ then Φχ† = z∗χ† , (10.66)
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and the spectrum of Φ (contained in the unit circle) is symmetric with respect
to the real axis. Thus the trace of Φ is real, as follows also from the hermiticity
of DΦ = ΦR. Using (10.58) we obtain18

TrΦ =
r∑

i=1

(TrAi)(TrĀi) =
r∑

i=1

|TrAi|2 , (10.67)

equal to N2 for the identity map and to unity for a map given by the rescaled
identity matrix, D∗ = 1N2/N . The latter map describes the completely depolarizing
channel Φ∗, which transforms any initial state ρ into the maximally mixed
state, Φ∗ρ = ρ∗ = 1N/N .

Given a set of Kraus operators Ai for a quantum operation Φ, and any two
unitary matrices V and W of size N , the operators A′

i = V AiW will satisfy
the relation (10.54) and define the operation

ρ → ρ′ = ΦV W ρ =
k∑

i=1

A′
i ρA′ †

i = V
( k∑

i=1

Ai(WρW †)A†
i

)
V † . (10.68)

The operations Φ and ΦV W are in general different, but unitarily similar, in
the sense that their dynamical matrices have the same spectra. The equality
||Φ||HS = ||ΦV W ||HS follows from the transformation law

ΦV W = (V ⊗ V ∗)Φ (W ⊗W ∗) , (10.69)

which is a consequence of (10.58). This implies that the dynamical matrix
transforms by a local unitary, DWV = (U ⊗ V T )D(U ⊗ V T )†.

10.6 Unital and bistochastic maps

A trace preserving completely positive map is called a bistochastic map if it
is also unital, that is to say if it leaves the maximally mixed state invariant.19

Evidently this is the quantum analogue of a bistochastic matrix – a stochastic
matrix that leaves the uniform probability vector invariant. The composition
of two bistochastic maps is bistochastic. In the operator sum representation
the condition that the map be bistochastic reads

ρ → ρ′ =
∑

i

AiρA†
i ,

∑
i

A†Ai = 1 ,
∑

i

AiA
†
i = 1 . (10.70)

For the dynamical matrix this means that TrAD = TrBD = 1.
The channel is bistochastic if all the Kraus operators obey [Ai, A

†
i ] = 0.

Indeed the simplest example is a unitary transformation. A more general class
of bistochastic channels is given by convex combinations of unitary operations,

18 This trace determines the mean operation fidelity 〈F (
ρψ , Φρψ

)〉ψ averaged over random pure
states ρψ (Nielsen, 2002; Zanardi and Lidar, 2004).

19 See the book by Alberti and Uhlmann (1982).
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also called random external fields (REF),

ρ′ = ΦREFρ =
k∑

i=1

pi ViρV †
i , with pi > 0 and

k∑
i=1

pi = 1, (10.71)

where each operator Vi is unitary. The Kraus form (10.53) can be reproduced
by setting Ai =

√
pi Vi.

The set of all bistochastic CP maps, denoted BN , is a convex set in itself.
The set of all bistochastic matrices is, as we learned in Section 2.1, a convex
polytope with permutation matrices as its extreme points. Reasoning by analogy
one would guess that the extreme points of BN are unitary transformations,
in which case BN would coincide with the set of random external fields. This
happens to be true for qubits, as we will see in detail in Section 10.7, but it
fails for all N > 2.

There is a theorem that characterizes the extreme points the set of stochastic
maps (Choi, 1975a):

Lemma 10.2 (Choi’s) A stochastic map Φ is extreme in CPN if
and only if it admits a canonical Kraus form for which the matrices A†

iAj are
linearly independent.

We prove that the condition is sufficient: assume that Φ = pΨ1 + (1− p)Ψ2. If
so it will be true that

Φρ =
∑

i

AiρA†
i = pΨ1ρ + (1− p)Ψ2ρ

= p
∑

i

BiρB†
i + (1− p)

∑
i

CiρC†
i . (10.72)

The right-hand side is not in the canonical form, but we assume that the
left-hand side is. Therefore there is a unique way of writing

Bi =
∑

j

mij Aj . (10.73)

In fact this is Schrödinger’s mixture theorem in slight disguise. Next we observe
that

∑
i

B†
i Bi = 1 =

∑
i

A†
iAi ⇒

∑
i,j

(
(m†m)ij − δij

)
A†

iAj = 0 . (10.74)

Because of the linear independence condition this means that (m†m)ij = δij.
This is what we need in order to show that that Φ = Ψ1, and it follows that
the map Φ is indeed pure.

The matrices AiA
†
j are of size N , so there can be at most N2 linearly

independent ones. This means that there can be at most N Kraus operators
occurring in the canonical form of an extreme stochastic map.

It remains to find an example of an extreme bistochastic map which is not
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Table 10.3. Quantum maps acting on density matrices and given by a
positive definite dynamical matrix D versus classical Markov dynamics on

probability vectors defined by transition matrix T with non-negative elements

Completely Markov chains
Quantum positive maps: Classical given by:

SQ
1 Trace preserving, TrAD = 1 SCl

1 Stochastic matrices T

SQ
2 Unital, TrBD = 1 SCl

2 TT is stochastic

SQ
3 Unital & trace preserving maps SCl

3 Bistochastic matrices B

SQ
4 Maps with Ai = A†i SCl

4 Symmetric stochastic
⇒ D = DT matrices, B = BT

SQ
5 Unistochastic operations, SCl

5 Unistochastic matrices,
D = UR(UR)† Bij = |Uij |2

SQ
6 Unitary transformations SCl

6 Permutations

unitary. Using the N = (2j +1)-dimensional representation of SU(2), we take
the three Hermitian angular momentum operators Ji and define the map

ρ → ρ′ =
1

j(j + 1)

3∑
i=1

JiρJi , J2
1 + J2

2 + J2
3 = j(j + 1) . (10.75)

Choi’s condition for an extreme map is that the set of matrices JiJ
†
j = JiJj

must be linearly independent. By angular momentum addition our set spans
a 9 = 5 + 3 + 1 dimensional representation of SO(3), and all the matrices will
be linearly independent provided that they are non-zero. The example fails
for N = 2 only – in that case JiJj + JjJi = 0, the Ji are both Hermitian and
unitary, and we do not get an extreme point.20

For any quantum channel Φ one defines its dual channel Φ̃, such that the
Hilbert–Schmidt scalar product satisfies 〈Φσ|ρ〉 = 〈σ|Φ̃ρ〉 for any states σ and
ρ. If a CP map is given by the Kraus form Φρ =

∑
i AiρA†

i , the dual channel
reads Φ̃ρ =

∑
i A†

iρAi. This gives a link between the dynamical matrices
representing dual channels,

Φ̃ = (ΦT )S = (ΦS)T and DΦ̃ = (DT
Φ)S = (DS

Φ)T = DS
Φ. (10.76)

Since neither the transposition nor the swap modify the spectrum of a matrix,
the spectra of the dynamical matrices for dual channels are the same.

If channel Φ is trace preserving, its dual Φ̃ is unital, and conversely, if Φ is
unital then Φ̃ is trace preserving. Thus the channel dual to a bistochastic one
is bistochastic.

Let us analyse in some detail the set BUN of all unistochastic operations, for
which the representation (10.64) exists. The initial state of the environment is
20 This example is due to Landau and Streater (1993).
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maximally mixed, σ = 1/N , so the map ΨU is determined by a unitary matrix
U of size N2. The Kraus operators Ai are eigenvectors of the dynamical matrix
DΨU

. On the other hand, they enter also the Schmidt decomposition (10.30)
of U as shown in (10.64), and are proportional to the eigenvectors of (UR)†UR.
Therefore21

DΨU
=

1
N

(UR)† UR so that ΨU =
1
N

[
(UR)† UR

]R
. (10.77)

We have thus arrived at an important result: for any unistochastic map the
spectrum of the dynamical matrix is given by the Schmidt coefficients, di =
λi/N , of the unitary matrix U treated as an element of the composite HS
space. For any local operation, U = U1 ⊗ U2 the superoperator is unitary,
ΨU = U1 ⊗ U∗

1 so ||ΨU ||2HS = TrΨUΨ†
U = N2. The resulting unitary operation

is an isometry, and can be compared with a permutation SCl
6 acting on classical

probability vectors. The spaces listed in Table 10.3 satisfy the relations S1 ∩
S2 = S3 and S3 ⊃ S5 ⊃ S6 in both the classical and the quantum set-up.
However, the analogy is not exact since the inclusion SCl

3 ⊃ SCl
4 does not have

a quantum counterpart.

10.7 One qubit maps

When N = 2 the quantum operations are called binary channels. In general,
the space CPN is (N4−N2)-dimensional. Hence the set of binary channels has
12 dimensions. To parametrize it we begin with the observation that a binary
channel is an affine map of the Bloch ball into itself – subject to restrictions
that we will deal with later.22 If we describe density matrices through their
Bloch vectors, as in Eq. (5.9), this means that the map ρ′ = Φρ can be written
in the form

~τ ′ = t~τ + ~κ = O1η OT
2 ~τ + ~κ , (10.78)

where t denotes a real matrix of size 3 which we diagonalize by orthogonal
transformations O1 and O2. Actually we permit only rotations belonging to
the SO(3) group, which means that some of the elements of the diagonal
matrix η may be negative – the restriction is natural because it corresponds
to using unitarily similar quantum operations, cf. Eq. (10.68). The elements
of the diagonal matrix η are collected into a vector ~η = (ηx, ηy, ηz), called the
distortion vector because the transformation ~τ ′ = η ~τ takes the Bloch ball to
an ellipsoid given by

1
4

= τ 2
x + τ 2

y + τ 2
z =

(τx
′

ηx

)2

+
(τy

′

ηy

)2

+
(τz

′

ηz

)2

. (10.79)

21 The same formula holds for K-unistochastic maps (Section 10.3), but then UR is a rectangular
matrix of size N2 ×N2K .

22 The explicit description given below is due to Fujiwara and Algoet (1999) and to King and
Ruskai (2001). Geometric properties of the set of positive one-qubit maps were also studied in
(Oi, n.d.; Wódkiewicz, 2001). A relation with Lorentz transformations is explained in Arrighi and
Patricot (2003).
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Finally the vector ~κ = (κx, κy, κz) is called the translation vector, because
it moves the centre of mass of the ellipsoid. We can now see where the 12
dimensions come from: there are three parameters ~η that determine the shape
of the ellipsoid, three parameters ~κ that determine its centre of mass, three
parameters to determine its orientation, and three parameters needed to rotate
the Bloch ball to a standard position relative to the ellipsoid (before it is
subject to the map described by ~η).

The map is positive whenever the ellipsoid lies within the Bloch ball. The
map is unital if the centre of the Bloch ball is a fixed point of the map, which
means that ~κ = 0. But the map is completely positive only if the dynamical
matrix is positive definite, which means that not every ellipsoid inside the
Bloch ball can be the image of a completely positive map. We are not so
interested in the orientation of the ellipsoid, so as our canonical form of the
affine map we choose

~τ ′ = η~τ + ~κ . (10.80)

It is straightforward to work out the superoperator Φ of the map. Reshuffling
this according to (10.41) we obtain the dynamical matrix

D =
1
2




1 + ηz + κz 0 κx + iκy ηx + ηy

0 1− ηz + κz ηx − ηy κx + iκy

κx − iκy ηx − ηy 1− ηz − κz 0
ηx + ηy κx − iκy 0 1 + ηz − κz


 . (10.81)

Note that TrAD = 1, as required. But the parameters ~η and ~κ must now
be chosen so that D is positive definite, otherwise the transformation is not
completely positive.

We will study the simple case when ~κ = 0, in which case the totally mixed
state is invariant and the map is unital (bistochastic). Then the matrix D
splits into two blocks and its eigenvalues are

d0,3 =
1
2
[1 + ηz ± (ηx + ηy)] and d1,2 =

1
2
[1− ηz ± (ηx − ηy)] . (10.82)

Hence, if the Fujiwara–Algoet conditions

(1± ηz)2 ≥ (ηx ± ηy)2 (10.83)

hold, the dynamical matrix is positive definite and the corresponding positive
map Φ~η is CP. There are four inequalities: they define a convex polytope,
and indeed a regular tetrahedron whose extreme points are ~η = (1, 1, 1),
(1,−1,−1), (−1, 1,−1), (−1,−1, 1). All maps within the cube defined by
|ηi| ≤ 1 are positive, so the tetrahedron of completely positive unital maps
is a proper subset B2 of the set of all positive unital maps.

Note that dynamical matrices of unital maps of the form (10.81) commute.
In effect, if we think of dynamical matrices as rescaled density matrices, our
tetrahedron can be regarded as an eigenvalue simplex in M(4). The eigenvectors
consist of the identity σ0 = 12 and the three Pauli matrices. Our conclusion
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Table 10.4. Some one-qubit channels: distortion vector ~η, translation vector
~κ equal to zero for unital channels, Kraus spectrum ~d, and Kraus rank r.

Channels ~η ~κ unital ~d r

rotation (1, 1, 1) (0, 0, 0) yes (2, 0, 0, 0) 1

phase flip (1− p, 1− p, 1) (0, 0, 0) yes (2− p, p, 0, 0) 2

decaying (
√

1− p,
√

1− p, 1− p) (0, 0, p) no (2− p, p, 0, 0) 2

depolarizing [1− x](1, 1, 1) (0, 0, 0) yes 1
2 (4− 3x, x, x, x) 4

linear (0, 0, q) (0, 0, 0) yes
1
2 (1 + q, 1− q,

1− q, 1 + q) 4

planar (0, s, q) (0, 0, 0) yes
1
2 (1 + q + s, 1− q − s,

1− q + s, 1 + q − s) 4

is that any map Φ ∈ B2 can be brought by means of unitary rotations (10.68)
into the canonical form of one-qubit bistochastic maps:

ρ → ρ′ =
1
2

3∑
i=0

di σiρ σi with
3∑

i=0

di = 2 . (10.84)

This explains the name Pauli channels. The factor of 1/2 compensates the
normalization of the Pauli matrices, Trσ2

i = 2. The Kraus operators are
Ai =

√
di/2σi. For the Pauli matrices σj = −i exp(iπσj/2) and the overall

phase is not relevant, so the extreme points that they represent are rotations
of the Bloch ball around the corresponding axis by the angle π. This confirms
that the set of binary bistochastic channels is the convex hull of the unitary
operations, which is no longer true when N > 2.

For concreteness let us distinguish some one-qubit channels; the following
list should be read in conjunction with Table 10.4, which gives the distortion
vector ~η and the Kraus spectrum ~d for each map. Figure 10.4 illustrates the
action of the maps.

unital channels (with ~κ = 0)

• Identity which is our canonical form of a unitary rotation.
• Phase flip (or phase-damping channel), ~η = (1− 2p, 1− 2p, 1). This channel

turns the Bloch ball into an ellipsoid touching the Bloch sphere at the
north and south poles. When p = 1/2 the image degenerates to a line. The
analogous channel with ~η = (1, 1− 2p, 1− 2p) is called a bit flip, while the
channel with ~η = (1− 2p, 1, 1− 2p) is called a bit–phase flip. To understand
these names we observe that, with probability p, a bit flip exchanges the
states |0〉 and |1〉.

• Linear channel, ~η = (0, 0, q). It sends the entire Bloch ball into a line
segment of length 2q. For q = 0 and q = 1 we arrive at the completely
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Figure 10.4. One-qubit maps: (a) unital Pauli channels: 1) identity, 2) rotation,
3) phase flip, 4) bit-phase flip, 5) coarse graining, 6) linear channel, 7)
completely depolarizing channel; (b) non-unital maps (κ 6= 0): 8) decaying
channel.

depolarizing channel Ψ∗ and the coarse graining operation, ΨCG(ρ) = diag(ρ),
respectively.

• Planar channel, ~η = (0, s, q), sends the Bloch ball into an ellipse with semi-
axis s and q. Complete positivity requires s ≤ 1− q.

• Depolarizing channel, ~η = [1−x](1, 1, 1). This simply shrinks the Bloch ball.
When x = 1 we again arrive at the centre of the tetrahedron, that is at the
completely depolarizing channel Φ∗. Note that the Kraus spectrum has a
triple degeneracy, so there is an extra freedom in choosing the canonical
Kraus operators.

If we drop the condition that the map be unital our canonical form gives a
six-dimensional set; it is again a convex set but considerably more difficult to
analyse.23 A map of CP2, the canonical form of which consists of two Kraus
operators, is either extremal or bistochastic (if A†

1A1 ∼ A†
2A2 ∼ 1). Table 10.4

gives one example of a non-unital channel, namely:

• Decaying channel (also called amplitude-damping channel), defined by ~η =
(
√

1− p,
√

1− p, 1− p) and ~κ = (0, 0, p). The Kraus operators are

A1 =
[

1 0
0

√
1− p

]
and A2 =

[
0

√
p

0 0

]
. (10.85)

23 A complete treatment of the qubit case was given by Ruskai, Szarek and Werner (2002).
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Physically this is an important channel – and it exemplifies that a quantum
operation can take a mixed state to a pure state.

Problems

¦ Problem 10.1 Prove Naimark’s theorem.

¦ Problem 10.2 A map Φ is called diagonal if all Kraus operators Ai

mutually commute, so in a certain basis they are diagonal, ~di = diag(U †AiU).
Show that such a dynamics is given by the Hadamard product, from Problem
9.2, Φρ̃ = H ◦ ρ̃, where Hmn =

∑k

i=1 di
md̄i

n with m,n = 1, ...N while ρ̃ = U †ρU
(Landau and Streater, 1993; Havel, Sharf, Viola and Cory, 2001).

¦ Problem 10.3 Let ρ be an arbitrary density operator acting on HN

and {Ai}N2

i=1 be a set of mutually orthogonal Kraus operators representing a
given CP map Φ in its canonical Kraus form. Prove that the matrix

σij ≡ 〈Ai|ρ|Aj〉 = TrρAjA
†
i (10.86)

forms a state acting on an extended Hilbert space, HN2 . Show that in particular,
if ρ = 1/N , then this state is proportional to the dynamical matrix represented
in its eigenbasis.

¦ Problem 10.4 Show that a binary, unital map Φηx,ηy,ηz
defined by

(10.81) transforms any density matrix ρ in the following way (King and Ruskai,
2001)

Φηx,ηy,ηz

[
a z
z̄ 1− a

]
=

1
2

[
1 + (2a− 1)ηz (z + z̄)ηx + (z − z̄)ηy

(z + z̄)ηx − (z − z̄)ηy 1− (2a− 1)ηz

]
.

¦ Problem 10.5 What qubit channel is described by the Kraus operators

A1 =
[

1 0
0

√
1− p

]
and A2 =

[
0 0
0

√
p

]
? (10.87)

¦ Problem 10.6 Let ρ ∈ M(N). Show that the operation Φρ defined
by DΦ ≡ ρ ⊗ 1N acts as a complete one-step contraction, Φρσ = ρ for any
σ ∈ M(N).



11 Duality: maps versus states

Good mathematicians see analogies.
Great mathematicians see analogies between analogies.

Stefan Banach

We have already discussed the static structure of our ‘Quantum Town’ – the set
of density matrices – on the one hand, and the set of all physically realizable
processes which may occur in it on the other hand. Now we are going to
reveal a quite remarkable property: the set of all possible ways to travel in
the ‘Quantum Town’ is equivalent to a ‘Quantum Country’ – an appropriately
magnified copy of the initial ‘Quantum Town’ ! More precisely, the set of all
transformations which map the set of density matrices of size N into itself
(dynamics) is identical to a subset of the set of density matrices of size N2

(kinematics). From a mathematical point of view this relation is based on the
JamiolÃkowski isomorphism, analysed later in this chapter. Before discussing
this intriguing duality, let us leave the friendly set of quantum operations and
pay a short visit to a neighbouring land of maps, as yet unexplored, which are
positive but not completely positive.

11.1 Positive and decomposable maps

Quantum transformations which describe physical processes are represented
by completely positive (CP) maps. Why should we care about maps which are
not CP? On the one hand it is instructive to realize that seemingly innocent
transformations are not CP, and thus do not correspond to any physical
process. On the other hand, as discussed in Chapter 15, positive but not
completely positive maps provide a crucial tool in the investigation of quantum
entanglement.

Consider the transposition of a density matrix in a fixed basis, T : ρ →
ρT . (Since ρ is Hermitian this is equivalent to complex conjugation.) The
superoperator entering (10.36) is the SWAP operator, Tmµ

nν
= δmνδnµ = Smµ

nν
.

Hence it is symmetric with respect to reshuffling, T = T R = DT . This
permutation matrix contains N diagonal entries equal to unity and N(N−1)/2
blocks of size two. Thus its spectrum consists of N(N +1)/2 eigenvalues equal
to unity and N(N−1)/2 eigenvalues equal to−1, consistent with the constraint
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Figure 11.1. Non-contracting transformations of the Bloch ball: (a)
transposition (reflection with respect to the x–z plane) – not completely
positive; (b) rotation by π around z-axis – completely positive.

TrD = N . The matrix DT is not positive, so the transposition T is not CP.
Another way to reach this conclusion is to act with the extended map of
partial transposition on the maximally entangled state (11.21) and to check
that [T ⊗ 1](|ψ〉〈ψ|) has negative eigenvalues.

The transposition of an N -dimensional Hermitian matrix changes the signs
of the imaginary part of the elements Dij. This is a reflection in an N(N +
1)/2 − 1 dimensional hyperplane. As shown in Figure 11.1 this is simple to
visualize for N = 2: when we use the representation (5.8) the transposition
reflects the Bloch ball in the (x, z) plane. Note that a unitary rotation of the
Bloch ball around the z-axis by the angle π also exchanges the ‘western’ and
the ‘eastern’ hemispheres, but is completely positive.

As discussed in Section 10.3 a map fails to be CP if its dynamical matrix D
contains at least one negative eigenvalue. Let m ≥ 1 denote the number of the
negative eigenvalues (in short, the neg rank 1 of D). Ordering the spectrum of
D decreasingly allows us to rewrite its spectral decomposition

D =
N2−m∑

i=1

di|χi〉〈χi| −
N2∑

i=N2−m+1

|di| |χi〉〈χi| . (11.1)

Thus a not completely positive map has the canonical form

ρ′ =
N2−m∑

i=1

diχ
iρ (χi)† −

N2∑

i=N2−m+1

|di|χiρ (χi)† , (11.2)

where the Kraus operators Ai =
√
|di|χi form an orthogonal basis. This is

analogous to the canonical form (10.55) of a CP map, and it shows that a

1 For transposition, the neg rank of DT is m = N(N − 1)/2.
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positive map may be represented as a difference of two completely positive
maps (Sudarshan and Shaji, 2003). While this is true, it does not solve the
problem: taking any two CP maps and constructing a quasi-mixture2 Φ =
(1 + a)ΨCP

1 − aΨCP
2 , we do not know in advance how large the contribution

a of the negative part might be to keep the map Φ positive. . . .3 In fact the
characterization of the set PN of positive maps: M(N) → M(N) for N > 2 is
by far not simple.4 By definition, PN contains the set CPN of all CP maps as
a proper subset. To learn more about the set of positive maps we will need
some other features of the operation of transposition T . For any operation Φ
the modifications of the dynamical matrix induced by a composition with T
may be described by the transformation of partial transpose (see Table 10.1),

TΦ = ΦS1 , DTΦ = DTA

Φ , and ΦT = ΦS2 , DΦT = DTB

Φ . (11.3)

To demonstrate this it is enough to use the explicit form of ΦT and the
observation that

DΨΦ = [DR
ΨDR

Φ ]R . (11.4)

Positivity of DΨΦ follows also from the fact that the composition of two CP
maps is completely positive. This follows directly from the identity (ΨΦ)⊗1 =
(Ψ⊗ 1) · (Φ⊗ 1) and implies the following:

Lemma 11.1 (Reshuffling) Consider two Hermitian matrices A
and B of the same size KN .

If A ≥ 0 and B ≥ 0 then (ARBR)R ≥ 0 . (11.5)

For a proof (Havel, 2003) see Problem 11.1.
Sandwiching Φ between two transpositions does not influence the spectrum

of the dynamical matrix, TΦT = ΦS = Φ∗ and DTΦT = DT
Φ = D∗

Φ. Thus if Φ
is a CP map, so is TΦT (if DΦ is positive so is DT

Φ). See Figure 11.2.
The not completely positive transposition map T allows one to introduce

the following definition (Størmer, 1963; Choi, 1975a; Choi, 1980):

A map Φ is called completely co-positive (CcP), if the map TΦ is CP.

Properties (11.3) of the dynamical matrix imply that the map ΦT could be
used instead to define the same set of CcP maps. Thus any CcP map Φ may
be written in a Kraus-like form

ρ′ = Φ(ρ) =
k∑

i=1

Aiρ
T A†

i . (11.6)

Moreover, as shown in Figure 11.2, the set CcP may be understood as the image
2 The word quasi is used here to emphasize that some weights are negative.
3 Although some criteria for positivity are known (Størmer, 1963; JamiolÃkowski, 1975; Majewski,

1975), they do not lead to a practical test of positivity. A recently proposed technique of extending
the system (and the map) a certain number of times gives a constructive test for positivity for a
large class of maps (Doherty, Parillo and Spedalieri, 2004).

4 This issue was a subject of mathematical interest many years ago (Størmer, 1963; Choi, 1972;
Woronowicz, 1976b; Takesaki and Tomiyama, 1983) and quite recently (Eom and Kye, 2000;
Majewski and Marciniak, 2001; Kye, 2003).
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Figure 11.2. (a) The set of CP maps, its image with respect to transposition
CcP = T (CP), and their intersection PPTM ≡ CP ∩ CcP; (b) the isomorphic
sets M(N) of quantum states (dynamical matrices), its image TA(M(N)) under
the action of partial transposition, and the set of PPT states.

Figure 11.3. Subsets of one-qubit maps: (a) set B2 of bistochastic maps
(unital and CP), (b) set T (B2) of unital and CcP maps, (c) set of positive
(decomposable) unital maps. The intersection of the two tetrahedra forms an
octahedron of super-positive maps.

of CP with respect to the transposition. Since we have already identified the
transposition with a reflection, it is rather intuitive to observe that the set CcP
is a twin copy of CP with the same shape and volume. This property is easiest
to analyse for the set B2 of one qubit bistochastic maps (Oi, n.d.), written in
the canonical form (10.84). Then the dual set of CcP unital one qubit maps,
T (B2), forms a tetrahedron spanned by four maps Tσi for i = 0, 1, 2, 3. This
is the reflection of the set of bistochastic maps with respect to its centre –
the completely depolarizing channel Φ∗. See Figure 11.3(b). Observe that the
corners of B2 are formed by proper rotations while the extremal points of the
set of CcP maps represent reflections. The intersection of the tetrahedra forms
an octahedron of PPT inducing maps (PPTM); see Section 15.4.

A positive map Φ is called decomposable, if it may be expressed as a convex
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Figure 11.4. Sketch of the set positive maps: (a) for N = 2 all maps are
decomposable so SP = CP ∩ CcP = PPTM, (b) for N > 2 there exist non-
decomposable maps and SP ⊂ CP ∩ CcP – see Section 11.2.

combination of a CP map and a CcP map,

Φ = aΦCP + (1− a)ΦCcP with a ∈ [0, 1] . (11.7)

A relation between CP maps acting on quaternion matrices and the decomposable
maps defined on complex matrices was found by Kossakowski (2000). An
important characterization of the set P2 of positive maps acting on (complex)
states of one qubit follows from Størmer (1963) and Woronowicz (1976a):

Theorem 11.1 (Størmer–Woronowicz’s) Every one-qubit positive
map Ψ ∈ P2 is decomposable.

In other words, the set of N = 2 positive maps can be represented by the
convex hull of the set of CP and CcP maps. This property is illustrated for
unital maps (in canonical form) in Figure 11.3, where the cube of positive
maps forms the convex hull of the two tetrahedra, and schematically in Figure
11.4(a). It holds also for the maps M(2) → M(3) and M(3) → M(2) (Woronowicz,
1976b), but is not true in higher dimensions, see Figure 11.4(b).

Consider a map defined on M(3), depending on three non-negative parameters,

Ψa,b,c(ρ)=

[
aρ11 + bρ22 + cρ33 0 0

0 cρ11 + aρ22 + bρ33 0
0 0 bρ11 + cρ22 + aρ33

]
− ρ.

(11.8)

The map Ψ2,0,2 ∈ P3 was a first example of a indecomposable map, found by
Choi in 1975 (Choi, 1975b). As denoted schematically in Figure 11.4(b) this
map is extremal and belongs to the boundary of the convex set P3. The Choi
map was generalized in Choi and Lam (1977) and in Cho, Kye and Lee (1992),
where it was shown that the map (11.8) is positive if and only if

a ≥ 1 , a + b + c ≥ 3 , 1 ≤ a ≤ 2 =⇒ bc ≥ (2− a)2 , (11.9)
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Figure 11.5. Geometric criterion to verify decomposability of a map Φ: (a) if
the line passing through Φ and ΦT crosses the set of completely positive maps,
a decomposition of Φ is explicitly constructed.

while it is decomposable if and only if

a ≥ 1 , 1 ≤ a ≤ 3 =⇒ bc ≥ (3− a)2/4 . (11.10)

In particular, Ψ2,0,c is positive but not decomposable for c ≥ 1. All generalized
indecomposable Choi maps are known to be atomic (Ha, 1998), that is they
cannot be written as a convex sum of 2-positive and 2-co-positive maps (Tanahashi
and Tomiyama, 1988). Examples of indecomposable maps belonging to P4

were given in Woronowicz (1976b) and in Robertson (1983). A family of
indecomposable maps for an arbitrary finite dimension N ≥ 3 was recently
found by Kossakowski (2003). They consist of an affine contraction of the
set M(N) of density matrices into a ball inscribed in it, followed by a generic
rotation from O(N2 − 1). Although several other methods of construction of
indecomposable maps were proposed (Tang, 1986; Tanahashi and Tomiyama,
1988; Osaka, 1991; Kim and Kye, 1994), some of them in the context of
quantum entanglement (Terhal, 2000b; Ha, Kye and Park, 2003), the general
problem of describing all positive maps remains open. In particular, it is
not known if one can find a finite set of K positive maps {Ψj}, such that
PN = conv hull

(
∪K

j=1Ψj(CPN)
)
.

Due to the theorem of Størmer and Woronowicz the answer is known for
N = 2, for which K = 2, Ψ1 = 1 and Ψ2 = T . As we shall see in Chapter
15 these properties of the set PN are decisive for the separability problem:
the separability criterion based on positivity of (1⊗ T )ρ is conclusive for the
system of two qubits, while in the general case of N ×N composite systems it
provides a partial solution only (Horodecki, Horodecki and Horodecki, 1996a).

Indecomposable maps are worth investigating, since each such map provides
a criterion for separability (see Section 15.4. Conditions for a positive map Φ
to be decomposable were found some time ago by Størmer (1982). Since this
criterion is not a constructive one, we describe here a simple test. Assume first
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that the map is not symmetric with respect to the transposition,5 Φ 6= TΦ.
These two points determine a line in the space of maps, parameterized by β,
along which we check if the dynamical matrix

DβΦ+(1−β)TΦ = βDΦ + (1− β)DTA

Φ (11.11)

is positive. If it is found to be positive for some β∗ < 0 (or β∗ > 1) then the
line (11.11) crosses the set of completely positive maps (see Figure 11.5(a)).
Since D(β∗) represents a CP map ΨCP, hence D(1− β∗) defines a completely
co–positive map ΨCcP, and we find an explicit decomposition, Φ = [−β∗ΨCP +
(1−β∗)ΨCcP]/(1−2β∗). In this way decomposability of Φ may be established,
but one cannot confirm that a given map is indecomposable.

To study the geometry of the set of positive maps one may work with the
Hilbert–Schmidt distance d(Ψ,Φ) = ||Ψ− Φ||HS. Since reshuffling of a matrix
does not influence its HS norm, the distance can be measured directly in the
space of dynamical matrices, d(Ψ, Φ) = DHS(DΨ, DΦ). Note that for unital
one qubit maps, (10.81) with ~κ = 0, one has d(Φ1, Φ2) = |~η1 − ~η2|, so Figue
11.3 represents correctly the HS geometry of the space of N = 2 unital maps.

In order to characterize to what extent a given map is close to the boundary
of the set of positive (CP or CcP) maps, let us define the quantities:

• Complete positivity

cp(Φ) ≡ min
M(N)

〈ρ|DΦ|ρ〉 (11.12)

• Complete co-positivity

ccp(Φ) ≡ min
M(N)

〈ρ|DTA

Φ |ρ〉 (11.13)

• Positivity

p(Φ) ≡ min
|x〉,|y〉∈CP N−1

[〈x⊗ y|DΦ|x⊗ y〉]. (11.14)

The first two quantities are easily found by diagonalization, since cp(Φ) =
min{eig(DΦ)} and ccp(Φ) = min{eig(DTA

Φ )}. Although p(Φ) ≥ cp(Φ) by construction,6

the evaluation of positivity is more involved, since one needs to perform the
minimization over the space of all product states, that is the Cartesian product
CPN−1 × CPN−1. No straightforward method of computing this minimum is
known, so one has to rely on numerical minimization.7

A given map Φ is completely positive (CcP, positive) if and only if the
complete positivity (ccp, positivity) is non-negative. As marked in Figure

5 If this is the case, one may perform this procedure with a perturbed map, Φ′ = (1 − ε)Φ + εΨ,
for which Φ′ 6= TΦ′, and study the limit ε → 0.

6 Both quantities are equal if D is a product matrix, which occurs if only one singular value ξ of
the superoperator Φ = DR is positive.

7 In certain cases this quantity was estimated analytically by Terhal (2000b) and numerically by
Gühne, Hyllus, Bruß, Ekert, Lewenstein, Macchiavello and Sanpera (2002) and Gühne, Hyllus,
Bruß, Ekert, Lewenstein, Macchiavello and Sanpera (2003) when characterizing entanglement
witnesses.
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11.4(b), the relation cp(Φ) = 0 defines the boundary of the set CPN , while
ccp(Φ) = 0 and p(Φ) = 0 define the boundaries of CcPN and PN . By direct
diagonalization of the dynamical matrix we find that cp(1) = ccp(T ) = 0 and
ccp(1) = cp(T ) = −1.

For any not completely positive map ΦnCP one may look for its best approximation
with a physically realizable8 CP map ΦCP, for example by minimizing their
HS distance d(ΦnCP, ΦCP) – see Figure 11.8(a). To see a simple application
of complete positivity, consider a non-physical positive map with cp(ΦnCP) =
−x < 0. One – in general not optimal – CP approximation may be constructed
out of its convex combination with the completely depolarizing channel Ψ∗.
Diagonalizing the dynamical matrix representing the map Ψx = aΦnCP + (1−
a)Ψ∗ with a = 1/(Nx + 1) we see that its smallest eigenvalue is equal to zero,
so Ψx belongs to the boundary of CPN . Hence the distance d(ΦnCP, Φx), which
is a function of the complete positivity cp(ΦnCP), gives an upper bound for
the distance of ΦnCP from the set CP. In a similar way one may use ccp(Φ) to
obtain an upper bound for the distance of an analysed non-CcP map ΦnCcP

from the set CcP – compare with Problem 11.6. As discussed in further sections
and, in more detail, in Chapter 15, the solution of the analogous problem in
the space of density matrices allows one to characterize the entanglement of a
two-qubit mixed state ρ by its minimal distance to the set of separable states.

11.2 Dual cones and super-positive maps

Since a CP map Φ is represented by a positive dynamical matrix DΦ, the
trace TrPDΦ is non-negative for any projection operator P . Furthermore, for
any two CP maps, the HS scalar product of their dynamical matrices satisfies
TrDΦDΨ ≥ 0. If such a relation is fulfilled for any CP map Ψ, it implies
complete positivity of Φ. More formally, we define a pairing between maps,

(Φ, Ψ) ≡ 〈DΦ, DΨ〉 = TrD†
ΦDΨ = TrDΦDΨ, (11.15)

and obtain the following characterization of the set CP of CP maps,

{Φ ∈ CP} ⇔ (Φ, Ψ) ≥ 0 for all Ψ ∈ CP . (11.16)

This property is illustrated in Figure 11.6(a) – the angle formed by any two
positive dynamical matrices at the zero map 0 will not be greater than π/2.
Thus the set of CP maps has a self-dual property and is represented as a right
angle cone. All trace preserving maps belong to the horizontal line given by
the condition TrDΦ = N .

In a similar way one may define the cone dual to the set P of positive maps.

A linear map Φ : M(N) → M(N) is called super-positive9 (SP) (Ando, 2004),
if

{Φ ∈ SP} ⇔ (Φ, Ψ) ≥ 0 for all Ψ ∈ P . (11.17)
8 Such structural physical approximations were introduced in Horodecki and Ekert (2002) to propose

an experimentally feasible scheme of entanglement detection and later studied in Fiurášek (2002).
9 SP maps are also called entanglement breaking channels (see Section 15.4).
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Figure 11.6. (a) Dual cones P ↔ SP and self dual CP ↔ CP; (b) the
corresponding compact sets of trace preserving positive, completely positive
and super-positive maps, P ⊃ CP ⊃ SP.

Once SP is defined as a set containing all SP maps, one may write a dual
condition to characterize the set of positive maps,

{Φ ∈ P} ⇔ (Φ, Ψ) ≥ 0 for all Ψ ∈ SP . (11.18)

The cones SP and P are dual by construction and any boundary line of P

determines the perpendicular (dashed) boundary line of SP. The self-dual set
of CP maps is included in the set of positive maps P, and includes the dual
set of super-positive maps. All the three sets are convex. See Figure 11.6.

The dynamical matrix of a positive map Ψ is block positive, so it is clear
that condition (11.17) implies that a map Φ is super-positive if its dynamical
matrix admits a tensor product representation

DΦ =
k∑
i

Ai ⊗Bi, with Ai ≥ 0, Bi ≥ 0; i = 1, . . . , k . (11.19)

As we shall see in Chapter 15, this very condition is related to separability of
the state ρ associated with DΦ ∈ CP. In particular, if the angle α between the
vectors pointing to DΦ and a block positive DΨ is obtuse, the state ρ = DΦ/N
is entangled (compare the notion of entanglement witness in Section 15.4).

In general it is not easy to describe the set SP explicitly. The situation
simplifies for one-qubit maps: due to the theorem by Størmer and Woronowicz
any positive map may be represented as a convex combination of a CP map
and a CcP map. The sets CP and CcP share similar properties and are both
self dual. Hence a map Φ is super-positive if it is simultaneously CP and CcP.
But the neat relation SP = CP∩ CcP holds for N = 2 only. For N > 2 the set
P of positive maps is larger (there exist non-decomposable maps), so the dual
set becomes smaller, SP ⊂ CP ∩ CcP ≡ PPTM (see Figure 11.4).

11.3 JamiolÃkowski isomorphism

Let CPN denote the convex set of all trace preserving, completely positive
maps Φ : M(N) → M(N). Any such map may be uniquely represented by its
dynamical matrix DΦ of size N2. It is a positive, Hermitian matrix and its



268 Duality: maps versus states

Figure 11.7. Duality (11.22) between a quantum map Φ acting on a part of the
maximally entangled state |φ+〉 and the resulting density matrix ρ = 1

N DΦ.

trace is equal to N . Hence the rescaled matrix ρΦ ≡ DΦ/N represents a mixed
state in M(N2). In fact rescaled dynamical matrices form only a subspace of
this set, determined by the trace preserving conditions (10.46), which impose
N2 constraints. Let us denote this (N 4−N2)-dimensional set by M

(N2)
1 . Since

any trace preserving CP map has a dynamical matrix, and vice versa, the
correspondence between maps in CPN and states in M

(N2)
1 is one-to-one. In

Table 11.1 this isomorphism is labelled JII .
Let us find the dynamical matrix for the identity operator:

1mµ
nν

= δmnδµν so that D1
mµ
nν

= (1mµ
nν

)R = δmµδnν = Nρφ
mµ
nν

, (11.20)

where ρφ = |φ+〉〈φ+| represents the operator of projection on a maximally
entangled state of the composite system, namely

|φ+〉 =
1√
N

N∑
i=1

|i〉 ⊗ |i〉. (11.21)

This state is written in its Schmidt form (9.8), and we see that all its Schmidt
coefficients are equal, λ1 = λi = λN = 1/N . Thus we have found that the
identity operator corresponds to the maximally entangled pure state |φ+〉〈φ+|
of the composite system. Interestingly, this correspondence may be extended
for other operations, or in general, for arbitrary linear maps. The JamiolÃkowski
isomorphism10

Φ : M(N) → M(N) ←→ ρΦ ≡ DΦ/N =
[
Φ⊗ 1]

(|φ+〉〈φ+|) (11.22)

allows us to associate a linear map Φ acting on the space of mixed states M(N)

with an operator acting in the enlarged Hilbert state HN ⊗HN . To show this
relation write the operator Φ ⊗ 1 as an eight-indices matrix11 and study its
action on the state ρφ expressed by two Kronecker’s deltas as in (11.20),

Φ mn
m′n′

1 µν
µ′ν′

ρφ

m′µ′
n′ν′

=
1
N

Φmn
µν

=
1
N

Dmµ
nν

. (11.23)

10 This refers to the contribution of JamiolÃkowski (1972). Various aspects of the duality between
maps and states were recently investigated in (Havel, 2003; Arrighi and Patricot, 2004;
Constantinescu and Ramakrishna, 2003).

11 An analogous operation 1⊗ Φ acting on ρφ leads to the matrix DS with the same spectrum.
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Conversely, for any positive matrix D we find the corresponding map Φ by
diagonalization. The reshaped eigenvectors of D, rescaled by the roots of
the eigenvalues, give the canonical Kraus form (10.55) of the operation Φ.
If TrAρΦ = 1/N so that ρΦ ∈ M

(N2)
1 , the map Φ is trace preserving.

Consider now a more general case in which ρ denotes a state acting on a
composite Hilbert space HN ⊗ HN . Let Φ be an arbitrary map which sends
M(N) into itself and let DΦ = ΦR denote its dynamical matrix (of size N2).
Acting with the extended map on ρ we find its image ρ′ = [Φ⊗1](ρ). Writing
down the explicit form of the corresponding linear map in analogy to (11.23)
and contracting over four indices which represent 1 we obtain

(ρ′)R = ΦρR so that ρ′ = (DR
ΦρR)R. (11.24)

In the above formula the standard multiplication of square matrices takes
place, in contrast to Eq. (10.36) in which the state ρ acts on a simple Hilbert
space and is treated as a vector.

Note that Eq. (11.22) may be obtained as a special case of (11.24) if one takes
for ρ the maximally entangled state (11.21), for which (ρφ)R = 1. Formula
(11.24) provides a useful application of the dynamical matrix corresponding
to a map Φ, which acts on a subsystem. Since the normalization of matrices
does not influence positivity, this result implies the reshuffling lemma (11.5).

Formula (11.22) may also be used to find operators D associated with
positive maps Φ which are neither trace preserving nor complete positive. The
JamiolÃkowski isomorphism thus relates the set of positive linear maps with
dynamical matrices acting in the composite space and positive on product
states. Let us mention explicitly some special cases of this isomorphism, labelled
JI in Table 11.1. The set of completely positive maps Φ is isomorphic to the set
of all positive matrices D. The case JII concerns quantum operations which
correspond to quantum states ρ = D/N fulfilling an additional constraint,12

TrAD = 1. States satisfying TrBD = 1 correspond to unital CP maps.
An important case JIII of the isomorphism concerning the super-positive

maps which for N = 2 are isomorphic with the PPT states (with positive
partial transpose, ρTA ≥ 0) will be further analysed in Section 15.4, but we are
now in position to comment on item EIII . If the map Φ is a unitary rotation,
ρ′ = Φ(ρ) = UρU † then (11.22) results in the pure state (U ⊗ 1)

∣∣φ+〉. The
local unitary operation (U ⊗1) preserves the purity of a state and its Schmidt
coefficients. As shown in Section 15.2 the set of unitary matrices U of size
N – or more precisely SU(N)/ZN – is isomorphic to the set of maximally
entangled pure states of the composite N × N system. In particular, vectors
obtained by reshaping the Pauli matrices σi represent the Bell states in the
computational basis, as listed in Table 11.1. Eventually, case JIV consists of a
single, distinguished point in both spaces: the completely depolarizing channel
Φ∗ : M(N) → ρ

(N)
∗ and the corresponding maximally mixed state ρ

(N2)
∗ .

Table 11.1 deserves one more comment: the key word duality may be used
12 An apparent asymmetry between the role of both subsystems is due to the particular choice of

the relation (11.22); if the operator 1 ⊗ Φ is used instead, the subsystems A and B need to be
interchanged.
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Table 11.1. JamiolÃkowski Isomorphism (11.22) between trace-preserving,
linear maps Φ on the space of mixed states M(N) and the normalized
Hermitian operators DΦ acting on the composite space HN ⊗HN .

Linear maps Hermitian operators
Isomorphism Φ : M(N) → M(N) DΦ : HN2 → HN2

JI
set P of

positive maps Φ
block positive
operators D

JII
set CP of

completely positive Φ

positive operators D:
subset M1 of quantum

states
JIII

set SP of
super-positive Φ

subset of separable
quantum states

EIII

unitary rotations
Φ(ρ) = UρU†,

DΦ = (U ⊗ U∗)R

maximally entangled
pure states
(U ⊗ 1)|φ+〉

N = 2 example
of EIII

1↔ (1, 0, 0, 1) |φ+〉 ≡ 1√
2
(|00〉+ |11〉)

Pauli matrices σx ↔ (0, 1, 1, 0) |ψ+〉 ≡ 1√
2
(|01〉+ |10〉)

versus σy ↔ (0,−i, i, 0) |ψ−〉 ≡ 1√
2
(|01〉 − |10〉)

Bell states
ρφ = |φ〉〈φ| σz ↔ (1, 0, 0,−1) |φ−〉 ≡ 1√

2
(|00〉 − |11〉)

JIV
completely depolarizing

channel Φ∗
maximally mixed
state ρ∗ = 1/N

here in two different meanings. The ‘vertical’ duality between its both columns
describes the isomorphism between maps and states, while the ‘horizontal’
duality between the rows JI and JIII follows from the dual cones construction.
Note the inclusion relations JI ⊃ JII ⊃ JIII ⊃ JIV and JII ⊃ EIII , valid for
both columns of the Table and visualized in Figure 11.8.

