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Preface

This volume contains the written versions of invited lectures presented at
the “39. Internationale Universitätswochen für Kern- und Teilchenphysik” in
Schladming, Austria, which took place from February 26th to March 4th,
2000. The title of the school was “Methods of Quantization”. This is, of
course, a very broad field, so only some of the new and interesting develop-
ments could be covered within the scope of the school.

About 75 years ago Schrödinger presented his famous wave equation and
Heisenberg came up with his algebraic approach to the quantum-theoretical
treatment of atoms. Aiming mainly at an appropriate description of atomic
systems, these original developments did not take into consideration Ein-
stein’s theory of special relativity. With the work of Dirac, Heisenberg, and
Pauli it soon became obvious that a unified treatment of relativistic and quan-
tum effects is achieved by means of local quantum field theory, i.e. an intrinsic
many-particle theory. Most of our present understanding of the elementary
building blocks of matter and the forces between them is based on the quan-
tized version of field theories which are locally symmetric under gauge trans-
formations. Nowadays, the prevailing tools for quantum-field theoretical cal-
culations are covariant perturbation theory and functional-integral methods.
Being not manifestly covariant, the Hamiltonian approach to quantum-field
theories lags somewhat behind, although it resembles very much the familiar
nonrelativistic quantum mechanics of point particles. A particularly interest-
ing Hamiltonian formulation of quantum-field theories is obtained by quan-
tizing the fields on hypersurfaces of the Minkowsi space which are tangential
to the light cone. The “time evolution” of the system is then considered in
“light-cone time” x+ = t+ z/c. The appealing features of “light-cone quan-
tization”, which are the reasons for the renewed interest in this formulation
of quantum field theories, were highlighted in the lectures of Bernard Bakker
and Thomas Heinzl. One of the open problems of light-cone quantization is
the issue of spontaneous symmetry breaking. This can be traced back to zero
modes which, in general, are subject to complicated constraint equations. A
general formalism for the quantization of physical systems with constraints
was presented by John Klauder. The perturbative definition of quantum field
theories is in general afflicted by singularities which are overcome by a regu-
larization and renormalization procedure. Structural aspects of the renormal-
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ization problem in the case of gauge invariant field theories were discussed
in the lecture of Klaus Sibold. A review of the mathematics underlying the
functional-integral quantization was given by Ludwig Streit.

Apart from the topics included in this volume there were also lectures
on the Kaluza–Klein program for supergravity (P. van Nieuwenhuizen), on
dynamical r-matrices and quantization (A. Alekseev), and on the quantum
Liouville model as an instructive example of quantum integrable models (L.
Faddeev). In addition, the school was complemented by many excellent sem-
inars. The list of seminar speakers and the topics addressed by them can be
found at the end of this volume. The interested reader is requested to contact
the speakers directly for detailed information or pertinent material.

Finally, we would like to express our gratitude to the lecturers for all their
efforts and to the main sponsors of the school, the Austrian Ministry of Edu-
cation, Science, and Culture and the Government of Styria, for providing gen-
erous support. We also appreciate the valuable organizational and technical
assistance of the town of Schladming, the Steyr-Daimler-Puch Fahrzeugtech-
nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore,
we thank our secretaries, S. Fuchs and E. Monschein, a number of gradu-
ate students from our institute, and, last but not least, our colleagues from
the organizing committee for their assistance in preparing and running the
school.

Graz, Heimo Latal
March 2001 Wolfgang Schweiger



Contents

Forms of Relativistic Dynamics
Bernard L.G. Bakker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Forms of Relativistic Dynamics

Bernard L.G. Bakker

Vrije Universiteit, Department of Physics and Astronomy,
NL-1081 Amsterdam, De Boelelaan 1081,The Netherlands

Abstract. Since Dirac wrote his famous article on forms of relativistic dynamics,
it has been realized that the front form, or light-front dynamics, is ideally suited for
the solution of the bound state problem in quantum field theory. Still, it is useful
to know what the other forms are and what makes the front form so well-adapted
to non-perturbative problems.

First, a brief discussion is given of the Poincaré group and its connection to
different forms of dynamics as described by Dirac. Next the question of equivalence
of the different forms of dynamics is discussed. It is shown that the field-theoretical
formulae for the Poincaré generators follow Dirac’s classification: kinematic vs.
dynamic.

A difficulty that always arises in quantum field theory is the need for regulariza-
tion to render the results of actual computations finite. In a Hamiltonian framework
one cannot immediately apply all methods devised for covariant approaches: e.g. di-
mensional regularization. Thus new methods must be used and the results compared
to calculations carried out in the standard, covariant way. This is done in perturba-
tion theory applied to the case of light-front quantization, where many results are
known from the literature, so Hamiltonian methods can be checked explicitly. In
this part examples are treated in some detail to illustrate the characteristic features
of a light-front calculation.

1 Introduction

The two fundamental revolutions in physics of the twentieth century: rela-
tivity theory and quantum mechanics, force us to formulate questions about
the smallest building blocks of matter in a language that accounts for the
quantum nature of those systems, yet respects the fundamental space-time
symmetries. Relativistic quantum field theory provides such a language. Af-
ter more than a half century of development it is clear that the manifestly
covariant formulation, pioneered by Feynman, has many advantages if one
deals with problems that may be solved by perturbative methods. The ques-
tions concerning the regulation of divergent integrals appearing in the naive
application of the Feynman rules have been answered in various ways and
the program of renormalization was successfully carried out for almost all
interesting field theories. (Gravitation is a well known exception.)

Notwithstanding these achievements, there is room for alternative ap-
proaches. A purely theoretical reason for following another path is that the
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study of alternatives tends to highlight the strengthes and weaknesses of ei-
ther approach. Secondly, one formulation may be intuitively more appealing
than the other. Hamiltonian formulations of field theory, being not manifestly
covariant, are not immediately recognized as equivalent to the Feynman way.
Nevertheless, they are closer to the familiar quantum mechanics of point
particles and were historically the first to be used. This is the reason that
some authors refer to Hamiltonian methods as “old fashioned”. Furthermore,
it seems that they lend themselves naturally to the solution of bound-state
problems.

As any physical observable, S-matrix element, bound-state mass, mag-
netic moment, . . . must be invariant under proper space-time transforma-
tions, the challenge of practical calculations in the framework of Hamiltonian
dynamics is to produce invariant results for observables. An important ap-
plication of Hamiltonian dynamics is to nuclear physics. Traditionally non-
relativistic model Hamiltonians were used in this field, but since the advent of
powerful accelerators that can boost hadrons to energies far exceeding their
masses, it has become clear that the implementation of a relativistic frame-
work is unavoidable. In addition, the common practice of leaning heavily on
field theory to construct the so called realistic nuclear forces, made it clear
that also in nuclear physics one needs to take the requirements of special
relativity seriously.

The concept of “relativistic Hamiltonian dynamics” needs to be prop-
erly defined. This is our first topic. The appropriate symmetry, the Poincaré
group, will be briefly discussed. This leads naturally to the different forms of
dynamics, introduced in a famous paper by Dirac [5]. Later two more forms
of dynamics were described in [16], bringing the total number to five. There
is a fivefold ambiguity of relativistic dynamics, as can be seen by analyzing
the classification of all subgroups of the Poincaré group.

In view of the challenge to maintain the space-time symmetries, one may
wonder why one should consider the Hamiltonian formulation at all. One
reason is that nonperturbative problems may be solved by matrix diago-
nalization, as one is used to in many-body theory. In order to make this
program viable, it is necessary to guarantee that the dimensions of the ma-
trices involved, are within the limits that present day computers pose. So it
is important to investigate whether any of the five forms of dynamics is more
suited to implementation on the computer than the others. One consideration
comes to mind immediately: the Fock-state expansion is in principle different
for the various forms of dynamics, as its terms are not invariant. Therefore
the investigation of the Fock column must be an issue. We shall discuss one
example in detail.

Finally, some definite examples in one particular form: the “front form”
also known as Light-Cone Quantization or Light-Front Quantization or Dy-
namics, are discussed in detail. Light-Front Dynamics (LFD) is argued to
be most suitable for numerical treatment as the vacuum is particularly sim-
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ple in this form. The examples are taken from the perturbative domain for
several reasons: (i) one cannot hope to solve the problems of maintaining
symmetry and regularization/renormalization in a nonperturbative context
if they are not solved in perturbation theory, (ii) the techniques used and
the results obtained are interesting in themselves and much more easy to
illustrate in perturbation theory, and (iii) many more results are available in
the perturbative domain.

It will turn out that LFD in the perturbative regime contains additional
singularities, so called “longitudinal” ones, that do not occur in the covariant
formulation. If these are subtracted, LF perturbation theory reproduces the
results of the Feynman approach.

The equivalence of the Hamiltonian methods in perturbation theory being
established, one may turn to nonperturbative problems. The scope of this lec-
ture does not include a treatment of bound states. However, here we mention
the very promising development called Discretized Light Cone Quantization,
that aims at fully solving bound states in field theory, its accuracy limited
only by the capacity of available computers. A review of this method can be
found in [3].

These lectures do not aim at a comprehensive treatment of the different
forms of relativistic dynamics. Some excellent reviews on the subject have
been written. We mention [14] and [17] for a discussion of systems with a fixed
number of particles. The progress on LFD can be traced in the proceedings
of several workshops devoted to that subject e.g. [13,27,6,7,12]. A different
approach to LFD is advocated by Carbonell et al. [4]. Pioneering work on
nonperturbative QCD in LF quantization was done by Wilson et al. [29].

2 The Poincaré Group

It is the main purpose of this short section to fix the notation. A discussion
of the Poincaré group can be found in numerous books on group theory, as
well as in the literature devoted to field theory and particle physics.

We denote the generators of space-time transformations by

Pµ space-time translations,
Mµν pure Lorentz transformations.

Their commutation relations determine the Poincaré algebra, which in its
turn determines the Poincaré group locally. They are

[Pµ, P ν ] = 0 ,
[Mµν , Pσ] = i (Pµgνσ − P νgµσ) ,
[Mµν ,Mρσ] = i (gνρMµσ − gµρMνσ + gµσMνρ − gνσMµρ) . (1)

The well known physical interpretation of these operators is

J i = 1
2εijkM

jk ,

Ki = M0i . (2)
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One can split the angular-momentum tensor Mµν into two pieces: one part
Lµν , that corresponds to the orbital angular momentum and another, Sµν ,
that corresponds to the intrinsic spin [10,9].

Irreducible representations of the symmetry are characterized by invari-
ants. They are the mass m and the intrinsic spin s. The mass is a constraint
on the components of the momentum,

PµP
µ = m2. (3)

The intrinsic spin is determined by the Pauli-Lubanski pseudovector

Wµ = − 1
2ε

µνρσPνSρσ, (4)

its square being an invariant

WµW
µ = −m2S2. (5)

Substitution of Mµν for Sµν (4) would make no difference to W .
The components of W have a simple interpretation; the zeroth component

is proportional to the helicity

W 0 = P · S (6)

and
W = P 0S (7)

is proportional to the intrinsic spin.
If the mass is determined as the square root of the eigenvalue of P 2, then

the spin can be calculated by dividing the eigenvalue of −W 2 by m2.
It is the subject of relativistic dynamics to find representations of these

operators in a physical form, e.g. as differential, integral or matrix operators
on states. The simplest realization is the one called an “elementary particle”
which according to Wigner is a unitary, irreducible representation: a state of
definite mass and spin. Next one may consider a collection of noninteract-
ing particles of different masses and spins and construct realizations of the
Poincaré algebra for them. This task is almost trivial as the tensor product of
representations does the job. Much more difficult is the construction of repre-
sentations in the case of interacting particles. This is the topic of relativistic
dynamics proper. One way of doing it is covariant field theory. The genera-
tors are then expressed in terms of integrals of the energy-momentum tensor.
Such a construction is not always straightforward, but as a starting point
it is very useful. The next section deals with the question of what different
forms dynamics may take.

3 Forms of Relativistic Dynamics

In his ground breaking paper, Dirac [5] formulated two requirements on rel-
ativistic dynamical systems:
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General relativity requires that physical laws expressed in terms of
a system of curvilinear coordinates in space-time, shall be invariant
under transformations from one such coordinate system to another.

and

A second general requirement for dynamical theory has been brought
to light through the discovery of quantum mechanics by Heisenberg
and Schrödinger, namely the requirement that the equations of mo-
tion shall be expressible in the Hamiltonian form.

These conditions do not by themselves define a dynamical system, but
rather limit the possible forms it may take. A proper determination of the
dynamics involves the specification of the interactions. In nonrelativistic dy-
namics only one unique way is allowed: the interaction must be included in
the Hamiltonian. All other generators–of the Galilei group in this case–are
independent of the interaction.

The evolution of a system with nonrelativistic dynamics is governed fully
by the Hamiltonian: given the state of the system at some time t = 0, one
may calculate its state at any other time using the evolution operator U(t) =
exp(−iHt). The state specification at the surface t = 0, an instant in time,
represents the initial conditions. For the Galilei group the instant is the only
appropriate initial surface.

For systems that are governed by Einstein relativity, more possibilities
are open as the family of world lines is more restricted. Any hypersurface
Σ in Minkowski-space that does not contain timelike directions (lightlike
directions are allowed) can be used to formulate the initial conditions. If no
more limitations are set, the choice is infinite, but it is useful to try and find
surfaces with the highest possible symmetries. This leads to the concept of the
stability group GΣ , the subgroup of the Poincaré group that maps the surface
Σ onto itself. The subset of generators of the full group that generate elements
of GΣ are said to be kinematical operators. The other generators map Σ into
another surface, Σ → Σ′. They are said to be dynamical operators. (Dirac
called them “Hamiltonians” but we shall not follow this terminology.) If Σ
has the property

∀x, y ∈ Σ : ∃ g ∈ GΣ → x = gy, (8)

then it is said to be transitive and all points in Σ are equivalent. Now, if we
limit our initial surfaces to transitive ones, there exist just five different – in-
equivalent – possibilities, corresponding to the five subgroups of the Poincaré
group. Dirac himself discussed three forms

Instant Form x0 = 0,
Point Form x2 = a2 > 0, x0 > 0,
Front Form x0 + x3 = 0. (9)
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After a full classification of the subgroups of the Poincaré group was given
the remaining ones could be found. They are given by Leutwyler and Stern,
viz.

(x0)2 − (x1)2 − (x2)2 = a2 > 0, x0 > 0,
(x0)2 − (x3)2 = a2 > 0, x0 > 0. (10)

As the latter have not been used in practice, we shall not discuss them any
further.

The instant form is of course the one best known. The other two forms
discussed by Dirac have also been applied, the point form less widely than
the front form.

3.1 Comparison of Instant Form, Front Form, and Point Form

In Table 3.1 we summarize the classification of the three forms, instant form
(IF), front form (LF) and point form (PF) dynamics. We need the following
notation for any vector Aµ in the front form

A± =
1√
2
(A0 ±A3), A⊥ = (A1, A2), (11)

hence
A ·B = AµB

µ = A−B+ +A+B− − A⊥ · B⊥. (12)

In the instant form we use the four-velocity, denoted by uµ, and related to
the four momentum by

pµ = muµ, uµuµ = 1. (13)

From Table 3.1 read off that the instant form has the advantage that the
rotations are all kinematical, which means that a classification of states with
respect to their spins is immediate. The point form shares this property with
the IF, and has in addition kinematical boosts. However, in the point form
all components of the four-momentum are dynamical. The front form is in
between, as it has kinematical as well as dynamical rotations and boosts.
A disadvantage of LFD is that only boosts in the z-direction and rotations
around the z-axis are kinematical.

Naturally the question arises how to describe interacting systems. In field
theory, to which we shall turn later, this question is solved in a standard way.
In the case of a system consisting of a fixed, finite number of particles the
answer is complicated.

Dirac [5] identified the “real difficulties” for the three forms. Some simple
requirements can be given, related to the commutators of the Poincaré gen-
erators that are linear in the interactions. We give them here. In the formulae
below the summation runs over the particle labels.
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Instant Form

P 0 =
∑ √

p2 +m2 + V,

M0r =
∑

xr
√

p2 +m2 + V r, (14)

where V is a three-dimensional scalar, independent of the origin of the coor-
dinates x, and V is a three-dimensional vector, such that

V = xV + V ′, (15)

where V ′ is again independent of the origin of the coordinates. The real
difficulty is to satisfy the commutators [V,V ] and [V i, V j ] that follow from
the Poincaré algebra.

Point Form

Pµ =
∑

[pµ + xµB(p2 −m2)] + V µ,

B(p2 −m2) =
1
x2

[√
(p · x)2 − x2(p2 −m2) − p · q

]
. (16)

The interaction V µ must be a four-vector and the real difficulty is to satisfy
the commutators [V µ, V ν ] that follow from [Pµ, P ν ] = 0.

Front Form

P− =
∑ p⊥ 2 +m2

2p+ + V,

M− i =
∑ [

xi p
⊥ 2 +m2

2p+ − x−pi

]
+ V i. (17)

The interaction V must be invariant under all transformations of x⊥ and x−,
except those of the form x− → λx−, in which case V → λV . The interactions
V ⊥ can be written as

V ⊥ = x⊥V + V ′⊥, (18)

where V ′⊥ is subject to the same limitations as V , and in addition transforms
as a vector under rotations around the z-axis.

A complete construction of the generators was given by Bakamjian and
Thomas [1] starting from an invariant mass operator. Their method is pe-
culiar in that all interaction dependence is introduced solely through this
operator. It was proven by Sokolov and Shatny [26] that this leads to equiva-
lent forms of dynamics. These authors consider two forms equivalent if their
Hamiltonians are related by a unitary similarity transformation and the S-
matrix elements calculated in these two forms coincide.
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Table 3.1. Comparison of three different forms of dynamics
Instant Form Front Form Point Form

Quantization Surface

x0 = 0 x0 + x3 = 0 x2 = a2 > 0, x0 > 0

Kinematical Generators

P P+, P ⊥ Mµν

J E1 = M+1 = Kx+Jy√
2

E2 = M+2 = Ky−Jx√
2

Jz = M12

Kz = M−+

Dynamical Generators

P 0 P− Pµ

K F 1 = M−1 = Kx−Jy√
2

F 2 = M−2 = Ky+Jx√
2

Plane-wave Representation

|p〉 |p+,p⊥〉 |u〉
p0 = ±

√
p2 +m2 p− = p ⊥ 2+m2

2p+ uµ = pµ/m, u2 = 1
p0 > 0 and p0 < 0 p− > 0 ↔ p+ > 0 u0 = ±√

u2 + 1
not kinematically disjoint p− < 0 ↔ p+ < 0 not kinemat. disjoint

Measure∫ d3p
2p0

∫ d2p⊥dp+

2p+

∫ d3u
2g0

Using this construction one obtains for instance

P 0 =
√

p2 +M2
IF, (instant form),

Pµ = MPF u
µ, (point form)

P− =
p⊥ 2 +M2

LF

2p+ . (front form) (19)

The three mass operators are not identical, but related.



Forms of Relativistic Dynamics 9

These results express the formal limitations set by relativistic invariance,
but do not determine the interactions explicitly. For guidance in interaction
choice one may, and frequently does, resort to field theory. In Sect. 5 we
discuss some aspects of Hamiltonian dynamics in that context.

4 Light-Front Dynamics

Up till now the discussion has been rather general. Now we turn to some
specific problems in order to illustrate some ideas discussed so far. We shall
limit ourselves to LFD, because it has some unusual and unexpected features.

In the present section we discuss the entanglement of the Fock-space ex-
pansion with space-time symmetries. For pedagogical reasons spin is ignored
here, so the specific case considered is not very realistic. After discussing how
the generators of the Poincaré group are related to the underlying Lagrangean
in Sect. 5, we give a more realistic example in a field-theoretical context.

Light-front dynamics (LFD) is singled out for corresponding to the small-
est number of dynamical generators: three. This property by itself is not
important enough to warrant a preference for LFD. Much more important is
the fact that one can make a useful distinction between over-all and relative
variables, in a way quite similar to CM and relative variables in nonrelativistic
theories.

Another advantage, already stressed by Dirac, is the spectrum property.
It is connected to the condition that for massive physical particles both P 2

and P 0 must be positive. Then P+ and P− must be positive too. Now in IFD
this condition must be implemented separately, but in LFD the positivity of
P− follows from the positivity of P+: states of positive and negative energies
are separated kinematically. This property is of eminent importance for the
role the vacuum plays in LFD. As the vacuum has energy zero, only particles
with mass zero can be created from the LF vacuum, unlike the IF vacuum
that can create particles with nonvanishing energy, if their energies sum up
to zero.

4.1 Relative Momentum, Invariant Mass

In this subsection we define a relative momentum such that the invariant
mass can be expressed in terms of the relative-momentum components only.
We shall discuss first the case where four-momentum conservation can be
used and next the case where it cannot.

Conserved Four Momentum Consider the case of two free particles, with
masses m1 and m2. For free particles the four momenta add up, so we have

P = p1 + p2 ⇔ P± = p±
1 + p±

2 , P ⊥ = p⊥
1 + p⊥

2 . (20)
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The invariant mass is of course given by

P 2 = M2, (21)

leading to the energy-momentum dispersion relation

P− =
P ⊥ 2 +M2

2P+ . (22)

We define relative variables

x =
p+
1

P+ , q ⊥ = (1 − x)p⊥
1 − xp⊥

2 . (23)

The inverse relation is

p⊥
1 = xP ⊥ + q⊥, p⊥

2 = (1 − x)P ⊥ − q⊥. (24)

One can find the invariant mass in terms of x and q⊥,

M2 = 2P+P− − P ⊥ 2

=
q ⊥ 2 +m2

1

x
+

q ⊥ 2 +m2
2

1 − x
. (25)

One can define a vector q by adding to q⊥ the third component qz, given by

qz = x(1 − x)
∂M

∂x
= (x− 1

2 )M − m2
1 −m2

2

2M
. (26)

In order to justify the use of the word vector for q we must prove that its
length is independent of the reference frame.

From the expression of M in terms of q⊥ we derive

q ⊥ 2 = x(1 − x)M2 − (1 − x)m2
1 − xm2

2. (27)

Then we can calculate the square of q:

q ⊥ 2 + q2z =
(M2 −m2

1 −m2
2)

2 − 4m2
1m

2
2

4M2 . (28)

As M is an invariant, q 2 is also an invariant. In fact, q is the momentum of
particle 1 in the center of momentum frame (P = 0). Consequently, we can
equate the invariant mass with the energy in the CM frame

M =
√
m2

1 + q 2 +
√
m2

2 + q 2 ≡ E1 + E2. (29)

Using the last expression one can relate x to qz as follows

x =

√
m2

1 + q 2 + qz√
m2

1 + q 2 +
√
m2

2 + q 2
. (30)
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The vector property of q can be related to the orbital angular momentum
operator L. If one defines the LF helicity L3 by

L3 = −i
(
q1

∂

∂q2
− q2

∂

∂q1

)
, (31)

and defines the two other components by

Lr = iεrs

[
− qs
M

∂

∂x
+ x(1 − x)

∂M

∂x

∂

∂qs

]
, (32)

then these three components together are related to the momentum q in the
usual way

L = −iq × ∇q. (33)

Off-Energy-Shell The considerations above are relevant for on-energy-shell
states, i.e. states that have the same total energy and kinematical momenta.
Then they have the same invariant mass too. If one evaluates diagrams be-
yond tree level, either in perturbation theory or as part of the kernel of an
integral equation, one has to deal with intermediate states that are off the
energy shell, and which are connected to each other by the action of inter-
actions. Then P− is not conserved, as is of course to be expected, as the
interactions are the dynamical ingredients. So let us lift the condition that
P− = p−

1 + p−
2 . The algebra can still be carried out as before, but we shall

express everything in terms of the quantity

M2 = 2P+(p−
1 on + p−

2 on) − P ⊥ 2, p−
i on =

p⊥ 2
i +m2

i

2p+ . (34)

If four-momentum is not conserved, this is not an invariant, so the “vector” q
is not the CM momentum of particle 1 and its square is not an invariant under
rotations. This can be contrasted to IFD, where three-vectors are kinematical,
so their squares are invariant under rotations.

Phase Space The IFD phase space d3p/2E translates into dp⊥d2p+/2p+ in
LFD. If we use the relative coordinates, then we find for the two-body phase
space

d2p⊥
1

dp+
1

2p+
1

d2p⊥
2

dp+
2

2p+
2

= d2P⊥d2q⊥dP+dx
P+

2p+
1 2p+

2

= d2P⊥dP+ dx
2x(1 − x)

d2q⊥. (35)

The usefulness of q becomes apparent again if we express the phase space in
terms of q too. The relevant Jacobian is

∂x

∂qz
=
x(1 − x)M
E1E2

, (36)
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so using (35, 36) we find the internal phase space expressed in terms of q:

dx
2x(1 − x)

d2q⊥ = d3q
M

2E1E2
. (37)

Exchange Diagrams As an example of the difference between covariant and
LF diagrams we calculate the one-boson exchange diagram. The kinematics is
defined in Fig. 1. The solid lines denote “nucleons” with mass m1 and m2, the
dashed lines “mesons” with mass µ. As we shall see later, in LF perturbation
theory amplitudes are expressed in terms of energy denominators and phase-
space factors, instead of Feynman propagators. The energy denominators Da

and Db are

Da = P− − p−
1 on − p−

4 on − q−
on

= P− − m2
1 + p⊥ 2

1

2p+
1

− m2
4 + p⊥ 2

4

2p+
4

− µ2 + q ⊥ 2

2(p+
3 − p+

1 )
, (38)

Db = P− − p−
2 on − p−

3 on − q−
on

= P− − m2
2 + p⊥ 2

2

2p+
2

− m2
3 + p⊥ 2

3

2p+
3

− µ2 + q ⊥ 2

2(p+
1 − p+

3 )
. (39)

The two time-ordered diagrams are equal to the same covariant amplitude,
but in two different kinematical domains: (a) p+

3 −p+
1 = p+

2 −p+
4 > 0 and (b)

p+
3 − p+

1 = p+
2 − p+

4 < 0, respectively. The perpendicular momentum transfer
is

q⊥ = p⊥
3 − p⊥

1 = p⊥
2 − p⊥

4 . (40)

We can write this in invariant form in terms of the relative coordinates

q⊥
12 = x2p

⊥
1 − x1p

⊥
2 , q⊥

34 = x4p
⊥
3 − x3p

⊥
4 (41)

and
xi = p+

i /P
+. (42)

p

pp

p
1

2

3

4

q

(b)

p

pp

p
1

2

3

4

q

(a)

Fig. 1. Kinematics of LF time ordered exchange diagrams. (a) q+ = p+
3 − p+

1 > 0,
(b) q+ = p+

1 − p+
3 > 0.
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The formulae are

2P+Da = s−
[
m2

1 + q ⊥ 2
12

x1
+
m2

4 + q ⊥ 2
34

x4
+
µ2 + (q⊥

12 − q⊥
34)

2

x3 − x1

]
≡ s−M2

a ,

(43)

2P+Db = s−
[
m2

2 + q ⊥ 2
12

x2
+
m2

3 + q ⊥ 2
34

x3
+
µ2 + (q⊥

12 − q⊥
34)

2

x1 − x3

]
≡ s−M2

b .

(44)
If the states with the momenta p+

i and p⊥
i are not on the energy shell, this

is our final formula. Such is the case if the exchange diagrams are parts of the
kernel of an integral equation to be used in a nonperturbative calculation.
However, in the other case we can write

P 2 = s = M2
12 = M2

34. (45)

Then we can rewrite s−M2
a and s−M2

b in terms of a four-momentum transfer
squared. We shall do this for M2

12 −M2
a .

M2
12 −M2

a =
m2

1 + q ⊥ 2
12

x1
+
m2

2 + q ⊥ 2
12

x2

−
[
m2

1 + q ⊥ 2
12

x1
+
m2

4 + q ⊥ 2
34

x4
+
µ2 + (q⊥

12 − q⊥
34)

2

x3 − x1

]

=
m2

2 + q ⊥ 2
12

x2
− m2

4 + q ⊥ 2
34

x4
− µ2 + (q⊥

12 − q⊥
34)

2

x3 − x1
(46)

As we are now in the covariant case: external particles on shell and states on
energy shell, we can calculate the square of the four-momentum transfer in
the ordinary way. We find

(p2 − p4)2 = 2(p+
2 − p+

4 )(p−
2 − p−

4 ) − (p⊥
2 − p⊥

4 )2. (47)

We can simplify this expression

(p2 − p4)2 = (x2 − x4)
[
m2

2 + q ⊥ 2
12

x2
− m2

4 + q ⊥ 2
34

x4

]
− (q⊥

12 − q⊥
34)

2 . (48)

It is straightforward to derive from this equation the formulae for case (a),
x3 − x1 = x2 − x4 > 0

(p2 − p4)2 − µ2 = (x2 − x4)(M2
12 −M2

a ), (49)

(p3 − p1)2 − µ2 = (x3 − x1)(M2
34 −M2

a ), (50)

and for case (b); x1 − x3 = x4 − x2 > 0

(p1 − p3)2 − µ2 = (x1 − x3)(M2
12 −M2

b ), (51)

(p4 − p2)2 − µ2 = (x4 − x2)(M2
34 −M2

b ). (52)
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If the states are not on the energy shell, M12 and M34 are not the same and
may both differ from

√
s, so (p2 −p4)2 and (p1 −p3)2 are in general different.

One can derive the amusing identity

M2
12 +M2

34 = M2
a +M2

b . (53)

4.2 The Box Diagram

The tree-level diagrams discussed previously, when used to calculate S-matrix
elements, are invariant. However, if they are embedded in a larger diagram,
e.g. as kernels in a Lippmann-Schwinger type approach to non-perturbative
dynamics, one needs off-energy-shell amplitudes. Then it appears that space-
time symmetries are violated if Fock space is truncated improperly.

The simplest place to illustrate this feature is the box diagram in the
same purely scalar theory: heavy scalar particles with mass m (“nucleons”)
interacting with light scalars with mass µ (“mesons”). We look at the process
of two nucleons with momenta p and q respectively, coming in and exchanging
two mesons of mass µ. The outgoing nucleons have momenta p′ and q′. The
kinematics is given in Fig. 2. The internal momenta are related to the external
ones by four-momentum conservation, which hold for those components of the
momenta that are conserved.

k1

k3

2

q’

p’

q

p

k4 k

Fig. 2. Kinematics for the box diagram. The arrows denote the momentum flow.

Covariant Box Diagram The covariant box diagram is given by

= −i
∫

d4k
1

(k1
2 −m2)(k2

2 − µ2)(k3
2 −m2)(k4

2 − µ2)
, (54)

where the imaginary parts iε of the masses are not written explicitly and
the dependence on the coupling constant and factors of 2π are all left out.
The amplitude can be evaluated in the usual way by using Feynmans trick to
write the integrand in terms of a single denominator and performing a Wick
rotation.

LF Time-Ordered Diagrams It is well-known [15] how to construct the
LF time-ordered diagrams. We shall illustrate the construction explicitly in
the more complicated case of a Yukawa model with nucleons of spin-1/2
later. Here we just mention that LF time ordered diagrams are obtained by
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integrating over the minus component of the free loop momentum. As a result
one obtains several LF time ordered diagrams corresponding to one covariant
amplitude. For the box we find

= + + +

+ + . (55)

The first four diagrams contain two- and three-particle Fock states, the last
two – the so called “stretched boxes” – contain also four-particle Fock states.
Their contribution measures the importance of four-particle states for the
calculation of the box diagram.

The time-ordered amplitudes are expressed in terms of energy denomina-
tors and phase-space factors. The phase space factor is

Φ = 16|k+
1 k

+
2 k

+
3 k

+
4 |. (56)

Without loss of generality we can take p+ ≥ p′+. The internal particles are
on mass-shell, however, the intermediate states are off energy-shell. A num-
ber of intermediate states occur. We label the corresponding kinetic energies
according to which of the internal particles, labeled by k1 . . . k4 in Fig. 2, are
in this state.

H14 = q− +
k⊥
1

2 +m2

2k+
1

− k⊥
4

2 + µ2

2k+
4

, (57)

H13 =
k⊥
1

2 +m2

2k+
1

− k⊥
3

2 +m2

2k+
3

, (58)

H12 = q′− +
k⊥
1

2 +m2

2k+
1

− k⊥
2

2 + µ2

2k+
2

, (59)

H34 = p− − k⊥
3

2 +m2

2k+
3

+
k⊥
4

2 + µ2

2k+
4

, (60)

H24 = q′− + p− +
k⊥
2

2 + µ2

2k+
2

− k⊥
4

2 + µ2

2k+
4

, (61)

H23 = p′− +
k⊥
2

2 + µ2

2k+
2

− k⊥
3

2 +m2

2k+
3

. (62)

A minus sign occurs if the particle goes in the direction opposite to the direc-
tion defined in Fig. 2. All particles are on mass-shell, including the external
ones:

q− =
q⊥2 +m2

2q+
, q′− =

q′⊥2 +m2

2q′+ ,

p− =
p⊥2 +m2

2p+ , p′− =
p′⊥2 +m2

2p′+ . (63)
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We can now construct the LF time-ordered diagrams.

=
∫

d2k⊥
∫ p′+

0

−2π dk+

Φ (P− −H14) (P− −H13) (P− −H12)
, (64)

=
∫

d2k⊥
∫ p+

p′+

−2π dk+

Φ (P− −H14) (P− −H13) (P− −H23)
, (65)

=
∫

d2k⊥
∫ p++q+

p+

−2π dk+

Φ (P− −H34) (P− −H13) (P− −H23)
, (66)

=
∫

d2k⊥
∫ p+

p′+

−2π dk+

Φ (P− −H14) (P− −H24) (P− −H23)
, (67)

= = 0. (68)

The factor 2π is the product of −2πi from the k−-integration and the factor
−i in (54). The last two diagrams are zero because we have taken p+ ≥ p′+

and therefore these diagrams have an empty k+-range. If we take p+ ≤ p′+,
the diagrams in (68) have nonvanishing contributions.

Numerical Experiment In order to estimate how important the higher
Fock states can be in practice, and to illustrate the dependence of the different
LF diagrams on the orientation of the reference frame, we give the results of
a “numerical experiment”. We look at the scattering of two particles over an
angle of π/2. In Fig. 3 the process is viewed in two different ways.

x
y

z

α
ω

(b)

x
y

z

α

(a)

Fig. 3. (a) Two particles come in along the x-axis. They scatter into the y−z plane
over an angle of π/2. The azimuthal angle is given by α. (b) Another viewpoint. The
outgoing particles move along the y-axis. The normal on the light-front ω makes
an angle α with respect to the z-axis.

Fig. 3a pictures the situation where the scattering plane is rotated around
the x-axis. The viewpoint in Fig. 3b concentrates on the influence of the
orientation of the quantization plane. Both viewpoints should render identical
results, since all angles between the five relevant directions (the quantization
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axis and the four external particles) are the same. We choose for the momenta

pµ = (v0, +vx, 0, 0), (69)
qµ = (v0, −vx, 0, 0), (70)
p′µ = (v0, 0, −vy, −vz), (71)
q′µ = (v0, 0, +vy, +vz). (72)

indicating that we have chosen the fixed quantization plane x+ = 0 (Fig. 3a).
The incoming and outgoing particles are required to have the same absolute
values of the momenta in the CM system. Therefore

|v|2 = (vx)2 = (vy)2 + (vz)2 = |v′|2. (73)

If v0 and |v| = |v′| are kept constant, while the azimuthal angle α given by

α = arctan
vz

vy
, (74)

varies, the Mandelstam variables s, t, and u are constant too and so must be
the invariant amplitude.

We are now ready to perform a numerical experiment. Two parameters
are focused on. We vary the azimuthal angle α in the y-z-plane, and the
incoming CM momentum v = vx. In the remainder we will omit the units for
the masses (MeV/c2).

Numerical Results Two nucleons of massm = 940 scatter via the exchange
of scalar mesons of mass µ = 140. First we varied the direction of v′, given by
the azimuthal angle α, but kept its length fixed. Therefore the Mandelstam
variables are independent of α, and the full amplitude must be invariant. We
tested this numerically for a number of values of v. In the region 0 ≤ α ≤ π
we used the formulas (64-67). In the region π ≤ α ≤ 2π the diagrams (65) and
(67) vanish. However, then there are contributions from the diagrams in (68).
The results are shown in Fig. 4. The results are normalized to the value of
the covariant amplitude. The contributions from the different diagrams vary
strongly with the angle α. Since the imaginary parts are always positive,
they are necessarily in the range [0, 1] when divided by the imaginary part
of the covariant amplitude. The real parts can behave much more wildly,
especially for higher values of the incoming CM momentum v. Clearly the
LF time-ordered diagrams add up to the covariant amplitude, so we see that
in all cases we obtain covariant (in particular rotationally invariant) results
for both the real and the imaginary part.

After this numerical investigation of the dependence of the LF-time or-
dered diagrams on the kinematics, we also investigated the energy depen-
dence of the different contributions. As the stretched boxes are maximal for
α = π/2, we give the results for that case, i.e. scattering in the x-z-plane.



18 Bernard L.G. Bakker

�a� Real part for v � ��� R
�
� �����	 �b� Imaginary part for v � ��	

sum

� ��� � ���� �� ��

���

���

���

���

�
sum

� ��� � ���� �� ��

���

���

���

���

�

�c� Real part for v � 
��� R
�
� 
����	 �d� Imaginary part for v � 
��	

sum

��� ���� ��

����

���

�

���

sum

� ��� � ���� �� ��

���

���

���

���

�

�e� Real part for v � ��� R
�
� ����	 �f� Imaginary part for v � ��	

sum

��� ���� ��

����

���

�

���

sum

� ��� � ���� �� ��

���

���

���

���

�

Fig. 4. On shell amplitudes from α = 0 to α = 2π. R4 is the ratio of the stretched
boxes to the full amplitude.

The ratio R4(R�
4 ) is the ratio of the contribution of the stretched boxes to

the total (real part of the) amplitude. The results are shown in Fig. 5.
We depict the ratio of the stretched box, the diagram with two simulta-

neously exchanged mesons, to both the real part and to the magnitude of
the total amplitude. Since the real part has a zero near v = 280, the ratio
R�

4 becomes infinite at that value of the incoming momentum. Therefore R4
gives a better impression of the contribution of the stretched box. We con-
clude from our numerical results that the stretched box is relatively small at
low energies, but becomes rather important at higher energies.

If the angular momentum operator would have been kinematical, as in
IFD, then each of the six diagrams would have been independent of the
orientation of the reference frame (but in IFD many more diagrams would
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� ��� ���v �

sum

��� v � ���

��

��

��

��

R
�

R
�
�

� ��� ��� ��� v � ���

sum

�a� �b� �c�

Fig. 5. Real (a) and imaginary part (c) of the LF time-ordered boxes for α = π/2
as a function of the momentum of the incoming particles v. The inset (b) shows
the ratio of the stretched box to the real part of the amplitude (R�

4 ) and to the
absolute value (R4).

occur). The results illustrate the fact that the angular momentum is a dy-
namical operator, only its third component is kinematical. So the separate
diagrams depend on the orientation of the reference frame, or, equivalently,
the orientation of the light front.

5 Poincaré Generators in Field Theory

Covariant field theory is defined in terms of a Lagrangean density, which can
be integrated over space-time to yield the action, a true Lorentz scalar:

A =
∫

d4xL(x). (75)

If the action is an invariant, the Euler-Lagrange equations are covariant.
The object that is most useful when constructing the generators of space-

time translations and Lorentz transformations, is the energy-momentum ten-
sor Θµν . It can be used to determine the generators of the Poincaré group.
We shall derive them for two forms, IFD and LFD, in a specific case: the
interaction of fermions and scalar bosons.
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5.1 Fermions Interacting with a Scalar Field

The Lagrangean for a spin-1/2 fermion field interacting with a spin-0 boson
field is

L = Lfree + Lint ,

Lfree =
i

2
(ψ̄γµ∂µψ − (∂µψ̄)γµψ) −mψ̄ψ + 1

2 (∂µφ)(∂µφ) − 1
2m

2
bφ

2,

Lint = −gψ̄ψφ. (76)

The canonical stress tensor is [2,10]

Θµν =
1

2m
[
(∂µψ̄)(∂νψ) + (∂νψ̄)(∂µψ) + igφ

{
(∂νψ̄)γµψ − ψ̄γµ(∂νψ)

}]
+(∂µφ)(∂νφ) − gµνL. (77)

The spin tensor reads

Mρµν =
i

4m
[
ψ̄σµν∂ρψ − (∂ρψ̄)σµνψ + igφψ̄ {σµνγρ + γρσµν}ψ]

. (78)

5.2 Instant Form

We calculate the components of the energy-momentum tensor, the generators
of the space-time translations and the Lorentz transformations first in instant
form. In the following section they will be calculated in front form.

Free Boson Poincaré Generators The boson part of the stress tensor
reads:

Θµν = (∂µφ)(∂νφ) − 1
2g

µν
[
(∂ρφ)(∂ρφ) −m2

bφ
2] . (79)

Hence
Θ00 = 1

2

[
(∂0φ)2 + (∇φ)2 +m2

b

]
, Θ0i = ∂0φ∂iφ. (80)

The space-time translation operators are (the subscript “free” denotes the
case where no interaction is included in the Lagrangean)

P 0
free(t) =

∫
d3x 1

2

[
(∂0φ)2 + (∇φ)2 +m2

b

]
,

P i
free(t) =

∫
d3x (∂0φ)(∂iφ). (81)

The Lorentz generators are

M ij
free(t) =

∫
d3x

[
xi(∂0φ)(∂jφ) − xj(∂0φ)(∂iφ)

]
,

M0i
free(t) = x0P i

free −
∫

d3xxi
[
(∂0φ)2 + (∇φ)2 +m2

b

]
. (82)
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Free Fermion Poincaré Generators The free fermion stress tensor reads

Θµν =
i

2
[ψ̄γµ∂νψ − (∂νψ̄)γµψ] − gµνL. (83)

Hence (making use of the Dirac equation we see that the part gµνL does not
contribute to Θµν) we obtain for the momentum operators

Pµ =
∫

d3x
i

2
[
ψ̄γ0∂µψ − (∂µψ̄)γ0ψ

]
. (84)

For the construction of the Lorentz generators we make use of the covariant
splitting of orbital (O) and spin (S) angular momentum by Hilgevoord and
Wouthuysen [10]. One derives with the aid of the Dirac equation that

Mµν
free(t) = Lµν

free(t) + Sµν
free(t),

Lµν
free(t) =

∫
d3xM0µν

O =
∫

d3x (xµΘ0ν − xνΘ0µ),

Sµν
free(t) =

∫
d3xM0µν

S =
i

4m

∫
d3x

{
ψ̄σµν∂0ψ − (∂0ψ̄)σµνψ

}
. (85)

5.3 Front Form (LF)

In this section we repeat the calculation in the front form.

Free Boson Poincaré Generators The boson stress tensor is of course
the same as before. For the front-form components we find

Θ−+ = 1
2

[
(∂⊥φ)2 +m2

bφ
2] ,

Θ+µ = (∂+φ)(∂µφ), µ = 1, 2,+. (86)

The space-time translation operators are

P−
free(x

+) =
∫

d2x⊥dx− 1
2

[
(∂⊥φ)2 +m2

bφ
2] ,

Pµ
free(x

+) =
∫

d2x⊥dx−∂+φ∂µφ, µ = 1, 2,+. (87)

The Lorentz generators are

M+µ
free(x

+) = x+Pµ
free −

∫
d2x⊥dx−xµ(∂+φ)2, µ = 1, 2,−

M−r
free(x

+) =
∫

d2x⊥dx− [
x−(∂+φ)(∂rφ) − xr 1

2

[
(∂⊥φ)2 +m2

bφ
2]] , r = 1, 2

M12
free(x

+) =
∫

d2x⊥dx− [
x1(∂+φ)(∂2φ) − x2(∂+φ)(∂1φ)

]
. (88)
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Free Fermion Poincaré Generators The free fermion stress tensor also
remains unchanged. Hence we obtain for the momentum operators

Pµ(x+) =
∫

d2x⊥dx− i

2
[
ψ̄γ+∂µψ − (∂µψ̄)γ+ψ

]
. (89)

For the construction of the Lorentz generators we make again use of the
covariant splitting of orbital and spin angular momentum. One derives with
the aid of the Dirac equation that

Lµν(x+) =
∫

d2x⊥dx−M+µν
O =

∫
d2x⊥dx− (xρΘ+σ − xσΘ+ρ),

Sµν(x+) =
∫

d2x⊥dx−M+µν
S =

i

4m

∫
d2x⊥dx− [

ψ̄σµν∂+ψ − ∂+ψ̄σµνψ
]
.

(90)

Note that the spin and orbital angular momenta are separately conserved.
The kinematical LFD Lorentz generators now read

Ei
free = L+i

free + S+i
free,

K3
free = L−+

free + S−+
free,

J3
free = L12

free + S12
free. (91)

The dynamical generators are P− and

F i
free = L−i

free + S−i
free. (92)

5.4 Interacting and Non-interacting Generators on an Instant
and on the Light Front

In order to investigate which Poincaré generators will contain interactions,
we need to determine which Noether charges will contain interacting terms,
in the IFD as well as in the LFD.

Poincaré Generators on an Instant In the instant form, we find for the
translation operators

P 0
int = −

∫
d3xLint, P i

int = 0. (93)

For the Lorentz generators, we have

Mµν
int =

∫
d3x(g0µxν − g0νxµ)Lint (94)

from which it follows immediately that

Jk
int = 1

2εijkM
ij
int = 0, Ki

int = M0i
int =

∫
d3xxiLint. (95)
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So in a field theory without a derivative coupling the interacting operators
are

P 0, Ki, (96)

whereas the kinematical operators read

P , J . (97)

Poincaré Generators on a Light Front We now have for the translation
generators

P−
int = −

∫
d2x⊥dx−Lint, P+

int = P ⊥
int = 0. (98)

The expressions for the Lorentz generators is:

Mµν
int =

∫
d2x⊥dx−(g+µxν − g+νxµ)Lint, (99)

whence we derive

F j
int = M−j

int =
∫

d2x⊥dx−xjLint

K3
int = M−+

int =
∫

d2x⊥dx−x+Lint = −x+P−
int

Ej
int = M+j

int = 0. (100)

So in the case of no derivative coupling the interacting operators are

P−, F j (j = 1, 2). (101)

The kinematical operators read for x+ = 0

P+, P ⊥, Ej (j = 1, 2), K3. (102)

Summarizing, we conclude that in the case that no derivative coupling
is present in the interaction Lint, the dynamical generators contain the in-
teraction, whereas kinematical operators are interaction-free, both in IFD
and LFD . This is precisely the ’intuitive’ case, which was also discussed by
Dirac [5].

6 Light-Front Perturbation Theory

A sophisticated way to discuss Hamiltonian dynamics is to implement all
constraints present and write down the equations of motion for the dynamical
degrees of freedom. This method has been recommended by Dirac and already
applied to the electromagnetic field in [5]. For illustration we consider the free
Dirac equation

(iγµ∂µ −m)ψ = 0, (103)
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which can be rewritten in LF variables as

[i(γ+∂− + γ−∂+ − γ⊥∂⊥) −m]ψ = 0. (104)

If one defines projection operators and projections as follows

Λ± = 1
2γ

∓γ±, ψ± = Λ±ψ, (105)

then one finds that the two components ψ+ and ψ− are not independent but
are related through a constraint equation

ψ− =
1
i∂+ (iα⊥ · ∂⊥ + γ0m)ψ+. (106)

One considers ψ+ to be the dynamical part. By elimination of ψ− from the
Dirac equation one finds for ψ+ the dynamical equation

i∂−ψ+ =
−(∂⊥)2 +m2

i∂+ ψ+. (107)

The operator ∂− is differentiation with respect to LF time x+; the r.h.s. of
(107) contains differentiation with respect to the LF coordinates x−, x⊥ only.
It is the Hamiltonian operator for the free Dirac particle in LFD.

This simple example illustrates the role of constraints and makes it clear
that the Hamiltonian formulation may become quite involved. First the dy-
namical degrees of freedom must be identified and next the quantization must
be formulated in a consistent way. We shall not follow this path here, but
rather take a short cut, using the method of Kogut and Soper [15].

6.1 Connection of Covariant Amplitudes
to Light-Front Amplitudes

We consider a covariant theory to be defined by its Feynman diagrams. This
definition is at least consistent in perturbation theory. For nonperturbative
problems it may not be fully adequate. In Discretized Light-Cone Quantiza-
tion the Hamiltonian is written down in terms of tree-level amplitudes; the
kernel of the Lippmann-Schwinger equation is also written in terms of per-
turbative diagrams, so there are several cases where the use of diagrams in
perturbation theory may be sufficient.

For any covariant diagram, which is a tensor integrated over the free
momenta occurring in the loops, the associated LF-time ordered diagrams
are derived by first performing the integration over the minus-components
of the loop momenta. We shall later illustrate this procedure in two specific
cases. Before doing so we first discuss the LF propagator.
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Propagators Consider first the propagator of a scalar particle

D(x) =
∫

d4p
e−ipx

p2 −m2 + iε
=

∫
d4p

e−i(p−x++p+x−−p⊥x⊥)

2p+(p− − m2+p⊥2−iε
2p+ )

. (108)

If one performs the integration over p− first, one may choose to evaluate
the integral by closing the contour either in the upper or the lower half of
the complex p−-plane. At this point the fact that positive and negative LF
energies are kinematically disjoint is crucial. Positive energy is associated
with positive p+. If p+ > 0, then the pole of the integrand is located in the
lower halfplane. In order to interpret the propagator as a physical one we
impose the spectrum condition, i.e. all plus momenta must be positive.

+

complex p - plane

p   >0

p   <0+

Fig. 6. Contour in the complex p− plane

As p+ is a kinematical quantity, it is conserved, so for any state the
plus-components of the particles involved must be positive, as well as their
sum. Therefore, the vacuum, which has zero plus momentum, cannot create
states containing particles. There actually exists a loophole here: we cannot
exclude p+ = 0. Massless particles may have vanishing plus momentum and,
moreover, for ultrarelativistic particles their plus momenta may tend to zero.
We shall see later that such states are indeed occurring, but they may not
be too dangerous. A full discussion of these so called “zero modes” is outside
the scope of the present lectures.

Next we consider the free fermion propagator. The quantity p−
on is defined

as in (34).

i(�p+m)
p2 −m2 + iε

=
i(�pon +m)
p2 −m2 + iε

+
i(�p− �pon)
p2 −m2 + iε

(109)

=
i(�pon +m)
p2 −m2 + iε

+
i(p−− p−

on)γ+

(p−− p−
on)2p+ + iε

(110)

=
i
∑ |u >< u|
p2 −m2 + iε

(on − shell) (111)

=
i
∑ |u >< u|
p2 −m2 + iε

+
iγ+

2p+ (off − shell) (112)
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where
pon = (p−

on, p
+,p⊥) . (113)

The part γ+/2p+, when transformed to coordinate space, is proportional to
δ(x+), so it is called the instantaneous part of the fermion propagator. The
other part we will denote as the LF propagating part.

One may wonder what the corresponding formulae will be in the instant
form. In fact, a derivation along the same line as given in (112) will show
that upon integration of the covariant expression over the energy p0 first,
gives always two contributions. There are again instantaneous terms, but
they cancel exactly. This is the reason why one never considers them in “old
fashioned perturbation theory” in the instant form.

6.2 Regularization

The naive application of the Feynman rules to construct covariant diagrams
leads in many cases to infinities. These singularities must be regulated. In
the covariant calculations one may use several different methods, dimensional
regularization being the most popular one. This recipe, as most of the well-
known methods, relies very much on the manifest symmetry of the amplitudes
with respect to Lorentz tranformations. In LFD this symmetry is no longer
manifest and one needs methods that can handle time-ordered diagrams. One
of these methods is Pauli-Villars regularization (see, e.g., [11]). It works for
time-ordered as well as covariant amplitudes. We shall not discuss it here, as
it is well known.

A method that was specifically devised for LFD is the so called “minus
regularization”, introduced by Ligterink [19]. The main idea is to expand the
amplitude in terms of the independent invariants that can be built from the
external momenta, in a Taylor series. The terms with infinite coefficients are
subtracted, leaving a regulated amplitude. Of course, this method is already
known in the literature: it was introduced by Hepp and Zimmermann (see
[8,30,31]). The novelty of Ligterink’s method, later extended in [23], is the
way it is adapted to LFD amplitudes.

6.3 Minus Regularization

First consider a covariant amplitude, say M(p2
i , pi · pj), depending on four-

momenta p1, . . . pn. It is obtained by integration in the usual way

M(p2
i , pi · pj) =

∫
d4kM(p2

i , pi · pj ; k), (114)

where the integration runs over the independent loops, collectively denoted
by k. The result depends on the invariants p2

i and pi ·pj , not all of them being
necessarily independent. A subtraction point is chosen, say p2

i = 0, pi ·pj = 0.
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The amplitude is then written in terms of the parameter λ in the following
way

M(λp2
i , λpi · pj) =

∫
d4kM(λp2

i , λpi · pj ; k). (115)

The regularized amplitude is obtained by first differentiating M(λp2
i , λpi ·

pj ; k) as many times with respect to λ as is necessary to obtain a convergent
integral and, after performing the integrals over the momenta k1, . . . kl, in-
tegrate the result over λ as many times as the integrand was differentiated.
Schematically

M(λp2
i , λpi · pj) =

(∫ 1

0
dλ

)n ∫
d4k

∂n

∂λn
M(λp2

i , λpi · pj ; k). (116)

At this point it is important to realize that both differentiation and inte-
gration are linear operations, so if a covariant amplitude is split in the way
described above by differentiation over k− into LF time ordered diagrams, it
is easy to see that one can use the same procedure for the latter ones. The
only change that needs to be made is to accommodate the fact that the LF
time ordered diagrams cannot usually be expressed in terms of invariants. To
adapt the algorithm to that circumstance write for the LF diagram

MLF(λp−
i , p

+
i , λp⊥

i ) =
(∫ 1

0
dλ

)n ∫
d3k

∂n

∂λn
MLF(λp−

i , p
+
i , λp⊥

i ; k) . (117)

The integration variables are now k+ and k⊥.
The path from λ = 0 to λ = 1 in p space has the same begin and end

points as the path followed in the case of the covariant amplitude. The only
concern is to avoid singularities in the integrals. Note that we have left the
plus-components alone. Because of the form the scalar product takes in LFD,
a parameterization of the minus and perpendicular components suffices to
trace out a path in pi ·pj space. This has the advantage that the limits of the
k+ integrals, which are determined by the values of p+

i , remain unchanged.
This method was successfully applied to QED by Ligterink and Bakker

[19], where it could be shown to respect the Ward-Takahasi identities and
yield the covariant result. In [23] the same method was applied to the two-
and three-point functions in Yukawa theory. In the next section we shall give
a detailed example: the electromagnetic current of a scalar particle consist-
ing of either bosonic or fermionic constituents. There we shall encounter a
peculiarity of LFD: additional singularities occur, that are not present in the
associated covariant amplitude. We shall see that they can be regulated by
minus regularization too.

