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Foreword 

Advanced Dynamics by Shuh-Jing (Benjamin) Ying provides a comprehensive 
introduction to this important topic for aeronautical or mechanical engineering 
students. It is written with the student in mind by explaining in great detail the 
fundamental principles and applications of advanced dynamics. The applications 
are first illustrated on simple problems, such as the collision of two bodies, and then 
demonstrated on much more complex problems, such as a two-impulse trajectory 
for space probes. Dr. Ying is a Professor at the University of South Florida in 
the Department of Mechanical Engineering, and his research interests include 
dynamics, vibrations, mechanical design, and heat transfer. Also, in addition to 
his extensive research activity and numerous publications, Dr. Ying has taught 34 
different courses in mechanical engineering. 

The text covers all the essential mathematical tools needed to analyze the dynam- 
ics of systems: vector algebra, conversion of coordinates, calculus of variations, 
matrix algebra, Cartesian tensors and dyadics, rotation operators, Fourier series, 
Fourier integrals, Fourier transforms, and Laplace transforms (in Chapters 1, 6, 
and 8). Chapters 1 through 3 start with a review of elementary statics and dynam- 
ics, followed by a discussion of Newton's laws of motion, D'Alembert's principle, 
virtual work, and kinematics and dynamics of a single particle or system of parti- 
cles. Chapter 4 introduces Lagrange's equations and the variational principle used 
in dynamics. Chapter 5 is devoted to the dynamics of rockets and space vehicles, 
while Chapters 7, 8, and 9 discuss the dynamics of a rigid body and vibrations of 
continuous systems as well as lumped parameter systems with a single degree or 
multiple degrees of freedom. Nonlinear vibrations are also included. Chapter 10 
discusses the Special Theory of Relativity and its consequences in kinematics and 
dynamics. 

The Education Series of textbooks and monographs published by the American 
Institute of Aeronautics and Astronautics embraces a broad spectrum of theory 
and application of different disciplines in aeronautics and astronautics, including 
aerospace design practice. The series also includes texts on defense science, en- 
gineering, and management. Over 50 titles are now included in the series, and the 
books serve as both teaching texts for students and reference materials for practic- 
ing engineers, scientists, and managers. This recent addition to the series will be 
a valuable text for courses in engineering dynamics in aeronautical or mechanical 
engineering programs. 

J. S. Przemieniecki 
Editor-in-Chief 
AIAA Education Series 



Preface 

Dynamics is the foundation of physical science and is an important subject of 
study for all engineering students. Although the fundamental laws of dynamics 
have remained unchanged, their applications are constantly changing. One hun- 
dred years ago, there were no automobiles, no airplanes, and no space vehicles. 
Advances in science and technology provide us with many new dynamic devices. 
For example, the gyroscopic effect of the rotating propeller in airplanes creates 
diving during yawing. When a satellite travels in a circular orbit, the motions of 
rolling and yawing also can produce pitching. During times of war, shooting a 
missile flying in its orbit is another subject with real and important implications. 
Is it possible to shoot a space probe from the surface of Earth to Mars by one im- 
pulse? All these scenarios are important and interesting, and understanding them 
begins with the study of dynamics. 

As I teach advanced dynamics, I feel that there is a need for a textbook that 
covers subjects related to recent developments. A book that includes my lecture 
notes may fulfill this need, and this is my primary motivation for writing this book. 
In addition, this book is intended not only for students in the classroom but also 
for practicing engineers who wish to update their knowledge. For this reason, the 
book is self-contained with fundamentals in vector algebra, vector analyses, matrix 
operations, tensors and dyadics. The details are clearly and explicitly presented. I 
have been teaching advanced dynamics for more than l0 years, and I often tell my 
students that I have nothing to hide. This is the spirit of this book. Anyone who 
reads the book should not only understand current developments in dynamics but 
also can learn some of the foundations of mechanical engineering necessary to 
understand papers published in recent journals. 

Further, I hope this book will show the reader that dynamics is an exciting 
field with many new problems to be solved. For example, there are challenging 
problems concerning the motion of a space vehicle traveling in a general orbit, and 
also in the design of robots and complex automatic machines. Lastly, a chapter 
on the special relativity theory is included. This is intended to show that space 
and time are related. Just a few days in one system can be many years in the 
other system. Past events in the stationary system can be observed at present in 
another system traveling near the speed of light. All these are not fairy tales, but 
are scientifically true. The purpose of this part of the book is to broaden readers' 
minds. Anything is possible. 

The contents of this book are briefly described as follows: In Chapter 1, funda- 
mental principles and vector algebra are reviewed. This chapter may be skipped 
by well-prepared students. Chapter 2 deals with kinematics and dynamics of a par- 
ticle. First, the kinematics of a particle in various coordinate systems is discussed. 
Next, examples concerning trajectories of missiles and reentry of space vehicles 

xi 
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are presented. Lastly, fundamental concepts such as work, conservative force, and 
potential energy are reviewed. Chapter 3 is devoted to the dynamics of a system of 
particles. Besides items commonly introduced in this chapter, the mid-air collision 
of missiles is given in detail including a computer program that determines the 
trajectory of the second missile. Collisions of solid spheres are also introduced 
in this chapter. This can be considered as the first approximation for automobile 
collisions. To balance theoretical aspects and practical applications, gravitational 
force and potential energy also are studied in this chapter. 

Chapter 4 is a major chapter in this book. Many important topics are included. 
Many engineering students have difficulty formulating equations for motion for 
a particle or a body. Lagrange's equation is intended to help students find the 
equation of motion. Students only need to have the knowledge of kinetic and po- 
tential energies of the mass for formulating the equations. Hamilton's principle is 
a parallel approach to Lagrange's equations. With the study of Hamilton's princi- 
ple, students will better understand the equations of motion. Lagrange's equations 
with constraints also are introduced. Constraint forces and Lagrange multipliers 
are derived. Many examples are given for Lagrange's equations. Students should 
be familiar with this subject if a proper effort is devoted to study. The variational 
principle is included in this chapter. Through this approach, Lagrange's equation 
for a conservative system also can be reached. The purpose of the variational 
principle is for optimization. A case of optimization with a constraint condition 
is studied also. Many examples are given to demonstrate the application of the 
variational principle. 

Chapter 5 is devoted to the dynamics of rockets and space vehicles. This is 
another demonstration of the balance of theory and practice in this book. Essential 
characteristics of rockets are studied in a single-stage rocket. The advantage of 
multistage rocket and use of the Lagrangian multiplier for maximizing the burnout 
velocity are included. A space vehicle traveling in a gravitational field is treated 
extensively in Section 5.3. Different trajectories are discussed. Special attention 
is devoted to the elliptical orbit. The trajectory for an electrical-propulsion rocket 
is given in Section 5.4. The equations involved in electrical propulsion typically 
belong to a small perturbation theory. Equations of motion are solved analytically 
in the chapter. Interplanetary trajectories are discussed in Section 5.5. The journey 
from Earth to Mars' surface is used to demonstrate the procedure for calculating 
the impulses required for the whole trajectory. After a review of previous work, 
the use of two impulses for sending a space probe from Earth to Mars' orbit and 
spiraling down to the surface of Mars is discussed in detail. In this way the long 
and detailed observations can be made by the space probe. 

Chapter 6 is for matrices, tensors, dyadics, and rotation operators. This chapter 
is entirely mathematical, so that engineering students are exposed to more applied 
mathematics. Some applications are included with each subject to make them eas- 
ily understandable and more interesting. For example, through rotation operators 
it is proved that two successive rotations can be combined into a single rotation. 
This can actually reduce the time for rotational motions. Engineers wishing to 
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extend their knowledge through journal papers should pay special attention to this 
chapter. 

The dynamics of a rigid body are studied in Chapter 7. Because many objects 
may be modeled as rigid bodies, the analyses presented in this chapter play an 
important role in this book. The first three sections present fundamental principles. 
Some additional sections are included here describing the gyroscope and the 
orbiting space vehicle. The gyroscopic effect of a rotating propeller in an airplane 
causing the plane to dive during yawing is studied here in detail. The major 
application of the angular momentum of a rigid body is the gyro-compass. Two 
examples are particularly aimed in that direction. Furthermore, the motion of a 
heavy symmetrical top and induced torques because of flight operations on a 
satellite in circular orbit also are treated in detail in this chapter. 

Chapters 8 and 9 are devoted to the study of vibrations. In Chapter 8, math- 
ematical topics that are necessary for analyzing vibration problems are first pre- 
sented. These topics are Fourier series, Fourier integral, and Fourier and Laplace 
transforms. The Laplace transform is treated as a special case in Fourier transfor- 
mation. Applications include one-dimensional damped oscillations and transient 
vibrations. Advanced topics in vibration are treated in Chapter 9. Starting from 
a two-degree-of-freedom system, some examples in a lumped parameter system, 
a continuous system, and nonlinear vibrations are studied. Stability analysis of 
vibrations in a phase plane is also discussed. 

Chapter 10 covers the Special Relativity Theory. This is arranged here to broaden 
readers' minds. The time and space coordinates are related such that for one person 
traveling near the speed of light, just a few days for this person can be many years 
to a person in a stationary system. This is proved to be true scientifically. Moreover 
one also can prove that an event in the past could be observed as a present event in 
another system. Readers are urged to consider that, just as space and time are now 
interrelated through the relativity theory, new developments may one day modify 
our thoughts concerning our most basic scientific concepts and principles. 

In conclusion, I wish to thank Sue Britten for providing valuable support in the 
process of accomplishing this book. 

Shuh-Jing (Benjamin) Ying 
July 1997 
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1 
Review of Fundamental Principles 

T HIS chapter reviews the fundamental principles necessary for the study of 
advanced dynamics. Although these principles may be familiar to students 

who have studied elementary mechanics, they are included here so that this book 
is reasonably self-contained. 

The concepts of dimensions and units are reviewed in Section 1.1. Familiarity 
with these concepts will greatly facilitate formulating equations, checking di- 
mensional homogeneity of an equation, and converting units. A brief review of 
vector analysis is given in Section 1.2. Formulas frequently used in this book 
are presented. Section 1.3 contains the definitions of statics and dynamics and a 
discussion of the difference between kinematics and kinetics. Section 1.4 presents 
Newton's laws of motion. The second law is written in an expanded form to in- 
clude the effect of changing mass, which is essential for analyzing the dynamics 
of a rocket or any object with variable mass. D'Alembert 's principle is presented 
in Section 1.5. Through the use of D'Alembert 's principle, dynamic problems are 
simplified to static ones. Section 1.6 reviews the principles of virtual displace- 
ment and virtual work, which are the foundation for the derivation of Lagrange's 
equations discussed in Chapter 4. 

1.1 Dimensions and Units 

A dimension is the measure by which the magnitude of a physical quantity is 
expressed. In dynamics, there are usually four dimensions: mass, length, time, 
and force. A unit is a determinate quantity adopted as a standard of measurement. 
As shown in Table 1.1, the International System of Units (SI) specifies mass in 
kilograms (kg), length in meters (m), time in seconds (s), and force in newtons 
(N). In the British Gravitational System (BG), mass is measured in slugs, length in 
feet (ft), time in seconds (s), and force in pounds (lbf). It is important to mention 
that understanding dimensions and units will prevent errors from occurring when 
analyzing problems and converting units. The conversion factors for the two 
systems are given in Table 1.1. 

Of the four dimensions mentioned in Table 1.1, mass, length, and time are 
considered as primary dimensions and force as a secondary dimension. Force can 
be expressed in terms of mass, length, and time as follows: 

1 N = 1 kg-m/s 2 (1.1) 

1 lbf = 1 slug ft/s 2 (1.2) 

The following example illustrates the technique used in the conversion of units. 

m 1 ft 1 mile 3600 s 
1 km/s  = 1000 

s 0.3048m 5280ft 1 h 

= 2236.94 mph 



2 ADVANCED DYNAMICS 

Table 1.1 Conversion factors 

Dimensions SI unit BG unit Conversion factor 

Mass, M Kilogram, kg Slug 1 slug = 14.5939 kg 
Length, L Meter, m Foot, ft 1 ft = 0.3048 m 
Time, T Second, s Second, s 1 s = 1 s 
Force, F Newton, N Pound, lbf 1 lbf = 4.4482 N 

When discussing units and dimensions, it is worthwhile to mention that each term 
in an equation must have the same dimension, and the dimensions on both sides 
of  the equal sign must be the same. This is known as the principle of  dimensional 
homogeneity. Application of  this principle will prevent algebraic errors from 
occurring in complicated manipulations of  equations. 

1.2 Elements of Vector Analysis 
Physical quantities in mechanics can be expressed mathematically by means 

of  scalars and vectors. A quantity characterized by magnitude only is called a 
scalar. Mass, length, time, and volume are scalar quantities. A vector is a quantity 
that has both a magnitude and direction and obeys the parallelagram law of  
addition. Force, velocity, acceleration, and position of a particle in space are 
vector quantities. 

A vector can be broken down into several components according to convenience. 
In the Cartesian coordinate system, a vector a can be expressed in its components as 

a = axi -t- ay j  -I- azk 

where ax, ay, and az are the components of the vector, and i, j ,  and k are the 
corresponding unit vectors. Because vector analysis plays an important role in 
dynamics, fundamental mathematics of  vectors is presented in this section. Note 
that throughout the book, vectors are denoted by bold letters. 

Vector Algebra 

Vector addition. The addition of  two vectors a and b is computed as 

c = a W b  

= axi + ay j  + azk + bxi + by j  + bzk 

= (ax + bx)i + (ay -1- by)j q- (az + bz)k (1.3) 

Vector subtraction. Vector subtraction, being a special case of  vector addi- 
tion, is performed as 

c = a - b  

= (ax - bx)i + (ay - by) j  --F (az - bz)k (1.4) 
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Scalar product of two vectors. The scalar product of two vectors a and b is 
written as a .  b, which is a scalar quantity, and is defined as 

a.  b =abcosO (1.5) 

a • b axbx + ayby + azbz 
cos 0 = = (1.6) 

ab ab 

where ax, ay, az, bx, by, and bz are components of vectors a, b, and a is the 
magnitude of vector a and b the magnitude of vector b. 

Gross product of two vectors. The cross product of two vectors is written 
as a x b, which is a vector, and is defined as 

a x b = (absinO)e 

where 0 is the angle between vectors a and b, and e is a unit vector perpendic- 
ular to the plane containing vectors a and b, and in the direction according to 
right-hand rule. The mathematical operation of the cross product is performed as 
follows: 

j k 

a x b = ax ay az 

by bz 

= i(aybz - azby) +j(azby - axbz) + k(axby - aybx) (1.7) 

Triple scalar product. The triple scalar product of three vectors a, b, and c 
is defined as a. (b × c). The result is a scalar quantity and is obtained as 

a.(b x c ) =  

i i  ay az 

bx by bz 

Cy C z 

(1.8) 

Triple vector product. The triple vector product of three vectors a, b, and c 
is defined as a x (b x c). The result is a vector quantity and is obtained as 

ax(b×c)=(a .c )b - (b .a )c  (1.9) 

Differentiation 

The derivative of a vector, which is a function of time, is defined as 

dV V(t + At) -- V(t) 
- - =  l i m  ( 1 . 1 0 )  
dt Ate0 At 
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From the definition given in Eq. (1.10), the derivatives of  the product of  a scalar 
and vector, the scalar product of  two vectors, and the cross product of  two vectors 
are given in the following equations: 

d dot dV 
~(o tV)  = -~-V + ot--~- (1.11) 

d da db 
- - ( a .  b )  = - - .  b + a .  - -  ( 1 . 1 2 )  
dt dt dt 

d da db 
- ~ ( a  x O) = d t  x b + a x d t  ( 1 . 1 3 )  

where a, b, and V are vectors and ot is a scalar. If  V is expressed in its Cartesian 
components, then V ---- Vii + V2J + V3k, and its derivative is 

dV dVl.  , 
dt -- ~'~t 

In a general case, the unit vectors et, e2, 
space as time progresses; then V = Vie1 
can be written as 

dV dVl dV2 dV3 de1 . de2 . de3 
dt -- d~ -el + ---~-e2 + -~---e3 + VI-~- + v2-~- --I- v3--~- 

or 

dV2 "-I- d~kVa (1.14) 
- ~ J  dt 

and e3 may change their orientations in 
+ V2e 2 + V3e3,  and the derivative of  V 

dV 
- -  = Vlel + ¢2e2 + ~e3  + Vie1 + V2ez + V3e3 dt 

where ¢'i and ei are the time derivatives. 

(1.15) 

Gradient, Divergence, and Curl Operations 
The gradient of  a scalar ~b is defined as 

Gradient ~b = V~b= iO~x +j~y +k~z 

The divergence of  a vector F 

(1.16) 

D i v F  = V . F  = 

The curl of  a vector F is defined as 

i j 
0 0 

C u r l F  = V × F = 
Ox 0y 

Fx Fy 

Ox + 3-7 

F~ 

i( z apy'  .l px  Pz). 
\ Oy ~z ] Ox } Oy } - +Jr *"t, 

(1.17) 

(1.18) 



REVIEW OF FUNDAMENTAL PRINCIPLES 5 

While discussing the curl of a vector, it is interesting to examine the physical 
meaning of the curl of the velocity vector of a rotating body, V. To do this, V is 
expressed in terms of rotating velocity w and position vector r, then 

V = w × r  

= i(w2z -- w3y) J-j(w3X -- O)lZ) "~- k(wly - -  oA2x) 

where wl, w2, and w3 are the components of w, and x, y, and z are the components 
of r. The computation of curl V gives 

V x V = -~x Oy Oz 

(O)2Z - -  w3y) (m3x - wlz) (wly -- O)2X) 

= i2091 +j2092 + k2o93 = 2w (1.19) 

Therefore V x V is related with rotational velocity and is known as vorticity in 
fluid mechanics. 

1.3 Statics and Dynamics 
Statics is the study of objects at rest or in equilibrium under the actions of 

forces and/or torques. The equations of statics for different dimensions of space 
are summarized as follows. 

For a one-dimensional problem, 

E F = 0 (1.20) 

For a two-dimensional problem, 

Z F x = O ,  Z F y  = 0 ,  Z M o = O  (1.21) 

where Fx, Fy are the components of force in the x and y axes, respectively, and 
Mo is the moment with respect to a reference axis o perpendicular to the x-y 
plane. 

For a three-dimensional problem, 

Z Fx=O, E Fy=O, Z Fz=O (1.22) 

E Mxx =0' E Myy =0, E Mzz =0 ( 1 . 2 3 )  

where Mxx, Myy, and Mzz are the moments with respect to the x, y, and z axes, 
respectively. Therefore, in general, there are six unknowns to be determined by 
six equations for the three-dimensional problem. 

Dynamics is the branch of science that studies the physical phenomena of a 
body or bodies in motion. Dynamics usually includes kinematics and kinetics. 
Kinematics concerns only the space-time relationship of a given motion of a 
body, not the forces that cause the motion. Kinetics concerns finding the motion 
that a given body or bodies will have under the action of given forces, or finding 
what forces must be applied to produce a prescribed motion. 
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1.4 Newton's Laws of Motion 

Dynamics is based on Newton's laws of  motion, which were written by Sir Isaac 
Newton in the 17th century; however, before stating his laws we must introduce 
the concept of  a "frame of  reference." The position, velocity, and acceleration of  a 
particle in space must be described relative to other points within the space; that is, 
there must exist a frame of  reference in the space. Newton's laws of  motion apply 
only when the frame of  reference is either fixed in space or moving with constant 
velocity. Such a frame of  reference is called an inertial frame of  reference. An 
Earth-fixed reference frame usually is acceptable as an inertial reference frame 
for solving many engineering problems even though the Earth is moving relative 
to the sun with a speed of  29.8 km/s and a radius of  curvature of  1.495 x 108 km. 
Newton's laws of  motion are stated as follows: 

First law (law of inertia): A particle remains at rest or at a constant velocity if 
the resultant force acting on the particle is zero. 

Second law (the basic equation of motion): The rate of  change of  a particle's 
linear momentum is proportional to the force applied to the particle and occurs in 
the direction of  the force. 

Third law (law of action and reaction): For every force a particle exerts on 
another particle, there exists a reaction force back on the first particle; these two 
forces are equal in magnitude and opposite in direction. 

There are advantages to stating the second law as just shown. For example, a 
body with changing mass with respect to time can accelerate without any external 
force applied. To substantiate this statement, the equation of  motion is written as 

dmV dV dm 
- - m - - + V - - = 0  

dt dt dt (1.24) 
ma = - th  V 

This result shows that, if the body is a rocket, the thrust of  a rocket is the product 
of  the mass flow rate and its velocity, and the direction of  thrust is opposite to the 
velocity. Because of the way the second law is stated, the equation of  motion for 
a particle with constant mass can be written as 

F = (1/gc)ma 

o r  
w = (1/g,.)mg (1.25) 

In the preceding equation, if the unit of  mass is pounds of  mass and that of  the 
force is pounds of  force, 

Ibm • ft 
gc ----- 3 2 . 1 7 4 - -  

lbf- s 2 

However, for the International System of Units (SI) and British Gravitational 
System (BG) units, gc is reduced to unity and can be omitted in Eq. (1.25). 

1.5 D'Alembert's Principle 

In statics, we  are familiar with 

Er=0 
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From this we can solve for the three unknowns in three-dimensional space. In 
dynamics, the equation of motion for a particle with constant mass is written as 

F = m a  (1.26) 

where y~ F is the sum of the external forces acting on the particle, m is the particle 
mass, and a is the acceleration of the particle relative to an inertial reference frame. 
Now, we rewrite the equation as 

F - m a  = 0 (1.27) 

and consider the term - m a  to represent another force known as an inertia force, 
then Eq. (1.27) simply states that the vector sum of all forces, external and inertial, 
is zero. Thus, the dynamics problem has been reduced to a statics problem. This 
conversion in concept is known as D'Alembert's principle. Similarly, for a body 
in rotation, the equation of motion is 

T = Ic~ (1.28) 

where ~ T is the sum of external torques applying on the body, I is the mass 
moment of inertia of the body with respect to the rotating axis, and c~ is the angular 
acceleration of the body. Equation (1.28) also can be written as 

T - Ic~ = 0 (1.29) 

Similar to Eq. (1.27), Eq. (1.29) states that the vector sum of all torques, external 
and inertial, is zero. Furthermore, the combination of Eqs. (1.27) and (1.29) can be 
applied to solve problems for a body simultaneously undergoing translation and 
rotation. In conclusion, this change of concept from dynamics to statics greatly 
simplifies complicated dynamic problems in mechanics. 

1.6 Virtual Work 

Consider a system of N particles whose positions are specified by Cartesian 
coordinates xl, x2 . . . . .  x3u. Suppose that there are 3N forces F1,/'2 . . . . .  F3N 
applied to the particles in the direction of each coordinate. The forces are in static 
equilibrium. Now imagine that at a given instant the system is given arbitrary and 
small displacements 3Xl, 3x2 . . . . .  ~X3u in the direction of each coordinate. The 
work done by the applied forces is 

3N 

S w  = ~ FiSxi  (1.30) 
i=1 

6w is known as virtual work and the small displacements 3xi are called virtual 
displacements. Equation (l.30) can be written in vector notation for the virtual 
work as 

N 

811) = ~-~ F i  • ~ri (1.31) 
i=1 

where f i is the force applied to particle i and 8ri is the virtual displacement. 
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Similar  to particles in a solid, if particles in space are in static equilibrium, 
they do not move relative to each other. Total force applied to particle i is the 
combination of  the applied force Fi  and the internal force 

N 

Z Fi j  
j = l  

( j  ¢ i )  

duc ~9 other particles. Therefore the equation for the total force is 

(Fr)i = Fi + (Fc)i : 0 (1.32) 

where 

N 

(Fc) i  = Z F i j  
j = l  

( j  ¢ i) 

and ( F r ) i  = 0 because of  equilibrium• 
Because the total force is zero, the work done by the total force must be zero, 

that is, ( F r ) i  • ~ri = 0. The virtual work of all the forces as a result of  the virtual 
displacement ~ri is 

N 

~ ( F  i q- Fci ) • ~r i : 
i=1  

The second term of  the preceding 

N 

(Fc)i • ~r i -.~ 
i=1  

N N 

Z Fi  . ~ri q- Z Fci . ~ri : O 
i=1  i=1  

equation is further explored as follows: 

N 

Z ( F i j )  • ~ri 
i,j 

• . . F k e  "~rk + F e k  • ~re + . . .  

• . . F k e  • ~rk - - F k e  • 6re + . . .  

• . . F t ~ .  (6rk - ~re) + . . .  

• " F k e  • ~(rk -- re) + " "  

(1.33) 

N 

~-a  (Fc) i  • 8ri --~ 0 
i=1  

N 

~tO = Z Fi  . ~ri = 0  
i=1  

(1.34) 

in which i = k, j = £ is considered in the first term and i = e, j = k in the second 
term. The symbol 3(rk - re) is the change of  rk - re in the solid and can occur 
only in the direction perpendicular to r~ - re, but Fke is along rk - &, hence the 
dot product must be zero. Therefore, 
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i.e., the virtual work of  applied forces is zero. The concept of  virtual work will be 
used for the derivation of  Lagrange's  equations. 

Example 1.1 
Using the method of  virtual work, determine the relationship between the torque 

T applied to the crank R and the force F applied to the slider in the mechanism 
to be shown in Fig. 1.1. 

Solu t ion .  According to the conditions given in Fig. 1.1, the vector forms of  
torque, force, and displacements can be written as 

T = - k T ,  80 = kSO 

F = - i F ,  8x  = iSx 

In static equilibrium, the total virtual work 8w is zero, and its equation is 

3w = - T S O  - F 6 x  = 0 (1.35) 

From the given geometry, we have 

x = R c o s 0  + L cos4) 

R s i n 0  = h = L sin~b 

Solving the two equations, we obtain 

cos 4) = ~/1 - sin2q~ = ~/1 - (R /L )2s in20  

x = R cos0  + L~/1 - (R /L)2s in20  

Differentiating the equation for x, we have 

3x = - R  s in030 - ( R 2 / L )  sin0 cos 0 30 
~/1 - ( R / L  )2sin20 

(1.36) 

" / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / , ~  

Fig. 1.1 Crank-slider mechanism. 

tJ i 
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Substituting Eq. (1.36) into Eq. (1.35) and simplifying, we find the required 
relationship between the torque and the force acting on the slider as 

{  cos0 j 
T = F R s i n O  I + L~/1 ---(R-TL~Zsin20 (1.37) 

Problems 
1.1. Determine a unit vector perpendicular to the plane passing through (a, 0, 
0), (0, b, 0), and (0, 0, c). 

1.2. The vectors a and b are defined as follows: 

a = 2 i  - 4k,  b = 3i - 2 j  + k 

(a) Find the scalar projection of  a on b. 
(b) Find the angle between the positive directions of  the vectors. 

1.3. Find the moment of  the force F = i + 2j + 3k, acting at the point (1, 1, 2), 
about the z axis in arbitrary units. 

1.4. Prove that u x (V × v) = V(u - v) - u • Vv, if u is constant. 

1.5. Determine a unit vector in the plane of  the vectors i + k, and j + k, and 
perpendicular to vector i + j  + 2k. 

1.6. Let r represent the position vector of  a moving point mass M, subject to a 
force F.  I f L  denotes the moment of  the momentum my about 0, prove that 

dL d 
dt dt (r x my)  = r × F = M 

where M is the moment of the force F about 0. 

1.7. Do the following: 
(a) Find the unit vector normal to the plane A x  + B y  + C z  = D.  

(b) Prove that the shortest distance from the point Po(xo, Yo, zo) to the plane 
A x  + B y  + C z  = D is given by 

d = 
IAxo + Byo + Czo - DI 

~/A 2 + B 2 + C a 

where the point P0 is located above the plane. HINT:  Let Pl(Xl, yl, zl) be any 
point on the plane and determine the distance by letting PoP1 along the normal 
from the plane. 
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Fig. P1.8 

1.8. A light cable passes around a pulley mounted on smooth beatings as shown 
in Fig. P1.8. The tension on both sides of the pulley is equal. Using the method 
of virtual work, find the displacement of the cable with tension T in terms of the 
vertical displacement of weight W. Assume that the pulleys and cable are light 
and the distance between the upper and lower pulleys is so great that the cables 
may be regarded as vertical. 

1.9. A framework A B C D  consists of four equal, light rods smoothly joined 
together to form a square. It is suspended from a peg at A, and a weight W is 
attached to C. Further, the framework is kept in shape by a light rod connecting 
B and D. Determine the force exerted in this rod. HINT: The method of virtual 
work may be applied if the rod B D is removed and external forces are supplied 
to the joint B and D. 

1.10. Consider a U-joint connecting two shafts that are not along a straight 
line as shown in Fig. PI.10. AB is a shaft, branching into the fork BCD; A'B' 
is another axis, with fork B'C'D'. These forks are connected by a rigid body 
composed of two bars CD, C'D', joined perpendicularly at their common center 
O. The lines A B, ArB ~ meet at O and are perpendicular to C D, C tD ~, respectively. 
There are smooth bearings at CD, C'D' and the axes AB, A'B' are free to turn in 
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k A' 

cl 

/t 

Fig. PI.10 

smooth bearings. With the use of the method of virtual work, determine the torque 
transmitted through the joint. HINT: The velocity at the point D must be the same 
as rotated from two rigid bodies A B C D  and CDC'D' .  Similarly, the velocity at 
D ~ must be the same from A'B'C'D'  and CDC'D' .  Establish the virtual angular 
displacements from two shafts by equating the rotational displacements of CD 
and C ' D'. 



2 
Kinematics and Dynamics of a Particle 

A Particle is defined as a material point without dimensions but containing a 
definite quantity of matter. Strictly speaking, a particle cannot exist, because 

a definite amount of matter must occupy some space. When the size of a body is 
extremely small compared with its range of motion, however, it may be considered 
as a particle in certain cases. For example, although stars and planets are many 
thousands of miles in diameter, they are so small compared with their range of 
motion that they are often considered as particles in space. 

This chapter covers material that should not be totally new to the reader. Cov- 
erage in some areas, such as kinematics of a particle in cylindrical and spherical 
coordinates, is more in depth than that given in an introductory course in dynamics. 
The relationship between curvilinear and rectangular coordinates for unit vectors 
is introduced in Section 2.1 so that velocities and accelerations in curvilinear coor- 
dinates are obtained easily. Some relatively modem examples illustrating particle 
dynamics are given in Section 2.2 although we expect the reader to have some 
familiarity with particle dynamics from studying elementary dynamics. Examples 
concerning missiles and space vehicles given here will be revisited in examples 
describing midair collisions of missiles in the next chapter. The change of angular 
momentum caused by applied moment is discussed in Section 2.3. Example 2.3 
shows that the side force existing between a sliding block and rotating rod can 
be very significant. Work and conservative force are reviewed in Sections 2.4 and 
2.5. They are useful for understanding the concept of potential energy used in 
Lagrangian equations. 

2.1 Kinematics of a Particle 

The location of a particle in three-dimensional space always can be specified 
by a position vector r. Its velocity v is defined as 

d r  
v ~  

dt 

Similarly the acceleration of the particle is defined as 

(2.1) 

d v  
a -- (2.2) 

dt 

Now, let us develop expressions for velocity and acceleration of a particle in 
different coordinate systems. 

Cartesian Coordinates 

The position vector of a particle is 

r = xi + yj + zk (2.3) 

13 
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Note that i, j ,  and k are constant vectors. The velocity v is therefore 

dx dy dz 
v = i--dt + Jd-7 + k~-/ = i~ + j ~  + k~ (2.4) 

and the acceleration is 

d2x d2y d2z 
a = i ~ -  +j~-~- + k~-~ = i~ +J3; + k~ (2.5) 

Cylindrical Coordinates 

The position vector of a particle in cylindrical coordinates is 

r = pep + z k  (2.6) 

where p is the projected length of r in the x - y  plane, as shown in Fig. 2.1. 
The unit vector is ep along p in the x - y  plane and can be expressed in terms of 

unit vectors i and j as 

ep = cos ~pi + sin ~j (2.7) 

A unit vector that is perpendicular to ep but lies in the x - y  plane is denoted by e¢ 
as shown. It also can be expressed in terms of i, j as 

e¢ = - sin q~i + cos ~bj (2.8) 

The velocity of a particle in cylindrical coordinates is 

v = be. + p~p -t- kk 

= p[cos ~bi + sin ~bj] + p ~ [ -  sin ~bi + cos ~bj] + kk 

= be .  + pqbe¢~ + kk  (2.9) 

P 

k r Y 

ep 

Fig. 2.1 Cylindrical coordinates. 
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k ! 

/ 
Fig. 2.2 

z 

0 r t e °  

Spherical coordinates. 

Its acceleration in cylindrical coordinates is then 

dv 
a --- - -  = (/5 - pq~2)ep + (p4; + 2bq~)e~ + £k (2.10) 

dt 

Spherical Coordinates 
The unit vectors in spherical coordinates are denoted by er, eo, and e~. The er 

is in the direction of  position vector r; hence 

r = rer (2.11) 

The e0 is in the plane containing r and the z axis, but is perpendicular to er, as 
shown in Fig. 2.2. The eo is perpendicular to both er and e0. Therefore, they also 
can be expressed in terms of  unit constant vectors i, j ,  and k as 

er = sin0 cos~bi + sin0 sin ~bj + cos0k  (2.12) 

e0 = cos0 cos4fi + cos0 sin 4~j-  s in0k (2.13) 

eo = - sin ~bi + cos ~bj (2.14) 

During the differentiating of r with respect to time, Eqs. (2.12-2.14) are used. 
With some details omitted, the velocity of  a particle in spherical coordinates is 
found to be 

V = Per -I- r e r  

= ?er + r(Oeo + ~ sin 0e~) 

= ?er + rOeo + r~ sin 0e6 (2.15) 

Similarly, the acceleration of a particle can be obtained through the differentiation 
of  v with respect to time and can be expressed as 

a - er(/: - r02 - rq~ 2 sin 2 0) 

+e0(270 + r0  - rq~  2 sin0 cos0)  

+e~b(2Pq~ sin0 + 2r0q~ cos0 + r s in0~)  (2.16) 

Note that with the use of  Eqs. (2.12-2.14), Eq. (2.16) can be reduced to Eq. (2.5). 
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2.2 Particle Kinetics 

In general, a force F acting on a point mass m is a function of  position, velocity, 
and time. The equation of  motion for the particle with constant mass can be written 
simply as 

m'~ = F ( r ,  k,  t )  (2.17) 

Many cases are studied in introductory dynamics. Let us study a few special 
cases in the following examples. 

Example 2.1 
Consider a missile moving in space as a particle with a mass decreasing con- 

stantly. The thrust applied is constant in magnitude and always in the direction of  
the particle's velocity. The coordinates are chosen such that the x - z  plane contains 
the trajectory with the z axis perpendicular to the ground. Find the trajectories of 
the missile for thrust F = 14,500, 15,000, and 15,500 N, respectively. The initial 
conditions of  the missile are m0 = 1000 kg and v0 = 150 m/s at an angle of  80 deg 
with the x axis. The mass decreasing rate of  rh = 3 kg/s. 

Solution. The equation of  motion for the missile is 

o r  

d v  v 
m - -  = F - -  - m g k  (2.18) 

dt Ivl 

d I) x Px 
m = F -  (2.19) 

dt ~ + uz 2 

d Vz vz 
m = F -  m g  (2.20) 

dt V/-~-a2 H- Vz 2 

m = m0 - rht (2.21) 

Equations (2.19) and (2.20) are nonlinear and cannot be solved analytically. How- 
ever, they can be integrated numerically by the Runge-Kutta method given in the 
Appendix A. The trajectory then can be obtained as 

dx 
- -  vx  (2.22) 

dt 

dz 
- -  = Vz (2.23) 
dt 

integrated together with Eqs. (2.19) and (2.21). Three trajectories are obtained for 
the three different values of thrust. The results are given in Fig. 2.3. In the numerical 
integration the increment of  time used is 0.01 s and the total duration is more than 
160 s. A convergence check is performed before the results are calculated. 

Example 2.2 
Suppose that a space vehicle is moving from outer orbit into the atmosphere. 

The aerodynamic drag acting on the vehicle is proportional to the velocity squared. 
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Fig. 2.3 Trajectories of the missile. 
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The coordinates are chosen such that the x - y  plane contains the trajectory and the 
y axis is along - g  as shown in Fig. 2.4. Determine the trajectories of  the space 
vehicle as it descends with initial velocities of  7000, 8000 and 9000 m/s. The 
initial location of  the vehicle is x0 = 0, Y0 = 20 km. And its initial trajectory is 
always parallel to the ground. 

Solu t ion .  According to the given conditions, the equations of  motion can be 
written as 

and 

d p  
m - -  = m g sin ~ - H (v) (2.24) 

dt  

v2 / R = g cosot (2.25) 

where R is the radius of  curvature of  the trajectory and H ( v )  is the aerodynamic 
drag of the vehicle: 

H (v) = mk u  2 (2.26) 

where k, which should be a function of  altitude, is considered as a constant for 
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this example. Equations (2.24) and (2.26) lead us to 

dl) 
- -  = g sin ot - k v  2 (2.27) 
dt  

The value o f k  is estimated to be 1.5 x 10-6 (m- l ) .  However, 

d s  I) 2 (ds /dt)  2 ds dot ds ds dot dot 
V ~  . . . . .  1 ) - -  

d t '  R (ds/dot)  dt  ds  dt  d t  dt  dt  

where ds  is the infinitesimal displacement along the trajectory and ot is the angle 
between the velocity and the horizontal line as shown in Fig. 2.4. Substituting the 
preceding equation into Eq. (2.25), we obtain 

d o t  
v - -  = g cos ot 

d t  

or 

Note that we also have 

dot g cos ot 
- - -  (2.28) 

dt  v 

d x  
- -  = vx = v cos ot (2.29) 
dt  

dy  
- -  : I)y : - - 1 , '  sin ot (2.30) 
d t  

Equations (2.27-2.30) can be integrated by the Runge-Kut ta  method given in 
Appendix  A to find x(t),  y(t), which is the trajectory of  the vehicle with time t as 
the parameter. The result of numerical integration is given in Fig. 2.5. 

m 

w 

X 

R 

Fig. 2.4 Coordinates of the space vehicle. 
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Fig. 2.5 Trajectory of t h e  s p a c e  vehicle. 

2.3 Angular Momentum (Moment of Momentum) of a Particle 
Another aspect of the particle dynamics is the change of angular momentum 

with respect to a certain axis when an external moment is applied. The angular 
momentum or moment of momentum of a particle is defined as 

H = r × m v  (2.31) 

where r is the position vector from the axis to the particle. The relationship between 
angular and linear momentum is shown in Fig. 2.6. The moment produced by the 
force applied to the particle is 

M = r x F  

where F = m ( d v / d t ) .  Differentiating Eq. (2.31) leads to 

d H  dr  dv 
- -  x m v + r × m - -  = r x F = M  

d t  d t  d t  

The term ( d r / d t )  x m y  is dropped because ( d r / d t )  = v and v x v = 0. Hence 

d H  
M = (2.32) 

dt  

I 
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Fig. 2.6 

H t 
/ / /  r ~ ~ v ~ m  V / 

Relationship between angular and linear momentums. 

Example 2.3 
To illustrate the meaning of Eq. (2.32), let us consider a block as a particle 

sliding on a straight rod without friction at a uniform velocity of  30 ft/s, as shown 
in Fig. 2.7. The rod is in the x - y  plane, which is perpendicular to the gravitational 
force. The angular velocity of  the rod is 50 rad/s. The position of the block is 6 in. 
away from the rotating axis. Determine the force between the block and the rod if 
the mass of the block is 1/30 slug. 

Solu t ion .  Rewrite Eq. (2.31) as 

H = r × m v  

For this example, it is convenient to use cylindrical coordinates. The position 
vector of  the particle at time t is r = re o. Its velocity is 

v = i~ep + r w e ~  

Hence 

H = rep x m(?ep + r w e ¢ )  = m r 2 w k  

M = r x F = r F k  = d H  = 2 m r ? w k  
d t  

F = 2 m i w  = 2(1/30)(30)(50) = 100 (lbf) 

Therefore, the force between the block and the rod is 100 lbf. 

Fig. 2.7 

X 

Block sliding on a rotating rod. 
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2.4 Work and Kinetic Energy 

Work usually is defined as a force F acting through a displacement x with the 
displacement occurring in the direction of the force. That is, 

W = F . d x  

Using vector notation, the equivalent expression is 

W = F . d r  

In general, if F and d r  are not in the same direction, only the component of  d r  
along F will contribute to the work. If  the force is applied to a particle with a 
constant mass, then 

F = ma = mi, 

and the work done by the force is 

f l  f l  2 dv W =  m f  . dr = m - -  . dr 
dt 

f l  2 dr f 2  = mdv .  dt inv. dv 

1 2 = ~m(u 2 - v ~ )  = T 2 -  T, (2.33) 

where T is the kinetic energy of  the particle. Equation (2.33) says that the change 
in kinetic energy of  a particle moving from one point to another is equal to the 
work done by the force acting on the particle. 

2.5 Conservative Forces 

Suppose that a particle m moves from A to B as shown in Fig. 2.8 and a force 
F is applied to the particle during the process. Then the work is 

W = F .  d r  

m 

A F 

j~,,,4~f I X 

Fig. 2.8 Moving paths of a particle. 
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which is the line integral from A to B and may be represented by the solid line 
AB in Fig. 2.8. 

On the other hand, if 

£A f] F • dr = - F • dr 

where the line integral from B to A may be represented by the dotted line B A in 
the figure, then 

f F . d r = 0  

This means that the line integral o f F .  d r  over a closed path is zero. According to 
Stoke's theorem given in Appendix B, 

f F . d r = f f s V X F . d s  (2.34) 

where s is the area bounded by the closed path in the line integral. If  the closed 
path is arbitrarily chosen, then 

V x F = O  

is true everywhere. According to vector analysis, the force F must be a gradient 
of  a scalar function, i .e. ,  

F =  V¢ 

where ~b is a scalar function to be identified. Force with this property is called a 
conservative force. Work done by such a force is 

fA fA w = F .  d r  = V~b • d r  

= fAB (O4)dx+O_~-~dy+OdPdz']= fA B \ 8x oy Oz J dd? : ~ B  - -  dt)A (2.35) 

Combining the preceding equation with Eq. (2.33) gives 

~ B  - -  ~ A  : TB - T A  

or 

T A  - -  ~ A  = T B  - -  ~)B (2.36) 

To identify 4~, let us recall the principle of conservation of  mechanical energy, 
which states that the sum of kinetic and potential energies is constant for a con- 
servative system. Put in equational form, 

TA q- VA = 7"8 + VB (2.37) 
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where V is the potential energy of  the particle. Comparing Eqs. (2.36) and (2.37), 
we find 

~ mV 

Therefore F = - V V .  A conservative force is equal to a gradient of  potential 
energy with a change of  sign. 

Problems 
2.1. Prove that the velocity expressed in cylindrical coordinates 

v = 16e o + p~e~  + ~k 

can be converted to the expression of  velocity in Cartesian coordinates. 

2.2. Prove that the expression of  acceleration in spherical coordinates, Eq. (2.16), 
can be converted to 

a = iJ~ + j ~  + k~ 

2.3. The position vector of  a moving particle is 

r = ia cos cot + j b  sin wt  

where a, b, and co are constants. 
(a) Find the velocity v = d r / d t  and prove that r x v is constant 
(b) Show that the acceleration is directed toward the origin and is proportional 

to the distance from the origin. 

2.4. At a certain instant, a particle of  mass m moving freely in a vertical plane 
under a constant gravity is at a height h above the ground and has a speed v. Use 
the principle of  energy to find its speed when it strikes the ground. 

2.5. Two masses, m l and m2, are connected by a massless, inextensible rope that 
passes over a pulley, as shown in Fig. P2.5. Neglecting the mass and the bearing 
friction of  the pulley, find the acceleration of  m i as the system moves under the 
action of  gravity. 

2.6. A constant force is applied to a point mass so that the mass is accelerating. 
Two frames of reference are chosen for consideration. One is a fixed reference 
frame; the x axis is oriented along the acceleration. The other is moving with 
a constant velocity along the negative x direction of  the fixed reference frame. 
However, they coincide at the beginning of  observation. 

(a) Find the velocity and position of  the particle as a function of  time in both 
reference frames. 

(b) Find the work done by the force during a time interval t in both frames. 
(c) Are the results of  (b) different in the two frames? If so, are the laws of  

mechanics different in the two inertial frames of reference? Explain your answer. 
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I n  2 

Irt 

Fig. P2.5 

2.7. Suppose that a missile is launched with the initial conditions: constant thrust, 
constant mass flow rate at the nozzle exit, and a proper launch angle. What will 
be the force exerting on the missile after the propellant is burned. Formulate the 
equations for describing the trajectory of  the missile. 

2.8. Find the best launch angle for a missile to reach the maximum horizontal 
distance through numerical integration. The fourth-order Runge-Kutta method is 
to be used for integration. The initial conditions are F = 15,000 N, Mo = 1000 kg, 
V0 = 150 m/s, and rh = 3 kg/s. At the time of  burnout, the mass of  missile is 
M f  = 300 kg. Plot the trajectory of  the missile at the best launch angle. 

2.9. Do the following: 
(a) Using Green's theorem, prove that 

-~ ( x d y -  ydx )  = A 

where A is the area enclosed by the curve c. 
(b) Find the area bounded by the ellipse 

x 2 y2 
a-~+~ = l  

2.10. Show that 
(a) 

(b) 

-~ ( x y d y -  y2dx)  = A~ 

-~ (xyZdy - y3dx)  ---- Ix 
, i  c 

where A is the area bounded by C, (Y, y) is its centroid, and Ix its moment of  
inertia about x axis. 
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2.11. If er, eo, and e0 are the unit vectors in spherical coordinates, show that the 
unit vectors in Cartesian coordinates can be written as 

i = (e, s in0 + e0 cos 0)cos 4~ - e0 sin~b 

j = (er sin 0 + e0cos 0) sin4~ + e~b cos ~b 

k = e,. cos 0 - e0 sin 0 

2.12. A particle of mass moves in a plane under the action of a force with 
components 

Fx = - K 2 ( 2 x  -I- y), Fy = -K2(x  -t- 2y) 

where K is a constant. Consider that the force is conservative. What is the potential 
energy? 



3 
Dynamics of a System of Particles 

I N this chapter we shall study the motion of  a system of n particles subjected 
to external and internal forces. These internal forces, which arise from the 

interaction between the particles, obey Newton's third law of  motion. Therefore, 
when all of  the particles are considered as a unit, the internal forces add up to 
zero. Next, we shall discuss the angular momentum of a system of n particles. 
This subject plays an important role in studying the rotational motion of  a solid 
body later in this book. 

The collision of  missiles in midair is analyzed in Section 3.2. The example 
illustrates that as two missile sites are a few hundred kilometers apart, the spherical 
surface of  the Earth must be considered in the determination of  the launching angle. 
Otherwise the second missile will not collide with the first missile if the launching 
angle is set according to the fiat ground formulation. The gravitational force studied 
in the missile-to-missile collision is approximated to be always parallel to the z 
axis. The gravitational force, however, is easily modeled toward the center of  Earth 
with a major component in the k direction and a small component in i direction 
where i and k are along the Cartesian coordinates chosen at the missile site. To 
simplify calculation, each missile is modeled as a particle so that the effects of  air 
drag and the thrust of  side jets on the missile can be neglected. The thrust is treated 
as a constant in the section. Precise treatment of the gravitation force in this case is 
unnecessary. The computer program used to solve this example, however, is easily 
modified to handle forces in precise forms. In the study of missile collision, two 
missiles must be addressed in the same coordinate system. Based on the knowledge 
of  vector algebra, the conversion of  coordinates is formulated and discussed in 
Section 3.1. 

In the presence of  two particles, there exist gravitational force and potential 
between them. We shall discuss these concepts in Section 3.4. It is interesting 
to mention that the gravitational force outside a solid sphere, such as Earth, is 
equivalent to that of  a point mass with the same mass occurring at the center of  
the solid sphere; on the other hand the gravitational force is zero for a point mass 
located at the center of  the solid sphere. 

The collisions of  solid spheres are discussed in Section 3.5. Both elastic and 
inelastic collisions are considered. Special emphasis is placed on automobile 
collision, which is closely related to our daily life. 

3.1 Conversion of Coordinates 

Before studying the collision of  two missiles in the next section, we need to 
discuss the conversion of  coordinates. Because two missile sites are a few hundred 
kilometers apart, each missile may be described by its own coordinate system 
first; then they must be converted into one set of coordinates. The procedure of  
establishing the relationship between the two sets of  coordinates is referred to as 
the conversion of  coordinates. 

27 
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Z" Z I II/ 
x,. 

X' 

Fig. 3.1a x~y"z" rotated with respect toj" by q~. 
Consider that the coordinate system X Y Z  is to exist permanently and the 

coordinate system xyz  is to be converted. Starting from a general case, a system 
x"y ' z "  is parallel to X Y Z ,  i.e., i ' / / i ,  f ' / / j ,  k ' / / k .  First, x"y"z" is rotated with 
respect to t h e f '  axis by an angle of q~ as shown in Fig. 3.1a. Then, the new 
coordinates x'y'z' are rotated with respect to the k' axis by an angle of 0. After 
this rotation, the final coordinates are denoted by xyz as shown in Fig. 3.lb. 

The relationship between X Y Z  and xyz is shown in Fig. 3.2. The position 
vector R locates the origin of xyz in X Y Z .  The position of a point P in xyz is 
denoted by the position vector p as 

P = iox + A y  + koz 

In terms of X Y Z ,  the position vector of point P is r and we have 

r = R + p (3.1) 

Writing in terms of their components, Eq. (3.1) becomes 

Xi  + Yj + Zk  = Xoi + YoJ + Zok + xip + yjp + zkp (3.2) 

Z' y 

k "J 

Fig. 3.1b x'y'z' rotated with respect to k' by O. 
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k . -  

1 

Fig. 3.2 Relationship between XYZ and xyz systems. 

Note that in the preceding equation, 

i o = cos Oi' + sin 0 f  

= cos 0(cos 4fi - sin q~k) + s in0 j  

= cos 0 cos 4fi + sin Oj - cos 0 sin 4~k 

]o = cos Of  - sin Oi' 

= - sin 0 cos 4fi + cos Oj + sin 0 sin 4~k 

k o = sin 4fi + cos 4~k 

In simplifying the preceding equations, we have used the relations i" = i, f '  = 
j , / # '  = k. 

To obtain the X, Y, Z components of  r, we take the scalar product of  the unit 
vector with Eq. (3.2) as the following: 

The scalar product of  i with Eq. (3.2) gives 

X = Xo + x cos(ip, i) + y cos( jp,  i) + z cos(kp, i) 

= Xo + x cos O cos ~b - y sin 0 cos q~ + z sin ~b (3.3) 

The scalar product o f j  with Eq. (3.2) gives 

Y = Yo + x cos(ip, j') + y cos( jp, j )  + z cos(kp, j )  

= Yo + x sin 0 + y cos 0 (3.4) 

Finally the scalar product of  k with Eq. (3.2) gives 

Z = Z0 + x cos(ip, k) + y cos( jp,  k) + z cos(kp, k) 

= Zo - x cos 0 sin q~ + y sin 0 sin ~b + z cos ~b (3.5) 
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ZY 

Fig. 3.3 Transfer of coordinates on spherical surface. 

In a special case, if there is no rotation with respect to the y axis, i.e., ~p = 0, 
Eqs. (3.3-3.5) reduce to 

X = X0 + x cos 0 - y sin 0 (3.6) 

Y = Y0 + x sin 0 + y cos 0 (3.7) 

Z = Z0 + z (3.8) 

On the other hand, when two coordinate systems are apart by an order of  a few 
hundred kilometers on the surface of  the Earth, the effect of  the spherical surface 
must be taken into consideration. Consider that the coordinate systems are on the 
spherical surface of  the Earth as shown in Fig. 3.3. The X Y Z system is so chosen 
that the plane containing x and z axes is the same plane containing R0, R1, and R. 
The unit vector k is along the vector R0 that is pointing from the center of  Earth 
radially to the origin of X Y Z .  Rl is the position vector of  the origin o f x y z .  Hence 

Ro = kRo 

R1 = (isin~b + kcos~b)Rl 

R = R 1 - R 0  

= iRl sin~b - k(Ro - R1 cos ~b) 

= iRo sin ~b - kRo(1 - cos ~b) (3.9) 

In the preceding equation, it is assumed that the Earth is a perfect sphere, so Rl  
and Ro are equal. Applying Eqs. (3.3-3.5) with R given in Eq. (3.9), we have the 
scalar components of  r as 

X = Ros inck+xcosOcosq5  - y s i n O c o s d p + z s i n q 5  (3.10) 

Y = x s in0 + y c o s 0  (3.11) 

Z = - R 0 ( 1  - c o s c k ) - x c o s O s i n d p + y s i n O s i n q b + z c o s c k  (3.12) 

where Ro is the average radius of  Earth and its value is 6371.23 km. 
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3.2 Collision of Particles in Midair 
Study of the collision of two missiles in midair is based on the motions of 

individual missiles. To simplify the problem let us model them as particles as in 
the example given in Section 2.2. Although it is known that the second missile is 
equipped with side jets for adjusting its course, these side thrusts are omitted here. 
The forces applied on each missile could be very complicated because of variable 
thrust and air drag. In addition, the mass of a missile is decreasing continuously. 
However, the model can be simplified greatly by considering that the force applied 
is constant and the mass ejected from the propulsion system is also at a constant 
rate. This is an approximate model. Let us study the collision of two missiles with 
the following example. 

Example 3.1 
Suppose that a missile is launched from the enemy side, which is designated 

as the first missile. Through the detection by a satellite, the trajectory can be 
simulated as given in Example 2.2 with the net thrust of F = 14,500 N. The 
coordinates are transferred. Because of the action taken for the determination of 
the trajectory of the first missile, the time for launching the second missile is 
delayed by 60 s. To simplify the calculation, the trajectories of the two missiles 
are assumed to be contained in the same plane, but the launching sites are 200 km 
apart. The data for the second missile are given as follows: initial mass m0 = 1000 
kg, thrust F = 16,000 N, initial velocity = 300 m/s, and the mass decreasing rate 
= 3 kg/s. The problem is to determine the launching angle of the second missile 
so that the two missiles are to collide high above the ground. The conversion 
of coordinates is treated in two different ways: 1) flat ground and 2) spherical 
ground. 