11.4 Quantum maps and quantum states

The relation (11.22) links an arbitrary linear map Φ with the corresponding
linear operator given by the dynamical matrix DΦ. Expressing the maximally
entangled state |φ+〉 in (11.22) by its Schmidt form (11.21) we may compute
the matrix elements of DΦ in the product basis consisting of the states |i⊗ j〉.
Due to the factorization of the right-hand side we see that the double sum
describing ρΦ = DΦ/N drops out and the result reads

〈k ⊗ i|DΦ|l ⊗ j〉 = 〈k∣∣Φ(|i〉〈j|)∣∣l〉. (11.25)

This equation may also be understood as a definition of a map Φ related to the
linear operator DΦ. Its special case, k = l and i = j, proves the isomorphism
JI from Table 11.1: if DΦ is block positive, then the corresponding map Φ
sends positive projection operators |i〉〈i| into positive operators (JamiolÃkowski,
1972).
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Figure 11.8. Isomorphism between objects, sets, and problems: (a) linear one-
qubit maps, (b) linear operators acting in two-qubit Hilbert space H4. Labels
Ji refer to the sets defined in Table 11.1.

As listed in Table 11.1 and shown in Figure 11.8, the JamiolÃkowski isomorphism
(11.25) may be applied in various setups. Relating linear maps from PN with
operators acting on an extended space HN ⊗HN we may compare:

(i) individual objects, e.g. completely depolarizing channel Φ∗ and the ma-
ximally mixed state ρ∗;

(ii) families of objects, e.g. the depolarizing channels and generalized Werner
states;

(iii) entire sets, e.g. the set of CP ∩ CcP maps and the set of PPT states;
iv) entire problems, e.g. finding the SP map closest to a given CP map versus

finding the separable state closest to a given state; and
(v) their solutions. . . .

For a more comprehensive discussion of the issues related to quantum entanglement
see Chapter 15. Some general impression may be gained by comparing both
sides of Figure 11.8, in which a drawing of both spaces is presented. Note that
this illustration may also be considered as a strict representation of a fragment
of the space of one-qubit unital maps (a) or the space of two-qubits density
matrices in the HS geometry (b). It is nothing but the cross section of the cube
representing the positive maps in Figure 11.3(c) along the plane determined
by 1, T and Φ∗.

The maps–states duality is particularly fruitful in investigating quantum
gates: unitary operations U performed on an N -level quantum system. Since
the overall phase is not measurable, we may fix the determinant of U to unity,
restricting our attention to the group SU(N). For instance, the set of SU(4)
matrices may be considered as:

• the space of maximally entangled states of a composite, 4× 4 system, |ψ〉 ∈
CP15 ⊂ M(16);
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• the set of two-qubit unitary gates,13 acting on M(4);

• the set BU2 of one-qubit unistochastic operations (10.64), ΨU ∈ BU2 ⊂ B2.

There exist a classical analogue of the JamiolÃkowski isomorphism. The space
of all classical states forms the (N − 1)-dimensional simplex ∆N−1. A discrete
dynamics in this space is given by a stochastic transition matrix TN : ∆N−1 →
∆N−1. Its entries are non-negative, and due to stochasticity (2.4.ii), the sum
of all its elements is equal to N . Hence the reshaped transition matrix is
a vector ~t of length N2. The rescaled vector ~t/N may be considered as a
probability vector. The classical states defined in this way form a measure
zero, N(N − 1)-dimensional, convex subset of ∆N2−1. Consider, for instance,
the set of N = 2 stochastic matrices, which can be parameterized as T2 =[

a b
1− a 1− b

]
with a, b ∈ [0, 1]. The set of the corresponding probability

vectors ~t/2 = (a, b, 1 − a, 1 − b)/2 forms a square of size 1/2 – the maximal
square which may be inscribed into the unit tetrahedron ∆3 of all N = 4
probability vectors.

Classical dynamics may be considered as a (very) special subclass of quantum
dynamics, defined on the set of diagonal density matrices. Hence the classical
and quantum duality between maps and states may be succinctly summarized
in a commutative diagram:

quantum :
[
Φ : M(N) → M(N)

] −→ 1
N

DΦ ∈ M(N2)

↓ ΨCG ↓ maps ↓ states

classical :
[
T : ∆N−1 → ∆N−1

] −→ 1
N

~t ∈ ∆N2−1 .

(11.26)

Alternatively, vertical arrows may be interpreted as the action of the coarse
graining operation ΨCG defined in Eq. (12.77). For instance, for the trivial
(do nothing) one-qubit quantum map Φ1, the super-operator 14 restricted
to diagonal matrices gives the identity matrix, T = 12, and the classical
state ~t/2 = (1, 0, 0, 1)/2 ∈ ∆3. But this very vector represents the diagonal of
the maximally entangled state 1

2
DΦ = |φ+〉〈φ+|. To prove commutativity of

the diagram (11.26) in the general case define the stochastic matrix T as a
submatrix of the superoperator (10.36), Tmn = Φmm

nn
(left vertical arrow). Note

that the vector ~t obtained by its reshaping satisfies ~t = diag(ΦR) = diag(DΦ).
Hence, as denoted by the right vertical arrow, it represents the diagonal of the
dynamical matrix, which completes the reasoning.

13 As shown by DiVincenzo (1995) and Lloyd (1995) such gates are universal for quantum computing,
which means that their suitable composition can produce an arbitrary unitary transformation.
Such gates may be realized experimentally (Monroe, Meekhof, King, Itano and Wineland, 1995;
DeMarco, Ben-Kish, Leibfried, Meyer, Rowe, Jelenkovic, Itano, Britton, Langer, Rosenband and
Wineland, 2002).
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Problems

¦ Problem 11.1 Prove the reshuffling lemma (11.5).

¦ Problem 11.2 (a) Find the Kraus spectrum of the (non-positive)
dynamical matrix representing transposition acting in M(N). (b) Show that
the canonical Kraus representation of the transposition of one qubit is given
by a difference between two CP maps,

ρT = (1 + a)ΦCP(ρ)− aΦ′CP(ρ) =
1
2
(
σ0ρσ0 + σxρσx + σzρσz − σyρσy

)
(11.27)

¦ Problem 11.3 Show that the map Ψr(ρ) ≡ (Nρ∗−ρ)/(N −1), acting

on M(N), is not completely positive. Is it positive or completely co-positive?

¦ Problem 11.4 Show that ΦT ≡ 2
3
Φ∗ + 1

3
T is the best structural

physical approximation (SPA) of the non-CP map T of the transposition of
a qubit (Horodecki and Ekert, 2002). How does such a SPA look like for the
transposition of a quNit?

¦ Problem 11.5 Compute complete positivity (complete co-positivity)
of the generalized Choi map (11.8). Find the conditions for Ψa,b,c to be CP
(CcP).

¦ Problem 11.6 Show that the minimal distance of a positive (but not
CcP) map ΦnCcP from the set CcPN is smaller than Nx

√
Tr(DTA)2 − 1/(Nx+

1), where DΦ represents the dynamical matrix, and the positive number x is
opposite to the negative, minimal eigenvalue of DΦT = DTA

Φ .



12 Density matrices and entropies

A given object of study cannot always be assigned a unique value, its
‘entropy’. It may have many different entropies, each one worthwhile.

Harold Grad

In quantum mechanics, the von Neumann entropy

S(ρ) = −Trρ ln ρ (12.1)

plays a role analogous to that played by the Shannon entropy in classical
probability theory. They are both functionals of the state, they are both
monotone under a relevant kind of mapping, and they can be singled out
uniquely by natural requirements. In Section 2.2 we recounted the well-known
anecdote according to which von Neumann helped to christen Shannon’s entropy.
Indeed von Neumann’s entropy is older than Shannon’s, and it reduces to
the Shannon entropy for diagonal density matrices. But in general the von
Neumann entropy is a subtler object than its classical counterpart. So is
the quantum relative entropy, that depends on two density matrices that
perhaps cannot be diagonalized at the same time. Quantum theory is a non-
commutative probability theory. Nevertheless, as a rule of thumb we can
pass between the classical discrete, classical continuous and quantum cases
by choosing between sums, integrals and traces. While this rule of thumb has
to be used cautiously, it will give us quantum counterparts of most of the
concepts introduced in Chapter 2, and conversely we can recover Chapter 2
by restricting the matrices of this chapter to be diagonal.

12.1 Ordering operators

The study of quantum entropy is to a large extent a study in inequalities, and
this is where we begin. We will be interested in extending inequalities that
are valid for functions defined on R to functions of operators. This is a large
step, but it is at least straightforward to define operator functions, that is
functions of matrices, as long as our matrices can be diagonalized by unitary
transformations: then, if A = Udiag(λi)U †, we set f(A) ≡ Udiag

(
f(λi)

)
U †,

where f is any function on R. Our matrices will be Hermitian and therefore
they admit a partial order; B ≥ A if and only B −A is a positive operator. It
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is a difficult ordering relation to work with though, ultimately because it does
not define a lattice – the set {X : X ≥ A and X ≥ B} has no minimum point
in general.

With these observations in hand we can define an operator monotone function
as a function such that

A ≤ B ⇒ f(A) ≤ f(B) . (12.2)

Also, an operator convex function is a function such that

f(pA + (1− p)B) ≤ pf(A) + (1− p)f(B) , p ∈ [0, 1] . (12.3)

Finally, an operator concave function f is a function such that −f is operator
convex. In all three cases it is assumed that the inequalities hold for all
matrix sizes (so that an operator monotone function is always monotone in
the ordinary sense, but the converse may fail).1

The definitions are simple, but we have entered deep water, and we will be
submerged by difficulties as soon as we evaluate a function at two operators
that do not commute with each other. Quite innocent looking monotone functions
fail to be operator monotone. An example is f(t) = t2. Moreover the function
f(t) = et is neither operator monotone nor operator convex. To get serious
results in this subject some advanced mathematics, including frequent excursions
into the complex domain, are needed. We will confine ourselves to stating a
few facts. Operator monotone functions are characterized by

Theorem 12.1 (Löwner’s) A function f(t) on an open interval is
operator monotone if and only if it can be extended analytically to the upper
half plane and transforms the upper half plane into itself.

Therefore the following functions are operator monotone:

f(t) = tγ , t ≥ 0 if and only if γ ∈ [0, 1]

f(t) = at+b
ct+d

, t 6= −d/c , ad− bc > 0

f(t) = ln t , t > 0 .

(12.4)

This small supply can be enlarged by the observation that the composition
of two operator monotone functions is again operator monotone; so is f(t) =
−1/g(t) if g(t) is operator monotone. The set of all operator monotone functions
is convex, as a consequence of the fact that the set of positive operators is a
convex cone.

A continuous function f mapping [0,∞) into itself is operator concave if
and only if f is operator monotone. Operator convex functions include f(t) =
− ln t, and f(t) = t ln t when t > 0; we will use the latter function to construct
entropies. More generally f(t) = tg(t) is operator convex if g(t) is operator
monotone.

Finally we define the mean A#B of two operators. We require that A#A =
1 The theory of operator monotone functions was founded by Löwner (1934). An interesting early

paper is by Bendat and Sherman (1955). For a survey see Bhatia (1997), and (for matrix means)
see Ando (1994).
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A, as well as homogeneity, α(A#B) = (αA)#(αB), and monotonicity, A#B ≥
C#D if A ≥ C and B ≥ D. Moreover we require that (TAT †)#(TBT †) ≥
T (A#B)T †, as well as a suitable continuity property. It turns out (Ando, 1994)
that every mean obeying these demands takes the form

A #B =
√

A f

(
1√
A

B
1√
A

)√
A , (12.5)

where A > 0 and f is an operator monotone function on [0,∞) with f(1) = 1.
The mean will be symmetric in A and B if and only if f is self inversive, that
is if and only if

f(1/t) = f(t)/t . (12.6)

Special cases of symmetric means include the arithmetic mean for f(t) =
(1 + t)/2, the geometric mean for f(t) =

√
t, and the harmonic mean for

f(t) = 2t/(1 + t). It can be shown that the arithmetic mean is maximal
among symmetric means, while the harmonic mean is minimal (Kubo and
Ando, 1980).

We will find use for these results throughout the next three chapters. But
to begin with we will get by with inequalites that apply, not to functions of
operators directly but to their traces. The subject of convex trace functions
is somewhat more manageable than that of operator convex functions. A key
result is that the inequality (1.11) for convex functions can be carried over in
this way:2

Klein’s inequality. If f is a convex function and A and B are Hermitian
operators, then

Tr[f(A)− f(B)] ≥ Tr[(A−B)f ′(B)] . (12.7)

As a special case
Tr(A lnA−A ln B) ≥ Tr(A−B) (12.8)

with equality if and only if A = B.
To prove this, use the eigenbases:

A|ei〉 = ai|ei〉 B|fi〉 = bi|fi〉 〈ei|fj〉 = cij . (12.9)

A calculation then shows that

〈ei|f(A) − f(B)− (A−B)f ′(B)|ei〉
= f(ai)−

∑
j

|cij|2[f(bj)− (ai − bj)f ′(bj)] (12.10)

=
∑

j

|cij|2[f(ai)− f(bj)− (ai − bj)f ′(bj)] .

This is positive by Eq. (1.11). The special case follows if we specialize to
f(t) = t ln t. The condition for equality requires some extra attention – it is
true.

2 The original statement here is due to Oskar Klein (1931).



12.2 Von Neumann entropy 277

Another useful result is:
Peierl’s inequality. If f is a strictly convex function and A is a Hermitian
operator, then

Trf(A) ≥
∑

i

f(〈fi|A|fi〉) , (12.11)

where {|fi〉} is any complete set of orthonormal vectors, or more generally a
resolution of the identity. Equality holds if and only if |fi〉 = |ei〉 for all i,
where A|ei〉 = ai|ei〉.

To prove this, observe that for any vector |fi〉 we have

〈fi|A|fi〉 =
∑

j

|〈fi|ej〉|2f(aj) ≥ f

(∑
j

|〈fi|ej〉|2aj

)
= f

(〈fi|A|fi〉
)

. (12.12)

Summing over all i gives the result.
We quote without proofs two further trace inequalities, the Golden Thompson

inequality
TreAeB ≥ TreA+B , (12.13)

with equality if and only if the Hermitian matrices A and B commute, and its
more advanced cousin, the Lieb inequality

Treln A−ln C+ln B ≥ Tr
∫ ∞

0

A
1

C + u1
B

1
C + u1

du , (12.14)

where A,B, C are all positive.3

12.2 Von Neumann entropy

Now we can begin. First we establish some notation. In Chapter 2 we used S
to denote the Shannon entropy S(~p) of a probability distribution. Now we use
S to denote the von Neumann entropy S(ρ) of a density matrix, but we may
want to mention the Shannon entropy too. When there is any risk of confusing
these entropies, they are distinguished by their arguments. We will also use
Si ≡ S(ρi) to denote the von Neumann entropy of a density matrix ρi acting
on the Hilbert space Hi.

In classical probability theory a state is a probability distribution, and the
Shannon entropy is a distinguished function of a probability distribution. In
quantum theory a state is a density matrix, and a given density matrix ρ
can be associated to many probability distributions because there are many
possible POVMs. Also any density matrix can arise as a mixture of pure states
in many different ways. From Section 8.4 we recall that if we write our density
matrix as a mixture of normalized states,

ρ =
M∑
i=1

pi|ψi〉〈ψi| , (12.15)

3 Golden was a person (Golden, 1965). The Lieb inequality was proved in Lieb (1973).
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then a large amount of arbitrariness is present, even in the choice of the
number M . So if we define the mixing entropy of ρ as the Shannon entropy
of the probability distribution ~p then this definition inherits a large amount
of arbitrariness. But on reflection it is clear that there is one such definition
that is more natural than the other. The point is that the density matrix itself
singles out one preferred mixture, namely

ρ =
N∑

i=1

λi|ei〉〈ei| , (12.16)

where |ei〉 are the eigenvectors of ρ and N is the rank of ρ. The von Neumann
entropy is4

S(ρ) ≡ −Trρ ln ρ = −
N∑

i=1

λi lnλi . (12.17)

Hence the von Neumann entropy is the Shannon entropy of the spectrum of
ρ, and varies from zero for pure states to lnN for the maximally mixed state
ρ∗ = 1/N .

Further reflection shows that the von Neumann entropy has a very distinguished
status among the various mixing entropies. While we were proving Schrödinger’s
mixture theorem in Section 8.4 we observed that any vector ~p occurring in Eq.
(12.15) is related to the spectral vector ~λ by ~p = B~λ, where B is a bistochastic
(and indeed a unistochastic) matrix. Since the Shannon entropy is a Schur
concave function, we deduce from the discussion in Section 2.1 that

Smix ≡ −
M∑
i=1

pi ln pi ≥ −
N∑

i=1

λi lnλi = S(ρ) . (12.18)

Hence the von Neumann entropy is the smallest possible among all the mixing
entropies Smix.

The von Neumann entropy is a continuous function of the eigenvalues of
ρ, and it can be defined in an axiomatic way as the only such function that
satisfies a suitable set of axioms. In the classical case, the key axiom that singles
out the Shannon entropy is the recursion property. In the quantum case this
becomes a property that concerns disjoint states – two density matrices are
said to be disjoint if they have orthogonal support, that is if their respective
eigenvectors span orthogonal subspaces of the total Hilbert space.
• Recursion property. If the density matrices ρi have support in orthogonal
subspaces Hi of a Hilbert space H = ⊕M

i=1Hi, then the density matrix ρ =∑
i piρi has the von Neumann entropy

S(ρ) = S(~p) +
M∑
i=1

piS(ρi) . (12.19)

4 The original reference is von Neumann (1927), whose main concern at the time was with statistical
mechanics. His book (von Neumann, 1955), Wehrl (1978) and the (more advanced) book by Ohya
and Petz (1993) serve as useful general references for this chapter.
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Table 12.1. Properties of entropies

Property Equation von Neumann Shannon Boltzmann

Positivity S ≥ 0 Yes Yes No
Concavity (12.22) Yes Yes Yes
Monotonicity S12 ≥ S1 No Yes No
Subadditivity S12 ≤ S1 + S2 Yes Yes Yes
Araki–Lieb inequality |S1 − S2| ≤ S12 Yes Yes No
Strong subadditivity S123 + S2 ≤ S12 + S23 Yes Yes Yes

Here S(~p) is a classical Shannon entropy. It is not hard to see that the von
Neumann entropy has this property; if the matrix ρi has eigenvalues λij then
the eigenvalues of ρ are piλij, and the result follows from the recursion property
of the Shannon entropy (Section 2.2).

As with the Shannon entropy, the von Neumann entropy is interesting
because of the list of the properties that it has, and the theorems that can be
proved using this list. So, instead of presenting a list of axioms we present a
selection of these properties in the form of Table 12.1, where we also compare
the von Neumann entropy to the Shannon and Boltzmann entropies. Note
that most of the entries concern a situation where ρ1 is defined on a Hilbert
space H1, ρ2 on another Hilbert space H2, and ρ12 on their tensor product
H12 = H1⊗H2, or even more involved situations involving the tensor product
of three Hilbert spaces. Moreover ρ1 is always the reduced density matrix
obtained by taking a partial trace of ρ12, thus

S1 ≡ S(ρ1) , S12 ≡ S(ρ12) , ρ1 ≡ Tr2ρ12 , (12.20)

and so on (with the obvious modifications in the classical cases). As we will
see, even relations that involve one Hilbert space only are conveniently proved
through a detour into a larger Hilbert space. We can say more. In Section 9.3
we proved a purification lemma, saying that the ancilla can always be chosen
so that, for any ρ1, it is true that ρ1 = Tr2ρ12 where ρ12 is a pure state.
Moreover we proved that in this situation the reduced density matrices ρ1 and
ρ2 have the same spectra (up to vanishing eigenvalues). This means that

ρ12ρ12 = ρ12 ⇒ S1 = S2 . (12.21)

If the ancilla purifies the system, the entropy of the ancilla is equal to the
entropy of the original system.

Let us begin by taking note of the property (monotonicity) that the von
Neumann entropy does not have. As we know very well from Chapter 9 a
composite system can be in a pure state, so that S12 = 0, while its subsystems
are mixed, so that S1 > 0. In principle, although it might be a very contrived
Universe, your own entropy can increase without limit while the entropy of
the world remains zero.

It is clear that the von Neumann entropy is positive. To convince ourselves
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of the truth of the rest of the entries in the table5 we must rely on Section 12.1.
Concavity and subadditivity are direct consequences of Klein’s inequality, for
the special case that A and B are density matrices, so that the right-hand side
of Eq. (12.8) vanishes. First out is concavity, where all the density matrices
live in the same Hilbert space:
• Concavity. If ρ = pσ + (1− p)ω, 0 ≤ p ≤ 1, then

S(ρ) ≥ pS(σ) + (1− p)S(ω) . (12.22)

In the proof we use Klein’s inequality, with A = σ or ω and B = ρ:

Trρ ln ρ = pTrσ ln ρ + (1− p)Trω ln ρ ≤ pTrσ ln σ + (1− p)Trω lnω . (12.23)

Sign reversion gives the result, which is a lower bound on S(ρ).
Using Peierl’s inequality we can prove a much stronger result. Let f be any

convex function. With 0 ≤ p ≤ 1 and A and B any Hermitian operators, it
will be true that

Trf
(
pA + (1− p)B

) ≤ pTrf(A) + (1− p)TrB . (12.24)

Namely, let |ei〉 be the eigenvectors of pA + (1− p)B. Then

Trf
(
pA + (1− p)B

)
=

∑
i

〈ei|f
(
pA + (1− p)B

)|ei〉

=
∑

i

f
(〈ei|pA + (1− p)B|ei〉

)
(12.25)

≤ p
∑

i

f
(〈ei|A|ei〉

)
+ (1− p)

∑
i

f
(〈ei|B|ei〉

)

≤ pTrf(A) + (1− p)Trf(B)

where Peierl’s inequality was used in the last step.
The recursion property (12.19) for disjoint states can be turned into an

inequality that, together with concavity, neatly brackets the von Neumann
entropy:

ρ =
K∑

a=1

paρa ⇒
K∑

a=1

paS(ρa) ≤ S(ρ) ≤ S(~p) +
K∑

a=1

paS(ρa) . (12.26)

(The index a is used because, in this chapter, i labels different Hilbert spaces.)
To prove this, one first observes that for a pair of positive operators A, B one
has the trace inequality

TrA[ln (A + B)− ln A] ≥ 0 . (12.27)

This is true because ln t is operator monotone, and the trace of the product
of two positive operators is positive. When K = 2 the upper bound in (12.26)

5 These entries have a long history. Concavity and subadditivity were first proved by Delbrück
and Molière (1936). Lanford and Robinson (1968) observed that strong subadditivity is used in
classical statistical mechanics, and conjectured that it holds in the quantum case as well. Araki
and Lieb (1970) were unable to prove this, but found other inequalities that were enough to
complete the work of Lanford and Robinson. Eventually strong subadditivity was proved by Lieb
and Ruskai (1973).
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follows if we first set A = p1ρ1 and B = p2ρ2, then A = p2ρ2, B = p1ρ1,
add the resulting inequalities, and reverse the sign at the end. The result for
arbitrary K follows if we use the recursion property (2.19) for the Shannon
entropy S(~p).

The remaining entries in Table 12.1 concern density matrices defined on
different Hilbert spaces, and the label on the density matrix tells us which
Hilbert space.
• Subadditivity.

S(ρ12) ≤ S(ρ1) + S(ρ2) , (12.28)

with equality if and only if ρ12 = ρ1 ⊗ ρ2.
To prove this, use Klein’s inequality with B = ρ1 ⊗ ρ2 = (ρ1 ⊗ 1)(1 ⊗ ρ2)

and A = ρ12. Then

Tr12ρ12 ln ρ12 ≥ Tr12ρ12 ln ρ1 ⊗ ρ2

= Tr12ρ12(ln ρ1 ⊗ 1+ ln1⊗ ρ2) (12.29)
= Tr1ρ1 ln ρ1 + Tr2ρ2 ln ρ2 ,

which becomes subadditivity when we reverse the sign. It is not hard to see
that equality holds if and only if ρ12 = ρ1 ⊗ ρ2.

We can now give a third proof of concavity, since it is in fact a consequence
of subadditivity. The trick is to use a two level system, with orthogonal basis
vectors |a〉 and |b〉, as an ancilla. The original density matrix will be written
as the mixture ρ1 = pρa + (1− p)ρb. Then we define

ρ12 = pρa ⊗ |a〉〈a|+ (1− p)ρb ⊗ |b〉〈b| . (12.30)

By the recursion property

S12(ρ12) = S(p, 1− p) + pS1(ρa) + (1− p)S1(ρb) . (12.31)

But S2 = S(p, 1 − p), so that subadditivity implies that S1 is concave, as
advertized.

Next on the list:
• The Araki–Lieb triangle inequality.

|S(ρ1)− S(ρ2)| ≤ S(ρ12) . (12.32)

This becomes a triangle inequality when combined with subadditivity.
The proof is a clever application of the fact that if a bipartite system is in a

pure state (with zero von Neumann entropy) then the von Neumann entropies
of the factors are equal. Of course the inequality itself quantifies how much the
entropies of the factors can differ if this is not the case. But we can consider
a purification of the state ρ12 using a Hilbert space H123. From subadditivity
we know that S3 + S1 ≥ S13. By construction S123 = 0, so that S13 = S2 and
S3 = S12. A little rearrangement gives the result.

The final entry on our list is:
• Strong subadditivity.

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) . (12.33)
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This is a deep result, and we will not prove it – although it follows fairly easily
from Lieb’s inequality (12.14).6 Let us investigate what it says, however. First,
it is equivalent to the inequality

S(ρ1) + S(ρ2) ≤ S(ρ13) + S(ρ23) . (12.34)

To see this, purify the state ρ123 by factoring with a fourth Hilbert space. Then
we have

S1234 = 0 ⇒ S123 = S4 and S12 = S34 . (12.35)

Inserting this in (12.33) yields (12.34), and conversely. This shows that strong
subadditivity of the Shannon entropy is a rather trivial thing, since in that
case monotonicity implies that S1 ≤ S13 and S2 ≤ S23. In the quantum case
these inequalities do not hold separately, but their sum does!

The second observation is that strong subadditivity implies subadditivity –
to see this, let the Hilbert space H2 be one dimensional, so that S2 = 0. It
implies much more, though. It is tempting to say that every deep result follows
from it; we will meet with an example in the next section. Meanwhile we can
ask if this is the end of the story? Suppose we have a state acting on the Hilbert
space H1 ⊗H2 ⊗ · · · ⊗Hn. Taking partial traces in all possible ways we get a
set of 2n − 1 non-trivial density matrices, and hence 2n − 1 possible entropies
constrained by the inequalities in Table 12.1. These inequalities define a convex
cone in an (2n − 1)-dimensional space, and we ask if the possible entropies fill
out this cone. The answer is no. There are points on the boundary of the
cone that cannot be reached in this way, and there may be further inequalities
waiting to be discovered (Linden and Winter, n.d.).

To end on a somewhat different note, we recall that the operational significance
of the Shannon entropy was made crystal clear by Shannon’s noiseless coding
theorem. There is a corresponding quantum noiseless coding theorem. To state
it, we imagine that Alice has a string of pure states |ψi〉, generated with the
probabilities pi. She codes her states in qubit states, using a channel system C.
The qubits are sent to Bob, who decodes them and produces a string of output
states ρi. The question is: how many qubits must be sent over the channel if
the message is to go through undistorted? More precisely, we want to know
the average fidelity

F̄ =
∑

i

pi 〈ψi|ρi|ψi〉 (12.36)

that can be achieved. The quantum problem is made more subtle by the fact
that generic pure states cannot be distinguished with certainty, but the answer
is given by

Theorem 12.2 (Schumacher’s noiseless coding theorem) Let

ρ =
∑

i

pi|ψi〉〈ψi| and S(ρ) = −Trρ log2 ρ . (12.37)

6 For a proof – in fact several proofs – and more information on entropy inequalities generally, we
recommend two reviews written by experts, Lieb (1975) and Ruskai (2002).
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Also let ε, δ > 0 and let S(ρ) + δ qubits be available in the channel per input
state. Then for large N, it is possible to transmit blocks of N states with average
fidelity F̄ > 1− ε.

This theorem marks the beginning of quantum information theory.7

12.3 Quantum relative entropy

In the classical case the relative entropy of two probability distributions played
a key role, notably as a measure of how different two probability distributions
are from each other. There is a quantum relative entropy too, and for roughly
similar reasons it plays a key role in the description of the quantum state space.
In some ways it is a deeper concept than the von Neumann entropy itself and
we will see several uses of it as we proceed. The definition looks deceptively
simple: for any pair of quantum states ρ and σ their relative entropy is8

S(ρ||σ) ≡ Tr[ρ(ln ρ− ln σ)] . (12.38)

If σ has zero eigenvalues this may diverge, otherwise it is is a finite and
continuous function. The quantum relative entropy reduces to the classical
Kullback–Leibler relative entropy for diagonal matrices, but is not as easy to
handle in general. Using the result of Problem 12.1, it can be rewritten as

S(ρ||σ) =
∫ ∞

0

Trρ
1

σ + u1
(ρ− σ)

1
ρ + u1

du . (12.39)

This is convenient for some manipulations that one may want to perform.
Two of the properties of relative entropy are immediate:

• Unitary invariance. S(ρ1||ρ2) = S(Uρ1U
†||Uρ2U

†).
• Positivity. S(ρ||σ) ≥ 0 with equality if and only if ρ = σ.

The second property is immediate only because it is precisely the content of
Klein’s inequality – and we proved that in Section 12.1. More is true:

S(ρ||σ) ≥ 1
2
Tr(ρ− σ)2 = D2

2(ρ, σ) . (12.40)

This is as in the classical case, Eq. (2.30); in both cases a stronger statement
can be made, and we will come to it in Chapter 13. In general S(ρ||σ) 6=
S(σ||ρ); also as in the classical case.

Three deep properties of relative entropy are as follows:

• Joint convexity. For any p ∈ [0, 1] and any four states

S
(
pρa +(1−p)ρb||pσc +(1−p)σd

) ≤ pS(ρa||σc)+(1−p)S(ρb||σd) . (12.41)

7 The quantum noiseless coding theorem is due to Schumacher (1995) and Jozsa and Schumacher
(1994); a forerunner is due to Holevo (1973). For Shannon’s theorem formulated in the same
language, see section 3.2 of Cover and Thomas (1991).

8 The relative entropy was introduced into quantum mechanics by Umegaki (1962) and resurfaced
in a paper by Lindblad (1973). A general reference for this section is Ohya and Petz (1993); for
recent reviews see Schumacher and Westmoreland (n.d.) and Vedral (2002).
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• Monotonicity under partial trace.

S(Tr2ρ12||Tr2σ12) ≤ S(ρ12||σ12) . (12.42)

• Monotonicity under CP-maps. For any completely positive map Φ

S
(
Φρ||Φσ

) ≤ S
(
ρ||σ)

. (12.43)

Any of these properties imply the other two, and each is equivalent to strong
subadditivity of the von Neumann entropy.9 The importance of monotonicity
is obvious – it implies everything that monotonicity under stochastic maps
implies for the classical Kullback–Leibler relative entropy.

It is clear that monotonicity under CP maps implies monotonicity under
partial trace – taking a partial trace is a special case of a CP map. To see
the converse, use the environmental representation of a CP map given in Eq.
(10.61); we can always find a larger Hilbert space in which the CP-map is
represented as

ρ′ = Φ(ρ) = Tr2(Uρ⊗ PνU
†) , (12.44)

where Pν is a projector onto a pure state of the ancilla. A simple calculation
ensures:

S
(
Tr2(Uρ⊗ PνU

†)||Tr2(Uσ ⊗ PνU
†)

) ≤ S
(
Uρ⊗ PνU

†||Uσ ⊗ PνU
†)

= S(ρ⊗ Pν ||σ ⊗ Pν) (12.45)
= S(ρ||σ) ,

where we used monotonicity under partial trace, unitary invariance, and the
easily proved additivity property that

S(ρ1 ⊗ ρ2||σ1 ⊗ σ2) = S(ρ1||ρ2) + S(ρ2||σ2) . (12.46)

To see that monotonicity under partial trace implies strong subadditivity, we
introduce a third Hilbert space and consider

S(ρ23||ρ2 ⊗ 1) ≤ S(ρ123||ρ12 ⊗ 1) . (12.47)

Now we just apply the definition of relative entropy, and rearrange terms
to arrive at Eq. (12.33). The converse statement, that strong subadditivity
implies monotonicity under partial trace, is true as well. One proof proceeds
via the Lieb inequality (12.14).

The close link between the relative entropy and the von Neumann entropy
can be unearthed as follows: the relative entropy between ρ and the maximally
mixed state ρ∗ is

S(ρ||ρ∗) = lnN − S(ρ) . (12.48)

This is the quantum analogue of (2.37), and shows that the von Neumann
entropy S(ρ) is implicit in the definition of the relative entropy. In a sense the
link goes the other way too. Form the one parameter family of states

ρp = pρ + (1− p)σ , p ∈ [0, 1] . (12.49)
9 Again the history is intricate. Monotonicity of relative entropy was proved from strong

subadditivity by Lindblad (1975). A proof from first principles is due to Uhlmann (1977).
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Figure 12.1. (a) Relative entropy between N = 2 mixed states depends on the
lengths of their Bloch vectors and the angle θ between them. Relative entropies
with respect to the north pole ρN : (b) S(ρ||ρN ) and (c) S(ρN ||ρ).

Then define the function

f(p) ≡ S(ρp)− pS(ρ)− (1− p)S(σ) . (12.50)

With elementary manipulations this can be rewritten as

f(p) = pS(ρ||ρp) + (1− p)S(σ||ρp) = pS(ρ||σ)− S(ρp||σ) . (12.51)

From the strict concavity of the von Neumann entropy we conclude that f(p) ≥
0, with equality if and only if p = 0, 1. This further implies that the derivative
of f is positive at p = 0. We are now in position to prove that

lim
p→0

1
p
f(p) = S(ρ||σ) . (12.52)

This is so because the limit exists (Lindblad, 1973) and because Eqs. (12.51)
imply, first, that the limit is greater than or equal to S(ρ||σ), and, second, that
it is smaller than or equal to S(ρ||σ). In this sense the definition of relative
entropy is implicit in the definition of the von Neumann entropy. If we recall
Eq. (1.11) for convex functions – and reverse the sign because f(p) is concave
– we can also express the conclusion as

S(ρ||σ) = sup
p

1
p

(
S(ρp)− pS(ρ)− (1− p)S(σ)

)
. (12.53)

The same argument applies in the classical case, and in Section 13.1 we will
see that the symmetric special case f(1/2) deserves attention for its own sake.

For N = 2, Cortese (n.d.) found an explicit formula for the relative entropy
between any two mixed states,

S(ρa||ρb) =
1
2

ln
(1− τ 2

a

1− τ 2
b

)
+

τa

2
ln

(1 + τa

1− τa

)
− τa cos θ

2
ln

(1 + τb

1− τb

)
, (12.54)

where the states are represented by their Bloch vectors, for example ρa =
1
2
(1 + ~τa · ~σ), τa is the length of a Bloch vector, and θ is the angle between

the two. See Figure 12.1; the relative entropy with respect to a pure state is
shown there. Note that the data along the polar axis, representing diagonal
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matrices, coincide with these plotted at the vertical axis in Figure 2.8(c) and
(d) for the classical case.

Now we would like to argue that the relative entropy, as defined above, is
indeed a quantum analogue of the classical Kullback–Leibler relative entropy.
We could have tried a different way of defining quantum relative entropy,
starting from the observation that there are many probability distributions
associated to every density matrix, in fact one for every POVM {E}. Since we
expect relative entropy to serve as an information divergence, that is to say
that it should express ‘how far’ from each other two states are in the sense
of statistical hypothesis testing, this suggests that we should define a relative
entropy by taking the supremum over all possible POVMs:

S1(ρ||σ) = sup
E

∑
i

pi ln
pi

qi

, where pi = TrEiρ and qi = TrEiσ . (12.55)

Now it can be shown (Lindblad, 1974) (using monotonicity of relative entropy)
that

S1(ρ||σ) ≤ S(ρ||σ) . (12.56)

We can go on to assume that we have several independent and identically
distributed systems that we can make observations on, that is to say that we
can make measurements on states of the form ρN ≡ ρ ⊗ ρ ⊗ · · · ⊗ ρ (with N

identical factors altogether, and with a similar definition for σN). We optimize
over all POVMs {Ẽ} on the tensor product Hilbert space, and define

SN(ρ||σ) = sup
Ẽ

1
N

∑
i

pi ln
pi

qi

, pi = Tr Ẽiρ
N , qi = Tr Ẽiσ

N . (12.57)

In the large Hilbert space we have many more options for making collective
measurements, so this ought to be larger than S1(ρ||σ). Nevertheless we have
the bound (Donald, 1987)

SN(ρ||σ) ≤ S(ρ||σ) . (12.58)

Even more is true. In the limit when the number of copies of our states go to
infinity, it turns out that

lim
N→∞

SN = S(ρ||σ) . (12.59)

This limit can be achieved by projective measurements. We do not intend to
prove these results here, we only quote them in order to inspire some confidence
in Umegaki’s definition of quantum relative entropy.10

12.4 Other entropies

In the classical case we presented a wide selection of alternative definitions of
entropy, some of which are quite useful. When we apply our rule of thumb –
10 The final result here is due to Hiai and Petz (1991). And the reader should be warned that our

treatment is somewhat simplified.
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turn sums into traces – to Section 2.7, we obtain (among others) the quantum
Rényi entropy, labelled by a non-negative parameter q,

Sq(ρ) ≡ 1
1− q

ln[Trρq] =
1

1− q
ln

[ N∑
i=1

λq
i

]
. (12.60)

It is a function of the Lq-norm of the density matrix, ||ρ||q =
(

1
2
Trρq

)1/q
. It is

non-negative and, in the limit q → 1, it tends to the von Neumann entropy
S(ρ). The logarithm is used in the definition to ensure additivity for product
states:

Sq(ρ1 ⊗ ρ2) = Sq(ρ1) + Sq(ρ2) (12.61)

for any real q. This is immediate, given the spectrum of a product state (see
Problem 9.4). The quantum Rényi entropies fulfil properties already discussed
for their classical versions. In particular, for any value of the coefficient q the
generalized entropy Sq equals zero for pure states, and achieves its maximum
lnN for the maximally mixed state ρ∗. In analogy to (2.80), the Rényi entropy
is a continuous, non-increasing function of its parameter q.

Some special cases of Sq are often encountered. The quantity Trρ2, called
the purity of the quantum state, is frequently used since it is easy to compute.
The larger the purity, the more pure the state (or more precisely, the larger
is its Hilbert–Schmidt distance from the maximally mixed state). Obviously
one has S2(ρ) = − ln[Trρ2]. The Hartley entropy S0 is a function of the rank
r of ρ; S0(ρ) = ln r. In the other limiting case the entropy depends on the
largest eigenvalue of ρ; S∞ = − ln λmax. For any positive, finite value of q
the generalized entropy is a continuous function of the state ρ. The Hartley
entropy is not continuous at all. The concavity relation (12.22) holds at least
for q ∈ (0, 1], and the quantum Rényi entropies for different values of q are
correlated in the same way as their classical counterparts (see Section 2.7).
They are additive for product states, but not subadditive. A weak version of
subadditivity holds (van Dam and Hayden, n.d.):

Sq(ρ1)− S0(ρ2) ≤ Sq(ρ12) ≤ Sq(ρ1) + S0(ρ2) , (12.62)

where S0 denotes the Hartley entropy – the largest of the Rényi entropies.
The entropies considered so far have been unitarily invariant, and they

take the value zero for any pure state. This is not always an advantage. An
interesting alternative is the Wehrl entropy, that is the classical Boltzmann
entropy of the Husimi function Q(z) = 〈z|ρ|z〉. It is not unitarily invariant
because it depends on the choice of a special set of coherent states |z〉 (see
Sections 6.2 and 7.4). The Wehrl entropy is important in situations where
this set is physically singled out, say as ‘classical states’. A key property is
(Wehrl, 1979):

Wehrl’s inequality. For any state ρ the Wehrl entropy is bounded from below
by the von Neumann entropy,

SW (ρ) ≥ S(ρ) (12.63)
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To prove this it is sufficient to use the continuous version of Peierls’ inequality
(12.11): for any convex function f convexity implies

Trf(ρ) =
∫

Ω

〈z|f(ρ)|z〉d2z ≥
∫

Ω

f
(〈z|ρ|z〉)d2z =

∫

Ω

f
(
Q(z)

)
d2z . (12.64)

Setting f(t) = t ln t and reverting the sign of the inequality we get Wehrl’s
result. Rényi–Wehrl entropies can be defined similarly, and the argument
applies to them as well, so that for any q ≥ 0 and any state ρ the inequality
SRW

q (ρ) ≥ Sq(ρ) holds.
For composite systems we can define a Husimi function by

Q(z1, z2) = 〈z1|〈z2|ρ12|z2〉|z1〉 (12.65)

and analyse its Wehrl entropy (see Problem 12.4). For a pure product state
the Husimi function factorizes and its Wehrl entropy is equal to the sum of
the Wehrl entropies of both subsystems. There are two possible definitions of
the marginal Husimi distribution, and happily they agree, in the sense that

Q(z1) ≡
∫

Ω2

Q(z1, z2) d2z2 = 〈z1|Tr2ρ12|z1〉 ≡ Q(z1) . (12.66)

The Wehrl entropy can then be shown to be very well behaved, in particular it
is monotone in the sense that S12 ≥ S1. Like the Shannon entropy, but unlike
the Boltzmann entropy when the latter is defined over arbitrary distributions,
the Wehrl entropy obeys all the inequalities in Table 12.1.

Turning to relative entropy we find many alternatives to Umegaki’s definition.
Many of them reproduce the classical relative entropy (2.25) when their two
arguments commute. An example is the Belavkin–Staszewski relative entropy
(Belavkin and Staszewski, 1982)

SBS(ρ||σ) = Tr
(
ρ ln ρ1/2σ−1ρ1/2

)
. (12.67)

It is monotone, and it can be shown that SBS(ρ||σ) ≥ S(ρ||σ) (Hiai and Petz,
1991).

The classical relative entropy itself is highly non-unique. We gave a very
general class of monotone classical relative entropies in Eq. (2.74). In the
quantum case we insist on monotonicity under completely positive stochastic
maps, but not really on much else besides. A straightforward attempt to
generalize the classical definition to the quantum case encounters the difficulty
that the operator ρ

σ
is ambiguous in the non-commutative case. There are

various ways of circumventing this difficulty, and then one can define a large
class of monotone relative entropies. Just to be specific, let us mention a one-
parameter family of monotone and jointly convex relative entropies:

Sα(ρ, σ) =
4

1− α2
Tr

(
1− σ(α+1)/2ρ(α−1)/2

)
ρ , −1 < α < 1 . (12.68)

Umegaki’s definition is recovered in a limiting case. In fact in the limit α → −1
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we obtain S(ρ||σ), while we get S(σ||ρ) when α → 1. Many more monotone
relative entropies exist.11

12.5 Majorization of density matrices

The von Neumann entropy (like the Rényi entropies, but unlike the Wehrl
entropy) provides a measure of the ‘degree of mixing’ of a given quantum
state. A more sophisticated ordering of quantum states, with respect to the
degree of mixing, is provided by the theory of majorization (Section 2.1). In
the classical case the majorization order is really between orbits of probability
vectors under permutations of their components – a fact that is easily missed
since in discussing majorization one tends to represent these orbits with a
representative ~p, whose components appear in non-increasing order. When we
go from probability vectors to density matrices, majorization will provide an
ordering of the orbits under the unitary group. By definition the state σ is
majorized by the state ρ if and only if the eigenvalue vector of σ is majorized
by the eigenvalue vector of ρ,

σ ≺ ρ ⇔ ~λ(σ) ≺ ~λ(ρ) . (12.69)

This ordering relation between matrices has many advantages; in particular it
does form a lattice.12

The first key fact to record is that if σ ≺ ρ then σ lies in the convex hull of
the unitary orbit to which ρ belongs. We state this as a theorem:

Theorem 12.3 (Uhlmann’s majorization) If two density matrices
of size N are related by σ ≺ ρ, then there exists a probability vector ~p and
unitary matrices UI such that

σ =
∑

I

pI UIρU †
I . (12.70)

Despite its importance, this theorem is easily proved. Suppose σ is given in
diagonal form. We can find a unitary matrix UI such that UIρU †

I is diagonal
too; in fact we can find altogether N ! such unitary matrices since we can
permute the eigenvalues. But now all matrices are diagonal and we are back
to the classical case. From the classical theory we know that the eigenvalue
vector of σ lies in the convex hull of the N ! different eigenvalue vectors of ρ.
This provides one way of realizing Eq. (12.70).

There are many ways of realizing σ as a convex sum of states on the orbit of
ρ, as we can see from Figure 12.1. In fact it is known that we can arrange things
so that all components of pI become equal. The related but weaker statement
that any density matrix can be realized as a uniform mixture of pure states
11 See Petz (1998) and Lesniewski and Ruskai (1999) for the full story here.
12 In physics, the subject of this section was begun by Uhlmann (1971); the work by him and his

school is summarized by Alberti and Uhlmann (1982). A more recent survey is due to Ando
(1994).
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Figure 12.2. Left: N = 3, and we show majorization in the eigenvalue simplex.
Right: N = 2, and we show two different ways of expressing a given σ as a
convex sum of points on the orbit (itself a sphere!) of a majorizing ρ.

is very easy to prove (Bengtsson and Ericsson, 2003). Let σ = diag(λi). For
N = 3, say, form a closed curve of pure state vectors by

Zα(τ) =




ein1τ 0 0
0 ein2τ 0
0 0 ein3τ






√

λ1√
λ2√
λ3


 , (12.71)

where the ni are integers. Provided that the ni are chosen so that ni − nj is
non-zero when i 6= j, it is easy to show that

σ =
1
2π

∫ 2π

0

dτ ZαZ̄β(τ) . (12.72)

The off-diagonal terms are killed by the integration, so that σ is realized by
a mixture of pure states distributed uniformly on the circle. The argument
works for any N . Moreover a finite set of points on the curve will do as well,
but we need at least N points since then we must ensure that ni − nj 6= 0
modulo N . When N > 2 these results are somewhat surprising – it was not
obvious that one could find such a curve consisting only of pure states, since
the set of pure states is a small subset of the outsphere.

Return to Uhlmann’s theorem: in the classical case bistochastic matrices
made their appearance at this point. This is true in the quantum case also;
the theorem explicitly tells us that σ can be obtained from ρ by a bistochastic
completely positive map, of the special kind known from Eq. (10.71) as random
external fields. The converse holds:

Lemma 12.1 (Quantum HLP) There exists a completely positive
bistochastic map transforming ρ into σ if and only if σ ≺ ρ,

ρ
bistochastic−→ σ ⇔ σ ≺ ρ. (12.73)

To prove ‘only if’, introduce unitary matrices such that diag(~λ(σ)) = UσU †

and diag(~λ(ρ)) = V ρV †. Given a bistochastic map such that Φρ = σ we
construct a new bistochastic map Ψ according to

ΨX ≡ U [Φ(V †XV )]U † . (12.74)
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By construction Ψ
(
diag(~λ(ρ))

)
= diag(~λ(σ)). Next we introduce a complete

set of projectors Pi onto the basis vectors, in the basis we are in. We use them
to construct a matrix whose elements are given by

Bij ≡ TrPiΨPj . (12.75)

We recognize that B is a bistochastic matrix, and finally we observe that

λi(σ) = TrPi diag(~λ(σ)) = TrPiΨ

(∑
j

Pjλj(ρ)

)
=

∑
j

Bijλj(ρ) , (12.76)

where we used linearity in the last step. An appeal to the classical HLP lemma
concludes the proof.