7 Triangle Diagram in Yukawa Theory

We consider the electromagnetic current matrix element of a composite sys-
tem composed of two charged fermions where the light-cone wavefunctions
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are known explicitly from perturbation theory. To construct the model, we
consider a 3+1 dimensional system represented by the Lagrangean:

L = ψ̄a(i(�∂ + iea �A) −ma)ψa + ψ̄b(i(�∂ + ieb �A) −mb)ψb

+
1
2
∂µφ∂

µφ− 1
2
m2φφ+ gφ(ψ̄aψb + ψ̄bψa). (118)

The covariant diagram is shown in Fig. 7. In general, there are two contri-
butions: the photon may couple to particle a or particle b. The corresponding
currents are denoted by Mµ

a and Mµ
b respectively. They are related by the

interchange a ↔ b in the formulas written in the rest of this section.

p

3 2

1

12

q

kk

p
k

Fig. 7. Covariant triangle diagram

The momenta are chosen as follows: the external hadrons have mass m
and momenta p1 and p2 resp., the photon has momentum q. The constituents
have masses ma and mb resp., their momenta are k1, k2, and k3 (see Fig. 7).
Then we have the kinematical relations

k2 = p1 + k1, k3 = p2 + k1, q = p2 − p1. (119)

The amplitude we are going to evaluate contains one integration. We take
momentum −k1 as the integration variable and denote it by k. Then the
momenta become

k1 = −k, k2 = p1 − k, k3 = p2 − k. (120)

7.1 Covariant Calculation

In this section we shall calculate the amplitude using the common covariant
techniques.

The covariant amplitude follows from the Feynman rules. It is

Mµ
a = −eag

2
∫

d4k

(2π)4
Tr[(�k1 +mb)(�k2 +ma)γµ(�k3 +ma)]

(k2
1 −m2

b + iε) (k2
2 −m2

a + iε) (k2
3 −m2

a + iε)
.

(121)
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Lorentz invariance requires the matrix element to be of the form

Mµ
a = −i ea Fa (pµ

1 + pµ
2 ), (122)

if the external legs with momenta p1 and p2 are on shell and p2
1 = p2

2 = m2.
The numerator of (121) is

Tµ = Tr[(�k1 +mb)(�k2 +ma)γµ(�k3 +ma)]
= 4[(m2

a − k2 · k3)k
µ
1 + (mamb + k1 · k3)k

µ
2 + (mamb + k1 · k2)k

µ
3 ],
(123)

or, in terms of the integration variable k and the external momenta p1,2

Tµ = 4(Akµ +B1p
µ
1 +B2p

µ
2 ). (124)

The factors A, B1, and B2 are easily found.
Following the usual procedure, Feynman parameterization and Wick ro-

tation, one ends up with two types of integrals. First, space-time integrals of
the form∫

dDk

(2π)D
f(k2),

∫
dDk

(2π)D
kµkνh(k2) =

1
D
gµν

∫
dDk

(2π)D
k2h(k2). (125)

Secondly, integrals over the Feynman parameters x and y, that occur because
we obtain, using Feynman’s trick, an integrand containing the factor

D(k;x, y) = x(k2
2 −m2

a) + y(k2
3 −m2

a) + (1 − x− y)(k2
1 −m2

b). (126)

Then we can express Mµ
a in terms of two integrals

I0 =
∫

dDk

(2π)D

1
D(k;x, y)3

, I2 =
∫

dDk

(2π)D

k2

D(k;x, y)3
. (127)

If the relations (120) are substituted one finds for D

D(k;x, y) = k2 −M2(x, y). (128)

After Wick rotation one obtains Euclidean integrals. The standard rules of
dimensional regularization give in D dimensions

IE
0 =

Γ (3 −D/2)
(4π)D/2Γ (3)

MD−6, IE
2 =

D

2
Γ (2 −D/2)
(4π)D/2Γ (3)

MD−4. (129)

Clearly there occurs a singularity in I2 in 3+1 dimensions. It can be regular-
ized with the method we just described.

The quantity M2 can be written as

M2 = [(x+ y)(x+ y − 1)m2 + xyQ2] + [(1 − x− y)m2
b + (x+ y)m2

a]
≡ M2

e +M2
i (130)
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with Q2 = −q2 = −(p2 −p1)2. The regularization now consists in multiplying
m2 = p2

1 = p2
2 and Q2 with λ and perform the differentiation and integration

with respect to this parameter. The result is

IE reg
2 =

∫ 1

0
dλ

∫
E

d4k

(2π)2
∂

∂λ

k2

(k2 + λM2
e +M2

i )3
. (131)

The differentiation and integration over λ are trivial. They give

IE reg
2 = −3M2

e

∫ 1

0
dλ

∫
E

d4k

(2π)2
k2

(k2 + λM2
e +M2

i )4

=
−M2

e

(4π)2

∫ 1

0
dλ

1
λM2

e +M2
i

=
−1

(4π)2
log

(
M2

e +M2
i

M2
i

)
. (132)

It is amusing that these formulae coincide exactly with what one would obtain
using dimensional regularization. This need not be so, as two different forms
of regularization may lead to results that differ by a finite constant.

In 1+1 dimensions the integrals are

IE
0 =

1
8π

1
M4(x, y;Q2)

IE
2 =

1
8π

1
M2(x, y;Q2)

(133)

which are both finite.
The final results are given by integration over x and y.

7.2 Construction of the Current in LFD

In order to derive the LF time dependent amplitudes, we take the covari-
ant expression and integrate over k−. As the numerator contains for µ = −
the integration variable too, for a proper identification of the poles and the
residues, one needs to separate the Feynman propagators into the LF prop-
agating part and the instantaneous part, as described in Sect. 6. After this
split has been performed, the poles and residues can be identified properly.

To facilitate the discussion we introduce the notations

Λi =�ki on +mi, Γi = (k−
i − k−

i on)γ+, Ω =�ki +mi = Λi + Γi. (134)

Then the product Ω1Ω2γ
µΩ3, occurring in Tµ can be expanded into eight

terms

Λ1Λ2γ
µΛ3 (a) Γ1Λ2γ

µΛ3 (b) Λ1Γ2γ
µΛ3 (c)

Λ1Λ2γ
µΓ3 (d) Γ1Γ2γ

µΛ3 (e) Γ1Λ2γ
µΓ3 (f)

Λ1Γ2γ
µΓ3 (g) Γ1Γ2γ

µΓ3 (h) (135)
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a c

e

b

fd

g h

Fig. 8. Skeleton graphs (a) – (h) for the fermion triangle. A tag on the line indicates
an instantaneous propagator.

These terms are drawn in Fig. 8. In this figure the lines with arrows symbolize
the LF propagating parts and those with tags the instantaneous parts. Here
we mention that a calculation of the same diagram, but with the spinor
constituents replaced by scalar bosons, would be much simplified. Everywhere
the trace Tµ must be replaced by pµ

1 + pµ
2 − 2kµ.Then the integrands are free

of longitudinal singularities, i.e. singularities of the form 1/(k+ − p+
i ).

After the split described above is done, the poles and residues can be
properly determined. We find the following poles

k−
1 =

k⊥2 +m2
b − iε

2k+ ≡ H1 − iε

2k+ ,

k−
2 = p−

1 − (p⊥
1 − k⊥)2 +m2

a − iε

2(p+
1 − k+)

≡ H2 +
iε

2(p+
1 − k+)

,

k−
3 = p−

2 − (p⊥
2 − k⊥)2 +m2

a − iε

2(p+
2 − k+)

≡ H3 +
iε

2(p+
2 − k+)

. (136)

The denominator in the expression for the covariant amplitude can be written
as

8k+(p+
1 − k+)(p+

2 − k+)(k− −H1)(k− −H2)(k− −H3). (137)

The factor in front of the three poles is the phase-space factor

Φ = 8k+(p+
1 − k+)(p+

2 − k+). (138)

The positions of these poles depend on the values of p+
1 and p+

2 . Without
loss of generality we shall consider the case q+ = p+

2 − p+
1 > 0 only. Then we
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find the following domains

(I) k+ < 0 Imk−
1 > 0, Imk−

2 > 0, Imk−
3 > 0;

(II) 0 < k+ < p+
1 Imk−

1 < 0, Imk−
2 > 0, Imk−

3 > 0;
(III) p+

1 < k+ < p+
2 Imk−

1 < 0, Imk−
2 < 0, Imk−

3 > 0;
(IV) k+ > p+

2 Imk−
1 < 0, Imk−

2 < 0, Imk−
3 < 0. (139)

So, only in the domains (II) and (III) there are poles at either side of the real
k−-axis; they contribute to the amplitude.

Skeleton Graph (a) Three poles: k−
1 , k−

2 , and k−
3 .

The two domains (II) and (III) contribute to the amplitude. In domain (II)
we take the pole k−

1 = H1 − iδ and find

Mµ
a(II.a) =

−eag
2

(2π)4

∫
d2k⊥

1

∫ p+
1

0
dk+

1
−2πi
Φ

Tr[Λ1Λ2γ
µΛ3]

(H1 −H2)(H1 −H3)
. (140)

The energy denominators are

D1 = p−
1 − k⊥2 +m2

b

2k+ − (p⊥
1 − k⊥)2 +m2

a

2(p+
1 − k+)

(141)

and

D2 = p−
2 − k⊥2 +m2

b

2k+ − (p⊥
2 − k⊥)2 +m2

a

2(p+
2 − k+)

(142)

Then straightforward algebra gives H2 −H1 = D1 and H3 −H1 = D2, so we
can write

Mµ
a(II.a) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
1

0
dk+ 1

Φ

Tr[Λ1Λ2γ
µΛ3]

D2D1
. (143)

In domain (III) we take the pole k− = k−
3 = −H3 + iδ. We find for the

amplitude

Mµ
a(III.a) =

−eag
2

(2π)4

∫
d2k⊥

1

∫ p+
2

p+
1

dk+ −2πi
Φ′

Tr[Λ1Λ2γ
µΛ3]

(k−
3 − k−

1 )(k−
3 − k−

2 )
, (144)

where Φ′ is given by

Φ′ = 2k+2(p+
2 − k+)2(k+ − p+

1 ). (145)

The energy denominators are now

D′
1 = p−

2 − p−
1 − (k⊥ − p⊥

1 )2 +m2
a

2(k+ − p+
1 )

− (p⊥
2 − k⊥)2 +m2

a

2(p+
2 − k+)

(146)
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and D2 is not changed. The domain of integration for k+ is now p+
1 < k+ <

p+
2 . Again we find in terms of energy denominators

Mµ
a(III.a) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
2

p+
1

dk+ 1
Φ′

Tr[Λ1Λ2γ
µΛ3]

D2D′
1

. (147)

Skeleton Graph (b) Two poles: k−
2 and k−

3 . The factor k−
1 − k−

1 on in
the denominator is canceled by the same factor in the numerator. The two
remaining poles in domain (II) have positive imaginary parts. In domain
(III) the imaginary parts of the two poles have different signs. So only one
time-ordered diagram remains here. The corresponding amplitude is

Mµ
a(III.b) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
2

p+
1

dk+ 1
Φ′

Tr[γ+Λ2γ
µΛ3]

D′
1

. (148)

Skeleton Graph (c) Two poles: k−
1 and k−

3 . Here it is the factor k−
2 −k−

2 on
that cancels. The remaining poles are k−

1 and k−
3 , which lie at different sides of

the real axis in both the domains (II) and (III). The corresponding amplitudes
are

Mµ
a(II.c) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
1

0
dk+ 1

Φ

Tr[Λ1γ
+γµΛ3]
D2

(149)

and

Mµ
a(III.c) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
2

p+
1

dk+ 1
Φ′

Tr[Λ1γ
+γµΛ3]
D2

. (150)

Skeleton Graph (d) Two poles: k−
1 and k−

2 . Now the factor k−
3 − k−

3 on
cancels. Only in domain (II) there are two poles at different sides of the real
axis. The amplitude is

Mµ
a(II.d) =

ieag
2

(2π)3

∫
d2k⊥

∫ p+
1

0
dk+ 1

Φ

Tr[Λ1Λ2γ
µγ+]

D1
. (151)

Skeleton Graph (g) One pole: k−
1 . Only one pole remains: k−

1 . So one can
close the contour in the half-plane not containing this pole. Consequently,
this graph does not contribute.

We summarize the situation graphically in Fig. 9. These diagrams contain
separately longitudinal singularities. They appear because the LF propagator
has �kon in the numerator, which has a piece k−

on = (k ⊥ 2 +m2
i )γ

+/2k+
i . The

1/k+ singularity that occurs here has exactly the same form as the one coming
from the instantaneous part. So, after we have correctly identified the poles
and residues in the k−-integration, the parts with identical denominators and
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defined in the same domain, can be added. This procedure produces the so
called “blinks” [20]. The blink construction removes the 1/k+-singularities
connected to the internal point k+ = p+

1 . Of the other two, k+ = 0, p+
2 , the

first one is harmless, but the second one remains.
In order to keep matters as simple as possible, we shall continue our

discussion for the 1+1 dimensional case. The diagrams in the first column at
the r.h.s. of Fig. 9 can be added. This produces blinks for the lines k2 and
k3. The result is called the valence amplitude, denoted by Mµ(val). Adding
the other diagrams produces an amplitude with blinks on lines k1 and k2. It
is called the nonvalence amplitude Mµ(nv).

Now we are ready to calculate the good and the terrible current. (The
terminology originates from the “infinite momentum” interpretation of LFD.
It is explained in [16].)

The peculiar behaviour of the amplitude is best seen in 1+1 dimensions.
The reason is that in 3+1 dimensions the covariant amplitude is divergent, so
regularization is needed. In lower dimensions, however, one expects the am-
plitude to be regular. In LFD this turns out not to be the case. There occurs
an additional singularity in the integration over k+. As it is also present in
the 3+1 dimensional case, but is removed there by minus regularization, this
peculiar phenomenon can best be seen in 1+1 dimensions. Therefore we give
our results for that case only.

Good Current M+ The trace for the valence contribution is:

T+(val) = 4
[
(mamb +m2

b)(p
+
1 + p+

2 ) − (ma +mB)2k+ −m2
b

p+
1 p

+
2

k+

]
.

(152)

= +c

d

= +a

=b

=

Fig. 9. LF-time ordered diagrams, q+ > 0. The vertical lines denote energy denom-
inators.
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So we can write for the amplitude in 1+1 dimensions

Mµ
a(val) =

ieag
2

2π

∫ p+
1

0
dk+ 1

Φ

T+(val)
D2D1

. (153)

The end-point singularity k+ = 0 is not real, as it cancels in the numerator
and the denominator.

In domain (III) the trace is

T+(nv) = 4
[
(mamb +m2

a)p+
1 +mambp

+
2

− 2(mamb +m2
a)k+ − 2p−

2 (k+ − p+
1 )(k+ − p+

2 )
]
. (154)

The amplitude is

Mµ
a(nv) =

ieag
2

2π

∫ p+
2

p+
1

dk+ 1
Φ′
T+(nv)
D2D1

. (155)

Terrible Current M− As the denominators and the phase-space factors
do not change, we give the traces only.

For the valence part we find

T−(val) = 4[(mamb +m2
b)(p

−
1 + p−

2 ) − (ma +mb)2k− − 2k+p−
1 p

−
2 ]. (156)

The non-valence part is

T−(nv) = 4
[
−m2

ap
−
2 +mamb(p−

1 − p−
2 ) + (m2

a + 2mamb)
m2

a

2(p+
2 − k+)

−2k+(p−
1 − p−

2 )
m2

a

2(p+
2 − k+)

− 2k+
(

m2
a

2(p+
2 − k+)

)2
]
. (157)

In the next subsection we give the explicit formulas.

Explicit Formulae Here we gather the explicit expressions.

M+
a (val) =

ieag
2

2π

∫ p+
1

0
dk+ 1

8k+(p+
1 − k+)(p+

2 − k+)

× 4[(mamb +m2
b)(p

+
1 + p+

2 ) − (ma +mb)2k+ −m2
b

p+
1 p+

2
k+ ](

p−
2 − m2

b

2k+ − m2
a

2(p+
2 −k+)

) (
p−
1 − m2

b

2k+ − m2
a

2(p+
1 −k+)

)

=
−ieag

2

2π

∫ p+
1

0
dk+2[(mamb +m2

b)k
+ 2

−(mamb +m2
b)(p

+
1 + p+

2 )k+ +m2
bp

+
1 p

+
2 ]

× 1
(2p−

2 k
+(p+

2 − k+) −m2
b(p

+
2 − k+) −m2

ak
+)

× 1
(2p−

1 k
+(p+

1 − k+) −m2
b(p

+
2 − k+) −m2

ak
+)

, (158)
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M+
a (nv) =

ieag
2

2π

∫ p+
2

p+
1

dk+ 1
8k+(k+ − p+

1 )(p+
2 − k+)

× 4[mamb(p+
1 + p+

2 ) − (2mamb +m2
a)k+

−(m2 −m2
a − 2k+p−

2 )(p+
1 − k+)]

× 1(
p−
2 − m2

b

2k+ − m2
a

2(p+
2 −k+)

) (
p−
2 − p−

1 − m2
a

2(k+−p+
1 )

− m2
a

2(p+
2 −k+)

)

=
ieag

2

2π

∫ p+
2

p+
1

dk+2[mamb(p+
1 + p+

2 ) − (2mamb +m2
a)k+

−(m2 −m2
a − 2k+p−

2 )(p+
1 − k+)](p+

2 − k+)

× 1
(2p−

2 k
+(p+

2 − k+) −m2
b(p

+
2 − k+) −m2

ak
+)

× 1
(2(p−

2 − p−
1 )(k+ − p+

1 )(p+
2 − k+) −m2

a(p+
2 − p+

1 ))
. (159)

Terrible Current

M−
a (val) =

ieag
2

2π

∫ p+
1

0
dk+2k+

×
[
(mamb +m2

b)(p
−
1 + p−

2 ) − (ma +mb)
m2

b

2k+ − 2k+p−
1 p

−
2

]

× 1(
2p−

2 k
+(p+

2 − k+) −m2
b(p

+
2 − k+) −m2

ak
+
)

× 1(
2p−

1 k
+(p+

1 − k+) −m2
b(p

+
1 − k+) −m2

ak
+
) , (160)

M−
a (nv) =

ieag
2

2π

∫ p+
2

p+
1

dk+ [
2(mambp

−
1 − (m2

a +mamb)p−
2 )(p+

2 − k+)

+(m2
a + 2mamb − 2k+(p−

1 − p−
2 ))m2

a − k+m4
a

p+
2 − k+

]

× 1
(2p−

2 k
+(p+

2 − k+) −m2
b(p

+
2 − k+) −m2

ak
+)

× 1
(2(p−

2 − p−
1 )(k+ − p+

1 )(p+
2 − k+) −m2

a(p+
2 − p+

1 ))
. (161)

This amplitude contains a singularity at k+ = p+
2 . It has the form

M−
a (nv) =

ieag
2

2π

∫ p+
2

p+
1

dk+
(

− 1
p+
2 − p+

1

1
p+
2 − k+

)
. (162)
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As this singularity does not depend on p−
i , i = 1, 2, it can be removed by

minus-regularization. If we scale k+ as follows: k+ = (1 + x)p+
1 and write

p+
2 = (1 + y)p+

1 , then we find it to be of the form

−1
p+
2 − p+

1

∫ y

0
dx

1
y − x

. (163)

So the singularity does not depend on any physical parameter: it is a pure
(infinite) number. We shall simply subtract it and see whether this leads to
the desired covariant result.

7.3 Numerical Results

In order to see the connection between the spin of the constituents and the
occurrence of the longitudinal singularity at k+ = p+

2 we considered spin-1/2
constituents as well as spin-0 constituents and found dramatic differences be-
tween the two cases. Comparing with the covariant Feynman calculations, we
notice that the common belief of equivalence between the manifestly covari-
ant calculation and the LF calculation linked by the LF energy integration of
the Feynman amplitude is not always realized. The minus component of the
LF current generated by the fermion loop has a persistent end-point singu-
larity that must be removed to assure covariance and current conservation. A
similar singularity was observed in the calculation of the fermion selfenergy
in [22]. The plus component of the LF current, however, is immune to this
disorder and provides a form factor identical to the one obtained doing the
covariant Feynman calculation. This phenomenon is also associated with the
spin-effect of the constituents because the calculation with scalar (spin-0)
constituents does not have the same symptom.

Decomposing the LF amplitude into the valence and nonvalence parts, it
is interesting to note that the end-point singularity exists only in the non-
valence vertex contribution. We have numerically estimated the importance
of the nonvalence vertices in both cases. In all cases, our results show that
if the meson is weakly bound then the contributions from the valence and
the nonvalence vertices to the plus current are separately almost the same
as those for the minus current. Of course, their sums add up to the same
number in both the plus and minus cases.

8 Four Variations on a Theme in φ3 Theory

The purpose of this chapter is to illustrate in the simplest possible example
the different techniques.

Consider the simplest diagram with one loop in φ3 theory. The particle
mass is m, the coupling constant is g. The Feynman rules then give

A(p) =
g2

2(2π)4

∫
d4k

1
(k2 −m2 + iε)((k − p)2 −m2 + iε)

. (164)
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Fig. 10. Form factor of scalar meson with spinor constituents. Constituent masses
are ma = mb = 1.00. Meson masses (a) m = 1.00, (b) m = 1.90, (c) m = 1.99. Fat
lines correspond to the plus-current, thin lines to the minus-current. The solid line is
the full form factor. It is the sum of the valence and the non-valence contributions.
The separate contributions differ but the sums coincide. The form factor determined
from the covariant amplitude is identical with the full form factor determined in
the LF calculation.

In D dimensions we deal with the integral

ID(p2) =
∫

dDk
1

(k2 −m2 + iε)((k − p)2 −m2 + iε)
. (165)
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Fig. 11. Form factor of scalar meson with boson constituents. Constituent masses
are ma = mb = 1.00. Meson masses (a) m = 1.00, (b) m = 1.90, (c) m = 1.99. The
lines have the same meaning as in Fig. 10

p - k
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k

Fig. 12. Boson loop in φ3 theory

8.1 Covariant Calculation
Upon using Feynman’s formula

1
AB

=
∫ 1

0
dx

1
(xA+ (1 − x)B)2

(166)
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we obtain

ID(p2) =
∫ 1

0
dx

∫
dDk

1
((1 − x)k2 + x(k − p)2 −m2 + iε)2

. (167)

We make the substitution k − xp → k, then we find

ID(p2) =
∫ 1

0
dx

∫
dDk

1
(k2 + x(1 − x)p2 −m2 + iε)2

. (168)

We define the quantity M(x; p2):

M(x; p2) = m2 − x(1 − x)p2. (169)

The function M(x; p2) vanishes for x = x± = 1/2 ± √
1/4 −m2/p2. These

zeros are complex for 0 < p2 < 4m2. Outside that p2-interval M(x; p2) is
zero, inside the integration interval x ∈ [0, 1] only for p2 ≥ 4m2. We shall
discuss the case 0 < p2 < 4m2 only. Then the integral (168) becomes

ID(p2) =
∫ 1

0
dx

∫
dDk

1
(k2 −M(x; p2) + iε)2

. (170)

We write for k2: k2 = (k0)2 − k2, where k is a D − 1-dimensional vector.
Therefore, the singularities of the integrand in (170) are located at

k0 = (±
√

k2 +M(x; p2) − iε′)). (171)

In case the integrand converges, we are allowed to perform a Wick-rotation.
If D = 2, this is the case.

1+1-Dimensional Case, D = 2 We write for (k0, k1) → (iy1, y2). Then
dDk = idy1dy2. So we find

I2(p2) = i

∫ 1

0
dx

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

1
(y2

1 + y2
2 +M(x; p2) − iε)2

. (172)

Because M(x; p2) > 0 for p2 > 0, 0 ≤ x ≤ 1, this integral is regular. Upon
using plane polar coordinates, we find the result

I2(p2) = i

∫ 1

0
dx

∫ 2π

0
dφ

∫ ∞

0
dr r

1
(r2 +M)2

= iπ

∫ 1

0
dx

∫ ∞

0
du

1
(u+M)2

= iπ

∫ 1

0
dx

1
m2 − x(1 − x)p2

=
4πi√

p2(4m2 − p2)
arctan

√
p2

4m2 − p2 . (173)
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3+1-Dimensional Case, D = 4 In 3+1-dimensions divergences occur. In
order to regularize them, we use dimensional regularization (see [21]). We take
the dimension D to D = 4 − 2ε and the limit ε → 0 is performed eventually.
The correct dimensions are maintained if one multiplies the coupling constant
with µ2−D/2, where µ has the dimension of a momentum. Consequently we
calculate the integral:

ID(p2) = µ4−D

∫ 1

0
dx

∫
dDk

1
(k2 −M + iε)2

. (174)

Upon Wick rotation we obtain

ID(p2) = iµ4−D

∫ 1

0
dx

∫
dDy

1
(y2 +M)2

. (175)

Dimensional Regularization Using the formulae of Appendix A, we find

ID(p2) = iµ4−DπD/2Γ (2 −D/2)
∫ 1

0
dxMD/2−2. (176)

As 2 −D/2 = ε, we find for the limit ε → 0 of this expression

I4(p2) = i

∫ 1

0
dx

(
µ2

M

)ε

π2−εΓ (ε). (177)

The limit ε → 0 gives

I4(p2) = iπ2
∫ 1

0
dx

(
1 + ε log

(
µ2

M

)) (
1
ε

− γ + O(ε)
)
. (178)

If we substitute the expression for M in this equation, we find

I4(p2) = iπ2
(

1
ε

− γ + log π
)

− iπ2
∫ 1

0
dx log

(
m2 − x(1 − x)p2

µ2

)
. (179)

We write the final formula for two renormalizations:
on-shell renormalization, Iren

4 (m2) = 0:

Iren
4 (p2) = I4(p2) − I4(m2) = −iπ2

∫ 1

0
dx log

(
m2 − x(1 − x)p2

m2(1 − x(1 − x))

)
. (180)

and
p2 = 0 renormalization, Iren

4 (0) = 0:

Iren
4 (p2) = I4(p2) − I4(0) = −iπ2

∫ 1

0
dx log

(
m2 − x(1 − x)p2

m2

)
. (181)

In both cases we have to keep in mind that the argument of the logarithm is
positive for p2 < 4m2, which means that I4(p2) is real below the two-body
threshold.
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8.2 Instant-Form Calculation

Our point of departure is (165). We write for the integration element dDk =
dk0dD−1k. Then it is natural to define for a momentum q: ω(q) =

√
q2 +m2.

The factors in the denominator in (165) becomes:

k2 −m2 + iε = (k0)2 −ω2(k) + iε = (k0 −ω(k) + iε′)(k0 +ω(k) − iε′) (182)

and

(k − p)2 − m2 + iε = (k0 − p0)2 − ω2(k − p) + iε

= [(k0 − (p0 + ω(k − p) − iε′)][(k0 − (p0 − ω(k − p) + iε′)].
(183)

So, there are two poles on either side of the real k0-axis. For D = 2 the
integral converges and the circle at infinity does not contribute. Therefore,
we now consider D = 2 and calculate

∫
dk0 by contour integration.

1+1-Dimensional Case In order to expose the symmetry between the two
legs of the bubble we change the variables to k = 1

2 (p+q), so p−k = 1
2 (p−q)

and dDk = 2−DdDq. Then we obtain

I2(p2) =
∫

d2q

4
1

(p+q
2 )2 −m2 + iε

1
(p−q

2 )2 −m2 + iε

=
∫

d2q

4
4

(p+ q)2 − 4m2 + iε

4
(p− q)2 − 4m2 + iε

(184)

There are four poles, P1, . . . , P4 with residues R1, . . . , R4

P1 : q0 = p0 − ω− + iε; P2 : q0 = p0 + ω− − iε;
P3 : q0 = −p0 + ω+ − iε; P4 : q0 = −p0 − ω+ + iε. (185)

The quantities ω± are defined as ω± =
√

(p ± q)2 + 4m2. We will close the
contour in the upper q0-plane, so we need the residues R1 and R4:

R1 =
−4

2ω−(2p0 − ω− + ω+)(2p0 − ω− − ω+)
,

R4 =
−4

2ω+(2p0 − ω− + ω+)(−2p0 − ω− − ω+)
. (186)

In order to facilitate the interpretation, we reshuffle R1 and R4 as follows:

1
2p0 − ω− + ω+

1
2p0 − ω− − ω+ + iε

=

1
2ω+

[
1

2p0 − ω− − ω+ + iε
− 1

2p0 − ω− + ω+

]
,

(187)
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1
2p0 − ω− + ω+

1
2p0 + ω− + ω+ − iε

=

−1
2ω−

[
1

2p0 + ω− + ω+ − iε
− 1

2p0 − ω− + ω+

]
.

(188)
Consequently, the sum R1 +R4 can be written as

R1 +R4 =
1
ω−

1
ω+

[ −1
2p0 − ω− − ω+ + iε

+
−1

−2p0 − ω− − ω+ + iε

]
. (189)

The complex denominators can be interpreted as energy denominators of
time-ordered diagrams.

I+
2 (p2) = 2πi

∫ ∞

−∞
dq

1
ω−ω+

−1
2p0 − ω− − ω+ + iε

,

I−
2 (p2) = 2πi

∫ ∞

−∞
dq

1
ω−ω+

−1
−2p0 − ω− − ω+ + iε

. (190)

Because we know already that I2 is a function of the variable p2, we may

+

ω−

p p 0

ω

0

0

ω−

p0

ω+

p

Fig. 13. Time ordered diagrams: I+
2 (left) and I−

2 (right).

calculate it for some special case. We choose p = (
√
s, 0). Then ω+ = ω− =√

q 2 + 4m2, p0 =
√
s. Upon using the scaling p0 =

√
s = mz, |q| = mx we

find

I±
2 (p2) = ∓ iπ

m2

∫ ∞

−∞
dx

1
x2 + 4

1
z ∓ √

x2 + 4

=
iπ

m2

{
∓ π

2
√
z

+
π√

z(4 − z)

[
±1 +

2
π

arctan
√

z

4 − z

] }
,(191)

hence

I2(p2) = I+
2 (p2) + I−

2 (p2) =
4πi√

s(4m2 − s)
arctan

√
s

4m2 − s
. (192)



44 Bernard L.G. Bakker

Infinite-Momentum Frame Now consider the amplitude in the infinite
momentum frame (IMF). This is the limit where |p| is taken to infinity. It is
clear that in this limit I−

2 vanishes, as all denominators in its integrand are
of order |p| for all |q|. For I+

2 this is not so, ω+ and ω− are of order |p|, but
2p0 − ω+ − ω− is not.

Before taking the limit |p| → ∞, we change the integration variable from
|q| to x ≡ |q|/|p|. In this way we ensure that the limits |p| → ∞ and |q| →
±∞ (the boundaries of the integration region) are taken properly. We find:

ω±(p, q;m) =
√

(p ± q)2 + 4m2 = |p|
√

(1 ± x)2 + 4m2/p 2

|p|→∞∼ |p||1 ± x| +
2m

|1 ± x||p| , (193)

and
p0(p2 = s) =

√
p 2 + s

|p|→∞∼ |p| +
s

2|p| . (194)

The absolute value signs are essential. We see this when we examine the
energy difference

2p0−ω+−ω−
|p|→∞∼ 2|p|+ s

|p| −|p||1+x|− 2m2

|1 + x||p| −|p||1−x|− 2m2

|1 − x||p| .
(195)

When x > 1 or x < −1, the energy difference is of order |p|. So, in the limit
|p| → ∞ the contributions from the x-integration outside [−1, 1] vanish.
Consequently, we write in the limit |p| → ∞

I2(p2 = s)
|p|→∞∼ −2πi

∫ 1

−1
dx

|p|
|p| 2(1 + x)(1 − x)

1
s

|p| − 2m2

(1+x)|p| − 2m2

(1−x)|p|

= −2πi
∫ 1

−1
dx

1
s(1 + x)(1 − x) − 4m2

=
4πi√

p2(4m2 − p2)
arctan

√
p2

4m2 − p2 . (196)

The “success” of the IMF limit is somewhat misleading. It leans heavily on
the fact that the spin-0 propagator does not contain p− in the numerator. If
spin-1/2 constituents were considered, the instantaneous terms would spoil
the naive IMF limit.

3+1-Dimensional Case In the case of three spatial dimensions we obtain

I4(p2) =
∫

d4q

24

1
(p+q

2 )2 −m2 + iε

1
(p−q

2 )2 −m2 + iε

=
∫

d4q

24

4
(p+ q)2 − 4m2 + iε

4
(p− q)2 − 4m2 + iε

. (197)
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There are again four poles, P1, . . . , P4, corresponding to the residues R1, ··
··, R4, that are treated in the same way as before. The final integrals for the
time-ordered diagrams become:

I+
4 (p2) = 2πi

∫
d3q

1
2ω−2ω+

−1
2p0 − ω− − ω+ + iε

,

I−
4 (p2) = 2πi

∫
d3q

1
2ω−2ω+

−1
−2p0 − ω− − ω+ + iε

. (198)

We calculate these integrals for the case p = 0. Then ω+ = ω− =√
q 2 + 4m2, (p0)2 = p2;

I4(p2) = I+
4 + I−

4 = 2πi
∫

d3q
1

4
√
q2 + 4m2

1
q2 + 4m2 − p2 . (199)

Here q = |q|. This integral is clearly logarithmically divergent. To see most
clearly the divergence we write it as

I4(p2) = 2πiΩ3

∫ ∞

0
dq

1

4
√
q2 + 4m2

q2

q2 + 4m2 − p2 . (200)

The fraction q2/(q2+4m2−p2) can be split into two parts as follows: q2/(q2+
4m2 − p2) = 1 − (4m2 − p2)/(q2 + 4m2 − p2). The first term leads to a
divergent integral that has a pole in dimension space at dimension D = 3
and is independent of p. So we can regularize the integral by splitting off this
part. The regularized amplitude becomes

Ireg
4 (p2) = −i8π2(4m2 − p2)

∫ ∞

0
dq

1

4
√
q2 + 4m2(q2 + 4m2 − p2)

. (201)

The integral is known in closed form, and we get:

Ireg
4 (p2) = −i2π2

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2 . (202)

The renormalized integral is then:
on-shell renormalization, p2 = m2

Iren
4 (p2) = i2π2(p2 −m2)

∫ ∞

0
dq

q2√
q2 + 4m2(q2 + 3m2)(q2 + 4m2 − p2)

= i2π2

[
π

2
√

3
−

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2

]
; (203)

on-shell renormalization, p2 = 0

Iren
4 (p2) = i2π2p2

∫ ∞

0
dq

q2√
q2 + 4m2(q2 + 4m2)(q2 + 4m2 − p2)

= i2π2

[
1 −

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2

]
. (204)
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Infinite-Momentum Limit Again, we consider the infinite momentum
limit. Let the restframe momentum be pµ = (

√
s,0) and boost in the z-

direction with the boost parameter χ, i.e., pµ → (coshχ
√
s,0⊥, sinhχ

√
s).

The infinite momentum limit amounts to χ → ∞. As we are working in
the instant form, we will translate this limit into p3 → ∞. Then we have
p0 = p3 cothχ. In the same way as in the 1+1-dimensional case we can prove
that only I+ survives in the limit p3 → ∞. The energies ω± and the energy
denominator 2p0 − ω+ − ω− are

ω± = p3|1 ± x| +
q ⊥ 2 + 4m2

p3|1 ± x| + O((p3)2), (205)

2p0−ω+−ω− = 2p3 cothχ−p3|1+x|− q ⊥ 2 + 4m2

2p3|1 + x| −p3|1−x|− q ⊥ 2 + 4m2

2p3|1 − x| .
(206)

The variable q3 scales with p3 as q3 = p3x, −1 ≤ x ≤ 1. Therefore we find

I+
4 (p2) = i

π

2

∫ 1

−1
dx

∫
d2q⊥ 1

1 − x2

−1

2(p3)2(cothχ− 1) − q ⊥ 2+4m2

1−x2

= i
π

2

∫ 1

−1
dx

∫
d2q⊥ 1

q ⊥ 2 + 4m2 − p2(1 − x2)
, (207)

where we used that in the limit χ → ∞ we get

2 (p3)2 (cothχ− 1) ∼ 2
s

4
e2χ 2e−2χ = s = p2. (208)

Of course, this amplitude is also logarithmically divergent. The renormalized
amplitudes are obtained by subtracting the value at a chosen renormalization
point. Thus we get for the two cases considered before:
on-shell renormalization p2 = m2

Iren
4 (p2) = i

π

2

∫ 1

−1
dx

∫
d2q⊥

×
[

1
q⊥ 2 + 4m2 − p2(1 − x2)

− 1
q⊥ 2 + 4m2 −m2(1 − x2)

]

= i
π2

2

∫ 1

−1
dx log

(
z + 4m2 − p2(1 − x2)
z + 4m2 −m2(1 − x2)

)∞

z=0
, (using z = q⊥ 2)

= −iπ
2

2

∫ 1

−1
dx log

(
4m2 − p2(1 − x2)

m2(3 + x2)

)

= i2π2

[
π

2
√

3
−

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2

]
; (209)
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p2 = 0 renormalization

Iren
4 (p2) = −iπ

2

2

∫ 1

−1
dx log

(
4m2 − p2(1 − x2)

4m2

)

= i2π2

[
1 −

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2

]
. (210)

We have recovered, as we should, the results of the previous section, (180,
181), if (252) is taken into account, as well as (203, 204).

8.3 Calculation in Light-Front Coordinates

Before we carry out the front form calculation proper, i.e., compute the in-
tegral I2(p2) in two steps, we first do the covariant case in light-front coor-
dinates. Those are defined as follows:

k+ =
k0 + k3

√
2

, k− =
k0 − k3

√
2

, k1, k2. (211)

The scalar product is given by

k2 = 2k+k− − (k⊥)2, (212)

and the integration measure is

d4k = dk+dk−d2k⊥. (213)

In the 1+1-dimensions the perpendicular degrees of freedom are dropped.
We use the original convention for the momenta: k and p− k in the loop.

Then we find

I2(p2) =
∫

d2k
1

k2 −m2 + iε

1
(p− k)2 −m2 + iε

=
∫ 1

0
dx

∫
d2k

1
(k2 −M(x; p2) + iε)2

=
∫ 1

0
dx

∫ ∞

−∞
dk+

∫ ∞

−∞
dk− 1

(2k+k− −M(x; p2) + iε)2
. (214)

Naively we have the following situation. For k+ �= 0 the integral over k− is
convergent and the integral over a semi-circle in the upper half of the complex
k−-plane vanishes upon taking the limit of its radius going to infinity. There-
fore, the double pole in k− at k−

P = (M(x; p2) − iε)/k+ gives no contribution
to the integral. However, if k+ = 0, the k−-integral diverges. Apparently, this
integral defines a distribution with support at k+ = 0.
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Our next step illustrates this in another way. We write z = 2k+k−, dk− =
dz/(2k+). Then we have:

I2(p2) =
∫ 1

0
dx

∫ ∞

−∞
dk+ 1

2|k+|
∫ ∞

−∞
dz

1
(z −M + iε)2

. (215)

The modulus of k+ occurs because the absolute value of the Jacobian is
involved. We see that superficially I2 =

∫ 1
0 dx(∞·0). This is easy to illustrate

by employing a cut-off as follows:

JΛ(x) =
1

2|x|
∫ 2Λ|x|

−2Λ|x|
dz

1
(z −M + iε)2

=
1

2|x|
[ −1
z −M + iε

]2Λ|x|

−2Λ|x|

=
1

2|x|
[ −1
2Λ|x| −M + iε

− −1
−2Λ|x| −M + iε

]
. (216)

Clearly, JΛ(x) → 0 for Λ → ∞ if x �= 0, but JΛ(0) → ∞. In order to complete
our calculation we regularize the distribution (z + iε)−2 à la [28]

1
(z + iε)2

=
1
z2 + iπδ′(z); (217)

where the distribution z−2 is defined as follows:(
1
z2 , f(z)

)
≡

∫ ∞

0
dz
f(z) + f(−z) − 2f(0)

z2 (218)

Our integral has a piece connected with the real part of the distribution, z−2,
that vanishes upon integration using the regularized form with f(z) ≡ 1. The
imaginary part needs some additional care. We use again a cut-off Λ and find∫ ∞

−∞
dk+

∫ ∞

−∞
dk− 1

(2k+k− −M + iε)2
=

∫ ∞

−∞
dk+ lim

Λ→∞

∫ Λ

−Λ

dk−
[

1
(2k+k− −M)2

+ iπδ′(2k+k− −M)
]
.

(219)
The first part vanishes if interpreted à la Vilenkin. The second part contains
the integral∫ Λ

−Λ

dk−δ′(2k+k− −M) =
1

|2k+|
∫ 2Λ|k+|

−2Λ|k+|
dzδ′(z −M)

=
1

2|k+|
[
δ(2Λ|k+| −M) − δ(2Λ|k+| +M)

]
=

1
2M

[
δ

(
|k+| − M

2Λ

)
− δ

(
|k+| +

M

2Λ

)]
.(220)
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The second δ-function does not contribute. The full integral is then:

I2(p2) =
∫ 1

0
dx

iπ

2M(x; p2)

∫ ∞

−∞
dk+δ

(
|k+| − M

2Λ

)

= iπ

∫ 1

0
dx

1
M(x; p2)

=
4πi√

p2(4m2 − p2)
arctan

√
p2

4m2 − p2 . (221)

In 3+1 dimensions we can rewrite the original formula (170) as follows

I4(p2) =
∫ 1

0
dx

∫ ∞

∞
dk+

∫ ∞

∞
dk−

∫
d2k⊥ 1

(2k+k− − k ⊥ 2 −M(x; p2) + iε)2
.

(222)
If we make the substitution M → M+k ⊥ 2 in (221) and realize that we need
to integrate in addition over k⊥, we obtain the expression

I4(p2) = iπ

∫ 1

0
dx

∫
d2k⊥ 1

k ⊥ 2 +M(x; p2)
. (223)

Next we substitute the expression for M(x; p2), (169) and make the substi-
tutions x = (1 + x)/2 and q⊥ = k⊥/2. Then we find the formula

I4(p2) = i
π

2

∫ 1

−1
dx

∫
d2q⊥ 1

q ⊥ 2 + 4m2 − p2(1 − x2)
. (224)

which is equal to (207).

8.4 Front-Form Calculation

We write I2 in terms of the momenta 1
2 (p ± q) in the loop. It is understood

that everywhere m2 → m2 − iε.

I2(p2) = 4
∫

d2q
1

(p+ q)2 − 4m2

1
(p− q)2 − 4m2

= 4
∫ ∞

−∞
dq+

∫ ∞

−∞
dq− 1

2(p+ + q+)(p− + q−) − 4m2

× 1
2(p+ − q+)(p− − q−) − 4m2 . (225)

We must distinguish five cases (p+ > 0):

(i) q+ < −p+, (ii) − p+ < q+ < p+, (iii) q+ > p+,

(iv) q+ = p+, (v) q+ = −p+. (226)
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Accordingly, we consider the poles in the variable q−:

q−
1 = −p− +

4m2 − iε

2(p+ + q+)
, q−

2 = p− − 4m2 − iε

2(p+ − q+)
. (227)

Then we find that q−
1 → ∞ for q+ → −p+ (v) and q−

2 → ∞ for q+ → p+ (iv).
The domains (iv) and (v) have measure zero in q+, so, unless the integral over
q− produces in these cases a distribution with support in (iv) and (v), the
contributions from these intervals vanish. We calculate these first: domain
(iv) gives

J(q+;m) = 4
∫ ∞

−∞
dq− 1

4p+(p− + q−) − 4m2 + iε

1
−4m2 + iε

(228)

which reduces to

J(q+;m) =
−1

4p+m2

∫ ∞

−∞
dq− 1

(p− + q− −m2/p+ + iε

=
[∫ ∞

−∞
dq− 1

q− − q−
0

− iπ

]
, (229)

where q−
0 = m2/p+ − p− and the integral is understood as a principal value

integral. The latter vanishes, so J(q+;m) is finite and independent of q+.
Consequently, its contribution to I2 vanishes. In the case (v) we find the
same result.

Domain (i). Here Im q−
1 and Im q−

2 are both positive. As the integral is
convergent and the semi circle at infinity does not contribute, we can evaluate
the q−-integral using the residue-theorem. The result is zero. In domain (iii)
we obtain the same answer.

Domain (ii). The integral is

I2(p2) =
∫ p+

−p+
dq+

1
(p+ + q+)(p+ − q+)

∫ ∞

−∞
dq− 1

(q− − q−
1 )(q− − q−

2 )

=
∫ p+

−p+
dq+

1
(p+ + q+)(p+ − q+)

2πi
−1

q−
2 − q−

1

= −iπ
∫ p+

−p+
dq+

1
p−(p+ + q+)(p+ − q+) − 2m2p+ . (230)

By the substitutions q+ = (2x − 1)p+ and 2p+p− = p2, this integral is
transformed into

I2(p2 = m2) = −πi
∫ 1

0
dx

1
p2x(1 − x) −m2 . (231)

This result is identical with (173), the covariant result.



Forms of Relativistic Dynamics 51

The 3+1-dimensional case follows of course the same lines. We write then

I4(p2) =
∫

dq+
∫

dq−
∫

d2q⊥ 1
2(p+ + q+)2(p− + q−) − (4m2 + q ⊥ 2) + iε

× 1
2(p+ − q+)2(p− − q−) − (4m2 + q ⊥ 2) + iε

. (232)

The poles are now

q−
1 = −p− +

(4m2 + q ⊥ 2) − iε

2(p+ + q+)
, q−

2 = p− − (4m2 + q ⊥ 2) − iε

2(p+ − q+)
. (233)

Upon closing the contour in the upper q−-plane one finds again

I4(p2) =
∫ p+

p−
dq+

∫
d2q⊥2πi

−1
q−
2 − q−

1
. (234)

Next, substitute the values of q−
1,2, change variables q+ = xp+, and use the

condition 2p+p− = p2 for the case where p⊥ = 0. Then we find

I4(p2) =
iπ

2

∫ 1

−1
dx

∫
d2q⊥ 1

q ⊥ 2 + 4m2 − p2(1 − x2)
. (235)

This is exactly (207) so we again obtain the same result as before.

9 Dimensional Regularization: Basic Formulae

The dimension of space-time will be denoted by D. The surface area of the
D-dimensional sphere in Euclidean space is

dΩD =
D−1∏
l=1

dθl(sin θl)D−1−l; ΩD =
2πD/2

Γ (D/2)
. (236)

The following integral is fundamental to dimensional regularization:∫ ∞

0
dt

tn

(1 + t)m
=

∫ ∞

0
dt

t(n+1)−1

(1 + t)n+1+(m−n−1) =
Γ (n+ 1)Γ (m− n− 1)

Γ (m)
.

(237)
As an application of these two formulae we derive∫

dDx
1

(x2 + µ2)n
= ΩD

∫ ∞

0
dr

rD−1

(r2 + µ2)n
. (238)

Upon the substitution

r = µt1/2, dr =
µ

2
t−1/2dt (239)



52 Bernard L.G. Bakker

one finds ∫
dDx

1
(x2 + µ2)n

= ΩD

∫ ∞

0
dt
tD/2−1

(1 + t)n
. (240)

If one substitutes the expressions for ΩD and the t-integral one finds∫
dDx

1
(x2 + µ2)n

= πD/2µD−2nΓ (n−D/2)
Γ (n)

. (241)

Another relation that is used frequently is

Γ (ε) =
1
ε

− γ + O(ε). (242)

10 Four-Dimensional Integration

In this appendix we discuss the four-dimensional formulae in Minkowski and
Euclidean space. We use the following polar coordinates in Euclidean space:

(r0, r) = (r sin θ1 sin θ2 sin θ3, r sin θ1 sin θ2 cos θ3, r sin θ1 cos θ2, r cos θ1).
(243)

The Jacobian is then∣∣∣∣∂(r0, r1, r2, r3)
∂(r, θ1, θ2, θ3)

∣∣∣∣ = r3(sin θ1)2 sin θ2. (244)

So the integration measure in Euclidean space is

d4r = drr3dθ1(sin θ1)2dθ2 sin θ2dθ3. (245)

The surface area of the unit sphere in four dimensions is

Ω4 =
∫ π

0
dθ1(sin θ1)2

∫ π

0
dθ2 sin θ2

∫ 2π

0
dθ3 = 2π2. (246)

A Wick rotation transform integrals in Minkowski space into Euclidean inte-
grals. We use the transformation

k0 → ir0,k → r, (247)

so the integration measure becomes∫ ∞

−∞
dk0

∫
d3k → i

∫ ∞

−∞
dr0

∫
d3r. (248)
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11 Some Useful Integrals

Here we collect some useful integrals. For d defined as b2 − 4ac we have

I1 =
∫

dx
1

ax2 + bx+ c
=

1√
b2 − 4ac

log

∣∣∣∣∣2ax+ b− √
b2 − 4ac

2ax+ b+
√
b2 − 4ac

∣∣∣∣∣ , d > 0,

=
2√

4ac− b2
arctan

(
2ax+ b√
4ac− b2

)
, d < 0. (249)

The case where d > 0 the integral must be understood as a principal value if
the denominator has zeros in the integration interval.

For 0 < p2 < 4m2 we have the special case

I2 =
∫ 1

0
dx

1
m2 − x(1 − x)p2 =

4

p
√

4m2 − p2
arctan

√
p2

4m2 − p2 . (250)

For definite integrals containing an arctan one may use the identity

arctan z1 ± arctan z2 = arctan
(
z1 ± z2
1 ∓ z1z2

)
. (251)

A second type of integral is, again for 0 < p2 < 4m2

I3 =
∫ 1

0
dx log(m2 − x(1 − x)p2)

= −2 + logm2 + 2

√
4m2 − p2

p2 arctan

√
p2

4m2 − p2 . (252)

A third type of integral we encounter is

I4 =
∫ ∞

0
dq

1√
q2 + 4m2(q2 + 4m2 + p2)

=
1

p
√

4m2 − p2
arctan

√
p2

4m2 − p2 .

(253)
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Light-Cone Quantization:
Foundations and Applications

Thomas Heinzl

Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut,
D-07743 Jena, Max-Wien-Platz 1, Germany

Abstract. These lecture notes review the foundations and some applications of
light-cone quantization. First I explain how to choose a time in special relativity.
Inclusion of Poincaré invariance naturally leads to Dirac’s forms of relativistic dy-
namics. Among these, the front form, being the basis for light-cone quantization, is
my main focus. I explain a few of its peculiar features such as boost and Galilei in-
variance or separation of relative and center-of-mass motion. Combining light-cone
dynamics and field quantization results in light-cone quantum field theory. As the
latter represents a first-order system, quantization is somewhat nonstandard. I ad-
dress this issue using Schwinger’s quantum action principle, the method of Faddeev
and Jackiw, and the functional Schrödinger picture. A finite-volume formulation,
discretized light-cone quantization, is analysed in detail. I point out some problems
with causality, which are absent in infinite volume. Finally, the triviality of the
light-cone vacuum is established. Coming to applications, I introduce the notion
of light-cone wave functions as the solutions of the light-cone Schrödinger equa-
tion. I discuss some examples, among them nonrelativistic Coulomb systems and
model field theories in two dimensions. Vacuum properties (like chiral condensates)
are reconstructed from the particle spectrum obtained by solving the light-cone
Schrödinger equation. In a last application, I make contact with phenomenology
by calculating the pion wave function within the Nambu and Jona-Lasinio model.
I am thus able to predict a number of observables like the pion charge and core
radius, the r.m.s. transverse momentum, the pion structure function and the pion
distribution amplitude. The latter turns out to be the asymptotic one.

1 Introduction

The nature of elementary particles calls for a synthesis of relativity and quan-
tum mechanics. The necessity of a quantum treatment is quite evident in
view of the microscopic scales involved which are several orders of magnitude
smaller than in atomic physics. These very scales, however, also require a
relativistic formulation. A typical hadronic scale of 1 fm, for instance, cor-
responds to momenta of the order of p ∼ �c/1fm � 200 MeV. For particles
with masses M <∼ 1 GeV, this implies sizable velocities v � p/M >∼ 0.2 c.

It turns out that the task of unifying the principles of quantum mechanics
and relativity is not a straightforward one. One can neither simply extend
ordinary quantum mechanics to include relativistic physics nor quantize rel-
ativistic mechanics using the ordinary correspondence rules. Nevertheless,

H. Latal, W. Schweiger (Eds.): LNP 572, pp. 55–142, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Dirac and others have succeeded in formulating what is called “relativistic
quantum mechanics”, which has become a subject of text books since – see
e.g. [15,157]. It should, however, be pointed out that this formulation, which
is based on the concept of single-particle wave-functions and equations, is
not really consistent. It does not correctly account for relativistic causality
(retardation effects etc.) and the existence of antiparticles. As a result, one
has to struggle with issues like the Klein paradox1, the definition of position
operators [115] and the like.

