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Foreword

Advanced Dynamics by Shuh-Jing (Benjamin) Ying provides a comprehensive
introduction to this important topic for aeronautical or mechanical engineering
students. It is written with the student in mind by explaining in great detail the
fundamental principles and applications of advanced dynamics. The applications
are firstillustrated on simple problems, such as the collision of two bodies, and then
demonstrated on much more complex problems, such as a two-impulse trajectory
for space probes. Dr. Ying is a Professor at the University of South Florida in
the Department of Mechanical Engineering, and his research interests include
dynamics, vibrations, mechanical design, and heat transfer. Also, in addition to
his extensive research activity and numerous publications, Dr. Ying has taught 34
different courses in mechanical engineering.

The text covers all the essential mathematical tools needed to analyze the dynam-
ics of systems: vector algebra, conversion of coordinates, calculus of variations,
matrix algebra, Cartesian tensors and dyadics, rotation operators, Fourier series,
Fourier integrals, Fourier transforms, and Laplace transforms (in Chapters 1, 6,
and 8). Chapters 1 through 3 start with a review of elementary statics and dynam-
ics, followed by a discussion of Newton’s laws of motion, D" Alembert’s principle,
virtual work, and kinematics and dynamics of a single particle or system of parti-
cles. Chapter 4 introduces Lagrange’s equations and the variational principle used
in dynamics. Chapter 5 is devoted to the dynamics of rockets and space vehicles,
while Chapters 7, 8, and 9 discuss the dynamics of a rigid body and vibrations of
continuous systems as well as lumped parameter systems with a single degree or
multiple degrees of freedom. Nonlinear vibrations are also included. Chapter 10
discusses the Special Theory of Relativity and its consequences in kinematics and
dynamics.

The Education Series of textbooks and monographs published by the American
Institute of Aeronautics and Astronautics embraces a broad spectrum of theory
and application of different disciplines in aeronautics and astronautics, including
aerospace design practice. The series also includes texts on defense science, en-
gineering, and management. Qver 50 titles are now included in the series, and the
books serve as both teaching texts for students and reference materials for practic-
ing engineers, scientists, and managers. This recent addition to the series will be
a valuable text for courses in engineering dynamics in aeronautical or mechanical
engineering programs.

J. S. Przemieniecki
Editor-in-Chief
AlAA Education Series



Preface

Dynamics is the foundation of physical science and is an important subject of
study for all engineering students. Although the fundamental laws of dynamics
have remained unchanged, their applications are constantly changing. One hun-
dred years ago, there were no automobiles, no airplanes, and no space vehicles.
Advances in science and technology provide us with many new dynamic devices.
For example, the gyroscopic effect of the rotating propeller in airplanes creates
diving during yawing. When a satellite travels in a circular orbit, the motions of
rolling and yawing also can produce pitching. During times of war, shooting a
missile flying in its orbit is another subject with real and important implications.
Is it possible to shoot a space probe from the surface of Earth to Mars by one im-
pulse? All these scenarios are important and interesting, and understanding them
begins with the study of dynamics.

As I teach advanced dynamics, I feel that there is a need for a textbook that
covers subjects related to recent developments. A book that includes my lecture
notes may fulfill this need, and this is my primary motivation for writing this book.
In addition, this book is intended not only for students in the classroom but also
for practicing engineers who wish to update their knowledge. For this reason, the
book is self-contained with fundamentals in vector algebra, vector analyses, matrix
operations, tensors and dyadics. The details are clearly and explicitly presented. I
have been teaching advanced dynamics for more than 10 years, and I often tell my
students that I have nothing to hide. This is the spirit of this book. Anyone who
reads the book should not only understand current developments in dynamics but
also can learn some of the foundations of mechanical engineering necessary to
understand papers published in recent journals.

Further, I hope this book will show the reader that dynamics is an exciting
field with many new problems to be solved. For example, there are challenging
problems concerning the motion of a space vehicle traveling in a general orbit, and
also in the design of robots and complex automatic machines. Lastly, a chapter
on the special relativity theory is included. This is intended to show that space
and time are related. Just a few days in one system can be many years in the
other system. Past events in the stationary system can be observed at present in
another system traveling near the speed of light. All these are not fairy tales, but
are scientifically true. The purpose of this part of the book is to broaden readers’
minds. Anything is possible.

The contents of this book are briefly described as follows: In Chapter 1, funda-
mental principles and vector algebra are reviewed. This chapter may be skipped
by well-prepared students. Chapter 2 deals with kinematics and dynamics of a par-
ticle. First, the kinematics of a particle in various coordinate systems is discussed.
Next, examples concerning trajectories of missiles and reentry of space vehicles

Xi
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are presented. Lastly, fundamental concepts such as work, conservative force, and
potential energy are reviewed. Chapter 3 is devoted to the dynamics of a system of
particles. Besides items commonly introduced in this chapter, the mid-air collision
of missiles is given in detail including a computer program that determines the
trajectory of the second missile. Collisions of solid spheres are also introduced
in this chapter. This can be considered as the first approximation for automobile
collisions. To balance theoretical aspects and practical applications, gravitational
force and potential energy also are studied in this chapter.

Chapter 4 is a major chapter in this book. Many important topics are included.
Many engineering students have difficulty formulating equations for motion for
a particle or a body. Lagrange’s equation is intended to help students find the
equation of motion. Students only need to have the knowledge of kinetic and po-
tential energies of the mass for formulating the equations. Hamilton’s principle is
a parallel approach to Lagrange’s equations. With the study of Hamilton’s princi-
ple, students will better understand the equations of motion. Lagrange’s equations
with constraints also are introduced. Constraint forces and Lagrange multipliers
are derived. Many examples are given for Lagrange’s equations. Students should
be familiar with this subject if a proper effort is devoted to study. The variational
principle is included in this chapter. Through this approach, Lagrange’s equation
for a conservative system also can be reached. The purpose of the variational
principle is for optimization. A case of optimization with a constraint condition
i1s studied also. Many examples are given to demonstrate the application of the
variational principle.

Chapter 5 is devoted to the dynamics of rockets and space vehicles. This is
another demonstration of the balance of theory and practice in this book. Essential
characteristics of rockets are studied in a single-stage rocket. The advantage of
multistage rocket and use of the Lagrangian multiplier for maximizing the burnout
velocity are included. A space vehicle traveling in a gravitational field is treated
extensively in Section 5.3. Different trajectories are discussed. Special attention
is devoted (o the elliptical orbit. The trajectory for an electrical-propulsion rocket
1s given in Section 5.4. The equations involved in electrical propulsion typically
belong to a small perturbation theory. Equations of motion are solved analytically
in the chapter. Interplanetary trajectories are discussed in Section 5.5. The journey
from Earth to Mars’ surface is used to demonstrate the procedure for calculating
the impulses required for the whole trajectory. After a review of previous work,
the use of two impulses for sending a space probe from Earth to Mars’ orbit and
spiraling down to the surface of Mars is discussed in detail. In this way the long
and detailed observations can be made by the space probe.

Chapter 6 is for matrices, tensors, dyadics, and rotation operators. This chapter
is entirely mathematical, so that engineering students are exposed to more applied
mathematics. Some applications are included with each subject to make them eas-
ily understandable and more interesting. For example, through rotation operators
it is proved that two successive rotations can be combined into a single rotation.
This can actually reduce the time for rotational motions. Engineers wishing to
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extend their knowledge through journal papers should pay special attention to this
chapter.

The dynamics of arigid body are studied in Chapter 7. Because many objects
may be modeled as rigid bodies, the analyses presented in this chapter play an
important role in this book. The first three sections present fundamental principles.
Some additional sections are included here describing the gyroscope and the
orbiting space vehicle. The gyroscopic effect of a rotating propeller in an airplane
causing the plane to dive during yawing is studied here in detail. The major
apphcation of the angular momentum of a rigid body is the gyro-compass. Two
examples are particularly aimed in that direction. Furthermore, the motion of a
heavy symmetrical top and induced torques because of flight operations on a
satellite in circular orbit also are treated in detail in this chapter.

Chapters 8 and 9 are devoted to the study of vibrations. In Chapter 8, math-
ematical topics that are necessary for analyzing vibration problems are first pre-
sented. These topics are Fourier series, Fourier integral, and Fourier and Laplace
transforms. The Laplace transform is treated as a special case in Fourier transfor-
mation. Applications include one-dimensional damped oscillations and transient
vibrations. Advanced topics in vibration are treated in Chapter 9. Starting from
a two-degree-of-freedom system, some examples in a lumped parameter system,
a continuous system, and nonlinear vibrations are studied. Stability analysis of
vibrations in a phase plane is also discussed.

Chapter 10 covers the Special Relativity Theory. This is arranged here to broaden
readers’ minds. The time and space coordinates are related such that for one person
traveling near the speed of light, just a few days for this person can be many years
to a person in a stationary system. This is proved to be true scientifically. Moreover
one also can prove that an event in the past could be observed as a present event in
another system. Readers are urged to consider that, just as space and time are now
interrelated through the relativity theory, new developments may one day modify
our thoughts concerning our most basic scientific concepts and principles.

In conclusion, I wish to thank Sue Britten for providing valuable support in the
process of accomphishing this book.

Shuh-Jing (Benjamin) Ying
July 1997
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1
Review of Fundamental Principles

HIS chapter reviews the fundamental principles necessary for the study of

advanced dynamics. Although these principles may be familiar to students
who have studied elementary mechanics, they are included here so that this book
is reasonably self-contained.

The concepts of dimensions and units are reviewed in Section 1.1. Familiarity
with these concepts will greatly facilitate formulating equations, checking di-
mensional homogeneity of an equation, and converting units. A brief review of
vector analysis is given in Section 1.2. Formulas frequently used in this book
are presented. Section 1.3 contains the definitions of statics and dynamics and a
discussion of the difference between kinematics and kinetics. Section 1.4 presents
Newton’s laws of motion. The second law is written in an expanded form to in-
clude the effect of changing mass, which is essential for analyzing the dynamics
of a rocket or any object with variable mass. D’ Alembert’s principle is presented
in Section 1.5. Through the use of D’Alembert’s principle, dynamic problems are
simplified to static ones. Section 1.6 reviews the principles of virtual displace-
ment and virtual work, which are the foundation for the derivation of Lagrange’s
equations discussed in Chapter 4.

1.1 Dimensions and Units

A dimension is the measure by which the magnitude of a physical quantity is
expressed. In dynamics, there are usually four dimensions: mass, length, time,
and force. A unit is a determinate quantity adopted as a standard of measurement.
As shown in Table 1.1, the International System of Units (SI) specifies mass in
kilograms (kg), length in meters (m), time in seconds (s), and force in newtons
(N). In the British Gravitational System (BG), mass is measured in slugs, length in
feet (ft), time in seconds (s), and force in pounds (Ibf). It is important to mention
that understanding dimensions and units will prevent errors from occurring when
analyzing problems and converting units. The conversion factors for the two
systems are given in Table 1.1.

Of the four dimensions mentioned in Table 1.1, mass, length, and time are
considered as primary dimensions and force as a secondary dimension. Force can
be expressed in terms of mass, length, and time as follows:

1N = 1kg-m/s? (1.1)
1 Ibf = 1 slug ft/s? (1.2)
The following example illustrates the technique used in the conversion of units.

| km/s 1000m 1ft 1 mile 3600 s
m = —

s 0.3048 m 5280ft 1h

= 2236.94 mph

1



2 ADVANCED DYNAMICS

Table 1.1 Conversion factors

Dimensions SI unit BG unit Conversion factor
Mass, M Kilogram, kg Slug 1slug = 14.5939 kg
Length, L Meter, m Foot, ft 1ft=0.3048 m
Time, T Second, s Second, s Is=1s
Force, F Newton, N Pound, 1bf 11bf =4.4482 N

When discussing units and dimensions, it is worthwhile to mention that each term
in an equation must have the same dimension, and the dimensions on both sides
of the equal sign must be the same. This is known as the principle of dimensional
homogeneity. Application of this principle will prevent algebraic errors from
occurring in complicated manipulations of equations.

1.2 Elements of Vector Analysis

Physical quantities in mechanics can be expressed mathematically by means
of scalars and vectors. A quantity characterized by magnitude only is called a
scalar. Mass, length, time, and volume are scalar quantities. A vector is a quantity
that has both a magnitude and direction and obeys the parallelagram law of
addition. Force, velocity, acceleration, and position of a particle in space are
vector quantities.

A vector can be broken down into several components according to convenience.
In the Cartesian coordinate system, a vector @ can be expressed in its components as

a=aii+a,j+ak

where a,, ay, and a, are the components of the vector, and i, j, and k are the
corresponding unit vectors. Because vector analysis plays an important role in
dynamics, fundamental mathematics of vectors is presented in this section. Note
that throughout the book, vectors are denoted by bold letters.

Vector Algebra

Vector addition. The addition of two vectors a and b is computed as
c=a+b
= ayi+ ayj+ azk + byi + byj + b,k
= (ax + by)i+ (ay + by)j+ (a; + b))k (1.3)

Vector subtraction. Vector subtraction, being a special case of vector addi-
tion, is performed as

c=a->b

= (ay — by)i+ (ay — by)j+(a; — b.)k (1.4)
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Scalar product of two vectors. The scalar product of two vectors @ and b is
written as a - b, which is a scalar quantity, and is defined as

a-b=abcosh (1.5)
cosfh = a-b = &:bx + ayby + ;b (1.6)
ab ab

where a, ay, a,, by, by, and b, are components of vectors a, b, and a is the
magnitude of vector a and b the magnitude of vector b.

Cross product of two vectors. The cross product of two vectors is written
as a x b, which is a vector, and is defined as

ax b= (absinfb)e

where 6 is the angle between vectors a and b, and e is a unit vector perpendic-
ular to the plane containing vectors @ and b, and in the direction according to
right-hand rule. The mathematical operation of the cross product is performed as
follows:
i j k
axb=la, a, a
by by, b,

=i(ayb, — a,by) + jla,b, — axb,) + k(ayby, — a,by) (1.7

Triple scalar product. The triple scalar product of three vectors a, b, and ¢
is defined as @ (b x ¢). The result is a scalar quantity and is obtained as

a-(bxe)=|b, b, b, (1.8)

Cx Cy G

Triple vector product. The triple vector product of three vectors a, b, and ¢
is defined as @ x (b x ¢). The result is a vector quantity and is obtained as

ax(bxe)y=(@a-c)b— (b-a) (1.9)

Differentiation
The derivative of a vector, which is a function of time, is defined as
dv . Ve+ A -V(@e)

— = lim (1.10)
dt At—0 At
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From the definition given in Eq. (1.10), the derivatives of the product of a scalar
and vector, the scalar product of two vectors, and the cross product of two vectors
are given in the following equations:

da av
—(aV) v ~V+a— (1.11)
d db
—(a b) = -f'- bta (1.12)
da db
—(axb) 5xb+ax5 (1.13)

where a, b, and V are vectors and « is a scalar. If V is expressed in its Cartesian
components, then V = Vi + V; j+ V3k, and its derivative is

dv  dV, dv, . dvi

— = —it+—j+—k 1.14

dr dr + dt J+ dr ( )
In a general case, the unit vectors e,, e, and e; may change their orientations in
space as time progresses; then V = V| e; + V;e; + V3es, and the derivative of V
can be written as

dv dV1 dV2 dV3 d de; de3
—_—=— — —_ 1% Vo= 4+ V3— 1.15
dr dte+dtez+dte3+'d+2dt+3d ( )

or

v o o
—d't— = Vie; + Ve, + Vaez + Viép + Vaéy + V3é;

where V, and é¢; are the time derivatives.

Gradient, Divergence, and Curl Operations

The gradient of a scalar ¢ is defined as

Gradient ¢ = V¢—t—£ +J —¢i+k—2 (1.16)
3y az

The divergence of a vector F

oF, 0dF, 0OF,
dx + ay + az

DivF=V.F= (1.17)

The curl of a vector F is defined as
i
]
Cul F=V xF = % 8_
F, Fy

(2F: 0F))
=1
oy 8 )

oF, oF, 3Fx>
— Kl — - 1.18
z dx ) + ( ax dy (1.18)
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While discussing the curl of a vector, it is interesting to examine the physical
meaning of the curl of the velocity vector of a rotating body, V. To do this, V is
expressed in terms of rotating velocity w and position vector 7, then

V=wxr
= i(wyz — w3y) + Jj(wsx — w12) + k(wy — w2x)

where w|, w,, and ws are the components of w, and x, y, and z are the components
of r. The computation of curl V gives

i j k
VxV= _3_ _a_ i
dx ay 9z
(w22 — w3y) (w3x —wiz) (wry — w2X)
= 2w + 2w, + k2w3 = 2w (1.19)

Therefore V x V is related with rotational velocity and is known as vorticity in
fluid mechanics.

1.3 Statics and Dynamics

Statics is the study of objects at rest or in equilibrium under the actions of
forces and/or torques. The equations of statics for different dimensions of space
are summarized as follows.

For a one-dimensional problem,

F=0 (1.20)
2

For a two-dimensional problem,

Y F =0, Y Fy =0, > M, =0 (1.21)

where Fy, F, are the components of force in the x and y axes, respectively, and
M, is the moment with respect to a reference axis o perpendicular to the x—y
plane.

For a three-dimensional problem,

Y Fe=0, ) Fy =0, Y F=0 (1.22)
Y My =0, Y M,=0 ) M.=0 (1.23)

where M,,, My, and M;, are the moments with respect to the x, y, and z axes,
respectively. Therefore, in general, there are six unknowns to be determined by
six equations for the three-dimensional problem.

Dynamics is the branch of science that studies the physical phenomena of a
body or bodies in motion. Dynamics usually includes kinematics and kinetics.
Kinematics concerns only the space—time relationship of a given motion of a
body, not the forces that cause the motion. Kinetics concerns finding the motion
that a given body or bodies will have under the action of given forces, or finding
what forces must be applied to produce a prescribed motion.
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1.4 Newton’s Laws of Motion

Dynamics is based on Newton’s laws of motion, which were written by Sir Isaac
Newton in the 17th century; however, before stating his laws we must introduce
the concept of a “frame of reference.” The position, velocity, and acceleration of a
particle in space must be described relative to other points within the space; that is,
there must exist a frame of reference in the space. Newton’s laws of motion apply
only when the frame of reference is either fixed in space or moving with constant
velocity. Such a frame of reference is called an inertial frame of reference. An
Earth-fixed reference frame usually is acceptable as an inertial reference frame
for solving many engineering problems even though the Earth is moving relative
to the sun with a speed of 29.8 km/s and a radius of curvature of 1.495 x 108 km.
Newton’s laws of motion are stated as follows:

First law (law of inertia): A particle remains at rest or at a constant velocity if
the resultant force acting on the particle is zero.

Second law (the basic equation of motion): The rate of change of a particle’s
linear momentum is proportional to the force applied to the particle and occurs in
the direction of the force.

Third law (law of action and reaction). For every force a particle exerts on
another particle, there exists a reaction force back on the first particle; these two
forces are equal in magnitude and opposite in direction.

There are advantages to stating the second law as just shown. For example, a
body with changing mass with respect to time can accelerate without any external
force applied. To substantiate this statement, the equation of motion is written as

dmV dv Vdm

il -0
@ T "a (1.24)

ma = —mV
This result shows that, if the body is a rocket, the thrust of a rocket is the product
of the mass flow rate and its velocity, and the direction of thrust is opposite to the

velocity. Because of the way the second law is stated, the equation of motion for
a particle with constant mass can be written as

F=(1/g:)ma

o w=(1/g:)mg (1.25)

In the preceding equation, if the unit of mass is pounds of mass and that of the
force is pounds of force,

Ibm - ft

Ibf - s2

However, for the International System of Units (SI) and British Gravitational
System (BG) units, g, is reduced to unity and can be omitted in Eq. (1.25).

g = 32.174

1.5 D’Alembert’s Principle

In statics, we are familiar with

Y F=0
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From this we can solve for the three unknowns in three-dimensional space. In
dynamics, the equation of motion for a particle with constant mass is written as

ZF:ma (1.26)

where Y F is the sum of the external forces acting on the particle, m is the particle
mass, and a is the acceleration of the particle relative to an inertial reference frame.
Now, we rewrite the equation as

> F-ma=0 (1.27)

and consider the term —ma to represent another force known as an inertia force,
then Eq. (1.27) simply states that the vector sum of all forces, external and inertial,
is zero. Thus, the dynamics problem has been reduced to a statics problem. This
conversion in concept is known as D’ Alembert’s principle. Similarly, for a body
in rotation, the equation of motion is

Z T=1Ia (1.28)

where Y T is the sum of external torques applying on the body, I is the mass
moment of inertia of the body with respect to the rotating axis, and « is the angular
acceleration of the body. Equation (1.28) also can be written as

Z T—Ta=0 (1.29)

Similar to Eq. (1.27), Eq. (1.29) states that the vector sum of all torques, external
and inertial, is zero. Furthermore, the combination of Egs. (1.27) and (1.29) can be
applied to solve problems for a body simultaneously undergoing translation and
rotation. In conclusion, this change of concept from dynamics to statics greatly
simplifies complicated dynamic problems in mechanics.

1.6 Virtual Work

Consider a system of N particles whose positions are specified by Cartesian
coordinates Xy, X2, . .., X3y. Suppose that there are 3N forces Fi, F2, ..., Fay
applied to the particles in the direction of each coordinate. The forces are in static
equilibrium. Now imagine that at a given instant the system is given arbitrary and
small displacements 8x1,8x,, ..., xay in the direction of each coordinate. The
work done by the applied forces is

3N
sw=Y_ Fisx, (1.30)
i=1t

Sw is known as virtual work and the small displacements dx; are called virtual
displacements. Equation (1.30) can be written in vector notation for the virtual
work as

N
sw=) F;br (1.31)
i=1

where F; is the force applied to particle i and dr; is the virtual displacement.
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Similar to particles in a solid, if particles in space are in static equilibrium,
they do not move relative to each other. Total force applied to particle / is the
combination of the applied force F; and the internal force

ZF ij (J#0)
due .o other particles. Therefore the equation for the total force is

(Fr)i=Fi +F)i =0 (1.32)

where
N
Fo)i =) Fy G #19)
j=1

and (F7); = 0 because of equilibrium.

Because the total force is zero, the work done by the total force must be zero,
that is, (Fr); - 8r; = 0. The virtual work of all the forces as a result of the virtual
displacement dr; is

N N N
Y (Fi+Fu) or; =) F;-ori+) F,-or,=0 (1.33)
i=1 i=! i=1

The second term of the preceding equation is further explored as follows:

N N
D (Fi-dri=) (Fy)-or;
i=1 ij

= Fyp-8rg +Fox - 8re + -
= Fpy - 8ry—Fyg - 8rg+ -+
= Fep Bry —8re) + -
= Fp - 8(re—r) + -

inwhichi = k, j = £ is considered in the first term and / = £, j = k in the second
term. The symbol §(ry — r¢) is the change of ry — r, in the solid and can occur
only in the direction perpendicular to ry — ry, but Fy, is along r, — r¢, hence the
dot product must be zero. Therefore,

N
Y (Fi8ri=0

i=t
N

i=1
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i.e., the virtual work of applied forces is zero. The concept of virtual work will be
used for the derivation of Lagrange’s equations.

Example 1.1

Using the method of virtual work, determine the relationship between the torque
T applied to the crank R and the force F applied to the slider in the mechanism
to be shown in Fig. 1.1.

Solution.  According to the conditions given in Fig. 1.1, the vector forms of
torque, force, and displacements can be written as

T = —kT, 80 = k86
F = —jF, 8x = idx

In static equilibrium, the total virtual work dw is zero, and its equation is
dw=-T60 - Féx=0 (1.35)
From the given geometry, we have

x = Rcos@ + Lcos¢
Rsin® =h =Lsing

Solving the two equations, we obtain

cos¢ = /1 —sin2¢ = /1 — (R/L)2sin20
x =Rcos® + L+/1 — (R/L)*sin%0

Differentiating the equation for x, we have

in6 cos 0
8x = —Rsin0860 — (R2/L)——nd € 56 (1.36)

J1 — (R/L)%sin20

Fig. 1.1 Crank-slider mechanism.
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Substituting Eq. (1.36) into Eq. (1.35) and simplifying, we find the required
relationship between the torque and the force acting on the slider as

(1.37)

T=FRsin9{1 R cos6 ]

_|_
Ly/1— (R/L)%sin20

Problems

L1. Determine a unit vector perpendicular to the plane passing through (a, 0,
0), (0, b, 0), and (0, 0, ¢).

1.2. The vectors a and b are defined as follows:
a=2i—4k, b=3i-2j+k

(a) Find the scalar projection of @ on b.
(b) Find the angle between the positive directions of the vectors.

1.3. Find the moment of the force F = i + 2j + 3k, acting at the point (1, 1, 2),
about the z axis in arbitrary units.

1.4. Provethat u x (V x v) = V(u-v) — u- Vv, if u is constant.

1.5. Determine a unit vector in the plane of the vectors i + k, and j + k, and
perpendicular to vector i + j + 2k.

1.6. Let r represent the position vector of a moving point mass M, subject to a
force F. If L denotes the moment of the momentum my about 0, prove that

dL d(>< ) xF=M
—_——= — V) = =
dt dtr " r

where M is the moment of the force F about 0.

1.7. Do the following:

(a) Find the unit vector normal to the plane Ax + By + Cz = D.

(b) Prove that the shortest distance from the point Py(xg, yo, Zo) to the plane
Ax + By + Cz = D is given by

_ |Axo+ Byo+ Czo — D|
/A2 + B2 + C2
where the point Py is located above the plane. HINT: Let P1(x;, y1, z1) be any

point on the plane and determine the distance by letting PoP; along the normal
from the plane.

d
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1.8. A light cable passes around a pulley mounted on smooth bearings as shown
in Fig. P1.8. The tension on both sides of the pulley is equal. Using the method
of virtual work, find the displacement of the cable with tension T in terms of the
vertical displacement of weight W. Assume that the pulleys and cable are light
and the distance between the upper and lower pulleys is so great that the cables
may be regarded as vertical.

1.9. A framework ABCD consists of four equal, light rods smoothly joined
together to form a square. It is suspended from a peg at A, and a weight W is
attached to C. Further, the framework is kept in shape by a light rod connecting
B and D. Determine the force exerted in this rod. HINT: The method of virtual
work may be applied if the rod B D is removed and external forces are supplied
to the joint B and D.

1.10. Consider a U-joint connecting two shafts that are not along a straight
line as shown in Fig. P1.10. AB is a shaft, branching into the fork BC D; A’B’
is another axis, with fork B'C’'D’. These forks are connected by a rigid body
composed of two bars C D, C'D’, joined perpendicularly at their common center
O.Thelines AB, A’B’ meet at O and are perpendicular to C D, C’' D', respectively.
There are smooth bearings at C D, C'D’ and the axes AB, A’B’ are free to tumn in
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Fig. P1.10

smooth bearings. With the use of the method of virtual work, determine the torque
transmitted through the joint. HINT: The velocity at the point D must be the same
as rotated from two rigid bodies ABC D and C DC'D’. Similarly, the velocity at
D’ must be the same from A’B’C’D’ and C DC’D’. Establish the virtual angular
displacements from two shafts by equating the rotational displacements of C D

and C'D’.



2
Kinematics and Dynamics of a Particle

particle is defined as a material point without dimensions but containing a

definite quantity of matter. Strictly speaking, a particle cannot exist, because
a definite amount of matter must occupy some space. When the size of a body is
extremely small compared with its range of motion, however, it may be considered
as a particle in certain cases. For example, although stars and planets are many
thousands of miles in diameter, they are so small compared with their range of
motion that they are often considered as particles in space.

This chapter covers material that should not be totally new to the reader. Cov-
erage in some areas, such as kinematics of a particle in cylindrical and spherical
coordinates, is more in depth than that given in an introductory course in dynamics.
The relationship between curvilinear and rectangular coordinates for unit vectors
is introduced in Section 2.1 so that velocities and accelerations in curvilinear coor-
dinates are obtained easily. Some relatively modern examples illustrating particle
dynamics are given in Section 2.2 although we expect the reader to have some
familiarity with particle dynamics from studying elementary dynamics. Examples
concerning missiles and space vehicles given here will be revisited in examples
describing midair collisions of missiles in the next chapter. The change of angular
momentum caused by applied moment is discussed in Section 2.3. Example 2.3
shows that the side force existing between a sliding block and rotating rod can
be very significant. Work and conservative force are reviewed in Sections 2.4 and
2.5. They are useful for understanding the concept of potential energy used in
Lagrangian equations.

2.1 Kinematics of a Particle

The location of a particle in three-dimensional space always can be specified
by a position vector r. Its velocity v is defined as

dr
=— 2.1
T @D
Similarly the acceleration of the particle is defined as
dv
= — 2.2
4= (2.2

Now, let us develop expressions for velocity and acceleration of a particle in
different coordinate systems.

Cartesian Coordinates

The position vector of a particle is
r=xi+ yj+zk (2.3)

13
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Note that 7, j, and k are constant vectors. The velocity v is therefore

dr  dy d
v=is 42 4k

i+ K
de dz dt gyt
and the acceleration is
dx dry  dz
a=lm +]d—tz‘+km =lX+_]y+kZ

Cylindrical Coordinates

The position vector of a particle in cylindrical coordinates is

r=pe,+zk

where p is the projected length of r in the x—y plane, as shown in Fig. 2.1.

(2.4)

(2.5)

(2.6)

The unit vector is ¢, along p in the x—y plane and can be expressed in terms of

unit vectors f and j as

€, = Cos ¢i + sin ¢j

@2.7)

A unit vector that is perpendicular to e, but lies in the x—y plane is denoted by e,

as shown. It also can be expressed in terms of i, j as
es = — sin i + cos ¢j
The velocity of a particle in cylindrical coordinates is
v = pe,+ pé, + zk
= plcos @i + sin ¢j] + pd[— sin Pi + cos pj] + zk
= pe, + pdey + ik

Fig. 2.1 Cylindrical coordinates.

(2.8)

(2.9)
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e
z * ey

o

[
]

9

Fig. 2.2 Spherical coordinates.

Its acceleration in cylindrical coordinates is then

a

I

5; = (b — pdVe, + (0 + 20¢)es + 7k (2.10)
Spherical Coordinates

The unit vectors in spherical coordinates are denoted by e, €, and eg. The e,
is in the direction of position vector r; hence

r=re, (2.11)

The ey is in the plane containing r and the z axis, but is perpendicular to e, as
shown in Fig. 2.2. The e, is perpendicular to both e, and e,. Therefore, they also
can be expressed in terms of unit constant vectors i, j, and k as

e, = sinf cos ¢i + sin O sin¢j + cos 6k (2.12)
ey = cos 0 cos @i + cos 6 sin ¢f — sin Ok (2.13)
e, = —sin¢i+ cos @j (2.14)

During the differentiating of r with respect to time, Eqs. (2.12-2.14) are used.
With some details omitted, the velocity of a particle in spherical coordinates is
found to be

y=re +ré,
= re, + r(fep + ¢ sin Bey)
= re, +rbeg + r¢5 sinfey (2.15)

Similarly, the acceleration of a particle can be obtained through the differentiation
of v with respect to time and can be expressed as

a=e(F —ro?—r¢? sin? @)
+e5(2F6 +r6 —r¢* sinf cos )
+e4(2F ¢ sinb + 2r6¢ cosf + r sin6 $) (2.16)
Note that with the use of Egs. (2.12-2.14), Eq. (2.16) can be reduced to Eq. (2.5).
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2.2 Particle Kinetics

In general, a force F acting on a point mass m is a function of position, velocity,
and time. The equation of motion for the particle with constant mass can be written
simply as

mit = F(r, i, 1) @.17)

Many cases are studied in introductory dynamics. Let us study a few special
cases in the following examples.

Example 2.1

Consider a missile moving in space as a particle with a mass decreasing con-
stantly. The thrust applied is constant in magnitude and always in the direction of
the particle’s velocity. The coordinates are chosen such that the x—z plane contains
the trajectory with the z axis perpendicular to the ground. Find the trajectories of
the missile for thrust F = 14,500, 15,000, and 15,500 N, respectively. The initial
conditions of the missile are mg = 1000 kg and vy = 150 m/s at an angle of 80 deg
with the x axis. The mass decreasing rate of m = 3 kg/s.

Solution. The equation of motion for the missile is

dv v
~—~=F— —~mgk 2.18
me ® mg (2.18)
or
dv, Vy
— =F 2.19)
TN
dv, v,
m =F—-—m (2.20
T T g )
m=mqy—mt 2.21)

Equations (2.19) and (2.20) are nonlinear and cannot be solved analytically. How-
ever, they can be integrated numerically by the Runge-Kutta method given in the
Appendix A. The trajectory then can be obtained as

dx
_d—t = Vyx (222)
dz
5= (2.23)

integrated together with Eqs. (2.19) and (2.21). Three trajectories are obtained for
the three different values of thrust. The results are given in Fig. 2.3. In the numerical
integration the increment of time used is 0.01 s and the total duration is more than
160 s. A convergence check is performed before the results are calculated.

Example 2.2

Suppose that a space vehicle is moving from outer orbit into the atmosphere.
The aerodynamic drag acting on the vehicle is proportional to the velocity squared.
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MISSILE TRAJECTORIES
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Fig. 2.3 Trajectories of the missile.

The coordinates are chosen such that the x—y plane contains the trajectory and the
y axis is along —g as shown in Fig. 2.4. Determine the trajectories of the space
vehicle as it descends with initial velocities of 7000, 8000 and 9000 m/s. The
initial location of the vehicle is xo = 0, yo = 20 km. And its initial trajectory is
always parallel to the ground.

Solution. According to the given conditions, the equations of motion can be
written as

d
md—‘t’ =mgsina — H(v) (2.24)

and

vV2/R = g cosa (2.25)

where R is the radius of curvature of the trajectory and H (v) is the aerodynamic
drag of the vehicle:

H@) = mkv? (2.26)

where k, which should be a function of altitude, is considered as a constant for
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this example. Equations (2.24) and (2.26) lead us to

dv
— =gsina — kv?
dt g sin

The value of £ is estimated to be 1.5 x 10‘6(m”'). However,

ds v2  (ds/dr)? dsdads _dsda

V= — =——

dr’ R (ds/da) drdsdr drdr

(2.27)

da

U_
dr

where ds is the infinitesimal displacement along the trajectory and « is the angle
between the velocity and the horizontal line as shown in Fig. 2.4. Substituting the

preceding equation into Eq. (2.25), we obtain

do
V— = gcos«
dr £

or

da  gcoso

dr v
Note that we also have
dx
— =V, =TvCcoSK
dr
d
2 = vy, = —vsina
dt

(2.28)

(2.29)

(2.30)

Equations (2.27-2.30) can be integrated by the Runge—Kutta method given in
Appendix A to find x(¢), y(¢), which is the trajectory of the vehicle with time ¢ as
the parameter. The result of numerical integration is given in Fig. 2.5.

Fig. 24 Coordinates of the space vehicle.
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TRAIJECTORIES OF SPACE VEHICLE
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Fig. 2.5 Trajectory of the space vehicle.

2.3 Anguiar Momentum (Moment of Momentum) of a Particle

Another aspect of the particle dynamics is the change of angular momentum
with respect to a certain axis when an external moment is applied. The angular
momentum or moment of momentum of a particle is defined as

H=rxmv (2.31)

where r is the position vector from the axis to the particle. The relationship between
angular and linear momentum is shown in Fig. 2.6. The moment produced by the
force applied to the particle is

M=rxF
where F = m(dv/dt). Differentiating Eq. (2.31) leads to

H d d
d_=——£xmv+rxm—v.—._rXF=M
dt ds d¢

The term (dr/dt) x mv is dropped because (dr/d¢) = v and v x v = 0. Hence

_dH

- = 2.32)
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Fig. 2.6 Relationship between angular and linear momentums.

Example 2.3

To illustrate the meaning of Eq. (2.32), let us consider a block as a particle
sliding on a straight rod without friction at a uniform velocity of 30 ft/s, as shown
in Fig. 2.7. The rod is in the x—y plane, which is perpendicular to the gravitational
force. The angular velocity of the rod is 50 rad/s. The position of the block is 6 in.
away from the rotating axis. Determine the force between the block and the rod if
the mass of the block is 1/30 slug.

Solution. Rewrite Eq. (2.31) as
H=rxmy

For this example, it is convenient to use cylindrical coordinates. The position
vector of the particle at time ¢ is r = re,. Its velocity is

v=re,+rwey
Hence
H=re, xm(re,+rwey) = mriwk
M=rxF=rFk= ad—tH=2mrr'wk
F =2mrw = 2(1/30)(30)(50) = 100 (1bf)

Therefore, the force between the block and the rod is 100 1bf.

(= ep

X
Fig. 2.7 Block sliding on a rotating rod.
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2.4 Work and Kinetic Energy

Work usually is defined as a force F acting through a displacement x with the
displacement occurring in the direction of the force. That is,

2
W=/F~dx
1

Using vector notation, the equivalent expression is

2
W=/ F -dr
1

In general, if F and dr are not in the same direction, only the component of dr
along F will contribute to the work. If the force is applied to a particle with a
constant mass, then

F = ma = mv

and the work done by the force is

2 ) 2 dv
W=/mv-dr=/m—-dr
1 1 dr
2 2
d
=/mdv-—r=/mv-dv
! dt 1

=im(v; -v})=T T, (2.33)

where T is the kinetic energy of the particle. Equation (2.33) says that the change
in kinetic energy of a particle moving from one point to another is equal to the
work done by the force acting on the particle.

2.5 Conservative Forces

Suppose that a particle m moves from A to B as shown in Fig. 2.8 and a force
F is applied to the particle during the process. Then the work is

B
W=/ F .dr
A
Y m
F
by
A\ B
N s
L ,
~So ’,/
X

Fig. 2.8 Moving paths of a particle.
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which is the line integral from A to B and may be represented by the solid line

AB in Fig. 2.8.
A B
/ F~dr=—/ F -dr
B A

On the other hand, if
where the line integral from B to A may be represented by the dotted line BA in

the figure, then
.(fF -dr=0

This means that the line integral of F - dr over a closed path is zero. According to
Stoke’s theorem given in Appendix B,

fFurszvXFns (2.34)

where s is the area bounded by the closed path in the line integral. If the closed
path is arbitrarily chosen, then

VxF=0

is true everywhere. According to vector analysis, the force F must be a gradient
of a scalar function, i.e.,

F=V¢

where ¢ is a scalar function to be identified. Force with this property is called a
conservative force. Work done by such a force is

B B
w=/ F~dr=/ V¢ -dr
A A

B B
_ / (ﬁ?idx + 944 ﬁ?idz) =/ dp=ds—¢s (239
A \0x dy dz A

Combining the preceding equation with Eq. (2.33) gives

¢p —pa=Ts —Ta
or

Ta—¢a=Tp— o5 (2.36)
To identify ¢, let us recall the principle of conservation of mechanical energy,

which states that the sum of kinetic and potential energies is constant for a con-
servative system. Put in equational form,

Ty4+Va=Ts+ Vs (2.37)
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where V is the potential energy of the particle. Comparing Eqs. (2.36) and (2.37),
we find

=V
Therefore F = —VV. A conservative force is equal to a gradient of potential
energy with a change of sign.

Problems

2.1. Prove that the velocity expressed in cylindrical coordinates

v = pe, + p¢e¢ + zk

can be converted to the expression of velocity in Cartesian coordinates.

2.2. Prove that the expression of acceleration in spherical coordinates, Eq. (2.16),
can be converted to

a=ii +jj+ ki
2.3. The position vector of a moving particle is
r = ia cos wt + jb sin wt

where a, b, and w are constants.

(a) Find the velocity v = dr/dt and prove that r x v is constant

(b) Show that the acceleration is directed toward the origin and is proportional
to the distance from the origin.

2.4. At acertain instant, a particle of mass m moving freely in a vertical plane
under a constant gravity is at a height 4 above the ground and has a speed v. Use
the principle of energy to find its speed when it strikes the ground.

2.5. Two masses, m; and m;, are connected by a massless, inextensible rope that
passes over a pulley, as shown in Fig. P2.5. Neglecting the mass and the bearing
friction of the pulley, find the acceleration of m, as the system moves under the
action of gravity.

2.6. A constant force is applied to a point mass so that the mass is accelerating.
Two frames of reference are chosen for consideration. One is a fixed reference
frame; the x axis is oriented along the acceleration. The other is moving with
a constant velocity along the negative x direction of the fixed reference frame.
However, they coincide at the beginning of observation.

(a) Find the velocity and position of the particle as a function of time in both
reference frames.

(b) Find the work done by the force during a time interval ¢ in both frames.

{(c) Are the results of (b) different in the two frames? If so, are the laws of
mechanics different in the two inertial frames of reference? Explain your answer.
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%%
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Fig. P2.5

2.7. Suppose that amissile is launched with the initial conditions: constant thrust,
constant mass flow rate at the nozzle exit, and a proper launch angle. What will
be the force exerting on the missile after the propellant is burned. Formulate the
equations for describing the trajectory of the missile.

2.8. Find the best launch angle for a missile to reach the maximum horizontal
distance through numerical integration. The fourth-order Runge—Kutta method is
to be used for integration. The initial conditions are F = 15,000 N, M, = 1000kg,
Vo = 150 m/s, and m = 3 kg/s. At the time of burnout, the mass of missile is
M = 300 kg. Plot the trajectory of the missile at the best launch angle.

2.9. Do the following:
(a) Using Green’s theorem, prove that

1
—f(xdy —ydx)=A
2 ).

where A is the area enclosed by the curve c.
(b) Find the area bounded by the ellipse

2.10. Show that
()

1
= yg(xydy — y2dx) = Ay
3L
()
1 2 3
1P Gy dy —y'dx) =Ix

where A is the area bounded by C, (%, ) is its centroid, and i, its moment of
inertia about x axis.
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2.11. Ife,, ey, and e, are the unit vectors in spherical coordinates, show that the
unit vectors in Cartesian coordinates can be written as

i = (e;sinf + egcosf)cos ¢ — ey sin¢p
J=(ersinf 4 egcosf) sing + €4 cos ¢

k=ecos0 —eysin0

2.12. A particle of mass moves in a plane under the action of a force with
components

Fo=—-K*Q2x+y), Fy,=—-KXx+2y)

where K is a constant. Consider that the force is conservative. What is the potential
energy?



3
Dynamics of a System of Particles

N this chapter we shall study the motion of a system of n particles subjected

to external and internal forces. These internal forces, which arise from the
interaction between the particles, obey Newton’s third law of motion. Therefore,
when all of the particles are considered as a unit, the internal forces add up to
zero. Next, we shall discuss the angular momentum of a system of n particles.
This subject plays an important role in studying the rotational motion of a solid
body later in this book.

The collision of missiles in midair is analyzed in Section 3.2. The example
illustrates that as two missile sites are a few hundred kilometers apart, the spherical
surface of the Earth must be considered in the determination of the launching angle.
Otherwise the second missile will not collide with the first missile if the launching
angle is set according to the flat ground formulation. The gravitational force studied
in the missile-to-missile collision is approximated to be always parallel to the z
axis. The gravitational force, however, is easily modeled toward the center of Earth
with a major component in the k direction and a small component in i direction
where i and k are along the Cartesian coordinates chosen at the missile site. To
simplify calculation, each missile is modeled as a particle so that the effects of air
drag and the thrust of side jets on the missile can be neglected. The thrust is treated
as a constant in the section. Precise treatment of the gravitation force in this case is
unnecessary. The computer program used to solve this example, however, is easily
modified to handle forces in precise forms. In the study of missile collision, two
missiles must be addressed in the same coordinate system. Based on the knowledge
of vector algebra, the conversion of coordinates is formulated and discussed in
Section 3.1.

In the presence of two particles, there exist gravitational force and potential
between them. We shall discuss these concepts in Section 3.4, It is interesting
to mention that the gravitational force outside a solid sphere, such as Earth, is
equivalent to that of a point mass with the same mass occurring at the center of
the solid sphere; on the other hand the gravitational force is zero for a point mass
located at the center of the solid sphere.

The collisions of solid spheres are discussed in Section 3.5. Both elastic and
inelastic collisions are considered. Special emphasis is placed on automobile
collision, which is closely related to our daily life.

3.1 Conversion of Coordinates

Before studying the collision of two missiles in the next section, we need to
discuss the conversion of coordinates. Because two missile sites are a few hundred
kilometers apart, each missile may be described by its own coordinate system
first; then they must be converted into one set of coordinates. The procedure of
establishing the relationship between the two sets of coordinates is referred to as
the conversion of coordinates.

27
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Fig.3.1a x''y"’z" rotated with respect toj// by ¢.

Consider that the coordinate system XY Z is to exist permanently and the
coordinate system xyz is to be converted. Starting from a general case, a system
x"y"z" is parallel to XY Z, i.e., i"// i, j'// j, k" // k. First, x"y"z" is rotated with
respect to the j/ axis by an angle of ¢ as shown in Fig. 3.1a. Then, the new
coordinates x'y’z’ are rotated with respect to the &’ axis by an angle of 6. After
this rotation, the final coordinates are denoted by xyz as shown in Fig. 3.1b.

The relationship between XY Z and xyz is shown in Fig. 3.2. The position
vector R locates the origin of xyz in XY Z. The position of a point P in xyz is
denoted by the position vector p as

p=1iX +j,y + ky2
In terms of XY Z, the position vector of point P is r and we have

r=R+p B.D

Writing in terms of their components, Eq. (3.1) becomes

Xi+Yj+ Zk = Xoi + Yoj + Zok + xi, + yj, + zk, (3.2)

Fig. 3.1b x'y’z’ rotated with respect to k' by 6.
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Fig. 3.2 Relationship between XYZ and xyz systems.

Note that in the preceding equation,
i, = cos i + sin6j
= cos 6 (cos ¢pi — sin ¢k) + sin 5
= cos 8 cos ¢i + sinfj — cos 0 sin Pk
J, = cosfj —sin6i’
= —sinf cos ¢i + cos Oj + sin 6 singk
k, = sin ¢i + cos gk

In simplifying the preceding equations, we have used the relations i’ =1, j’ =
LK =k

To obtain the X, Y, Z components of r, we take the scalar product of the unit
vector with Eq. (3.2) as the following:

The scalar product of i with Eq. (3.2) gives

X = Xo + x cos(i,, i) + ycos( j,, i) + zcos(k,, i)
= Xo+ xcosBcosd — ysinfcose + zsing 3.3)
The scalar product of j with Eq. (3.2) gives

Y =Yoo+ xcos(i,, j) + ycos(j,, ) +zcosk,, j)
=Yy + xsinf + ycosf 3.4

Finally the scalar product of k with Eq. (3.2) gives

Z = Zy+ xcos(iy, k) + ycos(j,, k) + zcos(k,, k)
=Zog—xcosfsin¢g + ysin0sin¢ + z cos ¢ 3.5
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0

Fig. 3.3 Transfer of coordinates on spherical surface.

In a special case, if there is no rotation with respect to the y axis, i.e., ¢ =0,
Eqgs. (3.3-3.5) reduce to

X =Xo+ xcosf — ysinf (3.6)
Y =Yy+ xsinf 4 ycosé 3.7
Z=2Zy+z (3.8)

On the other hand, when two coordinate systems are apart by an order of a few
hundred kilometers on the surface of the Earth, the effect of the spherical surface
must be taken into consideration. Consider that the coordinate systems are on the
spherical surface of the Earth as shown in Fig. 3.3. The XY Z system is so chosen
that the plane containing x and z axes is the same plane containing Ro, Ry, and R.
The unit vector k is along the vector Ry that is pointing from the center of Earth
radially to the origin of XY Z. R, is the position vector of the origin of xyz. Hence

Ry = kR,
R; = (isin¢ + kcos )R,

R =R, -R
= iR, sin¢ — k(Ry — R, cos ¢)
=iRgsing — kRy(1 — cos ¢) (3.9)

In the preceding equation, it is assumed that the Earth is a perfect sphere, so R,
and Ry are equal. Applying Eqgs. (3.3-3.5) with R given in Eq. (3.9), we have the
scalar components of r as

X = Rysin¢g + xcosfcos¢ — ysinf cos¢ + zsing 3.10)
Y =xsinf 4 ycosf (3.11)
Z = —Ro(1 —cos¢) — xcosfsing + ysinfsing +zcos¢  (3.12)

where Ry is the average radius of Earth and its value is 6371.23 km.
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3.2 Collision of Particles in Midair

Study of the collision of two missiles in midair is based on the motions of
individual missiles. To simplify the problem let us model them as particles as in
the example given in Section 2.2. Although it is known that the second missile is
equipped with side jets for adjusting its course, these side thrusts are omitted here.
The forces applied on each missile could be very complicated because of variable
thrust and air drag. In addition, the mass of a missile is decreasing continuously.
However, the model can be simplified greatly by considering that the force applied
is constant and the mass ejected from the propulsion system is also at a constant
rate. This is an approximate model. Let us study the collision of two missiles with
the following example.

Example 3.1

Suppose that a missile is launched from the enemy side, which is designated
as the first missile. Through the detection by a satellite, the trajectory can be
simulated as given in Example 2.2 with the net thrust of F = 14,500 N. The
coordinates are transferred. Because of the action taken for the determination of
the trajectory of the first missile, the time for launching the second missile is
delayed by 60 s. To simplify the calculation, the trajectories of the two missiles
are assumed to be contained in the same plane, but the launching sites are 200 km
apart. The data for the second missile are given as follows: initial mass mo = 1000
kg, thrust F = 16,000 N, initial velocity = 300 m/s, and the mass decreasing rate
= 3 kg/s. The problem is to determine the launching angle of the second missile
so that the two missiles are to collide high above the ground. The conversion
of coordinates is treated in two different ways: 1) flat ground and 2) spherical
ground.

Solution. 1) Consider that the two launching sites are on flat ground. Each
missile is governed by the following equations:

dVy Ve
—= =F =l (i=12) (3.13)

m
d ViV

V, .
m,»d = =F—VZ'——m,»g (i=12) (3.14)

@ ViV

m; = mijg —m;t i=1,2) (3.15)

Equations (3.13) and (3.14) are nonlinear and are solved by numerical integration
with

L=V, ==V (3.16)
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The conditions used for the first missile are

(m)o = 1000 kg
my =3 kg/s
(V1)o = 150 m/s
o) = 80 deg
Fi =14,500 N

where « is the launching angle measured from x axis. The coordinates are trans-
ferred simply by

X1=X0—x1 (317)
Zi =1 (3.18)

The conditions used for the second missile are

(m2)0 = 1000 kg

I’h2 =3 kg/S
(V2)0 =300 m/s
F, =16,000 N

The launching angle of the second missile is determined with a trial and error
method performed on computer. In the calculation, the first number used is 1.00
rad with the increment of +0.01. To detect whether the collision is going to take
place or not, the distance between the missiles is calculated. The unsuccessful
simulation terminates as the distance between them increases. When the collision
is nearly occurring, finer increments for the launching angle and the time step are
used.

For the present study, the increments for the final step are Ao = 2.0E—7 and
At =5.0E-5 s. The collision condition is reached when the distance between
the two missiles is less than 8 cm. The launching angle for the second missile is
found to be 0.982 145 4 rad. The collision is taking place at 144.8327 s after the
launching of the first missile and is 84.8327 s after the launching of the second
missile. The coordinates at the collision are X = 66.82 km, Z = 16.26 km. The
missile shooting missile trajectories are shown in Fig. 3.4.

2) For a spherical surface, the equations governing the motions of missiles
are the same as those used in part 1. Because the trajectories of the missiles are
assumed to be in the same plane, the coordinates of the first missiles are transferred
using Egs. (3.10) and (3.12) with y = 0. These equations are as follows:

X = Rgsin¢ + xcosOcos¢ 4 zsin¢ (3.19)
Z = —Ro(1 —cos¢) — xcos@sing + zcos¢ (3.20)
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Fig. 3.4 Missile-to-missile trajectories on flat ground.

For the present case Ry = 6371.23km,# = 7r,and ¢ = 0.031391112. Substituting
these values into Egs. (3.19) and (3.20), we have

X = 199,967.155 — 0.99950734x + 0.03138596z (m)
Z = —3138.8535 4 0.03138596x + 0.99950734z (m)

Note that the initial coordinates of the first missile are

Xo = 199,967.1550 (m)
Zy = —3138.8535 (m)

The calculation procedure is the same as that used in part 1. The launching angle
for the second missile is determined to be 0.9929676 rad, and the collision occurs
145.1400 s after the launching of the first missile and 85.1400 s after launching
of the second missile. It is important to point out that the missiles will not collide
if o is set as 0.9821454 rad, because the Earth’s surface is actually spherical.
The coordinates at the collision are X = 66.64 km and Z = 17.18 km. The missile
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Fig. 3.5 Missile-to-missile trajectories on sphere.

trajectories are shown in Fig. 3.5. For completeness, the computer program written
in Fortran is included in this section.

C
C

PROGRAM MISSILE TO MISSILE FOR EXAMPLE 3-1 ON SPHERICAL

SURFACE

REAL T(18001),X1(18001),X2(18001),Z1(18001),Z2(18001),M1,M2
OPEN (2,FILE="MSLTMSLS.FIL")

X1(1)=0.0
Z1(1)=0.0
X=XI1(1)
Z=27I1(1)

VX10 =26.0472
VZ10 = 147.7212
M1 = 1000.0
G=9.81

DM =3.0

VX1 =VX10
VZ1 =VZI10
DO 100 N = 1,18000
VXN = VXl
VZN =VZ1
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X2(N)= 0.0
Z2(N)=0.0
AH =0.01
AM = M1-AH*3.0*FLOAT(N-1)
F1 = 14500.
F=Fl
IF (N .LT. 14513) GO TO 90
AH = 0.00005
AM = 564.64-AH*3.0* FLOAT(N-14512)

90 CALLRK (X,Z,VXN,VZN,AH,AM,DM,EG)

XI(N+1)=X
ZIN+)=7Z
VX1=VXN
VZ1 = VZN

100 CONTINUE
X10 = 199967.155
Z10 = -3138.8535
ALP = 0.9929676
M2 = 1000.
V2 =300.0
F2 = 16000.
F=F2
WRITE (2,8) M1,F1,AHM2,F2
WRITE (2,9) X10,Z10,VX10,VZ10
NN =1

120 VX2 = V2*COS(ALP)
VZ2 = V2*SIN(ALP)
VXN = VX2
VZN = VZ2
WRITE (2,10) X2(1),Z2(1),VXN,VZN
AH =0.01
ALPOLD = ALP
X = X2(1)
Z=72(1)
DO 200 N = 6001,18000
AM = M2-AH* 3.0* FLOAT(N-6001)
IF (N .LT. 14513) GO TO 150
AH = 0.00005
AM = 564.64-AH*3.0* FLOAT(N-14512)

150 CONTINUE
BX0=X
BZ0=Z
CALL RK (X,Z,VXN,VZN,AH,AM,DM,F.G)
X2(N+1)=X
Z2N+1)=7Z
VX2 =VXN
VZ2=VZN
AXO0 = X10-X1(N)*0.99950734+Z1(N)*0.03138596
AZ0 = Z10+Z1(N)*0.99950734+X 1(N)*0.03138596
AX1 = X10-X 1(N+1)*0.99950734+Z1(N+1)*0.03138596
AZ1 = Z10+Z1(N+1)*0.99950734+ X 1(N+1)*0.03138596
BX1 = X2(N+1)
BZ1 = Z2(N+1)
DO = SQRT((BX0-AX0)**2+(BZ0-AZ0)**2)
DI = SQRT((BX1-AX1)**2+(BZ1-AZ1)**2)
IF (D1 .GT. D0) GO TO 190
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IF (D1 .LT. 0.080) GO TO 220
GO TO 200

190 WRITE (2,22) N,.D1,D0

GO TO 210

200 CONTINUE

210

ALP = ALPOLD-0.00000004
NN = NN+1

IF (NN .GT. 10) GO TO 240
GO TO 120

220 WRITE (2,21) ALP

WRITE (2,11)

DO 2361=1N

AH=0.01

IF (I..LT. 14513) GO TO 230

AH = 0.00005

T(1) = 145.12+AH*FLOAT(I-14512)
GO TO 234

230 T(I) = AH*FLOAT(I-1)
234 XX = (X10-X1(Iy*0.99950734+Z1(1)*0.03138596)/1000.

Z1(I) = (Z10+Z1(1)*0.99950734+X1(1)*0.03138596)/1000.
X1 =XX

X2(I) = X2(I)/1000.

Z2(1) = Z2(1)/1000.

236 CONTINUE

DO 238 1=1,N,100
WRITE (2,20) T(I),X1(I),Z1(1),X2(I),Z2(I),D1

238 CONTINUE

WRITE (2,20) T(N),X1(N),Z1(N),X2(N),Z2(N),D1
GO TO 250

240 WRITE (2,25)

8

FORMAT (°M1 ="F5.0,"kg Fl1="F6.0’N AH="JF8.6,S
*M2="F5.0," kg F2="F6.0,N’)

9 FORMAT ( Xlo="F7.0"m Zlo="F82' m VXlo=

*°F8.2,m/s VZlo="F82 m/s’)

10 FORMAT (X20="F7.0, m Z20="F82 ' m VX2o=
* F8.2’m/s VZ20="F8.2 m/s’)
11 FORMAT (3X, T(s) ",6X, X1(km)’,7X, Z1(km)’,7X,’
* X2(km)y,7X, Z2 (km)’,7X,’ D1(m)")
20 FORMAT (1X,F9.5,5(2X E12.4))
21 FORMAT ('MISSILES COLLIDED WITH ALPHA = ’,F10.8)
22 FORMAT ('MISSILES ARE NOT COLLIDING N="Jl6 DI
*="F8.4’m D0O="F84 m")
25 FORMAT ('MAXIMUM ITERATIONS EXCEEDED’)
250 STOP

END
SUBROUTINE RK (X,Z,VXN,VZN,AH,AM,DM,EG)

AK1 = AH*(F/AM)*VXN/SQRT(VXN**24+VZN**2)

BK1 = AH* ((F/AM)Y* VZN/SQRT(VXN**2+VZN**2)-G)

XK1 = AH*VXN

ZK1=AH*VZN

AM = AM-DM*AH/2.

AK2 = AH*(F/AM)* (VXN+AK1/2.)/SQRT((VXN+AK1/2.y**2+
C (VZN+BK1/2.)**2)

BK2 = AH*((F/AM)*(VZN+BK1/2.)/SQRT((VXN+AK1/2.y** 2+
C (VZN+BK1/2.)**2)-G)
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XK2 = AH*(VXN+AK1/2.)

ZK2 = AH*(VZN+BK1/2.)

AK3 = AH*(F/AM)* (VXN+AK2/2.)/SQRT((VXN+AK2/2.)**2+
C (VZN+BK2/2.)**2)

BK3 = AH* ((F/AM)* (VZN+BK2/2.)/SQRT((VXN+AK2/2.)** 2+
C (VZN+BK2/2.)**2)-G)

XK3 = AH*(VXN+AK2/2.)

ZK3 = AH*(VZN+BK2/2.)

AM = AM-DM*AH/2.

AK4 = AH* (F/AM)* (VXN+AK3)/SQRT((VXN+AK3)**2+
C (VZN+BK3)**2)

BK4 = AH*((F/AM)* (VZN+BK3)/SQRT((VXN+AK3)** 2+
C (VZN+BK3)**2)-G)

XK4 = AH*(VXN+AK3)

ZK4 = AH*(VZN+BK3)

VXNI = VXN+(AK 142.* AK2+2.* AK3+AK4)/6.

VZN1 = VZN+(BK1+2.* BK2+2.*BK3+BK4)/6.

XX = X+(XK142.* XK2+2.*XK3+XK4)/6.

ZZ = Z+(ZK142.*ZK2+2.*ZK3+ZK 4)/6.

VXN = VXN1

VZN = VZN1

X=XX

Z=7Z

RETURN

END

3.3 General Motion of a System of Particles

Consider a system of # particles. For each particle there are two kinds of forces
acting on it. One is the resultant of the external forces, and the other is the internal
forces between particles. The mass of each particle is fixed. For the ith particle,
the equation of motion is

d?r; L

j=

i#]
where f;; is the internal force exerted on the particle i by the particle j. F; is
the resultant force acting on particle i from the forces external to the system of

particles. Because there are n particles in the system, the equation of motion for
the system is

n 2
Smigh =L F D g

i=1 i.j=I
J#

According to Newton’s third law, the internal forces exerted by two particles i and
J on each other are equal in magnitude and opposite in direction, that is fi=—fi-
Therefore, the sum of the internal forces is zero and we obtain

a2 &
F = = — mir; (3.22)
Z dt2 de? ;
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where F is the vector sum of all the external forces acting on all the particles. To
simplify this equation, let us recall the method for locating the center of mass for
the system:

n n
re E m; = E mir;
i=1 i=l1

Z?:l miri 1 Z (3 23)
I = —— = — m;ri .
¢ Z;’:] m; M i o

where r, is the position vector of the center of mass. With the use of Eq. (3.23),
Eq. (3.22) becomes

d? d?r,
F = FMrC =M a2 (3.24)

Therefore, we can conclude that the motion of a system of particles is equivalent

to that of a single particle with mass M located at the mass center of the system.
Now let us consider the angular momentum or the moment of momentum of a

system of n particles. Taking the cross product of r; with Eq. (3.21) leads to

dzl‘,' d
r,-xmim =rxF;+rXx Zf'!
j=1

I#i
Looking into details in the preceding equation, we find

2",’ . d .
X mi— =r; X a;(miri) = 5(’:‘ X m;r;)

de?
d i
= —(rxP)= bl
dr dr
. dH;
g=Y -2
2

n
Zr,- xfi;=0 because f; = —fj;
ij
Therefore, we obtain
H=)rnxFi=M (3.25)
i

Thus, the time rate of change of angle momentum is equal to the total moment of
external forces acting on the particles with respect to a fixed point. This equation
is the same as Eq. (2.32) for a single particle.
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Fig. 3.6 Particles with the center of mass at ('.