Inspired by the original Horn’s lemma (Section 2.1) one may ask if the word
bistochastic in the quantum HLP lemma might be replaced by unistochastic.
This we do not know. However, a concrete result may be obtained if one allows
the size of ancilla to be large (Horodecki et al., 2003a).
Weak version of quantum Horn’s lemma. If two quantum states of size
N satisfy ρ′ ≺ ρ, then there exists a K-unistochastic map transforming ρ into
ρ′ up to an arbitrary precision controlled by K.
To prove this one uses the HLP lemma to find a bistochastic matrix B of size
N which relates the spectra, λ′ = Bλ, of the states ρ′ and ρ. Then using the
Birkhoff theorem one represents the matrix by a convex sum of permutations,
B =

∑j

m=1 αmPm with j ≤ N2 − 2N + 2. The next step consists in setting
the size of the ancilla to M = KN and a decomposition M =

∑j

m=1 Mm

such that the fractions Mm/M approximate the weights αm. The initial state
ρ can be rotated unitarily, so we may assume it is diagonal and commutes
with the target ρ′. The spectrum of the extended state ρ ⊗ 1M consists of
N degenerate blocks, each containing M copies of the same eigenvalue λi.
Let us split each block into j groups of Mm elements each and allow every
permutation Pm to act Mm times, permuting elements from the mth group
of each block. This procedure determines the unitary matrix U of size KN2

which defines the K-unistochastic operation (see Eq. (10.64)). The partial
trace over an M -dimensional environment produces state ρ′′ with the spectrum
λ′′ = Baλ, where Ba =

∑j

m=1(Mm/M)Pm. The larger K, the better the matrix
Ba approximates B, so one may produce an output state ρ′′ arbitrarily close
to the target ρ′.

An interesting example of a completely positive and bistochastic map is the
operation of coarse graining with respect to a given Hermitian operator H
(e.g. a Hamiltonian). We denote it by ΦH

CG, and define it by

ρ → ΦH
CG(ρ) =

N∑
i=1

PiρPi =
N∑

i=1

pi |hi〉〈hi| , (12.77)

where the Pi project onto the eigenvectors |hi〉 of H (assumed non-degenerate
for simplicity). In more mundane terms, this is the map that deletes all off-
diagonal elements from a density matrix. It obeys Schur–Horn’s theorem:
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Figure 12.3. Coarse graining a density matrix.

Theorem 12.4 (Schur–Horn’s) Let ρ be an Hermitian matrix, ~λ
its spectrum, and ~p its diagonal elements in a given basis. Then

~p ≺ ~λ . (12.78)

Conversely, if this equation holds then there exists an Hermitian matrix with
spectrum ~λ whose diagonal elements are given by ~p.

We prove this one way. There exists a unitary matrix that diagonalizes the
matrix, so we can write

pi = ρii =
∑
j,k

UijλjδjkU
†
ki =

∑
j

|Uij|2λj . (12.79)

The vector ~p is obtained by acting on ~λ with a unistochastic, hence bistochastic,
matrix, and the result follows from Horn’s lemma (Section 2.1).13

The Schur–Horn theorem has weighty consequences. It is clearly of interest
when one tries to quantify decoherence, since the entropy of the coarse grained
density matrix ΦH

CG will be greater than that of ρ. It also leads to an interesting
definition of the von Neumann entropy, that again brings out the distinguished
status of the latter. Although we did not bring it up in Section 12.2, we could
have defined the entropy of a density matrix relative to any POVM {E}, as
the Shannon entropy of the probability distribution defined cooperatively by
the POVM and the density matrix. That is, S(ρ) ≡ S(~p), where pi = TrEiρ.
To make the definition independent of the POVM, we could then minimize
the resulting entropy over all possible POVMs, so a possible definition that
depends only on ρ itself would be

S(ρ) ≡ min
POVM

S(~p) , pi = TrEiρ . (12.80)

But the entropy defined in this way is equal to the von Neumann entropy. The
Schur–Horn theorem shows this for the special case that we minimize only
over projective measurements, and the argument can be extended to cover the
general case. Note that Wehrl’s inequality (12.63) is really a special case of
this observation, since the Wehrl entropy is the entropy that we get from the
POVM defined by the coherent states.

From a mathematical point of view, the Schur–Horn theorem is much more
interesting than it appears to be at first sight. To begin to see why, we can
restate it: consider the map that takes an Hermitian matrix to its diagonal
13 This part of the theorem is due to Schur (1923). Horn (1954) proved the converse.
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entries. Then the theorem says that the image of the space of Hermitian
matrices, under this map, is a convex polytope whose corners are the N !
fixed points of the map. Already it sounds more interesting! Starting from this
example, mathematicians have developed a theory that deals with maps from
connected symplectic manifolds, and conditions under which the image will
be the convex hull of the image of the set of fixed points of a group acting on
the manifold.14

12.6 Entropy dynamics

What we have not discussed so far is the role of entropy as an arrow of time
– which is how entropy has been regarded ever since the word was coined by
Clausius. If this question is turned into the question how the von Neumann
entropy of a state changes under the action of some quantum operation Φ :
ρ → ρ′, it does have a clear cut answer. Because of Eq. (12.48), it follows from
monotonicity of relative entropy that a CP map increases the von Neumann
entropy of every state if and only if it is unital (bistochastic), that is if it
transforms the maximally mixed state into itself. For quantum operations that
are stochastic, but not bistochastic, this is no longer true – for such quantum
channels the von Neumann entropy may decrease. Consider for instance the
decaying or amplitude damping channel (Section 10.7), which describes the
effect of spontaneous emission on a qubit. It sends any mixed state towards
the pure ground state, for which the entropy is zero. But then this is not an
isolated system, so this would not worry Clausius.

Even for bistochastic maps, when the von Neumann entropy does serve as
an arrow of time, it does not point very accurately to the future (see Figure
12.4). Relative to any given state, the state space splits into three parts, the
‘future’ F that consists of all states that can be reached from the given state by
bistochastic maps, the ‘past’ P that consists of all states from which the given
state can be reached by such maps, and a set of incomparable states that we
denote by C in the figure. This is reminiscent of the causal structure in special
relativity, where the light cone divides Minkowski space into the future, the
past, and the set of points that cannot communicate in either direction with a
point sitting at the vertex of the light cone. There is also the obvious difference
that the actual shape of the ‘future’ depends somewhat on the position of the
given state, and very much so when its eigenvalues degenerate. The isoentropy
curves of the von Neumann entropy do not do justice to this picture. To do
better one would have to bring in a complete set of Schur concave functions
such as the Rényi entropies (see Figure 2.14).

Naturally, the majorization order may not be the last word on the future.

14 For an overview of this theory, and its connections to symplectic geometry and to interesting
problems of linear algebra, see Knutson (2000). A related problem of finding constraints between
spectra of composite systems and their partial traces was recently solved by Bravyi (2004) and
Klyachko (n.d.).
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Figure 12.4. The eigenvalue simplex for N = 3: (a) a Weyl chamber; the shaded
region is accessible from ρ with bistochastic maps. (b) The shape of the ‘light
cone’ depends on the degeneracy of the spectrum. F denotes Future, P Past,
and C the noncomparable states. (c) Splitting the simplex into Weyl chambers.

Depending on the physics, it may well be that majorization provides a necessary
but not sufficient condition for singling it out.15

We turn from the future to a more modest subject, namely the entropy of an
operation Φ. This can be conveniently defined as the von Neumann entropy of
the state that corresponds to the operation via the JamioÃlkowski isomorphism,
namely as

S(Φ) ≡ S

(
1
N

DΦ

)
∈ [0, ln N2] . (12.81)

where DΦ is the dynamical matrix defined in Section 10.3. Generalized entropies
may be defined similarly. The entropy of an operation vanishes if DΦ is of
rank one, that is to say if the operation is a unitary transformation. The
larger the entropy S of an operation, the more terms enter effectively into
the canonical Kraus form, and the larger are the effects of decoherence in the
system. The maximum is attained for the completely depolarizing channel Φ∗.
The entropy for an operation of the special form (10.71), that is for random
external fields, is bounded from above by the Shannon entropy S(~p). The norm√

TrΦΦ† = ||Φ||HS may also be used to characterize the decoherence induced
by the map. It varies from unity for Φ∗ (total decoherence) to N for a unitary
operation (no decoherence) – see Table 10.2.

A different way to characterize a quantum operation is to compute the
amount of entropy it creates when acting on an initially pure state. In Section
2.3 we defined the entropy of a stochastic matrix with respect to a fixed
probability distribution. This definition, and the bound (2.39), has a quantum
analogue due to Lindblad (1991), and it will lead us to our present goal.
Consider a CP map Φ represented in the canonical Kraus form ρ′ =

∑r

i=1 AiρA†
i .

Define an operator acting on an auxiliary r-dimensional space Hr by

σij = TrρA†
jAi . (12.82)

15 For a lovely example from thermodynamics, see Alberti and Uhlmann (1981).
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In Problem 10.3 we show that σ is a density operator in its own right. The
von Neumann entropy of σ depends on ρ, and equals S(Φ), as defined above,
when ρ is the maximally mixed state. Next we define a density matrix in the
composite Hilbert space HN ⊗Hr,

ω =
r∑

i=1

r∑
j=1

AiρA†
j ⊗ |i〉〈j| = WρW † , (12.83)

where |i〉 is an orthonormal basis in Hr. The operator W maps a state |φ〉
in HN into

∑r

j=1 Aj|φ〉 ⊗ |j〉, and the completeness of the Kraus operators
implies that W †W = 1N . It follows that S(ω) = S(ρ). Since it is easy to see
that TrNω = σ and Trrω = ρ, we may use the triangle inequalities (12.28) and
(12.32), and some slight rearrangement, to deduce that

|S(ρ)− S(σ)| ≤ S(ρ′) ≤ S(σ) + S(ρ) , (12.84)

in exact analogy to the classical bound (2.39). If the intial state is pure, that
is if S(ρ) = 0, we find that the final state has entropy S(σ). For this reason
S(σ) is sometimes referred to as the entropy exchange of the operation.

Finally, and in order to give a taste of a subject that we omit, let us define
the capacity of a quantum channel Φ. The capacity for a given state is

CΦ(ρ) ≡ max
E

∑
i

piS(Φσi||Φρ) = min
E

[
S(Φρ)−

∑
i

piS(Φσi)
]

. (12.85)

The quantity that is being optimized will be discussed, under the name Jensen–
Shannon divergence, in Section 13.1. The optimization is performed over all
ensembles E = {σi; pi} such that ρ =

∑
i piσi. It is not an easy one to carry

out. In the next step the channel capacity is defined by optimizing over the
set of all states:

CHol(Φ) ≡ max
ρ

[
CΦ(ρ)

]
. (12.86)

There is a theorem due to Holevo (1973) which employs these definitions to
give an upper bound on the information carrying capacity of a noisy quantum
channel. Together with the quantum noiseless coding theorem, this result
brings quantum information theory up to the level achieved for classical information
theory in Shannon’s classical work (Shannon, 1948). But these matters are
beyond the scope of our book. Let us just mention that there are many things
that are not known. Notably there is an additivity conjecture stating that
CHol(Φ1 ⊗ Φ2) = CHol(Φ1) + CHol(Φ2). In one respect its status is similar to
that of strong subadditivity before the latter was proven – it is equivalent to
many other outstanding conjectures.16

16 See the review by Amosov, Holevo and Werner (n.d.) and the work by Shor (n.d.).
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Problems

¦ Problem 12.1 Show, for any positive operator A, that

ln (A + xB)− ln A =
∫ ∞

0

1
A + u

xB
1

A + xB + u
du . (12.87)

¦ Problem 12.2 Compute the two contour integrals

S(ρ) = − 1
2πi

∮
(ln z)Tr

(
1− ρ

z

)−1

dz (12.88)

and

SQ(ρ) = − 1
2πi

∮
(ln z)det

(
1− ρ

z

)−1

dz , (12.89)

with a contour that encloses all the eigenvalues of ρ. The second quantity is
known as subentropy (Jozsa, Robb and Wootters, 1994).

¦ Problem 12.3 Prove Donald’s identity (Donald, 1987): for any mixed
state ρ =

∑
k pkρk and another state σ

∑
k

pk S(ρk||σ) =
∑

k

pk S(ρk||ρ) + S(ρ||σ) . (12.90)

¦ Problem 12.4 Compute the Wehrl entropy for the Husimi function

(12.65) of a two qubit pure state written in its Schmidt decomposition.

¦ Problem 12.5 Prove that Euclidean distances between orbits can be
read off from a picture of the Weyl chamber (i.e. prove Eq. (8.52)).

¦ Problem 12.6 Prove that
(
det(A+B)

)1/N ≥ (detA)1/N +(detB)1/N ,
where A and B are positive matrices of size N .

¦ Problem 12.7 For any operation Φ given by its canonical Kraus form
(10.55) one defines its purity Hamiltonian

Ω ≡
r∑

i=1

r∑
j=1

A†
jAi ⊗A†

iAj, (12.91)

the trace of which characterizes an average decoherence induced by Φ (Zanardi
and Lidar, 2004). Show that TrΩ = ||Φ||2HS = TrD2, hence it is proportional to
the purity Tr ρ2

Φ of the state corresponding to Φ in the isomorphism (11.22).



13 Distinguishability measures

Niels Bohr supposedly said that if quantum mechanics did not make you
dizzy then you did not understand it. I think that the same can be said
about statistical inference.

Robert D. Cousins

In this chapter we quantify how easy it may be too distinguish probability
distributions from each other (a discussion that was started in Chapter 2).
The issue is a very practical one and arises whenever one is called upon to
make a decision based on imperfect data. There is no unique answer because
everything depends on the data – the l1-distance appears if there has been just
one sampling of the distributions, the relative entropy governs the approach
to the ‘true’ distribution as the number of samplings goes to infinity, and so
on.

The quantum case is even subtler. A quantum state always stands ready to
produce a large variety of classical probability distributions, depending on the
choice of measurement procedure. It is no longer possible to distinguish pure
states from each other with certainty, unless they are orthogonal. The basic
idea behind the quantum distinguishability measures is the same as that which
allowed us, in Section 5.3, to relate the Fubini–Study metric to the Fisher–Rao
metric. We will optimize over all possible measurements.

13.1 Classical distinguishability measures

If a distance function has an operational significance as a measure of statistical
distinguishability, then we expect it to be monotone (and decreasing) under
general stochastic maps. Coarse graining means that information is being
discarded, and this cannot increase distinguishability. From Čencov’s theorem
(Section 2.5) we know that the Fisher–Rao metric is the only Riemannian
metric on the probability simplex that is monotone under general stochastic
maps. But there is another simple distance measure that does have the desirable
property, namely the l1-distance from Eq. (1.55). The proof of monotonicity
uses the observation that the difference of two probability vectors can be
written in the form

pi − qi = N+
i −N−

i , (13.1)
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Figure 13.1. Coarse graining, according to Eq. (13.3), collapses the probability
simplex to an edge. The l1-distance never increases (the hexagon is unchanged),
but the l2-distance sometimes does (the circle grows).

where N+ and N− are two positive vectors with orthogonal support, meaning
that for each component i at least one of N+

i and N−
i is zero. We follow this

up with the triangle inequality, and condition (ii) from Eq. (2.4) that defines
a stochastic matrix T :

||Tp− Tq||1 = ||TN+ − TN−||1 ≤ ||TN+||1 + ||TN−||1
=

1
2

∑
i,j

TijN
+
j +

1
2

∑
i,j

TijN
−
j

(13.2)

=
1
2

∑
j

(N+
j + N−

j )

= ||p− q||1 .

By contrast, the Euclidean l2-distance is not monotone. To see this, consider
a coarse graining stochastic matrix such as

T =
[

1 0 0
0 1 1

]
. (13.3)

Applying this transformation has the effect of collapsing the entire simplex
onto one of its edges. If we draw a picture of this, as in Figure 13.1, it becomes
evident why p = 1 is the only value of p for which the lp-distance is monotone
under this map. The picture should also make it clear that it is coarse graining
maps like (13.3) that may cause problems with monotonicity – monotonicity
under bistochastic maps, that cause a contraction of the probability simplex
towards its centre, is much easier to ensure. In fact the flat l2-distance is
monotone under bistochastic maps. Incidentally, it is clear from the picture
that the l1-distance succeeds in being monotone (under general stochastic
maps) only because the distance between probability distributions with orthogonal
support is constant (and maximal). This is a property that the l1-distance
shares with the monotone Fisher–Rao distance – and if a distance is to quantify
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how easily two probability distributions can be distinguished, then it must be
monotone.

The question remains to what extent, and in what sense, our various monotone
notions of distance – the Bhattacharyya and Hellinger distances, and the l1-
distance – have any clear-cut operational significance. For the latter, an answer
is known. Consider two probability distributions P and Q over N events, and
mix them, so that the probability for event i is

ri = π0pi + π1qi . (13.4)

A possible interpretation here is that Alice sends Bob a message in the form
of an event drawn from one of two possible probability distributions. Bob
is ignorant of which particular distribution Alice uses, and his ignorance is
expressed by the distribution (π0, π1). Having sampled once, Bob is called upon
to guess what distribution was used by Alice. It is clear – and this answer is
given stature with technical terms like ‘Bayes’ decision rule’ – that his best
guess, given that event i occurs, is to guess P if pi > qi, and Q if qi > pi.
(If equality holds the two guesses are equally good.) Given this strategy, the
probability that Bob’s guess is right is

PR(P, Q) =
N∑

i=1

max{π0pi, π1qi} (13.5)

and the probability of error is

PE(P,Q) =
N∑

i=1

min{π0pi, π1qi} . (13.6)

Now consider the case π0 = π1 = 1/2. Then Bob has no reason to prefer any
distribution in advance. In this situation it is easily shown that PR−PE = D1,
or equivalently

D1(P, Q) =
1
2

N∑
i=1

|pi − qi| = 1− 2PE(P, Q) , (13.7)

that is, the l1-distance grows as the probability of error goes down. In this
sense the l1-distance has a precise meaning, as a measure of how reliably two
probability distributions can be distinguished by means of a single sampling.

Of course it is not clear why we should restrict ourselves to one sampling;
the probability of error goes down as the number of samplings N increases.
There is a theorem that governs how it does so:

Theorem 13.1 (Chernoff’s) Let P
(N)
E (P, Q) be the probability of

error after N samplings of two probability distributions. Then

P
(N)
E (P, Q) ≤

(
min

α∈[0,1]

N∑
i=1

pα
i q1−α

i

)N

. (13.8)

The bound is approached asymptotically when N goes to infinity.
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Unfortunately it is not easy to obtain an analytic expression for the Chernoff
bound (the one that is approached asymptotically), but we do not have to
find the minimum in order to obtain useful upper bounds. The non-minimal
bounds are of interest in themselves. They are related to the relative Rényi
entropy

Iq(P, Q) =
1

1− q
ln

[ N∑
i=1

pq
i q1−q

i

]
. (13.9)

When q = 1/2 the relative Rényi entropy is symmetric, and it is a monotone
function of the geodesic Bhattacharyya distance DBhatt from Eq. (2.56).

In the limit q → 1, the relative Rényi entropy tends to the usual relative
entropy S(P ||Q), which figured in a different calculation of the probability of
error in Section 2.3. The setting there was that we made a choice between
the distributions P and Q, using a large number of samplings, in a situation
where it happened to be the case that the statistics were governed by Q. The
probability of erroneously concluding that the true distribution is P was shown
to be

PE(P, Q) ∼ e−NS(P ||Q) . (13.10)

The asymmetry of the relative entropy reflects the asymmetry of the situation.
In fact, suppose the choice is between a fair coin and a biased coin that only
shows heads. Using Eq. (2.32) we find that

PE(fair||biased) = e−N·∞ = 0 and PE(biased||fair) = e−N ln 2 =
1
2N

. (13.11)

This is exactly what intuition dictates; the fair coin can produce the frequencies
expected from the biased coin, but not the other way around.

But sometimes we insist on true distance functions. Relative entropy cannot
be turned into a true distance just by symmetrization, because the triangle
inequality will still be violated. However, there is a simple modification that
does lead to a proper distance function. Given two probability distributions P
and Q, let us define their mean R by

R =
1
2
P +

1
2
Q ⇔ ri =

1
2
pi +

1
2
qi . (13.12)

Then the Jensen–Shannon divergence is defined by

J(P, Q) ≡ 2S(R)− S(P )− S(Q) , (13.13)

where S is the Shannon entropy. An easy calculation shows that this is related
to relative entropy:

J(P, Q) =
N∑

i=1

(
pi ln

2pi

pi + qi

+ qi ln
2qi

pi + qi

)
= S(P ||R) + S(Q||R) .

(13.14)

Interestingly, the function D(P, Q) =
√

J(P, Q) is not only symmetric but
obeys the triangle inequality as well, and hence it qualifies as a true distance
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function – moreover as a distance function that is consistent with the Fisher–
Rao metric.1

The Jensen–Shannon divergence can be generalized to a measure of the
divergence between an arbitrary number of M probability distributions P(m),
weighted by some probability distribution π over M events:

J(P(1), P(2), . . . , P(M)) ≡ S

(
M∑

m=1

πmP(m)

)
−

M∑
m=1

πmS(P(m)) . (13.15)

It has been used, in this form, in the study of DNA sequences – and in the
definition (12.85) of the capacity of a quantum channel. Its interpretation
as a distinguishability measure emerges when we sample from a statistical
mixture of probability distributions. Given that the Shannon entropy measures
the information gained when sampling a distribution, the Jensen–Shannon
divergence measures the average gain of information about how that mixture
was made (that is about π), since we subtract that part of the information
that concerns the sampling of each individual distribution in the mixture.

The reader may now have begun to suspect that there are many measures
of distinguishability available, some of them more useful, and some of them
easier to compute, than others. Fortunately there are inequalities that relate
different measures of distinguishability. An example is the Pinsker inequality
that relates the l1-distance to the relative entropy:

S(P ||Q) ≥ 1
2

(
N∑

i=1

|pi − qi|
)2

= 2D2
1(P,Q) . (13.16)

This is a stronger bound than (2.30) since D1 ≥ D2. The proof is quite
interesting. First one uses brute force to establish that

2(p− q)2 ≤ p ln
p

q
+ (1− p) ln

1− p

1− q
(13.17)

wherever 0 ≤ q ≤ p ≤ 1. This is the Pinsker inequality for N = 2. We are
going to reduce the general case to this. Without loss of generality we assume
that pi ≥ qi for 1 ≤ i ≤ K, and pi < qi otherwise. Then we define a stochastic
matrix T by

[
T11 . . . T1K T1K+1 . . . T1N

T21 . . . T2K T2K+1 . . . T2N

]
=

[
1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

]
.

(13.18)
We get two binomial distributions TP and TQ, and define

p ≡
K∑

i=1

pi =
N∑

i=1

T1ipi , q ≡
K∑

i=1

qi =
N∑

i=1

T1iqi . (13.19)

It is easy to see that D1(P,Q) = p− q. Using this and Eq. (13.17), we get

2D2
1(P,Q) ≤ S(TP ||TQ) ≤ S(P ||Q) . (13.20)

1 This is a recent result; see Endres and Schindelin (2003). For a survey of the Jensen–Shannon
divergence and its properties, see Lin (1991).
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Thus monotonicity of relative entropy was used in the punchline.
The Pinsker inequality is not sharp; it has been improved to2

S(P ||Q) ≥ 2D2
1 +

4
9
D4

1 +
32
135

D6
1 +

7072
42525

D8
1 . (13.21)

Relative entropy is unbounded from above. But it can be shown (Lin, 1991)
that

2D1(P, Q) ≥ J(P, Q) . (13.22)

Hence the l1-distance bounds the Jensen–Shannon divergence from above.

13.2 Quantum distinguishability measures

We now turn to the quantum case. When density matrices rather than probability
distributions are sampled we face new problems, since the probability distribution
P (E, ρ) that governs the sampling will depend, not only on the density matrix
ρ, but on the POVM that represents the measurement as well. The probabilities
that we actually have to play with are given by

pi(E, ρ) = TrEiρ , (13.23)

where {Ei}K
i=1 is some POVM. The quantum distinguishability measures will

be defined by varying over all possible POVMs until the classical distinguishability
of the resulting probability distributions is maximal. In this way any classical
distinguishability measure will have a quantum counterpart – except that for
some of them, notably for the Jensen–Shannon divergence, the optimization
over all POVMs is very difficult to carry out, and we will have to fall back on
bounds and inequalities.3

Before we begin, let us define the Lp-norm of an operator A by

||A||p ≡
(1

2
Tr|A|p

)1/p

, (13.24)

where the absolute value of the operator was defined in Eq. (8.12). The factor
of 1/2 is included in the definition because it is convenient when we restrict
ourselves to density matrices. In obvious analogy with Section 1.4 we can now
define the Lp-distance between two operators as

Dp(A,B) ≡ ||A−B||p . (13.25)

Like all distances based on a norm, these distances are useful because convex
mixtures will appear as (segments of) metric lines. The factor 1/2 in the
definition ensures that all the Lp-distances coincide when N = 2. For 2 × 2
matrices, an Lp ball looks like an ordinary ball. Although the story becomes
more involved when N > 2, it will always be true that all the Lp-distances

2 Inequality (13.16) is due to Pinsker (1964), while (13.21) is due to Topsøe (2001).
3 The subject of quantum decision theory, which we are entering here, was founded by Helstrom

(1976) and Holevo (1982). A very useful (and more modern) account is due to Fuchs (1996); see
also Fuchs and van de Graaf (1999). Here we give some glimpses only.
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Figure 13.2. Some balls of constant radius, as measured by the trace distance,
inside a three-dimensional slice of the space of density matrices (obtained by
rotating the eigenvalue simplex around an axis).

coincide for a pair of pure states, simply because a pair of pure states taken
in isolation always span a two-dimensional Hilbert space. We may also observe
that, given two density matrices ρ and σ, the operator ρ−σ can be diagonalized,
and the distance Dp(ρ, σ) becomes the lp–distance expressed in terms of the
eigenvalues of that operator.

For p = 2 the Lp-distance is Euclidean. It has the virtue of simplicity, and
we have already used it extensively. For p = 1 we have the trace distance 4

Dtr(A,B) =
1
2

Tr|A−B| =
1
2

DTr(A,B) . (13.26)

It will come as no surprise to learn that the trace distance will play a role
similar to that of the l1-distance in the classical case. It is interesting to get
some understanding of the shape of its unit ball. All Lp-distances can be
computed from the eigenvalues of the operator ρ−σ, and therefore Eq. (1.56)
for the radii of its in- and outspheres can be directly taken over to the quantum
case. But there is a difference between the trace and the l1-distances, and we
see it as soon as we look at a set of density matrices that cannot be diagonalized
at the same time (Figure 13.2).

Thus equipped, we take up the task of quantifying the probability of error in
choosing between two density matrices ρ and σ, based on a single measurement.
Mathematically, the task is to maximize the l1-distance over all possible POVMs
{Ei}, given ρ and σ. Thus our quantum distinguishability measure D is defined
by

D(ρ, σ) ≡ max
E

D1

(
P (E, ρ), P (E, σ)

)
. (13.27)

As the reader may suspect already, the answer is the trace distance. We will
carry out the maximization for projective measurements only – the generalization
to arbitrary POVMs being quite easy – and start with a lemma that contains
a key fact about the trace distance:

4 For convenience we are going to use, in parallel, two symbols, DTr = 2 Dtr.
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Lemma 13.1 (Trace distance) If P is any projector onto a subspace
of Hilbert space then

Dtr(ρ, σ) ≥ TrP (ρ− σ) = D1(ρ, σ) . (13.28)

Equality holds if and only if P projects onto the support of N+, where ρ−σ =
N+ −N−, with N+ and N− being positive operators of orthogonal support.

To prove this, observe that by construction TrN+ = TrN− (since their difference
is a traceless matrix), so that Dtr = TrN+. Then

TrP (ρ− σ) = TrP (N+ −N−) ≤ TrPN+ ≤ TrN+ = Dtr(ρ, σ) . (13.29)

Clearly, equality holds if and only if P = P+, where P+N− = 0 and P+N+ =
N+.

The useful properties of the trace distance now follow suit:

Theorem 13.2 (Helstrom’s) Let pi = TrEiρ and qi = TrEiσ.
Then

Dtr(ρ, σ) = max
E

D1(P, Q) , (13.30)

where we maximize over all POVMs.

The proof (for projective measurements) begins with the observation that

Tr|Ei(ρ− σ)| = Tr|Ei(N+ −N−)| ≤ TrEi(N+ + N−) = TrEi|ρ− σ| . (13.31)

For every POVM, and the pair of probability distributions derived from it,
this implies that

D1(P,Q) =
1
2

∑
i

Tr|Ei(ρ− σ)| ≤ 1
2

∑
i

TrEi|ρ− σ| = Dtr(ρ, σ) . (13.32)

The inequality is saturated when we choose a POVM that contains one projector
onto the support of N+ and one projector onto the support of N−. The
interpretation of Dtr(ρ, σ) as a quantum distinguishability measure for ‘one
shot samplings’ is thereby established.

It is important to check that the trace distance is monotone under trace
preserving CP maps ρ → Φ(ρ). This is not hard to do if we first use our
lemma to find a projector P such that

Dtr(Φ(ρ), Φ(σ)) = TrP (Φ(ρ)− Φ(σ)) . (13.33)

We decompose ρ−σ as above. Since the map is trace preserving it is true that
TrΦ(N+) = TrΦ(N−). Then

Dtr(ρ, σ) =
1
2
(N+ + N−) =

1
2
(Φ(N+) + Φ(N−)) = TrΦ(N+)

(13.34)
≥ TrPΦ(N+) ≥ TrP (Φ(N+)− Φ(N−)) = TrP (Φ(ρ)− Φ(σ))

– and the monotonicity of the trace distance follows when we take into account
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how P was selected. The lemma can also be used to prove a strong convexity
result for the trace distance, namely,

Dtr

(∑
i

piρi,
∑

i

qiσi

)
≤ D1(P, Q) +

∑
i

piDtr(ρi, σi) . (13.35)

We omit the proof (Nielsen and Chuang, 2000). Joint convexity follows if we
set P = Q.

The trace distance sets limits on how much the von Neumann entropy of
a given state may change under a small perturbation. To be precise, we have
Fannes’ lemma:

Lemma 13.2 (Fannes’) Let the quantum states ρ and σ act on an
N -dimensional Hilbert space, and be close enough in the sense of the trace
metric so that Dtr(ρ, σ) ≤ 1/(2e). Then

|S(ρ)− S(σ)| ≤ 2Dtr(ρ, σ) ln
N

2Dtr(ρ, σ)
. (13.36)

Again we omit the proof (Fannes, 1973), but we take note of a rather interesting
intermediate step: let the eigenvalues of ρ and σ be ri and si, respectively, and
assume that they have been arranged in decreasing order (e.g. r1 ≥ r2 ≥ · · · ≥
rN). Then

Dtr(ρ, σ) ≥ 1
2

∑
i

|ri − si| . (13.37)

The closeness assumption in Fannes’ lemma has to do with the fact that the
function −x lnx is monotone on the interval (0, 1/e). A weaker bound holds if
it is not fulfilled.

The relative entropy between any two states is bounded by their trace
distance by a quantum analogue of the Pinsker inequality (13.16)

S(ρ||σ) ≥ 2[Dtr(ρ, σ)]2 . (13.38)

The idea of the proof (Hiai, Ohya and Tsukada, 1981) is similar to that used
in the classical case, that is, one relies on Eq. (13.17) and on the monotonicity
of relative entropy.

What about relative entropy itself? The results of Hiai and Petz (1991),
briefly reported in Section 12.3, can be paraphrased as saying that, in certain
well-defined circumstances, the probability of error when performing measurements
on a large number N of copies of a quantum system is be given by

PE(ρ, σ) = e−NS(ρ||σ) . (13.39)

That is to say, this is the smallest achievable probability of erroneously concluding
that the state is ρ, given that the state in fact is σ. Although our account of
the story ends here, the story itself does not. Let us just mention that the step
from one to many samplings turns into a giant leap in quantum mechanics,
because the set of all possible measurements on density operators such as
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ρ ⊗ ρ ⊗ · · · ⊗ ρ will include sophisticated measurements performed on the
whole ensemble, that cannot be described as measurements on the systems
separately.5

13.3 Fidelity and statistical distance

Among the quantum distinguishability measures, we single out the fidelity
function for special attention. It is much used, and it is closely connected to
the Bures geometry of quantum states. It was defined in Section 9.4 as

F (ρ1, ρ2) =
(
Tr

√√
ρ1ρ2

√
ρ1

)2

=
(
Tr|√ρ1

√
ρ2|

)2

. (13.40)

Actually, in Section 9.4 we worked mostly with the root fidelity
√

F (ρ1, ρ2) = Tr
√√

ρ1ρ2

√
ρ1 . (13.41)

But in some contexts fidelity is the more useful notion. If both states are pure
it equals the transition probability between the states. A little more generally,
suppose that one of the states is pure, ρ1 = |ψ〉〈ψ|. Then ρ1 equals its own
square root and in fact

F (ρ1, ρ2) = 〈ψ|ρ2|ψ〉 . (13.42)

In this situation fidelity has a direct interpretation as the probability that the
state ρ2 will pass the yes/no test associated to the pure state ρ1. It serves as
a figure of merit in many statistical estimation problems.

This still does not explain why we use the definition (13.40) of fidelity – for
the quantum noiseless coding theorem we used Eq. (13.42) only, and there are
many expressions that reduce to this equation when one of the states is pure
(such as Trρ1ρ2). The definition not only looks odd, it has obvious drawbacks
too: in order to compute it we have to compute two square roots of positive
operators – that is to say that we must go through the labourious process of
diagonalizing a Hermitian matrix twice. But on further inspection the virtues
of fidelity emerge. The key statement about it is Uhlmann’s theorem (proved
in Section 9.4). The theorem says that F (ρ1, ρ2) equals the maximal transition
probability between a pair of purifications of ρ1 and ρ2. It also enjoys a number
of other interesting properties (Jozsa, 1994):

(1) 0 ≤ F (ρ1, ρ2) ≤ 1 ;
(2) F (ρ1, ρ2) = 1 if and only if ρ1 = ρ2 and F (ρ1, ρ2) = 0 if and only if ρ1 and

ρ2 have orthogonal supports;
(3) Symmetry, F (ρ1, ρ2) = F (ρ2, ρ1) ;
(4) Concavity, F (ρ, aρ1 + (1− a)ρ2) ≥ aF (ρ, ρ1) + (1− a)F (ρ, ρ2) ;
(5) Multiplicativity, F (ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) = F (ρ1, ρ3) F (ρ2, ρ4) ;
(6) Unitary invariance, F (ρ1, ρ2) = F (Uρ1U

†, Uρ2U
†) ;

5 For further discussion of this interesting point, see Peres and Wootters (1991) and Bennett,
DiVincenzo, Mor, Shor, Smolin and Terhal (1999b).
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(7) Monotonicity, F (Φ(ρ1), Φ(ρ2)) ≥ F (ρ1, ρ2), where Φ is a trace preserving
CP map.

Root fidelity enjoys all these properties too, as well as the stronger property
of joint concavity in its arguments.

It is interesting to prove property (3) directly. To do so, observe that the
trace can be written in terms of the square roots of the non-zero eigenvalues
λn of a positive operator, as follows:

√
F =

∑
n

√
λn, where AA†|ψn〉 = λn|ψn〉 , A ≡ √

ρ1

√
ρ2 . (13.43)

But an easy argument shows that the non-zero eigenvalues of AA† are the
same as those of A†A:

AA†|ψn〉 = λn|ψn〉 ⇒ A†AA†|ψn〉 = λnA†|ψn〉 . (13.44)

Unless A†|ψn〉 = 0 this shows that any eigenvalue of AA† is an eigenvalue of
A†A. Therefore we can equivalently express the fidelity in terms of the square
roots of the non-zero eigenvalues of A†A, in which case the roles of ρ1 and ρ2

are interchanged.
Property (7) is a key entry: fidelity is a monotone function. The proof

(Barnum, Caves, Fuchs, Jozsa and Schumacher, 1996) is a simple consequence
of Uhlmann’s theorem (Section 9.4). We can find a purification of our density
matrices, such that F (ρ1, ρ2) = |〈ψ1|ψ2〉|2. We can also introduce an environment
– a rather ’mathematical’ environment, but useful for our proof – that starts
in the pure state |0〉, so that the quantum operation is described by a unitary
transformation |ψ〉|0〉 → U |ψ〉|0〉. Then Uhlmann’s theorem implies that F (Φ(ρ1), Φ(ρ2)) ≥
|〈ψ1|〈0|U †U |ψ2〉|0〉|2 = |〈ψ1|〈0|ψ2〉|0〉|2 = F (ρ1, ρ2). Thus the fidelity is non-
decreasing with respect to any physical operation, including measurement.

Finally, we observe that the fidelity may be defined implicitly (Alberti, 1983)
by

F (ρ1, ρ2) = inf
[
Tr(Aρ1) Tr(A−1ρ2)

]
, (13.45)

where the infimum is taken over all invertible positive operators A. There is a
closely related representation of the root fidelity as an infimum over the same
set of operators A (Alberti and Uhlmann, 2000),

√
F (ρ1, ρ2) =

1
2

inf
[
Tr(Aρ1) + Tr(A−1ρ2)

]
, (13.46)

since after squaring this expression only cross terms contribute to (13.45).
In Section 9.4 we introduced the Bures distance as a function of the fidelity.

This is also a monotone function, and no physical operation can increase it.
It follows that the corresponding metric, the Bures metric, is a monotone
metric under stochastic maps, and may be a candidate for a quantum version
of the Fisher–Rao metric. It is a good candidate.6 To see this, let us choose

6 The link between Bures and statistical distance was forged by Helstrom (1976), Holevo (1982),
and Braunstein and Caves (1994). Our version of the argument follows Fuchs and Caves (1995).
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a POVM {Ei}. A given density matrix ρ will respond with the probability
distribution P (E, ρ). For a pair of density matrices we can define the quantum
Bhattacharyya coefficient

B(ρ, σ) ≡ min
E

B
(
P (E, ρ), P (E, σ)

)
= min

E

∑
i

√
piqi , (13.47)

where

pi = TrEiρ , qi = TrEiσ , (13.48)

and the minimization is carried out over all possible POVMs. If we succeed in
doing this, we will obtain a quantum analogue of the Fisher–Rao distance as
a function of B(ρ, σ).

We will assume that both density matrices are invertible. As a preliminary
step, we rewrite pi, using an arbitrary unitary operator U , as

pi = Tr
(
(U
√

ρ
√

Ei)(U
√

ρ
√

Ei)†
)

. (13.49)

Then we use the Cauchy–Schwarz inequality (for the Hilbert–Schmidt inner
product) to set a lower bound:

piqi = Tr
(
(U
√

ρ
√

Ei)(U
√

ρ
√

Ei)†
)

Tr
(
(
√

σ
√

Ei)(
√

σ
√

Ei)†
)

(13.50)

≥
(
Tr

(
(U
√

ρ
√

Ei)(
√

σ
√

Ei)†
))2

.

Equality holds if and only if
√

σ
√

Ei = µi U
√

ρ
√

Ei (13.51)

for some real number µi. Depending on the choice of U , this equation may or
may not have a solution. Anyway, using the linearity of the trace, it is now
easy to see that

∑
i

√
piqi ≥

∑
i

∣∣Tr(U
√

ρEi

√
σ)

∣∣ ≥
∣∣∣∣∣Tr

(∑
i

U
√

ρEi

√
σ

)∣∣∣∣∣ = Tr(U
√

ρ
√

σ) .

(13.52)
The question is: how should we choose U if we wish to obtain a sharp inequality?
We have to make sure that Eq. (13.51) holds, and also that all the terms in
(13.52) are positive. A somewhat tricky argument (Fuchs and Caves, 1995)
shows that the answer is

U =
√√

σρ
√

σ
1√
σ

1√
ρ

. (13.53)

This gives
∑

i

√
piqi ≥

√
F (ρ, σ), where

√
F is the root fidelity. The optimal

Actually the precise sense in which the Bures metric is the analogue of the classical Fisher–Rao
metric is quite subtle (Barndorff-Nielsen and Gill, 2000).
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POVM turns out to be a projective measurement, associated to the Hermitian
observable

M =
1√
σ

√√
σρ
√

σ
1√
σ

. (13.54)

The end result is that

B(ρ, σ) ≡ min
E

B
(
P (E, ρ), P (E, σ)

)
= Tr

√√
σρ
√

σ ≡
√

F (ρ, σ) . (13.55)

It follows that the Bures angle distance DA = cos−1
√

F (ρ, σ) is precisely the
Fisher–Rao distance, maximized over all the probability distributions that one
can obtain by varying the POVM.

For the case when the two states to be distinguished are pure we have already
seen (in Section 5.3) that the Fubini–Study distance is the answer. These two
answers are consistent. But in the pure state case the optimal measurement is
not uniquely determined, while here it is: we obtained an explicit expression for
the observable that gives optimal distinguishability, namely M . The operator
has an ugly look, but it has a name: it is the geometric mean of the operators
σ−1 and ρ. As such it was briefly discussed in Section 12.1, where we observed
that the geometric mean is symmetric in its arguments. From this fact it follows
that M(σ, ρ) = M−1(ρ, σ). Therefore M(σ, ρ) and M(ρ, σ) define the same
measurement. The operator M also turned up in our discussion of geodesics
with respect to the Bures metric, in Eq. (9.57). When N = 2 this fact can be
used to determine M in an easy way: draw the unique geodesic that connects
the two states, given that we view the Bloch ball as a round hemi-3-sphere.
This geodesic will meet the boundary of the Bloch ball in two points, and
these points are precisely the eigenstates of M .

We now have a firm link between statistical distance and the Bures metric,
but we are not yet done with it – we will come back to it in Chapter 14.
Meanwhile, let us compare the three distances that we have brought into play
(Table 13.1). The first observation is that the two monotone distances, trace
and Bures, have the property that the distance between states of orthogonal
support is maximal:

supp(ρ) ⊥ supp(σ) ⇔ Dtr(ρ, σ) = 1 ⇔ DB(ρ, σ) =
√

2 . (13.56)

This is not true for the Hilbert–Schmidt distance. The second observation
concerns a bound (Fuchs and van de Graaf, 1999) that relates fidelity (and
hence the Bures distance) to the trace distance, namely,

1−
√

F (ρ, σ) ≤ Dtr(ρ, σ) ≤
√

1− F (ρ, σ) . (13.57)

To prove that the upper bound holds, observe that it becomes an equality for
a pair of pure states (which is easy to check, since we can work in the two-
dimensional Hilbert space spanned by the two pure states). But Uhlmann’s
theorem means that we can find a purification such that F (ρ, σ) = |〈ψ|φ〉|2. In
the purifying Hilbert space the bound is saturated, and taking a partial trace
can only decrease the trace distance (because of its monotonicity), while the
fidelity stays constant by definition. For the lower bound, see Problem 13.2.
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Table 13.1. Metrics in the space of quantum states

Metric Bures Hilbert–Schmidt Trace

Is it Riemannian ? Yes Yes No
Is it monotone ? Yes No Yes

The Bures and trace distances are both monotone, and the close relation
between them means that, for many purposes, they can be used interchangeably.
There exist also relations between the Bures and Hilbert–Schmidt distances,
but the latter does not have the same fundamental importance. It is evident,
from the way that the Bloch sphere is deformed by an orthographic projection
from the flat Hilbert–Schmidt Bloch ball to the round Bures hemi-3-sphere,
that it may happen that D2(ρa, ρb) > D2(ρc, ρd) while DB(ρa, ρb) < DB(ρc, ρd).
To find a concrete example, place ρa = ρc at the north pole, ρb on the surface,
and ρd on the polar axis through the Bloch ball.

For N = 2 we can use the explicit formula (9.48) for the Bures distance to
compare it with the flat Hilbert–Schmidt distance. Since for one-qubit states
the trace and HS distances agree, we arrive in this way at strict bounds between
DB = DB(ρa, ρb) and Dtr = Dtr(ρa, ρb) valid for any N = 2 states,

√
2− 2

√
1− (Dtr)2 ≤ DB ≤

√
2− 2

√
1−Dtr . (13.58)

The lower bound comes from pure states. The upper bound comes from the
family of mixed states situated on an axis through the Bloch ball, and does not
hold in higher dimensions. However, making use of the relation (9.31) between
Bures distance and fidelity we may translate the general bounds (13.57) into

√
2− 2

√
1− (Dtr)2 ≤ DB ≤

√
2Dtr. (13.59)

This upper bound, valid for an arbitary N , is not strict. Figure 13.3 presents
Bures distances plotted as a function of the trace distance for an ensemble
of 500 pairs consisting of a random pure state and a random mixed state
distributed according to the Hilbert–Schmidt measure (see Chapter 14). The
upper bound (13.58) is represented by a dashed curve, and violated for N > 2.

Problems

¦ Problem 13.1 Prove that the flat metric on the classical probability
simplex is monotone under bistochastic maps.

¦ Problem 13.2 Complete the proof of the inequality (13.57).

¦ Problem 13.3 Derive the inequalities (a): F (σ, ρ) ≥ (
Tr
√

σ
√

ρ
)2

and
(b): F (σ, ρ) ≥ Trσρ. What are the conditions for equality?
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Figure 13.3. Bures distance plotted against trace distance for random density
matrices of size (a) N = 2, (b) N = 3 and (c) N = 4. The single dots are
randomly drawn density matrices, the solid lines denote the bounds (13.59),
and the dotted lines the upper bound in (13.58) which holds for N = 2.



14 Monotone metrics and measures

Probability theory is a measure theory – with a soul.

Mark Kac

Section 2.6 was devoted to classical ensembles, that is to say ensembles defined
by probability measures on the set of classical probability distributions over N
events. In this chapter quantum ensembles are defined by choosing probability
measures on the set of density matrices of size N . A warning should be
issued first: there is no single, naturally distinguished measure in M(N), so
we have to analyse several measures, each of them with different physical
motivations, advantages and drawbacks. This is in contrast to the set of pure
quantum states, where the Fubini–Study measure is the only natural choice
for a measure that defines ‘random states’.

A simple way to define a probability measure goes through a metric. Hence
we will start this chapter with a review of the metrics defined on the set of
mixed quantum states.