The well-known solution to these problems is provided by quantum field
theory, with an inherently correct description of antiparticles that entails
relativistic causality. In contrast to single-particle wave mechanics, quantum
field theory is a (relativistic) many body formulation that necessarily involves
(anti-)particle creation and annihilation. Physical particle states are typically
a superposition of an infinite number of ‘bare’ states, as any particle has a
finite probability to emit or absorb other particles at any moment of time.
A pion, for example, would be represented in terms of the following Fock
expansion,

|π〉 = ψ2|qq̄〉 + ψ3|qq̄g〉 + ψ4|qq̄qq̄〉 + . . . , (1)

where the ψn are the probability amplitudes to find n particles (quarks q,
antiquarks q̄ or gluons g) in the pion. With the advent of QCD, however, a
conceptual difficulty concerning this many-particle picture has appeared. At
low energy or momentum transfer, hadrons, the bound states of QCD, are
reasonably described in terms of two or three constituent quarks and thus as
few-body systems. These ‘effective’ quarks Q are dressed so that they gain an
effective mass of the order of 300–400 MeV. They are used as the basic degrees
of freedom in the ‘constituent quark model’. This model yields a reasonable
mass spectroscopy of hadrons [101,109], but its foundations are not very well
established theoretically. First, a nonrelativistic treatment of light hadrons
is not justified (see above). Second, the model violates many symmetries
of QCD (in particular chiral symmetry). Third, it is rather unclear how a
constituent picture can arise in a quantum field theory such as QCD.

In principle, in order to confirm the constituent quark model, one would
have to solve the ‘QCD Schrödinger equation’ for hadron states |hadron〉 of
mass Mh,

HQCD|hadron〉 = Mh|hadron〉 , (2)

and check whether the eigenstates are reasonably well described in terms of
the constituent valence states |QQ̄〉 or |QQQ〉. This is a very hard problem.
A more moderate goal would be to ‘relativize’ the constituent quark model,
ideally in such a way that it respects the symmetries of QCD. I will discuss
this attempt in detail at the end of these lectures.

To arrive at this point, there is, of course, some way to go. Let me start
with the following claim. A particularly useful approach for our purposes is
1 For a nice recent discussion, see [74].



Light-Cone Quantization 57

based on a somewhat unorthodox choice of the ‘time arrow’ within special
relativity: instead of the ordinary ‘Galileian time’ t, I choose ‘light-cone time’,
x+ ≡ t− z/c. In the course of these lectures, this claim will be substantiated
step by step.

I will begin with some general remarks on relativistic dynamics (Sect. 2).
As a paradigm example I discuss the free relativistic particle which is the
prototype of a reparametrization invariant system. I show that the choice
of the time parameter is not unique as it corresponds to a gauge fixing,
the purpose of which is to get rid of the reparametrization redundancies.
By considering the stability subgroups of the Poincaré group, one finds that
there are essentially three reasonable choices of ‘time’ for a relativistic system,
corresponding to Dirac’s ‘instant’, ‘point’ and ‘front’ form, respectively. The
latter choice is the basis of light-cone dynamics, the main features of which
will be discussed in the last part of Sect. 2.

Section 3 is devoted to light-cone field quantization. I show how the
Poincaré generators are defined in this case and utilize Schwinger’s quan-
tum action principle to derive the canonical commutators. This is the first
method of quantization to be discussed. The relation between equal-time com-
mutators, the field equations and their solutions for different initial and/or
boundary conditions is clarified.

It turns out that light-cone field theories, being of first order in the ve-
locity, generally are constrained systems which require a special treatment.
I rederive the canonical light-cone commutators using a second method of
quantization (based on phase space reduction) due to Faddeev and Jackiw. I
extend this discussion to light-cone quantization in finite volume and point
out possible problems with causality in this approach. Going back to in-
finite volume, I introduce a third method of quantization, the functional
Schrödinger picture, and combine it with the light-cone formalism. I close
this section with a discussion of the presumably most spectacular feature of
light-cone quantum field theory, the triviality of the vacuum.

As a prelude to the applications I introduce the notion of light-cone wave
functions in Sect. 4. I show how light-cone wave functions can be obtained by
solving the light-cone Schrödinger equation. As examples, I discuss nonrela-
tivistic wave functions as they occur in hydrogen-like systems, some model
field theory in 1+1 dimensions and a simple Gaussian model.

In Sect. 5, I finally make contact with phenomenology. I calculate the
light-cone wave function of the pion within the Nambu and Jona-Lasinio
model. This model is known to provide a good description of spontaneous
chiral symmetry breaking, as it is governed by the same symmetry group as
low-energy QCD. With the pion wave function at hand I derive a number of
observables like the pion charge and core radius, the electromagnetic form
factor, the r.m.s. transverse momentum and the pion structure function. I
conclude with a calculation of the pion distribution amplitude.
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2 Relativistic Particle Dynamics

The physically motivated desire to describe hadrons as bound states of a
small, fixed number of constituents is our rationale to go back and reana-
lyze the relation between Hamiltonian quantum mechanics and relativistic
quantum field theory.

Quite generally, bound states are obtained by solving the Schrödinger
equation,

i�
∂

∂τ
|ψ(τ)〉 = H|ψ(τ)〉 , (3)

for normalized, stationary states,

|ψ(τ)〉 = e−iEτ |ψ(0)〉. (4)

This leads to the bound-state equation

H|ψ(0)〉 = E|ψ(0)〉 , (5)

where E is the bound state energy. We would like to make this Hamiltonian
formalism consistent with the requirements of relativity. It is, however, obvi-
ous from the outset that this procedure will not be manifestly covariant as it
singles out a time τ (and an energy E, respectively). Furthermore, it is not
even clear what the time τ really is as it does not have an invariant meaning.

2.1 The Free Relativistic Point Particle

To see what is involved it is sufficient to consider the classical dynamics of a
free relativistic particle. We want to find the associated canonical formulation
as a basis for subsequent quantization. We will proceed by analogy with the
treatment of classical free strings which is described in a number of textbooks
[58,123]. Accordingly, the relativistic point particle may be viewed as an
infinitely short string.

Recall that the action for a relativistic particle is essentially given by the
arc length of its trajectory

S = −ms12 ≡ −m
∫ 2

1
ds . (6)

This action2 is a Lorentz scalar as

ds =
√
gµνxµxν (7)

is the (infinitesimal) invariant distance. We can rewrite the action (6) as

S = −m
∫ 2

1
ds
√
ẋµẋµ ≡

∫ 2

1
dsL(s) , (8)

2 We work in natural units, � = c = 1.
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in order to introduce a Lagrangian L(s) and the four velocity ẋµ ≡ dxµ/ds.
The latter obeys

ẋ2 ≡ ẋµẋ
µ = 1 , (9)

as the arc length provides a natural parametrization. Thus, ẋµ is a time-like
vector, and we assume in addition that it points into the future, ẋ0 > 0.
In this way we guarantee relativistic causality ensuring that a real particle
passing through a point P will always propagate into the future light cone
based at P .

We proceed with the canonical formalism by calculating the canonical
momenta as

pµ = − ∂L

∂ẋµ
= mẋµ . (10)

These are not independent, as can be seen by calculating the square using (9),

p2 = m2ẋ2 = m2 , (11)

which, of course, is the usual mass-shell constraint. This constraint indicates
that the Lagrangian L(s) defined in (8) is singular, so that its Hessian Wµν

with respect to the velocities,

Wµν ≡ ∂2L

∂ẋµ∂ẋν
= − m√

ẋ2

(
gµν − ẋµẋν

ẋ2

)
= −m (gµν − ẋµẋν) , (12)

is degenerate. It has a zero mode given by the velocity itself,

Wµν ẋν = 0 . (13)

The Lagrangian being singular implies that the velocities cannot be uniquely
expressed in terms of the canonical momenta. This, however, is not obvious
from (10), as we can easily solve for the velocities,

ẋµ = pµ/m . (14)

But if one now calculates the canonical Hamiltonian,

Hc = −pµẋ
µ − L = −mẋ2 +mẋ2 = 0 , (15)

one finds that it is vanishing! It therefore seems that we do not have a gen-
erator for the time evolution of our dynamical system. In the following, we
will analyze the reasons for this peculiar finding.

First of all we note that the Lagrangian is homogeneous of first degree in
the velocity,

L(αẋµ) = αL(ẋµ) . (16)

Thus, under a reparametrization of the world-line,

s �→ s′ , xµ(s) �→ xµ
(
s′(s)

)
, (17)
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where the mapping s �→ s′ is one-to-one with ds′/ds > 0 (orientation con-
serving), the Lagrangian changes according to

L(dxµ/ds) = L
(
(dxµ/ds′)(ds′/ds)

)
= (ds′/ds)L(dxµ/ds′) . (18)

This is sufficient to guarantee that the action is invariant under (17), that is,
reparametrization invariant,

S =
∫ s2

s1

dsL(dxµ/ds) =
∫ s′

2

s′
1

ds′ ds
ds′

ds′

ds
L(dxµ/ds′) ≡ S′ , (19)

if the endpoints remain unchanged, s1,2 = s′
1,2. On the other hand, L is

homogeneous of the first degree if and only if Euler’s formula holds, namely

L =
∂L

∂ẋµ
ẋµ = −pµẋ

µ . (20)

This is exactly the statement (15), the vanishing of the Hamiltonian. Further-
more, if we differentiate (20) with respect to ẋµ, we recover (13) expressing
the singular nature of the Lagrangian. Summarizing, we have found the gen-
eral result [61,144] that if a Lagrangian is homogeneous of degree one in
the velocities, the action is reparametrization invariant, and the Hamiltonian
vanishes. In this case, the momenta are homogeneous of degree zero, which
renders the Lagrangian singular.

The reparametrization invariance is generated by the first class constraint
[44,144],

θ ≡ p2 −m2 = 0 , (21)

as can be seen as follows. From the canonical one form −gµνp
µdxν we read

off the Poisson bracket
{xµ , pν} = −gµν , (22)

and calculate the change of the coordinate xµ,

δxµ = {xµ , θδε} = −2pµδε = −2mẋµδε ≡ ẋµδτ

= xµ(τ + δτ) − xµ(τ) = xµ(τ ′) − xµ(τ) . (23)

Thus, the reparametrization (17) is indeed generated by the constraint (21).
Reparametrization invariance can be viewed as a gauge or redundancy

symmetry. The redundancy consists in the fact that a single trajectory (world-
line) can be described by an infinite number of different parametrizations. The
physical objects, the trajectories, are therefore equivalence classes obtained
by identifying (‘dividing out’) all reparametrizations. The method to do so is
well known, namely gauge fixing. For the case at hand, this corresponds to
a particular choice of parametrization, or, more physically, to the choice of
a time parameter τ . This amounts to choosing a foliation of space-time into
space and time. Minkowski space is thus decomposed into hypersurfaces of
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equal time, τ = const, which in general are three-dimensional objects, and the
time direction ‘orthogonal’ to them. The time development thus continuously
evolves the hypersurface Σ0 : τ = τ0 into Σ1 : τ = τ1 > τ0. Put differently,
initial conditions provided on Σ0 together with the dynamical equations (be-
ing differential equations in τ) determine the state of the dynamical system
on Σ1.

Practically, the (3+1)-foliation is done as follows. We introduce some
arbitrary coordinates, ξα = ξα(x), which may be curvilinear. We imagine
that three of these, say ξi, i = 1, 2, 3, parametrize the three-dimensional
hypersurface Σ, so that the remaining one, ξ0, represents the time variable,
i.e. τ = ξ0(x). This equation can equivalently be viewed as a gauge fixing
condition.

The first question to be addressed is: what is a ‘good’ choice of time? There
are two criteria to be met, namely existence and uniqueness. Existence means
that the equal-time hypersurface Σ should intersect any possible world-line,
while uniqueness requires that it does so once and only once. Mathematically,
uniqueness can be analysed in terms of the Faddeev-Popov (FP) ‘operator’,
which is given by the Poisson bracket of the gauge fixing condition with the
constraint (evaluated on Σ),

FP ≡ {
ξ0(x) , θ

}
=
{
ξ0(x) , p2} = −2

∂ξ0

∂xµ
pµ ≡ −2N · p . (24)

Here, we have introduced the normal N on Σ,

Nµ(x) =
∂ξ0(x)
∂xµ

∣∣∣∣
Σ

, (25)

which will be important later on. The statement now is that uniqueness is
achieved (for a single degree of freedom) if the FP operator does not vanish,
i.e. if N · p �= 0. Generically, this means that the particle trajectory must not
be parallel to the hypersurface Σ of equal time.

As an aside we remark that this is completely analogous to the reasoning
in standard gauge (field) theory. There, the constraint θ is given by Gauss’s
law which generates gauge transformations A → A + Dω, D denoting the
covariant derivative. For a gauge fixing χ[A] = 0, the equation corresponding
to (24) becomes

FP = {χ , θ} =
δχ

δω
=
δχ

δA

δA

δω
= N ·D , (26)

where all (functional) derivatives are to be evaluated on the gauge fixing
hypersurface, χ = 0.

Let us now perform an analysis of the canonical formalism for a general
choice of hypersurface Σ. For this we need some notation. We write the line
element as

ds2 = gµνdx
µdxν = gµν

∂xµ

∂ξα

∂xν

∂ξβ
dξαdξβ ≡ hαβ(ξ)dξαdξβ . (27)
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Introducing a vierbein eµ
α(ξ), the metric hαβ(ξ) is alternatively given by

hαβ(ξ) = gµν e
µ
α(ξ) eν

β(ξ) . (28)

The transformation x → ξ is well known from general relativity, where it
corresponds to the transformation from a local inertial frame described by
the flat metric gµν to a noninertial frame with coordinate dependent metric
hαβ(ξ). For our purposes we write this metric in a (3+1)-notation as follows,

hαβ =
(
h00 h0i

hi0 hij

)
≡
(
h00 hT

h −H
)
. (29)

Of particular interest is the component h00, which explicitly reads

h00 = gµν
∂xµ

∂ξ0
∂xν

∂ξ0
= gµνe

µ
0e

ν
0 ≡ n2 , (30)

where we have defined the unit vector in ξ0-direction

nµ =
∂xµ

∂ξ0
= eµ

0 ≡ ẋµ , (31)

which thus is the new four-velocity. It is related to the normal vector Nµ via

n ·N = eµ
0e

0
µ =

∂ξ0

∂xµ

∂xµ

∂ξ0
= 1 . (32)

The normal vector N enters the inverse metric which we write as follows,

hαβ =
(
g00 g0i

gi0 gij

)
=
(
N2 gT

g −G
)
. (33)

The hij are the metric components associated with the hypersurface. The
invariant distance element (27) thus becomes (with h0i ≡ hi),

ds2 = h00dξ
0dξ0 + 2h0idξ

0dξi + hijdξ
idξj ,

=
(
n2 + 2hi

dξi

dτ
+ hij

dξi

dτ

dξj

dτ

)
dτ2 ≡ h(τ)dτ2 , (34)

where, in the second step, we have used that ξ0 = τ . In the last identity we
have defined a world-line metric or einbein

h(τ) ≡ ẋ2 = hαβ ξ̇
αξ̇β , (35)

which expresses the arbitrariness in choosing a time by providing an (arbi-
trary) ‘scale’ for the velocity. Introducing the velocities expressed in the new
coordinates, wi ≡ dξi/dτ , the world-line metric can be written as

h(τ) = n2 + 2hiw
i + hijw

iwj . (36)
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Let us develop a canonical formalism for a general choice of the einbein h(τ)
corresponding to the gauge fixing τ = ξ0(x) = 0. The Lagrangian becomes

L(τ) = −m
√
h(τ) , (37)

leading to the canonical momenta

πα = − ∂L

∂ξ̇α
=

m√
h
hαβ ξ̇

α = eµ
α pµ . (38)

We see that the einbein h is appearing all over the place. The canonical
Hamiltonian is expressed in terms of the inverse metric hαβ ,

Hc = −παξ̇
α − L = −

√
h

m
(hαβπαπβ −m2) = 0 . (39)

It vanishes (as it should) as it is proportional to the constraint,

θ = hαβπαπβ −m2 = p2 −m2 = 0 . (40)

The FP operator also depends on the entries of the inverse metric (33), in
particular the normal vector N ,

FP = N2π0 + giπi . (41)

After gauge fixing, the generator of τ -evolution, Hτ ≡ π0, is obtained by
solving the constraint (40) for π0 which assumes the explicit form,

N2π2
0 + 2giπiπ0 −Gijπiπj −m2 = 0 . (42)

Depending on the value of N2, we thus have to consider two different cases.
The generic one is that the normal N on Σ is time-like, N2 > 0. In this
case, the mass-shell constraint is of second order in π0, so that there are two
distinct solutions,

π0 =
1
N2

{
−(g,π) ±

√
(g,π)2 +N2[(π, Gπ) +m2]

}
. (43)

Not unexpectedly, the ‘problem’ of two different signs in front of the square
root arises [55]. Within quantum mechanics, this is somewhat difficult to
interpret. Upon ‘second quantization’, i.e. in the context of quantum field
theory, one has, of course, the natural explanation in terms of antiparticles.
As we will not quantize the relativistic point particle, the sign ‘problem’
is of no concern to us. A possible arbitrariness will be removed ad hoc by
demanding π0 > 0. With this additional condition the FP operator becomes

FP = −2
√

(g,π)2 +N2[(π, Gπ) +m2] , (44)

which is clearly nonvanishing for a massive particle, m �= 0. A gauge fixing
with N2 > 0 is thus unique and leads to a well-defined description of the
τ -evolution.
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The second case to be considered is in a sense degenerate. It corresponds
to a light-like normal, N2 = 0. In this case, the constraint (42) is only of first
order in π0 leading to a single solution,

π0 =
(π, Gπ) +m2

(g,π)
. (45)

As a result, there is no ‘sign problem’ and no ‘ugly’ square root. Conservation
of difficulties, however, is at work, because it is no longer obvious whether
the FP operator,

FP = −2(g,π) , (46)

is different from zero. Clearly, this is absolutely necessary for (45) to represent
a well-defined solution.

At this point, it should be mentioned that the results (43) and (45) are
not yet the full story. The entries of the inverse metric, N2, g and G should
actually be expressed in terms of the quantities n2, h and H defining the
induced metric on Σ. So far, it is also not completely clear which choices
of these parameters actually make sense physically. Of course, the normal
N should not be space-like as this would imply that Σ contains time-like
directions and thus possible particle trajectories. In the next subsection I
will give some criteria for reasonable choices of time.

Before we come to that let us apply the general formalism to the standard
choice of ‘Galileian’ time, τ = ξ0(x) = x0 = t. In this case, the surface
Σ : t = 0 is an entirely space-like hyperplane with constant normal vector
N = (1,0) = n. The other metric entries are h = g = 0 and H = G = 11.
The world-line metric (35) thus becomes

h(t) = ẋ2 = 1 − v2 ≡ 1/γ2 , (47)

where γ is the usual Lorentz contraction factor. The Hamiltonian is obtained
in line with the second-order case above,

Ht = N · p = p0 =
√

p2 +m2 ∼ FP . (48)

It generates the dynamics via the basic Poisson bracket
{
xi , pj

}
= δij leading

to
ẋi =

{
xi , Ht

}
= pi/p0 , (49)

with p0 given by (48). Note that a well-defined time evolution requires a
nonvanishing FP operator (which is proportional to p0).

As already announced, we will discuss alternatives to this standard choice
of time in the next subsection.

2.2 Dirac’s Forms of Relativistic Dynamics

To address this issue it is not sufficient to consider only the τ -development
and the associated generator of time translations (i.e. the Hamiltonian) Hτ .
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Instead, one has to refer to the full Poincaré group to be able to guarantee
full relativistic invariance. The generators of the Poincaré group are the four
momenta Pµ and the six operators Mµν which combine angular momenta
and boosts according to

Li =
1
2
εijkM jk , (50)

Ki = M0i , (51)

with i, j, k = 1,2,3. These generators are elements of the Poincaré algebra
which is defined by the Poisson bracket relations,

{Pµ , P ν} = 0 ,
{Mµν , P ρ} = gνρPµ − gµρP ν , (52)
{Mµν , Mρσ} = gµσMνρ − gµρMνσ − gνσMµρ + gνρMµσ .

It is well known that the momenta Pµ generate space-time translations and
the Mµν rotations and Lorentz boosts, cf. (50, 51). In the following we will
only consider proper and orthochronous Lorentz transformations, i.e. we ex-
clude space and time reflections.

Any Poincaré invariant dynamical theory describing e.g. the interaction
of particles should provide a particular realization of the Poincaré algebra.
For this purpose, the Poincaré generators are constructed out of the funda-
mental dynamical variables like positions, momenta, spins etc. An elementary
realization of (52) is given as follows. Choose the space-time point xµ and its
conjugate momentum pµ as canonical variables, i.e. adopt (22),

{xµ , pν} = −gµν . (53)

The Poincaré generators are then found to be

Pµ = pµ , Mµν = xµpν − xνpµ , (54)

as is easily confirmed by checking (52) using (53). An infinitesimal Poincaré
transformation is thus generated by

δG = − 1
2δωµνM

µν + δaµP
µ (55)

in the following way,

δxµ = {xµ , δG} = δωµνxν + δaµ , δωµν = −δωνµ . (56)

The action of the Poincaré group on some scalar function F (x) is thus given
by

δF = {F , δG} = ∂µF δaµ − 1
2 (xµ∂ν − xν∂µ)F δωµν . (57)

Though the realization (54) is covariant, it has several shortcomings. It does
not describe any interaction; for several particles the generators are simply
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the sum of the single particle generators. This point, however, is of minor
importance to us, and will only be touched upon at the end of this subsec-
tion. The solution of the problem, as already mentioned in the introduction,
is the framework of local quantum field theory. More importantly, the repre-
sentation (54) does not take into account the mass-shell constraint, p2 = m2,
which we already know to guarantee relativistic causality as it generates the
dynamics upon solving for Hτ .

To remedy the situation we proceed as before by choosing a time variable
τ , i.e. a foliation of space-time into essentially space-like hypersurfaces Σ with
time-like or light-like normals N . We have seen that Σ should be chosen in
such a way that it intersects all possible world-lines once and only once (exis-
tence and uniqueness). Apart from this necessary consistency with causality
the foliation appears quite arbitrary. However, given a particular foliation
one can ask the question which of the Poincaré generators will leave the hy-
persurface Σ invariant. The set of all such generators defines a subgroup of
the Poincaré group called the stability group GΣ of Σ. The associated gen-
erators are called kinematical, the others dynamical. The latter map Σ onto
another hypersurface Σ′ and thus involve the development in τ . One thus
expects that the dynamical generators will depend on the Hamiltonian (and,
therefore, the interaction) which, by definition, is a dynamical quantity.

It is clear, however, that the stability group corresponding to a particular
foliation will be empty if the associated hypersurface looks very irregular
and thus does not have a high degree of symmetry. One therefore demands
in addition that the stability group acts transitively on Σ: any two points
on Σ can be connected by a transformation from GΣ . With this additional
requirement there are exactly five inequivalent classes of hypersurfaces [99]
which are listed in Table 1.

Table 1. All possible choices of hypersurfaces Σ: τ = const with transitive action
of the stability group GΣ . d denotes the dimension of GΣ , that is, the number of
kinematical Poincaré generators; x⊥ ≡ (x1, x2).

name Σ τ d

instant x0 = 0 t 6

light front x0 + x3 = 0 t + x3/c 7

hyperboloid x2
0 − x2 = a2 > 0, x0 > 0 (t2 − x2/c2 − a2/c2)1/2 6

hyperboloid x2
0 − x2

⊥ = a2 > 0, x0 > 0 (t2 − x2
⊥/c2 − a2/c2)1/2 4

hyperboloid x2
0 − x2

1 = a2 > 0, x0 > 0 (t2 − x2
1/c2 − a2/c2)1/2 4
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The first three choices have already been found by Dirac [43] in his sem-
inal paper on ‘forms of relativistic dynamics’. He called the associated forms
the ‘instant’, ‘front’ and ‘point’ forms, respectively. These are the most im-
portant choices as the remaining two forms have a rather small stability
group and thus are not very useful. We have only listed them for the sake of
completeness.

It is important to note that for all forms one has limc→∞ τ = t, which
means that in the nonrelativistic case there is only one possible foliation
leading to the absolute Galileian time t. This is consistent with the fact that
there is no limiting velocity in this case implying that particle trajectories can
have arbitrary slope (tangent vector). Therefore, the hypersurface Σnr : t =
const is the only one intersecting all possible world-lines. For other choices,
the criterion of existence introduced in the last subsection would be violated.

To decide which of the Poincaré generators are kinematical, we use the
general formula (57) describing their action. Imagine that Σ is given in the
form Σ : τ = ξ0(x) ≡ F (x) as in Table 1. If Pµ or Mµν are kinematical for
some µ or ν, then, for these particular superscripts, the components of the
gradient and rotor of F have to vanish on Σ,

∂µF = 0 , (xµ∂ν − xν∂µ)F = 0 . (58)

In terms of the normal vector N these equations become

Nµ = 0 , xµNν − xνNµ = 0 , (59)

which again will hold for some of the superscripts µ and/or ν, if Σ has
nontrivial stabilizer. The distinction between kinematical and dynamical is
thus completely encoded in the normal vector N .

The choice of Galileian time τ = t is of course the most common one
also in the relativistic case, and we have discussed it briefly at the end of
the last subsection. To complete this discussion, we construct the associated
representation of the Poincaré generators on Σ : t = 0. The idea is again to
explicitly saturate the constraint p2 = m2 by solving for Ht = p0 = N · p =
(p2 +m2)1/2, and setting x0 = 0 in (54).

As a result, we obtain the following (3+1)-representation of the Poincaré
generators,

P i = pi , M ij = xipj − xjpi ,
P 0 = Ht , M

i0 = xiHt .
(60)

This outcome is as expected: Compared to (54), p0 has been replaced by
Ht, and x0 has been set to zero. It should, however, be pointed out that for
non-Cartesian coordinates the construction of the Poincaré generators is less
straightforward.

Let us address the question of kinematical versus dynamical generators.
In agreement with (58) and (59), one has

N i = 0 = xiN j − xjN i , i, j = 1, 2, 3 , (61)



68 Thomas Heinzl

so that Σ is both translationally and rotationally invariant confirming that
the dimension of its stability group is six (cf. Table 1). On the other hand,

N0 = 1 �= 0 , (62)
x0N i − xiN0 = −xi �= 0 , (63)

from which we read off that, apart from the Hamiltonian, also the boosts
are dynamical, i.e., Σ is not boost invariant. The latter fact is, of course,
well known because the boosts mix space and time. Under a boost along the
n-direction with velocity v, t transforms as

t → t′ = t coshω + (n · x) sinhω , (64)

where n = v/v and ω is the rapidity, defined through tanhω = v. From (64)
it is evident that the hypersurface Σ : t = 0 is not boost invariant.

In obtaining the representation (60), we make the Poincaré algebra com-
patible with the instant-form gauge-fixing constraint, x0 = 0. An elementary
calculation, using

{
xi , pj

}
= δij , indeed shows that the generators (60) re-

ally obey the bracket relations (52). We have already seen in (49) that the
Hamiltonian P 0 = Ht generates the correct dynamics.

At this point it is getting time to really consider an alternative to the
instant form in some detail.

2.3 The Front Form

For an arbitrary four-vector a we perform the following transformation to
light-cone coordinates,

(a0, a1, a2, a3) �→ (a+, a1, a2, a−) , (65)

where we have defined

a+ = a0 + a3 , a− = a0 − a3 . (66)

We also introduce the transverse vector part of a as

a⊥ = (a1, a2) . (67)

The metric tensor (29) becomes

hαβ =
(
n2 hT

h −H
)

=




0 0 0 1/2
0 −1 0 0
0 0 −1 0

1/2 0 0 0


 . (68)

The entries 1/2 imply nonvanishing h and thus a slightly unusual scalar
product,

a · b = gµνa
µbν = 1

2a
+b− + 1

2a
−b+ − aibi , i = 1, 2 . (69)
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According to Table 1, the front form is defined by choosing the hypersurface
Σ : x+ = 0, which is a plane tangent to the light-cone. It can equivalently be
viewed as the wave front of a plane light wave traveling towards the positive
z-direction. Therefore, Σ is also called a light-front. The normal vector is

N = (1, 0, 0,−1) , N2 = 0 , (70)

where N has been written in ordinary coordinates. We see that N+ = N0 +
N3 = 0 which implies that the normal N to the hypersurface lies within the
hypersurface [114,129]. As N is a light-like or null vector, Σ is often referred
to as a null-plane [114,35]. We have depicted the front-form hypersurface Σ
together with the light-cone in Fig. 1.

x0

x
3

x2x1,

Σ : x+ = 0

Fig. 1. The hypersurface Σ : x+ = 0 defining the front form. It is a null-plane
tangential to the light-cone, x2 = 0.
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As is already obvious from (68), the unit vector in x+-direction is another
null-vector,

nµ =
∂xµ

∂x+
= 1

2 (1, 0, 0, 1) , (71)

so that n · N = 1 as it should. Given the scalar product (69), we infer the
invariant distance element

ds2 = gµνdx
µdxν = dx+dx− − dxidxi =

(
dx−

dx+
− dxi

dx+

dxi

dx+

)
dx+dx+ (72)

from which the einbein h can be read off as

h(x+) = ẋ− − ẋiẋi ≡ v− − v2
⊥ . (73)

Note that velocities are dimensionless, so that despite appearance the result
is consistent (if you do not like it as it stands, just insert the appropriate
factors of c).

The Hamiltonian is obtained by solving the constraint p+p−−p2
⊥−m2 = 0,

which is now linear in p−. The result is

Hx+ = n · p = p−/2 =
p2

⊥ +m2

2p+
. (74)

Let me reemphasize that this Hamiltonian does not contain a square root as
already pointed out by Dirac. However, now it is crucial that the FP operator
is nonvanishing,

FP = −2N · p = −2p+ �= 0 . (75)

While this is always true for massive particles, it is violated for massless ‘left-
movers’, i.e. for particles travelling in the negative z-direction at the speed
of light. In this case, we have a ‘Gribov problem’ [59], as the particles move
within our gauge-fixing hyperplane, x+ = 0. We will return to this issue later
on.

For massive particles, the dynamics is consistently generated by means of
the Poisson brackets

v− = ẋ− = {x− , Hx+} =
p−

p+
, vi = ẋi =

{
xi , Hx+

}
=
pi

p+
. (76)

Note finally, that the Hamiltonian (74) is not the normal projection N · p
of the momentum, because N · p lies within Σ and thus corresponds to a
kinematical direction.

As for the instant form, the light-cone representation of the Poincaré gen-
erators can be obtained by solving the constraint p2 = m2 for p−, inserting
the result into the elementary representation (54) of the generators and set-
ting x+ = 0. The kinematical generators are

P i = pi , P+ = p+ ,

M+i = −xip+ , M12 = x1p2 − x2p1 , M+− = −x−p+ . (77)
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They correspond to transverse and longitudinal translations withinΣ (P i and
P+, respectively), transverse boosts and rotations (M+i), rotations around
the z-axis (M12) and boosts (!) in the z-direction (M+−). The latter will
be further analysed in a moment. We thus have found seven kinematical
generators, so that the front form leads to the largest stability group among
Dirac’s forms of dynamics (cf. Table 1).

The dynamical generators are given by

P− =
p2

⊥ +m2

p+
, M−i = x−pi − xip− . (78)

As expected, the M−i depend on the Hamiltonian, p−. If we now consider
rotations around the x- or y-axis, generated by

L1 = M23 = 1
2 (M2+ −M2−) , (79)

L2 = M31 = 1
2 (M+1 −M−1) , (80)

we note that they correspond to dynamical operations due to the appearance
of M−i. This leads to the notorious ‘problem of angular momentum’ within
the front form, see e.g. [52]. Except for the free theory, it is very hard to write
down states with good angular momentum as diagonalizing L2 is as difficult
as solving the Schrödinger equation. A similar problem arises for parity. This
exchanges light-cone space and time and thus also becomes dynamical [24].
For the kinematical component of the angular momentum, Lz = M12, these
difficulties do not arise.

Consider now the following boost in z-direction with rapidity ω written
in instant-form coordinates,

t → t coshω + z sinhω , (81)
z → t sinhω + z coshω . (82)

As stated before, such a boost mixes space and time coordinates z and t. If
we add and subtract these equations, we obtain the action of the boost for
the front form,

x+ → eωx+ , (83)
x− → e−ωx− . (84)

We thus find the important result that a boost in z-direction does not mix
light-cone space and time but rather rescales the coordinates! Note that x+

and x− are rescaled inversely with respect to each other. The scaling factor
can be written as

eω =

√
1 − v

1 + v
, (85)

if the rapidity ω is defined in the usual manner in terms of the boost velocity
v, tanhω = v. One should note in particular, that one has the fixed point
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hypersurface Σ : x+ = 0 which is mapped onto itself, so that the relevant
generator, M+− = 2M30 = −2K3, is kinematical, in agreeement with (77).
However, we see explicitly that this is no longer true for x+ �= 0, where
we get a rescaling of x+. Stated differently, the transformation to light-cone
coordinates diagonalizes the boosts in z-direction. Therefore, the behavior
under such boosts becomes especially simple. A pedagogical discussion and
some elementary applications can be found in [116].

We are actually more interested in the transformation properties of the
momenta, as these, being Poincaré generators, are more fundamental quan-
tities than the coordinates, in particular in the quantum theory [99]. As Pµ

transforms as a four-vector we just have to replace xµ by Pµ in the boost
transformations (83, 84) and obtain,

P+ → eωP+ , (86)
P− → e−ωP− . (87)

We remark that P+ = 0 is a fixed point under longitudinal boosts. In quantum
field theory, it corresponds to the vacuum. For the transverse momentum, P i,
one finds a transformation law reminiscent of a Galilei boost,

P i → P i + viP+ . (88)

In this identity, describing the action of M+i, longitudinal and transverse
momenta (which are both kinematical) get mixed.

We can now ask the question how to boost from (P+, P i) to momenta
(Q+, Qi). This can be done by fixing the boost parameters ω and vi as

ω = − log
Q+

P+
, vi =

Qi − P i

P+
. (89)

Obviously, this is only possible for P+ �= 0. We emphasize that in the con-
struction above there is no dynamics involved. For the quantum theory, this
means that we can build states of arbitrary light-cone momenta with very
little effort. All we have to do is applying some kinematical boost operators.
The simple behavior of light-cone momenta under boosts will be important
for the discussion of bound states in Sect. 4.

The similarity between (88) and Galilei boosts is not accidental. This
is exhibited by the following subalgebra of the light-cone Poincaré algebra.
Consider the Poisson bracket relations of the seven generators Pµ, M12, M+i,

{
M12 , M+i

}
= εijM+j ,{

M12 , P i
}

= εijP j ,{
M+i , P−} = −2P i ,{
M+i , P j

}
= −δijP+ .

(90)
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All other brackets of these generators vanish. Compare now with the two-
dimensional Galilei group. Its generators (for a free particle of mass µ) are:
two momenta ki, one angular momentum L = εijxikj , two Galilei boosts
Gi = µxi, the HamiltonianH = kiki/2µ and the mass µ, which is the Casimir
generator. Upon using

{
xi , kj

}
= δij and identifying P i ↔ ki, M12 ↔ L,

M+i ↔ −2Gi, P+ ↔ 2µ and P− ↔ H, one easily finds that (90) forms a
subalgebra of the Poincaré algebra which is isomorphic to the Lie algebra
of the two-dimensional Galilei group. (A second isomorphic subalgebra is
obtained via identifying M−i ↔ 2Gi and exchanging P+ with P−.) The
first two identities in (90), for instance, state that M+i and P i transform
as ordinary two-dimensional vectors. P+ can be interpreted as a variable
Galilei mass which is also obvious from the nonrelativistic appearance of the
light-cone Hamiltonian, P− = (P 2

⊥ +m2)/P+ and the Galilei boost (88).
One thus expects that light-cone kinematics will partly show a nonrel-

ativistic behavior which is associated with the transverse dimensions and
governed by the two-dimensional Galilei group. This expectation is indeed
realized and leads, for instance, to a separation of center-of-mass and relative
dynamics in multi-particle systems. This will be discussed at length in the
beginning of Sect. 4.

So far, our discussion of the Poincaré algebra was restricted to the free
case. With the inclusion of interactions, one expects all dynamical Poincaré
generators to differ from their free counterpart by some ‘potential’ term W .
This has already been pointed out by Dirac [43], who also stated that find-
ing potentials which are consistent with the commutation relations of the
Poincaré algebra is the “real difficulty in the construction of a theory of a
relativistic dynamical system” with a fixed number of particles.

It has turned out, however, that Poincaré invariance alone is not suffi-
cient to guarantee a reasonable Hamiltonian formulation. There are no-go
theorems both for the instant [96] and the front form [80], which state that
the inclusion of any potential into the Poincaré generators, even if consistent
with the commutation relations, spoils relativistic covariance. The latter is
a stronger requirement as it enforces particular transformation laws for the
particle coordinates. Thus, covariance imposes rather severe restrictions on
the dynamical system [99].

The physical reason for these problems is that potentials imply an in-
stantaneous interaction-at-a-distance which is in conflict with the existence
of a limiting velocity and retardation effects. Relativistic causality is thus
violated. This is equivalently obvious from the fact that a fixed number of
particles is in conflict with the necessity of particle creation and annihilation
and the appearance of antiparticles.

Nevertheless, with considerable effort, it is possible to construct dynam-
ical quantum systems with a fixed number of constituents which are consis-
tent with the requirements of Poincaré invariance and relativistic covariance
[99,140,36].
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At this point one might finally ask whether the different forms of relativis-
tic dynamics are physically equivalent. From the point of view that different
time choices correspond to different gauge fixings it is clear that equivalence
must hold. After all, we are just dealing with different coordinate systems.
People have tried to make this equivalence more explicit by working with
coordinates which smoothly interpolate between the instant and the front
form [124,125,91,75]. In the context of relativistic quantum mechanics, it has
been shown that the Poincaré generators for different forms are unitarily
equivalent [140].

We are, however, more interested in what might be called a ‘top-down
approach’. Our aim is to describe few-body systems not within quantum
mechanics but quantum field theory to which we now turn.

3 Light-Cone Quantization of Fields

3.1 Construction of the Poincaré Generators

We want to derive the representation of the Poincaré generators within field
theory and their dependence on the hypersurface Σ chosen to define the
time evolution. To this end we follow [51] and describe the hypersurface
mathematically through the equation

Σ : F (x) = τ . (91)

The surface element on Σ is implicitly defined via∫
Σ

dσµu(x) =
∫
d4xNµδ(F (x) − τ)u(x) , (92)

where, as before, Nµ = ∂µF (x) is the normal on Σ and u some integrable
function. We will write this expression symbolically as

dσµ = d4xNµδ(F (x) − τ) . (93)

The central object of this subsection will be the energy-momentum tensor,

Tµν =
∂L

∂(∂µφ)
∂νφ− gµνL , (94)

with L being the Lagrangian depending on fields that are collectively denoted
by φ. With the help of the energy-momentum tensor (94) we can define a
generator

A[f ] =
∫

Σ

dσµfν(x)Tµν(x) , (95)

where A and f can be tensorial quantities carrying dummy indices α, β, . . .
which we have suppressed. A[f ] generates the infinitesimal transformations

δfB(x) = fµ(x) ∂µB(x) , (96)
δfx

µ = fµ(x) , (97)
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where f is now understood as being infinitesimal. In the same way as for a
finite number of degrees of freedom, the generator A is called kinematical, if
it leaves Σ invariant, that is,

δfF = fµ∂
µF = f ·N = 0 . (98)

Otherwise, A is dynamical. With the energy-momentum tensor Tµν at hand,
we can easily show that kinematical generators are interaction independent.
We decompose Tµν ,

Tµν = Tµν
0 − gµνLint , (99)

into a free part Tµν
0 = Tµν(g = 0), g denoting the coupling, and an interacting

part (we exclude the case of derivative coupling). If A is kinematical, we have
from (93, 95, 98),

Aint[f ] = −
∫
d4x δ(F − τ)Lintf

µ∂µF = −
∫
d4x δ(F − τ)LintδfF = 0 ,

(100)
which indeed shows that A does not depend on the interaction. Dynamical
operators, on the other hand, will contain interaction dependent pieces. Of
course, we are particularly interested in the Poincaré generators, Pα and
Mαβ . They correspond to the choices fα

µ = gα
µ and fαβ

µ = xαgβ
µ − xβgα

µ ,
respectively, so that, from (95), they are given in terms of Tµν as

Pα =
∫

Σ

dσµT
µα , (101)

Mαβ =
∫

Σ

dσµ(xαTµβ − xβTµα) . (102)

From (98) it is easily seen that the Poincaré generators defined in (101, 102)
act on F (x) = τ exactly as described in (57). The remarks of Sect. 2 on the
kinematical or dynamical nature of the generators in the different forms are
therefore equally valid in quantum field theory.

Let us first discuss the instant form. We recall the hypersurface of equal
time, Σ : F (x) ≡ N · x ≡ x0 = τ , which leads to a surface element

dσµ = d4xNµδ(x0 − τ) , Nµ = (1,0) . (103)

Using (101, 102), the Poincaré generators are obtained as

Pµ =
∫

Σ

d3xT 0µ , (104)

Mµν =
∫

Σ

d3x
(
xµT 0ν − xνT 0µ

)
. (105)

For the front form, quantization hypersurface and surface element are given
by

Σ : F (x) ≡ N · x ≡ x+ = τ , dσµ = d4xNµ δ(x+ − τ) , (106)
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where N is the light-like four-vector of (70). In terms of Tµν , the Poincaré
generators are

Pµ = 1
2

∫
Σ

dx−d2x⊥ T+µ , (107)

Mµν = 1
2

∫
Σ

dx−d2x⊥
(
xµT+ν − xνT+µ

)
. (108)

The somewhat peculiar factor 1/2 is the Jacobian which arises upon trans-
forming to light-cone coordinates.

3.2 Schwinger’s (Quantum) Action Principle

Our next task is to actually quantize the fields on the hypersurfaces Σ : τ =
F (x) of equal time τ . There is more than one possibility to do so, and we
will explain a few of these. We begin with a method that is essentially due
to Schwinger [135–137]. We define a four-momentum density

Πµ =
∂L

∂(∂µφ)
, (109)

so that the energy-momentum tensor Tµν can be written as

Tµν = Πµ∂νφ− gµνL . (110)

In some sense, this can be viewed as a covariant generalization of the usual
Legendre transformation between Hamiltonian and Lagrangian. Using the
normal Nµ of the hypersurface Σ, we define the canonical momentum (den-
sity) as the projection of Πµ,

π ≡ N ·Π . (111)

Schwinger’s action principle states that, upon variation, the action S =∫
ddxL changes at most by a surface term which (if Σ is not varied, i.e. δxµ =

0) is given by

δG(τ) =
∫

Σ

dσµΠ
µ δφ =

∫
ddx δ(τ − F )π δφ . (112)

The quantity δG is interpreted as the generator of field transformations, so
that we have

δφ = {φ , δG} , (113)

in case that Σ is entirely space-like (with time-like normal) [135,136]. We
note in passing that the generator δG is a field theoretic generalization of the
canonical one-form dG ≡ pidq

i used in analytical mechanics.
As in the preceding section we have to distinguish two cases depending on

whether the normal vector N is time-like or space-like. For time-like N , the
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associated hypersurface is space-like. The basic example for this case is the
instant form, to which we immediately specialize. The canonical momentum
density is given by the velocity, π = φ̇, and the Lagrangian is quadratic in φ̇.
The canonical Poisson bracket is derived from Schwinger’s action principle
using (113),

δφ(x) = {φ(x) , δG(τ)}
=
∫
dy0

∫
d3y δ(x0 − y0) {φ(x) , π(y)} δφ(y)

=
∫
d3y {φ(x) , φ(y)} δφ(y)|x0=y0=τ . (114)

The canonical Poisson bracket, therefore, must be

{φ(x) , φ(y)}x,y∈Σ = δ3(x − y) , (115)

which, of course, is the standard result. The second case, N light-like, cor-
responds to the front form. With minor modifications, Schwinger’s approach
can also be used here, resulting in what is interchangably called light-cone,
light-front or null-plane quantization. The canonical light-cone momentum is

π = N ·Π = N · ∂φ = ∂+φ ≡ 2
∂

∂x−φ , (116)

which is peculiar to the extent that it does not involve a (light-cone) time
derivative. Therefore, π is a dependent quantity which does not provide ad-
ditional information, being known on Σ when the field is known there. Thus,
π is merely an abbreviation for ∂+φ which is a spatial derivative. Again, the
reason is that the normal Nµ of the null-plane Σ lies within Σ. This leads
to the important consequence that the light-cone Lagrangian is linear in the
velocity ∂−φ, or, put differently, that light-cone field theories are first-order
systems. As a result, φ and ∂+φ have to be treated on the same footing within
Schwinger’s approach which leads to an additional factor 1/2 compared to
(113),

1
2δφ = {φ , δG} , (117)

with a front-form generator

δG(x+) = 1
2

∫
Σ

dx−d2x⊥∂+φ δφ . (118)

The appearance of the peculiar factor 1/2 in (117) has been discussed at
length by Schwinger [137] – see also [32]. Roughly speaking it stems from the
fact that the independent field content within the front form is only one half
of that in the instant form. The factor 1/2 cancels the light-cone Jacobian
J = 1/2 in (118), so that we are left with the Poisson bracket,

{φ(x) , π(y)}x,y∈Σ = δ(x− − y−)δ2(x⊥ − y⊥) . (119)
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As usual, commutators are inferred from Poisson brackets by invoking Dirac’s
correspondence principle, that is, by replacing the bracket by i times the
commutator. For arbitrary classical observables, A, B, this means explicitly,

[Â, B̂] = i ̂{A , B} . (120)

We do not address the question of operator-ordering ambiguities at this point,
as these will not be an issue in the applications to be discussed later on. One
should, however, be aware of this problem, as it indeed can arise within the
framework of light-cone quantization [70].

Using (120), the bracket (119) leads to the following commutator,

[φ(x), π(y)]x+=y+=τ = iδ(x− − y−)δ2(x⊥ − y⊥) . (121)

As the independent quantities are the fields themselves, we invert the deriva-
tive ∂+ and obtain the more fundamental commutator

[φ(x), φ(y)]x+=y+=τ = − i
4 sgn(x− − y−)δ2(x⊥ − y⊥) . (122)

In deriving (122) we have chosen the anti-symmetric Green function sgn(x−)
satisfying

∂

∂x− sgn(x−) = 2δ(x−) , (123)

so that (121) is reobtained upon differentiating (122) with respect to y−. We
will see later that the field commutator (122) can be derived directly within
Schwinger’s method. Before that, however, let us study the relation between
the choice of initializing hypersurfaces, the problem of field quantization and
the solutions of the dynamical equations.

3.3 Quantization as an Initial- and/or Boundary-Value Problem

As a prototype field theory we consider a massive scalar field φ in 1+1 di-
mensions. Its dynamics is encoded in the action

S[φ] =
∫
d2xL =

∫
d2x

( 1
2∂µφ∂

µφ− 1
2m

2φ2 − V[φ]
)
, (124)

where V is some interaction term like e.g. λφ4 and L = L0 + V. By varying
the free action in the standard way we obtain

δS =
∫

∂M

dσµΠ
µδφ+

∫
M

[
∂L0

∂φ
− ∂µ

∂L0

∂(∂µφ)

]
δφ . (125)

If we do not vary on the boundary of our integration region M , δφ|∂M = 0,
the surface term in δS (which is closely related to δG from (112)), vanishes
and we end up with the (massive) Klein-Gordon equation in 1+1 dimensions,

(� +m2)φ = 0 . (126)
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In this subsection, we will solve this equation by specifying initial and/or
boundary conditions for the scalar field φ on different hypersurfaces Σ. In
addition, we will clarify the relation between the associated initial value prob-
lems and the determination of ‘equal-time’ commutators.

It may look rather trivial to consider just the free theory, but this is not
entirely true. Let us analyze what quantization of a field theory means in the
light of the different forms of relativistic dynamics. One specifies canonical
commutators like [φ(x), φ(y)]x,y∈Σ , where the hypersurface Σ: τ = const
defines the evolution parameter τ . As both x and y lie in Σ, the commutator
is evaluated at ‘equal time’, which implies that it is a kinematical quantity.
Therefore, it is the same for the free and the interacting theory.

Now, if φ is a free field, the commutator,

[φ(x), φ(0)] = i∆(x) , (127)

is exactly known: it is the Pauli-Jordan or Schwinger function ∆ [84,134]
which is a special solution of the Klein-Gordon equation (126). It can be
obtained directly from the action in a covariant manner as a Peierls bracket
[119,40]. Alternatively, one can find it by evaluating the Fourier integral,

∆(x) = − i

2π

∫
d2p δ(p2 −m2) sgn(p0)e−ip·x

= − 1
2 sgn(x0) θ(x2) J0(m

√
x2)

= − 1
4

[
sgn(x+) + sgn(x−)

]
J0(m

√
x+x−) , (128)

where I have given both the instant and front form representation [71]. We
note that ∆ is antisymmetric, ∆(x) = −∆(−x) and Lorentz invariant (under
proper orthochronous transformations). Most important, it is causal, i.e. it
vanishes outside the light-cone, x2 < 0 (see Fig. 2).

If φ is an interacting field, causality, of course, must still hold. If x and y
are space-like with respect to each other, the commutator thus still vanishes,

[φ(x), φ(y)](x−y)2<0 = 0 . (129)

This expresses the fact that fields which are separated by a space-like distance
cannot communicate with each other. For the front form, with the hypersur-
face Σ : x+ = 0, (129) cannot be used to obtain the canonical commutators:
In 1+1 dimensions, Σ is part of the light-cone and therefore entirely light-
like. In higher dimensions, Σ still contains light-like directions namely where
x− = x⊥ = 0. For this reason, the light-front commutator (122) of two free
fields does not vanish identically.

Let me now discuss the explicit relation between the choice of equal-
time commutators and the classical initial/boundary for the Klein-Gordon
equation. Three examples are of interest.
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Fig. 2. The Pauli-Jordan function as a function of T = mx0/2 and X = mx1/2. It
vanishes outside the light-cone and oscillates inside.

Cauchy Data: Instant Form. Conventional quantization on a space-like
surface (based on the instant form) corresponds to a Cauchy problem: if one
specifies the field φ and its time derivative φ̇ on Σ : x0 = t = 0,

φ(t = 0, x) = f(x) , (130)
φ̇(t = 0, x) = g(x) , (131)

where the functions f and g denote the initial data (depending on x ≡ x1),
the solution of the Klein-Gordon equation is uniquely determined. This can
be checked by considering the Taylor expansion around (t, x) ∈ Σ, i.e. t = 0,

φ(t, x) = φ(0, x) + tφ̇(0, x) + 1
2 t

2φ̈(0, x) + . . . , (132)

with the overdot denoting the time derivative. From this we see that one has
to know all time derivatives of φ on Σ once the data f , g are given. If we
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calculate these,

φ = f ,

φ̇ = g ,

φ̈ = φ′′ −m2φ = f ′′ −m2f ,

∂3φ

∂t3
= φ̇′′ −m2φ̇ = g′′ −m2g ,

... . (133)

we find that indeed all time derivatives are given in terms of f and g and their
known spatial derivatives, denoted by the prime. In the last two identities,
we have made use of the equation of motion. As a result, we see that the
Cauchy problem is well posed: the solution of the Klein-Gordon equation is
uniquely determined by the data on Σ.

Upon quantization, this translates into the fact that the Fock operators
can be expressed in terms of the data,

a(p1) =
∫
dx1e−ip1x1

[
ωp φ(x0 = 0, x1) + iφ̇(x0 = 0, x1)

]
, (134)

with ωp = (p2
1+m

2)1/2. In addition, the canonical commutators can be viewed
as the Cauchy data for the Pauli-Jordan function ∆,[

φ(x), φ(0)
]

x0=0
= i∆(x)|x0=0 = 0 , (135)[

φ̇(x), φ(0)
]

x0=0
= i∆̇(x)|x0=0 = −iδ(x1) . (136)

As stated above, the vanishing of the commutator (135) is due to causality.

The Characteristic Initial-Value Problem. In the following I will per-
form an analogous discussion for the hypersurfaces Σ : x± = const, which,
in d = 1+1, constitute the entire light-cone, x2 = 0. In Dirac’s classification,
the light-cone corresponds to a degenerate point form with parameter a = 0
(see Table 1). One thus does not have transitivity as points on different ‘legs’
of the cone are not related by a kinematical operation. Still, it turns out that
the associated initial-value problem is well posed [114,129]

The light-fronts x± = 0 are characteristics of the Klein-Gordon equation
[45]. Therefore, one is dealing with a characteristic initial-value problem [38],
for which one has to provide the data

φ(x+ = 0, x−) = f(x−) , (137)
φ(x+, x− = 0) = g(x+) , (138)
f(x− = 0) = g(x+ = 0) , (139)
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where the last identity is a continuity condition. Consistency is again checked
by Taylor expanding, this time around (x+, x−) = 0,

∂+φ = ∂+f ≡ f ′ ,
∂−φ = ∂−g ≡ ġ ,

∂+∂−φ = m2φ = m2f = m2g ,

∂+∂+φ = f ′′ ,
∂−∂−φ = g̈ ,

∂+∂+∂−φ = m2f ′ ,
∂−∂−∂+φ = m2ġ ,

... . (140)

Whereever a factor of m2 appears we have made use of the Klein-Gordon
equation. We thus note that the data (together with their known derivatives)
determine all partial derivatives of φ at the vertex of the cone, (x+, x−) = 0.
Intuitively, this corresponds to the fact that the information spreads from a
source located at origin.

The characteristic initial-value problem amounts to quantization on two
characteristics, x± = 0, i.e., in d = 1 + 1, really on the light cone, x2 = 0.
The following two independent commutators,

[φ(x), φ(0)]x±=0 = i∆(x)|x±=0 = − i
4 sgn(x∓) , (141)

are then characteristic data for the Pauli-Jordan function. It turns out that,
in case the field φ is massless, the above quantization procedure is the only
consistent one (in d=1+1), if one wants to use light-like hypersurfaces [17].