Solu t ion .  1) Consider that the two launching sites are on fiat ground. Each 
missile is governed by the following equations: 

dVxi ½i 
m i - -  = F (i = 1, 2) (3.13) 

dt + 

dVzi = F Vzi 
- -  mi  g ( i  = 1 , 2 )  ( 3 . 1 4 )  

mi dt ~ a 2 i  + Vz2i 

mi = mio - rhit (i = 1, 2) (3.15) 

Equations (3.13) and (3.14) are nonlinear and are solved by numerical integration 
with 

dx__j_ = Vxi, dz_.j_ = Vzi (3.16) 
dt dt 
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The conditions used for the first missile are 

(ml)0 = 1000 kg 

rh~ = 3 kg / s  

(Vl)0 = 150 m/s  

oq = 80 deg 

Fl = 14,500 N 

where ot is the launching angle measured from x axis. The coordinates are trans- 
ferred simply by 

X1 = X0 - xl (3.17) 

Zl = zl (3.18) 

The conditions used for the second missile are 

(me)0 = 1000 kg 

rh2 = 3 kg / s  

(Ve)0 = 300 m/s  

F2 = 16,000 N 

The launching angle of the second missile is determined with a trial and error 
method performed on computer. In the calculation, the first number used is 1.00 
rad with the increment of  t 0 . 0 1 .  To detect whether the collision is going to take 
place or not, the distance between the missiles is calculated. The unsuccessful 
simulation terminates as the distance between them increases. When the collision 
is nearly occurring, finer increments for the launching angle and the time step are 
used. 

For the present study, the increments for the final step are Aot = 2 . 0 E - 7  and 
A t  = 5 . 0 E - 5  s. The collision condition is reached when the distance between 
the two missiles is less than 8 cm. The launching angle for the second missile is 
found to be 0.982 145 4 rad. The collision is taking place at 144.8327 s after the 
launching of  the first missile and is 84.8327 s after the launching of  the second 
missile. The coordinates at the collision are X = 66.82 km, Z = 16.26 km. The 
missile shooting missile trajectories are shown in Fig. 3.4. 

2) For a spherical surface, the equations governing the motions of  missiles 
are the same as those used in part 1. Because the trajectories of  the missiles are 
assumed to be in the same plane, the coordinates of  the first missiles are transferred 
using Eqs. (3.10) and (3.12) with y = 0. These equations are as follows: 

X = R0 sin~b + x cos0  cos4~ + z sin 4~ (3.19) 

Z = - R 0 ( 1  - cos ~b) - x cos 0 sin ~b + z cos ~b (3.20) 
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Fig. 3.4 Missile-to-missile trajectories on fiat ground. 

For the present case R0 = 6371.23 km, 0 = zr, and ~b = 0.031391112. Substituting 
these values into Eqs. (3.19) and (3.20), we have 

X = 199,967.155 - 0.99950734x + 0.03138596z (m) 

Z = -3138.8535 + 0.03138596x + 0.99950734z (m) 

Note that the initial coordinates of the first missile are 

X0 = 199,967.1550 (m) 

Z0 = -3138.8535 (m) 

The calculation procedure is the same as that used in part 1. The launching angle 
for the second missi le  is determined to be 0.9929676 rad, and the collision occurs 
145.1400 s after the launching of  the first missi le  and 85.1400 s after launching 
of  the second missile.  It is important to point out that the missi les will not collide 
if ot is set as 0.9821454 rad, because the Earth's surface is actually spherical. 
The coordinates at the collision are X = 66.64 km and Z = 17.18 km. The missi le  
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Missile-to-missile t ra jec tor ies  on sphere .  F i g .  3 . 5  

t r a j ec to r i e s  are  s h o w n  in Fig.  3.5. F o r  c o m p l e t e n e s s ,  the  c o m p u t e r  p r o g r a m  wr i t t e n  

in F o r t r a n  is i nc lud ed  in th is  sec t ion .  

C PROGRAM MISSILE TO MISSILE FOR EXAMPLE 3-1 ON SPHERICAL 
C SURFACE 

REAL T(18001),Xl (18001),X2(18001),Zl(18001),Z2(18001),M 1,M2 
OPEN (2,FILE=' MSLTMSLS.FIL') 
Xl(1) = 0.0 
ZI(1) = 0.0 
X =  Xl(1) 
Z =  ZI(1) 
VX10 = 26.0472 
VZI0 = 147.7212 
M1 - 1000.0 
G=9.81 
DM = 3.0 
VX1 = VX10 
VZ1 = VZ10 
DO 100 N -- 1,18000 
VXN = VX1 
VZN = VZ1 
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X2(N) = 0.0 

Z2(N) = 0.0 

A H  = 0.01 

A M  = M1-AH*3 .0*FLOAT(N- I )  

F I  = 14500. 

F = F 1  

IF (N .LT. 14513) G O  T O  90 

A H  = 0 .00005 

A M  = 564 .64-AH* 3.0"  FLOAT(N- 14512) 

90 C A L L  R K  (X,Z ,VXN,VZN,AH,AM,DM,F ,G)  

X I ( N + I )  = X 

Z I ( N + I )  = Z 

VX1 = V X N  

VZ1 = VZN 

100 C O N T I N U E  

X10  = 199967.155 

Z10  = -3138.8535 

A L P  = 0 .9929676  

M2 = 1000. 
V2 = 300.0 

F2 = 16000. 

F = F2 

W R I T E  (2,8) M1,F1 ,AH,M2,F2  

W R I T E  (2,9) X 1 0 , Z I 0 , V X I 0 , V Z I 0  

N N =  1 

120 VX2 = V 2 * C O S ( A L P )  

VZ2  = V2*SIN(ALP)  

V X N  = VX2 

V Z N  = VZ2 

W R I T E  (2,10) X2( 1),Z2(I ) ,VXN,VZN 

A H  = 0.01 

A L P O L D  = A L P  

X = X2(1) 

Z = Z2(1)  

D O  200 N = 6001 ,18000  

A M  = M2-AH*3 .0*FLOAT(N-6001)  

IF (N .LT. 14513) G O  TO 150 

A H  = 0 .00005 

A M  = 564 .64-AH* 3.0"  FLOAT(N- 14512) 
150 C O N T I N U E  

B X 0  = X 

B Z 0 = Z  

C A L L  R K  (X,Z, VXN,VZN,AH,AM,DM,F ,G)  

X2(N+I )  = X 

Z2(N+I )  = Z 

VX2 = V X N  

VZ2  = VZN 

A X 0  = X10-XI (N)  0 . 9 9 9 5 0 7 3 4 + Z l ( N )  0 .03138596  
A Z 0  = Z10+Z1 (N)*0 .99950734+X 1 (N)*0.03138596 

AX1 = X 1 0 - X I ( N + I )  0 . 9 9 9 5 0 7 3 4 + Z I ( N + l )  0 .03138596  
AZ1 = Z 1 0 + Z l ( N + l ) * 0 . 9 9 9 5 0 7 3 4 + X l ( N + l ) * 0 . 0 3 1 3 8 5 9 6  

BX1 = X2(N+I )  

BZ1 = Z2 (N+I )  

DO = SQRT((BX0-AX0)** 2+(BZ0-AZ0)** 2) 

D I = S Q R T ( ( B X 1 - A X 1 )  2+(BZ1-AZ1)  2) 

IF (D1 .GT. DO) G O  T O  190 
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IF (D1 .LT. 0.080) GO TO 220 
GO TO 200 

190 WRITE (2,22) N,D1,D0 
GO TO 210 

200 CONTINUE 
210 ALP = ALPOLD-0.00000004 

NN = NN+I  
IF (NN .GT. 10) GO TO 240 
GO TO 120 

220 WRITE (2,21) ALP 
WRITE (2,11) 
DO 236 1 = 1,N 
AH = 0.01 
IF (I .LT. 14513) GO TO 230 
AH = 0.00005 
T(1) = 145.12+AH* FLOAT(I- 14512) 
GO TO 234 

230 T(1) = AH*FLOAT(I- 1) 
234 XX = (X 10-X 1 (I)* 0.99950734+Z 1 (I)*0.03138596)/1000. 

Z1 (I) = (Z 10+Z 1 (I)* 0.99950734+X 1 (I)* 0.03138596)/1000. 
x1(1) = x x  
X2(I) = X2(I)/1000. 
Z2(I) = Z2(I)/1000. 

236 CONTINUE 
DO 238 I = 1,N,100 
WRITE (2,20) T(I),XI(1),ZI(1),X2(1),Z2(I),DI 

238 CONTINUE 
WRITE (2,20) T(N),X 1 (N),Z 1 (N),X2(N),Z2(N),D 1 
GO TO 250 

240 WRITE (2,25) 
8 FORMAT ('M1 = ',F5.0,' kg F1 = ',F6.0,' N AH = ',F8.6,' S 

*M2 = ',F5.0,' kg F2 = ',F6.0,' N')  
9 FORMAT (' X l o  = ',F7.0,' m Z lo  = ',F8.2,' m VXlo  = 

* ',F8.2,'m/s VZlo  = ',F8.2,' m/s ') 
10 FORMAT ( 'X2o = ',F7.0,' m Z2o = ',F8.2,' m VX2o = 

*',F8.2, 'm/s VZ2o = ',F8.2,' m/s ') 
11 FORMAT (3X,' T(s) ',6X,' Xl(km)' ,7X, '  Zl(km)' ,TX,'  

* X2(km)',TX,' Z2 (km)',TX, ' D l (m) ' )  
20 FORMAT (IX,F9.5,5(2X,E12.4)) 
21 FORMAT ( 'MISSILES COLLIDED WITH ALPHA = ',FI0.8) 
22 FORMAT ( 'MISSILES ARE NOT COLLIDING N = ',16,' D1 

* = ',F8.4,'m DO = ' ,F8.4, 'm') 
25 FORMAT ( 'MAXIMUM ITERATIONS EXCEEDED')  

250 STOP 
END 
SUBROUTINE RK (X,Z,VXN,VZN,AH,AM,DM,EG) 
AK1 = AH*(F/AM)*VXN/SQRT(VXN**2+VZN**2) 
BK 1 = A n *  ((F/AM)* VZN/SQRT(VXN**2+VZN** 2)-G) 
XK1 = AH*VXN 
ZK1 = AH*VZN 
AM = AM-DM*AH/2. 
AK2 = AH* (F/AM)*(VXN+AK 1/2.)/SQRT((VXN+AK 1/2.)*'2+ 

C (VZN+BK1/2.)**2) 
BK2 = AH*((F/AM)*(VZN+BK1/2.)/SQRT((VXN+AK1/2.)**2+ 

C (VZN+BK1/2.)**2)-G) 



DYNAMICS OF A SYSTEM OF PARTICLES 37 

XK2 = AH*(VXN+AKI/2.) 
ZK2 = AH*(VZN+BK1/2.) 

AK3 = AH*(F/AM)*(VXN+AK2/2.)/SQRT((VXN+AK2/2.)**2+ 
C (VZN+BK2/2.)** 2) 

BK3 = AH* ((F/AM)* (VZN+BK2/2.)/SQRT((VXN+AK2/2.)**2+ 
C (VZN+BK2/2.)**2)-G) 
XK3 = AH*(VXN+AK2/2.) 
ZK3 = AH*(VZN+BK2/2.) 
AM = AM-DM*AH/2. 

AK4 = AH*(F/AM)*(VXN+AK3)/SQRT((VXN+AK3)**2+ 
C (VZN+BK3)**2) 
BK4 = AH*((F/AM)*(VZN+BK3)/SQRT((VXN+AK3)**2+ 

C (VZN+BK3)**2)-G) 
XK4 = AH*(VXN+AK3) 
ZK4 = AH*(VZN+BK3) 
VXN1 = VXN+(AKI+2.*AK2+2.*AK3+AK4)/6. 
VZN1 = VZN+(BKI+2.*BK2+2.*BK3+BK4)/6. 
XX = X+(XKI+2.*XK2+2.*XK3+XK4)/6. 
ZZ = Z+(ZKI+2.*ZK2+2.*ZK3+ZK4)/6. 
VXN = VXN1 
VZN = VZNI 
X =  XX 
Z = Z Z  
RETURN 
END 

3.3 General Motion of a System of Particles 

Consider a system of  n particles. For each particle there are two kinds o f  forces 
acting on it. One is the resultant of  the external forces, and the other is the internal 
forces between particles. The mass of  each particle is fixed. For the ith particle, 
the equation of  motion is 

d 2 r i  n 

m i - d ~  = Fi -+- Z f i  j 
j= l  
iCj 

(3.21) 

where fq  is the internal force exerted on the particle i by the particle j. Fi is 
the resultant force acting on particle i from the forces external to the system of  
particles. Because there are n particles in the system, the equation of  motion for 
the system is 

n 

2 . . ,  m , + 
i=1 i=1 i,j=l 

j¢ i  

According to Newton's  third law, the internal forces exerted by two particles i and 
j on each other are equal in magnitude and opposite in direction, that i s fo  = -fji .  
Therefore, the sum of  the internal forces is zero and we obtain 

d 2 ri d 2 n 

F = mi dt---- 7 -- d t  2 Z mir i  (3.22) 
i = 1  i = 1  
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where F is the vector sum of all the external forces acting on all the particles. To 
simplify this equation, let us recall the method for locating the center of  mass for 
the system: 

n n 

rc ~ ~  mi  : ~-~ mir i  
i=1 i=1 

E i n l  m i r i  _ 1 
rc -- Ein=l mi M ~-~ miri 

i 
(3.23) 

where rc is the position vector of  the center of  mass. With the use of  Eq. (3.23), 
Eq. (3.22) becomes 

d 2 d2r,. 

F = -d-~Mrc = Mdt--- 5- (3.24) 

Therefore, we can conclude that the motion of  a system of particles is equivalent 
to that of  a single particle with mass M located at the mass center of  the system. 

Now let us consider the angular momentum or the moment of  momentum of a 
system of  n particles. Taking the cross product of  ri with Eq. (3.21) leads to 

d2ri n 
ri × mi  --u~t --'--5- : ri × F i  -t- ri x __~-,JiJ 

j = l  
j#i 

Looking into details in the preceding equation, we find 

d2ri d d 
r i x mi dt---- ~ : ri x - ~ ( m i r i )  : - ~ ( r i  x mir i )  

d dHi 
= -:-(ri  × P i )  = 

(It dt 

dHi 
H =~-'~. dt 

i 

n 

E r ,  ×I,j = 0 
i,j 

b e c a u s e ~ j = - f j i  

Therefore, we obtain 

H = ~ r i x F i = M  (3.25) 
i 

Thus, the time rate of  change of  angle momentum is equal to the total moment of  
external forces acting on the particles with respect to a fixed point. This equation 
is the same as Eq. (2.32) for a single particle. 
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Fig. 3.6 

o/ 

/ 
Particles with the center of mass at 0'. 

We may express Eq. (3.25) from a different perspective by considering that the 
center of  mass is located at the origin 0' of  another coordinate system x'y'z ' .  Then, 
as shown in Fig. 3.6, we have 

ri = r + Fii 

where r is the position vector of  the center of mass for the system of n particles, 
r I is the position vector of  ith particle in x'y 'z  ~. Taking the time derivative of  the 
position vector equation, we obtain 

The angular momentum of the n particles about 0 is 

n n 

" = ~ ri x Pi = ~ ri x miki = ~-~.(r + r'i) x mi(r  + F i) 
i = 1  i = 1  i 

= ~ mir x r + y ~ r  x mirli + ~ r '  i x mir + y~r~ x mi~i 
i i i i 

= r  x Mk + ~--~d x miF i 
i 

(3.26) 

Simplifying Eq. (3.26) is based on the fact that, because 0' is the center of  mass, 
the following expressions are true: 

~ ~ m i ~ i  = O ,  

i 

d 
r x m i F  i = r x  dt ~ m iF i=O 

i i 

: r i m  i = 

i i 

Equation (3.26) states that the angular momentum of  the system with respect to 
point 0 equals the sum of the angular momentum of total mass M at point O r with 
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respect to 0 and the angular momentum of the system with respect to the center 
of  mass. Furthermore, from the right hand of  Eq. (3.25), we have 

M = ~"~ ri × Fi  = ~-~(r  + Fi) × F i 
i i 

= r x F + r i × F i  --= r x F + M'  (3.27) 
i 

M' = C Fi × mfi'i = ~ r / ×  mi(~" + "F i) 
i i 

= a t  F i X mini q- mil~i x ~ = H '  (3.28) 

Differentiating Eq. (3.26) with respect to time and using Eqs. (3.27) and (3.28), 
we obtain 

- - H  = x M i )  + F i x m iF  i dt - ~ ( r  -~ . 

= r x M r  + H' = r x F + M'  = M (3.29) 

From Eq. (3.29), we see that the total moment acting on the system with respect 
to point 0 equals the sum of the moment produced by the total external force with 
respect to point 0 and the moment of  the system with respect to point 0'. 

3.4 Gravitational Force and Potential Energy 

When a point mass is in the vicinity of  a large mass, such as Earth, it experi- 
ences a gravitational force directed toward the mass center of  the large mass and 
possesses a potential energy with respect to the large mass. If  there are two point 
masses placed side by side, an attractive force will exist between them. According 
to Newton's law of  universal gravitation, the magnitude of  this attractive force can 
be expressed as 

m l m 2  
F = G  

r 2 

where G is the universal gravitational constant and is 6.67 × 10 -11 N-m2/kg 2, 
and r is the distance between the two point masses ml and m2. Suppose that the 
position vector o fml  is rl and that of  m2 is !"2 as shown in Fig. 3.7. Then the force 
acting on m l is 

mlm2 
Fl  = G Ir2 - rl I - - - - - - 5  (r2 - rl)  

When m2 is a distributed mass, however, the gravitational force on m l becomes 

p(r ' )  d r '  . .  
FI =ml G ~ : ~ ( r - - r )  
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n~ 1 

~ F i  ~ W l  m 2  

Fig .  3 . 7  R e l a t i o n s h i p  b e t w e e n  t w o  p o i n t  m a s s e s .  

where p (r') is the density of  the distributed mass. The relationship between m l 
and a distributed mass is shown in Fig. 3.8. Rearranging the preceding equation 
gives the gravitational intensity as 

Fl  f ~ p (F )dv '  
- -  = g = c ,  ~ (1" - r )  ( 3 . 3 0 )  

L ml ir -- rl J 

Gravitational force is a typical conservative force that can be expressed as 

g = - V V  (3.31) 

where V = potential energy per unit mass or gravitational potential. In terms of  
the gradient of  a scalar function, Eq. (3.30) can be written as 

(3.32) 

Therefore, the gravitational potential is 

f~ pdv '  
V = - G  It' - rl (3.33) 

Example 3.2 
Derive expressions for the gravitational force and the potential energy for a 

point mass under the following two circumstances: 1) outside a uniform solid 
sphere and 2) inside the solid sphere. 

111 1 

Fig .  3 . 8  R e l a t i o n s h i p  b e t w e e n  m I a n d  a d i s t r i b u t e d  m a s s .  
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Fig. 3.9 Point P located outside a uniform solid sphere. 

Solution. 1) Outside a uniform solid sphere, consider that a particle with unit 
mass is located at P;  the distance between the center of  the sphere and the particle 
is r as shown in Fig. 3.9. The infinitesimal volume under consideration is 

dv = (2zrr '2 sinO)dOdr' 

The distance between p and dv is 

L = ~ / r  2 + r  '2 -- 2rr 'cosO 

Using Eq. (3.33), the potential energy is 

f dv fo R f0 ~ 2rrr '2 sinOdOdr ~ 
V = - G p  ~ = - G p  ~/r 2 + r '2 - 2rr' cos 0 

Gp 4rr G M 
R 3 = - - -  (3.34) 

r 3 r 

where M is the mass of the solid sphere. This result states that the potential of  
unit mass outside a solid sphere is equivalent to that of a point mass with the same 
mass concentrated at the center of  the sphere. From the result of  Eq. (3.34), we 
find the gravitational force as 

g = - V V  = er or \ r ] - e r  r2 (3.35) 

where er is the unit vector along r. This expression is used for calculating the 
gravitational acceleration. 

2) Inside a uniform solid sphere, consider that the point mass is at P located 
inside the sphere. The infinitesimal volume is a ring and can be expressed as 

dv = (2zrr' sin O)dr'(r'dO) 

The distance between P and dv is L: 

L = [(r '  sin 0)  2 -~- (R cos 01 - r '  cos 0)2] 1/2 
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Fig. 3.10 Point P located inside a uniform solid sphere. 

Therefore, the potential energy is 

foRfo  Jr 2rcr'2sinOdOdr' 
V = - G p  ~/r '2 + R 2 cos 2 01 - 2Rr' cos 01 cos 0 

2zr 2 2 
--~TrGp(3R z = -Gp--~-[3R - (R cos01) 2] = - r 2) (3.36) 

where r is the distance of  op. In the integration, it ought to be pointed out that 
when the integrand is integrated with respect to 0, the term for the lower integral 
l imit is always kept to be positive so that the result is the subtraction of  the upper 
limit term by the lower limit term. And the gravitational intensity is found: 

4rr 
g = - V V  = - - - G p r e r  (3.37) 

3 

Note that the g approaches zero as r reaches zero and the potential energy reaches 
minimum at the center of the sphere. 

E x a m p l e  3 .3  

Suppose that a homogeneous right circular cylinder of  radius R, height L,  and 
mass M is placed along the z axis between z = 0 and z = L as shown in Fig. 3.11. 
Find the gravitational intensity and potential of  the cylinder on the axis at distance 
h from the origin with h > L. 

Solution. Consider that the infinitesimal element in the cylinder is a ring with 
the cross section area of  dr dz and with 

dv = 2rrr dr dz 

The distance from the ring to point P is 

S = ~/r 2 -k- (h - -  z )  2 
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Fig. 3.11 
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Z 

~p (==h) 

z=L 

,_-o 

Point P located on the axis of the cylinder. 

Hence the gravitational potential is 

foLfo R 2 7 r r d r d z  
V = - G p  ~/r 2 + ( h - z )  2 

= -2Jrap [r 2 + (h - z)Z]l/21Rodz 

= -2JrGp {[R 2 + (h - z)211/2 - (h - z)}dz 

~ a p  { [ (h - L )~/(h - L I 2 + e a - hv/-£-i + R21 

And the gravitational intensity is 

0 
g = - V V  = - k - - V  

Oh 

= - k 2 ~ c p [ , / ( h  - C~2 + R2 _ V ~ +  R2 + L] 

3.5 Collision of Two Spheres on a Plane 

The action of  two bodies colliding with a large inertial force in a short t ime 
interval is called impact. Depending upon the material properties of  the bodies, 
collision can be elastic or inelastic. We shall discuss these two kinds of  collision 
in this section. 
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contPlane of 
a~t v~ 

Fig. 3.12 Oblique centralimpaet. 

For the present study, the bodies in collision are modeled as two spheres with 
identical diameter and with the centers of mass at the centers of  spheres. This, 
however, does not imply that the mass must be the same. The system may be 
pictured as two balls of  different mass colliding on a frictionless table, which 
forms a perfect plane perpendicular to the gravitational force. For a general two- 
dimensional case, the collision is named an oblique central impact. The plane 
tangent to two spheres at the contact point is called the plane of  contact. The line 
perpendicular to the plane of  contact is termed the line of  impact that goes through 
two centers of  spheres. For an oblique central impact, the velocities of  spheres are 
at angles away from the line of  impact as shown in Fig. 3.12. When the velocities 
are on the line of  impact, the action is called central impact. Therefore, a central 
impact is a special case of  oblique central impact. The method of  analysis for 
oblique central impact can be applied easily to the central impact. 

Automobile accidents are common occurrences in this country. Every day there 
are thousands of  car collisions with hundreds of  injuries and deaths. As we study 
the collision of  bodies, it is interesting to try to answer two questions arising from 
car collisions. In a collision, is the driver of  a heavier car safer than the driver 
of  a lighter car? As an unavoidable head-on collision is about to happen, should 
the drivers accelerate their cars as much as possible to protect themselves? These 
questions will be answered in the examples. Although cars are in complicated 
shapes, the modeling of  cars as spheres is only the first step in studying car 
collisions. 

Certainly the application of  the collision of two spheres is not limited to billiards 
and automobiles. It can be applied also to the collision of  molecules in chemi- 
cal reactions or in turbulent flows. Let us study the collisions in two different 
conditions, elastic and inelastic, as follows. 

Elastic Collision 

During the collision there is an impulsive force between two masses. If  the force 
is not very large, the stresses developed on the spheres are below the yielding 
points. Then the shapes of  the two spheres are restored completely to their original 
forms without any permanent deformation as shown in Fig. 3.13. Such a collision 
is called an elastic collision. 
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Before impact During impact After impact 

Fig. 3.13 Deformation and restitution during elastic impact. 

Because there is no external force involved during collision, the total momentum 
of the two spheres is conserved, and we have 

mt Vl + m2V2 = ml V' 1 -k- m2VI2 (3.38) 

where Vi and V I are velocities of mi before and after impact respectively. 
For the elastic collision, because the shapes of the spheres are completely 

restored, the kinetic energy of the system is conserved and we have 

1 2 1 2 1~. ~zt2 1 izt2 
~mlV  1 + gm2Vj = 7ml Vl "~ 7m2v2 (3.39) 

Equation (3.38) is a vector equation that may be considered as two equations in 
terms of x and y directions. Hence there are three equations, but, in general, there 
are four unknowns: Vl'x, V;y, V~'x, V~y, the velocity components after the colli- 
sion. To determine them, additional conditions must be specified. In the collision 
process, no coordinate system exists in the space. Without loss of generality, we 
choose x axis along the line of impact and y axis along the plane of impact. With 
the frictionless model, it is reasonable to accept that the velocity components in 
the y direction are not changed, i.e., 

V~y = Vly 

V~y = V2y 

Then the momentum and energy equations become 

ml Via. + m2 Vzx = ml Vltx + me V~x 

ml Vl2x + m2 V2~. = ml VI '2 + m2 V~ 2 

(3.40) 

(3.41) 

Now V[x and V~x can be determined by Eqs. (3.40) and (3.41). 

Inelastic Collision 

During collision, sometimes the stresses produced by the impact force are much 
higher than the yielding strength of the materials, and permanent deformation 
results, as shown in Fig. 3.14. Such a collision is called an inelastic collision. With 
permanent deformations, some energy is dissipated by the stress-strain energy so 
that the conservation of energy is no longer true. Therefore, additional information 
will be needed to predict the velocities after the impact. To do this, we will define 
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Before impact During impact After impact 

Fig. 3.14 Deformation and restitution during inelastic impact. 

the coefficient of  restitution E, as the ratio of the impulse during the restitution 
period to the impulse during the deformation period, i.e., 

impulse during restitution f R dt 

E = impulse during deformation f D dt (3.42) 

where R and D are the impact forces during restitution and deformation periods, 
respectively. The deformation period is the interval between the beginning of  
contact of  the spheres and the instant of the maximum deformation, and the 
restitution period is the interval between the instant of maximum deformation and 
the moment that the spheres just separate. Thus, the changes of  momentum of  m l 
in these periods can be written as 

f D dt = - [ ( m  I Vlx) - (mi Vh)D] 

f Rdt = - [ ( m l  Vtx)D -- (ml V[x)] 

Therefore, 

(Vz:,)o - V[x 
E - (3.43) 

Vl~ - ( V h . ) D  

where (Vlx)O is the velocity component in the x direction of ml at the maximum 
deformation. Similarly, for mass m2, 

( V z , . ) o  - v j , .  
E = (3.44) 

V2x -- (V2x)o 

Note that, at the moment of  maximum deformation, the two masses are in contact, 
and their velocities are the same along the line of  impact, (Vlx)O = (V2x)o. Thus 
Eqs. (3.43) and (3.44) can be combined to become 

vL. - 

E -- (3.45) 
V 2 x  - -  Via. 

The values of E presumably are known for some common materials. With the use 
of  the momentum equation in x direction, Eq. (3.40) together with Eq. (3.45), V[x 
and V~. can be predicted. 
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The following are a few remarks about the significance of  the coefficient of  
restitution. During a perfectly elastic collision, the impulse for the period of 
restitution equals the impulse for the period of  deformation, so that the coeffi- 
cient of  restitution is unity for this case. For inelastic collisions, the coefficient 
of  restitution is less than unity because the impulse is diminished on restitu- 
tion as a result of  failure of  the spheres to resume their original shapes. For 
a perfectly plastic collision, ~ = 0 (i.e., V~x = V[x) and the spheres remain in 
contact. 

Example 3.4 
Two billiard balls of the same size and mass collide with the velocities of  

approach shown in Fig. 3.15. What are the final velocities of  the balls directly 
after an elastic collision? 

Solution. The initial velocities of the balls are 

V1 = 5i m/s  

V2 = -7 .07 i  + 7.07j m/s  

Because there is no friction, the velocities after the impact in y direction are 

t 

V b, = 0 

V~y = 7.07 m/s  

With m l = me, the momentum equation in the x direction gives 

+ vz,- = + v-;x 
(3.46) 

5 + ( -7 .07)  = V(x + V~. = - 2 . 0 7  

The energy equation (3.41) leads to 

Vt2x + V2~ = V(~ + V~ (3.47) 

v 2 =-7.07i+7.07j 

Fig. 3.15 Initial condition of the impact of balls. 
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Solving Eq. (3.46) and Eq. (3.47) simultaneously leads to 

V(x - V~a. = V2x - Vlx = - 7 . 0 7  - 5.0 = - 1 2 . 0 7  

Therefore, in the x direction, the velocities after the impact are 

V(x = - 7 . 0 7  m / s  

V~x = 5.00 m/s  

In the vector form, the velocities after the impact are 

V' 1 = - 7 . 0 7 i  m / s  

V~ = 5.0i + 7.07j m/ s  

49 

Example 3.5 
Prove that in a case of  a two-car, head-on collision, the driver of  a heavier car 

is usually less severely injured. 

Solution. Let m l, m2 represent the mass of  the two cars. Assume that car 2 
is heavier than car 1, i.e., m2 > ml ,  and the collision is elastic. Then, from the 
momentum equation, we have 

m l ( V [  - Vl) = m2(V2 - V~) 

mlAVI  = m2AV2 

The preceding result says that the change of  momentum of car 1 equals that of  car 
2. Becasue m2 > ml ,  we conclude IAV2I < IAV~ l, that is, the change of  velocity 
for car 2 is less than for car 1. 

Let  m a  be the mass of  the driver, and At  be the time interval of  the impact. 
Assume that the drivers have the same mass. Thus the inertial force acting on the 
driver is 

Av 
m d - -  

A t  

Comparing the inertial force acting on the two drivers, we have 

md AV2 AVI I 
A t  < m e  ~ a s m 2 > m ~  

Because the inertial force on the driver in car 2 is less than that on the driver in 
car 1, the injury to the driver in a heavier car is less than that in the lighter car. 

Example 3.6 
Estimate the difference in impact force for the following two cases: 1) Two 

cars have the same constant velocity of 50 mph but in opposite direction, and 2) 
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one of  the cars is accelerating at 5 ft/s 2 although at the time of  collision the cars '  
velocities are the same as case 1. The mass of the cars are 100 slugs, and the 
duration of  impact is 0.020 s. The two cars are stopped after the collision. 

Solution. 1) Let F be the impact force 

F A t  = m A V  

m = 100slug 

Because the cars are stopped after the collision, their final velocities are zero. 
Therefore, 

50 x 5280 
AV -- - 73.5 f t /s  

3600 

AV 73.5 
F = m = 100 = 367.5 x 10 3 lbf 

At  0.020 

2) With the acceleration in one car, additional external force due to friction must 
be considered. The total impact force is 

AV 
F '  = m  + F f  

A t  

However, 

F f  = m a  = 100 x 5 = 5001bf 

F '  = 367.5 x 103 + 0.5 x 103 = 368.0 x 103 lbf 

The result shows that the impact force due to the acceleration of  one car is very 
small compared with the total impact force. 

Problems 
3.1. Find the transformation of  coordinates for the trajectory of  the enemy mis- 
sile. The enemy's  missile site is 1000 km away from ours and is on a mountain 
5 km above the surface of  the average radius of  the Earth. Assume that for the 
missi le-to-missile collision, two trajectories are contained in the same plane. 

3.2. Consider that the gravitational force always is pointing toward the center 
of  the Earth. Suppose that the enemy's  missile is launched from the site as given 
in Problem 3.1. What  are the components of the gravitational force in the (x, z) 
directions? 

3.3. Suppose that a rocket is launched vertically, and at the time of  burnout the 
speed of  the rocket is v0 at the altitude of h0 above the surface of  the Earth. Use 
the expression g = k / r  2 for the gravitational acceleration, where k is a constant 
and r is the distance from the center of  Earth to the rocket. Find the maximum 
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height the rocket can reach. Also find the escape velocity for a rocket launched in 
a vertical position. 

3.4. Show that the gravitational attraction due to a homogeneous circular disk at 
a point on the axis of  the disk is 

h 

where M is the mass of  the disk, a is the radius of  the disk, and h is the height of  
the point above the center of  the disk. 

3.5. A uniform sphere of  mass M is embedded in a hole of  radius R in an infinite 
thin plane having mass per unit area a .  Find the gravitational field intensity and 
the potential energy per unit mass at a distance d above the center of  the sphere. 

3.6. In introductory dynamics, the potential energy of  a mass m at z above 
the ground is always expressed as mgz. Now we have learned that the potential 
energy of  mass m outside the spherical Earth is -GmM/r.  What is the relationship 
between them? 

3.7. Explain that, in the oblique impact, the coefficient of  restitution cannot be 
defined in the direction that is not perpendicular to the plane of  contact. 

3.8. Two spherical balls of  the same size and mass are in a head-on collision. 
Because of  a manufacturing defect, the center of  mass of  one ball is not at the 
center of the sphere. Formulate the equations governing this impact. Predict the 
motions of  the balls after the impact. 

3.9. Suppose that a hard, small ball m drops vertically at a point on a hard, solid 
spherical surface as shown in Fig. P3.9, with mass M >> m. The initial height of  
the ball is h0. 

m T ho 

Fig. P3.9 
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(a) What is the velocity of  the ball immediately after the impact for a coefficient 
of  restitution e = 0.85? 

(b) What is the trajectory of  the ball after the impact but before it lands on the 
floor? 

3.10. A ball is dropped from a height of  3 m onto a level floor. If the coefficient 
of  restitution e ---- 0.9, how long will it take the ball to come to rest? What is the 
total distance traveled by the ball? 



4 
Lagrange's Equations 

and the Variational Principle 

F UNDAMENTAL equations in dynamics are based on Newton's second law 
of motion. When Newton's law is used to formulate a problem, an explicit ex- 

pression of force or torque is required. Such expression may not be easy to obtain. 
An alternative approach is to employ Lagrange's equations. In the Lagrangian for- 
mulation for conservative systems, expressions for kinetic and potential energies 
a r e  required, but knowledge of the force or torque is not needed. 

There are different forms of Lagrange's equations. One form is for dynamic 
systems without constraints between generalized coordinates, which are coordi- 
nates based on configurations of the systems and are discussed in the next section. 
Another form is for systems with constraints. In this form, constraint relations 
are incorporated directly into Lagrange's equations as Lagrangian multipliers and 
constraint forces. 

The Hamilton equations are discussed in Section 4.3. These equations are par- 
allel to the Lagrangian equations for systems without constraints. Through this 
parallel approach, readers will become more familiar with the Lagrangian equa- 
tions. The general form of Lagrangian equation is studied in Section 4.4. Different 
constraints are discussed, and Lagrangian multipliers are introduced for solving 
the problems. Note that Lagrangian multipliers are related to nonconservative 
forces. Many examples are given in this section. 

In Section 4.5, the variational principle is introduced. The purpose of this 
principle is for optimization. It is discussed here because Lagrange's equations 
can be derived from the optimization of the Lagrangian function of dynamic 
systems. A case of optimum with a constraint condition also is studied. Examples 
are given for the application of the variational principle. 

4.1 Generalized Coordinates, Velocities, and Forces 
Generalized coordinates are the coordinates that must be specified in order 

to describe the configuration of a system. If a system of N particles is under 
consideration, three coordinates are needed to specify the position of one particle 
so that 3N coordinates are required for N particles. The system is said to have 3N 
degrees of freedom. If some coordinates are related by j equations or constraints, 
the degrees of freedom are reduced to 3N - j .  

For a particle traveling along a straight line, the only coordinate needed is the 
particle's traveling distance. For a wheel rotating on its fixed shaft, the coordinate 
describing the wheel is the rotating angular displacement. For a wheel with a 
shaft moving along a straight line, two coordinates must be specified: the distance, 
traveled by the shaft and the angular displacement of the wheel. For a pair of 
long-nosed pliers lying on a table, four coordinates are needed to describe the 
system: (x, y) coordinates for the location of the center of pivot, ot for the angle 
between the surface of the first jaw and the x axis, and/~ for the angle between the 

53 
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y 

X IL 

Fig. 4.1 Wheel rolling on a curved ground. 

surfaces of  two jaws. Because of the nature of  generalized coordinates, the number 
of  such coordinates is called the number of degrees of freedom of  the system. 

Usually, symbols (ql, q2 . . . . .  q , )  are used for generalized coordinates. A po- 
sition vector r always can be expressed as a function of  q, and we may write 

r = r ( q l ,  q2 . . . . .  qn) 

o r  

r = r(q)  (4.1) 

To illustrate the preceding statement, let us consider a point at the edge of  a wheel 
rolling without slipping on a curved ground as shown in Fig. 4.1. 

r = ro + a(cos  Oi + sin Oj) = (xo + a cos O)i 

+ (Yo + a sin O)j = r(x0, Yo, 0) = r(ql ,  q2, q3) 

where ql = xo, q2 = Y0, and q3 = 0. As the particle moves, we have 

Or 
k = ~ ' (4.2) 

p=l Oq----PqP 

The quantities dip =- dqp /d t  are called generalized velocities. Equation (4.2) sug- 
gests that 

k = r(q,  q) (4.3) 

Here q and 0 are considered independent variables. 
Furthermore, a typical force F acts at a point (x, y, z). The virtual work pro- 

duced by the force is 

~W = F -  ~r (4.4) 

where ~r is the virtual displacement and can be expressed in terms of  generalized 
coordinates as 

~r = -~qi ~qi (4.5) 
i = 1  
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With the use of Eq. (4.5), Eq. (4.4) becomes 

aw= F.,S q q,) = ( O , a q , )  

i = 1  = 

where Qi =- F . (3r /Oqi )  =-genera l i zed  force. 
For a conservative force as defined in Section 2.5, 

F = - V V  

Or Or OV 
F . . . .  V V .  -- 

Oqi Oqi 3qi 

Hence, 

(4.6) 

"OV 
Qi - i = l, 2 . . . . .  n (4.7) 

Oq~ 

The generalized forces for a conservative system are the arithematic inverse of the 
partial derivatives of potential energy with respect to the generalized coordinates. 

4.2 Lagrangian Equations 
Consider a system of N particles with n degrees of  freedom. A position vector r i 

for the position of ith particle is, in general, a function of generalized coordinates 
and time. 

r~ = r i (q l ,  q2 . . . . .  q,,, t)  = r~(q, t)  (4.8) 

where q represents all the various q. In Eq. (4.8) q and t are independent variables, 
and the velocity of  the ith particle is 

vi = vi(q ,  gl, t) (4.9) 

where c) is the generalized velocity representing (0t, 02 . . . . .  ~)n). Certainly, 

dri ~ 3ri . art 
(.t--~ = Pi  : 2..,/=1 ~ q / q J  + --Ot 

On the other hand, considering a virtual displacement 

(4.1 O) 

Ori 
8ri = - - "  (4.i1) 

j=l 3q.j 5qj  

Note that the symbol 3 is used for virtual displacement. No time is needed to reach 
6ri. Taking the partial derivative of vi with respect to generalized velocity c)k from 
Eq. (4.10) gives 

Ovi O I~-~  Ori . Ori q Ori (4.12) 
. . . . .  + 3t _] Oqk Oi]k 3itk L./=l 3qj  qJ = 

Here we find that the partial derivative of the velocity of ith particle with respect 



56 ADVANCED DYNAMICS 

to qk equals the partial derivative of the position vector with respect to qk. Differ- 
entiating (Ori/Oqk) with respect to time yields 

d (Ori'~ = ~  02ri 0 (Ori'~ 
kaqk/  j:, a~aqj ?lj + a7 kaq~/ (4.13) 

Taking the partial derivative of ki with respect to qk from Eq. (4.10), we have 

Oki = ~--] 0 { Ori . "~ 0 (Ori'~ 
Oq, J:l  Oq-----kk ~-~qjqY) + - -  aqk k at / 

+ 
k O~kO~j qj ) -07 k Oqk / 

(4.14) 

Comparing Eq. (4.13) to Eq. (4.14), we find that 

( Ori ~ = Oki (4.15) 
dt \ Oqk ] Oqk 

Now let us consider D'Alembert's principle for the ith particle of the system of 
N particles: 

Fi - P i  : -  0 (4.16) 

where/~i is the rate change of momentum of the ith particle. In addition, let us 
imagine a virtual displacement of 3ri for the ith particle. For the system we have 

N 

y ] ( F i  - P i ) .  ~ri = 0 (4.17) 
i= l  

Note that Eq. (4.17) is equivalent to Eq. (1.34). When D'Alembert's principle is 
considered, the inertia force is one of the applied forces. In Section 1.6, we reached 
the conclusion that the virtual work of applied forces in equilibrium is zero. Now, 
let us separately examine the two terms in detail as follows: 

Z F i .  ~ri = Z F i .  Or---L = Qj~qj (4.18) 
i=1 i=1 j=l j = l  

where 
N 

Q1 = Z F ~  • Or~ (4.19) 
i= l  Oqj 

Qj is the generalized force, and 

U U xL ~ d Ori 
Z t ) i  "ari = Z 2_~ -~(mivi) . - -  
i= l  i= t  j = l  Oqj 3qj 

= i~j [ d ( m i u i .  Ori'] -mivi.-~d ( O r i e l  
.. OqjJ \OqjJJ aqj 
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Using Eqs. (4.12) and (4.15), we obtain 

~-~P.3ri = Z ~ miui" -miu i"  8qj 
i=1 i,j aqj ] aqj J 

aT 
(4.20) 

where T = Y-~=l I 2 -~miv i = kinetic energy of the system. Combining Eqs. (4.18) 
and (4.20), we find that 

. Q J - ~ t  + 3qj=O 
J 

(4.21) 

Because all qj a r e  independent, the terms in the brackets must be zero, i.e., 

d [a_4_U._ l I T \  a T - Q J  (4.22) 
dt \ oqj ] aqj 

This is the first form of Lagrange's equations. For a conservative system, 

N N 
Q j  = ~ - ~ F i  " a r i  _ Z ( V V ) i  " a r i  _ O V  

i=1 aqj i=1 aqi 8qj 

where V is the potential energy of the system and is a function of generalized 
coordinates only. Now Eq. (4.22) becomes 

-dt aq---j- Oqj 

o r  

aqj 
- 0  

Because potential energy is not a function of generalized velocity, 

OV 
= 0  

aOj 

which can be subtracted from the first term. Thus, the equation becomes 

d ( O ~ j )  OL = 0  j 1,2 . . . .  n (4.23) 
dt Oqj 

where the Lagrangian function L = T - V. Equation (4.23) is Lagrange~s equa- 
tion for a conservative system in which L is, in general, a function of q, ~¢, and 
t. For a nonconservative system, the generalized force can be expressed as a 
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combination of conservative and nonconservative forces. 

OV 
Q ~  = - + .T'j 

Oqj 

where -~i is the nonconservative force. Therefore, in general, Lagrange's equation 
is in the form of 

d ( 0 & ' ~  0L--bt- 'J  j = l , 2  . . . . .  n (4.24) 
"dr \ o q j  l Oqj 

Example 4.1 
Find the differential equation of motion for a simple pendulum of length L and 

finite angle of 0 measured from the vertical as shown in Fig. 4.2. 

Solution. Because the angle 0 is sufficient to describe the configuration of 
the system, it is used as the generalized coordinate, and the system has only one 
degree of freedom. 

Kinetic energy: 

Potential energy: 

Lagrangian function: 

T = l m ( L O  2) 

V = m g L ( l  - cos0) 

L = T - V = lm(L0)2 - m g L ( 1  - cos0) 

OL 
_ _  = m L 2 0  
O0 

OL 
- -  = - m g L  sinO 
00 

 -mL2 +mgLsinO=O 

Y//////~ 

rn 

mg 

Fig. 4.2 Simple pendulum. 
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m 

/ / / / / / / / / / / /~ ~ / / / 4  /~ 

Fig. 4.3 Hoop rolling down an inclined plane. 

Hence, the equation of  motion is 

+ ( g / L ) s i n 0  = 0 (4.25) 

Example 4.2 
A hoop of  radius r and mass m is rolling, without slipping, down an inclined 

plane at an angle q~. Find the equation of motion. 

Solution. For the generalized coordinates, we choose the angle of  rotation of  
the hoop 0 and the distance x traveled by the center of the hoop. 

Kinetic energy: 

T = 1 .2 1 "2 ~mx + ~I0 

where I is the mass moment of  inertia of the hoop. Because k = rO and I = mr 2, 
the kinetic energy, potential energy, and Lagrangian function of the hoop are 

1 2 A 2  T = ½m(rO) 2 + -~mr v = m(rO) 2 

V = mg(s - x) sintp = mg(s - rO) sin~b 

L = T - V = m(rO) 2 -  mg sintp(s - r 0 )  

Applying Lagrange's equation gives 

d (0_~0) OL _ 2 m r 2 ~  mgrsinq5 0 
dt 80 

Hence, the equation of motion is 

O" = (1/2r )g sin ~b (4.26) 

Example 4.3 
Two simple pendulums of  length s and bob mass m swing in a common vertical 

plane and are attached to two different support points. If  the masses are connected 
by a spring of  constant k, use the Lagrangian approach to formulate the equations 
of  motion. Assume small angles of  oscillation. 
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"//////////////////////////////, 

m k m 

Fig. 4.4 Two simple pendulums. 

Solution. 81 and 82 are the generalized coordinates. 

T l 2 "2 = ~ms (8, +02) 

V = m g s ( 1  - cosSl) + m g s ( 1  - cos82) + l k s 2 ( O  l - 82) 2 

L = T - V  

L l 2 "2 "2 
= ~ m s  (8,  + 82) - m g s ( 1  - cosS,)  - m g s ( 1  - cos82) -- ½ k s 2 ( 8 ,  - 82) 2 

Working out the derivatives gives 

OL OL 
~- ms201 ,  

OOl OOl 

OL OL 
- -  ms202 ,  

a02 002 

Hence the equations of  motion are 

- -  - - m g s  sin 01 - ks2(81 - -  82) 

- -  - - m g s  sin82 + ks2 (01  - 8 2 )  

ms201 + m g s O l  + ks2(81 - 82) = 0 

ms202  q- m g s 0 2  - ks2(81 - 82) = 0 

(4.27) 

(4.28) 

Example 4.4 
A solid cylinder of  radius r and weight w rolls without slipping along a circular 

path of  radius R as shown in Fig. 4.5. Determine the Lagrangian function and the 
equation of  motion. 

Solution. From the conditions of  no slippage, we have 

(R - r)0 = r~  

The kinetic energy is 

T = - - -  
1 to 1 

(R - r)202 + =Io~ 2 
2 g  2 -  



LAGRANGE'S EQUATIONS AND THE VARIATIONAL PRINCIPLE 61 

R 

Fig. 4.5 Cylinder rolling on a circular path. 

where I0 = ½(w/g)r  2. Therefore, 

The Lagrangian function is 

r = 3 t ° ( R  - r ) 2 0 2  
4 g  

V = w ( R  - r ) ( 1  - cos0)  

31/) 
L = T - V = - - - ( R  - r ) 2 0 2  - w ( R  - r)(1 - cos0)  

4 g  

OL 3 w  
- -  - - - ( R - - r ) 2 0  

O0 2 g 

OL 
- -  w ( R - r ) s i n O  

80 

Hence the equation of  motion is 

or 

311) 
- - - ( R  - r)20 + w ( R  - r) sin0 = 0 
2 g  

+ _ _ 2 g  sin 0 = 0 (4.29) 
3(R - r)  

Example 4.5 
Find the equations of  motion for a particle with mass m in three-dimensional 

space for the following different coordinates: 1) rectangular, 2) cylindrical, and 3) 
spherical. 

Solution. 1) Rectangular coordinates: 

T = lm(x2  -{- 3) 2 -1- 2} 2) 
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Using the first form of Lagrange's equation, 

Hence we have 

Similarly, 

d 3T 3T 
. . . . .  Qj  
dt 3{lj 3qj 

3T 3T 3T 
- -  = mdc ,  - -  = m ~ ,  - -  = m ~  
o.t o5, o~ 

3T 
- - ~ 0 ~  
3x 

= F 3_fx F O.._~z 
Qx X ax + Fy ~x + Z ax = Fx 

m ~  = 

2) Cylindrical coordinates: 

Hence, 

my = Fy 

m~ = Fz 

x = p cos 4', y = p sin 4', 

= b cos 4' - p~  sin 4' 

= p sin 4' + p ~  cos 4' 

k = k  

Z ~ Z  

(4.30) 

(4.31) 

(4.32) 

3x 3y 3z 
Q4, = F x - ~  q- Fy-~--~ q- Fz 3.-- ~ - - - -  -- F x p s i n 4 ' +  Fypcos4 '  = p F . e 4  = pF¢~ 

For the coordinate 4', 

3T 3T 
---'-:- = mp2(b, - -  = 0 
04' o4' 

T = lm(~2 + y2 + i2) = lm(/~2 + p2q~2 + }2) 

For the coordinate p, we have 

aT 3T 
-- m~6, - -  .=  r a p 6  2 

oh ap 

3x 3y F Oz 
Qp = Fx~p + Fy~p + ZOp 

= Fx cos 4' + Fy sin 4' = F .  e a = Fp (4.33) 

where Fp is the component of  force along direction p. Plugging into Eq. (4.22) gives 

m~ - mpdd 2 = Fp 
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where e~ = - sin q~i -I- cos 4~j as given in Eq. (2.8). Therefore, we have 

~ t  (mp2q~) = pF~ (4.34) 

For the coordinate z, the equation is the same as in the rectangular coordinates 

m~ = Fz (4.35) 

3) Spherical coordinates: In Chapter 2, the relationship between spherical co- 
ordinates and rectangular coordinates was already introduced. From Eqs. (2.11) 
and (2.12), we have 

r ~ r e  r 

x i +  y j +  z k  = r sin0 cos~b i+  r s in0 sinq~j + r c o s 0 k  

That is, 

We also have, from F_x t. (2.15), 

Hence, 

x = r s in0 cos 

y = r sin 0 sin q~ 

Z ~ r cos  0 

v = ~e,. + rOeo + r~  sin 0e~b 

T = lm[i'2 + r202 -I- (r~ s in0)  2] 

For the coordinate r ,  

OT mi ~, OT m(rO 2 q- rdp 2 sin 2 0) 
O~ Or 

Oz 
Ox Oy + = Fx sin 0 cos ¢ Qr = Fx-~r + Fy ar Fz-~r 

+ Fy sin 0 sin 4~ + Fz cos 0 = F .  er = Fr 

With the use of  Eq. (4.22), we obtain 

m(/: - r02 - r ~  2 sin 2 0) = Fr 

for the equation of  motion in the radial direction. For the coordinate 0, 

0T 0T 
- - " : -  = m r 2 0 ,  - -  = mr2~ 2 sin 0 cos 0 
O0 O0 

Qo = Fxr cos0  cos~b + Fyr cos0  sin4~ - Fzr s in0 = r F .  eo = r Fo 

(4.36) 
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Hence the equation of  motion in the direction of  0 is 

d ( m r 2 0 )  - mr sin 0 cos = rFo (4.37) 2~2 0 

Note that the generalized force in 0 direction is a torque. Similarly, for the coor- 
dinate ~p 

0T 0T 
- -  = m r  2sin 20q~, - -  = 0  

Q¢ = - F x r  sinO sin~b + Fyr sin0 cos~b 

= r s i n 0 F  • e¢  -- r s in0F¢ 

The equation of  motion in the direction of  tp is, therefore, 

d ( m r  = r OF¢ (4.38) sin 2 0~) sin 

Equations (4.37) and (4.38) can be simplified to 

m(2f0 + r ~ / -  r~  2 sin 0 cos O) = Fo (4.39) 

m(2f~  sin0 + 2r0~ cos0 + r s in0~) = Fq~ (4.40) 

Note that the acceleration terms on the left sides of  Eqs. (4.36), (4.39), and (4.40) 
agree well with the expression in Eq. (2.16). 

Example 4.6 
Suppose that a person of  mass M playing on a swing is modeled as a point mass 

(M - m) at the end of  the rope and a small mass m moving around M - m at 
radius a and angular speed of w as shown in Fig. 4.6. Find the equation of  motion 
for this system. 

Solution. Velocity of  (M - m) 

VM_ m = SO (COS Oi + sin O j)  (4.41) 

I////I/////~ 

M-m  

Fig.  4 .6  P e r s o n  p lay ing  on a swing .  
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Velocity of  m is 

Vm = s O ( c o s O i  + sin 0J3 - aco sin cot i + aco cos cotj (4.42) 

The kinetic energy of  the system is 

1 2 T = ½(M - m ) V 2 _ m  + ~ m V  m 

T = ½(M - m)(s0)  2 + l m [ ( s O  cos0  - aco sin cot) 2 

+ (sO sin 0 + aco cos cot) 2] (4.43) 

The potential energy is 

V = ( M  - m ) g s ( 1  - cos0)  + m g [ s ( l  - cos0)  + a  s inwt]  

= M g s ( 1 . -  cos0)  + m g a  sin cot (4.44) 

The Lagrangian function for the system is 

L = T - V = ½ m ( s O )  2 + ½m[(aco) 2 - 2(aco sin coO(sO cos 0) 

+ 2(aco coscot)(sO sin 0)] - m g s ( 1  - cos0)  - t oga  sin cot 

= ½M(s0) 2 + ½m[(aco) 2 + 2ascoO sin(0 - cot)] 

- M g s ( 1  - cos0)  - rnga sin cot (4.45) 

To find the equation of  motion, we obtain 

0L 
- -  = M s 2 0  + rnasco sin(0 - cot) 
aO 

OL 
- -  = rnasco O cos(0 - cot) - M g s  sin0 
~0 

Substituting the preceding equations in Eq. (4.22) leads us to 

M s 2 0  + masco cos(0 - cot)(0 - co) - masco O cos(0 - cot) + M g s  s in0 = 0 

Rearranging, we obtain the equation of motion as 

_ m a  

0" + g sin 0 = - - o 9 2  cos(cot -- 0) (4.46) 
s M s  

Note that the term on the right-hand side is the force causing the swing to oscillate 
to a large angle. Resonance can take place as 

co=W/S 
Through these examples it is easily seen that using the Lagrangian equation 

for deriving equations of  motion for conservative systems is very simple and 
systematic. All  we need are the expressions for potential and kinetic energy. 
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4.3 Hamilton's Principle 
Hamilton's principle is an approach parallel to the Lagrangian equations. From 

here readers can get a deeper feeling about equations describing a dynamic system. 
Similar to Lagrange's approach, the Hamiltonian function H is defined as 

H L t )  (4.47) =- ~..~qjpj - = r t tp ,  q, 
1 

w h e r e  p j  = the generalized momenta = OL/Ogl j .  Taking the total derivative of 
Eq. (4.47) gives us 

[ oL oL. OLd, l 
dH = Zj cljdpj + Zj pjdqj  - --Oqj dqj + Zj =-:--dqjoqj + Ot .] 