14.1 Monotone metrics

In Section 2.5 we explained how the Fisher metric holds its distinguished
position due to the theorem of Čencov, which states that the Fisher metric
is the unique monotone metric on the probability simplex ∆N−1. Now that
the latter has been replaced by the space of quantum states M(N) we must
look again at the question of metrics. Since the uniqueness in the classical
case came from the behaviour under stochastic maps, we turn our attention
to stochastic quantum maps – the completely positive, trace preserving maps
discussed in Chapter 10. A distance D in the space of quantum states M(N) is
called monotone if it does not grow under the action of a stochastic map Φ,

Dmon

(
Φρ,Φσ

) ≤ Dmon

(
ρ, σ

)
. (14.1)

If a monotone distance is geodesic the corresponding metric on M(N) is called
monotone. However, in contrast to the classical case it turns out that there
exist infinitely many monotone Riemannian metrics on the space of quantum
states.
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The appropriate generalization of Čencov’s classical theorem is as follows:1

Theorem 14.1 (Morozova–Čencov–Petz’s) At a point where the
density matrix is diagonal, ρ = diag(λ1, λ2, . . . , λN), every monotone metric
on M(N) assigns the length squared

||A||2 =
1
4

[
C

N∑
i=1

A2
ii

λi

+ 2
N∑

i<j

c(λi, λj) |Aij|2
]

(14.2)

to any tangent vector A, where C is an arbitrary constant, the function c(x, y)
is symmetric,

c(x, y) = c(y, x) , and obeys c(sx, sy) = s−1c(x, y) , (14.3)

and the function f(t) ≡ 1
c(t,1)

is operator monotone.

The tangent vector A is a traceless Hermitian matrix; if A is diagonal then
the second term vanishes and the first term gives the familiar Fisher–Rao
metric on the simplex. But the second term is new. And the result falls far
short of providing uniqueness. Any function f(t) : R+ → R+ will be called a
Morozova–Chentsov (MC) function, if it fulfils three restrictions:

i) f is operator monotone,
ii) f is self inversive: f(1/t) = f(t)/t , (14.4)
iii) f(1) = 1 .

The meaning of condition (i) was discussed at some length in Section 12.1.
Condition (ii) was also encountered there, as the condition for an operator
mean to be symmetric. Here it ensures that the function c(x, y) = 1/[yf(x/y)]
satisfies (14.3). Condition (iii) is a normalization with consequences – it forces
us to set C = 1 in order to avoid a conical singularity at the maximally mixed
state, as we will soon see explicitly in the case N = 2. The metric is now said
to be Fisher adjusted. The Morozova–Čencov–Petz (MCP) theorem can now
be rephrased: there is a one-to-one correspondence between MC functions and
monotone Riemannian metrics.

The infinite-dimensional set F of all MC functions is convex; the set of
operator monotone functions itself is convex, and an explicit calculation shows
that any convex combination of two self-inversive functions is self-inversive. A
monotone Riemannian metric will be called pure, if the corresponding MC
function f is an extreme point of the convex set F. Among all operator
monotone functions on [0, +∞) which are self inversive and obey f(1) = 1,
there exists a minimal and a maximal function (Kubo and Ando, 1980). In
Figure 14.1 we plot three choices:

fmin(t) =
2t

t + 1
, fKM(t) =

t− 1
ln t

, fmax(t) =
1 + t

2
. (14.5)

1 Here we have merged the theorem by Morozova and Čencov (1990) with a theorem by Petz (1996)
that completed it. See also Petz and Sudár (1996), Lesniewski and Ruskai (1999) and, for a guided
tour through the garden of monotone metrics, Petz (1998).
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Figure 14.1. Morozova–Chentsov functions f(t): minimal function for the
maximal metric (dotted), Kubo–Mori metric (dashed), and maximal function
for the minimal Bures metric (solid line). These metrics are Fisher-adjusted,
f(1) = 1. The Bures metric is also Fubini–Study adjusted, f(0) = 1/2.

The maximal MC function fmax is a straight line and gives rise to the Bures
metric, while the minimal function fmin is a hyperbola. The intermediate case
fKM leads to the Kubo–Mori metric used in quantum statistical mechanics.
Our MC functions correspond to

cmin(x, y) =
x + y

2xy
, cKM(x, y) =

ln x− ln y

x− y
, cmax(x, y) =

2
x + y

, (14.6)

so the inverse, 1/c, is equal to the harmonic, logarithmic and arithmetic mean,
respectively. For other interesting choices of f(t), see Problem 14.1.

To familiarize ourselves with the frightening expression (14.2) we can take
a look at the case N = 2, the Bloch ball. We set ρ = 1

2
diag(1 + r, 1 − r) and

find, after a minor calculation, that the metric is

ds2 =
1
4


 dr2

1− r2
+

1

f
(

1−r
1+r

) r2

1 + r
dΩ2


 , 0 < r < 1 . (14.7)

Here dΩ2 is the metric on the unit 2-sphere – the second term corresponds to
the second, tangential, term in Eq. (14.2), and we used spherical symmetry
to remove the restriction to diagonal density matrices. We can now see, given
C = 1, that the condition f(1) = 1 means that the metric is regular at the
origin. We also see that f(0) = 0 means that the area of the boundary is
infinite. If f(0) is finite the boundary is a round 2-sphere. It will have radius
1/2 if f(0) = 1/2; such a metric is said to be Fubini–Study adjusted.

Because the Morozova–Chentsov function f appears in the denominator, the
larger the (normalized) function, the smaller the area of a sphere at constant
r. So, slightly confusingly, the metric that uses fmin will be called the maximal
metric and the metric using fmax will be called the minimal metric.

Let us now go through the geometries corresponding to our three choices of
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the function f(t). If f = fmax then

ds2
min =

1
4

[
dr2

1− r2
+ r2dΩ2

]
. (14.8)

This is the metric on a round 3-sphere of radius 1/2; the scalar curvature
is Rmax = 4 · 6 and the boundary of the Bloch ball is a round 2-sphere
corresponding to the equator of the 3-sphere. This is a Fubini–Study adjusted
metric. In fact it is the Bures metric that we have encountered in Chapters 9
and 13. Since it is given by the maximal function fmax(t), it is distinguished by
being the minimal Fisher-adjusted, monotone Riemannian metric. If f = fmin

then

ds2
max =

1
4

[
1

1− r2
(dr2 + r2dΩ2)

]
. (14.9)

The curvature is everywhere negative and diverges to minus infinity at r = 1.
Indeed the area of the boundary – the space of pure states – is infinite. For
the intermediate choice f = fKM we get

ds2
KM =

1
4

[
dr2

1− r2
+

r

2
ln

(
1 + r

1− r

)
dΩ2

]
. (14.10)

The curvature is zero at the origin and decreases (very slowly at first) to
minus infinity at the boundary, which again has a diverging area although the
divergence is only logarithmic.

Now where does Eq. (14.2) come from? Recall from Section 2.5 that there
were two natural definitions of the (uniquely monotone) Fisher–Rao metric.
We can define it as the Hessian of the relative entropy function, or in terms of
expectation values of score vectors (logarithmic derivatives of the probability
distribution). In the classical case these definitions led to the same metric. But
in the quantum case this is no longer so. The logarithmic derivative of a density
matrix is an ambiguous notion because we have entered a non-commutative
probability theory. To see this let us assume that we are looking at a set of
density matrices ρθ parametrized by some parameters θa. For simplicity we
consider an affine parametrization of M(N) itself,

ρθ =
1
N
1+

N∑
a=1

θaAa , (14.11)

where Aa are a set of traceless Hermitian matrices, that is to say that they
are tangent vectors of M(N). Evidently

∂aρθ = Aa . (14.12)

We may define the logarithmic derivative, that is a quantum score vector La,
by

Aa = ρθLa ⇒ La = ρ−1
θ Aa . (14.13)

In analogy with the classical equation (2.65), we define the squared length of
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a tangent vector as

||A||2 =
1
4
TrρθLL =

1
4
TrAL =

1
4
Trρ−1

θ A2 . (14.14)

This defines a metric. If we set ρ = diag(λ1, . . . , λN) and perform a pleasant
calculation we find that it is exactly the maximal metric, that is the metric
(14.2) for the choice f = fmin.

But other definitions of the logarithmic derivative suggest themselves, such
as the symmetrical logarithmic derivative La occurring in the equation

Aa = ρθ ◦ La =
1
2
(ρθLa + Laρθ) , (14.15)

where we found a use for the Jordan product from Section 8.6.2 This equation
for La was first encountered in Eq. (9.27), and there we claimed that there is
a unique solution if ρθ is invertible. To find it, we first choose a basis where
ρθ is diagonal with eigenvalues λi. The equation for the matrix elements of
La ≡ L becomes

Aij =
1
2
(λiLij + Lijλj) =

1
2
(λi + λj)Lij (14.16)

(where no summation is involved). The solution is immediate:

Lij =
2

λi + λj

Aij . (14.17)

The length squared of the vector A becomes

||A||2 ≡ 1
4
TrAL =

1
2

∑
i,j

AijAji

λi + λj

=
1
4

∑
i

A2
ii

λi

+
∑
i<j

|Aij|2
λi + λj

. (14.18)

Again a pleasant calculation confirms that this agrees with Eq. (14.2), this
time for the choice f = fmax.

The Kubo–Mori metric is a different kettle of fish.3 It arises when we try to
define a metric as the Hessian of the relative entropy. It takes a little effort to
do this explicitly. We need to know that, for any positive operator A,

ln (A + xB)− ln A =
∫ ∞

0

1
A + u

xB
1

A + xB + u
du . (14.19)

To prove this is an exercise (namely Problem 12.1). It follows that

∂x ln (ρ + xA)|x=0 =
∫ ∞

0

1
ρ + u

A
1

ρ + u
du . (14.20)

With this result in hand it is straightforward to compute

−∂α∂βS(ρ + αA||ρ + βB)|α=β=0 =
∫ ∞

0

TrA(ρ + u)−1B(ρ + u)−1 du . (14.21)

2 The symmetric logarithmic derivative was first introduced by Helstrom (1976) and Holevo (1982).
3 Studies of this metric include those by Ingarden (1981), Balian, Alhassid and Reinhardt (1986)

and Petz (1994).
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This is precisely the expression that defines the Kubo–Mori scalar product
g(A,B)(ρ), in analogy with the classical equation (2.59). If we evaluate this
expression for a diagonal density matrix ρ we recover Eq. (14.2), with the
function c = cKM given in Eq. (14.6).

The Kubo–Mori metric does have a uniqueness property: it is the only
monotone metric for which the two flat affine connections, mixture and exponential,
are mutually dual (Grasseli and Streater, 2001). Therefore it allows us to play
a quantum version of the classical game played in Section 3.2. There is also a
conjecture by Petz (1994), that says that the Kubo–Mori metric is the only
metric having the property that the scalar curvature is monotone, in the sense
that if ρ1 ≺ ρ2, that is if ρ1 is majorized by ρ2, then R(ρ1) ≤ R(ρ2) (which is
not true for the Bures metric, as mentioned in Section 9.6). On the other hand
the fact that the Kubo–Mori metric is the Hessian of the relative entropy is
not really a uniqueness property, because it can be shown that every monotone
metric is the Hessian of a certain monotone relative entropy – not Umegaki’s
relative entropy, but one of the larger family of monotone relative entropies4

whose existence we hinted at in Section 12.4.

14.2 Product measures and flag manifolds

It will not have escaped the reader that the price of putting a Riemannian
geometry on M(N) is rather high, in the sense that the monotone metrics that
appear are quite difficult to work with when N > 2. Fortunately the measures
that come from our monotone metrics are not that difficult to handle, so that
calculations of volumes and the like are quite doable. The basic trick that we
will use is the same as that one uses in flat space, when the Euclidean measure
is decomposed into a product of a measure on the orbits of the rotation group
and a measure in the radial direction (in other words, when one uses spherical
polar coordinates). The set of density matrices that can be written in the form
ρ = UΛ U †, for a fixed diagonal matrix Λ with strictly positive eigenvalues, is
a flag manifold F(N) = U(N)/[U(1)]N (see Section 8.5). A natural assumption
concerning a probability distribution in M(N) is to require invariance with
respect to unitary rotations, P (%) = P (W% W †). This is the case if (a) the
choice of eigenvalues and eigenvectors is independent, and (b) the eigenvectors
are drawn according to the Haar measure, dνH(W ) = dνH(UW ).

Such a product measure, dV = dνH(U) × dµ(~λ), defined on the Cartesian
product F(N) ×∆N−1, leads to the probability distribution,

P (ρ) = PH(F(N))× P (~λ) (14.22)

in which the first factor denotes the natural, unitarily invariant distribution
on the flag manifold F(N), induced by the Haar measure on U(N).

We are going to compute the volume of F(N) with respect to this measure.
Let us rewrite the complex flag manifold as a Cartesian product of complex

4 Lesniewski and Ruskai (1999) explored this matter in depth; see also Jenčova (2004).
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projective spaces,

F(N) =
U(N)

[U(1)]N
' U(N)

U(N − 1)× U(1)
U(N − 1)

U(N − 2)× U(1)
· · · U(2)

U(1)× U(1)
' CPN−1 × CPN−2 × · · · × CP1, (14.23)

where ' means ‘equal, if the volumes are concerned’. This ignores a number
of topological complications, but our previous experience with fibre bundles,
say in Section 4.7, makes it at least plausible that we can proceed like this.
(And the result is correct!) Making use of Eq. (4.87), Vol(CPk) = πk/k!, we
find for N ≥ 2

Vol(F(N)) =
N−1∏
k=1

Vol(CPk) =
πN(N−1)/2

ΞN

, (14.24)

with

ΞN ≡ 0! 1! 2! . . . (N − 1)! =
N∏

k=1

Γ(k) . (14.25)

The result for Vol(F(N)) still depends on a free multiplicative factor which sets
the scale, just as the volume of a sphere depends on its radius. In Eq. (14.24)
we have implicitly fixed the scale by the requirement that a closed geodesic on
CPk has circumference π. In this way we have adjusted the metric with Eq.
(3.137), which corresponds to the following normalization of the measure on
the unitary group

ds2 ≡ −a Tr(U−1dU)2 with a =
1
2
. (14.26)

Direct integration over the circle U(1) gives Vol[U(1)] = 2π
√

a =
√

2π. This
result combined with (14.24) allows us to write the volume of the unitary
group5

Vol[U(N)] = Vol(F(N))
(
Vol[U(1)]

)N
= 2N/2 πN(N+1)/2

ΞN

. (14.27)

For completeness let us state an analogous results for the special unitary group,

Vol[SU(N)] = 2(N−1)/2
√

N
π(N+2)(N−1)/2

ΞN

. (14.28)

This is again the quotient of the volumes of U(N) and U(1), but it is a different
U(1) than the one above, hence the presence of the stretching factor

√
N .

Let us return to the discussion of the product measures (14.22). The second
factor P (~λ) may in principle be an arbitrary measure on the simplex ∆N−1.
To obtain a measure supported on the set of mixed states one may use the

5 This result was derived by Hua (1963) with the normalization a = 1, for which the volume
of the circle becomes Vol′[U(1)] = 2π. Different normalizations give proportional volumes,

Vol′(X) = (
√

2)dim(X)Vol(X). For the reader’s convenience we have collected the results for both
normalizations in Table 14.1. For orthogonal groups, see Problem 14.2. For more details consult
(Boya, Sudarshan and Tilma, 2003; Życzkowski and Sommers, 2003) and references therein.
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Table 14.1. Volumes of flag manifolds and unitary groups; ΞN =
∏N

k=1 Γ(k).

Manifold Dimension Vol[X], a = 1/2 Vol′[X], a = 1

CPN 2N πN

N !
(2π)N

N !

F(N) = U(N)
[U(1)]N

N(N − 1) πN(N−1)/2

ΞN

(2π)N(N−1)/2

ΞN

U(N) N2 2N/2 πN(N+1)/2

ΞN

(2π)N(N+1)/2

ΞN

SU(N) N2 − 1 2(N−1)/2
√

N π(N+2)(N−1)/2

ΞN

√
N (2π)(N+2)(N−1)/2

ΞN

Dirichlet distribution (2.73), for example with the parameter s equal to 1
and 1/2, for the flat and round measures on the simplex. These measures were
called unitary and orthogonal product measures (Życzkowski, 1999), respectively,
since they represent the distribution of the squared components of a random
complex (real) vector and are induced by the Haar measures on the unitary
(orthogonal) groups. The unitary product measure Pu is induced by the coarse
graining map (see Eq. (14.72)) but, as discussed in the following sections of
this chapter, other product measures seem to be better motivated by physical
assumptions.

14.3 Hilbert–Schmidt measure

A metric always generates a measure. For Riemannian metrics this was explained
in Section 1.4, but we can also use more exotic metrics like the Lp-metrics
defined in section 13.2. All Lp-metrics, including the trace metric for p = 1,
will generate the same Lebesque measure. Here we concentrate on the p = 2
case, the Hilbert–Schmidt metric, and when deriving the measure we treat it
in the same way that we would treat any Riemannian metric. The Hilbert–
Schmidt metric is defined by the line element squared,

ds2
HS =

1
2
Tr[(dρ)2] , (14.29)

valid for any dimension N .6 Making use of the diagonal form ρ = UΛU−1 and
of the differentiation rule of Leibnitz, we write

dρ = U [dΛ + U−1dUΛ− ΛU−1dU ] U−1. (14.30)

Hence (14.29) can be rewritten as

ds2
HS =

1
2

N∑
i=1

(dλi)2 +
N∑

i<j

(λi − λj)2 |(U−1dU)ij|2. (14.31)

6 As in Chapter 8, a factor 1/2 is included here to ensure that the length of a closed geodesic in
CPn equals π.
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Due to the normalization condition
∑N

i=1 λi = 1, the sum of differentials
vanishes,

∑N

i=1 dλi = 0. Thus we may consider the variation of the Nth
eigenvalue as a dependent one, dλN = −∑N−1

i=1 dλi, which implies

1
2

N∑
i=1

(dλi)2 =
1
2

N−1∑
i=1

(dλi)2 +
1
2

(N−1∑
i=1

dλi

)2

=
N−1∑
i,j=1

dλi gij dλj. (14.32)

The corresponding volume element gains a factor
√

detg, where g is the metric
in the (N−1)-dimensional simplex ∆N−1 of eigenvalues. From (14.32) one may
read out the explicit form of the metric

g =
1
2




1 0
. . .

0 1


 +

1
2




1 · · · 1
...

. . .
...

1 · · · 1


 . (14.33)

It is easy to check that the (N − 1)-dimensional matrix g has one eigenvalue
equal to N/2 and N − 2 eigenvalues equal to 1/2, so that detg = N/2N−1.
Thus the Hilbert–Schmidt volume element has the product form

dVHS =
√

N

2(N−1)/2

N−1∏
j=1

dλj

1...N∏
j<k

(λj − λk)2
∣∣∣
1...N∏
j<k

Re(U−1dU)jkIm(U−1dU)jk

∣∣∣ .

(14.34)
The first factor, depending only on the spectrum ~λ, induces the Hilbert–
Schmidt probability distribution in the simplex of eigenvalues (Braunstein,
1996; Hall, 1998),

PHS(~λ) = CHS
N δ(1−

N∑
j=1

λj)
N∏

j<k

(λj − λk)2, (14.35)

where the normalization constant

CHS
N =

Γ(N 2)∏N

k=1 Γ(k)Γ(k + 1)
=

Γ(N 2)
ΞNΞN+1

(14.36)

ensures that the integral over the simplex ∆N−1 is equal to unity (Życzkowski
and Sommers, 2001).

Let us now analyse the second factor in (14.34). It arises from the off-
diagonal elements of the invariant metric (14.26) on the unitary group

ds2 ≡ −1
2
Tr(U−1dU)2 =

1
2

N∑
j=1

|(U−1dU)jj|2 +
N∑

j<k=1

|(U−1dU)jk|2 . (14.37)

Hence the Hilbert–Schmidt measure in the space of density matrices belongs
to the class of product measures (14.22).

Since the diagonal elements of (14.37) do not contribute to the volume
element (14.34), integrating it over the unitary group we obtain the volume of
the complex flag manifold (14.24). To compute the Hilbert–Schmidt volume of
the set of mixed states M(N) we need also to integrate (14.34) over the simplex
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of eigenvalues ∆N−1. Normalization (14.35) implies that the latter integral is
equal to 1/CHS

N . Taking into account the prefactor
√

detg =
√

N/2N−1, present
in (14.34), we obtain7

VolHS

(
M(N)

)
=

√
N

2N−1

Vol
(
F(N)

)

N ! CHS
N

=
√

N
πN(N−1)/2

2(N−1)/2

Γ(1) · · ·Γ(N)
Γ(N2)

. (14.38)

The factor N ! in the denominator compensates for the fact that we should
really integrate over only one Weyl chamber in the eigenvalue simplex. In
other words, different permutations of the vector ~λ of N generically different
eigenvalues belong to the same unitary orbit, so we may restrict the order of
the eigenvalues to, say, λ1 ≥ λ2 ≥ · · · ≥ λN . Substituting N = 2 it is satisfying
to receive that V2 = π/6 – exactly the volume of the Bloch ball of radius 1/2.

The next result V3 = π3/(13 440
√

3) allows us to characterize the difference
between the set M(3) ⊂ R8 and the ball B8. The set of mixed states is inscribed
into a sphere of radius R3 =

√
1/3 ≈ 0.577, while the maximal ball contained

inside has the radius r3 = R3/2 ≈ 0.289. These numbers may be compared
with the volume radius r̄3 of M(3), that is the radius of an 8-ball of the same
volume. Using Eq. (1.22) we find r̄3 ≈ 0.368. The distance from the centre of
M(3) to its boundary varies with the direction in R8 from r3 to R3.

The volume VN tends to zero if N → ∞, but there is no reason to worry
about it. The same is true for the volume (1.22) of the N -balls, as it is a
consequence of the choice of the units. To get some more information on the
properties of the set M(N), let us compute the (hyper)area of its boundary.
Although the boundary ∂M(N) is far from being trivial and contains orbits
of different dimensionality, its full measure is formed of density matrices with
exactly one eigenvalue equal to zero (see Section 8.5). Hence the hyperarea A
of the boundary may be computed by integrating (14.34) over ∆N−2 × F(N).
The result is (Życzkowski and Sommers, 2003)

VolHS

(
∂M(N)

)
=
√

N − 1
πN(N−1)/2

2(N−2)/2

Γ(1) . . .Γ(N + 1)
Γ(N) Γ(N 2 − 1)

. (14.39)

For N = 2 we get π, just the area of the Bloch sphere of radius R2 = 1/2.
Knowing the HS volume of the set of mixed states and the area of its

boundary, we may compute their ratio. As in Section 1.2 we fix the scale by
multiplying the ratio with the radius of the outsphere, RN =

√
(N − 1)/2N ,

compare Eq. (8.35). The result is

ηHS
N ≡ RN

VolHS

(
∂M(N)

)

VolHS

(
M(N)

) = (N − 1)(N 2 − 1) . (14.40)

It grows fast with N . We can compare this with the results obtained for
balls, simplices, and cubes – if we remember that the dimension of M(N) is
D = N2−1. Then we see that the area/volume ratio for the mixed states scales
with the dimensionality8 as η ∼ D3/2, just as for D-cubes (1.29): see Table

7 This differs from the result in (Życzkowski and Sommers, 2003) by a factor 2(N2−1)/2, since in
that work the length of closed geodesic in CPn was set to 2π.

8 The same scaling also describes the set of real density matrices (Życzkowski and Sommers, 2003).
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Table 14.2. Scaling properties of convex bodies in RD with volume V , area A.
Radii of the inspheres and outspheres are denoted by r and R.

Body X dim ζ = R
r η = R A

V

Round ball ©D D D0 D1

Cube ¤D D D1/2 D3/2

Quantum states M(N) N2 − 1 D1/2 D3/2

Cross-polytope ¦D D D1/2 D3/2

Simplex ∆D D D1 D2

14.2. It is remarkable that the area to volume ratio for M(N) behaves just like
that for cubes of the same dimension. Note that η = DR/r for all the entries,
where r is the radius of the insphere. This means that r vol(∂X)/vol(X) = D
for all of them. At the end of Section 1.2, we explained exactly what such a
result implies about a convex body.

14.4 Bures measure

We can repeat the same analysis for the monotone metrics given by the MCP
theorem; they may be much more complicated to deal with than the Hilbert–
Schmidt metric, but they are unitarily invariant, so all of them will lead to
product measures of the form (14.22). To see how this works, we first observe
that in a coordinate system where ρ is diagonal Eq. (14.30) simplifies to

dρij = dλiδij + (λj − λi)(U−1dU)ij . (14.41)

Substituting this into the expression that defines the metric, Eq. (14.2), we
obtain

ds2
f =

1
4

[
N∑

j=1

dλ2
j

λj

+ 2
∑
i<j

c(λi, λj)(λi − λj)2|(U−1dU)ij|2
]

, (14.42)

where f is an arbitrary MC function and c(x, y) = 1/[yf(x/y)] enters the
definition (14.2). For c(x, y) = cmax(x, y) = 2/(x + y) this becomes the Bures
metric, our topic in this section:

ds2
B =

1
4

N∑
i=1

(dλi)2

λi

+
∑
i<j

(λi − λj)2

λi + λj

|(U−1dU)ij|2 . (14.43)

Since Trρ = 1 not all dλj are independent. Eliminating dλN we obtain

1
4

N∑
j=1

(dλj)2

λj

=
1
4

N−1∑
j=1

(dλj)2

λj

+
1
4

(N−1∑
j=1

dλj

)2 1
λN

. (14.44)

The metric (14.44) in the (N − 1)-dimensional simplex is of the form gik =
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(δik/4λi+1/4λN) with determinant det g = (λ1+λ2+· · ·+λN)/(4N−1λ1λ2 . . . λN) =
41−N/det ρ, since Trρ = 1. Thus the volume element gains a factor

√
detg =

21−N(det ρ)−1/2, so we obtain an expression

dVB =
1

2N−1

1√
det ρ

N−1∏
j=1

dλj

∏
j<k

(λj − λk)2

λj + λk

∣∣∣
1...N∏
j<k

Re(U−1dU)jkIm(U−1dU)jk

∣∣∣

(14.45)

analogous to (14.34). This volume element gives the Bures probability distribution
in the eigenvalue simplex (Hall, 1998; Caves, n.d.),

PB(λ1, . . . , λN) = CB
N

δ(1−∑N

i=1 λi)
(λ1 . . . λN)1/2

N∏
j<k

(λj − λk)2

λj + λk

. (14.46)

The Bures normalization constants9 read (Sommers and Życzkowski, 2003)

CB
N = 2N2−N Γ(N2/2)

πN/2 Γ(1) . . .Γ(N + 1)
= 2N2−N Γ(N2/2)

πN/2 ΞN+1

. (14.47)

Integrating (14.45) over F(N) ×∆N−1 we get the Bures volume

VolB(M(N)) =
21−N

CB
N

Vol(F(N))
N !

=
1

2N2−1

πN2/2

Γ(N2/2)
. (14.48)

Observe that the Bures volume of the set of mixed states is equal to the
volume of an (N2−1)-dimensional hemisphere of radius RB = 1/2. In a similar
way one computes the Bures volume of the boundary of the set of mixed states
(Sommers and Życzkowski, 2003)

VolB(∂M(N)) =
N

2N2−2

π(N2−1)/2

Γ[(N2 − 1)/2]
. (14.49)

We are pleased to realize that for N = 2 the above results describe the
Uhlmann hemisphere of radius RB = 1/2,

VolB(M(2)) =
1
2
Vol(S3) R3

B =
π2

8
, VolB

(
∂M(2)

)
= Vol(S2) R2

B = π .

(14.50)
Although for N ≥ 2 the Bures geometry is not like that of a hyper-hemisphere
(see Section 9.6), we see that the ratio

ηB
N = RB

VolB(∂M(N))
VolB(M(N))

=
N√
π

Γ(N 2/2)
Γ(N2/2− 1/2)

∼ D (14.51)

asymptotically increases linearly with the dimensionality D = N2 − 1, which
is typical for hemispheres.

9 The constant CB
2 = 2/π was computed by Hall (1998), while CB

3 = 35/π and CB
4 = 21135/π2

were found by Slater (1999a).
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14.5 Induced measures

The measures discussed so far belong to the wide class of S1 measures:

S1 – Metric-related measures. Any metric generates a measure.

Other families of measures may be defined in an operational manner by
specifying a recipe to generate a density matrix. Consider a pure state |ψ〉 of a
bipartite N ×K composite quantum system described in H = HN ⊗HK . It is
convenient to work in an arbitrary orthogonal product basis, |i, k〉 = |i〉 ⊗ |k〉,
where |i〉 ∈ HN and |k〉 ∈ HK . The pure state |ψ〉 is then represented by a
N ×K rectangular complex matrix A with Aik = 〈i, k|ψ〉. The normalization
condition, ‖ψ‖2 = TrAA† = 1, is the only constraint imposed on this matrix.
The corresponding density matrix σ = |ψ〉〈ψ|, acting on the composite Hilbert
space H, is represented in this basis by a matrix labelled by four indices,
σik

i′k′ = AikA
∗
i′k′ . Partial tracing with respect to the subspace HK gives the

reduced density matrix of size N

ρ = TrK(σ) = AA†, (14.52)

while partial tracing over the first subsystem leads to the reduced density
matrix ρ′ = TrN(σ) = A†A of size K. Now we are prepared to define a family
of measures in the space of mixed states M(N) labelled by a single parameter
– the size K of the ancilla (Lubkin, 1978; Braunstein, 1996; Hall, 1998).

S2 – Measures P trace
N,K (ρ) induced by partial trace over an K-dimensional

environment (14.52) of an ensemble of pure states distributed according to
the unique, unitarily invariant Fubini-Study measure on the space CPKN−1 of
pure states of the composite system.

There is a simple physical motivation for such measures: they can be used if
we do not know anything about the density matrix, apart from the dimensionality
K of the environment. When K = 1 we get the FS measure on the space of
pure states. Since the rank of ρ is limited by K, the induced measure covers the
full set of M(N) for K ≥ N . When K < N the measure P trace

N,K is supported on
the subspace of density matrices of rank K belonging to the boundary ∂M(N).

Since the pure state |ψ〉 is drawn according to the FS measure, the induced
measure P trace

N,K enjoys the product form (14.22). Hence the distribution of the
eigenvectors of ρ is determined by the Haar measure on U(N), and we need
to find the joint distribution of the eigenvalues in the simplex ∆N−1.

In the first step we use the relation (14.52) to write down the distribution
of matrix elements

P (ρ) ∝
∫

[dA] δ(ρ−AA†) δ(TrAA† − 1) , (14.53)

in which the first delta function assures the (semi)positive definiteness, while
the second delta function provides the normalization. Let us assume that K ≥
N , so that ρ = AA† is generically positive definite (the Wishart case, since
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AA† is called a Wishart matrix 10). Thus one can perform the transformation

A =
√

ρ Ã and [dA] = detρK [dÃ] . (14.54)

Note that [dA] includes alternating factors dAik and dAik
∗. The matrix delta

function may now be written as

δ
(√

ρ(1− ÃÃ†)
√

ρ
)

= detρ−N δ
(
1− ÃÃ

†)
, (14.55)

where the first factor on the right-hand side is the inverse Jacobian of the
corresponding transformation. This implies

P (ρ) ∝ θ(ρ) δ(Trρ− 1) detρK−N , (14.56)

in which the step function ensures that ρ is positive definite. The joint probability
distribution of eigenvalues is given by (Lubkin, 1978; Lloyd and Pagels, 1988;
Page, 1993; Hall, 1998)

P trace
N,K (λ1, . . . , λN) = CN,K δ(1−

∑
i

λi)
∏

i

λK−N
i

∏
i<j

(λi − λj)2 (14.57)

with the normalization constant (Mehta, 1991; Życzkowski and Sommers,
2001)

CN,K =
Γ(KN)∏N−1

j=0 Γ(K − j)Γ(N − j + 1)
=

ΞK−NΓ(KN)
ΞKΞN+1

(14.58)

written here for K ≥ N in terms of ΞN defined in (14.25) extended by a
convention Ξ0 = 1. If the size K of the ancilla equals the size N of the system,
the measure P trace

N,N induced by partial tracing of the pure states in CPN2−1

coincides with the Hilbert–Schmidt measure (14.35), and CN,N = CHS
N . For

instance, the partial trace of N = 4 random complex pure states induces the
uniform measure in the Bloch ball of N = 2 mixed states.

Integrating out all eigenvalues but one from the joint probability distribution
(14.57) one receives the density of eigenvalues. This task11 was performed by
Page (1993), who derived the distribution

PN,K(x) =

√
(x− a−)(a+ − x)

2πx
, with a± = 1 +

K

N
± 2

√
K

N
(14.59)

valid for K ≥ N À 1. Here x = Nλ stands for the rescaled eigenvalue, so
asymptotically the rescaled spectrum is supported on the interval [a−, a+].

A random mixed state may also be obtained as a convex sum of K pure
states from CPN−1. The probability distribution of the weights may be arbitrary,
but for simplicity we will consider the uniform distribution, pi = 1/K. The
10 In the opposite, so called anti-Wishart, case (Yu and Zhang, 2002; Janik and Nowak, 2003) the

reduced density matrix ρ = A†A has N −K zero eigenvalues, but the reduced matrix ρ′ of size
K is positive definite and has the same positive eigenvalues. The formulae (14.57)–(14.59) hold
with both parameters exchanged, N ↔ K.

11 Up to an overall normalization factor this problem is equivalent to finding the density of the
spectrum of random Wishart matrices H = AA† studied by Marchenko and Pastur (1967) and
later by Sengupta and Mitra (1999).
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number of pure states K, which governs the rank of ρ, may be treated as a
free parameter labelling the measure
S3 – Mixtures of random pure states obtained as a combination of K
independent random pure states |ψrand

i 〉 drawn according to the FS measure,

ρ =
1
K

K∑
j=1

|ψrand
i 〉〈ψrand

i | . (14.60)

The measure Pmixt
N,K (ρ) defined in this way has the product form (14.22). For

K < N the measure is supported on a subspace of lower rank included in
the boundary ∂M(N). By construction Pmixt

N,1 = P trace
N,1 is equivalent to the FS

measure on the manifold of pure states. However, for larger K both ways of
generating mixed states do not coincide.

In general, one may distinguish the symmetric case, Pmixt
N,N (ρ), since the

number K = N is the minimal one, which typically gives mixed states of
the full rank. For instance, analysing the position of the barycentre of two
independent random points placed on the surface of the Bloch sphere we
infer that Pmixt

2,2 (λ1, λ2) ∝ δ(1 − λ1 − λ2)|λ1 − λ2|. In larger dimensions the
distributions Pmixt

N,N (~λ) get more complicated and differ from P trace
N,N (~λ) = PHS(~λ).

The larger number K of the states in the mixture, the larger the entropy of
the resulting mixed state ρ. In the limit K →∞ it tends to the maximal value
lnN .

14.6 Random density matrices

The measures that we have discussed allow us to generate random density
matrices. The picture is particularly transparent for N = 2, in which the
product form (14.22) assures the rotational symmetry inside the Bloch ball,
and the only thing to settle is the radial distribution P (r), where the radius
r = |λ1 − 1/2| is equal to the length of the Bloch vector, r = |~τ |.

For N = 2 the HS measure (14.35) gives PHS(r) = 24r2 (for r ∈ [0, 1/2]).
This is one possible way of saying that the distribution is uniform inside the
Bloch ball. The Bures measure (14.46) induces the distribution

PB(r) =
32 r2

π
√

1− 4r2
. (14.61)

This is the uniform distribution on the Uhlmann hemisphere. Comparing the
HS and Bures measures we realize that the latter is more concentrated on
states of high purity (with large r). For N = 2 one has λ1 + λ2 = 1, the
denominator in (14.46) equals unity, and the Bures measure coincides with
the induced measure PB(λ1, λ2) = P trace

2,3/2(λ1, λ2). Even though there is no
subsystem of the dimensionality K = 3/2 and such an induced measure has no
physical interpretation, this relation is useful to compute some averages over
the Bures measure by an analytical continuation in the parameter K.

Some exemplary radial distributions inside the Bloch ball, sketched in Figure
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Figure 14.2. Distribution of an eigenvalue λ of density matrices of size N = 2:
(a) Pu (dotted line); Po – ‘cosine distribution’ (dashed line); Pmixed

2,2 (solid line)
and PB – Bures measure (dash–dotted line); (b) measures P trace

2,K induced by
partial tracing; K = 2 (i.e. PHS) (solid line); K = 3 (dashed line); K = 4
(dash–dotted) line, and K = 5 (dotted line).
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Figure 14.3. Probability distributions in the simplex of eigenvalues for N =
3 (a) Bures measure, (b) Hilbert–Schmidt measure equal to P trace

3,3 ; other
measures induced by partial tracing: (c) P trace

3,4 and (d) P trace
3,5 .

14.2, include the s = 1 Dirichlet distribution (2.73), generated by the unitary
product measure, Pu(r) = 2, and the s = 1/2 Dirichlet distribution, related
to the orthogonal product measure, Po(r) = 4/(π

√
1− 4r2). Figure 14.2 also

presents a family of distributions implied by the induced measures (14.57). The
larger the dimension K of the auxiliary space HB, the more is the induced
distribution P trace

N,K concentrated in the centre of the Bloch ball (Hall, 1998).
A similar effect is shown in Figure 14.3 for N = 3, in which probability

distributions are plotted in the eigenvalue simplex. Again the Bures measure
is more localized on states of high purity, as compared to the HS measure. Due
to the factor (λi − λj)2 in (14.57) the degeneracies in spectrum are avoided,
which is reflected by a low probability (white colour) along all three bisectrices
of the triangle. On the other hand, the distribution P trace

3,2 (~λ) is singular, and
located at the edges of the triangle, which represent density matrices of rank
2. It is equal to P trace

2,3 (~λ) represented by dashed line in Figure 14.2
In order to characterize the average degree of mixing of random states we

compute the mean moments 〈Trρk〉, averaged with respect to the measures
introduced in this chapter. Averaging over the Hilbert–Schmidt measure (14.35)
gives the exact results (Lubkin, 1978; Hall, 1998; Życzkowski and Sommers,
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2001) for k = 2, 3

〈Trρ2〉HS =
2N

N2 + 1
and 〈Trρ3〉HS =

5N2 + 1
(N2 + 1)(N2 + 2)

(14.62)

and an asymptotics for large N

〈Trρk〉HS = N1−k Γ(1 + 2k)
Γ(1 + k) Γ(2 + k)

(
1 + O

( 1
N

))
. (14.63)

Analogous averages with respect to the Bures measure (14.46) read (Sommers
and Życzkowski, 2004)

〈Trρ2〉B =
5N 2 + 1

2N(N2 + 2)
and 〈Trρ3〉B =

N(14N2 + 10)
(5N2 + 1)(N2 + 3)

, (14.64)

and give asymptotically

〈Trρk〉B = N1−k 2kΓ[(3k + 1)/2]
Γ[(1 + k)/2] Γ(2 + k)

(
1 + O

( 1
N

))
. (14.65)

Observe that 〈Trρ2〉HS < 〈Trρ2〉B which shows that among these two measures
the Bures measure is concentrated at the states of higher purity. Allowing
the parameter k to be real and performing the limit k → 1 we obtain the
asymptotics for the average von Neumann entropy 〈S〉 = − limk→1 ∂〈Trρk〉/∂k,

〈S(ρ)〉HS = lnN − 1
2

+ O
( ln N

N

)
(14.66)

and

〈S(ρ)〉B = ln N − ln 2 + O
( ln N

N

)
. (14.67)

For comparison note that the mean entropy of the components of complex
random vectors of size N , or their average Wehrl entropy (7.70) behaves as
lnN + γ − 1 ≈ ln N − 0.4228.

The above analysis may be extended for the measures (14.57) induced by
partial tracing. The average purity12 was derived early on by Lubkin (1978):

〈Trρ2〉N,K =
N + K

NK + 1
. (14.68)

For K = N this reduces to (14.62). An exact formula for the average entropy

〈S(ρ)〉N,K =
( KN∑

j=K+1

1
j

)
− N − 1

2K
= Ψ(NK + 1)−Ψ(K + 1)− N − 1

2K
(14.69)

was conjectured by Page (1993) and later proved in Foong and Kanno (1994),
Sánchez-Ruiz (1995) and Sen (1996). The above formula implies that the
average entropy is close to the maximal value lnN , if the size K of the
environment is sufficiently large. Taking, for instance, K = MN and making
12 Average values of the higher moments are computed in (Malacarne, Mandes and Lenzi, 2002).

See also problem 14.5.
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use the asymptotic properties of the digamma function, Ψ(x + 1/2) ≈ ln(x)
(Spanier and Oldham, 1987) we infer13 that 〈S〉N,MN ∼ lnN −1/2M . Hence a
typical pure state of a N×N system is almost maximally entangled, (compare
Eq. (15.25)), while the probability to find a state with the entropy S smaller
by one than the average 〈S〉N,N is exponentially small (Hayden, Leung and
Winter, n.d.a).

To wind up this section on random density matrices let us discuss practical
methods to generate them. It is rather simple to draw random mixed states
with respect to the induced measures: as discussed in Chapter 7 we generate
K independent complex random pure state according to the natural measure
on N -dimensional Hilbert space and prepare their mixture (14.60). To draw
a random mixed state according to P trace

N,K (ρ) we generate a complex random
pure state on NK-dimensional Hilbert space, and then perform the partial
trace (14.52) over the K-dimensional subsystem (Braunstein, 1996; Hall, 1998;
Życzkowski and Sommers, 2001).

Alternatively, to obtain a random state according to this measure we generate
a rectangular, K × N random matrix A with all entries being independent
complex Gaussian numbers, and compute ρ = AA†/(TrAA†). By definition
such a matrix is normalized and positive definite, while random matrix theory
allows one to show that the joint probability distribution of spectrum coincides
with (14.57). In particular, for K = 1 the density matrices represent random
pure states (see Section 7.6), while for K = N we deal with non-Hermitian
square random matrices characteristic of the Ginibre ensemble (Ginibre, 1965;
Mehta, 1991) and obtain the Hilbert–Schmidt measure (Życzkowski and Sommers,
2001; Tucci, n.d.a).

To obtain random matrices with respect to unitary (orthogonal) product
measures one needs to generate a random unitary (orthogonal) matrix with
respect to the Haar measure on U(N) (or O(N), respectively) (Poźniak, Życzkowski
and Kuś, 1998). The squared moduli of its components sum to unity and
provide the diagonal matrix Λ with spectrum of the density matrix. Taking
another random unitary matrix W , one obtains the random state by ρ =
WΛW †.

Random mixed states according to the Bures measure may easily be generated
in the N = 2 case (Hall, 1998). One picks a point on the Uhlmann hemisphere
at random. When N ≥ 3 we are not aware of any clever technique to get
such random states, apart from the brute force method: generate a random
spectrum ~λ according to the distribution (14.46), for example using the Monte
Carlo method, pick a random unitary matrix W and compute WΛW † as in
the case discussed above.

14.7 Random operations

Analysing properties of random density matrices we should also discuss random
operations, for which the Kraus operators Ai entering the Kraus form (10.53)
13 This generalization of (14.66) was derived first by Lubkin (1978).
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are taken at random, provided the condition (10.54) is fulfilled. There are
several reasons to do that; for instance, due to the JamioÃlkowski isomorphism
(Section 11.3), measures in the sets of quantum states and quantum maps are
closely related. Hence we should not expect that there exists a unique way to
generate random operations. Indeed, there exist several relevant measures in
the space of quantum maps, and we start our short review with
M1. Random maps induced by random states. Any measure in space
M(N2) of mixed states of increased dimensionality induces by (11.22) a measure
in the space of trace preserving, completely positive maps Φ : M(N) → M(N).

For instance, the HS measure in M(4) generates in this way a measure
supported on the entire space of one-qubit operations. Another interesting
class of random operations arise considering the environmental representation
(10.59). Let us treat the size k of the environment as a free parameter and
assume that the unitary matrix U is distributed according to the Haar measure
on U(kN). This natural assumption characterizes eigenvectors of the initial
state σ of the environment, so to specify a random operation we need to
characterize its spectrum. In principle one may take for this purpose any
probability distribution on the simplex ∆k−1, but we shall discuss only two
extremal cases.
M2. Random operations with pure k-dimensional environment, ρ′ =
Φp(ρ) = Trk[U(ρ⊗ |ν〉〈ν|)U †].
Such a random operation Φp is thus specified by a random unitary matrix
of size kN , since the choice of the pure state |ν〉 = |1〉 does not influence the
measure. Looking again at (10.61) we see that the Kraus operators representing
Φp arise as blocks of size N of the random matrix U ,

(Ai)lm ≡ Ulµ with µ = N(i− 1) + m; l,m = 1, . . . , N ; i = 1, . . . , k .
(14.70)

Due to unitarity of U the set of Kraus operators {Ai}k
i=1 satisfies the completeness

relation (10.54) and defines a quantum operation (10.53). For large dimensionality
N the unitarity constraints become (relatively) weaker and the the non-Hermitian
random matrices A are described by the Ginibre ensemble (Ginibre, 1965;
Mehta, 1991): their spectra cover uniformly the disc of radius 1/

√
N in the

complex plane of (Życzkowski and Sommers, 2000).
Note that the random operations Φp need not be bistochastic. To get a

generic random operation described by a dynamical matrix of the full rank
N2 one needs to choose the dimension k ≥ N2. These random operations
correspond to a physically motivated situation, if one knows that the state of
an environment of a fixed size is initially in a pure state, but not more.
M3. Random operations with mixed k-dimensional environment, ρ′ =
Φm(ρ) = Trk[U(ρ⊗ 1/k)U †], where U is a random unitary of size kN .
These random operations are by construction bistochastic. The Haar measure
on U(Nk) generates a definite measure in the space of bistochastic maps
parametrized by the size k of ancilla. The case k = N is equivalent to the
unistochastic map (10.64), while K-unistochastic maps are obtained for k =
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KN . Random operations Φm describe the situation in which only the size k of
the ancilla is known, and were called noisy maps in (Horodecki et al., 2003a).
M4. Random external fields defined as convex combination of k unitary
transformations (Alicki and Lendi, 1987), ρ′ = ΦREF(ρ) =

∑k

i=1 piViρV †
i ,

where unitary matrices Vi are drawn according to the Haar measure on U(N).
Probability vector ~p may be drawn with an arbitrary probability distribution
on ∆k−1, but one asumes often that pi = 1/k. As discussed in Section 10.6,
for N ≥ 3 REF’s form a proper subset of the set of bistochastic maps.
M5. Maps generated by a measure in the space of stochastic matrices.
Take a random stochastic matrix S of size N . Out of its rows construct N
diagonal matrices, E

(i)
kl =

√
Ski δkl, and define the set operators, Ai = UE(i)V .