We may express Eq. (3.25) from a different perspective by considering that the
center of mass is located at the origin 0’ of another coordinate system x’y’z’. Then,
as shown in Fig. 3.6, we have

ri=r+r
where r is the position vector of the center of mass for the system of n particles,
r; is the position vector of ith particle in x'y’z’. Taking the time derivative of the
position vector equation, we obtain

Fi=r+F

The angular momentum of the n particles about O is
H= Zr,xP Zr,xm,r, Z(r+r)xm,(r+/)
—Zm,rxr—}—erm,r +Zr xm,r+Zr xm,
=eri+§:ﬁxm% (3.26)

Simplifying Eq. (3.26) is based on the fact that, because 0’ is the center of mass,
the following expressions are true:

Zmi'/,'=0,
ermii/i=rx(%2m,-r/i=0
i i
erxm,-i:Z/im,' xr=0
i i

Equation (3.26) states that the angular momentum of the system with respect to
point 0 equals the sum of the angular momentum of total mass M at point 0’ with
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respect to 0 and the angular momentum of the system with respect to the center
of mass. Furthermore, from the right hand of Eq. (3.25), we have

M=Zr,-xF,-=Z(r+;§)xF,-

=er+Zr;xF,-=er+M’ (3.27)
i

M = Z'/' X miF; = Zr,' x m;(F+ F)

H

=%|:IZ/,-xm,<i{|+<'Zm;/i)x'f=H' (3.28)

Differentiating Eq. (3.26) with respect to time and using Egs. (3.27) and (3.28),
we obtain

d d . d .
aH: E(TXMT)+EI:IZI/I Xm,‘lji}

=rxMi+H =rxF+M =M (3.29)

From Eq. (3.29), we see that the total moment acting on the system with respect
to point O equals the sum of the moment produced by the total external force with
respect to point 0 and the moment of the system with respect to point 0.

3.4 Gravitational Force and Potential Energy

When a point mass is in the vicinity of a large mass, such as Earth, it experi-
ences a gravitational force directed toward the mass center of the large mass and
possesses a potential energy with respect to the large mass. If there are two point
masses placed side by side, an attractive force will exist between them. According
to Newton’s law of universal gravitation, the magnitude of this attractive force can
be expressed as

myny

F=G—

r

where G is the universal gravitational constant and is 6.67 x 10~!! N-m2/kg2,
and r is the distance between the two point masses m| and m;. Suppose that the
position vector of m is ry and that of m, is r as shown in Fig. 3.7. Then the force
acting on m is

mnj

F\=G (ry—r1)

lry —ry?

When m;, is a distributed mass, however, the gravitational force on m, becomes

_ p()dv'
F, —ml_/vG|H—r|3(/—r)
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m,

Ya— ry
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Fig. 3.7 Relationship between two point masses.

where p(r') is the density of the distributed mass. The relationship between m,
and a distributed mass is shown in Fig. 3.8. Rearranging the preceding equation
gives the gravitational intensity as

N —g= [62P % -n (3:30)

mi r —r?
Gravitational force is a typical conservative force that can be expressed as
g=-—-VV (3.31)

where V' = potential energy per unit mass or gravitational potential. In terms of
the gradient of a scalar function, Eq. (3.30) can be written as

1 /
g=({[VQf_ﬂ>pM (3.32)

Therefore, the gravitational potential is

pdv
v |I" _rl

V=-G

(3.33)

Example 3.2

Derive expressions for the gravitational force and the potential energy for a
point mass under the following two circumstances: 1) outside a uniform solid
sphere and 2) inside the solid sphere.

Fig. 3.8 Relationship between m; and a distributed mass.
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dv

Fig. 3.9 Point P located outside a uniform solid sphere.

Solution. 1) Outside a uniform solid sphere, consider that a particle with unit
mass is located at P; the distance between the center of the sphere and the particle
is r as shown in Fig. 3.9. The infinitesimal volume under consideration is

dv = 2nr?sin)dodr’

The distance between p and dv is

L= \/r2 +r2 —2rr'cosé

Using Eq. (3.33), the potential energy is

_GP/—=—G / / 27r?singdodr’
Vrl 42 —2rr'cosf
Gp47r

= —R} = - 3.34
r 3 r ( )

where M is the mass of the solid sphere. This result states that the potential of
unit mass outside a solid sphere is equivalent to that of a point mass with the same
mass concentrated at the center of the sphere. From the result of Eq. (3.34), we
find the gravitational force as

a (GM GM
g=-VV=¢— (———) = —e,—— (3.35)
ar\_ r

where e, is the unit vector along r. This expression is used for calculating the
gravitational acceleration.

2) Inside a uniform solid sphere, consider that the point mass is at P located
inside the sphere. The infinitesimal volume is a ring and can be expressed as

dv = (2nr’ sin8)dr’(r' d8)
The distance between P and dv is L:

L = [(r'sin8)? 4 (R cos 6, — r' cos 8)*]'/?
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Fig. 3.10 Point P located inside 2 uniform solid sphere.

Therefore, the potential energy is
V= _Gp /R /" 27r? sin@ do dr’
o Jo /r2+ R2cos?6; —2Rr’ cosb, cosb

2 2
= —Gp?n[3R2 — (Rcos§))’] = —gJTGp(3R2 —r? (3.36)

where r is the distance of op. In the integration, it ought to be pointed out that
when the integrand is integrated with respect to 8, the term for the lower integral
limit is always kept to be positive so that the result is the subtraction of the upper
limit term by the lower limit term. And the gravitational intensity is found:

4
g=—VV = —%Gpre, (3.37)

Note that the g approaches zero as r reaches zero and the potential energy reaches
minimum at the center of the sphere.

Example 3.3

Suppose that a homogeneous right circular cylinder of radius R, height L, and
mass M is placed along the z axis between z = O and z = L as shown in Fig. 3.11.
Find the gravitational intensity and potential of the cylinder on the axis at distance
h from the origin with & > L.

Solution. Consider that the infinitesimal element in the cylinder is a ring with
the cross section area of dr dz and with

dv =2nrdrd:z

The distance from the ring to point P is

S=rt+ (h—z)?
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Fig. 3.11 Point P located on the axis of the cylinder.

Hence the gravitational potential is
V= _Gp /L /R 27rdrdz
0o Jo /ri4 (h—z)?
L
= —ZnGp/ [r: + (h —2)2)" R4z
0

L
= _27Gp / (IR + (h — )12 — (h — 2)}dz
0

= JTGp[[(h — L)/ (h =LY + R? — hy/h? + R?]

(h—L)+(h—L)>+ R?
h? —(h— L)1+ R%tn
- = LYT+ [ VR R “

And the gravitational intensity is

9
=YV = -k
& on’

= —k2nGp[/(h — L) + R* = Vh2 + R2 + L]

3.5 Collision of Two Spheres on a Plane

The action of two bodies colliding with a large inertial force in a short time
interval is called impact. Depending upon the material properties of the bodies,
collision can be elastic or inelastic. We shall discuss these two kinds of collision
in this section,
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\&}

Fig. 3.12 Oblique central impact.

For the present study, the bodies in collision are modeled as two spheres with
identical diameter and with the centers of mass at the centers of spheres. This,
however, does not imply that the mass must be the same. The system may be
pictured as two balls of different mass colliding on a frictionless table, which
forms a perfect plane perpendicular to the gravitational force. For a general two-
dimensional case, the collision is named an oblique central impact. The plane
tangent to two spheres at the contact point is called the plane of contact. The line
perpendicular to the plane of contact is termed the line of impact that goes through
two centers of spheres. For an oblique central impact, the velocities of spheres are
at angles away from the line of impact as shown in Fig. 3.12. When the velocities
are on the line of impact, the action is called central impact. Therefore, a central
impact is a special case of oblique central impact. The method of analysis for
oblique central impact can be applied easily to the central impact.

Automobile accidents are common occurrences in this country. Every day there
are thousands of car collisions with hundreds of injuries and deaths. As we study
the collision of bodies, it is interesting to try to answer two questions arising from
car collisions. In a collision, is the driver of a heavier car safer than the driver
of a lighter car? As an unavoidable head-on collision is about to happen, should
the drivers accelerate their cars as much as possible to protect themselves? These
questions will be answered in the examples. Although cars are in complicated
shapes, the modeling of cars as spheres is only the first step in studying car
collisions.

Certainly the application of the collision of two spheres is not limited to billiards
and automobiles. It can be applied also to the collision of molecules in chemi-
cal reactions or in turbulent flows. Let us study the collisions in two different
conditions, elastic and inelastic, as follows.

Elastic Collision

During the collision there is an impulsive force between two masses. If the force
is not very large, the stresses developed on the spheres are below the yielding
points. Then the shapes of the two spheres are restored completely to their original
forms without any permanent deformation as shown in Fig. 3.13. Such a collision
is called an elastic collision.
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Before impact During impact After impact

Fig. 3.13 Deformation and restitution during elastic impact.

Because there is no external force involved during collision, the total momentum
of the two spheres is conserved, and we have

m]V| + szz = le'] + sz'z (338)

where V; and V; are velocities of m; before and after impact respectively.
For the elastic collision, because the shapes of the spheres are completely
restored, the kinetic energy of the system is conserved and we have

smiVE+ 3mpVE = tmy v 4+ 1my vy (3.39)

Equation (3.38) is a vector equation that may be considered as two equations in
terms of x and y directions. Hence there are three equations, but, in general, there
are four unknowns: V]'x, V]' ¥ Vz'x, Vz’y, the velocity components after the colli-
sion. To determine them, additional conditions must be specified. In the collision
process, no coordinate system exists in the space. Without loss of generality, we
choose x axis along the line of impact and y axis along the plane of impact. With
the frictionless model, it is reasonable to accept that the velocity components in
the y direction are not changed, i.e.,

Vi, =V,
Vi = Vay
Then the momentum and energy equations become
miViy +myVoy =m Vi, + my V. (3.40)
mi Ve +mVE =m V4 myV}? (3.41)
Now V|, and V;, can be determined by Egs. (3.40) and (3.41).

Inelastic Collision

During collision, sometimes the stresses produced by the impact force are much
higher than the yielding strength of the materials, and permanent deformation
results, as shown in Fig. 3.14. Such a collision is called an inelastic collision. With
permanent deformations, some energy is dissipated by the stress-strain energy so
that the conservation of energy is no longer true. Therefore, additional information
will be needed to predict the velocities after the impact. To do this, we will define
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Before impact During impact After impact

Fig. 3.14 Deformation and restitution during inelastic impact.

the coefficient of restitution €, as the ratio of the impulse during the restitution
period to the impulse during the deformation period, i.e.,

impulse during restitution [ Rdr

= 3.42
impulse during deformation [ Ddr (3.42)

where R and D are the impact forces during restitution and deformation periods,
respectively. The deformation period is the interval between the beginning of
contact of the spheres and the instant of the maximum deformation, and the
restitution period is the interval between the instant of maximum deformation and
the moment that the spheres just separate. Thus, the changes of momentum of »1,
in these periods can be written as

/ Ddt = —[(m Vi) ~ (myVio)p]

/Rdt = ~[(m1Vi)p — (mV{))]
Therefore,

_ WVp— Vi,
le - (le)D

where (V|,)p is the velocity component in the x direction of m, at the maximum
deformation. Similarly, for mass m,,

(3.43)

_ (adn~ V3,
Vor = (Va)p
Note that, at the moment of maximum deformation, the two masses are in contact,

and their velocities are the same along the line of impact, (Vi,)p = (Vo) p. Thus
Egs. (3.43) and (3.44) can be combined to become

(3.44)

I Vl
e=_Yu= Vi (3.45)
V2x - le

The values of € presumably are known for some common materials. With the use
of the momentum equation in x direction, Eq. (3.40) together with Eq. (3.45), Vi,
and V;, can be predicted.
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The following are a few remarks about the significance of the coefficient of
restitution. During a perfectly elastic collision, the impulse for the period of
restitution equals the impulse for the period of deformation, so that the coeffi-
cient of restitution is unity for this case. For inelastic collisions, the coefficient
of restitution is less than unity because the impulse is diminished on restitu-
tion as a result of failure of the spheres to resume their original shapes. For
a perfectly plastic collision, € =0 (i.e., V,, = V|,) and the spheres remain in
contact.

Example 3.4

Two billiard balls of the same size and mass collide with the velocities of
approach shown in Fig. 3.15. What are the final velocities of the balls directly
after an elastic collision?

Solution. The initial velocities of the balls are
V, =5i m/s
V,=-7.07i+7.07j m/s
Because there is no friction, the velocities after the impact in y direction are
Vl’y =0
Vz'y =7.07m/s

With m, = m,, the momentum equation in the x direction gives

Vie Vo = Vi, + V4,

(3.46)
5+ (=7.07) =V +V; =-207
The energy equation (3.41) leads to
V2 +VE=V24 V] (3.47)

v, ==7.07i+7.07j

Fig. 3.15 Initial condition of the impact of balls.
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Solving Eq. (3.46) and Eq. (3.47) simultaneously leads to
Vi, =V = Vo = Vi, = -7.07 - 5.0 = —12.07

Therefore, in the x direction, the velocities after the impact are

Vi, =-7.0Tm/s

V,, =5.00m/s

In the vector form, the velocities after the impact are

V| = -7.07i m/s

V5 =5.0i+7.07j m/s

Example 3.5

Prove that in a case of a two-car, head-on collision, the driver of a heavier car
is usually less severely injured.

Solution. Let my, m, represent the mass of the two cars. Assume that car 2
is heavier than car 1, i.e., m> > my, and the collision is elastic. Then, from the
momentum equation, we have

mi(V{ = Vi) =my(V, = Vy)
mlAvl = M2AV2

The preceding result says that the change of momentum of car 1 equals that of car
2. Becasue m; > mj, we conclude [AV,| < |AV}], that is, the change of velocity
for car 2 is less than for car 1.

Let m, be the mass of the driver, and A¢ be the time interval of the impact.
Assume that the drivers have the same mass. Thus the inertial force acting on the
driver is

Av
"My —
N;
Comparing the inertial force acting on the two drivers, we have

AV,

At

AV

mgy de— as m» > my

Because the inertial force on the driver in car 2 is less than that on the driver in
car 1, the injury to the driver in a heavier car is less than that in the lighter car.

Example 3.6

Estimate the difference in impact force for the following two cases: 1) Two
cars have the same constant velocity of 50 mph but in opposite direction, and 2)
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one of the cars is accelerating at 5 ft/s2? although at the time of collision the cars’
velocities are the same as case 1. The mass of the cars are 100 slugs, and the
duration of impact is 0.020 s. The two cars are stopped after the collision.

Solution. 1) Let F be the impact force
F At =mAV
m = 100slug

Because the cars are stopped after the collision, their final velocities are zero.
Therefore,

AV = 50 x 5280 -~
= T3e00 | 00NE
AV 73.5
F =m— = 100—— = 367.5 x 10° Ibf
At 0.020

2) With the acceleration in one car, additional external force due to friction must
be considered. The total impact force is

AV
F'=m—+F
Mar T

However,
Fy = ma =100 x 5 = 500 Ibf
F' =367.5 x 10° + 0.5 x 10° = 368.0 x 10% Ibf

The result shows that the impact force due to the acceleration of one car is very
small compared with the total impact force.

Problems

3.1. Find the transformation of coordinates for the trajectory of the enemy mis-
sile. The enemy’s missile site is 1000 km away from ours and is on a mountain
5 km above the surface of the average radius of the Earth. Assume that for the
missile-to-missile collision, two trajectories are contained in the same plane.

3.2. Consider that the gravitational force always is pointing toward the center
of the Earth. Suppose that the enemy’s missile is launched from the site as given
in Problem 3.1. What are the components of the gravitational force in the (x, z)
directions?

3.3. Suppose that a rocket is launched vertically, and at the time of burnout the
speed of the rocket is vy at the altitude of kg above the surface of the Earth. Use
the expression g = k/r? for the gravitational acceleration, where k is a constant
and r is the distance from the center of Earth to the rocket. Find the maximum
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height the rocket can reach. Also find the escape velocity for a rocket launched in
a vertical position.

3.4. Show that the gravitational attraction due to a homogeneous circular disk at
a point on the axis of the disk is

2MG ! h
a? Vh? + a?

where M is the mass of the disk, a is the radius of the disk, and # is the height of
the point above the center of the disk.

3.5. A uniform sphere of mass M is embedded in a hole of radius R in an infinite
thin plane having mass per unit area . Find the gravitational field intensity and
the potential energy per unit mass at a distance d above the center of the sphere.

3.6. In introductory dynamics, the potential energy of a mass m at z above
the ground is always expressed as mgz. Now we have learned that the potential
energy of mass m outside the spherical Earth is —GmM /r. What is the relationship
between them?

3.7. Explain that, in the oblique impact, the coefficient of restitution cannot be
defined in the direction that is not perpendicular to the plane of contact.

3.8. Two spherical balls of the same size and mass are in a head-on collision.
Because of a manufacturing defect, the center of mass of one ball is not at the
center of the sphere. Formulate the equations governing this impact. Predict the
motions of the balls after the impact.

3.9. Suppose that a hard, small ball m drops vertically at a point on a hard, solid
spherical surface as shown in Fig. P3.9, with mass M >»> m. The initial height of
the ball is hqg.

Fig. P3.9
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(a) What is the velocity of the ball immediately after the impact for a coefficient
of restitution e = 0.85?

(b) What is the trajectory of the ball after the impact but before it lands on the
floor?

3.10. A ball is dropped from a height of 3 m onto a level floor. If the coefficient
of restitution ¢ = 0.9, how long will it take the ball to come to rest? What is the
total distance traveled by the ball?



4
Lagrange’s Equations
and the Variational Principle

UNDAMENTAL equations in dynamics are based on Newton’s second law

of motion. When Newton’s law is used to formulate a problem, an explicit ex-
pression of force or torque is required. Such expression may not be easy to obtain.
An alternative approach is to employ Lagrange’s equations. In the Lagrangian for-
mulation for conservative systems, expressions for kinetic and potential energies
are required, but knowledge of the force or torque is not needed.

There are different forms of Lagrange’s equations. One form is for dynamic
systems without constraints between generalized coordinates, which are coordi-
nates based on configurations of the systems and are discussed in the next section.
Another form is for systems with constraints. In this form, constraint relations
are incorporated directly into Lagrange’s equations as Lagrangian multipliers and
constraint forces.

The Hamilton equations are discussed in Section 4.3. These equations are par-
allel to the Lagrangian equations for systems without constraints. Through this
parallel approach, readers will become more familiar with the Lagrangian equa-
tions. The general form of Lagrangian equation is studied in Section 4.4. Different
constraints are discussed, and Lagrangian multipliers are introduced for solving
the problems. Note that Lagrangian multipliers are related to nonconservative
forces. Many examples are given in this section.

In Section 4.5, the variational principle is introduced. The purpose of this
principle is for optimization. It is discussed here because Lagrange’s equations
can be derived from the optimization of the Lagrangian function of dynamic
systems. A case of optimum with a constraint condition also is studied. Examples
are given for the application of the variational principle.

4.1 Generalized Coordinates, Velocities, and Forces

Generalized coordinates are the coordinates that must be specified in order
to describe the configuration of a system. If a system of N particles is under
consideration, three coordinates are needed to specify the position of one particle
so that 3N coordinates are required for N particles. The system is said to have 3N
degrees of freedom. If some coordinates are related by j equations or constraints,
the degrees of freedom are reduced to 3N — j.

For a particle traveling along a straight line, the only coordinate needed is the
particle’s traveling distance. For a wheel rotating on its fixed shaft, the coordinate
describing the wheel is the rotating angular displacement. For a wheel with a
shaft moving along a straight line, two coordinates must be specified: the distance
traveled by the shaft and the angular displacement of the wheel. For a pair of
long-nosed pliers lying on a table, four coordinates are needed to describe the
system: (x, y) coordinates for the location of the center of pivot, « for the angle
between the surface of the first jaw and the x axis, and g for the angle between the

53
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r (x0: Yp)

L}

X

Fig. 4.1 Wheel rolling on a curved ground.

surfaces of two jaws. Because of the nature of generalized coordinates, the number

of such coordinates is called the number of degrees of freedom of the system.
Usually, symbols (g1, g3, - . ., q,) are used for generalized coordinates. A po-

sition vector r always can be expressed as a function of ¢, and we may write

r=r{qi.q2,...,qn)

or

r=r(g) @.1)

To illustrate the preceding statement, let us consider a point at the edge of a wheel
rolling without slipping on a curved ground as shown in Fig. 4.1.

r = rg + a(cos 8i + sin6j) = (xg + a cos6)i
+ (Yo + asin8)j = r(xo, Yo, 0) = r(q1, 92, 43)
where q; = xo, g2 = yo, and g3 = 0. As the particle moves, we have
.o Or
r = —le (4.2)
; 99,

The quantities g, = dg,/dr are called generalized velocities. Equation (4.2) sug-
gests that

r=r{q,q) 4.3)

Here ¢ and q are considered independent variables.
Furthermore, a typical force F acts at a point (x, y, z}. The virtual work pro-
duced by the force is

W =F - ér 4.4)

where §r is the virtual displacement and can be expressed in terms of generalized
coordinates as

9
sr=Y" a—r_aq,- 4.5)
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With the use of Eq. (4.5), Eq. (4.4) becomes

sW = Z( —aql) =D (Qidq)) (4.6)
i=l

where Q; = F - (dr/dg,) = generalized force.
For a conservative force as defined in Section 2.5,

F =-VV
ar or oV
F —=-VV:——=~——o
dg; g, dqi
Hence,
v
Qi=—— i=12,...,n 4.7)
8q;

The generalized forces for a conservative system are the arithematic inverse of the
partial derivatives of potential energy with respect to the generalized coordinates.

4.2 Lagrangian Equations

Consider asystem of N particles with n degrees of freedom. A position vector r;
for the position of ith particle is, in general, a function of generalized coordinates
and time.

ri =ri{q1. g2, - qu, 1)y =1i(q, 1) (4.8)

where ¢ represents all the various ¢. In Eq. (4.8) ¢ and r are independent variables,
and the velocity of the ith particle is

Vi = vi(quivr) (49)
where ¢ is the generalized velocity representing (45, ¢a, . . ., g,). Certainly,
dr; arz . or;
_— =y = . + _ 4.10
e Z ag, 7 T Tor @10

On the other hand, considering a virtual displacement
8r,-
dr; = —dq; 4.11
i Z 57, g, (4.11)

Note that the symbol § is used for virtual displacement. No time is needed to reach
8r;. Taking the partial derivative of v; with respect to generalized velocity ¢4 from

Eq. (4.10) gives
av; ] L0 . ar; or;
el DR R B (@.12)
Oqe gk | 7= 99, ot I

Here we find that the partial derivative of the velocity of ith particle with respect
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to g, equals the partial derivative of the position vector with respect to g;. Differ-
entiating (3r; /dq;) with respect to time yields

d [or & 2y, a (o
el (i) = Z o°r g+ — (_i) 4.13)
dr \ dq . 39x9q; at \ agx

=1

Taking the partial derivative of 7; with respect to ¢, from Eq. (4.10), we have
or; _ ", 9 (ar, _>+ ] (ari)
Oqx = gk \ 93¢ dqi \ 9t

2 .
_ Z ( ni ) 3 (Ef’_) (4.14)
3%3‘1/ 81 \ 9gx
Comparing Eq. (4.13) to Eq. (4.14), we find that
ar, 3
d(ny_ on @.15)
dr \ 0gy gy

Now let us consider D’ Alembert’s principle for the ith particle of the system of
N particles:

Fi—P =0 (4.16)

where P; is the rate change of momentum of the ith particle. In addition, let us
imagine a virtual displacement of §r; for the ith particle. For the system we have

N
D (Fi—P)-8r; =0 (4.17)

i=l

Note that Eq. (4.17) is equivalent to Eq. (1.34). When D’ Alembert’s principle is
considered, the inertia force is one of the applied forces. In Section 1.6, we reached
the conclusion that the virtual work of applied forces in equilibrium is zero. Now,
let us separately examine the two terms in detail as follows:

ZF or; = ZZF a”aq, Zgjaq, (4.18)

i=1 j=I
where
N 8r,-
0, = ZF‘ . — 4.19)
= 9q;

Q ; is the generalized force, and

N . 8r,~
Y P-or = ZZ—(m,u. ) 584
i=l

i=1 j= 9;

Z d 8r,~ d 8r,- s
= _ vi— )V —mivi s — | —- .
i ds i 0q; i dr \ 9q; 7
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Using Egs. (4.12) and (4.15), we obtain

ii’ dr, Z[d(mu au,-) m;v aui]&q
Cor = L LU DL Y
= 7 Lar\" ag ) T ag 1T
aT
Z[ ( ) ]aq, (4.20)
7 dr \ dg; dq;

where T = Z,N:l %m,-vi2 = kinetic energy of the system. Combining Eqs. (4.18)
and (4.20), we find that

Z[Q,——d—(aT)+aT]aq,_o @21

] g, g,

Because all ¢; are independent, the terms in the brackets must be zero, i.e.,

d /aT aT
— () - =9, 4.22)

This is the first form of Lagrange’s equations. For a conservative system,

N N
8r,~ 8r,- av
0, = 2 :F--—:—E :(VV)--—=——
g ey i=1 " o, 9q;

where V is the potential energy of the system and is a function of generalized
coordinates only. Now Eq. (4.22) becomes

d (aT) oT _ av
dr \ dq; aq; 9q;

d [T\ T —V)
dr a‘h aq;

or
=0

Because potential energy is not a function of generalized velocity,

av
— =0
9q;

which can be subtracted from the first term. Thus, the equation becomes
d /oL aL
— | =0 j=1.2,...,n 4.23)
dr \ 84 3‘11

where the Lagrangian function L = T — V. Equation (4.23) is Lagrange’s equa-
tion for a conservative system in which L is, in general, a function of ¢, ¢, and
t. For a nonconservative system, the generalized force can be expressed as a
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combination of conservative and nonconservative forces.

where F; is the nonconservative force. Therefore, in general, Lagrange’s equation
is in the form of

d /oL oL
— [ — ——-:]rj j=1,2,...,ﬂ
dt aqj aqj

(4.24)

Example 4.1

Find the differential equation of motion for a simple pendulum of length L and
finite angle of # measured from the vertical as shown in Fig. 4.2.

Solution. Because the angle 6 is sufficient to describe the configuration of
the system, it is used as the generalized coordinate, and the system has only one
degree of freedom.

Kinetic energy:

T = im(L6%)
Potential energy:
V =mgL(l — cosf)
Lagrangian function:
L=T-V =1m(L8)* - mgL(l — cosb)
oL 2
a6

oL )
%= —mgL sin6

d /oL oL .
—(— ) - —= =mL?* +mgL sin6 =0
dr \ 96 26

.

mg
Fig. 4.2 Simple pendulum.
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Fig. 4.3 Hoop rolling down an inclined plane.
Hence, the equation of motion is

6+ (g/L)sing =0 (4.25)

Example 4.2

A hoop of radius r and mass m is rolling, without slipping, down an inclined
plane at an angle ¢. Find the equation of motion.

Solution. For the generalized coordinates, we choose the angle of rotation of
the hoop 6 and the distance x traveled by the center of the hoop.
Kinetic energy:

1,2 1792

where I is the mass moment of inertia of the hoop. Because x = r6 and I = mr?,

the Kinetic energy, potential energy, and Lagrangian function of the hoop are
= %m(ré)2 + %mrzté2 = m(rt9')2
V =mg(s —x)sing =mg(s —r0)sin¢g
L=T—-V =m(@6)? —mgsing(s —rb)
Applying Lagrange’s equation gives

d /oL oL — omr2i b =0
i \38 30 = mr mgr sing =

Hence, the equation of motion is

6 = (1/2r)g sing (4.26)

Example 4.3

Two simple pendulums of length s and bob mass m swing in a common vertical
plane and are attached to two different support points. If the masses are connected
by a spring of constant k, use the Lagrangian approach to formulate the equations
of motion. Assume small angles of oscillation.
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Fig. 4.4 Two simple pendulums.

Solution. 6, and 6, are the generalized coordinates.
T = s + 62
V =mgs(l — cos6;) + mgs(l — cos6y) + sks*(6; — 6,)>
L=T-V
L = ims*(6} +63) —mgs(1 — cosf)) — mgs(1 — cos6y) — 1ks* (6 — 6,)°

Working out the derivatives gives

oL 29 oL in6; — ks>(6; — &)
— =ms“6,, — = —mgssinf; — ks -
26, 1 20, 8 1 1 2
oL . L

— = ms’6,, — = sin@, + ks?(6; — 0
%, 5°6, 20, mgs sinf, + ks“(6, — 6,)

Hence the equations of motion are

ms0; + mgs6; + ks*(6; — 6,) =0 427
ms’6, + mgs6, — ks> (0, — 6,) =0 (4.28)
Example 4.4

A solid cylinder of radius » and weight w rolls without slipping along a circular
path of radius R as shown in Fig. 4.5. Determine the Lagrangian function and the
equation of motion.

Solution.  From the conditions of no slippage, we have

(R—r)0 =r¢

The kinetic energy is

1w . 1. .
T = =—(R — 1)2%6?% + —I¢*
28( r) +20¢
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Fig. 4.5 Cylinder rolling on a circular path.

where Iy = %(w/g)rz. Therefore,

V = w(R —r)(1 — cosf)

The Lagrangian function is

3 .
L=T-V = ZE(R — 1262 — w(R — r)(1 — cosf)
g

aL 3w 24
— =—-—(R—-r)#0
20 2g
oL R -
8 = —w(R —r)sin
Hence the equation of motion is
3w y .
——(R—-r)y9+ w(R —r)sind =0
28
or
G+ —28  sino=0 (4.29)
3(R —r) B '
Example 4.5

Find the equations of motion for a particle with mass m in three-dimensional
space for the following different coordinates: 1) rectangular, 2) cylindrical, and 3)
spherical.

Solution. 1) Rectangular coordinates:

= tm@G> + 3> + 27
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Using the first form of Lagrange’s equation,

d aT aT
———— =0
dr dq;  dq;
aT aT . aT
-— = mx, — =my, — =mz
ax ay az
aT X ay az
— =0, =F F,—+F,— =F
ax 0 9 +h ax + “ax *
Hence we have
mx =F, (4.30)
Similarly,
mj = F, 43D
mz=F, 4.32)

2) Cylindrical coordinates:
X = p cos ¢, y = psing, z=z
X =pcose — pe sing
J = psing + pé cos ¢
7=z
Hence,
T =1imG+ 5 + %) = m(p? + p2¢* + %)
For the coordinate p, we have
T _

_ aT s
- =mp, - =mpe
ap p

0 _F8x+F8y+F82
T8 T ap T Tap

= Fycos¢ + Fysing =F-e,=F, (4.33)
where F, is the component of force along direction p. Plugging into Eq. (4.22) gives
mp — mpg* = F P

For the coordinate ¢,

T zd-) aT
— =m , _— =
d¢p P d¢
ax ay az .
Q¢=an_¢'+Fy£+Fz£="xP51n¢+FyPC°S¢=pF'e¢=pF¢
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where e, = — sin ¢i + cos ¢jf as given in Eq. (2.8). Therefore, we have

d .
— (mp*) = pFy (434)
dt

For the coordinate z, the equation is the same as in the rectangular coordinates

mi = F, (4.35)

3) Spherical coordinates: In Chapter 2, the relationship between spherical co-
ordinates and rectangular coordinates was already introduced. From Egs. (2.11)
and (2.12), we have

r=re
xi+yj+zk=rsin6 cos¢pi+r sinf singj+r cosfk

That is,

X =r sinf cos ¢

y =vr sinf sing

z=r cosf
We also have, from Eq. (2.15),
v =re +rfey+ré sinbey
Hence,
T = im[i? +r26% + (ré sin6)]

For the coordinate r,

oT oT . .
— =mr, — = m(r02 + r¢2 sin20)
ar or

Q = —3_ _3 3 = in 6 ¢
.= F + F + F F,sin6 cos
i x y z . x

+ Fysin@sing + F,cos§ =F -¢, = F,
With the use of Eq. (4.22), we obtain

m(@i —r6% — r¢?sin9) = F, (4.36)
for the equation of motion in the radial direction. For the coordinate 9,

oT 2z oT 2312 .
—_— = o, —_—=m sin@ cos &
Y R g ="

Qg = Fyr cos cos¢ + Fyr cos@ sing — F,r sind =rF -eg =rFy



64 ADVANCED DYNAMICS

Hence the equation of motion in the direction of 6 is

d R R
a(mrze) — mr’¢®sinfcos® =rFy @.37)

Note that the generalized force in 6 direction is a torque. Similarly, for the coor-
dinate ¢

s 2 aT
— =mr-sin“6¢, — =
¢ ¢
Q¢ = —Fxrsinf sing 4 F,r sin6 cos¢
=rsinfF - ey =r sin@Fy

The equation of motion in the direction of ¢ is, therefore,

d .
d—t(er sin?0¢) = r sin0F, (4.38)

Equations (4.37) and (4.38) can be simplified to
m(20 + ré — r¢*sin@ cos0) = Fy (4.39)
m(2r ¢ sin6 + 2ré¢ cos® + r sinfp) = F, (4.40)

Note that the acceleration terms on the left sides of Eqs. (4.36), (4.39), and (4.40)
agree well with the expression in Eq. (2.16).

Example 4.6

Suppose that a person of mass M playing on a swing is modeled as a point mass
(M — m) at the end of the rope and a small mass m moving around M — m at
radius a and angular speed of  as shown in Fig. 4.6. Find the equation of motion
for this system.

Solution. Velocity of (M — m)

Vir—m = s6(cos 8i + sin6j) (4.41)

Z,

' M-m

Fig. 4.6 Person playing on a swing.
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Velocity of m is

Vi = sO(cos i + sin0j) — aw sinwti + aw cos wt j
The kinetic energy of the system is
T=3M-mVy_, +imV}
T = 3(M — m)(s6)* + 1ml(s6 cos§ — aw sinwt)*
+ (56 sin® + aw cos wt)?]
The potential energy is
V=(M-m)gs(l —cos0)+mgl[s(l —cosh) + a sinwt]
= Mgs(1 —cos @) + mga sin wt
The Lagrangian function for the system is
L=T -V =1M(s8)>+ iml(aw)’ — 2(aw sinwt)(s6 cos )
+ 2(aw cos wr)(s6 sinH)] — Mgs(l — cos8) — mga sinwt
= %M(sé)2 + %m[(aa))2 + 2aswb sin(@ — wt)]
— Mgs(1 — cos0) — mga sinwt
To find the equation of motion, we obtain

aL 2 .
% = Ms°0 + masw sin(@ — wt)

aL .
8= masw 6 cos(f0 — wt) — Mgs sinf

Substituting the preceding equations in Eq. (4.22) leads us to

65

(4.42)

4.43)

(4.44)

(4.45)

Ms?0 + masw cos(0 — wt)(6 — ) — masw 6 cos(8 — wt) + Mgs sinf =0

Rearranging, we obtain the equation of motion as

6+ & sinog = 22 2 cos(wt — 6)
s Ms

(4.46)

Note that the term on the right-hand side is the force causing the swing to oscillate

to a large angle. Resonance can take place as

w=+8/s

Through these examples it is easily seen that using the Lagrangian equation
for deriving equations of motion for conservative systems is very simple and
systematic. All we need are the expressions for potential and Kinetic energy.
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4.3 Hamilton’s Principle

Hamilton’s principle is an approach parallel to the Lagrangian equations. From
here readers can get a deeper feeling about equations describing a dynamic system.
Similar to Lagrange’s approach, the Hamiltonian function H is defined as

H=Y ¢;pj—L=H(p.q,1) (4.47)
J

where p; = the generalized momenta = 3L /34;. Taking the total derivative of
Eq. (4.47) gives us

dH = Zq/dl’f"‘zpfd‘h {Z : q/+Zaqu,+%lt—'dt]

J
L L
= Zq, pi— Z ’d j = e (4.48)
Also, we have
aH OH aH
dH =Y —dp; —dg; + —dt 4.49
;ap, pv,+;aqj 4+ (4.49)

Compare Eq. (4.48) to Eq. (4.49), we obtain

oH
G = == (4.50a)
ap;
oH oL oL
__=_=i< ) b, (4.50b)
dq; 9dq; dt \dq;
oH
—_— = —il-'- (4.50¢)
at ar

Equations (4.50a) and (4.50b) are called Hamilton’s canonical equations for a
conservative system because, in the intermediate step of deriving Eq. (4.50b), the
conservative condition is used. Furthermore, for a conservative system

_Z< aHjI’j)‘Fﬁ

aql at
= Z( Piqi+a4ipj)+ ——

oH oH

== (4.51)

To interpret the meaning of H, let us consider a case that happens often in
dynamics; the position vectors are functions of g only:

rr=r(g i=12,...,N
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Then
dr, ar; .
Tk
=2 %,
1 ar; or;\ . .
ZZm,v,.v,~-zm Z(aqk aq)qkq,
and

. . oL . aT
Ej qjpj = Ej qjﬁ', = Ej q’ﬁ
1 ar;  0Or; ad
=24 [5 2y (5o 50) W’]

Looking into the details of the partial derivative in the last expression, we find

9 . . . .
D @d) = @i+ ubjn) = 24,
w7 04; ]

Therefore,

. . 1 3 i 3 i
X,:qujz;qj [5;"“5;7 L —( q/)J
ar,- . 2
-3 T, (‘a?f‘“) ot (4.52)
7L j

Substituting Eq. (4.52) into Eq. (4.47), we find

H=2T—L=2T—-(T-V)=T+V (4.53)

Therefore H is the total energy of the system if the various r; are functions of ¢
only. For a conservative system

T + V = const
H = const
That means
dH dH
—_—= d — =0 4.54
dt an ot #54)
For a nonconservative system, the Lagrangian equation is
d /oL aL
— | — =F; (4.55)
dr \ 9g; aq i

With this general expression, Eq. (4.50b) becomes

9H _ oL d(aL

S S () = - F (4.56)
dq; dq; dt 341) roR
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Equation (4.51) becomes
. . .. oH . oH
v =;[(_Pj+]:j)‘h +‘1ij]+-¥ =;-7:j‘1j+¥ (4.57)

Therefore, Hamilton’s canonical equations are true only for conservative systems.
In general the total derivative of H with respect to time is not the partial derivative
of H with respect to time.

Example 4.7

Consider a spherical pendulum consisting of a point mass m that moves under
gravity on a smooth spherical surface with radius a. The gravitational force is
along the downward vertical. In terms of spherical angles 6 and ¢ as shown in
Fig. 2.2, except that 0 is the angle between the position vector of mass m and the
downward vertical axis, the kinetic and potential energies are

T = ima®(6* + ¢*sin’6)
V = —mgacos6

Find the equations of motion for the mass m 1) from Lagrange’s equation and
2) from Hamilton’s principle.

Solution. 1) Lagrange’s equation:
L=T-V = %maz(é2 + ¢*sin®0) + mga cos O

For the coordinate 6,

aL )

— =ma“f

a6
aL 252 - .
20 =ma“¢-sin6 cosf — mga sinb

Substituting the preceding expressions into Eq. (4.23), we find

ma®6 — ma®¢? sinf cos + mga sin@ =0 (4.58)
For the coordinate ¢,

oL .

— = ma’$ sin’ 0

a¢
oL
gy
a¢

d .
a(mach sin?6) =0

$ sin® 6 = const (4.59)
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2) Hamilton’s principle: In spherical coordinates
r=r(sinf cos @i+ sinf singj+ cosf k) = r(r, 0, ¢)
Hence,
H=T+V = %ma2(92 + $?sin® 0) — mga cos 6

In Hamilton’s principle, however, H is to be expressed in terms of generalized
coordinates ¢, generalized momenta p, and time ¢:

po = — = ma*0 (4.60)
L 23 2
= — = ma“¢ sin” 0 4.61
Pe =7 3 ¢ (4.61)
With the use of Eqgs. (4.60) and (4.61), we have

_lp 1

H = e
2ma?  2ma?sin?6

— mga cosf 4.62)

Taking the partial derivatives of H with respect to 6 and ¢, we have

oH o 6 + mga sinf
— = —————— 08 mga sin
30 ma’sin’0 8
dH
-~ =0
o¢
Rewrite the canonical equations
oH aH |
86 - p91 8¢ - p¢

With the help of Eqs. (4.60) and (4.61), and the canonical equations, we find

2
p . ..
- % sinf cosf + mga sinf = —ma’é
ma*sin* 6

d . ,
dt(¢ sin” 6)

Further simplifying the preceding equation, we obtain

— ma2<i>2 sinf cos @ + mgasinf = —ma?6 4.63)
¢ sin® 6 = const (4.64)
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Equations (4.63) and (4.64) are the same as Eqs. (4.58) and (4.59) obtained in
part 1.

4.4 Lagrangian Equations with Constraints

In general there are two types of constraints in dynamics: holonomic and non-
holonomic. When the relationship between generalized coordinates can be written
as

fi(gqi,q2, ..., qn,t) =0 i=1,2,....,m (4.65)

where m < n, the constraints of this form are known as holonomic constraints.
Because of these m constraint equations, the various nq; are not independent.
In principle, there are only (n —m) independent generalized coordinates, and
(n — m) Lagrangian equations for solving these ¢; as functions of time. The
remaining g; can be obtained through Egs. (4.65) already given.

Many problems, however, may be formulated differently such that the gener-
alized coordinates can be reduced at the beginning. For example, let us consider
the case of a double pendulum (Fig. 4.7). The two point masses m; and m, can be
specified by (x1, y1) and (x2, y) in the plane containing the double pendulum. The
rods of length L, and L, are considered to be rigid and massless. The constraint
equations are of the form

xi+yi=L3
2 —x)' + (o —y)? = L3

Because of these, we simply choose 8, and 6, as generalized coordinates and
the equations of motion are simplified. On the other hand, when the constraint
equations are written in the form

n
D Cuydg; +Cudt=0 k=1,2,....m (4.66)
Jj=1

where the various C are, in general, functions of the generalized coordinates and
time. Constraints of this form are known as nonholonomic constraints. While
deriving the Lagrangian equation of the first form, there is a step written in

(x2.52)

Fig. 4.7 Double pendulum.
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Eq. (4.21) as

9q; 9q;

d /oT aT
Plo-§(E)- E]we
i

At that moment, because g; is independent throughout, the terms in the brackets
were set to zero. Now g, is not independent and cannot be set to zero. The general
expression for the generalized force, however, is still valid, i.e.,

Furthermore, to broaden our considerations, the nonconservative forces may be
treated as a combination of constraint force F,; and the other nonconservative
force F,;. Substituting this expression into Eq. (4.21), we have

oL d (oL
=N Fi+F - = 4.67
E,— [aq, + Foj + Fy dt( )}&1, 0 (4.67)

Let Eq. (4.66) be multiplied by A; and summed over £ throughout. Adding that to
Eq. (4.67) gives

d aL d /oL
Z —+Fi+Foj—— ( ) + Akch] 8q; + Akckt dr =0

Rearranging the equation leads to
| oL d [dL
—— o ACyj | d
Sl a () v Do

n m
+ Y Fydgj+ Y MCedt =0

j=1 k=1

The preceding equation can be considered a combination of two equations,
which is proved here. The two equations are

" (oL d foL
=2 , Cij |dg; =0 4.68
;[aq/ dr( >+f”+zkk k’] 4 (@8

and
n m
Y Fudgj+ Y MCiyde =0 (4.69)
j=1 k=1

In Eq. (4.68), note that only (n — m) ¢, is independent, but there are m arbitrary A,
values. Choose m A, values such that the sum of four terms in the bracket is zero for
m brackets. These various mq; are presumed to be dependent coordinates. Then
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the remaining ¢; are independent, and the sum of the four terms in the bracket are
always zero, i.e.,

oL d /oL

—_——— Foi A i=0 j=1,2,..., 4.70
g dt(afij)+ ,+Xk:ka, / " *79

Now let us consider Eq. (4.69). When Eq. (4.66) is multiplied by A; and summed
over k throughout, we have

> Mcpdt = =33 MCydg; 4.71)
k k
Substitute this into Eq. (4.69), we find that
Z]:Cj dqj - Z ZAkaj dqj =0
J ko

or

J

> [f, - Zxkck,] dg; =0 (4.72)
k

But,

d (oL AL
rmd (),
dr \dq;/ 9q;

With the use of this equation for the nonconservative force in Eq. (4.72), we obtain

d /oL dL
Z [a (_> - '_J - ]'—()j - Xk:)\kckj] dqj =0 4.73)

J

Equation (4.73) multiplied by (—1) is identical to Eq. (4.68), which has been proved
to be true. Therefore, Eq. (4.69) is also true. Summarizing all the equations, we
have

d (oL oL
— 3y _ = _ 2 Cui ]-—”- '=1,2,..., 4.74
o G R R

-7:Cj=Z)"kaj j=1,2,...,’l (4.75)
k

Y eydgj+egdt =0 k=12,...,m (4.76)

J

Totally, there are 2n + m equations for determining nq;, nF.; and miy; Ay is
called the Lagrange multiplier, F; represents constraint forces, and F,;, the other
nonconservative forces.



LAGRANGE'S EQUATIONS AND THE VARIATIONAL PRINCIPLE 73

Example 4.8

A four-wheel wagon is modeled as a mass m in translational motion and four
wheels in rotational motion (see Fig. 4.8). The mass m includes the four wheels.
The moment of inertia for the four wheels with respect to the rotating axes is /.
Determine the required coefficient of friction between tires and the pavement for
the wagon to move without slipping down the slope inclined at angle ¢.

Solution. Kinetic energy:
_ 1.2 1742

Potential energy:
V =mgx sing

Constraint equation:
dx —rd6 =0

where r is the radius of wheels. The Lagrangian function is
L=T -V =3mi*+ 110 — mgxsing

For the x coordinate,

oL 9 ing
— = mx, — = —mg si
% ox &

d
a(m)&) +mgsing = A = F,

or
mi = F; —mgsin¢ 4.77)
For the 9 coordinate,
aL . aL
— =10, — =0
a0 a0
d .
—({8) = —A
dt( ) r

777 77777 777777/

Fig. 4.8 Wagon rolling down inclined plane.
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or
16 =—xr =—Fr
From the constraint equation we have
i=rf
¥=rb
Combining the preceding equation with Eqs. (4.77) and (4.78), we find

g

= —(l/m 7D sing

X
Because F, = u(mg cos ¢)

73 tan ¢

- I+ mr?

where p is the required frictional coefficient.

Example 4.9

(4.78)

(4.79)

Suppose that a car is just started and is to be driven without slipping on hor-
izontal ground covered with ice. With the use of Lagrangian equations that are
constrained, find the equations to describe the motion and find the required fric-
tional coefficient between the tires and the ice. Explain why the driver should not
attempt to accelerate rapidly. Assume that the mass of the car is M, the moment
of inertia of wheels is /, and the torque exerted on the wheels is T,. The weight
of the car is distributed evenly on all four wheels, and this is a four-wheel-drive

vehicle.

Solution. Kinetic energy:
T = iMx> + 516
Potential energy:
V=0
Constraint equation:
dx —rd6 =0

The nonconservative generalized force in the 6 direction is 7, and the La-

grangian function is
L=T~-V =1iMi*+110

For the x coordinate,
oL

L
ax

— =0
ox

Mx,

d .
d—t'(MA) =A= .7:x
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This is the equation of motion in the x direction. For the 6 coordinate,
aL . aL

Zo14, ==0
26 30

d .
E[—(IG) =T, —xr =T, —Fyr

This is the equation of motion in the # direction. From the constraint equation, we
have

i=rb

Combining the equations of motion together with the preceding equation, we
obtain

10=I£=—£=T,-—]-}r
r rM

Rearranging, we find

1
Fx (m +r ) =T
Because friction can be expressed as the product of the frictional coefficient and
its weight, the frictional coeffcient is determined as

T,
g/ +Mgr)
where g is gravitational acceleration. Hence the required frictional coefficient is
higher as torque increases. The driver should not try to accelerate rapidly, because,

as the torque increases, the required frictional coefficient to avoid spinning wheels
on ice will exceed the actual frictional coefficient.

I

Example 4.10

Consider a block of mass m sliding on a straight rod without friction as a
case for a time-dependent constraint. The rod is rotating in the x—y plane that is
perpendicular to the gravitational force. The rod is rotating at constant velocity w.
Find 1) the radial position of the block as a function of time and 2) the constraint
force from the rod on the block. A similar problem has been presented in Example
2.3. The physical conditions are shown in Fig. 2.7.

Solution. The r and 6 are the generalized coordinates. The constraint equa-
tion is
0 = wt
or

d6 —wdt =0 (4.80)

so that
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The kinetic energy is
T = im(* +r*6%)
The potential energy is a constant that is set to zero, i.e.,
V=0
Therefore,
L = imG* +r?6%)
1) For the equation in the r direction,

d
Et-(mr') —mre*=0

F— wzr =0
r = Acoshwt + B sinhwt
= rgcoshwt + (Fo/w) sinh w? 4.81)
where ro and ry are the initial position and velocity of the block along the r

direction.
2) For the constraint force,

d [aL aL_A
dr \ 99 30

d .
a(mrze) = 2mwri = A (4.82)
Fo =2morr

Here, the generalized constraint force is a torque. The force between the rod and
the block is 2mawr.

4.5 Calculus of Variations

The calculus of variations is a totally different approach from Lagrangian equa-
tions. It is a method for us to determine conditions under which the integral of
a given function will reach a maximum or minimum. But it can also reach La-
grange’s equation for a conservative system. Because of that it is included in this
chapter.

To understand the method, let us consider a function f that is to be integrated
over a path y(x). The starting point of the path is (xy, y1), and the end point is
(x2, y2) as shown in Fig. 4.9. Assume that the function f can be written as

f=fo.y,.%)

where y and y’ and x are independent variables, although y and y’ are functions
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¥(x,0)
(xz Yz )

(x:.y,) (%)

X

Fig. 4.9 Paths for line integration.

of x. The integral of f is then

I= / FO. v, x)dx (4.83)

Clearly, the result of the integral depends on the path y(x) chosen. Here we want
to determine a particular path y(x), so that it makes the integral to reach the
extremum. To reach that goal, we let

y(x,a) = yx,0)+ aglx) (4.84)

where g(x) = dy/da and g(x,) = g(x;) = 0. This means that the path is varied
from y(x) to y(x, o). The condition for the extremum of the integral is then

al
(__) ~0 (4.85)
do /4o
From Eq. (4.83), we have
al 2 /3f 0 af oy’
ar =/ <_f_y_+_f_y ax (4.86)
do n \0yda 3y du

In the preceding equation, the second term on the right can be simplified with the
use of integration by parts, i.e.,
2 2.d (3f\ d af
—/ — (—f,) 2 ix = —f, g(x2)
N vy, dx \3y' ) oo Y liex,

/'*'2 af 8%y d af ay
x = -
Py
(x)_/”i df ﬂdx__/*’zi(a_f)a_ydx
x:x.g : y dx \ 9y /) o - x dx \ 3y ) da

3y dxda 8y da
Substituting the preceding equation into Eq. (4.86), we obtain

31_/*‘2 of _ d (3f\]3,,
do S, Ldy dx\dy/] o
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Now multiplying the equation by do and setting o to 0 and writing

al
— do =81
oa ) .o

d
(—l) da = 8y
dor a=0

_ [P _d (¥ _
61_/“ [3y dx (W)]Sydx_o

Because 8y is arbitrary and not zero as x| < x < x;, the terms in the brackets

must be zero, i.e.,

af of

—f — —d— —f— =0 (4.87)
dy dx \ 9y’

we find

This equation is known as the Euler-Lagrange equation. Note that if we change
symbols, f - L,y — ¢,y = ¢, and x — ¢, we can write Eq. (4.87) as

d /oL oL 0

dr \ 3g dg
which is Lagrange’s equation for a conservative system. Equation (4.87) is the
tool for us to find y(x) for I to become the extremum. It is similar to Lagrange’s

equation, from which we find ¢(¢). For a special case, when f is not an explicit
function of x, Eq. (4.87) can be further simplified. Multiplying Eq. (4.87) by y',

we have
af d [of
y/__ __y/_____ ___l =0
ay dx \ dy

Adding and subtracting (3f/dy")y" and also adding 3f/9x, which is zero anyway,
we obtain

B L O OO, 4 ()
ay’ ay ax  ay’ dx \ 9y’

Rewrite the first three terms as d f/dx and the last two terms as (d/dx) [y’ (8f/9y")];

we find
. af
af 4 (LY
dx dx ay’
or
of
f= y’—f = const (4.88)
ay’

which is even simpler than Eq. (4.87) for finding y(x). It will become clear after
studying a few examples later.
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On the other hand, sometimes we like to have

I= / FO Y ) dx (4.89)

to reach the extremum, but notice a condition is imposed, such as,

X2
/ o(y,y,x)dx =C (4.90)

Xy
To treat this type of problem, we multiply Eq. (4.90) by A and add that to Eq.
(4.89), then we have

X2
I+Ac0=1’=/ (f + ro)dx
Xy

R
=/ F(y,y, x)dx

Xy

Ry
51’:/ I:E—-q—<ﬁ)]5ydx=0
n LAy dx \3dy

in which F(y, y',x) = f + Ac. Similar to the way we find Eq. (4.87), we obtain

E—i oF =0 4.91)
dy dx \ 9y’

From this equation, y(x, ) will be found. The constant A then is determined by
Eq. (4.90), which is equivalent to the constraint equation already discussed.

Example 4.11

A geodesic on a given surface is a curve, lying on that surface, along which the
distance between two points is shortest. Determine the equation of geodesic on a
right circular cylinder.

Solution. The radius of the cylinder is a. Take the z axis along the axis of the
cylinder. The two points on the cylindrical surface are (z, 61) and (z,, 62). The
distance between two points is

02 dz 2
S = 24 (££) ao
/9. Ve +<d9>

f(z,2,6) = va?+z"?
af af
4 _o U _y
9z a0
af z’

32 Jaltz2

Therefore,
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Using Eq. (4.88), we have

f =+va*+ z? = const

or
, dz
z = — =const

z =cob +

Therefore, the equation for the geodesic on a circular cylinder is found to be

;= 3 — 24 216, — 270, 4.92)
0, -6, 6, — 0,
Example 4.12

Just to illustrate the point that the calculus of variations also leads to the La-
grangian equation for a conservative system, let us consider a particle of mass m
freely falling under gravity. Find the equation of motion by considering

5]
I=/ L(y,y, t)dt
]

Solution. The energies of the system are
T =3my*,  V =mg(y—y)

L=T -V =3imy*—mg(y - y)

aL d (BL) .
— )} =0=—mg —my

3y dr \ 8y

The equation of motion is
y=-8

Note that the y axis is taken vertically upward.

Example 4.13

The surface area for a body revolving with the x axis can be expressed as

X2
I= 27'[/ y(1+yHide

Xy

Determine the function y(x) that minimizes the integral 1.

Solution. Rewrite the integral as

I 2 i
—=f y(+y?)Tdx
2n o
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Here the function f is

oY 0 =y 4y
which is not an explicit function of x. Using Eq. (4.88), we find

!/

yA+yHi -y — =
1+ y2
or
YAy =yt =a+y?D:
Simplifying leads to

y=a(+y?:

Integrating yields

x
y = ¢, cosh (—— + cz>
Cl

where ¢, ¢, are integral constant and can be determined if the two end points are
specified.

Example 4.14
Determine the equation for the shortest arc that passes through the points (0, 0)

and (1, 0) and encloses a prescribed area A with the x axis (Fig. 4.10).

Solution.  According to the given conditions, we have

1 dy 2
I =,/0 1+ (d_x-> dx 4.93)

X

(0.0) (1.0)

Fig. 4.10 Shortest arc between (0, 0) and (1, 0) but enclosing A.
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and

A= fol ydx (4.94)
Hence,
F=V1+y, o=y
F=f+xro=y1+y2+2y (4.95)
IF y' OF
Ery s T

Using Eq. (4.91), we have

A

d y’ il
dx[\/l—%y’z (429

Integrating leads to

7

Yy

/1_+_y/2

y==+

=)\X+Cl

Ax + ¢
V1= (Gx +¢))?

Integrating again, we find

1
y = ;I‘/l —(Ax 412+ 4.97)

Applying the boundary conditions (0, 0) and (1, 0), we find

A 1 22
. SN PR 4.98
‘=T e=73 4 (4.98)

Substituting ¢; and ¢, into Eq. (4.97) and using Eq. (4.94), we obtain

! ' x\?
= dx = — /1 —=1Ax ==} dx
A foy fok (x 2) + cx
Lla [ 22 A
=F|:§ 1——4—+sm 5]+02 (4.99)
A in A2A+)‘ 1 »
— =51 — —_—
2 =8 2V T3

1
0
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The value of A is determined by this equation. And y(x) is written as

1 AN\ 1 A2
=-f1—-(x=-Z2) - /1-% 4.100
=3y (x 2) x 4 (4-100)

which can be rewritten in a familiar form as

1\? , 1
—§> +(—c) =7

Therefore the curve is a circular arc with the center at (%, ¢z) and a radius of 1/A.

Problems

4.1. Derive the equations of motion for Example 2.1 with the use of Lagrangian
equations.

4.2. Derive the equations of motion for Example 2.2 with the use of Lagrangian
equations. Make some necessary assumptions to simplify the problem.

4.3. Developthe Lagrangian equation for the momentum equation of the incom-
pressible fluid flow in fluid mechanics.

4.4. Use the result of Problem 4.3 to find the momentum equations in cylindrical
and spherical coordinates for incompressible fluid flow in fluid mechanics.

4.5. Suppose a point mass m is attached to one end of a horizontal spring with
spring constant k, the other end of which is fixed on a cart that is being moved
uniformly in a horizontal plane by an external device with speed vy. If we take
as a generalized coordinate the position x of the mass particle in the stationary
system, find the equation of the motion for m, from the following:

(a) The Lagrangian equation.

(b) Hamilton’s canonical equations.

4.6. A heavy particle is placed at the top of a vertical hoop. Calculate the reaction
of the hoop on the particle by means of the Lagrangian multipliers and Lagrange’s
equations. Find the height at which the particle falls off.

4.7. Consider a car that is driven up an inclined slope (Fig. P4.7). With the use
of constrained Lagrangian equations, find the equations of motion, and also find
the power required to drive the car at the minimum speed. Make assumptions
necessary to simplify the problem.

4.8. A circularloop of wire is located in the x—y plane, with one point on it fixed at
the origin and its center on the y axis; the radius varies intime accordingtor = a +
bt?, where a and b are constants. Find the equations of motion for a bead of mass m
sliding smoothly on the wire and the normal force of wire on the bead (expressed
as a function of an appropriate angular coordinate and its time derivative).
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mg

$

T777777 77777777777 7 7777777777
Fig. P4.7

4.9. Find the geodesic of a sphere.

4.10. The ends of a uniform inextensible string of length £ are connected to two
points fixed at the same level, a distance 2a apart. Find the curve along which the
string must hang if it is to have its center of mass as low as possible.



5
Rockets and Space Vehicles

N this chapter we shall study the dynamics of rockets and space vehicles in

detail. We begin the study with a single-stage rocket in Section 5.1. In this
section, we discuss thrust, air drag, stability, equation of motion, and conditions at
the time of burnout. Multistage rockets are studied in Section 5.2. Advantages of
multistage design are explained. The method of Lagrangian multiplier is employed
to achieve optimum design for a multistage rocket. A numerical example is given
to demonstrate the advantages of multistage design.

The orbit of a space vehicle is studied in Section 5.3. The space vehicle is mod-
eled as a particle in a central force field. Different orbits may be achieved with
different amounts of total mechanical energies. Special emphasis is placed on el-
liptical orbits. Numerical examples are given to illustrate the relationship between
the velocity and position of a space vehicle for getting into an elliptical orbit.

Continuous propulsion in a rocket is discussed in Section 5.4. Usually this type
of propulsion is provided by an electrical system. Because the thrust from electrical
propulsion is small compared to the weight of the rocket, small perturbation
method is applied for solving the equations of motion. The advantage of analytical
method is that parameters involved in the result are seen clearly.

Interplanetary orbits of a space vehicle are discussed in Section 5.5. The launch-
ing time is small compared to the period required for an interplanetary trip; there-
fore, the thrust and time for launching are considered as an impulse. The space
vehicle in orbit is still modeled as a particle in central force field. Numerical results
of different trajectories are collected in Table 5.2. A detailed calculation for an
elliptical trajectory of a space probe traveling from Earth to Mars is given for this
subject. Special attention is paid to the space probe when it reaches Mars. With
a proper impulse to reduce the speed of the probe, it will get into a spiral orbit
around Mars so that a long-time observation can be carried out.

5.1 Single-Stage Rockets

Rockets differ from air-breathing jet engines that burn fuel with surrounding air.
Rockets are self-contained, carrying both fuel and oxidizer. To understand better,
we must look into details about the forces acting on the rocket. In general, there are
three forces: thrust, gravity, and air drag. In addition, during early development of
the space program, many rocket launches failed at the launching pad. What were
the reasons behind this? Finally, we want to know what are the conditions of the
rocket when fuel and oxidizer are burned. All of these interesting subjects will be
explored in this section.

Thrust

The thrust of a rocket can be determined by examining the performance of a
rocket under static tests. The rocket is arranged schematically as shown in Fig. 5.1.

85
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Propellant

Fig. 5.1 Rocket under static tests.

Consider a stationary control surface that intersects the jet through the exit plane
of the nozzle. Positive thrust acts in the direction opposite to V,. The momentum
equation for such a control volume is

d
Y F= ~—fdev +/ pV(V, - dA) (5.1
dr J, A
D F=(T+ AP, — AcPoi (5.2)
where V is the velocity of fluid, V, is the relative velocity between the fluid and

the control volume, P, is the ambient pressure, P, is the exhaust pressure, and A,
is the exit area of the nozzle. The first term on the right-hand side of Eq. (5.1) is

d
— Vdv=0
mﬁp v

because V = 0. The second term is
prV(V,. -dA) =mV,i
Therefore, we have the thrust,
T =mV,+ A (P, — Py) (5.3)

Gravity

Because the gravitational force is inversely proportional to the distance squared
between the center of the Earth and the mass center of the rocket, the gravity at
different heights above the surface of the Earth can be expressed simply as

_ Ro )2 (5.4)
8 = 80 Ro+h .

where gg is the gravity at the surface of the Earth, Ry is the average radius of the
Earth, 6,371.23 km, and A is the distance from the surface of the Earth.
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Air Drag

The air drag acting on the rocket can be estimated by

D =Cyipv*Af (5.5)

where Cy is the drag coefficient in the order of 0.1, p is the air density, (0.075
lbm/ft? at sea level), v is the rocket velocity, and A is the frontal cross-sectional
area of the rocket.