However, it is important to note that the characteristic initial-value prob-
lem does not correspond to light-cone quantization. One would need two
Hamiltonians P− and P+, and, accordingly, two time parameters. This seems
somewhat weird, to say the least, and will not be pursued any further.

Initial-Boundary-Data: Front-Form. In order to find the initial-value
problem of the front form with a single time parameter x+, let us naively try
a straightforward analog of the Cauchy data and prescribe field and velocity
on Σ : x+ = 0,

φ(x+ = 0, x−) = f(x−) , (142)
∂−φ(x+ = 0, x−) = g(x−) . (143)

It turns out, however, that this overdetermines the system. Namely, from the
equation of motion

∂+∂−φ = m2φ , (144)
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it is actually possible to obtain the velocity ∂−φ by inversion of the spatial
derivative ∂+,

∂−φ = m2(∂+)−1φ = m2(∂+)−1f . (145)
The last identity holds on Σ and implies that the data g are unnecessary
(and will even lead to an inconsistency) as the velocity is already determined
by f . This is confirmed by the Taylor expansion on Σ,

φ = f ,

∂+φ = ∂+f ,

∂−φ = m2(∂+)−1f ,

∂−∂−φ = m2(∂+)−1∂−φ = m4(∂+)−2f ,

... . (146)

It thus seems that the front form requires only half of the data as compared
to the instant form. This appearance, however, is deceptive. Note that we
have to invert the differential operator ∂+. The inverse is nothing but the
Green function G defined via

∂+G(x−) = δ(x−) . (147)

Clearly, this Green function is determined only up to a homogeneous solution
h satisfying

∂+h = 0 , (148)
i.e. up to a zero mode h = h(x+) of the operator ∂+. Thus, in order to
uniquely specify the Green function (147), we have to provide additional in-
formation in terms of boundary conditions. The standard choice is to demand
antisymmetry in x−, whence

G(x−) =
1
4
sgn(x−) , (149)

which we have already used in (122) and (123). Before we discuss the physi-
cal reason for demanding antisymmetry, let us briefly go to momentum space
where we replace ∂+ by ip+. The equation (147) for the Green function be-
comes ip+G(p+) = 1, which has the general solution

G(p+) = −i/p+ + h(p−)δ(p+) . (150)

In this identity, 1/p+ has to be viewed as a distribution corresponding to
an arbitrary regularization of the singular function 1/p+ [53]. Any two reg-
ularizations differ by terms proportional to δ(p+), i.e. a zero mode of p+.
Choosing an antisymmetric Green function uniquely yields a principal value
prescription,

iG(p+) = P 1
p+

=
1
2

(
1

p+ + iε
+

1
p+ − iε

)
, (151)

which is the canonical regularization of 1/p+.



84 Thomas Heinzl

Altogether we have seen that the front form corresponds to prescribing
both initial and boundary conditions, so that one has a ‘mixed’ or initial-
boundary value problem. What are the implications for quantization? We
address this question by determining the Poisson brackets through the re-
quirement that Euler-Lagrange and canonical equations should be equiva-
lent. To this end we solve the Klein-Gordon equation (126) for the velocity
φ̇ ≡ ∂φ/∂x+ as in (145). This gives

φ̇(x+, x−) = −m2

4

∫
dy−G(x−, y−)φ(x+, y−) , (152)

using the Green function G from (149). The Hamiltonian equation of motion
is given by the Poisson bracket with H = 1

2m
2
∫
dx−φ2,

φ̇(x+, x−) =
m2

2

∫
dy− {φ(x+, x−) , φ(x+, y−)

}
φ(x+, y−) , (153)

with the bracket of the fields φ to be determined. Clearly, Euler-Lagrange
and Hamiltonian equation of motion, (152) and (153) become equivalent if
one identifies {

φ(x+, x−) , φ(x+, y−)
} ≡ − 1

2G(x−, y−) . (154)

We thus see that the fundamental Poisson bracket coincides with the Green
function which, accordingly, justifies the requirement of antisymmetry. After
quantization, (154) of course coincides with (122), the result from Schwinger’s
action principle, specialized to d = 1 + 1,

[φ(x), φ(0)]x+=0 = i∆(x)|x+=0 = − i

4
sgn(x−) . (155)

From the momentum space perspective,

[φ(p+), φ(0)] =
i

2
G(p+) =

1
2
P 1
p+

, (156)

we conclude that, technically, light-cone quantization is the inversion of the
longitudinal momentum p+ and as such requires the specification of initial-
boundary data. In some sense, this can also be viewed as an infrared regular-
ization because one provides a prescription of dealing with a pole at vanishing
longitudinal momentum, p+ = 0. As is well known, a particularly nice way of
regularizing in the infrared is to enclose the system under consideration in a
finite spatial volume. This is the topic of the next subsection.

3.4 DLCQ – Basics

DLCQ is the acronym for ‘discretized light-cone quantization’, originally de-
veloped in [106,117,118]. The physical system under consideration is enclosed
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in a finite volume with discrete momenta and prescribed boundary conditions
in x−. Recently, there has been renewed interest in this method in the context
of constructing a matrix model of M-theory [6,145].

Our starting point is the Fourier representation for a solution of the Klein-
Gordon equation (still in infinite volume),

φ(x) =
∫
d2p

2π
χ(p) δ(p+p− −m2) e−ip·x

=
∫
dp+dp−

4π
χ(p+, p−)

1
|p+| δ(p

− −m2/p+) e−ip·x

=
∫

dp+

4π|p+|χ(p+, p̂−) e−ip̂·x

=
∫ ∞

0

dp+

4πp+

[
χ(p+, p̂−)e−ip̂·x + χ(−p+,−p̂−)eip̂·x]

≡
∫

dp+

4πp+
θ(p+)

[
a(p+)e−ip̂·x + a∗(p+)eip̂·x] . (157)

The following remarks are in order: we have defined the on-shell energy, p̂− ≡
m2/p+; contrary to the instant form, the integration over the positive and
negative mass hyperboloid is achieved by a single delta function. Again, this
is a consequence of the linearity of the mass-shell constraint in p−. The two
branches of the mass-shell correspond to positive and negative values of p+

(and also p̂−), respectively. Associated with the two signs of the kinematical
momentum p+ are the positive and negative frequency modes a, a∗, defined
in such a way that their argument p+ is always positive (cf. the step function
θ in the last line). This can equivalently be viewed as the reality condition

a∗(p+) = a(−p+) , (158)

as is obvious from the last step in the derivation (157). Upon quantization this
implies that annihilation operators with negative longitudinal momentum
p+ are actually creation operators for particles with positive p+. The field
commutator (155) is reproduced by demanding

[a(k+), a†(p+)] = 4πp+δ(k+ − p+) . (159)

As already indicated, DLCQ amounts to compactifying the spatial light-cone
coordinate, −L ≤ x− ≤ L, and imposing periodic boundary conditions for
the fields,

φ(x+, x− = −L) = φ(x+, x− = L) , (160)

which are to hold for all light-cone times x+. Space-time is thus endowed
with the topology of a cylinder. This implies discrete longitudinal momenta,
k+

n = 2πn/L, so that the Fock expansion (157) becomes

φ(x+ = 0, x−) = a0 +
∑
n>0

1√
4πn

(
ane

−inπx−/L + a∗
ne

inπx−/L
)
, (161)
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Note that we have allowed for a zero momentum mode a0. We will see in a
moment that it actually vanishes in the free theory. Plugging (161) into the
free Lagrangian

L0[φ] = 1
2

∫
dx− ( 1

2∂
+φ∂−φ− 1

2m
2φ2) , (162)

we obtain (discarding a total time derivative)

L0[an, a0] = −i
∑
n>0

anȧ
∗
n−m2La2

0−
∑
n>0

m2L

4πn
a∗

nan ≡ −i
∑
n>0

anȧ
∗
n−H , (163)

with H denoting the Hamiltonian and ȧ∗
n = ∂a∗

n/∂x
+. From both represen-

tations (162) and (163) it is obvious that the light-cone Lagrangian is linear
in the velocity (∂−φ and ȧ∗

n, respectively). A particularly suited method for
quantization in this case is the one of Faddeev and Jackiw for first order
systems [49,79]. It avoids many of the technicalities of the Dirac-Bergmann
formalism and is in general more economic. It reduces phase-space right from
the beginning as there are no ‘primary constraints’ introduced. The method
is essentially equivalent to Schwinger’s action principle, especially in the form
presented in [137]. For the case at hand, the method basically boils down to
demanding equivalence of the Euler-Lagrange and Hamiltonian equations of
motion (cf. last subsection).

The former are given by

−iȧn +
m2L

4πn
an = 0 , (164)

2m2La0 = 0 . (165)

The first equation, (164), is just the free Klein-Gordon equation which can
be easily seen upon multiplying by k+

n . The second identity, (165), is nondy-
namical and thus a constraint which states the absence of a zero mode for
free fields, a0 = 0.

The canonical equations are

ȧn = {an , H} =
∑
k>0

m2L

4πk
{an , a

∗
k} ak , (166)

which obviously coincides with (164) if the canonical bracket is

{ak , a
∗
n} = −iδkn . (167)

The constraint (165) is obtained by differentiating the Hamiltonian,

∂H

∂a0
= 2m2La0 = 0 . (168)
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Let us briefly show that the approach presented above is equivalent to Schwin-
ger’s [137]. From (163) we read off a generator

δG = −i
∑
n>0

anδa
∗
n (169)

effecting the transformation

δa∗
n = {a∗

n , δG} = −i
∑
k>0

{a∗
n , ak} δa∗

k , (170)

which in turn implies the canonical bracket (167).
Quantization is performed as usual by employing the correspondence prin-

ciple (120), so that, from (167), the elementary commutator is given by

[am, a
†
n] = δmn . (171)

The Fock space expansion for the (free) scalar field φ thus becomes

φ(x+ = 0, x−) =
∑
n>0

1√
4πn

(
ane

−inπx−/L + a†
ne

inπx−/L
)
, (172)

Like in the infinite-volume expression (157), the Fock ‘measure’ 1/
√

4πn does
not involve any scale like the mass m or the volume L. This is at variance
with the analogous expansion in the instant form which reads

φ(x, t = 0) =
1√
2L

∑
n

1√
2(k2

n +m2)

(
ane

iknx + a†
ne

−iknx
)
, (173)

where −L ≤ x ≤ L, kn = πn/L, and [an, a
†
m] = δmn. Obviously, the ‘measure’

(k2
n + m2)1/2 does depend on m and L. We will discuss some consequences

of this difference in Sect. 3.6.
We can use the results (171) and (172) to calculate the free field commu-

tator at equal light-cone time x+,

[φ(x), φ(0)]x+=0 =
∑
n 
=0

1
4πn

e−inπx−/L = − i

2

[
1
2
sgn(x−) − x−

2L

]
. (174)

This coincides with (155) up to a finite size correction given by the additional
term x−/2L. The effect of this term is two-fold. First, it makes the sign
function periodic (in the interval −L ≤ x− ≤ L), and second, it guarantees
the absence of a zero mode which must hold according to (165), (168), and

L∫
−L

dx−[φ(x), φ(0)]x+=0 = 0 . (175)
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One may equally think of this as the finite-volume analog of the principal
value prescription.

The commutator (174) has originally been obtained in [106] using the
Dirac-Bergmann algorithm for constrained systems. The Faddeev-Jackiw me-
thod, however, is much more economic and transparent. In particular, it
makes clear that the basic canonical variables of a light-cone field theory are
the Fock operators or their classical counterparts. The an with, say, −N ≤
n ≤ N in (161) can be viewed as defining a (2N+1)-dimensional phase space.
A phase space, however, should have even dimension. This is accomplished
by choosing a polarization in terms of positions and momenta, here an and
a†

n, with n > 0, and by the vanishing of the zero mode, a0 = 0. It turns
out that this vanishing is a peculiarity of the free theory as is discussed in
[106,155,68].

At this point one should honestly state that the issue of zero modes is one
of the unsolved problems of light-cone quantization. The constraint equations
for the zero modes are in general very hard to solve unless one has some small
parameter like in perturbation theory [70] or within a large-N expansion
[19,20]. Using a path integral approach, it has recently been shown [72] that
integrating out the zero modes constitutes a strong coupling problem. There
are speculations that this problem might be less severe if one goes beyond
quantum field theory, i.e. in string or M-theory [5].

In the last reference, the author also states that compactification in a
light-like direction “is close to a space with periodic time” and thus “weird”,
in view of possible ‘grandfather paradoxes’. Therefore, the natural question
arises whether DLCQ is actually consistent with causality.

3.5 DLCQ – Causality

In this subsection I will address the question under which circumstances
compactification of ‘space’ is compatible with the requirements of causality.
The presented results are based on recent work with N. Scheu and H. Kröger
[69].

In (128) and (129) we have seen that the (infinite-volume) commutator of
two scalar fields vanishes whenever their space-time arguments are separated
by a space-like distance (cf. Fig. 2). As already mentioned, this is a man-
ifestation of the principle of microcausality, which is the general statement
that the commutator of any two observables O1(x) and O2(y) must vanish
whenever their separation x − y is space-like. Physically, this implies that
measurements of the observables O1 and O2 performed at x and y, do not
interfere. Some consequences of this principle are the spin-statistics theorem,
analyticity properties of Green functions leading to dispersion relations etc.
[143].

Our starting point are the Fourier representations of the Pauli-Jordan
function, both for the instant and front form (denoted IF and FF, respec-
tively),
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IF: ∆(x) = −
∫

dk1

2πωk
sin(k · x) ≡

∫
dk1 I(k1) , (176)

FF: ∆(x) = −
∫ ∞

0

dk+

2πk+ sin(k · x) ≡
∫
dk+ I(k+) . (177)

Both integrals yield the same result (128) for the Pauli-Jordan function.
Note, however, that the integrand I(k+) is exploding and rapidly oscillating
for k+ → 0 (see Fig. 3) so that the finite result for the integral is due to
sizable cancellations that occur upon integration.

40

20

-20

-40

0.1 0.2 0.3 0.4 k /m+

Fig. 3. The integrand I(k+).

To obtain the finite-volume representations for the commutator, one pro-
ceeds as in Sect. 3.4 by restricting the spatial coordinates, −L ≤ x1, x− ≤ L,
and imposing periodic boundary conditions for the field φ. Momenta become
discrete, k1

n ≡ πn/L, and k+
n ≡ 2πn/L. The finite-volume representations are

defined by replacing the integrals (176) and (177) by the discrete sums,

∆IF(x) ≡ −
N∑

n=−N

1
2ωnL

sin(kn · x) , (178)

∆FF(x) ≡ −
N∑

n=1

1
2πn

sin(kn · x) . (179)
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The on-shell energies for discrete momenta are defined as

ωn = (n2π2/L2 +m2)1/2 and k̂−
n = m2L/2πn . (180)

For both functions, ∆IF and ∆FF, the periodicity in x1 and x−, respectively,
with periodicity length 2L, is obvious. The limit N → ∞ is understood unless
we perform numerical calculations where N is kept finite.

The evaluation of the sums (178) and (179) is not straightforward. To
gain some intuition, we evaluate them numerically beginning with the IF
expression (178). The resulting ∆IF is plotted in Fig. 4.

0.1

1- 1

X

Fig. 4. ∆IF(X, T ) as a function of X = x1/2L. T = X0/2L = 0.2, mL = 1, N = 50.

Upon inspection, one notes the following: Up to small oscillations stem-
ming from the (unavoidable) Gibbs phenomenon, ∆IF vanishes outside the
light-cone (|x0| < |x1| < L), and thus is causal even in finite volume. If we
let the summation cutoff N go to infinity, ∆IF approaches the continuum
Pauli-Jordan function ∆ (for −L < x0, x1 < L). There is a clear physical pic-
ture behind these observations. One can imagine a periodic array of sources
located at the quantization hypersurface x0 = 0 at points x1 = 2Ln. These
sources ‘emit’ spherical ‘waves’ into their own future LCs which start to over-
lap after time x0 > L. At this point the ’waves’ emanating from the sources
begin to interfere. Thus, the influence of the BC is felt only after a long
time (as large as the spatial extension L of the system). This picture can be
confirmed analytically. An application of the Poisson resummation formula
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0.1

0.5- 0.5

v

Fig. 5. ∆FF(v, w) as a function of v = x−/2L. w = 10000, N = 70. It does not
vanish outside the LC, −1 < v < 0.

yields
∆IF(x) =

∑
n

∆(x0, x1 + 2Ln) , (181)

i.e. a periodic array of ∆’s which are nonoverlapping as long as x0 < L.
For the front form, the situation turns out to be more complicated. Using

Poisson resummation one can derive the finite-volume version of the canonical
light-cone commutator, at x+ = 0, which is a periodic sign function,

∆FF(x+ = 0, x−) = − 1
4

∑
n

sgn(x− + 2Ln) + x−/4L . (182)

This coincides with (174) if x− is restricted to lie between −L and L.
For x+ �= 0, I have evaluated ∆FF numerically. The result is shown in

Fig. 5 as a function of the dimensionless variables v ≡ x−/2L, w = m2Lx+/2.
For large values of w, ∆FF attains a very irregular shape, though numerically
the representation (179) converges to a periodic function. The most important
observation, however, is that ∆FF does not vanish outside the light-cone, i.e.
for x− < 0, if x+ > 0 as in Fig. 5. This a clear violation of microcausality as
has first been observed in [133].

As already stated, it is not straightforward to confirm these findings an-
alytically. Poisson resummation does not work; first, because of the weak
localization properties of ∆ in x− (asymptotically, is goes like (x−)−1/4);
second, and even worse, because the zero mode I(k+ = 0) does not exist



92 Thomas Heinzl

0.1

0.5- 0.5 v

Fig. 6. Comparison of the Fourier representation (179) with the result of Bernoulli
resummation (smooth, heavy line).

for x+ �= 0. Nevertheless, an independent confirmation of causality violation
can be obtained from resumming (179) in terms of Bernoulli polynomials,
thereby replacing the Fourier series by a (rapidly converging) power series
in w. The result is shown in Fig. 6 for w = 5. There is nice agreement with
the Fourier representation (179) (and no Gibbs phenomenon, as expected).
Again, causality violation is obvious.

From a technical point of view, the violation of causality is not really as-
tonishing. We are replacing the integral over the severely oscillating function
I(k+) by a Riemann sum with equidistant grid points. In this way, we are
sampling the integrand in such a way that the huge cancellations present in
the integral do not take place. Instead, for small k+, we replace I(k+) by
a random ‘staircase’ function which in the end produces the ‘noise’ seen in
Fig. 5.

At this point a natural questions arises: is there a remedy for the causal-
ity violation? The answer is positive. We have found two ways around the
problem3, both, however, with shortcomings of their own. The first way is
to regularize the integral (177), replacing ∆ by ∆ε in such a way that the
associated integrand satisfies Iε(k+ = 0) = 0. One can chose e.g. a princi-
pal value regularization [76] or a more sophisticated prescription [110]. In
this way, one suppresses the oscillations and the divergence at k+ = 0 at
the price of introducing a small causality violation of order ε. But now ∆ε

can be approximated by a discrete sum if the momentum grid is sufficiently
3 For a third method, see [30].
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- 0.6 1

0.1

v

Fig. 7. The causal commutator ∆c as a function of v. x+/2L = 0.2, mL = 50,
N = 50.

fine, k+ � ε. The order of limits, however, becomes important. First, one
has to perform the infinite-volume limit, k+ → 0, L → ∞, and only then
the limit ε → 0. For this method, Poisson resummation should work [130].
However, it seems somewhat awkward and not very economic to perform two
regularizations (finite L and ε).

An alternative way of resolving the problem is the following: instead of an
equally spaced grid à la DLCQ (i.e. k+

n = const) one can chose an adapted
momentum grid with spacing k+

n ∼ 1/n for small n. In this way, one is
sampling the small-k+-region of I(k+) in a more reasonable way. Practically,
the method amounts to viewing ∆IF as the correct finite-volume expression
and replacing x0 and x1 by (x+ ± x+)/2, respectively. This is equivalent to
introducing new discrete momenta, k±

n ≡ ωn ± k1
n.

As a result, the point k+ = 0 becomes an accumulation point of the mo-
mentum grid which leads to a causal finite-volume representation ∆c(x+, x−)
of ∆ (see Fig. 7). This function, however, is no longer periodic in x−. We
thus find that, with a light-like direction being compactified, one cannot
have both, periodicity and causality. On the other hand, the regularization
method above seems to suggest that the causality violation is in some sense
’small’ and thus may have a minor effect on the calculation of observables.
Whether this statement is true has still to be worked out in detail.
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3.6 The Functional Schrödinger Picture

Having discussed some difficulties of light-cone quantization in a finite ‘box’
we go back to the infinite volume and consider yet another method of quan-
tization, the functional Schrödinger picture. The idea of this method is to
mimic quantum mechanics within quantum field theory. States are described
as functionals Ψ [φ] depending on the field(s) φ, while operators are combina-
tions of multiplication by functionals of φ and functional differentiation with
respect to φ.

Bosons (Instant Form). For a free massive scalar field in two dimensions
one finds the following results using instant form dynamics [78]. The canonical
momentum (operator) acts via differentiation,

π̂(x)Ψ [φ] = −i δ

δφ(x)
Ψ [φ] . (183)

The ground state Ψ0 of the system, the Fock vacuum, is obtained by direct
analogy with the harmonic oscillator. One rewrites the vacuum annihilation
condition a(k)|0〉 = 0 as a functional differential equation,[∫

dyΩ(x− y)φ(y) +
δ

δφ(x)

]
Ψ0[φ] = 0 , (184)

which is solved by a Gaussian,

Ψ0[φ] ∼ exp
[− 1

2 (φ,Ωφ)
]
. (185)

Here we have introduced the ‘quadratic form’,

(φ,Ωφ) ≡
∫
dx dy φ(x)Ω(x− y)φ(y) , (186)

using the kernel (or covariance) Ω(x−y). The latter is defined by its Fourier
transform,

Ω(k) ≡
√
k2 +m2 ≡ ωk , (187)

which is nothing but the on-shell energy of a free massive scalar. For later use,
it is important to note that the instant form covariance Ω is explicitly mass
dependent. As a consequence, if we have two free scalars of masses m1 and
m2, respectively, their Fock vacua are related by a Bogolubov transformation,

|Ω2〉 = U21|Ω1〉 , (188)

with the unitary operator U21 explicitly given by

U21 = exp
∫

dk

4π
θk[a1(k)a1(−k) − a†

1(k)a
†
1(−k)] . (189)

θk is the Bogolubov angle. We mention in passing that in order to properly
define U21 as an operator one should work in finite volume to avoid infrared
singularities [67]. Otherwise the two vacuum states have vanishing overlap.
Within the functional Schrödinger picture this has been analysed in [78].
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Fermions (Instant Form). For fermions, the situation is slightly more
involved. Note that even within the instant form, the Dirac Lagrangian rep-
resents a first-order system, so that one expects some similarities with light-
cone quantization in this case. This expectation will indeed turn out to be
true. The instant form fermionic field operators are given by [86]

ψ̂α =
1√
2

(
uα +

δ

δu∗
α

)
, ψ̂†

α =
1√
2

(
u∗

α +
δ

δuα

)
, (190)

and thus are linear combinations of multiplication by and differentiation with
respect to the complex-valued Grassmann functions uα(x) and u∗

α(x). These
functions characterize the states, for example the ground state (Fock vacuum)
which is again Gaussian,

Ψ0[u, u∗] ∼ exp(u∗, Ωu) . (191)

For 2d massive fermions, the covariance is found to be

Ω(k) =
1√

k2 +m2
(kσ1 −mσ3) , (192)

with σ1 and σ3 the standard Pauli matrices. Again, Ω is explicitly mass
dependent. In the massless case, m = 0, it becomes particularly simple,

Ω(k) = sgn(k)σ1 , (193)

or, after Fourier transformation,

Ω(x− y) =
i

π
P 1
x− y

σ1 . (194)

Here we have once more made use of the fact that the principle value P(1/x)
is the Fourier transform of the sign function.

Bosons (Front Form). As stated above, the latter case is somewhat similar
to the generic situation in light-cone quantization. Let us again consider a
massive free scalar field φ in 2d with Fock expansion (157). We decompose it
into positive and negative frequency part,

φ = φ+[a] + φ−[a∗] ≡ u+ u∗ , (195)

where φ− = (φ+)∗ as φ is real. Quantization is performed by defining field
operators such that the canonical light-cone commutator (122) is reproduced.
The solution turns out to be somewhat more complicated than for instant
form fields, namely

φ̂+(x−) = u(x−) +
1
2

∫
dy−i∆+(x− − y−)

δ

δu∗(y−)
, (196)

φ̂−(x−) = u∗(x−) +
1
2

∫
dy−i∆−(x− − y−)

δ

δu(y−)
. (197)
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∆+ and ∆− are distributions that sum up to ∆, ∆+ + ∆− = ∆, and are
explicitly given by

i∆±(x−) = ∓ ln(±x− − iε) = ∓ ln |x−| ± i

4
θ(∓x−) . (198)

The ground state is annihilated by φ̂+, φ̂+Ψ0[u, u∗] = 0, which yields a func-
tional differential equation, again with Gaussian solution,

Ψ0[u, u∗] = exp[−(u∗, Ωu)] . (199)

The covariance is given by

Ω(x−) = 2i∂+δ(x−) , Ω(k+) = 2k+ , (200)

and thus is a local expression which is a very peculiar finding. In momentum
space, the ubiquitous longitudinal momentum k+ appears. One thing that is
particularly obvious from (200) is the fact that the light-cone Fock vacuum
is mass independent, Ψ0(m1) = Ψ0(m2) which means that the analog of the
Bogolubov transformation (189) is trivial, i.e. U21 = 11. This has been checked
explicitly for several examples, including the Nambu-Jona-Lasinio model [42]
and bosons and fermions coupled to external sources [67].

I believe that the locality of the covariance has far reaching consequences
which, however, are still to be worked out in the present framework. Within
ordinary Fock space language, some properties of the light-cone vacuum will
be discussed in what follows.

3.7 The Light-Cone Vacuum

One of the basic axioms of quantum field theory states that the spectrum
of the four-momentum operator is contained within the closure of the for-
ward light-cone [143,18]. The four-momentum Pµ of any physical, that is,
observable particle thus obeys

P 2 ≥ 0 , P 0 ≥ 0 , (201)

which is, of course, consistent with the mass-shell constraint, p2 = m2. The
tip of the cone, the point P 2 = P 0 = 0, corresponds to the vacuum. From
the spectrum condition (201) we infer that

P 2
0 − P 2

3 ≥ P 2
⊥ ≥ 0 or P 0 ≥ |P 3| . (202)

This implies for the longitudinal light-cone momentum,

P+ = P 0 + P 3 ≥ |P 3| + P 3 ≥ 0 . (203)

We thus have the important kinematical constraint that physical states must
have nonnegative longitudinal momentum,

〈phys|P+|phys〉 ≥ 0 . (204)
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The spectrum of P+ is thus bounded from below. Due to Lorentz invariance,
the vacuum |0〉 must have vanishing four-momentum, and in particular

P+|0〉 = 0 . (205)

Therefore, the vacuum is an eigenstate of P+ with the lowest possible eigen-
value, namely zero. We will be interested in the phenomenon of spontaneous
symmetry breaking, i.e. in the question whether – roughly speaking – the
vacuum is degenerate. Let us thus analyse whether there is another state,
|p+ = 0〉, having the same eigenvalue, p+ = 0, as the vacuum. If so, it must
be possible to create this state from the vacuum with some operator U ,

|p+ = 0〉 = U |0〉 , (206)

where U must not produce any longitudinal momentum. Note that within
ordinary quantization such a construction is straightforward and quite com-
mon, for example in BCS theory. A state with vanishing three-momentum
can be obtained via

|p = 0〉 =
∫
d3kf(k)a†(k)a†(−k)|0〉 , (207)

where f is an arbitrary wave function. Evidently, the contributions from
modes with positive and negative momenta cancel each other. It is obvious
as well, that within light-cone quantization things must be different as there
cannot be an analogous cancellation for the longitudinal momenta which are
always nonnegative. Instead, one could imagine something like

|p+ = p⊥ = 0〉 =
∫ ∞

0
dk+

∫
d2k⊥ f(k⊥)δ(k+)a†(k+,k⊥)a†(k+,−k⊥)|0〉 .

(208)
The problem thus boils down to the question whether there are Fock operators
carrying light-cone momentum k+ = 0. As we have seen in Sect. 3.4, there
are no such operators, and a construction like (208) is impossible.

The only remaining possibility is that, if U contains a creation operator
a†(k+ > 0) carrying longitudinal momentum k+ �= 0, there must be annihila-
tors that annihilate exactly the same amount k+ of momentum. Thus, after
Wick ordering, U must have the general form

U = 〈0|U |0〉 +
∫

k+>0

dk+ f2(k+)a†(k+)a(k+)

+
∫

p+>0

dp+

∫
k+>0

dk+ f3(k+, p+)a†(p+ + k+)a(p+)a(k+)

+
∫

p+>0

dp+

∫
k+>0

dk+ f̃3(k+, p+)a†(p+)a†(k+)a(k+ + p+)

+ . . . . (209)
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It follows that the light-cone vacuum |0〉 is an eigenstate of U ,

U |0〉 = 〈0|U |0〉|0〉 . (210)

As we only deal with rays in Hilbert space, the action of U on the vacuum
does not create a state distinct from the vacuum. One says that the vacuum
is trivial. Put differently, ‘there is no vacuum but the Fock vacuum’. Note
that this is actually consistent with our findings in the last subsection: the
light-cone vacuum is the same irrespective of the masses of the particles; the
Bogolubov transformation present in the instant form becomes trivial.

Let us analyse the dynamical implications of the general result (210). Any
quantity that is obtained by integrating some functional of the fields over x−,
i.e.,

F [φ] =
∫
dx−F [φ] , (211)

is of the form (209), because the integration can be viewed as a projection
onto the longitudinal momentum sector k+ = 0. The most important exam-
ples for such quantities are the Poincaré generators, as is obvious from the
representations (107, 108). This implies in particular that the trivial light-
cone vacuum is an eigenstate of the fully interacting light-cone Hamiltonian
P−,

P−|0〉 = 〈0|P−|0〉|0〉 . (212)

This can be seen alternatively by considering

P+P−|0〉 = P−P+|0〉 = 0 , (213)

which says that P−|0〉 is a state with k+ = 0, so that P− must have a Fock
representation like U in (209).

The actual value of 〈0|P−|0〉 is not important at this point as it only
defines the zero of light-cone energy. Note that, within the instant form, the
Fock or trivial vacuum is not an eigenstate of the full Hamiltonian as the
latter usually contains terms with only creation operators where positive and
negative three-momenta compensate to zero as in (207). The instant-form
vacuum thus is unstable under time evolution. Such a vacuum, a typical
example of which is provided by (207), is called ‘nontrivial’.

This concludes the general discussion of light-cone quantum field theory.
Having understood the foundations of the approach we are now heading for
the applications. We begin with a survey of the light-cone Schrödinger equa-
tion.

4 Light-Cone Wave Functions

In this section we collect some basic facts about the eigenvalue problem of the
light-cone Hamiltonian, or, in other words, about the light-cone Schrödinger
equation and its solutions, the light-cone wave functions. Throughout this
section, I will use the conventions of [22].
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4.1 Kinematics

To set the stage for the definition of light-cone wave functions let me first
introduce some relevant kinematical variables. Consider a system of many
particles which, for the time being, will be assumed as noninteracting. Let
the ith particle have mass mi and light-cone four-momentum

pi = (p+
i ,p⊥i, p

−
i ) . (214)

As the particles are free, the total four-momentum is conserved and thus
given by the sum of the individual momenta,

P =
∑

i

pi . (215)

The individual particles are on-shell, so their four-momentum squared is

p2
i = p+

i p
−
i − p2

⊥i = m2
i . (216)

The square of the total four-momentum, on the other hand, defines the free
invariant mass squared,

P 2 = P+P− − P 2
⊥ ≡ M2

0 , (217)

a quantity that will become important later on. We introduce relative mo-
mentum coordinates xi and k⊥i via

p+
i ≡ xiP

+ , (218)
p⊥i ≡ xiP⊥ + k⊥i . (219)

Thus, xi and k⊥i denote the longitudinal momentum fraction and the relative
transverse momentum of the ith particle, respectively. Comparing with (215)
we note that these variables have to obey the constraints∑

i

xi = 1 ,
∑

i

k⊥i = 0 . (220)

A particularly important property of the relative momenta is their boost
invariance. To show this we calculate, using (86),

x′
i = eωp+

i /e
ωP+ = xi . (221)

From this and (88) we find in addition

k′
⊥i = p′

⊥i − xiP′
⊥ = p⊥i + v⊥p+

i − xi(P⊥ + v⊥P+) = k⊥i , (222)

which indeed proves the frame independence of xi and k⊥i.
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Let us calculate the total light-cone energy of the system in terms of the
relative coordinates. Making use of the constraints (220), we obtain

P− =
∑

i

p−
i =

∑
i

p2
⊥i +m2

i

p+
i

=
∑

i

(xiP⊥ + k⊥i)2 +m2
i

xiP+

=
1
P+

(
P 2

⊥ +
∑

i

k2
⊥i +m2

i

xi

)
≡ P−

CM + P−
r . (223)

This is another important result: the light-cone Hamiltonian P− separates
into a center-of-mass term,

P−
CM = P 2

⊥/P
+ , (224)

and a term containing only the relative coordinates,

P−
r =

1
P+

(∑
i

k2
⊥i +m2

i

xi

)
=
M2

0

P+
. (225)

The second identity, which states that P−
r is essentially the free invariant

mass squared, follows upon multiplying (223) by P+,

P+P−
r = P+P− − P 2

⊥ = M2
0 =

∑
i

k2
⊥i +m2

i

xi
. (226)

To simplify things even more, one often goes to the ‘transverse rest frame’
where P⊥ and therefore the center-of-mass Hamiltonian P−

CM from (224)
vanish.

In the interacting case, the dynamical Poincaré generators acquire ‘poten-
tial’ terms as I have shown in Sect. 3.1. The light-cone Hamiltonian, e.g. be-
comes P− = P−

0 + V , leading to a four-momentum squared

P 2 = P+(P−
0 + V ) − P 2

⊥ ≡ M2 . (227)

Subtracting (217) we obtain the useful relation,

M2 −M2
0 = P+V ≡ W . (228)

In the quantum theory, this operator identity, when applied to physical states,
is nothing but the light-cone Schrödinger equation.

Summarizing we note that the special behavior under boosts together
with the transverse Galilei invariance leads to frame independent relative
coordinates and a separation of the center-of-mass motion, reminiscent of
ordinary nonrelativistic physics. This is at variance with the instant form,
where the appearance of the notorious square root in the energy, P 0 = (P2 +
M2

0 )1/2, prohibits a similar separation of variables.
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4.2 Definition of Light-Cone Wave Functions

Let us first stick to a discrete notation and, for the time being, stay in 1+1
dimensions. We thus have a Fock basis of states

|n〉 = a†
n|0〉 ,

|m,n〉 = a†
ma

†
n|0〉 ,

...
|n1, . . . , nN 〉 = a†

n1
. . . a†

nN
|0〉 . (229)

This leads to a completeness relation defining the unit operator in Fock space,

11 = |0〉〈0| +
∑
n>0

|n〉〈n| + 1
2

∑
m,n>0

|m,n〉〈m,n| + . . .

= |0〉〈0| +
∞∑

N=1

1
N !

∑
n1,...,nN >0

|n1, . . . , nN 〉〈n1, . . . , nN | . (230)

An arbitrary state |ψ〉 can thus be expanded as

|ψ〉 =
∑
n>0

〈n|ψ〉|n〉 + 1
2

∑
m,n>0

〈m,n|ψ〉|m,n〉 + . . . . (231)

The sums are such that the longitudinal momenta in each Fock sector add
up to the total longitudinal momentum of |ψ〉. Note that the vacuum state
does not contribute as it is orthogonal to any particle state, 〈0|ψ〉 = 0. The
normalization of this state is obtained as

〈ψ|ψ〉 =
∑
n>0

|〈n|ψ〉|2 + 1
2

∑
m,n>0

|〈m,n|ψ〉|2 + . . .

=
∞∑

N=1

1
N !

∑
n1,...,nN >0

|〈n1, . . . , nN |ψ〉|2 . (232)

Let us assume that the state |ψ〉 corresponds to a bound state obeying the
light-cone Schrödinger equation derived from (228),

(M2 − M̂2
0 )|ψ〉 = Ŵ |ψ〉 . (233)

We want to project this equation onto the different Fock sectors. For this we
need the eigenvalues of the free invariant mass squared when applied to an
N -particle state

|N〉 ≡ |n1, . . . , nN 〉 . (234)

We find that |N〉 is an eigenstate of M̂2
0 ,

M̂2
0 |N〉 =

N∑
i=1

m2
i

xi
|N〉 ≡ M2

N |N〉 . (235)
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The light-cone Schrödinger equation thus becomes a system of coupled eigen-
value equations,


(M2 −M2
1 ) 〈l|ψ〉

(M2 −M2
2 ) 〈kl|ψ〉

...


 =




〈l|W |m〉 〈l|W |mn〉 . . .
〈kl|W |m〉 〈kl|W |mn〉 . . .

...
...

. . .






〈l|ψ〉
〈kl|ψ〉

...


 . (236)

Clearly, this represents an infinite number of equations which in general will
prove impossible to solve unless the matrix is very sparse and/or the matrix
elements are small. The former condition is usually fulfilled as the interaction
W in the light-cone Hamiltonian typically changes particle number at most
by two4. Assuming the matrix elements to be small amounts to dealing with
a perturbative situation. This will be true for nonrelativistic bound states of
heavy constituents, but not for light hadrons which we are mainly interested
in. There are, however, situations where the magnitude of the amplitudes
decreases enormously with the particle number N , so that it is a good ap-
proximation to restrict to the lowest Fock sectors. In instant form field theory
this has long been known as the Tamm-Dancoff method [148,39].

Let us turn to the more realistic case of 3+1 dimensions in a contin-
uum formulation. The invariant normalization of a momentum eigenstate
|P+,P⊥〉 ≡ |P 〉 is given by

〈P |K〉 = 16π3P+δ3(P − K) . (237)

We already know that the bare Fock vacuum is an eigenstate of the interacting
Hamiltonian. It thus serves as an appropriate ground state on top of which
we can build a reasonable Fock expansion. If we specialize immediately to
the case of QCD, we are left with the Fock basis states

|0〉 ,
|qq̄ : ki, αi〉 = b†(k1, α1)d†(k2, α2)|0〉 , (238)
|qq̄g : ki, αi〉 = b†(k1, α1)d†(k2, α2)a†(k3, α3)|0〉 ,
... (239)

In these expressions, b†, d† and a† create quarks q, antiquarks q̄ and gluons
g with momenta ki from the trivial vacuum |0〉. The αi denote all other
relevant quantum numbers, like helicity, polarization, flavor and color.
4 Note that terms with only creation operators are forbidden by k+-conservation.

Still, in 1+1 dimensions, things can become messy as interactions with poly-
nomials of arbitrary powers in φ are allowed without spoiling renormalizability
[159]
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In a more condensed notation we can thus describe, say, a pion with
momentum P = (P+,P⊥), as

|π(P )〉 =
∑
n,λi

∫ ∏
i

dxi
d2k⊥i

16π3 ψn/π(xi,k⊥i, λi)
∣∣∣n : xiP

+, xiP⊥ + k⊥i, λi

〉
,

(240)
where we have suppressed all discrete quantum numbers apart from the he-
licities λi. The integration measure takes care of the constraints (220) which
the relative momenta in each Fock state (labeled by n) have to obey,∏

i

dxi ≡
∏

i

dxi δ

(
1 −

∑
j

xj

)
, (241)

∏
i

d2k⊥i ≡ 16π3
∏

i

d2k⊥i δ
2
(∑

j

k⊥j

)
. (242)

As a mnemonic rule, we note that any measure factor d2k⊥i in (240) is always
accompanied by 1/16π3.

The most important quantities in (240) are the light-cone wave functions

ψn/π(xi,k⊥i, λi) ≡ 〈n : xiP
+, xiP⊥ + k⊥i, λi|π(P )〉 , (243)

which are the amplitudes to find n constituents with relative momenta p+
i =

xiP
+, p⊥i = xiP⊥ + k⊥i and helicities λi in the pion. Due to the separation

properties of the light-cone Hamiltonian the wave functions do not depend on
the total momentum P of the pion. Applying (237) to the pion state (240),
we obtain the normalization condition∑

n,λi

∫ ∏
i

dxi
d2k⊥i

16π3 |ψn/π(xi,k⊥i, λi)|2 = 1 . (244)

The light-cone bound-state equation for the pion is a straightforward gener-
alization of (236),


(M2 −M2
qq̄) 〈qq̄|π〉

(M2 −M2
qq̄g) 〈qq̄g|π〉

...


 =




〈qq̄|W |qq̄〉 〈qq̄|W |qq̄g〉 . . .
〈qq̄g|W |qq̄〉 〈qq̄g|W |qq̄g〉 . . .

...
...

. . .






〈qq̄|π〉
〈qq̄g|π〉

...


 .

(245)
If a constituent picture for the pion were true, the valence state would dom-
inate,

|ψ2/π|2 � |ψn/π|2 , n > 2 , (246)

and, in the extreme case, the pion wave function would be entirely given by
the projection 〈qq̄|π〉 onto the valence state. All the higher Fock contributions
would vanish and the unitarity sum (244) would simply reduce to∑

λλ′

∫ 1

0
dx

∫
d2k⊥
16π3 |ψqq̄/π(x,k⊥, λ, λ′)|2 = 1 . (247)
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We will later discuss a model where this is indeed a good approximation to
reality.

4.3 Properties of Light-Cone Wave Functions

Let us rewrite the light-cone bound-state equation (236) by collecting all
light-cone wave functions ψn = 〈n|ψ〉 into a vector Ψ ,

Ψ =
WΨ

M2 −M2
0
. (248)

From this expression it is obvious that all light-cone wave functions tend to
vanish whenever the denominator

ε ≡ M2 −M2
0 = M2 −

(∑
i

pi

)2
= M2 −

∑
i

k2
⊥i +m2

i

xi
(249)

becomes very large. This quantity measures how far off energy shell the total
system, i.e. the bound state is,

P− −
∑

i

p−
i = ε/P+ . (250)

For this reason, ε is sometimes called the ‘off-shellness’ [112,89]. We thus
learn from (248) that there is only a small overlap of the bound state with
Fock states that are far off shell. This implies the limiting behavior

ψ(xi,k⊥i, λi) → 0 for xi → 0 , k2
⊥i → ∞ . (251)

These boundary conditions are related to the self-adjointness of the light-cone
Hamiltonian and to the finiteness of its matrix elements. Analogous criteria
have been used recently to relate wave functions of different Fock states n
[3] and to analyse the divergence structure of light-cone perturbation theory
[25].

Omitting spin, flavor and color degrees of freedom, a light-cone wave
function will be a scalar function φ(xi,k⊥i) of the parameter ε. This is used for
building models, the most common one being to assume a Gaussian behavior,
originally suggested in [149],

φ(xi,k⊥i) = N exp(−|ε|/β2) , (252)

where β measures the size of the wave function in momentum space. Note,
however, that a Gaussian ansatz is in conflict with perturbation theory which
is the appropriate tool to study the high-k⊥ behavior and indicates a power
decay of the renormalized wave function – up to possible logarithms [22].
For the unrenormalized wave functions the boundary conditions (251) are
violated unless one uses a cutoff as a regulator (see next section).
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As the off-shellness ε is the most important quantity characterizing a light-
cone wave function let us have a closer look by specializing to the simplest
possible system, namely two bound particles of equal mass. One can think of
this, for instance, as the valence wave function of the pion or positronium.
The off-shellness becomes

ε = M2 − k2
⊥ +m2

x(1 − x)
= − 1

x(1 − x)

[
M2(x− 1

2

)2 +
4m2 −M2

4︸ ︷︷ ︸
≥0

+k2
⊥
]
. (253)

The second term in square brackets is positive because, for a bound state,
the binding energy,

E = M − 2m , (254)

is negative so that 2m > M . As a result, the off-shellness is always negative.
Only for free particles it is zero, because all momentum components (includ-
ing the energy) sum up to the total momentum. In this case, each individual
term in (253) vanishes,

M = 2m , x = 1
2 , k⊥ = 0 . (255)

It follows that the light-cone wave function of a two-particle system (com-
posed of equal-mass constituents) with the binding energy switched off ‘adi-
abatically’, is of the form

φ(x,k⊥) ∼ δ(x− 1/2) δ2(k⊥) . (256)

4.4 Examples of Light-Cone Wave Functions

From the discussion above, one expects that for weak binding, in particular
for nonrelativistic systems, the wave functions will be highly peaked around
x = 1/2 (in the equal mass case) and k⊥ = 0. Let us check this explicitly for
hydrogen-like systems which constitute our first example [93].

Example 1: Hydrogen-Like Systems. Let me recall the ordinary Schrö-
dinger equation of the Coulomb problem written in momentum space,(
E − p2

2m

)
ψ(p) =

∫
d3k

(2π)3
V (p−k)ψ(k) =

∫
d3k

(2π)3
4πα

(p − k)2
ψ(k) . (257)

This integral equation looks very similar to a light-cone Schrödinger equation
within a two-particle truncation. The Coulomb kernel is due to the exchange
of an instantaneous photon having a propagator proportional to δ(x0). One
can actually solve the Coulomb problem directly in momentum space [50,14]
but for our purposes it is simpler just to Fourier transform the ground state
wave function ψ0(r) = N exp(−mαr), yielding

ψ0(p) = 8πN
mα

(p2 +m2α2)2
, (258)
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with α = e2/4π = 1/137 being the fine structure constant, m the reduced
mass and p the relative momentum.

How does this translate into the light-cone language? To answer this ques-
tion, we go to the particle rest frame with P = 0 or P+ = P− = M and
P⊥ = 0, implying p⊥i = k⊥i. In this frame, the nonrelativistic limit is de-
fined by the following inequalities for the constituent masses and momenta
(in ordinary instant-form coordinates),

p0
i −mi � p2

i

2mi
� |pi| � mi . (259)

The prototype systems in this class are of hydrogen type where we have for
binding energy and r.m.s. momentum,

|E| =
〈p2〉
2m

=
mα2

2
, (260)

〈p〉 = mα . (261)

In this case, the hierarchy (259) becomes

α2

2
� α � 1 , (262)

which is fulfilled to a very good extent in view of the smallness of α.
Consider now the longitudinal momentum of the ith constituent,

p+
i = p0

i + p3
i � mi +

p2
i

2mi
+ p3

i = xiP
+ = xiM . (263)

We thus find that we should replace p3
i in instant-form nonrelativistic wave

functions by
p3

i = xiM −mi , (264)

where we neglect terms of order p2
i /mi. Let us analyze the consequences for

the off-shellness. The latter is in ordinary coordinates

ε = M2 −M2
0 = (M +

∑
i

p0
i )(M −

∑
i

p0
i ) . (265)

We thus need∑
i

p0
i �

∑
i

mi +
∑

i

p2
i

2mi
= M − E +

∑
i

p2
i

2mi
, (266)

with E = M − ∑
mi denoting the mass-defect, which is a small quantity,

E � M . The off-shellness (265), therefore, becomes

ε � 2M
(
E −

∑
i

p2
i /2mi

)
� −2M

∑
i

k2
⊥i + (Mxi −mi)2

2mi
, (267)
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where we have performed the replacement (264) in the second identity. The
light-cone wave functions will be peaked where the off-shellness is small, that
is, for

xi = mi/M , and k⊥i = 0 , (268)

as expected from the noninteracting case.
To be explicit, we consider the ground state wave function of positronium,

given by (258) with the reduced mass m being half the electron mass me.
Using the replacement prescription (264) once more, we obtain

ψ(x,k⊥) = 8πN
mα[

k2
⊥ + (xM −me)2 +m2α2

]2 , (269)

where M � 2me is the bound state mass. This result is valid for small
momenta, i.e. when k2

⊥, (xM −me)2 � m2
e. It is obvious from (269) that the

positronium wave function is sharply peaked around x = me/M � 1/2 and
k2

⊥ = 0.

Example 2: ’t Hooft Model. The ‘t Hooft model [146,147] is QCD in
two space-time dimensions with the number NC of colors being infinite. The
Lagrangian is

L = ψ̄(i∂/−m)ψ − 1
4
FµνF

µν . (270)

The limit of large NC is taken in such a way that the expression g2NC, g
denoting the Yang-Mills coupling, stays finite. In two dimensions, g has mass
dimension one, which renders the theory superrenormalizable and provides a
basic unit of mass, namely,

µ0 ≡
√
g2NC/2π . (271)

The model is interesting because it contains physics analogous or similar to
what one finds in ‘real’ QCD5. First of all, the model is (trivially) confining
due to the linear rise of the Coulomb potential in 2d. This is most easily
exhibited by working in light-cone gauge, A+ = 0, and eliminating A− via
Gauss’s law. In this way it becomes manifest that there are no dynamical
gluons in 2d. Within covariant perturbation theory, the Coulomb potential
can be understood as resulting from the exchange of an instantaneous gluon.

In the next section, we will discuss the spontaneous breakdown of chiral
symmetry in QCD. It turns out that in the ‘t Hooft model a similar phe-
nomenon occurs: chiral symmetry is ‘almost’ spontaneously broken [154,158].
As a consequence, there arises a massless bound state in the chiral limit of
vanishing quark mass [146,147] which we will call the ‘pion’ for brevity6. Fur-
thermore, there is a nonvanishing quark condensate in the model which has
5 For a recent review on the ‘t Hooft model, see [1].
6 As explained in [154,158], this is not in contradiction with Coleman’s theorem

[37] as the ‘pion’ is not a Goldstone boson.
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first been calculated by Zhitnitsky [158],

〈0|ψ̄ψ|0〉/NC = −0.28868 . (272)

Note that the condensate is proportional to NC as it involves a color trace.
It turns out that the ‘t Hooft model has one big advantage for the appli-

cation of light-cone techniques which is due to the large-NC limit. The matrix
elements entering the light-cone Schrödinger equation in the two-particle sec-
tor have the following NC-dependence,

〈2|W |2n〉 ∼
(
g2NC

NC

)n

∼ N−n
C . (273)

As a result, those diagrams which correspond to a change in particle number
(like 2 → 4, 2 → 6, . . .) are suppressed by powers of 1/NC. The truncation to
the two-particle sector therefore becomes exact: the ‘pion’ is a pure quark-
antiquark state; there are no admixtures of higher Fock states. A constituent
picture is thus realized, and we are left with the light-cone Schrödinger equa-
tion, [

M2 − m2

x(1 − x)

]
φ(x) = P

∫ 1

0
dy

φ(x) − φ(y)
(x− y)2

. (274)

This expression defines the ‘Coulomb problem’ of the ‘t Hooft model. It
corresponds to the first line of (245) where, as a result of the truncation,
only the matrix element W2 ≡ 〈qq̄|W |qq̄〉 has been retained. We will refer to
(274) as the ’t Hooft equation in what follows. φ(x) denotes the valence part
of the ‘pion’ wave function, x and y are the momentum fractions of the two
quarks (with equal mass m) in the meson. The symbol P indicates that the
integral is defined as a principal value [146,53]. It regularizes7 the Coulomb
singularity 1/(x− y)2 in the matrix element W2. All masses are expressed as
multiples of the basic scale µ0 defined in (271). The eigenvalue M denotes
the mass of the lowest lying bound state (the ‘pion’). Our objective is to
calculate M and φ.

In his original work on the subject, [146,147], ’t Hooft used the following
ansatz for the wave function

φ(x) = xβ(1 − x)β . (275)

This ansatz is symmetric in x ↔ 1 − x (charge conjugation odd), and β
is supposed to lie between zero and one so that the endpoint behavior is
nonanalytic. As a nontrivial boundary condition, one has the exact solution
of the massless case, m = 0 (the ‘chiral limit’),

M2 = 0 , and φ(x) = 1 , i.e. β = 0 . (276)
7 [156] has suggested a theoretical alternative to the principal value which nowadays

is called ‘Leibbrandt-Mandelstam prescription [102,90]. It leads to completely
different physics. This apparent contradiction has only recently been clarified [9].
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In this limit, the ‘pion’ wave function is constant, i.e. the pion has no structure
and is point-like. The main effect of a nonzero quark mass is the vanishing
of the wave functions at the endpoints implying a nonzero β. This suggests
the following series expansion for β,

β(m) = β1m+ β2m
2 + β3m

3 +O(m4) , (277)

and for the ‘pion’ mass squared,

M2 = M1m+M2m
2 +M3m

3 +O(m4) . (278)

As is obvious from the last two expressions, we are working in the limit of
small quark mass m. The expansion (277) shows that also β is small in this
case so that the wave function will be rather flat (for intermediate values
of x). On the other hand we know from Example 1 that light-cone wave
functions are highly peaked near x = 1/2 in case the binding is weak. This
suggests that, for small quark mass m, the ‘pion’ is rather strongly bound.