Here U and V are random unitary matrices generated according to the Haar
measure on U(N). Since S is stochastic and satisfies (2.4), the Kraus operators
Ai fulfil the completeness relation (10.54),

N∑
i=1

A†
iAi =

N∑
i=1

V †E(i)U †UE(i)V = V †
[ N∑

i=1

E(i)2
]
V = 1, (14.71)

hence define a quantum operation. In the same way one demonstrates that
the dual condition (10.70) is fulfilled, so the random operation is bistochastic.
Instead of using random stochastic matrices one may also take a concrete
matrix S, for example related to some specific physically interesting map Φ,
and then randomise it14 by introducing random unitary rotations as in (14.71).

After discussing the methods to generate random maps, let us stress that
any measure in the space of quantum operations CPN induces a measure in
the space of density matrices. Alternatively, random mixed states may be
generated by any individual operation assuming that an initial pure state |ψ〉
is drawn according to the natural Fubini–Study measure.
S4. Operation induced random mixed states defined be a certain operation
Φ,

ρ′ = U
[
Φ

(
V |1〉〈1|V †)]U † , (14.72)

where U and V are independent random unitary matrices distributed according
to the Haar measure on U(N).

Hence any CP map Φ determines the operation induced measure µΦ. In
the trivial case, the identity map, Φ = 1, induces the unitarily invariant FS
measure on the space of pure states, µ1 = µFS.

It is instructive to study measures induced in the N = 2 case by planar
or linear maps defined in Table 10.4 (see Problem 14.9). The latter case may
be generalized for arbitrary N . As follows from properties of the FS measure
(see Eq. (7.66) and Problem 7.3), the distribution of the diagonal elements of
the density matrix |ψ〉〈ψ| of a random pure state is uniform in the simplex of
eigenvalues. In this way we arrive at an important result: the coarse graining
14 Such random maps obtained for S = 1 were used in Alicki, LÃoziński, Pakoński and Życzkowski

(2004) to describe the influence of measurement in a random basis on the time evolution of
quantum baker maps.
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map, ΨCG(ρ) = diag(ρ), induces by (14.72) the unitary measure Pu(~λ) = const,
uniform in ∆N−1.

Allowing operations which reduce the dimensionality of the system, we see
that the measures (14.52) also belong to this class, since they are induced
by the operation of partial trace, Φ(ρ) = TrKρ. A more general class of
measures is induced via (14.72) by a family of operations Φa and a concrete
probability distribution P (a). For instance, an interesting measure supported
on the subspace of degenerated states arises by usage of the depolarizing
channels, Φa = aΦ∗ + (1− a)1, with a uniform distribution of the noise level,
P (a) = 1 for a ∈ [0, 1].

Let us conclude by emphasizing again that there is no single, naturally
distinguished probability measure in the set of quantum states. Guessing at
random what the state may be, we can use any available additional information.
For instance, if a mixed state has arisen by the partial tracing over a K-
dimensional environment, the induced measure (14.57) should be used. More
generally, if a mixed state has arisen as an image of an initially pure state under
the action of a known operation Φ the operation-related measure (14.72) may
be applied. Without any prior information whatsoever, it will be legitimate to
use the Bures measure (14.46), related to Jeffreys’ prior, statistical distance,
fidelity and quantum distinguishability.

Problems

¦ Problem 14.1 Show that the following functions f(t) generate monotone
Riemannian metrics:

√
t, (t− 1)/ ln t, 2[(t− 1)/ ln t]2/(1 + t) (non-informative

metric), 2tα+1/2/(1 + t2α) for α ∈ [0, 1/2] (Petz and Sudár, 1996), tt/(t−1)/e
(quasi-Bures metric) (Slater, 1999b), and fWY = (

√
t+1)2/4 (Wigner–Yanase

metric) (Gibilisco and Isola, 2003). Is the latter metric pure?

¦ Problem 14.2 Compute the volume of the orthogonal group with
respect to the measure (ds)2 ≡ − 1

2
Tr(O−1dO)2 analogous to (14.26). Show

that Vol(RPN) = 1
2
Vol(SN) = π(N+1)/2 /Γ[(N+1)/2] = Vol[O(N)] /

(
Vol[O(N−

1)]Vol[O(1)]
)
; Vol[O(2)] = 2 and Vol(F(N)

R ) = Vol[O(N)]/2N (Życzkowski
and Sommers, 2003).

¦ Problem 14.3 Show that the volume radius of the set M(N) of mixed
states behaves for large N as e−1/4/

√
N (Szarek, 2005).

¦ Problem 14.4 Compute the mean von Neumann entropy, of N = 2
random mixed states averaged over Hilbert–Schmidt, Bures, orthogonal and
unitary measures, respectively.

¦ Problem 14.5 Find the mean moments 〈Trρ3〉 and 〈Trρ4〉 averaged
over the induced measures (14.57).

¦ Problem 14.6 Calculate the probability distribution of a rescaled
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eigenvalue x = Nλ of a random density matrix of size N À 1 generated
according to the Hilbert–Schmidt measure. What has this distribution in
common with a circle?

¦ Problem 14.7 Derive the distribution of fidelity P (F ) between two
random N -dimensional complex pure states.

¦ Problem 14.8 Compute the mean fidelity between two N = 2
independent random states distributed according to (a) HS measure; (b) Bures
measure.

¦ Problem 14.9 Analyse operation induced measures (14.72) defined
for N = 2 by planar or linear channels (for definitions see Table 10.4) and
show that they are isotropic inside the Bloch ball with the radial distributions
Pplan(r) = 4r/

√
1− 4r2 and Plin(r) = 2 = Pu(r), respectively, where r ∈

[0, 1/2].
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Entanglement is not one but rather the characteristic trait of quantum
mechanics.

Erwin Schrödinger

15.1 Introducing entanglement

So far, when working in a Hilbert space that is a tensor product of the form
H = HA ⊗HB, we were really interested in only one of the factors; the other
factor played the role of an ancilla describing an environment outside our
control. Now the perspective changes: we are interested in a situation where
there are two masters. The fate of both subsystems are of equal importance,
although they may be sitting in two different laboratories.

The operations performed independently in the two laboratories are described
using operators of the form ΦA⊗1 and 1⊗ΦB, respectively, but due perhaps
to past history, the global state of the system may not be a product state. In
general, it may be described by an arbitrary density operator ρ acting on the
composite Hilbert space H.

The peculiarities of this situation were highlighted in 1935 by Einstein,
Podolsky and Rosen (1935). Their basic observation was that if the global
state of the system is chosen suitably then it is possible to change, and to
some extent to choose, the state assignment in laboratory A by performing
operations in laboratory B. The physicists in laboratory A will be unaware of
this until they are told, but they can check in retrospect that the experiments
they performed were consistent with the state assignment arrived at from
afar – even though there was an element of choice in arriving at that state
assignment. Einstein’s considered opinion was that ‘on one supposition we
should . . . absolutely hold fast: the real factual situation of the system S2 is
independent of what is done with the system S1, which is spatially separated
from the former’ (Einstein, 1949). Then we seem to be forced to the conclusion
that quantum mechanics is an incomplete theory in the sense that its state
assignment does not fully describe the factual situation in laboratory A.

In his reply to Einstein, Podolsky and Rosen (EPR), Schrödinger argued
that in quantum mechanics ‘the best possible knowledge of a whole does not
include the best possible knowledge of all its parts, even though they may
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be entirely separated and therefore virtually capable of being “best possibly
known” ’.1Schrödinger introduced the word Verschränkung to describe this
phenomenon, personally translated it into English as entanglement, and made
some striking observations about it. The subject then lay dormant for many
years.

To make the concept of entanglement concrete, we recall that the state of
the subsystem in laboratory A is given by the partially traced density matrix
ρA = TrBρ. This need not be a pure state, even if ρ itself is pure. In the
simplest possible case, namely when both HA and HB are two dimensional,
we find an orthogonal basis of four states that exhibit this property in an
extreme form. This is the Bell basis, already mentioned in Table 11.1

|ψ±〉 =
1√
2

(|0〉|1〉 ± |1〉|0〉) |φ±〉 =
1√
2

(|0〉|0〉 ± |1〉|1〉) . (15.1)

The Bell states all have the property that ρA = 1
2
1, which means that we

know nothing at all about the state of the subsystems, even though we have
maximal knowledge of the whole. At the opposite extreme we have product
states such as |0〉|0〉 and so on; if the global state of the system is in a product
state then ρA is a projector and the two subsystems are in pure states of their
own. Such pure product states are called separable, while all other pure states
are entangled.

Now the point is that if a projective measurement is performed in laboratory
B, corresponding to an operator of the form 1 ⊗ ΦB, then the global state
will collapse to a product state. Indeed, depending on what measurement B
chooses to perform, and depending on its outcome, the state in laboratory A
can become any pure state in the support of ρA. (This conclusion was drawn by
Schrödinger from his mixture theorem. He found it ‘repugnant’.) Of course, if
the global state was one of the Bell states to begin with, then the experimenters
in laboratory A still labour under the assumption that their state is ρA = 1

2
1,

and it is clear that any measurement results in A will be consistent with this
state assignment. Nevertheless it would seem as if the real factual situation in
A has been changed from afar.

In the early 1960s John Bell (1964) was able to show that if we hold fast
to the locality assumption then there cannot exist a completion of quantum
mechanics in the sense of EPR; it is the meaning of the expression ‘real
factual situation’ that is at stake in entangled systems.2 The idea is that
if the quantum mechanical probabilities arise as marginals of a probability
distribution over some kind of a set of real factual situations, then the mere
existence of the latter gives rise to inequalities for the marginal distributions

1 Schrödinger’s ‘general confession’ consisted of a series of three papers (1935a, 1935b, 1936).
2 At this point opinions diverge; some physicists, including notably David Bohm, have not felt

obliged to hold absolutely fast to Einstein’s notion of locality. See Bell (1987) for a sympathetic
review of Bohm’s arguments. Followers of Everett (1957) on the other hand argue that what
happened was that the system in A went from being entangled with the system in B to being
entangled with the measurement apparatus in B, with no change of the real factual situation in
A.
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that, as a matter of fact, are disobeyed by the probabilities predicted by
quantum mechanics.

Bell’s work caused much excitement in philosophically oriented circles; it
seemed to put severe limits on the world view offered by physics.3 In the
early 1990s the emphasis began to shift. Entanglement came to be regarded
as a resource that allows us to do certain otherwise impossible things. An
early and influential example is that of quantum teleportation. Let us dwell on
this a little. The task is to send information that allows a distant receiver to
reconstruct the state of a spin 1/2 particle – even if the state is unknown to
the sender. But since only a single copy of the state is available the sender is
unable to figure out what the state to be ‘teleported’ actually is. So the task
appears impossible.4 A solution is to prepare a composite system in the Bell
state |φ+〉, and to share the two entangled subsystems between sender and
receiver. Suppose that the state to be sent is α|0〉 + β|1〉. At the outset the
latter is uncorrelated to the former, so the total (unnormalized) state is

|Ψ〉 =
(
α|0〉+ β|1〉)(|0〉|0〉+ |1〉|1〉)

(15.2)
= α|0〉|0〉|0〉+ α|0〉|1〉|1〉+ β|1〉|0〉|0〉+ β|1〉|1〉|1〉 .

The sender controls the first two factors of the total Hilbert space, and the
receiver controls the third. By means of a simple manipulation we rewrite this
as

√
2|Ψ〉 = |ψ+〉(α|1〉+ β|0〉) + |ψ−〉(α|1〉 − β|0〉)

(15.3)
+ |φ+〉(α|0〉+ β|1〉) + |φ−〉(α|0〉 − β|1〉) .

The sender now performs a projective measurement in the four-dimensional
Hilbert space at his disposal, such that the state collapses to one of the four Bell
states. If the collapse results in the state |φ+〉 the teleportation is complete. But
the other cases are equally likely, so the sender must send two classical bits of
information to the receiver, informing him of the outcome of the measurement.
Depending on the result the receiver then performs a unitary transformation
(such that |0〉 ↔ |1〉, if the outcome was |ψ+〉) and the teleportation of the
still unknown qubit is complete.5

In the example of teleportation the entangled auxiliary system was used to
perform a task that is impossible without it. It will be noted also that the
entanglement was used up, in the sense that once the transmission has been
achieved no mutual entanglement between sender and receiver remains. In this

3 For a thorough discussion of the Bell inequalities consult Clauser and Shimony (1978);
experimental tests, notably by Aspect, Dalibard and Roger (1982), show that violation of the
Bell inequalities does indeed occur in the laboratory. (Although loopholes still exist; see Gill
(2003).)

4 To send information that allows us to reconstruct a given state elsewhere is referred to as
teleportation in the science fiction literature, where it is usually assumed to be trivial for the
sender to verify what the state to be sent may be. The idea of teleporting a state that is not
known at all is due to Bennett, Brassard, Crépeau, Josza, Peres and Wootters (1993).

5 This is not a Gedanken experiment only; it was first done in Innsbruck (Bouwmeester, Pan,
Mattle, Eibl, Weinfurter and Zeilinger, 1997) and in Rome (Boschi, Branca, De Martini, Hardy
and Popescu, 1998).
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sense then entanglement is a resource, just as the equally abstract concept of
energy is a resource. Moreover it has emerged that there are many interesting
tasks for which entanglement can be used, including quantum cryptography
and quantum computing (Preskill, n.d.; Gruska, 1999; Nielsen and Chuang,
2000; Keyl, 2002).

If entanglement is a resource we naturally want to know how much of it we
have. As we will see it is by no means easy to answer this question, but it is
easy to take a first step in the situation when the global state is a pure one. It
is clear that there is no entanglement in a product state, when the subsystems
are in pure states too and the von Neumann entropy of the partially traced
state vanishes. It is also clear that maximally entangled pure state will lead to
a partially traced density matrix that is a maximally mixed state. For the case
of two qubits the von Neumann entropy then assumes its maximum value ln 2,
and the amount of entanglement in such a state is known as an e-bit. States
that are neither separable nor maximally entangled require more thought. Let
us write a pure state in its Schmidt form |Ψ〉 = cosχ |00〉 + sin χ |11〉, (see
Section 9.2). Performing the partial trace one obtains

ρA = TrB|Ψ〉〈Ψ| =
[

cos2 χ 0
0 sin2 χ

]
. (15.4)

The Schmidt angle χ ∈ [0, π/4] parametrizes the amount of ignorance about
the state of the subsystem, that is to say the amount of entanglement. A
good thing about it is that its value cannot be changed by local unitary
transformations of the form U(2)⊗U(2). For the general case, when the Hilbert
space has dimension N×N , we will have to think more, and for the case when
the global state is itself a mixed one much more thought will be required.

At this stage entanglement may appear to be such an abstract notion that
the need to quantify it does not seem to be urgent but then, once upon
a time, ‘energy’ must have seemed a very abstract notion indeed, and now
there are thriving industries whose role is to deliver it in precisely quantified
amounts. Perhaps our governments will eventually have special Departments
of Entanglement to deal with these things. But that is in the far future; here
we will concentrate on a geometrical description of entanglement and how it
is to be quantified.

15.2 Two qubit pure states: entanglement illustrated

Our first serious move will be to take a look (literally) at entanglement in the
two qubit case.6 Our Hilbert space has four complex dimensions, so the space
of pure states is CP3. We can make a picture of this space along the lines of
Section 4.6. So we draw the positive hyperoctant of a 3-sphere and imagine a

6 Such a geometric approach to the problem was initiated by Brody and Hughston (2001) and

developed in Kuś and Życzkowski (2001), Mosseri and Dandoloff (2001), Bengtsson et al. (2002)
and Lévay (2004).
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3-torus sitting over each point, using the coordinates

(Z0, Z1, Z2, Z3) = (n0, n1eiν1 , n2eiν2 , n3eiν3) . (15.5)

The four non-negative real numbers n0, etc. obey

n2
0 + n2

1 + n2
2 + n2

3 = 1 . (15.6)

To draw a picture of this set we use a gnomonic projection of the 3-sphere
centred at

(n0, n1, n2, n3) =
1
2
(1, 1, 1, 1) . (15.7)

The result is an attractive picture of the hyperoctant, consisting of a tetrahedron
centred at the above point, with geodesics on the 3-sphere appearing as straight
lines in the picture. The 3-torus sitting above each interior point can be
pictured as a rhomboid that is squashed in a position dependent way.

Mathematically, all points in CP3 are equal. In physics, points represent
states, and some states are more equal than others. In Chapter 6, this happened
because we singled out a particular subgroup of the unitary group to generate
coherent states. Now it is assumed that the underlying Hilbert space is presented
as a product of two factors in a definite way, and this singles out the orbits
of U(N) × U(N) ⊂ U(N2) for special attention. More specifically there is a
preferred way of using the entries Γij of an N × N matrix as homogeneous
coordinates. Thus any (normalized) state vector can be written as

|Ψ〉 =
1√
N

n∑
i=0

n∑
j=0

Γij|i〉|j〉 . (15.8)

For two qubit entanglement N = n + 1 = 2, and it is agreed that

(Z0, Z1, Z2, Z3) ≡ (Γ00, Γ01, Γ10, Γ11) . (15.9)

Let us first take a look at the separable states. For such states

|Ψ〉 =
n∑

i=0

n∑
j=0

(ai|i〉)(bj|j〉) ⇔ Γij = aibj . (15.10)

In terms of coordinates a two qubit case state is separable if and only if

Z0Z3 − Z1Z2 = 0 . (15.11)

We recognize this quadric equation from Section 4.3. It defines the Segre
embedding of CP1 × CP1 into CP3. Thus the separable states form a four
real-dimensional submanifold of the six real-dimensional space of all states.
(Had we regarded CP1 as a classical phase space, this submanifold would
have been enough to describe all the states of the composite system.)

What we did not discuss in Chapter 4 is the fact that the Segre embedding
is easily described in the octant picture. Equation (15.11) splits into two real
equations:

n0n3 − n1n2 = 0 (15.12)
ν1 + ν2 − ν3 = 0 . (15.13)
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Figure 15.1. The separable states, or the Segre embedding of CP1 × CP1 in
CP3. Two different perspectives of the tetrahedron are given.

Hence we can draw the space of separable states as a two-dimensional surface
in the octant, with a two-dimensional surface in the torus that sits above each
separable point in the octant. The surface in the octant has an interesting
structure, related to Figure 4.6. In Eq. (15.10) we can keep the state of one
of the subsystems fixed; say that b0/b1 is some fixed complex number with
modulus k. Then

Z0

Z1
=

b0

b1

⇒ n0 = kn1 (15.14)

Z2

Z3
=

b0

b1

⇒ n2 = kn3 . (15.15)

As we vary the state of the other subsystem we sweep out a curve in the
octant that is in fact a geodesic in the hyperoctant (the intersection between
the 3-sphere and two hyperplanes through the origin in the embedding space).
In the gnomonic coordinates that we are using this curve will appear as a
straight line, so what we see when we look at how the separable states sit in
the hyperoctant is a surface that is ruled by two families of straight lines.

There is an interesting relation to the Hopf fibration (see Section 3.5) here.
Each family of straight lines is also a one parameter family of Hopf circles,
and there are two such families because there are two Hopf fibrations, with
different twist. We can use our hyperoctant to represent real projective space
RP3, in analogy with Figure 4.12. The Hopf circles that rule the separable
surface are precisely those that get mapped onto each other when we ‘fold’
the hemisphere into a hyperoctant. We now turn to the maximally entangled
states, for which the reduced density matrix is the maximally mixed state.
Using composite indices we write

ρij
kl

=
1
N

ΓijΓ∗kl ⇒ ρA
ik =

n∑
j=0

ρij
kj

, (15.16)
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see Eq. (10.27). Thus

ρA
ik =

1
N
1 ⇔

n∑
j=0

ΓijΓ∗kj = δik . (15.17)

Therefore the state is maximally entangled if and only if the matrix Γ is
unitary. Since an overall factor of this matrix is irrelevant for the state we reach
the conclusion that the space of maximally entangled states is SU(N)/ZN .
This happens to be an interesting submanifold of CPN2−1, because it is at
once Lagrangian (a submanifold with vanishing symplectic form and half the
dimension of the symplectic embedding space) and minimal (any attempt to
move it will increase its volume).

When N = 2 we are looking at SU(2)/Z2 = RP3. To see what this space
looks like in the octant picture we observe that

Γij =
[

α β
−β∗ α∗

]
⇒ Zα = (α, β,−β∗, α∗) . (15.18)

In our coordinates this yields three real equations; the space of maximally
entangled states will appear in the picture as a straight line connecting two
entangled edges and passing through the centre of the tetrahedron, while there
is a two-dimensional surface in the tori. The latter is shifted relative to the
separable surface in such a way that the separable and maximally entangled
states manage to keep their distance in the torus also when they meet in
the octant (at the centre of the tetrahedron where the torus is large). Our
picture thus displays RP3 as a one parameter family of two-dimensional flat
tori, degenerating to circles at the ends of the interval. This is similar to our
picture of the 3-sphere, except that this time the lengths of the two intersecting
shortest circles on the tori stay constant while the angle between them is
changing. It is amusing to convince oneself of the validity of this picture, and
to verify that it is really a consequence of the way that the 3-tori are being
squashed as we move around the octant.

As a further illustration we can consider the collapse of a maximally entangled
state, say |ψ+〉 for definiteness, when a measurement is performed in laboratory
B. The result will be a separable state, and because the global state is maximally
entangled all the possible outcomes will be equally likely. It is easily confirmed
that the possible outcomes form a 2-sphere’s worth of points on the separable
surface, distinguished by the fact that they are all lying on the same distance
DFS = π/4 from the original state. This is the minimal Fubini–Study distance
between a separable and a maximally entangled state. The collapse is illustrated
in Figure 15.3.

A set of states of intermediate entanglement, quantified by some given value
of the Schmidt angle χ, is more difficult to draw (although it can be done).
For the extreme cases of zero or one e-bit’s worth of entanglement we found
the submanifolds CP1 × CP1 and SU(2)/Z2, respectively. There is a simple
reason why these spaces turn up, namely that the amount of entanglement
must be left invariant under locally unitary transformations belonging to the
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Figure 15.2. The maximally entangled states form an RP3, appearing as a
straight line in the octant and a surface in the tori. The location of the Bell
states is also shown.

Figure 15.3. A complete measurement on one of the subsystem will collapse
the Bell state |ψ+〉 to a point on a sphere on the separable surface; it appears
as a one parameter family of circles in our picture. All points on this sphere
are equally likely.

group SU(2)×SU(2). In effect therefore we are looking for orbits of this group,
and what we have found are the two obvious possibilities. More generally we
will get a stratification of CP3 into orbits of SU(2) × SU(2); the problem
is rather similar to that discussed in Section 7.2. Of the exceptional orbits,
one is a Kähler manifold and one (the maximally entangled one) is actually a
Lagrangian submanifold of CP3, meaning that the symplectic form vanishes on
the latter. A generic orbit will be five real-dimensional and the set of such orbits
will be labelled by the Schmidt angle χ, which is also the minimal distance
from a given orbit to the set of separable states. A generic orbit is rather
difficult to describe however. Topologically it is a non-trivial fibre bundle with
an S2 as base space and RP3 as fibre.7 In the octant picture it appears as a
three-dimensional volume in the octant and a two-dimensional surface in the

7 This can be seen in an elegant way using the Hopf fibration of S7 – the space of normalized state
vectors – as S4 = S7/S3; Mosseri and Dandoloff (2001) provide the details.
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torus. And with this observation our tour of the two qubit Hilbert space is at
an end.

15.3 Pure states of a bipartite system

Consider a pure state of a composite system |ψ〉 ∈ HNK = HN ⊗ HK . The
states related by a local unitary transformation,8

|ψ′〉 = U ⊗ V |ψ〉 , (15.19)

where U ∈ SU(N) and V ∈ SU(K), are called locally equivalent. Sometimes
one calls them interconvertible states, since they may be reversibly converted
by local transformations one into another (Jonathan and Plenio, 1999a). It is
clear that not all pure states are locally equivalent, since the product group
SU(N)×SU(K) forms only a measure zero subgroup of SU(NK). How far can
one go from a state using local transformations only? In other words, what
is the dimensionality and topology of the orbit generated by local unitary
transformations from a given state |ψ〉?

To find an answer we are going to rely on the Schmidt decomposition (9.8).
It consists of not more than N terms, since without loss of generality we
have assumed that K ≥ N . The normalization condition 〈ψ|ψ〉 = 1 enforces∑N

i=1 λi = 1, so the Schmidt vector ~λ lives in the (N − 1)-dimensional simplex
∆N−1. The Schmidt rank of a pure state |ψ〉 is the number of non-zero Schmidt
coefficients, equal to the rank of the reduced state. States with maximal
Schmidt rank are generic and occupy the interior of the simplex, while states
of a lower rank live on its boundary.

The Schmidt vector gives the spectra of the partially reduced states, ρA =
TrB(|ψ〉〈ψ|) and ρB = TrA(|ψ〉〈ψ|), which differ only by K−N zero eigenvalues.
The separable states sit at the corners of the simplex. Maximally entangled
states are described by the uniform Schmidt vector, ~λ∗ = {1/N, . . . , 1/N},
since the partial trace sends them into the maximally mixed state.

Let ~λ = (0, . . . , 0, κ1, . . . , κ1, κ2, . . . , κ2, . . . , κJ , . . . , κJ) represent an ordered
Schmidt vector, in which each value κn occurs mn times while m0 is the number
of vanishing coefficients. By definition

∑J

n=0 mn = N , while m0 might equal
to zero. The local orbit Oloc generated from |ψ〉 has the structure of a fibre
bundle, in which two quotient spaces

U(N)
U(m0)× U(m1)× · · · × U(mJ)

and
U(N)

U(m0)× U(1)
(15.20)

form the base and the fibre, respectively (SinolÃȩcka, Życzkowski and Kuś,
2002). In general such a bundle need not be trivial. The dimensionality of the

8 Non-local properties of a unitary gate may be quantified by its operator Schmidt decomposition
(10.30). A canonical form of a two qubit gates was provided in Khaneja, Brockett and Glaser
(2001), Kraus and Cirac (2001) and Makhlin (2002), while theory of non-local gates was further
developed in Dür and Cirac (2002), Hammerer, Vidal and Cirac (2002) and Nielsen, Dawson,
Dodd, Gilchrist, Mortimer, Osborne, Bremner, Harrow and Hines (2003).
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local orbit may be computed from dimensionalities of the coset spaces,

dim(Oloc) = 2N2 − 1− 2m2
0 −

J∑
n=1

m2
n . (15.21)

Observe that the base is the set of all unitarily similar mixed states ρA

of the reduced system A, with spectrum ~λ and depends on its degeneracy
(see Table 8.1). The fibre characterizes the manifold of pure states which are
projected by the partial trace to the same density matrix, and depends on the
Schmidt rank equal to N −m0. To understand this structure consider first a
generic state of the maximal Schmidt rank, so that m0 = 0. Acting on |ψ〉
with UN ⊗WN , where both unitary matrices are diagonal, we see that there
exist N redundant phases. Since each pure state is determined up to an overall
phase, the generic orbit has the local structure

Og ≈ U(N)
[U(1)]N

× U(N)
U(1)

= F(N) × U(N)
U(1)

, (15.22)

with dimension dim(Og) = 2N2 −N − 1. If some of the coefficients are equal,
say mJ > 1, then we need to identify all states differing by a block diagonal
unitary rotation with U(mJ) in the right lower corner. In the same way one
explains the meaning of the factor U(m0)×U(m1)×· · ·×U(mJ) which appears
in the first quotient space of (15.20). If some Schmidt coefficients are equal to
zero the action of the second unitary matrix UB is trivial in the m0-dimensional
subspace – the second quotient space in (15.20) is U(N)/[U(m0)× U(1)].

For separable states there exists only one non-zero coefficient, λ1 = 1, so
m0 = N − 1. This gives the Segre embedding (4.16),

Osep =
U(N)

U(1)× U(N − 1)
× U(N)

U(1)× U(N − 1)
= CPN−1 × CPN−1, (15.23)

of dimensionality dim(Osep) = 4(N − 1). For a maximally entangled state one
has λ1 = λN = 1/N , hence m1 = N and m0 = 0. Therefore

Omax =
U(N)
U(N)

× U(N)
U(1)

=
U(N)
U(1)

=
SU(N)
ZN

, (15.24)

with dim(Omax) = N2 − 1, which equals half the total dimensionality of the
space of pure states.

The set of all orbits foliate CPN2−1, the space of all pure states of the
N ×N system. This foliation is singular, since there exist measure zero leaves
of various dimensions and topology. The dimensionalities of all local orbits for
N = 2, 3 are shown in Figure 15.4, and their topologies in Table 15.1.

Observe that the local orbit defined by (15.19) contains all purifications of
all mixed states acting on HN isospectral with ρN = TrK |ψ〉〈ψ|. Sometimes
one modifies (15.19) imposing additional restrictions, K = N and V = U . Two
states fulfilling this strong local equivalence (SLE) relation, |ψ′〉 = U⊗U |ψ〉 are
equal, up to selection of the reference frame used to describe both subsystems.
The basis is determined by a unitary U . Hence the orbit of the strongly locally
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Figure 15.4. Dimensionality of local orbits generated by a given point of the
Weyl chamber ∆̃N−1 – an asymmetric part of the Schmidt simplex ∆N−1 – for
pure states of N ×N problem with N = 2, 3 (compare Table 15.1).

equivalent states – the base in (15.20) – forms a coset space of all states of
the form UρNU †, as discussed in Section 8.5. In particular, for any maximally
entangled state, there are no other states satisfying SLE, while for a separable
state the orbit of SLE states forms the complex projective space CPN−1 of all
pure states of a single subsystem.

The question, if a given pure state |ψ〉 ∈ HN ⊗HK is separable, is easy to
answer: it is enough to compute the partial trace, ρN = TrK(|ψ〉〈ψ|), and to
check if Trρ2

N equals unity. If it is so the reduced state is pure, hence the initial
pure state is separable. In the opposite case the pure state is entangled. The
next question is: to what extent is a given state |ψ〉 entangled?

There seems not to be a unique answer to this question. Due to the Schmidt
decomposition (9.8) one obtains the Schmidt vector ~λ of length N (we assume
N ≤ K), and may describe it by entropies analysed in Chapters 2 and 12. For
instance, the entanglement entropy is defined as the von Neumann entropy
of the reduced state, which is equal to the Shannon entropy of the Schmidt
vector,

E(|ψ〉) ≡ S(ρA) = S(~λ) = −
N∑

i=1

λi ln λi . (15.25)

It is equal to zero for separable states and lnN for maximally entangled
states. In the similar way to measure entanglement one may also use the Rényi
entropies (2.79) of the reduced state, Eq ≡ Sq(ρA). We shall need a quantity
related to E2 called tangle

τ(|ψ〉) ≡ 2(1− Trρ2
A) = 2

(
1−

N∑
i=1

λ2
i

)
= 2

(
1− exp[−E2(|ψ〉)]

)
, (15.26)
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Table 15.1. Topological structure of local orbits of the N ×N pure states, Ds

denotes the dimension of the subspace of the Schmidt simplex ∆N−1, while
Do represents the dimension of the local orbit.

N Schmidt
coefficients

Ds

Part of the
asymmetric

simplex

Local structure:
base × fibre Do

(a, b) 1 line F(2) × RP3 5

2 (1, 0) 0 left edge CP2 × CP2 4

(1/2, 1/2) 0 right edge U(2)/U(1) = RP3 3

(a, b, c) 2 interior of triangle F(3) × U(3)
U(1) 14

(a, b, 0) 1 base F(3) × U(3)
[U(1)]2 13

3 (a, b, b) 1 2 upper sides U(3)
U(1)×U(2) × U(3)

U(1) 12

(1/2, 1/2, 0) 0 right corner U(3)
U(1)×U(2) × U(3)

[U(1)]2 11

(1, 0, 0) 0 left corner CP3 × CP3 8

(1/3, 1/3, 1/3) 0 upper corner U(3)/U(1) 8

which runs from 0 to 2(N − 1)/N , and its square root C =
√

τ , called
concurrence.9 Another entropy, E∞ = − ln λmax, has an elegant geometric
interpretation: if the Schmidt vector is ordered decreasingly and λ1 = λmax

denotes its largest component then |1〉⊗ |1〉 is the separable pure state closest
to |ψ〉 (Lockhart and Steiner, 2002). Thus the Fubini–Study distance of |ψ〉
to the set of separable pure states, Dmin

FS = arccos(
√

λmax), is a function of
E∞. Although one uses several different Rényi entropies Eq, the entanglement
entropy E = E1 is distinguished among them just as the Shannon entropy is
singled out by its operational meaning discussed in Section 2.2.

For the two qubit problem the Schmidt vector has only two components,
which sum to unity, so the entropy E(|ψ〉) ∈ [0, ln 2] characterizes uniquely the
entanglement of the pure state |ψ〉. To analyse its geometry it is convenient to
select a three-dimensional section of the space of pure states. The net of the
tetrahedron used for the cover picture is shown in Appendix 3 – it presents
entanglement at the boundary of the simplex defined by four separable states
defining the standard basis. It is defined by Eqs. (4.70) and (4.71) and may be
obtained by setting all phases νi in (4.67) to zero. Making use of the freedom

9 Concurrence was initially introduced for two qubits by Hill and Wootters (1997). We adopted here
the generalization of Rungta, Bužek, Caves, Hillery and Milburn (2001) and Mintert, Kuś and
Buchleitner (2004), but there are also other ways to generalize this notion for higher dimensions
(Uhlmann, 2000; Wong and Christensen, 2001; Wootters, 2001; Audenaert, Verstraete and Moor,
2001b; Badzia̧g, Deaur, Horodecki, Horodecki and Horodecki, 2002).
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of choice of the basis vectors we have selected four separable states to define
a standard basis.

In general, for an N ×N system the entropy is bounded, 0 ≤ E ≤ ln N , and
to describe the entanglement completely one needs a set of N −1 independent
quantities. What properties should they fulfil?

Before discussing this issue we need to distinguish certain classes of quantum
operations acting on bipartite systems. Local operations (LO) arise as the
tensor product of two maps, both satisfying the trace preserving condition
(10.54),

[ΦA ⊗ ΦB](ρ) =
∑

i

∑
j

(Ai ⊗Bj) ρ (A†
i ⊗B†

j ) . (15.27)

Any operation which might be written in the form

Φsep(ρ) =
∑

i

(Ai ⊗Bi) ρ (A†
i ⊗B†

i ) , (15.28)

is called separable (SO). Observe that this form is more general than (15.27),
even though the summation goes over one index. The third, important class
of maps is called LOCC. This name stands for local operations and classical
communication and means that all quantum operations, including measurements,
are allowed, provided they are performed locally in each subsystem. Classical
communication allows the two parties to exchange in both ways classical
information about their subsystems, and hence to introduce classical correlations
between them. One could think, all separable operations may be obtained
in this way, but this is not true (Bennett, DiVincenzo, Fuchs, Mor, Rains,
Shor, Smolin and Wootters, 1999a), and we have the proper inclusion relations
LO ⊂ LOCC ⊂ SO.

The concept of local operations leads to the notion of entanglement monotones.
These are the quantities which are invariant under unitary operations and
decrease, on average, under LOCC (Vidal, 2000). The words ‘on average’ refer
to the general case, in which a pure state is transformed by a probabilistic
local operation into a mixture,

ρ →
∑

i

piρi ⇒ µ(ρ) ≥
∑

i

piµ(ρi) . (15.29)

Note that if µ is a non-decreasing monotone, then −µ is a non-increasing
monotone. Thus we may restrict our attention to the non-increasing monotones,
which reflect the key paradigm of any entanglement measure: entanglement
cannot increase under the action of local operations. Construction of entanglement
monotones can be based on the following theorem (Nielsen, 1999):

Theorem 15.1 (Nielsen’s majorization) A given state |ψ〉 may
be transformed into |φ〉 by deterministic LOCC operations if and only if the
corresponding vectors of the Schmidt coefficients satisfy the majorization relation
(2.1)

|ψ〉 LOCC−→ |φ〉 ⇐⇒ ~λψ ≺ ~λφ. (15.30)
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To prove the forward implication we follow the original proof. Assume that
party A performs locally a generalized measurement, which is described by a
set of k Kraus operators Ai. By classical communication the result is sent to
party B, which performs a local action Φi, conditioned on the result i. Hence

k∑
i=1

[1⊗ Φi]
(
Ai|ψ〉〈ψ|A†

i

)
= |φ〉〈φ| . (15.31)

The result is a pure state so each terms in the sum needs to be proportional
to the projector. Tracing out the second subsystem we get

AiρψA†
i = piρφ , i = 1, . . . , k, (15.32)

where
∑k

i=1 pi = 1 and ρψ = TrB(|ψ〉〈ψ|) and ρφ = TrB(|φ〉〈φ|). Due to the
polar decomposition of Ai

√
ρψ we may write

Ai
√

ρψ =
√

AiρψA†
i Vi =

√
piρφ Vi (15.33)

with unitary Vi. Making use of the completeness relation (10.54) we obtain

ρψ =
√

ρψ 1
√

ρψ =
k∑

i=1

√
ρψA†

iAi
√

ρψ =
k∑

i=1

piV
†

i ρφVi, (15.34)

and the last equality follows from (15.33) and its adjoint. Hence we arrived
at an unexpected conclusion: if a local transformation |ψ〉 → |φ〉 is possible,
then there exists a bistochastic operation (10.71), which acts on the partially
traced states with inversed time – it sends ρφ into ρψ! The quantum HLP
lemma (Section 12.5) implies the majorization relation ~λψ ≺ ~λφ. The backward
implication follows from an explicit conversion protocol proposed by Nielsen,
or alternative versions presented in Hardy (1999), Jensen and Schack (2001)
and Donald, Horodecki and Rudolph (2002).

The majorization relation (15.30) introduces a partial order into the set
of pure states.10 Hence any pure state |ψ〉 allows one to split the Schmidt
simplex, representing the set of all local orbits, into three regions: the set F
(Future) contains states which can be produced from |ψ〉 by LOCC , the set P
(Past) of states from which |ψ〉 may be obtained, and eventually the set C of
incomparable states, which cannot be joined by a local transformation in any
direction.11

This structure resembles the ‘causal structure’ defined by the light cone in
special relativity. See Figure 15.5, and observe the close similarity to Figure
12.4 showing paths in the simplex of eigenvalues that can be generated by
bistochastic operations. The only difference is the arrow of time: the ‘Past’ for
the evolution in the space of density matrices corresponds to the ‘Future’ for
the local entanglement transformations and vice versa. In both cases the set C

10 A similar partial order induced by LOCC into the space of mixed states is analysed in (Hayden,
Terhal and Uhlmann, n.d.b).

11 For N ≥ 4 there exists an effect of entanglement catalysis (Jonathan and Plenio, 1999a; Daftuar
and Klimesh, 2001; Bandyopadhyay and Roychowdhury, 2002) that allows one to obtain certain
incomparable states in the presence of additional entangled states.
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Figure 15.5. Simplex of Schmidt coefficients ∆2 for 3×3 pure states: the corners
represent separable states, centre the maximally entangled state |φ+〉. Panels
(a)–(c) show ‘Future’ and ‘Past’ zones with respect to LOCC and are analogous
to those in Figure 12.4, but the direction of the arrow of time is reversed.

of incomparable states contains the same fragments of the simplex ∆N−1. In
a typical case C occupies regions close to the boundary of ∆N−1, so one may
expect the larger dimensionality N , the larger relative volume of C. This is
indeed the case, and in the limit N →∞ two generic pure states of the N ×N
system (or two generic density matrices of size N) are incomparable (Clifton,
Hepburn and Wuthrich, 2002).

The majorization relation (15.30) provides another justification for the observation
that two pure states are interconvertible (locally equivalent) if and only if
the have the same Schmidt vectors. More importantly, this theorem implies
that any Schur concave function of the Schmidt vector ~λ is an entanglement
monotone. In particular, this crucial property is shared by all Rényi entropies
of entanglement Eq(~λ) including the entanglement entropy (15.25). To ensure
a complete description of a pure state of the N ×N problem one may choose
E1, E2, . . . , EN−1. Other families of entanglement monotones include partial
sums of Schmidt coefficients ordered decreasingly, Mk(~λ) =

∑k

i=1 λk with
k = 1, . . . , N − 1 (Vidal, 2000), subentropy (Jozsa et al., 1994; Mintert and
Życzkowski, 2004), and symmetric polynomials in Schmidt coefficients (see
Problem 15.2).

Since the maximally entangled state is majorized by all pure states, it cannot
be reached from other states by any deterministic local transformation. Is it at
all possible to create it locally? A possible clue is hidden in the word average
contained in the majorization theorem.

Let us assume we have at our disposal n copies of a generic pure state |ψ〉.
The majorization theorem does not forbid us to locally create out of them m
maximally entangled states |ψ+〉, at the expense of the remaining n−m states
becoming separable. Such protocols proposed in Bennett, Bernstein, Popescu
and Schumacher (1996a) and Lo and Popescu (1998) are called entanglement
concentration. This local operation is reversible, and the reverse process
of transforming m maximally entangled states and n − m separable states
into n entangled states is called entanglement dilution. The asymptotic ratio
m/n ≤ 1 obtained by an optimal concentration protocol is called distillable
entanglement (Bennett et al., 1996a) of the state |ψ〉 (see Problem 15.3).
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Figure 15.6. Probability of the optimal local conversion of an initial state |ψ〉
(white ×) of the 3× 3 problem into a given pure state represented by a point
in the Schmidt simplex. Initial Schmidt vector ~λψ is (a) (0.7, 0.25, 0.05), (b)
(0.6, 0.27, 0.03) and (c) (0.8, 0.1, 0.1). Due to the degeneracy of ~λ in the latter
case there exist only three interconvertible states in ∆2, represented by (+).

Assume now that only one copy of an entangled state |ψ〉 is at our disposal.
To generate maximally entangled state locally we may proceed in a probabilistic
way: a local operation produces |ψ+〉 with probability p and a separable state
otherwise. Hence we allow a pure state |ψ〉 to be transformed into a mixed
state. Consider a probabilistic scheme to convert a pure state |ψ〉 into a target
|φ〉 with probability p. Let pc be the maximal number such that the following
majorization12 relation holds,

λψ ≺ pc
~λφ. (15.35)

It is easy to check that the probability p cannot be larger than pc, since the
Nielsen theorem would be violated. The optimal conversion strategy for which
p = pc was explicitly constructed by Vidal (1999). The Schmidt rank cannot
increase during any local conversion scheme (Lo and Popescu, 1998). If the
rank of the target state |φ〉 is larger than the Schmidt rank of |ψ〉, then pc = 0
and the probabilistic conversion cannot be performed.13

This situation is illustrated in Figure 15.6, which shows the probability of
accessing different regions of the Schmidt simplex for pure states of a 3 × 3
system for four different initial states |ψ〉. The shape of the black figure (p =
1 represents deterministic transformations) is identical with the set ‘Future’
in Figure 15.5. The more entangled final state |φ〉 (closer to the maximally
entangled state – black (∗) in the centre of the triangle), the smaller probability
p of a successful transformation. Observe that the contour lines (plotted at
p = 0.2, 0.4, 0.6 and 0.8) are constructed from the iso-entropy lines Sq for
q → 0 and q →∞ (compare with Figure 2.14).

Let us close with an envoi: entanglement of a pure state of any bipartite
system may be fully characterized by its Schmidt decomposition. In particular,
all entanglement monotones are functions of the Schmidt coefficients. However,
the Schmidt decomposition cannot be directly applied to the multipartite case
12 If the sum of both vectors is not equal relation (2.1) is sometimes called submajorization.
13 In such a case one may still perform a faithful conversion (Jonathan and Plenio, 1999b; Vidal,

Jonathan and Nielsen, 2000) transforming the initial state |ψ〉 into a state |φ′〉, for which its
fidelity with the target, |〈φ|φ′〉|2, is maximal.
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(Peres, 1995; Carteret et al., 2000; Aćın, Andrianov, Jané and Tarrach, 2001).
These systems are still being investigated.14 Let us just mention that pure
states of three qubits can be entangled in two inequivalent ways. There exist
three-qubit15 pure states (Greenberger, Horne and Zeilinger, 1989)

|GHZ〉 =
1√
2

(|000〉+|111〉) and |W 〉 =
1√
3

(|001〉+|010〉+|100〉) (15.36)

which cannot be locally converted with a positive probability in any direction
(Dür, Vidal and Cirac, 2000b).

15.4 Mixed states and separability

It is a good time to look again at mixed states: in this section we shall analyse
bipartite density matrices, acting on a composite Hilbert space H = HA⊗HB

of finite dimensionality d = NK. A state is called a product state, if it has a
tensor product structure, ρ = ρA ⊗ ρB. A mixed state ρ is called separable, if
it can be represented as a convex sum of product states (Werner, 1989),

ρsep =
M∑

j=1

qj ρA
j ⊗ ρB

j , (15.37)

where ρA acts in HA and ρB acts in HB, the weights are positive, qj > 0,
and sum to unity,

∑M

j=1 qj = 1. Such a decomposition is not unique. For any
separable ρ, the smallest number M of terms is called cardinality 16 of the state.
By definition the set MS of separable mixed states is convex. Separable states
can be constructed locally using classical communication, and may exhibit
classical correlations only.A mixed state which is not separable, hence may
display non-classical correlations, is called entangled.17 It is easy to see that
for pure states both definitions are consistent.

Any density matrix ρ acting on d-dimensional Hilbert space may be represented
as a sum (8.20) over d2−1 trace-less generators σi of SU(d). However, analysing
a composite system for which d = NK, it is more advantageous to use the
14 Several families of local invariants and entanglement monotones were found (Sudbery, 2001; Brun

and Cohen, 2001; Gingrich, 2002), properties of local orbits were analysed (Mosseri and Dandoloff,
2001; Bernevig and Chen, 2003; Miyake, 2003; Lévay, 2004), measures of multipartite entanglement
were introduced (Coffman, Kundu and Wootters, 2000; Bennett, Popescu, Rohrlich, Smolin and
Thapliyal, 2001; Wong and Christensen, 2001; Meyer and Wallach, 2002; Brennen, 2003; Heydari
and Bjork, 2004) and a link between quantum mechanical and topological entanglement including
knots and braids (Kauffmann and Lomonaco Jr., 2002; Asoudeh, Karimipour, Memarzadeh and
Rezakhani, 2004), rings (O’Connor and Wootters, 2001) and graphs (Plesch and Bužek, 2003;
Hein, Eisert and Briegel, 2004) have been discussed.

15 A curious reader might be pleased to learn that four qubits can be entangled in nine different ways
(Verstraete, Dahaene, DeMoor and Verschelde, 2002b). What is the number of different ways, one
may entangle m qubits?

16 Due to Carathéodory’s theorem the cardinality is not larger then d2 (Horodecki, 1997). In the
two-qubit case it is not larger than d = 4 (Sanpera, Tarrach and Vidal, 1998), while for systems
of higher dimensions it is typically larger than the rank r ≤ d (Lockhart, 2000).