From Eq. (5.5), it is seen easily that the drag is a function of velocity and density
of air. At the begining of the rocket journey, the velocity is very small; later on
the density becomes very small. The atmospheric density is reduced to 1% of its
sea-level value at an altitude of 100,000 ft. Therefore, the drag value is always
much less than the thrust of a rocket. Because of that, in the estimate of conditions
after burning of fuel and oxidizer, the drag term is often omitted.

Stability

At the beginning of the launching process or shortly after the rocket leaves
the launching pad, the forces acting on the rocket actually are thrust and gravity.
It is easily seen that the thrust is produced by the exhaust gas at the exit of the
nozzle. The sum of all the momentums of leaving particles ), m;V,; is the major
contribution to the thrust. The other part of the thrust is from pressure, which
contributes a small fraction of the thrust. The vector sum of all m;V,; will locate
the center of application of the thrust, C.T. as shown in Fig. 5.2. If C.T. is above
the center of mass of the rocket, the situation is stable. Otherwise, the forces are
not stable. The rocket most likely fails to be launched.

Fig. 5.2 Stability.
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C.M.

mg
PeAe

Ve

Fig. 5.3 Motion of a rocket in gravitational field.

One remark ought to be added here: the exit velocity V, is obviously very
important to the location of C.T. However, the exit velocity is not determined
completely by the contour of the nozzle. The expansion wave of the flow usually
occuring at the corner of the exit will change the direction and magnitude of the
exit velocity. Details of these topics are beyond the scope of this book.

Conditions of the Rocket at the Time of Burnout

Consider that a rocket is launched at an angle of § with the gravitational force
as shown in Fig. 5.3. The equation of motion for the rocket along the axis of the
rocket can be written as

d
md—‘:=T—D—mgcos9 (5.6)

Note that as T — D = net thrust denoted by F, the preceding equation agrees

well with Eq. (2.19) xsin6+ Eq. (2.20) x cos#. Considering 7', D, and g in
precise form, Eq. (5.6) becomes

dv (P, — P)A, +mV, ! ZA Rg cos®  (5.7)
— = (r, — e —Cp= —mMgo————— .
m ¢ alle T M Cszv f gO(R()+h)2

dr
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This equation can be integrated numerically, as shown previously in the integration
of Egs. (2.19) and (2.20). However, if only the major terms are kept in the equation,
we can have the equation simplified to

d
md—: =mV, —mggcosf 5.8)

Integrating the equation, we find
Vo= Vela=? — go(cosO)unty (59)
b

where (), is the quantity at the time of burnout, myg is the initial mass of the
rocket, and (cosf),, is the integrated average value of cos 8. For a vertical flight
the velocity is

V=V, 22 — gyt (5.10)
m

where m = mgy — mt.
The altitude attained by the rocket at burnout is

f bn(mo/mp) 1,
hp = =—Vitp————+ Votp — = 5.11
b _/0 vdt tp (mo/mp) — 1 + Vel 280’1, ( )

To see clearly the advantage of multistage design for rocket and save some writing,
let us introduce mass ratio R as

R=— 5.12)
mp
payload ratio
load
_ payload mass __m (5.13)
mass of propellant and structure ~ m, + m;
and the structure coefficient € as
€ = structure mass — mg _ my — my, (5.14)
mass of propellant and structure ~ m, + m; my —my
From the preceding equations it is clearly implied that
mo = my, +m,,+ms (515)

and

mp = my, +ms (516)
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Combining the expressions already introduced, the mass ratio can be written as

14+
= 5.17
oY (5.17)
and the terminal velocity of the rocket at the burnout is
14+ A
Vf =V,lhR — golp = VL,E\/L — 2oty (5.18)

€+ A
5.2 Multistage Rockets

From past observations, many rockets are designed in two or three stages.
Theoretically speaking more stages always will make the terminal velocity higher.
However, the practical design problem also must be considered carefully. The
optimization of multistage rockets with respect to the distribution of mass has
been treated in a number of interesting papers.” To simplify the problem, let us
only consider the first term on the right-hand side of Eq. (5.18) and write AV; for
the increment of velocity of the ith stage of the rocket so that

142
AV, =V, + (5.19)
€; + )\i
The final velocity of nth stage is then
14
Vo = AV, =V, b ——
=2 2t
or
n 1+)\i n
= = b = F() 5.20)
Xl: € + A ; * (

Here we can maximize V,/V, by adjusting the value of A;. On the other hand, for
each stage, we have

Mo
A= 0(i+1)
mo; — Moi+1)
moi 144
Mog1y A

where my; is the initial mass of the ith stage of the rocket. That means

n
Moy Moy Mo Mog _I—I(1+Ai>
mp  moe mez  mp ;3\ A

*Hill, P. G., and Peterson, C. R., Mechanics and Thermodynamics of Propulsion, McGraw-Hill,
New York, 1983.
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or

n )\'
me o _ <__. ) (5.21)
mor oy \1+2%

Taking logarithmic form of the preceding equation, we obtain

mg - A -
bl =3 = A 5.22
mo) ; ( 1+ )»i) ; GO -2

which actually serves as a constraint equation for adjusting A;, because for a given
design, the payload and the initial mass must be specified. Therefore, we reach the
point that (V,/V,) is to be maximized but subjected to the constraint equation of
(5.22). This is a typical problem for the use of the Lagrange multiplier. Consider

L) = FOy) + aG(y) (5.23)

where o is the Lagrange multiplier. Taking the derivative of Eq. (5.23) with respect
to A; and setting it to zero, we find

aL aF aG
— = — 4«
A Ok 0N
| 1 o o
_ + —
1 +)x, E+)\.[ )\,‘ 1 +)\.1

which can be simplified to

Q€

py (5.24)

]l -a—e¢

Then from Eq. (5.21), the Lagrange multiplier o can be determined by

mLo_ ( €i )( o ) (5.25)
mor iy 1 —¢ l -«

_ mo (& \|'

a—l/ 1+[mLE(1_Q)] (5.26)

Then the value of A; is determined by the value of « in Eq. (5.24).

or

Example 5.1

To illustrate the advantage of multistage design, let us compare the terminal
velocity of a single-stage rocket to that of a three-stage rocket. Suppose that the
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payload is 500 kg, the initial mass is 7500 kg, and the exhaust velocity is 3000
mps. The structure mass is 1000 kg.

Solution.  For the single-stage rocket

=M 1000 53
Moy —my, 7500 — 500
500
LS =0.0714
Mo —my, 7500 — 500
144 1 +0.0714
=Vl = 3000 ——— = 4827
Vi = Vel T 0.143 + 0.0714 m/s

For the three-stage rocket, by assuming
€ =€ =¢€3=0.143
and from Eq. (5.26), we obtain

1

o= - = 0.70846
1 + (7500/500)3 (0.143/0.857)
Using Eq. (5.24), we find
. 0.143
P 0.70846 x — 0.68203

T 1—a—€ 1-0.70846—0.143

The terminal velocity at burnout is then obtained from Eq. (5.20):

14+ A
Vi =13V, l’w( + )
€+ A

1.68203
0.143 + 0.68203

=6411m/s

= 9000 fm(

Certainly, this velocity is much higher than the velocity of the single-stage rocket.

5.3 Motion of a Particle in Central Force Field

Consider a system of two particles with mass m; and mj. Let the center of
mass m; be at the origin of x—y plane. This plane contains the trajectory of m;.
Furthermore, let us consider the case m, 3> m and write M for m;, m for m,.
With the use of polar coordinates (r, 8), Lagrange’s function for m is

L=3imG*+r*-V()
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Then the equations of motion for m are

d(oLy oL _ . oo Vg 527)
al\ar ) " T T T = '
d (BL oL _d. 2% o (528)
— =) ——=—(mro)= .
dr \ 96 a0 dt

From Eg. (5.28), we obtain the momentum in 6 direction as

mr? = L (5.29)

where L is a constant. This means that, as the particle moves in a central force
field, its angular momentum is constant. With the information of Eq. (5.29), Eq.
(5.27) becomes

mi =~ = —— = F () (5.30)

F (r) is the force in the r direction. Because the potential energy of the particle is
a function of r only, the force is a function of r. Equation (5.30) actually defines
r(t).

To solve Eq. (5.30), we use the inverse square law for the force, i.e.,

GMm

F@)=~ 2

(5.3D)

where G is the universal gravitational constant = 6.670 x 10! N-m?/kg®. Be-
cause M and m are known quantities, the force may be written simply as

k

F(r)=—;5

where k = G M m. Now the equation becomes
L2 k
mi — —— = —— (5.32)

mr3 r2

To solve this equation analytically, we rearrange the equation. Because

d do d L d

dt dtdo mrtde

& (L d L d
de2 ~ \mr2do ) \mr2 do
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Eq. (5.32) now becomes

LdA[f L\dr L2 k
=l ]l=|-—=-= 5.33
r2 dg [(mﬂ) dG] mr3 r2 (5-33)
The preceding equation can be simplified further by changing the variable. Let
w=1/r,then
du _ ladr

T
And we can write Eq. (5.33) as

d /Ld L?
—E;LZ—(——E) —;lf — —kp?

do \ m do
Simplifying leads to
dzu+ _ mk (534)
a? T HT '
Without losing generalization, we can write the solution of Eq. (5.34) as
mk ,
u= F[l 4+ ecos(f — 6] (5.35)

where £ and 6’ are arbitrary constants of integration. To determine these constants,
we put back the symbol r for 1/u.

£2
. [imk) (5.36)
1 +ecos(@ —6)
Differentiating Eq. (5.36) with respect to 6, we find
dr  eL? sin(® — 6") (5.37)

ds W[l + ecos(6 — 6)]?

On the trajectory of m, there is a point called an apsidal point. At such a point,
the r is not changed as 6 changes. Let us choose the (r, §) coordinates in such a
way that & — 0’ = 0 at one apsidal point. On the other hand, using Egs. (5.36) and
(5.37), we have

o Lodr L (e sin(6 — 6")
T mr2de mr2\ mk J[1 +ecos(d — 61

2 2
_ %(%‘) <%1£T> sin(@ — 6')

;= %sin(a — 0 (5.38)
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Fig.5.4 Geometry of a conic curve.

The total energy of m can be written as

i L2 k mk?
E=T+V = -m’ _k et
+ 2mr + 2mr?  r € )2£2

Equations (5.36) and (5.38) are used in the process deriving the preceding equation.
Hence

2L%E
=14+ — 5.39
£ t— (5.39)

Now the trajectory equation is
2
k

_ (LT/mk) (5.40)

1 +ecost

To understand the meaning of Eq. (5.40), let us review a part of analytical
geometry for conic curves. A conic curve is defined as the locus of a point moving
such that the ratio of its distance from a fixed point, the focus, to its distance from
a fixed line, the directrix, is a constant . From Fig. 5.4, we have

£ = —

AB
or

r =¢(AB) =¢(CD) =¢(OD —rcos§)

Rearranging leads to
r(14+¢&cosf) =¢-0D =const=C
Therefore

C

= — (5.41)
1+¢ecosé
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Table 5.1 Different values of € and E for different orbits

Eccentricity, & Energy, E Type of orbit
>1 >0 Hyperbola
=] =0 Parabola
<1 but >0 <0 Ellipse
=0 —mk? /2L Circle

Compare this equation with Eq. (5.40); we find
C = L?/(mk)

That means the orbit of the particle in a central force field can be one of the conic
curves. The focus is the center of central force field. Different conic curves result
from different values of &, which is called eccentricity. Because E is directly
related to &, different orbits for different £ and E are given in Table 5.1.

Because the total energy of the particle m dictates the type of orbit, let us look
into the meaning of £ < 0, i.e.,

E=T+V <0

k GM

T <-V@r)y=-= e
r r

GMm

1 .
-m(r? +r26% <
2
or
1 . GM
—(F 4+ r2h) < —
2 r
The preceding equation says for an elliptical orbit, the velocity of the particle must
be less than /2G M /r. As the velocity reaches the limiting value of /2GM /r,

the particle will get on the parabolic orbit and will not come back. Hence this
velocity is termed the escape velocity:

2GM
r

Vesc =

(5.42)

On the other hand, for a circular orbit, ¢ = 0. Let us examine the meaning of

e =0 As
/ 2L2E
=./1 —— =0
¢ * mk?
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that means
4+ 2LE
mk?
E mk?
Y
mk?
T+V=—-——xr
+ 2L
1 . .., GMm 1 (GM)?
- 6%) — —— = —= :
2m(r+r ) r 2" (r20)?

For a circular orbit, 7 = 0, and simplifying the preceding equation, we find
1 242 GM (GM)?
—rf° = — — -

2 r 2(r20)?

Using v =ré,we have
1, _ GM (GM)?

2 r 2r2y?

W =GM/r*=0

Veir = JGMJr (5.43)

That means
Vese = v 2Ucir
and for an elliptical orbit, the velocity must satisfy the condition
Veir < Vel] < Vese

or

VGEM/[r <ve < 2GM/r (5.44)

Just to have some feeling of the velocity of a planet on a circular orbit, let us
calculate the velocity of the Earth around the sun. We have

GM g

REearh

VUgarth =

M = 1.9866158 x 10* kg
Rearn = 1495 x 10! m

67 x 1011 x 1. 10%
o \/6 67 x X LOBGOISE x 100 _ oo

1.495 x 10!
~ 30 km/s
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Fig. 5.5 Ellipse and auxiliary circle.

Elliptical Orbits

In studying the orbits of satellites around the Earth, we are interested more in
elliptical orbits. Let us look further into details about them. From Fig. 5.5, we
have

FC=CD—-FD =acos¢ —rcosf

Also, we have

2
FC=a—BF=a—rmin=a—m
Because
r2
S KD
£? 1 1
Fmin + Fmax = m—[m + 1—_;]
2 2
= m =2a
we find
2

a= m (5.45)

Fmin = a(l — &) (5.46)
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and

FC=a—a(l —¢) =ac

L2 —
=acos¢ —rcosf =acos¢ — M
e
2
=acos¢... M + r_
e e
r=a(l —¢ecos¢) (5.47)

So far, we have found the orbital equation r = r(8) or r = r(¢), but there is no
equation to have time ¢ explicitly involved. To relate ¢ to the time, let us start from
the total energy E:

so that

2 kL2 2 L2
F= |={E+Z— , dr — E+£— =dr (5.48)
m r  2mr? m r 2mr?

Because E = const, it remains the same at any value of r. Let us consider E at

¥ = Imin.

k

92

o3
Il

1
T+V ==
+ 2

mln
Tmin

1 L2 k

2mrk.  rmin

2 2 2
¢/ latra) |-t iea)
2m mk(l +¢) mk(1 + &)

mk? k
= . 49
27 ¢ D 2a -4

Substituting Eq. (5.49) into Eq. (5.48), we have

2 W krd
dt_rdr/\/ ——)2+kr——£)— ma/krdr

(ag)? — (r — a)?

_ «/mafka(l — ¢ cos p)ac sin pdg \/_
B V(ag)? — (—ac cos $)?

a(l —ecosg)dp (5.50)
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Furthermore, because mr2§ = £ = const or r26 = const,

1ridg =dA

dA 1, L wab
— = ~r“f =const = — = —
dr 2 2m T

This is known as Kepler’s law of areas. Where T is the period of the motion, wab
is the area of the ellipse. Making use of the relations from analytical geometry,

b=ay1l—¢g?

e =(c/a)
we find
T = 2nabm =2ma’y/1 ——e2ﬁ
L
/1 — g2 3
Y L AL ey b (5.51)
vmka(l — &2) k
Using Eq. (5.51) in Eq. (5.50), we obtain
T
dt = — (1 —egcos¢p)de
2
Therefore
2t
—’TT— —¢—ssing (5.52)

Collecting all the results together, now we have

L2/ (mk) 2L2E
re=— g=.14+—
14+ ¢ecos8 mk2
£

=a(l — -

r=a( £c0sQ), mk (1—22)
2rt ma3

_ = — i s T =2, —
T ¢ —¢esing

Example 5.2

Consider a particle that is moving in an elliptical orbit about a fixed focus
because of an inverse-square law of attraction. 1) Find the points in the orbit at
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which the magnitude of the radial velocity 7 is maximum, and 2) prove that the
possible values of corresponding 6 are

k b . k b)
—(1-Z)<d< [—(1+2
mr3 a mr3 a

Solution. 1) Rewrite the equations of motion for a particle in an elliptical
orbit:

. k
mi —mrg? = —— (5.53)
2

mr*0 = L (5.54)
ASF — Fmax, F = 0, then from Eq. (5.53), we have

. k
2 — .
mrf° = )

£L\* &
rf—1) =—=
" mr? r2

L-2
= — 5.55
— (5.55)

or

On the other hand,
L2/ (mk)
r=—"-—
1+ ecosf

. ke sinf
L

F _ke $66 =0
ry = =
L
That means 6 = m/2 or 3w /2:

) ke b4
Pnx=— at 0=, r=— (5.56)

2) For a particle in an elliptical orbit,

1 L,k
E=-m@F+r6)—-<0
2 r

L 1 (2% 2 (ek\'1 2% &
2oL 2 o2 ey & s
r2\ mr mr3 L) rr mr® m2rép?
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or
. 2k . 22
g4~ Z g2 EX (5.57)
mr3 m2r6
Consider
. . 2k . 22
FEH =6 — =21+ 2 =0
mr3 m2ré
o L[ 2% FTER TS
T2 m3 m2ré  m2rb

k k b 67
=—3[1:t\/1—€2]=—3(1:t—>= ” (5.58)
mr mr a o,

2

Therefore, choosing the values of 6 between the two roots from Eq. (5.58), Eq.
(5.57) is satisfied, i.e.,

FE) = (62— 62)(6* = 62) <0

Example 5.3

A weather satellite is to be launched. The requirement of such a satellite is
that it must stay above the same point on the surface of the Earth all the time.
Determine the radius of the circular orbit above a point located along the line from
the center of Earth perpendicular to the Earth’s rotating axis with mass of Earth
=5.975 x 10** kg.

Solution.  For a circular orbit, the velocity of the satellite is

v=+GM/r
Because the satellite must be moving with v = rw, where w is the rotating speed
of the Earth,

2
w =
24 x 60 x 60

wr = JGMIr

_(GMY'P (6.67 x 107! x 5.975 x 10%)/3
I (7.2722 x 10-5)23

= 4.22387 x 10* (km)

=7.2722 x 107 rad/s

we find

Example 5.4

A satellite enters its orbit at a velocity of 8045 m/s at an altitude of 644 km. The
velocity is parallel to the Earth’s surface. Find the equation for the orbit and the



ROCKETS AND SPACE VEHICLES 103

maximum altitude from the Earth’s surface the satellite will reach. The average
radius of Earth is 6436 km and the mass of Earth is 5.975 x 10** kg.

Solution. From the given data, we have

r = 644,000 + 6,436,000 = 7,080,000 (m)

L = mr0 = mrv = m(7,080,000)(8045)

= m(5.69586 x 10'0) (kg - m%/s)
Lk
T oomr? o

k=GMm = (6.67 x 107')(5.975 x 10**)m
=m(3.9853 x 10'%) (N-m?
_ (m5.69586 x 10'9)>  m(3.9853 x 10'
" 2m(7,080,000)2 7,080,000
= —m(23,928,536) (N - m)

[~ 2°E 2(m5.69586 x 1010)2m(23,928,536)
CEVIT \/ m(m3.9853 x 101)2
(m5.69586 x 100)
m?(3.9853 x 101

L?/(mk) =

= 8,140,622 (m)

Hence, the orbital equation is

L?/(mk) 8140622
ry = =
1 +&ecosh 140.1498 cos O

Fmax = 9,574,950 (m) asf=m

The maximum altitude is
Nmax = Fmax — PEars = 9,574,950 — 6,436,000
= 3,138,950 (m)
=3139 (km)

5.4 Space Vehicle with Electrical Propulsion (equations solved
by small perturbation method)
Electrical propulsion systems are known very low in thrust as compared to the

gravity of the space vehicle at the Earth’s surface. Because electrons are emitted
from the sun constantly, space vehicles can collect electrons in orbit and the
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electrical propulsion system can function properly while the vehicle is traveling
in space. Consider that a low thrust is oriented along the tangential direction of
the orbit. The equations of motion are then

m@F —r6?) = —(k/r?) (5.59)
m@ré +2r9) =Ty (5.60)

where Iy is the electrical thrust in the tangential direction. To solve Egs. (5.59)
and (5.60), we introduce dimensionless variables as follows:

M
p=—, T=[—I, V= — = (5.61)
ro rs mg GMm

where ry is the initial orbit radius and g is the gravitational acceleration at the
initial orbit radius. Now we can write

d GM d
& _ g (5.62)
dt Fo dr

6 GM dp
46 _ SE (5.63)
dt rg dr

dr  GM d%
= 5.64
dr? rg dr? ( )
With the use of these expressions, Eq. (5.60) becomes
d [/ ,db
— —|=v 5.65
= (p dT) 0 (5.65)
and Eq. (5.59) becomes
d? do\* 1
o _ (%Y _L (5.66)
dr? dr p?

Recall that the parameter v is the ratio of the thrust from electrical rocket to
the gravitational force at the beginning point while r = ro and is in the order of
10-3. Therefore, this is a typical case to be solved by small perturbation method.
To solve Eqgs. (5.65) and (5.66), the initial conditions are assumedtobe 7 =7 =0
and r = ry; the thrust is initiated at t = 0, and

6=, GM/[r}

In dimensionless variables, that means

o

2
p=1, ¥_o Er_, (5.67)
T dr?
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and
dé
—=1, =0 (5.68)
dr

From Eq. (5.66) we get

o

de 1 /d? 1
ol s (5.69)
dr p \dr?2 = p?

Substituting Eq. (5.69) into Eq. (5.65), we find

d[ ,d% 2

—| 3= = 5.70

e [p TP vp (5.70)
To solve this equation, let us assume the solution can be expressed as

p = po+vpL+vipp+ - (5.71)

where p is a function of T and has a magnitude in order of unity. With the use of
Eq. (5.71), Eq. (5.70) becomes
d2

E{g(po +vp 4+ v+ --0)

d
—'[(po +vo+vio+ )
dr

3

2
+(po+vm+v2pz+---)]
= vpo +v?pr + -+

After carrying out the product in the preceding equation and breaking down the
terms according to the orders of v, we find the following equations. To the zeroth
order of v,

) )
d[3dp0+p0]2=0 (5.72)

dr Po dr?
or

d%po

3

—_ =

Po dc2 + 0o

The solution of this nonlinear differential equation is simply
po=¢C

When the initial condition is applied, we find

oo =1 (5.73)
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To the first order of v, we have
1d d2,01
{2 =1
2dz ( dr? + ,01>
The solution of Eq. (5.74) is

p1 =2t —2sint

Therefore, the solution of Eq. (5.70) up to the first order of v is

p=1+4v(2t —2sint) + 0(v?)
With the use of Eq. (5.76) in Eq. (5.69), the solution for 6(7) is obtained as

6 =1 —v(dcost + 1.572 — 4) + 0(v?)

(5.74)

(5.75)

(5.76)

(5.77)

From Egs. (5.76) and (5.77) it is clear that the trajectory of the space vehicle
is a spiral. The increment of the radius is proportional to the tangential thrust and
the initial angular speed. The results are plotted in Fig. 5.6. Equations (5.65) and
(5.66) can be solved numerically by the Runge-Kutta method. The disadvantage
of numerical method is that the parameters involved cannot be seen immediately.

15 . 1

0.5+

-0.5

-1 1

-1.5 -1 -0.5 0

Fig. 5.6 Spiral orbit of an electrical rocket.

1.5
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5.5 Interplanetary Trajectories

As a space vehicle moves in space, there is often more than one gravitational
force acting on it. Therefore the equation of motion for the vehicle can be written
as

mr = ZF,- (5.78)

where F; = (GM;m/|r — r;|>)(r; — r) = the gravitational force from M;. For
example, when a spaceship travels from Earth to Mars, it is subjected to the
gravitational forces from Earth, the sun, and Mars. However as the spaceship
leaves Earth, the gravitational force will shift from Earth to the sun. To estimate
the gravitational force from Earth, it is found that

Feartn < 75 Fsun

1
10
as the spaceship moves away from the Earth by 1/1000 of the circumference of
the Earth orbit around the sun. Hence it is not a bad approximation that the whole
journey is divided into three segments; in each segment the ship is subjected to
one gravitational force, so that the equations and solutions developed in Section
5.3 can be applied. The first segment is for the Earth’s gravitational field, the
second is for the sun’s gravitational field, and the third for Mars’s field. As the
space vehicle reaches the escape velocity from the surface of Earth, it will stay
in the Earth’s circular orbit around the sun. In the second part of the journey, the
trajectory is elliptical and is called transfer orbit. The last part of the journey is
in Mars’s circular orbit with the radius larger than that of Earth’s circular orbit.
Hohmann* studied the interplanetary trajectory first and used three impulses for
the Earth to Mars journey. The total velocity increment for the vehicle to reach the
Mars orbit is

AUH(Jhmzmn = Uesc + AUT + AUMars (579)

where U, is the velocity required for the vehicle to escape the gravitational field
of Earth, AUy is the increment of velocity as the vehicle moves from the Earth’s
circular orbit around the sun to the elliptical transfer orbit at ¥ = rgam, and AUmars
is the increment of velocity as the vehicle moves from the elliptical transfer orbit
at r = ryr to the circular orbit of Mars around the sun.

In the Hohmann treatment, the energy per unit mass required to put the vehicle
into the transfer orbit is

EYofmann = Eesc + %(AUT)2 = ';_'(AUT)2 (580)

Because E., = the escape energy = sU2_ — (GM,/R,) = 0, where R, = radius
of the Earth.

*Hohmann, W., “Die Erreichbarkeit der Himmelskorper (The Attainability of Heavenly Bodies),”
NASA Technical Translations F-44, 1960.
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Oberth* treated the problem slightly differently. He considered a higher terminal
velocity for the space vehicle leaving the Earth, so that the vehicle can get into the
transfer orbit directly from the first impulse of the rocket
Udbern _ GMe

2 R.

Therefore, the total energy per unit mass at the burning out time must equal to
(AUD?/2, ie.,

Eopedn =

1 GM 1
Eugbenh - E‘e = E(AUT)2
because
1 GM
FUee = R :
(4
Hence
Uoberh = /U2, + (AUT)? (5.81)

where AUr = Ur — U,, Ur is the velocity of the spaceship on the transfer orbit,
and U, is its velocity on the circular orbit of Earth around the sun. From the total
energy of the spaceship and Eq. (5.49), we have

_ mU? GMunm  GMgym

E

2 VEarth 2a

2 1
UT=\/GMsun< —_>
Fearth @

With the velocity given in Eq. (5.81) as the first impulse and the increment of
velocity from the elliptical transfer orbit at r = ry,y to the circular orbit of Mars
AUwmars, the total increment for the whole journey is accomplished in two impulses
and may be expressed as

Hence,

Aupserth = Uoberh + AUmars (5.82)

Based on the treatment outlined, several trajectories are studied. The results
are collected in Table 5.2. The trajectories are shown in Fig. 5.7. Details of two
impulses for a space vehicle to reach Mars are given in Example 5.5.

Example 5.5

Suppose that we send a space probe from Earth to Mars. When the probe reaches
Mars, it will get into a spiral orbit around Mars to make close observations. The

*For Oberth’s approach, see Hill, P. G., and Peterson, C. R., Mechanics and Thermodynamics of
Propulsion, McGraw-Hill, New York, 1983.



ROCKETS AND SPACE VEHICLES 109

Table 5.2 Characteristics of different trajectories

Name of  Eccentricity, Uogperns, AUmas,  Time required,

trajectory £ km/s km/s days
Hohmann 0.2075 11.6 2.6 256
Ellipse 1 0.2525 11.7 —2.6* 175
Ellipse 2 0.3418 12.1 —5.0* 135
Parabolic 1 16.7 —16.9* 70

*Note that the explanation of the case “Ellipse 17 is given in Example
5.5. The detailed expressions for the velocity vectors of the space vehicle
and Mars for “Ellipse 2” and “‘Parabolic trajectories” are given at the end
of Example 5.5. To verify these two cases, see the exercises in Problems
5.10 and 5.11.

length of the major axis is chosen as 4.0 x 10'! m for the elliptic trajectory with
the center of the sun as the focus. 1) Determine the impulse required for the probe
leaving Earth. 2) Determine the required impulse to reduce the velocity of the space
probe so that it will have the orbit spiraling down to the surface of Mars. 3) Find the
traveling time for the probe from Earth to the Mars circular orbit around the sun.

Solution. 1) Take the radius of the Earth’s circular orbit as the rpin of the
elliptic orbit. It is known that rg,q, = 1.495 x 10'* m. Therefore,

C = a — IEarth

= (2.0 — 1.495) x 10'' = 0.505 x 10" (m)

S — "

Fig. 5.7 Four different trajectories for Earth—-Mars journey.
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and

C

& = — =0.2525.

a

On the transfer orbit, the velocity of the probe at the surface of Earth is

2 1
Ur =\/;Msun( - —>
V' Earth a

= [(6.67 x 10~ x 1.9866 x 10%0) 2 — :
1.495 x 101" 2 x 101!

=3.3343 x 10  (m/s)

The speed of Earth in the circular orbit around the sun is

|G M,
U,= |—2 =298 x 10* (m/s)
VEarth

and the escape velocity of the space probe leaving the Earth is

[2G M,
Uese = —R—‘=1.118><104 (m/s)
4

where R, is the radius of the Earth.
To launch the space probe into the transfer orbit directly from the surface of
Earth, the required impulse is

Uoberin = /U2, + (Ur — Up)? = 1.1724 x 10*  (m/s)

2) To find the required impulse to reduce the velocity of the space probe so that
it can spiral down to Mars, we must determine first the intersection point between
the elliptic transfer orbit and the Mars circular orbit, then the velocity of the space
probe and the relative velocity between the probe and the Mars at that point. From
the study of the auxiliary circle of elliptic orbit, we have

r=a{l —ecos¢)
At the intersection point r = rygy = 2.278 X 10" m, we find
¢ =2.15375 (rad)
and
cosf = (1/r)(acos¢ — c) = —0.7050
6 =2.3532 (rad)
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Hence the intersection point is at 7 = 2.278 x 10'! m and 6 = 2.3532 rad. On the
transfer orbit with r = ry,., we have

" Mars a

2 1
Ur = \/GM( - —) =22395x10*  (m/s)

From the orbital equation, we obtain

£_2 = (26)" =r(l +ecosf)
mk G Mg,
=2.278 x 10" (1 + 0.2525 cos 2.3532) = 1.8725 x 10" (m)
r6 =21,882  (m/s)
F=\J U= (r6)2=4767  (m/s)
Therefore,

Ur =re. + (r@)ey = 4767¢, + 21,882¢, (m/s)

On the other hand, the velocity of Mars on its circular orbit is 24,100es m/s
Hence, the relative velocity between the space probe and Mars is

Ur_y =Ur — Uy =4767e, —2218e (m/s)

Transform this velocity to an observer on the surface of Mars with the unit vectors
denoted by (i;, i) on Mars. They are related to the unit vectors in the transfer
orbit by i, = —ey, iy = e,. To that observer, he finds that the velocity of the probe
at the surface of Mars is

v, = 2218i, + 47674, (m/s)

With this velocity the space probe will have a hyperbolic orbit around Mars.
However, if a proper impulse is applied, the probe can stay in the vicinity of
Mars. We determine the required reduction of velocity by setting the tangential
velocity less than the tangential velocity needed to balance the centrifugal force
on a circular orbit and the radial component zero. For a circular orbit of radius
of 3500 km, which is slightly greater than the radius of Mars (3332 km), the
tangential velocity is

= 3489 (m/s)

Vo — [GMmun _ [6.67 x 10711 x 0.63873 x 10%
o= - 3,500,000

where Rp is the radius of the probe position measured from the center of Mars.
From this calculation we determine the required reduction in velocity by choosing
v, = 3480iy (m/s),

v — v, = —1287ip — 2218i,
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and

Av = |vp, —vp| = /12872 422182
=2564  (m/s)

Therefore, the velocity of the space probe is reduced to the velocity less than
the velocity for circular orbit. With this velocity, the space probe will stay in the
vicinity of Mars. The radius of the orbit is expected to decrease gradually, spiraling
down to the surface of Mars because its centrifugal force is slightly less than the
gravitational force for a circular orbit.

3) The traveling time of the space probe from the surface of Earth to the Mars
circular orbit around the sun is calculated as follows.

The period for the whole elliptic trajectory is

@ 2m@2x 103
GMun  /1.352 x 100

The time required for traveling from ¢ = 0 to ¢ = 2.15375 is

T =2n = 565.06 days

T
t= E(qﬁ —esing) = 174.7 days

Note that in Table 5.2, the values of AUy, for the cases of ellipse 2 and
parabolic trajectories are computed with the considerations of spiraling orbits
around Mars as given in this example. Detailed expressions between the velocity
vectors of the space vehicle and Mars are given as follows:

(AUMars)en2 = 8.236e, — 1.451ey (km/s)
(AUMm)pumb = 20.0le, — 3.551¢p (km/s)

Problems

5.1. A single-stage rocket is launched vertically from the surface of the Earth.
The velocity and position of the rocket at the burnout are predetermined. Suppose
that the mass ratio (mo/mj) is also given. Find the required mass flow rate and
the exhaust velocity at the nozzle exit to launch such a rocket.

5.2. Compare the terminal payload velocities between a single-stage rocket and
a two-stage rocket with same payload ratio of m, /mg, structure coefficient, and
the exhaust velocity. Suppose that the initial mass mg, = 100,000 kg, payload
my, = 2000 kg, the structure coefficient ¢ = 0.15, and the exhaust velocity v, =
3500 m/s. Neglect the gravity and the air drag.

5.3. A satellite is launched from the surface of the Earth. At the time of
burnout, the satellite is located at altitude of 1000 km with the radial velocity of
v, = 500 m/s. Determine the required tangential velocity such that the minimum
radius of the orbit is 7000 km.



ROCKETS AND SPACE VEHICLES 113

5.4. A particle moves in an elliptical orbit of major axis 2a and minor axis 2b,
with the origin at the center of the ellipse. If the radius vector to the particle sweeps
out area at a constant rate as usual, find the law of force in terms of the mass m
and period P of the motion. If the minor axis 2b approaches zero under the same
force law, what kind of motion would result?

5.5. The gravitational potential for the inverse square law of force is —k/r.
Suppose a small variation §/r? is added to the potential. Find the general orbital
equation. Show that, if 8 is a constant and § <« £2/2m, the orbit is given by an
ellipse with major axis precessing slowly, having angular velocity of precession

given by 8/(La®+/1 — £2).

5.6. Take the speed of a planet (or satellite) in an elliptical orbit.

(a) Prove that the speed at the point when the planet is at its maximum distance
from the major axis is equal to the geometric mean of the maximum and minimum
orbital speeds.

(b) Show that the ratio of extreme orbital speeds (at perihelion and aphelion) is
(1+¢)/(1 —¢).

(c) Take the Earth’s eccentricity as 0.0167 and that of Halley’s comet as 0.967;
calculate the ratio in part (b) for each.

5.7. With the use of the Runge-Kutta method, find the trajectory of an elec-
trical propulsion rocket with the initial conditions in dimensionless form p = 1,
p = p = 0, and the parameter v = 0.001. Plot the computed results.

5.8. Prove that the solutions obtained from the small perturbation method satisfy
the differential equations and the initial conditions for the electrical propulsion
rocket.

5.9. A satellite is launched from the surface of the Earth. At the time of burnout,
the satellite is located at an altitude of 700 km with velocity of v = 1000e, +
5000ey (m/s). Determine the impulse required to increase the velocity in the
tangential direction when v, is zero, so that the orbit of satellite is circular around
the Earth.

5.10. Verify the results of the ellipse 2 trajectory in Table 5.2 for a space ve-
hicle from the surface of Earth to Mars’ orbit. The length of major axis 2a is
4.5 x 10" m.

5.11. Verify the results of the parabola trajectory in Table 5.2 for a space vehicle
from the surface of Earth to Mars’s orbit.



6
Matrices, Tensors, Dyadics,
and Rotation Operators

HIS chapter is intended to familiarize students with the mathematical symbols

used in technical journals so that they may better understand newly published
papers and to provide background for studying motions of rigid bodies in Chapter
7. These mathematical symbols allow many equations to be written in concise
forms. Some topics, which are usually covered in a course of applied mathematics,
will be introduced with a minimal amount of new physical concepts. To understand
the subjects in this chapter better, students should have two courses in calculus
and one course in differential equations and, specifically, some basic knowledge
of matrix operations (see Appendix D).

Section 6.1 will show the relationship between two orthogonal coordinate sys-
tems under rotational motion relative to each other. Matrix notation and operations
are introduced. Applications of matrix operations are given in Section 6.2 and in
later sections dealing with the study of rotation of a symmetrical top. Section 6.3
introduces Cartesian tensors and dyadics including some basic operations. Ap-
plications of these are given in Sections 6.4, 6.5, and 6.6. Rotation operators are
described in Section 6.7. The use of the rotation operator can simplify descrip-
tions of complicated rotational motions. Some examples are given to illustrate this
point. In general, this chapter provides background for studying the motions of
rigid bodies.

6.1 Linear Transformation Matrices

From analytical geometry, we know that when x’, y’ axes are rotated with
respect to the z axis by an angle of 6 relative to the x, y axes as shown in Fig. 6.1;
the relation of x’, y’ to x and y can be written as

x' = (cosB)x + (sin6)y (6.1)
y' = (—sinf)x + (cos )y (6.2)
From Eqgs. (6.1) and (6.2), we can solve easily for x, y in terms of x” and y’ as
x = (cos)x’ — (sin6)y’ (6.3)
y = (sin@)x’ + (cos 6)y’ (6.4)

Equations (6.1) and (6.2) or (6.3) and (6.4) are examples of a linear transformation
from one set of quantities to another. These quantities can be obtained in a different
way. Considering a position vector r extending from the origin to the point P, we
write

r=xi+yj=xi' +yJ

115
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Fig. 6.1 Relation between prime and unprimed systems.

Then r- i and r -j will lead to Eqgs. (6.1) and (6.2). Similarly, r - i and r - j will
give Egs. (6.3) and (6.4). Extending this technique to a three-dimensional vector,
we have

x' = cos(d, )x +cos(i, )y + cos(’, k)z
y =cos(f,i)x +cos(j, )y + cos(f, k)z
z' =cos(k', D)x + cos(K, j)y + cos(k', k)z

where cos(?, £) is the cosine function of the angle between ' and i. To simplify
the notation, we let

X =X, X2=Y, X3 =2z
a;; = cos(i, i), a; = cos(@, j), a3 = cos(i', k)
az = cos(f, i), azp = cos(f, ),

az; = cos(k', j),

ay = cos(J', k)
asy = cos(k, i),

a3y = COS(k’, k)
Then we have

!

X, = anx) + apx; +apiaxs
’ -

Xy = anX) + anx; +anpx;

X3 = a3 x| + anxy + anx;

or

3
xf:Za,»jxj, l=1,2,3 (65)
j=1
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where a;; are the direction cosines for all i and j. Because the magnitude of r does
not change from one system to another, clearly

Y= "4 (6.6)
J i

With the use of Eq. (6.5) in Eq. (6.6), we have

Rf B (o) (o) - o ()

4

The commutative property of addition has been used in the preceding manipula-
tion. For the two sides to agree, we let

Zajkaje = 8y (6.7)

i

where §; ¢ is the Kronecker delta function with the property

5, = | ask=1¢
“EZ10 ask£e

Equation (6.7) is known as the orthogonality condition on the direction cosines, and
the transformation Eq. (6.5) consequently is called an orthogonal transformation,
which transforms one set of orthogonal coordinates into another set.

The orthogonal transformation can be written in matrix notation as

X = AX (6.8)
where
!
Xy ay ap daps X1
Xl = xé , A= d); daxp axnl|, X = X2
!
X3 asz; az asp X3

Let us review some basic operatlons from matrix algebra. Note that A is a square
matrix. If A;; is the cofactor of a;; in the determinant of A, then the matrix

(4j;) = transpose of (4;;)

is called the adjoint of A. The reciprocal or inverse of a nonsingular matrix A is
the adjoint of A d1v1ded by the determinant of A. The reciprocal of A is denoted
by the symbol A~!. Therefore,

A7l —AdA 6.9
Al j(4) 6.9

Multiplying Eq. (6.8) by A™! leads to
A7'X =A7'AX
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or

X=A"'X (6.10)

This is known as Cramer’s rule. However, because A is formed by direction cosines
of an orthogonal transformation, Eq. (6.10) can be simplified further to

X=ATX (6.11)
where AT = transpose of A, that is,

A7 =4AT (6.12)
The proof of Eq. (6.12) is given as follows. Based on

AA™ =1
letD = A", then

(AD);; = Zaikdkj = (I)i; = di;
k
Multiplying the preceding expression of a;, and taking summation over i gives
Zail(aik dij) = Zailai,j =ay
ik i
The left-hand side of the preceding equation is

Zail(aikdkj) = Z(ailaik)dkj = Zal.kdkj =dy;
iK Pk :

Therefore,
ajp=A)j=@AT)=dy =@y

or
A7l =AT

When a matrix satisfies the preceding equation, it is called an orthogonal matrix.
To illustrate the use of Eq. (6.12), let us consider

cosf sinf O

A=|-—sin@ cos® 0
0 0 1
cosf® —sinf 0
AT =A"' = | sing cosfd O

0 0 1
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We obtain

cos? 6 + sin2 9 —cosfsinf +sinfcosd 0
AAT = | —sinfcos + sin6 cos d sin? @ 4 cos? 0 0
0 0 1

1 00

=01 0]=1I
0 0 1
Example 6.1

Consider an airplane flying in a horizontal plane and measuring the wind velocity
of a hurricane. A coordinate system (x, y’, z’), which is attached to the airplane,
is the moving system. Another system (x, y, z), which is fixed to earth with x—y
plane parallel to the surface of the earth, is the fixed system. To simplify the
problem, assume that x'y’z’ coordinates coincide with xyz coordinates at the
beginning of operation; however, at the instant of measurement the airplane has
yawed with respect to the z axis by an angle of §. The wind velocity is successfully
measured by the airplane in the x’y’z’ system. What is the velocity in xyz system?

Solution. TtisknownthatX’ = RX and X = RTX'. Applying this relationship
for the transformation of velocity vector, we have

V=RTV
where
cosf sinf O
R=|-sinf cosf® O
0 0 |
cos@ —sinf 0O
R" = |sin6 cosf O
0 0 1
Therefore,
Uy cosd —sinfd O v, v, cosf — v’y sin @
vy | = | siné cos@ O u;, = | v, sinf + v’y cos
v, 0 0 1/ \v v,

6.2 Application of Linear Transformation to Rotation Matrix

From the first course in dynamics, we know that six degrees of freedom are
necessary to specify a solid body in motion: x, y, and z for a specific point on
the body and 6, ¢, and ¥ for angular displacements of the body relative to a set
of fixed axes. To illustrate the application of linear transformation, let us consider
a solid body that is rotating without translational motion. Suppose that x, y, z
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Fig. 6.2 Relative position between x’ and x systems.

are fixed coordinates and that the prime system is attached to the rotating body.
Consider the rotation in three steps as follows.

1)Letx’, y', 2’ coincide with x, y, z first, and then rotate x’, y’, z’ counterclock-
wise by angle ¢ about z as shown in Fig. 6.2. The relationship between the prime
system and the fixed system is

X =RX
where
cos¢ sing O
R, =|—sing cos¢p O (6.13)
0 0 1

2) Let x”, y”, 2’ coincide with x’, y’, z’ first, and then rotate x”, y”, z” counter-
clockwise by angle 6 about x’ as shown in Fig. 6.3. The relation between x”, y”, z”/
and x, y, z is

X" = RyX = Ry(R\X) = (R:R)X

where

1 0 0
R,=10 cosd sin6 (6.14)
0 -—sinf cosf

The intersection of the x—y and x"”~y” planes is called the line of nodes.

(Line of nodes)

X "
x',X

Fig. 6.3 Relative position between X"’ and X’ systems.
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Fig. 6.4 Relative position between X"’ and X",

3) Let x,y", z"" coincide with x”, y”, z" first, and then rotate x™, y", z"
counterclockwise by angle ¥ about z” as shown in Fig. 6.4. Then the relation

between x”/, y"”,z" and x, y, z is

X" = R3:X" = (R3R:R))X = RX

where
cosy siny O
Ri=|—siny cosyy O (6.15)
0 0 1
R = R3R2R1

cos¢cos Y — sing cos sin Y sing cos ¥ + cosgcosfsinygy  sinfsiny
R= | —cos¢siny —singcosfcosyy —singsiny + cos¢cosfcosy sindcosy
sin ¢ sinf —cos¢sind cos 8
(6.16)

The angles ¢, 8, and v are known as Euler angles and are used to study the motion
of a rotating top in Chapter 7.

6.3 Cartesian Tensors and Dyadics

A tensor is a quantity similar to a vector but with a much broader sense. Tensors
can be scalars such as temperature or energy; tensors can be vectors; some tensors
can represent stress, strain, or moment of inertia of a solid body. Furthermore,
some high rank tensors can be used to express quantities in n-dimensional space
with n > 3. The knowledge of tensors is essential for the study of general relativity
theory. In this section, however, we are going to study only the Cartesian tensor.
That means that the axes of the coordinate system, primed or unprimed, are
perpendicular to each other.

Cartesian Tensor

A Cartesian tensor T in three-dimensional space is defined as a quantity that
transforms according to the rule

3
Timn.... = Z i amj anic: - Tijk... (6.17)
i k=1
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in a rotation from unprimed to primed coordinates where ay; s are direction cosines
between the axes in unprimed and primed systems. The T;;; _ are called the
components of the tensor and are functions of the unprimed coordinates; the
Tjmn.... are the corresponding components in the primed system.

The rank of the tensor is defined by the total number of indices. Therefore, T is
a zero-rank tensor that is a scalar such as temperature or energy; T; is a first-rank
tensor that is a vector such as velocity, force, and torque, etc.; T;; is a second-rank
tensor that represents nine-dimensional quantities in three-dimensional space such
as stress and strain. In this chapter most of our attention will be devoted to the
second-rank tensor.

A first-rank tensor is simply a vector. The transformation of a vector from
unprimed system to primed system is

Tg:Zae,»Ti

Consider that A; and B; are two first-rank tensors. Their transformations are

Ay=Y ajA; and  B,=) ay;B

J J

The dot product of A’ and B’ is

ZA/KB/=Z(a€iAi)(alij)=Z Za“aq AiB;
7

ti.j ij t
=) (Gu)AB =) AB =A-B
ij i

In other words, the dot product of any two vectors is invariant under the rotation of
the coordinate system or is of zero rank. Therefore, it is also called isotropic tensor.

Second-Rank Tensor
To understand the second-rank tensor, let us consider
Tij = xix;
The complete expression of all the components of the tensor can be written in the

form of matrix as

x,z X1X2 X1X3

2
(Tp) = xx1  x;3  x2%x3
X3X]  X3Xx2 x32

The transformation of T;; from unprimed coordinate system to primed system is
as follows:

r ’
E QiamT;j = E g X; E amjxj | = XgXp = Ty
J

ij i

Therefore T;; = x;x; is a second-rank tensor.
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It is important to learn the process of contraction. Looking at
Tim = D auan;Ty; (6.18)
ij
there are six indices in the right-hand side of the equation. Summing over i and
J reduces the rank from six to two. This is called contraction. Note also the rank
of a tensor must be the same on both sides of the equation. In many books, the
summation sign is omitted in the equations. Automatic summation is to be done
over a repeated index. This is known as the Einstein summation convention. For
the sake of clarity, however, the summation sign is kept throughout this book.
Dyadic
Dyadic is closely related with vectors and second-rank tensors. A pair of vectors
written in a definite order, such as ij, is called a dyad, and a linear combination
of dyads is known as a dyadic. For example, a second-rank tensor can be written
into dyadic form as
T = Tii+ Typij + Tiaik + Toji+ - - (6.19)
Similarly,
AB = A, B,ii+ A B,ij+ A, B,ik+ A, B, ji+ AyB, jj + AyB; jk
+ A;B.ki+ A;Bykj+ A;B,kk

is a dyadic.

Because vectors are used explicitly in the dyadic, many vector operations can
be applied to dyadic operations. Let us study some fundamental operations as
follows:

C-(AB) = C,(A Byi+ A By j+ AB.k) + C,(A,Byi+ A,B, j+ AyBk)
+ C.(A;Byi+ A;By j+ A,B.k) = (C-A)B

The result shows that it is a vector in the direction of B. On the other hand, the dot
product of (AB) with C from the right-hand side is

(AB)-C=A(B-0C)
The vector in the result is in the direction of A. Therefore
C-(AB) #(AB) - C (6.20)
A unit dyadic is defined as
1 =ii+jj+kk
which possesses the property of

l w=w=w-1 (6.21)

where w represents any vector.
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Now let us consider the transformation of a dyadic from an unprimed coordinate
system to a primed coordinate system. Suppose that there is a relationship between
vectors U and V in the unprimed system as

U=T.V (6.22)
where T is a dyad. Note that Eq. (6.22) can be written in matrix form as
U=TvV (6.23)

Transform U and V into U’ and V' by premultiplying 4 to Eq. (6.22):

-

U=A.U=A-T-V (6.24)
The equivalent operation in the matrix form is
U = AU = ATV
However it is known in the matrix operation that
U =AT(A7'A)V = (ATA HAV = ATA YW =TV’
which means that
T = ATA™' = ATAT (6.25)
Applying this matrix manipulation to Eq. (6.24), we find that

U=4-T-(ATA) V=@A-T-A1).-A4-)=T"-V (6.26)

Therefore,

AT 6.27)

™~

T =A4.

where A is a dyadic with direction cosines as the elements. Equation (6.27) can
be written in tensor notation as

Tl/m = Z(A)li(T)ij(A_l)jm = Za[,‘aijij
i ij

which agrees with Eq. (6.18).

Example 6.2

Consider that a solid body is under rotational motion. It is rotating about the
axes of symmetry. The axes of the coordinate system are chosen so they coincide
with the axes of symmetry of the body. Express the relationship between angular
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momentum and the product of the moment of inertia and angular velocity of the
chosen system in dyadic form. Find also the new relationship as the coordinate
system is rotated about the z axis by an angle of ¢.

Solution.  According to the given conditions, the components of angular mo-
mentum can be written as

L,-=I,-a),- l=1,2,3

In dyadic form

L = (Lii + Ljj+ kk) - (@i + 0 j+ osk) =T -w (6.28)

The angular momentum in the coordinate system rotated about the z axis by angle

¢ is

=(Ri-T-R))-(Ry-w)y=1"-u (6.29)
where
I'=R, . T-RT (6.30)
and
W =R -w 6.31)

To clarify the preceding operations, let us express the quantities explicitly. We
have

Ry = cos ¢i'i + sin ¢i'j — sin ¢f'i + cos ¢jj + K'k
L' =iL,+jL,+ kL), (6.32)
L' =R,-L=1i(L,cos¢+ L,sin¢)
+j(=L)sing + Lycos¢p) +KLj (6.33)
Therefore,
Ly =Lycos¢+ L,sing
L), =—L,sing + Lycos¢
L, =L,

To find I', we first write k{ explicitly as

RT = cos ¢ii’ — sin pij + sin ¢ji’ + cos @jj + kK (6.34)
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then we obtain

-

I'=R,-T-RT
= (cos ¢i'i + sin @i’j — sin ¢j'i + cos ¢fj + k'k)
< (i 4 Ljj+ Iikk) - (cos ¢ii’ — sin ¢if + sin ¢ji’ + cos ¢jj + kk')
=TIy cos’ ¢ + Irsin® @) + i'f (=1, + 1) cos ¢ sin ¢
+ji(~1; + L) cospsing +jj (I sin* ¢ + L,cos’> ) + Kk'I;  (6.35)

Similar to L, we find

-
!’

W =R w=1i(w cosd+ w;sin¢) +j(—w; sind + wy cos ¢p) + K w;

Through L' = 1" - o' we finally obtain
LY=L cos¢+ L,sing
= (/1 cos® ¢ + I, sin® ) (w) cos ¢ + w sin P)
+ (=1, + I,) cos ¢ sin ¢ (—w, sinp + w; cos @)
= liw)cos ¢ + Lw, sing (6.36a)

Ly=—L,sin¢ + Ljcos¢
= (=1, + 1) cos ¢ sin ¢(w) cos ¢ + w, sin ¢)
+ (I, sin? ¢+ 1 cos? @)(—w; sin ¢ + w; cos @)
= —lwsin¢ + Lw,cos ¢ (6.36b)

L= L, (6.36¢)

The result shows that L' obtained from I’ - o' is the same as that from R, L
and serves to illustrate the dyadic operation.

6.4 Tensor of Inertia

After having studied the fundamentals of dyadics, we are ready to learn some
applications. Consider a rigid body in rotational motion. A set of rectangular
coordinates is attached to the body and is rotating relative to a set of fixed space
coordinates. The origins of the two systems coincide and are not in relative motion.
Therefore, the body position can be specified by three angular coordinates such
as Euler angles (Section 6.2). Without losing generality, let us consider that the
solid body consists of many point masses and that the position vector of m; is r;.
Therefore, the velocity of point mass m; is

Vi=w XTr;
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and the angular momentum of the body is

L= ZI‘,‘ X miv; = Zm,-r,- X (w X ry)
i i
-2
= an[[)iw —r,-(r,- w)]
i

—qu —rr) w=1In-w (6.37)

where 1, is the tensor of inertia expressed in dyadic form and

Z% —riry) (6.38)
Expanding Eq. (6.37), we have

Ly =1l + lxywy + 1,0,
Ly = Lywy, + Lywy + o, (6.39)
L,=1,0,+ lzywy + 1w,

where

2 2
Liy = E mi(r,- —X,-), lxy = - E mix;yi, Iy, =— E mixizj
i i i
Iy =— E m;yiXi, Iy, = E m;(r )’, Iy, =~ E m;yiz;
i i
— . I.. = I, = (r2 _ 2
x = m;ziXi, yz = — miziyi, 2z = milr; Z;
i i i

In the preceding expressions, /; elements are called the moment of inertia and
I;j(i # j) are the products of inertia.

Now let us relate the inertia tensor to the moment of inertia with respect to the
rotational axis of the body. Let n be a unit vector along w or

w = wn

The moment of inertia with respect to the rotational axis is simply

Ipn=n-1, - n=n- E m, r,r, ‘n

= X:m,-[ri2 = (ri - m)?] (6.40)
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Through the use of Eq. (6.40), the kinetic energy of the solid body rotating with
velocity w can be expressed in a familiar form as

1 1
T = EZmivi-vi =§Zi:mivi-(wxr,<)

1 1
= EZmin (X w) = EZm,-w ~(r X vp)
i i

1 1
= Ew- I:Xi:m,-(rf X VI)J = EwL

1 - 1 - 1
=§w-1,,,-w=§w2n-[,,,-n=Elme

With the definition of inertia tensor given in Eq. (6.38), the generalized parallel
axis theorem can be derived easily as follows. Consider

r,<=if+R

as shown in Fig. 6.5. .
The inertia tensor with respect to XY Z coordinates I then can be expressed as

70 = Zm,-(r,ﬁ—r,—r,-)
=Y ml,+R) - (] + R)I — (7} + R)(*} +R)]

=Y mlr,-F1-rr)+> mR-Ri - RR]

el (B r(zne) (2o

X
Fig. 6.5 General position of a body in XYZ coordinates.
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Because the origin of the primed system is chosen at the center of mass,
S =
i

fo=3"m[P1 ~rir] + MIR®T - RR)
I

=1, + M(R*1 = RR) (6.41)

where [, is the inertia tensor of the solid body with respect to the primed axes
with the origin at the center of mass. Equation (6.41) is known as the generalized
parallel axis theorem.

To illustrate the generalized parallel axis theorem, let us consider a case where
the center of mass of the body is at distance x on the x axis:

R =xi, R? = x2, RR = iix?
M(R*1 — RR) = M (x%jj + xkk)

Io = 1.+ Mx*(jj+ kk)

Writing the components of the moment of inertia in detail, we have

Tz = (T + Mx? (6.42a)
o)3s = (I )3z + Mx? (6.42b)
(o) = (o (6.42c)
(To)ij = (1) i (6.42d)

In Egs. (6. 42a) and (6 42b), the difference between /o and /. is Mx? in jj and
kk because the y’ and z’ axes are moved by x; however, because x, x’ coincide,
(1 ol = (1 )11. The results given in Egs. (6.42a~6.42d) agree w1th the parallel
axis theorem written with nine separate equations as given in the first course of
dynamics.

6.5 Principal Stresses and Axes in a Three-Dimensional Solid

We have studied the fundamentals of matrices and tensors in Sections 6.1 and
6.3. Now let us apply them to determine the principal stresses in a solid. When
forces and torques are applied to a three-dimensional homogeneous solid, three-
dimensional stresses are set in the solid. As shown in Fig. 6.6, these stresses have
nine components oy, gy, 0z, Txy, Txz, Tyx, Tyzs Tzx» and 7,y. Because these stresses
are in equilibrium, the summation of moments with respect to each axis must be
equal to zero, and the results show that 7,, = 7y, 7,; = T;, and 7y, = 7,y. The
state of the stresses can be written in matrix form as

o=\t oy 1 (6.43)
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z

Ty

T F _,UY
% T |
py y

X

Fig. 6.6 Three-dimensional stress on a solid cube.

in which o; is the component of normal stresses and 7;; is the component of shear
stresses. The o is a symmetric matrix. Figure 6.7 shows a tetrahedron formed
by drawing three planes normal to the coordinate axes and a fourth plane with a
directed normal n at a distance / from the point P that is at the origin. In the limit,
as h — 0, the tetrahedron will become of infinitesimal order with sides dx, dy,
and dz, and the inclined plane approaches P.

To find the principal stresses in a solid, we assume that the stress acting on the
inclined plane is only a normal stress o,,. The components of o, are 6,5, 0y, and
On. In the limit, as 2 — 0, the equilibrium of all forces in the x direction requires

—317ydxdz — 1z, dxdy — Loydydz + 0,,dA =0
where d A is the area of the inclined plane. Note that
%dydz =dAn-i=dAa,

jdxdz = dAn - j = dAa,y

sdxdy =dAn -k =dAay,

Fig. 6.7 Three-dimensional stress on a tetrahedron.
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and
n=a,i+ayj+ak
Hence,
Onx = Oxlpx + TyxQny + Toxy, (6.44)
Similarly, we can find
Ony = Tyy@ny + Oyany + Trpay; (6.45)
Onz = ToxAnx + TyzQny + 00y, (6.46)

On the other hand,
Ony = Op(R-0) = Oplpy
Opy = Opdpy
Onz = Onln; 6.47)
Therefore, we find that the equations for the balance of forces are
OxQnx + TyxQny + TpxQy; = Opdpy
Teylny + Oyany + TryQy; = Oppy (6.48)
Toxlny + Ty,Qny + 01ay; = Opdp,

Rewriting Eq. (6.48) in matrix form, we have

ox =o,x (6.49)
where
Anx
x=|ap (6.50)
Anz

From the formulation given, we will determine a,,, Qny, Anz, and o,. In addition
to the three equations in (6.48), we have

nn=I|=a, +a, +a, (6.51)

Therefore, we have four equations to determine four unknowns.
Rearrange Eq. (6.49) as

ox =o,1x
or

(c —o,Dx=0



132 ADVANCED DYNAMICS

Because x cannot be zero, the determinant of the coefficients must vanish, i.e.,
lo — 0,1 =0

Expanding the determinant, we find the functional relationship, called the charac-
teristic equation,

¢(on) =02 —Lo? + Lo, — =0 (6.52)
where

L =0, +0y+o0;

- 2 2 2
I = 0y0y + 0c0; + 0,0, — T, — T, — T},

I =0,0,0; — 0, T2

2 2
vz — Oyl — 02Ty, + 2T,y Te Ty,

The three roots of Eq. (6.52), say o}, 0, and o1, are called the principal stresses.
Once the principal stresses have been obtained, the direction cosines of the normals
of the planes can be found from Egs. (6.48) and (6.51). The normals are known
as principal axes. To illustrate the procedure in detail, let us study the following
example.

Example 6.3
Given a stress matrix,
7 =2 0
o=|-2 6 -2 (MPa)
0 -2 5

find the principal stresses and the direction cosines of the principal axes.

Solution. The characteristic equation is

7 — o, -2 0
-2 6-0, -2 |=-0,+180}—99,+162=0
0 -2 S5-o,

The three roots are
oy = 3 MPa, 07 = 6 MPa, 03 = 9 MPa
To find the direction cosines, let us use Eq. (6.48) in explicit form
(7 ~ 0n)ne — 2any =0
~2apy + (6 — Op)any — 2a,, =0
—2ny + (5 — 0n)an, =0
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Fig. 6.8 Relative position between A and B.

For the first root o7 = 3 MPa,
4a,, — 2a,, =0
—2a,x + 3ay, —2a,;, =0
—2a,, + 2a,; =0

133

In the preceding three equations, only two equations are independent because the

determinant of the coefficients is zero. However, we have

2 2 2 _
anx + any + anz =1

and find
Gy =%, Gny =0n; = 3
Hence
no=gi+3j+3k for 6y = 3 MPa
Similarly, we find
n=3i+3j-3k for o3 = 6 MPa
m=-%i+2j—3k for 03 = 9 MPa

Note that the three axes are perpendicular to each other. It must be pointed out here
that the technique illustrated here for principal stresses can be used also for finding
principal strains in homogeneous materials and principal moments of inertia for

solid bodies.

6.6 Viscous Stress in Newtonian Fluid

Suppose that a point A is located in a Newtonian fluid and is specified by
the position vector r as shown in Fig. 6.8. The term Newtonian fluid implies the

following postulates.
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1) The fluid is continuous, and its stress tensor t;; is a linear function of the
rates of strains.