The exponent β in (275) can actually be determined exactly by studying
the small-x behavior of the bound state equation (274). To this end we eval-
uate the principal value integral for x → 0 and plug it into (274). This yields
the transcendental equation [146],

m2 − 1 + πβ cotπβ = 0 . (279)

Using this expression we can determine β either numerically for arbitrary m
or analytically for small m, which yields the coefficients of (277),

β =
√

3
π
m+O(m3) . (280)

The ‘pion’ mass is determined by calculating the expectation value of the
light-cone Hamiltonian (274) in the state given by ‘t Hooft’s ansatz (275)8.
This yields M2 as a function of β and m,

M2 =
2
β1
m+O(m2) . (281)

Upon comparing with (277) and (280) the lowest order coefficient M1, which
is the slope of M2(m) at m = 0, is found to be

M1 = 2π/
√

3 . (282)

Note that M2 indeed vanishes in the chiral limit.
Having obtained an approximate solution for the mass and wave function

of the ‘pion’ we are in the position to calculate ‘observables’. It turns out that,
8 The relevant integrals can be found in [7] and [63].
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for small m, all of them can be expressed in terms of the lowest order coef-
ficient, M1. We begin with the ’pion decay constant’ [26,158], which is given
by the ‘wave function at the origin’, i.e. the integral over the (momentum
space) wave function

fπ ≡ 〈0|ψ̄iγ5ψ|π〉 =

√
NC

π

M2

2m

∫
dxφ(x) =

√
NC

4π
M1 . (283)

The quark condensate is obtained via a sum rule using the chiral Ward iden-
tity [158,66],

〈0|ψ̄ψ|0〉 = −m f2
π

M2 = −NC

4π
M1 . (284)

Inserting the value (282) for M1 this coincides with (272). The last identity
can actually be viewed as the ‘Gell-Mann-Oakes-Renner relation’ [54] of the
‘t Hooft model,

M2 = −4πm 〈0|ψ̄ψ|0〉/NC +O(m2) , (285)

which provides a relation between the particle spectrum (the ‘pion’ mass)
and a ground state property (the condensate). This is conceptually impor-
tant because it implies that we can circumvent the explicit construction of a
nontrivial vacuum state by calculating the spectrum of excited states, i.e. by
solving the light-cone Schrödinger equation. The eigenvalues and wave func-
tions actually contain information about the structure of the vacuum! This
point of view has been adopted long ago in the context of chiral symmetry
breaking within the (light-cone) parton model [28]: “In this framework the
spontaneous symmetry breakdown must be attributed to the properties of
the hadron’s wave function and not to the vacuum” [29]. Related ideas have
been put forward more recently in [91].

In the above, we have been using the value for β given in (280). One can
equally well use β as a variational parameter and minimize the expectation
value of the mass operator with respect to it. This yields the same result
for M1, namely (282). The variational method, however, is better suited if
one wants to go beyond the leading order in expansion (278). This has been
done in [62]. The results are shown in Table 2 where we list the expansion
coefficients Mi of the ‘pion’ mass squared, M2, as they change with increasing
number of variational parameters, (a, b, c, d).

Interestingly, the value ofM1 does not change at all by enlarging the space
of trial functions. M2 and M3, on the other hand, do change and show rather
good convergence. For M2 we finally have a relative accuracy of 8 · 10−7, and
for M3 of 4 · 10−5. Furthermore, the coefficients are getting smaller if one
adds more basis functions, in accordance with the variational principle. The
associated light-cone wave functions are shown in Fig. 8. There are only minor
changes upon including more variational parameters. In Fig. 9 we display the
eight lowest excited states. They have been obtained using the position of
the nodes as additional variational parameters [142].
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Table 2. Expansion coefficients of M2 for the ’t Hooft model obtained by succes-
sively enlarging the space of variational parameters. M1 is the standard ’t Hooft
result (282). Note the good convergence towards the bottom of the table.

Ansatz M1 = 2π/
√

3 M2 M3

’t Hooft 3.62759873 3.61542218 0.043597197
a 3.62759873 3.58136872 0.061736701
b 3.62759873 3.58107780 0.061805257
c 3.62759873 3.58105821 0.061795547
d 3.62759873 3.58105532 0.061793082

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1x
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m = 0.1

φ

Fig. 8. The light-cone wave function of the ’t Hooft model ‘pion’ for m = 0.1. The
solid curve represents the result from ’t Hooft’s original ansatz, the dashed curve
our best result (with maximum number of variational parameters). At the given
resolution, however, the curves of all extensions of ’t Hooft’s ansatz (a, b, c, d) lie
on top of each other.

Example 3: Gaussian Model. A very simple and intuitive example of
a light-cone wave function is provided by the Gaussian model in the form
presented in [93],

φ(x,k⊥) = N exp
[
− 1
Λ2

k2
⊥ +m2

x(1 − x)

]
. (286)

This is a scalar two-particle wave function that drops exponentially with
the free invariant mass squared of two constituents with equal mass m. The
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Fig. 9. Wave functions of the first eight excited states in the ‘t Hooft model as
obtained via variational methods [142]. Note that all wave functions vanish at the
end points, x = 0 and x = 1.
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shortcoming of the model is that the wave function is not derived dynamically,
i.e. as a solution of a light-cone Schrödinger equation. However, it satisfies
all the requirements derived in Sect. 4.3. The benefit of the model is its
simplicity. The latter is even enhanced if one neglects the constituent mass
m by assuming m � Λ. Then one is left with only two parameters, the
normalization N and the transverse size Λ.

One enforces a constituent picture by normalizing to unity,

||φ(x,k⊥)||2 ≡
∫ 1

0
dx

∫
d2k⊥
16π3 φ

2(x,k⊥) =
N2Λ2

192π2
!= 1 . (287)

This obviously relates N and Λ. If we now calculate the r.m.s. transverse
momentum in the bound state described by (286), we find using (287),

〈k2
⊥〉 ≡

∫ 1

0
dx

∫
d2k⊥
16π3 k

2
⊥ φ

2(x,k⊥) =
N2Λ4

1920π2 = Λ2/10 . (288)

If we view the Gaussian wave function as a crude model for, say, the pion we
can actually estimate the width parameter Λ. The pion is highly relativis-
tic, so we expect its r.m.s. transverse momentum to be of the order of the
constituent quark mass, 〈k2

⊥〉1/2 � mQ � 330 MeV. This leads to a typical
width of Λ � 1 GeV.

Having thus determined the two parameters of the model we could go
on and calculate observables [93]. This will actually be done in the next
section using a more realistic model for the (determination of) the pion wave
function.

5 The Pion Wave Function in the NJL Model

The ultimate goal of light-cone field quantization is to derive and solve light-
cone Schrödinger equations, in particular the one of QCD. This would yield
hadron masses and light-cone wave functions and thus detailed information
on the internal structure of mesons and baryons. In order to successfully
pursue this program, a number of problems has to be overcome.

In dealing with gauge theories in a Hamiltonian framework one has to
solve Gauss’s law together with the light-cone specific constraints. The only
known solution so far is in the light-cone gauge A+ = 0 [150,27,93] which,
however, is beset by infrared problems of its own – see e.g. [8]9. A Hamiltonian
formulation analogous to the Weyl gauge, where one fixes the residual gauge
freedom and solves Gauss’s law after quantization, seems particularly difficult
[65].

Even after successful light-cone quantization of QCD one encounters a
severe problem: the theory has to be renormalized. Otherwise, the light-cone
9 Recently, some progress has also been made in the covariant gauge [141].
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wave function will not be normalizable and physically meaningful. Renormal-
ization in a Hamiltonian framework presents enormous difficulties as there
is no explicit covariance. In addition, rotational invariance is not manifest
within the front form (see Sect. 2). Due to the lack of these important sym-
metries, there is an abundance of possible counterterms which even can be
nonlocal, e.g. behave like ∼ 1/k+. As a result, to the best of my knowledge,
the renormalization program has not been extended beyond one loop – with
one notable exception in QED [23].

The issue of renormalization is, of course, delicately intertwined with solv-
ing the light-cone bound state equation. The latter attempt will in general
only be feasible if a Tamm-Dancoff truncation in particle number is per-
formed. This again violates important symmetries (even gauge symmetry).
One hopes, however, that a Wilsonian renormalization group explicitly tay-
lored for this case will restore these symmetries [153]. The present status of
this program is nicely reviewed in [120].

A conceptual problem has already been mentioned. The light-cone vac-
uum is trivial as argued in Sect. 3. On the other hand, it is well known
that the instant form vacuum is populated by all sorts of nonperturbative
quantum fluctuations leading to nonvanishing vacuum expectation values or
condensates. The whole business of QCD sum rules [138] is based upon this
picture. How do we reconcile this with the triviality of the light-cone vacuum?
A possible resolution to this ‘triviality problem’ has been given in the last
section. The spectrum of excited states actually carries implicit information
on the structure of the vacuum. The task then is to make this information
explicit.

The list of problems just given is yet another manifestation of the ‘princi-
ple of conservation of difficulties’. In a first attempt to tackle these problems
I will simply side-step most of them by considering an (instructive) model
instead of QCD. This model, however, is designed to capture some impor-
tant physical features of ‘real’ QCD. The idea is originally due to Nambu
and Jona-Lasinio (NJL), who, back in 1961, invented a “Dynamical Model
of Elementary Particles Based on an Analogy with Superconductivity” [111].
It was meant to provide a microscopic mechanism for the generation of nu-
cleon masses, with the mass gap being the analog of the BCS energy gap in a
superconductor. Nowadays, with the nucleons replaced by quarks, the model
serves as a low-energy effective theory of QCD explaining the spontaneous
breakdown of chiral symmetry. Let me thus give a brief introduction to the
latter phenomenon before I come to the detailed explanation of the model.

5.1 A Primer on Spontaneous Chiral Symmetry Breaking

If we have a look at Table 3, which provides a list of all quark flavors, we
realize that there are large differences in the quark masses as they appear in
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the QCD Hamiltonian. In particular, there is a hierarchy,

mu,md � ms︸ ︷︷ ︸
light quarks

� mc,mb,mt︸ ︷︷ ︸
heavy quarks

. (289)

As the masses of heavy and light quarks are separated by the very same
scale (� 1 GeV) as the perturbative and nonperturbative regime, one expects
different physics associated with those two kinds of quarks. This expectation
turns out to be true. The physics of heavy quarks is governed by a symmetry
called ‘heavy quark symmetry’ leading to a very successful ‘heavy quark
effective theory’ [113]. The physics of light quarks, on the other hand, is
governed by chiral symmetry which we are now going to explain.

Table 3. The presently observed quark flavors. Q/e is the electric charge in units
of the electron charge. The (scale dependent!) quark masses are given for a scale of
1 GeV.

flavor Q/e mass
down d −1/3 10 MeV
up u +2/3 5 MeV
strange s −1/3 150 MeV
charm c +2/3 1.5 GeV
bottom b −1/3 5.1 GeV
top t +2/3 180 GeV

Let us write the QCD Hamiltonian in the following way,

HQCD = Hχ + ψ̄Mψ , (290)

M = diag(mu,md,ms) being the mass matrix for the light flavors. To a good
approximation, one can set M = 0. In this case, the QCD Hamiltonian Hχ

is invariant under the symmetry group SU(3)R ⊗ SU(3)L, the chiral flavor
group. Under the action of this group, the left and right handed quarks
independently undergo a chiral rotation. Due to Noether’s theorem, there
are sixteen conserved quantities, eight vector charges and, more important
for us, eight pseudo-scalars, the chiral charges Qa

5 satisfying

[Qa
5 , Hχ] = 0 . (291)

This states both that the chiral charges are conserved, and that Hχ is chirally
invariant. Under parity, Qa

5 → −Qa
5 . Now, if |A〉 is an eigenstate of Hχ, so

is Qa
5 |A〉 with the same eigenvalue. Thus, one expects (nearly) degenerate
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parity doublets in nature, which, however, do not exist empirically. The only
explanation for this phenomenon is that chiral symmetry is spontaneously
broken. In contradistinction to the Hamiltonian, the QCD ground state (the
vacuum) is not chirally invariant,

Qa
5 |0〉 �= 0 . (292)

For this reason, there must exist a nonvanishing vacuum expectation value,
the quark condensate,

〈ψ̄ψ〉 = 〈ψ̄RψL + ψ̄LψR〉 . (293)

This condensate is not invariant (it mixes left and right) and therefore serves
as an order parameter of the symmetry breaking. Note that in QCD the quark
condensate is a renormalization scale dependent quantity. A recent estimate
can be found in [46], with a numerical value,

〈0|ψ̄ψ|0〉(1 GeV) � (−229 MeV)3 . (294)

The spontaneous breakdown of chiral symmetry thus implies that the (QCD)
vacuum is nontrivial: it must contain quark-antiquark pairs with spins and
momenta aligned in a way consistent with vacuum quantum numbers. A
possible analog is the BCS ground state given in (207).

In terms of the full quark propagator,

S(p) =
p/+M(p)
p2 −M2(p)

, (295)

where we have allowed for a momentum dependent (or ‘running’) mass M(p),
the quark condensate is given by

〈0|ψ̄ψ|0〉 = −i
∫

d4p

(2π)4
trS(p) = −4iNC

∫
d4p

(2π)4
M(p)

p2 −M2(p)
. (296)

We thus see that the involved Dirac trace yields a nonvanishing condensate
only if the effective quark mass M(p) is nonzero. This links the existence of
a quark condensate to the mechanism of dynamical mass generation. In this
way we have found another argument that the bare quarks appearing in the
QCD Hamiltonian (290) indeed acquire constituent masses. Of course we are
still lacking a microscopic mechanism for that.

Goldstone’s theorem [57] now states that for any symmetry generator
which does not leave the vacuum invariant, there must exist a massless boson
with the quantum numbers of this generator. This results in the prediction
that in massless QCD one should have an octet of massless pseudoscalar
mesons. In reality one finds what is listed in Table 4.

The nonvanishing masses of these mesons are interpreted as stemming
from the nonvanishing quark masses in the QCD Hamiltonian which break
chiral symmetry explicitly. Being small, they can be treated as perturbations.
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Table 4. Masses of the pseudoscalar octet mesons (in MeV).

meson π0 π± K0, K̄0 K± η

mass 135 140 500 494 549

It should be stressed that chiral symmetry has nothing to say about the
mechanism of confinement which presumably is a totally different story. This
is also reflected within a QCD based derivation of chiral symmetry breaking
in terms of the instanton model, as presented e.g. in [41]. This model explains
many facts of low-energy hadronic physics but is known not to yield confine-
ment. It is therefore possible that confinement is not particularly relevant for
the understanding of hadron structure [41].

The instanton vacuum actually leads to an effective theory very close to
the NJL model, the basics of which are our next topic.

5.2 NJL Folklore

Before I consider the light-cone formulation of the model, let me briefly re-
call its main physical features10. In its standard form, the NJL model has
a chirally invariant four-fermion interaction, which can be imagined as the
result of ‘integrating out’ the gluons in the QCD Lagrangian. For simplic-
ity I concentrate on the case of one flavor. Extension to several flavors is
straightforward. In the chiral limit (quark mass m0 = 0), the Lagrangian is

L = ψ̄i∂/ψ −G(ψ̄γµψ)2 ≡ L0 + Lint . (297)

Its four-fermion interaction is chirally symmetric under U(1)L × U(1)R. We
shall see in a moment that this symmetry is spontaneously broken.

It is important to observe that the coupling G of the model has negative
mass dimension, [G] = −2, hence, it is not renormalizable. Accordingly, it
requires a cutoff which is viewed as a parameter of the model that is to be
fixed by phenomenology. We thus follow the general spirit of effective field
theory [73,85,103]. From the point of view of the light-cone formulation to
be developed later, the nonrenormalizability is an advantage: it enables us to
‘circumvent’ the difficulties of the light-cone renormalization program. There
simply is no ‘need’ to renormalize.

Following the standard approach [111,151] we treat the model in mean-
field approximation (which actually coincides with the large-N limit). We
begin with a Fierz transformation by schematically rewriting the interaction
Lagrangian in Fierz symmetric form

Lint = G
∑

i

ci(ψ̄Γiψ)2 = G(ψ̄ψ)2 + . . . , (298)

10 For recent reviews, see [151,87,64].
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where i = S, P, V,A enumerates the different Dirac bilinears (scalar, pseu-
doscalar, vector and axial vector, respectively). In (298), I have only displayed
the scalar part of the interaction because only the scalar density S ≡ ψ̄ψ can
have a vacuum expectation value, the quark condensate,

〈S〉 = 〈0|ψ̄ψ|0〉 . (299)

Let us determine this quantity in mean-field approximation. To define the
latter we calculate,

S2 = (S− 〈S〉 + 〈S〉)2 = (S− 〈S〉)2 + 2S〈S〉 − 〈S〉2 � 2S〈S〉 + const . (300)

Thus, by neglecting quadratic fluctuations of S around its expectation value,
we linearize the interaction and obtain the mean-field Lagrangian,

LMFA = ψ̄(i∂/+ 2G〈S〉)ψ . (301)

The mean-field solution has a very intuitive explanation. One essentially ar-
gues that the main effect of the interaction is to generate the mass of the
quarks which become quasi-particles that interact only weakly. Neglecting
this interaction entirely, one can view the process of mass generation as the
transition of quarks with mass m0 = 0 to mass m resulting in a mass term
mψ̄ψ in the Lagrangian (301). We thus find that the dynamically generated
mass is determined by the gap equation

m = −2G〈0|ψ̄ψ|0〉 . (302)

How do we actually calculate the condensate 〈0|ψ̄ψ|0〉? To this end we go
back to (296) and express the condensate in terms of the full propagator ‘at
the origin’, i.e. at space-time point x = 0,

〈0|ψ̄ψ|0〉m = −i trSF (x = 0) = −i tr
∫

d4p

(2π)4
1

p/−m+ iε
. (303)

The following remarks are in order. First we note that within mean-field ap-
proximation the dynamically generated mass m is constant, i.e. independent
of the momentum p. Furthermore, the full propagator SF is defined in terms
of the constituent mass m, so that the gap equation (302) becomes an im-
plicit self-consistency condition where the mass m to be determined appears
on both sides. This equation will be solved in a moment. The integral appear-
ing on the r.h.s. of (303) is quadratically divergent11 and has to be regulated.
If we use a cutoff Λ we have, for dimensional reasons,

〈0|ψ̄ψ|0〉 ∼ Λ2m . (304)
11 As the condensate involves the product of field operators at coinciding space-time

points, this clearly is a short-distance singularity.
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A particularly intuitive way to calculate the condensate (which will also be
used in the light-cone case) is based on the Hellmann-Feynman theorem. This
states that ‘the derivative of an expectation value is the expectation value
of the derivative’, if the expectation is taken between normalizable states. If
applied to the vacuum expectation value of our mean-field Hamiltonian,

H(m) = H0 +mψ̄ψ , (305)

which is the vacuum energy density E(m) ≡ 〈0|H(m)|0〉, the theorem yields,

〈0|ψ̄ψ|0〉m =
∂

∂m
E(m) = − ∂

∂m

∫
d3p

(2π)3
2
√

p2 +m2 . (306)

The factor of two in the integrand is due to the fermion spin degeneracy.
If we choose a noncovariant three-vector cutoff, |p| < Λ3, the result for the
condensate is of the form (304),

〈0|ψ̄ψ|0〉m = −mΛ2
3

2π2

[
1 +

δ2

2
ln δ2 +O(δ2)

]
, (307)

with δ ≡ m/Λ3. The dynamical mass is found by inserting this result into the
gap equation (302). A nontrivial solution m = m(G) �= 0 arises above a crit-
ical coupling Gc which is determined by the identity m(Gc) = 0. It is known
from the theory of critical phenomena that the mean-field approximation
leads to a square root behaviour of the mass around Gc = 4π2/Λ2,

m(G) ∼ (G−Gc)1/2 , G ≥ Gc . (308)

We thus have seen that the NJL model describes the transformation of bare
quarks of mass m0(= 0) into dressed (or constituent) quarks (Q) of mass
m �= 0. By considering the bound state equation in the pseudoscalar channel
one can also verify Goldstone’s mechanism: there is a massless QQ̄ bound
state, which is identified with the pion, exactly if the gap equation holds
[111,151]. This concludes the presentation of spontaneous chiral symmetry
breaking within the model. One should keep in mind that it follows the same
pattern as in QCD.

Let me conclude the NJL ‘crash course’ by reemphasizing that the model
does not confine. This means in particular, that there is a nonvanishing prob-
ability for mesons to decay into constituent quarks. We thus cannot expect to
obtain reliable estimates for strong decay widths of mesons or other quantities
that are not dominated by their chiral properties.

It is getting time to discuss the light-cone formulation of the model. For
a ‘light-cone physicist’ the model is interesting for several reasons. I have
already pointed out that the lack of renormalizability is welcome because we
only have to worry about a proper regularization. Furthermore, the model
addresses the conceptually important questions of spontaneous symmetry
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breaking and condensates. Are these in conflict with a trivial vacuum? Fi-
nally, a constituent picture seems to be realized which should make a trunca-
tion of the light-cone Schrödinger equation feasible. Now, we again encounter
the standard rule of physics that there is nothing like free lunch. Here, this
is mainly due to the appearance of complicated constraints for part of the
fermionic degrees of freedom. Let me thus make a small aside on the special
features of light-cone fermions.

Light-Cone Fermions. The solution of the Dirac equation (for free fermions
of mass m0) has the following light-cone Fock expansion at x+ = 0,

ψ(x, 0) =
∑

λ

∫ ∞

0

dk+

k+

∫
d2k⊥
16π3

[
b(k, λ)u(k, λ)e−ik·x+ d†(k, λ)v(k, λ)eik·x

]
,

(309)
where we recall the notations

k ≡ (k+,k⊥) , x ≡ (x−,x⊥) , k · x ≡ 1
2k

+x− − k⊥ · x⊥ . (310)

Like for scalars, the Fock measure is independent of the mass m0. The Fock
operators satisfy the canonical anti-commutation relations,{

b(k, λ) , b†(p, λ′)
}

=
{
d(k, λ) , d†(p, λ′)

}
= 16π3k+δ3(k − p) , (311)

The basis spinors u and v obey the Dirac equations,

(k/−m0)u(k, λ) = 0 , (312)
(k/+m0) v(k, λ) = 0 . (313)

and are explicitly given by

u(k, λ) =
1√
k+

(k+ + βm+ αiki)Xλ , (314)

v(k, λ) =
1√
k+

(k+ − βm+ αiki)X−λ . (315)

The four-spinorX will be defined in a moment; αi and β are the standard her-
mitean Dirac matrices. The crucial point is the decomposition of the fermion
field, ψ = ψ+ + ψ− into ‘good’ (+) and ‘bad’ (−) components, ψ± ≡ Λ±ψ,
by means of the projection matrices,

Λ± ≡ 1
4
γ∓γ± =

1
2

(
11 ±σ3

±σ3 11

)
. (316)

The spinor X appearing in (314) and (315) is an eigenspinor of Λ+, Λ+Xλ =
Xλ. The Dirac equation decomposes accordingly into two equations. The one
for ψ− reads

2i∂+ψ− = (−iγi∂i +m0)γ+ψ+ , (317)
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and does not contain a light-cone time derivative. Therefore, the bad compo-
nent ψ− is constrained; it can be expressed in terms of the good component,
i.e. ψ− = ψ−[ψ+]. Again, this requires the inversion of the notorious spatial
derivative ∂+. As a result, the free Dirac Hamiltonian (density) only depends
on ψ+,

H = ψ†
+

−∂2
⊥ +m2

0

i∂+
ψ+ ≡ H[ψ+] , (318)

where we easily recognize the light-cone energy, (k2
⊥ +m2

0)/k
+.

It turns out that in case of a four-fermion interaction like in the NJL
model the constraint becomes rather awkward to solve. In particular, its
solution has to be consistent with the mean field approximation employed
[42]. This can be achieved most elegantly by using the large-N expansion
[12,77]. Nevertheless, the light-cone Hamiltonian of the model is a rather
complicated expression. We will therefore follow an alternative road which is
the topic of the next subsection.

5.3 Schwinger–Dyson Approach

The first derivation, analysis and solution of a light-cone bound-state equa-
tion appeared in ’t Hooft’s original paper on what is now called the ’t Hooft
model [146]. We have discussed this model in the last section where we also
rederived ’t Hooft’s solution. Interestingly, ’t Hooft did not use the light-
cone formalism in the manner we presented it and which nowadays might
be called standard. This amounts to deriving the canonical light-cone Hamil-
tonian and setting up the associated system of bound-state equations by
projecting on the different sectors of Fock space (cf. Sect. 4). Instead, he
started from covariant equations, namely the Schwinger–Dyson equations for
the quark propagator (or self-energy), and the Bethe-Salpeter equation for
the bound-state amplitude, which needs the quark self-energy as an input.
The light-cone Schrödinger equation was then obtained by projecting the
Bethe-Salpeter equation onto hypersurfaces of equal light-cone time. In this
way, one avoids to explicitly derive the light-cone Hamiltonian, which, as ex-
plained above, can be a tedious enterprise in view of complicated constraints
one has to solve. Let us therefore have a closer look at this way of proceeding.

The Schwinger–Dyson Equation for the Propagator. The first step in
the program12 is to solve the Schwinger–Dyson equation for the propagator,
or, equivalently, for the quark self-energy. As this cannot be done exactly, one
resorts to mean-field (or large-N) approximation. This is essentially what has
been done in the last subsection. Let us rewrite this in terms of Schwinger–
Dyson equations. The one for the full propagator S reads

S = S0 + S0ΣS , (319)
12 For recent literature on the Schwinger–Dyson approach, see e.g. [127,128,105].
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and is formally solved by

S(p) =
1

S−1
0 (p) −Σ(p)

, (320)

where S0 is the free propagator,

S0(p) =
1

p/−m0
, (321)

and Σ the quark self-energy. In mean-field approximation, it is momentum
independent and defines the constituent mass through the gap equation, Σ =
const = m, see (302) and (303).

To solve the latter in the light-cone framework, we basically just have to
calculate the condensate. As in the standard approach, this can be obtained
via the Feynman-Hellman theorem by differentiating the energy density of
the quasi-particle Dirac sea,

〈0|ψ̄ψ|0〉m =
∂

∂m
E(m) =

∂

∂m

0∫
−∞

dk+

∫
d2k⊥
16π3 2

m2 + k2
⊥

k+

= − m

4π3

∞∫
0

dk+

k+

∫
d2k⊥ . (322)

Again, as it stands, the integral is divergent and requires regularization. In
the most straightforward manner one might choose m2/Λ ≤ k+ ≤ Λ and
|k⊥| ≤ Λ, so that the condensate becomes

〈0|ψ̄ψ|0〉m = − m

4π2

Λ∫
m2/Λ

dk+

k+

Λ2∫
0

d(k2
⊥) = − m

4π2Λ
2 ln

Λ2

m2 . (323)

Plugging this result into the gap equation (302) one finds for the dynamical
mass squared,

m2(G) = Λ2 exp
(

− 2π2

GΛ2

)
. (324)

The critical coupling is determined by the vanishing of this mass, m(Gc) = 0,
and from (324) we find the surprising result

Gc = 0 . (325)

This result, however, is wrong since one knows from the conventional treat-
ment of the model that the critical coupling is finite of the order π2/Λ2,
both for covariant and noncovariant cutoff [111]. In addition, it is quite gen-
erally clear that in the free theory (G = 0) chiral symmetry is not broken (as



Light-Cone Quantization 123

m0 = 0) and, therefore, this should not happen for arbitrarily small coupling,
either, cf. (308). The remedy is to use the invariant-mass cutoff [92],

M2
0 ≡ k2

⊥ +m2

x(1 − x)
≤ Λ2 , (326)

where we have defined the longitudinal momentum fraction, x ≡ k+/Λ. This
provides a cutoff both in x (or k+) and k⊥,

0 ≤ k2
⊥ ≤ Λ2x(1 − x) −m2 , (327)

x0 ≤ x ≤ x1 , (328)

x0,1 ≡ 1
2 (1 ∓

√
1 − 4ε2) , (329)

with ε2 ≡ m2/Λ2. Note that the transverse cutoff becomes a polynomial in
x. The k⊥-integration thus has to be performed before the x-integration.

For the condensate (322) the invariant-mass cutoff (326) yields an analytic
structure different from (323),

〈0|ψ̄ψ|0〉m = −mΛ2

8π2

(
1 + 2ε2 ln ε2 +O(ε2)

)
, (330)

where we have neglected sub-leading terms in ε2. The result (330) coincides
with the standard one, (307), if one identifies the noncovariant cutoffs ac-
cording to

Λ2 ≡ 4(Λ2
3 +m2) . (331)

This has independently been observed in [12]. From (330), one infers the
correct cutoff dependence of the critical coupling,

Gc =
4π2

Λ2 . (332)

The moral of this calculation is that even in a nonrenormalizable theory like
the NJL model, the light-cone regularization prescription is a subtle issue.

In the NJL model with its second-order phase transition of mean-field
type, the usual analogy with magnetic systems can be made. Chiral symme-
try corresponds to rotational symmetry, the vacuum energy density to the
Gibbs free energy, and the mass m to an external magnetic field. The order
parameter measuring the rotational symmetry breaking is the magnetization.
It is obtained by differentiating the free energy with respect to the external
field. This is the analogue of expression (322) derived from the Feynman-
Hellmann theorem.

The Bound-State Equation. Once the physical fermion mass m is known
by solving the gap equation, it can be plugged into the Bethe-Salpeter equa-
tion for quark-antiquark bound states (mesons), given by

χBS = S1S2KχBS . (333)
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S1, S2 denote the full propagators of quark and anti-quark, K the Bethe-
Salpeter kernel, and χBS the Bethe-Salpeter amplitude. From the latter, one
obtains the light-cone wave function via integration over the energy variable
k− [108,21,31,100],

φLC(k) =
∫
dk−

2π
χBS(k) , k = (k+,k⊥) . (334)

In ladder approximation (again equivalent to the large-N limit), (333)
and (334) become

φLC(k) =
∫
dk−

2π
S(k)S(k − P )

∫
d3p

(2π)3

∫
dp−

2π
K(k, p)χBS(p) , (335)

with P denoting the bound-state four-momentum. On the left-hand-side, the
projection onto x+ = 0 (i.e. the k−-integration) has already been carried out.
On the right-hand-side, the two integrations over k− and p− still have to be
performed. Whether this can easily be done depends of course crucially on
the kernel K, which in principle is a function of both energy variables. For
the NJL model, however, K assumes the very simple form,

K(k, p) = 2γ5 ⊗ γ5 − γµγ5 ⊗ γµγ5 , (336)

i.e. it is momentum independent due to the four-point contact interaction,

W ∼
∫
d4x

∫
d4y (ψ̄Γψ)(x) δ4(x− y) (ψ̄Γψ)(y) . (337)

Thus, the p−-integration immediately yields φLC, and the k−-integration can
be performed via residue techniques and is completely determined by the
poles of the propagators, S(k) and S(k−P ). As a result, one finds a nonvan-
ishing result only if 0 ≤ k+ ≤ P+, and one of the two particles is put on-shell,
e.g. k2 = m2, as already observed by Gross [60].

The upshot of all this is nothing but the light-cone bound-state equation,
which explicitly reads

φLC(x,k⊥) = − 2G
x(1 − x)

(k̂/+m)γ5(k̂/− P/+m)
M2 −M2

0

×
∫ 1

0
dy

∫
d2p⊥
8π3 tr [γ5φLC(y,p⊥)] θΛ(y,p⊥)

+
G

x(1 − x)
(k̂/+m)γµγ5(k̂/− P/+m)

M2 −M2
0

×
∫ 1

0
dy

∫
d2p⊥
8π3 tr [γµγ5φLC(y,p⊥)] θΛ(y,p⊥) .

(338)
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Here we have defined the longitudinal momentum fractions x = k+/P+, y =
p+/P+, the on-shell momentum k̂ = (k̂−,k⊥, k+) with k̂− = (k2

⊥ + m2)/k+,
and the bound state mass squared, M2 = P 2, which is the eigenvalue to be
solved for. θΛ(x,p⊥) denotes the invariant mass cutoff (326).

Now, while (338) may appear somewhat complicated it is actually very
simple; indeed, it is basically already the solution of the problem. The crucial
observation is to note that the two integral expressions are mere normaliza-
tion constants,

CΛ ≡
∫ 1

0
dy

∫
d2p⊥
8π3 tr [γ5φLC(y,p⊥)] θΛ(y,p⊥) , (339)

DΛP
µ ≡

∫ 1

0
dy

∫
d2p⊥
8π3 tr [γµγ5φLC(y,p⊥)] θΛ(y,p⊥) . (340)

Thus, the solution of the light-cone bound-state equation (338) is

φLC(x,k⊥) = − 2GCΛ

x(1 − x)
(k̂/+m)γ5(k̂/− P/+m)

M2 −M2
0

+
GDΛ

x(1 − x)
(k̂/+m)P/γ5(k̂/− P/+m)

M2 −M2
0

, (341)

with yet undetermined normalization constants CΛ and DΛ. As a first check
of our bound-state wave function (341) we look for a massless pion in the
chiral limit. To this end we decompose the light-cone wave function into
Dirac components according to Lucha et al. [101],

φLC = φS + φPγ5 + φµ
Aγµγ5 + φµ

Vγµ + φµν
T σµν . (342)

Multiplying (341) with γ5, taking the trace and integrating over k we find

CΛ = −GCΛ

2π3

∫ 1

0
dx

∫
d2k⊥

M2x+M2
0 (1 − x)

x(1 − x)(M2 −M2
0 )
θΛ(x,k⊥)

+
GDΛ

2π3 M2
∫ 1

0
dx

∫
d2k⊥θΛ(x,k⊥) . (343)

In the chiral limit one expects a solution for M = 0, the Goldstone pion. In
this case one obtains

1 =
G

2π3

∫ 1

0
dx

∫
d2k⊥θΛ(x,k⊥) . (344)

This is exactly the gap equation (302) using the definition (322) of the con-
densate (with the invariant-mass cutoff (326) understood in both identities).
Note once more the light-cone peculiarity that the (Fock) measure in (344) is
entirely mass independent. All the mass dependence, therefore, has to come



126 Thomas Heinzl

from the (invariant-mass) cutoff. Otherwise one will get a wrong behavior of
the dynamical mass m as a function of the coupling G, as was the case in
(324).

With this in mind, we see that the Goldstone pion is a solution of the
light-cone bound-state equation exactly if the gap equation holds. This pro-
vides additional evidence for the self-consistency of the procedure. The deeper
reason for the fact that the quark self-energy and the bound-state amplitude
satisfy essentially the same equation, is the chiral Ward identity relating the
quark propagator and the pseudoscalar vertex [132].

Our next task is to actually evaluate the solution (341) of the bound-state
equation. φLC is a Dirac matrix and therefore is not yet a light-cone wave
function as defined in Sect. 4. The relation between the two quantities has
been given in [100],

2P+ψ(x,k⊥, λ, λ′) = ū(xP+,k⊥, λ)γ+φLC(k)γ+v(x̄P+,−k⊥, λ′) , (345)

where we have denoted x̄ ≡ 1 − x to save space. A somewhat lengthy calcu-
lation yields the result [67],

ψ(x,k⊥, λ, λ′) =
2GP+/

√
xx̄

M2 −M2
0

(
2CΛ

M
ūλMγ5vλ′ −DΛūλP/ γ5vλ′

)
, (346)

with the arguments of the spinors ū and v suppressed. At this point we have
to invoke another symmetry principle. Ji et al. [82] have pointed out that
the spin structure (ūΓv) should be consistent with the one obtained form the
instant form spinors via a subsequent application of a Melosh transformation
[107] and a boost. Using this recipe, one obtains the following relation between
the constants CΛ and DΛ,

2CΛ/M = −DΛ ≡ N/2G . (347)

As a result, the spin structure in (346) coincides with the standard one used
e.g. in [48,34,81,83,82]. The NJL wave function of the pion thus becomes

ψ(x,k⊥, λ, λ′) =
NP+/

√
xx̄

M2 −M2
0
ūλ(M + P/) γ5 vλ′ θ(Λ2 −M2

0 ) . (348)

Not surprisingly, the off-shellness M2 −M2
0 appears in the denominator. N

is the normalization parameter defined in (347), and the spin (or helicity)
structure is given by

ū(xP+,k⊥, λ) (M + P/) γ5 v(x̄P+,−k⊥, λ′) =

=
1√
xx̄P+

[
λ
(
mM +m2 − k2

⊥ +M2xx̄
)
δλ,−λ′ − k−λ(M + 2m)δλλ′

]
(349)

where we have used (314), (315) and denoted kλ ≡ k1 + iλk2. The first term
with spins anti-parallel corresponds to Lz = 0, the second one (with spins
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parallel) to Lz = ±1. It has already been pointed out by Leutwyler that both
spin alignments should contribute to the pion wave function [97,98]. Note
that the latter is a cutoff dependent quantity. This is necessary in order to
render the wave function normalizable. A single power of the off-shellness
in the denominator is not sufficient for that. Only the cutoff guarantees the
boundary conditions (251) so that the wave function drops off sufficiently
fast in x and k⊥.

As we are interested in analyzing the quality of a constituent picture, we
approximate the pion by its valence state, denoting ψ ≡ ψ2,

|π : P 〉 =
∑
λ,λ′

∫ 1

0
dx

∫
d2k⊥
16π3 ψ2(x,k⊥, λ, λ′) |qq̄ : x,k⊥, λ, λ′〉 (350)

which should be compared with the general expression (240). The normaliza-
tion of this state is given by (237),

〈π : P ′|π : P 〉 = 16π3P+δ3(P − P ′) . (351)

As usual we work in a frame in which the total transverse momentum van-
ishes, i.e. P = (P+,P⊥ = 0). Expression (351) yields the normalization (247)
of the wave function,∑

λλ′

∫ 1

0
dx

∫
d2k⊥
16π3 |ψ2(x,k⊥, λ, λ′)|2 ≡ ‖ψ2‖2 = 1 . (352)

It is of course a critical assumption that the probability to find the pion in its
valence state is one. In this way we enforce a constituent picture by fiat, and
it is clear that such an assumption has to be checked explicitly by comparing
with phenomenology.

5.4 Observables

With the light-cone wave function at hand, we are in the position to calculate
observables. To proceed we will employ the following two simplifications. First
of all, we will always work in the chiral limit of vanishing quark mass, m0 = 0,
which, as we have seen, leads to a massless Goldstone pion, M = 0. We write
the pion wave function as a matrix in helicity space,

ψ2(x,k⊥) =
(
ψ2↑↑ ψ2↑↓
ψ2↓↑ ψ2↓↓

)

= − N

k2
⊥ +m2

(−2m(k1 − ik2) m2 − k2
⊥

k2
⊥ −m2 −2m(k1 + ik2)

)
θ(Λ2 −M2

0 ) .

(353)

Note that, in the chiral limit, the wave function becomes independent of
x (apart from cutoff effects). This actually agrees with our findings in the
two-dimensional ‘t Hooft model, cf. (276).
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The diagonal terms in (353) correspond to parallel spins, the off-diagonal
ones to anti-parallel spins. The different components are related by the sym-
metry properties,

ψ2↓↓ = ψ∗
2↑↑ , ψ2↓↑ = −ψ2↑↓ . (354)

Second, we will go to the large-cutoff limit, that is, we will keep only the lead-
ing order in ε2 = m2/Λ2. We thus assume that the cutoff is large compared
to the constituent mass. From the standard values, Λ � 1 GeV, m � 300
MeV, we expect that this assumption should induce an error of the order of
10%. The technical advantage of the large-cutoff limit is a simple analytic
evaluation of all the integrals we will encounter. Furthermore, the leading or-
der will be independent of the actual value of the constituent mass. It should
be mentioned that the same procedure has been used in calculations based
on the instanton model of the QCD vacuum [122]. There, the ratio ε2 can be
related to parameters of the instanton vacuum, namely

ε2 = (mρ)2 ∼ (ρ/R)4 , (355)

where ρ � 1/3 fm is the instanton size and R the mean distance between
instantons. Thus, ε2 can be identified with the ‘diluteness parameter’ or
‘packing fraction’ of the instanton vacuum and hence is parametrically small,
ε2 � 1/4.

The upshot of all this is that we work with the extremely simple model
wave function [126]

ψ2↑↓ � N θ(Λ2 −M2
0 ) , ψ2↑↑ = 0 , (356)

which is entirely determined by two parameters, the normalization constant
N and the cutoff Λ. We thus need two constraints on the wave function to
fix our two parameters.

Normalization. As announced, we enforce a constituent picture by demand-
ing (352) which decomposes into

1 = ||ψ2||2 = ||ψ2↑↓||2 + ||ψ2↑↑||2 + ||ψ2↓↑||2 + ||ψ2↓↓||2 . (357)

Explicitly, one finds

||ψ2↑↓||2 = ||ψ2↓↑||2 = N2
∫ 1

0
dx

∫
d2k⊥
16π3 θ(Λ

2 −M2
0 )

=
N2

16π2

∫ 1

0
dx

∫ Λ2x(1−x)

0
dk2

⊥ =
N2Λ2

96π2
!= 1/2 , (358)

while the components with parallel spins have vanishing norm in the large-
cutoff limit, ||ψ2↑↑||2 = ||ψ2↓↓||2 = 0, cf. (356).
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Pion Decay Constant. A second constraint on the wave function is pro-
vided by the pion decay constant fπ, which appears in the semi-leptonic
process π → µν. The relevant matrix element is

〈0|ψ̄d̄(0)γ+γ5ψu(0)|π+(P+)〉 = i
√

2P+fπ , (359)

ψ̄d̄ and ψu denote the field operators of the d̄ and u quark in the pion. If we
insert all quantum numbers, the pion state to the right of the matrix element
is given by

|π+〉 = ψd̄u ⊗ 1√
6

(
|d̄c↑uc↓〉 − |d̄c↓uc↑〉

)
. (360)

The spatial (or internal) structure of the state is encoded in the light-cone
wave function ψ2 ≡ ψd̄u. If we insert the Fock expansions (309) for ψ̄d̄ and
ψu as well as the pion state (350), we obtain the following constraint on the
pion wave function, ∫ 1

0
dx

∫
d2k⊥
16π3 ψ2↑↓(x,k⊥) =

fπ

2
√

3
. (361)

The left-hand-side is basically the (position space) ‘wave function at the
origin’. Quark (u) and antiquark (d̄) thus have to sit on top of each other
in order to have sizable probability for decay. Note that only the Lz = 0
component contributes. Concerning the effect of higher Fock states, it can be
shown [93,22] that indeed only the valence wave function contributes to (361).
This constraint is therefore exact and holds beyond a constituent picture.
Empirically, the pion decay constant is fπ = 92.4 MeV [73].

As already stated, this is our second source of phenomenological infor-
mation to fix cutoff and normalization. Using the explicit form (356) of the
wave function, the constraint (361) becomes∫ 1

0
dx

∫
d2k⊥
16π3 ψ2↑↓(x,k⊥) =

NΛ2

96π2
!=
fπ

2
√

3
. (362)

With (362) and (358) we now have two equations for our two parameters
which accordingly are determined as

N =
√

3/fπ , (363)
Λ = 4πfπ � 1.16 GeV . (364)

The value (364) for the cutoff Λ is the standard scale below which chiral
effective Lagrangians are believed to make sense [104]. It is reassuring that
within our approximations we get exactly this value. This means that we
are not doing something entirely stupid. A more severe test of consistency is
provided by the next constraint to be satisfied.
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Constraint from π0 → 2γ. This constraint has also been derived by
Brodsky and Lepage [93] within an analysis of the πγ transition form factor.
It assumes the very simple form,∫ 1

0
dxψ2↑↓(x,0⊥) =

√
3

fπ
. (365)

Inserting the light-cone wave function (356), the right-hand-side simply be-
comes the normalization N which is indeed consistent with our findings (363)
and (364). We mention in passing that the constraint (365) usually is the
simplest way to fix the normalization N . Its derivation, however, is more
complicated than that of (361).

Pion Form Factor. We proceed by calculating the pion electromagnetic
formfactor. It is defined by the matrix element of the electromagnetic current
Jµ

em between pion states,

〈π : P |Jµ
em|π : P ′〉 = 2(P + P ′)µF (Q2) , Q2 ≡ −(P − P ′)2 . (366)

Considering µ = + in a frame where P = (P+,0) and P ′ = (P+,q⊥) one is
led to the the Drell-Yan formula [47,22],

F (q2
⊥) =

∑
λλ′

∫ 1

0
dx

∫
d2k⊥
16π3 ψ

∗(x,k′
⊥, λ, λ

′)ψ(x,k⊥, λ, λ′) . (367)

The transverse momentum of the struck quark is k′
⊥ = k⊥ + (1 − x)q⊥. The

formula (367) with its overlap of two wave functions on the right-hand-side is
rather similar to the nonrelativistic result as will be shown in what follows.

The form factor of a nonrelativistic system is given by the Fourier trans-
form of the charge distribution (normalized to one), that is,

F (p) =
∫
d3r ψ∗(r)ψ(r) eip·x =

∫
d3k

(2π)3
ψ∗(k + p)ψ(k) . (368)

It is important to note that k and k′ ≡ k + p are relative momenta,

k ≡ 1
M

(m2k1 −m1k2) , (369)

(and analogously for k′), so that the k1,2 are the actual particle momenta.
Accordingly, p is the relative momentum transfer,

p = k′ − k =
m2

M
(k′

1 − k1) ≡ m2

M
q = x2q , (370)

where, in the last step, we have used (268). Plugging this into the form factor
(368) we obtain the formula,

F (q) =
∫

d3k

(2π)3
ψ∗(k + x2q)ψ(k) , (371)

which, as promised, is quite similar to (367).
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If one sets the momentum transfer q⊥ in (367) equal to zero, one is left
with the normalization integral (352), so that the form factor is automatically
normalized to one (the same is true in the nonrelativistic case).

We will use the Drell-Yan formula for the form factor to determine the
pion charge radius rπ, which is given by the slope of the form factor at
vanishing momentum transfer,

F (q2⊥) ≡ 1 − r2π
6
q2⊥ +O(q4⊥) . (372)

Using (367) this results in the nice explicit formula,

r2π = −3
2

∫ 1

0
dx

∫
d2k⊥
16π3

∂2

∂qi∂qi
ψ∗

2(k⊥ + x̄q⊥)
∣∣∣∣
q⊥=0

ψ(k⊥) . (373)

Upon inserting the wave function (356), however, one encounters a problem.
The sharp cutoff (corresponding to a step function) is too singular to lead to
a reasonable result. The derivatives in (373) are concentrated at the bound-
ary of the support of the wave function which in the end leads to artificial
infinities. Thus, for the time being, we resort to a smooth cutoff,

θs
Λ(x,k⊥) ≡ exp

[
− k2

⊥
Λ2x(1 − x)

]
, (374)

which basically transforms the sharp-cutoff wave function (356) to the Gaus-
sian (286) (with m set to zero). Plugging this into (373) yields the pion charge
radius

r2π =
12
Λ2 =

3
4π2f2

π

= (0.60 fm)2 . (375)

This is the standard result for the NJL model [16] and has also been obtained
within the instanton model [41]. It is slightly smaller than the experimental
value, rπ = 0.66 [2], a discrepancy which is usually attributed to the use of
the large-cutoff limit. A pole fit using our value of the pion charge radius is
displayed in Fig. 10.

Transverse Size. As in Sect. 4, Example 3, we can use the light-cone wave
function (356) to calculate the r.m.s. transverse momentum which leads to

〈k2
⊥〉 ≡

∫ 1

0
dx

∫
d2k⊥
16π3 k

2
⊥ ||ψ2↑↓(x,k⊥)||2 =

Λ2

10
� (370 MeV)2 . (376)

This actually coincides with the result (288) for the smooth-cutoff Gaussian
wave function (286) or (374). Therefore, unlike the charge radius rπ, the
r.m.s. transverse momentum is insensitive to the details of the cutoff pro-
cedure. We thus have 〈k2

⊥〉1/2 � m > Mπ, which confirms that the pion is
highly relativistic.
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Fig. 10. The pion form factor squared vs. momentum transfer q2 ≡ q2
⊥. The full

line is the monopole fit of [2], |F |2 = n/(1 + q2
⊥r2

π/6)2 with n = 0.991, r2
π = 0.431

fm2; the dashed line is the same fit with our values, n = 1, r2
π = 0.36 fm2. The

agreement is consistent with the expected accuracy of 10%.

The r.m.s. transverse momentum can easily be translated into a transverse
size scale R⊥,

R2
⊥ ≡ 1/〈k2

⊥〉 � (0.54 fm)2 . (377)

This is slightly smaller than the charge radius which we attribute to the fact
that the charge distribution measured by the charge radius does not coincide
with the distribution of baryon density. The ‘core radius’ R⊥ is sometimes
related to the decay constant fπ via the dimensionless quantity C = fπR⊥
[152]. In constituent quark models one typically gets C � 0.4. This implies
the fairly large value R⊥ � 0.8 fm. Using standard many-body techniques,
Bernard et al. have calculated this quantity in a model treating the pion as a
collective excitation of the QCD vacuum, and find C � 0.2 [13]. This result
is close to what we get from (377),

C = fπR⊥ � 0.25 . (378)
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Thus, though we work within a constituent picture, we do get a reasonable
value. We believe that this is due to the intrinsic consistency of the light-cone
framework with the requirements of relativity, a feature that is lacking in the
constituent quark model.

(Valence) Structure Function. The pion structure function arises in the
description of deep inelastic scattering off charged pions. In terms of light-
cone wave functions it is defined as the momentum fraction x times the
sum of ‘quark distributions’ fq weighted by the quark charges eq. The quark
distributions are given by the squares of light-cone wave functions integrated
over k⊥. For the valence structure function of the pion we thus have the
formula [93,22],

F v
2 (x) = x

[
e2u f

v
u(x) + e2d f

v
d̄ (x)

]
=

5
9
xfv(x)

=
5
9
x
∑
λλ′

∫
d2k⊥
16π3 |ψ2(x,k⊥, λ, λ′)|2 , (379)

where the fv denote the valence quark distributions. For the model wave
function (356) the structure function becomes

F v
2 (x) =

10
3
x2(1 − x) , (380)

which in turn leads to the (valence) quark distribution

fv(x) ≡ fv
u(x) = fv

d̄ (x) = 6x(1 − x) . (381)

The following consistency checks can be made. The probability to find a
valence quark in the pion, ∫ 1

0
dx fv(x) = 1 , (382)

is unity, as it should. For the mean value of the momentum fraction x carried
by one of the quarks one finds

〈x〉 ≡
∫ 1

0
dxxfv(x) = 1/2 . (383)

Thus, on average, the quarks share an equal amount of longitudinal momen-
tum, which again, of course, is the correct result.

If one compares with other NJL calculations of the structure function
[139,12] and with the empirical parton distributions in the literature [56],
one finds reasonable qualitative agreement.

Let me finally point out that it is not entirely obvious to which actual
momentum scale our results correspond. The transverse-momentum cutoff
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is x-dependent, Λ2(x) � Λ2 x(1 − x), so, if we use the average x of (383),
〈x〉 � 1/2, a natural scale seems to be13

Q ≡
[
〈x〉(1 − 〈x〉)

]1/2
Λ � Λ/2 � 600 MeV . (384)

Pion Distribution Amplitude. The pion distribution amplitude was orig-
inally introduced to describe hard exclusive processes involving pions [94,95],
[92]. The pion formfactor at large Q2, for example, is given by the following
convolution formula,

F (Q2) =
∫ 1

0
dx

∫ 1

0
dy φ∗(x,Q)TH(x, y;Q)φ(y,Q)

[
1 +O(1/Q)

]
, (385)

where Q denotes the large momentum transfer, TH a ‘hard scattering ampli-
tude’ and φ the pion distribution amplitude. While the amplitude TH is the
sum of all perturbative contributions to the scattering process, φ is nonper-
turbative in nature. The convolution formula is thus a prominent example
where we see the principle of factorization into ‘soft’ and ‘hard’ physics at
work.

The pion distribution amplitude is rather straightforwardly related to the
light-cone wave function of the pion,

φ(x,Q) ∼
∫
dz−

4π
eixP+z−/2〈0|ψ̄(0)γ+γ5ψ(z−,0⊥)|π(P+)〉

∼
∫
d2k⊥
16π3 ψ

(Q)
qq̄ (x,k⊥) . (386)

The normalization is fixed by demanding that φ integrates to unity.
Brodsky and Lepage have shown that φ obeys an evolution equation of

the form [94,92],

Q
∂

∂Q
φ(x,Q) =

∫ 1

0
dy V (x, y;Q)φ(y,Q) . (387)

where the evolution kernel V is determined by perturbative QCD. For Q →
∞, (387) has the asymptotic solution

φas(x) = 6x(1 − x) , (388)

(which is normalized to 1). The (nonasymptotic) pion distribution amplitude
has been a rather controversial object. For a while people have tended to
believe in a ‘double-humped’ shape of the amplitude (due to a factor (1 −
2x)2), which was originally suggested by Chernyak and Zhitnitsky using QCD
sum rules [33]. In 1995, however, the CLEO collaboration has published data
13 I thank W. Schweiger for discussions on this point.
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[131] that seemed to support an amplitude that is not too different from
the asymptotic one [88]. Theoretical evidence for this fact has recently been
reported in [10,11,121,122]. Belyaev and Johnson, for instance, have found
two constraints which should be satisfied by the distribution amplitude [10],

φ(x = 0.3) = 1 ± 0.2 ,
φ(x = 0.5) = 1.25 ± 0.25 , (389)

which are consistent with an amplitude being close-to-asymptotic.
Last year, the experimental developments have culminated in a direct

measurement of the distribution amplitude at Fermilab [4]. At a fairly low
(i.e. nonasymptotic) momentum scale of Q2 � 10 GeV2, one finds a distribu-
tion amplitude that is very close to the asymptotic one.

Let us see what we get in the NJL model. The distribution amplitude is
given by

φNJL(x) =
2
√

3
fπ

∫
d2k⊥
16π3 ψ2↑↓(x,k⊥) = 6x(1 − x) = φas(x) . (390)
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Fig. 11. The (asymptotic) pion distribution amplitude. The vertical lines mark the
constraints (389) of Belyaev and Johnson.
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Thus, in the large cutoff limit, the NJL distribution amplitude is exactly
given by the asymptotic one! Upon comparing with (381), we see that φNJL
coincides with the quark distribution fv. This is accidental and stems from
the fact that, due to the use of a step function in (356), ψ2 ∼ |ψ2|2.

In Fig. 11 we have displayed our distribution amplitude together with the
constraints (389), represented by the vertical lines.

Our findings are thus consistent with the recent Fermilab experiment [4].
One should, however, be aware of the fact that our energy scale of Q � 0.6
GeV from (384) is below the experimental one of Q � 3 GeV. It is also
somewhat lower than Q � 1 GeV, which has been assumed by Belyaev and
Johnson in their analysis of the distribution amplitude in terms of light-cone
quark models [11].

6 Conclusions

In this lecture I have discussed an alternative approach to relativistic (quan-
tum) physics based on Dirac’s front form of dynamics. It makes use of the
fact that for relativistic systems the choice of the time parameter is not
unique. Our particular choice uses null-planes tangent to the light-cone as
hypersurfaces of equal time. This apparently trivial change of coordinates
has far-reaching consequences:

• The number of kinematical (i.e. interaction independent) Poincaré gen-
erators becomes maximal; there are seven of them instead of the usual
six, among them the boosts.