17 The notion of entanglement may also be used in the set-up of classical probability distributions
(Tucci, n.d.b), theory of Lie-algebras or convex sets (Barnum, Knill, Ortiz and Viola, 2003) and
may be compared with secret classical correlations (Collins and Popescu, 2002).



15.4 Mixed states and separability 351

basis of the product group SU(N)⊗SU(K), which leads us to the Fano form
(Fano, 1983)

ρ =
1

NK

[
1NK+

N2−1∑
i=1

τA
i σi⊗1K+

K2−1∑
j=1

τB
j 1N⊗σj+

N2−1∑
i=1

K2−1∑
j=1

βijσi⊗σj

]
. (15.38)

Here ~τA and ~τB are Bloch vectors of the partially reduced states, while a
real (N2 − 1) × (K2 − 1) matrix β describes the correlation between both
subsystems. If β = 0 then the state is separable, but the reverse is not true.18

Keeping both Bloch vectors constant and varying β in such a way to preserve
positivity of ρ we obtain a (N 2 − 1)(K2 − 1)-dimensional family of bipartite
mixed states, which are locally indistinguishable.

The definition of separability (15.37) is implicit, so it is in general not easy
to see if such a decomposition exists for a given density matrix. Separability
criteria found so far may be divided into two disjoint classes: A) sufficient and
necessary, but not practically usable; and B) easy to use, but only necessary
(or only sufficient). A simple, albeit amazingly powerful criterion was found by
Peres (1996), who analysed the action of partial transposition on an arbitrary
separable state,

ρTA
sep ≡ (T ⊗ 1)(ρsep) =

∑
j

qj (ρA
j )T ⊗ ρB

j ≥ 0. (15.39)

Thus any separable state has a positive partial transpose (is PPT), so we
obtain directly
B1. PPT criterion. If ρTA 6≥ 0, the state ρ is entangled.
Is is extremely easy to use: all we need to do is to perform the partial transposition
of the density matrix in question, diagonalize, and check if all eigenvalues are
non-negative. Although partial transpositions were already defined in (10.34),
let us have a look at how both operations act on a block matrix,

X =
[

A B
C D

]
, XTB ≡

[
AT BT

CT DT

]
, XTA ≡

[
A C
B D

]
. (15.40)

Note that XTB = (XTA)T , so the spectra of the two operators are the same and
the above criterion may be equivalently formulated with the map TB = (1⊗T ).
Furthermore, partial transposition applied on a density matrix produces the
same spectrum as the transformation of flipping one of both Bloch vectors
present in its Fano form (15.38). Alternatively one may change the signs of all
generators σj of the corresponding group. For instance, flipping the second of
the two subsystems of the same size we obtain

ρTB ≡ 1
N 2

[
1N2 +

N2−1∑
i=1

τA
i σi⊗1N −

N2−1∑
j=1

τB
j 1N ⊗σj−

N2−1∑
i,j=1

βijσi⊗σj

]
, (15.41)

18 Note that for product states Mij ≡ βij − τA
i τB

j = 0, hence the norm ||M ||2 characterizes to what

extent ρ is not a product state (Schlienz and Mahler, 1995).
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with the same spectrum as ρTA . In the two-qubit case, reflection of all three
components of the Bloch vector, ~τB → −~τB, is equivalent to changing the
sign of its single component τB

y (partial transpose), followed by the π-rotation
along the y-axis.

To watch the PPT criterion in action consider the family of generalized
Werner states 19 which interpolate between maximally mixed state ρ∗ and the
maximally entangled state P+ = |φ+〉〈φ+|,

ρW (x) = x|φ+〉〈φ+|+ (1− x)
1
N
1 with x ∈ [0, 1] . (15.42)

One eigenvalue equals [1+(N−1)x]/N , and the remaining (N−1) eigenvalues
are degenerate and equal to (1− x)/N . In the N = 2 case:

ρx =
1
4




1 + x 0 0 2x
0 1− x 0 0
0 0 1− x 0
2x 0 0 1 + x


 ,

ρTA
x =

1
4




1 + x 0 0 0
0 1− x 2x 0
0 2x 1− x 0
0 0 0 1 + x


 . (15.43)

Diagonalization of the partially transposed matrix ρTA
x = ρTB

x gives the spectrum
1
4
{1 + x, 1 + x, 1 + x, 1− 3x}. This matrix is positive definite if x ≤ 1/3, hence

Werner states are entangled for x > 1/3. It is interesting to observe that the
critical state ρ1/3 ∈ ∂Msep, is localized at the distance rin = 1/

√
24 from the

maximally mixed state ρ∗, so it sits on the insphere, the maximal sphere that
one can inscribe into the set M(4) of N = 4 mixed states.

As we shall see below the PPT criterion works in both directions only
if dim(H) ≤ 6, so there is a need for other separability criteria.20 Before
reviewing the most important of them let us introduce one more notion often
used in the physical literature.

An Hermitian operator W is called an entanglement witness for a given
entangled state ρ if TrρW < 0 and Trρω ≥ 0 for all separable σ (Horodecki
et al., 1996a; Terhal, 2000b). For convenience the normalization TrW = 1 is
assumed. Horodecki et al. (1996a) proved a useful lemma:

Lemma 15.1 (Witness) For any entangled state ρ there exists an
entanglement witness W .

In fact this is the Hahn–Banach separation theorem (Section 1.1) in slight
disguise.

It is instructive to realize there is a direct relation with the dual cones
19 For the original Werner states (Werner, 1989) the singlet pure state |ψ−〉 = (|01〉− |10〉)/√2 was

used instead of |φ+〉.
20 For recent analysis of the problem consult also Lewenstein, Bruß, Cirac, Kraus, Kuś, Samsonowicz,

Sanpera and Tarrach (2000a), Horodecki, Horodecki and Horodecki (2000b), Bruß, Cirac,
Horodecki, Hulpke, Kraus, Lewenstein and Sanpera (2002), Terhal (2002) and Bruß (2002).
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construction discussed in Chapter 11: any witness operator is proportional to
a dynamical matrix, W = DΦ/N , corresponding to a non-completely positive
map Φ. Since DΦ is block positive (positive on product states), the condition
TrWσ ≥ 0 holds for all separable states for which the decomposition (15.37)
exists. Conversely, a state ρ is separable if TrWρ ≥ 0 for all block positive
W . This is just the definition (11.17) of a super-positive map Ψ. We arrive,
therefore, at a key observation: the set SP of super-positive maps is isomorphic
with the set MS of separable states by the JamiolÃkowski isomorphism, ρ =
DΨ/N .

An intricate link between positive maps and the separability problem is
made clear in the
A1. Positive maps criterion (Horodecki et al., 1996a). A state ρ is separable
if and only if ρ′ = (Φ⊗ 1)ρ is positive for all positive maps Φ.
To demonstrate that this condition is necessary, act with an extended map on
the separable state (15.37),

(
Φ⊗ 1

)(∑
j

qj ρA
j ⊗ ρB

j

)
=

∑
j

qj Φ(ρA
j )⊗ ρB

j ≥ 0 . (15.44)

Due to positivity of Φ the above combination of positive operators is positive.
To prove sufficiency, assume that ρ′ = (Φ⊗1)ρ is positive. Thus Trρ′P ≥ 0 for
any projector P . Setting P = P+ = |φ+〉〈φ+| and making use of the adjoint
map we get Trρ(Φ ⊗ 1)P+ = 1

N
TrρDΦ ≥ 0. Since this property holds for all

positive maps Φ, it implies separability of ρ due to the witness lemma ¤.
The positive maps criterion holds also if the map acts on the second subsystem.

However, this criterion is not easy to use: one needs to verify that the required
inequality is satisfied for all positive maps. The situation becomes simple for
the 2 × 2 and 2 × 3 systems. In this case any positive map is decomposable
due to the Størmer–Woronowicz theorem and may be written as a convex
combination of a CP map and a CcP map, which involves the transposition
T (see Section 11.1). Hence, to apply the above criterion we need to perform
one check working with the partial transposition TA = (T ⊗ 1). In this way
we become
B1’. Peres–Horodeccy criterion (Peres, 1996; Horodecki et al., 1996a). A
state ρ acting on H2 ⊗H2 (or H2 ⊗H3) composite Hilbert space is separable
if and only if ρTA ≥ 0.

In general, the set of bipartite states may be divided into PPT states
(positive partial transpose) and NPPT states (not PPT). A map Φ is related
by the JamiolÃkowski isomorphism (11.22) to a PPT state if Φ ∈ CP ∩ CcP.
Complete co-positivity of Φ implies that TΦ is completely positive, so (TΦ⊗
1)ρ ≥ 0 for any state ρ. Thus ρ′ = (Φ ⊗ 1)ρ is a PPT state, so such a map
may be called PPT inducing 21 PPTM ≡ CP ∩ CcP (see Figure 11.4).

Similarly, a super-positive map Φ is related by the isomorphism (11.22)
21 These maps should not be confused with PPT-preserving maps (Rains, 2001; Eggeling, Vollbrecht,

Werner and Wolf, 2001), which act on bipartite systems and fulfil another property: if ρTA ≥ 0
then (Ψ(ρ))TA ≥ 0.
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with a separable state. Hence (Φ ⊗ 1) acting on the maximally entangled
state |φ+〉〈φ+| is separable. It is then not surprising that ρ′ = (Φ ⊗ 1)ρ
becomes separable for an arbitrary state ρ (Horodecki, Shor and Ruskai,
2003b), which explains why SP maps are also called entanglement breaking
channels. Furthermore, due to the positive maps criterion (Ψ⊗ 1)ρ′ ≥ 0 for
any positive map Ψ. In this way we have arrived at the first of three duality
conditions equivalent to (11.16)–(11.18),

{Φ ∈ SP} ⇔ Ψ · Φ ∈ CP for all Ψ ∈ P , (15.45)
{Φ ∈ CP} ⇔ Ψ · Φ ∈ CP for all Ψ ∈ CP , (15.46)
{Φ ∈ P} ⇔ Ψ · Φ ∈ CP for all Ψ ∈ SP . (15.47)

The second condition reflects the fact that a composition of two CP maps
is CP, while the third one is dual to the first.

Due to the Størmer and Woronowicz theorem and the Peres–Horodeccy
criterion, all PPT states for 2 × 2 and 2 × 3 problems are separable (hence
any PPT-inducing map is SP) while all NPPT states are entangled. In higher
dimensions there exist PPT entangled states (PPTES), and this fact motivates
investigation of positive, non-decomposable maps and other separability criteria.
B2. Range criterion (Horodecki, 1997). If a state ρ is separable, then there
exists a set of pure product states such that |ψi ⊗ φi〉 span the range of ρ and
TB(|ψi ⊗ φi〉 span the range of ρTB .
The action of the partial transposition on a product state gives |ψi⊗φ∗i 〉, where
∗ denotes complex conjugation in the standard basis. This criterion, proved
by P. Horodecki (1997), allowed him to identify the first PPTES in the 2⊗ 4
system. Entanglement of ρ was detected by showing that none of the product
states from the range of ρ, if partially conjugated, belong to the range of ρTB .

The range criterion allows one to construct PPT entangled states related
to unextendible product basis, (UPB). It is a set of orthogonal product vectors
|ui〉 ∈ HN ⊗ HM , i = 1, . . . , k < MN , such that there does not exist any
product vectors orthogonal to all of them (Bennett, DiVincenzo et al., 1999b;
Alon and Lovasz, 2001; DiVincenzo, Mor, Shor, Smolin and Terhal, 2003). We
shall recall an example found in Bennett et al. (1999b) for 3× 3 system,

|u1〉 =
1√
2
|0〉 ⊗ |0− 1〉, |u2〉 =

1√
2
|2〉 ⊗ |1− 2〉, |u3〉 =

1√
2
|0− 1〉 ⊗ |2〉,

|u4〉 =
1√
2
|1− 2〉 ⊗ |0〉, |u5〉 =

1
3
|0 + 1 + 2〉 ⊗ |0 + 1 + 2〉. (15.48)

These five states are mutually orthogonal. However, since they span full three-
dimensional spaces in both subsystems, no product state may be orthogonal
to all of them.

For a given UPB let P =
∑k

i=1 |ui〉〈ui| denote the projector on the space
spanned by these product vectors. Consider the mixed state, uniformly covering
the complementary subspace,

ρ ≡ 1
MN − k

(1− P ) . (15.49)
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By construction this subspace does not contain any product vectors, so ρ
is entangled due to the range criterion. On the other hand, the projectors
(|ui〉〈ui|)TB are mutually orthogonal, so the operator P TB =

∑k

i=1(|ui〉〈ui|)TB

is a projector. So is (1−P )TB , hence ρTB is positive. Thus the state (15.49) is
a positive partial transpose entangled state.22

B3. Reduction criterion (Cerf, Adami and Gingrich, 1999; Horodecki and
Horodecki, 1999). If a state ρ is separable then the reduced states ρA = TrBρ
and ρB = TrAρ satisfy

ρA ⊗ 1− ρ ≥ 0 and 1⊗ ρB − ρ ≥ 0 . (15.50)

This statement follows directly from the positive maps criterion with the map
Φ(σ) = (Trσ)1 − σ applied to the first or the second subsystem. Computing
the dynamical matrix for this map composed with the transposition, Φ′ = ΦT ,
we find that DΦ′ ≥ 0, hence Φ is CcP and (trivially) decomposable. Thus
the reduction criterion cannot be stronger23 than the PPT criterion. There
exists, however, a good reason to pay some attention to this criterion: the
Horodecki brothers have shown (Horodecki and Horodecki, 1999) that any
state ρ violating (15.50) is distillable, that is there exists a LOCC protocol
which allows one to extract locally maximally entangled states out of ρ or
its copies (Bennett, DiVincenzo, Smolin and Wootters, 1996b; Rains, 1999b).
Entangled states, which are not distillable are called bound entangled (Horodecki,
Horodecki and Horodecki, 1998; Horodecki, Horodecki and Horodecki, 1999).

A general question, which mixed state may be distilled,24 is not solved yet
(Bruß et al., 2002). Again the situation is clear for systems with dim(H) ≤ 6:
all PPT states are separable, and all NPPT states are entangled and distillable.
For larger systems there exist PPT entangled states25 and all of them are not
distillable, hence bound entangled (Horodecki et al., 1998). Conversely, one
could think that all NPPT entangled states are distillable, but this seems not
to be the case (Dür, Cirac, Lewenstein and Bruß, 2000a; DiVincenzo, Shor,
Smolin, Terhal and Thapliyal, 2000a).
B4. Majorization criterion (Nielsen and Kempe, 2001). If a state ρ is
separable, then the reduced states ρA and ρB satisfy the majorization relations

ρ ≺ ρA and ρ ≺ ρB . (15.51)

In brief, separable states are more disordered globally than locally. To prove
this criterion one needs to find a bistochastic matrix B such that the spectra
satisfy ~λ = B~λA (see Problem 15.4). The majorization relation implies that
any Schur convex functions satisfies the inequality (2.8). For Schur concave
22 The UPB method was used to construct PPTES in (Bennett et al., 1999b; Bruß and Peres, 2000;

DiVincenzo, Mor, Shor, Smolin and Terhal, 2003; Pittenger, 2003), while not completely positive
maps were applied in (Ha et al., 2003; Benatti, Floreanini and Piani, 2004) for this purpose.
Conversely, PPTES were used in (Terhal, 2000b) to find non-decomposable positive maps.

23 This is the case for the generalized reduction criterion proposed in Albeverio, Chen and Fei (2003).
24 Following literature we use two similar terms: entanglement concentration and distillation, for

local operations performed on pure and mixed states, respectively. While the former operations
are reversible, the latter are not.

25 Interestingly, there are no bound entangled states of rank one or two (Horodecki, Smolin, Terhal
and Thapliyal, 2003c).
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functions the direction of the inequality changes. In particular, the entropy
criterion follows:
B5. Entropy criterion. If a state ρ is separable, then the Rényi entropies
fulfil

Sq(ρ) ≥ Sq(ρA) and Sq(ρ) ≥ Sq(ρB) for q ≥ 0 . (15.52)

The entropy criterion was originally formulated for q = 1 (Horodecki and
Horodecki, 1994). Then this statement may be equivalently expressed in terms
of the conditional entropy 26 S(A|B) = S(ρAB) − S(ρA): for any separable
bipartite state S(A|B) is non-negative. Thus negative conditional entropy
of a state ρAB confirms its entanglement (Horodecki and Horodecki, 1996;
Schumacher and Nielsen, 1996; Cerf and Adami, 1999). The entropy criterion
was proved for q = 2 in (Horodecki, Horodecki and Horodecki, 1996b) and
later formulated also for the Havrda–Charvat–Tsallis entropy (2.77) (Abe and
Rajagopal, 2001; Tsallis, Lloyd and Baranger, 2001; Rajagopal and Rendell,
2002; Rossignoli and Canosa, 2002). Its combination with the entropic uncertainty
relations of Maassen and Uffink (1988) provides yet another interesting family
of separability criteria (Gühne and Lewenstein, 2004). However, it is worth
emphasizing that in general the spectral properties do not determine separability
– there exist pairs of isospectral states, one of which is separable, the other
not (compare with Problem 15.5).
A2. Contraction criterion. A bipartite state ρ is separable if and only if any
extended trace preserving positive map act as a (weak) contraction in sense of
the trace norm,

||ρ′||Tr = ||(1⊗ Φ)ρ||Tr ≤ ||ρ||Tr = Trρ = 1 . (15.53)

This criterion was formulated in (Horodecki, Horodecki and Horodecki,
n.d.b) basing on earlier papers (Rudolph, 2003a; Chen and Wu, 2003). To
prove it notice that the sufficiency follows from the positive map criterion:
since Trρ′ = 1, hence ||ρ′||Tr ≤ 1 implies that ρ′ ≥ 0. To show the converse
consider a normalized product state ρ = ρA⊗ρB. Any trace preserving positive
map Φ acts as isometry in sense of the trace norm, and the same is true for
the extended map,

||ρ′||Tr =
∣∣∣∣(1⊗ Φ)(ρA ⊗ ρB)

∣∣∣∣
Tr

= ||ρA|| · ||Φ(ρB)||Tr = 1 . (15.54)

Since the trace norm is convex, ||A + B||Tr ≤ ||A||Tr + ||B||Tr, any separable
state fulfils∣∣∣

∣∣∣(1⊗Φ)
(∑

i

qi(ρA
i ⊗ρB

i )
)∣∣∣

∣∣∣
Tr
≤

∑
i

qi ||ρA
i ⊗Φ(ρB

i )||Tr =
∑

i

qi = 1 , (15.55)

which ends the proof. ¤
Several particular cases of this criterion could be useful. Note that the

celebrated PPT criterion B1 follows directly, if the transposition T is selected
26 The opposite quantity, −S(A|B), is called coherent quantum information (Schumacher and

Nielsen, 1996) and plays an important role in quantum communication (Horodecki, Horodecki,
Horodecki and Oppenheim, 2005).
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as a trace preserving map Φ, since the norm condition, ||ρTA ||Tr ≤ 1, implies
positivity, ρTA ≥ 0. Moreover, one may formulate an analogous criterion for
global maps Ψ, which act as contractions on any bipartite product states,
||Ψ(ρA ⊗ ρB)||Tr ≤ 1. As a representative example let us mention
B6. Reshuffling criterion.27 If a bipartite state ρ is separable then reshuffling
(10.33) does not increase its trace norm,

||ρR||Tr ≤ ||ρ||Tr = 1 . (15.56)

We shall start the proof considering an arbitrary product state, σA ⊗ σB. By
construction its Schmidt decomposition consists of one term only. This implies

||(σA ⊗ σB)R||Tr = 2 ||σA||2 · ||σB||2 =
√

Trσ2
A

√
Trσ2

B ≤ 1 . (15.57)

Since the reshuffling transformation is linear, (A + B)R = AR + BR, and the
trace norm is convex, any separable state satisfies

∣∣∣
∣∣∣
(∑

i

qi(σA
i ⊗ σB

i )
)R∣∣∣

∣∣∣
Tr

≤
∑

i

qi||(σA
i ⊗ σB

i )R||Tr ≤
∑

i

qi = 1 , (15.58)

which completes the reasoning. ¤
In the simplest case of two qubits, the latter criterion is weaker than the

PPT: examples of NPPT states, the entanglement of which is not detected
by reshuffling, were provided by Rudolph (2003b). However, for some larger
dimensional problems the reshuffling criterion becomes useful, since it is capable
of detecting PPT entangled states, for which ||ρR||Tr > 1 (Chen and Wu, 2003).

The problem of which separability criterion28 is the strongest, and what
the implication chains among them are, remains a subject of a vivid research
(Vollbrecht and Wolf, 2002; Albeverio et al., 2003; Chen and Wu, 2004; Batle,
Plastino, Casas and Plastino, 2004). In general, the separability problem is
‘hard’, since it is known that it belongs to the NP complexity class (Gurvits,
2003). Due to this intriguing mathematical result it is not surprising that all
operationally feasible analytic criteria provide partial solutions only. On the
other hand, one should appreciate practical methods constructed to decide
separability numerically. Iterative algorithms based on an extension of the
PPT criterion for higher dimensional spaces (Doherty, Parillo and Spedalieri,
2002; Doherty et al., 2004) or non-convex optimization (Eisert, Hyllus, Guhne
and Curty, 2004) are able to detect the entanglement in a finite number of
steps. Another algorithm provides an explicit decomposition into pure product
states (?), confirming that the given mixed state ρ is separable. A combination
of these two approaches terminates after a finite time t and gives an inconclusive
27 Called also realignment criterion (Chen and Wu, 2003) or computable cross-norm criterion

(Rudolph, 2003b). It is related to the earlier minimal cross-norm criterion of Rudolph (2003a),
which provides a necessary and sufficient condition for separability, but is in general not practical
to use.

28 There exists several other separability criteria, not discussed here. Let us mention applications of
the range criterion for 2 × N systems (Dür et al., 2000a), checks for low rank density matrices
(Horodecki, Lewenstein, Vidal and Cirac, 2000c), reduction of the dimensionality of the problem
(Woerdeman, 2004), relation between purity of a state and its maximal projection on a pure states
(Lewenstein et al., 2000a), or criterion obtained by expanding a mixed state in the Fourier basis
(Pittenger and Rubin, 2000).
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answer only if ρ belongs to the ε-vicinity of the boundary of the set of separable
states. By increasing the computation time t one may make the width ε of the
‘no man’s land’ arbitrarily small.

15.5 Geometry of the set of separable states

Equipped with a broad spectrum of separability criteria, we may try to describe
the structure of the set MS of the separable states. This task becomes easier for
the two-qubit system, for which positive partial transpose implies separability.
Hence the set of N = 4 separable states arises as an intersection of the entire
body of mixed states with its reflection induced by partial transpose,

M
(4)
S = M(4) ∩ TA(M(4)) , (15.59)

(see Figure 11.2(b)). This observation suggests that the set of separable states
has a positive volume. The maximally mixed state is invariant with respect
to partial transpose, ρ∗ = ρTB∗ and occupies the centre of the body M(4). It
is thus natural to ask, what is the radius of the separable ball centred at ρ∗?
The answer is very appealing in the simplest, Euclidean geometry: the entire
maximal 15-D ball inscribed in M(4) is separable (Życzkowski, Horodecki,
Sanpera and Lewenstein, 1998). Working with the distance D2 defined in Eq.
(8.3), its radius reads rin = 1/

√
24.

The separable ball is sketched in two- or three-dimensional cross sections of
M(4) in Figure 15.7. To prove its separability29 we shall invoke

Theorem 15.2 (Mehta’s) (Mehta, 1989). Let A be a Hermitian
matrix of size D and let α = TrA/

√
TrA2. If α ≥ √

D − 1 then A is positive.

Its proof begins with an observation that both traces are basis independent,
so we may work in the eigenbasis of A. Let (x1, . . . xD) denote the spectrum
of A. Assume first that one eigenvalue, say x1, is negative. Making use of the
right-hand side of the standard estimation between the l1- and l2-norms (with
prefactor 1) of an N -vector, ||A||2 ≤ ||A||1 ≤ N ||A||2, we infer

TrA =
D∑

i=1

xi <
D∑

i=2

xi ≤
√

D − 1
( D∑

i=2

x2
i

)1/2

<
√

D − 1
√

TrA2 . (15.60)

This implies that α <
√

D − 1. Hence if the opposite is true and α ≥ √
D − 1

then none of the eigenvalues xi could be negative, so A ≥ 0. ¤
The partial transpose preserves the trace and the HS norm of any state,

||ρTB ||22 = ||ρ||22 = 1
2
Trρ2. Taking for A a partially transposed density matrix

ρTB we see that α2 = 1/Trρ2. Let us apply the Mehta lemma to an arbitrary
mixed state of a N ×N bipartite system, for which the dimension D = N2,

1/Trρ2 ≥ N2 − 1 ⇒ ρ is PPT. (15.61)
29 An explicit separability decomposition (15.37) for any state inside the ball was provided in

(Braunstein, Caves, Jozsa, Linden, Popescu and Schack, 1999).



15.5 Geometry of the set of separable states 359

Figure 15.7. Maximal ball inscribed inside the 15-D body M(4) of mixed states
is separable: (a) 3-D cross section containing four Bell states, (b) 2-D cross
section defined by two Bell states and ρ∗ with the maximal separable triangle
of pseudo-pure states.

Since the purity condition Trρ2 = 1/(D − 1) characterizes the insphere of
M(D), we conclude that for any bipartite30 system the entire maximal ball
inscribed inside the set of mixed states consists of PPT states only. This
property implies separability for 2 × 2 systems. Separability of the maximal
ball for higher dimensions was established by Gurvits and Barnum (2002),
who later estimated the radius of the separable ball for multipartite systems
(Gurvits and Barnum, 2003, 2004).

For any N × N system the volume of the maximal separable ball, Bsep
N4−1

may be compared with the Euclidean volume (14.38) of M(N2). The ratio

Vol(Bsep
N4−1)

Vol
(
M(N2)

) =
π(N2−1)/2 2(N2−N4)/2 Γ(N4)

Γ[(N 4 + 1)/2] NN4 (N2 − 1)(N4−1)/2
∏N2

k=1 Γ(k)
(15.62)

decreases fast with N , which suggests that for higher-dimensional systems the
separable states are not typical. The actual probability p to find a separable
mixed state is positive for any finite N and depends on the measure used
(Życzkowski, 1999; Slater, 1999b; Slater, 2005). However, in the limit N →∞
the set of separable states is nowhere dense (Clifton and Halvorson, 2000), so
the probability p computed with respect to an arbitrary non-singular measure
tends to zero.

Another method of exploring the vicinity of the maximally mixed state
consists in studying pseudo-pure states

ρε ≡ 1
N2

(1− ε) + ε|φ〉〈φ| , (15.63)

which are relevant for experiments with nuclear magnetic resonance (NMR)
for ε ¿ 1. The set Mε is then defined as the convex hull of all ε-pseudo pure
states. It forms a smaller copy of the entire set of mixed states of the same
shape and is centred at ρ∗ = 1/N2.

30 The same is true for multipartite systems (Kendon, Życzkowski and Munro, 2002).
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For instance, since the cross section of the set M(4) shown in Figure 15.7(b)
is a triangle, so is the set Mεc

– a dashed triangle located inside the dark
rhombus of separable states. The rhombus is obtained as a cross section of
the separable octahedron,31 which arises as a common part of the tetrahedron
of density matrices spanned by four Bell states and its reflection representing
their partial transposition (Horodecki and Horodecki, 1996; Aravind, 1997).
An identical octahedron of super-positive maps will be formed by intersecting
the tetrahedrons of CP and CcP one-qubit unital maps shown in Figure 11.3(a)
and (b).

Making use of the radius (15.61) of the separable ball we obtain that the
states Mε of a N ×N bipartite32 system are separable for ε ≤ εc = 1/(N2−1).

Usually one considers states separable with respect to a given decomposition
of the composed Hilbert space, HN2 = HA ⊗HB. A state ρ may be separable
with respect to a given decomposition and entangled with respect to another
one. Consider for instance, two decompositions of H6: H2 ⊗ H3 and H3 ⊗
H2 which describe different physical problems. There exist states separable
with respect to the former decomposition and entangled with respect to the
latter one. On the other hand one may ask, which states are separable with
respect to all possible splittings of the composed system into subsystems A
and B. This is the case if ρ′ = Uρ U † is separable for any global unitary U ,
and states possessing this property are called absolutely separable (Kuś and
Życzkowski, 2001).

All states belonging to the maximal ball inscribed into the set of mixed states
for a bipartite problem are not only separable but also absolutely separable.
In the two-qubit case the set of absolutely separable states is larger than the
maximal ball: As conjectured in Ishizaka and Hiroshima (2000) and proved in
Verstraete, Audenaert and DeMoor (2001a) it contains any mixed state ρ for
which

CM(~x) ≡ x1 − x3 − 2
√

x2x4 ≤ 0 , (15.64)

where ~x = {x1 ≥ x2 ≥ x3 ≥ x4} denotes the ordered spectrum of ρ. The
problem, whether there exist absolutely separable states outside the maximal
ball was solved for 2×3 case (Hildebrand, n.d.), but it remains open in higher
dimensions. Numerical investigations suggest that in such a case the set MS of
separable states, located in central parts of M, is covered by a shell of bound
entangled states. However this shell is not perfect, in the sense that the set
of NPPT entangled states (occupying certain ‘corners’ of M) has a common
border with the set of separable states.
31 Properties of a separable octangula obtained for other 3-D cross sections of M(4) were analysed

in Ericsson (2002). Several 2-D cross sections plotted in Jakóbczyk and Siennicki (2001) and
Verstraete, Dahaene and DeMoor (2002a) provide further insight into the geometry of the problem.

32 Bounds for εc in multipartite systems were obtained in Braunstein et al. (1999), Deuar, Munro
and Nemoto (2000), Pittenger and Rubin (2002), Gurvits and Barnum (2003), Szarek (2005) and
Gurvits and Barnum (2004). The size of the separable ball is large enough that to generate a
genuinely entangled pseudo-pure state in an NMR experiment one would need to deal with at
least 34 qubits (Gurvits and Barnum, 2004). Although, to date, experimentalist have gained full
control over 7–10 qubits and work with separable states only, the NMR quantum computing does
fine (Cory, Fahmy and Havel, 1997; Chuang, Gershenfeld, Kubinec and Leung, 1998; Laflamme,
Cory, Negrevergne and Viola, 2002).
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Figure 15.8. (a) Best separable approximation of entangled state ρ; (b) a
witness W0 detects entanglement in a subset of entanglement states; W1 –
optimal decomposable witness; W2 – optimal non-decomposable witness.

Some insight into the geometry of the problem may be gained by studying
the manifold Σ of mixed products states. To verify whether a given state ρ
belongs to Σ one computes the partial traces and checks if ρA ⊗ ρB is equal
to ρ. This is the case, for example, for the maximally mixed state, ρ∗ ∈ Σ. All
states tangent to Σ at ρ∗ are separable, while the normal subspace contains
the maximally entangled states. Furthermore, for any bipartite systems the
maximally mixed state ρ∗ is the product state closest to any maximally entangled
state (with respect to the HS distance) (Lockhart, Steiner and Gerlach, 2002).

Let us return to characterization of the boundary of the set of separable
states for a bipartite system. For any entangled state σent one may define the
separable state σsep ∈ ∂MS, which is closest to σent with respect to a given
metric. In general it is not easy to find the closest separable state, even in
the two qubit case, for which the 14-dim boundary of the set M

(4)
S may be

characterized explicitly,

(ρ ∈ ∂M
(4)
S ) ⇒ detρ = 0 or detρTA = 0 . (15.65)

Alternatively, for any entangled state one defines the best separable approximation
(BSA)33

ρent = Λρsep + (1− Λ)ρb, (15.66)

where the separable state ρsep and the state ρb are chosen in such a way that the
positive weight Λ ∈ [0, 1] is maximal. Uniqueness of such a decomposition was
proved in Lewenstein and Sanpera (1998) for two qubits, and in Karnas and
Lewenstein (2001) for any bipartite system. In the two-qubit problem the state
ρb is pure, and is maximally entangled for any full rank state ρ (Karnas and
Lewenstein, 2001). An explicit form of the decomposition (15.66) was found
in Wellens and Kuś (2001) for a generic two-qubit state and in Akhtarshenas
and Jafarizadeh (2004) for some particular cases in higher dimensions. Note
the key difference in both approaches: looking for the separable state closest
to ρ we probe the boundary ∂M

(N)
S of the set of separable states only, while

looking for its best separable approximation we must also take into account
the boundary of the entire set of density matrices; compare Figure 15.8(a) and
Figure 15.9(a).

33 Also called Lewenstein–Sanpera decomposition (Lewenstein and Sanpera, 1998).
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Figure 15.9. (a) Minimal distance Dx to the closest separable state. (b)
Maximal fidelity to a maximally entangled state. (c) Robustness, i.e. the
minimal ratio of the distance to set MS by its width.

The structure of the set of separable states may also be analysed with use
of the entanglement witnesses (Pittenger and Rubin, 2003), already defined
in the previous section. Any witness W , being a non-positive operator, may
be represented as a point located far outside the set M of density matrices,
in its image with respect to an extended positive map, (ΦP ⊗ 1), or as a line
perpendicular to the axis OW (see Figure 11.6), which crosses M. The states
outside this line satisfy TrρW < 0, hence their entanglement is detected by W .
A witness W1 is called finer than W0 if every entangled state detected by W0 is
also detected by W1. A witness W2 is called optimal if the corresponding map
belongs to the boundary of the set of positive operators, so the line representing
W2 touches the boundary of the set MS of separable states. A witness related
to a generic non-CP map ΦP ∈ P may be optimized by sending it toward the
boundary of P (Lewenstein, Kraus, Cirac and Horodecki, 2000b). If a positive
map ΦD is decomposable, the corresponding witness, W = DΦD

/N is called
decomposable. Any decomposable witness cannot detect PPT bound entangled
states (see Figure 15.8(b)).

One might argue that in general a witness W = DΦ/N is theoretically
less useful than the corresponding map Φ, since the criterion TrρW < 0 is
not as powerful as N(W RρR)R = (Φ ⊗ 1)ρ ≥ 0; see Eq. (11.24). However, a
non-CP map Φ cannot be realized in nature, while an observable W may be
measured. Suitable witness operators were actually used to detect quantum
entanglement experimentally in bipartite (Barbieri, Martini, Nepi, Mataloni,
D’Ariano and Macciavello, 2003; Gühne et al., 2003) and multipartite systems
(Bourennane, Eibl, Kurtsiefer, Weinfurter, Guehne, Hyllus, Bruß, Lewenstein
and Sanpera, 2004). Furthermore, the Bell inequalities may be viewed as a kind
of separability criterion, related to a particular entanglement witness (Terhal,
2000a; Horodecki et al., 2000b; Hyllus, Gühne, Bruß and Lewenstein, 2005) so
evidence of their violation34 for certain states (Aspect et al., 1982) might be
regarded as an experimental detection of quantum entanglement.

34 A state violating the Bell or, in particular, the CHSH inequalities (Clauser, Horne, Shimony and
Holt, 1969; Clauser and Shimony, 1978) needs to be entangled (Werner, 1989). The converse is
not true: any pure entangled state violates CHSH inequalities (Gisin, 1991; Popescu and Rohrlich,
1992), but this is not always the case for a mixed entangled state (Werner, 1989).
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15.6 Entanglement measures

We have already learned that the degree of entanglement of any pure state of
a N × K system may be characterized by the entanglement entropy (15.25)
or any other Schur concave function f of the Schmidt vector ~λ. The problem
of quantifying entanglement for mixed states becomes complicated (Vedral,
Plenio, Rippin and Knight, 1997; Donald et al., 2002; Horodecki, 2001).

Let us first discuss the properties that any potential measure E(ρ) should
satisfy. Even in this respect experts seem not to share exactly the same
opinions (Bennett et al., 1996b; Popescu and Rohrlich, 1997; Vedral and
Plenio, 1998; Vidal, 2000; Horodecki, Horodecki and Horodecki, 2000a). There
are three basic axioms,
(E1) Discriminance. E(ρ) = 0 if and only if ρ is separable.
(E2) Monotonicity (15.29) under probabilistic LOCC.
(E3) Convexity, E

(
aρ + (1− a)σ

) ≤ aE(ρ) + (1− a)E(σ), with a ∈ [0, 1].
Then there are certain additional requirements,
(E4) Asymptotic continuity.35 Let ρm and σm denote sequences of states

acting on m copies of the composite Hilbert space, (HN ⊗HK)⊗m.

If lim
m→∞

||ρm − σm||1 = 0 then lim
m→∞

E(ρm)− E(σm)
m lnNK

= 0 , (15.67)

(E5) Additivity. E(ρ⊗ σ) = E(ρ) + E(σ) for any ρ, σ ∈ MNK.
(E6) Normalization. E(|ψ−〉〈ψ−|) = 1.
(E7) Computability. There exists an efficient method to compute E for any
ρ.
There are also alternative forms of properties (E1)–(E5).
(E1a) Weak discriminance. If ρ is separable then E(ρ) = 0.
(E2a) Monotonicity under deterministic LOCC, E(ρ) ≥ E[ΦLOCC(ρ)].
(E3a) Pure states convexity. E(ρ) ≤ ∑

i piE(φi) where ρ =
∑

i pi|φi〉〈φi|.
(E4a) Continuity. If ||ρ− σ||1 → 0 then |E(ρ)− E(σ)| → 0.
(E5a) Extensivity. E(ρ⊗n) = nE(ρ).
(E5b) Subadditivity. E(ρ⊗ σ) ≤ E(ρ) + E(σ).
(E5c) Superadditivity. E(ρ⊗ σ) ≥ E(ρ) + E(σ).

The above list of postulates deserves a few comments. The rather natural
‘if and only if’ condition in (E1) is very strong: it cannot be satisfied by
any measure quantifying the distillable entanglement, due to the existence of
bound entangled states. Hence one often requires the weaker property (E1a)
instead.

Monotonicity (E2) under probabilistic transformations is stronger than
monotonicity (E2a) under deterministic LOCC. Since local unitary operations
are reversible, the latter property implies
(E2b) Invariance with respect to local unitary operations,

E(ρ) = E(UA ⊗ UB ρU †
A ⊗ U †

B) . (15.68)
35 We follow Horodecki (2001) here; slightly different fomulations of this property are used in

Horodecki et al. (2000a) and in Donald et al. (2002).
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Convexity property (E3) guarantees that one cannot increase entanglement
by mixing.36 Following Vidal (2000), we will call any quantity satisfying (E2)
and (E3) an entanglement monotone.37 These fundamental postulates reflect
the key idea that quantum entanglement cannot be created locally. Or in more
economical terms: it is not possible to get any entanglement for free – one needs
to invest resources for certain global operations.

The postulate that any two neighbouring states should be characterized by
similar entanglement is made precise in (E4). Let us recall here the Fannes
continuity lemma (13.36), which estimates the difference between von Neumann
entropies of two neighbouring mixed states. Similar bounds may also be obtained
for any other Rényi entropy with q > 0, but then the bounds for Sq are weaker
then for S1. Although Sq are continuous for q > 0, in the asymptotic limit
n → ∞ only S1 remains a continuous function of the state ρ⊗n. In the same
way the asymptotic continuity distinguishes the entanglement entropy based
on S1 from other entropy measures related to the generalized entropies Sq

(Vidal, 2000; Donald et al., 2002).
Additivity (E5) is a most welcome property of an optimal entanglement

measure. For certain measures one can show sub- or super-additivity; additivity
requires both of them. Unfortunately this is extremely difficult to prove for
two arbitrary density matrices, so some authors suggest to require extensivity
(E5a). Even this property is not easy to demonstrate. However, for any
measure E one may consider the quantity

ER(ρ) ≡ lim
n→∞

1
n

E(ρ⊗n) . (15.69)

If such a limit exists, then the regularized measure ER defined in this way
satisfies (E5a) by construction. The normalization property (E6), useful to
compare different quantities, can be achieved by a trivial rescaling.

The complete wish list (E1)–(E7) is very demanding, so it is not surprising
that instead of one ideal measure of entanglement fulfilling all required properties,
the literature contains a plethora of measures (Vedral and Plenio, 1998; Horodecki,
2001; Bruß, 2002), each of them satisfying some axioms only. The pragmatic
wish (E7) is an especially tough one, since we have learned that even the
problem of deciding the separability is a ‘hard one’ (Gurvits, 2003; Gurvits,
2004), the quantifying of entanglement cannot be easier. Instead of waiting
for the discovery of a single, universal measure of entanglement, we have thus
no choice but to review some approaches to the problem. In the spirit of this
book we commence with

I. Geometric measures
The distance from an analysed state ρ to the set MS of separable states

satisfies (E1) by construction (see Figure 15.9(a)). However, it is not simple
to find the separable state σ closest to ρ with respect to a certain metric,
36 Note that entropy is a concave function of its argument: mixing of pure states increases their von

Neumann entropy, but it decreases their entanglement.
37 Some authors require also continuity (E4a).
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necessary to define Dx(ρ) ≡ Dx(ρ, σ). There are several distances to choose
from, for instance
G1. Bures distance (Vedral and Plenio, 1998) DB(ρ) ≡ minσ∈MS

DB(ρ, σ),

G2. Trace distance (Eisert, Audenaert and Plenio, 2003) DTr(ρ) ≡ minσ∈MS
DTr(ρ, σ),

G3. Hilbert–Schmidt distance (Witte and Trucks, 1999) DHS(ρ) ≡minσ∈MS
DHS(ρ, σ).

The Bures and the trace metrics are monotone (see Sections 13.2 and 14.1),
which directly implies (E2a), while DB fulfils also the stronger property (E2)
(Vedral and Plenio, 1998). Since the HS metric is not monotone (Ozawa, 2001)
it is not at all clear, whether the minimal Hilbert–Schmidt distance is an
entanglement monotone (Verstraete et al., 2002a). Since the diameter of the
set of mixed states with respect to the above distances is finite, all distance
measures cannot satisfy even the partial additivity (E3a).

Although quantum relative entropy is not exactly a distance, but rather a
contrast function, it may also be used to characterize entanglement.
G4. Relative entropy of entanglement (Vedral et al., 1997) DR(ρ) ≡
minσ∈MS

S(ρ||σ).
In view of the discussion in Chapter 13 this measure has an appealing interpretation
as distinguishability of ρ from the closest separable state. For pure states
it coincides with the entanglement entropy, DR(|φ〉) = E1(|φ〉) (Vedral and
Plenio, 1998). Analytical formulae for DR are known in certain cases only
(Vedral et al., 1997; Vollbrecht and Werner, 2001; Ishizaka, 2003), but it may
be efficiently computed numerically (Řeháček and Hradil, 2003). This measure
of entanglement is convex (due to double convexity of relative entropy) and
continuous (Donald and Horodecki, 1999), but not additive (Vollbrecht and
Werner, 2001). It is thus useful to study the regularized quantity, limn→∞ DR(ρ⊗n)/n.
This limit exists due to subadditivity of relative entropy and has been computed
in some cases (Audenaert, Eisert, Jané, Plenio, Virmani and Moor, 2001a;
Audenaert, Moor, Vollbrecht and Werner, 2002).
G5. Reversed relative entropy of entanglement DRR(ρ) ≡minσ∈MS

S(σ||ρ).
This quantity with exchanged arguments is not so interesting per se, but

its modification D′
RR – the minimal entropy with respect to the set Mρ of

separable states ρ′ locally identical to ρ, {ρ′ ∈ Mρ : ρ′A = ρA and ρ′B = ρB},
provides a distinctive example of an entanglement measure,38 which satisfies
the additivity condition (E3) (Eisert et al., 2003).

G6. Robustness (Vidal and Tarrach, 1999). R(ρ) measures the endurance
of entanglement by quantifying the minimal amount of mixing with separable
states needed to wipe out the entanglement,

R(ρ) ≡ min
ρ−s ∈MS

(
min
s≥0

s : ρ+
s =

1
1 + s

(ρ + sρ−s ) ∈ MS

)
. (15.70)

38 A similar measure based on modified relative entropy was introduced by Partovi (2004).
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As shown if Figure 15.9(c) the robustness R may be interpreted as a minimal
ratio of the HS distance 1−a = s/(1+s) of ρ to the set MS of separable states
to the width a = 1/(1 + s) of this set. This construction does not depend
on the boundary of the entire set M, in contrast with the best separable
approximation.39 Robustness is known to be convex and monotone, but is not
additive (Vidal and Tarrach, 1999). Robustness for two-qubit states diagonal
in the Bell basis was found in Akhtarshenas and Jafarizadeh (2003), while a
generalization of this quantity was proposed in Steiner (2003).
G7. Maximal fidelity Fm with respect to the set Mmax of maximally entangled
states (Bennett et al., 1996b), Fm(ρ) ≡ maxφ∈Mmax F (ρ, |φ〉〈φ|).

Strictly speaking the maximal fidelity cannot be considered as a measure
of entanglement, since it does not satisfy even weak discriminance (E1a).
However, it provides a convenient way to characterize, to what extent ρ may
approximate a maximally entangled state required for various tasks of quantum
information processing, so in the two-qubit case it is called the maximal
singlet fraction. Invoking (9.31) we see that Fm is a function of the minimal
Bures distance from ρ to the set Mmax. An explicit formula for the maximal
fidelity for a two-qubit state was derived in Badzia̧g, Horodecki, Horodecki
and Horodecki (2000), while relations to other entanglement measures were
analysed in Verstraete and Verschelde (2002).

II. Extensions of pure-state measures
Another class of mixed-states entanglement measures can be derived from

quantities characterizing entanglement of pure states. There exist at least two
different ways of proceeding. The convex roof construction (Uhlmann, 1998;
Uhlmann, 2003) defines E(ρ) as the minimal average quantity 〈E(φ)〉 taken
on pure states forming ρ. The most important measure is induced by the
entanglement entropy (15.25).
P1. Entanglement of Formation (EoF) (Bennett et al., 1996b)

EF (ρ) ≡ min
Eρ

M∑
i=1

piE1(|φi〉) , (15.71)

where the minimization40 is performed over an ensemble of all possible decompositions

Eρ = {pi, |φi〉}M
i=1 : ρ =

M∑
i=1

pi|φi〉〈φi| with pi > 0,
M∑
i=1

pi = 1 . (15.72)

The ensemble E for which the minimum (15.71) is realized is called optimal.
Several optimal ensembles might exist and the minimal ensemble length M is
called the cardinality of the state ρ. If the state is separable then EF (ρ) = 0,
and the cardinality coincides with the minimal length of the decomposition
39 In the two-qubit case the entangled state used for BSA (15.66) is pure, ρb = |φb〉〈φb|, the weight

Λ is a monotone (Eisert and Briegel, 2001), so the quantity (1−Λ)E1(φb) works as a measure of
entanglement (Lewenstein and Sanpera, 1998; Wellens and Kuś, 2001).