2) The fluid is isotropic, i.e., its properties are independent of direction, and
therefore the deformation law is independent of the coordinate axes in which it is
expressed.

3) When the fluid is at rest, the deformation law must reduce to the hydrostatic
pressure condition, t;; = —pd; ;.

Consider that A is moving with velocity V. In the vicinity of A, there is point B
that is moving with velocity V + dV. The velocity V and the change of velocity
are written as

V=Vi+ Voj+ Vik

v v av
dV=—dx+ —dy+ —dz =dr-VV
ax ay az
v _ VV.n
dr ~

where n is the unit vector in the direction of dr:

vy, vy, Vs vy, oV, . Vs,
VV = —ii+ —ij+ —ik+ — —Ljji+ —jk
ax dx I+ axl + athL 8y”+ ayj
Ve . aV, . 3V
—ki+ —k —kk
) 2z 9t

VV is called the strain rate dyadic. Note that VV denotes strain as a function of
time. Now let us define

1
€= €)= —— €y = ———
ax ' ay’ 9z

oo L[V WV e (Vs (Vs Vs
=——+—] —=+—) en=zl-—"+—
=28y " ax B=o\ax 7 oz B=2\8 oy
1/avs Vv, 1/0V,  aVy 1/8v, av
h=-|———}, h={——-—). hy=-|———
2\ dy az 2\ dz ax 2\ dx ay

The strain rate dyadic then becomes

I

VV =€+ (6.53)
with
€ = eyyii + €nij + €n3ik + €12 ji+ € jj + €3 jk
+ e3ki+ exkj+ enzkk (6.54)
and

Q = hsij — hyik — h3 ji+ hy jk + hoki — hikj (6.55)
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Note that € is a symmetric dyadic and is called the pure strain rate dyadic, and Q
is an antisymmetric dyadic and is the rotation dyadic.
To find the expression for viscous stress, let us consider a general stress dyadic:
T = 1yyii + Tiodj + Ti3ik + T2 i+ T Jj + T jk
+ tiski + tnakj + taskk (6.56)

Through the rotation of coordinate axes, we can find the principal stresses and also
the principal axes. Along these principal axes, considered as the primed system,
we have

T = oy di + 15 Ji + Tk K (6.57)
(VV) = €, ii + epJi + ek K (6.58)

The relationship between the viscous stress and the rate of strain along the x’ axis
may be expressed as

T = =P+ ci€y + caey + ey
= —p+(c1 — )e); +aale]; + ey + €33)
av/
==—p+(c1~)— +c(V-V)
dax
=—p+(ci —c)ef; +2(V-V) (6.59)

Without losing generality, let ¢; = k& — %[,L and ¢ = ¢; + 24 in which £ and u
are to be determined. Hence

T =—p+ (k= 2u)(V-V)+2ue (6.60)
To identify the constants, let us consider first

T =T = T3
€y =€p=€3=(V-V)/3
From Egs. (6.57) and (6.60) we find
= (k—2u) (V- +2u[2(V-W)]T-pl
=k(V-V)I-pl=11
Hence

_r,’l+P

=V (6.61)
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Because (divV) means the change of volume per unit volume, & is known as the
coefficient of bulk viscosity. Now let us rotate the axes back to the unprimed
coordinate system and consider the viscous stress in a general form as

-

F=[=p+(k=2u)V-V]i+2ué (6.62)

Note that € is the only term affected by the rotation of coordinate axes. Because
Eq. (6.62) is always true for all possible conditions, let us apply the equation to a
case such that

Vi =Vi(y), Va=V3=0

Then
13V, 14V,
=30 TG
av, (6.63)
T2 = 2U€p = p——
dy

where 1 is known as the coefficient of viscosity. Therefore, Eq. (6.62) is the
expression for the viscous stress in Newtonian fluid with k the coefficient of bulk
viscosity and p the coefficient of viscosity.

6.7 Rotation Operators

Earlier, in Chapter 3, we studied the collision of missiles in midair. In Example
3.1, the delay time after the first missile launch is given as 60 s. This interval
includes the time to rotate the launching equipment to a proper angle. Certainly
this operation could be done by using Euler angles, but that approach takes too
much time. With the operation given in this section, we will find that the operation
is simplified and saves time.

Consider that a position vector r is rotated with respect to vector # by angle 8
to ¥. The angle B is measured in a plane perpendicular to n, containing the ends
of vectors r and 7 in that plane as shown in Fig. 6.9. Let a be a vector with the

a) b)

Fig. 6.9 Rotation of r about n.
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direction of # and the magnitude of the component of r along #, so that
a=n(r-n)

Let b and ¢ be vectors in the circular plane, which is the top view of Fig. 6.9a
looking down directly along —n. Hence

r=a+b+c
The radius of the circle is r sin 6 or
[mxrl=|nxr)xn|=|#nxr)xn|
The vectors b and ¢ are
b=[(nxr)xn]cosB
c=(nxr)sinf
Finally we have
F=nn-r)+cosfn xr)xn+sinf(nxr)
=nn-r)+[-nn-ry)+r(n-n)jcosB+(nxr)sinp
= (1l —cosB)n(n-r)+cosBr+sinf(n xr) (6.64)

By defining a rotation operator as

ﬁ(n, B) = (1 —cos B)nn + cos ﬂT + sin S(n x T) (6.65)

we obtain
¥ =Rmp) r (6.66)

Note that ' is the vector r rotated about n by angle of . The operator Risa
function of n and B and is independent of coordinates. Note also that the operator
R was first introduced by J. W. Gibbs in 1901* and has been further developed by
C. Leubner and E. N. Moore.

When

n=k
R(k, B) = kk + cos B(ii + jj) + sin B(ji — if)

Properties of the Operator ﬁ(n, B)

1)As 8 =0,

R@n,0) =1 (6.67)

*Gibbs, J. W., Vector Analysis, Scribner, New York, 1901, Chap. 6.
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2) When n is rotated about n itself, n’ is n or

R, B) n=n (6.68)

3) Two consecutive rotations about the same axis n by angles of « and g will
expect a result of

R(n,a) R(n,B) = R(n, e + B) (6.69)

The preceding equation, however, requires a mathematical proof, which is given
as follows.
It is easily verified that

A-(nx1)=Axn (6.70)
or
(nx1)-A=nxA
also
mx1)-(nx1)=nn—1 6.71)
and
nn-(nxT):nnxn:O (6.72)

Using Egs. (6.70-6.72), we have
ﬁ(n, o) - ﬁ(n, B) =1l —cosa)nn + cosal + sina(n x T)]

- [(1 —cos B)nn + cosﬁT + sin B(n x T)]

= (1 —cosa)(l —cos B)nn + (1 —cos B) cosann
+ sina(1 — cos B)[(n x 1) - nn] + (1 — cosa) cos Bnn
+ cosacosﬁi+ sinc cos B(n X T) + (1 — cosw) sin B{nn - (n x T)]

+ cosa sin f(n x T) + sin« sin (n x T) -(n x T)

=nn[l —cosa —cos B + cosacos B + cosa — cosc cos f3

+ cos B — cosw cos B + sinasin B8] + T(cosacosﬁ — sina sin )
+nx T(sinacosﬁ + cos ¢z sin B)

=[1 — cos(x + B)]nn + cos(a + ﬁ)i + sin{e + B)(n % T)

= R[n, (@ + B)]
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4)
Rn,B) - RT(n,B) =1 (6.73)

Here R7 (n, B) is the transpose of R and carries the similar sense as in matrix
notation. In the operator R, nn is symmetric and the transpose of n x 1 gives
—(n x 1); hence,

kr(n, B)=( - cosﬁ)nn+cosﬂT —sin 8(n x T) = X’(n, )]

and
R(n,B)-R"(n,B) = R(n, B) - R(n, —B)
=Rm,p—B)=Rmn 0 =1
5)
- T
R(n,B)-V=V-R (n,B) (6.74)
Proof:
X’(n, B)-V=[1- cosﬁ)nn+cosﬂT+ sin S(n % T)] -V
=1 —cosB)n(n-V)+cos BV +sinB(n x V)
=(1—cosB)(V-mn-+cosfV-1—sinpV-(nx1)
=V.-R(n,—-B) =V -R'(n, B)
6)

o

R(n,B)-T-R"(n,p) =T (6.75)
Proof: Because
T = Tyhii+ Tyij+ Tsik+ Ty ji+ - - -

each term in the preceding equation may be represented by AB. Without losing
generality, let us consider T = AB, then

R, B)-T-R"(n, B) = R(n, B) - AB - R (n, )
=(R-A)B-R")
=A'(R-B) [Eq. (6.74) used]

—AB =T
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7

[Rn, B)-VIx 1=Rm, B)-(Vx1)-RT(n, B) (6.76)
Proof:

(ﬁ-V)xT:V’xT:(Vl’i’+V2’]”+V§I€) x 1
inwhich "= R-1-R” = R - BT = 1 has been used. Hence
(R-V)yx1=—Vjij + Vil + V]ji = V]JK — VIKT + VK]
=(WVx1y=R-(Vx1)-RT

Eq. (6.75) is used in the last step.

8) If a unit vector # is rotated to n’ by k(m, o)
n = ﬁ(m, a)-n
then
R, B)=R(m,a)-Rn, B)- R (m, o) 6.77)
Proof: The relationship between k(n’, B) and ﬁ(m, o) is
R, B) = R[R(m, ) - n, B]
= (1 —cos B)[R(m, o) - n][R(m, ) - n]
+ cosﬁT + sinﬁ[ﬁ(m, o) -n] x 1
Using Egs. (6.74) and (6.76), we have
ﬁ(m, d)-n=n-. kT(m,a)
and
[Rim,a) -n] x 1= R(m,a) (nx 1)- RT(m, @)
Then

R, B) = (1 —cos B)[R(m, a) - n][n - RT (m, @)]
+ cos ﬁk(m, o) - kT(m, o) + sinﬁﬁ(m, o) (nx T) . kT(m, o)
= ﬁ(m, a) - [(1 — cos B)nn + cos ﬁT + sin 8(n x T)] . kT(m, o)

= R(m,a)-R(n, B) - R"(m, a)
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Applications of the Rotation Operator

Rotation of coordinate system through Euler angles ¢, 6, and . Sup-
pose that we rotate the coordinate first with respect to k by an angle of ¢. The

position vector r is rotated with the rotation of coordinates. The new vector ¥ can
be expressed as

r=Ri(kd) r (6.78)
Note that this operation is not the same as in the operation of a rotation matrix
r,=Rr (6.79)

where 7}, is the vector r in the rotated coordinates; r itself is not rotated. To
emphasize this difference, let us consider

r=i
e 4 ...
Rl(k,§)=kk+(ﬁ~u)
r=i=(kk+ji—ij)-i=j (6.80)

This means the vector i is rotated to j after the coordinate axis i is rotated about
k by an angle of /2. On the other hand, the operation of Eq. (6.79) by rotation
matrix will have a totally different result. Let us see the following case:

1
r=10
0
cosy sink 0 01 0
Ry=|-sin% cos% 0 -1 0 0
0 1 00 1
X} 0 1 0\ /1
m=\x]=|-1 0 0]]0]= —1 (6.81)
x4 00 1) \o 0
This x; = —1 means that the vector i is not moved and is now along —j’ after the

whole coordinate system is rotated about k by an angle of 7 /2. The operation of
a rotation matrix also can be expressed as a dyadic operation:

=R,-r (6.82)

in which R| = i'j — j'i + Kk, and r = i. Hence, in the rotated coordinate system,
the unit vector becomes

o= —f (6.83)
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Now, continuing to consider the rotation of position vector ¥ with the coordi-
nates from Eq. (6.78), let us rotate ' about i’ by an angle of 8. Then we have

F'=Ro(i,0) ¥ = Ro0,0) - Rk, 9) - 7
Next we rotate r” about k” by an angle of ¥, and we find
r = }33(1{”, v) - r

= Ry(K", ¥) - Ry (i, 0) - R\ (k. §) - r (6.84)

where 7" is the final form of the position vector r after being rotated about k by
angle of ¢, rotated about i’ by 6 and rotated about kK’ by v . Note that i’ and k" are
unit vectors along rotated coordinates. It will be more convenient to rotate r with
respect to fixed axes. With the use of Eq. (6.77), we can express

Ry, 6) = R\ (k, §) - R,(i, 0) - RT (k, ¢)

Taking the dot product with 13, (k, ¢) from the right leads to

Ry(,6)- R (k, ¢) = Ry (k, ¢) - Ra(i, 0) (6.85)

Similarly,

Ry, ¥) = [Ro(i,6) - Ri(k, §)] - Ratle, ) - [Ro(i, 6) - Ry (k, )17
= [Ro(i,0) - Ri(k, §)]- Ry(k, ¥) - [RT (k, ) - R (7, 0)]
Multiplying from the right by R, - R, gives
Ry(K', ) - Ry(i,0) - R\ (k, §) = Ry, 0) - Ri(k, $) - Rs(k, ¥)

= Ri(k, $) - Ra(i, 6) - R3(k, ) (6.86)

Equation (6.85) has been used in the last step of the manipulation. The result
reached in Eq. (6.86) shows that the Euler angles ¢, 6, ¢ can be replaced by
rotating the position vector r with respect to unprimed axes in a reversed order of

V.0, 9.

Applying the preceding resuits to a vector r fixed in space but with the coordinate
system rotated, the relation between primed system and unprimed system may be
derived by

r = xll//i/// +x£”j’” +x§//k/// = xli+x2j+x3k

where

= ]'é ., j/// =R-j, K = ]*é -k (6.87)
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or
" _nt
=Y =Y e,
k i
Taking the dot product of the preceding equation with &;” leads to

. -
x,{" = Zx,i/(e;("-e;") = ij(ej -e;") = ij(ej -R -¢)
k j J

Note thate; - R - €; = € - €] = direction cosine between ¢ and ¢;". Therefore

a,'j=€j'R'€i

For R = Ri(k, §) - Ry(i, 0) - R3(k, ¥),

- -

aj=e; o ko T Ry

=Y lej - Ritk, ¢) - exllex - Ra(i, 0) - exller - Ra(k, ¥) - ei] (6.88)
k£

The preceding equation can be easily used to verify that the result agrees well with
(ai;) = R3R,R, given in Eq. (6.16).

Combination of two successive rotations about different axes by one
rotation. Suppose a rigid body to be rotated by two steps. First it is rotated
about the k' axis by an angle of ¢ and then it is rotated about the k axis by an
angle of . The directions of k and k' are known, and the plane containing them is

i
1]

1

Fig. 6.10 True angle 6 between axes k and k'
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determined. Choose the x axis perpendicular to the plane. Suppose the true angle
between k and k' is 6, as shown in Fig. 6.10, then

K =R k=—(sin0)j+ (cosO)k (6.89)
And the two consecutive rotations may be expressed by
Ry = (1 —cos¢)kk + cos 1 + sin¢p (k x 1)
and
Ry = (1 — cos y)KIK +cosy1 +siny (K x 1)

According to Euler’s theorem that the most general displacement of a rigid body
with one point fixed is equivalent to a single rotation about some axis through that
point, these two rotations can be combined into one, i.e.,

Rn,B) =R, R, (6.90)

The theorem is established if n and B are determined uniquely. To determine them,
let us start from

(1 —cosB)nn +cosﬁT + sin B(n x T) = kz . kl
and taking the transpose of both sides,
(1 —cos Bynn + cos 1 —sin f(n x 1) = (R, - R,)T = RT - RT

The subtraction of the preceding two equations gives

sinf(n x 1) = 1[R,- R, — RT - RT] (6.91)

After the right hand of the equation is expanded in detail, the following identities
are used for simplification:

ix1=ki—jk,  jxT=ik—ki, kx]1=ji—ij
kK x1) k=K x k= —sin0i
(kxT)- (K x1)=(kx 1) x & = —jj —ii cosd
and

i =R(,6) j=cos8j+sinbk
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Finally Eq. (6.91) is reduced to

sin B(n % T) = Z[COS%cosg — sin%sin%cos@] : [cos % sin%(k X T)

. 1// ¢ by . 1// . ¢ ’ by
+smzcosz(k'x1)+sm5sm—2—(k ><k)><1:|

= 2sin g cos g(n x 1) (6.92)

To identify the 8 and n in the preceding equation, let us consider a special case of
6 =0,thenk=k =n:

sin§cos§(kx?)=cos<w) sin (‘/f ¢)(k )

Hence
1,
cos = = cos - cos $_ sin v sin ¢ cos® (6.93)
2 272 22
1
= sinB/2) [cos v sin dzbk+ sin %’— cos ¢k’ + sin % sin %(ld X k):| (6.94)

Because n and B are properly determined, Euler’s theorem, that two consecutive
rotations with respect to two different axes can be combined into one rotational
movement, is proved. Let us use an example to illustrate this concept as follows.

Example 6.4

A slab of size a X b and a thickness of ¢ is placed vertically in x—z plane at
the beginning. Suppose that the slab experiences two different kinds of rotations
while the point at the origin remains fixed. Consider two different cases: 1) the
slab is rotated first about the x axis by 90 deg, then about the y’ axis by 90 deg; 2)
the slab is rotated first about the y axis by 90 deg and then about the x’ axis by 90
deg.

1) Perform the rotations through two steps.

2) Combine the rotations into one step and show the same results reached as in
part 1.

Solution. 1a) The slab is rotated about the x axis by 90 deg then about the y’
axis by 90 deg. At the beginning the unit normal vector of the slab is denoted by

n’ which is parallel to the y axis, or n = j (see Fig. 6.11).
After it is rotated about the x axis by 90 deg, the normal vector becomes

= R(i, 90 deg) - j

=Gi+ix1)-j=k n=j=k
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Fig. 6.11 Slab is rotated according to case 1a.

Finally, after the second rotation about the y’ axis by 90 deg, the new normal
vector is

= R(j,90deg) -k = R(k,90deg) k= (kk+kx1) k=k (695

1b) The slab is rotated about the y axis by 90 deg then about the x’ axis by
90 deg (see Fig. 6.12). Similarly, as in case 1a, the normal vectors of the slab are
denoted by n, ', and n” for three positions of the slab. We find

n=j

n' =R(j,90deg) -j=j, {=—k

and

n’ = R(i,90 deg) - j = R(—k,90deg) j= (kk—kx1)-j=i (6.96)

2a) The slab is rotated with respect to n; and by an angle of 8y for the case of
la:

B, ) _ ]
cos 5 = cos” 45 deg — sin“ 45 degcos 90 deg = 2
Bi

1
= W—)[COS 45 degsin 45 degi + sin45 deg cos 45 deg j/

. 2 g 1 |:1. 1 1.j| |
+ sin“45deg(j x )]l = — | ~i+ ~k+ —jl = —=@E+j+ k)
Y ARl TS A

= R(ny, 120 deg) - j = [(1 — cos 120 deg)n;
+ cos 120 degi'+sin 120 deg(n; x 1)] -j

3 1 : + - (k D=k
n =
1= ﬁ 2 =J



MATRICES, TENSORS, DYADICS, AND ROTATION OPERATORS 147

Fig. 6.12 Slab is rotated according to case 1b.

The same result is reached as given in Eq. (6.95), but here is done only by one
rotation.
2b) The slab is rotated with respect to n, by angle of 8, for case 1b:

1
cos %2- = cos? 45 deg — sin’45 deg cos 90 deg = 5 B2 = 120 deg

n; [cos 45 degsin45 deg j + sin45 deg cos 45 deg i/

1
~ sin(B/2)
1

+ sin?45 deg(i’ x j)] =
gl X j 7

i+j-h

n" = R(ny, 120 deg) - j = [(1 — cos 120 deg)myn, + cos 120 degl

o 3 01 1. /31
4+ sin120deg(n, x 1] = —)— — — j 4+ ——m——
n eg(ny x 1] -5 ?_nz«/§ 21+ 7 A

The same result is found as given in Eq. (6.96) for two steps of rotation. More
details may be shown if the unit vectors i, j, k are rotated as n. That approach has
been assigned as an exercise for readers to complete in the problems section.

k+i=i

Problems
6.1. Verify that the following transformations are orthogonal:

(@)

x' = (cos@)x + (sinf)y
y = (—sin®)x + (cos6)y
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(b)
.1 1
xp = ﬁxl + $x3
Xy =X
, 1 1
Xy = _EXl + $x3

6.2. Prove that the product of two orthogonal transformations is an orthogonal
transformation.

6.3. Given a stress matrix

2 4 -6
4 2 -6 (ksi)
-6 -6 —I5

find the principal stresses and the corresponding principal axes.

6.4. It is known that the moments and products of inertia of area A for the
centroidal axes are

Lo=40ft", I,,=201"  L,=-41

Find the principal moments of inertia and the corresponding principal axes in the
x—y plane.

6.5. Similar to the derivation of viscous stress in Newtonian fluid as given in
Section 6.6, derive the expression of stress tensor in homogeneous solid as a
function of strains.
6.6. Prove that

A-(n x T) =AXn
and

(n x T)-A =nxA
6.7. Prove that

(nxT)-(nxT):nn—T

6.8. Suppose that the angle between two unit vectors k and k' is 8 as shown in
Fig. 6.10. Prove that

kx1)- (K x1)=(kx 1) x k' =—jj —ii cos®
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6.9. A slab of size ¢ x b and thickness of ¢ is placed vertically in x~z plane at
the beginning as shown in Fig. 6.11. Suppose that the slab is rotated but with the
point at the origin fixed. First, the slab is rotated about the x axis by 30 deg then
rotated about the y’ axis by 60 deg.

(a) Perform the rotations through two steps.

(b) Combine the rotations into one step and show the same results reached as
in part (a).

6.10. Consider Example 6.4. Let i,j, and k be the unit vectors of the initial
coordinate system. The vectors are i/ and k' after the first rotation and the unit
vectors are i’j” and k" after the second rotation. Find the relationships between

these unit vectors for the rotations considered in the example.

6.11. Suppose that I, I, and I, are given and the products of inertia are zero.
Find the moment of inertia matrix when the coordinate system is rotated about the
z axis by an angle of 6.



7
Dynamics of a Rigid Body

RIGID body is a body with finite volume, mass, and shape that remains
unchanged during the observation. Deformation of the body is not considered
in this chapter. When a force and torque are applied to a rigid body, translational
and rotational motions of the body will take place and are studied in this chapter.
Because most objects can be modeled as a rigid body, the analysis of rigid-body
dynamics is very useful and is the major subject of this book. Many general
principles for the dynamics of particles studied in the preceding chapters provide
necessary background for this chapter. Matrices and rotational operators from
Chapter 6 are used extensively and should be reviewed before studying this chapter.
Fundamental principles are given in the first three sections, followed by three
sections of specific examples. Section 7.1 introduces the general concept of a solid
body in motion and explains how any motion always can be treated as a combi-
nation of translational and rotational motions. Section 7.2 derives the equation of
motion for a mass in a moving frame of reference, which is, in general, motion
relative to an inertial frame of reference. The foundation of the relations is known
as Galilean transformation. Section 7.3 describes how to obtain the Euler’s angular
velocity using two different approaches: one uses matrix operation and the other
the rotation operator. Both of them reach the same result. The difference between
them is that, while the rotation operator rotates the position vector (as in Chapter 6),
matrix operation uses the rotation of coordinates, not the vector. The use of these
two approaches demonstrates how divergent methods can achieve the same result
and also shows the usefulness of the rotation operator. Because the rotation opera-
tor was only recently rediscovered, its many applications have yet to be developed.
A simple example for Euler’s equations of motion is included in this section.
The second half of this chapter uses the physical concepts presented in the pre-
ceding chapters to solve both classical and contemporary problems. In Section 7.4
we deal with gyroscopic motion and use three examples for studying its fundamen-
tal principles. The first example demonstrates that a rotating propeller (or other
rotating mechanisms such as turbines and compressors) can produce gyroscopic
force, which tends to cause an airplane to dive or climb during yawing. The second
example studies a single-degree-of-freedom gyro. The last example in this section
explains the oscillation of the spinning axis in a gyro-compass caused by the
Earth’s rotation. The oscillation frequency of the axis about the meridian is deter-
mined. Section 7.5 is devoted to studying the motion of a heavy symmetrical top.
The nutation and precession of the spinning axis are analyzed in detail. The nuta-
tion angle vs precession angle for three possible cases is integrated, and the results
are presented. Section 7.6 studies a satellite in a circular orbit using the equation
derived in Section 7.2 for a solid body in motion. This is the first example involv-
ing a solid body in general motion. The results of this study show that the yawing
and rolling motions of a satellite always will generate torques about all three axes.
‘We have only recently entered the space era and still must solve many dynamics
problems related to the motion of space vehicles. This section opens that door.
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Q AR

Time t

Time t+at

Fig. 7.1 General motion of a rigid body.

The examples included here are simple in comparison with many problems
facing engineers today. However, I hope that the discussion and examples of this
book will stimulate interest in and provide a firm foundation for further study and
research work in this area.

7.1 Displacements of a Rigid Body

In three-dimensional space, six degrees of freedom are needed to specify the
position of a solid body. Consider a coordinate system in translational motion
with the body. Three degrees of freedom describe the origin of the coordinates
and three degrees of freedom describe the rotational displacements of the body
with respect to the three axes. As seen in earlier chapters, the origin of the moving
coordinates is usually fixed at the center of mass of the body in order to simplify
the equations. In certain cases, however, it is more convenient to place the origin
of the moving coordinates elsewhere.

All rigid body motion can be reduced to translation combined with rotational
motion as shown in Fig. 7.1. This is known as Chasles’s theorem. If one point of
the body is fixed, then the motion must be rotational only. The rotational displace-
ments, no matter how complicated, always can be expressed by one rotation of the
body with respect to an axis through the fixed point. This is known as Euler’s theo-
rem. In Section 6.7, we proved that two successive rotations about the axes through
zero can be combined to a single rotation about an axis through zero. By a repeated
application of that result, any number of successive rotations about the same point
can be reduced to one rotation. This is another statement of Euler’s theorem.

7.2 Relationship Between Derivatives of a Vector for Different
Reference Frames

Vector in Moving Reference Frame Rotating Relative to Fixed
or Inertial Reference System

Consider that xyz is a moving reference that rotates relative to a fixed reference
denoted by XY Z. A vector G in the moving system can be expressed as

G = ZG,‘B,‘
i
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where ¢; is a unit vector in the rotating system. G also can be expressed in the fixed
system. Thus the time derivative of G, as seen from the fixed system, is obtained
as

However,

. dG dG
zo=(9)... (9
i de rotating dr xyz

where (dG /dt)x,, means the rate change of G as observed in the rotating system.
On the other hand, in the fixed system the velocity of a point fixed in the rotating
system is

V=wXr asr=e;
é1=wxei

Hence

> Giei=wxG
i

dG dGg G dG
dt fixed dt XYZ dr rotating dr xyz

Any vector G differentiated in the fixed coordinates equals the change of G in the
rotating system plus w X G in the rotating system.

Velocities and Accelerations of a Particle in Different References

Suppose that XY Z is a fixed or inertial reference; xyz is a moving reference
that is in both translational and rotational motion, as shown in Fig. 7.2. R is the
position vector of the origin of xyz system and r and 7’ are position vectors of
point P in XY Z and xyz systems, respectively.

Fig. 7.2 Moving reference system relative to the inertial frame of reference.
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Hence
r=R+Tr

Differentiating with respect to time for the XY Z reference, we have

(dr) v (dR) 4 (dr’)
- =Vxyz=|— —
dt J xyz dr Jxyz dr Jxyz

. dr .
=R+<——> +wxrF=R+V,,+wxr (7.2)
dt xXyz

in which Eq. (7.1) has been used in the last step of manipulations. This means that
the velocity of point P observed in the fixed reference system equals the vector
sum of the velocity of the origin of the moving system, the velocity of point P in

the moving system and the velocity of P due to rotation of the xyz system.
Differentiating Eq. (7.2) with respect to time for the XY Z reference system, we

get
av . (dV., d
(Frz) ke (B2) +[fexn)]
dt Jxyz dt Jxyz Ldt Xrz

. - r
axyz=R+<d—V*—’i> +wx<d—> +<-di> xr
dt Jxyz dr Jxyz dr Jxyz

Because
dv,, dv,,
() (%) o,
dr XYz dr xyz

(7).~ (&)
— =|— +wxr
dr Jxyz dr /.,

Substituting into Eq. (7.3), we find

dv,,, . dr
axyz = +R4+wxVy,+wx|{—
dt xXyz dt xXyz

+wx(wx/)+<d—w) xr
dr Jxyz

(7.3)

Note that

av, dr d .
( Ayl) = aX)‘Z’ (—) m— VX)‘Z’ (—w> = W
dr xyz dr xyz dr XYz

Hence, we obtain

axyz=ax),z+k+2wxVX),Z+wX(wX/)+u'JX/ 7.4
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where w and w are the angular velocity and acceleration, respectively, of the xyz
reference relative to the XY Z reference.
By Newton’s law, the force on a particle is

F = maxyz

In the moving reference, we find

maxyz=F—mk—mu’;x/—mwx(wx/)—2mwxnyz (1.5)

This expression gives the effective force acting on the mass as observed in the
moving frame of reference. The meaning of each term is explained as follows:

1) The term —mR is the inertial force caused by translational acceleration of the
moving frame. For example, during the sudden acceleration of a car, passengers
sense the force in the opposite direction to the direction of the acceleration.

2) The term —mw x r is the inertia force produced by angular acceleration of
the rotating frame. A mass placed on a rotating disk will experience this inertia
force in the direction opposite to the tangential acceleration.

3) The term —mw X (w x r’) is the centrifugal force term. When a satellite
moves in a circular orbit, this force points outward from the center of Earth and is
balanced completely by the gravitational force, causing astronauts to experience
weightlessness in the orbit.

4) The term —2mw x V,; is the Coriolis force, which is the major cause of the
counterclockwise rotation of hurricanes in the northern hemisphere. The Earth’s
rotation causes a component of rotational velocity to point outward from the sur-
face of the Earth. To simplify the problem, let us consider only this component
of the rotational velocity. The —w x V,,;, will cause the air to move in counter-
clockwise direction if air moves toward a low pressure center as observed from
the top of the low pressure center. The rotational momentum of the air is nearly
conserved. Hence, the tangential velocity increases as the air moves closer to the
eye of the hurricane.

Apply Eqgs. (7.2) and (7.4) to the velocities and accelerations of two points
a and b of a rigid body. We imagine the xyz reference embedded in the rigid
body with the origin at @ as shown in Fig. 7.3. Clearly any point b of the body will

z

Fig. 7.3 Relative motion between two points in a rigid body in rotation.
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not move relative to @ and must have VA)Z = 0 and ay,, = 0. Because the origin

of xyz corresponds to point a, R=V,R=a,, velocity and acceleration for point
b are

V=V, +wxr, (7.6)
ap=a;+w X (WX ) +wxr, .7

The preceding two equations are often used in the dynamics of machinery.

7.3 Euler’'s Angular Velocity and Equations of Motion

Euler’s angles have been mentioned in Sections 6.2 and 6.7. They are convenient
for describing the motion of a rotating top. Before using them, however, we first
need to find the angular velocities for the corresponding angles in three orthogonal
coordinates. Many different ways are available to express angular velocity. The
most elementary approach is to find the components of ¢ 6, and ¥ in the primed
system directly; however, it is easy to make a mistake in this approach because
$,6, and ¥ are not perpendicular. To express these in terms of perpendicular
coordinates, the components of ¢, 8, and ¥ must be found in the directions of
those coordinates, which is not an easy task. The two methods described next are
more systematic. By using the rotation matrix, the angular velocities are obtained
through simple matrix operations, or the same result can be reached by using the
rotation operator that rotates the vector itself (in this case, the unit vectors). These
additional applications of the rotation matrix and rotation operator are described
in greater detail below.

Euler’s Angular Velocity Obtained Through Matrix Operation

" /// "

Consider a position vector r’ that is fixed in the rotating body of x and is

constant; the corresponding r in the fixed frame of reference is

=R/ (7.8)
The time derivative of the equation is
=R'W=R"¥ =R"Rr
Applying Eq. (7.1) here for r leads to
(ﬂ) = w X r = [Matrix of(w x T)]r
dr Jxyz
Equating the preceding two equations gives a matrix of
0 —w; wy

wxD=| o, 0 -w)=RR (1.9)
—wy Wy 0
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To find w in terms of ¢, 6, and ¥, we proceed as follows:

. d
RTR = <E(R3R2R1)T) (R3sRyRy)

d

= <5(RTR2T R} )) (R3RaR1)
= RTR, + RTRSR:R, + RTRIRIR:R:R,

These matrix products can be worked out rather simply, for example,

—sing —cos¢p O cos¢ sing O

RITR1=¢> cos¢p —sing O —sing cos¢ O
0 0 0 0 0 1

0O -1 0

=¢ |1 00

0 00
. 0 0 0 1 0 0
R;R;)_:G 0 —sinf —cosfH 0 cos@ sin6
0 cos@ —sinf 0 —sinf cos@

0 0 0

=6[0 0 —I

0 1 0

The final result of the matrix algebra is

R'R
0 —(¢ + ¥ cos 9) (6 sing — ¥ sinf cos ¢)
= (@ + ¥ cosH) 0 —(B cos¢ + ¥ sinf sing)
~(@sing — ¥ sinf cosd) (6 cos ¢ + y sin O sin¢) 0

Therefore, we find from Eq. (7.9)

6 cos ¢ + i sinf sin ¢
w = | Osing — ¥ sinb cos ¢ (7.10)
¢+ 1// cosf
for the components of angular velocity in the X Y Z frame of reference. The velocity

component can be expressed in any other primed frame of reference according to
the transformation

’
w = Rw

where R can be R and R;R; or R3R,R;.
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Euler’s Angular Velocity Obtained Through Rotation Operator

Consider a position vector r with initial position r(0). After some time ¢, it is
rotated to r(¢), so that

r(t) = R(n, B) - r(0) (7.11)
where
k(n, B) = (1 —cos B)nn + cosﬂT + sin B(n x T)

is the dyadic rotation operator defined in Section 6.7. Taking the time derivative
of Eq. (7.11) gives

d:,(,t) =%—-r(O):%-iéT-r(t)=wxr(r)=(wxi')-r(t)

which means

wx =38 pr (7.12)
de
Note that
d%—k(n, B) = sin S[Bnn — ,BT + (i x T)] + cos BB(n x T)
+ (1 = cos B)(in + nir) (7.13)
and
R™(n, B) = (1 — cos B)nn + cos B1 — sin B(n x 1) (7.14)

The product of (d /dt)k -RT finally reaches the expression

d e o« . - - -

E;R-R =Bnx1+sinfEx1)+ (1 —-cosB)nxn)xl1 (7.15)
In the derivation, the vector 7 is assumed to be perpendicular to #. The following
identities are used for simplification:

A-(nxT):Axn, (nxT)-A:nxA (7.16a)
Ax1)-Bx1)=BA—~1(A-B) (7.16b)
(R — nn) = (n x i) x 1. (7.16¢)

Through the use of Eq. (7.12), we obtain

w = Bn+sinBr+ (1 —cos Bn x (7.17)
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which is the result of this derivation. This is not quite meaningful, however,
because n is unknown. During the derivation, n is assumed to be perpendicular
to n, but there are many # that can satisfy the assumption. Therefore, w cannot
be obtained directly from Eq. (7.17). However, when the rotation is about a fixed
axis, Eq. (7.17) reduces to

w = fn

as expected. On the other hand, from Eq. (7.17) #1 can be expressed in terms of n
and w. The details of derivation are an assigned exercise in the problem section; #
is obtained as

h=—%{(nxaa)+cot§-[nx (n x w1} (7.18)

Note that from this equation we can see that n is perpendicular to n because
n - n = 0, with the components opposite to (7 X w) and n X (1 X w).

Although w cannot be obtained directly from Eq. (7.17), Eq. (7.12) can still
lead us to find w through the rotation operators. In Section 6.7 we have derived
the rotation operator with respect to fixed frame of reference as given in Eq. (6.86)
for the rotation through Euler angles:

R(n, B) = Ra(k", ¥) - Ra(¥, 6) - Ry (k, ¢)

= Ri(k,¢) - R2(i,0) - R3(k, ¥)
For the operator through the fixed axes, we have

e de - d « o o o e .
wx1=—R-RT = —[R,-Ry-R3]-[R,-Ry-R5]"
dr dr

= —[Ri- Ry Rs]-[RY - RS - R{]

- - -

d - o -
=—R1-R1T+R1-5;R2-R2T-R1T

=W¢XY+}-\;1-WQXY-}-\;1T
+k1-k2-uwa-k;-k{
where
“ d- =« o d- - - d. o
x1=—R,-RT, x1=—R;-R}, x1=—R3-R}
wé ar ! wo ar 2" wv a2

have been used. Making use of the identity Eq. (6.76), which is rewritten as
follows,

-

R-wx1D)-RT=R-»)x1
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we find
w=w¢+k1 'w9+k1 -kz'wv,
Note that in this equation
we = ok, wp = 0i, wy = 1/}k
so that
w = ¢k + R\ (k, ¢) - 0i+ R (k, §) - Ry(i, 0) - ¥k
= ¢k + 01 + Yk’ (7.19)

which is certainly true. The w can be expressed in any frame of reference. Rewriting
the operators in Eq. (7.19) in detail, we have, in the fixed frame of XY Z,

w = ¢k + [kk + cos ¢ (ii + jj) + sing (k x 1)] - Bi
+ Ry (k) - [(1 — cos 0)ii + cosO1 + sin6(i x 1)] - ¥k

= ¢k + 6(cos i + sin @) + Ry (k, $) - [cos Ok — sin 6 ]y
= i(f cos ¢ + ¥ sin O sing) + j(6 sing — ¥ sin 6 cos ¢)
+ k(¢ + v cos0) (7.20)

This result agrees well with Eq. (7.10), which was derived through matrix op-
erations. In the rotation of axes for the Euler angles, because i’ = ", k = k', the
expression in Eq. (7.19) can be converted easily into the double-primed frame.

Through the use of k' = k;(i”, ) - k", we obtain
w=1'0+j(¢sind) +kK'(Y + ¢ cos ) (7.21)
This can be converted into the triple-primed frame with the use of
iu — l’é}T(ldu’ 1//) . im, ju — l’é}T(lau, 1//) _J-m, la/ — kJ”
In the triple-primed frame of reference, we find
w =1i"(0 cos ¥ + PsinOsiny) + ;" (—6 siny + ¢ sin cos V)
+ K" (§ + pcosh) (7.22)

Euler Equations of Motion

In an inertial frame of reference, such as the set of axes XY Z, forG=L =
angular momentum of a body, Eq. (7.1) gives

dL dL
—_— = _ + w X L = N
dt XYz dt xyz

where the xyz frame is in rotational motion with velocity w relative to the XY Z
frame, and N is the torque applied to the body. In general, as given in Eq. (6.37)
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and Eq. (6.39)

L=7m-w

We can simplify this expression by rotating the axes of xyz to coincide with the
principal axes of the body and label them x'y’z’. Then we have

Ly = Loy, Ly = hoy, L, = Lo,
The full set of Euler equations are reduced to
Ny = Loy —wyw, (I, — 13) (7.23a)
Ny = hoy —wyo0 (I3 — 1)) (7.23b)
Ny = b, — wywy(ly — 1) (7.23c)

Let us first consider Euler’s angular velocity for the preceding equations. Note
that the triple-primed axes are actually the axes fixed in the rotating body, so that
w given in Eq. (7.22) is to be used for this set of equations:

wy =0 cos Y + $sinf siny
wy = —6siny + @ sinf cos ¥
wy =Y + ¢pcosb
Differentiating with respect to time and substituting into Egs. (7.23a-7.23c) gives
Ny = L6 cosy + ¢sinfsiny] + (I} — L)[—6v siny + ¢ sin6 cos Y]
+ (1) + L)$6 cosOsiny + I3[—6 siny + @ sin 6 cos ¥
— B cos O siny + ¢*sinb cos 6 cos ¥ (7.24a)

Ny = Iy(—=0siny + ¢sinf cos ) + (I} — )[04 cos ¢ + ¢y sin sin /]
+ (I1 4 1,)6¢ cos 6 cos ¥ — I3[0 cos ¥ + B¢ cos 6 cos
+ ¢V sinfsiny + > cos 6 sinf sin Y] (7.24b)
Ny = Ly + ¢cosf — pBsin@] — (I, — I)[—6% cos ¥ sin ¢
+ 8 sin 6 cos 2y + ¢?sin? @ cos ¥ sin ¥/] (7.24c¢)

The application of the preceding equations is demonstrated in the following ex-
ample.

Example 7.1

A toy gyroscopic top is shown in Fig. 7.4. The gravitational force on the disk
is W_If the disk is given a high angular velocity w, about its shaft oz’ and one
end of the shaft is placed on a pedestal, it is observed that the shaft and disk will
not fall but will precess around the axis 0Z because of torque W € acting on the
system. Find the angular velocity for precession.
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rre

Fig. 7.4 Toy gyroscopic top.

Solution. Applying Egs. (7.24a-7.24c) to this problem, we make some nec-
essary assumptions and have
I = 1, L=1
6=90deg, 6=0, 6b6=¢=9y=0, V=0, =0
Ny = Wtlcos y, Ny = —Wisiny, Ny =0

Note that the torque produced by the weight is in the direction of x, and axes x, x’,
and y’ are in the same plane. The x’, y’, and z’ axes are embedded in the rotating
top. Either from Eq. (7.24a) or (7.24b), we find

Wi= Id)gb:lwswp, wp = Wt/lws

Therefore, the angular velocity for precession is directly proportional to the torque
produced by its own weight and inversely proportional to the angular momentum
along the spinning axis.

7.4 Gyroscopic Motion

To study the motion of a gyroscope, it is convenient to consider the rotating body
and the rotating coordinate system separately. Let the coordinate axes lie along
the principal axes of the body but allow the body to spin in the rotating coordinate
system with a rotating velocity of  along the z” axis, as shown in Fig. 7.5. Hence,

X

X’,X"

Fig. 7.5 Euler’s angular velocities.
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the angular velocity of the rotating frame of reference is

Q = 60" + ¢ sin 6 + pcos6k” (7.25)
and the angular velocity of the body is
w = 01" + $sin 6" + (¥ + ¢ cos Ok (7.26)

in which v is the angular velocity of the spin, ¢ is the angular velocity of preces-
sion, and @ is the angular velocity of nutation.

It is also assumed that there is always one point in the system that is fixed either
in a fixed system or in an inertial frame of reference. This point may be the center
of mass or one of the supports. Applying the Euler equations, we find

dL
(_) _ (%) +QXL=N (7.27)
dr Jxyz dr /.y,

where L| = I'w(, Ly = I'wy, Ly = Iws; I’ is the mass moment of inertia with
respect to the x or y axis; and / is the mass moment of inertia with respect to the
Z axis.

Substituting the expressions for £ and w in Eqgs. (7.25) and (7.26) into Eq.
(7.27) leads to

Ny =10+ 1 —I')(¢*sin6 cosO) + [Py sin (7.28a)

Ny = I'¢sind +21'6¢ cos 6 — I (Y + ¢ cos6)6 (7.28b)

N3 =1 + ¢ cost — @ sind) (7.28¢c)
Example 7.2

In Fig. 7.6, the propeller shaft of an airplane is shown. The propeller rotates at
2000 rpm clock wise (cw) when viewed from the rear and is driven by the engine
through reduction gears. Suppose the airplane flies horizontally and makes a turn
to the right at 0.2 rad/s as viewed from above. The propeller has a mass of 30 kg
and moment of inertia of 25 kg-m?. Find the gyroscopic forces that the propeller
shaft exerts against bearings A and B, which are 150 mm apart.

Solution. To simplify the problem, it is assumed that, before the airplane
begins making a turn, the whole system is in an inertial frame of reference for Egs.
(7.28a-7.28c) to apply. The angular momentum of the propeller is in the direction
of z" and is

. 2000(2
Y =wy = & = 209 rad/s
60
Ly = Iy =25 x 209 = 5225 kg-m?/s
¢ = —0.2 rad/s

§=90deg, 6O=0=¢=y=0
Ny = Iy¢ = —25(209)(0.2) = —1045 N-m

N 1045
pattl_ 2

I N
4 0.150 6967
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Fig. 7.6 Gyroscopic effect on propeller shaft.

Note that the force acting on the bearing F” is in the opposite direction of F. From
the couple formed by F’, we can see that the moment produced by F’ causes the
airplane to dive. On the other hand, if the airplane is turning to the left, then the
moment from the bearings pitches the airplane upward.

Example 7.3

Shown in Fig. 7.7 is a single-degree-of-freedom gyro. The spin axis of disc E
is held by a gimbal A that can rotate about bearings C and D. These bearings are
supported by the gyro case which, in turn, is clamped to the vehicle to be guided.
If the gyro case rotates about a vertical axis while the rotor is spinning about the
horizontal axis, then the gimbal A will tend to rotate about C D in an attempt to
align with the vertical. When gimbal A is restrained by a set of springs § with
a combined torsional spring constant given as k;, then the gyro is called a rate
gyro. The neutral position of the springs is set at 6 = 7 /2. If the rotation of the
gyro case is constant and the gimbal A assumes a fixed orientation relative to the
vertical as a result of the restraining springs, we have a case of regular precession.
The rotation of the gyro case gives the precession speed ¢ about the precession
axis, which is clearly the vertical axis. The nutation angle € is then the orientation
of gimbal A (i.e., the z axis) with respect to the Z axis.
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Fig. 7.7 Single-degree-of-freedom gyro.

Given the following data, what is & for the condition of steady precession?
I =4 x 107% kg-m?
I’ =2 x 107* kg-m?
¥ = 20,000 rad/s
k; = 1.0 N-m/rad
¢ = 0.1 rad/s

Solution. Taking the x axis along C D, the z axis along the spinning axis of
the rotor, and the Z axis for the precesion axis, we have, from Eq. (7.28a),

Ny =k(m/2—8) = — I')(¢*sinB cos 8) + [y sinb

(/2 — 8) =2 x 107*[(0.1) sin 6 cos 8]
+ 4 % 1074(0.1)(20,000) sin6 = (2 x 10™%cos 6 + 0.8) sin 0
Neglecting 2 x 107 cos 6, which is much smaller than 0.8, the equation becomes
/2 —6=0.8sin6
0 = 53 deg

In practice, the torque N, is measured. Because N, and the rotating velocity of
the vehicle ¢ are directly related, the required value of ¢ can be calculated from
the measured value of N;.

Example 7.4

We shall now explain the effect of the Earth’s rotation on the operation of
the gyro-compass. The gyro-compass is a two-degree-of-freedom gyroscope as
shown in Fig. 7.8a with torsional springs restricting the x axis. This device gives
the direction to the geometric north pole (not the magnetic north pole) if it is set to
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that direction at the beginning of observation. In this example we will see that the
Earth’s rotation causes some oscillation of the spinning axis about the meridian.

For simplicity, we consider a gyro-compass at a fixed position on the Earth’s
surface. The body axis z of the gyro-compass can rotate in plane T tangent to the
Earth’s surface as shown in Fig. 7.8b, where the z axis is at an angle o with the
tangent to the meridian line. Because the angle ¢ may vary with time, there is a
possible angular velocity & normal to the plane T. The y axis is a radial line from
the center of Earth at o, and, therefore, is always collinear with &. The x axis then
is chosen to form a right-hand triad and is in plane T. An inertial reference XY Z
is chosen at the center of the Earth so that the Z axis is along the north—south
axis. The gyroscope rotates with spin velocity ¥ along z and swinging velocity ¢
along y and precession velocity ¢ along Z, where ¢ is the angular velocity of the
Earth, a constant vector of small magnitude. For convenience, another Z axis has
been set up at the gyroscope. The angle between the Z axis and the tangent to the
meridian designated as A is the latitude of the position of the gyro-compass. Note
that the nutation velocity  is not used here. It is a function of &, A, and .

Because the axes xyz are not fixed to the body, we must use Eq. (7.27) for the
equation of motion. We have

Liy=Tw, Ly =1w,, L3y =Tws
and
w| = —¢ cos A sina
wy =& + $sin A

w3 =¥ + ¢pcosAcosa

Fig. 7.8a Two-degree-of-freedom gyro (rotation about x axis restricted).
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Y
Equator
X
s
Fig. 7.8b Gyro-compass in oscillation.
The angular velocity components of xyz are
Qi = —¢cosAsina
Q =&+ $sini
Q3 = ¢ cos A cos
Now we can write Eq. (7.27) as
d .
Nyi+ Nyj+ N3k = I’a(—qbcosasina)i
Ao
+ 1 a(a +¢sinA)j+1 E(‘” + ¢ cosicosa)k
+ I'(é + ¢ sin A)[(~¢ cos A sina)k — ¢ cos A cos ai]
+ I'(—~¢ cos Asina)[¢ cos A cos arj — (& + ¢ sin A)k]
+ 1§ + ¢ cos Acosa)[(& + ¢ sin A)i + (¢ cos A sina)j]
Dividing the preceding equation into three components, we find
Ny = I'[(—a cos Acosa) + (& + ¢ sin A)(—¢ cos A cos a)]
+ 1y + d)coskcosa)(d + $sinA) (7.29a)

Ny = I'(@ — ¢? cos® Asina cosa) + 1 (zﬁ + $cosicosa)pcosisina  (7.29b)
N3 = I ({ — ¢ cos Asina) (7.29¢)
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Now let us consider the external torques acting on the gyro-compass system.
Because the spin axis is kept in the plane T, a proper amount of N} must be applied
along the x axis. There are no torques along y and z axes, i.e., N, = N3 = 0, and

since ¢ is expected to be much smaller than v, and ¢? <« @&, Eqgs. (7.29b) and
(7.29c¢) are reduced to

I'é + Iy¢cosrsing =0 (7.30a)
I1(y — dacosAsing) =0 (7.30b)

Note that  is the spin velocity of the rotor, ¥ > ¢,and ¥ > &. Equation (7.30b)

may be approximated as Y = 0, i.e., as Y is a constant. Then Eq. (7.30a) can be
written in the form of

a¢+co=0 (7.31)
where

Iy cosh

= —I/
We also assume that & is much less than one. Equation (7.31) means that the Earth’s
rotation can cause the spin axis to oscillate about the meridian. The frequency of

oscillation is
. 1 I1//<i)cos)t
- roen 7.32
! 2]”/ 7 (7.32)

Plugging realistic values into this equation, let ¥ = 20,000 rad/s, ¢ = 7.2722
x107° rad/s, A = 20 deg, and I = 2/’, then we find

f =0.263 cycle/s

or the period of oscillation is 3.8 s.

7.5 Motion of a Heavy Symmetrical Top

The motion of a rotating top is well known and is a good example to learn
how powerful mathematical techniques are used to extract a great deal of physical
information using minimal calculation. Nutation and precession will be studied in
detail.

We choose the symmetry axis of the top as the z axis and fix the supporting
point of the top at the origin of coordinates. The center of mass is located on
the z axis at distance ( from the origin as shown in Fig. 7.9. The Euler angles
were originally designed for the treatment of a rotating top, and they will prove
to be very convenient. To find the equations of motion, Lagrangian techniques are
applied because they are simpler than the Euler equations. With this in mind, we
write the Lagrangian function as

L=T-V =1I'(o} +w}) + 310} — Mglcosd (7.33)



DYNAMICS OF A RIGID BODY 169

Fig. 7.9 Coordinates for the heavy symmetrical top.

in which /; = I, = I’ because of symmetry and /3 = I have been used. Clearly,
the angular velocity of the top expressed in the body axes is most convenient.
From Eq. (7.22) we have

w = (B cos ¥ + ¢ sinf siny)i+ (—6 siny + ¢sinb cos y)j
+ (§ + dcosb)k (7.34)

With the use of Eq. (7.34), the Lagrangian function, Eq. (7.33) becomes
L =300+ ¢*sin*0) + LI () + $cos8)? — Mglcosd (7.35)

As discussed in Chapter 4, y and ¢ are ignorable coordinates because they do not
appear in the Lagrangian function. Consequently, the two angular momenta Py,
and Py are constant, i.e.,

aL . .
Py = w =[(Y +¢cosf) = [w, = const (7.36)

Py = % = I'(sin® )¢ + I ( + ¢ cosf) cos

= (I'sin? 0 + I cos® 6)¢ + Iy cos§ = const (7.37)

Furthermore, because no frictional dissipation is assumed in this analysis, the total
energy E =T + V is constant. In view of Eq. (7.36), subtraction of E by %I wf
is still constant.

E'=E — Jlw! = 1I'(6* + $*sin” 6) + Mglcos 6 = const
From Eq. (7.36) we have
V= w, — cosb (7.38)
Substitution of s into Eq. (7.37) gives
(I'sin? @ + I cos® )¢ + I cos B (w, — ¢ cos )
= ['(sin? )¢ + I w, cos§ = const = I'B



170 ADVANCED DYNAMICS

Rearranging, we find

. B — Acosf
= 7.39
¢ sin26 ( )
where A = (I /1) w,.
Then, from Eq. (7.38), we have
. 0
¥ = w, — —(B — Acosf) (7.40)
sin“ 6
Substituting Eq. (7.39) into the expression for energy E’ gives
1T, B — Acosf)?
E ==I|9*+ (.—cos)_ + Mglcos® = const
2 sin? @
or
(sin?0)6% = (C — D cos ) sin®6 — (B — A cos 0)? (7.41)
where
2E' Mgt
=, p =228
I I

Equation (7.41) is a first-order differential equation. The nutational motion of the
rotating shaft can be predicted from this equation. Having found the function 6(¢),
the precession of the top can be obtained through Eq. (7.39), and the variation of
spinning velocity can be found from Eq. (7.40). Equation. (7.41) is a nonlinear
equation, however, which cannot be integrated analytically. Much information
may be obtained without integration of these equations. Let us change the variable
in the equation with

u =cosf
Then we have

(12 =(C - D)1 —p?) — (B - Ap)’ = f(u)

The result 6(t) of the preceding equation depends highly on the behavior of the
function f(u). By introducing proper numerical values for A, B, C, and D, the
variations of f'(y) are obtained as shown in Fig. 7.10. It easily is seen that there are
three roots. From the plot, two roots are between 0 and 1 and are reasonable roots
because 0 < cos @ < I; the third root is impossibie. Note that at those two roots
n=0,1ie., 0 =0, so that 6 reaches minimum or maximum at these roots; also
note that f(u) is positive between these two roots so that i1 = £/ f (1) or du
can be positive and negative. With this understanding, Eqgs. (7.41) and (7.40) are
numerically integrated. Three different possible cases are given in Figs. 7.11. For

T N A

Fig. 7.10 Plot of f(p) withA =2,B=18,C=2.5,and D = 2.
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Fig. 7.11a, where the value of B/ A is greater than u,, the motion is called regular
precession with nutation because precession occurs at nearly constant speed. For
Fig. 7.11b, where the value of B/A = pu;,6 =0, and ¢ =0 as u = 5, so that
cusps are shown at 6y,;,. For Fig. 7.11c, the value of B/A is between the first two
roots, so that ¢ can be positive and negative. Consequently, loops are shown in this
case. In the numerical integration, because the two integral limits are the roots in
the denominator of the integrand, Simpson’s one-third rule with du = 0.0001 is
employed for integration and with a further reduced interval near the integral limits.

7.6 Torque on a Satellite in Circular Orbit

During the last four decades, we have launched many objects into space and
have encountered many engineering problems specific to motion in orbit. As the
motion of airplanes was well studied in the beginning of the 20th century, the
motion of the space station moving in orbit now requires diligent study so that
some induced motions during flight operations can be anticipated and delicate
space vehicles are designed to endure the additional stresses they may encounter.
Certainly there are many possible ways to analyze the problem. The following
approach was first given by E. Neal Moore.”

Consider a satellite moving in a circular orbit around Earth. The coordinate
system xyz is so chosen that the z axis is from the center of Earth pointing
outward through the center of mass of the satellite. A plane contains the z axis and
the orbit curve is called the orbit plane. The y axis is in the orbit plane. The angular
velocity w of the satellite relative to the Earth is perpendicular to that plane. The
x axis is antiparallel to w. The origin of the x, y, z coordinates is chosen at the
center of mass of the satellite. The body of the satellite is not fixed in the xyz
system so that it can pitch, roll, and yaw relative to the axes of xyz system. With
the coordinate system chosen, now let us consider that a small element dm as
shown in Fig. 7.12 and consider that the frame of reference in the Earth is the
inertial frame of reference.

Fig.7.12 Satellite in a circular orbit.

*Moore, E. N., Theoretical Mechanics, Wiley, New York, 1983, Chap. 6.
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Applying Eq. (7.5) with the gravitational force applied to the satellite as the
only external force, we have

dF =dma = —GMdmﬁ3 —dmR — dmae x r — dmuw
p

X {wxr)—2dm{w x v) (7.42)

where v is the velocity of dm as observed in the xyz system. As the body is rotating
relative to the moving coordinate system with angular velocity w’, then

v=w Xr
where r is the position vector of dm. The torque acting on the body of the satellite

about the center of mass because of its own motion is obtained by integration of
torque over the whole body

N =/ rx dF (7.43)
boby

Making use of the fact that R = RK

R=RK=RuoxK=wxR

R:wa:wx(uxR), w = const

In addition, p = R + r. Substituting these expressions into Eq. (7.42) leads to
dF = ~GMdm®. — dmw x (@ x p) ~ 2dm(w x ) (7.44)
p

The first term on the right-hand side of the preceding equation is called the gravity
term; the second term is the centrifugal term, and the third term is the Coriolis
term. They are to be examined separately as follows.

1) For the gravity term, because

P =R*4+r24+2R-r

11 r22R-r_5
2 r|'T\&) VR

3R -
Ei[l— r] forR>r
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and because the satellite is in circular orbit

GM
sym mRw?
R2
GM )
= w
R3
The torque produced by the gravitational effect is found to be
Ny =-— / GMdm—=E
o

= —wzfdm(r X p)(l - SRR;">

With the use of r = xi + yj + zk and R = Rk, the equation is simplified to

N, = —a)2/dm(r X R)(l — ?;TZ) = —wzfdmR(—xj+ yi)(l - §R£>

= 30° f dmz(—xj+ yi) = 30* (=1 i+ I,,)) (7.45)

where
I, = —/zydm (7.46a)
I, = —/xzdm (7.46b)

2) For the centrifugal term, because

w=—wi
Ncenz—/dmrx[wx(wxp)]:—wzfdmrx[ix @i x p)]
Now, because

IX(xp)=ix[ix (Rk+xi+yj+zk)]=—yj— (R+2)k

we find

Neen = —a)zfdmr x [yj+ (R + z)k] = a):"/dm(xyk—xzj)

= w*(I;,j — Liyk) (7.47)
where

xzdm (7.48a)

Ly = —/xydm (7.48b)
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3) The Coriolis term is

Neor = —Z/dmrx (w x V)

Because
v=w' xr=(oit+oj+wok) x (xi+yj+zk)
= w,yk — w,zj— w;xk + w;zi + wyxj — w,yi
wXv=—iwXv=0w(y - ox)j+owsz—auxk
rx (wxv) = w(w;xz — wlxy)i+ w(—w.xz + w,x?)j
+ o (wxy — wix*k
we obtain

Neor = —Z/dmr X (w X v)
= 2w[(w;lxz —w,liy)i+ (W] — w L)j+ (@ Iy — w;l)k] (7.49)

where | = — f x2dm and ' is the angular velocity of the satellite relative to the
XYz axes.

The addition of Egs. (7.45), (7.47), and (7.49) will give the torque produced on
the satellite because of its own motion. However, in these equations, the various
I are computed in the moving coordinates. In other words, / changes with time.
This is not convenient to apply. It is better to relate / to the principal moments of
inertia. Let R be a rotational transformation matrix and I’ the principal moment
of inertia. Assume that at the beginning of observation, the x yz axes are coincided
with the principal axes of the body. Note that

I =RIR™!
I=R'I'R (7.50)

Now let us consider pitching of the satellite, which means the satellite rotates
about the x axis by an angle of 6, with a speed of 6,. We have

W, =6, wy=w, =0
Because the body is rotated about the x axis counterclockwise by an angle of 9,
the rotational transformation matrix is
1 0 0
R=1|0 cos6, sind,
0 ~—sinf, cosh,
We find
I 0 0
I=R'ITR=|{0 I,cos?0,+ I3sin26, (I, — I3)cos6,sin6,
0 (I, —I5)cosb,sind, I,sin*6,+ I3cos*6,
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Hence
Ly =1, Ly=1,=1,=1,=0
Iy, = (I — ) cos B, sinb), = 1,
Thus the torque produced on the satellite because of pitching is simply
N, =N; =3wy(—1,0)
= —3w?(I — I3) cos B, sin 6),i
= —30%(I — I3)sin20,i (7.51)

Next, let us consider rolling of the satellite about the y axis by an angle of 6 with
a speed of g, i.e.,

w, =0, w; = 6z, w, =0
then we have

cosfr 0 -—sinfp
R = 0 1 0
sinfp 0 cosfr

Iy cos?6r + Lsin?6g O (=I; + 13) cos O sin O
I=R'IR = 0 I 0
(=11 + I3)cosBr sinr O [, sin® 6 + I3 cos? Op

or
Iy = I, cos® g + I3 sin® 6
Iy=1
1, = I, sin® g + I3 cos’ b
Iy, = Iy = (=1 + I3) cos 6 sin g
Ly=1Il,=1,=1,=0
The 7 in Eq. (7.49) is

1
1 =—/x2dm= —5/(1‘2+x2—y2—22)dm

-2 /[(r2 =) = =) + (2 = 2))ldm

2
1

= _E[lyy - Ixx + Izz]
1 .

= —5[12 — (I, cos? 0 + I3sin? 6g) + (I; sin® 6 + I3 cos? Or)]

1
= —5[12 ~ (I1 — I3) cos 26]
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With the use of [ as just obtained, we find the torque produced on the satellite
because of rolling is

Nt = Ng + Neer + Neor
= 3w ,j + 0L + 2w (0r i — Og k)
= —wlg (I, — I3) sin20g i — 2w? (I, — I3) sin 20gj
+ wlg[ly — (I} — I3) cos(20g)]k (7.52)

Similarly we can find that the torque acting on the satellite because of yawing
about the z axis is

Nyww = =8y (I} — I)sin(20y)i — wby[Is — (I} — I3) cos(26,)]j
—10?(Iy = L) sin(26,)k (7.53)

Therefore, rolling and yawing can produce rotations about all three axes.