Z ilJ dpj ~j OL OL dt = -- - - d q j  - 
j . Oqj Ot 

(4.48) 

Also, we have 

OH OH OH 
d H = ~ j  - ~ p i d p / + ~ j  - -  + dt 

• 1 Oqj dqj Ot 
(4.49) 

Compare Eq. (4.48) to Eq. (4.49), we obtain 

OH 
qj _ (4.50a) 

Opj 

Oqj OH OL dt d (°T~j) 
- -  Oq---j -- = Dj (4.50b) 

OH OL 
- -  - (4.50c) 
at 0t 

Equations (4.50a) and (4.50b) are called Hamilton's canonical equations for a 
conservative system because, in the intermediate step of deriving Eq. (4.50b), the 
conservative condition is used. Furthermore, for a conservative system 

- -  = Z qJ + P /  + 0---7 dt j 

OH aH (4.51) 
= + O j P j )  + a t  - a t  1 

To interpret the meaning of H,  let us consider a case that happens often in 
dynamics; the position vectors are functions of q only: 

ri = ri (q) i = 1,2 . . . . .  N 
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Then 

and 

dri Ori . 
vi - ~ -- ~ Oqk qk 

1 l~i (Sri O r i ' ~ .  . = ~ E m,~, ~, = ~ m, ~ ~Oq," ~ )  q~q' 
i " k , l  

OL OT 
• j j o4j 

[~ (Ori Ori~ 0 -~i 
= Z i t J  ~i m i Z \ O q k  Oq,.] 

Looking into the details of  the partial derivative in the last expression, we find 

Therefore, 

k,l O?lj k,I 

~_~ljpj=~_~lJI2~i miOri 8ri "] 
• j j Oqj 

=~ m,~,-~qjqj} j=2T 
Substituting Eq. (4.52) into Eq. (4.47), we find 

(4.52) 

H = 2T - L ----- 2T - (T - V) = T + V (4.53) 

Therefore H is the total energy of the system if the various ri are functions of  q 
only. For a conservative system 

T + V = const 

n = const 

That means 

d H  a H  
- -  = 0 and = 0 dt Ot 

For a nonconservative system, the Lagrangian equation is 

(4.54) 

d(O ) 
dt Oq j 

With this general expression, Eq. (4.50b) becomes 

(4.55) 

OH 8L d 
Oq j Oqj dt (4.56) 
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Equation (4.51) becomes 

m =  O H  aH E .~jZtj + ..... (4.57) d#dt = ~ [ ( - P s  + Y'J)qJ + ~'JPJ] + at at 
J ) 

Therefore, Hamilton's canonical equations are true only for conservative systems. 
In general the total derivative of  H with respect to time is not the partial derivative 
of  H with respect to time. 

Example 4.7 
Consider a spherical pendulum consisting of  a point mass m that moves under 

gravity on a smooth spherical surface with radius a. The gravitational force is 
along the downward vertical. In terms of  spherical angles 0 and ~ as shown in 
Fig. 2.2, except that 0 is the angle between the position vector of  mass m and the 
downward vertical axis, the kinetic and potential energies are 

T = ½ma2(0 2 + ~2 sin 2 0) 

V = - m g a  cos 0 

Find the equations of  motion for the mass m 1) from Lagrange's equation and 
2) from Hamilton's principle. 

Solution. 1) Lagrange's equation: 

L = T - V = ½ma2(02 + q~2sin 20) + mgacosO 

For the coordinate 0, 

OL 
""w ~ m a 2 0  
O0 

OL 
- -  =- ma2(52 sin0 cos0 - - m g a  sin0 
80 

Substituting the preceding expressions into Eq. (4.23), we find 

ma20 -- ma2~ 2 sin 0 cos 0 + mga sin 0 = 0 

For the coordinate ~b, 

OL 
----:- = ma2dp sin20 
0¢ 

OL 
m ~ O  
o4, 

d ( m a 2 ~  sin 2 0) = 0 

(4.58) 

sin20 = const (4.59) 
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2) Hamilton's principle: In spherical coordinates 

r = r (s in0 cos4,i + sin0 sin 4,j + cos0k)  = r(r, O, 4,) 

Hence, 

H = T + V = ½ma2(O 2 +q~2sin 2 0 ) _ m g a c o s O  

In Hamilton's principle, however, H is to be expressed in terms of  generalized 
coordinates q, generalized momenta p, and time t: 

OL 
- ma20 (4.60) 

Po - O0 

p ~ -  
8L  

• -- ma2(b sin20 (4.61) 
o4, 

With the use of  Eqs. (4.60) and (4.61), we have 

1 po 2 1 p~ 
H = 2 m a  2 + 2 m a  2 sin 2 0 m g a  cos 0 (4.62) 

Taking the partial derivatives of  H with respect to 0 and 4,, we have 

OH p~ 

O0 m a  2 sin 3 0 
cos 0 + m g a  sin 0 

8 H  
m = 0  
o4, 

Rewrite the canonical equations 

OH OH 
- p o ,  - P ~  

oo a4, 

With the help of  Eqs. (4.60) and (4.61), and the canonical equations, we find 

m a  2 sin 4 0 
sin 0 cos 0 + m g a  sin 0 = - m a 2 0  

d . 

~--~(4, sin20) = 0 

Further simplifying the preceding equation, we obtain 

- -  m a 2 ~  2 sin 0 cos 0 + m g a  sin 0 = --maZO (4.63) 

sin20 = const (4.64) 



70 ADVANCED DYNAMICS 

Equations (4.63) and (4.64) are the same as Eqs. (4.58) and (4.59) obtained in 
part 1. 

4.4 Lagrangian Equations with Constraints 
In general there are two types of  constraints in dynamics: holonomic and non- 

holonomic. When the relationship between generalized coordinates can be written 
as  

fi(qx, q2 . . . . .  qn, t) = 0 i = 1, 2 . . . . .  m (4.65) 

where m < n, the constraints of  this form are known as holonomic constraints. 
Because of these m constraint equations, the various nqj are not independent. 
In principle, there are only (n - m )  independent generalized coordinates, and 
(n - m) Lagrangian equations for solving these qi as functions of  time. The 
remaining qi can be obtained through Eqs. (4.65) already given. 

Many problems, however, may be formulated differently such that the gener- 
alized coordinates can be reduced at the beginning. For example, let us consider 
the case of a double pendulum (Fig. 4.7). The two point masses ml and m2 can be 
specified by (Xl, Yl) and (x2, Y2) in the plane containing the double pendulum. The 
rods of  length L I and L2 are considered to be rigid and massless. The constraint 
equations are of the form 

x 2 + y2 = L 2 

(x2 - x l )  l + (Y2 - Yl) 2 = L~ 

Because of  these, we simply choose 01 and 02 as generalized coordinates and 
the equations of  motion are simplified. On the other hand, when the constraint 
equations are written in the form 

~--~Ctj dq j  + Ctt dt = 0 k = 1, 2 . . . . .  m (4.66) 
j = l  

where the various C are, in general, functions of  the generalized coordinates and 
time. Constraints of this form are known as nonholonomic constraints. While 
deriving the Lagrangian equation of  the first form, there is a step written in 

~/////J///// X 

, . y ,  ) 

(x~ .y~ ) 

I, 
Fig. 4.7 Double pendulum. 
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Eq. (4.21) as 

~j. Q J - ~ t  ~qj J r - - ]~q j=Ooqj j  

At that moment,  because qj is independent throughout, the terms in the brackets 
were set to zero. Now qj is not independent and cannot be set to zero. The general 
expression for the generalized force, however, is still valid, i.e., 

OV Q j - Jr .]sj 
Oqj 

Furthermore, to broaden our considerations, the nonconservative forces may be 
treated as a combination of constraint force .T',j and the other nonconservative 
force ~-oi. Substituting this expression into Eq. (4.21), we have 

3t_ •,j .qt_ ~oj -- dtt 8q j = 0 (4.67) 
J 

Let Eq. (4.66) be multiplied by )~t and summed over k throughout. Adding that to 
Eq. (4.67) gives 

Jr .~cj Jr Z, j  -- -~ Jr Z ~.kCkj ~qj Jr Z )~kCkt at = 0 
j=l k k=l 

Rearranging the equation leads to 

j=l Oqj dt Jr ffT°J Jr Z dqj 

it :tl 
Jr Z ~.jdqj Jr Z )~kCk, at = o 

j=l k=l 

The preceding equation can be considered a combination of two equations, 
which is proved here. The two equations are 

and 

j=l ~qJ 
dt + .T,,j + y~  LkCkj dqj = 0 

k 
(4.68) 

~--~.~cjdqj + ~-~ )~kCkj dt = 0 
j=l k=l 

(4.69) 

In Eq. (4.68), note that only (n - m) qj is independent, but there are m arbitrary ~.k 
values. Choose m Xk values such that the sum of four terms in the bracket is zero for 
m brackets. These various mq) are presumed to be dependent coordinates. Then 
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the remaining qg are independent, and the sum of the four terms in the bracket are 
always zero, i.e., 

Oqj dt + .T,,j + Z )~tCkj = 0 
k 

j = 1, 2 . . . . .  n (4.70) 

Now let us consider Eq. (4.69). When Eq. (4.66) is multiplied by kk and summed 
over k throughout, we have 

Z )~kCkt dt = - Z Z )~kCkj dqj 
k k j 

Substitute this into Eq. (4.69), we find that 

Z "T'cJ dqj - ~ Z XkCkjdqj = 0 
j k j 

o r  

(4.71) 

(4.72) 

But, 

.Tcj = -~ Oq---jj 

With the use of  this equation for the nonconservative force in Eq. (4.72), we obtain 

~j l -d'; (O~qj) - Oq--"~J .T,,j _ y-~.kC~j] dqj (4.73) 

Equation (4.73) multiplied by ( -  1 ) is identical to Eq. (4.68), which has been proved 
to be true. Therefore, Eq. (4.69) is also true. Summarizing all the equations, we 
have 

d ( 0 ~ j )  OL ~-'~.kC~:jW~'oj j 1 , 2 , . .  n (4.74) 
dt Oqj k 

.Tcj = Z )~kCkj j = 1, 2 . . . . .  n (4.75) 
k 

Z Ckj dqj if- Ckt dt = 0 
J 

k = 1, 2 . . . . .  m (4.76) 

Totally, there are 2n + m equations for determining nqj, nf'cj and m~.k; ;~k is 
called the Lagrange multiplier, .Tcj represents constraint forces, and 5to j, the other 
nonconservative forces. 
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Example 4.8 
A four-wheel wagon is modeled as a mass m in translational motion and four 

wheels in rotational motion (see Fig. 4.8). The mass m includes the four wheels. 
The moment  of  inertia for the four wheels with respect to the rotating axes is I .  
Determine the required coefficient of  friction between tires and the pavement for 
the wagon to move without slipping down the slope inclined at angle ~b. 

Solution. Kinetic energy: 

Potential energy: 

Constraint equation: 

T : 1 .2 1 '2 ~mx + ~I0 

V = mgx sin 4~ 

dx - r dO = 0  

where r is the radius of wheels. The Lagrangian function is 

L = T - V =  l .2 i "2 7mx + 710 - m g x  sin~b 

For the x coordinate, 

o r  

OL OL 
- -  = m  J r ,  
OJc Ox 

- -  mg sin~b 

d 
-;7(mA) + m g  sin~p = ~. = 5rx 
( I t  

For the 0 coordinate, 

m £  = .Y'x - m g  sin q~ 

OL OL 
- -  = I 0 ,  - -  = 0  
O0 O0 

d 
-~ ( I0 )  = -)~r 

(4.77) 

lJJJJJJJJJJJJJJJJJJJJJJJJfJJJJJJJJiJ/JJJJJJJJJJJJJJJJ~ 

Fig. 4.8 Wagon rolling down inclined plane. 
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o r  

I0" = - Z r  = -.T'xr (4.78) 

From the constraint equation we have 

J¢ = rO 

5~ = rO 

Combining the preceding equation with Eqs. (4.77) and (4.78), we find 

5rx -- g sinq6 
( 1 / m  + r 2 / l )  

Because .T'x = Iz (mg cos ¢)  

I 
# - -  1 q- mr  2 tan ¢ (4.79) 

where/z is the required frictional coefficient. 

Example 4.9 
Suppose that a car is just started and is to be driven without slipping on hor- 

izontal ground covered with ice. With the use of  Lagrangian equations that are 
constrained, find the equations to describe the motion and find the required fric- 
tional coefficient between the tires and the ice. Explain why the driver should not 
attempt to accelerate rapidly. Assume that the mass of  the car is M, the moment 
of  inertia of  wheels is I ,  and the torque exerted on the wheels is Tr. The weight 
of  the car is distributed evenly on all four wheels, and this is a four-wheel-drive 
vehicle. 

Solu t ion .  Kinetic energy: 

Potential energy: 

Constraint equation: 

T = 1 . 2  1 "2  -~Mx + 710 

V = 0  

dx - r dO = 0 

The nonconservative generalized force in the 0 direction is T,., and the La- 
grangian function is 

L = T - V = I M x 2  q- 7101 "2 

For the x coordinate, 

3L 3L  
- - = M ~ ,  - - = 0  
Ode Ox 

d 
= ( M . c )  = X = .~x 
dt 
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This is the equation of  motion in the x direction. For the 0 coordinate, 

OL 8 L  
---= = 10, - - = 0  
80 ~0 

d 
--~(IO) = T,. - Xr = 7",. - .Txr 

This is the equation of motion in the 0 direction. From the constraint equation, we 
have 

=r0 

Combining the equations of motion together with the preceding equation, we 
obtain 

i ~  = i£__ _ l . T x  --  Tr - . T x r  
r r M  

Rearranging, we find 

( / )  Yx + r  =T, .  

Because friction can be expressed as the product of  the frictional coefficient and 
its weight, the frictional coeffcient is determined as 

T, 
/ z =  

( I g / r  + M g r )  

where g is gravitational acceleration. Hence the required frictional coefficient is 
higher as torque increases. The driver should not try to accelerate rapidly, because, 
as the torque increases, the required frictional coefficient to avoid spinning wheels 
on ice will exceed the actual frictional coefficient. 

E x a m p l e  4.10 

Consider a block of  mass m sliding on a straight rod without friction as a 
case for a t ime-dependent constraint. The rod is rotating in the x - y  plane that is 
perpendicular to the gravitational force. The rod is rotating at constant velocity w. 
Find 1) the radial position of the block as a function of  t ime and 2) the constraint 
force from the rod on the block. A similar problem has been presented in Example 
2.3. The physical  conditions are shown in Fig. 2.7. 

Solution. 
tion is 

o r  

so that 

The r and 0 are the generalized coordinates. The constraint equa- 

0 =cOt 

dO - cO dt = 0 (4.80) 

Cr = O, Ce = 1, Ct = -co  
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The kinetic energy is 

= lmQ:2 -k- r202) T 

The potential energy is a constant that is set to zero, i.e., 

V = 0  

Therefore, 

= " -2m(t:2q_ r202) L 

1) For the equation in the r direction, 

d 
d t  ( m i )  - m r  o) 2 = 0 

r" -- w2r  -= 0 

r = A cosh wt + B sinh wt 

= r0 cosh cot + (1:o/w) sinh o)t (4.81) 

where ro and I:o are the initial position and velocity of  the block along the r 
direction. 

2) For the constraint force, 

d ( m r 2 0 )  = 2 m w r ?  = Z (4.82) 
dt  

.To = 2 m w r ~  

Here, the generalized constraint force is a torque. The force between the rod and 
the block is 2 m w i ' .  

4.5 Calculus of Variations 

The calculus of  variations is a totally different approach from Lagrangian equa- 
tions. It is a method for us to determine conditions under which the integral of  
a given function will reach a maximum or minimum. But it can also reach La- 
grange's equation for a conservative system. Because of  that it is included in this 
chapter. 

To understand the method, let us consider a function f that is to be integrated 
over a path y ( x ) .  T h e  starting point of the path is (xl, yl), and the end point is 
(x2, Y2) as shown in Fig. 4.9. Assume that the function f can be written as 

f = f (y ,  y', x) 

where y and y '  and x are independent variables, although y and y '  are functions 
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/ - y ( . . o )  

~ (x~ .y, ) 

(~, .y,)- '-----~ ~_y(~,~) 

Fig. 4.9 

of  x. The integral of f is then 

][m 

Paths for line integration. 

ix X2 I = f ( y ,  y', x )dx  
1 

(4.83) 

Clearly, the result of the integral depends on the path y(x) chosen. Here we want 
to determine a particular path y(x), so that it makes the integral to reach the 
extremum. To reach that goal, we let 

y(x, or) = y(x, O) + otg(x) (4.84) 

where g(x) = Oy/Oot and g(xl)  = g(x2) = 0. This means that the path is varied 
from y (x) to y (x, or). The condition for the extremum of the integral is then 

From Eq. (4.83), we have 

( 0 / )  = 0  (4 .85)  
c/=0 

01 fx2(0 0y 0 0y')d x 
0---~ = , \ Oy O~ + Oy' Oot,I 

(4.86) 

In the preceding equation, the second term on the right can be simplified with the 
use of integration by parts, i.e., 

ix xz Of O2y 
I O y '  O X O O t  

- -  d x  - -  Of OY i2 ~ f x2 d ° f  °Y dx = °I g(x2) 
Oy' Oc~ - , - ~ ( - ~ y ' ) O o t  Oy--T x=x2 

ay' g ( x l ) -  , ~xx 0~ , ~ Oot 

Substituting the preceding equation into Eq. (4.86), we obtain 

Ol fx2 Of d Of Oy dx 
Oa ~ dx Oa 
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Now multiplying the equation by dot and setting ot to 0 and writing 

(0-~@) dot = 31 
ff=O 

(°y) do,_. 
ff=O 

we find 

M 
= L~-- aydx ~ O 

dx 

Because 3y is arbitrary and not zero as xl < x < x2, the terms in the brackets 
must be zero, i.e., 

OfOy dx Of = 0 (4.87) 

This equation is known as the Euler-Lagrange equation. Note that if we change 
symbols, f --~ L, y '  ~ q, Y ~ q, and x --~ t, we can write Eq. (4.87) as 

0 
dt Oq 

which is Lagrange's equation for a conservative system. Equation (4.87) is the 
tool for us to find y(x) for I to become the extremum. It is similar to Lagrange's 
equation, from which we find q(t). For a special case, when f is not an explicit 
function of  x, Eq. (4.87) can be further simplified. Multiplying Eq. (4.87) by y ' ,  
we have 

d(0 , )  
Y -~y -- Y -~ ~yl = 0  

Adding and subtracting (Of/Oy')y" and also adding Of/Ox, which is zero anyway, 
we obtain 

Of ,, , Of , 3 f  Of ,, y, d ( O f )  
~ Y  "57y y + ox ~ y  - ~ . . ~  =o  

Rewrite the first three terms as df/dx and the last two terms as (d/dx) [y'(Of/Oy')]; 
we find 

d f  d /" ,Of '~  
dx dx t y ~ y ' )  = 0  

o r  

, Of 
f - y ~ = const (4.88) 

which is even simpler than Eq. (4.87) for finding y(x). It will become clear after 
studying a few examples later. 
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On the other hand, sometimes we like to have 

fx: ./(y, y ,  x)dx (4.89) 
I 

to reach the extremum, but notice a condition is imposed, such as, 

f x2 Y', x ) d x  = Co (4.90) i f ( y ,  

1 

To treat this type of problem, we multiply Eq. (4.90) by )~ and add that to Eq. 
(4.89), then we have fx: 

I + XCo = I '  = ( f  + )~cr)dx 
I fx: 

= F ( y , y ' , x ) d x  
I 

fx  xz IOFyF d (0yFI) ] M' = 3ydx = 0 
l dx 

in which F(y ,  y', x) = f -I- Zcr. Similar to the way we find Eq. (4.87), we obtain 

OF Oy dx d (0~yF') = 0  (4.91) 

From this equation, y(x ,  X) will be found. The constant )~ then is determined by 
Eq. (4.90), which is equivalent to the constraint equation already discussed. 

E x a m p l e  4 . 1 1  

A geodesic on a given surface is a curve, lying on that surface, along which the 
distance between two points is shortest. Determine the equation of geodesic on a 
right circular cylinder. 

Solution. The radius of the cylinder is a. Take the z axis along the axis of the 
cylinder. The two points on the cylindrical surface are (zl, 01) and (z2, 02). The 
distance between two points is 

~o:, via2 \do l(dz "~: S = ,~ + dO 

Therefore, 

f ( z ,  z', 0) = ~ + z '2 

of of 
- -  = 0 ,  - -  = 0  
Oz O0 

Of z' 
OZ t ~ "~- Z t2 
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Using Eq. (4.88), we have 

o r  
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f = v/~a 2 + Z t2 = const 

dz 
z '  - - const 

dO 

Z = COO -~ C 1 

Therefore, the equation for the geodesic on a circular cylinder is found to be 

Z2 ZlO2--Z201 z =  -z-------~lO+ (4.92) 
0 2 - - 0 1  0 2 - - 0 1  

Example 4.12 
Just to illustrate the point that the calculus of variations also leads to the La- 

grangian equation for a conservative system, let us consider a particle of mass m 
freely falling under gravity. Find the equation of motion by considering 

Solution. 

L 
t2 

I = L (y, Y, t) dt 

The energies of the system are 

T = ½mS, 2, V = m g ( y  - Yo) 

L = T - V  = i .2 7 m y  - m g ( y  - Yo) 

OLoy dtd ( O _ ~ f ) = O = - m g - m ~  

The equation of motion is 

~) = - -g  

Note that the y axis is taken vertically upward. 

Example 4.13 
The surface area for a body revolving with the x axis can be expressed as 

fx  X2 I I =27r y(1 + y ' a ) :dx  
i 

Determine the function y ( x )  that minimizes the integral I. 

Solut ion.  Rewrite the integral as 

[ f x  x2 p2.! - - =  y ( l + y  )2dx 
2zr 
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Here the function f is 

f (y ,  y', x) = y(1 + y,2)½ 

which is not an explicit function ofx.  Using Eq. (4.88), we find 

y(1 + y,2)½ _ y, YY' - cl 
(1 + y,2)½ 

or 

Simplifying leads to 

Integrating yields 

y(1 + y,2) _ yy,2 = Cl(1 -F y,2)½ 

t !  y = c t ( l + y 2 )  2 

1 

dy ( y ~ ) 3  

81 

y = ci cosh + c2 

where cl, c2 are integral constant and can be determined if the two end points are 
specified. 

Example 4.14 
Determine the equation for the shortest arc that passes through the points (0, 0) 

and (1, 0) and encloses a prescribed area A with the x axis (Fig. 4.10). 

Solut ion.  According to the given conditions, we have 

(4.93) I = f o  1 + - -  dx 

Fig. 4.10 

(o.o) (1,o) 

Shortest arc between (0, 0) and (1, 0) but enclosing A. 
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and 

Hence, 
f0  

A =  ydx 

f = ,¢/]-+ y2, ~ r = y  

F = f + 3.or = ~/1 + y2 + 3.y 

OF y' OF 

Oy' ~ '  Oy 

Using Eq. (4.91), we have 

Integrating leads to 

Integrating again, we find 

d[ ~ . - ~  . = 0  

y !  

- -  ~.X nl-C l 
v / f +  y,2 

~.X -~-C 1 ! y = : L  
~/1 - ()~x + cl) 2 

1 
y = W ~ / 1  - (Lx + CI) 2 -~- C 2 

Applying the boundary conditions (0, 0) and (1, 0), we find 

CI -~- - - ~ ,  (-'2 = 1 

Substituting cl and c2 into Eq. (4.97) and using Eq. (4.94), we obtain 

I o A =  ydx  = -~ 1 -  ~.x - dx + c2x 

=~-~ ~ 1 - - ~ - + s i n  -I +c2  

~- = sin [~.2A + ~,  1 - / - ~ ]  
2 L 2v 4J 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.99) 
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The value of X is determined by this equation. And y(x) is written as 

y = ;  1 -  X x -  - ;  7 

83 

(4.100) 

which can be rewritten in a familiar form as 

(x - ~ ) 2 + (y - c2)2 = ~-~-~ 

Therefore the curve is a circular arc with the center at (½, c2) and a radius of 1/X. 

Problems 
4.1. Derive the equations of motion for Example 2. l with the use of Lagrangian 
equations. 

4.2. Derive the equations of motion for Example 2.2 with the use of Lagrangian 
equations. Make some necessary assumptions to simplify the problem. 

4.3. Develop the Lagrangian equation for the momentum equation of the incom- 
pressible fluid flow in fluid mechanics. 

4.4. Use the result of Problem 4.3 to find the momentum equations in cylindrical 
and spherical coordinates for incompressible fluid flow in fluid mechanics. 

4.5. Suppose a point mass m is attached to one end of a horizontal spring with 
spring constant k, the other end of which is fixed on a cart that is being moved 
uniformly in a horizontal plane by an external device with speed v0. If we take 
as a generalized coordinate the position x of the mass particle in the stationary 
system, find the equation of the motion for m, from the following: 

(a) The Lagrangian equation. 
(b) Hamilton's canonical equations. 

4.6. A heavy particle is placed at the top of a vertical hoop. Calculate the reaction 
of the hoop on the particle by means of the Lagrangian multipliers and Lagrange's 
equations. Find the height at which the particle falls off. 

4.7. Consider a car that is driven up an inclined slope (Fig. P4.7). With the use 
of constrained Lagrangian equations, find the equations of motion, and also find 
the power required to drive the car at the minimum speed. Make assumptions 
necessary to simplify the problem. 

4.8. A circular loop of wire is located in the x-y plane, with one point on it fixed at 
the origin and its center on the y axis; the radius varies in time according to r = a -I- 
bt 2, where a and b are constants. Find the equations of motion for a bead of mass m 
sliding smoothly on the wire and the normal force of wire on the bead (expressed 
as a function of an appropriate angular coordinate and its time derivative). 
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, i t  

Fig. P4.7 

4.9. Find the geodesic of a sphere. 

4.10. The ends of  a uniform inextensible string of  length £ are connected to two 
points fixed at the same level, a distance 2a apart. Find the curve along which the 
string must hang if it is to have its center of  mass as low as possible. 



5 
Rockets and Space Vehicles 

I N this chapter we shall study the dynamics of rockets and space vehicles in 
detail. We begin the study with a single-stage rocket in Section 5.1. In this 

section, we discuss thrust, air drag, stability, equation of motion, and conditions at 
the time of burnout. Multistage rockets are studied in Section 5.2. Advantages of 
multistage design are explained. The method of Lagrangian multiplier is employed 
to achieve optimum design for a multistage rocket. A numerical example is given 
to demonstrate the advantages of multistage design. 

The orbit of a space vehicle is studied in Section 5.3. The space vehicle is mod- 
eled as a particle in a central force field. Different orbits may be achieved with 
different amounts of total mechanical energies. Special emphasis is placed on el- 
liptical orbits. Numerical examples are given to illustrate the relationship between 
the velocity and position of a space vehicle for getting into an elliptical orbit. 

Continuous propulsion in a rocket is discussed in Section 5.4. Usually this type 
of propulsion is provided by an electrical system. Because the thrust from electrical 
propulsion is small compared to the weight of the rocket, small perturbation 
method is applied for solving the equations of motion. The advantage of analytical 
method is that parameters involved in the result are seen clearly. 

Interplanetary orbits of a space vehicle are discussed in Section 5.5. The launch- 
ing time is small compared to the period required for an interplanetary trip; there- 
fore, the thrust and time for launching are considered as an impulse. The space 
vehicle in orbit is still modeled as a particle in central force field. Numerical results 
of different trajectories are collected in Table 5.2. A detailed calculation for an 
elliptical trajectory of a space probe traveling from Earth to Mars is given for this 
subject. Special attention is paid to the space probe when it reaches Mars. With 
a proper impulse to reduce the speed of the probe, it will get into a spiral orbit 
around Mars so that a long-time observation can be carried out. 

5.1 Single-Stage Rockets 
Rockets differ from air-breathing jet engines that burn fuel with surrounding air. 

Rockets are self-contained, carrying both fuel and oxidizer. To understand better, 
we must look into details about the forces acting on the rocket. In general, there are 
three forces: thrust, gravity, and air drag. In addition, during early development of 
the space program, many rocket launches failed at the launching pad. What were 
the reasons behind this? Finally, we want to know what are the conditions of the 
rocket when fuel and oxidizer are burned. All of these interesting subjects will be 
explored in this section. 

Thrust 

The thrust of a rocket can be determined by examining the performance of a 
rocket under static tests. The rocket is arranged schematically as shown in Fig. 5.1. 
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Fig. 5.1 Rocket under static tests. 

Consider a stationary control surface that intersects the jet through the exit plane 
of  the nozzle. Positive thrust acts in the direction opposite to Ve. The momentum 
equation for such a control volume is 

Jm E F  = ~ pVdv + pV(V,., dA) (5.1) 

(5.2) Z F  = (T + Ae Pa AePe)i I 

where V is the velocity of  fluid, Vr is the relative velocity between the fluid and 
the control volume, Pa is the ambient pressure, Pe is the exhaust pressure, and Ae 
is the exit area of  the nozzle. The first term on the right-hand side of  Eq. (5.1) is 

dl 
dt pVdv  0 

because V = 0. The second term is 

APV(Vr • dA) = rhVei 

Therefore, we have the thrust, 

T = rhVe + Ae(Pe - P.) (5.3) 

Gravity 
Because the gravitational force is inversely proportional to the distance squared 

between the center of the Earth and the mass center of  the rocket, the gravity at 
different heights above the surface of  the Earth can be expressed simply as 

g = go k , ~ ]  (5.4) 

where go is the gravity at the surface of  the Earth, R0 is the average radius of  the 
Earth, 6,371.23 km, and h is the distance from the surface of the Earth. 
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Air Drag 
The air drag acting on the rocket can be estimated by 

1 2 (5 .5 )  D = Cd~pv Ay 

where Cd is the drag coefficient in the order of 0.1, p is the air density, (0.075 
lbm/ft3 at sea level), v is the rocket velocity, and Af is the frontal cross-sectional 
area of the rocket. 

From Eq. (5.5), it is seen easily that the drag is a function of velocity and density 
of air. At the begining of the rocket journey, the velocity is very small; later on 
the density becomes very small. The atmospheric density is reduced to 1% of its 
sea-level value at an altitude of 100,000 ft. Therefore, the drag value is always 
much less than the thrust of a rocket. Because of that, in the estimate of conditions 
after burning of fuel and oxidizer, the drag term is often omitted. 

Stability 
At the beginning of the launching process or shortly after the rocket leaves 

the launching pad, the forces acting on the rocket actually are thrust and gravity. 
It is easily seen that the thrust is produced by the exhaust gas at the exit of the 
nozzle. The sum of all the momentums of leaving particles Zi YhiVei is the major 
contribution to the thrust. The other part of the thrust is from pressure, which 
contributes a small fraction of the thrust. The vector sum of all vhi Vei will locate 
the center of application of the thrust, C.T. as shown in Fig. 5.2. If C.T. is above 
the center of mass of the rocket, the situation is stable. Otherwise, the forces are 
not stable. The rocket most likely fails to be launched. 

Fig. 5.2 Stability. 
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Fig. 5.3 
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Motion of a rocket in gravitational field. 

One remark ought to be added here: the exit velocity Ve is obviously very 
important to the location of C.T. However, the exit velocity is not determined 
completely by the contour of the nozzle. The expansion wave of the flow usually 
occuring at the comer of the exit will change the direction and magnitude of the 
exit velocity. Details of these topics are beyond the scope of this book. 

Conditions of the Rocket at the Time of Burnout 

Consider that a rocket is launched at an angle of 0 with the gravitational force 
as shown in Fig. 5.3. The equation of motion for the rocket along the axis of the 
rocket can be written as 

dl) 
m - -  = T - D - m g c o s O  (5.6) 

dt 

Note that as T - D = net thrust denoted by F, the preceding equation agrees 
well with Eq. (2.19) x s i n0+  Eq. (2.20) × cos& Considering T, D, and g in 
precise form, Eq. (5.6) becomes 

m - -  = (Pe  - P a ) A e  + rhVe - c o  p v 2 A f  - m g o  
d t  (Ro -k- h) 2 

cos 0 (5.7) 
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This equation can be integrated numerically, as shown previously in the integration 
of  Eqs. (2.19) and (2.20). However, if  only the major terms are kept in the equation, 
we can have the equation simplified to 

dl) 
m - -  = rh Ve - m g o  cos 0 (5.8) 

dt 

Integrating the equation, we find 

Vb = Ve ~ m o  _ go(coSO)av tb  (5.9) 
mb 

where ()b is the quantity at the time of burnout, m0 is the initial mass of  the 
rocket, and (cos0)av is the integrated average value of  cos 0. For a vertical flight 
the velocity is 

m0 
V = Ve ~ - -  - got  (5.10) 

m 

where m = m0 - tht. 
The altitude attained by the rocket at burnout is 

fo tb h b = v d t  = - -Ve tb  
~ ( m o / m b )  1 

+ Veto - -gotZ~ (5.11) 
( m o / m h )  - 1 2 u 

To see clearly the advantage of  multistage design for rocket and save some writing, 
let us introduce mass ratio R as 

m0 
R = - -  (5.12) 

mb 

payload ratio 

)~ = payload mass _ _ _ m L  (5.13) 

mass of  propellant and structure m p  + ms  

and the structure coefficient E as 

structure mass ms  mo  - mr. 
= --  - -  --  - -  (5.14) 

mass of  propellant and structure m p + ms  mo  - m L 

From the preceding equations it is clearly implied that 

mo = mL -[- mp -k- ms (5.15) 

a n d  

m b  = m L  + ms  (5.16) 
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Combining the expressions already introduced, the mass ratio can be written as 

l + k  
e -- (5.17) 

and the terminal velocity of  the rocket at the burnout is 

1+~ .  
V f  = Ve fi~R - gotb = Ve C , ~ - -  - gotb (5.18) 

E + L  

5.2 Multistage Rockets 
From past observations, many rockets are designed in two or three stages. 

Theoretically speaking more stages always will make the terminal velocity higher. 
However, the practical design problem also must be considered carefully. The 
optimization of  multistage rockets with respect to the distribution of  mass has 
been treated in a number of  interesting papers.* To simplify the problem, let us 
only consider the first term on the right-hand side of  Eq. (5.18) and write A Vi for 
the increment of velocity of  the ith stage of  the rocket so that 

1 + ~ i  
AV~ = V , , l ; ~ - -  (5.19) 

Ei + ~i 

The final velocity of  nth stage is then 

n l + ; ~ i  

i i=1 6i + Xi 

or 

, ~ y  - F ( X i )  (5.20) 
i = l  

Here we can maximize Vn/Ve  by adjusting the value of Xi. On the other hand, for 
each stage, we have 

~.i - -  m00+l) 
moi -- m0(i+l) 

moi 1 + ~.i 

m0(i+~) )~i 

where moi is the initial mass of  the ith stage of  the rocket. That means 

mol mol m02 

mL m02 m03 

. . . .  mo__  

mL \ Xi / i=I 

*Hill, E G., and Peterson, C. R., Mechanics and Thermodynamics of Propulsion, McGraw-Hill, 
New York, 1983. 
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o r  

mL =l-Li( LI__~ ) (5.21) 
m01 i=1 

Taking logarithmic form of the preceding equation, we obtain 

g, mL ~ (~) 
= e,~ = G()vi) 

m01 i=1 i=1 
(5.22) 

which actually serves as a constraint equation for adjusting ~-i, because for a given 
design, the payload and the initial mass must be specified. Therefore, we reach the 
point that (Vn/Ve) is to be maximized but subjected to the constraint equation of 
(5.22). This is a typical problem for the use of the Lagrange multiplier. Consider 

L()~i )  = F ()~i) + uG(Xi) (5.23) 

where ot is the Lagrange multiplier. Taking the derivative of Eq. (5.23) with respect 
to ~.i and setting it to zero, we find 

0L OF 0G 
- - = - - + ~ - - = 0  

1 1 ot u 
+ - - - - 0  

1 + )~i e -}- ~.i )vi 1 + ~.i 

which can be simplified to 

O/Ei 
,ki -- (5.24) 

1 - o r  - ~i 

Then from Eq. (5.21), the Lagrange multiplier ~ can be determined by 

mL _ l - ~ I (  El__~t )(1____~ ) (5.25) 
m ° l  i=1 

o r  

{ r 1 /  1 + mol Ei O/ 
/mL i=, / 

Then the value of ~.i is determined by the value of a in Eq. (5.24). 

(5.26) 

Example 5.1 
To illustrate the advantage of multistage design, let us compare the terminal 

velocity of a single-stage rocket to that of a three-stage rocket. Suppose that the 
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payload is 500 kg, the initial mass is 7500 kg, and the exhaust  ve loc i ty  is 3000 
mps.  The  structure mass is 1000 kg. 

Solution. For the s ingle-s tage rocket  

ms 1000 
E -- --  = 0.143 

mot -- mc  7 5 0 0 - -  500 

mL 500 
--  --  --  0 .0714 

mol -- mL 7500 -- 500 

Veil, 1 + ~ .  1 + 0 . 0 7 1 4  Vf = = 3 0 0 0 ~  = 4827 m/s 
E + ~. 0.143 + 0.0714 

For  the three-stage rocket,  by assuming 

E l = E 2 = E 3 = 0 . 1 4 3  

and f rom Eq. (5.26), we obtain 

1 
= = 0.70846 

1 + (7500 /500)~ (0 .143 /0 .857)  

Us ing  Eq. (5.24), we find 

dE 0.70846 X 0.143 
Z - -  --  = 0.68203 

1 -- ~ -- ~ 1 -- 0 .70846 -- 0.143 

The  terminal  veloci ty  at burnout is then obtained from Eq. (5.20): 

vj. = 3v,, \ E - - - ~ /  

= 9000 \ 0 .143 -T0 . - -~8203]  

= 6411 m / s  

Certainly,  this ve loc i ty  is much  higher  than the veloci ty  o f  the s ingle-s tage rocket.  

5.3 Motion of a Particle in Central Force Field 

Consider  a system of  two particles with mass m l and m2. Let  the center  o f  
mass  m2 be at the origin o f  x - y  plane. This  plane contains the t rajectory o f  ml .  
Fur thermore ,  let us consider  the case m2 >> ml  and write M for mz, m for  ml .  
With  the use o f  polar  coordinates  (r, 0),  Lagrange ' s  funct ion for m is 

L = lm(t :2  + r202) - V ( r )  
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Then the equations of  motion for m are 

d ( O L ~  3L aV = 0  (5.27) 
dt \ Oi" ] - 0-7 = mi: - mrO 2 + 0--7- 

-~ \ 0-01 - ~  _ d (mr20) = 0 

From Eq. (5.28), we obtain the momentum in 0 direction as 

(5.28) 

mr20 = / 2  (5.29) 

where/2 is a constant. This means that, as the particle moves in a central force 
field, its angular momentum is constant. With the information of  Eq. (5.29), Eq. 
(5.27) becomes 

/22 ~qV 
mY - -  -- -- F ( r )  (5.30) 

mr 3 Or 

F ( r )  is the force in the r direction. Because the potential energy of  the particle is 
a function of  r only, the force is a function of r. Equation (5.30) actually defines 
r( t ) .  

To solve Eq. (5.30), we use the inverse square law for the force, i.e., 

G M m  
F ( r )  -- r2 (5.31) 

where G is the universal gravitational constant = 6.670 x 10-11 N. m2/kg 2. Be- 
cause M and m are known quantities, the force may be written simply as 

k 
F (r) = - - ~  

where k = G M m .  Now the equation becomes 

/22 k 
mY 

m r  3 r 2 

To solve this equation analytically, we rearrange the equation. Because 

dO /2 

dt mr  2 

d dO d /2 d 

dt dt dO mr  2 dO 

(5.32) 

m 

dt 2 
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Eq. (5.32) now becomes 

r 2 dO ~ - ~  mr---- ~ - r2 (5.33) 

The preceding equation can be simplified further by changing the variable. Let 
I~ = 1/ r , then 

d#  1 dr 

dO r 2 dO 

And we can write Eq. (5.33) as 

Simplifying leads to 

/22 2 d [ 12 d/z __/z3 
- /2/z  ~-~ [km -d~ - m = -k/z2 

d2/z mk 
d0---- T + / z  = -~-  (5.34) 

Without losing generalization, we can write the solution of  Eq. (5.34) as 

mk 
# = - ~ [ 1  + e c o s ( O -  8')] (5.35) 

where E and 0' are arbitrary constants of  integration. To determine these constants, 
we put back the symbol r for 1/#.  

/2 2 / (mk ) 
r = (5.36) 

1 + e c o s ( O  - 0 ' )  

Differentiating Eq. (5.36) with respect to 8, we find 

dr e/22 sin(0 - 8 ' )  

d-'-O = mk  [1 + e cos(0 - 8')] 2 (5.37) 

On the trajectory of  m, there is a point called an apsidal point. At such a point, 
the r is not changed as 0 changes. Let us choose the (r, 8) coordinates in such a 
way that 0 - 0' = 0 at one apsidal point. On the other hand, using Eqs. (5.36) and 
(5.37), we have 

I: = - - - -  
/2 /2 s in(O-O')  

mr 2dO = mr 2 \ mk  I [l + ecos(O - -8 ' ) ]  2 

= --m ~k/22 J \ m k  } sin(0 - 0 ' )  

ek 
t: = ~ -  sin(0 - 8') (5.38) 
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The total energy of  m can be written as 

~_2 k m k  2 
E = T + V = l m r 2  Jr- - -  - -  ( g  2 - -  1 ) - -  

2 2 m r  2 r 2/Z 2 

Equations (5.36) and (5.38) are used in the process deriving the preceding equation. 
Hence 

• /  2 £ 2 E  (5.39) 
e = I + mk------- T -  

Now the trajectory equation is 

( £ . 2 / m k )  
r - (5.40) 

1 + e c o s 0  

To understand the meaning of Eq. (5.40), let us review a part of  analytical 
geometry for conic curves. A conic curve is defined as the locus of  a point moving 
such that the ratio of  its distance from a fixed point, the focus, to its distance from 
a fixed line, the directrix, is a constant e. From Fig. 5.4, we have 

F 
s -  

A B  

o r  

r = e ( A B )  = e ( C D )  = e ( O D  - r cos0)  

Rearranging leads to 

r(1 + e c o s 0 )  = e .  O D  = const = C 

Therefore 

C 
r - (5.41) 

1 + e c o s 0  
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Table 5.1 Different values of e and E for different orbits 

Eccentricity, e Energy, E Type of orbit 

> 1 >0 Hyperbola 
= 1 =0 Parabola 
< 1 but >0 <0 Ellipse 
= 0 - m k 2 / ( 2 £  2) Circle 

Compare this equation with Eq. (5.40); we find 

C = £ 2 / ( m k )  

That means the orbit of  the particle in a central force field can be one of  the conic 
curves. The focus is the center of  central force field. Different conic curves result 
from different values of e, which is called eccentricity. Because E is directly 
related to e, different orbits for different e and E are given in Table 5.1. 

Because the total energy of  the particle m dictates the type of  orbit, let us look 
into the meaning of  E < 0, i.e., 

E = T + V  < O  

k G M m  
T < - V ( r ) - -  - - - -  

r r 

1 G M m  
--m(t :2 "t- r202) < - -  
2 r 

or 

G M  
(?z + r202) < _ _  

r 

The preceding equation says for an elliptical orbit, the velocity of  the particle must 

be less than v/2-G--M-/r. As the velocity reaches the limiting value of  ~ / r ,  
the particle will get on the parabolic orbit and will not come back. Hence this 
velocity is termed the escape velocity: 

•/•M Ve~c = (5.42) 

On the other hand, for a circular orbit, e = O. Let us examine the meaning of  
e = O .  As 

2E2E 0 
e = 1 + m k  2 
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that means 

2£2E 
1 +  - 0  

mk 2 

mk 2 
E -  

2 £  2 

mk 2 
T + V  -- 

2 £  2 

1 GMm 1 ( G M )  2 
~m(t: -+- r 2 0 2 )  - -  --  m 

r 2 (r20) 2 

For a circular orbit, t: = 0, and simplifying the preceding equation, we find 

lr202 - GM ( G M )  2 
2 r 2(r20) 2 

Using v = r0 ,  we have 

That means 

~V2= GM ( G M )  2 

2 r 2r2v 2 

(v z - G M / r ) 2 = O  

Vci, = a, /-a--ff /r  (5.43) 

I)es c ~ ~//21)ci r 

and for an elliptical orbit, the velocity must satisfy the condition 

Ocir < 1)ell < Uesc 

o r  

GV/-G--M/r < Oel I < ~ / r  (5.44) 

Just to have some feeling of the velocity of  a planet on a circular orbit, let us 
calculate the velocity of  the Earth around the sun. We have 

Msu n = 1 . 9 8 6 6 1 5 8  x 1030 k g  

gEart h = 1 .495  X l 0  II m 

~ 6 . 6 7  x 10 - l l  x 1.9866158 x 1030 
VEa~th = 1.495 X 1011 = 29771.4 m / s  

30 km/s  
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Fig .  5.5 E l l i p s e  a n d  a u x i l i a r y  c irc le .  

Elliptical Orbits 

In s tudying the orbits of  satellites around the Earth, we are interested more  in 
el l ipt ical  orbits. Let  us look further into details about them. From Fig. 5.5, we 
have 

F C  = C D  - F D  = a coscp - r c o s 0  

Also ,  we  have 

F C  = a -  B F  = a - r m i  n = a  
£2  

m k ( 1  + e)  

Because  

~ 2  
rma x - -  

m k ( 1  - e) 

rmin -1- rmax = ~--~ -i---~E -'1- -i '---~_ 8 

2Z22 
- -  - -  2a 

m k ( 1  - e 2) 

we  find 

/~2 
a =  

m k ( 1  - -  E 2) 

rmi n = a(1 - e) 

(5.45) 

(5.46) 
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and 

F C  = a -  a ( 1  - e )  = ae  

= a cos  q~ - r co s  0 = a co s  4, 

a ( 1  - e 2) r 
= a cos~b - -  + 

E S 

£ 2 / m k  - r 

r = a ( 1  - e cos  ~b) (5 .47 )  

S o  far ,  w e  h a v e  f o u n d  t h e  o r b i t a l  e q u a t i o n  r ---- r(O) or  r = r(~b),  b u t  t h e r e  is  n o  
e q u a t i o n  to  h a v e  t i m e  t e x p l i c i t l y  i n v o l v e d .  To  r e l a t e  ~b to  t h e  t i m e ,  le t  u s  s t a r t  f r o m  
t h e  t o t a l  e n e r g y  E :  

£2  k 
E = m r 2  + - -  

2 2 m r  2 r 

so  t h a t  

r 2~r r  2 , d r  E + r 2 ~ r  2 = d t  (5 .48 )  

B e c a u s e  E - -  c o n s t ,  i t  r e m a i n s  the  s a m e  a t  any  v a l u e  o f  r .  L e t  us  c o n s i d e r  E a t  

r ~ rmi  n. 

E = T + V = l m r 2 i n 0 2  k 
2 rmin  

1 £2 k 

- -  2 mr2in r m i  n 

1 [ 2/F 

m k  2 k 
= (s 2 - 1) = - - -  

2122 2 a  
( 5 . 4 9 )  

S u b s t i t u t i n g  Eq .  ( 5 . 4 9 )  i n to  Eq.  (5 .48) ,  w e  h a v e  

/ ~ 2 (  k £ 2 )  = ~r~-~- / k rd  r 
dt  = r dr  - - ~ a  r2 + kr  - ~ m  ~ / ( a e )  2 - ( r  - a )  2 

m ~ r ~ - - E - a ( 1  --  e c o s q ~ ) a e  s i n S d q ~  ~ . .  
--  ~- a t A -  e c o s  q~)d~b ( 5 . 5 0 )  

~ / ( a s )  2 - ( - a s  cos  ~b) 2 
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Furthermore,  because mr20 = / Z  = const  or r20 = const,  

{r2dO = dA 

dA 1 £. yrab 
- -  = --r20 = const  --  
dt 2 2m T 

This is known as Kepler ' s  law of areas. Where T is the period of  the mot ion,  zrab 
is the area of  the ellipse. Making  use of the relations from analytical  geometry,  

b = a x / q - -  g 2 

= ( c / a )  

we find 

T = m 
2zr abm 

£ --  2 7 r a 2 ~ ~  

x / l  - -  e 2 m  = 2 r r V ~  3 
= 27ra 2 x/mka( 1 - e2) (5.51) 

Us ing  Eq. (5.51) in Eq. (5.50), we obtain 

T 
dt = (1 e cos q~)d~b 

2re 

Therefore 

2rrt 
- -  ¢ - e s i n ~  (5.52) 

T 

Col lect ing all the results together, now we have 

r m 
£ ' 2 / ( m k )  ~/ 2E2E 

l + e c o s 0 '  e =  1 +  mk----- T- 

E 2 1 
r = a ( l  -- ecosq~), a = - -  

mk (1 - e 2) 

2zr t ] ma 3 
= q ~  - e sinq~, T = 2Jr~[ 

T v k 

Example 5.2 
Consider  a particle that is moving  in an elliptical orbit  about  a fixed focus 

because of an inverse-square law of  attraction. 1) Find the points in the orbit  at 
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which the magnitude of the radial velocity 1: is maximum, and 2) prove that the 
possible values of  corresponding 0 are 

Solution. 
orbit: 

1) Rewrite the equations of  motion for a particle in an elliptical 

mY -- mrO 2 -- k (5.53) 
r 2 

mr20 ---- 12 (5.54) 

As I: ~ ?:max,/" = 0, then from Eq. (5.53), we have 

k 
mrO 2 = - -  

r 2 

m r  r2 

o r  

On the other hand, 

That means 0 = 7r/2 or 3zr/2: 

122 

m k  

122 / (mk)  
r -  

1 + e c o s 0  

ke sin 0 
£ 

iz = __ke cos 00 = 0 
12 

(5.55) 

ke ~r 122 
?:max £ at 0 = -~ , r m k  

2) For a particle in an elliptical orbit, 

E = lm(?: + r202) k - - - -  < 0  
2 r 

02 1 ( 2k ) 2k ( e k ' ~ 2 1  2k e2k 2 
<~ - ~  k -~F --?:2 - -  m r  3 \ - -~ ,]  -~  ~ m r  3 m2r602 

(5.56) 
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o r  

Consider 

04 2k02 ~2k2 
- + < 0 (5.57) 

m r  3 

f (O2 ) = 04 2k "2 eZk2 
- mr-----~30 + mZr------ ~ --  

02 1 F 2 k  ~ /4k2  4E2k 2 ] 
= 2 Lmr  3 4- m2r 6 m2r 6 J 

- 0  

k [ l _ I _ ~ / l _ E 2 ] =  k (1 b )  
= m r  3 ~ 4- = / (5.58) 

Therefore, choosing the values of 0 between the two roots from Eq. (5.58), Eq. 
(5.57) is satisfied, i.e., 

s ( 0  2) = (0 2 - 0 ? ) ( 0  2 -o22) < o 

Example 5.3 
A weather satellite is to be launched. The requirement of  such a satellite is 

that it must stay above the same point on the surface of the Earth all the time. 
Determine the radius of the circular orbit above a point located along the line from 
the center of  Earth perpendicular to the Earth's rotating axis with mass of  Earth 
= 5.975 × 1024 kg. 

Solu t ion .  For a circular orbit, the velocity of  the satellite is 

v = Gv/--GM/r 

Because the satellite must be moving with v = rco, where co is the rotating speed 
of the Earth, 

2Jr 
co -- -- 7.2722 x 10 -5 rad/s 

24 x 60 x 60 

we find 

cot = ~ /  r 

r m m 

( G M )  U3 (6.67 × 10 - I t  × 5.975 × 1024) 1/3 

092/3 (7.2722 × 10-5) 2/3 

= 4.22387 × 104 (km) 

Example 5.4 
A satellite enters its orbit at a velocity of  8045 m/s at an altitude of 644 km. The 

velocity is parallel to the Earth's surface. Find the equation for the orbit and the 
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maximum altitude from the Earth's surface the satellite will reach. The average 
radius of Earth is 6436 km and the mass of Earth is 5.975 x 1024 kg. 

Solu t ion .  From the given data, we have 

r = 644,000 + 6,436,000 = 7,080,000 (m) 

= mr20 = m r v  = m(7,080,000)(8045) 

= m(5.69586 × 101°) (kg. m2/s) 

£2 k 
E - - -  

2mr 2 r 

k = G M m  = (6.67 × 10-11)(5.975 × 1024)m 

= m(3.9853 x 1014) (N .  m 2) 

(m5.69586 × 101°) 2 
E =  

2m (7,080,000) 2 7,080,000 

= - m  (23,928,536) (N- m) 

m(3.9853 × 1014) 

• /  2 £ 2 E  
E =  1 +  ~ - ~  = 1 -  

2(m5.69586 × 101°)2m(23,928,536) = 0.1498 

£ 2 / ( m k  ) = (m5.69586 × 101°) 2 

m2(3.9853 × 1014) 

Hence, the orbital equation is 

£ 2 / ( m k )  
r -  

1 + ecos0  

m(m3.9853 × 1014) 2 

= 8,140,622 

8140622 

1 -t- 0.1498 COS 0 

(m) as 0 = zr rmax =- 9,574,950 

(m) 

The maximum altitude is 

hmax = rmax - rEarth = 9,574,950 -- 6,436,000 

----- 3,138,950 (m) 

----- 3139 (km) 

5.4 Space Vehicle with Electrical Propulsion (equations solved 
by small perturbation method) 

Electrical propulsion systems are known very low in thrust as compared to the 
gravity of the space vehicle at the Earth's surface. Because electrons are emitted 
from the sun constantly, space vehicles can collect electrons in orbit and the 
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electrical propulsion system can function properly while the vehicle is traveling 
in space. Consider that a low thrust is oriented along the tangential direction of  
the orbit. The equations of  motion are then 

m(i: -- rO 2) = - (k /r  2) (5.59) 

m(rO + 270) = F0 (5.60) 

where 1-'0 is the electrical thrust in the tangential direction. To solve Eqs. (5.59) 
and (5.60), we introduce dimensionless variables as follows: 

-G Fo For2o r Mt v p = - - ,  r . . . .  (5.61) 
ro V r3 ' mg GMm 

where r0 is the initial orbit radius and g is the gravitational acceleration at the 
initial orbit radius. Now we can write 

dr G~7oM dp 
- -  ~-r (5.62) 

dOdt - - ? r  MdOdr (5.63) 

d2r GM d2p 
- -  - -  - -  (5.64) 

dt 2 ro 2 dr  2 

With the use of  these expressions, Eq. (5.60) becomes 

d--r \ dr  ,I vp (5.65) 

and Eq. (5.59) becomes 

=/dO  I 
dr  2 \ d r ]  pz (5.66) 

Recall that the parameter v is the ratio of  the thrust from electrical rocket to 
the gravitational force at the beginning point while r = r0 and is in the order of  
10 -3. Therefore, this is a typical case to be solved by small perturbation method. 
To solve Eqs. (5.65) and (5.66), the initial conditions are assumed to be/: = i: = 0 
and r = r0; the thrust is initiated at t = 0, and 

In dimensionless variables, that means 

dp d2p 
p = 1, - -  = O, = 0 (5.67) 

dr  d~ 2 
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and 

From Eq. (5.66) we get 

dO 
= 1, 0 = 0  (5.68) 

dr 

d-T = \ ~ r  2 + (5.69) 

Substituting Eq. (5.69) into Eq. (5.65), we find 

+ p  = u p  (5.70) 

To solve this equation, let us assume the solution can be expressed as 

P = PO 4- upt q- u2p2 q- • • • (5.71) 

where p is a function of r and has a magnitude in order of unity. With the use of 
Eq. (5.71), Eq. (5.70) becomes 

d [ d 2 
-~r (Po + vpl + v2p2 + .. 03 d-~r2 (po + vpl + v2p2 + . . . )  

| 

"]- (/90 Jr- PPl + I)2p2 "q- "'  ")] ~ 

= vpo + v2pl + . . .  