40 A dual quantity defined by maximization over Eρ is called entanglement of assistance (DiVincenzo,
Fuchs, Mabuchi, Smolin, Thapliyal and Uhlmann, 1999), and both of them are related to relative
entropy of entanglement of an extended system (Henderson and Vedral, 2000).



15.6 Entanglement measures 367

(15.37). Due to Carathéodory’s theorem the cardinality of ρ ∈ MNK does not
exceed the squared rank of the state, r2 ≤ N2K2 (Uhlmann, 1998). In the
two-qubit case it is sufficient to take M = 4 (Wootters, 1998), and this length
is necessary for some states of rank r = 3 (Audenaert et al., 2001b). In higher
dimensions there exists states for which M > NK ≥ r (DiVincenzo, Terhal
and Thapliyal, 2000b).

Entanglement of formation enjoys several appealing properties: it may be
interpreted as the minimal pure-states entanglement required to build up
the mixed state. It satisfies by construction the discriminance property (E1)
and is convex and monotone (Bennett et al., 1996b). EoF is known to be
continuous (Nielsen, 2000), and for pure states it is by construction equal to
the entanglement entropy E1(|φ〉). To be consistent with normalization (E6)
one often uses a rescaled quantity, E′

F ≡ EF / ln 2.
Two other properties are still to be desired, if EoF is to be an ideal entanglement

measure: we do not know, whether EoF is additive,41 and EoF is not easy to
evaluate.42 Explicit analytical formulae were derived for the two-qubit system
(Wootters, 1998), and a certain class of symmetric states in higher dimensions
(Terhal and Vollbrecht, 2000; Vollbrecht and Werner, 2001), while for the 2×K
systems at least lower bounds are known (Chen, Liang, Li and Huang, 2002;
LÃ oziński, Buchleitner, Życzkowski and Wellens, 2003; Gerjuoy, 2003).
P2. Generalized Entanglement of Formation (GEoF)

Eq(ρ) ≡ min
Eρ

M∑
i=1

pi Eq(|φi〉) , (15.73)

where Eq(|φ〉) = Sq[TrB(|φ〉〈φ|)] stands for the Rényi entropy of entanglement.
Note that an optimal ensemble for a certain value of q needs not to provide
the minimum for q′ 6= q. GEoF is asymptotically continuous only in the limit
q → 1 for which it coincides with EoF. In the very same way, the convex roof
construction can be applied to extend any pure states entanglement measure
for mixed states. In fact, several measures introduced so far are related to
GEoF. For instance, the convex roof extended negativity (Lee, Chi, Oh and
Kim, 2003) and concurrence of formation (Wootters, 2001; Rungta and Caves,
2003; Mintert et al., 2004) are related to E1/2 and E2, respectively.

There is another way to make use of pure state entanglement measures.
In analogy to the fidelity between two mixed states, equal to the maximal
overlap between their purifications, one may also purify ρ by a pure state
|ψ〉 ∈ (HN⊗HK)⊗2. Based on the entropy of entanglement (15.25) one defines
P3. Entanglement of purification (Terhal, Horodecki, Leung and DiVincenzo,
41 Additivity of EoF has been demonstrated in special cases only, if one of the states is a product state

(Benatti and Narnhofer, 2001), is separable (Vollbrecht and Werner, 2001) or if it is supported
on a specific subspace (Vidal, Dür and Cirac, 2002). At least we can be sure that EoF satisfies
subadditivity (E5b), since the tensor product of the optimal decompositions of ρ and σ provides
an upper bound for E(ρ⊗ σ).

42 EoF may by computed numerically by minimization over the space of unitary matrices U(M).

A search for the optimal ensemble can be based on simulated annealing (Życzkowski, 1999), on
a faster conjugate–gradient method (Audenaert et al., 2001b), or on minimizing the conditional
mutual information (Tucci, n.d.c).
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2002; Bouda and Bužek, 2002)

EP (ρ) ≡ min
|φ〉: ρ=TrKN (|φ〉〈φ|)

E1(|φ〉) , (15.74)

but any other measure of pure states entanglement might be used instead.
The entanglement of purification is continuous and monotone under strictly

local operations (not under LOCC). It is not convex, but more importantly,
it does not satisfy even the weak discriminance (E1a). In fact EP measures
correlations 43 between both subsystems, and is positive for any non-product,
separable mixed state (Bouda and Bužek, 2002). Hence entanglement of purification
is not an entanglement measure, but it happens to be helpful to estimate a
variant of the entanglement cost (Terhal et al., 2002). To obtain a reasonable
measure one needs to allow for an arbitrary extension of the system size, as
assumed by defining

P4. Squashed entanglement (Christandl and Winter, 2004)

ES(ρAB) ≡ inf
ρABE

1
2
[
S(ρAE) + S(ρBE)− S(ρE)− S(ρABE)

]
, (15.75)

where the infimum is taken over all extensions ρABE of an unbounded size
such that TrE(ρABE) = ρAB. Here ρAE stands for TrB(ρABE) while ρE =
TrAB(ρABE).

Squashed entanglement44 is convex, monotone and vanishes for every separable
state. If ρAB is pure then ρABE = ρE ⊗ ρAB, hence ES = [S(ρA) + S(ρB)]/2 =
S(ρA) and the squashed entanglement reduces to the entropy of entanglement
E1. It is characterized by asymptotic continuity (Alicki and Fannes, 2004),
and additivity (E5), which is a consequence of the strong subadditivity of the
von Neumann entropy. Thus ES would be a perfect measure of entanglement,
if we only knew how to compute it!

III. Operational measures
Entanglement may also be quantified in an abstract manner by considering

the minimal resources required to generate a given state or the maximal
entanglement yield. These measures are defined implicitly, since one deals with
an infinite set of copies of the state analysed and assumes an optimization over
all possible LOCC protocols.

O1. Entanglement cost (Bennett et al., 1996b; Rains, 1999a) EC(ρ) =
limn→∞

m
n
, where m is the number of singlets |ψ−〉 needed to produce locally

n copies of the analysed state ρ.
Entanglement cost has been calculated for instance for states supported

on a subspace such that tracing out one of the parties forms an entanglement
breaking channel (super-separable map) (Vidal et al., 2002). Moreover, entanglement
cost was shown (Hayden, Horodecki and Terhal, 2001) to be equal to the
regularized entanglement of formation, EC(ρ) = limn→∞EF (ρ⊗n)/n. Thus, if

43 To quantify them one may use of the operator Schmidt decomposition (10.31) of ρ.
44 Minimized quantity is proportional to quantum conditional mutual information of ρABE (Tucci,

n.d.c) and its name refers to ‘squashing out’ the classical correlations.
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we knew that EoF is additive, the notions of entanglement cost and entanglement
of formation would coincide.
O2. Distillable entanglement (Bennett et al., 1996b; Rains, 1999a). ED(ρ) =
limn→∞

m
n
, where m is the maximal number of singlets |ψ−〉 obtained out of n

copies of the state ρ by an optimal LOCC conversion protocol.
Distillable entanglement is a measure of a fundamental importance, since

it tells us how much entanglement one may extract out of the state analysed
and use, for example for the cryptographic purposes. It is rather difficult to
compute, but there exist analytical bounds due to Rains (1999b) and Rains
(2001), and an explicit optimization formula was found (Devetak and Winter,
2005). ED is not likely to be convex (Shor, Smolin and Terhal, 2001), although
it satisfies the weaker condition (E3a) (Donald et al., 2002).

IV. Algebraic measures
If a partial transpose of a state ρ is not positive then ρ is entangled due to
the PPT criterion B1. The partial transpose preserves the trace, so if ρTA ≥ 0
then ||ρTA ||Tr = TrρTA = 1. Hence we can use the trace norm to characterize
the degree, to which the positivity of ρTA is violated.
N1. Negativity (Życzkowski et al., 1998; Eisert and Plenio, 1999), NT (ρ) ≡
||ρTA ||Tr − 1.

Negativity is easy to compute, convex (partial transpose is linear and the
trace norm is convex) and monotone (Eisert, n.d.; Vidal and Werner, 2002).
It is not additive, but this drawback may be cured by defining the log -
negativity,45 ln ||ρTA ||Tr. However, the major deficiency of the negativity is
its failure to satisfy (E1) – by construction NT (ρ) cannot detect PPT bound
entangled states. In the two-qubit case the spectrum of ρTA contains at most a
single negative eigenvalue (Sanpera et al., 1998), so N′

T ≡ max{0,−2λmin} =
NT . This observation explains the name on the one hand, and on the other
provides a geometric interpretation: N′

T (ρ) measures the minimal relative weight
of the maximally mixed state ρ∗ which needs to be mixed with ρ to produce
a separable mixture (Verstraete et al., 2002a). In higher dimensions several
eigenvalues of the partially transposed state may be negative, so in general
NT 6= N′

T , and the latter quantity is proportional to complete co-positivity
(11.1) of a map Φ associated with the state ρ.

Negativity is not the only application of the trace norm (Vidal and Werner,
2002). Building on the positive maps criterion A1 for separability one might
analyse analogous quantities for any (not completely) positive map, NΦ(ρ) ≡
||(Φ⊗ 1)ρ||Tr − 1. Furthermore, one may consider another quantity related to
the reshuffling criterion B6.
N2. Reshuffling negativity (Chen and Wu, 2002; Rudolph, 2003b). NR(ρ) ≡
||ρR||Tr − 1.

This quantity is convex due to linearity of reshuffling and non-increasing
under local measurements, but may increase under partial trace (Rudolph,
2003b). For certain bound entangled states NR is positive; unfortunately not
45 This is additive but is not convex. The log–negativity was used by Rains (2001) to obtain bounds

on distillable entanglement.
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for all of them. A similar quantity with the minimal cross-norm || · ||γ was
studied by Rudolph (2001), who showed that Nγ(ρ) = ||ρ||γ − 1 is convex and
monotone under local operations. However, ||ρR||Tr is easily computable from
the definition (10.33), in contrast to ||ρ||γ .

We end this short tour through the vast garden of entanglement measures46

by studying how they behave for pure states. Entanglement of formation
and purification coincide by construction with the entanglement entropy E1.
So is the case for both operational measures, since conversion of n copies
of an analysed pure state into m maximally entangled states is reversible.
The negativities are easy to compute. For any pure state |ψ〉 ∈ HN ⊗ HN

written in the Schmidt form (9.8), the non-zero entries of the density matrix
ρψ of size N2 are equal to

√
λiλj, i, j = 1, . . . , N . The reshuffled matrix ρR

ψ

becomes diagonal, while partially transposed matrix ρT2
ψ has a block structure:

it consists of N Schmidt components λi at the diagonal which sum to unity
and N(N − 1)/2 off-diagonal blocks of size 2, one for each pair of different
indices (i, j). Eigenvalues of each block are ±√

λiλj, so both traces norms are
equal to the sum of all entries. Hence both negativities coincide for pure states,

NT (ρψ) = NR(ρψ) =
N∑

i,j=1

√
λiλj − 1 =

( N∑
i

√
λi

)2−1 = eE1/2 − 1 , (15.76)

and vary from 0 for separable states to N − 1 for maximally entangled states.
Also maximal fidelity and robustness for pure states become related, F =
exp(E1/2)/N and R = NT = exp(E1/2)− 1 (Vidal and Tarrach, 1999). On the
other hand, the minimal Bures distance to the closest separable (mixed) state
(Vedral and Plenio, 1998) becomes a function of the Rényi entropy of order
two,

DB(ρφ) =
(
2− 2

∑
i=1

λ2
i

)1/2
=

√
2− 2e−E2/2 , (15.77)

and is equal to concurrence (15.26), while the Bures distance to the closest
separable pure state Dpure

B (|φ〉) = [2(1−√1− λmax)]1/2 is a function of E∞ =
− lnλmax. The Rényi parameters q characterizing behaviour of the discussed
measures of entanglement for pure states are collected in Table 15.2.

Knowing that a given state ρ can be locally transformed into ρ′ implies
that E(ρ) ≥ E(ρ′) for any measure E, but the converse is not true. Two Rényi
entropies of entanglement of different (positive) orders generate different order
in the space of pure states. By continuity this is also the case for mixed states,
and the relation

EA(ρ1) ≤ EA(ρ2) ⇔ EB(ρ1) ≤ EB(ρ2) (15.78)

does not hold. For a certain pair of mixed states it is thus likely that one state
46 There also exist attempts to quantify entanglement by the dynamical properties of a state and the

speed of decoherence (Blanchard, Jakóbczyk and Olkiewicz, 2001) or the secure key distillation
rate (Horodecki et al., n.d.a; Devetak and Winter, 2005) and several others. For multipartite
systems the problem gets even more demanding (Coffman et al., 2000; Eisert and Briegel, 2001;
Wei and Goldbart, 2003; Partovi, 2004).
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Table 15.2. Properties of entanglement measures: discriminance E1,
monotonicity E2, convexity E3, asymptotic continuity E4, additivity E5,
extensivity E5a, computability E7: explicit closed formula C, optimization

over a finite space F or an infinite space I; Rényi parameter q for pure states.

Entanglement measure E1 E2 E3 E4 E5 E5a E7 q

G1 Bures distance DB Y Y Y N N N F 2
G2 Trace distance DTr Y Y Y N N N F
G3 HS distance DHS Y ? ? N N N F
G4 Relative entropy DR Y Y Y Y N ? F 1
G5’ Reversed RE, D′

RR ? Y Y Y Y Y F 1
G6 Robustness R Y Y Y N N N F 1/2

P1 Entangl. of formation EF Y Y Y Y ? ? C/F 1
P2 Generalized EoF, Eq Y Y ? N ? ? F q
P4 Squashed entangl. ES ? Y Y Y Y Y I 1

O1 Entangl. cost EC ? Y Y Y ? Y I 1
O2 Distillable entangl. ED N Y N(?) Y ? Y I 1

N1 Negativity NT N Y Y N N N C 1/2
N2 Reshuffling negativity NR N N Y N N N C 1/2

is more entangled with respect to a given measure, while the other one, with
respect to another measure of entanglement (Eisert and Plenio, 1999). If two
measures EA and EB coincide for pure states they are identical or they do
not generate the same order in the set of mixed states (Virmani and Plenio,
2000). Hence entanglement of formation and distillable entanglement do not
induce the same order. On the other hand, several entanglement measures are
correlated and knowing EA one may try to find lower and upper bounds for
EB.

The set of entanglement measures shrinks, if one imposes even some of the
desired properties (E1)–(E7). The asymptotic continuity (E4) is particularly
restrictive. For instance, among generalized Rényi entropies it is satisfied only
by the entropy of entanglement E1 (Vidal, 2000). If a measure E satisfies
additionally monotonicity (E2a) under deterministic LOCC and extensivity
(E5a), it is bounded by the distillable entanglement and entanglement cost
(Horodecki et al., 2000a; Horodecki, 2001),

ED(ρ) ≤ E(ρ) ≤ EC(ρ) . (15.79)

Interestingly, the two first measures introduced in the pioneering paper by
Bennett et al. (1996b) occurred to be the extreme entanglement measures.
For pure states both of them coincide, and we arrive at a kind of uniqueness
theorem: Any monotone, extensive and asymptotically continuous entanglement
measure coincides for pure states with the entropy of formation EF (Popescu
and Rohrlich, 1997; Vidal, 2000; Donald et al., 2002). This conclusion concerning
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pure states entanglement of bipartite systems may also be reached by an
abstract, thermodynamic approach (Vedral and Kashefi, 2002).

Let us try to recapitulate the similarities and differences between four classes
of entanglement measures. For a geometric measure or an extension of a pure
states measure it is not simple to check, which of the desired properties are
satisfied. Furthermore, to evaluate it for a typical mixed state one needs
to perform a cumbersome optimization scheme. One should not expect the
remarkable analytical result of Wootters (1998) for entanglement of formation
in the 2 × 2 system, to be extended for the general N × N problem, since
even stating the separability is known to be an algorithmically complex task
(Gurvits, 2003).

Operational measures are attractive, especially from the point of view of
information science, and extensivity and monotonicity are direct consequence
of their definitions. However, they are extremely hard to compute. In contrast,
algebraic measures are easy to calculate, but they fail to detect entanglement
for all non-separable states. Summarizing, several different measures of entanglement
are thus likely to be still used in future.

15.7 Two-qubit mixed states

Before discussing the entanglement of two-qubit mixed states let us recapitulate,
in what sense the case N = 2 differs from N ≥ 3.

A) algebraic properties

i) SU(N)× SU(N) is homomorphic to SO(N 2) for N = 2 only,
ii) SU(N) ∼= SO(N2 − 1) for N = 2 only,
iii) All positive maps Φ : M(N) → M(N) are decomposable for N = 2

only,

B) N-level mono-partite systems

iv) Boundary ∂M(2) consists of pure states only,
v) For any state ρ~τ ∈ M(N) also its antipode ρ−~τ = 2ρ∗ − ρ~τ forms a

state and there exists a universal NOT operation for N = 2 only.
vi) M(N) ⊂ RN2−1 forms a ball for N = 2 only,

C) N ×N composite systems

vii) For any pure state |ψ〉 ∈ HN ⊗HN there exist N − 1 independent
Schmidt coefficients λi. For N = 2 there exists only one independent
coefficient λ1, hence all entanglement measures are equivalent.

viii) The maximally entangled states form the manifold SU(N)/ZN , which
is equivalent to the real projective space RPN2−1 only for N = 2.

ix) All PPT states of a N ×N system are separable for N = 2 only.
x) For any two-qubit mixed state its optimal decomposition consists of

pure states of equal concurrence. Thus entanglement of formation
becomes a function of concurrence of formation for 2× 2 systems.
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These features demonstrate why entanglement of two-qubit systems is special
(Vollbrecht and Werner, 2000). Several of these issues are closely related. We
have already learned that decomposability iii) is a consequence of ii) and
implies the separability ix). We shall see now, how a group-theoretic fact i)
allows one to to derive a closed formula for EoF of a two-qubit system. We are
going to follow the seminal paper of Wootters (1998), who built on Bennett
et al. (1996b) and Hill and Wootters (1997).

Consider first a two-qubit pure state |ψ〉. Due to its normalization the
Schmidt components – eigenvalues of the matrix ΓΓ† – satisfy µ1 + µ2 = 1.
The tangle of |ψ〉, defined in (15.26), reads

τ = C2 = 2(1− µ2
1 − µ2

2) = 4µ1(1− µ1) = 4µ1µ2 , (15.80)

and implies that concurrence is proportional to the determinant of (15.8),

C = 2 |√µ1µ2| = 2 |detΓ| . (15.81)

Inverting this relation we find the entropy of entanglement E as a function of
concurrence

E = S(µ1, 1− µ1) where µ1 =
1
2
(
1−

√
1− C2

)
(15.82)

and S stands for the Shannon entropy function, −∑
i µi ln µi.

Let us represent |ψ〉 in a particular basis consisting of four Bell states

|ψ〉 =
[
a1|φ+〉+ a2i|φ−〉+ a3i|ψ+〉+ a4|ψ−〉

]
(15.83)

=
1√
2

[
(a1 + ia2)|00〉+ (ia3 + a4)|01〉+ (ia3 − a4)|10〉+ (a1 − ia2)|11〉

]
.

Calculating the determinant in Eq. (15.81) we find that

C(|ψ〉) =
∣∣

4∑
k=1

a2
k

∣∣ . (15.84)

If all its coefficients of |ψ〉 in the basis (15.84) are real then C(|φ〉) = 1 and the
state is maximally entangled. This property holds also if we act on |ψ〉 with
an orthogonal gate O ∈ SO(4) and justifies referring to (15.84) as the magic
basis (Bennett et al., 1996b). Any two-qubit unitary gate, which is represented
in it by a real SO(4) matrix corresponds to a local operation47 and its action
does not influence entanglement. This is how the property i) enters the game.

To appreciate another feature of the magic basis consider the transformation
|ψ〉 → |ψ̃〉 = (σy ⊗ σy)|ψ∗〉, in which complex conjugation is taken in the
standard basis, {|00〉, |01〉, |10〉, |11〉}. It represents flipping of both spins of
the system. If a state is expressed in the magic basis this transformation is
realized just by complex conjugation. Expression (15.84) implies then

C(|φ〉) = |〈ψ|ψ̃〉|. (15.85)
47 A gate represented by an orthogonal matrix with detO = −1, corresponds to SWAP of both

qubits. It does not influence the entanglement but is non-local (Vollbrecht and Werner, 2000).
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Spin flipping of mixed states is also realized by complex conjugation, if ρ is
expressed in magic basis. Working in standard basis this transformation reads

ρ → ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) . (15.86)

In the Fano form (15.38) flipping corresponds to reversing the signs of both
Bloch vectors,

ρ̃ =
1
4

[
14 −

3∑
i=1

τA
i σi ⊗ 12 −

3∑
j=1

τB
j 12 ⊗ σj +

3∑
i,j=1

βijσi ⊗ σj

]
. (15.87)

Root fidelity between ρ and ρ̃ is given by the trace of the positive matrix
√

F =
√√

ρρ̃
√

ρ . (15.88)

Let us denote by λi the decreasingly ordered eigenvalues of
√

F , (singular
values of

√
ρ
√

ρ̃). The concurrence of a two-qubit mixed state is now defined
by

C(ρ) ≡ max{0, λ1 − λ2 − λ3 − λ4} . (15.89)

The number of of positive eigenvalues cannot be greater then rank r of ρ.
For a pure state the above definition is thus consistent with C = |〈ψ|ψ̃〉| and
expression (15.84).

Consider a generic mixed state of full rank given by its eigendecomposition
ρ =

∑4

i=1 |wi〉〈wi|. The eigenstates are subnormalized in a sense that ||wi〉|2 is
equal to the ith eigenvalue di. The flipped states |w̃i〉 are also eigenstates of
ρ̃. Defining a symmetric matrix Wij ≡ 〈wi|w̃j〉 we see that the spectra of ρρ̃
and WW ∗ coincide. Let U be a unitary matrix diagonalizing the Hermitian
matrix WW ∗.

Other decompositions of ρ may be obtained by the Schrödinger’s mixture
theorem (8.40). In particular, the unitary matrix U defined above gives a
decomposition into four states |xi〉 ≡

∑
i U∗

ij|wj〉. They fulfil

〈xi|x̃j〉 = (UWUT )ij = λiδij . (15.90)

Since W is symmetric, an appropriate choice of phases of eigenvectors forming
U assures that the diagonal elements of UWUT are equal to the square roots
of the eigenvalues of WW ∗, which coincide with the eigenvalues λi of

√
F .

We are going to show that a state is separable if C = 0. Hence λ1 <
λ2 + λ3 + λ4 and it is possible to find four phases ηi such that

4∑
j=1

e2ηjλj = 0 (15.91)

In other words such a chain of four links of length λi may be closed to form a
polygon,48 as sketched in Figure 15.10(a), in which the phase η1 is set to zero.

48 This reasoning holds also if some λi are equal to zero and the polygon reduces, for example, to a
triangle.
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Figure 15.10. Concurrence polygon: (a) quadrangle for a separable state, (b)
line for an entangled state with concurrence C.

Phases ηi allow us to write four other pure states

|z1〉 =
1
2
(
eiη1 |x1〉+ eiη2 |x2〉+ eiη3 |x3〉+ eiη4 |x4〉

)
,

|z2〉 =
1
2
(
eiη1 |x1〉+ eiη2 |x2〉 − eiη3 |x3〉 − eiη4 |x4〉

)
, (15.92)

|z3〉 =
1
2
(
eiη1 |x1〉 − eiη2 |x2〉+ eiη3 |x3〉 − eiη4 |x4〉

)
,

|z4〉 =
1
2
(
eiη1 |x1〉 − eiη2 |x2〉 − eiη3 |x3〉+ eiη4 |x4〉

)
.

On the one hand they form a decomposition of the state analysed, ρ =∑
i |xi〉〈xi| =

∑
i |zi〉〈zi|. On the other hand, due to Eqs. (15.90) and (15.91)

〈zi|z̃i〉 = 0 for i = 1, ..., 4, hence each pure state |zi〉 of the decomposition is
separable and so is ρ.

Consider now a mixed state ρ for which C > 0 since λ1 is so large that the
chain cannot be closed (see Figure 15.10(b)). Making use of the pure states
|xi〉 constructed before we introduce a set of four states

|y1〉 = |x1〉 , |y2〉 = i|x2〉 , |y3〉 = i|x3〉 , |y4〉 = i|x4〉 . (15.93)

and a symmetric matrix Yij = 〈yi|ỹj〉, the relative phases of which are chosen
in such a way that relation (15.90) implies

Tr Y =
4∑

i=1

〈yi|ỹj〉 = λ1 − λ2 − λ3 − λ4 = C(ρ) . (15.94)

The states (15.93) are subnormalized, hence the above expression represents
an average of a real quantity, the absolute value of which coincides with
the concurrence (15.85). Using Schrödinger’s theorem again one may find yet
another decomposition, |zi〉 ≡

∑
i V ∗

ij|yj〉, such that every state has the same
concurrence, C(|zi〉) = C(ρ) for i = 1, . . . , 4. To do so define a symmetric
matrix Zij = 〈zi|z̃j〉 and observe that TrZ = Tr(V Y V T ). This trace does
not change if V is real and V T = V −1 follows. Hence one may find such
an orthogonal V that all overlaps are equal to concurrence, Zii = C(ρ), and
produce the final decomposition ρ =

∑
i |zi〉〈zi|.
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The above decomposition is optimal for the concurrence of formation (Wootters,
1998),

CF (ρ) = min
Eρ

M∑
i=1

piC(|φi〉) = min
V

m∑
i=1

|(V Y V T )ii| , (15.95)

where the minimum over ensembles Eρ may be replaced by a minimum over
m×n rectangular matrices V , containing n orthogonal vectors of size m ≤ 42

(Uhlmann, 1998). The function relating EF and concurrence is convex, hence
the decomposition into pure states of equal concurrence is also optimal for
entropy of formation. Thus EF of any two-qubit state ρ is given by the function
(15.82) of concurrence of formation CF equal to C(ρ), and defined by (15.89).49

While the algebraic fact i) was used to calculate concurrence, the existence
of a general formula for maximal fidelity hinges on property ii). Let us write
the state ρ in its Fano form (15.38) and analyse invariants of local unitary
transformations U1⊗U2. Due to the relation SU(2) ≈ SO(3) this transformation
may be interpreted as an independent rotation of both Bloch vectors, ~τA →
O1~τ

A and ~τB → O2~τ
B. Hence the real correlation matrix βij = Tr(ρσi ⊗ σj)

may be brought into diagonal form K = O1βOT
2 . The diagonal elements may

admit negative values since we have restricted orthogonal matrices to fulfil
detOi = +1. Hence |Kii| = κi, where κi stand for singular values of β. Let us
order them decreasingly. By construction they are invariant with respect to
local unitaries,50 and govern the maximal fidelity with respect to maximally
entangled states (Badzia̧g et al., 2000),

Fm(ρ) =
1
4
[
1 + κ1 + κ2 − Sign[det(β)] κ3

]
. (15.96)

It is instructive to compute explicit formulae for above entanglement measures
for several families of two-qubit states. The concurrence of a Werner state
(15.42) is equal to the negativity,

C
(
ρW (x)

)
= NT

(
ρW (x)

)
=

{
0 if x ≤ 1/3

(3x− 1)/2 if x ≥ 1/3 , (15.97)

its entanglement of formation is given by (15.82), while Fm = (3x− 1)/4.
Another interesting family of states arises as a convex combination of a Bell

state with an orthogonal separable state (Horodecki et al., 2000b)

σH(a) ≡ a |ψ−〉〈ψ−| + (1− a) |00〉〈00| . (15.98)

49 A streamlined proof of this fact was provided in (Audenaert et al., 2001b), while the analogous
problem for two rebits was solved in Caves, Fuchs and Rungta (2001a).

50 Two-qubit density matrix is specified by 15 parameters, the local unitaries are characterized by
six variables, so there exist nine functionally independent local invariants. However, two states
are locally equivalent if they share additional nine discrete invariants which determine signs of κi,
τA
i and τB

i (Makhlin, 2002). A classification of mixed states based on degeneracy and signature of

K was worked out in Grassl et al. (1998), Englert and Metwally (2001) and Kuś and Życzkowski
(2001).
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Figure 15.11. Bounds between entanglement measures for two-qubits: (a)
negativity versus concurrence (15.100), (b) maximal fidelity versus concurrence
(15.101), (c) relative entropy of entanglement versus entanglement of formation
(15.103). Labels represent families of extremal states while dots denote averages
taken with respect to the HS measure in M(4).

Concurrence of such a state is by construction equal to its parameter, C =
a, while the negativity reads NT =

√
(1− a)2 + a2 + a − 1. The relative

entanglement of entropy reads (Vedral and Plenio, 1998) ER = (a− 2) ln(1−
a/2) + (1− a) ln(1− a). We will use also a mixture of Bell states,

σB(b) ≡ b |ψ−〉〈ψ−|+ (1− b) |ψ+〉〈ψ+| , (15.99)

for which by construction Fm = max{b, 1− b} and C = NT = 2Fm − 1.
Entanglement measures are correlated: they vanish for separable states and

coincide for maximally entangled states. For two-qubit systems several explicit
bounds are known. Concurrence forms an upper bound for negativity (Eisert
and Plenio, 1999; Życzkowski, 1999). This statement was proved in Verstraete,
Audenaert, Dehaene and DeMoor (2001b), where it was shown that these
measures coincide if the eigenvector of ρTA corresponding to the negative
eigenvalue is maximally entangled. The lower bound

C ≥ NT ≥
√

(1− C)2 + C2 + C − 1 (15.100)

is achieved (Verstraete et al., 2001b) for states (15.98).
Analogous tight bounds between maximal fidelity and concurrence or negativity

were established in Verstraete and Verschelde (2002),

1 + C

2
≥ Fm ≥

{
(1 + C)/4 if C ≤ 1/3

C if C ≥ 1/3 , (15.101)

1 + NT

2
≥ Fm ≥

{
1
4

+ 1
8

(
NT +

√
5N2

T + 4NT

)
if NT ≤

√
5−2
3√

2NT (NT + 1)−NT if NT ≥
√

5−2
3

.

(15.102)

Upper bound for fidelity is realized for the family (15.99) or for any other state
for which C = NT .
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Figure 15.12. Upper bounds for measures of entanglement as a function
of mixedness for two-qubits: (a) negativity and (b) concurrence versus
participation ratio R = 1/(Trρ2); (c) entanglement of formation versus von
Neumann entropy. Shading shows entire accessible region while dots denote
the average taken with respect to the HS measure in M(4). For pure states it
coincides with the average over FS measure.

Relative entropy of entanglement is bounded from above by EF . Numerical
investigations suggest (Verstraete et al., 2001b) that the lower bound is achieved
for the family of (15.98), which implies

EF ≥ ER ≥
[
(C − 2) ln(1− C/2) + (1− C) ln(1− C)

]
. (15.103)

Here C2 = 1−(2µ1−1)2 and µ1 = S−1(EF ) denotes the larger of two pre-images
of the entropy function (15.82). Similar bounds between relative entropy of
entanglement, and concurrence or negativity were studied in Miranowicz and
Grudka (2004).

Making use of the analytical formulae for entanglement measures we may
try to explore the interior of the 15-dim set of mixed states. In general, the
less pure a state is, the less it is entangled: If R = 1/[Trρ2] ≥ 3 we enter the
separable ball and all entanglement measures vanish. Also movements along
an global orbit ρ → Uρ U † generically changes entanglement. For a given
spectrum ~x the largest concurrence C∗, which may be achieved on such an
orbit is given by Eq. (15.64) (Ishizaka and Hiroshima, 2000; Verstraete et
al., 2001a). Hence the problem of finding maximally entangled mixed states
of two qubits does not have a unique solution: it depends on the measure of
mixedness and the measure of entanglement used. Both quantities may be
characterized, for example, by a Rényi entropy (or its function), and for each
choice of the pair of parameters q1, q2 one may find an extremal family of
mixed states (Wei, Nemoto, Goldbart, Kwiat, Munro and Verstraete, 2003).

Figure 15.12 presents average entanglement plotted as a function of measures
of mixedness computed with respect to HS measure. For a fixed purity Trρ2

the Werner states (15.42) produce the maximal negativity NT . On the other
hand, concurrence C becomes maximal for the following states (Munro, James,
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Figure 15.13. Entanglement of formation of generalized Werner states (15.105)
in polar coordinates. White set represents separable states.

White and Kwiat, 2001)

ρM(y) ≡




a 0 0 y/2
0 1− 2a 0 0
0 0 0 0

y/2 0 0 a


 , where

{
a = 1/3 if y ≤ 2/3
a = y/2 if y ≥ 2/3

(15.104)
Here y ∈ [0, 1] and C(ρ) = y while Trρ2 = 1/3 + y2/2 in the former case and
Trρ2 = 1− 2y(1− y) in the latter. A family of states σE providing the upper
bound of EF as a function of von Neumann entropy (see the line in Figure
15.12(c)) was found in Wei et al. (2003). Note that HS measure restricted to
pure states coincides with Fubini–Study measure. Hence at S = 0 the average
pure states entropy of entanglement reads 〈E1〉ψ = 1/3, while for R = 1 we
obtain 〈C〉ψ = 〈NT 〉ψ = 3π/16 ≈ 0.59 (see Section 14.6 and Problem 15.9).

To close this section let us show, in Figure 15.13, entanglement of formation
for an illustrative class of two-qubit states

ρ(x, ϑ) ≡ x(|ψθ〉〈ψθ|) + (1− x)ρ∗ with |ψθ〉 =
1√
2

(
sin

ϑ

2
|01〉+ cos

ϑ

2
|10〉

)
.

(15.105)
For x = 1 the pure state is separable for ϑ = 0, π and maximally entangled (∗)
for ϑ = π/2, 3π/2. The dashed horizontal line represents the Werner states.
The set MS of separable states contains the maximal ball and touches the
set of pure states in two points. A distance E of ρ from the set MS may be
interpreted as a measure of entanglement.
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We have come to the end of our tour across the space of two qubit mixed
states. Since all the properties i)–x) break down for higher N , the geometry
of quantum entanglement gets correspondingly more complex. Already for the
system of two qutrits the bound entangled states appear, while the multipartite
problems contain non-equivalent forms of quantum entanglement.

Problems

¦ Problem 15.1 Show that for any bipartite pure state |ψ〉 the transformed
states |φ〉 = (V1 ⊗ 1)|ψ〉 and |φ′〉 = (1⊗ V †

2 )|ψ〉 are equivalent up to the basis
selection. Here both unitary matrices are equal,51 V2 = V1. Loosely speaking,
instead of doing something to the first subsystem, one can undo it in the
second one.

¦ Problem 15.2 Prove that the totally symmetric polynomials of the
Schmidt vector, µ1 =

∑
i6=j λiλj, µ2 =

∑
i 6=j 6=k λiλjλk or µN−1 = λ1λ2 . . . λN

are entanglement monotones (Barnum and Linden, 2001; SinolÃȩcka et al.,
2002). (See also (Gour, 2004) in which entanglement measures based on (µm)1/m

are introduced.)

¦ Problem 15.3 Show that the distillable entanglement, (the optimal
asymptotic efficiency m/n of an entanglement concentration protocol transforming
locally n copies of an arbitrary pure state |ψ〉 into m maximally entangled
states |φ+〉 of the N×N system), is equal to the entanglement entropy E(|ψ〉)
(Bennett et al., 1996a).

¦ Problem 15.4 Show that separability implies the majorization relation
(15.51).

¦ Problem 15.5 Consider the following N = 4 mixed states

σ1 =
1
3




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 , σ2 =

1
3




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2


 . (15.106)

Show that σ2 is separable, while σ1 is entangled (Nielsen and Kempe, 2001),
even though both states are globally and locally isospectral (their partial traces
have identical spectra).

¦ Problem 15.6 Let us call ρ locally diagonalizable if it can be brought
to the diagonal form ρ = UΛU † by a local unitary matrix U = UA ⊗ UB. Are
all separable states locally diagonalizable?

¦ Problem 15.7 Show that if the smallest eigenvalue of a density matrix
ρ of size N 2 is larger than 1

N
[(N2 − 2)/(N2 − 1)], the state ρ is separable

(Pittenger and Rubin, 2002).
51 Relaxing this constraint one may find such V1 and V2 that |φ′〉 is exactly equal to |φ〉. This

symmetry is called environment-assisted invariance (Zurek, 2003), in short envariance.
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¦ Problem 15.8 Show that the norm of the correlation matrix of the
Fano form (15.38) satisfies an inequality: Tr(ββT ) = 2 ||β||22 ≤ [KN(KN −
1)− 2K||~τA||2 − 2N ||~τB||2]/4. Is this bound sufficient to guarantee positivity
of ρ?

¦ Problem 15.9 Consider a random pure state of a 2×2 system written
in its Schmidt form |Ψ〉 = cosχ|00〉 + sinχ|11〉 with χ ∈ [0, π/4]. Show that
the FS measure on the space CP3 induces the probability distributions for the
Schmidt angle (Życzkowski and Sommers, 2001)

P (χ) = 3 cos(2χ) sin(4χ) and P (C) = 3C
√

1− C2 (15.107)

where the concurrence is equal C = sin(2χ). Find the mean angle and mean
concurrence. For which angle χm is the volume of the local orbit maximal?



Epilogue

After going through the chapter on entanglement you will have reached the
end of our book. As the subtitle suggests, its aim was literally to present an
introduction to the subject of quantum entanglement.

We have left untouched several important aspects of quantum entanglement,
including multipartite systems, infinite-dimensional systems and continuous
variables. Moreover, we believe that some key ideas presented in the book
might be extended much further then we have managed to do. For instance the
maps–states duality, illustrated in Chapter 11, might be used to find relations
between capacities of quantum channels and measures of entanglement of the
corresponding states of an extended system.

In the book we have consistently used a geometric approach to highlight
similarities and differences between the classical and quantum spaces of states.
What is the knowledge gained by studying the book good for? We hope it will
contribute to a better understanding of quantum mechanics. We hope also
that it will provide a solid foundation for a new, emerging field of science –
the theory of quantum information processing. Quantum entanglement plays
a decisive role in all branches of the field including quantum cryptography,
quantum error correction and quantum computing.

In trying to describe the intricate geometry of the space of quantum states,
we have deliberately restricted ourselves to discussing the statics of quantum
theory. We have presented the arena, in which quantum information can be
processed. We have not attempted to inject any concrete dynamics into our
arena, but hope that readers equipped with some knowledge of its properties
may introduce into it spectacular action.

In a sense we have characterized all the peculiarities of football fields of
various sizes, without even specifying the rules of the game. Having at your
disposal a huge flat grassy field, you can play soccer, cricket, American football,
rugby or Australian football, according to your mood and wishes.

In a similar way you can play different games in the multi-dimensional arena
of quantum states. It stays there right at the centre of the beautiful Platonic
world of quantum theory, accessible to all of us.

Its rich structure provides a real challenge especially for young researchers.
We wish you a good game in fine company! Good luck!



Appendix 1 Basic notions of differential geometry

This appendix explains things that are explained in every book on differential
geometry.1 It is included to make our book self contained.

A1.1 Differential forms

One-forms were defined in Section 1.4. The exterior product of one-forms is
defined by

dθi ∧ dθj = −dθj ∧ dθi . (A1.1)

The result is called a two-form. The exterior product is assumed to be linear
over the real numbers so these two-forms can be used as a basis in which
to expand any anti-symmetric covariant tensor with two indices. Continuing
in the same way we can define three-forms and so on, up to and including
n-forms if the dimension of the manifold is n. We can think of the exterior
product of two one-forms as an area element spanned by the two one-forms.
Then, given an m-dimensional submanifold, we can integrate an m-form over
that submanifold. A further interesting definition is the exterior derivative of
an m-form ω, which is an (m + 1)-form defined by

dω = ∂i1ωi2...im+1dxi1 ∧ · · · ∧ dxim . (A1.2)

Here ωi1...im
is an anti-symmetric tensor of the appropriate rank. The definition

is a generalization of the familiar ‘curl’ in vector analysis. If dω = 0 the form
is said to be closed. If ω = dθ (where θ is a form of rank one less than that of
ω) then ω is exact. An exact form is closed because d2 = 0; the converse holds
on topologically trivial spaces such as Rn. An example of a closed 2-form is
the field strength tensor in classical electrodynamics. An analogue of Stokes’
theorem holds; if M is a subspace and ∂M its boundary then

∫

M

dω =
∫

∂M

ω . (A1.3)

1 Such as Schrödinger (1950) or Murray and Rice (1993).
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A1.2 Riemannian curvature

Given a metric tensor gij we can define the Levi–Civita connection by

Γ k
ij =

1
2
gkm(∂igjm + ∂jgim − ∂mgij) . (A1.4)

It is not a tensor. In fact its transformation law contains an inhomogeneous
term. Given a scalar field f its gradient ∂if is a covariant vector, but given
a contravariant (say) vector V i the expression ∂jV

i does not transform as a
tensor. Instead we use the connection to define its covariant derivative as

∇jV
i = ∂jV

i + Γ i
jk V k . (A1.5)

This does transform like a tensor although the individual terms on the right-
hand side do not. The covariant derivative of a covariant vector is then defined
so that ∇i(UjV

j) = ∂i(UjV
j), which transforms like a vector since UjV

j is
a scalar. An analogous argument determines the covariant derivative of an
arbitrary tensor. As an example,

∇mT k
ij = ∂mT k

ij + Γ k
mn T n

ij − Γ n
mi T k

nj − Γ n
mj T k

in . (A1.6)

Both the logic and the pattern should be clear. One can check that

∇igjk = 0 . (A1.7)

In fact this is how the metric compatible affine connection (A1.4) was defined.
Parallel transport of vectors using this connection conserves lengths and scalar
products.

With the metric compatible affine connection in hand we can write down
a differential equation for a curve xi(σ) whose solution, given suitable initial
data xi(0) and ẋi(0), is the unique geodesic starting from that point in that
direction. This geodesic equation is

ẋj∇jx
i = ẍi + Γ i

jk ẋj ẋk = 0 . (A1.8)

(As usual the dot signifies differentiation with respect to σ.)
The Riemann tensor is defined by the equation

(∇i∇j −∇j∇i)V k = −R k
ijl V l . (A1.9)

This four index tensor plays a central role in Riemannian geometry, but we
will have to refer elsewhere for its properties (Schrödinger, 1950; Murray and
Rice, 1993). Let us just record the slightly frightening explicit expression

R k
ijl = ∂jΓ k

il − ∂iΓ k
jl + Γ k

jm Γ m
il − Γ k

im Γ m
jl . (A1.10)

Perhaps it becomes slightly less frightening if we lower one index using the
metric; using square brackets to denote anti-symmetry in the indices, one can
show that

Rijkl = R[ij][kl] = R[kl][ij] . (A1.11)

Suppose now that we have a two-dimensional plane in the tangent space at
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some point, spanned by the tangent vectors mi and ni. Then we can define
the sectional curvature associated to that 2-plane ,

K =
m[inj]Rijkl m

[knl]

m2 n2
. (A1.12)

The point is that the Riemann tensor acts like a matrix on the space of 2-
planes. Using index contraction we can define the Ricci tensor

Rij = R k
ikj . (A1.13)

Because of the index symmetries of the Riemann tensor the Ricci tensor turns
out to be a symmetric tensor, Rij = Rji. The curvature scalar is

R = gijRij . (A1.14)

In two-dimensional spaces the Riemann tensor can be reconstructed from the
curvature scalar R. (There is only one sectional curvature to worry about.)
Moreover the sign of R has a simple interpretation: if R > 0 nearby geodesics
that start out parallel tend to attract each other, while they diverge if R < 0.
In three dimensions the Riemann tensor can be reconstructed from the Ricci
tensor, while in four dimensions and higher this is no longer possible; the full
Riemann tensor is needed in higher dimensions because one can choose many
independent two-dimensional tangent planes along which to measure sectional
curvatures.

Space is flat if and only if the Riemann tensor vanishes. In flat space parallel
transport of vectors between two points is independent of the path, and it is
possible to find a coordinate system in which the affine connection vanishes.

A1.3 A key fact about mappings

A key fact about tensors is that they behave well under (reasonable) maps.
How they behave depends on whether they have their indices upstairs or
downstairs. Suppose we have a map M → M ′ between two manifolds M
and M ′. We assume that the dimension of the image of M is equal to the
dimension of M , but the dimension of M ′ may be larger, in which case we
have an embedding rather than a one-to-one map. Anyway we can describe
the map using coordinates as xi → xi′ = xi′(x). Then we have the following
theorem:
Theorem. A covariant tensor on M ′ defines a covariant tensor on M . A
contravariant tensor on M defines a contravariant tensor on the image of M
in M ′.
The proof is simple, given that we know the functions xi′(x):

Vi(x) ≡ ∂xi′

∂xi
Vi′

(
x′(x)

)
, V i′(x′) ≡ ∂xi′

∂xi
V i

(
x(x′)

)
. (A1.15)

If the map is not one-to-one the functions xi(xi′) are defined only on the image
of M , so the theorem is as general as it can get.
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This appendix lists a number of formulae that are explained in every book on
group theory.1 Some conventions can be chosen at will, which is why this list
is essential.

A2.1 Lie groups and Lie algebras

Lie groups are groups containing a continuously infinite number of elements
with the amazing property that they can to a large extent be understood
through an analysis of the tangent space at the unit element of the group.
This tangent space is known as the Lie algebra of the group. We will deal
only with the classical groups SU(N), SO(N) and Sp(N) and in fact mostly
with the special unitary groups SU(N). These are all, in the technical sense,
simple and compact groups and have in many respects analogous properties.
The unitary group U(N) is not simple, but can be understood in terms of its
simple subgroups U(1) and SU(N).

After complexification, the Lie algebra of a compact simple group can be
brought to the standard Cartan form

[Hi, Hj] = 0 , [Hi, Eα] = αiEα , (A2.1)

[Eα, Eβ] = NαβEα+β , [Eα, E−α] = αiHi , (A2.2)

where αi is a member of the set of positive root vectors and Nαβ = 0 if αi +βi

is not a root vector. The Hi, 1 ≤ i ≤ r span the maximal commuting Cartan
subalgebra. Their number r is the rank of the group, equal to N−1 for SU(N).

The Lie bracket [A,B] is a peculiar kind of product on a vector space. Once
a matrix representation is chosen it is also meaningful to consider the usual
product AB, and set [A,B] = AB −BA.