From here one can easily suggest a project that is to carry out the proper
operational procedure so that the torques generated by the motions of the satellite
are balanced. Furthermore, it is easy to recognize the need for a great deal more
research for a satellite in an elliptical orbit.

Problems
7.1. Prove that

(nn — nn) = (n x n) x 1

7.2.  Verify Eq. (7.17) through direct evaluation in detail of (dR/dt) - R” .
7.3. Given

w = Bn+ (1 —cos B)(n x i) + sin Bn
prove that by assuming n-n =0

nXw=—(1-—cosB)rn+sinB(n xn)
and

nx (n x w) = —sin i — 2sin(B/2)(n x 1)

Consequently,

1 B
n—-——-z-{(n xw)+cot5[(n~w)n—w]}
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20 cm

Fig. P7.4

7.4. A round plate rotates about the z axis perpendicular to the x—y plane with
an angular velocity ¢. Mounted on this revolving plate are two bearings A and B
that retain a shaft and mass rotating at the angular velocity ¥ as shown in Fig.
P7.4. An x'y’z’ system is selected and fixed to the shaft and mass in such a way
that the z' axis is along the shaft, x” is perpendicular to the z’ axis, and y’ is parallel
to the Z axis. The mass center G defines the center of this system. The angular
velocity v is observed from a position on the rotating plate. Let the mass be 10
kg, its radius of gyration be r = 10 cm, and its angular velocity ¥ = 350 rad/s.
Using ¢ = 5 rad/s in the direction shown, find the bearing reactions.

7.5. The rotor of a jet airplane engine is supported by two bearings as shown
in Fig. P7.5. The rotor assembly, consisting of the shaft, compressor, and turbine,
has a mass of 820 kg and a moment of inertia with respect to its shaft of 45 kg-m?2;
its center of mass is lying at point G. The rotor is rotating at 10,000 rpm cw when
viewed from the rear. The speed of the airplane is 970 km/h, and it is pulling out
of a dive along a path 1530 m in radius. Determine the magnitude and direction of

R=1630 m
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the combined forces that the shaft exerts against the bearings due to the gyroscopic
effect and the centrifugal effect.

7.6. The jet airplane in Problem 7.5 is traveling at 850 km/h in a horizontal plane
and makes a clockwise turn of 2.0 km radius when viewed from above. The rotor
is rotating at 9000 rpm c¢w when viewed from the rear. Determine the magnitude
and direction of the gyroscopic forces that the shaft exerts against the bearings.
Will the forces make the front of the plane tilt upward or downward?

7.7. InFig. P7.7 a gyroscope used in instrument applications is illustrated. The
rotor R is mounted in gimbals so that it is free to rotate about all three axes. In
the figure A, B, C, D, E, and F are precision bearings. The rotor has a moment
of inertia with respect to its axis / = 0.0025 kg-m? and is rotating at 12,000
rpm. Suppose that the instrument experiences a precession of 1 deg/h about the
Z axis. Determine the magnitude and direction of the torque applied to cause the
precession.

7.8. A heavy symmetric top is spun with its axis of symmetry in the vertical
position initially. Find the conditions that will cause the top to remain vertical.

7.9. Derive Lagrange’s equation for the coordinate 6 of a heavy symmetrical
top. Then solve this relation for the precession angular velocity ¢ when there are
no nutation velocity and acceleration present. From this result, show that there isa
minimum valve of w, for which precession is possible. Finally, for w, higher than
the minimum value, show that there are two permissible values of ¢, corresponding
to the cases of fast and slow precession.

7.10. Show that the total torque in yawing motion of a spacecraft in a circular
orbit is given by Eq. (7.53).

7.11. Find the torques produced on a satellite in an elliptical orbit caused by its
motions of pitching, rolling, and yawing.



8
Fundamentals of Small Oscillations

IBRATION can be either destructive or beneficial to our daily life. The

fatigue of a material, which may lead to the failure of a structure, is possibly
caused by vibration. A machine is intentionally designed to be free of vibrations,
but sometimes undesirable vibrations just cannot be avoided when it is in service.
When a car is driven on the road, an unbalanced wheel or an out-of-round tire can
cause it to vibrate. On the other hand, because of the oscillation of its pendulum,
a mechanical clock can tell the time. Because of the vibration of its membrane, a
loud speaker can produce music.

Because vibrations can be either useful or troublesome, it is desirable that we
understand the causes and phenomena of vibrations and further how to control
them according to our wishes. Developing the knowledge to accomplish this
control is the purpose of Chapters 8 and 9.

As in previous chapters, the required mathematics for studying vibration is pre-
sented at the beginning of the chapter. The subjects of the mathematics needed are
Fourier series, Fourier integral, and Fourier and Laplace transforms. They are pre-
sented in Sections 8.1 and 8.2. Because more functions can satisfy the conditions
for the Laplace transform than for the Fourier transform, the Laplace transform
method can be applied to many more cases. Section 8.3 presents some important
properties of the Laplace transform. Tables of Laplace and Fourier transforms
are included in Appendix F. However, we will not deal with the inverse Laplace
transform in this chapter because the derivation of formulas involves some lengthy
details from the theory of complex variables. A brief description of the inverse
transform for some functions is given in Appendix G. The applications of Fourier
and Laplace transforms are presented in this chapter. In Chapter 9, we will present
applications of Fourier series and more applications of the Laplace transform.

In Section 8.4, we shall study forced vibration systems with single degrees of
freedom.These systems are either with damping or without damping and are either
harmonically or arbitrarily excited. Because a periodic force can be expanded into
a Fourier series, an analysis for one harmonic excitation will suffice to demonstrate
that for any other harmonic excitations. Applications of these vibration systems are
presented as examples that include accelerometer, seismometer, and packaging.
The meaning of the Richter scale, which is a measure of the magnitude of an
earthquake, is explained in Example 8.6.

Transient vibration is studied in Section 8.5. This type of vibration is caused by
a nonperiodic force. Depending on the type of forcing function applied, response
of a general excitation may not be obtained by analytical integration; it can be
always integrated numerically through the formulation of arbitrary excitations. The
responses of the cases studied in this section are obtained by analytical integration.

Response and velocity spectra of transient vibration are studied in Section 8.6.
Because design of a vibration system is often restricted by the maximum response,
response spectra may be used for modifying the design so that the maximum
response is within the acceptable range.

181
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Section 8.7 is specifically devoted to the application of the Fourier transform
for analyzing the response of a vibration system. As we shall study later, the
amplitude of vibration as a function of time will be converted into that as a
function of frequency by using Fourier transform. Because of limited time in
practice, the method used in the vibration analyzer is modified and is called the
discrete Fourier transform. Through this, many random vibrations can be analyzed
and the amplitude of vibration can be displayed as a function of frequency. From
there, we can detect the source of vibration.

8.1 Fourier Series and Fourier Integral
Fourier Series

A Fourler series is a useful tool for solving differential equations and for
treating various problems involving periodic functions. It is an infinite series of
trigonometric functions and, in general, is expressed as

) a ad nITXxX . onmx
fx) = 50 +;l:a,, cos —— +bysin T} (8.1)

where 7 is an integer, x can be any value from —o0 to oo, and a, and b, are
coefficients.

A function that can be expanded into a Fourier series must satisfy the following
conditions: 1) The function is periodic or 2) The function is piecewise continuous
between x and x + 2L.

A function f(x) is said to be periodic if it is defined for all x with a period of
2L such that

flr+20) = f(x)

The function f(x) shown in Fig. 8.1 is a piecewise continuous function. Note
that it is impossible to expand a discrete function as shown in Fig. 8.2 into a
Fourier series.

f(x)
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L 2L X
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Fig. 8.1 Periodic and piecewise continuous function.
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f(x)

Fig. 8.2 Periodic and discrete function.

To facilitate the determination of the coefficients in a Fourier series, we introduce
the following formulas for integrating trigonometric functions:

L mmx nrx
cos cos —— dx
_ L L

L

Lt 1
=/_ [Ecos(m+n)72—x+§cos(m—n)ﬂj|dx

L L
1L _(+)nxL+1 L in( )nxL
= —————sin(m + n)— ——————sin{m — n)—
2m+n)m L|, 2(m-nr L,
=0 ifm#£n (m, n are integers) 8.2)

If m = n, then

L L
mmx nmx mmx
cos cos — dx = cos? dx
- L L

L —-L

L
=/_ 5(1 +coszmﬂL—x)dx =L (8.3)

L

L mmax | nmx
sin sin — dx
_ L

L

/L 1 ( )nx 1 m+ )nx "
= —cos(im —n)— — —cos{im n)y—
12 L 2 L

L L

in(m — n) == in(m +n)
= ————sin{m — n)— ———sin(m+n)—
2m+n)m " L, 2m-nn L|_;
—0  ifm#£n 8.4)
If m = n, then
/L . mmx | Amwx L mmx
sin sin —dx = sin
—L L —L

L 2
=/ l(1—cos m“)dx:L (8.5)
.2 L
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fL  mmx nx
sin cos ——
L L L

Lri . ax 1 . Tx
= —sin{m + n)— + —sin{(m —n)— | dx
112 L

2 L
1 L cos(m + )nx N L
= - —— m —_— J—
2L(m+nmm T (m —n)m
=0 ifm#n
If m = n, then
fL . mnx nmTx f . 2m71x
sin cos —dx dx
_L L
L 2mmx
=— cos
dmm L _L
=0
Ifm=n=0,

L L
f c0s0.x cos 0.xdx = f dx =2L
~L -

L
f sin OxsinOxdx =0
-L

L
f sinOxcos Oxdx =0
-L

Now we can conclude:

nnx

m,n

X nwTx
f CO, S—[:—dx L(S,,, n

f sinmnx cosﬂdx =0
_L L L

Equations (8.11-8.13) are known as orthogonality conditions.

Calculation of the coefficients in a Fourier series.

8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

If a function f(x)

satisfies the conditions for the Fourier series, it can be expanded into the form of
Eq. (8.1). To determine the coefficient a,, we multiply both sides of Eq. (8.1) by
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cos Ox = 1 and integrate from —L to L:

L L s L nwx
fx)dx =/ —a,dx+ ) a / cos —— cos Ox dx
/;L —L 2 ; " —L L
nwx
+ Zb / sm—cosOxdx

By using the orthogonality conditions, we get

L
/ fx)dx = a,L
-L

or

L
a, = —l-/ f(x)dx (8.14)
LJj_,

To determine the coefficient a,, we multiply both sides of Eq. (8.1) by cos(mmx /L)
and integrate from —L to L:

L L
1
/ f(x)cos m”xdx = —a,,/ cos mrx dx
L L 2 7). L

o L nTx  mux
+ E a, €08 —— €08 dx
= L L L

+Zb / smﬂcosmzxdx

Because
L
mm
/ cos X dx =0
L L
X mnx
Za,,/ cochos dx = La,
L
X mmnx
Z b, / sm ——cos =0
L
we obtain

dx = La,,

L
/ Fx) cos mmx
)

The index m is adummy index that can be replaced by any symbol. It is convenient
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to use n, so that

1 L -
a,,=-—/ f(x)cosﬂidx n=0,12,... (8.15)
LJ_, L

Note that Eq. (8.15) includes the expression of Eq. (8.14). Similarly, to determine
the coefficient b,, we multiply both sides of Eq. (8.1) by sin(mm x /L) and integrate
from —L to L. We find

1 L -
bn=_/ f(x)sirlfﬂdx n=12,3,... (8.16)
LJ, L

Therefore, if f(x) is a periodic function and is piecewise continuous, then it can
be expanded into a Fourier series as

. 1 i nTx . onmx
fx)= 7% + Z (a,, cos —— + b, sin T)

n=1

where

1 L .
a,,=z/_Lf(x)cos%dx n=0,1,2, ...

1 L
b,,:Z/_Lf(x)sianxdx n=1273,...

It is worthwhile to mention that the integral limits in the preceding equations are
not necessarily —L and L. Because f(x) is a periodic function of period of 2L,
the integral limits can be replaced by « and « + 2L where « is any real constant.

Example 8.1
Consider a function f(x) that is known as a square wave and is defined as
Fx)y=—h —-L<x<o

fx)=nh o<x <L

where & is a constant. The function is periodic and is shown in Fig. 8.3. The

£(x)

T h
L

' |

|

L |

-L ]

-2L

]

Fig. 8.3 Plot of the function.
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interval —L < x < L is so called the Fourier interval. Expand the function into a
Fourier series.

Solution. Because this function is periodic and piecewise continuous, we
can expand it into a Fourier series in the form of Eq. (8.1). The coefficients are
determined as follows:

1 (L nTX
an:Z/_Lf(X)COSde

1 f° 1 [t
=—/ (—h)COS—n”xdx+-—/ h cos

L), L A

h ( Conrx\[° h ( . nmx
= ——| sin + — | sin —
nm L _L nmw L

that is true for all the values of n from 1 on up. For n = 0, we have zero divided
by zero, hence we determine ag separately and we find

1 (L 1 [0 1 L
a0=Z/_Lf(x)dx=2/_L(—h)dx+z/0 hdx

1
=—(=hi+hlL)=0
L( +hL)

nwx
dx

L
=0
0

To determine the coefficients b,, we use Eq. (8.16)

1 [t nx
b, = — ] in—d
" L/_Lf(x)sm T x

1 0 L
= — / (—h)sinﬂdx+/ hsinmdx
LlJ_. L 0 L

h h
= —1[1 —cos(nm)] — —[cos(nm) — 1]
nm nm
2h
= —|[1 — cos(nm)]
nm
2h
= —[1 - (=D
nm

Hence

b, =4h/nn aasn=12325...
b, =0 as n=2,4,6,...

Therefore, the Fourier series for the square wave can be expressed as

1 3mx 1 Snx
3 L 5 L

"(x) 4h si nx+ si + —si +
()= —|sin— + —-sin—— 4+ —sin—— +---
fx big L
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or
. 4h & 1 . @2m—-1Drx
f(x)_;mZ:;Zm—lsm 2

Fourier sine series and cosine series. If a function f(x) satisfies the
conditions for the Fourier series and is an odd function, i.e.,

f(=x)=—f(x)

then it can be expanded into a Fourier sine series as

> nmx
‘(x) =Y B, sin 2~ 8.17
fx) Z:.: sin — (8.17)
where
2 L
B,,=—/ fosinZxax n=1,2,3,... (8.18)
L/ L

On the other hand, if a function f(x) satisfies the condition for Fourier series
and is an even function, f(—x) = f(x), then it can be expanded into a Fourier
cosine series as

) X nmx
fox) = Ao+;An cos == ®.19)
where
1 L
Ao =+ / F(x)dx (8.20)
L Jg
2 nmx
A,,=—/ fx)ecos——dx n=1,2,3,... (8.21)
L Jo L
Fourier Integral

We have studied that a periodic and piecewise continuous function in a finite
interval can be represented by a Fourier series. Now we shall generalize the
method of Fourier series to include a piecewise continuous function as defined
in an infinite interval. If a function f (x) is piecewise continuous defined in the
interval 0 < x < 00, and is an odd function, then we can write

. X, L. nmx\m
Jfo(x) = Z Bn; (sm —)— (8.22)

n=0

For the ease of mathematical operation, we make changes in symbols in the
preceding equation and let

L
Bn; = B(u,) "L— = Uy
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and

(n+1Dm nm b4
Ay =Ups| — Uy = — — — = — = A
n n+1 n [ [ [ u

Then we have

fox) =Y Buy)(sinuyx) Au

n=0
Now, considering the case as L approaches oo, we have
Au =du

and write u, as u. Equation (8.23) becomes

fo(x)=/ B(u) sinuxdu
0

where

B(u) Lan;oéB _le;o;[ / fo(x)sm—dx:I

189

(8.23)

(8.24)

llm—/ Jo(x)sinuxdx = / Jo(x)sinuxdx  (8.25)
0

In the preceding equation, x is a dummy variable that can be replaced by any
symbol. By changing x to ¢, and combining Egs. (8.24) and (8.25), we obtain

Jolx) = z /oo sinux [/00 fo(t)sinutdt] du
T Jo 0

This is known as the Fourier sine integral representation of fo(x).

(8.26)

Similarly, if f(x) is piecewise continuous defined in the interval 0 < x < oo

and is an even function, then it can be represented by

felx) = /oo Au) cosuxdu
0

where

A(u) = %/oo fe(t) cosutdt
0

or

2 o0 o0
fe(x) = —f cos uxf fo(t) cos ut drdu
T Jo 0

(8.27)

(8.28)

(8.29)

In general, a function always can be expressed as a combination of even and odd
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functions, i.e.,
) = fox)+ folx)
Using Eqgs. (8.26) and (8.29) for even and odd functions, we have

fx) = E [/ cos ux/ Jfe(t) cos urdedu
T LJo 0
+ / sinux/ Jfo(t) sin ut dtdu]
0 0
— E * ,1 = - - ded
= ”[/0 coszuE/_OO[f(t)—fo(t)]cosut tdu
+ / sinux%/ [f(t)—fc(t)]sinutdtdu]
0 —00
[/ cosux/ f) cosutdrdu
0 -0

1
T
[ee] o0
+/ sinux/ f(t)sinutdtdu}
0 oo

= / / f®lcosux cosut + sinux sinut]drdu

== / / f(t)cosu(x — t)drdu (8.30)

Because the integrand is an even function of 1, we can rewrite Eq. (8.30) in the
form of

fx) = 51;/ / f®)cosu(x — r)drdu —00 <X <00 (8.31)

This expression is known as the complete Fourier integral representation of f (x)
for all values of x. The conditions for a function to be expressed in Eq. (8.31)
are 1) the integral f | f(¢)|dr must exist, and 2) f(¢) must be a single-valued
function of the real Varlable ¢ throughout the range —oo < ¢ < co. It may have
several finite discontinuities.

Example 8.2

1) Find the Fourier sine integral representation of the function f(x) which is
given as

. 1 O<x<a
f(x)=[0 a<x<oo
fl=x)=~f(x)

and is shown in Fig. 8.4.
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f(x)

Fig. 8.4 Plot of the function.

2) Evaluate each term in the Fourier sine integral representation and prove that
the result of the expression truly represents the original function as shown in
Fig. 8.4.

Solution. 1) From Eg. (8.26), we have

f'(x):—/ sinux [/ f(t)smutdt]
= —/ smux/ sinut dt du
0
2/‘”, l: cosut:|
= — sinux | — du
T Jo U 0
2/°°(1—cosua) .
= — ——— })sinuxdu
T Jo u

The result in the preceding equation is the one that we are looking for.
2) Rewrite the preceding equation as

_ 2 (% [sinux cosuasinux 2
f(x)="/ ( - )du=—(11—12)
T Jo w

u u

where

 sin ux
I, = du
0 u

® cos ua sinux
L= —du
0 u

Evaluate I, we find

[o cRupi [o R
L= Snox d(ux) = S—l[-l—zdz =z asx >0
2
0 0
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—00
sz
I = / L
0 4

[o ¢ Jup *
sin z
= —/ —dz (when z = —z%)
0 4

Asx <0,

On the other hand, we rewrite I, in two parts as

du

I 1 /°° sin(x + a)u + sin(x — a)u
2= =
0

2
=D+ In

u

Evaluate /5|, we obtain

L = l/w __sin(x +au du
2 0 u
1 [ sin(x + a)u T
= - —_——d = — as x > —

2 /0 (x+a)u [+ aju] 4 o a

I z as
= —— X < —a

21 7

Similarly, we have

1 [ sin(x — a)u
,Zzz_/ sinx —aju
2 0 u

_1 * sin(x ~— a)u B _n
—2/0 —(x—a)u di(x a)u]—4 asx > a

1

Iy = —— asx <a
4

Now the function f(x) can be expressed as

2
fx) = ;[11 — (I + In)]

We find that

asx < —a,
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2[n n 7
‘) ==|==-[===}|=1
f&) n[Z (4 4)]

. 2w T 7
f(x)=;[5—(z+z)]=o

as x > a. The preceding result proves that the Fourier sine integral representation
is truly the original function.

as—a<x<0,

as0 < x <a,and

Example 8.3

1) Find the Fourier cosine integral representation of the function f(x) that is
defined by

. 1 asl0<x<a
f(x)={0 asa <x < oo
and
f(=x)=f@x)

2) Evaluate the Fourier cosine integral representation obtained in part 1 and
prove that the result is the original function.

Solution. 1) From Eq. (8.29) we have

fx) = E /wcos ux [fw f(@)cos utdt] du
T Jo 0

2 o0 a
—f cos uxf cos utdrdu
T Jo 0

2 (™ sinut [
= — CcoS Ux du
T Jo U

0

2 [ sinuacosux
= — —du
T Jo u

This is the Fourier cosine integral representation of the given functions.
2) Evaluate the integral, and we find

® sinuacosux
I= ———du
0 U

du=11——12

_ 1 /‘°° sin(x + a)u — sin(x — a)u
2 Jo

u
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where
L= l/w sinGx +aju 4
2 0 U
I, = l/‘°° sin(x —a)u du
2 0 u

Note that the integrals have been evaluated in the previous example. The results
are collected as follows:

[ /4 asx > —a
I, =

—-n/4 asx < —a

[n/4 asx >a
L=

—-n/4 asx <a

Now, the function f(x) can be evaluated by

. 2
@) == -1)
T

We find that

asx < —a,

as —a < x < a, and

- 2]

as x > a. The result reached agrees exactly with the original function.

Example 8.4

Find the complete Fourier integral representation of the functions which is given
as

0 as —oco<x <0
fx)y={1 asl0<x<a
0 asa <x <o
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Solution. From Eq. (8.31), we have the complete Fourier integral representa-
tion of f(x) as

fx) = L/ /oo f(t)cosu(x — t)dedu
27 Joo J-oo

L[ re . . .
= —/ / [cos ux sinut + sin ux sinut]dt du
2n —00 JO

1 (> sin ut . cosut |°
= — CoS Ux —sinux du
2 J_oo u u Jg
1 & i 1
cosux sinua . I —cosua
= — — 4 sinux——— |du
27 J_oo u u

Note that the integrand is an even function of u. Hence we can write

. 1
fe) ==

T

du

®[cosuxsinua sinux(l —cosua)]
+
0

u u

This result is the combination of the Fourier cosine and sine integral representations
found in Examples 8.3 and 8.2 except the coefficient is reduced to one half, because
the given function in this example is one half of the sum of the functions in the
previous examples. In addition, it is worthwhile to point out that the expression
that was reached also represents the inverse Fourier transform of the transformed
function. Details of the Fourier transform are discussed in Section 8.2.

8.2 Fourier and Laplace Transforms

The Fourier transform is a powerful tool for solving differential equations. When
it is applied to linear ordinary differential equations with constant coefficients, the
differential equation is converted into an algebraic equation. Then the solution
of the original differential equation is then reduced to the calculation of inverse
transforms of the transformed functions obtained from the algebraic equation.

The Fourier transform also can be applied to linear partial differential equations
with constant coefficients. If it is applied to one particular independent variable,
the number of independent variables in the partial differential equations is reduced
by one. The coefficients in the differential equations are not restricted to constants.
Constant coefficients are simpler to apply to the method. The Laplace transform
may be considered as a special case of the Fourier transform. Both transforms are
closely related to the Fourier series and integral discussed in the previous section.
To see how they are related, we shall begin the discussion with the complete
Fourier integral representation of a function.

By Eq. (8.31), the complete Fourier integral representation of f|(x) is

filx) = % /_: /_oo fi(t)cosu(x —t)de du

Because

cosu(x —t) = %[eiu(X—n + e—iu(x—y)]
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the equation becomes

1 (1 [® [ . 1 [ [ ,
fikx) = —{— / / fi)e ¥ drdu + — / / fi (t)e'“‘(x_')dtdu]
2r (2 Joo J o 2 )t

In the second part of the preceding equation, we make a change in one of the
variables. First we change u to —v, and then change v back to u, because v is a
dummy variable. Finally we have

fikx) = L / ” / ” fi@®)e* S dr du
27 J oo Jooo

or
1 e .
fHix) = 2—-/ e“"/ e_”"f[(t)dtdu
T J-co —o0

Now let the Fourier transform of f;(¢) be defined as

Fu) = / e~ fi(e)de (8.32)
—00
Then the inverse transform of F(u) is
1 [ .
fi) = —/ M F(u)du (8.33)
27 J_wo

The conditions for the existence of the Fourier transform of f)(¢) are the same
as for the Fourier integral representation stated in Section 8.1.

To show that the Laplace transform is a special case of the Fourier transform,
we consider the following function

as—oo <t <0

fl(t)={

e~V (1) as0 <t <o

where y is a real number. The Fourier transform of fj(¢) then becomes

o0
Fu) = / e~V £ (1) dr (8.34)
0
and the inverse transform is
I g .
eV fe) = E;/ Fu)e™ du
eVt [ f°°
f@) = > /ooe“"]:(u)du

_ / e Fu)du (8.35)
27 J_ o
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Inthis equation, we make changes in variables and let s = y + iu and F(u) = F(s)
then ds = i du. Thus, we write

F(u) = F(s) = fooe‘“f(t)dt
0

This is defined as the Laplace transform of f(r). The symbol for the transform is

LIf®)]= f e f(nde (8.36)
0
From Eq. (8.35), the inverse Laplace transform is
1 y+ioco .
fO=LT'FE)]=— e F(s)ds (8.37)
27 Jy—ico

The conditions for the existence of the Laplace transform of a function f(¢) are
as follows:

1) The term f(¢) is continuous or piecewise continuous in every finite interval
t) <t <T,wheret; >0and T > .

2) The term ¢*| f (¢)| is bounded near ¢ = 0 for some number n when n < 1.

3) The term e~*'| f (¢)| is bounded for large values of ¢ for some positive real
number s,. Therefore, f(¢) may be infinite as ¢ — O or finite as ¢ — o0o. The
Laplace transform of such a function is still possible.

8.3 Properties of Laplace Transforms

In this section, we shall establish, by detailed calculations, the properties of
the Laplace transforms of functions that are very important in solving differential
equations. With the sample calculations shown in this section, it would be easy
for the reader to establish other formulas of the Laplace transforms given in
Appendix E

The differentiation of f(¢) is

L [%] =sLIf()]— f(0) (8.38)

Proof: By using the method of integration by parts, we find that

AFOT_ % adf o
L[T}—A e dtdt—e QI

+ s/we_x'.f'(t)dt =sF(s) — f(0+)
0

where 0+ means on the positive side of zero.
For the second derivative,

d’f ) . df
L [E{] =sF(s) —sf(0+) - —at—(0+) (8.39)
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Proof:
25 o] 2y > |0
JEL]= [ Lot
dr? 0 dr? dr |,
© wdf e Y
+s/(; e iP dr = s[sF(s) — f(0H)] it O+

2 - df
=s"F(s) —sf(0+) — E(O—H

The integration of f(¢) is
L [/ f(u)du] = lF(s)
0 A
Proof:
L [/ f(u)du] = fme_" [/.t f(u)du] dt
0 0 0

I:e—xt t ) o l o0 it 1
= / f(u)du] +—/ e f()dt = —F(s)
s Jo 0 s Jo N

If the lower limit in the integral is not zero, then
¢ t a
[ ros]-<[([ o]
a 0 0
1 |
=—F(s)——/ fFu)du
N S Jo

The translation property is

Lle"f)=F(s —a)

Proof:
Ll f()] = /ooe"’e‘”f(t)dt
0
= /-m e U7 f(1ydt = F(s — a)
0
If
. ast < a(a = 0)
fn= l
g(t —a) ast >a
then

F(s)=e " G(s)

where G (s) is the transformed function of g(¢).

(8.40)

(8.41)

(8.42)

(8.43)
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Proof:

LIfO]= / e gt —a)de

Let x =t — a, then
CLF()] = / ¢SO+ g () dx
0

=]
— e—xu/ e‘”g(x)dx — e_“'G(s)
0

Let
d'F
Cin f(y) = (-1 TE6) (8.44)
dsn
Proof:
F(s) = /00 e f(r)de
0
d o .
SFG) = / (—0)e™ f(1)d = (=D)LLt (0)]
8 0
& = 2 -5t ¢ 2 2
Fm)=/ (=02~ Oy dt = (=DPLI2F )] - - -
8 0
Therefore

d'F
LU F0) = (-1 T

HLfM]=F(s)and if [f(r)/t] < (M/t") ast — O+ withn < I, M = fi-
nite, then

c ["—f’l} = /w F(s)ds (8.45)

Proof:

F(s) = LLF ()] = / F(Oye=dr
0

/-00 F(s)ds = /00 [/00 f(t)e“”dt] ds
s K 0
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Because s and ¢ are independent, the integration order can be changed:

LHS = / Oof(t) [ / we“”ds] dr
0 s
o0 i e-xt o0
= [ 1o [———] dr
0 =t |y

By I
0 t

t

The convolution

ﬁ[/ol f— u)g(u)du] = F(5)G(s) (8.46)
or
LLf xgl = F(s)G(s)
Llg * f1=F(s)G(s)
Proof:

F($)G(s) = [/00 e_”f(v)dv] [/00 e_”‘g(u)du]
0 0

:/ / eSO F(y)g(u)dudu
o Jo

= / g(u) [ / ” A f(v)dv] du
0 0

Letv =t — u,dv = dt, then

o o
/ e—_\'(v+ll)f(v)dv — / e—sl f(t _ u)dt
0 u
Therefore

F()G(s) = /00 [/w e F(@e— u)g(u)dt] du
0

"

The integration shown in Fig. 8.5 can be represented by the triangular area bounded
by ¢t = u and u = 0. By interchanging the order of integration and changing the
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Vi
< du

Fig. 8.5 Integration by ¢ then u.

limits as shown in Fig. 8.6, we can obtain the equivalent result:

F(s)G(s) = /oo [/ e ft - u)g(u)du] dt
0 0

= /we—s’ I:/[ f@e— u)g(u)du} d
0 0
=L [/ f@— u)g(u)du}
0

By changing variables in Eq. (8.46) t — u = v, we have
' 0
/ f@—uwg)du = / fgt —v)d(—v)
0 '

I
= / fwg(t —v)dv
0
Therefore, we can easily establish

frg=g*f

Singularity functions (Dirac delta function) are

LI8¢ —1)])=e™"

—V— dt

Fig. 8.6 Integration by u then t.

201

(8.47)
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Proof: The Dirac delta function is defined as

1
Iim — as0 <t <1y

8(t) = {1=01
0 elsewhere
o] 1) 1
L[5()] :f e 8(t)dr = lim[ —e Vdt
0 10w=0Jy o
1 se St
= lim —(1 — e™™) = lim =1
1h—0 sty w0 §

The Laplace transform of §(¢z — ;) can be obtained by using Eq. (8.43) and the
preceding result. Thus we write

LI5¢ —1)] = e L) = e

Sometimes, it is useful to know the Laplace transform of the first derivative of
Dirac delta function that can be written as

L8t —1)] =se™"* (8.48)
Proof: The first derivative of the Dirac delta function is defined as

5(t) — 6(t — 1,
8'(t) = lim 3 = ot —1o)
1y—>0 to

which is shown in Fig. 8.7. In other words

1
f(t):—2 as0 <t <t
N

1
f@) = -2 asty <t <2t
0

f@) =0 elsewhere
f(t)

e

to t
0 2t,

-1/t2

Fig. 8.7 Shape of &§'(¢) before taking limit.
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and the derivative of the Dirac delta function is defined as

8 () = lim f(1)

to—>0

Hence, the Laplace transform of the function is

2f0
L[ ®)] = lim = {/ e ’dr — _”dt}

tg—>0

= lim _[1 —e —sty +e” =25ty __ —A‘t(,]
fy=>0 Sto
1
= lim —(1 — ey =
10 Sto

Again, with the use of Eq. (8.43), we have
L@ =) =e ™ML ()] = se

8.4 Forced Harmonic Vibration Systems with Single
Degree of Freedom

Any system consisting of a mass and a spring or the equivalent is capable of
vibration. Because of friction, practical problems are usually modeled as a system
consisting of a mass, a spring, and a damper as shown in Fig. 8.8. The damper is
modeled as a viscous device with damping force proportional to the velocity x.
The weight of the mass is balanced by the spring force kA, where £ is the spring
constant and A is the initial deformation of the spring. F (¢) is an external force
applied to the mass. For the system, the balance of forces gives

mi+cx+kx=F(@) (8.49)

To understand the behavior of the system, first we examine the solution of the
homogeneous equation:

mx+cx+kx=0 (8.50)

kA

Unstretched
position — —

w+F(t)

Fig. 8.8 Single-degree-of-freedom system.
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Assuming that the solution of the equation is an exponential function of time,
x = Xe"
where X and s are arbitrary, we find
(ms®’+cs+k)Xe" =0

Because X and e* cannot be zero for all values of 7, we must have

k
st 4+ is +—=0
m m
or
c c\? k&
Si2=—7— — ) =
2m 2m m
That means

2
+ Bexp | —¢ (———) - — (8.51)

The preceding equation can have three possible results, which are discussed in
detail as follows.

Case1 Overdamped motion

As (¢/2m)? > k/m, the two roots of 5 are real-negative. The vibration will be
damped out rapidly.

Case 2 Critically damped motion

As (¢/2m)? = k/m, the two roots of s are the same. The solution of Eq. (8.50)
can be written as

x = (C + Dt)e™

where w, = natural frequency = /k/m.
By applying initial conditions we find

C =x(0)
D = x(0) + w,x(0)
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Therefore

x = {x(0) + [x(0) + w,x (0)]t}e " (8.52)

The oscillation also will be damped because of e~%"',

Case 3 Underdamped motion

Finally, let us consider the case as (c/2m)? < k/m. We define the frequency of
damped oscillation as

2
we= | % (L> (8.53)

m 2m
so that
x = e ' [Ae% 4 BeTior]
= e ' [c; sinwyt + ¢ cos Wyt ]
where

¢y =1i(A—B), c;=A+B

By applying the initial conditions, the constants are found as

¢ = i[x(O) + ix(O)}
Wy 2m

and ¢, = x(0). Hence

x =exp [—2Lt:| { i [)&(O) + ix(O)} sin wyt + x(0) cos wdt} (8.54)
m Wy 2m

For this case, the amplitude of oscillation is still decreasing continually because
of the damping effect, and the frequency of oscillation is reduced from the natural
frequency as given in Eq. (8.53).

In all cases, the solution of the homogeneous equation indicates that the ampli-
tude of the vibration will be vanishing as the time increases.

Forced Harmonic Vibration

Harmonic excitation is commonly produced by the unbalance in a rotating
machinery. The force is often periodic and is represented by F (¢) in Eq. (8.49).
Because the periodic function can be expressed in a Fourier series, we can take one
term first for F (¢) when analyzing the problem. Because the differential equation
is linear, the principle of superposition allows us to study a particular case first.
The final result is the summation of solutions from all the cases considered.

Now let us consider F(t) = Fysinwt. From Eq. (8.49), we have

mi + cx + kx = Fysinwt = Im (Fpe'®) (8.55)
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where Fj is the real constant. Let the solution be
x = Im(Ae'“)
Then we have
x = Im(+i Awe'™")
iwt)

¥ = Im(—Aw’e

Substituting the preceding expressions into Eq. (8.55) and dropping the symbol
for imaginary, we find

(—mw?* + icw + k)Ae'®' = Fye'®
_ Fo/m

T k/m — 0? + (icw/m)

_F { (k/m — @?) — i(cw/m) }

T m | lk/m — 01 + (co/m)?

Let
D = (k/m— o®? + (cw/m)?

k/m — 0?) sin co/m
R neg =
vD VD

where ¢ is called the phase angle between the vibrating mass and the excitation,
then,

cos¢p = (8.56)

4=_to (cos¢ — ising) = Fo_ i
mv'D mvD

Fo .

x =Im —e'(""_d’)]
l:m«/B

Fo o
= sin(wt — ¢) (8.57)
/D ¢

The general solution is the summation of the homogeneous solution and the
particular solution. Therefore, we have

x = sin(wt — ¢)

Fy
m~/D
+ exp |:——C--t] {i |:)'c(0) + ix(O)] sin wgt + x(0) cos wdt} (8.58)

2m wy 2m

If the excitation force is a general periodic function, then

FO =Y afi@ (8.59)
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where ¢; is a known constant and f;(+) may be any sinusoidal function in the
Fourier series, although it is not restricted to sinusoidal functions. Because the
principle of superposition is applicable, then, for each force f;(r), we can write
the corresponding displacement as x; (¢) so that the differential equation becomes

After x;(¢) is obtained, the general particular solution can be written as
x(0) =Y i) (8.61)
i

Therefore, the solution given in Eq. (8.57) represents the typical form of the
particular solution for the study of a harmonically excited motion. In addition, it is
worthwhile to mention that x (¢) is the displacement of mass m and is often called
the response of the system.

Example 8.5

Consider a spring mass system. The mass M is constrained to move only
in the vertical direction. The vibration is excited by a rotating machine with
an unbalanced mass m as shown in Fig. 8.9. The unbalanced mass m is at an
eccentricity of e and is rotating with angular velocity w. 1) Formulate an equation
for describing the dynamic behavior of the system. 2) Find the amplitude of the
vibration of M as a function of the force of excitation mew?. 3) Find the expression
for the phase angle between the vibration of M and the excitation. 4) Determine
also the complete solution of the equation obtained in part 1.

Solution. 1) Let x be the displacement of the mass (M — m) from its static
equilibrium position, and x + e sin wf for the displacement of the unbalanced mass
m. The equation of motion is

2

M — m)x +ma;5(x +esinwt) = —kx —c¢x

Rearranging the terms, we have

M3 + cx + kx = (mew?) sinwt (8.62)

Fig. 8.9 Rotating machine with an unbalanced mass.
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2) Note that this equation is identical to Eq. (8.55) except that m is replaced by
M and Fy by mew?. Using Eq. (8.57) with the change of symbols, we find

mew2

x@) = MJD sin(wt — ¢)
Let X be the amplitude of x, then we write
mew?
X = MJD (8.63)

where D = (k/M — w?)? + (cw/M)?.
3) The phase angle ¢ can be determined by Eq. (8.56):

co/M

= G -

(8.64)

Note that the phase angle ¢ is less than 90 deg if w? < k /M and is greater than
90 deg as w? > k/M.
4) The complete solution is similar to Eq. (8.58) and can be written as

mew?

M/D

+ exp (_Ecﬂ%) {wid':z\"(o) + ﬁx(O):l sin wyt + x(0) cos wdt} (8.65)

x(t) = sin{wt — ¢)

Example 8.6

A seismometer is an instrument for measuring the intensity of an earthquake.
The design of the instrument is shown in Fig. 8.10. 1) Formulate an equation for
describing the dynamic behavior of the instrument due to the ground vibration.
2) Find the relationship between the amplitudes of ground vibration and the
instrument. 3) Discuss the essential factors in the design of the seismometer. 4)
Suppose that the measured result is 7 on the Richter scale. What is the actual
magnitude of the earthquake?

AAAAA
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(@)
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Y

Fig. 8.10 Schematic diagram of a seismometer.
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Solution. 1) Assume that the case is rigid and that the displacement of M is
x and of the ground is y. The equation of motion for this system can be written as

Mi=—cx—y)—kx—y) (8.66)

Because the instrument actually only senses the relative motion between M and
the case, i.e.,

Zz=x—Y
Equation (8.66) becomes
M:i+ci+kz=—-My (8.67)

Assuming that the vibration of ground is in sinusoidal motion, y =Y sinwt, we
find then the equation

M3+ ci+kz = MY o?sinwt (8.68)

2) Note that the preceding equation is in the same form as Eq. (8.55) except the
symbols are changed. Using Eq. (8.57), we find

Yo?
Z(t) = — sin(wt — ¢)

VD

where

D = (k/M — o)? + (cw/M)?

Therefore, the amplitude of vibration detected by the instrument is

Yo?

Z =
Vk/m — 0?)? + (cw/M)?

(8.69)

3) Equation (8.69) can be simplified if we define the following.
Natural frequency of undamped oscillation:

wy = VkIM (8.70)
Critical damping coefficient:

¢ = 2Mw, (8.71)
Damping factor:

{=c/c (8.72)
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Then
cw  cwk ccwk 2Mw,w k
_——=——— = — —=C —=2C(1)(I)n
M kM ¢ kM k M
Y 2
7 = (w/wy) (8.73)

2
JI1 = @/w)?] + 20 /0P
From this equation we can easily see that
Z=~Y

if > w, and ¢ « 1. Therefore we always use a large mass, weak spring, and
small damper such that w/w, — coand ¢ — 0.
4) The Richter scale is defined as

R =log,,(Y/Y;) (8.74)

Y, is the standard magnitude of an earthquake thatis 1 u, or 10~® m. For a Richter
scale value of 7

logo(Y/Ys) =7
Y =10 x10%m=10m

Therefore, the amplitude of the earthquake is 10 m.

Example 8.7

An accelerometer is an instrument that directly measures the vibration of a
moving object. Then the amplitude of the vibration is converted into acceleration.
Once the acceleration is measured, the velocity and displacement can be obtained
by integration. The accelerometer is a very important instrument in a submarine.
The general construction of the meter consists of a spring, a mass, and a damper
similar to the seismometer shown in Fig. 8.10. For this instrument, discuss the
essential factors in the design so that the measured quantity truly represents the
acceleration.

Solution. Because the construction of the accelerometer is similar to that of
the seismometer, Eq. (8.73) is applicable and we have

( w\? Y
_ _) _r (8.75)
Wy f((l)/(l),,, C)

w 2 g w 2
flw/w,, ) = [1 - (—) ] + [2;—} (8.76)
Wy Wy

where
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In this equation, Y w? is the acceleration, Z is measured, and a)ﬁ is fixed in
the design. From this equation, we see that f(w/w,,¢) >~ 1 as w/w, < 1 and
¢ = 0.65 to 0.70. Therefore in the design of accelerometer, the natural frequency
chosen should be very high and the damping factor should be about 0.70.

Example 8.8

Often in engineering practices, vibration of machinery cannot be totally elim-
inated. To reduce the effect of vibration to adjacent parts, vibration absorber is
usually installed between the machine and the supporting ground. The vibration
absorber can be modeled by a combination of springs and a damper as shown in
Fig. 8.11a.

For the vibration absorber, 1) find the force transmitted from the vibrating mass
M to the supporting ground, 2) find the expression for the ratio of the transmitted
force and the excitation force, and 3) discuss how to reduce the ratio of forces in
part 2.

Solution. 1) Because the present system is similar to the one shown in Fig.
8.8, Eq. (8.55) and its solution can be applied here. Rewrite Eq. (8.57) as

x = Im{X expli(wt — ¢)]} (8.77)
where X = Fy/(M~/D), then we have

% = Im{Xwi expli (0t — ¢)]} = Im{Xwexpli (wt — ¢ +7/2)]}  (8.78)
and

¥ = Im{—Xw? expli (wt — ¢)]} = Im{Xw?expli(wt — ¢ +m)]}  (8.79)
By drawing Fyexp [iwt], M Xw? exp [i (wt — ¢ + )], cwX expli(wt — ¢ + 7/

2)], and kX exp [i (wt — ¢)] on a graph as shown in Fig. 8.11b, we obtain the total
force transmitted to the support as

Fr =V kX)2 + (cwX)? = kX /1 + (cw/k)? (8.80)

a) b)

cwX

k/2 k/2 Fo kX

} wt—9
7,

Fig. 8.11 Relation between the vibration system and the supporting ground.
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2) Because

Fo

X =—"_
MJD
Fo(k/M)

~ J&IM = £ (ca/M)?
Fo
VI = @@ + (cwsky?
Fo

JI = @/ T + @ojoy

The ratio of the transmitted force to the exciting force is

Fr_ Tt @ojo?
For I - /@] + @twjwny?

(8.81)

3) From Eq. (8.81), we easily can see that to reduce the value of the ratio, we
set the damping factor ¢ to zero and choose w/w, > 1. Then we find

FT _ Wy 2
7= (3) (8.82)

Therefore the ratio is reduced if we use weak springs and no damper.

Example 8.9

Figure 8.12 depicts a simplified model of a spring-supported vehicle traveling
over a rough road. 1) Find the equation for the amplitude of vibrating mass m, and

Fig. 8.12 Spring-supported vehicle on rough road.
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determine the most unfavorable speed. 2) Suppose that the vehicle is now traveling
on a flat road but its tire is cut by a hard braking. Note that this out-of-round wheel
is equivalent to driving the vehicle on a road with repeated holes. Determine also
the most unfavorable speed.

Solution. 1) For the balance of forces in the vertical direction, we have
mi = —k(x —y)
or
mx + kx = ky
The rough road can be modeled as
y =Y sinwt

where w = 2w v /L. Therefore the equation of motion is

mx — kx = kY sinwt (8.83)

This equation is similar to Eq. (8.55) except ¢ = 0. Hence the solution of Eq.
(8.55) can be used. We have

x— K _ Y
T mJdD  (w/w)* -1

or

X 1
Y Qnv/Lw,)? -1

The most unfavorable speed occurs when the system is in resonance, i.e.,
w = w,
2rv/Lw, =1 (8.84)
v = (L/2m)/k/m

2) When the tire is out-of-round, the velocity of the vehicle is directly related
to w as

v=Rw

The governing equation for the motion still can be written as Eq. (8.83). The
condition of resonance is now

w="v/R =w, =Jk/m

(8.85)
v=RJk/m

where R is the radius of the tire.
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8.5 Transient Vibration

When a spring-mass system is suddenly subjected to a nonperiodic force, a
transient vibration is produced, because a steady-state oscillation is usually not
present. Let us consider that an impulse is applied to a spring-mass system. The
equation for the dynamic behavior of the system can be written as

mx +kx = F8@t —1y) (8.86)

where £ is an impulse and (¢ — ¢) is a Dirac delta function with a dimension of
17!, Taking the Laplace transform of the equation, we have

m[s2%(s) — sx(0) — x(0)] + kx(s) = Fe™S
where x (s) is the transformed function of x(¢). For x(0) = x(0) =0,

ﬁe—tls
ms2+k

x(s) =

Taking the inverse transform by using Eq. (8.43) and the Laplace transform table,
we find

—— sinw,(t — 1) ast > 1

mwy

0 ast <ty
x(t) = [ P (8.87)

By introducing a unit step function

0 ast <
—1) = 8.88
A= {1 ast >t ( )
we can write the solution of Eq. (8.86) as
x(t) = sinw,(t —t))H(E —t;) (8.89)

n

Example 8.10

A simple spring-mass system is subjected to a repeated impulse F of finite
duration at intervals of t as shown in Fig. 8.13. Find the transient response.

Solution. Following Eq. (8.86) we write the equation of motion as

N
mi + kx = ﬁZs(t — n7) (8.90)
n=0
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F(t)

FFS_k
i)

Fig. 8.13 Repeated impulse on a spring-mass system.

b]
T 2T CONT t

where N is a finite integer. Taking the Laplace transform and for x(0) = £ (0) = 0,
we have

£ ZN
by — —nts
x(s) = ms2+k =0 ¢

Therefore, from the inverse Laplace transform of the preceding equation, we find
the transient response

N ~

x(t) = Z

n=0m n

sinw,(t + nt)H(t — nt) 8.91)

Note that, at time #;, N is the integer of ¢, /T in the preceding equation because of
the unit step functions; if #; > N1, then N is the total number of impulses used in
Eq. (8.90). Two particular cases may be discussed here:

1) As w,T = 27, then

N ~

x(t) = Z

n=0 MWn

sin(wyt + n2n)H (t — nt)

A

NoOF
= E sin{w,t)H (t — nt)
= mwy,

N F
= ! sin{wpt) N| = integer(t, /) (8.92)

mawy

This equation shows that the amplitude of x (¢) increases with time as indicated by
N in the expression. This means that the impulse is in resonance with the system.

2) As w,T = 7, then

N ~

x(t) = Z

=0 mawy

sin{(w,t —nr)H(t — nt)

A

NoF
=Y ——(=1)"sin(@,t)H (t — n7) (8.93)
n=0

mwy
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x(t)

A /\
0 I 2 3n 4 5 wt
Fig. 8.14 Transient response at minimum amplitude.

The transient response of the preceding expression is shown in Fig. 8.14. If N is
odd, the responseis Oas Nt <t < (N + 1)t; if N is even, the response is

A

sin wyt
maw,

asNt <t <(N+ Dr.

Next let us consider that an impulse is applied to a spring-mass system with a
damper. Then the equation of motion is

mi + cx + kx = F8@t)

(8.94)
with x(0) = x(0) = 0. Taking the Laplace transform, we have

ms2%(s) + csi(s) + kx(s) = F
or

A

)= ms2+cs+k

The transient response is the inverse Laplace transform of the equation. By using
the table of Laplace Transforms in Appendix F, we find
F
() =L | ———
@ l:ms2 +cs+ k]

13“[:_l 1

m 524 2{w,s + w?

= Le'“""’ sin(awyy/1 — £2t)
mwy/ 1 — 2

(8.95)
Furthermore, let us consider a general system with an arbitrary excitation. The
equation of motion is in the form of

mx+cx +kx = f()

(8.96)
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with x(0) = x(0) = 0. Taking the Laplace transform, we obtain

_ £ f) I
) =—3 = 2 2
ms?+cs+k m §*42w,s + w?
Let
: g(s)
=g(s
m(s?2 4 2L wus + 02) 8
then

x(s) = f(9)§(s)
Using the convolution, Eq. (8.46), and Eq. (8.95), we find
_ !
x(t) = L7 F()E6)] = f F(mgt —n)dn
= ﬁf F(me M sin[w,/1 — £2(t — n)]dn
- (

For a special case, ¢ = 0 or ¢ =0, then

1
x(t) =
mwy,

Example 8.11

217

(8.97)

(8.98)

Determine the response of an undamped system with a single degree of freedom

subjected to the following excitation:

F) = Fy sinwt asl<t<rm/w
- 0 ast <0 and t>7/w

Solution. Using Eq. (8.98) for 0 < ¢ < m/w, we have

(8.99)

Fo [ .
x(t) = sin wn sin[w,{(t — n)]dn
mwy Jo
Fy !
= {cos[{w + w,)1 — w,t] — cos[(w — w,)n + w,t]}dn
2mwy, Jo
Fy [ . w ]
=——— |sinwt — — sinwyt
k[l - (w/wn)z] W
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Fort > n/w, we find

x(t) =

Fo (5 . .
sin w7 sinfw, (t — n)]dy
mwn Jo

_ FOwn/w R R _ z
= —k[l — (w,,/w)z] [sm wpt + sinw, (t w)] (8.100)

Example 8.12

Determine the response of a damped system with a single degree of freedom
subjected to the following excitation

Fy ast >0

@) = FoH(t) = { 0wt

Solution. Using Eq. (8.97) for a damped system, we find

_ !
x(r) = W_/I—;O——ﬁfo exp [{wn(n — t)]sin[w,v/ 1 — ¢2(n — t)]dn

FO e_twnl .
= _ /1 _ 2 _ 2 /1 — 72
mw'zl Il m[; sin(w,v'1 — ¢%) +\/1 ¢cos(wny 1 — ¢ t)]]

Let ¢ = siny, then /1 — ¢2 = cos y; the response becomes

FO e—tw"t
x(t)=7{l —Jl———;QCOS(wM” —Czt—w)} (8.101)

where

Example 8.13

A mass m is packaged in a box as shown in Fig. 8.15. The box is dropped
through height 4. Determine the maximum force transmitted to mass m and the
required rattle space at the instant of impact when the box reaches the ground.
Assume that the impact can be represented by an impulse.

1) Assume the mass of the box is much greater than m, so that the free fall of
the box is not influenced by the relative motion of the mass m.

2) On striking the floor, the impact depends greatly on the material properties
of the box and the floor. It is reasonable to have the impact represented by an
impulse.

3) Assume that the box is rigid. No deformation is considered.
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Box

Fig. 8.15 Packaging analysis.

Based on the preceding assumptions, the equation for the system can be written
as

m(i +y) = -
mi +kx = —my
or
¥+ wix =~ (8.102)

where x is the displacement of mass m from its equilibrium position relative to
the box and y is the displacement of the box from its initial position. Taking the
Laplace transform of the preceding equation, we find

} 1 $*5(s)
6 = O +yOl G + HO YOI G5 = 7575

The response of x(¢) is obtained from
x() = L7EE)]
s25(s) il

1 . . _
={x(0) + y(®]cos wyt + —[x(0) + y(0)]sinw,t — L ! [ > >
Wy s° + w;
For the time of the free falling,
x(0) =y(0) =x(0) =y(0) =0

y() = 1gt2, () =(g/s®)

——r 5
X0 =L Iis(sz+w,2,):|

= —%(l — COSwpt)
w'l
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At the instant of impact,

tg=+/2h/g
x(to) = —(g/w?)(1 — cos wyuto)
JE7(’0) = _(g/wn) sin [

These quantities become the initial conditions for the second phase of the problem
after the impact of the box with the floor.
After the impact of the box with the floor, consider ¢ = 0 at the instant of impact:

x(0) = —5-(1 — cos wnto)
w"
£00) = =& sinw,to
Wy

A

N F
y@) =——145()
nyg

Therefore L[§(t)] = —F /my,
F 1

+___
24+ w?  myp st + w2

- N .
£6) = 5(O0) o +5(0)

where m,, is the mass of the box. We find the response

1 F
x(t) = x(0) cos w,t + —[,\"(O) + —] sin w,t
1)

n my
g 1 g . .
= ——2(1 — COS Wplp) COS Wyt + — | — — = sinw,tg | sin w,t
w? wp |l mp  wy
A 2
Fo . .
= £ (1 — coswuto)? + | —= — sinwyto | sin(wnt — @)
w? mpg
1 — coswpt
tangp = "

(ﬁw,,/m,,g) — sinwyty

For a special case, as (Fw,/myg) > 1,

g Fo, .
x(t) = —— sin(wpt — @)
wy Mpg

A

F
= sin{w,t — @)
mpwy
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Because x () is the displacement of m relative to the box, the maximum space
required for m to travel before reaching the wall of the box is

}’;‘- 2
X = %\/(1 — coswytg)? + (-1 - sinw,,t(,) (8.103)
wy mpg

and the maximum force applied is simply kx.x.

8.6 Response Spectrum

A response spectrum is a plot of the maximum peak response as a function of
the product of the natural frequency of the oscillator and the characteristic time of
the applied force.

From the information revealed in the plot, we can modify the design so that the
peak response will be within the expected range. To illustrate the use of response
spectrum, let us see the following example.

Example 8.14

Determine the response spectrum for a mass-spring system subjected to a force
as a function of time given as follows:

f(t)=F0(t/t1) asl0 <t <y
=Fy ast > n

Solution. For the interval of O < ¢ < ¢, the response is obtained from Eq.
(8.98):

1 b F
x(t) = / —ton sinw,(t — n)dn
0 I

mwy,
_ E T sin wyt (8.104)
k| Wyt '

For the time f; < t < 00, the response is

1 nH F t
x(t) = [/ tﬂ’sinw,,(:—n)dw/ Fosinw,,(t—n)dn]
0

1 f
Fy
=—1l
Pl

sinw,(t —t) —
wnl wnt)

sin w,,t] (8.105)

Examining Eqgs. (8.104) and (8.105), we can see easily that the response from
Eq. (8.105) is higher than that from Eq. (8.104). Hence the response spectrum is
determined from Eq. (8.105). To find maximum x (¢), we differentiate x (¢f) with
respect to time and set it to zero and obtain

cosw,(t, — ) —coswyty, =0 (8.106)
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where 7, is a particular time such that % (1) = 0, as t = ¢,,. Recalling that
cosa — cos B = —2sin §(« + B) sin § (o — B)

we conclude that r, must satisfy the equation

. hy . h
sinw, tl,—-2— smw,,—2—=0

which yields the solution

ni t
t,=—+— =1,2,3,...
b w,,+2 "

or
Wty — 1)) = 207 — Wt (8.107)

From Egq. (8.106), we also find

1 —cosw,h
tan w,t, = ————
Sin wy ty

/1
sinwytp = — —2-(1 — COSw,ty) (8.108)
Using Eq. (8.107), we obtain

sinw, (tp, — t1) = sin(—wyty) = —sinw,t, (8.109)

Then, the peak amplitude is found as

F 1
Ko = — [1 +—20 - coswntl)] (8.110)

k wWpt)

The response spectrum is plotted in Fig. 8.16, which shows that kxm.x/Fo — 1 as
wy,ty approaches infinity. Therefore, if the desired response is small, the natural
frequency should be chosen as high as possible; otherwise set at

wpty = 2nw n=123,...
A velocity spectrum is a plot of the maximum velocity of the mass m versus time
for a single-degree-of-freedom oscillator. It is often used for analyses of earth-

quakes or other ground shock situations. With the formulation of the seismometer
given in Example 8.4, we can write

P+ 2wt + Wiz = —F (8.111)

where z = x — y is the relative displacement between the mass m and the coil
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1 i

10 15 20 25 30

oA
3.}

wt

Fig. 8.16 Response spectrum.
attached to the ground. Assuming z(0) = 2(0) = 0 and using Eq. (8.97), we have
-1 !
z2(t) = ——— y(m) exp[—¢w, (t — n)]sin+/1 — 2w, (t — n)dn
Recalling the differential formula

d d [rw
a¢<x)=—[, Flx.nde

dx )
_[Pafx ) , dB . dA
_/A o dt+f(x,B)a—f(x,A)a (8.112)
we find
ood o AU :
Z(t)—;g/o I, n)dn—/0 Tdn+f(t,t)
or

_ '
z(t) = w,,\/l—l—_czfo J(m) exp[—¢wn(t — MI[—Lwysiny' 1 — 2w, (t — 1)

+ wpy/1 = ¢2cos /1 = 22w, (t — p)]dn (8.113)

Let

t
A= [ 5pet cos T=Tanndy
0
t
B =/ y(n)et“ " siny/1 — ¢ 2w,ndn
0
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Equation (8.113) can be written as

—Lwyt
() = \/1_——_:;2[(& ~ BY1=¢2)siny/1 — 2wt

—(AV1 =24+ Bi)cosy/ 1 — L2w,t]

or
—{wqt
() = \/1—__;2\//42 + B2sin(y/1 — 2wt — ) (8.114)
/1 — 2
tan ¢ = Bi+AVI—¢* (8.115)
At — B{/1-¢2

If z(¢) is plotted against time, it would appear as an amplitude modulated wave.
Because

—{wyt

12(8) |max = \/1——;2\/ A? + B? (8.116)

the envelope of the amplitude modulated wave is the velocity spectrum. Two terms
also may be mentioned here: pseudo-response spectrum is the plot of

I,
1Zlmax = —12() |l max
Wn

and pseudo-acceleration spectrum is the plot of

’ilmux = wnli(t)lmax

8.7 Applications of Fourier Transforms

The Fourier transform was introduced in Section 8.2. In this section we shall
study its applications. The Fourier transform of a function f(t) can be written as

Fw=[ o 8.117)
and the inverse transform of F (u) is
. 1 [~ .
fo = —/ e F(u)du (8.118)
2 J_»

In these equations, the dimension of u is 1/time, which is the same as the frequency
dimension. This means that F(u) is the function in the frequency domain. If the
function f(¢) is the amplitude of vibration as a function of time, then, after taking
the Fourier transform, we obtain (i), which is the amplitude of vibration as
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a function of frequency. When the result of F(u) is displayed, we can see the
amplitudes of vibration at different frequencies. From this result, we may find
the source of vibration and devise a way to suppress it. Therefore, the Fourier
transform is useful for analyzing vibration. We will present more details of this
application later in this section.

Another application of the Fourier transform is that it can be used to solve
differential equations as shown in the following example.

Example 8.15

For an undamped vibration system with a single degree of freedom, apply the
Fourier transform to determine the response x () subjected to the excitation given
below:

. Fo for-T <t <T
f(’)_{o fort <—T and t>T

Solution. Taking the Fourier transform of the equation
m¥ +kx = f()
or
4 wix = (1/m)f@)

with x(0) = x(0) = 0, we obtain

((u)*%(u) + w2 (u) = (1/m)F () (8.119)

where x (u) is the Fourier transform of x(t), and

T Fy _
F) = / Foe—zu!dt — 4—(€mT _ e—mT)
-T u

Hence, Eq. (8.119) becomes

Fo 1

v iuT _ ,—iuT 8.120
k iu[1—(u/w,,)2](e ¢« (8120

)?(u) =
The response x (¢) is the inverse transform of x (u), i.e.,

1 o )
x(t) = —/ X(u)e' du
2

—00
FO 1 o) eiuT _ e—[uT

= —— A S—— L 17
k21 J_oo ull — (u/wn)?]
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Using the expansion of partial fractions

1 1 1 1

u[l = w/w,?] ~ w4 20— 20+ o)

we have

Fy /’°° [1 1 1 :|
x(t) = - - — —
R2mi J_olu 2 —w,) 2+ w,)
Adexpliu(t +T)] —exp [iu(t — T)]} du (8.121)

To evaluate the preceding integrals, we must perform contour integrations in the
complex plane as given in Appendix G. We present the results here; namely,

/"" e = |0 ash <0
—co U 2w asi >0
/°° et dy — 0 ash <0
o U —wy  |2mietent asi >0
(e ] eiuA du B 0 as A < 0
o Ut w, | 2mieTiont asi>0

Note that A = ¢ 4+ T ort — T, when the preceding results are used for Eq. (8.121),
we find

x()=0 ast < =T (8.122)
Fo 1 .
x(t) = o [Zm — —(27rz)exp [iw, (¢t +T)] — —(27rz)exp[ iw,(t + T)}:|
Fy
:—k—[l—cosw,,(t-f—T)] as — T <t <T (8.123)
Fo 1
x(t) = % o [|:27rz — —(27rz)exp liw, (t +T)) — —(27rz)exp[—za),,(t + T)]:|

— |:27ri — %(27ri)exp liw,(t — T)) — %(ZHi)exp[—iw,,(t — T)]:|}

F
— To[cos wa(t = T) —coswy(t +T)] ast > T (8.124)

In analyzing vibration in the field, because of limited time, samples of data are
taken in a finite interval of Ty. The samples are assumed to be a periodic function
with period of Ty and with N points in the interval. Hence, the samples can be
represented as

f@s@—kTy k=0,1,2,...,N —1
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Note that §(+ — kT') is assumed to be dimensionless. Because of the characteristics
of the function f(t)8(t+ — kT), its Fourier transform cannot be performed in the
usual manner. To satisfy the conditions for Fourier transform as stated previously,
the transform of this function is performed approximately in discrete manner.
Thus the transform is known as the discrete Fourier transform. Consider the

Fourier transform
& 2 nt
f(m:/ exp [—’ il :|f(t)dt
o To

in which the frequency u has been replaced by 27n/Ty. The interval between
datum points is T, which is also assumed as the interval of the delta function.
Thus NT = T,. Therefore, the discrete Fourier transform of f(¢)8(t — kT) is
performed as

N—-1
F(n) = Z/
k=0 Y —

n—1
=T Z f(kT)e—iZTIrlkT/Tu

k=0

T(H-%

. 2mnt
f()é(t —kT)exp [—1 ]dt
Ty

L
2

n—1
=T Y fkT)e ™™ N p=0,1,...,N-1 (8125
k=0

Similarly, the corresponding discrete inverse Fourier transform is manipulated as
follows:

fG*T) = f X F(f)e' 7 idf

N+l

Nol R , ,
=2 f FS(f —naf)e™ T df
n=0 —NIT

1 N-1 )
—_— Z ]_‘(nAf)eIZTIanAf
NT —~

1 A ,
=ﬁzf(n)e’2”"”/"’ k=0,1,2,...,N -1 (8.126)
n=0

Note that in the preceding derivation, the width of the Dirac delta functionis Af,
(i.e., I/NT = Af,or TAf = 1/N). Further, the data of 7(f) available are only
N points in the range of f from O to 1/T; outside of the range are assumed to
be zero. Also notice that Af is omitted in the last expression of the transformed
function F(n).