After carrying out the product in the preceding equation and breaking down the 
terms according to the orders of v, we find the following equations. To the zeroth 
order of v, 

d--T ~ + po = 0 (5.72) 

or  

3 d2p0 
po--d--~-r2 +p0  = c 

The solution of this nonlinear differential equation is simply 

pO~C 

When the initial condition is applied, we find 

Po = 1 (5.73) 
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To the first order of  v, we have 

, d(d2;, ) 
2 dr  \--d-~r 2 + el = 1 (5.74) 

The solution of  Eq. (5.74) is 

Pl = 2r  - 2 sin r (5.75) 

Therefore, the solution of  Eq. (5.70) up to the first order of  u is 

p = 1 + v(2r - 2 sin v) + 0(v 2) (5.76) 

With the use of  Eq. (5.76) in Eq. (5.69), the solution for 0 ( r )  is obtained as 

0 = r -- u ( 4 c o s r  + 1.5r 2 -  4) + 0 ( v  2) (5.77) 

From Eqs. (5.76) and (5.77) it is clear that the trajectory of  the space vehicle 
is a spiral. The increment of  the radius is proportional to the tangential thrust and 
the initial angular speed. The results are plotted in Fig. 5.6. Equations (5.65) and 
(5.66) can be solved numerically by the Runge-Kutta method. The disadvantage 
of numerical method is that the parameters involved cannot be seen immediately. 

1.5 

N U  = 0 . 0 0 1  

0.5- 

-0.5 

-1 

-1.5 
-1.5 

I I 

-1 -0.5 0 0.5 
X 

Fig. 5.6 Spiral orbit of an electrical rocket. 

1.5 
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5.5 Interplanetary Trajectories 
As a space vehicle moves in space, there is often more than one gravitational 

force acting on it. Therefore the equation of  motion for the vehicle can be written 
as 

mi; = ~ Fi (5.78) 
i 

where Fi = ( G M i m / l r - r i l 3 ) ( r i  - r ) =  the gravitational force from Mi. For 
example, when a spaceship travels from Earth to Mars, it is subjected to the 
gravitational forces from Earth, the sun, and Mars. However as the spaceship 
leaves Earth, the gravitational force will shift from Earth to the sun. To estimate 
the gravitational force from Earth, it is found that 

FEarth < ~0 Fsun 

as the spaceship moves away from the Earth by 1/1000 of  the circumference of  
the Earth orbit around the sun. Hence it is not a bad approximation that the whole 
journey is divided into three segments; in each segment the ship is subjected to 
one gravitational force, so that the equations and solutions developed in Section 
5.3 can be applied. The first segment is for the Earth's gravitational field, the 
second is for the sun's gravitational field, and the third for Mars's field. As the 
space vehicle reaches the escape velocity from the surface of  Earth, it will stay 
in the Earth's circular orbit around the sun. In the second part of  the journey, the 
trajectory is elliptical and is called transfer orbit. The last part of the journey is 
in Mars's circular orbit with the radius larger than that of  Earth's circular orbit. 
Hohmann* studied the interplanetary trajectory first and used three impulses for 
the Earth to Mars journey. The total velocity increment for the vehicle to reach the 
Mars orbit is 

~UHohman n = Ues c -~- A U  T -1- AUMars (5.79) 

where Uesc is the velocity required for the vehicle to escape the gravitational field 
of  Earth, AU~ is the increment of velocity as the vehicle moves from the Earth's 
circular orbit around the sun to the elliptical transfer orbit at r ---- rEmh, and A U M a r s  

is the increment of  velocity as the vehicle moves from the elliptical transfer orbit 
at r = rMars to the circular orbit of  Mars around the sun. 

In the Hohmann treatment, the energy per unit mass required to put the vehicle 
into the transfer orbit is 

EHofmann = Eesc + ½(AUT) 2 = ½(AUT) 2 (5.80) 

l 2 (GMe/Re )  0, where Re = radius Because Eesc = the escape energy = ~ U e s  c - = 

of the Earth. 

*Hohmann, W., "Die Erreichbarkeit der Himmelskorper (The Attainability of Heavenly Bodies)," 
NASA Technical Translations F-44, 1960. 
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Oberth* treated the problem slightly differently. He considered a higher terminal 
velocity for the space vehicle leaving the Earth, so that the vehicle can get into the 
transfer orbit directly from the first impulse of the rocket 

2 
Eobenh = Uoberth GMe 

2 Re 
Therefore, the total energy per unit mass at the burning out time must equal to 
(AUT)2/2,  i.e., 

because 

Hence 

• U2berth - -  ( A U T )  2 
G M___Z 1 

Re 2 

~U~s c G Me 
Te 

/ 
UOberlh = ~/U2sc "1- ( A U T )  2 (5.81) 

where AUT = Ur - Ue, Ur is the velocity of the spaceship on the transfer orbit, 
and Ue is its velocity on the circular orbit of Earth around the sun. From the total 
energy of the spaceship and Eq. (5.49), we have 

E = mU2 GMsunm _ GMsunm 

2 rEaah 2a 

Hence, 

UT --]GMsun( 2 ~)  
V \ rEarth 

With the velocity given in Eq. (5.81) as the first impulse and the increment of 
velocity from the elliptical transfer orbit at r ---- rMa~ to the circular orbit of Mars 
A UMar.~, the total increment for the whole journey is accomplished in two impulses 
and may be expressed as 

AUOberth = UOberth --1- AUMars (5.82) 

Based on the treatment outlined, several trajectories are studied. The results 
are collected in Table 5.2. The trajectories are shown in Fig. 5.7. Details of two 
impulses for a space vehicle to reach Mars are given in Example 5.5. 

Example 5.5 
Suppose that we send a space probe from Earth to Mars. When the probe reaches 

Mars, it will get into a spiral orbit around Mars to make close observations. The 

*For Oberth's approach, see Hill, E G., and Peterson, C. R., Mechanics and Thermodynamics of 
Propulsion, McGraw-Hill, New York, 1983. 
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Table 5.2 Characteristics of different trajectories 

Name of Eccentricity, UOberth , m U M a r s  , Time required, 
trajectory e km/s km/s days 

Hohmann 0.2075 11.6 2.6 256 

Ellipse 1 0.2525 11.7 - 2 . 6  a 175 
Ellipse 2 0.3418 12.1 -5 .0"  135 

Parabolic 1 16.7 - 16.9" 70 

aNote that the explanation of the case "Ellipse 1" is given in Example 
5.5. The detailed expressions for the velocity vectors of the space vehicle 
and Mars for "Ellipse 2" and "Parabolic trajectories" are given at the end 
of Example 5.5. To verify these two cases, see the exercises in Problems 
5.10 and 5.11. 

length o f  the major  axis is chosen as 4.0 x l0  II m for the elliptic t rajectory with 
the center  o f  the sun as the focus. 1) De te rmine  the impulse required for the probe 
leaving Earth. 2) Dete rmine  the required impulse  to reduce the ve loc i ty  o f  the space 
probe so that it will  have the orbit  spiraling down to the surface o f  Mars. 3) Find the 
t ravel ing t ime for the probe f rom Earth to the Mars circular  orbit  around the sun. 

Solution. 1) Take the radius o f  the Earth 's  circular  orbit  as the rmin o f  the 
ell iptic orbit. It is known that rEarth = 1.495 × l0  II m. Therefore ,  

c = a - FEar t  h 

= ( 2 . 0 -  1.495) × 10 I1 = 0.505 × 1011 (m) 

i \ 

/ / /Zk . , /  

/./Mare orbit 

Fig. 5.7 Four different trajectories for Earth-Mars journey. 
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and 

C 
e = - = 0.2525. 

a 

On the transfer orbit, the velocity of  the probe at the surface of  Earth is 

UT =a/aMsun( 2 1)  
1/ ' \rEarth 

( , )  = (6.67 x 10 -11 x 1.9866 x 103°) 1.495 x 1011 2 × "1011 

= 3.3343 x 1 0  4 (m/s) 

The speed of  Earth in the circular orbit around the sun is 

Ue = G ~ s u n  __ 2.98 x 10 4 (m/s) 
V ?'Earth 

and the escape velocity of  the space probe leaving the Earth is 

Uesc=-  2G~Me _ 1 .118x  104 (m/s) 
' V Re 

where Re is the radius of  the Earth. 
To launch the space probe into the transfer orbit directly from the surface of  

Earth, the required impulse is 

UOberth = ~/U2sc + (U T - Ue) 2 ----- 1.1724 x 10 4 (m/s) 

2) To find the required impulse to reduce the velocity of  the space probe so that 
it can spiral down to Mars, we must determine first the intersection point between 
the elliptic transfer orbit and the Mars circular orbit, then the velocity of  the space 
probe and the relative velocity between the probe and the Mars at that point. From 
the study of  the auxiliary circle of  elliptic orbit, we have 

r = a(1 - e cos~b) 

At the intersection point r = rMars ----- 2.278 x 1011 m, we find 

q~ = 2.15375 (rad) 

and 

cos 0 = (1/r)(a cos q~ - c) = - 0 .7050  

0 = 2.3532 (rad) 
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Hence the intersection point is at r = 2.278 x 101 | m and 0 = 2.3532 rad. On the 
transfer orbit with r = rM,r.~, we have 

~ ( 2 ! ) = 2 . 2 3 9 5 x 1 0 4  ( m / s ) -  
U T ~- G M s u  n rMars 

From the orbital equation, we obtain 

l; 2 

mk 

( r20)  2 
- - - -  = r ( l + e c o s O )  

G M,~un 

= 2.278 x 1011(1 + 0.2525cos2.3532) = 1.8725 × l0 ll 

rO = 21,882 (m/s) 

= ~/UT 2 -- (r0) 2 = 4767 (m/s) 

(m) 

Therefore, 

Ur = rer + (rO)eo = 4767e,. + 21,882e0 (m/s) 

On the other hand, the velocity of Mars on its circular orbit is 24,100e0 m/s  
Hence, the relative velocity between the space probe and Mars is 

U T - M  = U T - U M = 4767er - 2218e0 (m/s) 

Transform this velocity to an observer on the surface of Mars with the unit vectors 
denoted by (Jr, io) on Mars. They are related to the unit vectors in the transfer 
orbit by ir = - e o ,  io = e,.. To that observer, he finds that the velocity of  the probe 
at the surface of  Mars is 

Vp = 2218ir + 4767/o (m/s) 

With this velocity the space probe will have a hyperbolic orbit around Mars. 
However, if a proper impulse is applied, the probe can stay in the vicinity of  
Mars. We determine the required reduction of  velocity by setting the tangential 
velocity less than the tangential velocity needed to balance the centrifugal force 
on a circular orbit and the radial component zero. For a circular orbit of  radius 
of  3500 km, which is slightly greater than the radius of  Mars (3332 km), the 
tangential velocity is 

x 10 -L1 x 0.63873 x 1024 
= 3489 (m/s) 

3,500,000 

where R? is the radius of the probe position measured from the center of  Mars. 
From this calculation we determine the required reduction in velocity by choosing 

' = 3480i0 (m/s),  1)p 

o e' - o 1, = - 1287i0 - 2218ir 
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and 

A v  = lyre --  v e l  = ~/12872 + 22182 

= 2564 (m/s)  

Therefore, the velocity of the space probe is reduced to the velocity less than 
the velocity for circular orbit. With this velocity, the space probe will stay in the 
vicinity of  Mars. The radius of  the orbit is expected to decrease gradually, spiraling 
down to the surface of Mars because its centrifugal force is slightly less than the 
gravitational force for a circular orbit. 

3) The traveling time of the space probe from the surface of Earth to the Mars 
circular orbit around the sun is calculated as follows. 

The period for the whole elliptic trajectory is 

Wf a 3 2zr(2 x 1011) 15 
T = 2zr GMsun ~/1.352 x 10 a° = 565.06 days 

The time required for traveling from ~ = 0 to ~ = 2.15375 is 

T 
t = ~-n (~b - e sin~b) = 174.7 days 

Note that in Table 5.2, the values of  AUMars for the cases of  ellipse 2 and 
parabolic trajectories are computed with the considerations of  spiraling orbits 
around Mars as given in this example. Detailed expressions between the velocity 
vectors of  the space vehicle and Mars are given as follows: 

(AUMars)ell,2 = 8.236e,. - 1.451e0 (km/s)  

(AUMars)parab = 20.01e,. -- 3.55 le0 (kin/s) 

Problems 
5.1. A single-stage rocket is launched vertically from the surface of the Earth. 
The velocity and position of the rocket at the burnout are predetermined. Suppose 
that the mass ratio ( m o / m b )  is also given. Find the required mass flow rate and 
the exhaust velocity at the nozzle exit to launch such a rocket. 

5.2. Compare the terminal payload velocities between a single-stage rocket and 
a two-stage rocket with same payload ratio of  m L / m o l ,  structure coefficient, and 
the exhaust velocity. Suppose that the initial mass m01 = 100,000 kg, payload 
mL = 2000 kg, the structure coefficient E = 0.15, and the exhaust velocity Ve = 
3500 m/s. Neglect the gravity and the air drag. 

5.3. A satellite is launched from the surface of the Earth. At the time of 
burnout, the satellite is located at altitude of 1000 km with the radial velocity of  
vr = 500 m/s. Determine the required tangential velocity such that the minimum 
radius of  the orbit is 7000 km. 
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5.4. A particle moves in an elliptical orbit of major axis 2a and minor axis 2b, 
with the origin at the center of the ellipse. If the radius vector to the particle sweeps 
out area at a constant rate as usual, find the law of force in terms of the mass m 
and period P of the motion. If the minor axis 2b approaches zero under the same 
force law, what kind of motion would result? 

5.5. The gravitational potential for the inverse square law of force is - k / r .  
Suppose a small variation 3/r 2 is added to the potential. Find the general orbital 
equation. Show that, if 3 is a constant and 3 << £2/2m, the orbit is given by an 
ellipse with major axis precessing slowly, having angular velocity of precession 
given by ~/(£a2v/-f - e2). 

5.6. Take the speed of a planet (or satellite) in an elliptical orbit. 
(a) Prove that the speed at the point when the planet is at its maximum distance 

from the major axis is equal to the geometric mean of the maximum and minimum 
orbital speeds. 

(b) Show that the ratio of extreme orbital speeds (at perihelion and aphelion) is 
(1 + ~)/(1 - ~). 

(c) Take the Earth's eccentricity as 0.0167 and that of Halley's comet as 0.967; 
calculate the ratio in part (b) for each. 

5.7. With the use of the Runge-Kutta method, find the trajectory of an elec- 
trical propulsion rocket with the initial conditions in dimensionless form p = 1, 
/5 = ~ = 0, and the parameter v = 0.001. Plot the computed results. 

5.8. Prove that the solutions obtained from the small perturbation method satisfy 
the differential equations and the initial conditions for the electrical propulsion 
rocket. 

5.9. A satellite is launched from the surface of the Earth. At the time of burnout, 
the satellite is located at an altitude of 700 km with velocity of v = lO00er + 
5000e0 (m/s). Determine the impulse required to increase the velocity in the 
tangential direction when Vr is zero, so that the orbit of satellite is circular around 
the Earth. 

5.10. Verify the results of the ellipse 2 trajectory in Table 5.2 for a space ve- 
hicle from the surface of Earth to Mars' orbit. The length of major axis 2a is 
4.5 x 1011 m. 

5.11. Verify the results of the parabola trajectory in Table 5.2 for a space vehicle 
from the surface of Earth to Mars's orbit. 



6 
Matrices, Tensors, Dyadics, 

and Rotation Operators 

T HIS chapter is intended to familiarize students with the mathematical symbols 
used in technical journals so that they may better understand newly published 

papers and to provide background for studying motions of rigid bodies in Chapter 
7. These mathematical symbols allow many equations to be written in concise 
forms. Some topics, which are usually covered in a course of applied mathematics, 
will be introduced with a minimal amount of new physical concepts. To understand 
the subjects in this chapter better, students should have two courses in calculus 
and one course in differential equations and, specifically, some basic knowledge 
of matrix operations (see Appendix D). 

Section 6.1 will show the relationship between two orthogonal coordinate sys- 
tems under rotational motion relative to each other. Matrix notation and operations 
are introduced. Applications of matrix operations are given in Section 6.2 and in 
later sections dealing with the study of rotation of a symmetrical top. Section 6.3 
introduces Cartesian tensors and dyadics including some basic operations. Ap- 
plications of these are given in Sections 6.4, 6.5, and 6.6. Rotation operators are 
described in Section 6.7. The use of the rotation operator can simplify descrip- 
tions of complicated rotational motions. Some examples are given to illustrate this 
point. In general, this chapter provides background for studying the motions of 
rigid bodies. 

6.1 Linear Transformation Matrices 
From analytical geometry, we know that when x' ,  y '  axes are rotated with 

respect to the z axis by an angle of 0 relative to the x, y axes as shown in Fig. 6.1; 
the relation of x' ,  y '  to x and y can be written as 

x '  = (cos 0)x + (sin0)y (6.1) 

y'  = ( - s i n 0 ) x  + (cos 0)y (6.2) 

From Eqs. (6.1) and (6.2), we can solve easily forx,  y in terms o f x '  and y'  as 

x = (cos O ) x ' -  (sin O)y' (6.3) 

y = (sin O)x' + (cos O)y' (6.4) 

Equations (6.1) and (6.2) or (6.3) and (6.4) are examples of a linear transformation 
from one set of quantities to another. These quantities can be obtained in a different 
way. Considering a position vector r extending from the origin to the point P,  we 
write 

r = x i Jr y j  = x'i '  Jr y~f 

115 
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y l y  p 

X 

Fig. 6.1 Relation between prime and unprimed systems. 

Then r .  i' and r . f  will lead to Eqs. (6.1) and (6.2). Similarly, r .  i and r - j  will 
give Eqs. (6.3) and (6.4). Extending this technique to a three-dimensional vector, 
we have 

x' = cos(/', i)x + cos(i !, j]y + cos(/', k)z 

y' = cos ( f ,  i)x + cos ( f  , j3y + cos ( f ,  k)z 

z' = cos(k', i)x + cos(k', j )y  + cos(k', k)z 

where cos(/', i) is the cosine function of the angle between i r and i. To simplify 
the notation, we let 

X 1 = X ,  

all = cos(/', i), 

a21 = cos ( f ,  i), 

a31 = cos(k t, i), 

Then we have 

o r  

X 2 = y, X 3 ~-~ Z 

" = cos(/', k) a 1 2  : c o s ( /  , j ) ,  a13  

= c o s ( f ,  k) a 2 2  = c o s ( j  , J ) ,  a23  

a 3 2  = cos(k',J), a33 = cos(E, k) 

! 

x I ~ a l l Y  1 -~- a l 2 x  2 -1- a l 3 x  3 

! 

x 2 = a 2 1 x l  -t- a 2 2 x 2  -I- a 2 3 x 3  

! 

x 3 = a 3 1 x l  -t- a 3 2 x 2  -t- a 3 3 x 3  

3 

' E X i : a i j x  j , 

j = l  

i = 1 , 2 , 3  (6.5) 
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where aij are the direction cosines for all i and j .  Because the magnitude o f r  does 
not change from one system to another, clearly 

Z x2 = S "  x '2 (6.6) i 
j i 

With the use of Eq. (6.5) in Eq. (6.6), we have 

~ x 2 =  ~j (~ajkxk) (~ajexe) = ~.e XkXe (~j ajkaje ) 

The commutative property of addition has been used in the preceding manipula- 
tion. For the two sides to agree, we let 

aj~aje = Sk.e (6.7) 
J 

where 3k.e is the Kronecker delta function with the property 

8k.,={~ a s k S ,  a s k = ,  

Equation (6.7) is known as the orthogonality condition on the direction cosines, and 
the transformation Eq. (6.5) consequently is called an orthogonal transformation, 
which transforms one set of orthogonal coordinates into another set. 

The orthogonal transformation can be written in matrix notation as 

X' = AX (6.8) 

where 

X ' = / x ~ / ,  A = [a21 a22 a23 / , X =  x2 

~X~] \a31 a32 a33,/ x3 

Let us review some basic operations from matrix algebra. Note that A is a square 
matrix. IfAij is the cofactor of aij in the determinant of A, then the matrix 

(Aji) = transpose of (Aij) 
is called the adjoint of A. The reciprocal or inverse of a nonsingular matrix A is 
the adjoint of A divided by the determinant of A. The reciprocal of A is denoted 
by the symbol A - l .  Therefore, 

1 
A-l  = i--~Adj (A) (6.9) 

Multiplying Eq. (6.8) by A -1 leads to 

A-IX ' = A-lAX 
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o r  

X = A - I X  ' (6.10) 

This is known as Cramer's rule. However, becauseA is formed by direction cosines 
of an orthogonal transformation, Eq. (6.10) can be simplified further to 

X = A r X  1 (6.11) 

where A r = transpose of A, that is, 

A -1 = A T (6.12) 

The proof of Eq. (6.12) is given as follows. Based on 

AA -l = I  

letD = A -1, then 

(AD)ij = Z aik dkj = ( 1 ) i j  : ~ij 
k 

Multiplying the preceding expression of aie and taking summation over i gives 

Z aie(aikdkj)  = Z aie~i.j = aje 
i.k i 

The left-hand side of the preceding equation is 

Z aie (aik dkj) = ~ (aieaik) dkj = 
i,k i.k 

Z ~&kdkj = dej 
k 

Therefore, 

aje = (A)je = (Ar)ej = dej = (A-l )e j  

o r  

A -1 = A T 

When a matrix satisfies the preceding equation, it is called an orthogonal matrix. 
To illustrate the use of Eq. (6.12), let us consider 

A = 
c o  0 s i n 0  !) 

- sin 0 cos 0 
0 0 

cos0 - s i n 0  ! )  
A T = A - I  = I s i ; O  cosO0 
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We obtain 

( cos20 + sin20 --cos0 sin0 + sin0 cos0 ! )  
AA T = - s i n 0 c o s 0 + s i n 0 c o s 0  sin 2 0 + c o s  20 

0 0 

= 1 = I  
0 

Example 6.1 
Consider an airplane flying in a horizontal plane and measuring the wind velocity 

of a hurricane. A coordinate system (x', y', z'), which is attached to the airplane, 
is the moving system. Another system (x, y, z), which is fixed to earth with x - y  
plane parallel to the surface of the earth, is the fixed system. To simplify the 
problem, assume that x'y'z' coordinates coincide with xyz coordinates at the 
beginning of operation; however, at the instant of measurement the airplane has 
yawed with respect to the z axis by an angle of 0. The wind velocity is successfully 
measured by the airplane in the x'y'z' system. What is the velocity in xyz system? 

Solution. It is known that X' = RX and X = R r X  '. Applying this relationship 
for the transformation of velocity vector, we have 

V = R T W 

where 

R = 

cos0 sin0 i )  
- sin0 cos0 

0 0 

cos0 - s i n 0  i )  
R r =  ~si;O cos00 

Therefore, 

/vx//c°s°0 sn0 i/(v )(v cos0 Vysin ) 
1)y = sin 0 cos 0 v;, = v~ sin 0 -t- V'y cos 

v~ 0 v'~ V'z 

6.2 Application of Linear Transformation to Rotation Matrix 

From the first course in dynamics, we know that six degrees of freedom are 
necessary to specify a solid body in motion: x, y, and z for a specific point on 
the body and 0, ¢, and ~ for angular displacements of the body relative to a set 
of fixed axes. To illustrate the application of linear transformation, let us consider 
a solid body that is rotating without translational motion. Suppose that x, y, z 



120 ADVANCED DYNAMICS 

Z' 

Fig. 6.2 

/ / . . . ~  Y' 

x 
x'  

Relative position between x' and x systems. 

are fixed coordinates and that the prime system is attached to the rotating body. 
Consider the rotation in three steps as follows. 

1) Let x', y', z' coincide with x, y, z first, and then rotate x', y', z' counterclock- 
wise by angle ~b about z as shown in Fig. 6.2. The relationship between the prime 
system and the fixed system is 

X' = RIX 

where 

{ cosq~ sin4~ ! )  

R l = / - s i ; q ~  coscP0 (6.13) 

2) Let x", y", z" coincide with x', y', z' first, and then rotate x", y", z" counter- 
clockwise by angle 0 about x' as shown in Fig. 6.3. The relation between x", y", z" 
and x, y, z is 

X"= REX'= Re(RIX) = (R2R1)X 

where 

(i 0 0 / R 2 =  cos0 sin0 
- s i n 0  c o s 0 /  

(6.14) 

The intersection of the x-y  and x"-y" planes is called the line of nodes. 

Fig. 6.3 

Z j 

Z y,, 

,/< 
f nodes) 

X X',X" 

Relative position between X" and X' systems. 
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Fig. 6.4 

Z 

y, 

Z Z 

• y 

x 

X X" 

Relative position between X'" and X ' .  

3) Let x " ,  y ' ,  z " coincide with x ' ,  y",  z" first, and then rotate x "~, y " ,  z "~ 
counterclockwise by angle ¢r about z" as shown in Fig. 6.4. Then the relation 
between x t", y " ,  z "  and x,  y, z is 

where 

R = 

X " '  = R 3 X "  = ( R 3 R z R I ) X  = R X  

\ 0 { c o s ~  s i n ~  i )  
R3 = | - s i n ~  cos~p (6.15) 

0 

R = R3R2RI  

cos ~b cos ~p - sin q~ cos 0 sin ~ sin q~ cos ~ + cos ~b cos 0 sin ~p sin 0 sin lp '~ 
- cos ~b sin ~ - sin ~b cos 0 cos ~p - sin ~b sin lp + cos ~b cos 0 cos ap sin 0 cos ~OJ 

sin ~b sin 0 - cos ~b sin 0 cos 0 ] 

(6.16) 

The angles ~b, 0, and ~ are known as Euler angles and are used to study the motion 
of  a rotating top in Chapter 7. 

6.3 Cartesian Tensors and Dyadics 
A tensor is a quantity similar to a vector but with a much broader sense. Tensors 

can be scalars such as temperature or energy; tensors can be vectors; some tensors 
can represent stress, strain, or moment of inertia of  a solid body. Furthermore, 
some high rank tensors can be used to express quantities in n-dimensional  space 
with n > 3. The knowledge oftensors  is essential for the study of  general relativity 
theory. In this section, however, we are going to study only the Cartesian tensor. 
That means that the axes of the coordinate system, primed or unprimed, are 
perpendicular to each other. 

Cartesian Tensor 
A Cartesian tensor T in three-dimensional space is defined as a quantity that 

transforms according to the rule 

3 

Tt'mn .... = Z a l i a m j a n k ' " T i j k  .... (6.17) 
i,j,k=l 
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in a rotation from unprimed to primed coordinates where ali s are direction cosines 
between the axes in unprimed and primed systems. The Tij k .... are called the 
components of  the tensor and are functions of  the unprimed coordinates; the 
Tt~nn,... are the corresponding components in the primed system. 

The rank of  the tensor is defined by the total number of  indices. Therefore, T is 
a zero-rank tensor that is a scalar such as temperature or energy; Ti is a first-rank 
tensor that is a vector such as velocity, force, and torque, etc.; Tij is a second-rank 
tensor that represents nine-dimensional quantities in three-dimensional space such 
as stress and strain. In this chapter most of  our attention will be devoted to the 
second-rank tensor. 

A first-rank tensor is simply a vector. The transformation of  a vector from 
unprimed system to primed system is 

1"[ = E aei Ti 
i 

Consider that Ai and Bj a r e  two first-rank tensors. Their transformations are 

A~ = ~-'~aeimi and B~ = ~ aejBj 
i j 

The dot product o f A  I and B ~ is 

~-~a~B~=~~,(aeiZi)(aqBj)=~-~,(~aeiaej)AiBjt e.i.j i,j 

= E ((~i'j)AiBj = E AiBi = A . B  
i,.j i 

In other words, the dot product of any two vectors is invariant under the rotation of  
the coordinate system or is of zero rank. Therefore, it is also called isotropic tensor. 

Second-Rank Tensor 

To understand the second-rank tensor, let us consider 

Tij = x i x j  

The complete expression of  all the components of  the tensor can he written in the 
form of  matrix as 

X21 XlX2 XIX3~ 

(T j) = Ix2 , I 
x 2 ] \ x3x l  Y3X2 3 

The transformation of  Tq from unprimed coordinate system to primed system is 
as follows: 

at iamjT i j  = a t i x i  amjXj  = XeX m = T~m 
i,j 

Therefore T/j = xix j is a second-rank tensor. 
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It is important to learn the process of contraction. Looking at 

Tim = Z aeiamjTij (6.18) 
i , j  

there are six indices in the right-hand side of  the equation. Summing over i and 
j reduces the rank from six to two. This is called contraction. Note also the rank 
of  a tensor must be the same on both sides of  the equation. In many books, the 
summation sign is omitted in the equations. Automatic summation is to be done 
over a repeated index. This is known as the Einstein summation convention. For 
the sake of  clarity, however, the summation sign is kept throughout this book. 

Dyadic 
Dyadic is closely related with vectors and second-rank tensors. A pair of  vectors 

written in a definite order, such as / j ,  is called a dyad, and a linear combination 
of  dyads is known as a dyadic. For example, a second-rank tensor can be written 
into dyadic form as 

= Tl l ii + Tl2ij + TI3 ik + T21ji + "'" (6.19) 

Similarly, 

AB = AxBxii + AxByij + AxBzik + AyBxj i  + A y B y j j +  AyBz jk  

+ AzBxki + AzBykj + AzBzkk 

is a dyadic. 
Because vectors are used explicitly in the dyadic, many vector operations can 

be applied to dyadic operations. Let us study some fundamental operations as 
follows: 

C.  (AB) = Cx(AxBxi+ A x B y j +  AxBzk) + Cy(AyBxi+ A y B y j +  AyBzk) 

+ Cz(AzBxi+ A z B y j +  AzBzk) = ( C . A ) B  

The result shows that it is a vector in the direction of  B. On the other hand, the dot 
product of  (AB) with C from the right-hand side is 

(AB) .C = A(B .C) 

The vector in the result is in the direction of  A. Therefore 

A unit dyadic is defined as 

C . (AB) # (AB) . C (6.20) 

= ii + j j  + kk  

which possesses the property of  

1 . w = w = w . 1  

where w represents any vector. 

(6.21) 
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Now let us consider the transformation of a dyadic from an unprimed coordinate 
system to a primed coordinate system. Suppose that there is a relationship between 
vectors U and V in the unprimed system as 

U = IF. V (6.22) 

where T is a dyad. Note that Eq. (6.22) can be written in matrix form as 

U = T V  (6.23) 

Transform U and V into U' and V' by premultiplying 2 to Eq. (6.22): 

U' = A. U = A. T .  V (6.24) 

The equivalent operation in the matrix form is 

U' = A U  = A T V  

However it is known in the matrix operation that 

U' = A T ( A - I A ) V  = (ATA - I ) A V  = (ATA - I ) V '  = T 'V '  

which means that 

T' = A T A - t  = A T A  r (6.25) 

Applying this matrix manipulation to Eq. (6.24), we find that 

U' = A. 7 ~. (ArA) • V = (A. 7 ~.  ~ r ) .  (~ .  V) = 7 ~' .  V' (6.26) 

Therefore, 

7~, = ~ .  f .  ~ r  (6.27) 

where A is a dyadic with direction cosines as the elements. Equation (6.27) can 
be written in tensor notation as 

Tim = E ( A ) e i  (T)ij ( A - I ) j  m = Z aeiamj Tij 
i,j i,j 

which agrees with Eq. (6.18). 

Example 6.2 
Consider that a solid body is under rotational motion. It is rotating about the 

axes of symmetry. The axes of the coordinate system are chosen so they coincide 
with the axes of symmetry of the body. Express the relationship between angular 
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momentum and the product of the moment of inertia and angular velocity of the 
chosen system in dyadic form. Find also the new relationship as the coordinate 
system is rotated about the z axis by an angle of ~b. 

Solution. According to the given conditions, the components of angular mo- 
mentum can be written as 

L i = l i o g i  i = 1,2,3 

In dyadic form 

L =  (I l i i  + I 2 j j  +13kk )  . (wii  + w e j  + w3k) = "l . w (6.28) 

The angular momentum in the coordinate system rotated about the z axis by angle 
4' is 

L ' = R I  . L = R I - I ' . w  

= (~'t" I .  ~ r ) .  ( R l ' w )  = l ' . w '  (6.29) 

where 

and 

I ' =  R , .  I ' .  R[  (6.30) 

w' = Rl " w (6.31) 

To clarify the preceding operations, let us express the quantities explicitly. We 
have 

RI = cos 4~i'i + sin q~i~/- sin cbfi + cos 4~fj + k ' k  

L !  .I ! ,t t l ! = t L l  + j L z + k L  3 (6.32) 

L' = RI "L = ¢(LI cosq~ +L2sin~b) 

+ f ( - L  l sin q~ + L2 cos ~b) + krL3 (6.33) 

Therefore, 

L' l = Ll cos~b + L2 sin ~b 

L~ = - L I  sin~b + L2 cos~b 

L; = L 3 

To find I ' ,  we first write R~" explicitly as 

R~ = cos ~bii' - sin ~bif + sin ~bji' + cos ~bjf + kk' (6.34) 
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then we obtain 

?= 7. 

= (cos ~i ' i  + sin ~bi~] - sin q~j'i + cos ~ f j  + k 'k)  

• ( I l i i +  I 2 j j +  13kk ) .  (cos ~bii' - sin ~bif + sin ~bji' + cos ~bjf + k k ' )  

= i'i'(I~ cos 2 ~b + 12 sin e ~b) + i ~ ' ( - I t  + 12) cos ~b sin ~b 

+ f i ' ( - I i  + 12) cos ~b sin~b +j~/ ' ( l l  sineq b + le cos2 ~P) +k~k ' I3  (6.35) 

Similar to L/, we find 

t e l  oJ w = • = i '(wl cos ¢~ + 0) 2 sin q~) + J " ( - w l  sin ~p + o92 cos ~b) + k'w3 

Through L'  = I '  • w' we finally obtain 

L '  1 = L1 cosq~ + L2 sin~p 

= (ll cos2 ~b + 12 sin 2 q~)(COl cos ~b + 092 sin ~b) 

+ ( - l l  + 12) cos ~b sin q~(-wl sin ¢ + 092 cos ~b) 

= l l w l  cos~b + 12w2 sin~b (6.36a) 

L~ = --Ll sin ~b + L2 cos q~ 

= (-11 + 12) cos q~ sin ~b(wl cos ~ + o92 sin ~p) 

+ (/1 sin2 ~ + 12 cos  2 q~) ( - -~ l  sin ~p + o92 cos qS) 

= - - I  1 O) 1 sin <p + 12o)2 cos ~b (6.36b) 

L '  3 = L3 (6.36c) 

The result shows that L'  obtained from I '  • w' is the same as that from R l • L 
and serves to illustrate the dyadic operation• 

6.4 Tensor of Inertia 

After having studied the fundamentals of  dyadics, we are ready to learn some 
applications. Consider a rigid body in rotational motion. A set of  rectangular 
coordinates is attached to the body and is rotating relative to a set of  fixed space 
coordinates• The origins of the two systems coincide and are not in relative motion. 
Therefore, the body position can be specified by three angular coordinates such 
as Euler angles (Section 6•2)• Without losing generality, let us consider that the 
solid body consists of  many point masses and that the position vector of  mi is r i. 
Therefore, the velocity of point mass m i is 

IJ i ~ 03  X r i  
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and the angular momentum of the body is 

L = ~ r i  × m i v i  = Z m i r i  x (w x r i )  

i i 

= Z m i [ r 2 w - - r i ( r i . w ) ]  
i 

= Y ~  m i ( ~ * l - - r i F i ) . w = * I m . t O  
i 

(6.37) 

where Im is the tensor of inertia expressed in dyadic form and 

[m : Z mi ( r21- -  riri) 
i 

Expanding Eq. (6.37), we have 

(6.38) 

where 

Ixx = Z m i (  r2 - x ~ ) ,  
i 

Iyx = - -  ~__miYiXi, 
i 

Izx  = - ~ m i z i x i ,  
i 

Lx = lxxwx + lxywy + lxzwz 

L y  = lyxwx + l y y W y - k -  lyzwz 

Lz = Izxwx + Izyogy + Izzwz 

(6.39) 

Ixy = - Z m ~ x i y ~ ,  Ixz = - - Z m i x i z i  
i i 

Iyy  : ~ mi(r 2 - y ~ ) ,  l yz  = - ~ m i Y i Z i  
i i 

Iyz = -- ~ miziyi ,  lzz = Z mi(r~ -- z 2) 
i i 

In the preceding expressions, lii elements are called the moment of inertia and 
Iij(i # j )  are the products of inertia. 

Now let us relate the inertia tensor to the moment of inertia with respect to the 
rotational axis of the body. Let n be a unit vector along w or 

c o  ~ O9?/  

The moment of inertia with respect to the rotational axis is simply 

Im = n . Im " n = n . ~ mi(rZ~f - r~ri) . n 
i 

= . ) 2 ]  

i 

(6.40) 



128 ADVANCED DYNAMICS 

Through the use of  Eq. (6.40), the kinetic energy of  the solid body rotating with 
velocity w can be expressed in a familiar form as 

1 1 T = ~ m i v i . v i  =~-~mivi.(toxri) 
t i 

1 1 = 2 Zmiri" (vi x w) = ~ Zmiw" (ri x vi) 
i i 

l l = ~w. mi(ri x vi) = -~w.L 

1 1 ~ 
= --tO • l+m . CO = w2n.'[m.n= ImO)  2 2 

With the definition of  inertia tensor given in Eq. (6.38), the generalized parallel  
axis theorem can be derived easily as follows. Consider 

ri =~ +R 
as shown in Fig. 6.5. 

The inertia tensor with respect to XYZ coordinates I'0 then can be expressed as 

+[o= Zmi( r~ l - - r i r i  ) 
i 

= ~ m , [ ( ~  +R) .  (r~ +R)Y - (~ +R)(~ +R)] 
i 

= Z m i [ ~ "  ~ * f -  ~ ]  + Z m i [ R . R 1 - R R ]  
i i 

+2 Ie" (~i mir:)]+l-e(~i mini) - (~i mi~)e 

/ 
I t  

Y 

Fig. 6.5 General position of a body in XYZ coordinates. 
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Because the origin of  the primed system is chosen at the center of  mass, 

Z m i / i  = 0  
i 

"[o = Z mi[ r[2i -- didi] + M [ R 2 i  - RR] 
i 

= Ic + M(R21  - RR)  (6.41) 

where lc  is the inertia tensor of  the solid body with respect to the primed axes 
with the origin at the center of  mass. Equation (6.41) is known as the generalized 
parallel axis theorem. 

To illustrate the generalized parallel axis theorem, let us consider a case where 
the center of  mass of  the body is at distance x on the x axis: 

R = xi,  R 2 = x 2, RR  = iix 2 

M(R21  - RR)  = m ( x 2 j j  + x2kk)  

1o = Ic + M x 2 ( j j  + kk )  

Writing the components of the moment of inertia in detail, we have 

(70)22 = (Ic)22 + m x  2 (6.42a) 

(70)33 = (Ic)33 + M x 2  (6.42b) 

(10)ll = (l'c)ll (6.42C) 

('[O)q = (Ic)ij i # j (6.42d) 

In Eqs. (6.42a) and (6.42b), the difference between I'0 and I'c is M x  2 i n j j  and 
kok becausethe y '  and z' axes are moved by x; however, because x, x '  coincide, 
(I0)ll = (Ic)l l .  The results given in Eqs. (6.42a--6.42d) agree with the parallel 
axis theorem written with nine separate equations as given in the first course of  
dynamics. 

6.5 Principal Stresses and Axes in a Three-Dimensional Solid 
We have studied the fundamentals of  matrices and tensors in Sections 6.1 and 

6.3. Now let us apply them to determine the principal stresses in a solid. When 
forces and torques are applied to a three-dimensional homogeneous solid, three- 
dimensional stresses are set in the solid. As shown in Fig. 6.6, these stresses have 
nine components ax, cry, az, "Cxy, "Cxz, "Cyx, "Cyz, "Czx, and "Czy. Because these stresses 
are in equilibrium, the summation of moments with respect to each axis must be 
equal to zero, and the results show that "Cxy -~" "Cyx, "Cxz = "Czx, and "Cyz = Zzy. The 
state of  the stresses can be written in matrix form as 

( ( I x  "Cxy "Cxz~ 
o" = "Cyx O'y •yzl (6.43) 

\ "CzX rzy az / 
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a z 

I "r,,  o'y 

, ~ L  l y 

f a x 

X 

Fig. 6.6 Three-dimensional stress on a solid cube. 

in which ~i is the component of normal stresses and rij is the component of shear 
stresses. The ~ is a symmetric matrix. Figure 6.7 shows a tetrahedron formed 
by drawing three planes normal to the coordinate axes and a fourth plane with a 
directed normal n at a distance h from the point P that is at the origin. In the limit, 
as h --~ O, the tetrahedron will become of infinitesimal order with sides dx,  dy,  
and dz, and the inclined plane approaches P.  

To find the principal stresses in a solid, we assume that the stress acting on the 
inclined plane is only a normal stress t~n. The components of  ~n are %x, %y, and 
%z. In the limit, as h -+ O, the equilibrium of  all forces in the x direction requires 

- ½  ryxdx dz - ½ rzxdx dy ] ½crxdydz + crnxdA = 0 

where dA is the area of  the inclined plane. Note that 

½dydz = d A n  . i = dAanx 

½dxdz = d A n  . j  = dAany 

½dxdy = d A n  • k = dAanz 

, Z  

• × 

Fig. 6.'/ Three-dimensional stress on a tetrahedron. 
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Similarly, we can find 

On the other hand, 

n = anx i + anyJ + anz k 

anx -= axanx  q- Zyxany q- r.zxanz 

~7ny -~- T.xyanx -t- Cryany "1- T.zyanz 

anz = Zzxanx q- Zyzany q- azanz 

anx = a n ( n . i )  = ananx 

Crny = ffnany 

¢rnz -=- ¢rnanz 

Therefore, we find that the equations for the balance of  forces are 

crxanx -1- ryxany q- ~zxanz : crnanx 

~xyanx -t- ¢ryany -q- ~zyanz = crnany 

Tzxanx -I- ~yzany q- ~zanz = ¢rnanz 

Rewriting Eq. (6.48) in matrix form, we have 

where 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

crx = ¢rnx (6.49) 

{ a n x ~  

x =  / a n y /  (6.50) 

\ a n z l  

From the formulation given, we will determine anx, any, anz, and an. In addition 
to the three equations in (6.48), we have 

2 2 2 (6.51) n . n = 1 = anx q- an), -l- anz 

Therefore, we have four equations to determine four unknowns. 
Rearrange Eq. (6.49) as 

o'X = o ' n i x  

o r  

(,r - an 1)x = 0 
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Because x cannot be zero, the determinant of  the coefficients must vanish, i.e., 

Ior-  finll = 0  

Expanding the determinant, we find the functional relationship, called the charac- 
teristic equation, 

3 l l f i  2 + 12fin 13 0 (6.52) 4 , ( f i n )  = f i n  - - = 

where 

I~ = fix + fiy + fiz 

12 = ~xfiy + fixfiz + Cryfiz -- "r~2>. - r2z -- ry2z 

2 _ _  fiyT;t2z 2 13 = fixfiyfiz - -  f i a r y z  - -  f i Z r x y  + 2rxyrxzryz 

The three roots of  Eq. (6.52), say fil, fie, and fi3, are called the principal stresses. 
Once the principal stresses have been obtained, the direction cosines of  the normals 
of  the planes can be found from Eqs. (6.48) and (6.51). The normals are known 
as principal axes. To illustrate the procedure in detail, let us study the following 
example. 

Given a stress matrix, 

Example 6.3 

O r ~ - -  6 - -  

- 2  

(MPa) 

find the principal stresses and the direction cosines of  the principal axes. 

Solution. The characteristic equation is 

7 - -  f i n  - - 2  

- 2  6 - fin 

0 - 2  

O 
3 18fi~ - 99fin 162 0 = - - f i n  + + = 

5 fin 

The three roots are 

fit = 3 MPa, fi2 = 6 MPa, fi3 = 9 MPa 

To find the direction cosines, let us use Eq. (6.48) in explicit  form 

(7 - fin)anx -- 2any = 0 

--2anx + (6 - f i n ) a n y  - 2anz = 0 

--2any + (5 -- fin)anz = 0 
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' / 
Fig. 6.8 Relative position between A and B. 
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For the first root a~ = 3 MPa, 

4 a n x  - 2any  = 0 

-2anx + 3any - 2anz = 0 

-2any q- 2anz = 0 

In the preceding three equations, only two equations are independent because the 
determinant of the coefficients is zero. However, we have 

2 2 2 
anx -}-any --}-anz = 1 

and find 

Hence 

1 2 
anx = 3 '  an), : anz = 

nl = 3 i +  2 • 2 ~ j +  ~k 

Similarly, we find 

n2 ~ i +  l • 2 = ~ j -  ~k 

n3 - ~ i +  2 • l = ~ j -  ~k 

for a l  = 3 MPa 

for a2 = 6 MPa 

for a3 = 9 MPa 

Note that the three axes are perpendicular to each other. It must be pointed out here 
that the technique illustrated here for principal stresses can be used also for finding 
principal strains in homogeneous materials and principal moments of  inertia for 
solid bodies. 

6.6 Viscous Stress in Newtonian Fluid 

Suppose that a point A is located in a Newtonian fluid and is specified by 
the position vector r as shown in Fig. 6.8. The term Newtonianf luid  implies the 
following postulates. 
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1) The fluid is continuous, and its stress tensor rij is a linear function of the 
rates of strains. 

2) The fluid is isotropic, i.e., its properties are independent of direction, and 
therefore the deformation law is independent of the coordinate axes in which it is 
expressed. 

3) When the fluid is at rest, the deformation law must reduce to the hydrostatic 
pressure condition, rij = - P ~ i , j .  

Consider that A is moving with velocity V. In the vicinity of A, there is point B 
that is moving with velocity V + dV. The velocity V and the change of velocity 
are written as 

V = V i i +  V 2 j +  V3k 

8V OV OV 
dV = - - d x  + dy + - - d z  = dr . V V  

Ox ~ y  Oz 

dV - -  = V V . n  
dr 

where n is the unit vector in the direction of dr: 

O V2 .. OV3 i k OV~ "i + OV2jj + OV3 .~ V V  = OVI ii + + + 
~ ~ W q W -~-y J -fly -ffy J " 

OVl k i  + 01/2, .  OV3 k k  
+-ST  -ST KJ + Oz 

VV is called the strain rate dyadic. Note that VV denotes strain as a function of 
time. Now let us define 

O Vn O V2 01/3 
e l l  ---- 0X ' ~22 - -  0 y  ' E33 --~ ~ g  

1 (OVl OV2~, 

hi =- 2 \  Oy Oz J '  

~3 - : \ ax + - f i T /  

h 2 -~ , 
Oz Ox 

The strain rate dyadic then becomes 

l ( 0 V 2  OV1) 
h3 -- ~ Ox Oy 

V V = e + ~ 2  (6.53) 

with 

= El lii  + ~12ij "q'- E13ik + ~ l z j i  + Ezzj j  + E23jk 

-F El3ki W Ez3kj -F E33kk (6.54) 

and 

~2 = h3ij - h2ik - h 3 j i  + hi j k  + h2ki - h l k j  (6.55) 
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Note that ~ is a symmetric dyadic and is called the pure strain rate dyadic, and 
is an antisymmetric dyadic and is the rotation dyadic. 

To find the expression for viscous stress, let us consider a general stress dyadic: 

= r l l i i +  rt2ij + z'13ik + r l2 j i  + z'22jj + "c23 j k  

+ "Cl3ki + r23kj + "r33kk (6.56) 

Through the rotation of  coordinate axes, we can find the principal stresses and also 
the principal axes. Along these principal axes, considered as the primed system, 
we have 

~' = r~li'i' + r~2fj' + r~3k~ (6.57) 

( v v )  . . . . .  ' ' ~ ' ' ' : '11 t t + "22JJ nt- '33 ktk (6.58) 

The relationship between the viscous stress and the rate of  strain along the x '  axis 
may be expressed as 

! ! l ! 
I ' l l  ~ - - p  + CIEII "t'- C2,22 .qt_ C2,33 

= - - p  -I'- (CI - -  C2)Etll + C2(E'II "~ E';2 ql_ ' ; 3 )  

or( 
= - p  + (cl - c2)'-~-7x , q- c2(V '  V) 

= - p  + (Cl - c2)e!lL + c z (V .  V) (6.59) 

Without losing generality, let c2 = k - g/z2 and cl = c2 -t- 2/z in which k and /z  
are to be determined. Hence 

I';1 = - p  + (k - ~/z)(V • V) + 2#6'11 (6.60) 

To identify the constants, let us consider first 

r;l = r~2 = r~3 

,;, = ,;2 = ,;3 = ( v  v)/3 

From Eqs. (6.57) and (6.60) we find 

r " =  ( k -  ~ # ) ( V .  V ) i +  2 # [ ½ ( V .  V ) ] ' I -  p l  

= k ( V - V ) I -  p l  = r~ll 

Hence 

! 
k -- rll + P (6.61) 

( v .  v )  



Because (divV) means the change of volume per unit volume, k is known as the 
coefficient of bulk viscosity. Now let us rotate the axes back to the unprimed 
coordinate system and consider the viscous stress in a general form as 

r' = [ -  p + ( k -  2 # ) V .  V ] ~ +  2/z~ (6.62) 

Vt = Vl(y),  V2= V3 = 0  

Note that ~ is the only term affected by the rotation of coordinate axes. Because 
Eq. (6.62) is always true for all possible conditions, let us apply the equation to a 
case such that 

Then 

a) 

1 0 Vl 1 d Vl 
El2 

2 0 y  -- 2 dy 
dV~ (6.63) 

l'12 ~ 2 # ~ 1 2  : /Z 
dy 

where /z is known as the coefficient of viscosity. Therefore, Eq. (6.62) is the 
expression for the viscous stress in Newtonian fluid with k the coefficient of bulk 
viscosity and/z the coefficient of viscosity. 

6.7 Rotation Operators 
Earlier, in Chapter 3, we studied the collision of missiles in midair. In Example 

3.1, the delay time after the first missile launch is given as 60 s. This interval 
includes the time to rotate the launching equipment to a proper angle. Certainly 
this operation could be done by using Euler angles, but that approach takes too 
much time. With the operation given in this section, we will find that the operation 
is simplified and saves time. 

Consider that a position vector r is rotated with respect to vector n by angle fl 
to r'. The angle fl is measured in a plane perpendicular to n, containing the ends 
of vectors r and r'  in that plane as shown in Fig. 6.9. Let a be a vector with the 
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b 

Fig. 6.9 Rotation of r about n. 
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direction of  n and the magnitude of  the component of  r along n, so that 

a = n ( r .  n) 

Let b and c be vectors in the circular plane, which is the top view of  Fig. 6.9a 
looking down directly along - n .  Hence 

r' = a + b + c  

The radius of  the circle is r sin 0 or 

In x rl = I(n x r) x nl = I(n x r ' )  x nl 

The vectors b and c are 

b = [(n x r) × n] cos/5 

c = (n × r) sin/5 

Finally we have 

r' = n ( n .  r) + cos/5(n x r) × n + sin/5(n × r) 

= n ( n .  r) + [ - n ( n .  r) + r ( n .  n)]cos/5 + (n × r) sin/5 

= (1 - cos/5)n(n,  r) + cos/sr  + sin/5(n × r) (6.64) 

By defining a rotation operator as 

R(n,/5) = (1 - cos/5)nn + cos/5"1 + sin/5(n x 1) (6.65) 

we obtain 

r '  = R(n, f l) .  r (6.66) 

Note that r '  is the vector r rotated about n by angle of/5.  The operator R is a 
~nc t ion  of  n and/5 and is independent of  coordinates. Note also that the operator 
R was first introduced by J. W. Gibbs in 1901" and has been further developed by 
C. Leubner and E. N. Moore. 

When 

n = k  

R ( k ,  /5) = k k  + cos/5(ii + j j )  + sin/5(j i  - i j )  

Properties of the Operator ~(n, #~) 
1)As/5  = 0, 

R(n, 0) = 1 (6.67) 

*Gibbs, J. W., Vector Analysis, Scribner, New York, 1901, Chap. 6. 



138 ADVANCED DYNAMICS 

2) W h e n  n is rotated about  n itself, n '  is n or 

R ( n , / 5 ) .  n ---- n (6.68) 

3) Two consecut ive  rotat ions about  the same axis n by angles  of  ol and /5  wil l  
expec t  a resul t  of  

R(n ,  or). R(n , /5 )  = R(n ,  u + / 5 )  (6.69) 

The  preced ing  equation,  however,  requires a mathemat ica l  proof ,  which is given 
as fol lows.  