• Lorentz boosts in z-direction become diagonal; the light-cone time and
space coordinates, x+ and x−, respectively, do not get mixed but rather
get rescaled.

• As a consequence, for many-particle systems one can introduce frame-
independent relative coordinates, the longitudinal momentum fractions,
xi, and the relative transverse momenta, k⊥i.

• Because of a two-dimensional Galilei invariance, relative and center-of-
mass motion separate. As a result, many formulae are reminiscent of
nonrelativistic physics and thus very intuitive.

• This is particularly true for light-cone wave functions which, due to the
last two properties, are boost invariant and do not depend on the total
momentum of the bound state. They are therefore ideal tools to study
relativistic particle systems.

• The last statement even holds for relativistic quantum field theory where
one combines the unique properties of light-cone quantization with a Fock
space picture. The central feature making this a reasonable idea is the
triviality of the light-cone vacuum which accordingly is an eigenstate of
the fully interacting Hamiltonian. This implies that the Fock operators
create the physical particles from the ground state.
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As expected, however, the principle of conservation of difficulties is at
work so that there are problems to overcome. Of particular concern to us
was the ’vacuum problem’. In instant-form quantum field theory, especially in
QCD, many nonperturbative phenomena are attributed to the nontriviality
of the vacuum which shows up via the appearance of condensates. These
suggest that the instant-form vacuum is a complicated many-body state (like,
e.g. the BCS ground state). In addition, many of these condensates signal
the spontaneous (or anomalous) breakdown of a symmetry. The conceptual
problem which arises at this point is to reconcile the existence of condensates
with the triviality of the light-cone vacuum.

The idea put forward in these lectures is to reconstruct ground state
properties from the particle spectrum. The latter is obtained by solving the
light-cone Schrödinger equation for masses and wave functions of the associ-
ated bound states. For a relativistic quantum field theory, this, in principle,
amounts to solving an infinite system of coupled integral equations for the
amplitudes to find an ever increasing number of constituents in the bound
state. Experience, however, shows that the light-cone amplitudes to find more
than the valence quanta in the bound state tend to become rather small. Note
that the same is not true within ordinary, that is, instant-form quantization.

A first explorative step towards solving a realistic light-cone Schrödinger
equation was performed using an effective field theory, the NJL model. We
have seen that, though we made a number of approximations, in particular by
enforcing a constituent picture, a number of pionic observables are predicted
with reasonable accuracy, among them the pion electromagnetic form factor,
the pion charge and core radius and the pion valence structure function at
low normalization scale. The pion distribution amplitude (in the chiral and
large-cutoff limit) turns out to be asymptotic.

The results presented in these lectures provide some confidence that, also
for real QCD, light-cone quantization may provide a road towards a rea-
sonable constituent picture, in which hadrons are consistently described as
bound states of a minimal number of constituents. How this hope can be
turned into fact remains to be seen.
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Quantization of Constrained Systems

John R. Klauder

University of Florida, Departments of Physics and Mathematics,
Gainesville, FL 32611, USA

Abstract. The present article is primarily a review of the projection-operator ap-
proach to quantize systems with constraints. We study the quantization of systems
with general first- and second-class constraints from the point of view of coherent-
state, phase-space path integration, and show that all such cases may be treated,
within the original classical phase space, by using suitable path-integral measures
for the Lagrange multipliers which ensure that the quantum system satisfies the
appropriate quantum constraint conditions. Unlike conventional methods, our pro-
cedures involve no δ-functionals of the classical constraints, no need for dynamical
gauge fixing of first-class constraints nor any average thereover, no need to eliminate
second-class constraints, no potentially ambiguous determinants, as well as no need
to add auxiliary dynamical variables expanding the phase space beyond its original
classical formulation, including no ghosts. Besides several pedagogical examples, we
also study: (i) the quantization procedure for reparameterization invariant models,
(ii) systems for which the original set of Lagrange multipliers are elevated to the sta-
tus of dynamical variables and used to define an extended dynamical system which
is completed with the addition of suitable conjugates and new sets of constraints
and their associated Lagrange multipliers, (iii) special examples of alternative but
equivalent formulations of given first-class constraints, as well as (iv) a comparison
of both regular and irregular constraints.

1 Introduction

1.1 Initial Comments

The quantization of systems with constraints is important conceptually as
well as practically. Principal techniques for the quantization of such systems
involve conventional operator techniques [10], path integral techniques in
terms of the original phase space variables [11], extended operator techniques
involving ghost variables in addition to the original variables and extended
path integral techniques also including ghost fields (see, e.g., [14,15,21]). How-
ever, these standard approaches are generally not unambiguous and may
exhibit certain difficulties in application. A recent review [44] carefully ana-
lyzes these traditional methods and details their weaknesses as well as their
strengths.

Canonical quantization generally requires the use of Cartesian coordi-
nates and not more general coordinates [9]. Therefore, whenever we consider
a dynamical system without any constraints whatsoever, we assume that
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the phase space of the unconstrained system is flat and admits a standard
quantization of its canonical variables either in an operator form or in an
equivalent path integral form. Next, suppose constraints exist, which, for
the sake of discussion, we choose as a closed set of first-class constraints;
extensions to treat more general constraints are presented in later sections.
Whenever there are constraints the original set of variables is no longer com-
posed solely of physical variables but now contains some unphysical variables
as well. While such variables cause little concern from a classical standpoint,
they are viewed as highly unwelcome from a quantum standpoint inasmuch
as one generally wants to quantize only physical variables. Thus it is often
deemed necessary to eliminate the unphysical variables leaving only the true
physical degrees of freedom. Quantization of the true degrees of freedom is
supposed to proceed as in the initial step. In the general case, however, a
quantization of the remaining degrees of freedom is not straightforward or
perhaps not even possible because the physical (reduced) phase space is non-
Euclidean meaning that an obstruction has arisen where none existed before.
An obstruction generally precludes the existence of self-adjoint (observable!)
canonical operators satisfying the canonical commutation relations. In path
integral treatments, such obstructions arise from the introduction of delta
functionals that enforce the classical constraints and the concomitant need
to introduce subsidiary delta functionals to select a compatible dynamical
gauge in order to introduce a canonical symplectic structure on the physical
phase space that generally is not flat. These are fundamental problems that
seem difficult to overcome.

This article reviews a middle ground in the quantization procedure of sys-
tems with constraints which may be called the projection-operator, coherent-
state approach. Briefly stated, quantization of the original, unconstrained
variables proceeds without obstruction or ambiguity, while constraints are
enforced by means of a well-chosen projection operator projecting the original
Hilbert space onto the physical Hilbert subspace. This conservative frame-
work is presented in the form of a phase-space path integral with the help
of coherent states (which, while convenient, are not necessary). The differ-
ence between the present approach and other functional integral methods
may be attributed to an alternative choice for the integration measure for
the Lagrange multiplier variables. The present approach may be traced from
[27]. In addition, some aspects of the projection operator approach have been
presented in unpublished work of Shabanov [42]; see also [43].

1.2 Classical Background

For our initial discussion, let us briefly review the classical theory of con-
straints. Let {pj , q

j}, 1 ≤ j ≤ J , denote a set of dynamical variables, {λa},
1 ≤ a ≤ A, a set of Lagrange multipliers, and {φa(p, q)} a set of constraints.
Then the dynamics of a constrained system may be summarized in the form
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of an action principle by means of the classical action (summation implied)

I =
∫

[pj q̇
j −H(p, q)− λaφa(p, q)] dt . (1)

The resultant equations that arise from the action read

q̇j =
∂H(p, q)
∂pj

+ λa ∂φa(p, q)
∂pj

≡ {qj , H}+ λa{qj , φa} ,

ṗj = −∂H(p, q)
∂qj

− λa ∂φa(p, q)
∂qj

≡ {pj , H}+ λa{pj , φa} ,
φa(p, q) = 0 , (2)

where {·, ·} denotes the Poisson bracket. The set of conditions {φa(p, q) = 0}
defines the constraint hypersurface. If the constraints satisfy

{φa(p, q), φb(p, q)} = c c
ab φc(p, q) , (3)

{φa(p, q), H(p, q)} = h b
a φb(p, q) , (4)

then we are dealing with a system of first-class constraints. If the coefficients
c c
ab and h b

a are constants, then it is a closed system of first-class constraints;
if they are suitable functions of the variables p, q, then it is called an open first-
class constraint system. If (3) fails, or (3) and (4) fail, then the constraints
are said to be second class (see below).

For first-class constraints it is sufficient to impose the constraints at the
initial time inasmuch as the equations of motion will ensure that the con-
straints are fulfilled at all future times. Such an initial imposition of the
constraints is called an initial value equation. Furthermore, the Lagrange
multipliers are not determined by the equations of motion; rather the solu-
tions of the equations of motion depend on them. By specifying the Lagrange
multipliers, the solution can be forced to satisfy an additional (“gauge”) con-
dition. Observable quantities are gauge invariant and, hence, do not depend
on the gauge arbitrariness. For second-class constraints, on the other hand,
the Lagrange multipliers are determined by the equations of motion in such
a way that the constraints are satisfied for all time.

In the remainder of this section we review standard quantization proce-
dures for systems with closed first-class constraints, both of the operator and
path integral variety, pointing out some problems in each approach.

1.3 Quantization First: Standard Operator Quantization

For a system of closed first-class constraints we assume (with � = 1) that

[Φa(P,Q), Φb(P,Q)] = ic c
ab Φc(P,Q) , (5)

[Φa(P,Q),H(P,Q)] = ih b
a Φb(P,Q) , (6)
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where Φa and H denote self-adjoint constraint and Hamiltonian operators,
respectively. Following [10], we adopt the quantization prescription given by

iẆ (P,Q) = [W (P,Q),H(P,Q)] (7)

where W denotes a general function of the kinematical operators {Qj} and
{Pj} which are taken as a self-adjoint, irreducible representation of the com-
mutation rules [Qj , Pk] = iδj

k11, with all other commutators vanishing. The
equations of motion hold for all time t, say 0 < t < T . On the other hand,
the conditions

Φa(P,Q)|ψ〉phys = 0 (8)

to select the physical Hilbert space are imposed only at time t = 0 as the
analog of the initial value equation; the quantum equations of motion ensure
that the constraint conditions are fulfilled for all time.

The procedure of Dirac has potential difficulties if zero lies in the con-
tinuous spectrum of the constraint operators for in that case there are no
normalizable solutions of the constraint condition. We face the same prob-
lem, of course, and our resolution is discussed below.

1.4 Reduction First: Standard Path Integral Quantization

Faddeev [11] has given a path integral formulation in the case of closed first-
class constraint systems as follows. The formal path integral∫

exp{i∫ T

0 [pj q̇
j −H(p, q)− λaφa(p, q)] dt}DpDqDλ

=
∫

exp{i∫ T

0 [pj q̇
j −H(p, q)] dt} δ{φ(p, q)}DpDq (9)

may well encounter divergences in the remaining integrals. Therefore, sub-
sidiary conditions in the form χa(p, q) = 0, 1 ≤ a ≤ A, are imposed picking
out (ideally) one gauge equivalent point per gauge orbit, and in addition a
factor in the form of the Faddeev-Popov determinant is introduced to for-
mally preserve canonical covariance. The result is the path integral∫

exp{i∫ T

0 [pj q̇
j −H(p, q)] dt} δ{χ(p, q)}det({χa, φb})δ{φ(p, q)}DpDq .(10)

This result may also be expressed as∫
exp{i∫ T

0 [p∗j q̇
∗j −H∗(p∗, q∗)] dt}Dp∗Dq∗ , (11)

namely, as a path integral over a reduced phase space in which the δ-func-
tionals have been used to eliminate 2A integration variables.

The final expression generally involves an integration over a non-Euclidean
phase space for which the conventional definition of the path integral is typ-
ically ill defined. Thus this widely used prescription is not without its diffi-
culties.
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1.5 Quantization First �≡ Reduction First

The two schemes illustrated in the preceding sections are different in princi-
ple. In the initial case, one quantizes first and reduces second; in the latter
case, one reduces first and quantizes second. For certain systems the results
of these different procedures are the same, but that is not universally the
case, as we now proceed to illustrate.

Let us consider the example of a single degree of freedom specified by the
classical action

I =
∫

[pq̇ − λ(p2 + q4 − E)] dt . (12)

Observe that the classical Hamiltonian vanishes and there is a single con-
straint. The question we pose is: For what values of E, E > 0, is the quantum
theory nontrivial?

On the one hand, according to the procedure of Dirac, the physical Hilbert
space is either empty or one-dimensional, spanned by the nonvanishing eigen-
vector |ψn〉 that satisfies

(P 2 +Q4)|ψn〉 = En |ψn〉 , (13)

for En one of the purely discrete eigenvalues for the “Hamiltonian” P 2 +Q4.
On the other hand, the procedure of Faddeev leads initially to∫

ei
∫

p dq δ{p2 + q4 − E}DpDq . (14)

Next, we fix a gauge, e.g., p = 0, in which case the reduced phase space
propagator is given by∫

ei
∫

p dq δ{p2 + q4 − E}Π(4q3) δ{p}DpDq
= 0 , (15)

which vanishes due to cancellation between the term with q > 0 and the term
with q < 0. Note that the symbol Π denotes a formal multiplication over all
time points. An alternative evaluation may be given if we allow only the term
with q > 0, which is achieved by instead using∫

ei
∫

p dq δ{p2 + q4 − E} δ{p}DpDq4

=
∫
δ{q4 − E}Dq4

= 1 . (16)

Either of these choices imposes no restriction on E whatsoever. Ignoring the
nonphysical nature of the variables involved, one might possibly impose the
condition ∮

p dq = 2πn , (17)
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leading to a Bohr-Sommerfeld spectrum, which for this problem is incorrect.
(The reader is encouraged to examine alternative choices of gauge.)
Remark: It is instructive in this example to note that the Faddeev-Popov
determinant ∆ = Π(4q3) and the reduced phase space is the single point
(p, q) = (0, E1/4). The point (p, q) = (0,−E1/4) corresponds to a Gribov
copy.

Clearly, in this case, reduction before quantization has led to the wrong
result. Some workers may assert that such errors are merely “order � correc-
tions”. Although true, this argument cannot be used to defend the general
procedure since the role of a quantization procedure, after all, should be to
determine the correct spectrum for a specific problem, not a spectrum that is
potentially incorrect even in its leading order. Examples of other work which
arrive at the same conclusion are given in [7,39,1,40].

1.6 Outline of the Remaining Sections

In the following section, Sect. 2, we present an overview of the projection
operator approach to constrained system quantization with an emphasis on
coherent-state representations. Section 3 deals with coherent-state path inte-
grals without gauge fixing for closed first-class constrained systems. Exten-
sions to general constraints such as open first-class or second-class systems
are the subject of Sect. 4. Section 5 is devoted to selected examples of first-
class systems, while Sect. 6 concentrates on two rather special applications.
Finally, in Sect. 7 we comment on some other applications of the projection
operator approach that have not been discussed in this paper.

2 Overview of the Projection Operator Approach
to Constrained System Quantization

2.1 Coherent States

Canonical quantization is consistent only for Cartesian phase space coordi-
nates [9], and we assume that our original and unconstrained set of classical
dynamical variables fulfill that condition. Then, for each classical coordinate
qj and momentum pj , 1 ≤ j ≤ J , we may introduce associated self-adjoint
canonical operators Qj and Pj , acting in a separable Hilbert space H, and
which satisfy, in units where � = 1, the canonical commutation relations
[Qj , Pk] = iδj

k 11, with all other commutation relations vanishing. With the fi-
nancial vector |0〉 ∈ H a suitable normalized state – typically the ground state
of a (unit-frequency) harmonic oscillator (but not always!) – we introduce the
canonical coherent states (see, e.g., [33,32])

|p, q〉 ≡ e−iqjPj eipjQj |0〉 , (18)
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for all (p, q) ∈ IR2J , where p = {pj} and q = {qj}. These states admit a
resolution of unity in the form [37]

11 =
∫
|p, q〉〈p, q| dµ(p, q) , dµ(p, q) ≡ dJp dJq/(2π)J , (19)

integrated over IR2J .
The unit operator resides in the Hilbert space H of the unconstrained

system. We may conveniently represent this Hilbert space as follows. We first
introduce the reproducing kernel 〈p′′, q′′|p′, q′〉 as the overlap matrix element
between any two coherent states. This expression is a bounded, continuous
function that characterizes a (reproducing kernel Hilbert space) representa-
tion of H appropriate to the unconstrained system as follows. A dense set of
vectors in the associated functional Hilbert space is given by vectors of the
form

ψ(p, q) ≡ 〈p, q|ψ〉 =
L∑

l=1

αl 〈p, q|p(l), q(l〉 , (20)

for arbitrary sets {αl} and {p(l), q(l)} with L <∞. The inner product of two
such vectors is given by

(ψ, ξ) ≡
L,M∑

l,m=1

α∗l βm 〈p(l), q(l)|p(m), q(m)〉 (21)

=
∫
ψ(p, q)∗ξ(p, q) dµ(p, q) , (22)

where ξ is a second function defined in a manner analogous to ψ. A general
vector in the functional Hilbert space is defined by a Catchy sequence of such
vectors, and all such vectors are given by bounded, continuous functions. The
first form of the inner product applies in general only to vectors in the dense
set, while the second form of the inner product holds for arbitrary vectors
in the Hilbert space. We shall have more to say below regarding reproducing
kernels and reproducing kernel Hilbert spaces.

2.2 Constraints

Now suppose we introduce constraints into the quantum theory [27]. In par-
ticular, we assume that EI denotes a projection operator onto the constraint
subspace, i.e., the subspace on which the quantum constraints are satisfied
(in a sense to be defined below), and which is called the physical Hilbert
space Hphys ≡ EI H. Later we shall discuss examples of EI . Hence, if |ψ〉 ∈ H
denotes a general vector in the original (unconstrained) Hilbert space, the
vector EI |ψ〉 ∈ Hphys represents its component within the physical subspace.
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As a Hilbert space, the physical subspace also admits a functional representa-
tion by means of a reproducing kernel which may be taken as 〈p′′, q′′|EI |p′, q′〉.
In the same manner as before, it follows that a dense set of vectors in Hphys
is given by functions of the form

ψ(p, q) ≡ 〈p, q|EI |ψ〉 =
L∑

l=1

αl 〈p, q|EI |p(l), q(l)〉 , (23)

for arbitrary sets {αl} and {p(l), q(l)} with L <∞. The inner product of two
such vectors is given by

(ψ, ξ) ≡
L,M∑

l,m=1

α∗l βm 〈p(l), q(l)|EI |p(m), q(m)〉

=
∫
ψ(p, q)∗ξ(p, q) dµ(p, q) . (24)

Again, a general vector in the functional Hilbert space is defined by means
of a Catchy sequence, and all such vectors are given by bounded, continuous
functions. Note well, in the case illustrated, that even though EI H ⊂ H, the
functional representation of the unconstrained and the constrained Hilbert
spaces are identical, namely by functions of (p, q) ∈ IR2J , and the form of the
inner product is identical in the two cases. This situation holds even if Hphys
is one dimensional!

The relation between the self-adjoint constraint operators Φa, 1 ≤ a ≤ A,
A < ∞, and the projection operator EI may take several different forms.
Unless otherwise specified, we shall assume that ΣaΦ

2
a is self adjoint and

that

EI = EI (ΣaΦ
2
a ≤ δ(�)2) , (25)

where δ = δ(�) (not a Dirac δ-function!) is a reauthorization parameter which
is chosen in accord with rules to be discussed below.

2.3 Dynamics for First-Class Systems

Suppose further that the Hamiltonian H respects the first-class character of
the constraints. It follows in this case that [EI ,H] = 0 or stated otherwise that

e−iHtEI ≡ EI e−iHtEI ≡ EI e−i(EI HEI ) tEI . (26)

Dynamics in the physical subspace is then fully determined by the propagator
on Hphys, which is given in the relevant functional representation by

〈p′′, q′′|e−iHtEI |p′, q′〉 . (27)



Quantization of Constrained Systems 151

In (27) we have achieved a fully gauge invariant propagator without having
to reduce the range or even the number of the original classical variables nor
change the original form of the inner product on the functional Hilbert space
representation. Any observable O – H included – satisfies [EI ,O] = 0, and
relations similar to (26) follow with H replaced by O.

2.4 Zero in the Continuous Spectrum

The foregoing scenario has assumed that the appropriate Hphys is given by
means of a projection operator EI acting on the original Hilbert space. This
situation holds true whenever the set of quantum constraints admits zero
as a common point in their discrete spectrum; in that case EI defines the
subspace where the constraints all vanish. That situation may not always
hold true, but even in case zero lies in the continuous spectrum for some
or all of the constraints, a suitable result may generally be given by matrix
elements of a sequence of rescaled projection operators, say cδ EI , cδ > 0,
as δ → 0. Specifically, we consider the limit of a sequence of reproducing
kernels cδ 〈p′′, q′′|EI |p′, q′〉, which – if the limit is a nonvanishing continuous
function – defines a new reproducing kernel, and thereby a new reproducing
kernel Hilbert space, within which the appropriate constraints are fulfilled. In
such a limit certain variables may cease to be relevant and as a consequence
the local integral representation of the inner product, if any, may require
modification. On the other hand, the definition of the inner product by sums
involving the reproducing kernel will always hold. We refer to the result of
such a limiting operation as a reduction of the reproducing kernel. A simple
example should help clarify what we mean by a reduction of the reproducing
kernel.

Consider the example

〈p′′, q′′|EI |p′, q′〉

= π−1/2
∫ δ

−δ

exp[− 1
2 (k − p′′)2 + ik(q′′ − q′)− 1

2 (k − p′)2] dk , (28)

where EI = EI (P 2 ≤ δ2), which defines a reproducing kernel for any δ > 0
that corresponds to an infinite dimensional Hilbert space. (If δ = ∞ the
result is the usual canonical coherent state overlap and characterizes the
unconstrained Hilbert space.) If we take the limit of the expression as it
stands as δ → 0, the result will vanish. What we need to do is extract the
germ of the projection operator as we let δ go to zero. Therefore, let us first
multiply this expression by π1/2/(2δ) (cδ in this case) and take the limit
δ → 0. The result is the expression

K(p′′; p′) = e−
1
2 (p′′2 + p′2) , (29)

which has become a reproducing kernel that characterizes a one-dimensional
Hilbert space with every functional representative proportional to χo(p) ≡
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exp(−p2/2). This one-dimensional Hilbert space representation also admits
a local integral representation for the inner product given by

(χ, χ) =
∫ |χ(p)|2 dp/√π . (30)

In the present case, it is clear that one may reduce the reproducing kernel
even further by choosing p = c, an arbitrary but fixed constant. This kind of
reduction – in which the latter reproducing kernel Hilbert space is equivalent
to the former reproducing kernel Hilbert space – is analogous to choosing a
gauge in the classical theory. We shall see another example of this latter kind
of reduction later.

The example presently under discussion is also an important one inasmuch
as it illustrates how a constraint operator with its zero lying in the continuous
spectrum is dealt with in the coherent-state, projection-operator approach.
Some other approaches to deal with the problem of zero in the continuous
spectrum may be traced from [46,19,20,22,36].

2.5 Alternative View of Continuous Zeros

If δ 
 1 in (28), then it may be approximately evaluated as

〈p′′, q′′|EI |p′, q′〉
= π−1/2δ e−

1
2 (p′′2 + p′2) sin[δ(q′′ − q′)]

δ(q′′ − q′) +O(δ2) . (31)

When δ = 10−1000, or some other extremely tiny factor, it is clear that for
all practical purposes it is sufficient to accept just the first term in (31),
ignoring the term O(δ2), as the “reduced” reproducing kernel. The resultant
expression is indeed a proper reproducing kernel for which inner products
are given with the full set of integration variables and the normal integration
range. So long as q values are “normal sized”, e.g., |q| < 10500 in the present
case, there is no practical distinction between the space of functions generated
by (29) and that generated by (31). In other words, if δ is chosen extremely
close to zero, but still positive, it is not actually necessary to take the limit
δ → 0 in order to do practical calculations. Even though this is the case, we
shall for the most part in the examples we study take a full reduction by
first rescaling the reproducing kernel (by an appropriate factor cδ) and then
taking the limit δ → 0.

3 Coherent State Path Integrals
Without Gauge Fixing

As introduced above, canonical coherent states may be defined by the relation

|p, q〉 ≡ e−iqjPj eipjQj |0〉 , (32)
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for all (p, q), where the financial vector |0〉 traditionally denotes a normalized,
unit frequency, harmonic oscillator ground state, and the coherent states
admit a resolution of unity in the form

11 =
∫ |p, q〉〈p, q| dµ(p, q) , dµ(p, q) ≡ dJp dJq/(2π)J , (33)

where the integration is over IR2J . Note that the integration domain and the
form of the measure are unique.

Based on such coherent states, we introduce the upper symbol for a gen-
eral operator H(P,Q),

H(p, q) ≡ 〈p, q|H(P,Q)|p, q〉 = 〈p, q| : H(P,Q) : |p, q〉 (34)

which is related to the normal-ordered form as shown. (N.B. Some work-
ers would call H(p, q) the lower symbol.) If H(P,Q) denotes the quantum
Hamiltonian, then we shall adopt H(p, q) as the classical Hamiltonian. We
also note that an important one-form generated by the coherent states is
given by i〈p, q|d|p, q〉 = pj dq

j .
Using these quantities, and the time ordering operator T, the coher-

ent state path integral for the propagator generated by the time-dependent
Hamiltonian H(P,Q) + λa(t)Φa(P,Q) is readily given by

〈p′′, q′′|Te−i
∫ T

0
[H(P,Q)+λa(t)Φa(P,Q)] dt|p′, q′〉

= lim
ε→0

∫ N∏
l=0

〈pl+1, ql+1|e−iε(H+λa
l Φa) |pl, ql〉

N∏
l=1

dµ(pl, ql)

=
∫

exp{i∫ [i〈p, q|(d/dt)|p, q〉 − 〈p, q|H+ λa(t)Φa|p, q〉] dt}Dµ(p, q)

=M
∫

exp{i∫ [pj q̇
j −H(p, q)− λa(t)φa(p, q)] dt}DpDq . (35)

Here, in the second line, we have set ε ≡ T/(N + 1), made a Trotter- prod-
uct like approximation to the evolution operator, repeatedly inserted the
resolution of unity, and set pN+1, qN+1 = p′′, q′′ and p0, q0 = p′, q′. In the
third and fourth lines we have formally interchanged the continuum limit
and the integrations, and written for the integrand the form it would assume
for continuous and differentiable paths (M denotes a formal normalization
constant). The result evidently depends on the chosen form of the functions
{λa(t)}.

3.1 Enforcing the Quantum Constraints

Let us next introduce the quantum analog of the initial value equation. For
simplicity we assume that the constraint operators form a compact group;
more general situations are dealt with below. In that case

EI ≡ ∫
e−iξaΦa(P,Q) δξ = EI (Φa = 0, 1 ≤ a ≤ A) = EI (ΣaΦ

2
a = 0) (36)
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defines a projection operator onto the subspace for which Φa = 0 provided
that δξ denotes the normalized,

∫
δξ = 1, group invariant measure. It follows

from (36) that

e−iτaΦaEI = EI . (37)

We now project the propagator (35) onto the quantum constraint subspace
which leads to the following set of relations

∫
〈p′′, q′′|Te−i

∫
[H+λa(t)Φa] dt |p′, q′〉〈p′, q′|EI |p′, q′〉 dµ(p′, q′)

= 〈p′′, q′′|Te−i
∫

[H+λa(t)Φa] dt EI |p′, q′〉

= lim 〈p′′, q′′|[
←∏
l

(e−iεHe−iελa
l Φa)] EI |p′, q′〉

= 〈p′′, q′′|e−iTHe−iτaΦa EI |p′, q′〉
= 〈p′′, q′′|e−iTH EI |p′, q′〉 , (38)

where τa incorporates the functions λa as well as the structure parameters
c c
ab and h b

a . Alternatively, this expression has the formal path integral rep-
resentation∫

exp{i∫ [pj q̇
j −H(p, q)− λa(t)φa(p, q)] dt− iξaφa(p′, q′)}Dµ(p, q) δξ . (39)

On comparing (35) and (39), we observe that after projection onto the quan-
tum constraint subspace the propagator is entirely independent of the choice
of the Lagrange multiplier functions. In other words, the projected propagator
is gauge invariant.

We may also express the physical (projected) propagator in a more general
form, namely,

∫
exp{i∫ [pj q̇

j −H(p, q)− λa(t)φa(p, q)] dt}Dµ(p, q)DC(λ)

= 〈p′′, q′′|e−iTH EI |p′, q′〉 (40)

provided that
∫DC(λ) = 1 and that such an average over the functions

{λa(t)} introduces (at least) one factor EI .

3.2 Reproducing Kernel Hilbert Spaces

The coherent-state matrix elements of EI define a fundamental kernel

K(p′′, q′′; p′, q′) ≡ 〈p′′, q′′|EI |p′, q′〉 , (41)
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which is a bounded, continuous function for any projection operator EI , in-
cluding the unit operator. It follows that K(p′′, q′′; p′, q′)∗ = K(p′, q′; p′′, q′′)
as well as

K∑
k,l=1

α∗kαlK(pk, qk; pl, ql) ≥ 0 (42)

for all sets {αk}, {(pk, qk)}, and all K <∞. The last relation is an automatic
consequence of the complex conjugate property and the fact that

K(p′′, q′′; p′, q′) =
∫
K(p′′, q′′; p, q)K(p, q; p′, q′) dµ(p, q) (43)

holds in virtue of the coherent state resolution of unity and the properties
of EI . As noted earlier, the function K is called the reproducing kernel and
the Hilbert space it engenders is termed a reproducing kernel Hilbert space
[2,3,38]. A dense set of elements in the Hilbert space is given by functions of
the form

ψ(p, q) =
K∑

k=1

αkK(p, q; pk, qk) , (44)

and the inner product of this function has two equivalent forms given by

(ψ,ψ) =
K∑

k,l=1

α∗kαlK(pk, qk; pl, ql) (45)

=
∫
ψ(p, q)∗ψ(p, q) dµ(p, q) . (46)

The inner product of two distinct functions may be determined by polariza-
tion of the norm squared [41]. Clearly, the entire Hilbert space is characterized
by the reproducing kernel K. Change the kernel K and one changes the rep-
resentation of the Hilbert space. Following a suitable limit of the kernel K,
it is even possible to change the dimension of the Hilbert space, as already
illustrated earlier.

3.3 Reduction of the Reproducing Kernel

Suppose the reproducing kernel depends on a number of variables and ad-
ditional parameters. We can generate new reproducing kernels from a given
kernel by a variety of means. For example, the expressions

K1(p′′; p′) = K(p′′, c; p′, c) , (47)
K2(p′′; p′) =

∫
f(q′′)∗f(q′)K(p′′, q′′; p′, q′) dq′′ dq′ , (48)

K3(p′′, q′′; p′, q′) = limK(p′′, q′′; p′, q′) (49)
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each generate a new reproducing kernel provided the resultant function re-
mains continuous. In general, however, the inner product in the Hilbert space
generated by the new reproducing kernel is only given by an analog of (21)
and not by (22), although frequently some sort of local integral representation
for the inner product may exist.

Let us offer an example of the reduction of a reproducing kernel that is a
slight generalization of the earlier example. Let the expression

〈p′′, q′′|EI |p′, q′〉 ≡

π−J/2
∫ δ

−δ

· · ·
∫ δ

−δ

exp[− 1
2 (k − p′′)2 + ik · (q′′ − q′)− 1

2 (k − p′)2] dJk (50)

denote a reproducing kernel for any δ > 0. In the present case it follows that
EI ≡ ΠJ

j=1EI (−δ ≤ Pj ≤ δ). When δ → 0, then (50) vanishes. However, if we
first multiply by δ−J – or more conveniently by πJ/2(2δ)−J – before taking
the limit, the result becomes

lim
δ→0

πJ/2(2δ)−J〈p′′, q′′|EI |p′, q′〉 = exp(− 1
2 p
′′ 2) exp(− 1

2 p
′ 2) , (51)

which is continuous and therefore denotes the reproducing kernel for some
Hilbert space. Note that the classical variables q′′ and q′ have disappeared,
which on reference to (32) implies that all “Pj = 0”. In the present example,
the resultant Hilbert space is one dimensional, and the inner product may be
given either by a sum as in (21) involving the p variables alone or by a local
integral representation now using the measure π−J/2 dJp, namely,

(χ, χ) =
∫ |χ(p)|2π−J/2 dJp . (52)

This example illustrates the case where the constraints are “Pj = 0”, for all
j, a situation where zero lies in the continuous spectrum.

We may also use this example to illustrate how several constraints may
be replaced by a single constraint. The several constraints “Pj = 0”, for all
j, were first approximated by the regularized constraints P 2

j ≤ δ2, δ > 0,
for all j. Alternatively, we may also regularize the constraints in the form
ΣjP

2
j ≤ δ2. Furthermore, if we use EI = EI (ΣjP

2
j ≤ δ2), then it is clear that

a new prefactor, also proportional to δ−J , can be chosen so that (51) again
emerges as δ → 0.

3.4 Single Regularized Constraints

Clearly, the set of real classical constraints φa = 0, 1 ≤ a ≤ A, is equivalent to
the single classical constraint Σaφ

2
a = 0. Likewise, the set of (idealized) quan-

tum constraints “Φa|ψ〉phys = 0”, 1 ≤ a ≤ A, where each Φa is self adjoint, is
equivalent to the single (idealized) quantum constraint “ΣaΦ

2
a|ψ〉phys = 0”,

where we further assume that ΣaΦ
2
a is a self-adjoint operator. In general,
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however, the only solution of the idealized quantum constraint is the zero
vector, |ψ〉phys = 0.

To overcome this difficulty, we relax the idealized quantum constraint
and instead generally adopt the regularized form of the constraint given by
|ψ〉phys ∈ Hphys ≡ EI H, where

EI = EI (ΣaΦ
2
a ≤ δ(�)2) . (53)

Here δ(�) is a reauthorization parameter and the inequality means that in a
spectral resolution of ΣaΦ

2
a ≡

∫∞
0 λ dE(λ) that

EI ≡
∫ δ(�)2

0
dE(λ) = E(δ(�)2) . (54)

Let us examine three basic examples.
First, let zero be in the discrete spectrum of ΣaΦ

2
a. Then, it follows

that there exists a δ1(�)2 such that for all δ(�)2, 0 < δ(�)2 < δ1(�)2, then
EI (ΣaΦ

2
a ≤ δ(�)2) = EI (ΣaΦ

2
a = 0).

Second, if ΣaΦ
2
a has its zero in the continuum, then EI (ΣaΦ

2
a ≤ δ2) is

infinite dimensional for all δ > 0, but EI vanishes weakly as δ → 0. For such
cases we consider cδEI and choose the sequence cδ to weakly extract the germ
of EI as δ → 0, just as in the examples illustrated above.

Third, in a case to be studied later, suppose that zero is not in the spec-
trum of the operator ΣaΦ

2
a. Since Σaφ

2
a = 0 classically, it follows that spectral

values of ΣaΦ
2
a are o(�0) close to zero. A relevant example discussed later is

where Φ1 = P and Φ2 = Q. Then EI (P 2 + Q2 ≤ �) = |0〉〈0| is a one- di-
mensional projection operator onto the harmonic oscillator ground state |0〉.
Observe in this case that δ(�)2 = �, which vanishes when � → 0; note also
that we cannot reduce this parameter further since EI (P 2 + Q2 < �) ≡ 0.
Thus, in some cases, whether we use “≤” or “<” in the inequality defining
the projection operator can make a real difference.

The three types of examples discussed above illustrate three qualitatively
different behaviors possible for the projection operator EI . As we proceed,
we shall find the use of a single regularized constraint will be an important
unifying principle in treating the most general multiple constraint situation
imaginable.

3.5 Basic First-Class Constraint Example

Consider the system with two degrees of freedom, a vanishing Hamiltonian,
and a single constraint, characterized by the action

I =
∫

[12 (p1q̇1 − q1ṗ1 + p2q̇2 − q2ṗ2)− λ(q2p1 − p2q1)] dt , (55)

where for notational convenience we have lowered the index on the q variables.
Note that we have chosen a different form for the kinematic part of the action



158 John R. Klauder

which amounts to a change of phase for the coherent states, and in particular
a factor of eipq/2 has been introduced on the right side of (18), or, equivalently,
both generators appear in the same exponent. It follows that

M
∫

exp{i∫ [ 12 (p1q̇1 − q1ṗ1 + p2q̇2 − q2ṗ2)− λ(q2p1 − p2q1)] dt}
×DpDqDC(λ)

= 〈p′′, q′′|EI |p′, q′〉 , (56)

where we choose

EI = (2π)−1
∫ 2π

0
e−iξ(Q2P1−P2Q1) dξ = EI (L3 = 0) . (57)

Based on the fact [33] that

〈p′′, q′′|p′, q′〉 = exp(− 1
2 |z′′1 |2 − 1

2 |z′′2 |2 − 1
2 |z′1|2 − 1

2 |z′2|2)
× exp(z′′∗1 z′1 + z′′∗2 z′2) , (58)

where z′1 ≡ (q′1 + ip′1)/
√

2, etc., it is straightforward to show that

〈p′′, q′′|EI |p′, q′〉 = exp(− 1
2 |z′′1 |2 − 1

2 |z′′2 |2 − 1
2 |z′1|2 − 1

2 |z′2|2)
×I0( (z′′∗21 + z′′∗22 )1/2(z′21 + z′22 )1/2 ) , (59)

with I0 a standard Bessel function. We emphasize again that although the
Hilbert space has been strictly reduced by the introduction of EI , the re-
producing kernel (59) leads to a reproducing kernel Hilbert space with an
inner product having the same number of integration variables and domain
of integration as in the unconstrained case.

4 Application to General Constraints

4.1 Classical Considerations

When dealing with a general constraint situation it will typically happen
that the self-consistency of the equations of motion may determine some
or all of the Lagrange multipliers in order for the system to remain on the
classical constraint hypersurface. For example, if the Hamiltonian attempts
to force points initially lying on the constraint hypersurface to leave that
hypersurface, then the Lagrange multipliers must supply the necessary forces
for the system to remain on the constraint hypersurface.

We may elaborate on this situation as follows. Since φa(p, q) = 0 for all a
defines the constraint hypersurface, it is also necessary, for all a, that

φ̇a(p, q) ≡ {φa(p, q), H(p, q)}+ λb(t){φa(p, q), φb(p, q)} ≡ 0 (60)
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also holds on the constraint hypersurface. If the Poisson brackets fulfill the
conditions given in (3) and (4), then it follows that φ̇a(p, q) ≡ 0 on the
constraint hypersurface for any choice of the Lagrange multipliers {λa(t)}.
This is the case for first-class constraints, and to obtain specific solutions to
the dynamical equations it is necessary to specify some choice of the Lagrange
multipliers, i.e., to select a gauge. However, if (3), or (3) and (4) do not hold
on the constraint hypersurface, the situation changes. For example, let us
first assume that (4) holds but that

∆ab(p, q) ≡ {φa(p, q), φb(p, q)} (61)

is a nonsingular matrix on the constraint hypersurface. In this case it follows
that we must choose λa(t) ≡ 0 for all a to satisfy (60). More generally, we
must choose

λa(t) ≡ −(∆−1(p, q))ab {φb(p, q), H(p, q)} (62)

in order that (60) will be satisfied. When the Lagrange multipliers are not
arbitrary but rather must be specifically chosen in order to keep the system
on the constraint hypersurface, then we say that we deal with second-class
constraints. Of course, there are also intermediate situations where part of
the constraints are first class while some are second class; in this case the
matrix ∆ab(p, q) would be singular but would have a nonzero rank on the
constraint hypersurface.
Remark: It is useful to also imagine solving the differential equation (60)
as a computer might do it, namely, by an iteration procedure. In particular,
we could imagine evolving by a small time step ε by the first (Hamiltonian)
term, then using the second (constraint) term to choose λa at that moment
to force the system back onto the constraint hypersurface, and afterwards
continuing this procedure over and over. A proper solution can be obtained
this way by taking the limit of these approximate solutions as ε → 0. An
analogue of this procedure will be used in our quantum discussion.

There is also a third situation that may arise, namely constraints that
are first class from a classical point of view but are second class quantum
mechanically. Such constraints would arise if

∆ab(p, q) = Y c
ab (p, q)φc(p, q) , (63)

where, for the sake of convenience, we assume that the quantities Y c
ab (p, q)

are all uniformly bounded away from zero and infinity, i.e., 0 < C ≤ Y c
ab (p, q)

≤ D < ∞. In that case ∆ab(p, q) would vanish on the constraint hypersur-
face classically. Quantum mechanically, the expression for the commutator is
proportional to � and may be taken as

i[Φa(P,Q), Φb(P,Q)] = 1
2 [Y c

ab (P,Q)Φc(P,Q) + Φc(P,Q)Y c
ab (P,Q)] . (64)

If we assume that “Φa(P,Q)|ψ〉phys = 0”, then self-consistency requires that
“[Φc(P,Q), Y c

ab (P,Q)]|ψ〉phys = 0”, an expression which is now proportional
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to �
2. If this expression vanishes it causes no problem; if it does not vanish one

says that there is a “factor ordering problem” or an “anomaly”. As Jackiw has
often stressed, it would be preferable to call an anomaly “quantum mechanical
symmetry breaking”, a phrase which more accurately describes what it is and
what it does. Whatever it is called, the resultant quantum constraints are
second class even though they were classically first class. As is well known,
gravity falls into just this category.

In this section we take up the quantization of these more general situations
involving both first and second class constraints [27].

4.2 Quantum Considerations

As in previous sections, we let EI denote the projection operator onto the
quantum constraint subspace. Motivated by the classical comments given
above we consider the quantity

lim 〈p′′, q′′|EI e−iεHEI e−iεH · · ·EI e−iεHEI |p′, q′〉 (65)

where the limit, as usual, is for ε → 0. The physics behind this expression
is as follows. Reading from right to left we first impose the quantum initial
value equation, and then propagate for a small amount of time (ε). Next we
recognize that the system may have left the quantum constraint subspace,
and so we project it back onto that subspace, and so on over and over. In the
limit that ε→ 0 the system remains within the quantum constraint subspace
and (65) actually leads to

〈p′′, q′′|EI e−iT (EI HEI )EI |p′, q′〉 , (66)

which clearly illustrates temporal evolution entirely within the quantum con-
straint subspace. If we assume that EI HEI is a self-adjoint operator, then we
conclude that (66) describes a unitary time evolution within the quantum
constraint subspace.

The expression (65) may be developed in two additional and alternative
ways. First, we repeatedly insert the resolution of unity in such a way that
(65) becomes

lim
∫ N∏

l=0

〈pl+1, ql+1|EI e−iεHEI |pl, ql〉
N∏

l=1

dµ(pl, ql) . (67)

We wish to turn this expression into a formal path integral, but the procedure
used previously relied on the use of unit vectors, and the vectors EI |p, q〉 are
generally not unit vectors. Thus, let us rescale the factors in the integrand
introducing

|p, q〉〉 ≡ EI |p, q〉/‖EI |p, q〉‖ (68)
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which are unit vectors. If we let M ′′ ≡ ‖EI |p′′, q′′〉‖, M ′ ≡ ‖EI |p′, q′〉‖, and
observe that ‖EI |p, q〉‖2 = 〈p, q|EI |p, q〉, it follows that (67) may be rewritten
as

M ′′M ′ lim
∫ N∏

l=0

〈〈pl+1, ql+1|e−iεH|pl, ql〉〉
N∏

l=1

〈pl, ql|EI |pl, ql〉 dµ(pl, ql) . (69)

This expression is represented by the formal path integral

M ′′M ′
∫

exp{i∫ [i〈〈p, q|(d/dt)|p, q〉〉 − 〈〈p, q|H|p, q〉〉] dt}DEµ(p, q) , (70)

where the new formal measure for the path integral is defined in an evident
fashion from its lattice prescription. We can also reexpress this formal path
integral in terms of the original bra and ket vectors in the form

M ′′M ′
∫

exp{i∫ [i〈p, q|EI (d/dt)EI |p, q〉/〈p, q|EI |p, q〉
−〈p, q|EI HEI |p, q〉/〈p, q|EI |p, q〉] dt}DEµ(p, q) . (71)

This last relation concludes our second route of calculation beginning with
(65).

The third relation we wish to derive uses an integral representation for
the projection operator EI generally given by

EI =
∫
e−iξaΦa(P,Q) f(ξ) δξ (72)

for a suitable function f . Thus we rewrite (65) in the form

lim
∫
〈p′′, q′′|e−iελa

N Φae−iεHe−iελa
N−1Φae−iεH · · · e−iελa

1Φae−iεHe−iελa
0Φa |p′, q′〉

× f(ελN ) · · · f(ελ0) δελN · · · δελ0 . (73)

Next we insert the coherent-state resolution of unity at appropriate places to
find that (73) may also be given by

lim
∫
〈pN+1, qN+1|e−iελa

N Φa |pN , qN 〉
N−1∏
l=0

〈pl+1, ql+1|e−iεHe−iελa
l Φa |pl, ql〉

×[
N∏

l=1

dµ(pl, ql) f(ελl) δελl] f(ε l0) δελ0 . (74)

Following the normal pattern, this last expression may readily be turned into
a formal coherent-state path integral given by

∫
exp{i∫ [pj q̇

j −H(p, q)− λa(t)φa(p, q)] dt}Dµ(p, q)DE(λ) , (75)
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where E(λ) is a measure designed so as to insert the projection operator EI
at every time slice. This usage of the Lagrange multipliers to ensure that the
quantum system remains within the quantum constraint subspace is similar
to their usage in the classical theory to ensure that the system remains on
the classical constraint hypersurface. On the other hand, it is also possible to
use the measure E(λ) in the case of closed first-class constraints as well; this
would be just one of the acceptable choices for the measure C(λ) designed to
put at least one projection operator EI into the propagator.

In summary, we have established the equality of the three expressions

〈p′′, q′′|EI e−iT (EI HEI )EI |p′, q′〉
= M ′′M ′

∫
exp{i∫ [i〈p, q|EI (d/dt)EI |p, q〉/〈p, q|EI |p, q〉
−〈p, q|EI HEI |p, q〉/〈p, q|EI |p, q〉] dt}DEµ(p, q)

=
∫

exp{i∫ [pj q̇
j −H(p, q)− λa(t)φa(p, q)] dt}Dµ(p, q)DE(λ) . (76)

This concludes our initial derivation of path integral formulas for general
constraints. Observe that we have not introduced any δ-functionals, nor, in
the middle expression, reduced the number of integration variables or the
limits of integration in any way even though in that expression the integral
over the Lagrange multipliers has been carried out.

4.3 Universal Procedure
to Generate Single Regularized Constraints

The preceding section developed a functional integral approach suitable for
a general set of constraints, but it had one weak point, namely, it required
prior knowledge of the constraints themselves in order to choose f(ξ) in (72)
so as to construct the appropriate projection operator. Is there any way to
construct EI without prior knowledge of the form the constraints will take?
The answer is yes!

We first observe that the evolution operator appearing in (35) may be
written in the form of a lattice limit given by

lim
ε→0

←−∏
1≤n≤N

[
Te−i

∫ nε

(n−1)ε
H(t) dt

] [
Te−i

∫ nε

(n−1)ε
λa(t)Φa dt

]
, (77)

where ε ≡ T/N and the directed product (symbol←−) also respects the time
ordering. Thus, this expression is simply an alternating sequence of short-
time evolutions, first by λa(t)Φa, second by H(t), a pattern which is then
repeated N − 1 more times. The validity of this Trotter-product form follows
whenever H(t)2 +Φaδ

abΦb is essentially self adjoint for all t, 0 ≤ t ≤ T . As a
slight generalization, we shall assume that H(t)2+ΦaM

abΦb is essentially self
adjoint for all t, 0 ≤ t ≤ T . Here the real, symmetric coefficientsMab (= M ba)
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are the elements of a positive-definite matrix, i.e., {Mab} > 0. For a finite
number of constraints, A < ∞, it is sufficient to assume that Mab = δab.
Other choices for Mab may be relevant when A = ∞. (We do not explicitly
consider the case A =∞ in this article; for some examples see [28].)

With all this in mind, we shall explain the construction of a formal inte-
gration procedure [29] whereby

∫
Te−i

∫ nε

(n−1)ε
λa(t)Φa dtDR(λ) = EI (ΦaM

abΦb ≤ δ(�)2) , (78)

and for which the integral represented by
∫ · · · DR(λ) is independent of the

set of operators {Φa} and the Hamiltonian operator H(t) for all t. First,
introduce a formal Gaussian measure DSγn(λ) such that

∫
Te−i

∫ nε

(n−1)ε
λa(t)Φa dtDSγn(λ)

= N
∫

Te−i
∫ nε

(n−1)ε
λa(t)Φa dt

e
(i/4γn)

∫ nε

(n−1)ε
λa(t)(M−1)abλb(t) dt

ΠaDλa

= e−iεγn(ΦaMabΦb) . (79)

The second and last step in the construction involves an integration over γn

given by
∫
e−iεγn(ΦaMabΦb) dΓ (γn)

≡ lim
ζ→0+

lim
L→∞

∫ L

−L

e−iεγn(ΦaMabΦb) sin[ε(δ2 + ζ)γn]
πγn

dγn

= EI (ε ΦaM
abΦb ≤ ε δ2)

= EI (ΦaM
abΦb ≤ δ2) , (80)

which achieves our goal. We note that if the final limit is replaced by limζ→0− ,
the result becomes EI (ΦαM

αβΦβ < δ2). We normally symbolize the pair of
operations by

∫ · · · DR(λ), leaving the integral over γn implicit.
Remark: For notational simplicity throughout this article, we generally let

∫
e−iγX2 sin(δ2γ)

πγ
dγ

≡ lim
ζ→0+

lim
L→∞

∫ L

−L

e−iγX2 sin[(δ2 + ζ)γ]
πγ

dγ

= EI (X2 ≤ δ2) . (81)

With (80) we have found a single, universal procedure to create the regu-
larized projection operator EI from the set of constraint operators in a manner
that is completely independent of the nature of the constraints themselves.
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4.4 Basic Second-Class Constraint Example

Consider the two degree of freedom system determined by

I =
∫

[pq̇ + rṡ−H(p, q, r, s)− λ1r − λ2s] dt , (82)

where we have called the variables of the second degree of freedom r, s, and H
is not specified further. The coherent states satisfy |p, q, r, s〉 = |p, q〉 ⊗ |r, s〉,
which will be useful. We adopt (71) as our formal path integral in the present
case, and choose [33]

EI =
∫
e−i(ξ1R+ξ2S) e−(ξ2

1+ξ2
2)/4 dξ1dξ2/(2π)

= EI (R2 + S2 ≤ �) ≡ |02〉〈02| (83)

which is a projection operator onto the financial vector for the second (con-
strained) degree of freedom only. With this choice it follows that

i〈p, q, r, s|EI (d/dt)EI |p, q, r, s〉/〈p, q, r, s|EI |p, q, r, s〉
= i〈p, q|(d/dt)|p, q〉 − �(d/dt) ln[〈02|r, s〉]
= pq̇ −�(d/dt) ln[〈02|r, s〉] , (84)

and

〈p, q, r, s|EI H(P,Q,R, S)EI |p, q, r, s〉/〈p, q, r, s|EI |p, q, r, s〉
= 〈p, q, 0, 0|H(P,Q,R, S)|p, q, 0, 0〉
= H(p, q, 0, 0) . (85)

Consequently, for this example, (71) becomes

M
∫

exp{i∫ [pq̇ −H(p, q, 0, 0)] dt}DpDq × 〈r′′, s′′|02〉〈02|r′, s′〉 , (86)

where we have used the fact that at every time slice
∫ 〈r, s|EI |r, s〉 dr ds/(2π) =

∫ |〈02|r, s〉|2 dr ds/(2π) = 1 . (87)

Observe, in this path integral quantization, that no variables have been
eliminated nor has any domain of integration been reduced; moreover, the
operators R and S have remained unchanged. Also observe that the result in
(86) is clearly a product of two distinct factors. The first factor describes the
true dynamics as if we had solved for the classical constraints and substituted
r = 0 and s = 0 in the classical action from the very beginning, while the
second factor characterizes a one-dimensional Hilbert space for the second
degree of freedom. Thus we can also drop the second factor completely as
well as all the integrations over r and s and still retain the same physics. In
this manner we recover the standard result without the use of Dirac brackets
or having to initially eliminate the second-class constraints from the theory.
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4.5 Conversion Method

One common method to treat second-class constraints is to convert them to
first-class constraints and to follow the available procedures for such systems;
see, e.g., [12,4,5]. Let us first argue classically, and take as an example a single
degree of freedom with canonical variables p and q, a vanishing Hamiltonian,
and the second-class constraints p = 0 and q = 0. This situation may be
described by the classical action

I =
∫

[pq̇ − λp− ξq] dt , (88)

where λ and ξ denote Lagrange multipliers. Next, let us introduce a second
canonical pair, say r and s, and adopt the classical action

I ′ =
∫

[pq̇ + rṡ− λ(p+ r)− ξ(q − s)] dt . (89)

Now the two constraints read p+ r = 0 and q− s = 0 with a Poisson bracket
{p + r, q − s} = 0, characteristic of first-class constraints. We obtain the
original problem by imposing the (consistent) gauge conditions that r = 0
and s = 0. Let us look at this example from the projection operator, coherent
state approach.

In the first version with one pair of variables, we are led to the reproducing
kernel

〈p′′, q′′|EI (P 2 +Q2 ≤ �)|p′, q′〉
= 〈p′′, q′′|0〉〈0|p′, q′〉
= e−

1
4 (p′′2 + q′′2 − 2ip′′q′′) e−

1
4 (p′2 + q′2 + 2ip′q′) , (90)

which provides a “bench mark” for this example. As expected the result is a
one-dimensional Hilbert space.