From Eq. (8.125), the vibration amplitude in the frequency domain is deter-
mined. Because rotating speeds of moving parts are usually known, their frequen-
cies can be calculated. Once the frequencies of vibration are known, the source
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of vibration can be determined. Consequently any undesirable vibration may be
eliminated.

Problems
8.1. Determine the Fourier series for the rectangular pulses given here:

fx) =1 asl<x<m
fx)=0 as W < X < 27
f&x) = f(x+2m)
8.2. Find the Fourier integral representations for the function:

fx)=x asl0<x<a

=0 asx >a
with the two different conditions: f(x) = f(—x)and f(—x) = — f(x).
8.3. Expand the following function in a Fourier series of period 27:

0 as —w <t<0
t(m—1) asl0<t<m

f@)= [

8.4. Find Fourier transforms of the derivatives of a function: f’(x) and f”(x).

8.5. Determine the Laplace transforms of the two following functions: f(¢) =
sinwt and f(¢) = a(l — e™"), where a and w are constant.

8.6. A cylinder of mass m and mass moment of inertia J is free to roll without
slipping but is restrained by a spring k (Fig. P8.6).

(a) Find the equation of motion and determine the natural frequency of oscilla-
tion.

(b) Suppose that the cylinder is pulled away from its equilibrium position
horizontally by distance a and is released at rest. Find the response of the system.

Fig. P8.6
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£

\/‘0 i 2n

Fig. P8.8

8.7. A damped spring-mass system is started in oscillation under the initial
conditions: x =0, x = vg.

(a) Determine the equations of motion when 1) ¢ = 0.5, 2) ¢ = 1.0, and 3)
{=2.0.

(b) Find the responses for the three cases.

8.8. If the periodic force shown in Fig. P8.8 is applied to an undamped spring-
mass system, determine the responses of the system subjected to various harmon-
ics.

8.9. The system shown in Fig. P8.9 models a vehicle with an out-of-round tire
traveling on a flat ground. For a constant vehicle speed v, find the equation of
motion and the steady-state solution, and obtain the speed under the resonance
condition.

8.10. The differential equation of motion for a certain undamped spring-mass
system is 4x + 14400x = p(z), where the forcing function p(z) is defined by Fig.
P8.10. The initial conditions are x = ¥ = 0. Determine analytically the displace-
ment x for the range of time from 0 to 0.2.

8.11. Anundamped spring-mass system is excited by a forceF = te™'. Assume

that the initial conditions are x = X = 0. Determine the response using Laplace
transforms.

_{"

Enlarged view of the tire

Fig. P8.9
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Fig. P8.10

8.12. Determine the response spectrum for an undamped spring-mass system
subjected to a rectangular pulse given by

as0 <t <y
ast >ty

. Fo
1) =
f@) { 0
8.13. The support of a simple pendulum is given a harmonic motion yo =
Yo sin wt along a vertical line, as shown in Fig. P8.13. Find the equation of motion
for the system under a small amplitude of oscillation. Determine the steady-state
solution.

8.14. Consider the system shown in Fig. P8.14, where the displacements of

masses m; and m; are x; and x; measured from fixed reference positions, and the
amount of the streching of the spring is given by

X=X — X

N ’ Yo = Yo sinwt

Fig. P8.13
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Fig. P8.14

Assuming no friction between the masses and the support and arbitrary initial
conditions, find the equation of motion for the system and the response x(z).



9
Vibration of Systems with Multiple
Degrees of Freedom

N Chapter 8, we studied linear vibration systems with one degree of freedom

and mathematical methods that are fundamental for analyzing these problems.
In this chapter, we will study linear and nonlinear systems with multiple degrees of
freedom and relatively advanced mathematical techniques for dealing with them.

Section 9.1 deals with various types of vibration systems with two degrees of
freedom. There are five examples to illustrate different methods of formulating
and analyzing them.

In Section 9.2, we will study vibration systems with multiple degrees of free-
dom. Because a system with n degrees of freedom is associated with n differential
equations, one way to deal with it is to apply matrix methods. With the funda-
mentals of matrix introduced in Chapter 5, this section may be considered as
the additional application of the matrix. Readers will see that there are many
advantages with this formulation.

In Section 9.3, we will present the method of lumped parameters with transfer
matrices for modeling a vibration system. They may be considered as approxima-
tions for modeling the continuous system. The advantage of this approach is that
the governing equation can be formulated by the method of transfer matrices, and
frequencies and shapes of principal modes can be determined without solving the
equations completely. Furthermore, the result of this method can be used to check
the results solved from the partial differential equations for a continuous system.

Section 9.4 covers the vibration of continuous systems, which include vibrating
string, beam, membrane, and sound wave. Governing equations for these systems
are known as wave equations. The use of Fourier series for periodic functions
is illustrated repeatedly. Wave equations for one-dimensional space in rectan-
gular, cylindrical, and spherical coordinates are all considered. We notice that
the wave form remains the same in rectangular coordinates as the wave prop-
agates either in the positive x or negative x direction. The wave form decays
in the cylindrical coordinates because of the properties of Bessel functions. In
the spherically symmetric wave, the amplitude decays inversely proportionally
to the distance from the center of the wave. From these, the reader can learn
some fundamentals in the formulation of the equations and in the determination
of solutions.

Section 9.5 is devoted specially to nonlinear systems. As we know from math-
ematics, a systematic method for solving nonlinear problems is the small pertur-
bation method, which has been introduced in Chapter 5 and is not to be repeated
here. Of course, many nonlinear problems can be solved with today’s powerful
computers. The Runge—Kutta method, which is presented in Appendix A, is a
useful tool for obtaining the numerical solutions. However, the disadvantage of
numerical method is that it cannot show explicitly the parameters involved in the
solutions.

233
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Stability analysis is specially important for nonlinear systems and is presented
in Section 9.6. From this section, the reader will find some fundamentals for this
subject.

9.1 Vibration Systems with Two Degrees of Freedom

A vibration system with two degrees of freedom requires two spatial coordi-
nates to describe its motion. Consequently, there are two governing equations for
the motion and two natural frequencies of vibration. When the system is in a
force-free vibration, it vibrates, usually at the combination of two normal modes
corresponding to the natural frequencies. However, under forced harmonic vibra-
tion, the system will vibrate at the frequency of the excitation in addition to natural
frequencies. Resonance will take place if the exciting frequency is the same as one
of two natural frequencies. Details of these different situations will be illustrated
in the following examples.

Example 9.1

Consider the undamped system as shown in Fig. 9.1. Coordinates x; and x;
are the displacements of m, and m, away from their equilibrium positions, re-
spectively. Formulate the governing equations of the motion; find the natural
frequencies and the steady-state solutions.

Solution. The governing equations may be obtained from the balance of
forces. They can be obtained also from Lagrange’s equations. Let us take
Lagrange’s approach. It is seen easily that for the system, kinetic energy is

T = %ml)'clz + %mgxg
potential energy is
V = jkxi + 3k(x) — x2) + $kx)

and Lagrange’s function is

L=T-V
Hence, the equation for x; is

d aL 9L
= mE +k k(x; — =0 9.1
aan ax MM +kxy + k(x) — x2) .1

Xl Xz

7 k | k k
m FAMAA— m,
Z
kx; k(x,— x,) kx,
m; m;

Fig. 9.1 Undamped mass-spring system with two degrees of freedom.
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Similarly, for x,, the equation is

ijC.Z — k(X] —Xx3)+kx,=0 9.2)

Equations (9.1) and (9.2) are linear second-order differential equations with
constant coefficients. The steady-state solution can be assumed as

X = Alei“”
Xy = Azeiwt
Substituting these into the governing equations gives
Qk —w?*m))A; — kA, =0
(9.3)
—'kAx + (2/( — w2m2)A2 =0

Because A and A, are not zero, the determinant of the coefficients must be zero,
ie.,

2k — w*m,) ~k 1_,
—k (2k - w2m2) -

To save some writing, let us change the symbol w? to A, then the preceding
determinant leads to the characteristic equation

=0 9.4)
mypms mipms

The two roots of the equation are

A k
A]} = [(ml+m2):F\/(ml —m2)2+m1m2]
2 miniy

Therefore, the natural frequencies of the system are found to be

k 2
wl} = {— [(ml +my) F v (m) —m2)2+m1m2] ] 9.5)
w7 miniy

Because there are two natural frequencies, the steady-state solution can be
written as

X =R6[Aj1€iw‘t +A12€iw2t] ] =1,2
where Aj and A, are arbitrary complex coefficients. Without losing generality,

we write explicitly the steady-state solution as

Xj=ajcoswit + bjsinwit + cjcoswrt +d;jsinwyt  j=1,2 (9.6)
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where a;, bj, ¢;, and d;(j = 1, 2) are real arbitrary constants to be determined.
By using the initial conditions x;(0) and x,(0), we have

xj0)y=aj+c; i=12 .7
xj(O) = wlbj +Cl)2dj j = 1, 2 (98)

Note that Eq. (9.3) is valid for each mode of the vibration. When Eq. (9.6) is
substituted into Eqgs. (9.1) and (9.2) for the first normal mode, the coefficients of
cos wit and sin w ¢ must be zero. Hence we find

(Z—wf%)al —a; =0
(2-w?2t ; 1) bi—by =0
or
kiai —a; =0, kibj —b, =0 9.9)
where k| =2 — w,z(ml/k). Similarly, for the second normal mode we have
kacy — ) =0, kydy —dy =0 9.10)

where k, =2 — w%(mz/k). From Egs. (9.7-9.10), a;, b;, c;, and d; are deter-
mined. The results are written as follows:

a =+ _lk]kz [x1(0) — k2x2(0)] a, = kiay ©.11)
by = m[nm) — ka2 (0)] by =hby 9.12)
o =1 —_Zkz [k1x1 (0) — x2(0)] ¢ = c1/ka (9.13)
d = ﬁ[km 0 —5200)]  dr=di/k (9.14)

Substituting Egs. (9.11-9.14) into Eq. (9.6) gives the steady-state solutions of
x1(t) and x,(t). From these we can see that in general the system is vibrating at
the combination of two normal modes. To simplify the equations, let us consider
a special case, i.e., m; = m, = m. Then the two natural frequencies are

k/m, wy = +/3k/m 9.15)
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The constants are found to be

1
a = -2-[)61(0) + x200)] = a;
1
by = -2——[351(0) + 12(0)] = by
W]
1
€= E[xl(o) —00)] = -

1
dy = 2—[351(0) —0)]=-4d,
%)

Hence the steady-state solutions are
1 | B . .
xi1(t) = 5[)61 (0) +x2(0)] cos w £ + g[x' (0) +x2(0) ] sin ;¢
1

+l[X1(0) — x2(0)] cos wyt + L[i‘l(o) —%(0)]sinwyt  (9.16)
2 2w

1 1
x(t) = 5[)61(0) + x2(0)] cos wit + 2—a)l[961(0) + %2(0)] sinw

— l[xl(O) — x2(0)] cos wyt — L[,\"1(0) — x2(0)]sinwyt  (9.17)
2 2w,

Using these equations, we can see that it is possible for the system to oscillate at a
particular frequency. If x; (0) = x,(0) and x; (0) = x,(0), the system will vibrate at
the first normal mode. On the other hand if x; (0) = —x,(0) and x,(0) = —x,(0),
then the system vibrates at the second normal mode. However, these conditions
are hard to produce in the real world. Therefore, in general the vibration is a
combination of two modes.

Through this example, a few remarks shall be made here. Note that the system
can vibrate at one of the natural frequencies. The lower frequency is called the
fundamental frequency, and the corresponding mode is the fundamental mode.
The values of A; are called eigenvalues of the characteristic equation. The corre-
sponding ratios of a,/a; and ¢,/c| or by /by and ds/d; obtained from Egs. (9.9)
and (9.10) are the component ratios of eigenvectors. In this example, w; and w,
are different. A special case for w; = w, will be discussed later.

Example 9.2

Consider a torsional system with two degrees of freedom as shown in Fig. 9.2.
Assume that the disks have mass moments of inertia of J; and J, with respect
to the rotation axis. 6; and 68, are the angular displacements of the disks from
their equilibrium positions, respectively. The torsional stiffness for the portion of
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Fig. 9.2 Torsional system with two degrees of freedom.

the shaft between the disks can be expressed as kr = G J /£ where G is the shear
modular of elasticity, J is the torsional constant of the cross section, and £ is length
of the shaft. The torsional stiffness for the portion of the shaft between the support
and the first disk is 2ky. Formulate the equations of motion, and determine the
natural frequencies and shapes of the principal modes.

Solution. This is a conservative system. The kinetic and potential energies
are written as

T =17,62 + 11,62
= 2(2kr)0} + Lkr (61 — 62)°

Lagrange’s function is L = T — V. The equations of motion are then

J161 4 2kr6, + k(6 —62) = 0 (9.18)
J2by —kr(6) —62) =0 9.19)
By assuming
6; = A;je!”
we have
Gkr/Ji —h A — (kr /J)A; =0 (9.20)
(=kr /J) Ay + (kr ), — 0?) Ay =0 9.21)

Because Ay and A; cannot be all zero, the determinant of the coefficients must be
zero, i.e.,

Gkr/h —@®)  (=kr/J)

(—kr/J2) kr /)], — &?)

Expanding the determinant leads to the characteristic equation

w* —kr (3)J) 4 1/1)w? 4+ 2k2 /(1) =0 9.22)
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The roots are

k
wi = %[(3/11 +1/072) =GB/ = Q111 7) + (1/1)?] (9.23a)

k
W} = = [G/1 +1/1) + VG = @Ik + (175)] (9.236)

Substituting these into Eq. (9.20) gives the modes as

A
<_1> __kr/h (9.24a)
AZ 1 3k7'/.]1 — w%
A
<_1> _ ke (9.24b)
AZ 2 3k7'/.]1 - w%
Example 9.3

Consider the vibration of an automobile modeled as a two-degree-of-freedom
system, as shown in Fig. 9.3. The numerical values of the parameters are given
as follows:

m = 1460 kg, £, =137m, {, =1.68 m
ky =35 kN/m, ky =38 kN/m, Ic = 2170 kg-m?

Determine the natural frequencies and the amplitude ratios under the normal modes
of vibration.

Solution. To find the equations of motion, we take Lagrange’s approach.
Choose x and 6 as the generalized coordinates where x is the vertical displacement
of the center of mass and 6 is the angular displacement of the automobile from
the equilibrium position. Then the system will have kinetic energy

—1,:2 1742
T = me + '2'IL'0
and potential energy

V= 1ki(x = 10)2 + Yko(x + £20)?

/_____'\\
//’L ¢, [
s |
L/ [ c 0 x
%k‘ mg Xk, X L J°
ky (x—¢,0)

ko (x+£,0)
Fig. 9.3 Simplified model for a vibrating automobile.
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With the use of Lagrange’s equation, we obtain
mx + (ki + ka)x + (kp€, — k1£1)0 =0 (9.25)
1.6 + (ks — k1 €)x + (k1€3 + k2£3)0 = 0 (9.26)

The preceding equations are statically coupled because there are angular displace-
ment & terms in the equation for translational motion, Eq. (9.25), and translational
displacement x terms in the equation for rotational motion, Eq. (9.26). Note that
Egs. (9.25) and (9.26) are linear ordinary differential equation with constant co-
efficients. The steady-state solutions can be assumed as

x(t) = X'
6(t) = @'
By substituting these solutions in Egs. (9.25) and (9.26), we have
ki 4k, — 0®m —(k1 &) — kyt
(k1 + ko ) (k1€y — kat2) (X) —0 9.27)
—(ki€y —katy) (k03 + ko] — ?1) ] \©

Simplifying Eq. (9.27) with the substitution of given numerical quantities gives
the characteristic equation as

(73,000 — 1460w%)(172,942.7 — 2170w?) — (15,890)> = 0
From this we find the two natural frequencies to be
w) = 6.894 rad/s, wy = 9.065 rad/s

The amplitude ratios corresponding to the natural frequencies are found from Eq.
(9.20) to be

X X
— = —4.401 m/rad — = 0.338 m/rad
@ w1 @ w2

Example 9.4

For the system shown in Fig. 9.4, let the initial conditions x,(0) = x,(0) = 0
and x1(0) = x,(0) = 0. With the use of Laplace transform method, determine the
general solution of the system when m, is excited by a harmonic force Fy sin wt.
To simplify the consideration, assume m; = m, = m.

Solution. From Example 9.1, we can obtain the equations for the motion as
mx| + 2kx) — kx, = Fysinwt (9.28)
miy —kx) +2kx; =0 (9.29)

The Laplace transform is a powerful tool for solving linear differential equations
as was discussed in Section 8.5. Here we illustrate how the method can be applied
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Fysinwt

Fig. 9.4 Two-degree-of-freedom system under forced harmonic excitation,

to two equations simultaneously. Taking the Laplace transform of the preceding
equations, i.e., multiplying both sides of equations by e¢™%dt and integrating from
zero to infinity, gives

ms?X +2kX, — kX, = (9.30)

w
Fi s2 + w?
ms? X, —kX, +2kX; =0 9.31)

where X; is the transformed function of x;(¢) and (w/s? 4+ w?) = L(sinwt) ob-
tained from Appendix F. Rewrite the equations in matrix form as

w
2 _ Fy——
mst+ 2k ok Y _ [N re (9.32)
—k ms*=+ 2k X2 0
or
Z)X =F

where Z(s) is the coefficient matrix of Eq. (9.32). Premultiplying Eq. (9.32) by
the inverse matrix of Z(s) gives

X =[Z)]'F
or
F w
(X‘) izt e
X, 0

w
_adj[Z(9)] [ Fi 1ol

1zl 0

w
Y L R L
|Z(s)] k ms* + 2k 0

Carrying out the matrix algebra leads to

(ms? + 2k)wF,
X, = 9.33
U7 [ms? + 2602 — k21(s2 + w?) ©33)
X, cadl (9.34)

= [ms? + 202 — K2](s% + ?)
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With the use of the partial fractions expansion given in Appendix E, we can express
X,’ as

X, = wFl 1 + wF1 1
' 2(w? — w%)m 52 + w? 2{w? — w%)m 52+ w3
wf(2w,2 - wz) Fi w (9.35)
(0? — 0?) (0} — )k s2 4 ? '
X, — ww) F W) wwy Fy W,
2= 2k(w? — wl)s2+w!  6k(w?— w%) 52+ w2
2 21:
+ il @ (9.36)

3k(w? — w?) (@3 — @?) 2 + @?

where w1 = /k/m and wy = /3k/m. Taking inverse Laplace transform, we find

© ww; F inot + wwy F -
X = ——SInw —— SIN W
T a( =) T k(0 —wd)
2 2 2
wl(Zwl —w )F; .
sin wt 0.37
K@ — %) (@} - o?) 37
) ww F ot wwy F\ i oot
X = —SINw — —— = SIn W
T (w0 —e?) T k(@2 —wd)
2 21:
+ d bt Ll sinwt (9.38)

3k(w% — wz)(w% — wz)

From this result we can conclude that the system will vibrate at the combination of
three frequencies. Resonance will take place as w approaches either w; or w,. Note
also that the Laplace transform method is very systematic and straightforward.

Example 9.5

Consider a damped system with two degrees of freedom as shown in Fig. 9.5.
Find the equations of motion. Determine the natural frequencies and the response
of principal modes. Discuss all possible cases for different roots of the character-
istic equation.

Solution.  From the balance of forces in the free-body diagram, we find

mix; = —kixy — ko{x) — xp) — c1x1 — c2(X) — X2) (9.39)

maxy = ka(xy — x2) + c2{x1 — x2) (9.40)
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Fig. 9.5 Damped system with two degrees of freedom.

which can be rearranged as
mi¥) + (¢ + c)xy + (ky + k2)x) — caxp —kaxa =0
— X1 — kaxy 4+ maky 4 caXo + koxa =0
Assume that the solutions are in the form of

x = X;e¥

Then we have

[mys? 4+ (c1 + c2)s + (ki + k2)1X; — (c25 + k)X, =0 04D
—(cas + k)X + (m2s2 + s + k)Xo, =0

Because X, and X, cannot be zero, the determinant of the coefficients must be
zero. Expanding the determinant gives

mymas* + [myca + ma(cy + ¢)1s” + [mika + ma(ky + k2)
+ c102)s? + (kica + kacy)s + kiky =0 (9.42)

From this equation, s is expected to have four roots. When these roots are substi-
tuted into Eq. (9.41), they will give four relationships between X; and X;. Note
that because all the physical constants m;, k;, and ¢; are positive and all the signs
are plus, there is no possibility of a positive root. Thus the following possibilities
exist for the four roots: 1) all four roots arc complex numbers that will be two
pairs of complex conjugates; 2) all four roots are real and negative; and 3) two
roots are real and negative, and the other two complex conjugates.

Now let us examine these three possible cases. For the two pairs of complex
conjugates, i.e.,

51 =—p1+iq, Sy =—p1 —iq
(9.43)
s3=—p2+iqa, sS4 =—p2—iq2

where pi, p2,q1, and g, are real and positive. The first two roots will give the
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following solutions:

x1 = Xnexp[(=pi1 +iq)t] + X2exp[(—p1 — iq1)t]
=e M (X1 + X1pe ') = Ape P sin(git + 611)  (9.44)

and

x3 = Xn1exp[(—p1 +igi)t] + Xazexpl(—p1 — iq1)t]
= Aye " sin(git + ¢21) (9.45)

These two solutions represent oscillatory motion with the magnitudes decaying
exponentially. In a similar way, for roots 53 and s4, we have another two solutions.
Combining all four roots, the general solutions are then

x; = Ape P sin(gyt + ¢11) + Appe” " sin(gat + ¢12) (9.46)
xy = Agre P sin(qit + ¢21) + Ape " sin(gat + ¢n) 9.47)

where Ay, A1z, Az1, Az, @11, D12, P21, and @y are to be determined. With the
use of Eq. (9.41), for each root, four relationships are established. Another four
relationships can be found by the four initial conditions x; (0), x5(0), x;(0), and
x2(0). Therefore all the constants will be determined.

For the second case, four roots are real and negative, then the motion is not
oscillatory; the displacements of masses are decaying exponentially. This case is
similar to the overdamped case discussed in Section 8.4.

Finally, for the third case, two roots are real and negative, and the other two are
a pair of complex conjugates. The general solutions are then the combination of
the terms, as in Eq. (9.44), and the other terms of exponential functions:

xi = Aje " sin(gt + ¢;) + cie ™ + die™

The constants are determined through the same procedures as discussed for the
first case.

9.2 Matrix Formulation for Systems with Multiple
Degrees of Freedom

There are usually # ordinary differential equations for describing a system of n
degrees of freedom. Solving these equations is straightforward but cumbersome
and time-consuming if # is large. Fortunately, matrix methods are 1deal for this
purpose, and many matrix operations can be carried out by digital computers.
In this section we will discuss the matrix techniques for various properties of
vibrating systems.

Free Vibration of Undamped Systems

The equations of motion for an n degrees-of-freedom system expressed in
matrix form are simplified to

MX+KX=0 (9.48)
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where the mass matrix is

mpy mp e My,
M =
My Mpy -+ Mpy
the stiffness matrix is
kin kip --- kg
K=1]": : :
knl kn2 Tt krm

and the displacement vector (a column matrix) is

Xn

Note that M and K are square symmetric matrices. Premultiplying Eq. (9.48) by
M~ we find

IX+M'KX =0
or
IX+AX =0 (9.49)

where A = M~k is called the system matrix or the dynamic matrix because the
dynamic properties of the system are defined by this matrix. By assuming the
solution of the equation in the form of

X =Ce"
we have
X = —w’X
or
X=-xX
where A = w?. Then Eq. (9.49) becomes
(A-xDX =0

Because X is not zero, the determinant of the coefficients must be zero, i.e.,

A=Al =0 (9.50)

This is the characteristic equation of the system. From this equation we can find
n roots of A;, which are called eigenvalues. By substituting A; into Eq. (9.51),
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we can obtain the corresponding mode shape x;, which is called an eigenvector.
Note that, as ; is substituted into Eq. (9.49), there are most likely only (n — 1)
independent equations, but there are various nx; to be determined. One x; can be
chosen arbitrarily. It is convenient to add one condition as

Y oxi=1 9.51)

In this way, x; may be considered direction cosine throughout for two- and three-
degree-of-freedom systems. For n > 3, the additional condition (9.51) is still valid
to replace the condition that one x; is arbitrarily chosen. Details will be shown in
the examples.

Eigenvalue and eigenvector properties: different eigenvalues i; # A;.
For the ith mode, we have

AX; = M X (9.52)
If the transposed equation (9.52) is postmultiplied by X ;, then it becomes
(AX)"X; =0X[X;
or
XTAX; =0X]X; (9.53)
On the other hand, for the jth mode, the equation is
AX; =X X;
Premultiplying the preceding equation by X[ gives
XTAX, =x2,x]'X; (9.54)
When Eq. (9.53) is subtracted by Eq. (9.54), we find
A —AXTX; =0

Therefore, X; and X ; are orthogonal.
In addition, consider the equation for the /th mode

KX, =M MX;

Premultiplying the equation by X /T gives

XTKXi =NX]MX, (9.55)

Next, starting with the equation for the jth mode and premultiplying by xT,
we obtain

XTKX; =xXIMX;
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Taking the transpose of the preceding equation leads to

X[KX; =1X]MX; (9.56)

because M and K are symmetric matrices. Thus, subtracting Eq. (9.56) from Eq.
(9.55) gives

0= —r)X]MX,;
For A; # A;, the preceding equation requires
XIMX; =0 9.57)

It is also evident from Eq. (9.55) that

X[KX;=0 fori#j (9.58)
On the other hand, as i = j, we write
X/ MX; = M,
and
XTKX: = K;
M; and K; are called generalized mass and generalized stiffness, respectively.
Eigenvalue and eigenvector properties: repeated eigenvalues A; = Aj.

Suppose that there are three roots from the characteristic equation, with A} = A =
Ap and A3 # A¢. Then we have

Axy = Agxy
AX2 = )\.OxQ (959)
AX3 = )\.3X3

Multiplying the second equation by any constant b and adding it to the first gives
A(x1 + bxy) = Ao(x1 + bxz)

Thus a new eigenvector xj2 = x| + bx; also satisfies the equation; hence, no
unique eigenvector exists for Ao. However, based on orthogonal properties of
eigenvectors, we can choose x; to be perpendicular to x5 and x; perpendicular to
x1 and x3. Details will be shown in the example.

Principal or normal coordinates. With the properties of eigenvalues and

eigenvectors already discussed, we can transform the equation of motion from
Eq. (9.48)

MX+KX=0 (9.48)
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to
Y+ w?Y;, =0
by the transformation of
X=PY (9.60)

where P is called the modal matrix and is formed by eigenvectors. For a three-
degree-of-freedom system

X1 X1 X1
P={]x X2 x2 =X X2 X3)
X3 X3 X3

1 2 3

where X, X, X5 are eigenvectors. With the transformation by Eq. (9.57), Eq.
(9.56) becomes

MPY +KPY =0

Premultiplying the preceding equation by P7 gives

P"MPY + PTKPY =0 (9.61)
Looking into details, we find
PTMP=(X, X2 X))'(M)Xi X2 X3)
XTMX, XTMX, XTMX,
= | xImx, xImMXx, XIMX,
XTMX, XTMX, XIMX,

My O 0
=0 M, O
0 0 M

where M; = XiTMXi and Eq. (9.57) has been used for the zero terms. Similarly

Ky 0 0
Plkp=|0 K, O
0 0 Ks;
Therefore, Eq. (9.61) becomes
MY, +K;Y; =0 i=1,273

which can be solved in a manner similar to that of the single-degree-of-freedom
system. Once Y; is found, the solution of the original equation can be obtained
simply by applying the transformation equation

X(t)=PY
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Example 9.6
Consider the system shown in Fig. 9.1 with m{ = m, = m. Find the steady-state

solution with the use of principal coordinates.

Solution. The equation of motion in matrix form is

m  0Y {x 2k —k\ (x
=0 9.62
(5 ) ()G )0 o)
and the eigenvalues and eigenvectors are found

M=wl=k/m, A =w)=3k/m)

(.= .-

The transformation is

Equation (9.62) then becomes
MPY + KPY =0
Premultiplying the preceding equation by P7, we find

PTMPY + PTKPY =0

no D)o 30 =0

This equation can be further simplified to

or

jitolyy =0 i=1,2 (9.63)
The general solution of Eq. (9.63) is
yi(t) = yi(0) cos w;t + (1/w;)y; (0) sin w;t

The initial conditions for the principal coordinates can be found from the trans-



250

formation equation as follows:

Y =PTX

y(0) =

¥2(0) =

ADVANCED DYNAMICS

7(11) (o)
2\~ 1) \x0

[x1(0) + x2(0)]

- Sl-

—[x2(0) — x, (0]

S

Similar relationships can be found for y;(0). Therefore

ni) = 7

|
y2(t) = —E[Xz(o) —x1(0)] cos wyr +

7

1
—1—[x1(0) + x(0)]cos wyt + ——[%1(0) + X2(0)] sinwy ¢

ﬁwl
1
V2w,

[x2(0) + X1 (0)] sin wat

To find the solution for x;, x5, we substitute y; () into the transformation equa-

tion

()=

(i

Therefore

-1

X =PY

D0)=5050)

31 = 10 (0) + 120 cos ot + ——[1(0) + £2(0)] sin w7
2 2(1)1

+ L1121 (0) = x2(0)] cos ot + ——[51(0) — £2(0)] sin
2 2wy

Xy = l[xl(O) + x2(0)} cos wt + —-1—[)&1(0) + X%, (0)] sinw ¢
2 2(1)1

— L 51(0) = %2(0)) cos wat — ——[1(0) — £(0)] sinawnt
2 2w;

The preceding results agree completely with Egs. (9.16) and (9.17).

Example 9.7

To illustrate a case of repeated roots in a characteristic equation, let us consider
a particular system with the equation of motion as

X
X
X3

oo 3

0 0
m 0
0 m

0 —k &k X
+ | —k 0 & x|=0
k k O X3
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When this equation is premultiplied by M ™', the equation becomes

X+M1'KX =0

or
X+AX =0 (9.64)
where
cf 0 -1 1
A=M'K=~=|-1 0 0 (9.65)
X1 1 0

1) Find the eigenvalues and eigenvectors, and 2) find the modal matrix P and
carry out the product PTAP.

Solution. 1) The steady-state solution of Eq. (9.64) may be assumed as

X = Ceiwl
X‘ — _Ca)2eiwl — —C)Leiwt
Substituting the preceding expression into Eq. (9.64) leads to
(A-ADX=0 (9.66)

Hence the characteristic equation is

A=Al =0

()
(-8t

which gives the eigenvalues

A1=A2=k/m and A;=—2k/m

To find the eigenvector corresponding to A3 = —2k/m, we substitute A3 into
Eq. (9.66) and obtain

or

2 -1 1 X1
X2 =0
1 1 2 X3

3| =
|
_
[\=)
_

In explicit form, we have
2x; —x,+x3=0
—x1+2x2+x3=0
X1+x+2x3=0
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Note that there are only two independent equations in the preceding three equa-
tions. For example, the second equation can be obtained by the subtraction of the
first equation from the third equation. Fortunately we can impose

X+l +xr=1
Then we find the eigenvector
-1
X3=—|{-1 (9.67)

For 1| = A, = k/m, the equations become
—X1—Xx24+x3=0
X1 —x2+x3=0
Xi4+x—x3=0

There is only one independent equation in the preceding equations. Taking
X1 = X3 — X, leads to
X3 — X2
Xl = X2
X3

To satisfy the orthogonality condition X| X3 = 0, we have x, = x3 and also to
satisfy x7 4+ x7 + x3 = 1. Hence

1 0
X, = ﬁ i (9.68)
The second eigenvector for A = k/m then can be constructed from
1 2
X; =X XX3=76 —i (9.69)

2) The modal matrix P is obtained by collecting the eigenvectors from Eqgs.
(9.69-9.71)

o = -4
Jo T
1 1 1
P=|t & -& (9.70)
1 1 1
VR S |
The product of P” AP is found to be
% 1 0 0
PTAP=—{|0 1 O
m\o 0 -2

Note that the result is a diagonal matrix of the eigenvalues.
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Forced Vibration of Undamped Systems

The vibration of systems with multiple degrees of freedom activated by har-
monic forcing functions can be treated quite simply as an extension of our ma-
trix methods. Consider a system with three degrees of freedom and with forces
Fi(t) = 1€, F2(t) = g2¢'®, and F3(r) = g3¢'“* being applied in the directions
of x1, x2, and x3, respectively. The equation of motion can be written as

m 0 0) (% kiw ko kg fx qa\
0 m O B+ bk kn kn|[x]={a]e”  OT)
0 0 m3/ \i ki kxn ki) \xa g3

By assuming the steady-state solution as

xi = X;e'! 9.72)
we have
—Mw?*X+KX=0

where M is the mass matrix, K is the stiffness matrix, and X is the column matrix
of X;. Further simplifying the equation gives

AX =0

where A = K — Mw?. By premultiplying the equation by A~', we find immedi-
ately,

X=A"10 9.73)

Forced Vibration of Viscously Damped Systems

The differential equations of motion for a damped system having n degrees of
freedom can be written in matrix form as

MX+CX+KX=F 9.74)

where M, C, K aren x nsymmetric matrices and X, F are # x 1 column matrices.
To find the homogeneous solution, we set F = 0 and assume solutions of the form

x@)=Xe" i=1,2,....n
Substitution of the assumed solutions yields the matrix equation
s*MX +sCX+KX =0
or
(s*M +sC +K)X =0
To find the eigenvalues, we set the determinant of the coefficients to zero:

|s?M +sC+K|=0



254 ADVANCED DYNAMICS

This is the characteristic equation. From this equation, we expect to find z roots
or n eigenvalues. Then we can find » corresponding eigenvectors. However, the
n roots are usually n pairs of complex conjugates and n eigenvectors are also in
complex form. Therefore, very often we specify that the solution is the real part
of the assumed solution, i.e.,

x;(t) = Re[X;e""]

To find the particular solution of Eq. (9.74), we consider the following two
special cases of damping systems.

Light damping. From the homogeneous undamped equation
MX+KX=0

we obtain the eigenvalues and eigenvectors. From this we can transform X to
principal coordinates Y by

X =PY

Substituting this transformation into Eq. (9.74) and premultiplying the equation
by PT, we have

P'"MPY + PTCPY + PTkPY =P'F (9.75)
It has been shown previously that PT M P and PTK P are diagonal matrices. In
general, PTC P results in a nondiagonal matrix. A frequently used approach for
approximating the response of a system with light damping is to ignore all off-
diagonal terms of the transformed damping matrix, then Eq. (9.75) becomes n

uncoupled equations. Each can be solved by the methods used for a single-degree-
of-freedom system already discussed.

Proportional damping. 1f C is proportional to M and K

C=aM+BK (9.76)
where « and B are constants, then
P'CP=aP"™MP+BP'KP

Thus Eq. (9.75) becomes uncoupled. Each principal coordinate will have the
equation of motion of the form

Y1 + (a + B}V + &2Yi = fi(r) (9.77)

which can be solved by the methods discussed in Chapter 8.
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9.3 Lumped Parameter Systems with Transfer Matrices

Many vibrational systems can be modeled as systems with lumped parameters.
The method of transfer matrices is introduced here. This is a powerful tool for
solving lumped parameter systems. To establish the method, we first apply the
method for mass-spring systems. Then we will apply it to torsional systems and
flexural beam systems. The method requires the knowledge of matrix operation,
which has been reviewed in previous sections.

State Vectors and Transfer Matrices

To apply the method of lumped parameters to a vibration system, we divide
the system into a number of appropriate sections. For each section, physical
quantities are classified into two kinds of variables. One kind is known as the
force, which includes force, torque, shear, and bending moment, and the other as
the displacement, which includes linear displacement and angular displacement.

Now, we define two terms, state vector and transfer matrix, that are used in the
method of lumped parameters. A state vector is a column matrix that has all of
the components of the forces and displacement at a point /. The transfer matrix
relates the state vectors from one location to another along the system.

Let us consider a mass and a spring as shown in Fig. 9.6a. We can formulate
two equations: one is for the force, and the other for the displacement. For the
force, we have

a)

b)

Fig. 9.6 State variables for a mass-spring system.
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For a harmonic motion, the solution is assumed as x; = X;e'“'. The forces applied
must be in the same form f = Fe'*'. Hence we have

F,- = F,'_l b ma)ZX,-
For the displacement, we have
Xi = X
or

Xi=Xi

X,‘ _ 1 0 Xi—l
(1) = (e D) (E2) o7

Next, let us consider the state variables around the spring as shown in Fig. 9.6b;

we have
> F=0

fi=fici=k(xi —xi_y)

In matrix form

or

Fi=Fi_1=k(Xi —Xi21)

XN\ (1 1/k\ (X,
(Fi) B (0 1 ) (Fi—l) (.79

In Eqgs. (9.78) and (9.79), the state vector is

X
4= (Fi)

The transfer matrices in Eq. (9.78) and (9.79) are, respectively,

10
A= (_mwz _ 1) (9.80)

1 1/k
= 81
B (0 : ) (9.81)

Therefore, for a system consisting of a spring and a mass as shown in Fig. 9.7, we
can write the equations as

Again, in matrix form

Zi=BZi_,
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7

==l _ ___>

Fig. 9.7 Mass-spring system.

for the relationship across the spring and
Ziy = AZ;
for that across the mass. The combined equation then is

Ziy = ABZ;_, (9.82)

Example 9.8

For a mass-spring system as shown in Fig. 9.7, determine the natural frequency
of the system using state vectors and transfer matrices.

Solution. Applying the formulation given in the section, we have the transfer

matrices as
1 1/k
Bi_o =
o=(y 1)

and

The equation of motion is

Zy= Ay 1B o2y

X5\ 1 0\ /1 1/k\ (Xo
(Fz) - (—mw2 1) (0 1 ) Fo
_ 1 1/k Xo

- (—mw2 (a- mwz/k)) (FO) ©.83)

Two different conditions for the vibrations may be illustrated as follows: 1) free
vibration and 2) forced vibration.

In detail, we have
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1) The conditions for free vibration are F, = 0 and X = 0. Then Eq. (9.83)
leads to two equations

X, = Fy/k
and

0=(1—maw?/k)F,

which give the displacement of the mass in terms of the force in the spring and
the natural frequency

w = /k/m

2) For a harmonically forced vibration f, = Fe'*', the magnitude of the force
is F'. Hence the conditions can be written as F, = F and Xy = 0. Again Eq. (9.83)
gives

X, = Folk

and
F = (- mw’/k)Fy

Rearranging leads to

F

= =D (9.84)

2

which is the familiar result.

Transfer Matrices for Torsional Systems

Consider a disk and a bar as shown in Fig. 9.8a. As we have done in the last
section, we formulate one equation for force and one for displacement. From the
balance of torque, we have

i =t = J; 6 =6
Under the harmonic vibration, we express the state vector as

z; = Zl_el(x)!

where the capital letter represents the magnitude. Therefore, the equations written

in matrix form become
@,‘ 1 0 ®i—l
= 9.85
(7)= (o (@) 059

Next consider Fig. 9.8b, and assume that the bar is an elastic torsional spring.
Then we find

=ty =k(6 —6i_1)
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a) i-1 i
I 6, |
I |
I I
I |
I
ti-1 | |L t.
I Vo
| I
| I
I |
6.1 lo;
I i
b) i-1 i
I I
tioq I: K l t,
I I
I I
6.4 0i

Fig. 9.8 State variables for a torsional system.
which can be written in matrix form as

®\ _ (1 1/k\(®i,
(%)= ")) 029

Similar to the case of mass-spring system, if from i — 1 to { is a torsional spring
we can have the equation

Zi =BZ;_,

where

(1 1/k
B_<O 1) 9.87)

For the case where from i to i + 1 is a disk, the equation is

Ziv1 = AZ; (9.88)

1 0
A= (—Ja)2 1)

Then the combined equation from i — 1toi + 1is

where

Zis1=ABZ;_, (9.89)

Note that this formulation can be applied to many successive stations of the
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torsional system. Then the final equation is in the form of

Z,=(AB),(AB)y-1,...,(AB)Zy (9.90)

Example 9.9

For the torsional system shown in Fig. 9.9, employ transfer matrix to find the
relationship from station 0 to 3. Determine the natural frequencies for the principal
modes.

Solution. To simplify the consideration while not losing generality, let us
consider that the boundary conditions are 8y =0, Ty =1, 63 =6, and T3 =0
where 6 is arbitrary. The equation relating station 0 to 1 can be written as

()= (o D6 ") 0)

_ 1 1/(2k) 0
T\=3J0? 1-3J0%/ (k) \1

In a similar manner, to relate stations 1 to 2 and 2 to 3, we have

6\ _ 1 1/k 1 1/(1.5k)
T:) ~ \—Jo® (1-=3Jw?/k)) \-2Jw? (1-2Jw?/1.5k)

3 1 1/(2k) 0
—3J&? (1-3Jw?/2k)) \1

Carrying out the product of the matrices, we find

1 Jw?
T3=—|—-Jo* —-2J* |1 - —
=g |2 (1- )]

Ja? Jw? 2Jw? 3Jw?
- - - 1-— 9.91
+[ 1.5k+<1 k )(1 1.5k )}( 2% ) )

J1=3J
=2J
J2 Jym
ky=2 kb=1.5k ky=k
&
! | [
[ |
l | |
! ! | |
0 1 2 3

Fig. 9.9 States for the torsional system.
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Fig. 9.10 Elements of lumped system for a vibrating beam.

To simplify the equation, let w? = A(k/J) and set T3 = 0, we obtain
41
2A3—€A2+6A— 1=0

and find the three roots as
A1 = 02168, A = 1.0964, Az =2.1034

Therefore the natural frequencies of the principal modes are

k k k
w; = 0.4656\/;, Wy = 1.0471\/;, Wy = 1.4503\/;

Transfer Matrices for Vibrating Beams

A beam is a continuous solid, but it also can be modeled as lumped masses con-
nected by massless beam sections. The lateral vibration of the beam can be solved
successfully by using state vectors and transfer matrices. The method originally
developed by N. O. Myklestad and adapted by many textbooks* is discussed in
this section.

To formulate the governing equations, a portion of the beam is broken into three
elements as shown in Fig. 9.10. They are the massless beam section, the mass
section, and the load section.

The massless beam section as shown in Fig. 9.10a. There are four
equations to relate state vector at station / — 1 to that at station i. From }_F = 0,
we have

V,=V,_, (9.92)

*Thomson, W. T., Theory of Vibration with Applications, 3rd ed., Prentice-Hall, Englewood Cliffs,
NJ, 1988.
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From )M = 0, we obtain
Mi=M_y+Vi_i¢ (9.93)

From the relationship between the change of slope and the moment applied in the
beam, we have

1t 1 1
0 — 6 = Mx)dx = _<Mi—l + '—Vi—le)e

ET Jy El 2 ©94)
6 = 6, + M;_£ + Vi1 €2
TN TR 2E]
The deflection is found similarly
¢ 2 3
M;_¢ Vit
Y, -Y_| = f(x)dx =6,_,¢ _—
i i—1 A (x)dx i1 + 2E] + 6E]
Yi =Y 46 e+M"“’ez Vil (9.95)
P 2E] 6EI '
Combining Egs. (9.92-9.95) leads to
2 3
v, I € @2E E/6EI\ ,y
6| fo 1 eEr eper||e., 996
M; 00 1 ¢ M;_ ’
Vi 00 0 1 Viai

Note that there are four terms in the state vector. Once the transfer matrix is
determined for one section, it can be used for all sections of the same length and
same flexural rigidity.

The mass section as shown in Fig. 9.10b. From the equation of motion
> F =mj
we have
Viei = Vi = my

By assuming the harmonic vibration and keeping V; for the magnitudes of har-
monic shear forces

Viei = Vi = —mY,;0?
For a rigid mass
Yi=Yi,
Vi = Vi + mo?Yi
6 = 6,
M =M,
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Combining the preceding equations into one transfer matrix equation, we have

Y: 1 0 0 0\ /Y
1 | 0o 10 offoe.
Ml Vo o1 ollm. ©-97)
Vi me? 0 0 1) \Vi,

The load section as shown in Fig. 9.10c. The balance of forces gives
Vici =V, +kY;

Because Y, 6, and M are not changed from station ; — 1 to i, the transfer across a
spring is simply

Y; 100 0\ /Y,
6, 010 0} 6.

- 98
M, 001 0f|Mm_ (0-98)
v, -k 0 0 1) \v_,

Now we have used three elements to model a vibrating beam and obtained three sets
of matrix equations. Note that the dimensions of each term in the transfer matrix
are different. It will be more convenient if all the terms are written in dimensionless

form, especially if we use a computer to carry out the matrix operations. Let us
define dimensionless variables as follows:

. Y . Mt 1%
Yi = —, P == P = e
14 El El
. mate? . k&
m = y k fp—
El El
Then Eqs. (9.96-9.98) become respectively,
1ol
Yi* 1 1 E g Y,‘*_l
. 011 % .
o 1= 2| | G- (9.99)
M; 0 01 1 M,
Vi 00 o0 1) \Vih
Yr 1 000 Yr,
6; 0 1 00 6i-1
= 9.100
M 0 0 1 0) M-, ( )
v m* 0 0 1 7
Y; 1 0 0 0\ /Y,
6; 01 00 01
= 9.101
M 0 01 0o)|M- ( )
% —k* 0 0 1 %
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Example 9.10

For the uniform cantilever beam shown in Fig. 9.11, find the transfer matri-
ces and determine the natural frequencies and corresponding principal modes of
vibration.

Solution.  The boundary conditions are Y = 0,6y = 0,and M5 = 0, V' = 0.
The equation relating station O to 1 is

11 Ll
Yy 1 0 00 2 6 0
o] o 1 0offo1 1 3]]o0
Myl 1O 01 O)Jlo o 1 1||M
v m* 0 0 1 00 0 1 Vi
| | (9.102)
1 5 5 0
1
_ 0 1 1 3 0
0 0 1 1 mg
m* m* %m* (1+ %m*) o
Similarly, for the relationship from station 0 to 2, the equation is
1 1
Y; b 5 Yy
0 1 1 i
b | _ 2 o (9.103)
M) 0 0 1 1 M
Vi m* m* %m* (1 + %m*) Vi
= AlZl = AlAlzo = AzZo
where Z; is the state vector at station i and A; is the transfer matrix.
Ay = A1A =
(1 + m*/6) 2+ m*/6) 2+m*/12) (4/3 4+ m*/36)
m*/2 (1 4+m*/2) Q2+ m*/4) 2+ m*/12)
m* m* 1+ m*/2) 2+ m*/6)

m* 2+ m*/6) m*(3+m*/6) m*(5/2+m*/12) (1+ 3m*/2+ m*2/36)

N

\ m=350 kg

§ : : : E=110 GPa

No " s I3 | =52x1078m*

Fig. 9.11 Cantilever beam modeled as a lumped system.
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Finally, the equation relating the state vector at O to that at 3 is

Zy=A3Zo=A1A1A1Z
: HE (9.104)
Az = A1A1A

The elements in A3 are lengthy and not all are needed in the computations. The
ones that are needed are worked out and given as follows:
ap =9/24+m*+m*?/72
ayy = 9/2 4+ 16m* /36 + m*?/216
an =14 3m* + m*/12
azy =3+ 5m*/3 +m*2/36
ag =Tm* + 13m*2 /12 + m*3 /72
asg = 1+ 6m* + 17m*? /36 + m** /216

The relationship between M3, V', and Mg,V is

M3\ _ (0 _ (e a (M]
(V;) - (0> B (043 a44> (Vg) (9-105)

Because M, and V;; are not zero, the determinant of the coefficients must be zero,
ie.,

ax3 a4 — aygagy =0

When the preceding equation is expanded in detail, we find the expression for
determining the natural frequencies as

26m™ — 786m** +2592m* — 216 = 0
Three roots are obtained, and they are
m} = 0.0855462, m5 = 3.66778, m; = 264774

Newton’s iteration method has been used in finding the preceding roots. The
natural frequencies for principal modes are computed as follows. For m} , we have

EI ., 110x10° x 52 x 1078
= —m, =
me3 ! 350 x (0.25)3

w = 29.9126 s™h

2
W)

(0.0855462) = 894.764

With the value of m* determined, we find the numerical values of as3 and asq:

ax = 1.257248, azy = 3.427934
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Then from Eq. (9.105), we have

M} = —2.726538 V! (9.106)

To determine the shape of the fundamental mode, we use Egs. (9.102-9.104) and
find

YE=1iM§+ 1V =—1.196602 V§
Yy = Q+m* /1M + (4/3 + m*/36)Vy = —4.136803 V'
Yi=@5+m* +m? /1M
+ (4.5 + 16m* /36 + m*?/216)V; = —7.964889 V

In common practice, the mode shape is expressed as a ratio of magnitudes. Let us
compute the ratios and find

Y!/Ys = 0.150235
Ys/Y$ =0.519380

That means as Y = 1,

Y{ =0.150235, Y} = 0.519380 (9.107)
For m; = 3.66778, we get
w3 = 38362.88
w; =195864  (s7)
Y!/Yy = —1.268889, Yy /Y3 = —1.507484
Similarly, for m3 = 26.4774, we have

w3 = 276938.47
w3 = 526.249 s™H
Y} /Y =4.647174, Y} /Y = —3.248295

9.4 Vibrations of Continuous Systems

Many practical systems that we deal with every day are continuous in nature.
Therefore, without studying the vibrations of continuous systems, the knowledge
of vibration analysis will not be complete. In this section, we will study some
simple cases such as vibrating string, beam, and membrane. The materials involved
are assumed to be homogeneous, isotropic, and obeying Hooke’s law in stress and
strain relations. In addition, because sound waves are a vibration of continuous
medium, they also will be studied in this section. From this section, the reader
will learn fundamentals in setting up a partial differential equation and methods
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for solving them. A Fourier series will be used in the solutions of the problems
presented in the examples.

Vibrating String

Before deriving a partial differential equation for a vibrating string, we make
the following assumptions:

1) The string is perfectly flexible, that is, it cannot resist any bending moments.

2) The vertical deflection y of the string is small compared with the length L.

3) The slope at any point of the deflected string is small compared with unity.

4) The tension T is constant at all times and at all points of the deflected string,
and is large compared with the weight of the string.

5) The horizontal displacement of the string is negligible compared to the
vertical displacement, that is, we have pure transverse vibrations.

6) The motion takes place only in the x—y plane.

Consider that the string is fixed at the ends and subjected to a constant tension
of T. Let us take a small segment ds of the string as shown in Fig. 9.12, and let w
be the weight per unit length of the string. From ) F = ma, and

Y Fy=-Tsina + Tsinp — wds

we can set up the equation of motion. With the preceding assumptions, we have
dy «dx, ds >~ dx

sino ~ tan ¢, sin 8 =~ tan §
Because,
ay dy %y
t =, t =2 4+—=d
ano ox an ox + o2 x
3%y
Y Fy= T—5dx - wdx (9.108)
On the other hand,
3%y
“=
82
ma, = = dx — (9.109)
g or?
y 8

dx X

Fig.9.12 Forces on a small segment of the string.
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Combining Egs. (9.108) and (9.109), we obtain

92 92
T—de —wdx = 1U—-dx——y-
dx2 g or?
or
gT 3%y 3%

w dx2 g_ﬁ

Let ¢ = gT/w and because of fourth assumption, we drop the term g on the
left-hand side and find

3’y _ 8%y

2

ax? = 32 (9.110)
This is the partial differential equation for the transverse vibration of a string. It is
also called the one-dimensional wave equation.

The boundary conditions for the case of vibrating string can be written as
1) y(o,1) =0; 2) y(L,t) =0; 3) 3y/dt(x, 0) = g(x); and 4) y(x, 0) = f(x).
Because the ends of the string are fixed, we have y=0atx =0, and x =L
for all time ¢. The third and fourth conditions are the initial velocity and initial
displacement of the string.

Here a reader may question the number of boundary conditions necessary for
solving partial differential equations. In solving the ordinary differential equations,
we know, in general, the number of boundary conditions equals the order of dif-
ferential equations. Because one integral constant will appear when the equation
is integrated once, such a constant must be determined by one boundary condi-
tion. In solving the partial differential equations, we may state that the number of
boundary conditions needed for solving the problem equals the number of nec-
essary conditions needed for determining the arbitrary functions after integrating
the partial differential equation.

Solution of the Vibrating String with Initial Displacement

First let us consider the problem of the vibrating string with the initial displace-
ment. Note that the equation of motion is

62 62
a_tf - az-éx—y2 9.110)

where a? = Tg/w. The boundary conditions are

¥(0,t) =0, y(L,t)=0
ay .
E(x,O):O, y(x,0) = f(x) 9.111)
where f(x) is known. To solve such a problem, we assume

y(x, 1) = X ()T (1) (9.112)
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This method is known as a separation of variables. Substituting this expression
into Eq. (9.110) leads to

XT" = a®X'"T
or
XII 1 T/l
X" 2T

where T” = d°T /dt? and X" = d%X /dx>.

Now the right-hand side of the preceding equation is independent of x and the
left-hand side is independent of ¢. Because they are equal, their common value
must be a constant, say A. Hence

Xll TII
— =, —_—= A
X a’T
or
X" —2X =0, T — 2a’T =0 9.113)

Thus, we have two ordinary differential equations. To satisfy the boundary condi-

tions, the value of A must be less than zero, i.e., A = ——ﬁ2 where § is real. Hence
Eqgs. (9.113) become

X"+ 8°X =0, T+ p%a’T =0 9.114)
The solution then can be written as
y(x,t) = (Acos Bx + B sin Bx)(C cos Bat + D sin Bat)

where A, B, C, D, and B are to be determined. Applying the first boundary con-
dition gives

0=1y(0,t) = AT (t)
Hence A = 0. Applying the second boundary condition leads to
0= y(L,t) = (Bsin BLYT (1)
That means sin 8L must be zero, so that
BL=xnr n=12,3,...

or
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The function X (x) can be written in the form of
X(x) = B} sin %x + BZ, sin ( - %)
= (B} — B*,)sin %x
= B, sin Ex
L

5o we just consider

and

( t)——B in—x|c¢ os —at + D, sin — t|
X, sin X|{cyC a S1 a
Yn n [ n [ n [

On the other hand, to determine the constants in T (¢), we apply the third boundary
condition

0
a—i}(x, 0) =0
X()T'(0)=0
T'(0) = ~BaC sin0+ BaD cos0 = BaD =0
Hence
D=0
T(t) = CcosBat
Because 8 = nm /L and n is an integer, with T, (¢) for a specific n, we have
T,(t) = C, cos =24
L
Combining X, (x) and T, (¢), we get

X,(x)T,(¢) = B, sin flLExC,, cos nz—a[

. nmx nra
= b, sin —— ¢cos ———t
L L

where b, = B,C,. Now this is a solution of the partial differential equation and
satisfies three boundary conditions for all n, where n = 1, 2, 3, .. .. Because the
wave equation is a linear partial differential equation which has the property that
any linear combination of solutions is its solution. Thus, the general solution is

o0
y(x, 1) = Zb,, sin %x cos nz_at (9.115)
n=1
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To determine b,, we apply the fourth boundary condition

. ad . onm
y(x,0) = f(x) = ;b,, sin ——x (9.116)

Although f (x) is defined in 0 < x < L, because we are only interested in this
interval, we can prolong the function in (—L < x < 0) and consider it as a periodic
odd function in the whole space, then with the use of Fourier sine series, b, can
be found as

2 L
b, = Z/o f(x)sin ﬁgxdx

Therefore the complete solution becomes

2 o0 L -
yx, 1) = Z;[/o f(z)sin”Lﬂdz] sin%icos ﬂ;ﬁ, (9.117)
On the other hand with the use of the formula from trigonometry, we can write

i nm nnat l[ . nn( 0+ si nn( n t)]
in — e = —(x - —(x+a
I X COS I 2 sin T x —a sin T X

then the solution becomes

1 & . onm 1 & . nm
y(x,t):E;b"smT(x—at)+5;b,,smT(x+at)

Because
i nm
() — b sin ™"
f(2) ; , SN T z
we have
oo
flx —at) = Zb,, sin %(x —at)
n=lI
and

> nm
' t)= ) by,sin— t
f(&x+at) ; n Sin = (x +at)
The solution is simply

Yo 1) =3l f(&x —an) + f(x +an) (9.118)

Before looking into the physical meaning of the two functions f(x — at) and
f(x + at), we first recall that they are the functions representing the vertical
displacements of the string along the whole space of x from —oco to oo because
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they are derived from the Fourier series expansion of f (x). Then we recognize that
they are different from f(x) given in Eq. (9.111), which is true only for x from 0
to L. The two functions f(x — at) and f(x + at) represent two waves traveling
in opposite directions along the string, each with velocity a. To show this, we
make the following observations.

Consider f (x — at). Att = 0, y(x) = 1/2f(x) is the half of the initial displace-
ment. At any later time ¢, it defines the curve 1/2 f (x — at;). The two curves are
identical except that the latter is translated to the right a distance ar,. Thus, the
configuration moves along the string without distortion a distance at; in #; units
of time. The velocity of this progression is therefore a.

Similarly the function f(x + at) defines a configuration of y(x) = 1/2 f(x)
that moves to the left along the string with constant velocity a. Hence, the entire
configuration is the sum of the two functions.

Example 9.11

A string of length of 10 units is fixed at both ends and given the initial displace-
ment as

10 -
o) = % for0 < x < 10 (9.119)

It is released from rest. Assume that the string has a*> = 10, 000 units. Determine
its subsequent motion.

Solution.  According to the solution derived in the section, we assume that
f (x) is an odd periodic function as shown in Fig. 9.13, then we have

yx,0) = f(x)= Zb sin —x
L
= %/ f(x)sin E-Z—xdx

2 o0
y(x,t) = I ; [/ f(z)sin —-—zdz:l sin %x cos n—za—t

0.025 - ———

\ x
0 10.\V
£~ 4-0.025

Fig. 9.13 Initial displacement of the string with an odd function assumed.
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Evaluating b, for the given f(x), we find

2 [xa0-
by = — l_( *) sin Exdx
10 Jo 1000 10

0 n = even

~ 5 n)*[ - 1)]_{5(,,‘1,)] n = odd

Hence

(1) = f} : (10n71)

X, 1) = — — sin —x cos i

y 53 P sin - x 0s(10n
n=13.5
Note that in the process of deriving the solution of the wave equation, the initial

displacement function has been assumed to be a periodic odd function. The given
initial displacement, Eq. (9.118), is true only between two ends. If the expression
f(x) is true for all the values of x, then Eq. (9.117) can be used directly for the
solution, which is illustrated in the following example.

Example 9.12
A string stretching to infinity in both directions is given the initial displacement

and released from rest. (One remark must be made here. In many engineering
problems, the term “infinity” means that the boundary is far away from space
reached by the motion. For this particular example, infinity means before a reflected
wave is observed.) Find the displacement during its subsequent motion.

Solution. Using Eq. (9.117), we have the solution as simply

1
Yoo, 1) =1 (x —at) + f(x + ar)]

1 1 1
- 5[1+8(x—az)2 + 1+8(x+at)2]

Solution of the Vibrating String with Initial Velocity
and Displacement

Now let us consider the problem of the vibrating string stretching from —oo to
co. Rewrite the equation of motion, Eq. (9.110), as

7y _ 2y

B_ﬂ—a dx?

with the boundary conditions given as

0
y(x, 0) = £(x), a—f(x, 0) = g(x) (9.120)
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The general solution of Eq. (9.110) is
yx, 1) =yi(x —at) + y(x + ar)

where y; (x — at) and y,(x + at) are arbitrary. The task here is to relate these two
functions with the given function f(x) and g(x). Applying Egs. (9.120), we have

Y, 0) = £(x) = y1(x) + y2(x) (A)
a
a—f(x, 0) = g(x) = —ay, (x) + ay}(x) (B)

Dividing the second of the preceding equations by a and then integrating, we find

1
=) + y@x) = ;/ gx)dx ©

‘o)

Combining Egs. (A) and (C), gives

1 x
yix) = 3 [f(X) - l/ g(X)dX} (D)
a Jx

{]

1 1 [
»() =3 [f(X) + - / g(X)dX} E)
a Jx

1]

With the form of y; and y, known, we can now write

y, 1) = yi(x —at) + y:(x +at)

1 1 xX—at 1 1 X +at
= — [j'(x —at) — —/ g(x)dx] += [j'(x +at) + —/ g(x)dx]
2 aly, 2 aly,

) i}
x+at

1
=—|:f(x—at)+f(x+at)+l/
2 a

X—at

g(x)dX}

Transverse Vibrations of a Beam

Consider a beam of length L loaded by a variable load w(x, t). To simplify the
problem, assumptions are made as follows:

1) The weight of the beam is included in the load w.