It is eas i ly  verif ied that 

A - ( n  x ~f) = A  x n (6.70) 

o r  

also 

and 

(n x ' l ) . A  = n  × A  

(n x T) .  (n × T) = n n  - T (6.71) 

n n .  (n × l )  = nn  × n = 0 (6.72) 

Us ing  Eqs. (6 .70-6.72) ,  we have 

R(n ,  o~)- R(n , /5 )  = [(1 - cosc~)nn + cos ot'l + sin ot(n x ~f)] 

• [(1 - c o s / 5 ) n n  + cos/51 + s in /5(n  x "l)] 

= (1 - c o s u ) ( l  - c o s / 5 ) n n  + (1 - cos/5)  coscznn  

+ sinot(1 - cos /5 ) [ (n  x l )  • nn] + (1 - c o s u )  c o s / S n n  

+ cosot  cos /51 + sinot cos /5(n  x ~f) + (1 - cosot)  s in /5 [nn  • (n x '1)] 

+ cosot  s in /5(n  x 1 ) +  sinot s in/5(n x 1 ) - ( n  x *f) 

= n n[ 1 - cos ot - cos/5 + cos ~ cos/5 + cos ot - cos  ot cos [3 

+ cos/5 - cos ~ cos/5 + sin ot sin/5] + "f(cos u cos/5 - sin ot sin/5) 

+ n x l ( s i n  ot cos/5 + cos ~ sin/5) 

= [1 - cos(or + / 5 ) ] n n  + cos(or + / 5 ) 1  + s in (a  + / 5 ) ( n  x 1) 

= ~ [ n ,  (o~ + /5 )1  
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R(n, ~) . Rr (n, ¢3) = "1 (6.73) 

Here Rr(n,  fl) is the transpose of  R and carries the similar sense as in matrix 
notation. In the operator R, nn is symmetric and the transpose of  n x '1 gives 

- ( n  x "f); hence, 

and 

Rr (n ,  ¢~) = (1 - c o s f l ) n n +  cos ¢31-  sin fl(n x 1) = R ( n , - f l )  

5) 

Prooj) 

6) 

R(n, /3) .  Rr (n, ~) = R(n, ~ ) .  R(n, - /3)  

= ~(n,  ~ - ~) = ~(n, O) = i 

T 
l?(n, f l ) .V  = V . R  (n, fl) (6.74) 

R(n, f l) .  V = [(1 - cos/~)nn + cos/~i + sin 13(n × i ) ]  • V 

= (1 - cosf l )n(n.  V) + c o s f l V +  sinfl(n x V) 

= (1 - cos fl)(V • n)n + cos ¢3V • "1 - sinflV • (n x "1) 

= v .  ~(n, - ~ )  = v .  U ( n ,  ~) 

Proo3" Because 

/~(n, ~ ) . : ? . U ( n ,  ~) = f '  (6.75) 

= T l l i i+  TI2/J + Tt3ik+ T21j i+ ""  

each term in the preceding equation may be represented by AB. Without losing 
generality, let us consider T = AB, then 

R ( n ,  f l )  . T . R r  (n ,  f l )  = R ( n ,  f l )  . A B  . Rr(n, fl) 

= (R .A ) (B .  ~ r )  

= A ' ( R .  B) [Eq. (6.74) used] 

= A'B' = T' 
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7) 

Proof" 
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[R(n,/5).  V] × i =/~'(n, f l) .  (V × ]')- Rr(n,/5) 

(R . V) × I =  W × i =  (V[i' + V ~ f  + V~l~) × i '  

in which 1' = R .  1.  ~ r  = ,~. ~ r  = y has been used. Hence 

(R . V) × ~ V' i  '4 + ' i'k' , 4., , ,., = -  3 J v~ + v ~ j ,  - V ; y k ' -  V~k, + V;~y  

= (V x Y)' = k .  (V x ~).  k T 

Eq. (6.75) is used in the last step. 

8) If a unit vector n is rotated to n' by R(m, oe) 

n' = R(m, or). n 

then 

R'(n', 15) = R(m, ~) .  R(n, ,8). Rr(m, ~) 

Proof" The relationship between R(n', fl) and R(m, or) is 

R(n', fl) ---- R[R(m, or). n, El 

= (1 - cos/3)[R(m, o0. n][,~(m, oe). n] 

+ c o s f l l +  sin/3[R(m, ot). n] × 

Using Eqs. (6.74) and (6.76), we have 

R(m, oO. n = n.  R r (m ,a )  

and 

[R(m, oe). n] × 1 = R(m, or). (n × "1). Rr(m, or) 

Then 

R(n',/3) = (1 - cosfl)[R(m, or). n][n. R r ( m ,  or)] 

+ cos fiR(m, a ) .  R r ( m ,  or) + sin/3R(m, ~) .  (n x ]~). RT(m, oe) 

= R(m, or). [(1 - cos/3)nn + cos/31 + sin/3(n × 1)].  R r ( m ,  or) 

= R(m, cO. R(n, ~). Rr(m, ~) 

(6.76) 

(6.77) 
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Applications of the Rotation Operator 
Rotation of coordinate system through Euler angles 49, O, and ~,. Sup- 

pose that we rotate the coordinate first with respect to k by an angle of ~b. The 
position vector r is rotated with the rotation of coordinates. The new vector r' can 
be expressed as 

r '  = R~ (k, ~b). r (6.78) 

Note that this operation is not the same as in the operation of  a rotation matrix 

r '  m = R l r  (6.79) 

where r '  m is the vector r in the rotated coordinates; r itself is not rotated. To 
emphasize this difference, let us consider 

r = i  

r ~ = i' = ( k k  + j i  - i j ) .  i = j  (6.80) 

This means the vector i is rotated t o j  after the coordinate axis i is rotated about 
k by an angle of  zr/2. On the other hand, the operation of  Eq. (6.79) by rotation 
matrix will have a totally different result. Let us see the following case: 

r:(i) 
sin  i) . , = /  sin  cos  0 

0 0 

(ii)(i) (Z) ~ m = / X ~ / =  - 0 = - 

\x~J o 
(6.81) 

This x~ = - 1 means that the vector i is not moved and is now along - f  after the 
whole coordinate system is rotated about k by an angle of zr/2. The operation of  
a rotation matrix also can be expressed as a dyadic operation: 

r '  = RI • r (6.82) 
m 

in which RI = i~ - f i  + ldk, and r = i. Hence, in the rotated coordinate system, 
the unit vector becomes 

r '  m = - f  (6.83) 
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Now, continuing to consider the rotation of position vector r' with the coordi- 
nates from Eq. (6.78), let us rotate r' about i' by an angle of 0. Then we have 

t/' = R2(i',(9)' r t = R2([, 0)- Rl(k, ~b). r 

Next we rotate F' about k" by an angle of ~, and we find 

r "  ---- R3(k', ~ ) - f '  

= R 3 ( k ' ,  ~ ) .  R2(i', 0)- Rl(k, ~b). r (6.84) 

where r "  is the final form of the position vector r after being rotated about k by 
angle of 4, rotated about i' by 0 and rotated about k" by ~ .  Note that i' and k" are 
unit vectors along rotated coordinates. It will be more convenient to rotate r with 
respect to fixed axes. With the use of Eq. (6.77), we can express 

R2(i', 0) = Rl(k, ~b). R2(i, 0).  RT(k, ~b) 

Taking the dot product with R i (k, ~b) from the right leads to 

/~2(i', 0).  Rl(k, ~b) = Rl(k, tp). R2(i, 0) (6.85) 

Similarly, 

R3(k", ~)  = [R2(i', 0) -Rl(k ,  ~b)]. R3(k, ~ ) .  [R2(i', 0) .  Rl(k, ~b)] r 

T .t = [~'2(i', 0).  Rl(k, ~b)]. R3(k, ~ ) .  [~'~r (k, ~b). R z (t, 0)] 

Multiplying from the right by R2 " R I gives 

R3( k'', ~ ) "  R2(i', 0) .  Rl(k,~b) = R2(i', 0).  Rt(k, 4)" R3(k, ~)  

= Rl(k, q~)" R2(i, 0).  R3(k, ~/) (6.86) 

Equation (6.85) has been used in the last step of the manipulation. The result 
reached in Eq. (6.86) shows that the Euler angles 4, 0, ~ can be replaced by 
rotating the position vector r with respect to unprimed axes in a reversed order of 
~p, 0, ~. 

Applying the preceding results to a vector r fixed in space but with the coordinate 
system rotated, the relation between primed system and unprimed system may be 
derived by 

I f !  , I t !  I l l  411 I I I  I l l  
+ x 3 k = x l i  + x 2 j  + x 3 k  r = x  I I + x2 J 

where 

i'" = R.  i, f "  = R .j, k"' = R .  k (6.87) 
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r =  Z x k'' ¢kttt:ZXje j 
k j 

Taking the dot product of  the preceding equation with ¢i" leads to 

k j j 

Note that ej • R • ¢i = ej • el" = direction cosine between ej and ¢i " .  Therefore 

a i j  : ¢ j  • e • e i 

For =  lqc,  2(i, 0).   3qc, 

a i j  ~-- ¢ j  • R l  • 1 • R2 • 1 • R 3 .  ¢i 

= ~ [ e j  • e l ( k ,  ~)"  ek][e k • R2(i, 0 ) .  ee][¢e • R3(k, ~P)" ¢i] (6.88) 
k,£ 

The preceding equation can be easily used to verify that the result agrees well with 
(a i j )  = R 3 R 2 R l  given in Eq. (6.16). 

Combination of two successive rotations about different axes by one 
rotation. Suppose a rigid body to be rotated by two steps. First it is rotated 
about the k' axis by an angle of  ~b and then it is rotated about the k axis by an 
angle of  ~/. The directions of  k and k' are known, and the plane containing them is 

/ 
Fig. 6.10 

r 

True angle 0 between axes k and k'. 
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determined. Choose the x axis perpendicular to the plane. Suppose the true angle 
between k and k' is 0, as shown in Fig. 6.10, then 

k' = ,~. k = - ( s i n  O)j + (cos O)k (6.89) 

And the two consecutive rotations may be expressed by 

/~l = (1 - cos gp)kk + cos ~p'l + sin ~p (k x *1) 

and 

R2 = (1 - cos ~t')k'k' + cos ~ i  + sin ~(k '  x ~) 

According to Euler's theorem that the most general displacement of a rigid body 
with one point fixed is equivalent to a single rotation about some axis through that 
point, these two rotations can be combined into one, i.e., 

R(n, fl) = R2" Rl (6.90) 

The theorem is established i fn  and fl are determined uniquely. To determine them, 
let us start from 

(1 - cos ~ ) n n  + cos fl'l + sin f l (n × "1) = R2 " R~ 

and taking the transpose of both sides, 

(1 - c o s ~ ) n n  + c o s ~ i -  s~n fi(n × Y) = (~2" ~1) T = ~ f "  ~ 
The subtraction of  the preceding two equations gives 

sinfl(n x i ) =  ½[R2" R , - , ~ "  R2 r ]  (6.91) 

After the right hand of the equation is expanded in detail, the following identities 
are used for simplification: 

i x i = k j - j k ,  j × i = i k -  ki, k × i = j i -  ij, 

(k' x 1) • k = k' x k = - s i n 0 i  

(k  x i )  . (k' × i )  = (k x i )  x k' = - j f  - i i ' cosO 

and 

f = R(i, 0) . j  = c o s 0 j +  sin0k 
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Finally Eq. (6.91) is reduced to 

sin ,nx , si. sin cos0] 
+ s i n ~ c ° s ~ ( k ' x l ) + s i n ~ s i n ~  (k 'xk)  

= 2 sin -~/3 cos ~-(n/3 × .~) (6.92) 

To identify the/3 and n in the preceding equation, let us consider a special case of  
0 = 0, thenk  = k' = n: 

Hence 

sin ~-c°s ~(k x l) = c°s ( - ~ )  " sin ( - ~ )  (k × 

/3 ~ 4' _ 
cos -- = cos - -  cos - - sin ~ sin 4, cos 0 (6.93) 

2 2 2 2 2 

1 [ gts in4 ,k+s in~cos~k '+s in~s in~(k '×k)]  (6.94) 
n - -  sin (fl/2-~) cos ~ 2 2 2 

Because n and/3 are properly determined, Euler's theorem, that two consecutive 
rotations with respect to two different axes can be combined into one rotational 
movement, is proved. Let us use an example to illustrate this concept as follows. 

E x a m p l e  6 . 4  

A slab of  size a x b and a thickness of t is placed vertically in x-z plane at 
the beginning. Suppose that the slab experiences two different kinds of  rotations 
while the point at the origin remains fixed. Consider two different cases: 1) the 
slab is rotated first about the x axis by 90 deg, then about the y '  axis by 90 deg; 2) 
the slab is rotated first about the y axis by 90 deg and then about the x '  axis by 90 
deg. 

1) Perform the rotations through two steps. 
2) Combine the rotations into one step and show the same results reached as in 

part 1. 

Solution. 1 a) The slab is rotated about the x axis by 90 deg then about the y '  
axis by 90 deg. At the beginning the unit normal vector of  the slab is denoted by 
n' which is parallel to the y axis, or n = j (see Fig. 6.11). 

After it is rotated about the x axis by 90 deg, the normal vector becomes 

n' = R(i, 90 deg) - j  

= (ii+i x 1) .j = k, n ' = f  =k  
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b n 

t a I I /  

Y ~ Y' ~' 
Z' IlJ i n" 

z~."  t j 

Fig. 6.11 Slab is rotated according to case la. 

Finally, after the second rotation about the y '  axis by 90 deg, the new normal 
vector is 

n" = R( j ' ,  90 deg) .  k = / ~ ( k ,  90 deg)-  k = ( k k  + k x 1 ) .  k = k (6.95) 

lb)  The slab is rotated about the y axis by 90 deg then about the x '  axis by 
90 deg (see Fig. 6.12). Similarly, as in case la, the normal vectors of  the slab are 
denoted by n, n', and n" for three positions of  the slab. We find 

n=j  

n' = R( j ,  90 deg) . j  = j ,  i' = - k  

and 

n" = R( f ,  90 deg) . j  = R ( - k ,  90 deg) . j  = ( k k  - k × 1) . j  = i (6.96) 

2a) The slab is rotated with respect to n I and by an angle o f / ~  for the case of  
la: 

~1 = c ° s  2 45 deg - sin 2 45 deg cos 90 deg 1 cos T 

- - =  60deg  ~1 = 1 2 0 d e g  
2 

1 
nl -- sin (/3/2) [cos 45 deg sin 45 degi + sin 45 deg cos 45 d e g f  

+ sin 2 45 deg( j '  x i)] = v/~/2 2 - -  - i + ~ k +  = ( i + j + k )  

n" = R(nl ,  120 deg) . j  = [(1 - cos 120 deg)nlnl  

+ cos 120 deg l  + sin 120 deg(nl × 1)] . j  

3 1 1 1 
= ~ n , ~ - ~ j + ~ ( k - i ) = k  
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b~ izax~-'w{'tna b Y = a y' z" a 
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x' 

Fig. 6.12 Slab is rotated according to case lb. 

The same result is reached as given in Eq. (6.95), but here is done only by one 
rotation. 

2b) The slab is rotated with respect to n2 by angle offl2 for case lb: 

1 
f12 = C0S2 45 deg - sin 2 45 deg cos 90 deg = ~, COS T f l 2 = 1 2 0  deg 

n 2  m _ _  

1 

sin(/3/2) 
[cos 45 deg sin 45 d e g j  + sin 45 deg cos 45 deg i' 

1 
+ sin245 deg(i' x j)]  = ---~(i+j-k) 

, / 3  

n" = R(n2,120 deg) . j  = [(1 - cos 120 deg)n2n2 + cos 120 deg~ 

3 1 1 ~/3 1 " k +  
+ sin 120deg(n2 x "1] . j  = - n 2 - - 2  ~ - 2 J +  " - 2 " - ~ (  i) = i 

The same result is found as given in Eq. (6.96) for two steps of  rotation. More 
details may be shown if the unit vectors i, j ,  k are rotated as n. That approach has 
been assigned as an exercise for readers to complete in the problems section. 

6.1. 
(a) 

Problems 
Verify that the following transformations are orthogonal: 

x '  = (cos O)x + (sin O)y 

y'  = ( -  s in0)x + (cos 0)y 
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(b) 
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1 1 
x', = ~ ,  + ~ 

/ 
X 2 ~ X 2 

1 1 
4 = ~ ,  + ~ x 3  

6 . 2 .  

transformation. 
Prove that the product of two orthogonal transformations is an orthogonal 

6.3. Given a stress matrix 

(i 4 66) 2 (ksi) 

- - 6  £ 5  

find the principal stresses and the corresponding principal axes. 

6.4. It is known that the moments and products of  inertia of  area A for the 
centroidal axes are 

/xx = 40 ft 4, Iyy = 20 ft 4, lxy = - 4  ft 4 

Find the principal moments of inertia and the corresponding principal axes in the 
x - y  plane. 

6.5. Similar to the derivation of viscous stress in Newtonian fluid as given in 
Section 6.6, derive the expression of  stress tensor in homogeneous solid as a 
function of  strains. 

6.6. Prove that 

and 

6.7. Prove that 

A . ( n × ' f ) = A x n  

(n x 1).A = n × A 

( n  x ~ ) . ( n  x ~ )  = n .  - 

6.8. Suppose that the angle between two unit vectors k and k' is 0 as shown in 
Fig. 6.10. Prove that 

(k× l ) . ( k '  x l ) = ( k ×  l ) × l f f  = - j y - i i '  cosO 
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6.9. A slab of size a × b and thickness of t is placed vertically in x - z  plane at 
the beginning as shown in Fig. 6.11. Suppose that the slab is rotated but with the 
point at the origin fixed. First, the slab is rotated about the x axis by 30 deg then 
rotated about the y' axis by 60 deg. 

(a) Perform the rotations through two steps. 
(b) Combine the rotations into one step and show the same results reached as 

in part (a). 

6.10. Consider Example 6.4. Let i , j ,  and k be the unit vectors of the initial 
coordinate system. The vectors are i'j' and k' after the first rotation and the unit 
vectors are i'(j" and k" after the second rotation. Find the relationships between 
these unit vectors for the rotations considered in the example. 

6.11. Suppose that Ixx, lyy, and Izz are given and the products of inertia are zero. 
Find the moment of inertia matrix when the coordinate system is rotated about the 
z axis by an angle of 0. 



7 
Dynamics of a Rigid Body 

A RIGID body is a body with finite volume, mass, and shape that remains 
unchanged during the observation. Deformation of the body is not considered 

in this chapter. When a force and torque are applied to a rigid body, translational 
and rotational motions of the body will take place and are studied in this chapter. 
Because most objects can be modeled as a rigid body, the analysis of rigid-body 
dynamics is very useful and is the major subject of this book. Many general 
principles for the dynamics of particles studied in the preceding chapters provide 
necessary background for this chapter. Matrices and rotational operators from 
Chapter 6 are used extensively and should be reviewed before studying this chapter. 

Fundamental principles are given in the first three sections, followed by three 
sections of specific examples. Section 7.1 introduces the general concept of a solid 
body in motion and explains how any motion always can be treated as a combi- 
nation of translational and rotational motions. Section 7.2 derives the equation of 
motion for a mass in a moving frame of reference, which is, in general, motion 
relative to an inertial frame of reference. The foundation of the relations is known 
as Galilean transformation. Section 7.3 describes how to obtain the Euler's angular 
velocity using two different approaches: one uses matrix operation and the other 
the rotation operator. Both of them reach the same result. The difference between 
them is that, while the rotation operator rotates the position vector (as in Chapter 6), 
matrix operation uses the rotation of coordinates, not the vector. The use of these 
two approaches demonstrates how divergent methods can achieve the same result 
and also shows the usefulness of the rotation operator. Because the rotation opera- 
tor was only recently rediscovered, its many applications have yet to be developed. 
A simple example for Euler's equations of motion is included in this section. 

The second half of this chapter uses the physical concepts presented in the pre- 
ceding chapters to solve both classical and contemporary problems. In Section 7.4 
we deal with gyroscopic motion and use three examples for studying its fundamen- 
tal principles. The first example demonstrates that a rotating propeller (or other 
rotating mechanisms such as turbines and compressors) can produce gyroscopic 
force, which tends to cause an airplane to dive or climb during yawing. The second 
example studies a single-degree-of-freedom gyro. The last example in this section 
explains the oscillation of the spinning axis in a gyro-compass caused by the 
Earth's rotation. The oscillation frequency of the axis about the meridian is deter- 
mined. Section 7.5 is devoted to studying the motion of a heavy symmetrical top. 
The nutation and precession of the spinning axis are analyzed in detail. The nuta- 
tion angle vs precession angle for three possible cases is integrated, and the results 
are presented. Section 7.6 studies a satellite in a circular orbit using the equation 
derived in Section 7.2 for a solid body in motion. This is the first example involv- 
ing a solid body in general motion. The results of this study show that the yawing 
and rolling motions of a satellite always will generate torques about all three axes. 
We have only recently entered the space era and still must solve many dynamics 
problems related to the motion of space vehicles. This section opens that door. 
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Fig. 7.1 General motion of a rigid body. 

The examples included here are simple in comparison with many problems 
facing engineers today. However, I hope that the discussion and examples of this 
book will stimulate interest in and provide a firm foundation for further study and 
research work in this area. 

7.1 D i s p l a c e m e n t s  of a Rigid Body  

In three-dimensional space, six degrees of freedom are needed to specify the 
position of a solid body. Consider a coordinate system in translational motion 
with the body. Three degrees of freedom describe the origin of the coordinates 
and three degrees of freedom describe the rotational displacements of the body 
with respect to the three axes. As seen in earlier chapters, the origin of the moving 
coordinates is usually fixed at the center of mass of the body in order to simplify 
the equations. In certain cases, however, it is more convenient to place the origin 
of the moving coordinates elsewhere. 

All rigid body motion can be reduced to translation combined with rotational 
motion as shown in Fig. 7.1. This is known as Chasles's theorem. If one point of 
the body is fixed, then the motion must be rotational only. The rotational displace- 
ments, no matter how complicated, always can be expressed by one rotation of the 
body with respect to an axis through the fixed point. This is known as Euler's theo- 
rem. In Section 6.7, we proved that two successive rotations about the axes through 
zero can be combined to a single rotation about an axis through zero. By a repeated 
application of that result, any number of successive rotations about the same point 
can be reduced to one rotation. This is another statement of Euler's theorem. 

7.2 Relationship Between Derivatives of a Vector for Different 
Reference Frames 

Vector in Moving Reference Frame Rotating Relative to Fixed 
or Inertial Reference System 

Consider that xyz  is a moving reference that rotates relative to a fixed reference 
denoted by X Y Z .  A vector G in the moving system can be expressed as 

= ~ Giei G 
i 
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where e i is a unit vector in the rotating system. G also can be expressed in the fixed 
system. Thus the time derivative of G, as seen from the fixed system, is obtained 
a s  

However, 

( d G )  = E O ie, + E G,e, 
fixed i i 

E G i e i =  --~ - = --~- 
i rotating xyz 

where (dG/dt)xyz  means the rate change of G as observed in the rotating system. 
On the other hand, in the fixed system the velocity of a point fixed in the rotating 
system is 

Hence 

v = w x r  a s r = e i  

ei = oJ X ei 

E Gi : w × G 
i 

(d÷) 
= = + w x G =  + w x G  (7.1) 

fixed X Y Z rotating xyz  

Any vector G differentiated in the fixed coordinates equals the change of G in the 
rotating system plus w x G in the rotating system. 

Velocities and Accelerations of a Particle in Different References 

Suppose that X Y Z  is a fixed or inertial reference; x y z  is a moving reference 
that is in both translational and rotational motion, as shown in Fig. 7.2. R is the 
position vector of the origin of x y z  system and r and r' are position vectors of 
point P in X Y Z  and x y z  systems, respectively. 

Y x 
n 

x 

Fig. 7.2 Moving reference system relative to the inertial frame of reference. 
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Hence 
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r = R  +r'  

Differentiating with respect to time for the X Y Z reference, we have 

dR dr' 
(-~t ) xrz = VXvz = ( - ~ ' )  xvz + ( - ~ - )  xvz 

d r ' )  + w x r ' = R + V x y z + w x r '  (7.2) =R+ -g- xy~ 

in which Eq. (7.1) has been used in the last step of manipulations. This means that 
the velocity of point P observed in the fixed reference system equals the vector 
sum of the velocity of the origin of the moving system, the velocity of point P in 
the moving system and the velocity of P due to rotation of the xyz system. 

Differentiating Eq. (7.2) with respect to time for the X Y Z  reference system, we 
get 

(dVx.  _.+ +[ ] 
\ d-----~/xvz \ dt / x r z  -~(w x / )  xrz 

(dVxyz'] ( d r ' )  ( d w )  
+ ~ o x  -d-/- + ~ x /  

axvz = ]R + \ dt ] xrz xYz xrz 

Because 

dVxyz~ =(dVxyz ']  

dt ] xrz \ dt / xyz 
"-~ O0 X Wxy z 

- d [  x r z = -dT + , o x /  
3fyz 

Substituting into Eq. (7.3), we find 

axvz = \dVXYZdt Jxyz + ~ + ~o X Vxyz -}- w X ~ xyz 

+ w x ( w x / ) + ( d - - ~ t  ) x ~  
XYZ 

Note that 

---- axy z , 
\ dt ]xyz 

Hence, we obtain 

xyz XYZ 

(7.3) 

axrz = axyz + R + 2w x Vxyz + W × (W x / )  + & x / (7.4) 
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where w and & are the angular velocity and acceleration, respectively, of the x y z  

reference relative to the X Y  Z reference. 
By Newton's law, the force on a particle is 

F = m a x r z  

In the moving reference, we find 

m a x y z  = F - m R  - m(v  x r'  - m w  x ( w  x r ' )  - 2 m w  × Vxy z (7.5) 

This expression gives the effective force acting on the mass as observed in the 
moving frame of reference. The meaning of each term is explained as follows: 

1) The term - m R  is the inertial force caused by translational acceleration of the 
moving frame. For example, during the sudden acceleration of a car, passengers 
sense the force in the opposite direction to the direction of the acceleration. 

2) The term - m &  x r' is the inertia force produced by angular acceleration of 
the rotating frame. A mass placed on a rotating disk will experience this inertia 
force in the direction opposite to the tangential acceleration. 

3) The term - m w  x ( w  x r ' )  is the centrifugal force term. When a satellite 
moves in a circular orbit, this force points outward from the center of Earth and is 
balanced completely by the gravitational force, causing astronauts to experience 
weightlessness in the orbit. 

4) The term - 2 m w  x Vxyz is the Coriolis force, which is the major cause of the 
counterclockwise rotation of hurricanes in the northem hemisphere. The Earth's 
rotation causes a component of rotational velocity to point outward from the sur- 
face of the Earth. To simplify the problem, let us consider only this component 
of the rotational velocity. The - w  x V:,.yz will cause the air to move in counter- 
clockwise direction if air moves toward a low pressure center as observed from 
the top of the low pressure center. The rotational momentum of the air is nearly 
conserved. Hence, the tangential velocity increases as the air moves closer to the 
eye of the hurricane. 

Apply Eqs. (7.2) and (7.4) to the velocities and accelerations of two points 
a and b of a rigid body. We imagine the x y z  reference embedded in the rigid 
body with the origin at a as shown in Fig. 7.3. Clearly any point b of the body will 

I 
Y 

/ 
Fig. 7.3 Relative motion between two points in a rigid body in rotation. 
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not move relative to a and must have Vxyz = 0 and axyz = 0. Because the origin 
o f x y z  corresponds to point a, R = I1o, R = aa, velocity and acceleration for point 
b are 

Vh = "Ca + to x r'ab (7.6) 

ab = aa + to X (to X tSab) + d~ X llab (7.7) 

The preceding two equations are often used in the dynamics of machinery. 

7.3 Euler's Angular Velocity and Equations of Motion 
Euler's angles have been mentioned in Sections 6.2 and 6.7. They are convenient 

for describing the motion of a rotating top. Before using them, however, we first 
need to find the angular velocities for the corresponding angles in three orthogonal 
coordinates. Many different ways are available to express angular velocity. The 
most elementary approach is to find the components of ~, 0, and ~ in the primed 
system directly; however, it is easy to make a mistake in this approach because 
~, 0, and ~ are not perpendicular. To express these in terms of perpendicular 
coordinates, the components of ~, 0, and ~ must be found in the directions of 
those coordinates, which is not an easy task. The two methods described next are 
more systematic. By using the rotation matrix, the angular velocities are obtained 
through simple matrix operations, or the same result can be reached by using the 
rotation operator that rotates the vector itself (in this case, the unit vectors). These 
additional applications of the rotation matrix and rotation operator are described 
in greater detail below. 

Euler's Angular Velocity Obtained Through Matrix Operation 
Consider a position vector r' that is fixed in the rotating body of x" y" z" and is 

constant; the corresponding r in the fixed frame of reference is 

r = R - ~ r  ' (7.8) 

The time derivative of the equation is 

k = R - I t  e = R r r  ' =- R r R r  

Applying Eq. (7. !) here for k leads to 

( d ~ )  = w × r = [ M a t r i x o f ( t o × * l ) ] r  
X Y Z  

Equating the preceding two equations gives a matrix of 

0 -wz iy  ) ( w  × * f )  = o2 z 0 - x = R T R  

- -  O. )y  O )  x 

(7.9) 
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To find o9 in terms of q~, 0, and 7t, we proceed as follows: 

d T RTR= (-~(R3R2RI))(R3R2RI) 

= R~(R, + R~(R~R2R, + R~te~RIR3R2RI 

These matrix products can be worked out rather simply, for example, 

cos  i)(cos  sin  i) 
R~R, = ~ ~ cos0~b -sin4~0 - sin~b0 cos~b0 

= ~  o 
0 

(! 0 i 0 o / R~R2=O - s i n 0  - c o s 0  cos0 sin0 
cos0 - s i n 0 /  - s i n 0  c o s 0 /  

= 0  0 - 

1 

The final result of the matrix algebra is 

RrR 

0 
= (8 + 7) cos 0) 

\ - ( 0  sin~b - 7) sin0 cos ~b) 

- (8  + 7) cos0) 
0 

(6 cos~b + 7) sin0 sin ~b) 

(0 sin ~b - 7) sin 0 cos q~) "~ 
-(0 cos ~b +0~ sin 0 sin ~b) ) 

Therefore, we find from Eq. (7.9) 

(~ cos~b + ~ sin0 sin ~b'~ 
w =  sin ~. - 7(. sin 0 cos 4~1 

q~ + 7z cos 0 ] 
(7.10) 

for the components of angular velocity in the X Y Z frame of reference. The velocity 
component can be expressed in any other primed frame of reference according to 
the transformation 

ta3 t ~ Ro,) 

where R can be R1 and R2Rj or R3R2RI. 
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Euler's Angular Velocity Obtained Through Rotation Operator 
Consider a position vector r with initial position r(0). After some time t, it is 

rotated to r ( t ) ,  so that 

r ( t )  = R ( n ,  /3) . r(O) (7.11) 

where 

R(n,/3) = (1 - cos fl)nn + cos/3"1 + sin/3(n x 1) 

is the dyadic rotation operator defined in Section 6.7. Taking the time derivative 
of  Eq. (7.11) gives 

dr ( t )  _ d R  . r (O)  = d R  . ~ V  . r ( t )  = w x r ( t )  = (w  x ' l ) . r ( t )  
dt --  d--7" -~" 

which means 

Note that 

and 

w x l = - - d R  . ~ T  (7.12) 
dt 

d 
- ~ R ( n , / 3 )  ---- sin/3[l~nn - 1~1 + (h x 1)] + cos/3/~(n x 1) 

+ (1 - cos/3)(hn + nh)  (7.13) 

R r ( n , f )  = ( 1 - c o s ~ ) n n + c o s f l ' l - s i n / 3 ( n  x l )  (7.14) 

The product of  (d /d t )R - ~ r  finally reaches the expression 

d ~ .  ~,T = fin x I ' +  s in f (h  × I') + (I - cosf ) (n  x n) x "I (7.15) 

In the derivation, the vector h is assumed to be perpendicular to n. The following 
identities are used for simplification: 

A .  (n x "i') = A x n, (n x "1). A = n x A (7.16a) 

(A  x 1) . (B  x "£) = B A  - ~ ( A  . B )  (7.16b) 

( n n  - nh )  = (n x h) x 1. (7.16c) 

Through the use of  Eq. (7.12), we obtain 

w = f in  + sin/3h + (1 - cos/3)n × ti (7.17) 
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which is the result of  this derivation. This is not quite meaningful, however, 
because h is unknown. During the derivation, h is assumed to be perpendicular 
to n, but there are many h that can satisfy the assumption. Therefore, to cannot 
be obtained directly from Eq. (7.17). However, when the rotation is about a fixed 
axis, Eq. (7.17) reduces to 

to ~ / ~ n  

as expected. On the other hand, from Eq. (7.17) h can be expressed in terms o f n  
and to. The details of  derivation are an assigned exercise in the problem section; h 
is obtained as 

n =  ~ { ( n x t o ) + c o t  [ n x ( n x w ) ] }  (7.18) 

Note that from this equation we can see that h is perpendicular to n because 
h • n = 0, with the components opposite to (n x to) and n x (n x w). 

Although to cannot be obtained directly from Eq. (7.17), Eq. (7.12) can still 
lead us to find to through the rotation operators. In Section 6.7 we have derived 
the rotation operator with respect to fixed frame of  reference as given in Eq. (6.86) 
for the rotation through Euler angles: 

R(n,/~) = R3(k", ~ ) .  g2(i', 0)" gl(k, ~b) 

= Rl(k, qb)- g2(i, 0)" R3(k, ~)  

For the operator through the fixed axes, we have 

w x i = d ~ .  k r  = . . . .  dtd [el" R2 e3]. [el e2" e3] T 

d ~ ~2 .~3]  [~T ~2 T ~ f ]  = ~ [ s ~  . . . .  

= d ~ , . ~ l  ~ + ~ l  d -  - dt • ~-~R2" R T" Rf  

d ~  ~T ~ 
+ ~l .  ~:. ~;R3. R~ • R~. Rf 

=tom × i + k ~  too x i  k f  

+ ~,. k~ .~¢ x ~'. k [ .  kf 
where 

~,×~=d~,'~l ~ 
dt 

d ~ 

wo x *£ = d R 2 .  ~ r ,  w 0 x i = - ~ R 3 .  R r 
dt 

have been used. Making use of  the identity Eq. (6.76), which is rewritten as 
follows, 

~ - ( ~ x i ) . U  =(~.v) x i  



160 ADVANCED DYNAMICS 

we find 

~ = to~ + , ~ "  ~,0 +,~1 , ~ 2 - ~ ,  

Note that in this equation 

to~ = ~k, too = Oi, to~ = (#k 

so that 

w = q~k -t- Rl(k, tp). 0i-I- Rl(k, <P)" R2(i, 0 ) .  ~ k  

= ~ k q - O i ' +  ~k"  (7.19) 

which is certainly true. The w can be expressed in any frame of  reference. Rewriting 
the operators in Eq. (7.19) in detail, we have, in the fixed frame of  X Y Z ,  

to = ~k  + [kk + cos q~(ii + j j )  + sin <p(k × 1)] .  Oi 

-t- R ~ (kip) • [(1 - cos O)ii -F cos 01 + sin 0 (i x *1)]. ~ k  

= ~ k + 0 (cos cpi + sin ~bj) + R t (k, ~p). [cos Ok - sin Oj] 

= i(O cos cp + ~ sin 0 sin ~p) +rio  sin ~p - ~ sin 0 cos ~p) 

+ k(q~ + ~ cos0) (7.20) 

This result agrees well with Eq. (7.10), which was derived through matrix op- 
erations. In the rotation of axes for the Euler angles, because i' = i", k ---- k', the 
expression in Eq. (7.19) can be converted easily into the double-primed frame. 

Through the use o f k '  n 2 tt , 0) • k , we obtain 

to = i"O + f ' ( ~  sin 0) + k"(~  + ~ cos 0) (7.2]) 

This can be converted into the triple-primed frame with the use of  

i" -T . . . . . .  f '  = o r c ~  . . . . .  k" k "  = R  3(k j , ~ ) . t  , "3, '~ , ~ ) ' J  , = 

In the triple-primed frame of  reference, we find 

w = iI"(0 cos ¢ + ~ sin 0 sin ¢ )  + f " ( - 0  sin ¢ + ~ sin 0 cos ¢ )  

+ k " ( ~  + ~ cos 0) (7.22) 

Euler Equations of Motion 
In an inertial frame of reference, such as the set of  axes X Y Z ,  for G = L = 

angular momentum of a body, Eq. (7.1) gives 

X Y Z  xyz  

where the xyz  frame is in rotational motion with velocity w relative to the X Y Z  
frame, and N is the torque applied to the body. In general, as given in Eq. (6.37) 
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and Eq. (6.39) 

L = I',, .w  

We can simplify this expression by rotating the axes of  xyz  to coincide with the 
principal axes of  the body and label them x'y'z ' .  Then we have 

L:,., = l l t O x ,  , L y  = I E W y , ,  Lz, = I 3 W z '  

The full set of  Euler equations are reduced to 

Nx, = I l O ) x  , - O ) y , W z , ( 1 2  - I3) (7.23a) 

Ny, = 12¢by, - ¢Oz,Wx, (13 - 11) (7.23b) 

N z ,  = 13O)z,  - o ) x , O ) y , ( l l  - 12) (7.23c) 

Let us first consider Euler's angular velocity for the preceding equations. Note 
that the triple-primed axes are actually the axes fixed in the rotating body, so that 
w given in Eq. (7.22) is to be used for this set of  equations: 

wx, = 0 cos lp + ~ sin 0 sin ~p 

o9~ . . . .  0 sin ~ + ~ sin 0 cos 

~oz, = ~ + ~ c o s 0  

Differentiating with respect to time and substituting into Eqs. (7.23a-7.23c) gives 

Nx, = 11[0 cos ~p + ~ sin0 sin ~p] + (I~ - 12)[-0V) sin ~p + ~ b  sin0 cos ~p] 

+ (11 + I2)q~0 cos0 sin ~p + 1 3 [ - 0 ~  sin ~ + q~V) sin0 cos ~p 

- 0q~ cos 0 sin ~p + ~2 sin 0 COS O COS ~p] (7.24a) 

Ny, = I 2 ( - 0  sin ~p + ~ sin 0 cos ~p) + (11 - 12)[0~ cos ~p + ~ sin 0 sin ~/] 

+ (11 + 12)0~ cos O cos ap - 13[0~ cos ~ + 0q~ cos O cos ~p 

-I- ~ sin O sin lp + ~2 cos O sin 0 sin ~p] (7.24b) 

Nz, = I3[~ + ~ cos 0 - ~0  sin 0] - ( h  - I1 ) [ -02  cos ~p sin ~p 

+ 0~ sin O cos 2~p + q~2 sin 2 0 cos ~p sin lp] (7.24c) 

The application of the preceding equations is demonstrated in the following ex- 
ample. 

Example 7.1 
A toy gyroscopic top is shown in Fig. 7.4. The gravitational force on the disk 

is W. I f  the disk is given a high angular velocity ws about its shaft oz' and one 
end of the shaft is placed on a pedestal, it is observed that the shaft and disk will 
not fall but will precess around the axis oZ because of torque W ~ acting on the 
system. Find the angular velocity for precession. 
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Fig. 7.4 Toy gyroscopic top. 

Z' 
Ilw 

Solution. 
essary assumptions and have 

Ii = 12, 13 ----- I 

0 = 90deg,  O = 0, t~ = ~ = ~) = 0, 

Nx, = Wgcos ~O, N3 . . . .  We, sin ~,  

Applying Eqs. (7.24a-7.24c) to this problem, we make some nec- 

l p  ~ 60s~ ~ ~ O)p 

Nz, = 0 

Note that the torque produced by the weight is in the direction of x, and axes x, x ' ,  
and y '  are in the same plane. The x ' ,  y' ,  and z' axes are embedded in the rotating 
top. Either from Eq. (7.24a) or (7.24b), we find 

W e :  l(b~r = Io>sO>p, O>p = W q l w s  

Therefore, the angular velocity for precession is directly proportional to the torque 
produced by its own weight and inversely proportional to the angular momentum 
along the spinning axis. 

7.4 Gyroscopic Motion 
To study the motion of a gyroscope, it is convenient to consider the rotating body 

and the rotating coordinate system separately. Let the coordinate axes lie along 
the principal axes of  the body but allow the body to spin in the rotating coordinate 
system with a rotating velocity of ~t along the z" axis, as shown in Fig. 7.5. Hence, 

y,, 

z" " Y' 

x' ,x" 

Fig. 7.5 Euler's angular velocities. 
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the angular velocity of  the rotating frame of reference is 

12 = Oi" + ~ sin Of' + ~ cos Ok" (7.25) 

and the angular velocity of  the body is 

w = Oi" + ~ sin Oj" + ((O + ~ cos 0)k" (7.26) 

in which ~/is the angular velocity of the spin, q~ is the angular velocity of  preces- 
sion, and 0 is the angular velocity of nutation. 

It is also assumed that there is always one point in the system that is fixed either 
in a fixed system or in an inertial frame of  reference. This point may be the center 
of  mass or one of  the supports. Applying the Euler equations, we find 

= + 12 × L = N (7.27) 
X Y Z  xyz 

where LI = l'~oi, L2 = I'~o2, L3 = I~o3; I '  is the mass moment of  inertia with 
respect to the x or y axis; and I is the mass moment of  inertia with respect to the 
z axis. 

Substituting the expressions for f~ and w in Eqs. (7.25) and (7.26) into Eq. 
(7.27) leads to 

N1 = I ' 0  + (I - I ' ) (~2 sin 0 cos 0) + I ~  sin 0 (7.28a) 

Nz = I ' ~  sin 0 + 21'0~ cos 0 - I (~  + q~ cos 0)0 (7.28b) 

N3 = I ( ~  + ~ c o s 0  - d0 sin0) (7.28c) 

Example 7.2 
In Fig. 7.6, the propeller shaft of  an airplane is shown. The propeller rotates at 

2000 rpm clockwise (cw) when viewed from the rear and is driven by the engine 
through reduction gears. Suppose the airplane flies horizontally and makes a turn 
to the right at 0.2 rad/s as viewed from above. The propeller has a mass of  30 kg 
and moment of inertia of  25 kg-m 2. Find the gyroscopic forces that the propeller 
shaft exerts against bearings A and B, which are 150 mm apart. 

Solution. To simplify the problem, it is assumed that, before the airplane 
begins making a turn, the whole system is in an inertial frame of  reference for Eqs. 
(7.28a-7.28c) to apply. The angular momentum of the propeller is in the direction 
of  z" and is 

2000(2zr) 
= w3 - -- 209 rad/s 

6O 

L3 = I ~  = 25 × 209 = 5225 kg-m2/s 

= - 0 . 2  rad/s 

0 = 90deg,  O = 0 = ~ = ~) = 0 

N1 = I ~q~ = -25(209)(0.2)  = - 1045 N-m 

IN~I +1045 
F . . . . .  6967 N 

0.150 
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A B 
[] [] 

[] vf 

Z 

• To~+q~e z < . / _ /  ,! 

IiF, 

Fig. 7.6 Gyroscopic effect on propeller shaft. 

Note that the force acting on the bearing F '  is in the opposite direction of F. From 
the couple formed by F' ,  we can see that the moment produced by F '  causes the 
airplane to dive. On the other hand, if the airplane is turning to the left, then the 
moment from the bearings pitches the airplane upward. 

Example 7.3 
Shown in Fig. 7.7 is a single-degree-of-freedom gyro. The spin axis of disc E 

is held by a gimbal A that can rotate about bearings C and D. These bearings are 
supported by the gyro case which, in turn, is clamped to the vehicle to be guided. 
If the gyro case rotates about a vertical axis while the rotor is spinning about the 
horizontal axis, then the gimbal A will tend to rotate about CD in an attempt to 
align with the vertical. When gimbal A is restrained by a set of springs S with 
a combined torsional spring constant given a s  kt, then the gyro is called a rate 
gyro. The neutral position of the springs is set at 0 = 7r/2. If the rotation of the 
gyro case is constant and the gimbal A assumes a fixed orientation relative to the 
vertical as a result of the restraining springs, we have a case of regular precession. 
The rotation of the gyro case gives the precession speed q~ about the precession 
axis, which is clearly the vertical axis. The nutation angle 0 is then the orientation 
of gimbal A (i.e., the z axis) with respect to the Z axis. 
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Z x 
s D 

A 

Fig. 7.7 Single-degree-ef-ffeedem gyre. 

Given the following data, what is 0 for the condition of steady precession? 

I = 4 x ] 0  -4kg-m 2 
I ~ = 2 x  ]0 -4kg-m 2 

= 20,000 rad/s 
kt = 1.0 N-m/rad 

= 0. ] rad/s 

Solution. Taking the x axis along CD, the z axis along the spinning axis of 
the rotor, and the Z axis for the precesion axis, we have, from Eq. (7.28a), 

N l  = k t  ( z r / 2  - O) = ( I  - 1,)(q~2 sin 0 cos 0) + I ~ t  sin 0 

(zr/2 - 0) = 2 x 10-4[(0.1)  2 sin 0 cos 0] 

+ 4 x I0 -4 (0 .1 ) (20 ,000)  sin 0 = (2 × 10 -6 COS 0 -I- 0.8) sin 0 

Neglecting 2 x 10 -6 COS 0, which is much smaller than 0.8, the equation becomes 

z r / 2  - 0 = 0.8 sin0 

0 = 53 deg 

In practice, the torque N1 is measured. Because NI and the rotating velocity of  
the vehicle ~b are directly related, the required value of  q~ can be calculated from 
the measured value of  NI. 

E x a m p l e  7.4 

We shall now explain the effect of  the Earth's rotation on the operation of  
the gyro-compass. The gyro-compass is a two-degree-of-freedom gyroscope as 
shown in Fig. 7.8a with torsional springs restricting the x axis. This device gives 
the direction to the geometric north pole (not the magnetic north pole) if it is set to 
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that direction at the beginning of  observation. In this example we will see that the 
Earth's rotation causes some oscillation of  the spinning axis about the meridian. 

For simplicity, we consider a gyro-compass at a fixed position on the Earth's 
surface. The body axis z of the gyro-compass can rotate in plane T tangent to the 
Earth's surface as shown in Fig. 7.8b, where the z axis is at an angle ot with the 
tangent to the meridian line. Because the angle ot may vary with time, there is a 
possible angular velocity & normal to the plane T. The y axis is a radial line from 
the center of  Earth at o, and, therefore, is always collinear with &. The x axis then 
is chosen to form a right-hand triad and is in plane T. An inertial reference X Y Z  
is chosen at the center of  the Earth so that the Z axis is along the north-south 
axis. The gyroscope rotates with spin velocity 6 along z and swinging velocity & 
along y and precession velocity ~ along Z, where 6 is the angular velocity of  the 
Earth, a constant vector of  small magnitude. For convenience, another Z axis has 
been set up at the gyroscope. The angle between the Z axis and the tangent to the 
meridian designated as ~. is the latitude of the position of the gyro-compass. Note 
that the nutation velocity ~} is not used here. It is a function of  oe, ~., and &. 

Because the axes x y z  are not fixed to the body, we must use Eq. (7.27) for the 
equation of  motion. We have 

and 

LI = I'o9], L2 = 1'092, L3 = 1093 

col = -q~ cos ~. sin o~ 

0)2 = & + ~ s i n L  

CO3 = ~ +~COS~'COSO/ 

Fig. 7.8a Two-degree-of-freedom gyro (rotation about x axis restricted). 
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Z 

Z 

tatltude X-/ / , ,  - / -  ~ I I ~ :  

Equator / 

$ 

Fig. 7.8b Gyro-compass in oscillation. 

The angular velocity components of x y z  are 

~'~1 = - ~ c o s X s i n o e  

S22 = & + ~sin) ,  

~-2 3 = ~ COS ~. COS ff 

Now we can write Eq. (7.27) as 

, d  
N l i  + N 2 j  + N 3 k  = I ~-~(-q~ cos~ s in~)i  

i d  . d • 
+ I ~ (t~ + q~ sin k) j  + I ~-~(~ + q~ cos Z cos c~)k 

+ I'(& + q~ sin )~)[(-q~ cos Z sin ot)k - ~ cos X cos t~i] 

+ l ' ( -q~ cos k sin ot)[q~ cos k cos otj - (& + ~ sin k)k] 

+ I (~  + q~ cos ~. cos o~)[(& + q~ sin X)i + (0~ cos k sin or)j] 

Dividing the preceding equation into three components, we find 

Nl = I '[(--~& cos ~. cos tx) + (& + ~ sin X)(--q~ cos X cos t~)] 

+ I (~t + ~ cos )~ cos or)(& + ~ sin X) 

N2 = l'(b~ - q~2 cos 2 Z sin ot cos or) + I (~  + ~ cos Z cos ot)q~ cos k sin a 

N3 = I(~) - ~bcosX sin~) 

167 

(7.29a) 

(7.29b) 

(7.29c) 
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Now let us consider the external torques acting on the gyro-compass system. 
Because the spin axis is kept in the plane T, a proper amount of  NI must be applied 
along the x axis. There are no torques along y and z axes, i.e., N2 = N3 = 0, and 
since ~ is expected to be much smaller than 7), and q~2 << b?, Eqs. (7.29b) and 
(7.29c) are reduced to 

l'b? + 17)~ cos)~sin ~ = 0 (7.30a) 

I (~) - q~& cos ~ sin or) = 0 (7.30b) 

Note that 7) is the spin velocity of the rotor, 7) >> q~, and 7) >> or. Equation (7.30b) 
may be approximated as ~) = 0, i.e., as 7) is a constant. Then Eq. (7.30a) can be 
written in the form of 

b? + cc~ = 0 (7.31) 

where 

17)~ cos),. 
C ~  

I '  

We also assume that ot is much less than one. Equation (7.31) means that the Earth's 
rotation can cause the spin axis to oscillate about the meridian. The frequency of  
oscillation is 

1 ./17),b cos ~. 
f = ~  I' (7.32) 

Plugging realistic values into this equation, let 7) = 20,000 rad/s, ~ = 7.2722 
× 10 -5 rad/s, )~ = 20 deg, and I = 21', then we find 

f = 0.263 cycle/s 

or the period of  oscillation is 3.8 s. 

7.5 Motion of a Heavy Symmetrical Top 
The motion of  a rotating top is well known and is a good example to learn 

how powerful mathematical techniques are used to extract a great deal of  physical 
information using minimal calculation. Nutation and precession will be studied in 
detail. 

We choose the symmetry axis of  the top as the z axis and fix the supporting 
point of  the top at the origin of  coordinates. The center of  mass is located on 
the z axis at distance ~ from the origin as shown in Fig. 7.9. The Euler angles 
were originally designed for the treatment of  a rotating top, and they will prove 
to be very convenient. To find the equations of motion, Lagrangian techniques are 
applied because they are simpler than the Euler equations. With this in mind, we 
write the Lagrangian function as 

1 t [  .2 1 2 L = T - V = g I  I,w x + o9~) + g lo9  z - M g g c o s O  (7.33) 
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Fig. 7.9 

Y 

••" 
X 0 

Coordinates for the heavy symmetrical t op .  

in which 11 = 12 = I '  because of symmetry and 13 = I have been used. Clearly, 
the angular velocity of  the top expressed in the body axes is most convenient. 
From Eq. (7.22) we have 

w = (0 cos 7t + ~ sin 0 sin ~0)i + ( - 0  sin ¢ + ~ sin 0 cos ~O)j 

+ (Vt + ~ cos O)k (7.34) 

With the use of  Eq. (7.34), the Lagrangian function, Eq. (7.33) becomes 

i , "2 ~2sin20) ½1(7) + L = 7 1 ( 0  + + ~ c o s 0 )  2 - M g ~ c o s 0  (7.35) 

As discussed in Chapter 4, ~ and ~b are ignorable coordinates because they do not 
appear in the Lagrangian function. Consequently, the two angular momenta  pc, 
and PO are constant, i.e., 

OL 
P~ ~- . = l ( 7 ) ÷ q ~ c o s 0 ) = l w z = c o n s t  (7.36) 

OL 
PO = m = l '(sin2 0)~ + l(¢t  + ~ c o s 0 ) c o s 0  

= ( I '  sin 2 0 + I cos 2 0)~ + I ~  cos 0 = const (7.37) 

Furthermore, because no frictional dissipation is assumed in this analysis, the total 
1 2 energy E = T + V is constant. In view of Eq. (7.36), subtraction of E by 7Iw z 

is still constant. 

1 2 1 t "2 q~2 s in2  O) Mg~cosO E ' = E - ~ I w  z = 7 1 ( 0  + + = c o n s t  

From Eq. (7.36) we have 

= Wz - ~ cos 0 (7.38) 

Substitution of  ~ into Eq. (7.37) gives 

( I '  sin 2 0 + I cos 2 0)~ + I cos 0(co~ - q~ cos 0) 

= l '(sin2 0)~ + lwz cos0 = const = I'B 
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Rearranging, we find 

B - A cos 0 5. 

q) -- sin 2 0 

where A = ( I / l ' ) w z .  
Then, from Eq. (7.38), we have 

cos 0 
= Wz - - - ( B  - a cos0)  

sin 2 0 

Substituting Eq. (7.39) into the expression for energy E '  gives 

E ' =  I '  0 2 +  sin2 0 J + M g ~ c o s O  = c o n s t  

or  

where 

( s i n  2 0 ) 0  2 = ( C  - D cos 0) sin 2 0 - (B - A cos 0) 2 

(7.39) 

(7.40) 

(7.41) 

2 E '  M g ¢  
C =  D = 2 - -  

I '  ' I '  

Equation (7.41) is a first-order differential equation. The nutational motion of the 
rotating shaft can be predicted from this equation. Having found the function O(t), 
the precession of  the top can be obtained through Eq. (7.39), and the variation of  
spinning velocity can be found from Eq. (7.40). Equation. (7.41) is a nonlinear 
equation, however, which cannot be integrated analytically. Much information 
may be obtained without integration of  these equations. Let us change the variable 
in the equation with 

/z = cos 0 

Then we have 

/22 = (C - D/z)(1 - / z  2) - (B - A/z) 2 = f( /x)  

The result O(t) of the preceding equation depends highly on the behavior of  the 
function f ( # ) .  By introducing proper numerical values for A, B, C, and D, the 
variations of  f (/z) are obtained as shown in Fig. 7.10. It easily is seen that there are 
three roots. From the plot, two roots are between 0 and 1 and are reasonable roots 
because 0 < .cos 0 < 1; the third root is impossible. Note that at those two roots 
/2 = 0, i.e., 0 = 0, so that 0 reaches minimum or maximum at these roots; also 
note that f ( /z )  is positive between these two roots so that/2 = -t-~/f(/z) or d#  
can be positive and negative. With this understanding, Eqs. (7.41) and (7.40) are 
numerically integrated. Three different possible cases are given in Figs. 7.11. For 

1 

-1  3 

Fig. 7.10 Plot o f f ( ~ )  wi th  A = 2, B = 1.8, C = 2.5, and  D = 2. 
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a) 

b) 

c) 
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0 .5 - .  