In the second version of this problem, we start with the expression

〈p′′, q′′, r′′, s′′|EI ((P +R)2 + (Q− S)2 ≤ δ2)|p′, q′, r′, s′〉 (91)

which involves a constraint with zero in the continuous spectrum. There-
fore, following previous examples, we multiply this expression with a suitable
factor cδ and take the limit as δ → 0. This factor can be chosen so that

lim
δ→0

cδ 〈p′′, q′′, r′′, s′′|EI ((P +R)2 + (Q− S)2 ≤ δ2)|p′, q′, r′, s′〉

= e−
1
4 [(p′′ + r′′)2 + (q′′ − s′′)2] + 1

2 i(p
′′ − r′′)(q′′ − s′′)

×e− 1
2 i(p

′ − r′)(q′ − s′)− 1
4 [(p′ + r′)2 + (q′ − s′)2] , (92)

an expression which also describes a one-dimensional Hilbert space. This is
a different (but equivalent) representation for the one-dimensional Hilbert
space than the one found above. Since it is only one-dimensional we can
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reduce this reproducing kernel even further, in the fashion illustrated earlier,
by choosing a “gauge” where r′′ = s′′ = r′ = s′ = 0. When this is done the
result becomes

e−
1
4 (p′′2 + q′′2 − 2ip′′q′′) e−

1
4 (p′2 + q′2 + 2ip′q′) , (93)

which is identical to the expression (90) found by quantization of the second-
class constraints directly. In this manner we see how the conversion method,
in which second-class constraints are turned into first-class constraints by the
introduction of auxiliary degrees of freedom, appears within the projection
operator, coherent state approach as well. Applications of the conversion
method made within the projection operator approach may be found in [31].

4.6 Equivalent Representations

In dealing with quantum mechanics, one may employ many different – yet
equivalent – representations of the vectors and operators involved. While, in
certain circumstances, some representations may be more convenient than
others, the notion that some representations are “better” than others should
be resisted.

In the context of coherent-state representations, for example, a change
of the financial vector leads to an equivalent representation. If, for a rather
general (normalized) financial vector |η〉, we set

|p, q; η〉 ≡ e−iqP eipQ |η〉 , (94)

then

ψ(p, q; η) ≡ 〈p, q; η|ψ〉 (95)

defines η-dependent representatives of the abstract vector |ψ〉. However, all
representation dependent aspects disappear when physical questions are asked
such as ∫ |ψ(p, q; η)|2 (dp dq/2π) = 〈ψ|ψ〉 . (96)

More general representation issues may be addressed by using arbitrary
unitary operators, say V . Thus if |p, q〉 denotes elements of one (say) co-
herent state basis, then |p, q;V 〉 ≡ V †|p, q〉 denotes the elements of an-
other basis. Vector and operator representatives, ψ(p, q;V ) ≡ 〈p, q;V |ψ〉 and
A(p′, q′;V : p, q;V ) ≡ 〈p′, q′;V |A|p, q;V 〉, respectively, provide equivalent
sets of functional representatives for different V . Evidently the physics is
unchanged in this transformation; only the intermediate mathematical rep-
resentatives are affected. This formulation is similar to passive coordinate
transformations in other disciplines. Another version similar to active coor-
dinate transformations is also possible. In this version the basis vectors, say
|p, q〉, for all relevant (p, q), remain unchanged; instead, the abstract vectors
|ψ〉 and operators A, etc., are transformed: |ψ〉 → V |ψ〉, A → VAV †, etc. It
is this form of equivalence that we turn to next.
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4.7 Equivalence of Criteria for Second-Class Constraints

Let us return to the simple example of second-class constraints discussed
above where, classically, p = q = 0. In the associated quantum theory, we
chose to express these constraints with the help of the projection operator
EI = EI (P 2+Q2 ≤ �) = |0〉〈0|, namely, the projection operator onto the ground
state of the “Hamiltonian” P 2+Q2. In turn, this expression led directly to the
coherent-state representation of EI given by 〈p′, q′|EI |p, q〉 = 〈p′, q′|0〉〈0|p, q〉.
However, the question arises, what is special about the combination P 2 +
Q2? As we shall now argue, any other possible choice leads to an equivalent
representation.

As a first example, consider

EI (P 2 + ω2Q2 ≤ ω�) = |0;ω〉〈0;ω| = V †ω |0〉〈0|Vω , (97)

where Vω denotes a suitable unitary operator, which establishes the equiva-
lence for any ω, 0 < ω <∞. We emphasize that we do not assert the unitary
equivalence of P 2 +Q2 and P 2 +ω2Q2 for any value of ω �= 1, only that |0;ω〉
and |0〉 are unitarily related – as are any two unit vectors in Hilbert space.

Furthermore, there is nothing sacred about the quadratic combination.
For example, for any 0 < λ <∞, consider EI (P 2+λQ4 ≤ δ(�)2) ≡ |0, λ〉〈0, λ|,
where we have adjusted δ(�) to the lowest eigenvalue so as to include only
a single eigenvector, |0, λ〉. Since there exists a unitary operator Vλ such
that 〈0, λ| = 〈0|Vλ, this choice of projection operator leads to an equivalent
coherent-state representation as well.

More generally, we are led to reconsider the projection operator

EI (ΣaΦ
2
a ≤ δ(�)2) =

J∑
j=1

|j〉〈j| , (98)

where 〈j|k〉 = δjk and 1 ≤ J ≤ ∞, as determined by the choice of δ(�).
Since all J-dimensional subspaces are unitarily equivalent to each other (with
suitable care taken when J =∞), the given prescription is entirely equivalent
to any other version, such as

EI (F(Φa) ≤ δ̃(�)2) =
J∑

j=1

|j〉〈j| , (99)

where 〈j|k〉 = δjk, provided that δ̃(�) may be – and is – chosen so that J = J .
Here F(Φa) denotes a nonnegative self-adjoint operator that includes all the
constraint operators, and for very small δ̃(�)2 forces the spectral contribution
of each constraint operator to be correspondingly small, just as is the case in
(98).

In summary, the general, quadratic criterion we have adopted in (98)
has been chosen for simplicity and convenience; any other restriction on the
constraint operators leads to an equivalent theory, as in (99), provided that
the dimensionality of EI remains the same.
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5 Selected Examples of First-Class Constraints

5.1 General Configuration Space Geometry

Although we shall discuss constraints that lead to a general configuration
space geometry in this section, we shall for the most part use rather simple
illustrative examples. To begin with let us consider the constraint

J∑
j=1

(qj)2 = 1 , (100)

a condition which puts the classical problem on a (hyper)sphere of unit ra-
dius. For convenience in what follows we shall focus as well on the case of a
vanishing Hamiltonian so as to isolate clearly the consequences of the con-
straint independently of any dynamical effects. Adopting a standard vector
inner product notation and a different kinematic term, consider the formal
path integral

M
∫

exp{i∫ [−q · ṗ− λ(q2 − 1)] dt}DpDqDC(λ) , (101)

the result of which is given by

〈p′′, q′′|EI |p′, q′〉 (102)

where

EI =
∫ ∞
−∞

e−iλ(Q2−1) sin(δλ)
πλ

dλ = EI (−δ ≤ Q2 − 1 ≤ δ) . (103)

In order, ultimately, to obtain a suitable reduction of the reproducing
kernel in the present case, we allow for financial vectors other than harmonic
oscillator ground states. Thus we let |η〉 denote a general unit vector for the
moment; its required properties will emerge from our analysis. In accordance
with (101), we choose a phase convention for the coherent states – in particu-
lar, in (18) we multiply by eip·q – so that now the Schrödinger representation
of the coherent states reads

〈x|p, q〉 = eip·x η(x− q) , (104)

which leads immediately to the expression

〈p′′, q′′|p′, q′〉 =
∫
η∗(x− q′′) e−i(p′′−p′)·x η(x− q′) dJx . (105)

Consequently, the reproducing kernel that incorporates the projection oper-
ator is given, for 0 < δ < 1, by

〈p′′, q′′|EI |p′, q′〉 =
∫

1−δ≤x2≤1+δ

η∗(x− q′′) e−i(p′′−p′)·x η(x− q′) dJx . (106)
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Since EI represents a projection operator, it is evident that this expression
defines a reproducing kernel which admits a local integral for its inner prod-
uct (for any normalized η) with a measure dJp dJq/(2π)J and an integration
domain IR2J .

However, if we are willing to restrict our choice of financial vector, we can
reduce the number of integration variables and change the domain of integra-
tion in a meaningful way. Recall that the group E(J), the Euclidean group
in J-dimensions, consists of rotations that preserve the unit (hyper)sphere in
J-dimensions, as well as J translations. As emphasized by Isham [23], this
is the natural canonical group for a system confined to the surface of a (hy-
per)sphere in J dimensions. We can adapt our present coherent states to be
coherent states for the group E(J) without difficulty.

To that end consider the reduction of the reproducing kernel (106) to one
for which q′′2 = q′2 ≡ 1. To illustrate the process as clearly as possible let us
choose J = 2. As a consequence we introduce

〈a′′, b′′, c′′|a′, b′, c′〉 ≡ 〈p′′, q′′|EI |p′, q′〉q′′2=q′2=1 , (107)

where a ≡ p1, b ≡ p2, and c arises from the identification q1 ≡ cos(c) and
q2 ≡ sin(c), all relations holding for both end points. Expressed in terms of
polar coordinates, r, φ, the reduced reproducing kernel becomes

〈a′′, b′′, c′′|a′, b′, c′〉
=

∫
|r2−1|≤δ

η∗(r, φ− c′′) e−i(a′′−a′)r cos φ−i(b′′−b′)r sin φ η(r, φ− c′) r dr dφ .

(108)

We next seek to choose η, if at all possible, in such a way that the inner
product of this new (reduced) reproducing kernel admits a local integral for its
inner product. As a starting point we choose the left-invariant group measure
for E(2) which is given by M dadb dc, M a constant, with an integration
domain IR2 × S1. Therefore, we are led to study∫ ∫

|r2−1|<δ

η∗(r, φ− c′′) e−i(a′′−a)r cos φ−i(b′′−b)r sin φ η(r, φ− c) r dr dφ

×
∫
|ρ2−1|<δ

η∗(ρ, θ − c) e−i(a−a′)ρ cos θ−i(b−b′)ρ sin θ η(ρ, θ − c′) ρ dρ dθ

×M dadb dc

= (2π)2M
∫
η∗(r, φ− c′′)e−i(a′′−a′)r cos φ−i(b′′−b′)r sin φ η(r, φ− c′) r dr dφ

×
∫
|η(r, c)|2 dc , (109)

which leads to the desired result provided (i)
∫ 2π

0
|η(r, c)|2 dc = P , 0 < P <∞ , (110)
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is independent of r, |r2 − 1| < δ, and (ii) M = [(2π)2 P ]−1. Given a general
nonvanishing vector ξ(r, φ), a vector satisfying (110) may always be given by

η(r, φ) = ξ(r, φ)/
√∫ 2π

0 |ξ(r, θ)|2 dθ (111)

provided the denominator is positive, and which specifically leads to P = 1. In
this way we have reproduced the E(2)-coherent states of [24], even including
the necessity for a small interval of integration in r, and where financial
vectors satisfying (110) were called “surface constant”.

Dynamics consistent with the constraint q2 = 1 is obtained in the E(2)
case by choosing a Hamiltonian that is a function of the coordinates on the
circle, namely cos(θ) and sin(θ), as well as the rotation generator of E(2), i.e.,
−i∂/∂θ. We refer the reader to [24] for a further discussion of E(2)-coherent
states as well as a discussion of the introduction of compatible dynamics. An
analogous discussion can be given for the classical constraint q2 = 1 for any
value of J > 2.

Not only can compact (hyper)spherical configuration spaces be treated in
this way, but one may also treat noncompact (hyper)pseudospherical spaces
defined by the constraint

ΣI
i=1q

i 2 −ΣJ
j=I+1q

j 2 = 1 , 1 ≤ I ≤ J − 1 , (112)

appropriate to the Euclidean group E(I, J − I). Such an analysis would lead
to E(I, J − I)-coherent states.

Finally, we comment on the constraint of a general curved configuration
space which can be defined by a set of compatible constraints φa(q) = 0.
Clearly these constraints satisfy {φa(q), φb(q)} = 0, and define a (J − A)-
dimensional configuration space in the original Euclidean configuration space
IRJ . The relevant projection operator EI = EI (ΣaΦ

2
a(Q) ≤ δ2) is defined in

an evident fashion, and the reproducing kernel incorporating the projection
operator is defined in analogy with the prior discussion. This reproducing
kernel enjoys a local integral representation for its inner product, in fact,
this integral is with the same measure and integration domain as without
the projection operator. What differs in the present case is that when the
reproducing kernel is put on the constraint manifold, the resultant coherent
states are generally not defined by the action of a group on a fixed financial
vector. In short, the relevant coherent states are not group generated, which,
in fact, is consistent with their most basic definition; see, e.g., [32] and [26].

5.2 Finite-Dimensional Hilbert Space Examples

Let us consider the case of two degrees of freedom with a “classical” action
function given by

I =
∫

[ 12 (p1q̇1 − q1ṗ1 + p2q̇2 − q2ṗ2)− λ(p2
1 + p2

2 + q21 + q22 − 4s�)] dt . (113)
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For clarity of presentation, we explicitly include � in our classical action, and
we continue to make it explicit throughout this section. With the present
phase convention for the coherent states, the unconstrained reproducing ker-
nel is given by

〈p′′, q′′|p′, q′〉 ≡ 〈z′′|z′〉
= exp[Σ2

j=1(− 1
2 |z′′j |2 + z′′∗jz′j − 1

2 |z′j |2)] (114)

where zj ≡ (qj + ipj)/
√

2� for each of the end points.
We next observe that the constraint operator

Φ =: P 2
1 + P 2

2 +Q2
1 +Q2

2 : −4s�11 (115)

has discrete eigenvalues, i.e., 2(n1+n2−2s)�, where n1 and n2 are nonnegative
integers, based on the choice of |η〉 as the ground state for each oscillator. To
satisfy Φ = 0 it is necessary that 2s be an integer in which case the quantum
constraint subspace is (2s + 1)-dimensional. The projection operator in the
present case is defined by

EI = π−1
∫ π

0
exp[−iλ(: P 2

1 + P 2
2 +Q2

1 +Q2
2 : −4s�11)/�] dλ (116)

which projects onto the appropriate (2s + 1)-dimensional subspace. It is
straightforward to demonstrate that

〈z′′|EI |z′〉 = exp[− 1
2Σ

2
j=1(|z′′j |2 + |z′j |2)][(2s)!]−1(z′′∗1z′1 + z′′∗2z′2)

2s

= exp[− 1
2Σ

2
j=1(|z′′j |2 + |z′j |2)]

∑2s
k=0[k!(2s− k)!]−1(z′′∗1z′1)

k(z′′∗2z′2)
2s−k .

(117)

The projected reproducing kernel in this case corresponds to a finite dimen-
sional Hilbert space; nevertheless, the inner product is given by the same
measure and integration domain as in the original, unprojected, infinite di-
mensional Hilbert space!

Of course, there are other, simpler and more familiar ways to represent
a finite-dimensional Hilbert space; but any other representation is evidently
equivalent to the one described here.

As the notation suggests the present quantum constraint subspace pro-
vides a natural carrier space for an irreducible representation of SU(2) with
spin s. We observe that the following three expressions represent generators
of the classical rotation group in their action on the constraint hypersurface:

sx = 1
2 (p1p2 + q1q2) ,

sy = 1
2 (q1p2 − p1q2) ,

sz = 1
4 (p2

1 + q21 − p2
2 − q22) . (118)

Thus these quantities serve as potential ingredients for a Hamiltonian which
is compatible with the constraint.
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Although not the subject of this section, we may also observe that an
analogous discussion holds in case of the constraint

φ(p, q) = p2
1 + q21 − p2

2 − q22 − 2k� = 0 , (119)

where k is an integer, and the resultant reduced Hilbert space is infinite
dimensional for any integral k value. In this case the relevant group is SU(1,1).

5.3 Helix Model

In [13] the authors analyzed the so-called helix model. For details of this
model (see also [8,35,47]) and its possible role as a simple analogue of the
Gribov problem in non-Abelian gauge models, we refer the reader to their
paper. We begin with the classical Hamiltonian for a three-degree of freedom
system given by

H = 1
2 (p2

1 + p2
2 + p2

3) + U(q21 + q22) + λ[g(p2q1 − q2p1) + p3] , (120)

where U denotes the potential, which hereafter, following [13], we shall choose
as harmonic, namely U(q21 + q22) = ω2(q21 + q22)/2 , because then this special
model is fully soluble. Here, g > 0 is a coupling constant, and λ = λ(t) is the
Lagrange multiplier which enforces the single first-class constraint

φ(p, q) = g(p2q1 − q2p1) + p3 = 0 . (121)

For the first two degrees of freedom we choose coherent states with the
phase convention adopted for the previous example, while for the third degree
of freedom we return to the original phase convention. This choice means that
we consider the formal coherent state path integral given by

∫
exp((i

∫ { 1
2 (p1q̇1 − q1ṗ1) + 1

2 (p2q̇2 − q2ṗ2) + p3q̇3

− 1
2 (p2

1 + p2
2 + p2

3)− 1
2ω

2(q21 + q22)
−λ[g(p2q1 − q2p1) + p3]} dt))Dµ(p, q)DC(λ)

= 〈z′′1 , z′′2 , p′′3 , q′′3 | e−iHT EI |z′1, z′2, p′3, q′3〉 . (122)

In the present case the relevant projection operator EI is given (for � = 1,
and 0 < δ 
 g) by

EI = EI ((gL3 + P3)2 ≤ δ2) =
∞∑

m=−∞
EI ((gm+ P3)2 ≤ δ2) EI (L3 = m) (123)

where we have used the familiar spectrum for the rotation generator L3. If
H0 denotes the harmonic oscillator Hamiltonian for the first two degrees of
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freedom, then it follows that

〈z′′1 , z′′2 , p′′3 , q′′3 | e−iHT EI |z′1, z′2, p′3, q′3〉

=
∞∑

m=−∞
〈z′′1 , z′′2 |e−iH0T EI (L3 = m) |z′1, z′2〉

×〈p′′3 , q′′3 |e−iP 2
3 T/2EI (−δ ≤ gm+ P3 ≤ δ)|p′3, q′3〉

= exp[− 1
2 (|z′′1 |2 + |z′′2 |2 + |z′1|2 + |z′2|2)]

×
∞∑

m=−∞

{ (z′′∗1 + iz′′∗2 )(z′1 − iz′2)
(z′′∗ − iz′′∗2 )(z′1 + iz′2)

}m/2
Im(

√
(z′′∗21 + z′′∗22 )(z′21 + z′22 ) e−iωT )

× exp[− 1
2 (gm+ p′′3)2 − 1

2 (gm+ p′3)
2 − i 12g2m2T − igm(q′′3 − q′3)]

× 2√
π

sin[δ(q′′3 − q′3)]
(q′′3 − q′3)

+O(δ2) , (124)

where Im denotes the usual Bessel function.
We observe that the spectrum for the Hamiltonian agrees with the results

of [13], and moreover, to leading order in δ, we have obtained gauge-invariant
results, i.e., insensitivity to any choice of the Lagrange multiplier function
λ(t), merely by projecting onto the quantum constraint subspace at t = 0.
The constrained propagator (124) is composed with the same measure and
integration domain as is the unconstrained propagator. We may also divide
the constrained propagator by δ and take the limit δ → 0. The result is a
new functional expression for the propagator that fully satisfies the constraint
condition, but one that no longer admits an inner product with the same
measure and integration domain as before.

5.4 Reparameterization Invariant Dynamics

Let us start with a single degree of freedom (J = 1) and the action
∫

[pq̇ −H(p, q)] dt . (125)

We next promote the independent variable t to a dynamical variable, intro-
duce s as its conjugate momentum (often called pt), enforce the constraint
s +H(p, q) = 0, and lastly introduce τ as a new independent variable. This
modification is realized by means of the classical action

∫ {pq∗ + st∗ − λ[s+H(p, q)]} dτ , (126)

where q∗ = dq/dτ , t∗ = dt/dτ , and λ = λ(τ) is a Lagrange multiplier. The
coherent-state path integral is constructed so that

M
∫

exp((i
∫ {pq∗ + st∗ − λ[s+H(p, q)]} dt))DpDqDsDtDC(λ)

= 〈p′′, q′′, s′′, t′′|EI |p′, q′, s′, t′〉 , (127)
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where

EI =
∫ ∞
−∞

e−iξ[S+H(P,Q)] sin(δξ)
πξ

dξ

= EI (−δ ≤ S +H(P,Q) ≤ δ) . (128)

The result in (127) and (128) represents as far as we can go without choosing
H(P,Q).

To gain further insight into such expressions, we specialize to the case of
the nonrelativistic free particle, H = P 2/2. Then it follows that

〈p′′, q′′, s′′, t′′|EI |p′, q′, s′, t′〉
= π−1

∫ ∞
−∞

exp[− 1
2 (k − p′′)2 − 1

2 ( 1
2k

2 + s′′)2

+ik(q′′ − q′)− i 12k2(t′′ − t′)
− 1

2 (k − p′)2 − 1
2 ( 1

2k
2 + s′)2] dk

×2 sin[δ(t′′ − t′)]
(t′′ − t′) +O(δ2) . (129)

For any δ such that 0 < δ 
 1, we observe that this expression represents
a reproducing kernel which in turn defines an associated reproducing kernel
Hilbert space composed, as usual, of bounded, continuous functions given,
for arbitrary complex numbers {αk}, phase-space points {pk, qk, sk, tk}, and
K <∞, by

ψ(p, q, s, t) ≡
K∑

k=0

αk〈p, q, s, t|EI |pk, qk, sk, tk〉 , (130)

or as the limit of Catchy sequences of such functions in the norm defined by
means of the inner product given by

(ψ,ψ) =
∫ |ψ(p, q, s, t)|2 dp dq ds dt/(2π)2 (131)

integrated over IR4.
Let us next consider the reduction of the reproducing kernel given by

〈p′′, q′′, t′′|p′, q′, t′〉
≡ lim

δ→0

1
4
√
π δ

∫
〈p′′, q′′, s′′, t′′|EI |p′, q′, s′, t′〉 ds′′ ds′

= π−1/2
∫

exp[− 1
2 (k − p′′)2 − 1

2 (k − p′)2

+ik(q′′ − q′)− i 12k2(t′′ − t′)] dk , (132)

which in turn generates a new reproducing kernel in the indicated variables.
For the resultant kernel it is straightforward to demonstrate, for any t, that∫

〈p′′, q′′, t′′|p, q, t〉〈p, q, t|p′, q′, t′〉 dp dq/(2π) = 〈p′′, q′′, t′′|p′, q′, t′〉 . (133)



Quantization of Constrained Systems 175

This relation implies that the span of the vectors {|p, q〉 ≡ |p, q, 0〉} is iden-
tical with the span of the vectors {|p, q, t〉}, meaning further that the states
{|p, q, t〉} form a set of extended coherent states, which are “extended” with
respect to t in the sense of [34]. Observe how the time variable has become
distinguished by the criterion (133). Consequently, we may properly interpret

〈p′′, q′′, t′′|p′, q′, t′〉 ≡ 〈p′′, q′′|e−i(P 2/2)(t′′−t′)|p′, q′〉 , (134)

namely, as the conventional, single degree of freedom, coherent-state matrix
element of the evolution operator appropriate to the free particle.

To further demonstrate this interpretation as the dynamics of the free
particle, we may pass to sharp q matrix elements with the observation that

〈q′′|e−i(P 2/2)(t′′−t′)|q′〉

≡ π1/2

(2π)2

∫
〈p′′, q′′|e−i(P 2/2)(t′′−t′)|p′, q′〉 dp′′ dp′

=
1
2π

∫
exp[ ik(q′′ − q′)− i 12k2(t′′ − t′)] dk

=
ei(q′′−q′)2/2(t′′−t′)√

2πi(t′′ − t′) , (135)

which is clearly the usual result.

5.5 Elevating the Lagrange Multiplier
to an Additional Dynamical Variable

Sometimes it is useful to consider an alternative formulation of a system
with constraints in which the initial Lagrange multipliers are regarded as
dynamical variables, complete with their own conjugate variables, and to
introduce new constraints as needed. For example, let us start with a single
degree of freedom system with a single first-class constraint specified by the
action functional

∫
[pq̇ −H(p, q)− λφ(p, q)] dt , (136)

where φ(p, q) represents the constraint and λ the Lagrange multiplier. In-
stead, let us replace this action functional by

∫
[pq̇ + πλ̇−H(p, q)− σπ − θφ(p, q)] dt . (137)

In this expression we have introduced π as the canonical conjugate to λ,
the Lagrange multiplier σ to enforce the constraint π = 0, and the La-
grange multiplier θ to enforce the original constraint φ = 0. Observe that
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{π, φ(p, q)} = 0, and therefore the constraints remain first class in the new
form. The path integral expression for the extended form reads

M
∫

exp{i∫ [pq̇ + πλ̇−H(p, q)− σπ − θφ(p, q)] dt}DpDqDπDλDC(σ, θ)

= 〈p′′, q′′, π′′, λ′′|e−iHT EI |p′, q′, π′, λ′〉 . (138)

In this expression, we may choose

EI = EI (Φ(P,Q)2 ≤ δ2) EI (Π2 ≤ δ′2) (139)

involving two possibly distinct regularization parameters. Consequently, the
complete propagator factors into two terms,

〈p′′, q′′, π′′, λ′′|e−iHT EI |p′, q′, π′, λ′〉
= 〈p′′, q′′|e−iHT EI (Φ(P,Q)2 ≤ δ2)|p′, q′〉〈π′′, λ′′|EI (Π2 ≤ δ′2)|π′, λ′〉 .

(140)

The first factor is exactly what would be found by the appropriate path in-
tegral of the original classical system with only the single constraint φ(p, q) =
0 and the single Lagrange multiplier λ. The second factor represents the mod-
ification introduced by considering the extended system. Note, however, that
with a suitable δ′-limit the second factor reduces to a product of terms, one
depending on the “ ′′ ” arguments, the other depending on the “ ′ ” ar-
guments, just as was the case previously. This result for the second factor
implies that it has become the reproducing kernel for a one- dimensional
Hilbert space, and when multiplied by the first factor it may be ignored
entirely. In this way it is found that the quantization of the original and
extended systems leads to identical results.

6 Special Applications

6.1 Algebraically Inequivalent Constraints

The following example is suggested by Problem 5.1 in [21]. Consider the
two-degree of freedom system with vanishing Hamiltonian described by the
classical action

I =
∫

(p1q̇1 + p2q̇2 − λ1p1 − λ2p2) dt . (141)

The equations of motion become

q̇j = λj , ṗj = 0 , pj = 0 , j = 1, 2 . (142)

Evidently the Poisson bracket {p1, p2} = 0.
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As a second version of the same dynamics, consider the classical action

I =
∫

(p1q̇1 + p2q̇2 − λ1p1 − λ2e
cq1p2) dt , (143)

which leads to the equations of motion

q̇1 = λ1 , q̇2 = λ2e
cq1 , ṗ1 = −cλ2e

cq1p2 , ṗ2 = 0 , p1 = ecq1p2 = 0 .(144)

Since ecq1p2 = 0 implies that p2 = 0, it follows that the two formulations are
equivalent despite the fact that in the second case {p1, e

cq1p2} = −c ecq1p2,
which has a fundamentally different algebraic structure when c �= 0 as com-
pared to c = 0.

Let us discuss these two examples from the point of view of a coherent
state, projection operator quantization. For the first version we consider

M
∫

exp[i
∫

(p1q̇1 + p2q̇2 − λ1p1 − λ2p2) dt]DpDqDC(λ) , (145)

defined in a fashion to yield

〈p′′, q′′|EI |p′, q′〉 (146)

where, for ease of evaluation, we may choose

EI = EI (P 2
1 ≤ δ2)EI (P 2

2 ≤ δ2) . (147)

In particular this choice leads to the fact that

〈p′′, q′′|EI |p′, q′〉

= π−1
2∏

l=1

∫ δ

−δ

exp[− 1
2 (kl − p′′l )2 + ikl(q′′l − q′l)− 1

2 (kl − p′l)2] dkl .

(148)

Let us reduce this reproducing kernel, in particular, by multiplying this ex-
pression by π/(2δ)2 and passing to the limit δ → 0. The result is the reduced
reproducing kernel given by

exp[− 1
2 (p′′21 + p′′22 )] exp[− 1

2 (p′21 + p′22 )] , (149)

which clearly characterizes a particular representation of a one-dimensional
Hilbert space in which every vector is proportional to exp[− 1

2 (p2
1 + p2

2)]. This
example, of course, is related to the reduction examples given earlier. More-
over, we can introduce an integral representation over the remaining p vari-
ables for the inner product if we so desire.

Let us now turn attention to the second formulation of the problem by
focusing [for a different C(λ)] on

M
∫

exp[i
∫

(p1q̇1 + p2q̇2 − λ1p1 − λ2e
cq1p2) dt]DpDqDC(λ) . (150)
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This expression again leads (for a different EI ) to

〈p′′, q′′|EI |p′, q′〉 , (151)

where in the present case the fully reduced form of this expression is propor-
tional to ∫

exp[− 1
2 (k2 − p′′2)2 + ik2(q′′2 − q′2)− 1

2 (k2 − p′2)2]
× exp[− 1

2 (k1 − p′′1)2 + ik1q
′′
1 − 1

2 iλ1k1]
× exp[−ixk1 − iλ2e

cxk2 + ixκ1]
× exp[− 1

2 iλ1κ1 − iκ1q
′
1 − 1

2 (κ1 − p′1)2]
×dk2 dk1 dx dκ1 dλ1 dλ2 . (152)

When normalized appropriately, this expression is evaluated as

exp[− 1
2 (p′′21 + p′′22 + icp′′1)] exp[− 1

2 (p′21 + p′22 − icp′1)] , (153)

which once again represents a one-dimensional Hilbert space although it has
a different representation than in the case c = 0.

Thus we have obtained a c-dependent family of distinct but equivalent
quantum representations for the same Hilbert space, reflecting the c-depend-
ent family of equivalent classical solutions.

6.2 Irregular Constraints

In discussing constraints one often pays considerable attention to the regu-
larity of the expressions involved. Consider, once again, the simple example
of a single constraint p = 0 as illustrated by the classical action

I =
∫

(pq̇ − λp) dt . (154)

The equations of motion read q̇ = λ, ṗ = 0, and p = 0. On the other hand,
one may ask about imposing the constraint p3 = 0 or possibly p1/3 = 0, etc.,
instead of p = 0. Let us incorporate several such examples by studying the
classical action

∫
(pq̇ − λp|p|γ) dt , γ > −1 . (155)

Here the equations of motion include q̇ = λ(γ + 1) |p|γ which, along with
the constraint p|p|γ = 0, may cause some difficulty in seeking a classical
solution of the equations of motion. When γ �= 0, such constraints are said
to be irregular [21]. It is clear from (9) that irregular constraints lead to
considerable difficulty in conventional phase-space path integral approaches.
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Let us examine the question of irregular constraints from the point of view
of a coherent state, projection operator, phase-space path integral quantiza-
tion. We first observe that the operator P |P |γ is well defined by means of its
spectral decomposition. Moreover, for any γ > −1, it follows that

∫
e−iξP |P |γ sin(δγ+1ξ)

πξ
dξ

= EI (−δγ+1 ≤ P |P |γ ≤ δγ+1)
= EI (−δ ≤ P ≤ δ) . (156)

Thus, from the operator point of view, it is possible to consider the constraint
operator P |P |γ just as easily as P itself. In particular, it follows that

〈p′′, q′′|EI |p′, q′〉 =M
∫

exp[i
∫

(pq̇ − λp|p|γ) dt]DpDqDCγ(λ) , (157)

where we have appended γ to the measure for the Lagrange multiplier λ to
emphasize the dependence of that measure on γ. The reduction of the repro-
ducing kernel proceeds as with the cases discussed earlier, and we determine
for all γ that

lim
δ→0

√
π

(2δ)
〈p′′, q′′|EI |p′, q′〉 = e−

1
2 (p′′2 + p′2) , (158)

representative of a one-dimensional Hilbert space. Note that, like the classical
theory, the ultimate form of the quantum theory is independent of γ.

It is natural to ask how one is to understand this acceptable behavior
for the quantum theory for irregular constraints and the difficulties they
seem to present to the classical theory. Just like the classical and quantum
Hamiltonians, the connection between the classical and quantum constraints
is given by

φ(p, q) ≡ 〈p, q|Φ(P,Q)|p, q〉 = 〈0|Φ(P + p,Q+ q)|0〉 . (159)

With this rule we typically find that φ(p, q) �= Φ(p, q) due to the fact that
� �= 0, but the difference between these expressions is generally qualitatively
unimportant. In certain circumstances, however, that difference is qualita-
tively significant even though it is quantitatively very small. Since that differ-
ence is O(�), let us explicitly exhibit the appropriate �-dependence hereafter.

First consider the case of γ = 2. In that case

〈p, q|P 3|p, q〉 = 〈0|(P + p)3|0〉 = p3 + 3〈P 2〉p , (160)

where we have introduced the shorthand 〈(·)〉 ≡ 〈0|(·)|0〉. Since 〈P 2〉 = �/2
it follows that for the quantum constraint P 3, the corresponding classical
constraint function is given by p3 + (3�/2)p. For |p| � √�, this constraint is
adequately given by p3. However, when |p| 
 √� – as must eventually be the
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case in order to actually satisfy the classical constraint – then the functional
form of the constraint is effectively (3�/2)p. In short, if the quantum con-
straint operator is P 3, then the classical constraint function is in fact regular
when the constraint vanishes.

A similar analysis holds for a general value of γ. The classical constraint
is given by

φγ(p) = (π�)−1/2
∫

(k + p)|k + p|γe−k2/� dk

= (π�)−1/2
∫
k|k|γe−(k−p)2/� dk . (161)

For |p| � √� this expression effectively yields φγ(p) � p|p|γ . On the other
hand, for p ≈ 0, and more especially for |p| 
 √�, this expression shows that
the constraint function vanishes linearly, specifically as φγ(p) � κ p, where

κ ≡ 2(�γ/π)1/2
∫
y2|y|γe−y2

dy = 2(�γ/π)1/2Γ ((γ + 3)/2) ≡ �
γ/2κo . (162)

A rough, but qualitatively correct expression for this behavior is given by

φγ(p) � κo p(� + p2κ−2/γ
o )γ/2 . (163)

Thus, from the present point of view, irregular constraints do not arise
from consistent quantum constraints; instead, irregular constraints arise as
limiting expressions of consistent, regular classical constraints as �→ 0.

7 Some Other Applications
of the Projection Operator Approach

There have been several cases in which the projection operator has been used
to study constrained systems. In [43], as well as in [45] and [17], the projec-
tion operator formalism has been applied to a simple 0 + 1 model of a gauge
theory. Govaerts [16] applied the projection operator scheme to study the rel-
ativistic particle in a reparameterization invariant form. In [30] the authors
have studied first-class constraints, while in [31] they studied second-class
constraint situations from the point of view of projection operator quanti-
zation. In addition, they have discussed in a general way the application of
projection operator techniques to gauge theory [45]. Fermion systems have
been treated, e.g., in [25]. Shabanov [44] has incorporated the projection op-
erator into his Physics Reports review of gauge theories, and developed an
algorithm for how the projection operator approach may be incorporated into
lattice gauge theory calculations. Shabanov has also shown how the projec-
tion operator approach may be especially useful in ensuring that constraints
are satisfied in an ion-surface interaction [6]. In addition, Klauder [28] has ap-
plied the projection operator method in a study of quantum gravity. Finally,
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a U(1) Chern-Simons model has been studied and solved with the projection
operator method using coherent states in [18].

Projection operators have also been used previously in the study of con-
strained system quantization. For example, as noted earlier, some aspects
of a coherent state quantization procedure that emphasized projection oper-
ators for systems with closed first-class constraints have been presented in
[42]. In addition, we thank M. Henneaux for his thoughtful comments as this
approach was being developed, as well as for pointing out that projection op-
erators for closed first-class constraints also appear in [21]. Please note that
this very short list does not pretend to be complete regarding prior consid-
erations of projection operator investigations in connection with constrained
systems.
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Abstract. After some remarks to subtraction schemes yielding finite Green func-
tions in perturbation theory the action principle will be presented. It provides the
backbone for the quantization of gauge theories independent from the scheme cho-
sen for actual calculations. As examples supersymmetric theories will be treated
as well as the electroweak standard model. The emphasis will be on the structural
aspects of the renormalization problem.

1 Generalities

1.1 Renormalization Schemes

The perturbative definition of quantum field theories is usually based on the
Gell-Mann Low formula

G(x1, . . . , xn) ≡ 〈T (ϕ(x1) . . . ϕ(xn))〉 (1)

=
〈Tϕ(o)(x1) . . . ϕ(o)(xn)ei

∫ L(o)
int 〉(o)

〈Tei
∫ L(o)

int 〉(o)
,

which expresses the vacuum expectation value of time ordered products of
interacting fields ϕ(x) as a (formal) power series of those of free fields involv-
ing the interaction Lagrangian L(o)

int . The actual evaluation of (1) proceeds
via Wicks theorem and yields the Feynman rules of the model in question.
The fields ϕ(o)(x) obey the free field equations

(� +m2)ϕ = 0 (spin 0) ,
(i �∂ −m)ψ = 0 (spin 1/2) , (2)
�Aµ = 0 (spin 1; Feynman gauge) ,

whereas L(o)
int consists of field monomials and derivatives such that its di-

mension does not exceed four. The reason for this latter restriction becomes
evident when one performs power counting in a one-particle-irreducible (1PI)
Feynman diagram γ with Na external lines of type a, m independent closed
loops, I internal lines and V vertices of dimension di. The superficial degree
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of divergence in the ultraviolet region (large internal momenta) turns out to
be

d(γ) = 4 −
∑
a

Nada +
V∑
i

(di − 4) , (3)

m = I − V + 1 .

Here, da denotes the UV-dimension of fields (da = 1 for a = spin 0, spin 1;
da = 3/2 for a = spin 1/2). As free propagators we have assumed the usual
ones:

〈Tϕ(0)ϕ(0))〉F.T. =
i

k2 −m2 + iε
,

〈Tψ(0)ψ(0)〉F.T. =
�k +m

k2 −m2 + iε
, (4)

〈TA(0)
µ A(0)

ν 〉F.T. = ηµν
−i

k2 + iε
(Feynman gauge).

It is obvious from (3) that every diagram with N external lines can be made
divergent if there is a vertex with di > 4. If all vertices of Lint satisfy di ≤
4 then the respective theory is called power counting renormalizable: only
finitely many classes of graphs are divergent (at most those with 0, 1, 2, 3, 4
external lines).

Giving meaning to (1) thus is the same as rendering at least the individual
terms of the series finite. The difficulty in this problem is, of course, not to
obtain just finiteness. This could always be achieved by a trivial assignment,
e.g. replacing every term by its tree approximation. The aim rather is to give
a proper mathematical definition which maintains the axioms to be obeyed
by the Green functions or at least the S-matrix. We want to maintain Lorentz
covariance and the S-matrix should be unitary and causal. If (1) is defined
completely ad libitum then one can certainly not hope to satisfy any axioms.

Some popular methods to proceed are the following ones.

Pauli-Villars Regularization. The free propagators ∆F(k;m) in (4) are
replaced by sums

∆reg = ∆F(k;m) +
∑
l

cl∆F(k;Ml) , (5)

with coefficients cl determined in such a way that all diagrams become finite.
One then adds to Lint counterterms depending on Ml such that in the limit
Ml → ∞ all diagrams still stay finite. Whereas the regularized model vio-
lates at least unitarity, the renormalized theory (with the limit Ml → ∞ per-
formed) may satisfy the axioms. Abelian gauge invariance can be maintained
in the course of regularization, whereas non-abelian invariance is broken. (For
original reference and convenient application one may consult [14].)
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Analytical Regularization. The propagator denominators are modified
into (k2 − m2 + iε)λ with complex λ and the dimension of the integration
measure d4k1 · · · d4km also is continued to a complex number. Then diver-
gences are represented as poles in these complex numbers that can be removed
by adding appropriate counterterms leading to the same poles. Abelian gauge
invariance can be maintained, non-abelian not. (The original reference is [19].)

Dimensional Regularization. Here, the dimension of the integration mea-
sure is continued from four to n. The γ and momentum algebra is modified
accordingly. Divergences exhibit themselves as poles in (n − 4) that can be
removed. This method is widely used in practice since it also maintains non-
abelian gauge invariance as long as no γ5 or εµνρσ is present in the theory. In
the case of chiral fermions it requires a priori non-invariant counterterms, in
particular it does not maintain supersymmetry. (As an original reference one
may read [23], as a useful modern version [4]; for the never ending discussion
on the γ5-problem one should consult [7].)

Momentum Space Subtractions. Since the propagators (4) are ratio-
nal functions of the momenta one can render all one-loop diagrams with
d(γ) ≥ 0 finite by subtracting the Taylor expansion around vanishing exter-
nal momenta up to and including the term of order d(γ). Multiloop diagrams
are recursively treated with the help of the forest formula [25] which disen-
tangles all overlapping divergences. Vanishing masses require additional care
because subtraction at zero momentum can introduce spurious infrared di-
vergences. One adds an auxiliary mass M(s − 1), where s is treated like an
external momentum: it participates in subtractions and is put equal to 1 only
at the very end of the calculation [11]. This renormalization scheme is not
very convenient for explicit calculations, but essentially all relevant theorems
in renormalization theory have been proven in this context, hence we shall
refer to it whenever an explicit use of a specific scheme is required. (A very
readable account is provided in [9].)

One important feature is common to all these approaches. Whenever one
has removed an infinity, one has defined at the same time the finite part of
the diagrams in question. These finite parts can be modified order by or-
der through local counterterms in the action (with dimensions less than or
equal to four). It is the most fundamental theorem in renormalization theory
that whenever one has defined Green functions satisfying the axioms in one
scheme then the Green functions in any other scheme are related to them
by adding finite counterterms [5]. One can formulate this statement also as
follows: by applying any specific scheme one has implicitly specified normal-
ization conditions. Going over to another scheme but maintaining the specific
normalization conditions is always possible by adding finite counterterms.1

1 One caveat is in order: If the normalization conditions chosen are singular (e.g.
involve infinite limits like in MS or MS) this transition might not be possible.
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1.2 The Action Principle

Let a set of Green functionsGn(x1, . . . , xn) be given. It depends on the masses
and the couplings as parameters and involves relations amongst different
Green functions as consequences of equations of motion. The action principle
answers the question: How can one express the variation of parameters and
fields in terms of Green functions and possibly, additional vertices? The most
concise way of formulating the answer is in terms of generating functionals.

Z ≡ Z(J) = 〈Tei
∫
dxϕ(x)J(x)〉 (6)

denotes the generating functional for (general) Green functions:

G(x1 . . . xn) =
δ

iδJ(x1)
. . .

δ

iδJ(xn)
Z(J)∣∣∣

J=0

. (7)

If free fields ϕ(x) = ϕ(0)(x) appear in (6) we deal with

Z0 ≡ Z0(J) = 〈Tei
∫
dxϕ(0)(x)J(x)〉 , (8)

the generating functional for free Green functions. It consists of products of
free propagators with no points coinciding, e.g. for one scalar field:

Z0(J) = e
1
2

∫
dx1dx2iJ(x1)∆F(x1−x2)iJ(x2) . (9)

Not worrying about divergences but proceeding formally one can derive the
following renormalizable formula

Z(J) =
ei

∫ Lint( δ
iδJ )Z0(J)

ei
∫ Lint( δ

iδJ )Z0(J)∣∣
J=0

. (10)

Here, e.g. for a ϕ4-theory

Lint = − λ

4!
ϕ4 , (11)

which links in a very definite manner the free propagators of (4). For con-
vergent diagrams the derivation of (10) is certainly rigorous, hence it has
enormous heuristic value: it governs the correct combinatorics compatible
with the axioms. Enlarging (11) to

Lint = z
1
2
∂ϕ∂ϕ− 1

2
m2aϕ2 − λ+ c

4!
ϕ4 , (12)

i.e. permitting counterterms, does not violate combinatorial relations and
points to an even more remarkable formula:

Z(J) = ei(z∆1−a∆2−(λ+c)∆4)Z0(J) . (13)
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Here, in addition to the manipulations of (10), we assign ∆1 ≡ [∫ 1
2∂ϕ∂ϕ

]
4,

∆2 ≡ [∫ 1
2m

2ϕ2
]
4 and ∆4 ≡ [∫ 1

4!ϕ
4
]
4, via the rule that they be consid-

ered as vertices of UV-dimension four in the power counting formula and in
the evaluation of the diagrams according to Zimmermann. I.e. diagrams are
worked out as prescribed in (10) with (12) inserted. Then they are rendered
convergent by the momentum subtractions where the power counting formula
(3) is being used and ∆1, ∆2, ∆4 represent vertices of dimension four.

The validity of (13) assumed, it is clear what the response to variation of
λ (the physical coupling is):

∂Z

∂λ
=
(
∂z

∂λ
∆1 − ∂a

∂λ
∆2 − (1 +

∂c

∂λ
)∆2

)
Z(J) . (14)

That is, the diagrams of Z(J) acquire an additional “insertion” of the vertex

∂z

∂λ
∆1 − ∂a

∂λ
∆2 − (1 +

∂c

∂λ
)∆2 . (15)

As far as combinatorics is concerned they are to be treated as before. As
far as power counting is concerned the additional vertex has assigned degree
four. By introducing the suggestive notion of Γeff of Zimmermann

Γeff ≡ Γcl + Γint (16)
= (1 + z)∆1 − (1 + a)∆2 − (λ+ c)∆4 ,

we can write
∂Z

∂λ
=
[
∂Γeff

∂λ

]
4

· Z(J) (17)

instead of (14).
The derivative ∂/∂m2 operates on Z0 also, hence is slightly more involved

than ∂/∂λ. But the analysis yields a result analogous to (17)

m2 ∂Z

∂m2 =
[
m2 ∂Γeff

∂m2

]
4

· Z(J) . (18)

In fact, if ∇ denotes the derivative w.r.t. any parameter in a model, then one
can show that

∇Z = [∇Γeff ]4 · Z(J) . (19)

Here, as in (16), Γeff denotes the classical action plus all counterterms.
The variation w.r.t. to a field can also be expressed on Z, but most sug-

gestively on another functional: That of 1PI Green functions Γ . It is obtained
from Z(J) by first defining the functional Zc(J) of connected Green functions
via

Z(J) = eiZc(J) . (20)
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Then Γ is constructed as Legendre transform of Zc(J)

Γ (ϕ) = Zc(Z(ϕ)) −
∫
dxJ(ϕ)ϕ , (21)

ϕ =
δZc

δJ
. (22)

Explicitly, (22) is solved for J = J(ϕ) and this result inserted in (21). In
terms of Γ the desired relation reads

δΓ

δϕ
= “

[
δΓeff

δϕ

]
4−d(ϕ)

” · Γ . (23)

The quotation marks indicate that linear terms in δΓeff/δϕ are not considered
as vertices for Γ , whereas non-linear terms form the additional vertex in
question carrying the power counting 4 − d(ϕ). As an example for the ϕ4-
theory

δΓ

δϕ
= −(1 + z)�ϕ−m2(1 + a)ϕ− λ+ c

3!
[
ϕ3]

3 · Γ . (24)

Transformed back to Z(J), one obtains

−JZ(J) =
[
δΓeff

δϕ

]
3

· Z(J) . (25)

If a field ϕ1 transforms linearly into a field ϕ2 one also has a very suggestive
result

ϕ2
δΓ

δϕ1
=
[
ϕ2
δΓeff

δϕ1

]
δ

· Γ , (26)

with δ = 4 − d(ϕ1) + d(ϕ2). It reads on Z

−J1
δΓ

δJ2
=
[
ϕ2
δΓeff

δϕ1

]
δ

· Z . (27)

The simplicity of these relations in unfortunately lost when considering non-
linear field transformations. Looked at on the level of diagrams, it is obvious
that non-linear variations may introduce additional loops, i.e. additional di-
vergences which are not necessarily dealt with in a naive fashion. If classically

δϕ = Q(ϕ) (28)

with Q non-linear (dim Q = δ), then one introduces an external field q,
changes Γeff into

Γ qeff = Γeff + [
∫
q Q]4 + corrections , (29)



Algebraic Methods of Renormalization 189

“corrections” denoting q-dependent counterterms, and finds

iJ(x)
δZq

δq
= [Q̂]3+δ · Z , (30)

δΓ

δϕ(x)
δΓ q

δq
∣∣∣
q=0

= [Q̂]3+δ · Γ , (31)

for the variation. Here

Q̂ =
δΓ qeff
δq

δΓeff

δϕ
∣∣∣
q=0

+ corrections . (32)

Important for applications is not the explicit knowledge of Q̂ but rather that
the r.h.s of (30) and (31) form local insertions of well-defined power counting.
Only this property will be used in the general analysis.

1.3 Green Functions and Operators

The Gell-Mann-Low formula complemented by a subtraction prescription
and normalization conditions yields unique Green functions. These are not
measurable and contain in general more information than available experi-
mentally: they constitute continuations off the physical mass shell. Relevant,
however, are only values on the physical mass shell. The most important
quantity in practice is certainly the S-Matrix. Its elements are given by

in〈p1 . . . pn|S|q1 . . . ql〉in = (33)(−i√
z

)n+l

lim
n∏
k=1

(p2
k −m2)

l∏
j=1

(q2j −m2)G̃(−p1 . . .− pn, q1 . . . ql) .

Here, l particles are incoming (with momenta q1 . . . ql), n particles are out-
going (with momenta p1 . . . pn) and lim indicates the on shell transition
p2
i → m2, q2j → m2 (p0

i > 0, q0j > 0). G̃ denotes the Fouriertransform of
the (n+ l)-point Green function G(y1 . . . yn, x1 . . . xl). z is the wave function
renormalization defined as the residue of the 2-point-function at the pole of
the physical mass:

G(x, y) =
i

(2π)4

∫
dpeip(x−y)

z

p2 −m2 + iε
(1 + O(p2 −m2)) . (34)

Analogously the matrix elements of an operator O in Hilbert space can be
obtained from its Green functions with elementary fields

out〈p1 . . . pn|O|q1 . . . ql〉in = (35)(−i√
z

)n+l

lim
n∏
k=1

(p2
k −m2)

l∏
j=1

(q2j −m2)G̃O(x)(−p1 . . .− pn, q1 . . . ql) ,
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where as before lim denotes the on-shell transition and G̃O(x) is the Fourier
transform of

GO(x)(y1 . . . yn, x1 . . . xl) = 〈TO(x)ϕ(y1) · · ·ϕ(xl)〉 . (36)

Eqns. (33) and (35) are formulated for one scalar field, but the generalization
to other fields should be obvious: The factors (p2 − m2) are to be replaced
by the inverse of the respective propagator and associated spin factors.

2 The Quantization of Gauge Theories

2.1 The Abelian Case

If one aims at a construction of field theories as independent as possible from
the renormalization scheme employed, Ward identities (WI) turn out to be
the most convenient tool. E.g. the classical action

Γinv =
∫

−1
4
FµνFµν + ψ̄(i �∂ −m+ e �A)ψ , (37)

where Fµν = ∂µAν −∂νAµ, is invariant under the local gauge transformation

δAµ = ∂µω(x) , (38)
δψ = ieωψ , (39)
δψ̄ = −ieωψ̄ , (40)

and this is expressed in functional form as

wΓinv ≡ −∂ δΓinv

δA
− ieψ̄

→
δ

δψ̄
Γinv + ieΓinv

←
δ

δψ
ψ = 0 . (41)

In the perturbative treatment of field theories the classical action can be
identified with the lowest order approximation of Γ , the generating functional
of vertex functions:

Γ = Γ (0) + �Γ (1) + �
2Γ (2) + . . . , (42)

Γ (0) = Γcl .

It is well-known, that one has to fix the gauge if one wants to describe prop-
agation. Eq. (37) is generalized to

Γcl = Γinv + Γg.f. , (43)

Γg.f. ≡
∫

− 1
2ξ

(∂A)2 +
1
2
M2A2

and (41) to

wΓ = −1
ξ
(� + ξM2)∂A . (44)
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(We added also a mass term for the vector field.) For Z, the generating
functional of general Green functions, (44) corresponds to

wZ ≡ −i ∂J · Z + ieη̄

→
δ

δη̄
Z − ieZ

←
δ

δη
η

= −1
ξ
(� + ξM2) ∂

δZ

δJ
. (45)

In order to establish (44) or (45) to all orders of perturbation theory one
may e.g. employ an invariant regularization scheme (like dimensional or Pauli-
Villars). Then the counterterms have the same form as those of Γcl in (43) and
their coefficients are fixed by normalization conditions . It is well-known, that
the parameter e in (41) can indeed be identified with the physical charge and
no vertex function is required to fix its value (Thirring’s theorem; Thomson
limit of the WI). Like the classical theory, the renormalized one also maintains
parity and charge conjugation invariance.

If one does not want to rely on an invariant scheme one proceeds as
follows. One admits at first all possible counterterms to Γcl compatible with
power counting renormalizability (i.e. with dimension ≤ 4) and then tries to
fix their coefficients consistently order by order in perturbation theory. The
most important aid originates from the observation that the WI operator w
in (41) satisfies the algebraic relation:

[w(x), w(y)] = 0 . (46)

Now we use the action principle to deduce

w(x)Γ +
1
ξ
(� + ξM2)∂A = [P (x)]4 · Γ , (47)

where P (x) can be expressed in a basis of field monomials of dimension four

P (x) =
∑
i

aiPi(x) , (48)

We used the fact that terms linear in the quantized fields can never be renor-
malization parts. Imposing parity invariance as a defining symmetry we can
restrict P and hence Pi to parity invariant terms. Since the WI (44) holds in
the classical approximation the insertion [P (x)] · Γ is necessarily of one loop
order, hence

[P (x)]4 · Γ = P (x) + O(�) (49)

Applying (46) to Γ and using (47), (49) we find

w(x)P (y) − w(y)P (x) = 0 , (50)

implying restrictions for the terms Pi which can possibly contribute to P . A
short explicit calculation shows that the solution of (50) is given by

P (x) = w(x)
∫
dzPvar(z) , (51)
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Pvar = a1(∂A)2 + a2A
2 + a3(A2)2 + a4ψ̄i�∂ψ . (52)

Adding Pvar to Γcl as counterterm one can therefore establish the WI (44)
by suitably adjusting the values of a1, . . . , a4. The coefficients of the coun-
terterms Pinv are fixed by the normalization conditions. Obviously the values
of these counterterm coefficients are scheme-dependent, whereas the Green
functions are not: after imposing the symmetries ((44), parity) and the nor-
malization conditions they are uniquely fixed.