2) The vertical deflection y is small compared to the length L.

3) The slope of the deflection curve is much smaller than unity.

4) The horizontal displacement of the beam is negligible compared to the vertical
displacement; that is, we have pure transverse motion.

5) The assumptions for beam theory hold: Every layer of material is free to
expand and contract longitudinally and laterally under stress as if it is separated
from other layers; the tensile and compressive moduli of elasticity are equal; and
the cross section remains a plane surface.

Now let us consider a small segment ds of a bent beam as shown in Fig. 9.14.
Let e be the amount of length changed from its original length ds on the fiber UV.
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Fig.9.14 Small segment of a beam.

We have
ds—e R-—:z
ds R
or
z e
E_ds

where R is the radius of curvature of the deflection curve. The strain is defined
positive for tension and negative for compression; thus,

e z
E=——=——
ds R

By using Hooke’s law,
zE
o0=FEe=——
R

The force acting on the area dA is then
Ez
dF =0dA=—-——dA
7 R

Because the tensile and compressive forces are equal over any cross section, the
total force acting over the whole cross section is zero:

F=- —dA_——/sz—O
A

This result means that the neutral axis passed through the centroid of the cross-
sectional area. On the other hand, under equilibrium, the internal bending moment
created by the stress o must be the same as the external moment M:

M = /( z)odA_—/ 2dA——
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y
"
w
W
M/ M+%¥dx
v xy’dx X
dx
v+2¥ dx

Fig. 9.15 Load on a segment of a beam.

where I is the moment of inertia of the area about the neutral axis. From studies
in mathematics, we also learn that the curvature of a plane curve is given by the
equation

1 d?y/dx? d?y

R~ [+ dy/d0)?P? ~ dx?
because dy/dx « 1. Therefore

d%y
dx2

Referring to Fig. 9.15, we can compute the sum of the force in the y direction

M=EI (A)

1% v
ZF,=v—(v+—dx>—wdx=———dx—wdx (B)
ax ax

and the inertial force is

w
may = dew- (@)
Equating Eq. (B) to (C), we find
av a2
IS a4 (D)
dx g dr?
On the other hand, taking moments about the point x, we have
oM av dx
Y M=M—(M+—dx)+V+—dx)dx + wdx—-
ax ax 2
oM 1% w
= ———dx + Vdx + —(dx)? + = (dx)?
gx X TV @0t 5
Neglecting high order terms and setting > M = 0 leads to
oM
V=— E)

dax



VIBRATION OF SYSTEMS 277

Substituting Eq. (E) into Eq. (D), we get
?M w %y

VT e

Using Eq. (A), then we obtain

a2 9%y w 3%y
——El—|-w=—— 9.121
ax2< ax2) e ©.121)

This is the partial differential equation for the transverse vibration of a beam. Note
that upward y is positive, but downward w is positive in Eq. (9.121). If we are
interested only in studying the free vibration of the beam, the load term is dropped,

and Eq. (9.121) becomes
w 3%y a2 3%y
———+—{EI—=}=0
g a2 +8x2< 8X2)
The equation can be further simplifted for EI = const:

2 3y

Py 8%
x4

ar? ta

=0 (9.122)

where a®> = Elg/w.

Solving the partial differential equation, we must use some necessary boundary
conditions. Boundary conditions for two popular beams follow.

1) Boundary conditions for simply supported beams:

y(0,t) =0

y(L.,t)=0
32
a-%(O,:):O for M =0 atx=0
X

32y
ﬁ(L,t)=O forM =0 atx =L
X

y(x,0) = f(x)
9
a—f(x,o) =g(x)

2) Boundary conditions for built-in beams:
y(0,t) =0
y(L,0)=0

a
a—y(O, Hn=0 for slope =0 atx =0
X

a
a—y(L,t)=O for slope =0 atx =L
X
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yx,0) = f(x)

0
a—f(x,0)=g<x)

Example 9.13
A simply supported beam is given the initial displacement f (x) and released

from rest. Determine its subsequent motion.

Solution. The conditions given establish Eq. (9.122) as the equation of mo-

tion; it is rewritten here for convenience:

52 9%
35 +asz% -0 9.122)

We shall seek a separable solution of the form
yx, 1) = X()T ()

and we have
aer -, diX
XF—FG Td—4-=0
or
2 44 2
a- d°X 1 d°T 9.123)

X dx* T di?

Because the left side of Eq. (9.123) is a function of x alone, and the right side is a
function of ¢ only, the common value for the equation must be a constant, say A.

Thus,
a?d'X  1dT _
X dx* T dr?
To satisfy the boundary conditions, it is found that A must be negative. Let
A = —?, then we have two ordinary differential equations:
d*T
— +’T =0 (A)
t
d&*X  ?
Fr i ®)

The solution of Eq. (A) is known as
T(t) =C;sinwt + Cycoswt <)
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The solution for Eq. (B) is assumed as

X(x) = Ae™* D)

where A and s are constant. Substituting the assumed solution into Eq. (B) gives

2
(s4 - w—)Ae” =0
a2

From the equation we obtain the four roots

The solution is then

X(x) = A1e™ + Are™™ + Azeti 4 Agemiox E)

where A, Ay, A3, and A4 are arbitrary. Without loss of generality, we can write
the solution as

X (x) = Cssinhax + C4coshax + Cssinax + Cgcosax
The solution of Eq. (9.122) is then
y(x,?) = (C) sinwt + C5 cos wt)(Czsinhax + C4 cosh ax
+Cssinax + Cg cos ax) (3]
with
2

w=aa

The constants appearing in the solution and the natural frequencies are deter-
mined by applying the boundary conditions. For a simply supported beam, the
boundary conditions are

y0,t) =y(L,t)=0
3%y 82y
—20,0)=2(L,1)=0
sz( 1) sz( 1)

Applying the boundary conditions to Eq. (F) gives

Ci+Cs=0
CiysinhaL + C4coshal + Cssinal + Cgcosal =0
Cs—Ce=0

CiysinhaL + C4coshal — Cssinal. — Cgcosal =0
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From the four preceding equations, we find C3 = C4 = C¢ = 0, and
Cssinal =0
Therefore, the natural frequencies can be determined from
alL=nr n=123,...

and we obtain

2
El
w, = a,zla = (%) a=(nm)? —I-U-z‘% (9.124)

With the natural frequencies determined, the general solution Eq. (F) becomes

= . . hTW
y(x,t)y = Z(A,, sinw,t + B, cos w,t)sin Tx

n=I

where A, = (C|Cs), and B, = (C,C5),. The constants A, and B, can be deter-
mined by initial conditions of the motion. For this example, y(x, 0) = f(x)

. > . nw
f(x)= Z B, sin Tx
n=1
By assuming f'(x) as a periodic odd function, we obtain

B 2/L/'( ysin 2 xd
= — X —Xxdax
A A "I

Because initial velocity is zero, A, must be zero. Therefore, the complete solution
is

2 & [t
y(x,t):z;[/o f(z)sini’%dz] sini’%’fcosw,,t (9.125)

Example 9.14

A simply supported beam of length L is subjected to a concentrated harmonic
force Fo sinwyt as shown in Fig. 9.16. Determine its subsequent motion.

Solution. The governing equation is

— = Fysinwytd(x — a) (A)

To find the response of the forced vibration, we consider the forcing function as
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y Fosin wgt
a
x
—
/’ %

[ L |

Fig.9.16 Concentrated harmonic force acting on a simple beam.

281

an odd periodic function with period of 2L as shown in Fig. 9.17, and expand the

function into a Fourier sine series as
ad . nm
dx—a)= E b, sin —x
n=1 L

where

2 L 2
b, = ~—/ 8(x —a)sin ET—xdx = —sin nra
L Jp L L L

Therefore Eq. (A) becomes

*y wdly 2Fy (XX . nma . nm )
EI;;Z+E¥=T _lsstme sinwyt

To find the forced response, we assume the solution as

y(x,t) = f(x)sinwyst
Substituting Eq. (C) into Eq. (B) gives

df w 22 2Fp . nma . nmw
—5 — —0if == sin— sin—x
dx g L L

L

El

n=1

B)

©

D)

where the common factor sinw ¢ on both sides of the equation has been dropped.

The particular solution of Eq. (D) is assumed as
fx) = Z A, sm

y .
Fosinwet

Fig.9.17 Concentrated force assumed as a periodic odd function of x.
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With this, Eq. (D) becomes

4 00

EI nix . nmx
E 4A,, sin — — ;wf E A, sin —
n=1

Equating coefficients of sin(nmx /L) gives

2F,L3 . nma
ARl — ﬂL“w% sin T (9.126)
g

Therefore the forced response is obtained as

[e¢]
v =3 4, sin”—’:‘-sinwﬂ 9.127)

n=1

From the denominator of Eq. (9.126), we find that a resonant condition is

Elg

2_2
=nn, —

@s wlL?

A few remarks must be made before we end the section. In this analysis, the
mass of the beam is considered in the inertial force, but the weight of the beam
is neglected in the load. This means that the initial deflection caused by weight is
small compared to the dynamic deflection. Examples given are solved successfully.
The beam involved is supported simply. For other end conditions the solutions may
become complicated. To fully understand the subject, additional references will
be needed.

Vibration of a Circular Membrane

Suppose that a piece of membrane is mounted on a drum. The tension in the
membrane is shown in Fig. 9.18. Our first task is to find the equation of motion for
the vibrating membrane. To simplify the considerations, assumptions are made as
follows.

X

Fig. 9.18 Membrane tension.
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1) Tension measured as force per unit length is normal to the boundary of the
element and is constant throughout the membrane.

2) The total tension on the boundary is large compared to the weight of the
membrane.

3) The membrane is so thin that it cannot resist any bending moment, i.e., there
is no bending stress.

4) The vertical deflection w is small compared to the diameter of the membrane.

5) The slopes of the deflection surface are small compared to unity.

6) The lateral displacements are negligible compared with the vertical displace-
ments.

Consider a differential element of the membrane with area dxdy. To analyze the
force acting on this element, let us enlarge the element as shown in Fig. 9.19. Here
P is applied pressure. The sum of forces in the z direction then can be computed
as

ZFZ = —Tdytanae + Tdytanp — T dxtany + T dxtan§ 4+ Pdxdy (A)

Because slopes are small, the following relations have been used in the preceding
equation:

sin & 2 tan ¢, sin 8 >~ tan §
siny ~tany, sind 2~ tané

Because w is the vertical displacement of the membrane, in the xz plane we have

w
tane = —
ax
(an B Jw n d (ow d
anf = — + —\|— }Jdx
dx  dx \ dx
Similarly in the yz plane, we have
¢ Jw
any = —
14 2y
Jw a (dw
tand = — + — | = }dy
a ay \ dy
a) z b) Z
dy Tdx
dx Tdy
% A
@ ! Y
Tely ;% Td ‘_%
Pdxdy "L Pdxdy
y X

Fig. 9.19 Forces on a segment of membrane.
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Substituting these expressions into Eq. (A) gives

Pw  Pw
ZFzszxdy (a?+a—y2>+dedy (B)

On the other hand, the mass of the element is

m = pdxdy ©
and the acceleration is
3w
a, = '5’—2' D)

where p is the mass per unit area of the membrane. The equation of motion then
can be written as

82 82 82
pdxdy% =T ( i —3> dxdy + Pdxdy

ax2  3y?
or
92 1
S8 V24 —P(x, y) (9.128)
912 P
where
, 3 ¥ , T
= — —_— ac = —
ax2 = 3y? P

Equation (9.128) can be applied to cylindrical coordinates that require the expres-
sion of V? as

V2 2 19 19
T ar?

e T
For the study of free vibration, the pressure term is dropped, and Eq. (9.128)
becomes

82
.5% = a?V?w (9.129)

For simplicity, we consider a special case, that is, the membrane is initially
deflected into a radially symmetrical form and is released from rest. The equation
of motion is reduced to

3w ) 2w 1dw
—_— = _ —— 9.130
ar? a<3r2+23r> ©-130)



VIBRATION OF SYSTEMS 285

And the boundary conditions are

w(R, 1) =0
w(r,0) = f(r) 9.131)
3_w( 0)=0
ar )=

where r = R is the boundary of the membrane. Assume the solution as

w(r, 1) = R(NT (1) (A)

Substituting the expression into Eq. (9.130) gives

) R// lR/ T// )
al—+-—}=—=-w
R r R T

where R” = (d*R/dr?), R’ = (dR/dr), T" = (d*T /dt?), and w? is the arbitrary
real constant. From which we get two ordinary differential equations as
W\ 2
rR'+ R+ (=) rR=0 (B)
a
and

T"4+’T =0 (©)

Equation (B) 1s known as Bessel’s equation of order 0 with a parameter w/a. The
solution of Bessel’s equation is

R(r) = Ajo(ﬂ> + BYo(w—r> (D)
a a
Because Yy approaches infinity as r — 0, B must be zero. The solution of Eq. (C)
1s

T(t) = C coswt + D sin wt E)
Combining Egs. (D) and (E), we find

w(r,t) = Jo(£>(c cos wt + D sinwt)
a

Because the initial velocity is zero, we have
D =0.
Applying the first boundary condition gives

w(R,0)=0= Jo(ﬁ)—lg>
a
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From this, the natural frequencies are determined. For example, the smallest root
of JO =0is

R
d LA 7Y
a

Hence, in general, we can write

R
JO<“”‘ ):o n=1,23,. ..

a

for all the natural frequencies. The general solution becomes

o0
wrn =Y anO<‘”—;5) oS @, t (9.132)

n=|

To determine C,, we apply the boundary condition Eq. (9.131)

w(r,0) = f(r) =) _C, Jo(“’;’)
n=1

And with the use of the properties given in Appendix H, we find

2 kR Wyl
C, = —Rz[Jl(wnR/a)]z,/O rf (r)J()(T)dr (9.133)

Example 9.15

A circular membrane is fixed on its edge and given an initial displacement as
fry=1-r%/100
It is released from rest. Assume that the diameter of the membrane is 20 units and

the property of the membrane has a? = 10,000 units. Determine its subsequent
motion.

Solution. From Eq. (9.133) we can compute the coefficients as

R 2 .
R vy M L E C T
RilJ1(waR/a)]? Jo 100 a

From the properties of Bessel functions given in Appendix F, we have
L
/ xJo(x)dx = LJ(L)
0

L
f 2} Jo(x)dx = LA J (L) — 2L%J5(L)
0
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() (%)
b Iy 3 ftih
W, a

1 aR3 (l)”R arR 2 (l)”R
‘m[(w—”)"*( 2 )“2(3,,) ’2( a )”
~ ([ (ae) - (%))
B [Jl(wnR/a)]z l: wnR>_ (’-’11R>T(E

w, R 1 /a\* wy R

(%) +55(i) (% )}
_ Jr(w,R/a) _a_>2
B 25[Jy (wnR/a)]z (wn

We determine w, from Jo(w, R /a) = 0. Then with the use of the table of Bessel
functions (Appendix H), we find

Hence

2

= R @ RjaT

C, =181152 w; =24.05 (")
C, = —0.139890 w; =55.20 (s7)
C; = 0.0455503 w3 = 86.54 (s7')

The solution then can be written as

wr waF
w(r, t) = C,JO(—> cos wit + CzJ()(———) cos wot
a a

war
—l—C;Jo(—) coswzt + - - (9.134)
a

Sound Waves in Fluid

Sound waves in air or water are longitudinal pressure waves propagating under
an isentropic process. As the sound wave propagates, the change in pressure is
small compared with the ambient pressure. Because of isentropic process, the
change in density of the fluid is small compared with the original density. Because
the viscous force plays no role in the sound wave, the equations involved in the
phenomena are the continuity and the momentum equations only. These can be
written as follows:

dp
at

v 1 1/d v
Forvoww=—vp=—(LYvp= (L (9.136)
ot P p\dp/,

+V.(pV) =0 (9.135)
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where a = /(d P /dp); is the propagating speed of the sound wave. Based on the
facts observed, we can express
p = po+€py, V=¢€V (A)

where € < [. From Eq. (9.135) we have to the € order

ap
W‘f‘ﬂoV-V]:O (B)

From Eq. (9.136) we obtain, also to the € order,

v, 2 Vo
g2l

5 p ©

Differentiating Eq. (B) with respect to time ¢ and substituting Eq. (C) into it gives

82pl 252
S =@V =0 (9.137)

This is known as a wave equation. We have studied it in rectangular and cylindrical
coordinates. Now let us study the wave equation in spherical coordinates such
that

18/, 19 3 e
Ve () —— % (sine2 ) 4 —— 9.138
2 9r (r 8r>+r23in9 ae(sm 89>+r2sin29 g 0139

However, to simplify the mathematics, we study a special case that is spherically
symmetric, so that Eq. (9.137) becomes

3°p , 13 [ ,0p
—a =2 ) =0 9.139

a2y (r ar ) ( )
This equation can be rearranged to

3%rp, 2 3%rp
=a
ar? ar?

(9.140)

The solution of the preceding equation, similar to Eq. (9.117), can be written
as

rp=flr —at)+ F@r +at) (9.141)

As in the case of one-dimensional rectangular coordinates, the first term represents
a wave advancing in the direction of  increasing, that is to say, a divergent wave,
and the second term represents a converging wave. The latter does not possess
much interest. To illustrate the physical meaning of the solution, let us consider
the following example.
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Example 9.16
Suppose that fireworks explode in the air; the initial change in density is

Ap=b asr < rg

Ap =0 asr > ro
Determine the density change in the air during the propagating of the wave.

Solution. This is a case of divergent wave. Hence, only the first term in Eq.
(9.141) is to be considered. The change in density of air is simply

Ap=b/r asO<r—at <r (9.142)
Ap =0 asr —at <0 and r—at>ryp (9.143)

This means that the higher density occurs in the spherical shell with the origin of
the sphere where the fireworks exploded and with the thickness of ry. This change
in density is inversely proportional to the radius of the sphere. In other words,
it will vanish as r approaches the infinite. The sphere is bounded by the radius
of (ro + at). Outside the sphere, there is no change in density. Also, the change
vanishes as 7 < at. That is why the sound of the explosion can be heard only for
a brief moment.

9.5 Nonlinear Vibrations

So far, we have studied many vibrating systems with linear characteristics. In
discussing these systems, it was assumed that the force in a spring is proportional
to the deformation. It was assumed also that, in the case of damping, the frictional
force is a linear function of the velocity of motion. As aresult of these assumptions,
we had vibration systems represented by linear differential equations. However,
there are practical problems in which these assumptions are no longer satisfactory
to describe the actual motions. Such systems are called systems with nonlinear
characteristics and are represented by nonlinear differential equations. In this
section, we will deal with nonlinear vibration systems.

We may recall that the difference between a linear and a nonlinear differential
equation is quite simple. If a differential equation contains products of unknown
variables or products of unknown variable with the derivatives of unknown vari-
ables, the equation is nonlinear. Otherwise, the equation is linear.

As we learned in Chapter 8 and previous sections of this chapter, there are
many analytical methods for solving linear differential equations. Because the
principle of superposition is applicable to a linear equation, its general solution is
the combination of all possible solutions.

For nonlinear differential equations, however, there are no definite methods
for solving them analytically. Small perturbation methods may be considered as
the systematic approach for solving them. One of the small perturbation methods,
which is commonly used, has been introduced in Chapter 5 and will not be repeated
here. On the other hand, because of the advancement of computer technology,
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many nonlinear problems whose solutions are not possible many years ago can be
solved now. The following example illustrates this point.

Example 9.17

While a shaft is rotating at a high speed, the centrifugal force produced by
the unbalanced disk can pull the shaft to a bow shape. This motion is known as
the whirling of a rotating shaft. The sketch of the system is shown in Fig. 9.20.
To consider the major dynamic properties of the motion, make some necessary
assumptions and determine the equations of motion for the shaft rotating with
and without acceleration; also find the maximum deflections for the two different
conditions.

Solution. The following assumptions are made for this analysis.

1) The disk is rigid and is always perpendicular to the shaft.

2) The mass of the shaft is neglected.

3) Inertial forces lie in the plane of symmetry perpendicular to the shaft.

4) Damping is present and is assumed to be directly proportional to the preces-
sion speed of the shaft.

5) The supports are rigid, and the bearing flexibilities are neglected.

6) A torsional deformation is present, but vibration due to torsion will not be
considered.

The geometry of the system is described as follows: The center of the mass of
the disk is at point G at a distance e away from the center s of the shaft. The point
o is the intersection of the straight line connecting two supports and the plane
of symmetry. The center s is away from point o by a distance of r. The angle ¢
between line os and the reference line is the precession angle of the shaft, and 6

Fig.9.20 Geometry of a whirling shaft.
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is the precession speed that is considered to be different from the rotating speed
w of the shaft. The formulations for the two cases are considered separately.

Shaft rotating at a constant speed. It is known that the acceleration of point
G relative to a fixed coordinate system can be expressed as

ac = a; + agys (9.144)

where ay is the acceleration of point s relative to point o and ag/, is the relative
acceleration between point G and point s. As the acceleration components are
expressed along radial and tangential directions, they are found to be

ac = [(F — r6?) — ew® cos(wt — 0)]i
+[(r6 + 276) — ew? sin(wt — 0)]j (9.145)

The equations of motion then can be written in the radial and tangential directions
as

—kr — ¢ = m[F —r@ — ew?* cos(wt — )]
—cr = m[ré + 276 — ew? sin(wt — 9)]
which can be rewritten into a familiar form of
F4cr/m+ (k/m —6%)r = ew? cos(wr — 0) (9.146)
ré + (cr/m + 27)0 = ew’ sin(wt — 6) (9.147)
Shaft rotating with acceleration. 'While the shaft is rotating with an angular
acceleration o, additional acceleration in the tangential direction must be taken

into account in considering a¢/;. The acceleration of point G relative to a fixed
system becomes

ag = [F —ré* — ew? cos(¢p — ) — easin(¢p — 9)]i
+[r6 + 270 — ew? sin(p — 6) + ea cos(p — 0)] j

where ¢ is the rotating angular displacement of the shaft. The equations of motion
for describing the whirling of the shaft become

—kr — cF = mli —r6? — ew? cos(¢p — 0) — easin(p — 8)]  (9.148)
—crf =mlré + 270 — e’ sin(¢p — ) + eacos(p —6)]  (9.149)

Although the effect of the angular acceleration « to the motion of whirling is to
be explored, it is reasonable to simplify the considerations by setting w = ¢ and
¢ = at?/2. By doing these, Egs. (9.148) and (9.149) become

~kr — cf = m[i —r6? — e(at)? cos(ar?/2 — 6) — easin(wr?/2 — 6)]  (9.150)
—crf = m[ré + 270 — e(ar)? sin(ar?/2 — 6) + eacos(r?/2 — )] (9.151)



292 ADVANCED DYNAMICS

Maximum deflection as shaft rotates at a constant speed. Equations (9.146)
and (9.147) are nonlinear equations of r(r) and 6(t). The exact solution can only
be obtained numerically. Before solving them it is proper to convert the variables
into dimensionless forms. Let

r*=rjfe (9.152a)
t* = wpt (9.152b)
and
c=c =2mw,¢ (9.152¢)
where ¢, is the critical damping coefficient, w, = v/k/m, and ¢ is the damping

ratio. By introducing the preceding dimensionless variables, Eqs. (9.146) and
(9.147) become

P 20F (1= ) = (w/wn)? cos(ot*Jw, —0)  (9.153a)
6% +2(¢ +F*/r*)0* = (w/w,)?/r*sin(wt*/w, —0)  (9.153b)

These equations can be solved numerically with the use of the Runge—Kutta
method. However, for a special case, as the whirling speed 6 is equal to the
rotating speed w of the shaft, it is called the synchronous whirl. Thus we have

0* = w/w, (9.154)
Under this condition,
6* =i =F* =0, 0 = (w/w,)t* + B (9.155)
Equations (9.151a) and (9.151b) reduce to
[1 = (w/w,)*r* = (w/w,)* cos B (9.156)
2t (w/wy)r* = (w/w,)* sin B (9.157)

where B is the phase angle between 6 and wt. Squaring Egs. (9.156) and (9.157)
and adding them together, we find

. (@/w,)?
" T = (@@ + QLwjw, 2}

(9.158)

Here we easily can see the maximum deflection increases as w approaches w,. The
numerical solution has been obtained by Ying.” It is lengthy. Details are revealed
in the reference.

*Ying, S. J., “Transient Whirling of a Rotating Shaft with an Unbalanced Disk,” Rotating Machinery
Dynamics, ASME Pub. H0400B, Vol. 2, pp. 537-543, Sept. 1987.
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Maximum deflection as shaft rotates with a constant acceleration. The equa-
tions of motion for describing the whirling of a shaft rotating with acceleration
are given in Eqgs. (9.150) and (9.151). By introducing the dimensionless quantities
given in Egs. (9.152a-9.152c¢), Eqgs. (9.150) and (9.151) become

—r* — 2P = — (0*r*)? cos(a*r*? /2 — 0) — o sin(a*1*?/2 — 0)  (9.159)

—20r*0* = r*0* + 27*6* — (a*r*)?sin(e*r*?/2 — )
+a* cos(a*1*? /2 — 6) (9.160)

where o* = a/wﬁ. Equations (9.159) and (9.160) are solved numerically by the
Runge-Kutta method as given in Appendix A. The initial conditions are chosen
as follows:

r*(0) = 0.001, 6(0) = 0, F*(0) =0, 6*(0) = 1.0

Because itis interesting to see the growth of r * as the shaft rotates, the value of r* (0)
should be as small as possible. However, a low r*(0) value could cause instability
in the numerical computations. The term r*(0) = 0.001 is acompromised quantity.
The increment of time Ar* used in the computation is 0.001, which satisfies the
convergence criterion in all the cases calculated because further decrease in At*
does not change the results significantly. On the other hand, the range of time
in the calculation is determined as follows. It is reasonable to assume that the
maximum deflection will reach the peak in the range 0 < w/w, < 3.In all of the
calculations, the number of maximum time steps is limited by w/w, = 3. That is

Qtpax /Wy =3
or
Lo = 3/0”

In this way r . is determined for each value of o* assigned. For example, as
a® = 0.01, 300, 000 steps are calculated for the determination of maximum di-
mensionless deflection R:m, and for * = 0.50, 6000 steps are calculated. To find
the effect of acceleration on the motion of rotating shaft, the range of o* used
for calculations is from 0.01 to 0.59 with an increment of 0.01. The results of the
maximum dimensionless deflection vs dimensionless acceleration are plotted by a
computer and are given in Fig. 9.21. From the curves shown in the figure, it easily
is seen that for low damping factors ¢ < 0.2 the values of maximum deflection
are higher at low acceleration. That means that while the shaft is rotating with low
acceleration, the system has more time to stay in the neighborhood of resonance
and R}, is occurring at low value of o*. For systems with high damping factors
¢ > 0.2, the magnitude of whirling increases slightly with o*. This is caused by
the fact that the inertial force is not enough to overcome the damping force at low
values of o™,

Therefore, for slightly damped cases (¢ < 0.2) the shaft should be operated with
its highest possible acceleration to reach its operational speed; on the contrary, for
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Fig.9.21 Maximum deflection vs angular acceleration.

highly damped systems (¢ > 0.2) the shaft should be operated with the lowest
possible acceleration to reach its operational speed.

9.6 Stability of Vibrating Systems

Stability analysis is important in the study of vibrating systems. From the result
of analysis, we can predict whether the amplitude of vibration will grow with
time or not. For linear systems, we can determine the stability from the roots of
characteristic equations. If the real parts of the roots are negative, the amplitudes
of oscillations will decrease exponentially with the time; the system is stable. If
the real parts are zero, then the harmonic motion will continue indefinitely, and
the motion is still stable. However, for nonlinear systems, there is no characteristic
equation so that we cannot predict the stability from the roots of characteristic
equation. We must take a different approach for the analysis. Furthermore, we
know that there is no analytical method to find the exact response of a nonlinear
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system. The following is the introduction of this new stability analysis. First we
need to learn some new terminologies, and then we can discuss new concepts.

Phase Plane

The differential equation describing a nonlinear system may have the general
form of

X+ f(x,x,1)=0 (9.161)

where the function f contains at least one term of the product of x, x, or x and

%, such as x?, x2, or xx. If the function does not have the time ¢ explicitly stated
in the expression, then the system is known as an autonomous system that will be
discussed in this section, and Eq. (9.159) becomes

X+ fx,x)=0 (9.162)

In the study of stability, we define
xX=y (9.163a)
y=—f(x,) (9.163b)

Equation (9.163b) is actually the new form of Eq. (9.160). Consider x and y as
the Cartesian coordinates. The x—y plane is called the phase plane.
Dividing Eq. (9.161b) by Eq. (9.161a), we obtain

d_ S (9.164)
dx y
Integrating the equation gives
y=gx)

which can be plotted in the phase plane and is called the trajectory. If the trajectory
is bounded by a circle with finite radius, then x and y are limited; the system is
stable. If at some points, y = 0 and f(x, y) = 0, the slope is indeterminate. We
define such a point as a singular point. Further discussion will be presented for
the integration of Eq. (9.164) around the singular point to determine whether the
system is stable or unstable.

Example 9.18

Consider a simple pendulum. The differential equation of motion can be written
as

6 + w?sinh =0 (9.165)

where w? = g/L, g is gravitational acceleration, and L is the length of the pendu-
lum. Find the function for the trajectory. In the process of integration, an arbitrary
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constant will be present. Plot the trajectories in the phase plane for different
arbitrary constants. Discuss whether the system is stable or unstable.

Solution. Let
0 =x, 6 = y

w’sinf = w’sinx = fx,»

then
y = —w?sinx
dy flx,y) w? sin x
&y Ty
ydy = —w?sin xdx
19+ (1 ~cosx) = E (9.166)

where E is the arbitrary constant to be determined by the initial conditions. Note
that £ 1s proportional to the total energy of the system.

Equation (9.166) is the equation for trajectories. Three different trajectories
are plotted as shown in Fig. 9.22 for £ = w?, 2w?, 3w? with w®> = 1. We notice
that for £ < 2w? we obtain closed trajectories, so that the motion repeats itself.
This implies that the motion is stable. For E > 2w?, the trajectories are open
and the motion is unstable with the pendulum going over the top. The trajectories
corresponding to £ = 2w? separate the two types of motion, oscillatory and rotary,
for which reason these trajectories are called separatrices. Note thatatx = £(2 +
Dr(j=0,1,2,...) and y = 0 the points are singular points. A more general
discussion will be given in the next subsection.

Stability Around a Singular Point
Equation (9.164) can be expressed in the general form of

dy _ px.y)
dx y

(9.167)

Fig.9.22 Three trajectories.
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The singular points of the equation are specified by

p(x,y)=y=0 (9.168)
Equation (9.167) is actually combined from the following two equations:
dx —
a =’
dy
- = , 9.169
3 — P&y ( )

Let us construct a new set of coordinates u, v parallel to x, y with the origin at the
singular point x, and yy, i.e.,

x =x;tu, y=ys+v
Because x; and y, are definite constants
dy dv
dx  du

Expanding p(x, y) into the Taylor series about the singular point (x;, y;), we
obtain for p(x, y)

ad ap
px,y) = plxs, ys) + (—p) "+ (_) v
ou / dv /g

1/8?
+§(57[;.)Xu2+...=cu+eu (9.171)

Then Eq. (9.167) becomes

(9.170)

dv  cu+cv

du v
or
du
Ei—1 )]
dt
dv__
ar =cu—+ev

which can be rewritten in the matrix form as

(Z> N ((c) i) (Z) 9.172)

With the use of modal matrix discussed in Section 9.2, the preceding equation can
be transformed into the equation for principal mode:

()=()=C 2)6)
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(=G 6

é — e)\lf

Then Eq. (9.170) becomes

= e
The solutions for # and v are
U= et + uyet
V= U]BM, + Uzekzr

Itis evident, then, that the stability of the system around the singular point depends
on the eigenvalues A; and A, determined from the characteristic equation

—X 1
c (e—k)‘_o

Mg = ¢ 2+
=- - c
1.2 2:F 3

Thus, if (e/2)* + ¢ < 0, the motion is oscillatory; if (e/2)* + ¢ > 0, the motion
is aperiodic; if e > 0, the system is unstable; and if ¢ < 0, the system is stable.

Example 9.19

Let us consider once again the pendulum of Example 9.18 governed by the
differential equation

X=y, y = —w’sinx
Determine the stability around the singular points that have been found as

x=xjr j=0,1,2,...

y=0
Solution. Aroundx =y =0,
x=y, y=—w"sinx
To use Eq. (9.167), we write
px,y) = —w?sinx

When it is expanded around the singular point x = y = 0, we have

p(x,y) = —w’u
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That means

u=v, U= —wU

-4 1
OREL
2= —?
)"1.2 =tiw

Because the roots are pure, imaginary complex conjugate, we conclude that the
motion in the neighborhood of the origin is stable.
Around the singular point x = 7,y =0,
px,y) = —w? sinx

When it is expanded around the singular point x = 7, y = 0, we have

px,y) = wu

(=2 ()

The characteristic equation for eigenvalues is

That means

~A 1
w? —A

‘:Az——w2=0

AMao=Zow

Because the roots are real but opposite in sign, the singular point is a saddle point.
Clearly, the motion around x = =, y = 0 is unstable.

Problems

9.1. Two simple pendula of length s and bob mass m swing in a common vertical
plane and are attached to two different support points. The masses are connected
by a spring of constant k as shown in Fig. 4.4. The equations of motion are derived
in Example 4.3 and are rewritten as follows:

mszél + mgso, + ks2(61 —6) =0
ms2é1 + mgsf, — kS2(61 —6,)=0
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Fig. P9.2

Find the natural frequencies and the principal-mode solution for small oscillations
of the system.

9.2. Determine the differential equations of motion for the double pendulum
shown in Fig. P9.2. Find the natural frequencies and amplitude ratios for small
oscillations of the system.

9.3. A two-degree-of-freedom system as shown in Fig. P9.3 is excited by a
harmonic force F; = Fy sin wt. The physical constants for the system are m; = 8
kg, m; = 4 kg, k; = 8.0 kN/m, and k, = 1.5 kN/m. Using the Laplace transform
method, determine the solution for the forced vibration with Fg = 2N and wy =2
Hz. Assume that the initial displacements and velocities are zero.

9.4. Determine the solution of the vibrating system given in Example 9.7 with
the use of the method of principal coordinates.

9.5. For a cantilevered beam with a uniform cross section, as shown in Fig. P9.5,
find the transfer matrices from state 0 to 2. Determine the natural frequency of the
system.

Fig. P9.3
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9.6. A two-degree-of-freedom system consists of two equal springs and two
equal masses as shown in Fig. P9.6. Using state vectors and transfer matrices,
obtain the natural frequencies and mode shapes for the system.

9.7. Solve the problem of the vibrating string for the following boundary con-
ditions: y(0,¢) = 0; y(L,t) = 0; dy/dt(x,0) = 0; and y(x,0) = f(x) as shown
in Fig. P9.7.

9.8. A uniform string stretching from —o0 to 0o is originally displaced into the
curve

_Isinx O<x<m
0 elsewhere

Find the displacement of the string as a function of x and ¢.

9.9. Derive the differential equation of motion for a longitudinal vibration along
a uniform rod with length L.

9.10. Consider a simply supported beam of length L. The initial displacement
of the beam is
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Fig. P9.7

and it is released from rest. Obtain the transverse motion y(x, ¢) of the beam.

9.11. For a freely vibrating square membrane of length L, supported along the
boundary x = 0,x = L,y = 0, y = L, suppose that the membrane is deflected in
the form

w(x,y,0) = f(x,y)

and is released from rest. Prove that the expression for the transverse vibration
w(x, y, t) of the membrane is

[e 0] o0
. mmXx | nmy ;
w = E E Ay SIN —— SIN —= COS Wy
L L

n=1

m=

where

4 L L
Apn = ﬁj(; ](; f(x,y)sin mzrx sin E%dedy

9.12. The differential equation of motion of a damped pendulum can be written
in the form

6 +2¢wh + w’sinh =0

(a) Transform the equation into the equation for the phase plane and determine
the singular points.

(b) Choose a value of w, and plot curves in the phase plane for two cases:
{=0.1,and { =2.

(c) Examine the motion in the neighborhood of the singular points.
9.13. Using the Runge—Kutta method, obtain the numerical solution 6(¢) for

6 + w?sinf =0

with @? = 50 (rad/s?), 6(0) = 7/2, and 6(0) = 0.1(rad/s). Plot the numerical
results for0 < r < 2.
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9.14. Model the vibration of an automobile as a solid body supported by four
springs as shown in Fig. P9.14. Obtain the differential equations of motion for the
system under small oscillation.

9.15. Suppose that one of the four wheels is not balanced on the automobile
modeled in Problem 9.14. Obtain the differential equations of motion for the
system, and find the subsequent motion of the vibrating car during driving.

9.16. A circular membrane with radius of 10 cm is fixed on its edge. Suppose
that the membrane is deflected initially in the form

10 —r
10

w(r,0) =

and is released from rest. Find the expression for the transverse vibration w(r, t)
of the membrane. Assume a = 300 m/s.



10
Special Relativity Theory

HIS chapter is devoted completely to the Special Relativity Theory. The

reason behind this is to motivate readers to think, because, through this
theory, space coordinates and time are related. Newton’s equation of motion is
modified, and times are different in moving and stationary systems. Furthermore,
an event that occurs in the past in one system can become a future event in another
system. All those are theoretically possible. To make these into our daily lives,
further research is needed. Therefore, study of this theory not only can broaden
our minds, but also can lead us to the invention of some new devices that will turn
the theory into practical applications.

The development of this theory is based on famous experiments carried out
by Michelson and Morley.” They found that the velocity of light always has the
constant value despite the relative motions of source, observer, or medium. This
result cannot be explained by the Galilean transformation that has been used
throughout the previous chapters.

The set of transformations derived by Hendrik Antoon Lorentz, a Dutch physi-
cist, solves that problem. The transformation is known as the Lorentz transfor-
mation and is the basis of the Special Relativity Theory. Albert Einstein in 1905
systematically recognized the limitations of Galilean transformation. He chose to
modify the concept of time from absolute scale to space dependence. He made
only two assumptions:

1) The laws of dynamics, including electromagnetic phenomena, must have the
same form in systems moving with uniform velocity relative to each other.

2) The speed of light ¢ is a universal constant, independent of any relative
motion of the souce and the observer.

Using these assumptions, Einstein was able to formulate logically precise the-
ories. The Special Relativity Theory of 1905 considers reference systems that are
in uniform motion with respect to one another. The more general treatment of
accelerated reference systems is the subject of the General Relativity Theory that
was developed in 1915.

In Section 10.1, we shall discuss the Lorentz transformation. The conditions
and assumptions, which are made for this transformation, are discussed in detail.
In Section 10.2, we shall study the Brehme diagram, which is a graphical repre-
sentation of the Lorentz transformation. The construction and the interpretation of
this diagram will be discussed in the section. Through the example of the Brehme
diagram, we can see that a region for past events in a system can be a region
for future events in another system. Lastly, some consequences of the Special
Relativity Theory are presented in Section 10.3. We shall discuss how to change
some equations of Newtonian mechanics into relativistic forms.

*For the Michelson-Morley experiment, see Silberstein, L., The Theory of Relativity, Macmillan,
London, 1924, p. 71.

305
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Fig. 10.1 Primed system moving with velocity v relative to the unprimed system.

10.1 Lorentz Transformation

Consider two reference systems as shown in Fig. 10.1. The primed system is
moving with uniform velocity v along the x axis relative to the unprimed system.
The Michelson—-Morley experiments may be described as follows. A spark from
a light source is emitted from the common origin of the two systems when they
are coincided. As the light wave propagates spherically into the space, it is found
that the spherical wave is the same in both systems regardless where the spark is
released in the moving system or the stationary system. It is also found that the
spherical wave front is not affected by whether or not the medium was moving.

This situation cannot be explained by the Galilean transformation that can be
written as

!

x=x"+uvt y=y =1z t=t

Under this transformation, the spherical wave in one system will be distorted in
the other system because of the vt term in the x direction. However, if the second
assumption of Einstein as stated above is observed, the equations for spherical
surfaces in the both systems can be written as

x4+ y2 422 = (er)? (10.1)
x4 y? 427 = (er)? (10.2)
To derive the Lorentz transform, we define
X =X, X2 =1y, X3 =12, X4 =ict

! .
xp=x', x3 =y, xy =1z, x, =ict’

where i = +/—1. This is known as Minkowski space, which is the complex four-
dimensional space time. To establish the relationship between the two systems,
we assume

4

Xy =) dopxp (10.3)
B=I

and four unit vectors are orthogonal to each other. Using matrix notation, Eq.
(10.3) becomes

X' = AX



SPECIAL RELATIVITY THEORY 307

where
any 0 0 ay
0O 1 0 0
A= 0O 01 O

a;g 0 0 ay
Using the orthogonality assumption, we have

AAT =1

alzl + a|24 =1, afl +a‘f4 =1, ajagy + ajgase =0 (10.4)

Here we have three equations, but there are four unknowns to be determined. One
additional equation is obtained from the relationship between the origin of the
primed system and the corresponding coordinate in the unprimed system:

Xy =vt= —i?v(ict) = —ifxy4 (10.5)
where § = v/c. But for this origin, we also can write
xy =0=anx; +ajsxs = (—ayif + a14)xs
Hence we have
ais = ifaj (10.6)

Using the preceding equation together with the three equations in Eq. (10.4)
from orthogonality, we find

a; = \/T—ﬁz =y (10.7a)
ie.,
1
ais = ify (10.7b)
A =y (10.7¢)
as) = —ify (10.7d)
Therefore the Lorentz matrix is
y 0 0 iBy
A= 8 (1) (1) 8 (10.8)
—igy 0 0 y
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The transformation can then be written explicitly as

x; =y +iBxs)

or
X' =y —vt) (10.9a)
y=y (10.9b)
2=z (10.9¢)
xy = Y (=ifx) + x4)
or
[ = y(t - C%x) (10.9d)

Not that as v < ¢, B — 0, and y = 1, the Lorentz transformation reduces to the
Galilean transformation.

Because the two systems are in relative motion, the unprimed system may be
considered as moving with velocity —v along x’ axis. The relations between the
two systems can be written as

x =y +vr) (10.10a)
Y=y (10.10b)
z=72 (10.10¢)

’ v I
t=y(t +—2x) (10.10d)
¢

Applications of the Lorentz Transformation

Length contraction of a rigid rod. Consider arigid rod of length £
L =xy— x|
along the unprimed x axis. When this rod is carried in the moving system, we find
L=xy—x1 =y +vt) —yx;+vt) =y —xp)

or

Xp—xj =€ =1-p% (10.11)

This means that if the rigid rod is measured in the moving system, the length
becomes shorter because

VI-pr <1

This fact is known as the Lorentz—Fitzgerald contraction.
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Moving clock. Consider a clock fixed at the origin of the moving system
=0, X = vt

The conversion of time gives

B , v v
t2—t1=y t2—-c—2-XQ — tl—(—:—z-xl
U2 U2
(GEOR D]

=y(1— ) —1)
=V1=p%t,— 1)) (10.12)

That means that the time in the moving system becomes shorter than the time in
the stationary system. Just to see the dramatic effect of the result, let us consider
B2 = 0.99. We find one year in the moving system; the corresponding time in the
stationary system is 10 years.

Verification of Lorentz Transformation with Light Pulse
Released from Different Systems

A light pulse released at the origin of the unprimed system at the instant when
the two origins are coincident. The wave front in the positive x direction is at

X =ct

Using Eq. (10.9a) and Eq. (10.10d), the corresponding position in the x’ system
is determined as follows:

X'=yx—vt) =yt —vt) =y(—v)

=y(c—v) [V (t’ + :—2x’)]

=y? [(C‘ -t + gx' - z—jx’}
Simplifying leads to
x' = ct’ (10.13)
The wave front in the negative x direction is at
X =—ct
The corresponding position in the moving system is

x'=yx —vt) = y(—ct —vt)

=—yc+v)t=—y(+v) |:y (t’ + :—2x’):|
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Rearranging gives

x'=—ct’ (10.14)

Therefore, they are spherical surfaces in both systems.

A light pulse is released at the origin of the primed system moving with velocity
v at the instant when the two origins are coincident.

The wave front in the positive x’ direction is

x' =ct
The corresponding position of the wave front in the unprimed system is

x=y' + vty =yt +vt)

— y(c+v) [y(r—c% )]

X =ct

Simplifying leads to

The wave front in the negative x’ direction is

x'=—ct'

The corresponding wave front in the negative x direction is

x=y(x'+ct')y =y(=ct' +vt'y = =y (c —v)t

=_y(c—v)[y(" c%")]

Rearranging gives
X =—ct

Therefore, we find that the wave fronts are spherical surfaces in both systems.

10.2 Brehme Diagram

The Brehme diagram is a very useful tool for visualizing the Lorentz transfor-
mation. Note that in four-dimensional space time, y and z are not changed, but x
and ¢ are transformed into x and ¢’. Therefore, the Brehme diagram is designed
to show the relationship of Lorentz transformation and the coordinates of an event
in the both systems, moving and stationary.

First let us construct the Brehme diagram as follows:

1) From the known value of velocity v of the moving system, calculate o« such
that

I

o =sin~!t 2 (10.15)
C
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Fig. 10.2 Construction of the Brehme diagram.

2) Draw two straight axes for ¢¢’ and ct, with ct axis rotated by the angle «
counterclockwise as shown in Fig. 10.2.

3) Draw x axis perpendicular to ct’ axis.

4) Draw x' axis perpendicular to ct axis. Note that x, ct axes are for the unprimed
system and x’, ct’ axes for primed system.

5) Draw a line from the origin bisecting the angle between axes of either primed
or unprimed system. This line is called a world line of the light pulse. Any point
P on this line, as shown in Fig. 10.2, represents the same spherical wave front in
the two systems.

To see the significance of the Brehme diagram, let us take any point A as shown
in Fig. 10.3.

sine = f
0 =90 deg — o
1 1
y: =
/1 — B2 cos o
=secq

At point A

x=0T+PT =0ODseca+ PAtana
=x'y+ct'yB=y +cpt’) =y +vt) (10.16)

Fig. 10.3 Verification of the Brehme diagram.
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This agrees with Eq. (10.10a). Also at point A

ct=08S=DT+TA=0Dtane + PAsecu
=x'yB+ct'y =y(ct' + Bx")

or

t=y[t' + (v/c®)x" (10.17)

which agrees with Eq. (10.10d). Therefore, the Brehme diagram truly reproduces
the features of the Lorentz transformation.

Example 10.1

Suppose that one system is moving with a constant velocity of 2.598 x 10® m/s
relative to another system. Choose the x and x’ axes along the direction of the
velocity. 1) Construct a Brehme diagram to relate the both systems. 2) Using the
Brehme diagram constructed in step 1, indicate the regions in the diagram that
represent the future in one system but the past in the other system. 3) Determine
also the regions that represent the left of the reference position in one system but
the right of the reference position in the other system.

Solution. 1) Construction of a Brehme diagram

v 2598
sine == = = 3500
o = 60 deg

The Brehme diagram is constructed as shown in Fig. 10.4.
2) Take point P as a reference point. Draw a line PR from P perpendicular
to ¢t axis. Note that the region to the left of line PR represents events taking

Fig. 10.4 Future and past overlapping in the shaded regions.
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X' )’y///(mght), X

(Left),

ct'
Fig. 10.5 Right and left overlapping in the shaded regions.

place in the past in the unprimed system; to the right of that line represents events
that are to take place in the future. On the other hand, draw a line PS from P
perpendicular to ct’ axis. The region to the left of line P .S represents events that
have occurred in the past, and the region to the right of line P.S represents events
that are going to happen in the future in the primed system. The shaded regions
represent the future in one system but the past in the other system as shown in
Fig. 10.4.

3) From P, draw a line PU, normal to the x axis as shown in Fig. 10.5. The
region below line PU means that events happen at places with small values in x
coordinate as denoted by “Left”; above line PU represents events taking place
at larger values of x as indicated by “Right.” On the other hand, the line PV is
normal to x’ axis. The region below line PV represents events happen at places
with smaller value in x’, and the region above line PV represents that events take
place at the larger value of x'. The shaded regions depict “Right” in one system
and “Left” in the other system.

Example 10.2

Consider a case of twin brothers A and B. B takes a space trip traveling with
relativistic velocity to another planet. After arriving on the planet, B stays briefly
and then comes back. Assume that the time for acceleration in the beginning of
the trip, brief stay on the planet, and for the deceleration at the end of return trip
are small compared to the duration of whole trip. Determine which brother, A or
B, is actually younger in age.

Solution. Construct a Brehme diagram for the two systems as shown in Fig.
10.6a for the trip of B to the planet. Consider x’, ct’ are the axes for the moving
system and x and ct axes for the stationary system. Assume that A, B are always
at the origins of space coordinates. The time spent by B is At and by A is At,.
From the diagram we find

Aty = At, cosa
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a) b)

Fig. 10.6 Brehme diagrams for brother B.

Construct another Brehme diagram for the two systems as shown in Fig. 10.6b
for the return trip of B. Again assume that A, B are at the origins of space
coordinates. Converting the time, we have

v v v
Aty = y<t2+ —2x2> - y(n + 7xl> =yt —t)a +y =502 = X1)a
C a C a ¢

2
v
=yt —t1)a — )’c—_z-(tz —t)q = At cosa’

The prime symbol is used only to indicate the quantities of the return trip. In this
way the expression includes the possibility that o’ may be different from «. The
total time for the round trip of B is

Aty + Aty = Atgcosa + Aty cosa’
Therefore, we conclude that B is younger.
10.3 Immediate Consequences in Kinematics and Dynamics

Addition of Velocities

Suppose that point P in the moving system moves with velocity u along x’ axis.
The velocity of the moving system is v. The velocity of P in the stationary system
is no longer u + v under the Lorentz transformation because

’ ! vxX
xX'=ykx—vt) t'=y t—;z—
dx’ dx —vdt dx/dt — v

Tdr T dr—vde/ 1= (v/cd)(dx/dr)

Solving for the velocity of P in the stationary system, we find

dx u+v

e 10.18
dt 14 uv/c? ( )
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Note that if ¥ and v are small compared with ¢, then the velocity of P reduces
to the addition of u and v. We can apply this result to the superposition of two
Lorentz transformations. Consider three frames of reference S, S*, and $**. §*
has the velocity v relative to S, and S$** has the velocity u relative to S*. The
transformation equations relating $** and S are

XM = yu(x — wt) (10.19a)
Y=y (10.19b)
=z (10.19c)
=y, (: - 9;) (10.19d)
c

where

w = %’;7 (10.19)
and

! (10.191)

" T woe

Equations of Motion in Relativistic Form

Time change. Consider a particle at rest in the primed system. The velocity
of the particle in the unprimed system is v. The changes of time in the two systems
are related by

2

(dr)* = (d,)z[l - %] = (d)*(1 - pH)

or

dr =dry/1 — B2 (10.20)

where dt is the change of time in the moving system and dt is the change of time
in the stationary system.

Equation of motion. By defining the relativistic mass and momentum as

dx;
m=-——  —ymy  P=my— (10.21)
J1 - B2 dt
and the four-component force as
2y
Fo=mp X (10.22)
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we find that the Newtonian equation becomes

; @x d dy 4 dx 4 d
=myg— = —mog— = — = v = my;
PEMO T d dr o a T g = gy

According to the meaning of the term, we obtain

where my is the rest mass, F; is the ith component of the Minkowski force, and F;
is the ith component of the coordinate force as observed in the unprimed system.

Relativistic energy. By defining four vector components

dx dy dz Code ic
= — = —, = —, =1c— =
Hr= dr’ Ha dr s dr Ha dr Y

then we have

dt=-e(5e) - (5) < (8) ()

2

Note that ; is the component of the proper velocity that is obtained by the distance
traveled in the unprimed system divided by time interval from moving clock; v;
is the component of the coordinate velocity that is the distance divided by the
time interval from a fixed clock. On the other hand, taking the dot product of the
Minkowski force with the proper velocity gives

1 d,
= —mg—(— 0
2m0dr( c’)
1< 1<
Fo=—) Fiu=—2 yFyu=—@F-V)
H4 3 4 =1
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or

iy d d .
LF-V) = Fi = mg— e = mo—
. ( ) 4= Mo —Hha = Mo dt(lC)/)

d  moc?
F V)= ———
dr /T
But the meaning of F - V is the rate change of the kinetic energy as discussed in
Section 2.3; therefore, we find

moc?

KE = —— (10.25)

VT

Note that Egs. (10.23) and (10.25) are usually given in college physics books
without explanation.

Example 10.3

Consider that a particle is moving on the x axis under a constant coordinate
force F. Assume it starts from rest at z = 0. Find the maximum limiting velocity
of the particle.

Solution. Using Eq. (10.23), we have

d ( mov ) ~F
dr\ /1 —v2/c?
Integrating leads to

mov

—— =Ft
V1—v?/c?
Solving for v, we find

cF:

V(F1)2 + (moc)?

Therefore, the velocity of the particle is always less than c. The limiting value is
¢ as t approaches infinity. This is not true in Newtonian mechanics.

Problems
10.1. Show that the wave equation

19°f

c? 912

is invariant under a Lorentz transformation but not under a Galilean transformation.

V2 —
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10.2. Derive the relationship for the velocity of a particle along the x’ axis
in a primed system to the velocity in the unprimed system under the Lorentz
transformation.

10.3. Derive the relationship for the acceleration of a particle along x’ axis in
the primed system compared to that in the unprimed system under the Lorentz
transformation.

10.4. Do the following:

(a) Determine the velocity of a moving system such that 7 days in the moving
system is equivalent to 1 year in the stationary system.

(b) Construct a Brehme diagram with scales on the axes for the systems deter-
mined in part (a).

10.5. Verify the Brehme diagram Fig. 10.6b for the return trip of B.

10.6. Do the following:

(a) Determine the velocity of amoving system so that an observer in the moving
system can see an event that happened one day ago in the stationary system.

(b) Construct a Brehme diagram and mark the position of the observer in the
diagram for the systems described in part (a).

10.7. Prove that if velocities u and v are less than speed of light c, the result of
the addition of velocities through relativity theory can never be greater than c.

10.8. Prove that the kinetic energy expressed by Eq. (10.25) will reduce to K.E.
= $mov? 4+ moc? if v < c. Discuss the significance of moc?.

10.9. Consider a system moving along x axis with velocity v relative to the
stationary system. A sphere in the moving system is described by

x/2 + y/2 + Z/2 — a2
What will be the shape as observed in the stationary system?

10.10. Two particles, with rest masses m, m,, move along the x axis with velo-
cities u1, uy, respectively. They collide and coalesce to form a single particle. Ass-
uming the laws of conservation of relativistic mass and momentum, prove that the
rest mass m3 and velocity u3 of the resulting single particle are given by

Uiy
m3 = m? + m3 + 2mimy y1y2<1 - 7)

_ miyiug + mayaun
miyr +mays

us

where
1 1

N e T I mjer



Appendix A: Runge—Kutta Method

HE Runge—Kutta computation scheme introduced here is accurate to the
fourth-order-of-time increment. The equations to be integrated may be written

as
dx .
m =f@, x,y) (A.1a)
d
d—f =g(t,x,y) (A.1b)

where f(z, x, y) and g(¢, x, y) are known functions. The values of x and y are
knownatt =t¢.Henceatt =1 =T,

X1 = Xi, Y=Y
Fy = f(Ty, xi, y1), Gy =g, x1, n)
Att =t +h/2 =T,, where h = At,
X2 =x + Fih/2, y2 =y +Gh/2
Fy = f(T3, x2, y2), Gy = g(Ty, x2, y2)
Att=t+h/2=T;,
x3=x + F2h/2, y3 =y +Gah/2
Fy = f(T3, x3, y3), Gy = g(T5, x3, y3)
Att =1t +h =Ty,
x4 = x; + F3h, ya=yi +Gsh
Fo = f(T4, x4, y4), Gs = g(Ta, x4, 4)
Then the values of x and y for next stept = ¢; + Ah are
Xip1 = X; + (R/6)[Fy + 2F; + 2F; + F4] (A.2a)
Yitr = yi + (h/6)[G1 +2G2 + 263 + G4] (A.2b)
Note that the formulas that have been given can be applied repeatedly until the

expected time is reached. To save time of computation, a large value of # may
be chosen, but the accuracy of the calculation may suffer. On the other hand, for

319
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a very small value of 4, the number of steps must increase in order to reach the
final vatue of time. For each step of calculation, the computer will create some
error caused by the limitation of the number of digits calculated in the computer.
Therefore, a compromised value of 4 must be chosen for actual applications. The
way to determine the value of & may be done as follows: choose a value for 4,
say hy, and complete the calculation for a set of x and y. Reduce the value of 4
to h, /10, for example, and repeat the calculation. Compare the new result with
the old set. If the results are not significantly changed, then the value of /2 chosen
initially is good enough for calculation.

The preceding formulation can be used for solving a second-order differential
equation. For example,

X = {/m)[F@t)—kx — cx] (A3)
we can define
xX=y (A.4a)
then
y=0/m)F()—kx —cy] =g, x,y) (A.4b)

Equations (A.4a) and (A.4b) are in the form of Eqs. (A.1a) and (A.1b). Therefore,
the method can be applied. In fact, the method can be extended to integrate many
equations simultaneously.



Appendix B: Stoke’s Theorem

B.1 Proof of Green’s Lemma in XY Plane
Green’s lemma can be written in equational form as

Consider first the integral
n=| f %€ 4edy

Let the curve P P4 P; be represented by

x =g1(y)
and P1P2P3 by

x = gx(y)

as shown in Fig. B.1. Then we have

&) aQ d
I = f f() ——dxdy—f {Olg2»), y1 - Qlg1(»), y1}dy
g1y !

=f Q[gz(y),y]dy+L Qlgi(y), yldy

|
|
I
a
Fig. B.1 Green’s lemma.
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322 ADVANCED DYNAMICS

Because the first part represents the integral for the curve P; P, P3 and the second
part for the curve P3P, P, the result is

h=mew®
C

Similarly, denoting the curve P4P, P, by y = f1(x) and the curve P,P3;P4 by
y = f2(x), we have

I, = f ——dxdy—f ——dydx

L gp
f f -—d}’dx {P[x,f2(x)]—P[x,f,(x)]}dx
/i

1(x) a
b
=—f Plx, fo(x)]dx ——f Pix, fikx)]dx
b d

Because the first part represents the integral along P, P; P4 and the second part for
the curve P4 Py P,, the combined result is

12=—dex

c

L-5L= ff (———)dxdy~f(pdx+Qdy)
c

Green'’s lemma is established.

Therefore,

B.2 Stoke’s Theorem

First consider a two-dimensional surface. Let

F=Pi+ Qj
R=xi+yj
dR = idx +jdy

then

Pdr+Qdy=F-dR

ad aP 01
Q P _\o o a|l_k.vxF
dx ay dx dy 9z

P O O
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c

clo

Fig. B.2 Stoke’s theorem applies to a three-dimensional case.

Therefore, Green’s lemma becomes

/F-dR=//k-VdeA=//VxF-dS (B.2)
C A S

where dS = kdA.

Equation (B.2) can be generalized to three-dimensional surface bounded by
curve C. We divide the surface into many infinitesimal areas as shown in Fig. B.2.
Each area can be treated as a two-dimensional surface. The sum of all the area
integrals is the integral for the three-dimensional surface, and the sum of all the
line integrals along C; is the line integral along C because the line integrals in the
interior areas are cancelled by each other. Therefore Eq. (B.2) can be applied to a
three-dimensional case.
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Table C.1 Planetary data®

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

w,? km¥/s? 2232 x 10* 3257 x 10° 3.986 x 10°  4.305 x 10° 1.268 x 108 3.795 x 107 5.820 x 10° 6.896 x 105 3.587 x 10°

Equatorial 4670 12,400 12,700 6760 143,000 121,000 47,100 50,700 5950
diameter, km

Mean distance 57.9 108 149.6 221.7 777.8 1486 2869 4475 5899
from sun
10® km

Sidereal period 88.0days 224.7days  365.3 days 687.0 days 11.86 yr 29.46 yr 84.01yr 16479 yr 24843 yr

Axial rotation 58.7 days 243 days 23H 56M 045 24H 56M 23S 9H 50M 30S 10H 14M  10H49M  About 14H 6D 9H
(equatorial)

Axial inclination, ? ? 23°27 23°59 304’ 26%44' 97°53’ 28°48' ?
deg

Mean synodic 1159 584.0 _ 779.9 398.9 378.1 369.7 367.5 366.7
period, days

Escape velocity, 4.2 10 11 6.4 59.7 354 224 31 ?
km/s

Density: water =1 55 53 55 39 1.3 0.7 1.7 1.8 ?

Volume: Earth = 1 0.06 0.86 1 0.15 1319 744 47 54 0.1?

Mass: Earth = 1 0.06 0.82 1 0.11 316 95 15 17 ?

Surface gravity: 0.38 0.90 1 0.38 2.64 1.16 1.11 1.21 ?
Earth =1

Max surface +770 +887 +140 +80 —200 —240 -310 —360 ?
temperature, °F

Number of 0 0 1 2 13 10 5 2 0
satellites

By permission, Pioneer to Jupiter, Bendix Field Engineering Corp., Palo Alto, CA, Nov. 1974.

;"= GM = Newtonian constant times planetary mass.

9 xipuaddy
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Appendix D: Determinants and Matrices

D.1 Definitions of Determinants and Matrices

A determinant of nth order is a set of #2 numbers or symbols, which are called
the elements, arranged between two vertical lines in the form of a square array of
n rows and n columns. When it is expanded, the final result of a determinant is a
single number or is essentially becoming a number at last.