0 -  

8 i ~ ~ 4 g 
P H I  

Fig. 7.11 Three different possible nutations. 
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Fig. 7.1 la, where the value of  B / A  is greater than #2, the motion is called regular 
precession with nutation because precession occurs at nearly constant speed. For 
Fig. 7.11b, where the value of  B/A =/z2 ,  0 = 0, and q~ = 0 as /z  = /x2 ,  so that 
cusps are shown at 0mi n. For Fig. 7.1 lc, the value of  B/A is between the first two 
roots, so that q~ can be positive and negative. Consequently, loops are shown in this 
case. In the numerical integration, because the two integral limits are the roots in 
the denominator of  the integrand, Simpson's one-third rule with d#  = 0.0001 is 
employed for integration and with a further reduced interval near the integral limits. 

7.6 Torque on a Satellite in Circular Orbit 

During the last four decades, we have launched many objects into space and 
have encountered many engineering problems specific to motion in orbit. As the 
motion of  airplanes was well studied in the beginning of  the 20th century, the 
motion of  the space station moving in orbit now requires diligent study so that 
some induced motions during flight operations can be anticipated and delicate 
space vehicles are designed to endure the additional stresses they may encounter. 
Certainly there are many possible ways to analyze the problem. The following 
approach was first given by E. Neal Moore.* 

Consider a satellite moving in a circular orbit around Earth. The coordinate 
system xyz is so chosen that the z axis is from the center of  Earth pointing 
outward through the center of  mass of  the satellite. A plane contains the z axis and 
the orbit curve is called the orbit plane. The y axis is in the orbit plane. The angular 
velocity co of  the satellite relative to the Earth is perpendicular to that plane. The 
x axis is antiparallel to co. The origin of the x, y, z coordinates is chosen at the 
center of  mass of  the satellite. The body of  the satellite is not fixed in the xyz 
system so that it can pitch, roll, and yaw relative to the axes of  xyz system. With 
the coordinate system chosen, now let us consider that a small element dm as 
shown in Fig. 7.12 and consider that the frame of  reference in the Earth is the 
inertial frame of  reference. 

' Orbit 

Fig. 7.12 Satellite in a c i rcular  orbit .  

*Moore, E. N., Theoretical Mechanics, Wiley, New York, 1983, Chap. 6. 
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Applying Eq. (7.5) with the gravitational force applied to the satellite as the 
only external force, we have 

P - d m R - d m ( o x r - d m w  dF  = dma = - G M d m - ~  

x (w x r) - 2dm (oJ x v) (7.42) 

where v is the velocity of din as observed in the xy z  system. As the body is rotating 
relative to the moving coordinate system with angular velocity w', then 

where r is the position vector of dm. The torque acting on the body of the satellite 
about the center of mass because of its own motion is obtained by integration of 
torque over the whole body 

N = f r × dF  (7.43) 
Jb oby 

Making use of the fact that R = RK 

R = RK = Rw x K = w  × R  

= w × R = w x ( w × R ) ,  w = c o n s t  

In addition, p = R -t- r. Substituting these expressions into Eq. (7.42) leads to 

dF = - G M d m ~ 3  - dmw × (w x p) - 2dm(w x v) (7.44) 

The first term on the right-hand side of the preceding equation is called the gravity 
term; the second term is the centrifugal term, and the third term is the Coriolis 
term. They are to be examined separately as follows. 

1) For the gravity term, because 

p2 = R 2 + r  2 + 2 R - r  

3 

p 3 = [ R Z W r Z + 2 R . r ] ~ = R  3 1-t- -I- 2--~-- 

- 1 + + 2---~- / 

l [  3 R : r  l 
= R-- ~ I R2 j f o r R > > r  
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and because the satellite is in circular orbit 

GMm 
_ _  _ mRco 2 R 2 

GM = w  2 
R 3 

The torque produced by the gravitational effect is found to be 

f r x p  Ng : -  GMdm p3 

=_w2 f dm(rxp)(1 3R.r~R2 ,] 

With the use o f r  ---- xi + yj + zk and R ---- Rk, the equation is simplified to 

N~ =-w2 f d m ( r x R ) ( 1 -  3-~R ) =-co2 f dmR(-xj+ y i ) (1 -  3-~R ) 

3o92 f dmz(-xj + yi) = 3w2(-lyz i + lxzJ) 
d 

where 
f 

lyz = - J zydm 

,xz = - f xzdm 

2) For the centrifugal term, because 

w = -o9i 

N c e n = - f d m r x [ w x  ( w x p ) ] : - w 2 f d m r x [ i x  (i x p)] 

Now, because 

we find 

where 

i × (i × p) = i × [i x (Rk+xiWyj+zk)]  = - y j -  (R +z)k 

Ncen = -~o2 f dmr x [yj + (R + z)k] = w2 f dm(xyk- xzJ) 

= w2(Ixzj- Ixyk) 

lxz = - f xzdm 

'xy = - f xydm 

(7.45) 

(7.46a) 

(7.46b) 

(7.47) 

(7.48a) 

(7.48b) 
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3) The Coriolis term is 

Ncor = - 2  f d m r  x (w  x v) 

Because 
! . ! 

v = w '  x r = (W'xi + w f l  + COzk ) x ( x i  + y j +  zk )  

= W'xYk ' . , , . , . , . - O~xZJ - w y x k  + -- Wzy t  COyZl + tOzX J 

w x v = - i w x v = c o ( c o ' x y  ' " ' - % x ) j  + ~o(~oxz - ~o'zx)k 

t ! 
r x (w x v) = og(WyXZ - w ' zxy ) i  + w ( - O g x X Z  + W'zX2)j 

+ ~o(oYxxy , 2 - OJyX ) k  

we obtain 

= - 2  f d m r  x (w x v) Ncor 

! ! • t ! 
= 2w[( toylxz  - Cozlx~,)i + (co'zl - CO'xlxz)j + (wxlxy  - COyI)k] (7.49) 

where I = - f x Z d m  and co' is the angular velocity of  the satellite relative to the 
x y z  axes. 

The addition of Eqs. (7.45), (7.47), and (7.49) will give the torque produced on 
the satellite because of its own motion. However, in these equations, the various 
I are computed in the moving coordinates. In other words, I changes with time. 
This is not convenient to apply. It is better to relate I to the principal moments of  
inertia. Let R be a rotational transformation matrix and I '  the principal moment  
of  inertia. Assume that at the beginning of observation, the x y z  axes are coincided 
with the principal axes of  the body. Note that 

I '  = R I R -  1 

1 = R - I I ' R  (7.50) 

Now let us consider pitching of the satellite, which means the satellite rotates 
about the x axis by an angle of  Op with a speed of 0p. We have 

! / ! 0 dO x = O p ~  0 )3 ,  = O0 z = 

Because the body is rotated about the x axis counterclockwise by an angle of  Op, 
the rotational transformation matrix is 

(i 0 R =  cosOp sinOp 

- sin01, c o s 0 p ]  

We find 

0 
I = R - I I ' R  = 12 COS 20p + 13 sin 20p 

(12 -- 13) COS Op sin Op 

0 

(12 -- 13) cos Op sin Op 

12 sin 20p + 13 cos 20p ]  
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Ixx = I1, Ixy = lyx = Ixz = Izx = 0 

lyz = (I2 - 13) cos 0p sin Op = Izy 

Thus the torque produced on the satellite because of  pitching is s imply 

Np = Ng = 3w2(- Iy f i )  

= -3oo2(12 - 13) cos Op sin Opi 

= -3o92(12 - 13) sin2Opi (7.51) 

Next, let us consider  roll ing of  the satellite about the y axis by an angle of  0R with 
a speed of  On, i.e., 

' ' = OR og'z = 0 CO x = O, O9), , 

then we have 

o r  

(CO oO  o -SoO 1 
R =  1 

\ s i n 0 R  0 COS0R / 

IICOS20R +13sin20R 0 (--I1 +I3)oOSORsinOR ) 
I = R -  II ,R  = 0 I 2 

\ ( - - l l  + 13) cos OR sin OR 0 I1 sin 2 OR + I3 COS 2 OR ] 

The I in Eq. (7.49) is 

lxx = I1 cos z OR + 13 sin z 0R 

lyy = 12 

Izz = I1 sin 2 OR + 13 COS 2 OR 

Ixz = Izx = ( - 1 1  + 13) cOSOR sinOR 

Ixy = lyx = ly~ = Izy = 0 

f 'f I = - x2dm = 2 (r 2 jr_ X 2 - -  y 2  - -  z2)dm 

' f = - - 2  [ ( r  2 _ y 2 )  _ ( r  2 _ x 2)  Or - ( r  2 _ z2)]dm 

1 
= - ~ { I y y  - Ixx + Izz] 

1 
= - ~ [ I 2  - (11 cos 2 OR + 13 sin 2 OR) + (Ii sin 2 OR + 13 cos 2 OR)] 

1 
= - - ~ [ I 2  - -  ( I1  - -  13)  C O S 2 0 R ]  
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With the use of  I as just obtained, we find the torque produced on the satellite 
because of  rolling is 

Nrol = Ng -t- Ncer -t- Ncor 

= 3o921xzj + w 2 1 x j  + 2w(ORlxz i  - O g l k )  

= --WOR (l l  -- 13) sin 20R i -- 2w2(I1 -- 13) sin 2 0 ~  

+ COOR [12 -- (I1 -- 13)COS(20R)]k (7.52) 

Similarly we can find that the torque acting on the satellite because of  yawing 
about the z axis is 

Nyaw = -(oOy ( I I - / 2 )  sin(20y)i - (oOy[13 - ( l l - 12)cos(20y)]j 

1 2 --~co ( l l  - 12) s in(2Oy)k (7.53) 

Therefore, rolling and yawing can produce rotations about all three axes. 
From here one can easily suggest a project that is to carry out the proper 

operational procedure so that the torques generated by the motions of  the satellite 
are balanced. Furthermore, it is easy to recognize the need for a great deal more 
research for a satellite in an elliptical orbit. 

Problems 
7.1. Prove that 

(hn  - nh )  = (n  x h)  x "l 

7.2. Verify Eq. (7.17) through direct evaluation in detail of  (dR/dt)  • ~ r .  

7.3. Given 

w = / ~ n  + (1 - cos/~)(n x h) + sin/3h 

prove that by assuming n - h = 0 

n x w = - ( 1  - cos/3)h + sin ~6(n x n) 

and 

Consequently, 

n x (n x w) = - sin j~h - 2 sin2(/3/2)(n x n) 

h = - -  1 cot -~[(n w)n 2 { ( n × w ) +  • - w ] }  
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Fig. P7.4 

x 

7.4. A round plate rotates about the z axis perpendicular to the x - y  plane with 
an angular velocity ~. Mounted on this revolving plate are two bearings A and B 
that retain a shaft and mass rotating at the angular velocity ~b as shown in Fig. 
P7.4. An x'y'z' system is selected and fixed to the shaft and mass in such a way 
that the z' axis is along the shaft, x '  is perpendicular to the z' axis, and y '  is parallel 
to the Z axis. The mass center G defines the center of  this system. The angular 
velocity ~z is observed from a position on the rotating plate. Let the mass be 10 
kg, its radius of  gyration be r = 10 cm, and its angular velocity ~ = 350 rad/s. 
Using q~ = 5 rad/s in the direction shown, find the bearing reactions. 

7.5. The rotor of  a jet airplane engine is supported by two bearings as shown 
in Fig. P7.5. The rotor assembly, consisting of the shaft, compressor, and turbine, 
has a mass of  820 kg and a moment  of  inertia with respect to its shaft of  45 kg-m2; 
its center of  mass is lying at point G. The rotor is rotating at 10,000 rpm cw when 
viewed from the rear. The speed of the airplane is 970 km/h, and it is pulling out 
of  a dive along a path 1530 m in radius. Determine the magnitude and direction of 

o- - r  - [  

] 1 - 1 5 8 0  m 

Fig. P7.5 
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the combined forces that the shaft exerts against the bearings due to the gyroscopic 
effect and the centrifugal effect. 

7.6. The jet airplane in Problem 7.5 is traveling at 850 km/h in a horizontal plane 
and makes a clockwise turn of 2.0 km radius when viewed from above. The rotor 
is rotating at 9000 rpm cw when viewed from the rear. Determine the magnitude 
and direction of the gyroscopic forces that the shaft exerts against the bearings. 
Will the forces make the front of the plane tilt upward or downward? 

7.7. In Fig. P7.7 a gyroscope used in instrument applications is illustrated. The 
rotor R is mounted in gimbals so that it is free to rotate about all three axes. In 
the figure A, B, C, D, E, and F are precision bearings. The rotor has a moment 
of inertia with respect to its axis I = 0.0025 kg-m 2 and is rotating at 12,000 
rpm. Suppose that the instrument experiences a precession of 1 deg/h about the 
Z axis. Determine the magnitude and direction of the torque applied to cause the 
precession. 

7.8. A heavy symmetric top is spun with its axis of symmetry in the vertical 
position initially. Find the conditions that will cause the top to remain vertical. 

7.9. Derive Lagrange's equation for the coordinate 0 of a heavy symmetrical 
top. Then solve this relation for the precession angular velocity q~ when there are 
no nutation velocity and acceleration present. From this result, show that there is a 
minimum valve of COz for which precession is possible. Finally, for Wz higher than 
the minimum value, show that there are two permissible values of ~, corresponding 
to the cases of fast and slow precession. 

7.10. Show that the total torque in yawing motion of a spacecraft in a circular 
orbit is given by Eq. (7.53). 

7.11. Find the torques produced on a satellite in an elliptical orbit caused by its 
motions of pitching, rolling, and yawing. 



8 
Fundamentals of Small Oscillations 

V IBRATION can be either destructive or beneficial to our daily life. The 
fatigue of a material, which may lead to the failure of a structure, is possibly 

caused by vibration. A machine is intentionally designed to be free of vibrations, 
but sometimes undesirable vibrations just cannot be avoided when it is in service. 
When a car is driven on the road, an unbalanced wheel or an out-of-round tire can 
cause it to vibrate. On the other hand, because of the oscillation of its pendulum, 
a mechanical clock can tell the time. Because of the vibration of its membrane, a 
loud speaker can produce music. 

Because vibrations can be either useful or troublesome, it is desirable that we 
understand the causes and phenomena of vibrations and further how to control 
them according to our wishes. Developing the knowledge to accomplish this 
control is the purpose of Chapters 8 and 9. 

As in previous chapters, the required mathematics for studying vibration is pre- 
sented at the beginning of the chapter. The subjects of the mathematics needed are 
Fourier series, Fourier integral, and Fourier and Laplace transforms. They are pre- 
sented in Sections 8.1 and 8.2. Because more functions can satisfy the conditions 
for the Laplace transform than for the Fourier transform, the Laplace transform 
method can be applied to many more cases. Section 8.3 presents some important 
properties of the Laplace transform. Tables of Laplace and Fourier transforms 
are included in Appendix E However, we will not deal with the inverse Laplace 
transform in this chapter because the derivation of formulas involves some lengthy 
details from the theory of complex variables. A brief description of the inverse 
transform for some functions is given in Appendix G. The applications of Fourier 
and Laplace transforms are presented in this chapter. In Chapter 9, we will present 
applications of Fourier series and more applications of the Laplace transform. 

In Section 8.4, we shall study forced vibration systems with single degrees of 
freedom.These systems are either with damping or without damping and are either 
harmonically or arbitrarily excited. Because a periodic force can be expanded into 
a Fourier series, an analysis for one harmonic excitation will suffice to demonstrate 
that for any other harmonic excitations. Applications of these vibration systems are 
presented as examples that include acceterometer, seismometer, and packaging. 
The meaning of the Richter scale, which is a measure of the magnitude of an 
earthquake, is explained in Example 8.6. 

Transient vibration is studied in Section 8.5. This type of vibration is caused by 
a nonperiodic force. Depending on the type of forcing function applied, response 
of a general excitation may not be obtained by analytical integration; it can be 
always integrated numerically through the formulation of arbitrary excitations. The 
responses of the cases studied in this section are obtained by analytical integration. 

Response and velocity spectra of transient vibration are studied in Section 8.6. 
Because design of a vibration system is often restricted by the maximum response, 
response spectra may be used for modifying the design so that the maximum 
response is within the acceptable range. 

181 
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Section 8.7 is specifically devoted to the application of  the Fourier transform 
for analyzing the response of  a vibration system. As we shall study later, the 
amplitude of  vibration as a function of  time will be converted into that as a 
function of  frequency by using Fourier transform. Because of  limited time in 
practice, the method used in the vibration analyzer is modified and is called the 
discrete Fourier transform. Through this, many random vibrations can be analyzed 
and the amplitude of  vibration can be displayed as a function of  frequency. From 
there, we can detect the source of vibration. 

8.1 Fourier Series and Fourier Integral 

Fourier Series 

A Fourier series is a useful tool for solving differential equations and for 
treating various problems involving periodic functions. It is an infinite series of  
trigonometric functions and, in general, is expressed as 

f ( x )  = -~- + a.  cos + b. sin - -  
n = l  L 

(8A) 

where n is an integer, x can be any value from -cx~ to cx~, and an and bn are 
coefficients. 

A function that can be expanded into a Fourier series must satisfy the following 
conditions: 1) The function is periodic or 2) The function is piecewise continuous 
between x and x + 2L. 

A function f(x) is said to be periodic if it is defined for all x with a period of  
2L such that 

f (x  + 2L) = f(x) 

The function f(x) shown in Fig. 8.1 is a piecewise continuous function. Note 
that it is impossible to expand a discrete function as shown in Fig. 8.2 into a 
Fourier series. 

f(x) 

I 

I-L 0 
I 

L 12L x D 
I 
I 

Fig. 8.1 Periodic  and piecewise  cont inuous  funct ion.  
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• X 

Fig. 8.2 Periodic and discrete function. 

To facilitate the determinat ion of  the coefficients in a Fourier  series, we introduce 
the fol lowing formulas for integrating tr igonometric functions:  

f L m :rr x n :rr x 
cos - -  cos - -  dx 

t L L 

L 1 rrx = f_L [~c°s(m + n)T 

1 L s i n ( m +  -i--Jrx _t L +  1 L 
2 (m + n)zr n ) _ ~  2 (m - n)rr 

= 0 if  m ~ n (m, n are integers) 

If  m = n,  then 

1 1 + ~ cos(m - n)-£--  dx 

L 
7rX 

sin(m - n)-~--  -L 

(8.2) 

f L mzr x nzrx f L mzrx cos - -  cos - -  dx = c o s  2 d x  
L L L L L 

L 2  l + c o s 2 m  d x = L  

f_ '~ mzrx nrrx 
sin sin - -  dx 

L L L 

= L cos(m -- n)--~-- -- ~ cos(m + n)--£-  dx 

_ zrx L L 
L sin(m - n) 

2(m + n)zr L -L 2(m -- n)zr 

= 0  i f m  # n  

(8.3) 

7 r x  [L 
sin(m + n)--~-- 

~L 

(8.4) 

I f  m = n, then 

f_ L mzrx nTrx fL sin - -  sin - -  dx = sin2 mrrx dx 
L L L a-L L 

L 2  1--COS d x = L  (8.5) 
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f L mzrx  nJrx 
sin - -  cos dx 

L L L 

= sin(m -4- n)-~-- -t- ~ sin(m - n) dx 
L 

1 [ L z:x L 
2 [ (m + n)zr cos(m + n)--~-- + (m - n)yr 

7fX 
cos(m - n 

- L  

= 0  i f m  # n  (8.6) 

I f  m = n, then 

f L mzrx nyrx f L  1 2mYrx 
sin cos dx = - sin - -  

L L L L 2  L 

L [ 2m x]L 
COS 

4m Jr -L 

= 0  

dx 

(8.7) 

I f m = n = O ,  

fL F cos o.x cos o.x dx = dx = 2L 
L L 

f L sin O x sin O x dx = 0 
c 

f L sin O x c o s  O x d x  = 0 
L 

(8.8) 

(8.9) 

(8.10) 

N o w  we can conclude:  

f L mrrx nrrx 
cos - -  cos dx = L~m n (8.1 1) 

L L L ' 

f ?  mJrx nzrx 
sin - -  sin dx = L$m n (8.12) 

L L L ' 

f_ '~ mJrx nzrx 
sin cos - -  dx = 0 (8.13) 

L L L 

Equat ions  (8 .11-8.13)  are known as or thogonal i ty  conditions.  

Calculation of the coefficients in a Fourier series. I f  a function f (x )  
satisfies the condit ions for the Four ier  series, it can be expanded into the form of  
Eq. (8.1). To determine  the coefficient  a,,, we mult iply  both sides o f  Eq. (8.1) by 
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cosOx ---- 1 and integrate from - L  to L:  

f (x)dx = -~aodx + an cos 
L L = L L 

cos Ox dx 

cx~ f L t ' l~x + Z bn sin 
n=l  L L 

cos 0x dx 

By  using the or thogonal i ty  condit ions,  we get  

f L J'(x)dx = aoL 
L 

o r  

,fL = f ( x ) d x  (8.14) ao -~ L 

To determine  the coeff icient  a , ,  we mult iply  both sides o f  Eq. (8.1) by cos(mzrx/L) 
and integrate f rom - L  to L:  

f L  1 fL m~x f ( x )  cos mzrXdx = - cos - -  
/~ L 2 ao L L 

dx 

oo f L l'17"( X m zr x 
- [ - Z  an J _  C O S - - C O S  

n=l L L L 
dx 

oo f L  nzrx  m ~ x  
+ Z b n j _  s i n - - c o s  

n=l L L L 
dx 

Because 

f L mJrx  
cos dx = 0 

L L 

o0 [ L  nrr x mzr x 
~ ~  a n c o s  c o s  
n=l J-L L L 

dX ~ Lam 

oo f L rl Yr x m zr x 
Z bn sin cos - -  = 0 
n=l J-L L L 

we obtain 

f 
L mZrX 

f ( x )  COS dx = Lain 
L L 

The  index m is a d u m m y  index that can be replaced by any symbol.  It is convenient  
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to use n, so that 

~ fL nJrx 
a , =  f ( x ) c o s - - d x  n = 0 , 1 , 2  . . . .  (8.15) 

L L 

Note that Eq. (8.15) includes the expression of  Eq. (8.14). Similarly, to determine 
the coefficient bn, we multiply both sides of  Eq. (8.1) by sin(mJrx/L) and integrate 
from - L  to L. We find 

1 fL nrrx = f ( x ) s i n  dx n =  1 , 2 , 3  . . . .  (8.16) 
b, ~ L L 

Therefore, if f ( x )  is a periodic function and is piecewise continuous, then it can 
be expanded into a Fourier series as 

f ( x )  = 2ao + an cos 
n = l  L 

1 fL nzrx 
= f ( x )  cos 

an -~ L L 

- - + b n s i n ~  -f--) 

where 

dx n = 0 , 1 , 2  . . . .  

1 fL nnx ---- f ( x )  sin dx bn -L L -L n =  1 , 2 , 3  . . . .  

It is worthwhile to mention that the integral limits in the preceding equations are 
not necessarily - L  and L. Because f ( x )  is a periodic function of  period of  2L, 
the integral limits can be replaced by ot and ot + 2L where ~ is any real constant. 

Example 8.1 
Consider a function f ( x )  that is known as a square wave and is defined as 

f ( x ) = - h  - L  < x  < o  

f ( x ) = h  o < x  < L  

where h is a constant. The function is periodic and is shown in Fig. 8.3. The 

I 
I 
I 
I 
[ 

-2L 

I 
I 
I 
I 

l-L 
I 
I 
I b  

f ( x )  

h 

0 

-h 

I i 
i I i 
I I I 
I I I 

!2L !3:- 
I 
I I I 
I I I 

i I - -  

Fig. 8.3 Plot of the function. 
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interval - L  < x < L is so called the Fourier interval. Expand the function into a 
Fourier series. 

Solution. Because this function is periodic and piecewise continuous, we 
can expand it into a Fourier series in the form of Eq. (8.1). The coefficients are 
determined as follows: 

1 f_~ nrrx an = ~ L f (X)  COS ~ dx 

1 ;  l f o L  nlrx = - -  ( - h )  cos --nrcx dx + h cos - -  dx 
L L L L 

h ( s i n  n-~nx'~ ° h ( s i n n r r x ' ]  L 
--  nzr \ L ] [_L  7 t - -  = 0  nrr \ L J[0  

that is true for all the values of  n from 1 on up. For n = O, we have zero divided 
by zero, hence we determine a0 separately and we find 

i f )  l f_ o lfoL ao = ~ L f (x)dx  = -~ L (-h)dx + ~ h dx 

1 
= -~(-hl + hL) = 0 

To determine the coefficients bn, we use Eq. (8.16) 

--l f_ L n y r x  
bn = f ( x )  sin dx 

L L L 

= ~ ( - h )  sin T Jo L J 

h h 
= - - [ 1  - c o s ( n r r ) ]  - - - [ c o s ( n n )  - 1] 

n ~  Hyr 

2h 
= - - [ 1  -- cos(n:rr)] 

n ~  

2h 
- [ 1  - ( - 1 ) " ]  

nTr 

Hence 

bn = 4h/nzr as n = 1, 3, 5 . . .  

bn=O as n = 2 , 4 , 6  . . . .  

Therefore, the Fourier series for the square wave can be expressed as 

4h [ sin rrx 1 3zrx 1 5zrx ] 
f ( x ) = - ~ - -  L - - E + 3 s i n - - ~ - + 5  sin L + " "  
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o r  

j~)"'x" = --4h 2-..,X-~ ~ 1  sin (2m - 1)Jrx 
7r 2m - 1 L 

m = l  

Fourier sine series and cosine series. I f  a function f ( x )  satisfies the 
conditions for the Fourier series and is an odd function, i.e., 

f ( - x )  = - f ( x )  

then it can be expanded into a Fourier sine series as 

oo nJ'gx 

Z - -  f ( x )  = Bn sin L (8.17) 
n = l  

where 

2 f /L  nrrx cLr n = 1,2, 3, (8.18) 
Bn = L-d0 f ( x ) s i n  L "'" 

On the other hand, if a function f ( x )  satisfies the condition for Fourier series 
and is an even function, f ( - x )  = f ( x ) ,  then it can be expanded into a Fourier 
cosine series as 

where 

oo / / ~ X  

f ( x )  = Ao+ Z Ancos L 
n = l  

(8.19) 

,f0 L A0 = ~- f ( x ) d x  (8.20) 

2 fo L nJrx A n = ~  f ( x ) c o s - - ~ d x  n =  1 , 2 , 3  . . . .  (8.21) 

Fourier Integral 
We have studied that a periodic and piecewise continuous function in a finite 

interval can be represented by a Fourier series. Now we shall generalize the 
method of  Fourier series to include a piecewise continuous function as defined 
in an infinite interval. If  a function f ( x )  is piecewise continuous defined in the 
interval 0 < x < oo, and is an odd function, then we can write 

fo(x)  --= ~ Bn sin - -  ( 8 . 2 2 )  
n=0 L L 

For the ease of  mathematical operation, we make changes in symbols in the 
preceding equation and let 

L nyr 
B,- -  = B(un) - -  = un 

Jr L 
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and 

Then we have 

(n + 1)rr nzr Jr 
m R  n ~--- U n +  1 - -  II n . . . .  A U  

L L L 

oo 

Jb(x) = ~ B(u,)(sin unx)Au 
n=0 

Now, considering the case as L approaches oo, we have 

A R  ~ dR 

and write un as u. Equation (8.23) becomes 

where 

(8.23) 

o r  

In the preceding equation, x is a dummy variable that can be replaced by any 
symbol. By changing x to t, and combining Eqs. (8.24) and (8.25), we obtain 

1 B(u)= lim --Bn = lim -- f o ( x ) s i n - - d x  
L-->oo 7/" L-->oo Jr L 

= lim -- f o ( x ) s i n u x d x = -  fo(x)sinuxdx 
L--~ oo 7"( 7"( 

(8.25) 

where 

2 ° °  fo ~ sinutdt] 3'o(x) =--rrj0f sin ux [ o J0(t) du (8.26) 

This is known as the Fourier sine integral representation of  fb(x). 
Similarly, if f (x )  is piecewise continuous defined in the interval 0 < x < co 

and is an even function, then it can be represented by 

f 0  ° °  
Je(X) = A(u) cos uxdu 

2fo  A(u) = ~- Je(t) cos ut dt (8.28) 

f5 --  cos ux fe (t) cos ut dt du (8.29) 
L ( x )  = Jr 

In general, a function always can be expressed as a combination of  even and odd 

(8.27) 

f o  °° 
fo(x) = B(u) sin uxdu (8.24) 
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functions, i.e., 

f ( x )  = L(x )  + Co(x) 

Using Eqs. (8.26) and (8.29) for even and odd functions, we have 

- -  cos ux J~, (t) cos utdtdu f(x) = Jr 

 -{f0 'f= = cos ux ~ [ f ( t )  - Jb(t)] cos u td tdu  
o o  

fo 1 F } + sin ux-~ [ f ( t )  - Je(t)] sin utdt  du 

 {f0 f? = cos ux f ( t )  cos ut dtdu 
oo 

+ fo~Sinuxf5f(t)  sinutdtdu} 

- -  - -  f ( t ) [ c o s  ux cos ut + sin ux sin u t ld tdu  
- - r r j  0 j _ ~  

= - -  f ( t )  COS u(x -- t )d t  du (8.30) 
Jz do d - ~  

Because the integrand is an even function of  u, we can rewrite Eq. (8.30) in the 
form of  

'f f? f ( x )  = ~ oo ~ f ( t )  c o s u ( x  -- t )d tdu  - ~ < x < ~x~ (8.31) 

This expression is known as the complete Fourier integral representation of  f ( x )  
for all values of x. The conditions for a function to be expressed in Eq. (8.31) 
are 1) the integral f _ ~ l f ( t ) l d t  must exist, and 2) f ( t )  must be a single-valued 
function of  the real variable t throughout the range - ~  < t < ~ .  It may have 
several finite discontinuities. 

Example 8.2 
1) Find the Fourier sine integral representation of  the function f ( x )  which is 

given as 

.['(x) = {~ 0 < x < a  
a < x < o o  

f ( - x )  = - f ( x )  

and is shown in Fig. 8.4. 
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f(x) 

--G 
i 
I 
t _ _  _'~ 

X 

Fig. 8.4 Plot of the function. 

2) Evaluate each term in the Fourier sine integral representation and prove that 
the result of  the expression truly represents the original function as shown in 
Fig. 8.4. 

Solution. 1) From Eq. (8.26), we have 

f ( x )  = --  s inux f ( t ) s inutd t  du 
7l" 

fo ° = --  sin ux sin ut dt du 
r r  

2 sin ux cos ut du 
~T U J o  

_ f? (1 co  a),in xd. 
The result in the preceding equation is the one that we are looking for. 

2) Rewrite the preceding equation as 

2 f o ~  ( s i n u x  cosuas inux)  2 (  
f ( x )  = --  du = I I  - -  12) 

7r u 

where 

L 
o~ sin ux 

Ii = - -  du 
U 

12 = fo °c cos UauSin ux du 

Evaluate I1, we find 

II = f0 °e sin ux ux fo ° sin z zr - - d ( u x )  = dz = --  
z 2 

a s x > 0  
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As x < 0, 

f0 °° sin z 11 = - dz 
z 

f0 °° sin z* (when z : -z*)  

2 

On the other hand, we rewrite I2 in two parts as 

12 = ~1 ~u [ ~  sin(x + a)u +u sin(x - a)u 

= I21 + 122 

Evaluate 121, we obtain 

1 [ o o  sin(x + a)u 
121 = 2 t/ du 

~ g  

1 / ' ~  sin(x + a)u :r 
= 2  Jo (x + a)u d [ ( x + a ) u ] =  

yg 

121 : - - - -  
4 

Similarly, we have 

~fo°°Sin(x-a)  u 122 = - du 
// 

1 f ~  sin(x - a)u Jr 
= 2 Jo ~'---'a)-~ d[(x - a ) u ]  = 7 

7l" 
122 ~--- - - - -  

4 

Now the function f(x) can be expressed as 

We find that 

2 
f ( x )  = - - [ 1 1  - -  (121 -b  122) ]  

7l" 

f ( x ) =  - 7 -  " -4 = o  

f ( x ) =  - ~ - -  • ~ -----1 

a s  X < - - g ,  

d u  

a s  x > - a  

a s  x < - a  

a s x  > a  

a s x  < a  
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as - a  < x < O, 

a s O < x < a ,  and 

,,x, ~[~ (4 4 ) 1 ,  

= - + = 0  

as x > a. The preceding result proves that the Fourier sine integral representation 
is truly the original function. 

Example 8.3 
1) Find the Fourier cosine integral representation of the function f ( x )  that is 

defined by 

f ( x )  = 1~ a s O < x < a  
a s a  < x  <cx> 

and 

f ( - x )  = f(x) 

2) Evaluate the Fourier cosine integral representation obtained in part 1 and 
prove that the result is the original function. 

Solution. 1) From Eq. (8.29) we have 

~fo ~ If: ] = - -  cosux  f ( t ) c o s u t d t  du f(x)  zr 

~fo ~ fo ~ = --  cos ux cos ut dtdu 
7"( 

2 fo ~ s inut  id  u - -  - -  C O S  b l X - -  
- -  Y / "  / /  

2 foQ sin ua cos ux du 

- ~  Jo 

This is the Fourier cosine integral representation of the given functions. 
2) Evaluate the integral, and we find 

fo c¢ sin H a  C O S  R X  I =  du 
U 

1 [ ~  sin(x + a)u - sin(x - a)u du 11 12 
2 Jo u 
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1 fo ~ sin(Xu_ + a)u du 

1 f0 ~ sin(x _ - a ) u  du 12---- ~ u 

Note that the integrals have been evaluated in the previous example. The results 
are collected as follows: 

[ 7r/4  a s x  > - a  
Ii { 

[ - 7 r / 4  as x < - a  

/ : r / 4  as x > a 
12 / 

[ - z r / 4  as x < a 

Now, the function f (x)  can be evaluated by 

2 
f ( x )  = - - ( 1 1  - -  / 2 )  

7[ 

We find that 

f(x) = - S  - - = o 

as x < - a ,  

(4)], 
as--a < x  < a ,  and 

as x > a. The result reached agrees exactly with the original function. 

Example 8.4 
Find the complete Fourier integral representation of the functions which is given 

a s  

! as - c ~ < x  < 0  
f ( x ) =  a s O < x  < a  

a s a < x < ~  
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Solution. From Eq. 
tion of  f ( x )  as 

1 
f (x)  = ~ -  

1 

2zr 

(8.31), we have the complete Fourier integral representa- 

f~o  f ~  f ( t ) cosu(x  - t)dtdu O0 

f-°Ofo~l[C°SUXSinut-~-sinuxsinut]dtduoo 

1F[ sinu, cosu,]idu 
= - -  cos u x - -  - sin ux 

2zr oo u u 

, F [ c o s . 7 . a  l_c:s.o] 
= - -  - + sin ux du 

2zr 

Note that the integrand is an even function of  u. Hence we can write 

1 fo°°Icosuxs inua s inux( luCOSUa)]d u 
f ( x )  = - + 

Jr L u 

This result is the combination of  the Fourier cosine and sine integral representations 
found in Examples 8.3 and 8.2 except the coefficient is reduced to one half, because 
the given function in this example is one half of the sum of the functions in the 
previous examples. In addition, it is worthwhile to point out that the expression 
that was reached also represents the inverse Fourier transform of the transformed 
function. Details of  the Fourier transform are discussed in Section 8.2. 

8.2 Fourier and Laplace Transforms 

The Fourier transform is a powerful tool for solving differential equations. When 
it is applied to linear ordinary differential equations with constant coefficients, the 
differential equation is converted into an algebraic equation. Then the solution 
of  the original differential equation is then reduced to the calculation of inverse 
transforms of  the transformed functions obtained from the algebraic equation. 

The Fourier transform also can be applied to linear partial differential equations 
with constant coefficients. If  it is applied to one particular independent variable, 
the number of  independent variables in the partial differential equations is reduced 
by one. The coefficients in the differential equations are not restricted to constants. 
Constant coefficients are simpler to apply to the method. The Laplace transform 
may be considered as a special case of  the Fourier transform. Both transforms are 
closely related to the Fourier series and integral discussed in the previous section. 
To see how they are related, we shall begin the discussion with the complete 
Fourier integral representation of  a function. 

By Eq. (8.31), the complete Fourier integral representation of  f l  (x) is 

IFf5 f l (x )  = f~(t) cosu(x - t)dt du 

Because 

cos u(x -- t) = ½[e i"(x-') + e -iu(x-t)] 
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the equation becomes 

= f f  f_" 'f_ ff} 2 oo oo J](t)eiU(x-t)dtdu + 2 ~ ~ "t)(t)e-iUCX-t)dtdu 

In the second part of  the preceding equation, we make a change in one of  the 
variables. First we change u to - v ,  and then change v back to u, because v is a 
dummy variable. Finally we have 

DS_ S_: f |  (X ) = f l ( t ) eiu(x-t) dt du 

o r  

f l ( X )  -~- e iux e-iUt f t ( t ) d t d  u 
o o  o o  

Now let the Fourier transform of  Jl  (t) be defined as 

C .~'(u) = e - i ' t  f l  (t) dt (8.32) 
o o  

Then the inverse transform of .~'(u) is 

lff f l  (t) = ~ eiUt~'(u)du (8.33) 

The conditions for the existence of  the Fourier transform of  f l  (t) are the same 
as for the Fourier integral representation stated in Section 8.1. 

To show that the Laplace transform is a special case of  the Fourier transform, 
we consider the following function 

0 a s - o o  < t < 0  
ft ( t )  = 

e - Y t f ( t )  as 0 < t < oo 

where y is a real number. The Fourier transform of  f l  (t) then becomes 

.~(u) = e-(×+iu)t f ( t ) d t  (8.34) 

and the inverse transform is 

e-Vt f ( t )  = ~'(u)ei"' du 

e Yt L e° f ( t )  = ~ ei"t~'(u)du 
o o  

l f ?  = - -  e(×+iu)t.U(u)du (8.35) 
2Jr o~ 
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In this equation, we make changes in variables and let s = y + iu and .T(u)  = F (s) 
then ds = i du. Thus, we write 

f0OG .T'(u) = F ( s )  = e-St f ( t ) d t  

This is defined as the Laplace transform of f ( t ) .  The symbol for the transform is 

L 
OG 

/2[ f ( t )]  = e-St f ( t ) d t  

From Eq. (8.35), the inverse Laplace transform is 

(8.36) 

1 f Y + i o G e S t F ( s ) d  S (8.37) f ( t )  = / 2 - 1 [ F ( s ) ]  = ~ / ~ × - i o G  

The conditions for the existence of  the Laplace transform of a function f ( t )  are 
as follows: 

1) The term f ( t )  is continuous or piecewise continuous in every finite interval 
tl < t  < T ,  wheretl  > 0 a n d T  > t l .  

2) The term t n l f ( t ) l  is bounded near t = 0 for some number n when n < 1. 
3) The term e -s°t If( t ) l  is bounded for large values of t for some positive real 

number so. Therefore, f ( t )  may be infinite as t ~ 0 or finite as t --+ 0o. The 
Laplace transform of  such a function is still possible. 

8.3 Properties of Laplace Transforms 
In this section, we shall establish, by detailed calculations, the properties of  

the Laplace transforms of  functions that are very important in solving differential 
equations. With the sample calculations shown in this section, it would be easy 
for the reader to establish other formulas of  the Laplace transforms given in 
Appendix F. 

The differentiation of  f ( t )  is 

[ d f ( t ) ]  = 
/2 L dt J s /2[f ( t ) ]  - f(O) 

Prool:" By using the method of  integration by parts, we find that 

f f  " 
/2F dj(')] = e-s td3`d t=e-S t f ( t ) ]~  

L dt j dt 

+ s e -st 3`'(t)dt = s F ( s )  - 3"(Oh-) 

where Oh- means on the positive side of zero. 
For the second derivative, 

(8.38) 

Fd Zl de(0+) 
/2 L dt2 J = sZF(s )  - s f (Oh-)  - (it (8.39) 
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~ra~,l fo~e-std2f e - s td f  ~ 
L dt2 .] --= - - ~  at = --~ 0 

d " + s [ e -st d f d t  = s[sF(s) - f ( 0 + ) ]  - d f  (0+)  
Jo dt at 

= s2F(s) - sf(O+) - d f  (0+)  
fit 

The integration of f ( t )  is 

[fo' 31 £ f (u)du = - F ( s )  
S 

Proof 

£ [ fot f (u)du] = fo~e-S'  [ fot f (u)du] dt 

= f ( u ) d u  + -  e - ' t f ( t ) d t =  F(s) 
0 S S 

If  the lower limit in the integral is not zero, then 

fo 1 
1 1 fo ° = -F(s )  - f (u)du 
S S 

The translation property is 

£[eat f(t)] = F(s - a) 

Proof" 

If  

then 

fo ° 
£[eat f(t)] = e-Stea' f ( t )dt  

f? = e-(S-a)tf(t)dt = F(s - a) 

0 
f ( t ) =  g ( t - a )  

a s t  < a ( a > 0 )  
a s t  >_a 

F(s) = e -as G(s) 

where G(s) is the transformed function of g(t). 

(8.40) 

(8.41) 

(8.42) 

(8.43) 
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Proof: 

fa ° £ [ f ( t ) ]  = e-St g(t - a)d t  

L e t  x = t - a ,  t h e n  

fo °~ 
/ 2 I f ( t ) ]  = e-S(X+O)g(x)dx 

fo ° 
= e -sa e-SXg(x)dx = e-SaG(s) 

L e t  

dnF(s)  
£[t" f ( t ) ]  = ( -  1)" - -  (8 .44)  

ds" 

Proof" 

fO ~ F(s)  = e-~'t f ( t ) d t  

d fo ~ -~sF(S) = (-t)e-~'t  f ( t ) d t  = ( - 1 ) £ [ t f ( t ) ]  

62 fo ~ ds2F(s )  = ( - t )2e-St  f ( t ) d t  = ( -1)2£[ t2  f ( t ) ] . . .  

T h e r e f o r e  

£ [ t " f ( t ) ]  = ( - l ) n - -  
& F ( s )  

d s "  

I f  £ [ f ( t ) ]  = F(s )  a n d  i f  [ f ( t ) / t ]  < ( M / t " )  as t - +  O +  w i t h  n < 1, M = fi- 
n i te ,  t h e n  

£ = F(s )ds  (8.45) 

Proof" 

fo °° 
F(s)  = £ [ f ( t ) ]  = f ( t ) e -S td t  

f [fo ] F(s )ds  = "(t)e-Stdt ds 
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Because s and t are independent, the integration order can be changed: 

The convolution 

o r  

Pro#:" 

fo~[f~  ~ ] L H S =  f(t) e-Stds dt 

= f(t) _-~ s dt 

fo ~ f(t)e-Stdt = E [ f l t )  ] 
t 

E.[fotf(t-u)g(u)dul =F(s)G(s) 

£ [ f  * g] = F(s)G(s) 
£[g * f ]  = F(s)G(s) 

F(s)G(s) = Ifo~e-SV f(v)dv] [fo°°e-SU g(u)du] 

folio ~ = e -s(v+") f(v)g(u) dv du 

= fo~g(u) Ifo~e-S(V+U) f(v)dv] du 

Let v = t - u, dv = dt, then 

f0 ~ f~ e-S (v+u) f (v)dv = 

Therefore 

e-St f (t - u)dt 

(8.46) 

fo~[l ~ ] F(s)G(s) = e-St f(t - u)g(u)dt du 

The integration shown in Fig. 8.5 can be represented by the triangular area bounded 
by t = u and u = 0. By interchanging the order of integration and changing the 
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1 -du 
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Fig. 8.5 Integration by t then u. 

limits as shown in Fig. 8.6, we can obtain the equivalent result: 

f ~ [L' } 
= e - s t  f ( t  -- u ) g ( u ) d u  d t  

dO 

By changing variables in Eq. (8.46) t - u = v, we have 

fo' f o f ( t  - u ) g ( u ) d u  = f ( v ) g ( t  - v ) d ( - v )  

L' 
= f ( v ) g ( t  - v ) d v  

Therefore, we can easily establish 

f * g  = g * f  

S i n g u l a r i t y . f u n c t i o n s  (Dirac delta function) are 

£ [ ~ ( t  - -  tl)] = e - q s  

U 

(8.47) 

Fig. 8.6 Integration by u then t. 
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P r o o f  The  Dirac delta function is defined as 

l i m - -  a s O < t  < t o  

~ ( t ) =  / ; - - ' ° t °  elsewhere 

fOOO fto Z;[~(t)] = e-S t~( t )d t  = lim l e - s t d t  
to--~ 0 dO to 

1 se -st'' 
= lim - - ( I  - e  - s t ' ' )  = lim -- 1 

t,,~o sto t,,~o s 

The Laplace transform of 3(t - h)  can be obtained by using Eq. (8.43) and the 
preceding result. Thus we write 

£[6( t  - tl)] = e-tts E[6(t)] = e -t 's 

Sometimes, it is useful to know the Laplace transform of the first derivative of  
Dirac delta function that can be written as 

£[3 ' ( t  - h)] = se -t's 

Proof" The  first derivative of the Dirac delta function is defined as 

3(t) - 3(t - to) 
6 ' ( 0  = lim 

to~o t o 

which is shown in Fig. 8.7. In other words 

1 
f ( t )  toe as 0 < t < to 

1 
f ( t ) -  to e as t o < t  <2 t0  

(8.48) 

f ( t )  = 0 elsewhere 

Fig. 8.7 

f(L) 

rto t 

0 12to 

Shape of 6'(t) before taking limit. 
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and the derivative of  the Dirac delta function is defined as 

g ( t )  = lim f ( t )  
to--~O 

Hence, the Laplace transform of  the function is 

t~ e -s t  d t  - e -S t  d t  
d to 

1 
= lim [1 -- e -st° + e -2st" -- e -stl'] 

t o --~ O - ~ 0  

1 
= lim (1 -- e-St")  2 = s 

tl,--> 0 S--~0 2 

Again,  with the use of  Eq. (8.43), we have 

/~[g(t  - tl)] = e - t ~ s E . [ g ( t ) ]  = s e  - t ' s  

8.4 Forced Harmonic Vibration Systems with Single 
Degree of Freedom 

Any system consisting of a mass and a spring or the equivalent is capable of  
vibration. Because of  friction, practical problems are usually modeled as a system 
consisting of  a mass, a spring, and a damper as shown in Fig. 8.8. The damper  is 
modeled as a viscous device with damping force proportional to the velocity 2. 
The weight of the mass is balanced by the spring force kA,  where k is the spring 
constant and A is the initial deformation of  the spring. F ( t )  is an external force 
applied to the mass. For the system, the balance of  forces gives 

mS~ + cY¢ + k x  = F ( t )  (8.49) 

To understand the behavior of  the system, first we examine the solution of  the 
homogeneous equation: 

m Y  + c/c + k x  = 0 (8.50) 

1,<<< 
Unstretched < 
position -- ---~ 

~//////////~ 

i ° 
A =-E 

ITt 

k(A+x) c~ 

kA l l 
I~,+F(0 

Fig. 8.8 Single-degree-of-freedom system. 
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Assuming that the solution of the equation is an exponential function of time, 

x ~ X e  st 

where X and s are arbitrary, we find 

(ms  2 + cs + k ) X e  st = 0 

Because X and e st cannot be zero for all values of t, we must have 

o r  

c k 
$2-'1 - - - S - I - -  = 0  

m m 

S I ,  2 ~ - - - -  

C 4- c k 

2m m 

x = Ae  s't + Be  s2t 

[ c t ] {  I ~ ( c ) 2  k 1 =exp-2--mm Aexp t ~m - 

+ B exp I - t ~ ( ~ m ) 2  - k l  } 

That means 

(8.51) 

The preceding equation can have three possible results, which are discussed in 
detail as follows. 

Case 1 Overdamped motion 

As ( c / 2 m )  2 > k / m ,  the two roots of s are real-negative. The vibration will be 
damped out rapidly. 

Case 2 Critically damped motion 
As ( c / 2 m )  2 = k / m ,  the two roots ofs are the same. The solution of Eq. (8.50) 

can be written as 

x = (C q: D t ) e  -'°"t 

where Wn = natural frequency = v/-k-/m. 

By applying initial conditions we find 

c = x(O) 

D = Jc(O) + conx(O) 
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Therefore 

x = {x(0) -t- [A(0) ÷ wnx(O)]t}e -w"t 

The oscillation also will be damped because of e -~°'t. 

(8.52) 

Case 3 Underdamped motion 

Finally, let us consider the case as (c/2m) 2 < k / m .  We define the frequency of  
damped oscillation as 

so that 

where 

O)d : - -  ~ m  

x = e ~Tt[Aei~°"t ÷ Be -i~°'t] 

= e ~ t [Cl sin w d t ÷  c2 COS wdt] 

(8.53) 

cl = i (A  - B),  c 2 = A + B  

By applying the initial conditions, the constants are found as 

and c2 = x(0). Hence 

[ } x = exp --~mm t x(0) + ~mX(0) sin walt + x(O) COS Walt (8.54) 

For this case, the amplitude of  oscillation is still decreasing continually because 
of  the damping effect, and the frequency of oscillation is reduced from the natural 
frequency as given in Eq. (8.53). 

In all cases, the solution of the homogeneous equation indicates that the ampli- 
tude of  the vibration will be vanishing as the time increases. 

Forced Harmonic Vibration 

Harmonic excitation is commonly produced by the unbalance in a rotating 
machinery. The force is often periodic and is represented by F( t )  in Eq. (8.49). 
Because the periodic function can be expressed in a Fourier series, we can take one 
term first for F (t) when analyzing the problem. Because the differential equation 
is linear, the principle of  superposition allows us to study a particular case first. 
The final result is the summation of  solutions from all the cases considered. 

Now let us consider F( t )  = Fo sin wt. From Eq. (8.49), we have 

mS? + c~ + kx  = Fo sinwt = Im(Foe i°~t) (8.55) 
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where Fo is the real constant. Let the solution be 

x = Im(Ae i°~t) 

Then we have 

j; = Im(q-i A09e i~°t) 

j~ = Im( -  A092 e i°jt ) 

Substituting the preceding expressions into Eq. (8.55) and dropping the symbol 
for imaginary, we find 

(--m09 2 -k- ic09 + k ) A e  iwt = Fo eiwt 

A = Fo/m 
k /m - 092 + (ic09/m) 

Fo { ( k /m-092) - i ( c09 /m)  ] 
= m (co /m)2 

Let 

D = (k/m - 092) 2 q- ( c 0 9 / m )  2 

(k/m - co 2) c09/m 
cos ¢ - , sin ¢ - - -  (8.56) 

where q~ is called the phase angle between the vibrating mass and the excitation, 
then, 

Fo i sin qS) = Fo e_i4 ~ 
A = m /_~(cosqb-  m~/-D 

[m---~D e~ -~1] x = Im (o~t 

Fo sin(09t 
= m~/-D - ~b) 

(8.57) 

The general solution is the summation of the homogeneous solution and the 
particular solution. Therefore, we have 

Fo 
x -- sin(09t - ~b) 

m~/-~ 

+expI--~mt]{-~alJ;(O)+~mX(O)lsin09at+x(O)c°s09at  } (8.58) 

If  the excitation force is a general periodic function, then 

f ( t )  = E cij~(t) (8.59) 
i 
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where ci is a known constant and Ji (t) may be any sinusoidal function in the 
Fourier series, although it is not restricted to sinusoidal functions. Because the 
principle of  superposition is applicable, then, for each force fi (t), we can write 
the corresponding displacement as xi (t) so that the differential equation becomes 

mxi  -k- cxi -+- kxi  : J~(t) (8.60) 

After xi (t) is obtained, the general particular solution can be written as 

x( t )  = Z Cixi(t) (8.61) 
i 

Therefore, the solution given in Eq. (8.57) represents the typical form of the 
particular solution for the study of  a harmonically excited motion. In addition, it is 
worthwhile to mention that x( t )  is the displacement of  mass m and is often called 
the response of the system. 

Example 8.5 
Consider a spring mass system. The mass M is constrained to move only 

in the vertical direction. The vibration is excited by a rotating machine with 
an unbalanced mass m as shown in Fig. 8.9. The unbalanced mass m is at an 
eccentricity of  e and is rotating with angular velocity co. 1) Formulate an equation 
for describing the dynamic behavior of the system. 2) Find the amplitude of the 
vibration of  M as a function of the force of excitation mew 2. 3) Find the expression 
for the phase angle between the vibration of  M and the excitation. 4) Determine 
also the complete solution of the equation obtained in part 1. 

Solution. 1) Let x be the displacement of  the mass (M - m) from its static 
equilibrium position, and x -I- e sin wt for the displacement of the unbalanced mass 
m. The equation of  motion is 

d 2 
(M - m)~ + m-d~(x  + e sin wt) = - k x  - c2 

Rearranging the terms, we have 

MY + ck + kx = (mew 2) sin ~ot (8.62) 

Fig. 8.9 

kJ I IkJ2 
" / . , ' / / / / / / / / / / / / / /~ 

Rotating machine with an unbalanced mass. 
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2) Note that this equation is identical to Eq. (8.55) except that m is replaced by 
M and F0 by me0) 2. Using Eq. (8.57) with the change of symbols, we find 

me0) 2 
x(t) -- - -  sin(0)t - 4~) 

M45 
Let X be the amplitude of x, then we write 

me0) 2 
X = M - - ~  (8.63) 

where D = ( k / M  - 0)2)2 + (c0)/M)2. 
3) The phase angle ~p can be determined by Eq. (8.56): 

c0)/ M 
tan ~b = (8.64) 

(k / M - 0)2) 

Note that the phase angle ~p is less than 90 deg if 0)  2 < k / M  and is greater than 
90 deg as 0)2 > k / M .  

4) The complete solution is similar to Eq. (8.58) and can be written as 

me0) 2 
x(t)  - - -  sin(0)t - q~) 

+ e x p ( - - ~ M ) { l [ x ( O ) + - ~ M X ( O ) l s i n w a t + x ( O ) c o s 0 ) a t  } (8.65) 

Example 8.6 
A seismometer is an instrument for measuring the intensity of an earthquake. 

The design of the instrument is shown in Fig. 8.10. 1) Formulate an equation for 
describing the dynamic behavior of the instrument due to the ground vibration. 
2) Find the relationship between the amplitudes of ground vibration and the 
instrument. 3) Discuss the essential factors in the design of the seismometer. 4) 
Suppose that the measured result is 7 on the Richter scale. What is the actual 
magnitude of the earthquake? 