1 Such as Gilmore (1974) or Fuchs and Schweigert (2003).
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A2.2 SU(2)

The generators of SU(2) in the fundamental representation are precisely the
Pauli matrices ~σ = {σx, σy, σz},

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (A2.3)

They form an orthonormal basis in the Lie algebra. There is one unitary
representation of SU(2) in every dimension N = n + 1 = 2j + 1. Then the
generators are

Jx =
1
2




0
√

n 0 0 · · ·√
n 0

√
2(n− 1) 0 · · ·

0
√

2(n− 1) 0
√

3(n− 2) · · ·
0 0

√
3(n− 2) 0 · · ·

· · · · · · · · · · · · · · ·




(A2.4)

Jy =
i
2




0 −√n 0 0 · · ·√
n 0 −

√
2(n− 1) 0 · · ·

0
√

2(n− 1) 0 −
√

3(n− 2) · · ·
0 0

√
3(n− 2) 0 · · ·

· · · · · · · · · · · · · · ·




(A2.5)

Jz =
1
2




n 0 0 · · ·
0 n− 2 0 · · ·
0 0 n− 4 · · ·
· · · · · · · · · · · ·


 ≡




j 0 0 · · ·
0 j − 1 0 · · ·
0 0 j − 2 · · ·
· · · · · · · · · · · ·


(A2.6)

A crucial choice here is that Jx and Jz are real while Jy is imaginary. To get
to the Cartan form, set H = Jz and E± = Jx ± iJy.

A2.3 SU(N)

SU(N) is an (N2−1)-dimensional group and in the defining representation the
Lie algebra consists of N2 − 1 traceless Hermitian N by N matrices, labelled
by the index i, 1 ≤ i ≤ N2−1. A complete orthonormal set of generators obey

σiσj =
2
N

δij + dijk σk + ifijk σk , (A2.7)

where fijk is totally anti-symmetric in its indices and dijk is totally symmetric
and traceless (diik = 0). For the commutator and the anti-commutator respectively,
this means that

[σi, σj] = 2i fijk σk , {σi, σj} =
4
N

δij + 2 dijk σk . (A2.8)

The generators are Hermitian matrices and obey

Trσiσj = 2 δij , Trσiσjσk = 2 dijk + 2i fijk (A2.9)
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(the first equation here is orthonormality of the generators) as well as the
completeness relation

(σi) B
A (σi) D

C = 2δD
A δC

B −
2
N

δB
AδD

C . (A2.10)

The above normalization is implied by the case N = 2, since the Pauli matrices
(A2.3) are normalized just like this. In this case dijk = 0, while the group
constants form the anti-symmetric tensor, fijk = εijk.

The following identities are true for any N :

fijmfmkn + fjkmfmin + fkimfmjn = 0 (A2.11)

dijmfmkn + djkmfmin + dkimfmjn = 0 (A2.12)

fijmfmkn =
2
N

(δikδjn − δinδjk) + dikmdmjn − djkmdmin (A2.13)

fimnfjmn = Nδij dimndjmn =
N2 − 4

N
δij . (A2.14)

Scanning this list one realizes that some identities are ‘missing’. These identities
exist, but they depend on N . For further information consult the literature
(Macfarlane, Sudbery and Weisz, 1968; Sudbery, 1990).

A2.4 Homomorphisms between low-dimensional groups

We sometimes makes use of the following isomorphisms between Lie algebras:

SU(2) ∼= SO(3) , (A2.15)

SO(4) ∼= SO(3)× SO(3) ∼= SU(2)× SU(2) , (A2.16)

SU(4) ∼= SO(6) . (A2.17)

Globally these are 2 → 1 homomorphisms between the corresponding groups;
for explanations see (especially) Section 3.7.
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In this appendix we provide some additional exercises of a more practical
nature.

Exercise 3.1 – Real projective space. Cut out a disc of radius r. Prepare
a narrow strip of length πr and glue it into a Möbius strip. The total length
of the boundary of a strip is equal to the circumference of the disc so you may
try to glue them together.1 When you are finished, you can contemplate a fine
model of a real projective space, RP2.

Exercise 3.2 – Hypersphere S3 may be obtained by identifying points on
the surfaces of two identical 3-balls as discussed in Section 3.1. To experience
further features of the hypersphere get some playdough and prepare two
cylinders of different colours with their length more than three times larger
than their diameter. Form two linked tori as shown in Figure A3.2.

Start gluing them together along their boundaries. After this procedure is
completed, you will be in position to astonish your colleagues by presenting
them a genuine Heegard decomposition of a hypersphere.

Exercise 3.3 – Mixed states. Make a ball out of playdough. Glue a string
to its surface along the shape of the stitching of a tennis ball (see Figure A3.3).
Obtain a convex hull by cutting out the redundant dough with a knife. How
much of a ball is taken away?

Convince yourself that the convex hull of a one-dimensional string located
at S2 forms a considerable part of the ball B3. In a similar way M(3) – the
convex hull of four-dimensional manifold CP2 consisting of N = 3 pure states
placed at S7 contains a non-negligible part of B8 (see Section 14.3).

Exercise 3.4 – Entangled pure states. Magnify Figure A3.4 and cut out
the net of the cover tetrahedron. It represents the entanglement of formation
of the pure states of two qubits for a cross section of CP3 defined in Eqs. (4.70)
and (4.71) by setting all phases νi in (4.67) to zero.

Glue it together to get the entanglement tetrahedron with four product
states in four corners. Enjoy the symmetry of the object and study the contours
of the states of equal entanglement.
Exercise 3.5 – Separable pure states. Prepare a net of a regular tetrahedron
from transparency according to the blueprint shown in Figure A3.5. Make

1 If you happen to work in three-dimensions this simple task gets difficult.
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Figure A3.1. A narrow Möbius strip glued with a circle produces RP2.

holes with a needle along two opposite edges as shown in the picture. Thread
a needle with a (red) thread and start sewing it through your model. Only
after this job is done glue the tetrahedron together.2 If you pull out the loose
thread and get the object sketched in Figure 15.1, you can contemplate how a
fragment of the subspace of separable states forms a ruled surface embedded
inside the tetrahedron.

2 Our experience shows that sewing after the tetrahedron is glued together is much more difficult.

Figure A3.2. Heegard decomposition of a 3-sphere.



Geometry: do it yourself 391

Figure A3.3. Imagine a convex hull of the one-dimensional stitching of the
tennis ball.

Figure A3.4. Net of the tetrahedron representing entanglement for pure states
of two qubits: maximally entangled states plotted in black.
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Figure A3.5. Sew with a coloured thread inside a transparent tetrahedron to
get the ruled surface consisting of separable pure states of two qubits.



Appendix 4 Hints and answers to the exercises

Problem 1.1. A counterexample is easily provided by drawing figures in two dimensions.
Problem 1.2. One way is to construct the simplex. If we put its centre at the

origin the N = n + 1 points can be placed at

( −r1, −r2, · · · , −rn−1, −rn )
( R1, −r2, · · · , −rn−1, −rn )
( 0, R2, · · · , −rn−1, −rn )
· · · · · · · · · · · · · · · · · · · · ·
( 0, 0, · · · , 0, Rn )

This helps.

Problem 2.1.

Here is a plot of the structural
entropy. The maximum S2 −
S1 ≈ 0.223 66 is attained for
~p ≈ (0.806, 0.097, 0.097) and its
two other permutations. They
are visible at the contour plot
provided as three dark hills.

Problem 2.2. The N = 3 case shows the idea. We have ~x · (~y − ~z) = x1(y1 − z1) +
x2(y2− z2) + x3(y3− z3) = (x1−x2)(y1− z1) + (x2−x3)(y1 + y2− z1− z2) + x3(y1 +
y2 + y3 − z1 − z2 − z3) ≥ 0 because of the conditions stated.

Problem 2.3. (a) Let a, b ∈ [0, 1] and a′ = 1− a, b′ = 1− b and define

B = T1T2 =

[
a a′ 0
a′ a 0
0 0 1

][1 0 0
0 b b′
0 b′ b

]
=

[
a a′b a′b′
a′ ab ab′
0 b′ b

]
. (A4.1)

B is a bistochastic matrix. It is also orthostochastic since Bij = (Oij)2, where

O =



√

a
√

a′b −
√

a′b′√
a′ −

√
ab

√
ab′

0
√

b′
√

b


 . (A4.2)
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Problem 2.4. We know that ~x is a (non-unique) convex combination of permutation
matrices acting on ~y; this defines a bistochastic matrix according to Birkhoff’s theorem.

Problem 2.5. One obtains two important cases of the Dirichlet distribution (2.73):
the round measure (s = 1/2) for real and flat measure (s = 1) for complex Gaussian
random numbers (Życzkowski and Sommers, 2001). Compare also Problem 7.3.

Problem 2.7. For q ≤ 2. To see this, study the second derivative in the vicinity of
p = 1.

Problem 3.1. You will obtain

xi

XI
=

2
1 + X0

⇒ X0 =
4− r2

4 + r2
⇒ ds2 =

(
4

4 + r2

)2

dxidxi . (A4.3)

Problem 3.2. The angles are obtained by intersecting, respectively, the plane and
the sphere with two intersecting planes. The angles will be equal if and only if both
the plane and the sphere meet the line of intersection of the two planes at the same
angle. But this will happen if and only if the line of intersection forms a chord of the
great circle.

Problem 3.3. You can try a calculation to see whether the natural map (x, y) →
(x, 2y) between the tori is analytic (it is not). Or you can observe that the tori inherit
natural flat metrics from the complex plane. On each torus there will be a pair of
special closed geodesics that intersect each other, namely what used to be straight
lines along the x- and y-directions on the plane. Their circumferences are equal on one
of the tori, and differ by a factor of two on the other. But analytic, hence conformal,
transformations do not change the ratio of two lengths, and it follows that no such
analytic transformation between the tori can exist.

Problem 3.4. As an intermediate step you must prove

Ωil∂lΩjk + Ωkl∂lΩji + Ωkl∂lΩij = 0 . (A4.4)

Problem 3.5. A hyperplane through the origin in embedding space meets the 3-
sphere in a 2-sphere given in stereographic coordinates by

aIX
I = 0 ⇒ 2a1x + 2a2y + 2a3z + 1− r2 = 0

(where we assumed that the fourth component of the vector equals one). A geodesic is
the intersection of two such spheres; choose them to have their centres at (a, 0, 0) and
(b1, b2, 0) again without loss of generality. If you also demand r2 = 1 (the equator)
you get three equations with the solutions (x, y, z) = (0, 0,±1).

Problem 3.6. The key point is that two Hopf circles with the opposite twist meet
twice. Only one half of the circumference of a Hopf circle is needed to label the
members of the family of circles that twist in the other way. (Draw the torus as a flat
square to see this.)

Problem 3.7. For τ = −φ we get

X + iY = cos
θ

2
⇒ Y = 0 & X > 0 ⇒ y = 0 & x > 0 . (A4.5)

With the exception of one point this maps S2 onto a half plane. The other two sections
provide maps onto a hemisphere and a unit disc, respectively. In all three cases it is
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Figure A4.1. Left: the Möbius strip as a vector bundle, with a global section
(i.e. an embedding of the circle in the bundle). Right: the principal bundle,
with fibres equal to the group {±}.

geometrically evident that we are selecting one point from each geodesics, except for
a single one for which there is no prescription.

Problem 3.8. The group acting on the fibres is the discrete group with two elements,
the unit element and the element that turns the fibre upside down. Figure A4.1 tells
the rest.

Problem 4.1. Consider the case of three points and put one at the origin, one
at (1, 0). The location of the third point can be anywhere. That gives an R2. This
coordinatization of the space of triplets fails if the first two points coincide. That case
evidently corresponds to one additional point ‘at infinity’, so we have a natural one-to-
one correspondence between the space of triplets and a plane + the point at infinity,
that is CP1. Consider the case of four points: if the first two points are distinct we
proceed as above; the two remaining points can be coordinatized by R2 × R2 = C2.
If the first two points coincide we have only a triplet of points do deal with. This
is a CP1 according to what was just shown. But C2 plus a CP1 ‘at infinity’ is a
CP2. And so on. This is useful in archaeology if we use the Fubini–Study metric to
give a measure. Then we can answer questions like ‘given n + 2 stones, what is the
probability that there are k triplets of stones lying (to a given precision) on straight
lines?’.

Problem 4.2. A Klein bottle; a bottle without an inside (or outside). It takes a
four-dimensional being to make one that does not intersect itself.

Problem 4.3. Integrate the Fubini–Study 2-form Ω over the embedded CP1; this
gives

∫
CP1 Ω = the area = π, since Ω induces the usual Fubini–Study 2-form on

CP1. But if CP1 could be shrunk to a point then this calculation could be done
within a single coordinate patch, and there could be no obstruction to the calculation∫
CP1 Ω =

∫
CP1 dω =

∫
∂(CP1)

ω = 0, where we used Stokes’ theorem and the fact that
CP1 has no boundary. This is a contradiction. Alternatively one can stare at the line
at infinity in the octant picture of CP2 and convince oneself that any attempt to
move it will increase its area.

Problem 5.1. The two pure states divide a great circle into two segments. If one of the
eigenstates of A lies on the shortest of these segments, the answer is DBhatt = θA+θ/2,
otherwise it is DBhatt = θ/2 (independent of A).

Problem 6.1. From (6.9) the Q-function of a Fock state is Q|n〉(z) = |z|2ne−|z|
2
/n!

and from (6.47) we must have
∫

dz2Q|n〉P|1〉 = δn1. The solution is the moderately
singular distribution P|1〉 = e|z|

2
∂z∂z̄δ

(2)(z).
Problem 6.2. Using spherical polars in phase space (and the integral representation
of the gamma function) one finds SW (|n〉) = 1 + n + ln n! − nΨ(n + 1), where Ψ is
the digamma function defined in Eq. (7.52).



396 Hints and answers to the exercises

Problem 7.1. It is given by DFS = arccos
√

Qmax, so it can be obtained by taking
the maximum of Q in Eq. (7.23).

Problem 7.2. Wehrl entropy and participation number for pure states of N = 2–5
read

N j m SW (|ψ〉) R(|ψ〉)

2 1/2 ±1/2 1/2 = 0.5 1 1
2

3 1 ±1 2/3 ≈ 0.667 1 2
3

3 1 0 5/3− ln 2 ≈ 0.974 2 1
2

4 3/2 ±3/2 3/4 = 0.75 1 3
4

4 3/2 ±1/2 9/4− ln 3 ≈ 1.151 2 11
12

4 3/2 |ψ4〉 21/8− ln 4 ≈ 1.239 3 2
11

5 2 ±2 4/5 = 0.8 2 1
4

5 2 ±1 79/30− ln 4 ≈ 1.247 3 3
20

5 2 0 47/15− ln 6 ≈ 1.342 3 1
2

5 3/2 |ψtetr.〉 165/45− ln 9 ≈ 1.492 4 1
5

Problem 7.3. For qubits, the uniform distribution of points at the Bloch sphere
according to the measure sin θdθdφ leads to the uniform distribution of the component
y1 = cos θ in the interval [−1, 1]. For larger n write components of a random vector
using auxiliary random variables ξk = (sin ϑk)2k, distributed uniformly in [0, 1]. If n =
2 one has ~y = (cos2 ϑ2, sin2 ϑ2 cos2 ϑ1, sin2 ϑ2 sin2 ϑ1) = (1− ξ

1/2
2 , ξ

1/2
2 (1− ξ1), ξ

1/2
2 ξ1).

This vector is distributed uniformly in the triangle y1 ∈ [0, 1] and y2 ∈ [0, 1 − y1],
while y3 = 1 − y1 − y2. The same reasoning performed for arbitrary n allows one to
obtain the desired result (Życzkowski, 1999).

Problem 8.2. (a) yes; (b) no. Any permutation is represented by an orthogonal
matrix, and multiplication by any unitary matrix does not change the singular values.

Problem 8.3. (a) absolute values of real eigenvalues; (b) equal to unity; (c) absolute
values of complex eigenvalues.

Problem 8.4. In fact an even stronger property is true. Directly from the definition
of the singular values it follows that sv(A) = sv(UAV ), for arbitrary unitary U and
V . However, the special case V = U−1 is often useful in calculations.

Problem 8.5. This is the Cauchy–Schwarz inequality for the scalar product in
Hilbert–Schmidt space.

Problem 8.6. We know that 〈ψ|P |ψ〉 ≥ 0 for all vectors. Let |ψ〉 be a basis vector.

Problem 8.7. We can bring an arbitrary vector τiσi into the Cartan subalgebra,
UτiσiU

† = λiHi. Generically that is the best we can do, so the number of non-zero
elements will equal the dimension of the Cartan subalgebra, that is N − 1.
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Problem 8.8. Definition (8.30) applied to the Pauli matrices gives

O=




c2ϑc(2φ)− s2ϑc(2ψ) c2ϑc(2φ) + s2ϑc(2ψ) −s(2ϑ)c(φ + ψ)
s2ϑs(2ψ)− c2ϑs(2φ) c2ϑc(2φ) + s2ϑc(2ψ) s(2ϑ)s(φ + ψ)

s(2ϑ)c(ψ − φ) −s(2ϑ)s(ψ − φ) c(2ϑ)


 . (A4.6)

where c ≡ cos, s ≡ sin. This is the Cayley parametrization of the group SO(3) and
describes the rotation with respect to the axis ~Ω = (sin ϑ sinψ, sinϑ cosψ, cos ϑ sin φ, )
by an angle t such that cos(t/2) = cos ϑ cosφ.

Problem 9.4. The spectrum consists of the MN numbers αiβj , where i = 1, . . . , M
and j = i, . . . , N (say).

Problem 9.6. Use the Schwarz inequality, |Tr(AB)|2 ≤ Tr(AA†) × Tr(BB†), and
replace A by Aρ1/2 and B by Bρ1/2, respectively (Mehta, 1989).

Problem 10.1. It is enough to consider a pure POVM, so that Ei = |φi〉〈φi|. The
vectors have components φα

i , α = 1, . . . , N , i = 1, . . . , k. Let these components be
the elements of an N × k matrix. The completeness relation

∑k
i=1(Ei)α

β = δα
β implies

that the rows of this matrix are orthonormal. We can always add an additional set of
k−N rows to the matrix, so that it becomes unitary. The columns of the new matrix
form an orthonormal basis in a k dimensional Hilbert space, and there is an obvious
projection of its vectors down to the original Hilbert space.

Problem 10.2. Let a = diag(A) and c = diag(C) be diagonals of complex matrices.
Show that ABC† = (ac†) ◦B and use it with A = Ai and C = A†i for all i = 1, . . . , k.

Problem 10.3. To prove positivity, take an arbitrary vector V i and define A ≡ V iAi.
Then V̄ iσijV

j = TrρAA† is positive because the trace of two positive operators is
always positive. For the final part see (10.56).

Problem 10.5. The phase flip channel.

Problem 10.6. The dynamical matrix DΦ is represented by Dmn
µν

= ρmµδnν . Writing

down the elements of the image σ′ = Φρ(σ) = DRσ = (ρ ⊗ 1N )Rσ in the standard
basis we obtain the desired result, σ′mµ = Dmn

µν
σnν = ρmµTrσ = ρmµ.

Problem 11.1. Write both matrices in their eigen representations, A =
∑

i ai|αi〉〈αi|
and B =

∑
i bi|βi〉〈βi|. Perform decompositions AR =

∑
i aiα

(i) ⊗ ᾱ(i) and BR =∑
i biβ

(i)⊗ β̄(i) as in (10.58), multiply them and reshuffle again to establish positivity
of (ARBR)R. For a different setting see Havel (2003).

Problem 11.2. (a) The spectrum ~d consists of N(N + 1)/2 elements equal to +1
and N(N − 1)/2 elements equal to −1, so its sum (the trace of D) is equal to N ,
as required. (b) This canonical form contains one negative term and three positive
terms; due to the triple degeneracy the choice of the positive terms is not unique.

Problem 11.3. Using the nonhomogeneous form of (10.36) write down the dynamical
matrix D and show that some of its eigenvalues are negative. To study the co-positivity
analyse the spectrum of DTa (equal to the spectrum of DTb).

Problem 11.4. ΦT = N−1
N Φ∗ + 1

N T

Problem 11.5. The spectrum ~d of DΨ reads (a−3, a, a, b, b, b, c, c, c). Hence cp(Ψ) =
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min(a − 3, b, c) and the map is CP if a ≥ 3 and b, c ≥ 0. The spectrum of DTA

Ψ is
threefold degenerated and contains {a−1, λ+, λ−}, where λ± = (b+c±

√
(b− c)2 + 4)/2.

Therefore ccp(Ψ) = min(a − 1, λ−) and the map is CcP if a ≥ 1 and bc ≥ 1. Note
that these results are consistent with (11.9) and (11.10).

Problem 12.1. Open with the observation that

ln (A + xB) = ln (A + xB + u0)−
∫ u0

0

du

A + xB + u
. (A4.7)

Use the fact that A + u is invertible for any positive u to rewrite the right-hand side
as

ln (A + u0) + ln
(
1+

1
A + u0

xB

)
−

∫ u0

0

[
1

A + u
− 1

A + u
xB

1
A + xB + u

]
du .

Now do the integral over the first term, collect terms, expand the remaining logarithm,
and finally let u0 →∞.

Problem 12.2. The eigenvalues of (1− ρ/z)−1 are z/(z − λi). With ρ diagonalized
and the contour chosen suitably, the first integral equals the von Neumann entropy
and the second is the subentropy,

SQ(ρ) ≡ −
N∑

i=1

(∏

i 6=j

λi

λi − λj

)
λi ln λi . (A4.8)

Problem 12.3. ∑

k

pkS(ρk||σ) =
∑

k

pk(Trρk ln ρk − Trρk ln σ)

=
∑

k

pk(Trρk ln ρk − Trρk ln σ + Trρk ln ρ− Trρk ln ρ) (A4.9)

=
∑

k

pk(Trρk ln ρk − Trρk ln ρ) + Trρ ln ρ− Trρ ln σ =
∑

k

pkS(ρk||ρ) + S(ρ||σ) .

Problem 12.4. Write the Husimi function using the Schmidt decomposition |Ψ〉 =√
λ1|11〉+

√
λ2|22〉. Integration over the Cartesian product of two spheres gives

SW (Ψ) =
λ2

1(1− ln λ1)
λ1 − λ2

+
λ2

2(1− ln λ2)
λ2 − λ1

. (A4.10)

Up to an additive constant this result is equal to the Wehrl entropy of one qubit mixed
state obtained by partial trace (Mintert and Życzkowski, 2004) or to the subentropy
(A4.8) of this state.
Problem 12.5. It is enough to show that Trd1d2 ≥ TrWd1W

†d2, where W = V †U
is unitary. We can write this as an inequality for scalar products between vectors:
~d1 · ~d2 ≥ (B~d1) · ~d2 where B is unistochastic. Problem 2.2 shows that this is true.

Problem 12.6. Work in a basis where A+B is diagonal. Note that
(
det(A+B)

)1/N =∏
i(Aii +Bii)1/N ≥ ∏

i A
1/N
ii +

∏
i B

1/N
ii . For our purposes the second step is the more

interesting: from the Schur–Horn theorem and the Schur concavity of the elementary
symmetric functions it follows that

∏
i Aii ≥ detA (and similarly for B).

Problem 12.7. It is sufficient to compute TrLL† using the following representation
of the super-operator, L =

∑r
i=1 Ai ⊗A∗i .
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Problem 13.1. We want to show that ||x||2 ≥ ||Bx||2, so we must show that 1−BT B
is a positive operator. This follows from the Frobenius–Perron theorem.

Problem 13.2. We know that there is a POVM such that
√

F =
∑

i

√
piqi, with

probabilities given in Eq. (13.48). Then

2(1−
√

F ) =
∑

i

(
√

pi −√qi)2 ≤
∑

i

|√pi −√qi||√pi +
√

qi|

=
∑

i

|pi − qi| ≤ 2DTr(ρ, σ) , (A4.11)

where Helstrom’s theorem was used in the last step.

Problem 13.3. (a) This follows if we set U = 1 in the argument that led to the
quantum Bhattacharyya coefficient. Equality holds if [ρ, σ] = 0.
(b) Equality holds if one of the states is pure. The inequality follows from this because
of concavity. Incidentally, Uhlmann has proved but not published that F (σ, ρ) ≥
Trσρ +

√
2
√

(Trσρ)2 − Trσρσρ, with equality for N = 2.

Problem 14.1. No, since fWY = (fmax + fgeom)/2, where fgeom =
√

t is related to
the geometric mean, 1/cgeom(x, y) =

√
xy.

Problem 14.2.

Table A4.1. Volumes of orthogonal groups and real flag manifolds

Manifold Dimension Vol[X], a = 1/2 Vol′[X], a = 1

RPN N π(N+1)/2

Γ[(N+1)/2] 2N/2 π(N+1)/2

Γ[(N+1)/2]

F(N)
R = O(N)

[O(1)]N
N(N − 1)/2 πN(N+1)/4

ΘN
2N(N−1)/4 πN(N+1)/4

ΘN

O(N) N(N − 1)/2 2N πN(N+1)/4

ΘN
2N(N+3)/4 πN(N+1)/4

ΘN

SO(N) N(N − 1)/2 2N−1 πN(N+1)/4

ΘN
2(N(N+3)/4−1 πN(N+1)/4

ΘN

where ΘN ≡ ∏N
k=1 Γ(k/2).

Problem 14.4. Integrating over respective distributions we obtain 〈S(ρ)〉HS = 1/3,
〈S(ρ)〉B = 2− 7 ln 2/6, 〈S(ρ)〉o = 2− ln 2 and 〈S(ρ)〉u = ln 2/2.

Problem 14.5. The averages read

〈Trρ3〉N,K =
(K + N)2 + KN + 1
(KN + 1)(KN + 2)

, 〈Trρ4〉N,K =
(K + N)[(K + N)2 + 3KN + 5]
(KN + 1)(KN + 2)(KN + 3)

,

(A4.12)

and are consistent with results of Malacarne et al. (2002).

Problem 14.6. The result

PHS(x) =
1
2π

√
4
x
− 1 (A4.13)
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is a special case of Eq. (14.59) for K = N . In the rescaled variables, y =
√

x, this
distribution is equivalent to the quarter-circle law, P (y) =

√
4− y2/π.

Problem 14.7. Fidelity between pure states is equal to the squared component of
|φ〉 expanded in a basis containing |ψ〉. Hence its probability reads PN (F ) = (N − 1)·
(1− F )N−2 (see Section 7.6 on random pure states).

Problem 14.8. Average fidelities, 〈F 〉HS = 1/2 + 9π2/512 ≈ 0.6735 and 〈F 〉B =
1/2 + 8/(9π2) ≈ 0.590 exceed the average over two random pure states, 〈F 〉FS = 1/2
(Życzkowski and Sommers, 2005).

Problem 15.1. It is enough to observe that |φ〉 = (V1 ⊗ V1)|φ′〉. To find envariance
one uses the Schmidt decomposition, |ψ〉 =

∑
k

√
λk|ek〉 ⊗ |fk〉 and selects V1 =∑

k eiαk |ek〉〈ek| and V2 =
∑

k e−iαk |fk〉〈fk| with arbitrary phases αk (Zurek, 2003).

Problem 15.3. The Schmidt vector of the state |φ+〉⊗m consists of Nm components
each equal to N−m. The state consisting of n copies of the initial state |ψ〉 may be,
for large n, approximated by K = exp[nE(|ψ〉)] terms in the Schmidt decomposition
described by the vector ~λ. Choosing m ≈ n[E(|ψ〉)]/ ln N we see that {N−m, . . . , N−m} ≺
{λ1, . . . , λK}. Thus Nielsen’s majorization theorem implies that such a conversion may
be done (Nielsen, 1999). Asymptotically the reverse transformation is also possible
(Bennett et al. 1996a), so for any pure statethe distillable entanglement is just equal
to entanglement entropy, ED(|ψ〉) = E(|ψ〉).

Problem 15.4. Write a separable state in its eigenbasis, ρ =
∑

j λj |Ψj〉〈Ψj | and
in its decomposition into pure product states, ρ =

∑
i pi|φA

i 〉〈φA
i | ⊗ |φB

i 〉〈φB
i |. Write

also the partial trace ρA =
∑

i pi|φA
i 〉〈φA

i | in its eigenbasis, ρA =
∑

k λA
k |k〉〈k|. Apply

Schrödinger’s mixture theorem (8.39) twice, substituting
√

pi|φA
i 〉 =

∑
k Vik

√
λA

k |k〉
into

√
λj |Ψj〉 =

∑
i Uji

√
pi|φA

i 〉|φB
i 〉, where U and V are unitary. Multiply the result

by its adjoint and obtain λj =
∑

k BjkλA
k making use of the orthonormality, 〈k|k′〉 =

δk,k′ . Showing that B is bistochastic implies (15.51) due to HLP lemma.

Problem 15.6. Obviously not. A simple dimension counting will do. Consider N×N
problem for which the set of separable states has N4 − 1 dimensions, while the set
of localy diagonalizable states forms its (3N2 − 3)-dimensional subset. Note that it
contains the set of all product mixed states of dimensionality 2N2 − 2.
Problem 15.8. This inequality follows from condition Trρ2 ≤ 1. It is not sufficient
for positivity, but may be accompanied by additional inequalities involving higher
traces Trρk, with k = 3, 4, . . . (Kimura, 2003; Schirmer, Zhang and Leahy, 2004).

Problem 15.9. Partial trace induces the HS measure (14.35) with λ1 = cos2 χ.
Changes of variables provide the required distributions, while integrations give the
expectation values 〈χ〉CP3 = 1/3 and 〈C〉CP3 = 3π/16. The distribution P (χ) achieves

maximum at χm = arccos
[√

1/2 + 1/
√

6
]
, while it is most likely to find a two-qubit

random pure state with concurrence Cm = 1/
√

2.
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Aćın, A., Andrianov, A., Jané, E. and Tarrach,
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M. B., Virmani, S. and Moor, B. D.
(2001a). Asymptotic relative entropy of
entanglement, Phys. Rev. Lett. 87: 217902.

Audenaert, K., Moor, B. D., Vollbrecht, K.
G. H. and Werner, R. F. (2002).
Asymptotic relative entropy of
entanglement for orthogonally invariant
states, Phys. Rev. A 66: 032310.

Audenaert, K., Verstraete, F. and Moor, B. D.
(2001b). Variational characterizations of
separability and entanglement of formation,
Phys. Rev. A 64: 052304.

Avron, J. E., Sadun, L., Segert, J. and Simon,
B. (1989). Chern numbers, quaternions,
and Berry’s phases in Fermi systems,
Commun. Math. Phys. 124: 595.

Ay, N. and Tuschmann, W. (2002). Dually flat
manifolds and global information geometry,
Open Sys. Inf. Dyn. 9: 195.

Bacry, H. (1974). Orbits of the rotation group
on spin states, J. Math. Phys. 15: 1686.

Badzia̧g, P., Deaur, P., Horodecki, M.,
Horodecki, P. and Horodecki, R. (2002).
Concurrence in arbitrary dimensions, J.
Mod. Optics 49: 1289.

Badzia̧g, P., Horodecki, M., Horodecki, P. and
Horodecki, R. (2000). Local environment
can enhance fidelity of quantum
teleportation, Phys. Rev. A 62: 012311.

Balian, R., Alhassid, Y. and Reinhardt, H.
(1986). Dissipation in many-body systems:
A geometric approach based on information
theory, Phys. Rep. 131: 1.

Ball, K. M. (1997). An elementary introduction
to modern convex geometry, in S. Levy
(ed.), Flavors of Geometry, Cambridge
University Press, p. 1.

Bandyopadhyay, S. and Roychowdhury, V.
(2002). Supercatalysis, Phys. Rev.
A 65: 042306.

Barbieri, M., Martini, F. D., Nepi, G. D.,
Mataloni, P., D’Ariano, G. and Macciavello,
C. (2003). Detection of entanglement with
polarized photons: Experimental realization
of an entanglement witness, Phys. Rev.
Lett. 91: 227901.

Bargmann, V. (1961). On a Hilbert space of
analytic functions and an associated
analytic transform, Commun. Pure Appl.
Math. 14: 187.

Bargmann, V. (1964). Note on Wigner’s
theorem on symmetry operations, J. Math.
Phys. 5: 862.

Barndorff-Nielsen, O. E. and Gill, R. D. (2000).
Fisher information in quantum statistics, J.
Phys. A 33: 4481.

Barnum, H. and Linden, N. (2001). Monotones
and invariants for multi-particle quantum
states, J. Phys. A 34: 6787.

Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa,
R. and Schumacher, B. (1996).
Non-commuting mixed states cannot be
broadcast, Phys. Rev. Lett. 76: 2818.

Barnum, H., Knill, E., Ortiz, G. and Viola, L.
(2003). Generalizations of entanglement
based on coherent states and convex sets,
Phys. Rev. A 68: 032308.
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Harremoës, P. and Topsøe, F. (2001).
Inequalities between entropy and index of
coincidence derived from information
diagrams, IEEE Trans. Inform. Theory
47: 2944.

Harriman, J. E. (1978). Geometry of density
matrices 1, Phys. Rev. A 17: 1249.

Harris, J. (1992). Algebraic Geometry. A First
Course, Springer.

Hartley, R. V. L. (1928). Transmission of
information, Bell Sys. Tech. J. 7: 535.

Havel, T. F. (2003). Robust procedures for
converting among Lindblad, Kraus and
matrix representations of quantum
dynamical semigroups, J. Math. Phys.
44: 534.

Havel, T. F., Sharf, Y., Viola, L. and Cory,
D. G. (2001). Hadamard products of
product operators and the design of
gradient: Diffusion experiments for
simulating decoherence by NMR
spectroscopy, Phys. Lett. A 280: 282.

Havrda, J. and Charvát, F. (1967).
Quantification methods of classification
processes: Concept of structural α entropy,
Kybernetica 3: 30.

Hayden, P., Leung, D. W. and Winter, A.
(n.d.a). Aspects of generic entanglement,
Preprint quant-ph/0407049.

Hayden, P. M., Horodecki, M. and Terhal,
B. M. (2001). The asymptotic
entanglement cost of preparing a quantum
state, J. Phys. A 34: 6891.

Hayden, P., Terhal, B. M. and Uhlmann, A.
(n.d.b). On the LOCC classification of
bipartite density matrices, Preprint
quant-ph/0011095.

Hein, M., Eisert, J. and Briegel, H. J. (2004).
Multiparty entanglement in graph states,
Phys. Rev. A 69: 062311.

Helstrom, C. W. (1976). Quantum Detection
and Estimation Theory, London: Academic
Press. Mathematics in Science and
Engineering vol. 123.

Henderson, L. and Vedral, V. (2000).
Information, relative entropy of
entanglement and irreversibility, Phys. Rev.
Lett. 84: 2263.

Herbert, N. (1982). FLASH—A superluminal
communicator based upon a new kind of
quantum measurement, Found. Phys.
12: 1171.

Heydari, H. and Björk, G. (2004).
Entanglement measure for general pure
multipartite quantum states, J. Phys.
A 37: 9251.

Hiai, F. and Petz, D. (1991). The proper
formula for relative entropy and its
asymptotics in quantum probability,
Commun. Math. Phys. 143: 99.

Hiai, F., Ohya, M. and Tsukada, M. (1981).
Sufficiency, KMS condition and relative
entropy in von Neumann algebras, Pacific
J. Math. 96: 99.

Hildebrand, R. (n.d.). PPT from spectra,
Preprint quant-ph/0502170.

Hill, S. and Wootters, W. K. (1997).
Entanglement of a pair of quantum bits,
Phys. Rev. Lett. 78: 5022.

Holevo, A. S. (1973). Information theoretical
aspects of quantum measurements, Prob.
Inf. Transmission USSR 9: 177.

Holevo, A. S. (1982). Probabilistic and
Statistical Aspects of Quantum Theory,
North-Holland.

Holevo, A. S. (2001). Statistical Structure of
Quantum Theory, Springer.

Horn, A. (1954). Doubly stochastic matrices
and the diagonal of rotation, Am. J. Math.
76: 620.

Horn, R. and Johnson, C. (1985). Matrix
Analysis, Cambridge University Press.

Horn, R. and Johnson, C. (1991). Topics in
Matrix Analysis, Cambridge University
Press.

Horodecki, K., Horodecki, M., Horodecki, P.
and Oppenheim, J. (2005). Secure key from
bound entanglement, Phys. Rev. Lett. 94:
160502.

Horodecki, M. (2001). Entanglement measures,
Quant. Inf. Comp. 1: 3.

Horodecki, M. and Horodecki, P. (1999).
Reduction criterion of separability and
limits for a class of distillation protocols,
Phys. Rev. A 59: 4206.

Horodecki, M., Horodecki, P. and Horodecki, R.
(1996a). Separability of mixed states:
Necessary and sufficient conditions, Phys.
Lett. A 223: 1.

Horodecki, M., Horodecki, P. and Horodecki, R.
(1998). Mixed-state entanglement and
distillation: Is there a ‘bound’ entanglement
in nature?, Phys. Rev. Lett. 80: 5239.

Horodecki, M., Horodecki, P. and Horodecki, R.
(2000a). Limits for entanglement measures,
Phys. Rev. Lett. 84: 2014.

Horodecki, M., Horodecki, P. and Horodecki, R.
(2000b). Mixed-state entanglement and
quantum communication, in G. Alber and
M. Weiner (eds), Quantum Information –
Basic Concepts and Experiments, Springer,
p. 1.

Horodecki, M., Horodecki, P. and Horodecki, R.
(n.d.b). Separability of mixed quantum



References 409

states: Linear contractions approach,
Preprint quant-ph/0206008.

Horodecki, M., Horodecki, P. and Oppenheim,
J. (2003a). Reversible transformations from
pure to mixed states and the unique
measure of information, Phys. Rev.
A 67: 062104.

Horodecki, M., Shor, P. W. and Ruskai, M. B.
(2003b). Entanglement breaking channels,
Rev. Math. Phys. 15: 621.

Horodecki, P. (1997). Separability criterion and
inseparable mixed states with positive
partial transposition, Phys. Lett.
A 232: 333.

Horodecki, P. and Ekert, A. (2002). Method for
direct detection of quantum entanglement,
Phys. Rev. Lett. 89: 127902.

Horodecki, P., Horodecki, M. and Horodecki, R.
(1999). Bound entanglement can be
activated, Phys. Rev. Lett. 82: 1056.

Horodecki, P., Lewenstein, M., Vidal, G. and
Cirac, I. (2000c). Operational criterion and
constructive checks for the separability of
low rank density matrices, Phys. Rev.
A 62: 032310.

Horodecki, P., Smolin, J. A., Terhal, B. M. and
Thapliyal, A. V. (2003c). Rank two
bipartite bound entangled states do not
exist, Theor. Comp. Sci. 292: 589.

Horodecki, R. and Horodecki, M. (1996).
Information-theoretic aspects of quantum
inseparability of mixed states, Phys. Rev.
A 54: 1838.

Horodecki, R. and Horodecki, P. (1994).
Quantum redundancies and local realism,
Phys. Lett. A 194: 147.

Horodecki, R., Horodecki, P. and Horodecki, M.
(1996b). Quantum α-entropy inequalities:
Independent condition for local realism?,
Phys. Lett. A 210: 377.

Hua, L. K. (1963). Harmonic Analysis of
Functions of Several Variables in the
Classical Domains, American
Mathematical Society. Chinese original
1958, Russian translation, Moskva 1959.
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Wärmelehre, Z. f. Physik 72: 767.

Klyachko, A. (n.d.). Quantum marginal
problem and representations of the

symmetric group, Preprint
quant-ph/0409113.

Knill, E. and Laflamme, R. (1998). Power of
one bit of quantum information, Phys. Rev.
Lett. 81: 5672.

Knutson, A. (2000). The symplectic and
algebraic geometry of Horn’s problem,
Linear Algebra Appl. 319: 61.

Kobayashi, S. and Nomizu, K. (1963).
Foundations of Differential Geometry I,
Wiley Interscience.

Korsch, H. J., Müller, C. and Wiescher, H.
(1997). On the zeros of the Husimi
distribution, J. Phys. A 30: L677.

Kossakowski, A. (2000). Remarks on positive
maps of finite-dimensional simple Jordan
algebras, Rep. Math. Phys. 46: 393.

Kossakowski, A. (2003). A class of linear
positive maps in matrix algebras, Open
Sys. & Information Dyn. 10: 1.

Kraus, B. and Cirac, J. I. (2001). Optimal
creation of entanglement using a two-qubit
gate, Phys. Rev. A 63: 062309.

Kraus, K. (1971). General state changes in
quantum theory, Ann. Phys. 64: 311.

Kraus, K. (1983). States, Effects and
Operations: Fundamental Notions of
Quantum Theory, Springer-Verlag.

Kubo, F. and Ando, T. (1980). Means of
positive linear operators, Math. Ann.
246: 205.

Kullback, S. and Leibler, R. A. (1951). On
information and sufficiency,
Ann. Math. Stat. 22: 79.
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and Wellens, T. (2003). Entanglement of
2× k quantum systems, Europhys. Lett.
A 62: 168.

Lubkin, E. (1978). Entropy of an n-system from
its correlation with a k-reservoir, J. Math.
Phys. 19: 1028.
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Sommers, H.-J. and Życzkowski, K. (2004).
Statistical properties of random density
matrices, J. Phys. A 37: 8457.

Spanier, J. and Oldham, K. B. (1987). An Atlas
of Functions, Washington: Hemisphere
Publishing Corporation.

Steiner, M. (2003). Generalized robustness of
entanglement, Phys. Rev. A 67: 054305.

Stinespring, W. F. (1955). Positive functions on
c∗ algebras, Proc. Am. Math. Soc. 6: 211.

Størmer, E. (1963). Positive linear maps of
operator algebras, Acta Math. 110: 233.

Størmer, E. (1982). Decomposable positive
maps on c∗-algebras, Proc. Amer. Math.
Soc. 86: 402.

Streater, R. F. (1995). Statistical Dynamics,
London: Imperial College Press.

Study, E. (1905). Kürzeste Wege in komplexen
Gebiet, Math. Annalen 60: 321.

Sudarshan, E. C. G. (1963). Equivalence of
semiclassical and quantum mechanical
descriptions of light beams, Phys. Rev.
Lett. 10: 277.

Sudarshan, E. C. G. and Shaji, A. (2003).
Structure and parametrization of stochastic
maps of density matrices, J. Phys.
A 36: 5073.

Sudarshan, E. C. G., Mathews, P. M. and Rau,
J. (1961). Stochastic dynamics of
quantum-mechanical systems, Phys. Rev.
121: 920.

Sudbery, A. (1990). Computer-friendly d-tensor
identities for SU(n), J. Phys. A 23: L705.

Sudbery, A. (2001). On local invariants of pure
three-qubit states, J. Phys. A 34: 643.

Sugita, A. (2002). Proof of the generalized
Lieb–Wehrl conjecture for integer indices
more than one, J. Phys. A 35: L621.

Sugita, A. (2003). Moments of generalized
Husimi distribution and complexity of
many-body quantum states, J. Phys.
A 36: 9081.

Sylvester, J. (1884). Sur l’équation en matrices
px = xq, C. R. Acad. Sci. Paris 99: 67,
115.

Szarek, S. (2005). The volume of separable
states is super-doubly-exponentially small,
Phys. Rev. A 72: 032304.

Takesaki, T. and Tomiyama, J. (1983). On the
geometry of positive maps in matrix
algebras, Math. Z. 184: 101.

Tanahashi, K. and Tomiyama, J. (1988).
Indecomposable positive maps in matrix
algebra, Canad. Math. Bull. 31: 308.

Tang, W. (1986). On positive linear maps
between matrix algebra, Linear Algebra
Appl. 79: 33.

Terhal, B., Chuang, I., DiVincenzo, D., Grassl,
M. and Smolin, J. (1999). Simulating
quantum operations with mixed
environments, Phys. Rev. A 60: 88.

Terhal, B., Horodecki, M., Leung, D. W. and
DiVincenzo, D. (2002). The entanglement
of purification, J. Math. Phys. 43: 4286.

Terhal, B. M. (2000a). Bell inequalities and the
separability criterion, Phys. Lett.
A 271: 319.

Terhal, B. M. (2000b). A family of
indecomposable positive linear maps based
on entangled quantum states, Linear
Algebra Appl. 323: 61.

Terhal, B. M. (2002). Detecting quantum
entanglement, Theor. Comput. Sci.
287: 313.

Terhal, B. M. and Vollbrecht, K. G. H. (2000).
Entanglement of formation for isotropic
states, Phys. Rev. Lett. 85: 2625.

Thiele, E. and Stone, J. (1984). A measure of
quantum chaos, J. Chem. Phys. 80: 5187.

Topsøe, F. (2001). Bounds for entropy and
divergence for distributions over a two
element set, J. Ineq. P. Appl. Math. 2: 25.

Tribus, M. and McIrvine, E. C. (1971). Energy
and information, Scient. Amer. 224: 178.

Tsallis, C. (2002). Entropic non-extensivity: a
possible measure of complexity, Chaos,
Solitons, Fract. 13: 371.

Tsallis, C., Lloyd, S. and Baranger, M. (2001).
Peres criterion for separability through
non-extensive entropy, Phys. Rev.
A 63: 042104.

Tucci, R. R. (n.d.a). All moments of the
uniform ensemble of quantum density
matrices, Preprint quant-ph/0206193.

Tucci, R. R. (n.d.b). Entanglement of
formation and conditional information
transmission, Preprint quant-ph/0010041.

Tucci, R. R. (n.d.c). Relaxation method for
calculating quantum entanglement,
Preprint quant-ph/0101123.

Uhlmann, A. (1971). Endlich dimensionale
Dichtematrizen, Wiss. Z. Karl-Marx-Univ.
20: 633.

Uhlmann, A. (1977). Relative entropy and the
Wigner–Yanase–Dyson–Lieb concavity in
an interpolation theory, Commun. Math.
Phys. 54: 21.

Uhlmann, A. (1992). The metric of Bures and
the geometric phase, in R. Gielerak (ed.),
Quantum Groups and Related Topics,
Dordrecht: Kluwer, p. 267.

Uhlmann, A. (1993). Density operators as an
arena for differential geometry, Rep. Math.
Phys. 33: 253.



416 References

Uhlmann, A. (1995). Geometric phases and
related structures, Rep. Math. Phys. 36:
461.

Uhlmann, A. (1996). Spheres and hemispheres
as quantum state spaces, J. Geom. Phys.
18: 76.

Uhlmann, A. (1998). Entropy and optimal
decompositions of states relative to a
maximal commutative subalgebra, Open
Sys. & Information Dyn. 5: 209.

Uhlmann, A. (2000). Fidelity and concurrence
of conjugated states, Rep. Rev.
A 62: 032307.

Uhlmann, A. (2003). Concurrence and
foliations induced by some 1-qubit
channels, Int. J. Theor. Phys. 42: 983.

Umegaki, H. (1962). Conditional expectation in
an operator algebra IV: entropy and
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Życzkowski, K. (1999). Volume of the set of
separable states II, Phys. Rev. A 60: 3496.
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Monge metric on the sphere and geometry
of quantum states, J. Phys. A 34: 6689.
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Życzkowski, K. and Sommers, H.-J. (2003).
Hilbert–Schmidt volume of the set of mixed
quantum states, J. Phys. A 36: 10115.
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