A matrix is a rectangular array of numbers or symbols. Its size is specified by
m x n where m is the number of rows and » the number of columns. In particular
when 7 is 1, the matrix is called a column matrix and is equivalent to a vector
in m dimensional space. Usually all the elements are arranged between two arcs.
If m = n, then the matrix is called a square matrix. The elements in the matrix
are not related to each other, and matrices cannot be expanded as a determinant.
Therefore, m x n matrix means a set of m x n numbers arranged specifically
according this form.

D.2 Properties of Determinants

1) Determinant of A equals determinant of A transposed:

|Al = |AT| (D.1)

2) If any two rows (or columns) are interchanged, the sign of the determinant
is changed.

3) If each element of a row (or column) is multiplied by a constant &, the value
of the determinant is multiplied by &:

kay, an ka,y kai,

kayy axn

ay an

=k (D.2)

az an az; an

4) The multiplication of determinants | A| and | B| equals the determinant of AB
(product of matrices):

|Al|B| = |AB| ®.3)

5) If two rows (columns) of a determinant are identical or in proportion, the
value of the determinant is zero.

6) A determinant of order of three can be expanded directly into the sum of six
terms as

a by <
ay by | = aibyos + azbscy + azbicy — arbicy — axbics — asbyey (D.4)
as by ¢
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328 ADVANCED DYNAMICS
7) The order of a determinant can be reduced by one if it is expanded as follows:

a)r apn aiz ap
ay a3 4

2
=(=Day|an, as axn

a4y A3 A4

ne dy1 Ay dyz axn
431 axnp azx Ay

Ayl A4y a43 Qa4

@ a4 ay Q) axpn ay
3 4
+(—1)ap|as an aul+ (—D'anlan an an (D.5)
Ay A4z A4y a4r Aasy  as4

a1 Ay 4
5
+(=1Yais|anr axn as

as A ag3

The determinants behind elements ay; are the determinants of minors. Note that
through the preceding procedure the order of the determinant is reduced by one.
When the order of determinant reaches three, the determinant can be expanded
directly as given in Eq. (D.4).

In general,

ay ap - Qg
n
any an ay Lo X
[A] = | "= 2 " a;;(=1)"/| minor of ;] (D.6)
=
ayy apy Aann

D.3 Properties of Matrices

1) Addition of matrices.

an ap - apy by by - by
A+B=|® 2 - an + by by -+ by
aml Qma - Qmp but bmy -+ by

ayy+by  ap+by - aptbi

_|a@tby antby - an+by

amy +bm amy + bpy -+ Gun + by

(ai; + biy) (D.7)
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2) Multiplication of two matrices.

ay ap - ap biy bz -+ bip

ay axp - ay by bn - b
C=AB= . P

Anl Quy - App bnl bn2 U bnp

anbi tapby +---+auby  anbip+apbn+ -+ apby -
= | anbn +anba + - +awby  anbia+ anbyn+ -+ agbp -
amibi + apabo + -+ unbnr ambiz F @b 4+ -+ ampbpn -+

(Cix) = (@b + aizba + -+ - + ainbm) (D.8)

Note that in order to perform the multiplication of two matrices, if the order of A

is m x n, the order of B must be n x p. The number » must be the same in A and

B, i.e., the number of columns in A must be the same as the number of rows in B.
3) Multiplication of a matrix by a constant k.

kA = (ka;j) (D.9)

This means that all the elements must be multiplied by &.
4) Inverse of a matrix. If matrix A is a square matrix, the inverse of A may be
obtained through the following procedure. Consider

ay ayp -+ a4
| axp -+ a4y

A= = (a;j)
apl Qpy - Qg

The minor of an element a;; is M;; that is the determinant of A except the ith row,
Jjth column being omitted, and the cofactor is

D™ My,
The adjoint of A is the cofactor transposed, i.e.,
adj(4) = [(=1)""/ M;;)"
The inverse of A is the adj(A) divided by |A|
A7l = —l-adj(A) (D.10)
1A

For example, let us construct the inverse of the following matrix
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We find
-93 6 —67
(D" Mpy=| 6 -30 -22
—27 —18 =3
|D| = —306
Hence
) -93 6 =27
—1
=-——1| 6 =30 -—18
306 —-67 =22 -3

Checking the result, we find DD ' =1.



Appendix E: Method of Partial Fractions

O use the table of Laplace transforms, it is often necessary to employ the
method of partial fractions. The method briefly can be outlined as follows:
Suppose that the transformed function can be written as

F(s) =N(s)/D(s) (E.1)

where N (s) and D(s) are polynomials. There are several ways to express F(s)
depending on the nature of roots of D(s) = 0. Note

DE)=s"4+ci1s" Tt 24+
=(s~—ay)(s—a) (s —ay,) (E.2)

1) Unrepeated factor of (s — a;). If the roots of D(s) are different, the trans-
formed function can be written as

Al A2 An
+ +---+
s —a s —az § —ap

F(s) =

(E.3)
To determine the constants A;, we multiply both sides of the preceding equation
by D(s) and set s to g; to find

. N(s)
A,‘ = leIl{']l.(S o a[)m

To simplify the expression, we rewrite the equation for A; as

N
A = lim 28
s—a; D(s)
where
D(s)
Dy(s) =
S —a;
or

D(s) = (s —a;)D\(s)
Differentiating the equation gives
D'(s) = Di(s) + (s — a;)D{(s)
lim D'(s) = D(s)
s—ay
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Hence

(E.4)

2) Repeated factor of (s — a)™. For this case, the transformed function can be
written as

_ N(S) _ Am Am—l
T D) G—am ' (s—a)yn!

A
F(s) +-+ —— tw(s)
s—a

To determine the constants, we multiply the preceding equation by (s — a)™ and
find

(s —a)"F(s) = Ay + An_i(s —a) + -+ Ars —a)" ™!

Fw(s)s —a)" = Q(s) (E.5)

Hence
Ap = lim[(s —a)" F(5)] = Q(a)

Differenting Eq. (E.5) leads to

Q'(s) = Ap—1 + terms containing factor (s — a)
Hence

An—1 = [Q'(8)]s=a

Differentiating again, we find

[Q”(S)]A:a = 2! Ap_z

Hence

_1[d*0G)
Am_k_al: ds* :|x=a ®o

3) Unrepeated complex factors (s — a) (s — a). When the roots of D(s) are
complex numbers, a and conjugate of a (a), the function can be written as
_ N(s) _ As+ B

F(s) = = —
D(s) (s—a)s—a)

+ w(s)

then

+ w(s) (E.7)
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To determine the expression for (As + B), we multiply the preceding equation by
(s —a)? + B2, then we have

As + B+ w(s)s — )’ + B2 = [(s — @)’ + B*IF (s) = R(s)
Let s approach a, then
R@)=S,+iT,=aA+B = (+if)A+B
That means
S.=aA+B, T,=pA
Hence

As+B=AG—~a)+aA+ B

=%m—m+& (E8)

Example E.1

r-1 s24+1
s34+ 35242

To determine

Solution.
_ s2+1 P 241
34352 +2s| s+ D +2)
e [A, A A
s s+1  s+2
Note that
D'(s) =35>+ 65 +2
_ N _ 1
'“ Do " 2
N(-1
Ay = St =-2
D'(-1)
N(-2 5
Ao NED s
D'(-2) 2
Therefore,

1 1 5 1 1
L1 — -2 . =——2"4Ze¥
[2s s+1+ ] 2
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Example E.2
To determine

L7HA/G6+ D+ 1)

Solution.

1 A Bs+C
L——— 1=}
{(s+1)<s2+1)] £ L+1+s2+1]

N(s) =1

D)=+ D2+ D), D'(s)=(*+ D+ (s + D(2s)

(
A— N(=D _l
2

=5 -
1
R(s)= ——
(s) e
R(i)=#=———l-=iB+C
1 1
B=—-— = —
> =3

Hence

A Bs+C 1 -S+1
ﬁ_l =£—l
{S+1+s2+1] {2(s+1)+2(52+1)}

1
= E(e" +sint — cost)



Appendix F: Tables of Fourier
and Laplace Transforms

Table F.1 Fourier transforms

Function Transformed function
1L f@) Fw)
2. f(t—1) f(u)e—iut
3. 10 iuF (u)
4 f00 ()" F ()

(0= - 2h
5 f)=h as —a<t<a LI
=0 elsewhere u
6. 6(r) 1
7. 8¢t —1) o
1
8. H®@) —
iu
1 .
9. H(it—1) —e Ut
iu
1
10, H®e ™, a>0 :
o+tu
1 )
11. H(t _ r)e“’”, a>0 - e—(ot-Hu)t
o+ iu
2
12. e, a>0 =@
a? + u?
-1
13. H()t —
u
: a
14. H(t)sinat o
15. H(t)cosat —azm -
—u

335



336

ADVANCED DYNAMICS

Table F.2 Laplace transforms

Function Transformed function
L f®) F(s)=LIfO) =[5 e f()dt
2. af()+bg() aF(s) + bG(s)

3. () sF(s)— f(0)
4. f'() sTF(s) — sf(0) — f/(0)
n dK—lf(O)
5. (1) (4 ng _ n—k
JA0) SFE) = X
n times n times 1
6. oo o f@ dr...dr e
. d"F(s)
7. t"f(@t —_Hyr—
f@) (-1 =
8. e f(r) F(s —a)
0. {f (t—a) ast>a B (s)
0 ast <a

10, fo £t —w)gu)du F(s)G(s)

11. 1 1/s

12 e'(l’ 1

s+ a
i i
13. ~bt _ —at
a=b <) (s+a)s+b)
1 s
4. b -bt __ —at
: b_a(e ae™) (s+a)s+b)
a
5. si _°
1 sinat T
s
16. cosat m
17. sinhat 3 j —
s
18. coshat T
. 2as
19. tsinat m
st —a?
20. tcosat (32_+a2_)2

(Cont.)
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Table F.2 Laplace transforms (continued)

Function Transformed function
2 3
21. sinat — atcosat =
(s2 + a?)2
2as
22. tsinh —_—
sinhat I a2
2 2
+
23. tcoshat S rae
(52 — a?)?
24°
24, oshat — sinhat —
at coshat — sinha I —a2)
a
25. e " sinat _—
(s + b)? +a?
s+b
26. e cosar _—
s +b)? +a?
443
27. sinat coshat — cosat sinhat —_—
sina ha at sinha o+ aah
2a%s
28. sinatsinhat —_—
a a (s* + 4a%)
2as?
29. sinatcoshat ~— cosat sinh at —_—
54 +4at
3
K
30. cosatcoshat —_
arcosha s*+ 4a4
2a°
31. sinhat ~sinat Z 3
st —a
2a%s
32. coshat — cosat

54— a?




Appendix G: Contour Integration and
Inverse Laplace Transform

G.1 Analytic Functions of a Complex Variable

A function f of the complex variable z is analytic at a point zq if its derivative
f'(zo) exists not only at zy but at every point z in some neighborhood of zq. It is
analytic in a domain of the z plane if it is analytic at every point in that domain.

An entire function is one that is analytic at every point of the z plane throughout
the entire plane. For example, every polynomial is an entire function:

p@)=ay+aiz+azt+---+a" n=0,12,...

If a function is analytic at some point in every neighborhood of a point z, except
at zg itself, then zg is called a singular point, or a singularity, of the function. For
example,

X 1
f@=-

then

. 1
f@=-5 G#0
The point z = 0 is a singular point.

Properties of Analytic Functions

1) If two functions are analytic in a domain D, their sum and their product are
both analytic in D. Their quotient is analytic in D provided that the function in
the demoninator does not vanish at any point in D.

2) An analytic function of another analytic function is analytic.

Conditions of Analytic Functions (Cauchy—Riemann Equations)
Suppose that a function f(z) can be written as
f@=ulx,y)+ivix,y) (G.1)

The conditions for the function to be analytic at point zq are that the following two
equations must be satisfied at that point:

a a a a
w_9%v  d B __%v (G.2)
ox ay ay ox

These are known as Cauchy—Riemann equations.
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G.2 Line Integrals of Complex Functions

If C is a curve in the complex plane joining the points zq and z;, the line integral
of a function f(z) = u(x, y) +iv(x, y) along C is defined by the equation

/ f(z2)dz = /(u +iv)(dx + idy)
c c

=/[(udx—vdy)+i(vdx+udy)] (G.3)
c

Without proof, we state some facts as follows:
1) The line integral of an analytic function is independent of path.
2) If a function f(z) is analytic at all points interior to and on a closed contour

C, then / F2)dz =0 (G.4)
C

Now let us consider the following integration

f(z)dz =¢ ldz
o ¢

where C; is the unit circle |z) = 1 with the center at the origin. Notice that
f(z) = 1/z is analytic everywhere in the complex plane except the origin. Evalu-
ating this line integral, we find

1 2 ) ) 2
yg —dz = / e (ie?dh) = / ido = 2mi (G.5)
o 2 0 0

More generally, let us consider any other closed curve C that surrounds the
origin. If we make a “crosscut” from C to C; and in the region R, f(z) = 1/z is
analytic everywhere, and we have

d d
?§_2+ z _,
c Z ¢ Z
dz

0
?§_=_ %=_/id9=2m’ (G.6)
c Z C, z 27

Fig. G.1 Contour integral around a singular point at z = 0.
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y c y

*a

Fig. G2 Contour integral around a singular point at z = cx.

Therefore, any closed curve surrounding the origin will have the result of
2mi.

Cauchy’s Integral Formula

Let C be a closed contour, inside which and along C, f(z) is analytic, and let
« be a point inside C . Furthermore let C, be a smali circle of radius €, with center
at the point o as shown in Fig. G.2. Then, clearly the function f(z)/(z — o) is
analytic in R so that

13 i [ £94, —0
cz—« v Z— o
f@ [ SO [ f@
cz—« v, 2o I—«

Note that the directions of line integrals on ¢, and ¢/, are different. On the circle c.

. 2n
F@ qo i [ fla+ee®)do
¢ 2T« 0

z = +ee dz = iee'?do

In the limite — O,

1) o

dz = lim i fla+ee)dd = 2mif ()
cZ—« e~0 Jy

Therefore

dz (G.7)

This is known as Cauchy’s integral formula.

Example G.1

Evaluate . ;Zf}dz if C is a circle of unit radius with the center at z = 1 and

then atz = —1.

Solution. Consider the integral as

¢22+1 dz
I =
c, z+1 z~1
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2241
z+1

and a=1

filz) =

Hence

I =27ifi(1) = 2mi

%ﬂ+1¢
L=
c, z—1 z+1

2241
z—1

Consider also

faz) =

Hence
I, =2rifo(—=1) = —2mi

Poles and Residues
If z =a is an isolated singular point of f(z), but if for some integer m the
product

(z—a)"f(2)

is analytic at z = a, then f(z) has a pole at z = a. If m is the smallest integer for
which this is so, the pole is said to be of order m.

Now suppose that the analytic function f (z) has a pole of order m at the point
z =a.Then (z — @)™ f(z) is analytic and hence can be expanded into the Taylor
series as

z—a)"f(z)=Ap+Aiz—a)+ -+ Ap_i(z — )"
+Anz—a)" +--- (G.8)
or

. Ag Ay Am
= A _
f@) = o am G Tt e A A - a) +

(G.9)
Let C, be any closed contour surrounding z = a that lies inside the circle of
convergence of Eq. (G.8) and which is such that f(z) is analytic inside and on C,,
except at z = a. If we integrate Eq. (G.9) around this contour, we have

. _ Ag A Anc1 N
Caf(Z)dZ—féa [(z—a)’" + Gz —a +--- 4 G —a) + - ]dz (G.10)
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Note that
2 ) 2
fﬁ (z—a)'dz = 6/ e"?(ie'?dh) = ei/ et g
Ca 0 0

2n
=ei/ [cos(n+ 1)@ +isin(n+ 1)81d0 =0 ifn#—1 (G.11)
0

and

1
fﬁ dz = 2mi (G.12)
Cq z—a

Using the results given, we find
ff f()dz =2ri A, (G.13)
Ca

We call the coefficient Ay _; the residue of f(z) at z = a and denote it by
Res(a). Hence, with the use of the expression for the coefficients of the Taylor
series, we have

1 dm—l i
Res(a) = Ap—y = —{ [(z - a)’”f(Z)]] (G.14)

(m — 1! | dzm-! rea
In the case of a simple pole (m = 1), from Eq. (G.14), we find
Res(a) = [(z — @) f (D))= = lim[(z — a) f (2)] (G.15)

In the case, if f(z) is expressed as the ratio of two functions

N(z2)
D(z)

f@@=

but it has a simple pole at z = a, then

L (z —-a)
Res(a) = gl_r:}'[ D) N(z)]

_ N@)
"~ D'(a)

(G.16)

Suppose now that C is the boundary of a finite region inside which f(z)
is single-valued and has only isolated singularities at a finite number of point
z=a,a,...,a, We enclose these points by small circles ¢y, ¢z, . .., ¢y. Then
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Fig. G.3 Finite number of singularities enclosed in C.

by introducing a crosscut from each circle to C, a simply connected region R is
obtained inside which f(z) is analytic. Thus we have

7§ f(z2)dz = Zf fz)dz =2mi ) " Res(a)) (G.17)
c j=1Y¢ j=1

This result is known as Cauchy’s residue theorem.

G.3 Contour Integrals

Before we apply the method of contour integrals, we must make statements
about the following theorems.
Theorem |

If, on a circular arc Cg with radiusR and center at the origin, zf(z) — 0
uniformly as R — oo, then

R—o0

lim f f(z)dz =0
Theorem I C

Suppose that, on a circular arc C g with radius R and center at origin, f(z) — 0
uniformly as R — o0. Then

1) lim f e f(z)dz =0 asu >0 Cl
Cr

R—>o0

where Cr is in the first and/or second quadrants.

2) RlewaRe f@)dz=0 asu<0 N

where Cp is in the third and/or fourth quadrants.

3) lim / e f(2)dz =0 ass >0 6—'
R—>c0 Cr

where Cp is in the second and/or third quadrants.
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y

Cr

Fig. G.4 Finite number of singularities enclosed in the contour.

4) 11m / e f(z)dz =0 s<0 AB
R—>o0 CR

where Cy, is in the first and/or fourth quadrants.
Now let us apply the residue theorem to evaluate some improper real integrals
such as

I = f°° POO o G.18)
—00 4(x)

where p and ¢ are polynomials with no factors in common. We can replace the
variable x with the complex variable z and choose the contour as shown in Fig.
G.4. Hence we have

/oo &dz +/ p(z)dz =2mi ZRes(aJ
c

-0 4(2) x 4(2)

Note that the first term in the preceding equation means integrating along y = 0;
the second part is proved to be vanishing on Cy as given in the example. Then we
have

n
I =2mi) Res(a))
j=1
Example G.2
[ = f _dx
0 X2 + 1

Solution. Because the integrand is an even function of x, we have

I_Ifw dx
T2 o x2+1

Evaluate
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Choose the contour as shown in Fig. G.4. The contour integral can be written as

R
dx dz
li — | = z ,
RE“OO[ _Rx2+1+/c,, 22+1] o ; Res(a))

Because
B 1
2241 @4z -i)

f@) =

there is only one simple pole z = i within the contour.

1
Res(i) = T
z

z=I

On Cg, we have
12241 > |22 - 1=R* =1

d
Jlim ' f f(2)dz| = f Z_ < lim
R—0 Cr Cr z2 +1 7 Rox

d R
<lim/ dz] = lim ud =0

llm

A

dz
2+1}l '

R0 Cr R2_l R—>00R2—l
Therefore
1 f°° dx 1 1 b4
l = — 2— = — 2][1—' = —
2 ) ox2+1 2 2i 2
Example G.3
Evaluate

o} eiuA
I = lim f du asA >0

a0 f_oo U —iu

Also find the value of [ as A < O.

Solution.  Choose the contour as shown in Fig. G.5 for the case A > 0.

iuh

I = lirré)27ri(e Yu=ia = 271

y
Cr

X

Fig. G.5 One singularity enclosed in the contour.
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y

Cx

Fig. G.6 No pole enclosed in the contour.

Because of Theorem I1.1, the integral over Cx = 0.
For A < 0, because of Theorem I1.2, we choose the contour as shown in Fig.
G.6. There is no pole in this contour. Therefore

I=0 asA <0

G.4 Inverse Laplace Transform

The method of the contour integral also can be used to evaluate the inverse
Laplace transformation. Recall Eq. (8.37) for the inverse Laplace transform

1 y+ioo .
f0=MF@ = [T e Fes
y—ioo

We illustrate the procedure for the method through the following example.

Example G.4

Find f(¢t) from F(s) =s/(s*+ k*) through the evaluation of the complex
inversion integral

1 y+ioo s o
t) = — —e’'d
fo=52] . arees

Solution. Choose the contour as shown in Fig. G.7. The contour integral can
be written as

1 y+ioo

) 1
e'ds + —

- - etds = Res ats; = ik
270 Jycioo S%+K? 21i Je, s* +k? Z]: !

Evaluating the residues, we have the following: At s = ik,

st 'k ikt 1 )
lim [(s —ik) 5¢ } == ikt
s—>ik

G—iks+ik) | 2k 2
Ats = —ik,

lim [(s +ik)

s—>—ik

se’! _ —ike ikt 1
(s —ik)(s +ik) |
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Fig. G.7 Contour for inverse Laplace transform.

It can be proved that the line integral over C; is zero. Therefore

1 y+ioo s 1. ]
fi) = Imi me“ds = E(e"" + e %) = coskt
y—ioo



Appendix H: Bessel Functions

H.1 Bessel Equation and Its Series Solutions

The Bessel equation of order n with a parameter A can be written as
rR"+rR +(W4? —n®)R =0 (H.1)
where 4 is a real number. With the change of variable
X =Ar

Eq. (H.1) becomes

L8R AR )
¥ +x— +@*2=nHR =0 (H.2)

If n is not an integer, the solution of Eq. (H.2) is
R(x) = c1Jn(x) + caJ_n(x) (H.3)
where

00 (_l)mxn+2m

J = H4
nex) ,;22”’+”m!1’(n+m+ D (B
Jn(x) is known as the Bessel function of the first kind of order #. Notice that
the function is an infinite series. In the denominator there is a gamma function
denoted by I'(n + m + 1). Similarly we have

0 (_l)mx—n+2m

J_ =
n(x) ;) 2m=m\T(—n +m + 1)

(H.5)

When 7 is an integer, it can be proved that
Jon(x) = (=1)"Jy(x)

Hence, J,(x) and J_,(x) are not independent. The general solution of Eq. (H.2)
becomes

R(x) = 1, (x) + oY, (x) (H.6)

Y, (x) is the Bessel function of the second kind of order 1. Because Y, (x) becomes
infinite as x — 0, ¢;, is usually set to zero. The detail expression for Y,(x) is

349
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1 L L L L

1.5 B

1- L
-
-

. 0.5 -
>
)

o- -

—0.54 L

0 5 10 15 20 25
X

Fig. H.1 Bessel functions Jy, J1.

omitted here. Interested readers can refer to the “Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables” by the National
Bureau of Standards. The gamma function in Eq. (H.4) may be briefly described
as

N'x+1)= f et dt (H.7)
0
When x = integer = n,

'h+1)=n! (H.8)

The graphs of Bessel functions are shown in Figs. (H.1) and (H.2). Numerical
values of Bessel functions of order of O and 1 are given in the tables, at the end of
this appendix.

0.5 -
0 L
-
by
. -o.5
o
>~
—14 -
-1.5

Fig. H.2 Bessel functions Yy, ).
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H.2 Properties of Bessel Functions

The following formulas are collected here for the readers’ convenience. Detailed
proofs are omitted.

i—[x"+‘fx+.(x)1 =x" 1, (x) (H.9)

d s =—x" H.10

a[x 2(X)] = —x nt1{X) (H.10)

Jy) = Jpa () = = U () (H.11)

I = = Jnx) = Jue () (H.12)

fx"“J,,(x)dx =x" () +c (H.13)

fx'”]n+l(x)dx =—x"J,(x)+cC (H.14)

cos(x sin) = Jo(x) +2 Y _ Ju(x) cos 2ke (H.15)

k=1
sin(rsing) =2  Jyi(x)sin(2k — )¢ (H.16)
k=1

T (xsi 4 = nJ,(x) neven (H17)
/0 cos ng cos(x sin¢gp)dg = 0 n odd .

T . 0 ) ddp = 0 n even (HLI8)
/0 sin n¢ sin(x sin¢)d¢ = I .

Jp(x) = %f [cos ng cos(x sing) + sinng sin(x sing)]dgp  (H.19)
0

In the preceding expressions, # is an integer.

H.3 Fourier~-Bessel Series

A function can be expanded into a Fourier—Bessel series as

f(r) = Aljk(}nlr)+Azjk()‘2r)+"'+A,,Jk()n,,r)+"'+ asOSr _<_b
(H.20)
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The conditions for the function to be expressed by the preceding equation may be
stated without proof as follows. The function f(r) must be piecewise continuous.
The Bessel function J;(Ar) satisfies the condition

dJi (A
A by — BT (H21)
b
where A, B are constants. Then
b,
Je(Anr)d
A, — Jo {)(r); k(Anr) dr H22)
Jo rdéGr)dr
where
b JE(hab) 2 .2, (bA\?
/ rj,f(x,,r)drzl 2 [O‘:b) e+ (F)] B#O (H.23)
0 L2 (Aab) B=0
Example H.1

Expand f(r) = r? over the interval 0 < r < 3 in terms of the function Jo(A,r)
where the A, are determined by J;(31) = 0.

Solution. The roots of J,(31) = 0 are

3h =0, 33 =3.832, 3x, =7.016
323 =10.174, 3hs =13.324,...

or
Ao =0, A =1.277, Ay =2.339, Az =3.391, As = 4.441

Looking into the boundary condition Eq. (H.21), we have

dJo (A
AJo3r) — g 3¢ _ g
dr
because
dJ
o{x) — /() =0
dx

and Jo(31) # 0. The constant A must be zero because of the boundary condition.
The coefficients

12 3 Jo(harydr
n=— 1
S rd3Onrydr
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Using Eq. (H.23), we find

3 32
/ rd¢(aarydr = ?J()Z(A,,b)
0

To integrate the numerator in A,,

3 1 3)\:'
I =/ r3Jo(Aar)dr = —/ 22 Jo(2)dz
0 A Jo

We use integration by parts, Eq. (H.13), and find

18
I = —A—%Jz(3kn)
Hence
4 (-18/30)HGr) 4 HhBA) 4
/DG R LG A2Je(Bha)

Forn =0, Ag =0, and Jy(0) = 1,

_ f03r3dr _9

Aq

=== ==
fo rdr 2
Therefore, the Fourier—Bessel series is
9 [o/¢]
r2=2=

2T 2 A2 Jo(3hy)

n=I

Jo(Aur) asl0<r<3



Table H.1 Bessel functions of integer order

X Jo J Yo Y,

0.00 0.100000E+01 0.000000£+00 —00 —00

0.05 0.999375E4-00 0.249922F —01 —0.197931E+01 —0.127899E 402
0.10 0.997502 £4-00 0.499375E—-01 —0.153424E+01 —0.645895E 401
0.15 0.994383 £4-00 0.747893 E—01 —0.127078 E401 —0.436368E+401
0.20 0.990025E£4-00 0.995008 £ —01 —0.108111E+01 —0.332382E 401
0.25 0.984436E£4-00 0.124026 E4-00 —0.931573E4-00 —0.270411E+401
0.30 0.977626E+-00 0.148319E£4-00 —0.807274E 400 —0.229311E401
0.35 0.969609E£4-00 0.172334E+400 —0.700314E£ 400 —0.200040E 401
0.40 0.960398 £4-00 0.196027E+00 —0.606025E+00 —0.178087E+01
0.45 0.950012E£4-00 0.219353E+00 —0.521428 E+00 —0.160954E+01
0.50 0.938470E£ 400 0.242268 E+00 —0.444519E+00 —0.147147E+01
0.55 0.925793E+00 0.264732E+400 —0.373886 E+00 —0.135718E+01
0.60 0.912005E4-00 0.286701 E4+00 —0.308510E+00 —0.126039E+01
0.65 0.897132E400 0.308135E+400 —0.247628 E+400 —0.117677E+01
0.70 0.881201E£+400 0.328996E£ 400 —0.190665E+00 —0.110325E£4-01
0.75 0.864242E4-00 0.349244 E 400 —0.137173E+00 —0.103759E+01
0.80 0.846287E4-00 0.368842E£4-00 —0.868021E—01 —0.978144E 400
0.85 0.827369E£ 400 0.387755E4-00 —0.392759E-01 —0.923643E 400
0.90 0.807524E+4-00 0.405950E£ 400 0.562846 £ —02 —0.873126E 400
0.95 0.786787E+00 0.423392E£4-00 0.480906E —01 —0.825846E£ 400
1.00 0.765198 E+400 0.440051 E+4-00 0.882571E-01 —0.781213E£ 400
1.05 0.742796 E+00 0.455897E£4-00 0.126248 £4-00 —0.738761 E+400
1.10 0.719622E+00 0.470902E£+00 0.162163 E+400 —0.698120£4-00
1.15 0.695720E£+00 0.485041E+00 0.196085 E+00 —0.658991 E+00
1.20 0.671133E+00 0.498289E£+-00 0.228083 E+00 —0.621136E+400
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1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
245
2.50
2.55

0.645906 E£+00
0.620086 £+4-00
0.593720E+00
0.566855E+00
0.539541E+00
0.511828E+00
0.483765E+00
0.455402E+00
0.426792E+00
0.397985E+-00
0.369033E+00
0.339987E+00
0.310898 E+00
0.281819E+00
0.252800E+00
0.223891E+00
0.195144E+00
0.166607E+00
0.138331E+00
0.110363E+00
0.827504E—-01
0.555403E-01
0.287781E—-01
0.250828E—-02

—0.232262E—-01
—0.483832E—-01
—0.729223E 01

0.510623E+400
0.522023E4-00
0.532470E+4-00
0.541948 E4-00
0.550441E+00
0.557936 E4+00
0.564424E+00
0.569896 E+00
0.574344E 400
0.577765E+00
0.580156 E+00
0.581517E+400
0.581849E 400
0.581157E+00
0.579446 E4-00
0.576725E4-00
0.573003E£4-00
0.568292E4-00
0.562607E£4-00
0.555963 E+4-00
0.548379E 400
0.539873 E+00
0.530467E+00
0.520186E+00
0.509052E+-00
0.497094E+00
0.484340E+00

0.258217E+00
0.286535E+00
0.313082E+00
0.337895E+00
0.361007E+00
0.382449E+00
0.402247E+400
0.420427E+00
0.437012E+400
0.452027E+00
0.465492E 400
0.477432E+400
0.487866E+-00
0.496820E+00
0.504315E+00
0.510376 E4+00
0.515027E+00
0.518294E+00
0.520204E4-00
0.520784E+-00
0.520065E+-00
0.518075E+00
0.514848E£4-00
0.510415E4-00
0.504811E4-00
0.498071 E4+00
0.490231E4-00

—0.584364E4-00
—0.548520E+00
—0.513480E+00
—0.479147E+00
—0.445443E 400
—0.412309E 400
—0.379698E 400
—0.347578E 400
—0.315926E 400
—0.284727E 400
—0.253973E +00
—0.223665E 400
—0.193807E+00
—0.164406 E+00
—0.135476 E4-00
—0.107033E4-00
-0.790937E 01
—-0.516791E—-01
—0.248110E-01

0.148734E—-02

0.271916E—01

0.522768 E—01

0.767177E—-01

0.100488E£+-00

0.123564 E+-00

0.145918E£+-00

0.167526 E+4-00

(Cont.)
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Table H.1 Bessel functions of integer order (continued)

X J() Ji Yo Y,

2.60 —0.968043 £ 01 0.470819E+00 0.481331E+00 0.188363E+00
2.65 —0.119992 E+-00 0.456562 E+4-00 0.471408 E+-00 0.208406 E+-00
2.70 —0.142449E+-00 0.441602E+-00 0.460504 E+4-00 0.227632E4-00
2.75 —0.164141 E+4-00 0.425973E+00 0.448659E+-00 0.246018 E4-00
2.80 —0.185035E+00 0.409710E+-00 0.435916E+-00 0.263545E+00
2.85 —0.205102E+00 0.392849E 400 0.422319E+-00 0.280191E4-00
2.90 —0.224311E400 0.375428 E+00 0.407912E4-00 0.295940E+-00
2.95 —0.242636 E+00 0.357485E+00 0.392741E4-00 0.310772E+00
3.00 —0.260051E+400 0.339060£ 400 0.376851E400 0.324674E+-00
3.05 ~0.276534E+00 0.320192E£+-00 0.360289E 400 0.337630E4-00
3.10 —0.292064 E+-00 0.300922E£+-00 0.343103E+00 0.349629E+-00
3.15 —0.306621 E+00 0.281292E+00 0.325342E+00 0.360659E+00
3.20 —0.320188E£+400 0.261344E4-00 0.307054 E+00 0.370711E+00
3.25 —0.332750E+00 0.241120£4-00 0.288288E£+00 0.379777E+00
3.30 —0.344296 E+00 0.220664 E+00 0.269093 E+00 0.387853E+00
3.35 —0.354814E+00 0.200019E+-00 0.249519E4-00 0.394933E+400
3.40 ~-0.364295E+00 0.179227E+00 0.229616E+00 0.401015E4-00
3.45 —0.372735E+00 0.158332E+00 0.209434E+-00 0.406100E+00
3.50 —0.380127E+00 0.137378E+-00 0.189023 E+400 0.410188E4-00
3.55 —0.386472E 400 0.116409E£+-00 0.168432E+00 0.413284E£4-00
3.60 —0.391769E+00 0.954665E—01 0.147711 E+00 0.415392E4-00
3.65 —0.396020£+00 0.745944E—01 0.126909E+-00 0.416519E4-00
3.70 —0.399230£+00 0.538350E 01 0.106075E+00 0.416674E4-00
3.75 —0.401406E+00 0.332303E£-01 0.852578E—01 0.415869E4-00
3.80 —0.402556 E+00 0.128220E£ 01 0.645042 E~-01 0.414115E+00

9G¢
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385
3.90
3.95
4.00
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80
485
4.90
4.95
5.00
5.05
5.10
5.15

—0.402692E 400
—0.401826E 400
—0.399973E+00
—0.397150E 400
—0.393375E+400
—0.388670E4-00
—0.383056E 400
—0.376557E 400
—0.369200E 400
—0.361011E+00
—0.352020E+00
—0.342257E+00
—0.331753E+00
—0.320543E+00
—0.308659E+00
—0.296138E+00
—0.283016 E+00
—0.269331E+400
—0.255121E+00
—0.240425E+00
—0.225284E+00
—0.209738 E4-00
—0.193828E+00
—0.177596 E4+00
—0.161084E+00
—0.144334E+00
—0.127389E+00

—0.734920E -02
—0.272430E-01
—0.468203E—01
—0.660423E—01
—0.848719E—01
—0.103272E4-00
—0.121209E+00
—0.138646 E+00
—0.155553E+00
—0.171896E4-00
—0.187646 E+00
—0.202775E+400
—0.217255E 400
—0.231060E 400
—0.244167E+00
—0.256553E+400
—0.268197E+00
—0.279081 E+00
—0.289187E4-00
—0.298500E +01
—0.307006 E+00
-0.314695E 400
—0.321555E+00
—0.327579E 400
—0.332761 E4-00
—0.337097E+00
—0.340585E+00

0.438619E—01

0.233770E—-01

0.309490E —02
—0.169397E—-01
—0.366833E—01
—0.560937E —01
—0.751293E -01
—0.937504E —01
—0.111918E£ 400
—0.129595E +00
—0.146746E +00
—0.163336E 400
—0.179333E+400
—0.194705E+00
—0.209423E£4-00
—0.223460E 400
—0.236789E 400
—0.249388E+00
—0.261232E+00
—0.272304E4-00
—0.282583E+00
—0.292055E4-00
—0.300704E+00
—0.308518E+4-00
~0.315487E+400
—0.321603E+00
—0.326859E4-00

0.411427E+00
0.407820E+00
0.403314E+00
0.397926 E+00
0.391679E+00
0.384594E4-00
0.376697E+4-00
0.368013E4-00
0.358569E+-00
0.348394E+4-00
0.337518E+400
0.325971 E4-00
0.313786 E+00
0.300998 E+00
0.287639E+00
0.273745E+00
0.259354E+00
0.244501 E4-00
0.229226 E400
0.213565E 400
0.197559E+00
0.181247E4-00
0.164668 E+00
0.147863E400
0.130872E400
0.113736 E4-00
0.964951E—-01

(Cont.)
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Table H.1 Bessel functions of integer order (continued)

Jo

Ji

Yo

Y,

5.20
5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95
6.00
6.05
6.10
6.15
6.20
6.25
6.30
6.35
6.40

—0.110290E+4-00
—0.930803E£—01
—0.758024E—-01
—0.584981 E—01
—0.412093E-01
—0.239772E-01
—0.684286 E—02

0.101534E-01
0.269720E—-01
0.435739E—-01
0.599211E-01
0.759766 E—01
0.917038 E—01
0.107068 £+4-00
0.122035E£+00
0.136571E4+00
0.150647E£+00
0.164230E£+00
0.177293E400
0.189808 £4-00
0.201748 E4+00
0.213091 £4-00
0.223813E4-00
0.233893 £4-00
0.243312E400

—0.343223E+00
—0.345014E 400
—0.345961E400
—0.346069E£+00
—0.345345E+400
—0.343798 E4-00
—0.341438E+400
—0.338278E+00
—0.334333E400
—0.329616E£+00
—0.324147E 400
—0.317944E 400
—0.311027E+00
—0.303419E£ 400
—0.295142E+00
—0.286221 E+00
—0.276683E+00
—0.266554E 400
—0.255864E£ 400
—0.244640E 400
—0.232915E400
—0.220719E+00
—0.208085E+4-00
—0.195046 E+00
—0.181636E£+00

—0.331251E+400
—0.334777E+00
—0.337437E+00
—0.339233 E+400
—0.340168 E+00
—0.340248 E+00
—0.339481E+00
—0.337875E+00
—0.335444E+00
—0.332199E+00
—0.328157E4-00
—0.323333E+00
—0.317746 E+00
—0.311416E+00
—0.304365E+00
—0.296616E+00
—0.288194E+00
—0.279124E+00
—0.269434E4-00
—0.259152E+00
—0.248309E+00
—0.236934E+00
—0.225060E£+00
—0.212720E+00
—0.199947E+00

0.791897E-01
0.618603 E£—01
0.445469E—01
0.272892E—-01
0.101264E —01

—0.690248E —02
—0.237592E 01
—0.404062E —01
—0.568067E—01
—0.729245E 01
—0.887244E—01
—0.104172E+400
—0.119235E+4-00
—0.133881E+00
—0.148078 E+00
—0.161798 E4+00
—0.175012E 400
—0.187692E 400
—0.199813E+00
—0.211352E+400
—0.222285E+400
—0.232591 E400
—0.242251E+00
—0.251246E+400
—0.259561 E+00
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6.45
6.50
6.55
6.60
6.65
6.70
6.75
6.80
6.85
6.90
6.95
7.00
7.05
7.10
7.15
7.20
7.25
7.30
7.35
7.40
7.45
7.50
7.55
7.60
7.65
7.70
7.75

0.252051E£+00
0.260096 E+00
0.267431E+00
0.274044 E+400
0.279925E+00
0.285065 E+00
0.289457E+00
0.293096 E+00
0.295978 E+4-00
0.298102E£+00
0.299469E +00
0.300079E 400
0.299938E£+00
0.299051E+00
0.297425E 400
0.295070E 400
0.291996 E 400
0.288216E+00
0.283744E 400
0.278595E4-00
0.272787E+00
0.266338E+00
0.259269E 400
0.251600E +00
0.243355E4-00
0.234557E+00
0.225232E+00

—0.167888 £ 4+00
—0.153839E£ 400
—0.139524E 400
—0.124978 £4+00
—0.110238E£+00
—0.953399E —01
—0.083205E-01
—0.652163E —01
—0.500638E —01
—0.348996E —01
—0.197598E —01
—0.468020E —02
0.103034E 01
0.251559E-01
0.398428 E—01
0.543301E£—-01
0.685844E —01
0.825731E—-01
0.962645E—01
0.109628 £ +00
0.122633 E400
0.135251E£400
0.147454E +00
0.159216E£ 400
0.170511£ 400
0.181315E£400
0.191605E4-00

—0.186775E4-00
—0.173241E400
—0.159378 E4-00
—0.145224E4-00
—0.130816E+00
—0.116189E£ 400
—0.101382E£400
—0.864316E—-01
—0.713755E-01
—0.562512E-01
—0.410961 E—01
—0.259471E-01
—0.108414E-01
0.418443E—-02
0.190945E—-01
0.338531E-01
0.484252E—01
0.627766E—01
0.768736E—01
0.906836E —01
0.104175E4-00
0.117316E+00
0.130078 £+00
0.142431E+00
0.154349E4-00
0.165804 E£+00
0.176772E£400

—0.267181E4-00
—0.274092E4-00
—0.280284E+00
—0.285748 E+00
—0.290475E4-00
—0.294460E£ 400
—0.297698 E4-00
—0.300187E+00
—0.301927E+00
—0.302918E£+00
—0.303163E+00
—0.302667 £+400
—0.301436E£+4-00
—0.299478 E+4-00
—0.296803E+00
—0.293422E 400
—0.289347E+4-00
—0.284593E+00
—0.279176E 400
—0.273114E 400
—0.266424E 400
—0.259127E 400
—0.251244E 400
—0.242799E +00
—0.233815E 400
—0.224316E+400
—0.214330E+-00

(Cont.)
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Table H.1 Bessel functions of integer order (continued)

X Jo Ji Yo Y,
7.80 0.215405E +00 0.201359E+00 0.187230E+00 —0.203883E +00
7.85 0.205105E+00 0.210557E+00 0.197153E400 —~0.193003E +00
7.90 0.194359E+00 0.219181E+00 0.206523 E+00 ~0.181718 E+00
7.95 0.183197E+00 0.227214E+00 0.215319E+00 —0.170060E +00
8.00 0.171648 E+00 0.234638 E+00 0.223524E+00 —0.158057E+00
8.05 0.159743E+00 0.241441E+00 0.231120E+00 ~0.145742E+00
8.10 0.147514E +00 0.247609E +00 0.238093 E+00 —0.133146E+00
8.15 0.134993E +00 0.253132E+00 0.244430E+00 —0.120300E+00
8.20 0.122212E+00 0.258000E +00 0.250120E+00 ~0.107237E+00
8.25 0.109204 E +00 0.262205E+00 0.255151E+00 —0.939909E —01
8.30 0.960023E —01 0.265740E +00 0.259516 E+00 —0.805939E —01
8.35 0.826409E —01 0.268602E+00 0.263208 E400 —0.670793E —01
8.40 0.691533E—01 0.270787E+00 0.266223 E+00 —0.534807E —01
8.45 0.555734E —01 0.272293E+00 0.268556 E+00 —0.398314E ~01
8.50 0.419352E —01 0.273122E+00 0.270205E+00 ~0.261648 E—01
8.55 0.282724E —01 0.273275E+00 0.271172E+00 —0.125140E —01
8.60 0.146188 E—01 0.272755E +00 0.271458 E+00 0.108793 E —02
8.65 0.100795E —02 0.271567E +00 0.271065E+00 0.146084E ~01
8.70 —0.125270E —01 0.269718 E+00 0.269999 E +00 0.280150E —01
8.75 —0.259531E—01 0.267217E+00 0.268266E+00 0.412758 E—01
8.80 —0.392381E~01 0.264073E+00 0.265874E+00 0.543596E ~01
8.85 —0.523499E —01 0.260296 E +00 0.262833E+00 0.672355E—01
8.90 —0.652575E —01 0.255901E+00 0.259154E+00 0.798733E—01
8.95 —0.779300E —01 0.250900E +00 0.254850E+00 0.922439E —01

9.00

—0.903378 E—01

0.245310E£ 400

0.249935E+00

0.104318E£+400

09¢
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9.05
9.10
9.15
9.20
9.25
9.30
9.35
9.40
9.45
9.50
9.55
9.60
9.65
9.70
9.75
9.80
9.85
9.90
9.95
10.00
10.05
10.10
10.15
10.20
10.25
10.30
10.35

—0.102452E+00
—0.114243 E+00
—0.125686 E+00
—0.136752E+00
—0.147418 E4-00
—0.157659E+00
—0.167452E+4-00
—0.176775E+00
—-0.185608 E4-00
—0.193932E400
—0.201728 E4-00
—0.208981E4-00
—0.215676 E4-00
—0.221798 E4-00
—0.227335E4-00
—0.232278 E4-00
—0.236616 E4-00
—0.240342E+00
—0.243451E+4-00
—0.245937E4-00
—0.247797E+00
—0.249030E+-00
—0.249636 E+00
—0.249617E+00
—0.248975E4-00
—0.247716 E400
—0.245845E+00

0.239147E+00
0232428 E+00
0.225175E+400
0.217406E+00
0.209144E+00
0.200411E+00
0.191231E+400
0.181629E+00
0.171630E£+00
0.161261 E+400
0.150548 E+00
0.139521E+00
0.128206 E+-00
0.116634E+-00
0.104834E+00
0.928354E-01
0.806689E —01
0.683650E —01
0.559543E-01
0.434677E—01
0.309362E—01
0.183904E —01
0.586119E—-02

—0.662092E —02
—0.190256E —01
—0.313230E -01
—0.434835E-01

0.244424 E4-00
0.238334E400
0.231683 E4-00
0.224491 E+00
0.216778 E400
0.208567 E+00
0.199880E£+-00
0.190740E+-00
0.181174E+00
0.171207E4-00
0.160865 E+00
0.150176 E4+00
0.139168 £+4-00
0.127870E£ 400
0.116312E£4-00
0.104522E+400
0.925323E£-01
0.803723E—-01
0.680732E—01
0.556660E —01
0.431819E-01
0.306521E-01
0.181077E—-01
0.557987E—02

—0.690065E—02
—0.193032E-01
—0.315976 E—01

0.116069 E4+00
0.127470E+4-00
0.138494 E+-00
0.149116 E+00
0.159314E+400
0.169065E+-00
0.178346 E+4+00
0.187139E+00
0.195423 E4-00
0.203183 £4-00
0.210400E+00
0.217061 E£4-00
0.223153E+00
0.228662E+00
0.233579E+00
0.237895E+00
0.241602E+00
0.244693 E+00
0.247166 E+00
0.249016E+00
0.250242E 400
0.250845E+00
0.250825E 400
0.250185E+00
0.248932E£4-00
0.247069E4-00
0.244605 E4-00

(Cont.)
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Table H.1 Bessel functions of integer order (continued)

Jo

Ji

Yy

Y,

10.40
10.45
10.50
10.55
10.60
10.65
10.70
10.75
10.80
10.85
10.90
10.95
11.00
11.05
11.10

—0.243371E4-00
—0.240301E+00
—0.236646 E4+00
—0.232419E+00
—0.227633E+00
—0.222301 E+00
—0.216440E£4-00
—0.210066E400
—0.203199E+00
—0.195856 E+00
—0.188058E4-00
—0.179828 E+4-00
—~0.171186E+00
—0.162157E+00
—0.152764E+00

—0.554779E -01
—0.672777E-01
—0.788550E—-01
—0.901825E-01
—0.101234E+00
—0.111982E£4-00
—0.122404E£4-00
—0.132475E4-00
—0.142171 E4+00
—0.151471E4-00
—0.160354 E4-00
—0.168799E4-00
—0.176789 E+00
—0.184305E+00
—0.191332E400

—0.437540E —01
—0.557429E 01
—0.675356E —01
—0.791039E —01
—0.904203E-01
—0.101458E£4-00
—0.112191E£400
—0.122594E£4-00
—0.132643 E400
—0.142315E4-00
—0.151588E+00
—0.160440E£4-00
—0.168851E+00
—0.176804E£ 400
—0.184279E£+400

0.241549E+00
0.237911E+00
0.233702E4-00
0.228936E£4-00
0.223627E4-00
0.217790E4-00
0.211442E4-00
0.204601 £4-00
0.197286 £ 400
0.189517E400
0.181315E+00
0.172702E+00
0.163701 £4-00
0.154336E£+4-00
0.144632E4-00

29¢e
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Appendix I: Instructions for Computer Programs

OMPUTER programs used in the text are copied on the floppy disk as

attached. The programs are written in FORTRAN-77. They can be compiled
by the FORTRAN compiler of Watcom System, Inc. The following procedure is
for running the programs:

1) Run the computer on the directory where FORTRAN-77 compiler is located;
say FORTRAN.

2) Insert the floppy disk to disk drive (A or B).

3) Copy the program to the FORTRAN directory.

4) Type “watfor77 filename”

Each program will generate a set of computed results for a plot. Much computer
software such as C-plot, sigmaplot, and mathcad, etc., can be used for plotting.
Separate software must be used to plot the graphs. To modify the program, edit
the files after copying them into the directory.

Type “weditf filename”

After the modifications are done, save the changes:
Type “autosave”
The following is the list of programs available on the disk:

1) MSSL.FOR (for Example 2.1)
2) SPACEV.FOR (for Example 2.2)
3) MSLTMSLT.FOR (for Example 3.1 with spherical ground)
4) MSLTOMSL.FOR (for Example 3.1 with flat ground)
5) ELCTPRP.FOR (for Fig. 5.6 spiral orbit of electrical propulsion)
6) TOPSO.FOR (for Fig. 7.11c, nutation of top in Section 7.5)
7) TOPS1.FOR (for Fig. 7.11b, nutation of top in Section 7.5)
8) TOPS2.FOR (for Fig. 7.11a, nutation of top in Section 7.5)
9) RSPNS.FOR (for Example 8.14, response spectrum)

10) STBLTYILFOR (forcase £ = 1 in Example 9.18)

11) STBLTY2.FOR (for case E = 2 in Example 9.18)

12) STBLTY3.FOR (for case £ = 3 in Example 9.18)

13) BESSJO.FOR (for Bessel function Jy in Appendix H)

14) BESSJ1.FOR (for Bessel function J; in Appendix H)

15) BESSYO0.FOR (for Bessel function Yy in Appendix H)

16) BESSY1.FOR (for Bessel function ¥, in Appendix H)

17) BSFJY.FOR (for Table of Bessel Functions in Appendix H)
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Appendix J: Further Reading

Textbooks on Advanced Dynamics—Graduate Level

Barlett, J., Classical and Modern Mechanics, Univ. of Alabama Press, Huntsville, AL
1975.

D’Souza, A.F, and Garg, V. K., Advanced Dynamics, Prentice-Hall, Englewood Cliffs,
NIJ, 1984.

Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA, 1980.

Greenwood, D. T., Principles of Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988.

Groesberg, S., Advanced Mechanics, Wiley, New York, 1971.

Moorse, E. N., Theoretical Mechanics, Wiley, New York, 1983.

>

Textbooks on Mechanics—Undergraduate Level

Beer, F. P, and Johnston, E. R., Vector Mechanics for Engineers, 3rd ed., McGraw-Hill,
New York, 1977.

Hibbler, R. C., Engineering Mechanics, Macmillan, New York, 1986.

Martin, G. H., Kinematics and Dynamics of Machines, 2nd ed., McGraw-Hill, New
York, 1982.

Meriam, J. L., and Kraige, L. G., Engineering Mechanics, Wiley, New York, 1987.

Shames, I. H., Engineering Mechanics, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ,
1980.

Synge, J. L., and Griffith, B. A., Principles of Mechanics, 3rd ed., McGraw-Hill, New
York, 1959.

Textbooks on Mathematics Relevant to Mechanics

Jeffreys, H., and Jeffreys, B. S., Methods of Mathematical Physics, 3rd ed., Cambridge
Univ. Press, London, 1956.

Hildebrand, F. B., Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs,
NJ, 1976.

Sokolnikoff, I. §., and Redheffer, R. M., Mathematics of Physics and Modern Engineer-
ing, 2nd ed., McGraw-Hill, New York, 1966.

Other Books of Interest

Chobotov, V. A., Orbital Mechanics, AIAA Education Series, AIAA, Washington, DC,
1991.

Hughes, P. C., Spacecraft Attitude Dynamics, Wiley, New York, 1986.

Regan, F. J., and Anandakrishnan, S. M., Dynamics of Atmospheric Re-entry, AIAA
Education Series, AIAA, Washington, DC, 1993.

Shabana, A. A., Theory of Vibration, Springer-Verlag, New York, 1991.

Thomson, W. T., Theory of Vibration with Applications, 3rd ed., Prentice-Hall, Engle-
wood Cliffs, NJ, 1988.

Willems, P. Y. (ed.), Gyrodynamics, Euromech 38 Colloquium, Springer-Verlag, Berlin,
1974,
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Acceleration
Cartesian (rectangular) coordinates, [[4]
cylindrical coordinates, [3
spherical coordinates, [[5]

Accelerometer, 210
Angular momentum,[19,E9 24174
change of, BR=401

Apsidal point, 4]
Automobile collision
head-on,
with acceleration,

Bessel functions,
Bessel equation,
Fourier—Bessel series, BRI=353
gamma function,
integer order,[349=350]
properties, 331
table,[354=362]

Brehme diagram, BI0-313]

Bulk viscosity, [30, [3d

Calculus of variations, I6=3
Euler—Lagrange equation,
with prescribed condition, 79,81

Coefficients
calculation of Fourier series,
friction, [74,
restitution, B3
structure,[§9
viscosity,

Collisions of spheresm
central impact, B3
elastic, B3]
head-on, 9]
inelastic,
oblique central impact,

Conservative forces, B1=23

Contour imegralion,m
analytic function, B39
Cauchy’s integral formula,[341
Cauchy-Riemann equations, 339
line integrals, B40
poles and residues, 343, B3

Conversion factors, [, @

Conversion of coordinates
general description, 1a
spherical surface,

367

Subject Index

Coordinates
Cartesian, [[3,[[4
conversion of, m, 13 48
cylindrical, [4, 8 E2 B3
generalized, EE
principal (normal),m
spherical, [.83,
rectangular, B3

Cramer’s rule, =

D’ Alembert’s principle.
Determinants, 3273, B2
Dimension, [
Dimensional homogeneity, 2]
Dyadics,m, 24 =3
Dynamic matrix,
Dynamics [3
Dynamics of a rigid body,
centrifugal force,[[33
Chasles’s theorem,

conversion of reference frames, [32-T34

Coriolis force, [33

Euler equations, &1

Euler’s angular velocity,
Euler’s theorem, [[43],

Eigenvalues and eigenvectors, Bas=247
Elliptical orbit,
Equation of motion
cylindrical coordinates, &2,
particle, [RT=64]
rectangular coordinates, @
special relativity theory, B13, BI8
spherical coordinates, B3,
Euler angles, [[Z1],
Euler’s theorem, [[43, [[32

Forces

constraints on Lagrangian equations, ﬂ

conservative, ZT=23
Coriolis, [33
generalized. [d
gravitational, 40 A1, B8 1
gyroscopic, [[63] [[64]
internal, m

Fourier integral,

conditions,
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Fourier integral (continued)
cosine, @
sine,
Fourier interval, [82
Fourier series,
calculation of coefficients, [84=186]
conditions,
cosine, [[83
sine, [B3
Fourier transform, 09, [0d
application,
discrete transform, 221
discrete inverse transform, 227
inverse transform, [fod
table,
Friction coefficient, 74, [73
Fundamental frequency and mode,[237
Further reading,

Generalized coordinates,[33 54
Generalized forces, 53
Generalized velocities, 54
Geodesic,d
on a right circular cylinder, 73
on a sphere, B4
Gravitational force, B0 [, Bq X3
Gyroscopic motion,
forces, &3, [[64]
gyro-compass, [63
single-degree-of-freedom gyro,

Hamilton’s principle, [G6=201
canonical equations, B

Hohmann’s approach, [[07

Holonomic constraints, ()

Inertia
frame of reference, Bl

generalized parallel axis theorem, [29]

moment, [27]
product, ekl
tensor,
Inertial frame of reference.[6]
Integrals
Cauchy’s formula, 341
Fourier,
line,
Internal forces, B2
Interplanetary trajectories, [07=1131
elliptical orbit,
Hohmann'’s approach, [07
Oberth’s approach,
parabolic orbit, 13, 13
traveling time, [09, (12, I3
Instructions for computer programs,
Inverse matrix, [12, B30
[sotropic tensor,

INDEX

Kinematics,[3]
Kinetic energy,lz__ll
Kinetics, Bl

Lagrangian equalions,
conservative system,
constraint forces,[72

Lagrange multiplier,[72, Bl
constrained,
first form,[52
nonholonomic constraints,

Laplace transform,
applications, 2T4=217, ZT0=271]
conditions, [97
convolution,
inverse Laplace transform, m
properties, [07-203
singularity functions, Z0T=203
table, ﬁ

Line of impact, B3]

Line of nodes,

Lumped parameter systems with transfer

matrices. [255-260

mass-spring systems,[235-25§
torsional systems, Z58=261
vibrating beams, Z61=266]

Mass-spring system, Z34=237 25523
Matrices [TT3-121, BZ7=3301
Cramer’s rule, [Tl
inverse, [T, 329, B30
line of nodes.
linear transformation, [T5=121]
orthogonal. [I8]
properties, BZR=33(]
rotation,
Missile collision.BZI=31
Moment of inertia, 27

Motion, (00, [R2=TAR P03

Newton'’s laws of motion, [
Newtonian fluid,[33
Nonlinear vibrations, ZX9
Nutation,

Oberth’s approach, [08
Orthogonal matrix, [T
Orthogonal transformation, [T7]

Parabolic orbit, m

Partial fraction, 331=3341

Particle in central force field, B22=103
elliptical orbits, [O8=T00
escape velocity,[76]
inverse square law,[93]



Particle in central force field (continued)
Kepler’s law of area, [00
period of motion,
total energy,
trajectory equation, B3
velocity of Earth,
velocity on circular orbit, 22

Plane of contact, E3

Planetary data, BZ3]

Position vectors
Cartesian coordinates, [3
cylindrical coordinates, [[4]
spherical coordinates, 3]

Potential energy, BET-Z4]
outside a uniform sphere, 1], 2
inside solid sphere, E21[@3

Precession,

Principal axes, [32]

Principal stresses, 129

Richter scale,

Rockets
air drag, B
center of thrust,[R7
conditions at burnout, [8 B
mass ratio,
optimization of muitistage, B0=92
payload ratio,[E3
slabilily,@
structure coefficient, 9
thrust, B8l

Rotating top
nutation,
precession,

Rotation matrix,[[19-121]

Rotation operators,
combination of two rotations, [[43—-149
definition, [[37]

Euler angles,
Euler’s theorem,
properties,
Runge—Kutta method, E [®R[E19.62d

Seismometer, ZOR—2104
Separation of variables method, 69,
278
Single-degree-of-freedom gyro, [164]
Small perturbation method,
Sound waves,2ZR7-289
Space vehicle,[T03=112]
electrical propulsion system,
Special relativity theory, B03-318]
addition of velocities, B1d
Albert Einstein’s assumptions, B03
Brehme diagram, BT0=313
equation of motion,[313,B31d
kinetic energy,m
Lorentz lransformalion,m

INDEX

Lorentz-Fitzgerald contraction, 303
Michelson—Morley experiment,
Minkowski space,
moving clock,
twin brothers, BI3
Spheres
collisions, Bd=30
geodesic,
pendulum,
surface, B0
Stability of vibrating systems,[Z94=299]
phase plane,
stability around singular point, 296-299
Statics,
Stoke’s theorem, 321323
Stress matrix, [29=133
principal axes,
principal stresses,
System matrix,243

Tensors, [Z1=123
Cartesian, [21-123]
inertia,
isotropic,
ranks,

Torque on satellite in circular orbit, [Z2=177
centrifugal effect, [74]

Coriolis effect,
gravitational effect, [73
pitching, [74

rolling, [72

yawing, [T, [[79

Trajectories
interplanetary, [07=113
missile, 4,2
space vehicle, =l

Transformation
linear,

Lorentz, %@
orthogonal,

Transforms
Fourier, [[93, 96 225-227, B33
L% e, [96-203) BT4-211, P19-221,334.

U-joint connection, [,
Units, [0

Vector
algebra,[2,
differentiation, 3[4
operations,[4
position,

Velocity, 54, P8 [97, [[36=T161,

Cartesian (rectangular) coordinates,

cylindrical coordinates,
spherical coordinates,
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Vibration of automobile, 212, 213,239, Vibrations of continuous systems,[Z66—280]
40,303 Vibrating beam, D742%2]
Vibration systems with single degree of assumptions,27d
freedom, Z03=224] boundary conditions, b73 73
critically damped motion, 204 equation, 277
harmonic excitation,[205=207] simply supported beam,2ZR=2%2]
natural frequency, 2041 Vibrating membrane,
overdamped motion, assumptions, EE3]
packaging analysis, ZTR=221] equation, 284
pseudo-acceleration spectrum, 2241 radially symmetric membrane [284-2871
pseudo-response spectrum, 224] Vibrating string, DEZ274]
response spectrum,[221], 272 assumptions,
Richter scale, equation 268
seismometer, ZOR=2100 general solution 273 D741
transient vibration, 2142211 solution with initial displacement, 268273
traveling vehicle, 212 D13 Viscous stress
underdamped motion, bulk viscosity, [36]
unfavorable speed, D13 coefficient of viscosity, [3G]
velocity spectrum,222=224] Newtonian fluid, 33
vibration absorber, 211, 2121 pure strain rate dyadic,[[33]
Vibration systems with multiple degrees of rotation dyadic, [33]
freedom, 233301 Virtual displacement,ﬁl
automobile vibration, 239,240 Virtual work [7=9]
damped system, 242244
eigenvalues and eigenvectors, 248, 047
forced harmonic excitation, D40=2401 Wave equations
mass-spring system, 034217 one dimensional. 268l
matrix formulation, Z44=254] three dimensional, 288l
modal matrix, Z48] two dimensional, 284
natural frequencies,234=236 Whirling shaft,Z290-294]
principal (normal) coordinates, ZA7-23500 assumptions. 2901
principal modes, 238 maximum deflections, 292204
steady-state solution, 2371 rotating at a constant speed 291
torsional system, Z37-239] rotating with acceleration, Z91=204]

viscously damped systems [253, 054 Work,
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