Fig. 8.10 

I k/Z I 

M 

~ C 

Schematic diagram of a seismometer. 
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Solu t ion .  1) Assume that the case is rigid and that the displacement of M is 
x and of the ground is y. The equation of motion for this system can be written as 

MS~ = -c(Jc - ~) - k ( x  - y)  (8.66) 

Because the instrument actually only senses the relative motion between M and 
the case, i.e., 

Equation (8.66) becomes 

z = x - y  

M~  + ck + k z  = - M y  (8.67) 

Assuming that the vibration of ground is in sinusoidal motion, y = Y sin 0)t, we 
find then the equation 

M~ + ck + kz  = M Y 0 )  2 sin cot (8.68) 

2) Note that the preceding equation is in the same form as Eq. (8.55) except the 
symbols are changed. Using Eq. (8.57), we find 

where 

y0)2 
z ( t )  = - ~  sin(0)t - q~) 

c0) /m  
tan 4~ - -  

k /m - 0)2 

D = ( k / M  - 0)2)2 ...[_ (c0) /M)2 

Therefore, the amplitude of vibration detected by the instrument is 

Z =  
y w  z 

~ / ( k / m  - 0)2) 2 + ( c0 ) /M)  2 

3) Equation (8.69) can be simplified if we define the following. 
Natural frequency of undamped oscillation: 

(8.69) 

wn = 9/-k-/ M 

Critical damping coefficient: 

(8.7o) 

cc = 2 M w .  (8.71) 

Damping factor: 

= c/c~ (8.72) 
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Then 

co) co9 k c coo) k 2Moo.o) k 

M k M cc k M k M 
-- 2~'ww. 

Y(~o/oJ,) 2 
Z = (8.73) 

( [1 -  + 
From this equation we can easily see that 

Z ~ Y  

if co >> co. and ~" << 1. Therefore we always use a large mass, weak spring, and 
small damper such that co/w. --+ ~ and ~ --+ 0. 

4) The Richter scale is defined as 

R - loglo(Y/Ys) (8.74) 

Ys is the standard magnitude of  an earthquake that is 1/z, o r  10 -6 m. For a Richter 
scale value of  7 

lOglo(Y/Y~ ) = 7 

Y = 107 x 10-6m = 10 m 

Therefore, the amplitude of  the earthquake is 10 m. 

Example 8.7 
An accelerometer is an instrument that directly measures the vibration of  a 

moving object. Then the amplitude of the vibration is converted into acceleration. 
Once the acceleration is measured, the velocity and displacement can be obtained 
by integration. The accelerometer is a very important instrument in a submarine. 
The general construction of  the meter consists of  a spring, a mass, and a damper 
similar to the seismometer shown in Fig. 8.10. For this instrument, discuss the 
essential factors in the design so that the measured quantity truly represents the 
acceleration. 

Solution. Because the construction of the accelerometer is similar to that of  
the seismometer, Eq. (8.73) is applicable and we have 

z = f(o)/")., ¢) (8.75) 

where 

/(~o/~o.,¢)= I - \ ~ o . :  I + 2 ~  (8.76) 
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In this equation, Yw 2 is the acceleration, Z is measured, and w ] is fixed in 
the design. From this equation, we see that f ( W / W n ,  ()  ~ 1 as w / w n  << 1 and 
g" = 0.65 to 0.70. Therefore in the design of  accelerometer, the natural frequency 
chosen should be very high and the damping factor should be about 0.70. 

Example 8.8 
Often in engineering practices, vibration of machinery cannot be totally elim- 

inated. To reduce the effect of vibration to adjacent parts, vibration absorber is 
usually installed between the machine and the supporting ground. The vibration 
absorber can be modeled by a combination of  springs and a damper as shown in 
Fig. 8.11a. 

For the vibration absorber, 1) find the force transmitted from the vibrating mass 
M to the supporting ground, 2) find the expression for the ratio of the transmitted 
force and the excitation force, and 3) discuss how to reduce the ratio of  forces in 
part 2. 

Solu t ion .  1) Because the present system is similar to the one shown in Fig. 
8.8, Eq. (8.55) and its solution can be applied here. Rewrite Eq. (8.57) as 

x = Im{X exp[ i (wt  - tp)]} (8.77) 

where X = Fo/ (M~/ -D) ,  then we have 

2 = I m { X w i  exp[ i (wt  - ~b)]} = I m { X w e x p [ i ( w t  - cp + n'/2)]} (8.78) 

and 

5c = ] m { - X w  2 exp[ i (wt  - 40]} = Im{X w2 exp[i(wt - tp + Jr)]} (8.79) 

By drawing F0 exp [iwt], M X w  z exp [i(wt - ~b + n')], c w X  exp[ i (w t  - d? + zr/ 
2)], and k X  exp [i(ogt - tp)] on a graph as shown in Fig. 8.1 lb, we obtain the total 
force transmitted to the support as 

FT = x/(kX) 2 4- (cogX) 2 = k X x / 1  4- (cog~k) 2 (8.80) 

IF 

k / 2 I 2 

Fig. 8.11 

b) 

Relation between the vibration system and the supporting ground. 
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2) Because 

k X =  

F0 
X - -  - -  

Fo(k/M) 

x/ (k / M - -  092)2 --]- (c09/M) 2 

Fo 

v/I1-(09/09nV12 + ("09/ V 
F0 

~/[1 -(09/09n)2] 2 -~ (2~'09/09n) 2 

The ratio of the transmitted force to the exciting force is 

Fr x/1 + (2~'w/09n) 2 

fo ~[1  --(09/09n)2] 2 -'~ (2~'09/09n) 2 
(8.81) 

3) From Eq. (8.81), we easily can see that to reduce the value of the ratio, we 
set the damping factor g- to zero and choose co/con >> 1. Then we find 

FT 

Therefore the ratio is reduced if we use weak springs and no damper. 

(8.82) 

Example 8.9 
Figure 8.12 depicts a simplified model of a spring-supported vehicle traveling 

over a rough road. 1) Find the equation for the amplitude of vibrating mass m, and 

vt , 

I 

k 

Fig. 8.12 Spring-supported vehicle o n  r o u g h  r o a d .  
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determine the most unfavorable speed. 2) Suppose that the vehicle is now traveling 
on a fiat road but its tire is cut by a hard braking. Note that this out-of-round wheel 
is equivalent to driving the vehicle on a road with repeated holes. Determine also 
the most unfavorable speed. 

o r  

Solution. 1) For the balance of  forces in the vertical direction, we have 

m 2  = - k ( x  - y )  

m 2  + k x  = k y  

The rough road can be modeled as 

y = Y sin cot 

where co = 2 r c v / L .  Therefore the equation of  motion is 

mSi - k x  = k Y  sin cot (8.83) 

This equation is similar to Eq. (8.55) except c = 0. Hence the solution of  Eq. 
(8.55) can be used. We have 

k Y  Y 

m~v/-D - ( w / w n )  2 - 1 
X -- m 

o r  

X 1 

Y ( 2 r r v / L c o n )  2 - 1 

The most unfavorable speed occurs when the system is in resonance, i .e. ,  

C O m ~ C O  n 

2 z r v / L c o n  = 1 (8.84) 

v = ( L / 2 J r ) c / f f / m  

2) When the tire is out-of-round, the velocity of  the vehicle is directly related 
to co as 

/) ~ g o )  

The governing equation for the motion still can be written as Eq. (8.83). The 
condition of  resonance is now 

co = v / R  = 60n = q ' ~ - / m  
(8.85) 

v = R e T / m  

where R is the radius of  the tire. 
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8.5 Transient Vibration 

When a spring-mass system is suddenly subjected to a nonperiodic force, a 
transient vibration is produced, because a steady-state oscillation is usually not 
present. Let us consider that an impulse is applied to a spring-mass system. The 
equation for the dynamic behavior of the system can be written as 

m Y  + k x  = P 3 ( t  - t l )  (8.86) 

where f is an impulse and 3(t - q) is a Dirac delta function with a dimension of 
t -1. Taking the Laplace transform of the equation, we have 

m [ s 2 2 ( s )  - s x (O)  - 2(0)1 + k Y ( s )  = F e -h s  

where 2 ( s )  is the transformed function ofx(t) .  For x(O) = 2(0) = O, 

^ 

F e - h S  
2 ( s )  - 

ms 2 + k 

Taking the inverse transform by using Eq. (8.43) and the Laplace transform table, 
we find 

0 
x ( t ) =  ~ P  sincon(t-- 

m o )  n 

as t < t l  
(8.87) 

t l )  a s  t > t I 

By introducing a unit step function 

H ( t - q ) = { ~  asaSt<ht > tl ( 8 . 8 8 )  

we can write the solution of Eq. (8.86) as 

x ( t )  = - -  
P 

sin con (t - t l ) H  (t  - t l )  (8.89) 
mOOn 

Example 8.10 

A simple spring-mass system is subjected to a repeated impulse f of finite 
duration at intervals of r as shown in Fig. 8.13. Find the transient response. 

Solution. Following Eq. (8.86) we write the equation of motion as 

N 

m Y  + k x  = F ~ _ 3 ( t  - n r )  
n=0 

(8.90) 
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F(t) 

N~- t 

Fig. 8.13 Repeated impulse on a spring-mass system. 

where N is a finite integer. Taking the Laplace transform and for x (0) = ~ (0) = 0, 
we have 

p N 
Z e-nrs 

E(s)  -- m s ~ -  + k n=o 

Therefore, from the inverse Laplace transform of the preceding equation, we find 
the transient response 

U p 
- -  sinwn(t + n r ) H ( t  - nr )  (8.91) x ( t )  

n=0 mC°n 

Note that, at time tl, N is the integer of  t l / r  in the preceding equation because of  
the unit step functions; if tl > N r ,  then N is the total number of  impulses used in 
Eq. (8.90). Two particular cases may be discussed here: 

1) As COnr = 27r, then 

.--,N p 
x ( t )  = ~ - -  sin(cont + n2~r)H( t  - nr )  

n=0 mOOn 

s i n ( w n t ) H ( t  nr )  
P 

n=0 mC°n 

N a P  
- sin(cOnt) Nl = in teger(q/r )  (8.92) 

moon 

This equation shows that the amplitude of x (t) increases with time as indicated by 
NI in the expression. This means that the impulse is in resonance with the system. 

2) As con r = Jr, then 

N p 
x ( t )  = ) .  - -  s i n ( c o n t - n T r ) H ( t -  n't-) 

n=O mOOn 

.__,N p 
= ) i  ( - 1 ) "  s i n ( w n t ) H ( t  - nr )  (8.93) 

n=0 mC°n 
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xCt) 

0 ~ 2n 3~ 4n 5~ ~ t  

Fig. 8.14 Transient response at minimum amplitude. 

The transient response of  the preceding expression is shown in Fig. 8.14. If  N is 
odd, the response is 0 as N r  < t < (N + 1)r; if N is even, the response is 

sin wnt 
moon 

a s N v  < t  < ( N + I ) v .  
Next let us consider that an impulse is applied to a spring-mass system with a 

damper. Then the equation of  motion is 

mY + ck + kx  = F 3 ( t )  (8.94) 

with x (0) = k (0) = 0. Taking the Laplace transform, we have 

ms2Y(s)  + csY(s )  + k~(s )  = 

o r  

y ( s )  - 
m s  2 -t- c s  + k 

The transient response is the inverse Laplace transform of the equation. By using 
the table of  Laplace Transforms in Appendix F, we find 

ms 2 + cs -t- k 

^ ] 
+ 2~oo.s + oo~j 

P 
e -~°~'t sin(oon~/1 - ~'2t) (8.95) 

moon ~/1 - ~ 2 

Furthermore, let us consider a general system with an arbitrary excitation. The 
equation of  motion is in the form of 

mY: -I- cA + kx  = f ( t )  (8.96) 
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with x(0)  = 2(0) = 0. Taking the Laplace transform, we obtain 

Let 

then 

~(s) = 
f ( s )  f ( s )  1 

ms 2 -k- cs + k m s 2 -~- 2( wns + o) 2 

1 

m(s 2 + 2(runS -}- o)2) = g,(s) 

~ ( s )  = f ( s ) ~ ( s )  

Using the convolution, Eq. (8.46), and Eq. (8.95), we find 

fo' x(t)  = £-l[f(s)f i . (s)]  = f (rl)g(t - rl)d0 

' fo' - m~o~ l x / i - ~ _  ~2 f ( q ) e  -~°"(t-") s i n [ w ~ / l  - (2(t  - ~)]d0 

For a special case, c = 0 or ff = 0, then 

1 L t  
x(t)  = - -  f ( r l )  sin[~o~ (t - rl)]dr/ 

mo) n 

(8.97) 

(8.98) 

Example 8.11 
Determine the response of an undamped system with a single degree of  freedom 

subjected to the following excitation: 

f ( t ) = { F O S o W t  a s O < t < J r / w  
a s t  < 0  and t > z r / w  

Solution. Using Eq. (8.98) for 0 < t < n/w,  we have 

x ( t )  = - -  
fo 

f i t  s inwo sin[o),(t - o)]do 
mO)n .to 

L t Fo {cos[(w + w.)rl - w. t ]  - cos[(6o - w.)O + ~ont]}d0 
2mo) n 

Fo Isin wt _ w__W_ sin ~ont] (8.99) 
k[1 - ( ~ / ~ . ) 2 ]  ~ .  
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For t > zr/w, we find 

x( t )  = - -  f ] ~ sinwrl sin[~On(t - r/)]dr/ 
Fo 

mwn JO 

Fo~o./oa [ 
= k[1 ~( -~-co)  2] sinco.t + sinco. (8.,oo, 

Example 8.12 
Determine the response of a damped system with a single degree of freedom 

subjected to the following excitation 

{ 0  o a s t > O  
f ( t )  = Foil( t)  = as t < 0 

Solution. Using Eq. (8.97) for a damped system, we find 

-Fo [ '  
x( t )  = m w n ~  Jo exp [(Wn(q - t)] sin[wnx/1 - ( 2 0 / -  t)]do 

=mo)~ 1 1V/i--_---~_~2[(sin(w, f f l - ( 2 t ) + f f l - ( 2 c ° s ( w n  lv/-(----~-~2t)] 

Let ( = sin ~0, then ~ - (2 = cos ~; the response becomes 

where 

x(t) = ~__~o { 1 e-¢'°"t _ - ~ ) }  cos(o,.,/1 (8.101) 

( 
tan ~O - -  - -  

E x a m p l e  8 . 1 3  

A mass m is packaged in a box as shown in Fig. 8.15. The box is dropped 
through height h. Determine the maximum force transmitted to mass m and the 
required rattle space at the instant of impact when the box reaches the ground. 
Assume that the impact can be represented by an impulse. 

l) Assume the mass of the box is much greater than m, so that the free fall of 
the box is not influenced by the relative motion of the mass m. 

2) On striking the floor, the impact depends greatly on the material properties 
of the box and the floor. It is reasonable to have the impact represented by an 
impulse. 

3) Assume that the box is rigid. No deformation is considered. 
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Box 

////~////////////////~ 
Fig. 8.15 Packaging  analysis .  

Based on the preceding assumptions, the equation for the system can be written 
as  

m(Y + y) = - k x  

mY + kx = - m y  

o r  

£ + w2x = - y  (8.102) 

where x is the displacement of mass m from its equilibrium position relative to 
the box and y is the displacement of  the box from its initial position. Taking the 
Laplace transform of the preceding equation, we find 

s 1 s 2 y ( s )  
(s) = Ix (o) + y ( o ) 1 ~  + [~ (o) + ~,(o)] 

S 2 + 012 S 2 + O92 

The response of  x(t) is obtained from 

x(t) = £ - l [ ~ ( s ) ]  

1 
= [x(0) + y (0)] cos Og, t + - - [ k  (0) + y (0)] sin o9. t - E -1 [ s2y (s) 1 

For the time of  the free falling, 

x(0) = y(0) = 2(0) = 9(0) = 0 

y(t) = 1 2 ~gt , f~(s) = (g/s 3) 

x ( t ) = - - £ - l [  g ] 
s(s2+og ) 

- -  g - ( l  - cos ognt) ,0.2 
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At the instant  of  impact,  

to = ~  

x (to) = -- (g/co ]) (1 -- cos con to) 

it(to) = --(g/con) sin conto 

These quanti t ies become the initial condi t ions  for the second phase of  the problem 
after the impact  of  the box with the floor. 

After  the impact  of  the box with the floor, consider  t = 0 at the instant  of  impact:  

x(O) = -~22(1  - cos co.to) 

k(O) = - g  sin co, to 
(-O n 

P 
~(t )  = - - - , s ( t )  

mh 

Therefore £ [~ ( t ) ]  = - P / m b ;  

s 1 
~(s) = x(0)sTU~.  2 + ~(0)s2---U~. 2 + 

where mh is the mass of  the box. We find the response 

x ( t ) = x ( O ) c o s c o n t +  2(0)  + ~--~h sin cont 

1 F 
= --~n (1--  COS contO) COS cont "k- -'~n [ ~ 

= (1 -- cos contO) 2 + - -  sin conto 
kmbg 

P 1 
mb S 2 + 09 2 

g sinconto] sincont 
COn 

2 sin(cont -- ~b) 

1 -- COS COn to 

tan ~b = (Fwn/mhg) - sin conto 

For a special case, as (Fcon/mbg) >> 1, 

g [~con 
x(t)  = - -  sin(cont - q~) 

o9 2 mbg 

P 
--  sin(cont - ~b) 

mbcon 
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Because x ( t )  is the displacement of m relative to the box, the maximum space 
required for m to travel before reaching the wall of  the box is 

Xmax = (1 COSO)nt0) 2 + - -  sinognt o 
\ m h g  

and the maximum force applied is simply kxmax. 

(8.103) 

8.6 Response Spectrum 
A response spectrum is a plot of  the maximum peak response as a function of  

the product of  the natural frequency of  the oscillator and the characteristic time of  
the applied force. 

From the information revealed in the plot, we can modify the design so that the 
peak response will be within the expected range. To illustrate the use of  response 
spectrum, let us see the following example. 

Example 8.14 
Determine the response spectrum for a mass-spring system subjected to a force 

as a function of  time given as follows: 

f ( t )  = F o ( t / q )  as 0 < t < tl 

= F o  as t  > tl 

Solution. 
(8.98): 

For the interval of  0 < t < q,  the response is obtained from Eq. 

1 
x ( t )  - 

m~On 
_ _ _ l  Foq  s i n w n ( t  - r/)drl 

Jo tl 

__ F0k [tq sin°gntlwntl _l (8.104) 

For the time q < t < oo, the response is 

[1 f/ ] 1 q For~ sin COn(t _ ~) drl + x ( t )  = - -  Fo sino)n(t - ~)dq 
m~On tl 

[ 1  , ] 
Fo 1 + sino)n(t - q)  sinwM (8.105) 
k O)nt I O)nt 1 

Examining Eqs. (8.104) and (8.105), we can see easily that the response from 
Eq. (8.105) is higher than that from Eq. (8.104). Hence the response spectrum is 
determined from Eq. (8.105). To find maximum x ( t ) ,  we differentiate x ( t )  with 
respect to time and set it to zero and obtain 

COS 09n(t p --  tl) -- COS COntp = 0 (8.106) 
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where tp is a particular time such that k (t) = 0, as t = tp. Recalling that 

cosot - cosfl  = - 2 s i n  ½(~ +/3)  sin ½(or - fl) 

we conclude that tp must satisfy the equation 

sinogn(tp-q) sinwn~=O 

which yields the solution 

n T r  t l  
t p = - - + - -  n = 1 ,2 ,3  . . . .  

co. 2 

o r  

O)n(tp -- t l )  = 2 n z r  - -  Wntp 

From Eq. (8.106), we also find 

1 - -  COS (-On t l  

tan c°ntp -- sin wntl 

sinwntp = -  ~(1 - c o s ~ o n q )  

Using Eq. (8.107), we obtain 

sin con ( t p  - t l  ) = sin ( -wn t p )  = - -  sin o)n tp 

Then, the peak amplitude is found as 

F ° [ l +  1 ~/2(1-coswnt,)] 
X m a x -  ~- COntl 

(8.107) 

(8.108) 

(8.109) 

(8.110) 

+ 2~wnk + wZz = - j )  (8.111) 

where z ---- x - y is the relative displacement between the mass m and the coil 

A velocity spectrum is a plot of  the maximum velocity of  the mass m versus time 
for a single-degree-of-freedom oscillator. It is often used for analyses of  earth- 
quakes or other ground shock situations. With the formulation of  the seismometer 
given in Example 8.4, we can write 

contl ---- 2nrr n ---- 1, 2, 3 . . . .  

The response spectrum is plotted in Fig. 8.16, which shows that kxmax/Fo -"+ 1 as 
wntl approaches infinity. Therefore, if the desired response is small, the natural 
frequency should be chosen as high as possible; otherwise set at 
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2.5- 

~.25 

f O 2- 

"~M1.75 

x.5 

1.25 

(~ ~ I'0 1"5 2'0 

cot 

Fig. 8.]6 Response spectrum. 

25 3 0  

a t t a c h e d  to  the  g round .  A s s u m i n g  z (0)  = i ( 0 )  = 0 and  us ing  Eq.  (8 .97) ,  w e  have  

- 1  f0  t z(t)  - -  j i(r/)  e x p [ - ~ c o n ( t  - 17)] s in x/1 - ~2Wn(t - r/)dr/  
~on 1~/i-27- C 

R e c a l l i n g  the  d i f f e ren t i a l  f o r m u l a  

w e  f ind 

or  

~( t )  - -  

L e t  

d d fB(x) 
= f ( x ,  t )dt  ~-~(x) ~ JA<x~ 

fa  B Of(x,  t) d t + f ( x ,  dB 
= ax B)---~ 

dA 
- -  - f ( x ,  A ) - - z - -  (8 .112)  

(1X 

d fot fot af(t'r/) dr/ i ( t )  = -~ f ( t ,  r / ) d r / =  Ot -I- f ( t ,  t) 

-I fo' W n ~  y(r / )  e x p  [--~'oon (t - -  r / ) ] [ - -~wn sin ~/1 --  ~2wn(t -- r/) 

-k- Ogn~/1 --  ~-2 cos  ~/1 --  ~2Ogn(t -- r/)]dr/  (8 .113)  

f0  t A = j~(rl)e ¢°''0 cos  v / ]  - - ~'2Ognr/dr/ 

/o' B = j)(r /)e ¢~°"~ s in  ~/1 - ~2con r/dr/ 
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Equation (8.113) can be written as 

e-~ ~o,,t 
~(t) -- lv/T_S~_ ~2 [(A~ " - Bv/]  - - ~-2)sin ~/1 - ~2Wnt 

- (A~/1 - ~-2 _~_ B ~ )  c o s  ~ / 1  - ~'2wnt] 

o r  

~(t) -- e-~°J"-------~t ~ B  2 sin(~/1 - ~2ognt - q~) (8.114) 

BC + A , /1 -C  
tan ~b = (8.115) 

A~" - B,v/] - -  ~ 2 

If  ~(t) is plotted against time, it would appear as an amplitude modulated wave. 
Because 

e-~W"t ~ max I~(t)lm,x = (8.116) 

the envelope of  the amplitude modulated wave is the velocity spectrum. Two terms 
also may be mentioned here: pseudo-response spectrum is the plot of  

1 
IZlm,x = --r~(t)lmax 

(-O n 

and pseudo-acceleration spectrum is the plot of  

IZlmax = c°,lz(t)lmax 

8.7 Applications of Fourier Transforms 
The Fourier transform was introduced in Section 8.2. In this section we shall 

study its applications. The Fourier transform of a function f ( t )  can be written as 

£ U(u) = e-i ' t  f ( t ) d t  (8.117) 
(3O 

and the inverse transform of ~-(u) is 

, f  f (t) = - ~  ei"t f ( u ) d u  (8.118) 

In these equations, the dimension of  u is 1/time, which is the same as the frequency 
dimension. This means that .T'(u) is the function in the frequency domain. If  the 
function f (t) is the amplitude of  vibration as a function of  time, then, after taking 
the Fourier transform, we obtain ~'(u),  which is the amplitude of  vibration as 
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a function of  frequency. When the result of  U(u)  is displayed, we can see the 
amplitudes of  vibration at different frequencies. From this result, we may find 
the source of  vibration and devise a way to suppress it. Therefore, the Fourier 
transform is useful for analyzing vibration. We will present more details of  this 
application later in this section. 

Another application of the Fourier transform is that it can be used to solve 
differential equations as shown in the following example. 

Example 8.15 
For an undamped vibration system with a single degree of  freedom, apply the 

Fourier transform to determine the response x (t) subjected to the excitation given 
below: 

o r  

Solution. 

F0 f o r - T  < t  < T  
f ( t ) =  for t  < - T  and t > T  

Taking the Fourier transform of the equation 

mS~ + kx = f ( t )  

5~ + ~o2nx = ( 1 / m ) f ( t )  

with k(O) = x(O) = O, we obtain 

(iu)2Y(u) + og]Y(u) = (1/m).~(u) 

where Y (u) is the Fourier transform of x (t), and 

Y ' ( u )  = fT T 

Foe-i't dt = F°(ei,T _ e - i u T  ) 
lbl  

Hence, Eq. (8.119) becomes 

Y(u) = Fo 1 (eiU T _ e _ i u T )  

k i . [1  - (u rn . )  2] 

The response x (t) is the inverse transform of Y (u), i.e., 

1 t ' ° °  
x(t)  = ~ J-oo x(u)eiU'du 

Fo 1 1,00 e iuT  - -  e-iuT iut ~ 
- -  - -  j _  - ; - - - - - - _ e  au 

k 2n-i oo u[1 - (U/Wn) 2] 

(8.119) 

(8.120) 
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Using the expans ion  of  part ial  fractions 

1 1 
. [ 1  - . 

we have 

1 i 

2(u - co,,) 2(u + ~o,,) 

x ( t )  F o f ~ [ l  1 1 ] 
k2rci  oo u 2(u - co,,) 2(u + wn)  

• {exp [ iu( t  + T)]  - exp [ iu( t  - T)]} du (8.121) 

To evaluate the preceding integrals,  we must  perform contour  integrat ions in the 
complex  plane as given in Append ix  G. We present  the results  here; namely,  

f 
oo eiuX {0 as k < 0 

du = 
oo u 27ri as)v > 0 

f 
oo ei,X {0 as)v < 0 

- - -  du = 
oo u -- 6o, 27rie i~°'x as )~ > 0 

f 
oo eiuX {0 as ,k < 0 

- - d u  = 
u + 6o,, 27t ie  -i~°'x as X > 0 

Note  that  ), = t + T or t - T,  when the preceding results are used for  Eq. (8.121), 
we find 

x ( t )  = 0 as t < - T  (8.122) 

F0 ± 
x ( t )  --  k 2rri - -~(2rr i )exp[ ico , , ( t  + r ) l  - ~ ( 2 r r i ) e x p [ - i c o , , ( t  + r ) }  

= ? [ 1  - coscon(t + T)]  as - T < t < T (8.123) 

F0 1 
x ( t )  --  k 2rri - ~(2 r r i )  exp [ico,z (t + r ) l  - g(2r~i) exp [ - i con ( t  + T)]  

[ 1 l __ T ) ] I }  
L2rci - ~ ( 2 r r i )  exp [io)n(t - T)]  - ~ (2 r r i )  exp [ - io ) , , ( t  i 

--  F ° [ c o s w , ( t  - T)  - cosco , ( t  + T)]  as t > T (8.124) 
- -  k 

In analyz ing  vibrat ion in the field, because  of  l imited t ime, samples  of  data  are 
taken in a finite interval of  To. The samples  are assumed to be a per iodic  funct ion 
with per iod of  To and with N points  in the interval.  Hence,  the samples  can be 
represented  as 

f ( t ) ~ ( t - k T )  k = O ,  1 , 2  . . . . .  N -  1 
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Note that ~ (t - kT) is assumed to be dimensionless. Because of the characteristics 
of  the function f(t)3(t - kT), its Fourier transform cannot be performed in the 
usual manner. To satisfy the conditions for Fourier transform as stated previously, 
the transform of this function is performed approximately in discrete manner. 
Thus the transform is known as the discrete Fourier transform. Consider the 
Fourier transform 

f ~  [- i27rnt'] 
f(.) = ooexpL-- -o 

in which the frequency u has been replaced by 2zrn/To. The interval between 
datum points is T, which is also assumed as the interval of  the delta function. 
Thus NT = To. Therefore, the discrete Fourier transform of f(t)8(t - kT) is 
performed as 

N - I  T~,q-~ F 2zrnt 1 
.T(n) = Z f f ( t )~ ( t - kT )exp  L-i To ] a t  

~=0 d--~ 

n - I  

= T ~ f(kT)e -i2~rnkT/T" 
k=0 

n - I  

T )_~ f(kT)e -i2~rn~/N n = 0, 1 . . . . .  N - 1 (8.125) 
k=0  

Similarly, the corresponding discrete inverse Fourier transform is manipulated as 
follows: 

F f (kT)  = .T'(f)ei2JrkTfdf 

N - I  N+I 

fwr-  .T'(f)~(f nAf)ei2~rtrfdf 
n=0  

1 N-I 
= NT ~ f'(nAf)eiZ~rkTnAf 

n=0  

N--I  1 
= Z ~'(n)eiZ~kn/U k = 0, 1, 2, N - 1 (8.126) 

NT . . . .  
n=0  

Note that in the preceding derivation, the width of  the Dirac delta function is A f ,  
(i.e., 1/NT = A f ,  or T A f  = 1/N). Further, the data of  5 r ( f )  available are only 
N points in the range of f from 0 to 1/T;  outside of the range are assumed to 
be zero. Also notice that A f  is omitted in the last expression of  the transformed 
function U(n).  

From Eq. (8.125), the vibration amplitude in the frequency domain is deter- 
mined. Because rotating speeds of  moving parts are usually known, their frequen- 
cies can be calculated. Once the frequencies of vibration are known, the source 
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of  vibration can be determined. Consequently any undesirable vibration may be 
eliminated. 

Problems 
8.1. Determine the Fourier series for the rectangular pulses given here: 

f ( x ) =  1 a s 0 < x  < J r  

f ( x ) = O  aszr < x  < 2 : r  

f ( x )  = f ( x  + 27r) 

8.2. Find the Fourier integral representations for the function: 

f ( x )  = x  a s 0 < x < a  

----0 a s x > a  

with the two different conditions: f ( x )  = f ( - x )  and f ( - x )  = - f ( x ) .  

8.3. Expand the following function in a Fourier series of  period 27r: 

0 as - z r < t < 0  
f(t)---- t ( z r - t )  a s 0 < t  < z r  

8.4. Find Fourier transforms of  the derivatives of  a function: f ' ( x )  and f " (x ) .  

8.5. Determine the Laplace transforms of  the two following functions: f ( t )  = 
sin cot and f ( t )  = a(1 - e-t) ,  where a and co are constant. 

8.6. A cylinder of  mass m and mass moment of  inertia J is free to roll without 
slipping but is restrained by a spring k (Fig. P8.6). 

(a) Find the equation of  motion and determine the natural frequency of  oscilla- 
tion. 

(b) Suppose that the cylinder is pulled away from its equilibrium position 
horizontally by distance a and is released at rest. Find the response of  the system. 

" / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. P8.6 
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,,Fc-I:) 

" X ~  ° ~ W  2~ 

Fig. P8.8 
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8.7. A damped spring-mass system is started in oscillation under the initial 
conditions: x = 0, k = v0. 

(a) Determine the equations of  motion when 1) ~" = 0.5, 2) ~" = 1.0, and 3) 
~" = 2.0. 

(b) Find the responses for the three cases. 

8.8. If  the periodic force shown in Fig. P8.8 is applied to an undamped spring- 
mass system, determine the responses of  the system subjected to various harmon- 
ics. 

8.9. The system shown in Fig. P8.9 models a vehicle with an out-of-round tire 
traveling on a fiat ground. For a constant vehicle speed v, find the equation of  
motion and the steady-state solution, and obtain the speed under the resonance 
condition. 

8.10. The differential equation of motion for a certain undamped spring-mass 
system is 4~ + 14400x = p(t), where the forcing function p(t) is defined by Fig. 
P8.10. The initial conditions are x = k = 0. Determine analytically the displace- 
ment x for the range of  time from 0 to 0.2. 

8.11. An undamped spring-mass system is excited by a forceF  = te -t. Assume 
that the initial conditions are x = k = 0. Determine the response using Laplace 
transforms. 

[ 

~ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ,  
Enlarged view of the tire 

Fig. P8.9 
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Fig. P8.10 

8.12. Determine the response spectrum for an undamped spring-mass system 
subjected to a rectangular pulse given by 

f ( t ) = {  F° asaS0<t<t°t  > to 

8.13. The support of a simple pendulum is given a harmonic motion Yo = 
Y0 sin ogt along a vertical line, as shown in Fig. P8.13. Find the equation of motion 
for the system under a small amplitude of oscillation. Determine the steady-state 
solution. 

8.14. Consider the system shown in Fig. P8.14, where the displacements of 
masses ml and me are xl and x2 measured from fixed reference positions, and the 
amount of the streching of the spring is given by 

X ~ X  1 --X 2 

m 

= Yo s i n ~ t  

Fig. P8.13 
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X2 

m 2 

k 

C 

"///////////~ 

x l  
m 

m 1 

Fig. P8.14 

Assuming no friction between the masses and the support and arbitrary initial 
conditions, find the equation of motion for the system and the response x ( t ) .  



9 
Vibration of Systems with Multiple 

Degrees of Freedom 

I N Chapter 8, we studied linear vibration systems with one degree of freedom 
and mathematical methods that are fundamental for analyzing these problems. 

In this chapter, we will study linear and nonlinear systems with multiple degrees of 
freedom and relatively advanced mathematical techniques for dealing with them. 

Section 9.1 deals with various types of vibration systems with two degrees of 
freedom. There are five examples to illustrate different methods of formulating 
and analyzing them. 

In Section 9.2, we will study vibration systems with multiple degrees of free- 
dom. Because a system with n degrees of freedom is associated with n differential 
equations, one way to deal with it is to apply matrix methods. With the funda- 
mentals of matrix introduced in Chapter 5, this section may be considered as 
the additional application of the matrix. Readers will see that there are many 
advantages with this formulation. 

In Section 9.3, we will present the method of lumped parameters with transfer 
matrices for modeling a vibration system. They may be considered as approxima- 
tions for modeling the continuous system. The advantage of this approach is that 
the governing equation can be formulated by the method of transfer matrices, and 
frequencies and shapes of principal modes can be determined without solving the 
equations completely. Furthermore, the result of this method can be used to check 
the results solved from the partial differential equations for a continuous system. 

Section 9.4 covers the vibration of continuous systems, which include vibrating 
string, beam, membrane, and sound wave. Governing equations for these systems 
are known as wave equations. The use of Fourier series for periodic functions 
is illustrated repeatedly. Wave equations for one-dimensional space in rectan- 
gular, cylindrical, and spherical coordinates are all considered. We notice that 
the wave form remains the same in rectangular coordinates as the wave prop- 
agates either in the positive x or negative x direction. The wave form decays 
in the cylindrical coordinates because of the properties of Bessel functions. In 
the spherically symmetric wave, the amplitude decays inversely proportionally 
to the distance from the center of the wave. From these, the reader can learn 
some fundamentals in the formulation of the equations and in the determination 
of solutions. 

Section 9.5 is devoted specially to nonlinear systems. As we know from math- 
ematics, a systematic method for solving nonlinear problems is the small pertur- 
bation method, which has been introduced in Chapter 5 and is not to be repeated 
here. Of course, many nonlinear problems can be solved with today's powerful 
computers. The Runge-Kutta method, which is presented in Appendix A, is a 
useful tool for obtaining the numerical solutions. However, the disadvantage of 
numerical method is that it cannot show explicitly the parameters involved in the 
solutions. 

233 
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Stability analysis is specially important for nonlinear systems and is presented 
in Section 9.6. From this section, the reader will find some fundamentals for this 
subject. 

9.1 Vibration Systems with Two Degrees of Freedom 
A vibration system with two degrees of freedom requires two spatial coordi- 

nates to describe its motion. Consequently, there are two governing equations for 
the motion and two natural frequencies of vibration. When the system is in a 
force-free vibration, it vibrates, usually at the combination of two normal modes 
corresponding to the natural frequencies. However, under forced harmonic vibra- 
tion, the system will vibrate at the frequency of the excitation in addition to natural 
frequencies. Resonance will take place if the exciting frequency is the same as one 
of two natural frequencies. Details of these different situations will be illustrated 
in the following examples. 

Example  9.1 

Consider the undamped system as shown in Fig. 9.1. Coordinates Xl and x2 
are the displacements of m l and mz away from their equilibrium positions, re- 
spectively. Formulate the governing equations of the motion; find the natural 
frequencies and the steady-state solutions. 

Solution. The governing equations may be obtained from the balance of 
forces. They can be obtained also from Lagrange's equations. Let us take 
Lagrange's approach. It is seen easily that for the system, kinetic energy is 

1 .2 1 "2 
T = ~ m l x  I + ~ m 2 x  2 

potential energy is 

V = ~kxll 2 + lk (x l  _ _  X2)2 + .~kx 2 

and Lagrange's function is 

L = T - V  

Hence, the equation for xl is 

d OL OL 

dt 8xi Oxl 
- -  - m l £ 1  + kxl + k(xl  --x2) = 0 (9.1) 

XI = X2~ 

kxl ] [ - -~[  k(Xl- x2) [ - - ~ ]  k x 2 :  : ~ : 

Fig. 9.1 Undamped mass-spring system with two degrees of freedom. 
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Similarly, for x2, the equation is 

m2x2 - k(xj  - x2) + kx2 = 0 (9.2) 

Equations (9.1) and (9.2) are linear second-order differential equations with 
constant coefficients. The steady-state solution can be assumed as 

Xl = AI eiwt 

x2 = A2e iwt 

Substituting these into the governing equations gives 

(2k - coZml )A1 - kA2 = 0 
(9.3) 

- k A l  + (2k - w2m2)A2 = 0 

Because A1 and A2 are not zero, the determinant of the coefficients must be zero, 
i .e. ,  

(2k - (.o2ml) 5 k 2 m 2 )  
- k  (2k = 0 

To save some writing, let us change the symbol w z to ~., then the preceding 
determinant leads to the characteristic equation 

3k 2 
)2 ml + m22k ~ ÷ - 0 (9.4) 

mlm2 mlm2 

The two roots of  the equation are 

~'2 X1} - k [ ( m l + m 2 )  q: mlm2 
q ,/(m, -- m2) 2 -~- mlm2J 

Therefore, the natural frequencies of  the system are found to be 

/{ E 11 Wl = ~ ( m l + m z )  T ~ / ( m l - - m a )  2 + m l m 2  (9.5) 
092 m l m  2 

Because there are two natural frequencies, the steady-state solution can be 
written as 

x j  = R e [ A j l e  iwlt + Aj2 eiw2t] j = 1,2  

where Aj l  and A j2 are arbitrary complex coefficients. Without losing generality, 
we write explicitly the steady-state solution as 

xy = a j c o s w l t W b j s i n w l t W c j c o s w 2 t W d j s i n w 2 t  j = 1,2 (9.6) 
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w h e r e  a j ,  b j ,  c j ,  and dj ( j  = 1,2) are real arbitrary constants to be determined. 
By using the initial conditions xj  (0) and xj  (0), we have 

xj(O) = a j + c j  j = 1, 2 (9.7) 

x j ( O ) = o ) l b j + o 9 2 d j  j =  1 ,2  (9.8) 

Note that Eq. (9.3) is valid for each mode of the vibration. When Eq. (9.6) is 
substituted into Eqs. (9.1) and (9.2) for the first normal mode, the coefficients of 
cos wl t and sin wl t must be zero. Hence we find 

a l - - a 2  = 0  

o r  

k ] a l - - a 2 = O ,  k l b l - b 2 = O  (9.9) 

where kl = 2 -- w~(ml /k) .  Similarly, for the second normal mode we have 

k2c2 - Cl = O, k2d2 - dl = 0 (9.10) 

where k2 = 2 - ~o~(m2/k). From Eqs. (9.7-9.10), aj, bj, cj, and dj are deter- 
mined. The results are written as follows: 

al  - -  - - [ x l ( 0 )  - k 2 x 2 ( 0 ) ]  a 2 = k l a l  (9.11) 
1 - k l k 2  

bl - [kl(0) - k2x2(0)] b 2 = k l b l  (9.12) 
(1 -klk2)COl 

- k 2  
cl = - - [ k l X l ( 0 )  -- x2(0)] C2 = Cl/k2 (9.13) 

1 - klk2 

- k 2  
dl - [ k l k l  ( 0 )  - . ~ 2 ( 0 ) ]  d2 = dl /k2  (9.14) 

(1 - klk2)w2 

Substituting Eqs. (9.11-9.14) into Eq. (9.6) gives the steady-state solutions of  
xx (t) and x2(t). From these we can see that in general the system is vibrating at 
the combination of  two normal modes. To simplify the equations, let us consider 
a special case, i.e., ml = m2 = m. Then the two natural frequencies are 

o91 = v/k-/m, co2 = ~'3-k/m (9.15) 
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The constants are found to be 

kl = 1, k2 = - 1  

1 
al = ~[xl(0) +x2(0) ]  = a2 

1 
hi = ~113C1 (0) + . ~ 2 ( 0 ) ]  = b 2 

1 
Cl = ~[Xl (0) - x2(O)] = - Q  

1 
dl  = " ~ 2  [Xl (0) - .~2(0)] = - d 2  

Hence the steady-state solutions are 

1 1 
Xl (t) = ~ [xl (0) + x2(0)] cos col t + ~ [kl (0) + k2(0)] sin col t 

1 1 . 
+ ~ [xl (0) -- x2(0)] cos co2t + z----[xl (0) -- 22(0)] sin co2t 

Zco2 
(9.16) 

1 1 
x2(t) = ~ [Xl (0) + x2(0)] cos colt + ~ 1  [3~1 (0) -~- -~2(0)] sin colt 

1 I . 
-- ~[XI(0) -- X2(0)] COSCO2t --  ~ 2  [X1 (0) -- k2(0)] sin CO2t (9.17) 

Using these equations, we can see that it is possible for the system to oscillate at a 
particular frequency. Ifxj  (0) = x2 (0) and xl (0) = x2 (0), the system will vibrate at 
the first normal mode. On the other hand ifxl  (0) = -x2(0)  and Xl (0) = -x2(0) ,  
then the system vibrates at the second normal mode. However, these conditions 
are hard to produce in the real world. Therefore, in general the vibration is a 
combination of  two modes. 

Through this example, a few remarks shall be made here. Note that the system 
can vibrate at one of the natural frequencies. The lower frequency is called the 
fundamental frequency, and the corresponding mode is the fundamental mode. 
The values of )~i are called eigenvalues of the characteristic equation. The corre- 
sponding ratios of  a2/al and c2/cl or b2/bl and d2/dl obtained from Eqs. (9.9) 
and (9.10) are the component ratios of  eigenvectors. In this example, col and co2 
are different. A special case for col = co2 will be discussed later. 

Example 9.2 
Consider a torsional system with two degrees of  freedom as shown in Fig. 9.2. 

Assume that the disks have mass moments of inertia of Jl and J2 with respect 
to the rotation axis. 01 and 02 are the angular displacements of  the disks from 
their equilibrium positions, respectively. The torsional stiffness for the portion of  
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///////~//////, 

01 

Fig. 9.2 Torsional system with two degrees of freedom. 

the shaft between the disks can be expressed as kr = G J / ~  where G is the shear 
modular of  elasticity, J is the torsional constant of  the cross section, and £ is length 
of  the shaft. The torsional stiffness for the portion of  the shaft between the support 
and the first disk is 2kr. Formulate the equations of motion, and determine the 
natural frequencies and shapes of the principal modes. 

Solution. This is a conservative system. The kinetic and potential energies 
are written as 

l "2 l "2 
T = ~ J l O  l -{- ~ J 2 0 2  

V 1 2 = 7(2kT)01 + lkr(O1 - 02) 2 

Lagrange's function is L = T - V. The equations of  motion are then 

By assuming 

we have 

Jl01 -Jr-2krOl + kT(O1 --02) = 0 

J202 - kr (01 - 02) = 0 

0 i = Ai eiwt 

(9.18) 

(9.19) 

(3kr / Jl - 0)2) A l - (kT / Jl ) A2 = 0 (9.20) 

( - kT /J2)A1  + (kr /J2 - 0)2)A2 = 0 (9.21) 

Because A1 and A2 cannot be all zero, the determinant of  the coefficients must be 
zero, i.e., 

(3kT/J1 - -  0)2) ( - k T / J l )  

( - k T  / J2) (kT / J2 -- 0)2) = 0 

Expanding the determinant leads to the characteristic equation 

0 )4  __ kT(3/Jl  + 1/J2)0) 2 + 2k2/(J iJ2)  = 0 (9.22) 
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The roots are 

o9~ = ~ - [ (3 / J1  + l / J2)  - x/(3/J1) 2 -- (2/JlJ2) + ( l / J2 )  2] (9.23a) 

o92 = ~ - [ ( 3 / J l  -Jr- l / J2)  + ~/ (3 /J l )  2 - (2/J1J2) Jr- (1/.12) 2] (9.23b) 

Substituting these into Eq. (9.20) gives the modes as 

( A I ) _ k T / J ,  (9.24a) 
, 3 k T / J ,  - o9~ 

( A 1 )  kr/J! 
-~2 2 - -  3kr/J1 - o9~ (9.24b) 

Example 9.3 
Consider the vibration of an automobile modeled as a two-degree-of-freedom 

system, as shown in Fig. 9.3. The numerical values of  the parameters are given 
as follows: 

m = 1460 kg, ~1 = 1.37 m, ~2 = 1.68 m 

kl = 35 kN/m,  k2 = 38 kN/m,  Ic = 2170 kg-m 2 

Determine the natural frequencies and the amplitude ratios under the normal modes 
of vibration. 

Solution. To find the equations of motion, we take Lagrange's  approach. 
Choose x and 0 as the generalized coordinates where x is the vertical displacement 
of  the center of  mass and 0 is the angular displacement of the automobile from 
the equilibrium position. Then the system will have kinetic energy 

1 "2 1 ' 2  T = ~mx + ~IcO 

and potential energy 

V = l k l ( X  --  ~10) 2 + l k 2 ( x  ~- ~20) 2 

/ I -  _ i _  

' N  r°± 

Fig. 9.3 

kl(x-elO) 

k~ (x+ t 2 O) 
Simplified model for a vibrating automobile. 
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With the use of Lagrange's equation, we obtain 

mY + (kl + k 2 ) x  Jr ( k 2 e 2  - -  klel)O = 0 (9.25) 

l~.O + (k2e2 - klg.,)x + (k,f.21 + k2g.22)O = 0 (9.26) 

The preceding equations are statically coupled because there are angular displace- 
ment 0 terms in the equation for translational motion, Eq. (9.25), and translational 
displacement x terms in the equation for rotational motion, Eq. (9.26). Note that 
Eqs. (9.25) and (9.26) are linear ordinary differential equation with constant co- 
efficients. The steady-state solutions can be assumed as 

X ( t )  = X e  i~°t 

O(t) = (n)e iwt 

By substituting these solutions in Eqs. (9.25) and (9.26), we have 

(k  I 7 t- k 2 - (,02m) - ( k  1 el - k2•2) 

- - ( k l e , -  k 2 e 2 ) ( k , e ~ + k 2 e ~ - c o 2 l , ) ] ( X )  = 0  (9.27) 

Simplifying Eq. (9.27) with the substitution of given numerical quantities gives 
the characteristic equation as 

(73,000 - 1460o)2)(172,942.7 - 2170092) - (15,890) 2 = 0 

From this we find the two natural frequencies to be 

w3 = 6.894 rad/s, o92 = 9.065 rad/s 

The amplitude ratios corresponding to the natural frequencies are found from Eq. 
(9.20) to be 

( ~ )  = - 4 . 4 0 1 m / r a d  ( - ~ )  =0 .338m/ rad  
COl 0)2 

Example 9.4 
For the system shown in Fig. 9.4, let the initial conditions xl (0) = x 2 ( 0  ) = 0 

and J:l (0) = k2(0) = 0. With the use of Laplace transform method, determine the 
general solution of the system when m i is excited by a harmonic force F1 sin wt. 
To simplify the consideration, assume ml = m2 = m. 

Solution. From Example 9.1, we can obtain the equations for the motion as 

mddl + 2kxl - kx2 = F1 sinwt (9.28) 

m x 2  -- kXl  q- 2 k x 2  = 0 ( 9 . 2 9 )  

The Laplace transform is a powerful tool for solving linear differential equations 
as was discussed in Section 8.5. Here we illustrate how the method can be applied 
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Fig. 9.4 

] x~" I x~. 

F l s i n ~ t  

Two-degree-of-freedom system under forced  h a r m o n i c  excitation. 

to two equations simultaneously. Taking the Laplace transform of the preceding 
equations, i.e., multiplying both sides of equations by e-Stdt and integrating from 
zero to infinity, gives 

o) 
ms2X + 2kXl -- kX2 = F l - -  (9.30) S 2 -l- 0) 2 

ms2X2 - kXl + 2kX2 = 0 (9.31) 

where Xi is the transformed function of xi(t) and (0)Is 2 + w 2) = £(sin0)t) ob- 
tained from Appendix F. Rewrite the equations in matrix form as 

(ms2+k2k_ ms 2-k+ 2k ) (  xl  = fls~"~t~ (9.32) 

or  

Z(s)X = F 

where Z(s) is the coefficient matrix of Eq. (9.32). Premultiplying Eq. (9.32) by 
the inverse matrix of Z(s) gives 

X = [Z(s)] -1F 

o r  

() X l  = [Z  ( s ) ]  -1 
X2 

adj[Z(s)] F~ 

IZ(s)l 

1 (ms2?2k  

IZ(s)l 

Carrying out the matrix algebra leads to 

X 1 

(:) k "~ F1 $2 ~ 
ms 2 Jr- 2k ] 

X 2 = 

(ms 2 -k- 2k )wF1 
[ ( m s  2 + 2k)  2 - k 2 ] ( s  2 + 09 2) 

kwFl 
[(ms 2 + 2k) 2 - k2](s 2 4- 09 2) 

(9.33) 

(9.34) 
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With the use of the partial fractions expansion given in Appendix E, we can express 
Xi as 

0)F1 1 o~Fl 1 
Xl = - -  + 

2(0) 2 -0)2)m S 2 -I-0)~ 2(0) 2 -  0)22)m s 2 + o9 2 

0)2(20)~ - 0)2)F, 0) 
(0)2_ 0)2)(0)2 _ 0)2)k s 2 q_ 0)2 (9.35) 

X 2 = 
0)0)~ F~ COl 0)0)2 F1 0)2 

2~(0)~ -0 )2 ) s2  + 0)2 6/,(0)2 -0 )~ ) s~  + o,22 

+ 0)20)2F1 0) (9.36) 
3k(0)2-  0)0 (0)~-  0)2)s2 + 0)2 

where Wl = v / k / m  and 0)2 = ~ .  Taking inverse Laplace transform, we find 

0)0)1Fl 0)0)2 FI 
x , ( t ) -  2k(0)2 _0)~) sin0),t + 6k(0)2 _0)2) sin0)2t 

o92(2o92 - 0)2)F, 
q k(0) 2 _ 0)2)(0)2_ 0)2) sin0), (9.37) 

X2( t )  = 
cowl FI 0)w2 FI 

2k(0)2 0)~) " sin0)' ' 6k(w2_0)~)  sin0)2t 

0)2w22F 1 

-~ 3k(w~-092)(09 2 - c o  2) sin0)t (9.38) 

From this result we can conclude that the system will vibrate at the combination of 
three frequencies. Resonance will take place as w approaches either wl or ¢o2. Note 
also that the Laplace transform method is very systematic and straightforward. 

Example 9.5 
Consider a damped system with two degrees of freedom as shown in Fig. 9.5. 

Find the equations of motion. Determine the natural frequencies and the response 
of principal modes. Discuss all possible cases for different roots of the character- 
istic equation. 

Solution. From the balance of forces in the flee-body diagram, we find 

mix1 =- -k lX l  -- k2(Xl - x2 )  - ClXl - c2(Xl - x2)  (9.39) 

mzx2=k2(x! - x 2 ) - l - c 2 ( X l  - x 2 )  (9.40) 
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~//////////////////~. 

k2(xl -x~) 

Fig. 9.5 Damped system with two degrees of freedom. 

which can be rearranged as 

m l Y l + ( C l - - } - c 2 ) ~ l W ( k l - q - k 2 ) x  I --  c2x 2 -- k 2 x 2 = 0  

- c 2 x  I - k 2 x l  --[-m2~2-}-Cz~23ckzx2 = 0  

Assume that the solutions are in the form of 

X 1 ~ X i  est 

Then we have 

[mls  2 + (Cl + C2)S + (kl + k2)]X1 -- (c2s -~ k2)X2 = 0 

--(C2S d- k2)X1 d- (m2s 2 + c2s -k- k2)X2 = 0 
(9.41) 

Because X1 and X2 cannot be zero, the determinant of the coefficients must be 
zero. Expanding the determinant gives 

m l m 2  s4 -Ji- [mlc2  qt_ m2(c  1 .q_ C2)]s 3 _~_ [mlk2 + m2(kl  + k2) 

q- ClC2]S 2 q- (klC2 q- k 2 c l ) s  -}- klk2 = 0 (9.42) 

From this equation, s is expected to have four roots. When these roots are substi- 
tuted into Eq. (9.41), they will give four relationships between X1 and X2. Note 
that because all the physical constants mi,  ki, and ci are positive and all the signs 
are plus, there is no possibility of a positive root. Thus the following possibilities 
exist for the four roots: 1) all four roots are complex numbers that will be two 
pairs of complex conjugates; 2) all four roots are real and negative; and 3) two 
roots are real and negative, and the other two complex conjugates. 

Now let us examine these three possible cases. For the two pairs of complex 
conjugates, i.e., 

sl = - P l  + iq l ,  

s3 = - P 2  + iq2, 

$2 = - p l  - iql 

$4 = - P 2  - iq2 

(9.43) 

where pl ,  p2, ql, and q2 are real and positive. The first two roots will give the 
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following solutions: 

x] = X l l e x p [ ( - p l  -t- iql)t] + X12exp[ ( -p l  - iql)t] 

= e -Pd(S l l  eiq't -t- X12 e-iqd) = All  e-pIt sin(qlt + ~bll) 

and 

(9.44) 

X2 = X z l e x p [ ( - p l  + iql)t] + X22exp[ ( -p l  - iql)t] 

= A21 e-pIt sin(qlt + ~b21) (9.45) 

These two solutions represent oscillatory motion with the magnitudes decaying 
exponentially. In a similar way, for roots s3 and s4, we have another two solutions. 
Combining all four roots, the general solutions are then 

Xl = A l l  e-pIt sin(qlt + ~bll ) "t- AI2 e-p2t sin(qzt + 1~12) (9.46) 

X2 = A21 e-p't sin(qlt + ~P21) + A22e -p2t sin(qzt + ~22) (9.47) 

where All,  A12, A21, A22, ~bll, ~b12, ~b21, and ~b22 are to be determined. With the 
use of  Eq. (9.41), for each root, four relationships are established. Another four 
relationships can be found by the four initial conditions Xl (0), x2(0), 21 (0), and 
22(0). Therefore all the constants will be determined. 