Up to now the WI served the mathematical purpose to define the the-
ory. But it also implies immediate physical consequences. Applying the LSZ
reduction technique to (45) one obtains the operator equation

(� + ξM2)∂AOp ∗= 0 (53)

( ∗= means “on the physical mass shell”). Hence the ghost field ∂A, which
causes the indefinite metric of the Fock space, is a free field and the construc-
tion of the physical Hilbert space for the free theory survives interaction! A
graphical representation of this situation (for ξ = 1) is obtained by multi-
plying (45) with the inverse of (� + M2) and then displaying the terms as
follows:

�
��

=
∑
k �

�

��

�
���

+�
�

+�
�

(54)

The broken line � represents the inverse of (� +M2), i.e. a scalar prop-
agator. Crossing off ˇ means that this leg is to be omitted. The dashed line
� indicates that that this line is replaced by ∂µδ(x− xk). Going on shell
implies that the leg starting with ∂A just propagates freely.

2.2 BRS Transformations

For non-abelian gauge transformations

δAaµ = ∂µω
a + fabcωbAcµ (55)

(fabc structure constants of a simple gauge group) and the associated invari-
ant action

Γinv = − 1
4g2 Tr

∫
FµνFµν , (56)

Fµν = τaF aµν , (57)[
τa, τ b

]
= ifabcτ c (58)
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(matter suppressed for a moment) one might be tempted to closely follow the
abelian case and write down the WI

waΓcl ≡ −
(
∂

δ

δAa
+ fabcAc

δ

δAa

)
Γcl

= −1
ξ
(δac� + fabcAbµ∂

µ)∂νAcν ≡ −1
ξ

(Dg.f.∂A)a (59)

for

Γcl = Γinv + Γg.f. , (60)

Γg.f. ≡ Tr
∫

− 1
2ξ

(∂A)2 .

But then the second term of the r.h.s of (59) indicates that the field ∂Aa

is not free, hence the longitudinal vector field interacts. The WI will neither
define the theory nor yield unitarity! In explicit calculations Feynman found
out, that in one-loop diagrams the unitarity violating contributions of ∂Aa

could be compensated by the exchange of an additional multiplet of scalars
in the adjoint representation, yet quantized as if they were fermions. Faddeev
and Popov formulated their effect in functional form on Z, whereas Becchi-
Rouet-Stora (BRS) [2] rewrote this identity and discovered that it expressed
a symmetry of Z (and hence also of the action) if one interpreted the terms
accordingly.

It is instructive to repeat their reasoning on the classical action [16]. We
add a φπ term to Γcl

Γφπ =
1
ξ
Tr
∫
c̄Dφπc , (61)

with a differential operator Dφπ which originates from the gauge transforma-
tion of ∂A:

δ(∂Aa(x)) = (Dφπ)a(x) = �ωa + fabc∂µ(Abµω
c) , (62)

it is just the adjoint to Dg.f.

Tr
∫
ω′(x)(Dφπω(x)) = Tr

∫
(Dg.f.ω

′(x))ω(x) . (63)

The local WI is changed into

waΓcl = −1
ξ

(
(Dg.f∂A)a + fabc∂µ(∂µc̄b cc) − fabc

′
fc

′a′c∂µc̄Abµc
c
)
. (64)

We now multiply by ca(x), integrate over x, use (63) and integration by parts
and arrive at

Tr
∫
dx c(x)w(x)Γcl ≡ Tr

∫
dx (∂µc+ i[c, Aµ])

δΓcl

δAµ

=
1
ξ
Tr
∫
dx (−∂ADφπc+ iccDg.f.c̄) . (65)
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Now the r.h.s contains precisely equation of motion terms

δΓ

δc̄
=

1
ξ
Dφπc , (66)

δΓ

δc
=

1
ξ
Dg.f.c̄ . (67)

Hence we may insert them and rewrite equation (65) as a homogeneous iden-
tity

Tr
∫
dx

(
sAµ

δ

δAµ
+ sc̄

δ

δc̄
+ sc

δ

δc

)
Γcl = 0 , (68)

where

sAµ = ∂µc+ i[c, Aµ] , (69)

sc = icc , sca = −1
2
fabccbcc , (70)

sc̄ = ∂A . (71)

These transformations (BRS) thus constitute a symmetry of Γcl. It is clear
that one may add gauge invariant matter terms and achieve for them BRS
invariance as well by the prescription

sφ = icaT aφ . (72)

Here, φ is a multiplet of complex scalar fields. As on Aµ the BRS trans-
formation is just the gauge transformation with field c as transformation
“parameter”.

2.3 The Slavnov–Taylor Identity

Since indeed the hope that BRS invariance will define the theory and yield
unitarity materializes as fact it is important to formulate this invariance in
a way which survives all orders and is independent from the renormalization
scheme. It is convenient to introduce a Lagrange multiplier field B for fixing
the gauge

Γg.f. ≡ Tr
∫

(
ξ

2
B2 +B∂A) . (73)

B transforms under rigid gauge transformations in the adjoint representation

δωB = i [ω,B] (74)

and forms together with c̄ a doublet under BRS transformations

sc̄ = B , (75)
sB = 0 . (76)
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This presentation renders BRS transformations nilpotent on all fields

s2ϕ = 0 , ϕ = Aµ, c, c̄,matter . (77)

The associated φπ-terms combine with Γg.f. to a BRS variation

Γg.f. + Γφπ = sTr
∫

(
ξ

2
c̄B + c̄∂A) . (78)

As pointed out in Chap. 1 non-linear field transformations are best dealt with
via external fields.

Γext.f. =
∫ (

Tr(ρµ sAµ + σ sc) + Y sφ+ Ȳ sφ̄
)
. (79)

The external fields ρµ, σ transform under the adjoint, the fields Y, Ȳ under
the contragradient representation of φ w.r.t. rigid transformations, hence rigid
invariance can be maintained. Expressed on Z, the generating functional for
general Green functions, BRS invariance reads as follows

sZ ≡
∫ (

Tr
(
δZ

δρµ
Jµ +

δZ

δjB
jc̄ +

δZ

δσ
jc

)
+
δZ

δY
jφ +

δZ

δȲ
jφ̄

)
= 0 . (80)

Going over to connected Green functions Zc via (20) and by Legendre trans-
formation (21) to the 1PI Green functions Γ one arrives at the Γ -bilinear
form

s(Γ ) ≡
∫ (

Tr
(
δΓ

δρµ
δΓ

δAµ
+B

δΓ

δc̄
+
δΓ

δσ

δΓ

δc

)
+
δΓ

δY

δΓ

δφ
+
δΓ

δȲ

δΓ

δφ̄

)
= 0 .

(81)
It is clear that

Γcl = Γinv + Γφπ + Γext.f. (82)

satisfies the ST identities (81), the gauge condition

δΓ

δB
≡ ξB + ∂A , (83)

and the rigid WI

WωΓ ≡ −i
∫
δω ϕ

δΓ

δϕ
= 0 . (84)

The claim is now that (81), (83) and (84) together with normalization con-
ditions uniquely fix Γ to all orders if the matter representation satisfies

r(1) = k
dabc

d2 TrT aT bT c , (85)

i.e. the Adler - Bardeen anomaly is absent (k is a numerical factor).
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In order to proof this claim one proceeds as follows. One first observes
that Γg.f. is the solution of (83) due to linearity in the fields. For establishing
(84) one uses the method presented in Sect. 2.1:

WaΓ = ∆a · Γ = ∆a + O(�) (86)

is the most general deviation from rigid invariance (action principle). The
algebra of the WI operators[Wa,Wb

]
= ifabcWc (87)

implies consistency conditions for the insertions ∆a

Wa∆b − Wb∆a = ifabc∆c . (88)

It has been shown [2] that their most general solution is

∆a = Wa∆̂ . (89)

Hence one can establish the rigid WI to all orders by absorbing ∆̂ as coun-
terterm.

For the proof of (81) one also starts with the action principle

s(Γ ) = ∆ · Γ = ∆+ O(�) . (90)

A useful consistency condition is found by observing that the operator

sΓ ≡
∫ (

δΓ

δA

δ

δρ
+
δΓ

δρ

δ

δA
+
δΓ

δσ

δ

δc
+
δΓ

δc

δ

δσ
+ (91)

δΓ

δȲ

δ

δφ̄
+
δΓ

δφ̄

δ

δȲ
+
δΓ

δY

δ

δφ
+
δΓ

δφ

δ

δY
+B

δ

δc̄

)

satisfies

sγ s(γ) = 0 ∀γ , (92)
sγsγ = 0 ∀γ with s(γ) = 0 .

Applied to (90) this means
sΓcl∆ = 0 . (93)

with sΓclsΓcl = 0, since Γcl satisfies the ST identity. The analysis of (93) is
easy for all terms containing external fields but tricky for the terms made up
by Aµ and c only [2]. The result is

∆ = sΓ ∆̂+ rA , (94)

A = Tr
∫
c ∂µAν∂ρAσεµνρσ . (95)

The one-loop value for r is given by (85). A non-renormalization theorem
[1] then says: if r(n) �= 0 for some n, then n = 1. I.e. if one arranges the
multiplets T a such that r(1) = 0 there will never arise any anomaly in the
ST identity.
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3 Applications

3.1 The Electroweak Standard Model

In practice the most important example is the electroweak standard model
(SM).

The Problems. If one attempts to renormalize it to all orders of pertur-
bation theory one is faced with the observation that no obvious invariant
regularization is known. Dimensional regularization has to cope with the
γ5-problem, whereas BPHZ or analytic regularization spoil BRS invariance.
Hence an all order treatment can only be based on the algebraic method
which we exemplified above. It has to deal with the following peculiarities
specific to the SM:
1. The gauge group SU(2) ×U(1) is not semisimple and the position of the

unbroken U(1) subgroup has to be determined and fixed in the course of
renormalization.

2. The photon has to be kept massless. Its mixing with Zµ has to be con-
trolled such that a particle interpretation is possible. Off-shell IR prob-
lems have to be avoided.

3. W±µ , Zµ are unstable: the definition of their mass is non-trivial and gauge
parameter dependence is a crucial issue.

A solution of problem 1) has been constructed by establishing
• the Slavnov–Taylor identity,
• (deformed) rigid Ward identities,
• an abelian local Ward identity.

The solution of problem 2) requires
• careful IR power counting,
• suitable normalization conditions.

For problem 3) a complete solution to all orders is not yet known, but the
ST identity and reasonable normalization conditions guarantee unitarity and
permit the LSZ asymptotic limit at least in a formal sense.

Under the simplifying assumption that CP is maintained and families are
not mixed problems 1) and 2) have been solved by E. Kraus [8]. The remarks
that follow are based on this paper.

The Abelian Subgroup. It turns out that fixing the abelian subgroup is
equivalent to finding equations whose solutions together with normalization
conditions characterize uniquely the model. In order not to miss parameters
or representations one sharpens the algebraic method: one does not give the
WI-operators beforehand but prescribes only type (scalar, vector, spinor) and
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number of fields and the algebra of the WI-operators. For the rigid transfor-
mations one requires

[Wα,Wβ ] = iε̂αβγ Ĩγγ′Wγ′ (96)

for consistency with the ST identity

Wαs(Γ ) − sΓWαΓ = 0 ∀Γ . (97)

ε̂αβγ :


 ε̂+−3 = i

ε̂+−4 = 0
is totally antisymmetric.

Ĩ =


 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0


 correlates +,− of the electric charge.

We present a sample for the respective ansatz (contribution of some vector
fields)

Wα = Ĩαα̇

∫
d4x · · ·V µb âVbc,α′ Ĩcc′

δ

δV µc′
+ · · · (98)

s(Γ ) =
∫
z4(sin θ

g
3∂µcZ + cos θg3∂µcA) ×

×
(

sin θV4
δΓ

δZµ
+ cos θV4

δΓ

δAµ

)
+ · · ·

+
δΓ

δρµ3
zg

(
cos θV3

δΓ

δZµ
− sin θV3

δΓ

δAµ

)
+ · · · (99)

(Here the first two lines stand for linearly transforming vector pieces in ST,
the third line for non-linearly transforming ones. ρµ3 is an external field cou-
pled to a part of the BRS transformations of Aµ.)

The parameters âV···, θ
g
3 , θV3,4, z4, zg are to be chosen such that (96) and

(97) is satisfied. In order to make this ansatz conceivable we give their tree
approximation values in the conventional parameterization.

âVα = OT (θw)ε̂αO(θw) , (100)

O(θw) =


 1 0 0 0

0 1 0 0
0 0 cos θw − sin θw
0 0 sin θw cos θw


 , (101)

θg3 = θV3 = θV4 = θw ,

z4 = zg = 1 . (102)

It is to be noted that electric charge and Faddeev-Popov-charge neutrality is
naively maintained by the ansatz. Similarly one chooses the parameter values
such that

W ∗+ = W− , W±
3
4

CP−→ −W∓
3
4

. (103)
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This work has to be performed for all sectors (vectors, scalars, fermions,
ghosts); then the eqns. (96), (97) have to be solved and the solutions have to
be parameterized such that the free parameters can either be fixed naively
or via normalization conditions. It is most remarkable that a non-diagonal
transformation

sc̄a = ĝabBb (104)

is compatible with the algebra. If one has succeeded with this first step,
namely solving the algebra, one can go on and find now in a second step the
most general classical solution of the rigid WI

WαΓcl = 0 (105)

and the ST identity
s(Γcl) = 0 . (106)

As experience tells one and as one confirms in the present case too, this yields
all possible renormalizations in the form of possible redefinitions of fields
and parameters. With the help of the action principle and the consistency
conditions as inferred from (96), (97) one performs in an analogous manner
the search for the solutions of the WI’s (105), (106) to all orders. Here contact
is made with the work of BBBC [1] because it turns out that this analysis
can equivalently be performed in terms of unphysical fields (V aµ , a = 1, 2, 3, 4).
The absence of unitarity ruining anomalies follows from the structure of the
standard multiplets.

In a third and last step one can now indeed proceed to the identification
of the abelian subgroup. First of all one has to note that the naive electro-
magnetic WI operator

Wem =
∫

d4xwem = i

∫
d4x

∑
a

Qem
a φa

δ

δφa
(107)

is not abelian. Furthermore

wemΓ = �Bem +Qem · Γ (108)

with Qem a non-trivial insertion. On the non-integrated level it is not the
electromagnetic direction which is abelian in the sense of having a trivial right
hand side (which could then naively be constructed to all orders). It rather
turns out that wQ4 := wem −w3 is a good starting point leading eventually to

ŵQ4 = g1w
Q
4 − 1

rVZ
sin θV ∂µ

δ

δZµ
− 1
rVA

cos θV ∂µ
δ

δAµ
. (109)

This operator is singled out by

[ŵQ4 ,Wα] = 0 , (110)

sΓ ŵ
Q
4 Γ − ŵQ4 s(Γ ) = 0 ∀Γ . (111)
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It satisfies a local WI

ŵQ4 Γ =
sin θV

rVZ
�BZ +

cos θV

rVA
�BA (112)

which can be postulated and established to all orders of perturbation theory
because the right hand side is linear in propagating fields. This WI, which
can only be required – due to its characterization by (110) and (111) – after
the rigid WI and the ST identity have been established, fixes eventually the
instabilities of the abelian subgroup.

The parameter
g1 =

e

cos θw
+ o(�) (113)

is in QED-like normalization conditions fixed on this local WI. The parame-
ters θV , rVZ,A are determined in W∂µ .

As far as interpretation is concerned one has to note that algebraically no
distinction is possible between gauging the electromagnetic current or lepton-
and quark number currents; hence this local WI is needed as additional re-
quirement.

Photon/Z Mixing. In order to keep the photon massless and also control
the mixing one imposes as normalization conditions

ΓTAA(p2 = 0) = 0 , (114)
ΓTZA(p2 = 0) = 0 , (115)
Re ΓTZZ(p2 = M2

Z) = 0 . (116)

Eqns. (114) and (115) are automatic if one uses the BPHZL scheme [25,10,11].
The crucial point is now to check that one has indeed enough parameters at
ones disposal to satisfy these normalization conditions after having arranged
all WI’s. Since IR dangerous terms like

∫
c̄AcZ are to be avoided as coun-

terterms this task is non-trivial. It turns out that one can avoid off-shell
IR danger by using the freedom left in the transformation law (104) of the
antighost fields. This introduces a ghost angle θG as an important parameter
into the theory.

All other masses are similarly introduced via two-point-functions in order
to ensure poles. This in turn requires to have non-trivial parameter depen-
dence in the rigid WI operators: they become deformed in higher orders.
Likewise follows the antighost equation as a consequence of local WI and
ST. Had one fixed and a priori prescribed WI operators and the antighost
equation as a postulate one could not have fixed all masses as physical ones
– as poles of propagators.

As an overall consistency check one derives the Callan-Symanzik equa-
tion because it controls the motion of all parameters of the theory under
renormalization. The outcome is as follows:

CΓ = soft · Γ (117)
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• exists IR-wise,
• contains β-functions for mass ratios,
• shows that θw and θG are independently renormalized.

This yields a consistent picture.

We collect the result:

• the algebra of WI operators (96), (97)
• rigid WI + ST + local WI
• on-shell normalization conditions

determine Γ uniquely to all orders. The rigid WI operators are deformed; as
a new parameter enters the angle θG in the ghost sector. It goes along with
non-diagonal transformations (104) of the antighost in higher orders.

3.2 Supersymmetry in Non-linear Realization

If supersymmetry is realized on fields of canonical dimension (spin 0, dim 1;
spin 1/2, dim 3/2; spin 1, dim 1) then the transformations are non-linear.

The Wess-Zumino Model For a chiral multiplet the transformations read:

δαA = ψα , δ̄α̇A = 0 ,

δαψ
β = 2 δαβ(mĀ+ gĀ2) , δ̄α̇ψβ = 2i�∂βα̇A ,

δαĀ = 0 , δ̄α̇Ā = ψ̄α̇ ,

δαψ̄β̇ = 2i�∂αβ̇Ā , δ̄α̇ψ̄
β̇ = −2 δα̇β̇(mA+ gA2) .

(118)

The algebra of these transformations closes only on-shell, i.e. by use of the
equations of motion (for the spinor fields). The non-linear transformations
can be dealt with by coupling them to external fields

Γext =
∫
dx
(
2u(gA2 +mA) + 2ū(gĀ2 +mĀ)

)
, (119)

resulting in Γ -bilinear WI’s for SUSY [15]

Wα(Γ ) ≡ −i
∫
dx

(
ψα

δΓ

δA
+
δΓ

δū

δΓ

δψα
− 2i �∂αβ̇Ā

δΓ

δψ̄β̇
+ 2iu �∂αβ̇ψ̄β̇

)
= 0 ,

W̄α̇(Γ ) ≡ −i
∫
dx

(
ψ̄α̇

δΓ

δĀ
− δΓ

δu

δΓ

δψ̄α̇
− 2i

δΓ

δψβ
�∂βα̇A− 2iū �∂βα̇ψβ

)
= 0 .

(120)
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They give rise to linearized functional operators which govern the transfor-
mations of insertions

WΓ
α ≡ −i

∫
dx

(
ψα

δ

δA
+
δΓ

δū

δ

δψα
+

δΓ

δψα
δ

δū
− 2i �∂αβ̇

δ

δψ̄β̇

)
, (121)

(analogously for W̄Γ α̇) that satisfy the identities

WΓ
αWβ(Γ ) + WΓ

β Wα(Γ ) = 0 , (122)

W̄Γ
α̇ W̄β̇(Γ ) + W̄Γ

β̇
W̄α̇(Γ ) = 0 , (123)

WΓ
α W̄β̇(Γ ) + W̄Γ

β̇
Wα(Γ ) = 2σµ

αβ̇
WµΓ . (124)

Here, Wµ ≡ −i ∫ ∑ϕ ∂µϕ
δ
δϕ is the functional generator for translations.

These identities serve in the course of renormalization as consistency con-
ditions that constrain possible deviations from symmetry. The problem of
on-shell closure is solved by admitting in Γeff a term a

∫
uū, i.e. bilinear in

the external fields. Its effect can be easily traced in the classical approxi-
mation. According to (121) it contributes to the transformation of ψα, via
δΓ/δū = au+ . . .. But acting on the term au by a second transformation one
has to use the laws given by (121) also (or more precisely by its conjugate):
δΓ/δψ̄ – this is an equation of motion! Hence it is clear that on this functional
level, where the external fields also transform, the functional transformations
do indeed close – the on-shell closure problem is solved. The result for the
Wess-Zumino model is [15] that a unique Γ can be found satisfying the WI’s
(120). It is deducible by solving the consistency conditions, which admit no
anomaly.

3.3 SUSY Gauge Theories

A further obstacle is provided in gauge theories. Here every SUSY transforma-
tion has to be accompanied by a gauge transformation and thus a gauge fixing
term can never be naively invariant. This problem is in its renormalization
aspect solved by “ghostifying” the transformations and again by admitting
in Γeff terms that are bilinear in the external fields. This has first been shown
in [24] and then worked out in detail with a slightly changed method of proof
in [12]. We shall present the example of SQED [6]. Apart from ghosts for
gauge transformations one introduces ghosts for SUSY and translations as
well. Those of the gauge transformations (c) are the usual φπ-ghosts and they
propagate. Those of SUSY (ε, ε̄) and translations (ων) are constants and do
not propagate. Their Grassmann character is always opposite to the one of
the naive transformation. For the field of the vector multiplet Aµ (photon);
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λ, λ̄ (photino) they read

sAµ = ∂µc+ i(εσµλ̄− λσµε̄) − iων∂νAµ , (125)

sλα =
i

2
(εσρσ)αFρσ − iεα eQL(|φL|2 − |φR|2) − iων∂νλ

α , (126)

sλ̄α̇ =
−i
2

(ε̄σ̄ρσ)α̇Fρσ − iε̄α̇ eQL(|φL|2 − |φR|2) − iων∂ν λ̄α̇ , (127)

For (charged) matter multiplets φ, ψ they have the form

sφL = −ieQLc φL +
√

2 εψL − iων∂νφL , (128)

sφ†L = +ieQLc φ
†
L +

√
2 ψ̄Lε̄− iων∂νφ

†
L , (129)

sψαL = −ieQLc ψαL −
√

2 εαmφ†R −
√

2 i(ε̄σ̄µ)αDµφL − iων∂νψ
α
L , (130)

sψ̄Lα̇ = +ieQLc ψ̄Lα̇ +
√

2 ε̄α̇mφR +
√

2 i(εσµ)α̇(DµφL)† − iων∂νψ̄Lα̇ .

(131)

In order that the algebra closes up to equations of motion

s2φ = 0 mod(equation of motion) , (132)

one has to incorporate field dependent gauge transformations and also trans-
formations of the constant ghosts

sc = 2iεσν ε̄Aν − iων∂νc , (133)
sεα = sε̄α̇ = 0 , (134)
sων = 2εσν ε̄ , (135)
sc̄ = B − iων∂ν c̄ , (136)
sB = 2iεσν ε̄∂ν c̄− iων∂νB . (137)

The gauge fixing term can now be introduced as generalized BRS variation

Γg.f. = s

∫
dxc̄

(
∂µAµ +

ξ

2
B

)

=
∫
dx
(
B∂µAµ +

ξ

2
B2 − c̄�c

− c̄∂µ(iεσµλ̄− iλσµε̄) + ξiεσν ε̄(∂ν c̄)c̄
)
. (138)
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The complete action

Γ = Γinv + Γg.f. + Γext.f. + Γbil , (139)

Γinv =
∫
dx
{

−1
4
FµνF

µν +
1
2
γ̃iγµ∂µγ̃ + |DµφL|2 + |Dµφ

†
R|2 + ΨiγµDµΨ

−
√

2eQL
(
ΨPRγ̃φL − ΨPLγ̃φ

†
R + φ†Lγ̃PLΨ − φRγ̃PRΨ

)
− 1

2
(
eQL|φL|2 + eQR|φR|2)2 −mΨΨ −m2(|φL|2 + |φR|2)

}
,(140)

Γext.f. =
∫
dx
(
Y αλ sλα + Yλ̄α̇sλ̄

α̇

+ YφLsφL + Yφ†
L
sφ†L + Y αψLsψLα + Yψ̄L α̇sψ̄

α̇
L + (L→R)

)
, (141)

Γbil = −(Yλε)(ε̄Yλ̄) − 2(YψLε)(ε̄Yψ̄L) − 2(YψRε)(ε̄Yψ̄R) , (142)

satisfies
s(Γ ) = 0 , (143)

the generalized ST identity. The linearized ST operator sF

sF =
∫ (

sϕ′i
δ

δϕ′i
+
δF
δYi

δ

δϕi
+
δF
δϕi

δ

δYi

)
. (144)

(ϕ′i are all linear and ϕi all non-linear transforming fields) is nilpotent

s2F = 0 , (145)

provided F satisfies (143) and the linear identity

iεσµ
δF
δYλ̄

− i
δF
δYλ

σµε̄+ iων∂ν(iεσµλ̄− iλσµε̄) − 2iεσν ε̄F νµ = 0 . (146)

(This condition is equivalent to s2FAµ = 0 which is true for F = Γcl.) It
satisfies the consistency condition

sFs(F) = 0 (147)

for every functional F which fulfills (146).
It can be shown [6] that gauge condition, ST identity (143) and (146) can

be solved, i.e. a Γ can be found satisfying these equations to all orders.
On the functional level the SUSY transformation law of the fields is de-

fined by ∂εsΓ and ∂ε̄sΓ . One finds e.g. in one-loop order

∂εsΓψ =
∫
dyφ†(y)Γφ†εYψ (y, x) , (148)

with Γφ†εYψ truly being a non-local kernel [6]. Hence for the interacting fields
the transformations become non-local, the origin being the gauge fixing term
which is not supersymmetric.
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In order to clarify on which level, i.e. on which quantities supersymmetry
is realized one studies the effect of the respective charges as operators in Fock
or Hilbert space [18]. If one defines on the asymptotic “in” fields φin a SUSY
charge Qin

α which generates the linear transformations of the free theory, then
Qout
α is given by the time evolution governed by the S-Matrix

Qout
α = SQin

α S
† . (149)

It turns out that

Qout
α = Qin

α − i
[
QBRS, ∂εαΓ

Op
eff

]
. (150)

Here, QBRS is the charge operator generating the ordinary BRS transforma-
tions and all operators are constructed by LSZ reduction from the respective
insertions into the functional of general Green functions. This result shows
that SUSY is a symmetry between physical states only.

It is remarkable that for an interacting field φOp one can still derive

i
[
Qα(x0), φ(x)

]Op
= −∂εα δΓ

Op
eff

δY (x)
. (151)

Here Qα(x0) denotes the time dependent SUSY charge (s. [18]). Summarizing
one can say that the non-linear realization of supersymmetry can be mastered
in perturbation theory and its symmetry effects show up only between phys-
ical states.

Acknowledgments I thank the organizers for the invitation to such a nice
school with lively atmosphere, my collaborators M. Roth, Ch. Rupp and R.
Scharf for very efficient help in preparing the notes.
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Functional Integrals for Quantum Theory
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1 Universität Bielefeld, BiBoS, D-33615 Bielefeld, Germany
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1 Introduction

35 years exactly lie between my first Schladming lecture and this - presumably
the last one I give here. In 1965 I presented “An introduction to theories
of integration over function spaces” [24]. Functional integrals in physics at
that time primarily meant Feynman (and maybe Wiener) integrals; with the
Euclidean, functional integral approach to QFT still waiting in the wings.

But I do recall from those times a twofold fascination:

• The discrepancy between the physical neatness and the mathematical
messiness of Feynman’s quantization. Integration, for the mathematician,
is with respect to a measure, and there is no real or even complex valued
measure on path space that would produce the Feynman “integral”.

• The mysterious, and again, mathematically completely unjustified power
of the reasoning in the 1960 paper of F. Coester and R. Haag [7] where the
authors extract quantum field theoretical dynamics from a non-existent
vacuum density functional. (In fact the existence of such densities would
essentially contradict Haag’s own theorem on the inequivalence of repre-
sentations for free and interacting fields!)

In the years since that time I have tried to understand these miraculous
workings a little better. Some mathematics had to be created to do so [10],
and then some things became clearer:

• The Feynman integral might be like those “integrals” of physics in which
generalized functions or “distributions” appear.

• If we admit generalized functions for densities, then there will be no
contradiction with Haag’s theorem.

Hence our program for these lectures will be

• to establish a mathematically acceptable functional calculus which in-
cludes generalized functionals, in other words to extend distribution the-
ory to infinitely many variables,

• and then put this theory to work in quantum field theory and for a better
understanding of Feynman integrals.

H. Latal, W. Schweiger (Eds.): LNP 572, pp. 207–221, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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By what should we replace Lebesgue integration in infinite dimension? Or
– to state this in another way – what is a good set of independent coordinates?

White noise analysis [10], [19], [22] attempts an answer to these questions1.
Hence, in the following sections we shall introduce nonlinear functionals of
white noise, and – in analogy to the usual test functions and distributions –
we shall introduce spaces of smooth and of generalized functionals of white
noise. Then examples of applications in quantum physics will be discussed.

2 White Noise Analysis

Gaussian white noise appears naturally wherever one tries to model random
events occurring independently at different points in time (and/or space), the
prime example being thermal noise in electric circuits: you can hear it if you
tune your radio to where there is no station and turn it on loud enough.

Of course this strict independence, expressed in the expectation

E (ω(s)ω(t)) = δ (s− t)

is an idealization, but it is one of those which physics invokes frequently
to facilitate a simple and transparent analysis, an analysis that in many
instances would become much more cumbersome for models with “colored
noise”. In particular white noise ω appears as the velocity of Brownian motion
modeled by the Wiener process B(t)

ω(t) =
d

dt
B(t).

With its independence and invariance properties Gaussian white noise ω
is ideally suited as a universal “coordinate system” for stochastic and infinite
dimensional analysis. Hence we shall develop white noise calculus in what
follows, noting however that most results have a straightforward extension to
more general Gaussian [16] and even non-Gaussian [17] settings.

Brownian motion is (almost surely) non-differentiable in the usual sense,
i.e. white noise sample “functions” are distributions:

ω ∈ S∗(R) (1)

Hence a certain amount of care is needed if we want to profit from the advan-
tages of white noise modeling in a nonlinear setting; a well-known example
is stochastic integration where e.g. the distinction between the integrals in
the sense of Ito and of Stratonovich essentially results from carefully defining
them as nonlinear functionals of white noise.
1 It appears in the 2000 Mathematics Subject Classification under “60H40 White

Noise Theory”
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From the fact that we consider white noise as a δ-correlated mean zero
process we are immediately led to its characteristic function

C(f) = E
(
ei

∫
ω(t)f(t)dt

)
=

∫
S∗(R)

ei
∫
ω(t)f(t)dtdµ(ω) = e− 1

2

∫
f2(t)dt .

For nonlinear functionals
ϕ ∈ L2 (dµ)

of white noise ω we shall make the ansatz

ϕ(ω) =
∞∑
n=0

∫
dntFn(t1, . . . , tn) : ω(t1) . . . ω(tn) : . (2)

Here
: ω⊗n(t) :=: ω(t1) . . . ω(tn) :

is the well-known “normal ordered” or “Wick” or “Hermite product”. It
amounts to an orthogonalization

E(: ω⊗n(s) :: ω⊗m(t) :) = δm,nn!
n∏
i=1

δ(si − ti)

(assuming the si, ti ordered) and can e.g. be defined recursively

: ω(t1) . . . ω(tn) :=

: ω(t1) . . . ω(tn−1) : ω(tn) −
n−1∑
i=1

δ(tn − ti) :
n−1∏
k �=i

ω(tk) : .

In this fashion all the terms in the normal ordered expansion are orthog-
onal to each other, and we find immediately the L2 norm of ϕ :

‖ϕ‖2
L2(dµ) = E(ϕ∗ϕ) =

∞∑
n=0

n!
∫
dnt |Fn(t1, . . . , tn)|2 .

On the right-hand side we recognize a Fock space norm:

ϕ ∈ L2(dµ) ↔ {Fn} ∈ HFock.

This is the Gelfand-Ito-Segal isomorphism between square integrable white
noise functionals and bosonic Fock space vectors.
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2.1 Smooth and Generalized Functionals

Smooth and generalized functionals are constructed in analogy to the usual
test functions and distributions; we recall that test functions in Schwartz
space are characterized by a sequence of norms

f ∈ S(Rn) iff |f |p < ∞ for all p

where we may choose for the norms e.g.

|f |p = |Hp
oscf |L2. (3)

Likewise we now introduce for white noise functionals the norms

‖ϕ‖2
p,q =

∞∑
n=0

(n!)1+β 2nq |Fn|2p (4)

for p, q > 0. Putting β = 0 for the moment we define the space (S) of smooth
functionals by

(S) =
{
ϕ : ‖ϕ‖p,q < ∞ for all p, q

}
.

These functionals then have kernels which are Schwartz test functions and
whose norms |Fn|2p decrease rapidly as n becomes large.

The space (S)∗ of generalized functionals (“Hida distributions”) is then
defined as the dual of (S):

(S) ⊂ L2(dµ) ⊂ (S)∗.

Similarly, for β = 1, we have the “Kondratiev spaces” [15] (S)±1, with

(S)1 ⊂ (S) ⊂ L2(dµ) ⊂ (S)∗ ⊂ (S)−1.

2.2 Characterization of Generalized Functionals Φ ∈ (S)∗

In many physics applications Φ will be given in terms of a “source functional”,
such as

TΦ(f) = E
(
Φ(ω)ei

∫
ω(t)f(t)dt

)
or

SΦ(f) = E
(
Φ(ω) : e

∫
ω(t)f(t)dt :

)
Fortunately, any of these expressions provides a complete characterization of
generalized white noise functionals Φ [16].

Theorem 1. A functional G(f), f ∈ S(R), is the T-transform of a unique
generalized white noise functional Φ ∈ (S)∗ iff for all fi ∈ S(R), G(zf1+f2) is
analytic in the whole complex z-plane and of second order exponential growth

|G(zf)| < aeb|zf |2p

for some p > 0.
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Since there are many instances where physics gives us (some control of)
the source functionals, it is often not too hard to see whether they fall into
our framework.

Often, also, we are given a sequence of approximations and would like to
ensure their convergence. The following corollary gives sufficient conditions
for the existence of a limiting (generalized) functional.

Corollary 1. Let {Φn}n∈N denote a sequence of generalized white noise
functionals with the following properties:

1. For all f ∈ S (R) , the T-transforms {TΦn (f)}n∈N are Cauchy se-
quences.

2. There exist Ci, p such that the bound

|TΦn (zf)| ≤ C1 exp(C2 |z|2 |f |2p )

holds uniformly in n.

Then there is a unique
limΦn = Φ ∈ (S)∗

. (5)

Similarly we can control the integration of families of Hida distributions
with respect to a parameter as follows:

Corollary 2. Let (Ω,B,m) be a measure space, and Φλ in (S)∗ for λ ∈ Ω.
We assume that the T-transform of Φλ

1. is an m-measurable function of λ for any test function f ,
2. obeys an estimate

| (TΦλ)(zf) |≤ C1(λ) exp(C2(λ) | z |2 |f |2p)
for some fixed p and for C1 ∈ L1(m), C2 ∈ L∞(m).

Then Φλ is (Bochner-) integrable∫
Ω

dm(λ)Φλ ∈ (S)∗ (6)

and we may interchange T-transform and integration:

T (
∫
Ω

dm(λ)Φλ)(f) =
∫
Ω

dm(λ)(T (Φλ)(f)). (7)

Example 1. A Fourier representation for Donsker’s δ-function:

δ(< ω, g > −a) ≡ 1
2π

∫
dλeiλ(<ω,g>−a) . (8)
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Remarks:

1. Analogous statements are true for the S-transform.
2. Generalized functionals in the Kondratiev space are characterized by local

analyticity and local boundedness of the source functionals.
3. Hence, in either case, linear combinations, but also products of source

functionals are again admissible source functionals. This induces an al-
gebraic structure on the space of generalized functionals, via

S(Φ)S(Ψ) = S(Φ � Ψ);

As it turns out this product is simply the Wick product:

: ω⊗n(s) : � : ω⊗m(t) :=: ω⊗n(s)ω⊗m(t) : .

4. For the Kondratiev space of generalized white noise functionals even more
can be said [15]. By Remark 2, analytic functions g of source functionals
are again admissible, and this induces an analytic “Wick calculus” on
distribution space

g (S(Φ)) = S (g�(Φ))

with

g�(Φ) ≡
∑
n

anΦ
�n for g(z) =

∑
n

anz
n. (9)

2.3 Calculus

Test functionals ϕ ∈ (S) admit directional (“Gateaux”) derivatives:

Dhϕ(ω) = lim
ε→0

ϕ(ω + εh) − ϕ(ω)
ε

for even for generalized functions h ∈ S∗(R). Hence, for any such h, the
adjoint

D∗
h = −Dh− < ω, h >

acts continuously on generalized functions Φ ∈ (S)−1of white noise.
In particular we may put h = δt, writing in this case

Dh ≡ ∂t

which provides us with the natural notion of a gradient (“Frechet derivative”)

∇ϕ = {∂tϕ : t ∈ R} .

The “carré du champ” functional is a test functional

|∇ϕ|2 =
∫
dt |∂tϕ|2 ∈ (S) for all ϕ ∈ (S).

For much more detail on white noise calculus, see [10].
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3 Quantum Field Theory

3.1 The Vacuum Density

The analogue of a ground state distribution of particle configurations x

dν(x) = ρ (x) dnx (10)

would be
dν(ϕ) = ρ (ϕ) d∞ϕ, (11)

a probability measure on field configurations, with vacuum density ρ. Unfor-
tunately, d∞ϕ refuses to exist; but even a more modest attempt

dν(ϕ) = ρ (ϕ) dν0(ϕ) (12)

– where now ρ would be the density of the physical vacuum with respect to
the (well defined) free vacuum measure ν0 – will not work: Haag’s theorem
about inequivalence of free and interacting fields excludes the existence of
such a density. In fact the saga of constructive quantum field theory was in
essence the quest for inequivalent measures ν

〈Ω|φ(x1) . . . φ(xn)|Ω〉 !=
∫
dν(φ)φ(x1) . . . φ(xn) (13)

on infinite dimensional spaces.
What however if, guided by singular measures arising from generalized

functions such as e.g. Dirac’s δ−function, one would look for measures arising
from positive generalized functions in infinite dimensional analysis? White
Noise Analysis [10] provides such a framework with Gaussian white noise
as independent coordinates. Gaussian white noise gives of course rise to a
Gaussian measure µ and we might begin our quest for vacuum densities in
the corresponding L2 space

L2 (dµ) ≡ (L2) .

In the light of the above however, this will not be rich enough, we shall need
to go beyond (L2) to a suitable space of generalized functions of white noise
such as:

(S) ⊂ L2(dµ) ⊂ (S)∗.

Fortunately, by a theorem of Kondratiev and of Yokoi2, and just as in
finite dimensional distribution theory, all positive generalized functions turn
out to be measures, hence candidates for vacuum densities. Do they provide
an appropriate framework for QFT:
2 A very general version of this theorem, valid even in non-Gaussian settings, can

be found in [17], together with references to earlier work.
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dν = ρdµ with ρ ∈ (S)∗ ? (14)

Indeed, physical vacuum densities (Euclidean and Minkowski, P (ϕ)2, Sine-
Gordon, etc.) are all Hida distributions:

〈0 |F (ϕ)| 0〉 =< ρ, F >

for suitable positive ρ ∈ (S)∗, cf. [23]. Proofs use the “Froehlich bounds” on
moments

〈0 |ϕn(f)| 0〉 = O((n!)1/2 |f |np ) .
In particular such an estimate holds for canonical Bose fields if they obey

a φ-bound
±ϕ(f) ≤ aH + b |f |2p + c, with a, b, c ≥ 0. (15)

3.2 Dynamics in Terms of the Vacuum

Quantum field dynamics in terms of the ground state goes back to the work
of Coester and Haag [7], and of Araki [6], in 1960. It has a counterpart
in non-relativistic quantum mechanics: the “ground state representation”,
in contradistinction to the usual Schrödinger representation has been exten-
sively studied since the seventies. Its strength is in handling extremely sin-
gular interactions such as e.g. the so-called pseudo-potentials or zero-range
interactions. So let us take a quick glimpse at quantum mechanics in terms
of the ground state.

Quantum Mechanics in Terms of the Ground State

Schrödinger Representation Ground State Repn.

State Space H H =L2(Rn, dnx) H̃=L2(Rn, dν)

Ground State Ω Ω(x) =< x|Ω > Ω̃(x) = 1

States ψ ψ(x) =< x|ψ > ψ̃(x) = <x|ψ>
<x|Ω>

Hamiltonian H H = �∗
x�x + V (x) H̃ = �∗

x�x
Energy Form ε(ψ) ε(ψ) = (�ψ,�ψ) + (ψ, V ψ) ε(ψ) =

∫ (
�ψ̃

)2
dν

= Dirichlet Form for: Brownian m. with killing distorted Brownian m.

With the choice of the “ground state measure”

dν(x) =< x|Ω >2 dnx (16)

the two representations, whenever both exist, are unitarily equivalent.
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On the other hand one may start by choosing a measure ν for the ground
state representation

The energy form

ε(ψ) =
∫ (

�ψ̃(x)
)2
dν(x) =< ψ|H|ψ > (17)

then serves as definition of the Hamiltonian in terms of the ground state
measure ν. Not all measures qualify. To obtain a unique self-adjoint Hamilto-
nian from the quadratic form we need that the form be closable, technically:
that the gradient operator � has a densely defined adjoint in L2(Rn, dν), a
condition that in practice is not too hard to check.

Note the universal form of the Hamiltonian

H̃ = �∗� (18)

for any ground state measure ν; it is the latter which contains exclusively the
dynamical information.

The energy form ε is a Dirichlet form and gives rise to a diffusion process
which solves the stochastic differential equation proposed by Ezawa, Klauder,
and Shepp;

dy = β(y)dt+ dB,

where the drift β is given in terms of the ground state wave function:

β(x) = �x logΩ2(x) (19)

This is quantum dynamics in terms of the ground state. What is its scope? It
turns out that we are confronted with a vast extension of Schrödinger theory.
While formally we can recuperate the potential from the ground state through
the eigenvalue relation HΩ = 0, which gives

V (x) =
∆xΩ(x)
Ω(x)

, (20)

the ground state representation extends to Ω(x), and hence to perfectly well-
defined dynamics, for which V will not be a valid perturbation of the free
Hamiltonian, or will not even exist! Ground states are always smoother than
the corresponding potentials, so that the former may survive in limiting cases
where the latter fail to exist. All this is treated in detail in [4], [5]; here
we only mention zero range, multiparticle “pseudopotentials” as an example
which fits nicely into this scheme.

Quantum field theory Our goal is, as in the quantum mechanical case, to
define the Hamiltonian by its energy form. Where do we get the measures?
Here the Kondratiev-Yokoi theorem is helpful since it states that all positive
Hida distributions ρ > 0 are indeed measures, in the sense that
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< ρ, Ψ >=
∫
Ψ (ω) dv (ω) (21)

for smooth white noise functionals Ψ ∈ (S). Hence, in terms of a generalized,
positive “vacuum density” ρ ∈ (S)∗, we shall make the ansatz

ε (Ψ) = 〈Ψ |H|Ψ〉 =< ρ, |∇Ψ |2 > , Ψ ∈ (S) ,

since it generalizes

ε (Ψ) =
∫

|∇Ψ |2 (ω) ρ (ω) dµ (ω) =
∫

|∇Ψ |2 (ω) dv (ω)

to cases where
ρ =

dv

dµ
(22)

fails to be integrable, i.e. is a generalized density.
We consider ρ admissible if the resulting form is closable. Of course the

first candidate that one will want to check is ρ with the source functional
(“T -transform”)

Tρ(f) =< ρ, ei<ω,f> >= e
− 1

2

(
f,(−∆+m2)−1/2

f
)
, (23)

i.e. the vacuum density of a relativistic free field. This was done in [11].
For the vacuum densities of constructive quantum field theory closability

was established in [2], [3], including the realization of the fields as infinite
dimensional diffusions.

What about the field theory counterpart of the stochastic evolution equa-
tion? This comes up in the stochastic quantization program with all its dif-
ficulties, but a Gaussian “toy model” is quite tractable [12].

4 Feynman Integrals

There is indeed a quantum jump from the classical stochastic scenario with
its statistical averaging over random effects on the one hand, and quantum
mechanics with its superposition of amplitudes, capable of interfering con-
structively or destructively with each other. This quantum scenario is maybe
most explicit in Feynman’s formulation of quantum mechanics with its “sum
over histories”, often written as

N

∫
d∞x(τ)e

i
�
S[x] (24)

which as if by magic uses the purely classical action functional S to obtain a
prescription for quantization. This feat alone is sufficient to explain why this
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expression has become one of physics’ favorite concepts since its invention by
Feynman in the forties.

It is all the more remarkable how, over half a century, mathematicians
have had a rather hard time making sense of formulas such as (24).

The point is that mathematicians rightly say that there is no such thing
as Feynman’s infinite dimensional integration measure:

N

∫
d∞x(τ) =??? (25)

Many remedies were proposed over the years, such as
– well if infinite dimension is a problem, let’s look at finite dimensional ap-
proximations,
or:
– let’s go “Euclidean”, i.e. to imaginary time, where we have the Feynman-
Kac formula

〈F 〉E = N

∫
d∞x(τ)e− 1

�
SE [x]F [x] =

∫
dµF. (26)

None of this is needed. All you need to recognize is that the Feynman average

〈F 〉 “ = ” N

∫
d∞x(τ)e

i
�
S[x]F [x] (27)

while not the action of a measure on F , is indeed the action of a generalized
white noise functional

〈F 〉 = 〈I, F 〉 with I ∈ (S)∗. (28)

This in itself is remarkable since the Feynman integral becomes well-defined
and manageable on a mathematical level, but the result goes far beyond an
abstract existence theorem: the proof is constructive, and the construction is
intuitive.

The basic ideas are

• Brownian paths

x(t0 + τ) = x0 +
(

�

m

)1/2

B(τ) . (29)

(Note that the “velocity” of Brownian motion and hence of these paths

x is white noise ω: B(τ) =
τ∫
0
ω(s)ds.)

• The free Feynman integrand should then be

I0 (x, t | x0, t0) (30)

= N exp
(
i+ 1

2

∫
R
ω2 (τ) dτ

)
δ (x (t) − x) , (31)



218 Ludwig Streit

where the exponential contains the i
�

times the free action, while the
δ-function serves to pin down the final position of the paths; the extra
seemingly spurious real term in the exponent actually is crucial to com-
pensate the Gaussian fall-off of the white noise measure.

• To tackle this expression it is helpful to calculate its “T -transform”
defined for general(ized) white noise functionals Φ as follows

TΦ(Φ) = E
(
Φ(ω)ei

∫
Φ(t)ω(t)dt

)
,

i.e. we should calculate an (infinite dimensional) Gauss-Fourier transform.

This can be done rather straightforwardly for the free case and gives, with
m = � = 1,

T I0 (Φ) =
1

(2πi |t− t0|)
d
2

exp
[
− i

2

∫
R
ξ2 (τ) dτ (32)

− 1
2i |t− t0|

(∫ t

t0

ξ (τ) dτ + x− x0

)2]
.

In fact
TI0 (ξ) ≡ K

(ξ)
0 (x, t|x0, t0) (33)

has a physical meaning, it obeys a Schrödinger equation(
i∂t +

1
2
d−

•
ξ (t) · x

)
K

(ξ)
0 (x, t|x0, t0) = 0 (34)

with the initial condition

lim
t↘t0

K
(ξ)
0 (x, t|x0, t0) = δ (x− x0) .

4.1 The Interactions

The big question is: Which potentials may be included in this framework?
Over the recent years various classes of admissible potentials have been iden-
tified [8], [9], [13], [14], [18], such as potentials which are superpositions of
delta functions, or Fourier transforms of measures. The most recent, and
rather surprising, class is given in the form

V (x) =
∫
Rd

eα·xdm(α) . (35)

where m is any complex measure with∫
Rd

eC|α| d|m|(α) < ∞, ∀C > 0. (36)
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Example 2. Dirac measure m (α) := g δa (α), g ∈ R., i.e. V (x) = g eax.
Likewise, potentials proportional to sinh (ax), cosh(ax).

Example 3. The Morse potential V (x) := g(e−2ax−2γe−ax) with g, a, x ∈ R
and γ > 0.

Example 4. A Gaussian measure m gives V (x) = gebx
2

with b ∈ R.

Example 5. Entire functions of arbitrary high order of growth are in this
class. m (α) := Θ (α) exp

(−kα1+1/n
)

with n, k > 0 ⇒ V is entire of order
1 + n.

For all of these, the construction of the Feynman integrand I is pertur-
bative

I = I0 · exp
(

−i
∫ t

t0

V (x (τ)) dτ
)

(37)

=
∞∑
n=0

(−i)n
n!

∫
[t0,t]n

∫
Rdn

I0 ·
n∏
j=1

eαj ·x(τj)
n∏
j=1

dm(αj) dnτ (38)

Theorem 2. Let V be as above. Then

I :=
∞∑
n=0

(−i)n
n!

∫
[t0,t]n

∫
Rdn

I0 ·
n∏
j=1

eαj ·x(τj)
n∏
j=1

dm(αj) dnτ (39)

exists as a generalized white noise functional.

The proof can be found in [18] and is reasonably straightforward: the
principal object we need to control is

I0 ·
n∏
j=1

eαj ·x(τj). (40)

Its T -transform is an exercise in (generalized) Gaussian integration. It can
be done in closed form and the Characterization Theorem 1 then ensures
that we are dealing with a bona fide generalized white noise functional. The
rest are integrations and limits which we control by the two corollaries of
Theorem 1.

The main issue from the physics point of view is of course whether the
corresponding Feynman integral solves the Schrödinger equation as in the
free case (34):
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Theorem 3. Let V be as above. Then the T-transform of I solves the Schrö-
dinger equation for all x, x0, t0 < t

(
i
∂

∂t
+

1
2
d − gV (x) − x· •

ξ (t)
)
K(ξ) (x, t | x0, t0) = 0. (41)

with initial condition

lim
t↘t0

K(ξ)(x, t | x0, t0) = δ(x− x0) . (42)

The proof is by verification, and in fact the result extends to time depen-
dent potentials. We shall not reproduce here the explicit, but longish form
of the propagator for the general case. Instead, because of its interest in
applications we present a particular example in more detail.

4.2 The Morse Potential

Its Hamilton operator is

H := −1
2
 + g

(
e−2ax − 2γe−ax) . (43)

Remark 1. H is essentially self-adjoint for g ≥ 0 and it is not essentially
self-adjoint for g < 0.

The Green function, the eigenvectors and the discrete eigenvalues are not
analytic in g.

The propagator, with ξ ≡ 0, is in this case

K(x, t | x0, t0) =

K0 (x, t | x0, t0)
∞∑
n=0

(−ig)n
n!

(t− t0)
n

2∑
j1,...,jn=1

(−2γ)2n−∑n
k=1 jk

×
∫

[0,1]n
exp

{
−a

n∑
l=1

jl (σlx+ (1 − σl)x0)

}
(44)

× exp

{
− i

2
(t− t0) a2

n∑
l=1

n∑
k=1

jkjl [σjσk − σj ∧ σk]
}

dnσ.

It is not hard to verify that, in spite of the above remark, this is a convergent
series! In fact it is implicit in our construction (39) that the propagators for all
the potentials (35) admit convergent perturbation series for their propagators.
It is an easy exercise to verify that this is not the case for the corresponding
“Euclidean” heat equations.
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Seminars

In addition to the lectures several participants gave interesting seminar talks
fitting to the general theme of the School. In what follows, we give a complete
list of the seminar speakers (alphabetically ordered) and the titles of their
contributions.

A. Kling (TU Wien)

BRST-cohomology of super-D-strings

W. H. Klink (Univ. Graz)

Quantization and point-form relativistic quantum mechanics

N. Ilieva (Univ. Wien)

2-dimensional anyons and the temperature dependence of commutator anoma-
lies

L. Martinovic (Acad. Sci. Bratislava)

Symmetries and vacuum structure on the light front

A. Nefediev (ITEP Moscow)

Relativistic constrained systems in the einbein field formalism

H. Nikolic (Rudjer Boskovic Inst. Zagreb)

Classical relativistic effects in non-inertial frames treated by Fermi coordi-
nates

D. Nogradi (Univ. Budapest)

Geometric quantization of global Liouville mechanics

R. Pullirsch (TU Wien)

Quantization of chaotic field theories

A. Ruffing (TU München)

Quantization and special functions
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L. Snobl (TU Prague)

Construction of quantum doubles from solutions of the Yang-Baxter equation

D. Sorokin (INFN Padova)

Superbranes in the superembedding approach

T. Strobl (Univ. Jena)

Group theoretical and projection quantization

T. Sykora (Univ. Prague)

Schwinger terms in the fully quantized 1+1 dimensional model – exact solu-
tion

L. Theussl (ISN Grenoble)

From the Bethe-Salpeter equation to non-relativistic approaches with effec-
tive two-body interactions

S. Vernov (State Univ. Moscow)

Quantization close to non-stationary classical fields in terms of Bogoliubov
group variables

M. Volkov (Univ. Jena)

Euclidean Freedman-Schwarz model
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