For the second case, four roots are real and negative, then the motion is not 
oscillatory; the displacements of masses are decaying exponentially. This case is 
similar to the overdamped case discussed in Section 8.4. 

Finally, for the third case, two roots are real and negative, and the other two are 
a pair of  complex conjugates. The general solutions are then the combination of 
the terms, as in Eq. (9.44), and the other terms of exponential functions: 

X i = Ai  e - p t  sin(qt + dpi) + cie  -s3t + d ie  -s4t 

The constants are determined through the same procedures as discussed for the 
first case. 

9.2 Matrix Formulation for Systems with Multiple 
Degrees of Freedom 

There are usually n ordinary differential equations for describing a system of n 
degrees of  freedom. Solving these equations is straightforward but cumbersome 
and time-consuming if n is large. Fortunately, matrix methods are ideal for this 
purpose, and many matrix operations can be carried out by digital computers. 
In this section we will discuss the matrix techniques for various properties of  
vibrating systems. 

Free Vibration of Undamped Systems 
The equations of  motion for an n degrees-of-freedom system expressed in 

matrix form are simplified to 

MJ~ + K X  = 0 (9.48) 
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where the mass matrix is 

M = 

the stiffness matrix is 

m l l  m12  • . .  mln I 

\mnl mn2 " " " mnn/ 

kll kl2  ' "  kln) 
g ~ • . 

\knl k.2 . . .  k . n /  

and the displacement vector (a column matrix) is 

(xi) X2 
X =  

Note that M and K are square symmetric matrices. Premultiplying Eq. (9.48) by 
M -1, we find 

o r  

I ) (  + M - I K X  = 0 

I J~ + A X = 0 (9.49) 

where A = M - l k  is called the system matrix or the dynamic matrix because the 
dynamic properties of the system are defined by this matrix. By assuming the 
solution of  the equation in the form of 

we have 

o r  

X = Ce i~°t 

= - ~ 2 X  

= -~.X 

where ~. = o92. Then Eq. (9.49) becomes 

( a  - X I ) X  = 0 

Because X is not zero, the determinant of  the coefficients must be zero, i.e., 

[a - ~.11 = 0 (9.50) 

This is the characteristic equation of  the system. From this equation we can find 
n roots of  ~i, which are called eigenvalues. By substituting )~i into Eq. (9.51), 
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we can obtain the corresponding mode shape xi, which is called an eigenvector. 
Note that, as ~-i is substituted into Eq. (9.49), there are most likely only (n - 1) 
independent equations, but there are various nxi t o  be determined. One xi can be 
chosen arbitrarily. It is convenient to add one condition as 

~x~----- 1 (9.51) 
i 

In this way, xi may be considered direction cosine throughout for two- and three- 
degree-of-freedom systems. For n > 3, the additional condition (9.51) is still valid 
to replace the condition that one xi is arbitrarily chosen. Details will be shown in 
the examples. 

Eigenvalue and eigenvector properties: different eigenvalues ki ~ k]. 
For the ith mode, we have 

A X  i = )~iXi (9.52) 

If the transposed equation (9.52) is postmultiplied by X j, then it becomes 

o r  

(AXi)r X j = ),.ixT x j  

X f  AX j = ~.,XF X j (9.53) 

On the other hand, for the jth mode, the equation is 

AXj = ~ j X j  

Premultiplying the preceding equation by Xf gives 

X I A x j  = ~ . j X I X  j (9.54) 

When Eq. (9.53) is subtracted by Eq. (9.54), we find 

(x; - ~ . j ) x I x  j = o 

Therefore, Xi and Xj are orthogonal. 
In addition, consider the equation for the ith mode 

K X  i = ~. iMXi 

r gives Premultiplying the equation by Xj 

x Kx, =  ,XyMX, (9.55) 

Next, starting with the equation for the jth mode and premultiplying by Xf ,  
we obtain 

x l t : x j  = xjXIMXj 
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Taking the transpose of the preceding equation leads to 

X f  KXi  = )~jXT MXi  
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(9.56) 

because M and K are symmetric matrices. Thus, subtracting Eq. (9.56) from Eq. 
(9.55) gives 

0 = (Xi -- L j )XT MXi  

For )~i # Z j, the preceding equation requires 

X~MXi  = 0 (9.57) 

It is also evident from Eq. (9.55) that 

X T K X i  = 0 

On the other hand, as i = j ,  we write 

and 

for i # j (9.58) 

X I  M Xi = Mi 

x T  K x i  = Ki 

Mi and Ki are called generalized mass and generalized stiffness, respectively. 

Eigenvalue and eigenvector properties: repeated eigenvalues ki = )V. 
Suppose that there are three roots from the characteristic equation, with 3.1 = ~.2 = 
~.o and )~3 # k0. Then we have 

AxI = ~-oX1 

Ax2 = ~.ox2 

Ax 3 = ~ .3X3  

(9.59) 

Multiplying the second equation by any constant b and adding it to the first gives 

A(xl + bx2) = 3.o(xl + bx2) 

Thus a new eigenvector xl2 = xl + bx2 also satisfies the equation; hence, no 
unique eigenvector exists for ~.0. However, based on orthogonal properties of 
eigenvectors, we can choose xl to be perpendicular to x3 and x2 perpendicular to 
xl and x3. Details will be shown in the example. 

Principal or normal coordinates. With the properties of eigenvalues and 
eigenvectors already discussed, we can transform the equation of motion from 
Eq. (9.48) 

M X  + K X  = 0 (9.48) 
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to 

by the transformation of 
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f, + o,~Y, = o  

X = PY (9.60) 

where P is called the modal matrix and is formed by eigenvectors. For a three- 
degree-of-freedom system 

([Xl I Ix I Ix l/ P = x2 x? x2 = (X1 X2 X3) 

X3 1 X3 2 X3 3 

where X1, X2, X3 are eigenvectors. With the transformation by Eq. (9.57), Eq. 
(9.56) becomes 

MP~" + KPY = 0  

Premultiplying the preceding equation by p r  gives 

PrMP~" + P r K P Y  = 0 (9.61) 

Looking into details, we find 

PrMP =(X1 X2 X3)r(M)(Xl X2 X3) 

{x'~Mx, xTMx~ X'~MXq 

\x~Mx, x~Mx: xTMx~] 

(i, ° °o) = M2 

0 M3 

where Mi = XrMXi and Eq. (9.57) has been used for the zero terms. Similarly 

(i ° °0) pT K p = K2 

0 K3 

Therefore, Eq. (9.61) becomes 

Mi~'i+KiYi=O i = 1 , 2 , 3  

which can be solved in a manner similar to that of the single-degree-of-freedom 
system. Once Yi is found, the solution of the original equation can be obtained 
simply by applying the transformation equation 

X(t) = PY 
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Example 9.6 
Consider the system shown in Fig. 9. l with m t -- m2 = m. Find the steady-state 

solution with the use of principal coordinates. 

Solution. The equation of motion in matrix form is 

- k  xl 
(O m 0 )  (~)2) + (2_.~ 2 k ) ( x 2 ) = 0  (9.62) 

and the eigenvalues and eigenvectors are found 

~'1 = o9~ = k / m ,  

X2 ~,1 \~22/ 

Hence the modal matrix P is 

,5 
The transformation is 

Equation (9.62) then becomes 

k2 = w~ = 3 (k lm)  

(&, 

l (l, l )  

X = P Y  

M P Y  + K P Y  = 0  

Premultiplying the preceding equation by pr ,  we find 

p v M p } "  + P T K P Y  = 0 

o r  

This equation can be further simplified to 

Yi q- w2yi = 0 i = 1,2 (9.63) 

The general solution of Eq. (9.63) is 

yi(t) = yi(O)COS O)it -k- (1/O)i)Yi(O)sine)it 

The initial conditions for the principal coordinates can be found from the trans- 
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formation equation as follows: 

'(Ii) 
1 

yl(0) = ~ [ x l ( 0 ) + x 2 ( 0 ) ]  

1 
y 2 ( O ) = ' ~ [ x 2 ( O )  - -Xl (O)]  

Similar relationships can be found for Yi (0). Therefore 

1 1 
Yl (t) = - ~  [xl (0) + x2(0)] cos COlt + ~ [xl (0) + 3c2(0)] sin COlt 

y2(t) = [x2(0) - xl  (0)] cos CO2t -t- ~ 2  [22(0) -t- Xl (0)] s in CO2t 

To find the solution for xl, x2, we substitute Yi (t) into the transformation equa- 
tion 

X = P Y  

l(1 ,1)(y,) 
x2 = ~  Y2 = ~  Y,+Y2 

Therefore 

1 1 
X 1 = ~[X 1 (0) "Jl- X2(0)] COS COlt + 7--[-fl  (0) + )f2(0)] sin COlt 

Z ZCOl 

1 1 
-[- ~[X 1 (0) --  X2(0)] COS 0)2 t -]- X-""-[-~1 (0) --  )¢2(0)] sin w2t 

2 ZW2 

1 1 
x2 = ~ [xl (0) + x2(0)] cos colt + :---- [kl (0) + x2 (0)] sin col t 

2Wl 

1 1 
[Xl (0) --  x2(0)]  COS co2t --  ~ [-~1 (0) --  .~2(0)] sin co2t 

2 zw2 

The preceding results agree completely with Eqs. (9.16) and (9.17). 

Example 9.7 
To illustrate a case of repeated roots in a characteristic equation, let us consider 

a particular system with the equation of motion as 

(i0 (o i) C) m Jr2 + - k  0 x2 
0 5?3 k k x3 

= 0  
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When this equation is premultiplied by M -1 , the equation becomes 

o r  

where 

f( + M-1KX = 0  

X + A X  = 0  

A = M-IK = --mk ( _ !  _1Ol !) 
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(9.64) 

(9.65) 

In explicit form, we have 

2xl - x 2 -~- x 3 = 0 

- X l  + 2 x 2 + x 3 : 0  

Xl + x 2 + 2 x 3  = 0  

- -  - 2 x 2  = 0 

m 1 x3 

1) Find the eigenvalues and eigenvectors, and 2) find the modal matrix P and 
carry out the product pr AP. 

Solution. 1) The steady-state solution of Eq. (9.64) may be assumed as 

X = C e  iwt 

j~ : _ C  w2 e iwt : - C  ).e iwt 

Substituting the preceding expression into Eq. (9.64) leads to 

(A - ).l)X = 0 (9.66) 

Hence the characteristic equation is 

IA - ).II = 0  

o r  

{ k \  2 [ k \  3 ~3-~ )  ~+~/m ) =o 

(~-~)~(~+~) =o 
which gives the eigenvalues 

~-1 = ) .2  = k/m and ).3 = -2k /m 

To find the eigenvector corresponding to )-3 = -2k/m,  we substitute )-3 into 
Eq. (9.66) and obtain 
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Note that there are only two independent equations in the preceding three equa- 
tions. For example, the second equation can be obtained by the subtraction of the 
first equation from the third equation. Fortunately we can impose 

x~ + x~ + x 23 = 1 

Then we find the eigenvector 

X3 = ~ - (9.67) 

For ~-I = Z2 = k/m, the equations become 

- - X l  - - X 2  q - X 3  = 0 

- - X  1 - - X 2 " I - X  3 = 0 

X 1 "~-X 2 - x  3 = 0 

There is only one independent equation in the preceding equations. Taking 
Xl = x3 - x2 leads to 

?3- q 

To satisfy the orthogonality condition X(X3 = 0, we have x2 = x3 and also to 
satisfy xl z + x 2 + x 2 1. Hence 3 ~ 

X 1 = ~ (9.68) 

The second eigenvector for ), = k/m then can be constructed from 

X 2 = X 1 × S 3 = - ~  - (9.69) 

2) The modal matrix P is obtained by collecting the eigenvectors from Eqs. 
(9.69-9.71 ) 

.-li 
The product of  PrAP is found to be 

pT Ap = --mk (i 

Vg 
1 

1 

0 - 

Note that the result is a diagonal matrix of the eigenvalues. 

(9.70) 
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Forced Vibration of Undamped Systems 
The vibration of  systems with multiple degrees of  freedom activated by har- 

monic forcing functions can be treated quite simply as an extension of our ma- 
trix methods. Consider a system with three degrees of freedom and with forces 
FI (t) = ql ei~°t, F 2 ( t  ) = q2 ei°~t, and F3(t) = q3 ei~°t being applied in the directions 
of  xl, x2, and x3, respectively. The equation of motion can be written as 

(o0 a)(,l)  ,ll ,2 ,3, el) (q) 
m2 -~2 q- /k12  k22 k23 / x2 = q2 eiC°t 

0 m3 5c3 \k13 k23 k33] x3 q3 

By assuming the steady-state solution as 

we have 

(9.71) 

or 

- M w 2 X  + K X  = Q 

where M is the mass matrix, K is the stiffness matrix, and X is the column matrix 
of  Xi. Further simplifying the equation gives 

A X = Q  

where A = K - M w  2. By premultiplying the equation by A -1, we find immedi- 
ately, 

X = A - I Q  (9.73) 

Forced Vibration of Viscously Damped Systems 
The differential equations of  motion for a damped system having n degrees of  

freedom can be written in matrix form as 

M X  + C J( + K X  = F (9.74) 

where M, C, K are n x n symmetric matrices and X, F are n x I column matrices. 
To find the homogeneous solution, we set F = 0 and assume solutions of the form 

x i ( t )  ~- Xi est i = 1, 2 . . . . .  n 

Substitution of the assumed solutions yields the matrix equation 

s 2 M X  + s C X  + K X  = 0 

(s2M + sC + K ) X  = O 

To find the eigenvalues, we set the determinant of  the coefficients to zero: 

Is2 M + sC + K I = 0 

Xi = Xi eiwt (9.72) 
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This is the characteristic equation. From this equation, we expect to find n roots 
or n eigenvalues. Then we can find n corresponding eigenvectors. However, the 
n roots are usually n pairs of complex conjugates and n eigenvectors are also in 
complex form. Therefore, very often we specify that the solution is the real part 
of the assumed solution, i.e., 

xi(t) = Re[Xie s't] 

To find the particular solution of Eq. (9.74), we consider the following two 
special cases of damping systems. 

Light clamping. From the homogeneous undamped equation 

MJ( + KX = 0  

we obtain the eigenvalues and eigenvectors. From this we can transform X to 
principal coordinates Y by 

X = P Y  

Substituting this transformation into Eq. (9.74) and premultiplying the equation 
by pr ,  we have 

pTMp}" + p T c p Y + p T K p Y  = pTF (9.75) 

It has been shown previously that P r M P and P r K P are diagonal matrices. In 
general, P T C P results in a nondiagonal matrix. A frequently used approach for 
approximating the response of a system with light damping is to ignore all off- 
diagonal terms of the transformed damping matrix, then Eq. (9.75) becomes n 
uncoupled equations. Each can be solved by the methods used for a single-degree- 
of-freedom system already discussed. 

Proportional clamping. If C is proportional to M and K 

C = otM + flK (9.76) 

where ot and fl are constants, then 

p T c p  .= ~pT M p  + flpT K p  

Thus Eq. (9.75) becomes uncoupled. Each principal coordinate will have the 
equation of motion of the form 

(9.77) 

which can be solved by the methods discussed in Chapter 8. 
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9.3 Lumped Parameter Systems with Transfer Matrices 

Many vibrational systems can be modeled as systems with lumped parameters. 
The method of transfer matrices is introduced here. This is a powerful tool for 
solving lumped parameter systems. To establish the method, we first apply the 
method for mass-spring systems. Then we will apply it to torsional systems and 
flexural beam systems. The method requires the knowledge of matrix operation, 
which has been reviewed in previous sections. 

State Vectors and Transfer Matrices 

To apply the method of lumped parameters to a vibration system, we divide 
the system into a number of appropriate sections. For each section, physical 
quantities are classified into two kinds of variables. One kind is known as the 
force, which includes force, torque, shear, and bending moment, and the other as 
the displacement, which includes linear displacement and angular displacement. 

Now, we define two terms, state vector and transfer matrix, that are used in the 
method of lumped parameters. A state vector is a column matrix that has all of 
the components of the forces and displacement at a point i. The transfer matrix 
relates the state vectors from one location to another along the system. 

Let us consider a mass and a spring as shown in Fig. 9.6a. We can formulate 
two equations: one is for the force, and the other for the displacement. For the 
force, we have 

Z Ji = m.~i 

.tt" - -  J~i--I = ITl"~i 

a) 
i-1 i 

I I 

fi-1 ~ fi 

I I 

×i-] 

b) 

fi-1 

i -1  i 
I I 

I k I 

I I 
I I 

Xi-1 X i 
Fig. 9.6 State variables for a mass-spring system. 
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For a harmonic motion, the solution is assumed as xi = Xi  ei°~t. T h e  forces applied 
must be in the same form f = F e  i°jt. Hence we have 

Fi = F i - i  - m o 9 2 X i  

For the displacement, we have 

Xi ~ Xi-- 1 

o r  

X i = X i _  1 

( X j )  = (_mlw2 01)\Fi-,](Xi-l) 

In matrix form 

(9.78) 

Next, let us consider the state variables around the spring as shown in Fig. 9.6b; 
we have 

E F - - 0  

.~i = f i - I  : k (x i  - X i - l )  

o r  

Again, in matrix form 

Fi  ~- F i - i  = k ( X i  - X i - 1 )  

In Eqs. (9.78) and (9.79), the state vector is 

(x,) 
Z i =  Fi 

(9.79) 

The transfer matrices in Eq. (9.78) and (9.79) are, respectively, 

A = - m e °  2 _ (9.80) 

,9 1, 

Therefore, for a system consisting of a spring and a mass as shown in Fig. 9.7, we 
can write the equations as 

Zi  = B Z i - t  
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I 

2 

Fig. 9.7 Mass-spring system. 

for the relationship across the spring and 

Zi+l =AZi 

for that across the mass. The combined equation then is 

257 

Zi+l = A B Z i - I  (9.82) 

Example 9.8 
For a mass-spring system as shown in Fig. 9.7, determine the natural frequency 

of  the system using state vectors and transfer matrices. 

Solution. 
matrices as 

and 

The equation of  motion is 

In detail, we have 

Applying the formulation given in the section, we have the transfer 

.,0(; ,,,.) 

( '  °l) A2_ 1 = _m(.o 2 

Z2 = A e - l B l - o Z o  

(9.83) 

Two different conditions for the vibrations may be illustrated as follows: 1) free 
vibration and 2) forced vibration. 

(22 
= --moJ 2 ( 1 - m o ~ 2 / k ) J  Fo 
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1) The conditions for free vibration are F2 = 0 and X0 = 0. Then Eq. (9.83) 
leads to two equations 

X2 = F o / k  

and 

0 = (1 - m c o 2 / k ) F o  

which give the displacement of the mass in terms of the force in the spring and 
the natural frequency 

co = v/-k/  m 

2) For a harmonically forced vibration J2 = Fei~°t, the magnitude of the force 
is F .  Hence the conditions can be written as F2 = F and Xo = 0. Again Eq. (9.83) 
gives 

and 

Rearranging leads to 

X 2 = F o l k  

F = (1 - m o f i / k ) F o  

F 
X2 = ( 9 . 8 4 )  

k(l - m c o 2 / k )  

which is the familiar result. 

Transfer Matrices for Torsional Sys tems  

Consider a disk and a bar as shown in Fig. 9.8a. As we have done in the last 
section, we formulate one equation for force and one for displacement. From the 
balance of  torque, we have 

ti - t i - i  : JOi Oi = Oi-i  

Under the harmonic vibration, we express the state vector as 

2 i ~ Zi  ei~°t 

where the capital letter represents the magnitude. Therefore, the equations written 
in matrix form become 

( ~ f ) =  ( - j loge  ~)\Ti-,,](®i-l~ (9.85) 

Next consider Fig. 9.8b, and assume that the bar is an elastic torsional spring. 
Then we find 

ti = t i - I  = k(Oi - Oi - l )  
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a) 

t i -1  

-1 

0i.1 10i 
I 

I i 

b) 

Fig. 9.8 

-1 i 
I I 

ti.1 I k I t= 

I I 
I I 

0i. 1 0 i  

State variables  for a torsional  sys tem.  

which can be written in matrix form as 

( ~ i ) = ( 1 0  1/lk)(®i-'~\Ti-,] (9.86) 

Similar to the case of mass-spring system, if from i - 1 to i is a torsional spring 
we can have the equation 

Zi = B Z i - I  

where 

For the case where from i to i + 1 is a disk, the equation is 

(9.87) 

where 

Zi+l = AZi  (9.88) 

( '  
A = _ j c o  2 

Then the combined equation from i - 1 to i + 1 is 

Zi-t-1 ~-. A B Z i _ I  (9.89) 

Note that this formulation can be applied to many successive stations of  the 
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torsional system. Then the final equation is in the form of 

Zn = ( A B ) n ( A B ) n - I  . . . . .  ( A B ) ] Z o  (9.90) 

Example 9.9 
For the torsional system shown in Fig. 9.9, employ transfer matrix to find the 

relationship from station 0 to 3. Determine the natural frequencies for the principal 
modes. 

Solution. To simplify the consideration while not losing generality, let us 
consider that the boundary conditions are 0o = 0, To = 1, 03 = 0, and T3 = 0 
where 0 is arbitrary. The equation relating station 0 to 1 can be written as 

(o:)= (_,.L~, o)('o ',",~"')(~) 

, _ 3.,o.,2,,,~2,,~,, (~ )  

In a similar manner, to relate stations 1 to 2 and 2 to 3, we have 

(03)(, , .  ~( , 
T3 = - J w  2 ( 1 - 3 J w Z / k ) ]  - 2 J w  2 

x (_3jlw2 1/(2k) "~ 

1/(1.5k)  '~ 
(1 - 2jw2/1.5k).] 

Carrying out the product of the matrices, we find 

'I - ~  ( ~/1 T3=~--~ - 2 J  w 2 1 -  k 

+r_ .,~= (,_.,;~)(I 2jwm'~l ( I - - -  
L 1.sk + 1 . s k / j  

3 J w 2 )  
~-~ / (9.91) 

/ •  
~ J2=2J j3=j 

V 1 "~, 1 ', 
0 1 2 3 

Fig. 9.9 States for the torsional system. 
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b) 

Yi- 1 Yi c) Y i 

I I 
Mi I I e i  _ _  . . . . .  t, ,Iv, 

Vi_ 1 Vi 

Fig. 9.10 Elements of lumped system for a vibrating beam. 

To simplify the equation, let o)2 = )~(k/J) and set T3 = 0, we obtain 

2~3 41~2 -- + 6 ) ~ - -  1 = 0  
6 

and find the three roots as 

)~1 = 0.2168, )~l = 1.0964, )-3 = 2.1034 

Therefore the natural frequencies of the principal modes are 

o)1= 0.4656~-j  k-, o92= 1.0471~-j  k-, o93= 1.4503~f-f 

Transfer Matrices for Vibrating Beams 
A beam is a continuous solid, but it also can be modeled as lumped masses con- 

nected by massless beam sections. The lateral vibration of the beam can be solved 
successfully by using state vectors and transfer matrices. The method originally 
developed by N. O. Myklestad and adapted by many textbooks" is discussed in 
this section. 

To formulate the governing equations, a portion of the beam is broken into three 
elements as shown in Fig. 9.10. They are the massless beam section, the mass 
section, and the load section. 

The massless beam section as shown in Fig. 9. lOa. There are four  
equations to relate state vector at station i - ] to that at station i.  F rom ~-~F = 0, 
we have 

Vi = Vi_~ (9.92) 

*Thomson, W. T., Theory of Vibration with Applications, 3rd ed., Prentice-Hall, Englewood Cliffs, 
NJ, 1988. 
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From Y]M = 0, we obtain 

Mi = M i - i  + V i - lg  (9.93) 

From the relationship between the change of slope and the moment applied in the 
beam, we have 

l foe l ( M i _ l - - ] . - 1 V i _ l , ) g .  Oi - 0i-1 = - ~  M ( x ) d x  = E--I 

(9.94) 
M i - l e  Vi_lg. 2 

Oi = Oi-l + ~ + 2E----~ 

The deflection is found similarly 

Yi - Y i - I  = O(x )dx  : Oi-I ~ . "-~ - -  

Mi_lg~ 2 Vi_l~ 3 
+ -  

2 E l  6 E I  

M i _ l e  2 Vi_le  3 
Yi = Yi-I  + Oi-le + - -  + - -  (9.95) 

2 E l  6 E l  

Combining Eqs. (9.92-9.95) leads to 

o, = 1 e/E1 ez/ E~ | Oi-, I 
M, 0 1 / M , - , !  
Vi 0 0 \ V i - l ' ]  

(9.96) 

Note that there are four terms in the state vector. Once the transfer matrix is 
determined for one section, it can be used for all sections of the same length and 
same flexural rigidity. 

T h e  m a s s  s e c t i o n  a s  s h o w n  in Fi 9. 9. l Oh. From the equation of motion 

~-~ F = m y  

we have 

Vi- i  -- Vi = m y  

By assuming the harmonic vibration and keeping Vi for the magnitudes of har- 
monic shear forces 

Vi-1 - Vi = - m Y i c o  2 

For a rigid mass 

Yi : Yi- I  

Vi = Vi - l  + mco2Yi-1 

0 i = Oi_ I 

Mi = M i -  1 
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Combining the preceding equations into one transfer matrix equation, we have 

(Y) ooi), , e, = 1 o / e ; _ , /  
M, o , /M ,_ , j  
Vi m~o 2 0 0 \ Vi- l  I 

(9.97) 

The load sec t ion  as  s h o w n  in Fig. 9. 10c. The balance of forces gives 

v;_,  = v~ + kr, 

Because Y, 0, and M are not changed from station i - 1 to i ,  the transfer across a 
spring is simply 

(i° °!) , o  / o , , /  
Mi = 0 1 / M ; - I ]  (9.98) 

Vi -- 0 0 \ Vi_l,] 

Now we have used three elements to model a vibrating beam and obtained three sets 
of  matrix equations. Note that the dimensions of each term in the transfer matrix 
are different. It will be more convenient if all the terms are written in dimensionless 
form, especially if we use a computer to carry out the matrix operations. Let us 
define dimensionless variables as follows: 

Yi* Yi . M i ~. Vi ~ 2 
=- - { ,  M, = E l '  V,*= E1 

moAZg 3 k£ 3 
m* -- - -  k* = 

E1 ' E1 

Then Eqs. (9.96-9.98) become respectively, 

/ o , , / =  1 1 /o,_1 / 
/M, , !  o 1 IM;_,! 
\ v i  / o o \ v ; % /  

| o , . |  l O  |o ,_ , |  
/ M / /  ~ 0 1 [M/*_i /  
kV; / m* o o \ v;*_~ / 

0; , |  = 1 0 Oi.l 
M,,/ ~ O l  
V ; ]  -k* 0 0 l 1 

(9.99) 

(9.100) 

(9.101) 
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Example 9.10 
For the uniform cantilever beam shown in Fig. 9.11, find the transfer matri- 

ces and determine the natural frequencies and corresponding principal modes of 
vibration. 

Solution. 
The equation relating station 0 to 1 is 

The boundary conditions are Yo* = 0, 0o = 0, and M.~ = 0, g*3 = 0. 

i)r/ lO,/=/o l O  1 1  °o 
IM;I  / o O l  o 1 M; 
\ V : , ]  \m* 0 0 0 0 \ V ~ I  

1 1 -~ - 0 

0 1 1 

0 1 m; 

m* m* 7ml. ( l + ~ m * ) ]  \Vo*'/ 

(9.102) 

Similarly, for the relationship from station 0 to 2, the equation is 

(: ' ! l l J  1o21 l l  o, 
M; = o 1 M; 

, * ( l+~m*)]  \ V ; /  \ V ~ /  m* m* -~m 

= A1Z1 = AIA1Zo = A2Zo 

(9.103) 

where Zi is the state vector at station i and Ai is the transfer matrix. 

A2 = AIA1 = 

(1 + m*/6) (2+m*/6)  (2+  m*/12) 
m*/2 (1 + m*/2) (2 + m*/4) 

m* m* (1 + m*/2) 
m*(2 + m*/6) m*(3 + m*/6) m*(5/2 + m*/12) 

(4/3 + m*/36) '~ 
(2 + m*/12) | 
(2 + m*/6) ] 

(1 + 3m*/2 + m'2/36)]  

m=350 kg 
, ® , ® , ¢~ 

I I l = 0 . 2 5  m 

I I I E = 1 1 0  G P o  
I I I 

0 I1 12 13 I = 5 2 x 1 0  - a  rn 4 

Fig. 9.11 Cantilever beam modeled as a lumped system. 
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Finally, the equation relating the state vector at 0 to that at 3 is 

Z3 = A3Zo = AIA1A1Zo 
(9.104) 

A3 = AIAIAI 

The elements in A3 are lengthy and not all are needed in the computations. The 
ones that are needed are worked out and given as follows: 

a13 = 9/2  + m* + m '2 /72  

a14 = 9/2 + 16m*/36 + m'2 /216 

a33 = 1 + 3m* + m '2 /12  

a34 = 3 + 5m*/3 + m '2 /36  

a43 = 7m* + 13m'2/12 + m '3 /72  

a44 = 1 + 6m* + 17m'2/36 + m'3 /216  

The relationship between M~, V~*, and M~, Vo* is 

(M*)3 = (00)= (a33 a34~ (M~'~ 
V~* \ a 4 3  a44] \ Vo* ] 

(9.105) 

Because M~ and Vo* are not zero, the determinant of  the coefficients must be zero, 
i.e., 

a 3 3 0 4 4  - -  0 3 4 0 4 3  = 0 

When the preceding equation is expanded in detail, we find the expression for 
determining the natural frequencies as 

26m .3 - 786m .2 + 2592m* - 216 = 0 

Three roots are obtained, and they are 

* * 3.66778, m* 26.4774 m I = 0.0855462, m2 = 3 = 

Newton's iteration method has been used in finding the preceding roots. The 
natural frequencies for principal modes are computed as follows. For m T , we have 

E1 110 × 109 × 52 x 10 -8 
~°2 = me. ---~m~ = 350 × (0.25) 3 (0.0855462) = 894.764 

wl = 29.9126 (s - l )  

With the value of  m* determined, we find the numerical values of a33 and a34: 

a33 = 1.257248, a34 = 3.427934 
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Then from Eq. (9.105), we have 

M~ = -2 .726538 Vo* (9.106) 

To determine the shape of  the fundamental mode, we use Eqs. (9.102-9.104) and 
find 

y l .  = 1 • 1 • 7M o + gV~ = -1.196602 Vo* 

Y; = (2 + m*/12)M; + (4/3 + m*/36)Vg = -4 .136803 V0* 

Y~ = (4.5 + m* + m*2/72)M~ 

+(4 .5  + 16m*/36 + m*2/216)V~ = -7 .964889  Vo* 

In common practice, the mode shape is expressed as a ratio of magnitudes. Let us 
compute the ratios and find 

r?/Y; = 0.150235 

Y~/Y; = 0.519380 

That means as Y; = 1, 

Y~* = 0.150235, Y2* = 0.519380 (9.107) 

For m~ = 3.66778, we get 

o922 = 38362.88 

0)2 = 195.864 (s - l )  

r /r; = -1 .268889,  Y;/~* = -1 .507484  

Similarly, for rn~ = 26.4774, we have 

w 2 = 276938.47 3 

co3 = 526.249 (s -1) 

Y~/Y*3 = 4.647174, Y2* / Y3* = -3 .248295 

9.4 Vibrations of Continuous Systems 
Many practical systems that we deal with every day are continuous in nature. 

Therefore, without studying the vibrations of continuous systems, the knowledge 
of vibration analysis will not be complete. In this section, we will study some 
simple cases such as vibrating string, beam, and membrane. The materials involved 
are assumed to be homogeneous, isotropic, and obeying Hooke's law in stress and 
strain relations. In addition, because sound waves are a vibration of continuous 
medium, they also will be studied in this section. From this section, the reader 
will learn fundamentals in setting up a partial differential equation and methods 
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for solving them. A Fourier series will be used in the solutions of the problems 
presented in the examples. 

Vibrating String 
Before deriving a partial differential equation for a vibrating string, we make 

the following assumptions: 
1) The string is perfectly flexible, that is, it cannot resist any bending moments. 
2) The vertical deflection y of the string is small compared with the length L. 
3) The slope at any point of the deflected string is small compared with unity. 
4) The tension T is constant at all times and at all points of the deflected string, 

and is large compared with the weight of the string. 
5) The horizontal displacement of the string is negligible compared to the 

vertical displacement, that is, we have pure transverse vibrations. 
6) The motion takes place only in the x - y  plane. 
Consider that the string is fixed at the ends and subjected to a constant tension 

of T. Let us take a small segment ds of the string as shown in Fig. 9.12, and let w 
be the weight per unit length of the string. From y~ F = ma, and 

~--~Fy = - T  sinc~ + T sinfl - wds 

we can set up the equation of motion. With the preceding assumptions, we have 

Because, 

On the other hand, 

dy << dx, ds ~" dx 

sina -~tana,  sinfl ~ t a n f l  

tan ff -- 
Oy Oy 02y 

tan/3 = + dx 

T 02y dx  Fy= - dx (9.108) 

02y 

ay = Ot 2 

~ d x  O2Y may = (9.109) 
g at 2 

I Y S 
/ I wds 

T I dx 

~ T  

Fig. 9.12 Forces on a small  segment of  the string. 
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Combining Eqs. (9.108) and (9.109), we obtain 

02y OZy 
T ~x 2 dX - w dx = W dx 

g Ot 2 

o r  

gT O2y 02y 

w Ox z g Ot 2 

Let a 2 = g T / w  and because of fourth assumption, we drop the term g on the 
left-hand side and find 

a 202y -- 02Y (9.110) 
Ox 2 Ot 2 

This is the partial differential equation for the transverse vibration of a string. It is 
also called the one-dimensional wave equation. 

The boundary conditions for the case of  vibrating string can be written as 
1) y(o, t) = 0; 2) y ( L ,  t) = 0; 3) Oy/Ot(x, o) = g(x);  and 4) y(x,  o) = f ( x ) .  
Because the ends of  the string are fixed, we have y = 0 at x = 0, and x = L 
for all time t. The third and fourth conditions are the initial velocity and initial 
displacement of  the string. 

Here a reader may question the number of boundary conditions necessary for 
solving partial differential equations. In solving the ordinary differential equations, 
we know, in general, the number of  boundary conditions equals the order of  dif- 
ferential equations. Because one integral constant will appear when the equation 
is integrated once, such a constant must be determined by one boundary condi- 
tion. In solving the partial differential equations, we may state that the number of  
boundary conditions needed for solving the problem equals the number of  nec- 
essary conditions needed for determining the arbitrary functions after integrating 
the partial differential equation. 

Solution of the Vibrating String with Initial Displacement 
First let us consider the problem of the vibrating string with the initial displace- 

ment. Note that the equation of motion is 

O2Y _ a 2 O2Y 

Ot 2 Ox 2 

where a 2 = T g / w .  The boundary conditions are 

y(O, t) = O, y (L ,  t) = 0 

~t  (x, O) = O, y(x ,  O) = f ( x )  

where f ( x )  is known. To solve such a problem, we assume 

(9.110) 

(9.111) 

y (x, t) = X (x )T  (t) (9.112) 
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This method is known as a separation of variables. Substituting this expression 
into Eq. (9.110) leads to 

X T "  = a 2 X ' T  

o r  

X" 1 T" 

X a 2 T 

where T" = d2T/d t  2 and X" = d2X/dx  2. 
Now the right-hand side of the preceding equation is independent of x and the 

left-hand side is independent of  t. Because they are equal, their common value 
must be a constant, say ~.. Hence 

X II T"  

X aZT 

o r  

X" - )~X = 0, T" - ka2T = 0 (9.113) 

Thus, we have two ordinary differential equations. To satisfy the boundary condi- 
tions, the value of k must be less than zero, i.e., k = _f12 where fl is real. Hence 
Eqs. (9.113) become 

X " + f l 2 X  = 0 ,  T " + f l 2 a 2 T  = 0  (9.114) 

The solution then can be written as 

y(x ,  t) = (A cos flx + B sin f lx) (C cos flat + D sin flat) 

where A, B, C, D, and/3 are to be determined. Applying the first boundary con- 
dition gives 

0 = y(O, t) = AT( t )  

Hence A = 0. Applying the second boundary condition leads to 

0 = y (L ,  t) = (B sin f lL )T( t )  

That means sin fiL must be zero, so that 

f lL=-4-n~r n =  1 ,2 ,3  . . . .  

o r  

n ~  / ~ = + m  
L 
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The function X ( x )  can be written in the form of 

so we just  consider 

and 

("÷) X ( x )  = B * s i n - - x  + B*. sin - 
L 

n y f  
= (B* - B * . ) s i n - - x  

L 

= B n sin - - x  
L 

tl2"( 

f l = - -  n = 1 , 2 , 3  . . . .  
L 

nzr [ nzr nsr ] 
yn(x, t) = Bn sin - -Ex  cn cos --atL + Dn sin T a t  

On the other hand, to determine the constants in T (t), we apply the third boundary 
condition 

~tt (x, O) = 0 

X(x)T ' (O)  = 0 

T'(O) = -~6aC sin 0 + f laD cos 0 = ~6aD = 0 

Hence 

D = 0  

T(t )  = C cosf lat  

Because/~ = nTr/L and n is an integer, with T.( t )  for a specific n, we have 

T.( t)  = C~ cos t 
L 

Combining Xn (x) and Tn (t), we get 

nzr nrra 
Xn(x)T~(t)  = B.  sin - - x C n  cos t 

L L 
nzrx nzra 

= bn sin - -  cos t 
L L 

where bn = BnCn. Now this is a solution of  the partial differential equation and 
satisfies three boundary conditions for all n, where n = 1, 2, 3 . . . . .  Because the 
wave equation is a linear partial differential equation which has the property that 
any linear combination of solutions is its solution. Thus, the general solution is 

oo nzr nrca 
y(x ,  t) = Z bn sin - -Ex cos ---L---t (9.115) 

n = l  
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To determine bn, we apply the fourth boundary condition 

nTr 
y(x, O) = f ( x )  = bn sin - - x  (9.116) 

L 
n = l  

Althoughf(x) is defined in 0 < x < L, because we are only interested in this 
interval, we can prolong the function in ( - L  < x < 0) and consider it as a periodic 
odd function in the whole space, then with the use of Fourier sine series, bn can 
be found as 

2 f0 L nJr bn = ~- f ( x )  sin --XdXL 

Therefore the complete solution becomes 

2 )-~ [f0L ~ . ~  ] nzrx nzra f ( z )  sin dz sin cos t y(x, t) = -~ .=l L L (9.117) 

On the other hand with the use of the formula from trigonometry, we can write 

sin - - x  cos t = sin (x - at) + sin (x + at) 
L L T 

then the solution becomes 

Because 

we have 

and 

y(x, t) = ~l Z bnsin--E(x - a t )  + -~ ~ l  = (x + a t )  

n y r  

f ( z )  = ~_~ bn sin - - z  
L 

n = l  

oo nY/" 

f (x - at) = ~ _ b ,  sin--E(x - at) 
n = l  

o o  

f (x + at) Z bn nzr = sin T ( X  + a t )  
n = l  

The solution is simply 

y(x, t) = ½[f(x - at) + f ( x  + a t ) ]  (9.118) 

Before looking into the physical meaning of the two functions f ( x  - at) and 
f ( x  + at), we first recall that they are the functions representing the vertical 
displacements of the string along the whole space of x from -cx~ to cx~ because 



272 ADVANCED DYNAMICS 

they are derived from the Fourier series expansion o f f (x ) .  Then we recognize that 
they are different from f ( x )  given in Eq. (9.111), which is true only for x from 0 
to L. The two functions f ( x  - at) and f ( x  + at) represent two waves traveling 
in opposite directions along the string, each with velocity a. To show this, we 
make the following observations. 

Consider f ( x  - at). At t = 0, y (x) = 1 / 2 f ( x )  is the half of the initial displace- 
ment. At any later time tl, it defines the curve 1 /2 f (x  - at1). The two curves are 
identical except that the latter is translated to the right a distance aq. Thus, the 
configuration moves along the string without distortion a distance at1 in t~ units 
of time. The velocity of this progression is therefore a. 

Similarly the function f ( x  + at) defines a configuration of  y(x) = 1 /2 f ( x )  
that moves to the left along the string with constant velocity a. Hence, the entire 
configuration is the sum of the two functions. 

Example 9.11 
A string of  length of  10 units is fixed at both ends and given the initial displace- 

ment as 

x ( l O - x )  
f ( x )  = 1000 f o r O <  x < 10 (9.119) 

It is released from rest. Assume that the string has a 2 ---- 10, 000 units. Determine 
its subsequent motion. 

Solution. According to the solution derived in the section, we assume that 
f ( x )  is an odd periodic function as shown in Fig. 9.13, then we have 

oo nT/" 

y(x, O) = f ( x )  = Z bn sin I x 

L 
n : l  

2 fo L nrrXdx b. = ~ f ( x )  sin L 

f ( z )  sin zdz sin - - x  cos y(x, t) = ~ n=l L L 

0.025 

x 

0 l O ~ v .  
-0.025 

Fig. 9.13 Initial displacement of the string with an odd function assumed. 
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Evaluating bn for the given f ( x ) ,  we find 

102 f0t° x(10 - x)1000 nrr bn = --: s i n - - x d x  
10 

2 { 0 n = even 
5(nzr) 3[1 ( - l )n ]  = ~ n = odd 

Hence 

4 ~ ~ sin nzr y(x ,  t) = - - x  cos (10nzrt) 
5zr 3 10 

n=1,3,5 

Note that in the process of deriving the solution of the wave equation, the initial 
displacement function has been assumed to be a periodic odd function. The given 
initial displacement, Eq. (9.118), is true only between two ends. If the expression 
f ( x )  is true for all the values of x, then Eq. (9.117) can be used directly for the 
solution, which is illustrated in the following example. 

Example 9.12 
A string stretching to infinity in both directions is given the initial displacement 

1 
f ( x )  - - -  

1 + 8x 2 

and released from rest. (One remark must be made here. In many engineering 
problems, the term "infinity" means that the boundary is far away from space 
reached by the motion. For this particular example, infinity means before a reflected 
wave is observed.) Find the displacement during its subsequent motion. 

Solution. Using Eq. (9.117), we have the solution as simply 

1 
y(x ,  t) = ~ [ f ( x  - at) + f ( x  + a t ) ]  

= l + 8 ( x - a t )  2 + l + 8 ( x + a t )  2 

Solution of the Vibrating String with Initial Velocity 
and Displacement 

Now let us consider the problem of the vibrating string stretching from - ~  to 
oo. Rewrite the equation of motion, Eq. (9.110), as 

02Y _ a 20ZY 

Ot 2 Ox 2 

with the boundary conditions given as 

y(x ,  O) = f (x ) ,  Ô Y (x, O) = g(x)  (9.120) 
Ot 
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The general solution of Eq. (9.110) is 

y ( x ,  t) = Yl (x - a t )  + yZ(x -'1- a t )  

where Yl (x - a t )  and y2(x + a t )  are arbitrary. The task here is to relate these two 
functions with the given function f ( x )  and g(x ) .  Applying Eqs. (9.120), we have 

y ( x ,  O) = f ( x )  = y l ( x )  + y2(x)  (A) 

a y O) = g ( x )  = - a y '  1 (x )  + ay2(x)' (B) 

Dividing the second of the preceding equations by a and then integrating, we find 

- g (x )  dx  (C)  -Yl(X) + y2(x) = a ,, 

Combining Eqs. (A) and (C), gives 

'/x 1 Yl(X) = -~ "(x) - - g ( x ) d x  (D) 
a ~ x. J 

1 [  1 [  x ] 
yz(x) = ~ f ( x )  + - g ( x ) d x  (E) 

a v J:o J 

With the form of Yi and Y2 known, we can now write 

y ( x ,  t)  = y l ( x  - a t )  + y2(x  + a t )  

1 [ 1 f x-ut -] 1 [ 1 [ x+at "] 
= ~ f ( x  - a t )  - I g ( x ) d x |  + 2  f ( x  + a t )  + - I g ( x ) d x |  

a Jx,, _] a Jxo J 

1 . . . .  g ( x ) d x  
2 a aX--at 

Transverse Vibrations of a Beam 

Consider a beam of length L loaded by a variable load w ( x ,  t) .  To simplify the 
problem, assumptions are made as follows: 

1) The weight of the beam is included in the load w. 
2) The vertical deflection y is small compared to the length L. 
3) The slope of the deflection curve is much smaller than unity. 
4) The horizontal displacement of the beam is negligible compared to the vertical 

displacement; that is, we have pure transverse motion. 
5) The assumptions for beam theory hold: Every layer of material is free to 

expand and contract longitudinally and laterally under stress as if it is separated 
from other layers; the tensile and compressive moduli of elasticity are equal; and 
the cross section remains a plane surface. 

Now let us consider a small segment ds of a bent beam as shown in Fig. 9.14. 
Let e be the amount of length changed from its original length ds on the fiber UV. 
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We have 

o r  

/ 
R 

Fig. 9.14 Small  segment of a beam. 

ds - e R - z  
D 

ds R 

Z e 

R ds 

where R is the radius of curvature of the deflection curve. The strain is defined 
positive for tension and negative for compression; thus, 

By using Hooke's law, 

e z 
E ~ D 

ds R 

zE 
c~ = Ee - -  

R 

The force acting on the area dA is then 

Ez 
d F = ( ~ d A - - - - - - - d A  

R 

Because the tensile and compressive forces are equal over any cross section, the 
total force acting over the whole cross section is zero: 

fz  Ez dA = E fz F = -  R R zdA 0 

This result means that the neutral axis passed through the centroid of  the cross- 
sectional area. On the other hand, under equilibrium, the internal bending momeot 
created by the stress ~ must be the same as the external moment M: 

fA E fa z2dA E1 M = -z )~dA = R R 
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v 

I " 
'- - Ivy0 

F i g .  9 . 1 5  L o a d  o n  a s e g m e n t  o f  a b e a m .  

where I is the moment of inertia of the area about the neutral axis. From studies 
in mathematics, we also learn that the curvature of  a plane curve is given by the 
equation 

1 d2y/dx 2 d2y 

R [1 q- (dy/dx)2] 3/2 dx 2 

because dy/dx << 1. Therefore 

d2y 
M = E l - -  (A) 

dx 2 

Referring to Fig. 9.15, we can compute the sum of the force in the y direction 

y~Fy=V- 

and the inertial force is 

OV ) OVdx V + ~ dx - w dx = ---~'ff - w dx (B) 

w 02y 
may = - -  dx (C) 

g Ot 2 

w 02y 
- - -  - w - -  - -  - -  ( D )  

Ox g at 2 

Equating Eq. (B) to (C), we find 

0V 

On the other hand, taking moments about the point x, we have 

( aMdx~ ( OVdx~dx + wdx dx 
E M = M -  M +  Ox ] +  V +  8x ] 2 

-- - 3 M d x  + Vdx + ~-~-V (dx)2 q- 2 ( d x ) 2  
OX ox 

Neglecting high order terms and setting ~Y-~M = 0 leads to 

OM 
V = (E) 

Ox 
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Substituting Eq. (E) into Eq. (D), we get 

O2M w 02y 
11)-- 

Ox 2 g Ot 2 

Using Eq. (A), then we obtain 

02 t/ ~2y "~ tO 02y 
~ E I - ~ )  - w -- g 8t 2 (9.121) 8X 2 

This is the partial differential equation for the transverse vibration of a beam. Note 
that upward y is positive, but downward tO is positive in Eq. (9.121). I f  we are 
interested only in studying the free vibration of the beam, the load term is dropped, 
and Eq. (9.121) becomes 

02( 02y) w 82y + E1 = 0 
7 at--7  27] 

The equation can be further simplified for E1 = const: 

02Y + 204y 0 (9.122) 
Ot 2 a Ox----- ~ = 

where a 2 = Elg/ tO.  
Solving the partial differential equation, we must use some necessary boundary 

conditions. Boundary conditions for two popular beams follow. 
1) Boundary conditions for simply supported beams: 

y(0, t) = 0 

y (L ,  t) = 0 

O2y 
OX 2 (0, t) = 0 for M = 0 

O2y 
ff~x2 (L, t) = 0 for M = 0 

y(x,  O) = f ( x )  

~t (x, O) = g(x)  

2) Boundary conditions for built-in beams: 

y(0, t) = 0 

y(L ,  O) = 0 

O0-@Yx (0, t) = 0 for slope = 0 

t) = 0 for slope = 0 
( x , 

a tx  = 0  

a t x  = L  

a tx  = 0  

a tx  = L  
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y(x, O) = f ( x )  

~t (x, O) = g(x) 

Example 9.13 
A simply supported beam is given the initial displacement f ( x )  and released 

from rest. Determine its subsequent motion. 

Solution. The conditions given establish Eq. (9.122) as the equation of mo- 
tion; it is rewritten here for convenience: 

_ _  2 34Y O2Y q- - -  = 0 (9.122) 
3t 2 a 3x 4 

We shall seek a separable solution of the form 

y(x, t) = X(x)T(t)  

and we have 

d2T d4X 
X-d-~ + a2T-~x 4 = 0  

or 

a 2 d4X 1 d2T 
(9.123) 

X dx 4 T dt 2 

Because the left side of  Eq. (9.123) is a function o f x  alone, and the right side is a 
function of t only, the common value for the equation must be a constant, say X. 
Thus, 

a 2 d4X 1 d2T 

X dx 4 T dt 2 

To satisfy the boundary conditions, it is found that ,k must be negative. Let 
X = - w  2, then we have two ordinary differential equations: 

d2T 
- - +  w2T = 0 (A) 
dt 2 

d4X o92 
X = 0 (B) 

dx 4 a 2 

The solution of Eq. (A) is known as 

T(t) = Cl sinwt + C2coswt (C) 
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The solution for Eq. (B) is assumed as 

X (x) = Ae sx (D) 

where A and s are constant. Substituting the assumed solution into Eq. (B) gives 

S 4 A e  sx - ~  =0 

From the equation we obtain the four roots 

SI = W/--~-aW~ = ot 

$3 = i = i~ 

S 2 ~ ~ / ~  ~ - o r  

S 4 ~ - - l  ~ - - lo t  

with 

w = ot2a 

The constants appearing in the solution and the natural frequencies are deter- 
mined by applying the boundary conditions. For a simply supported beam, the 
boundary conditions are 

y(O, t) = y ( L ,  t) = 0 

O2Y (0, t) = 02y (L, t) = 0 
OX 2 ~ X  2 

Applying the boundary conditions to Eq. (F) gives 

C 4 -Jr- C 6 ~-- 0 

C3 sinh o t L +  Ca cosh o t L +  C5 sin uL  + C6 cos ~L = 0 

Ca - C6 = 0 

C3 sinh uL  ÷ C4 cosh ~L - C5 sin oiL - C6 cos o t L =  0 

The solution is then 

X (x) = A l e  ~x + A2e -ax -k- A3 e+iax -q- A4e -lax (E) 

where A l, A2, A3, and A4 are arbitrary. Without loss of generality, we can write 
the solution as 

X (x) = C3 sinh ux + C4 cosh ux + C5 sin ux + C6 cos otx 

The solution of Eq. (9.122) is then 

y ( x ,  t) = (C1 sin ~ot + C2coswt)(C3 sinh otx + C4 coshotx 

+C5 sin ux + C6 cos otx) (F) 
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From the four preceding equations, we find C3 = C 4  = C 6  = 0 ,  and 

Cs sin eL  = 0 

Therefore, the natural frequencies can be determined from 

otL=nrr n =  1,2,3 . . . .  

and we obtain 

rOn=Ot2a= ( ~ ) 2 a = ( n r r ) 2 ~ w ~ 4  (9.124) 

With the natural frequencies determined, the general solution Eq. (F) becomes 

n y r  
y(x, t) = Z ( A n  sin wnt + B. coswnt) sin - - x  

n = l  L 

where An = (CIC5)n and Bn = (C2C5)n. The constants An and B n c a n  be deter- 
mined by initial conditions of the motion. For this example, y(x, O) = f ( x )  

¢x~ /ZTl" 

f ( x )  = E Bn sin - - x  
L 

n = l  

By assuming f ( x )  as a periodic odd function, we obtain 

2 fo L nrCxd x Bn = ~ f (x ) s i n  T 

Because initial velocity is zero, A, must be zero. Therefore, the complete solution 
is 

f ( z )  sin dz s i n - -  y(x, t) = -~ n=l L L 
cosw.t  (9.125) 

Example 9.14 
A simply supported beam of length L is subjected to a concentrated harmonic 

force F0 sin roft as shown in Fig. 9.16. Determine its subsequent motion. 

Solution. The governing equation is 

w 82y 
E1 -I- - - - -  = Fosinwftg(x - a) (A) 

g 8t 2 

To find the response of the forced vibration, we consider the forcing function as 
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~ o -~ F°sin wft 

Fig. 9.16 Concentrated harmonic force acting on a simple beam. 

an odd periodic function with period of 2L as shown in Fig. 9.17, and expand the 
function into a Fourier sine series as 

oo 
nyr  

3(x - a) = Z bn sin -~--x 
,'/=1 

where 

2 f L  nTr 2 nzra 
bn =-L Jo 3 ( x - a )  s i n - - x d x = - - s i n - -  

L L L 

Therefore Eq. (A) becomes 

E o4y wo2y 2 o( 2 
~ x  4 + - -  - - -  sin - -  

g 0t 2 L n=l 

\ 
nzra sin nZrx] sin (.oft 

L L ]  
(B) 

To find the forced response, we assume the solution as 

y(x, t) = f (x)  s inwf t  (c) 

Substituting Eq. (C) into Eq. (B) gives 

oo 
E1 d4f 1132" 2F° Zs innZra  sinn--~x ( D )  

dx--- ~ gO)f¢ = L n=l L 

where the common factor sin wft on both sides of the equation has been dropped. 
The particular solution of  Eq. (D) is assumed as 

H ~ X  
f (x ) = An sin T 

n=l  

1 T 0: 
L p 't 

Fig. 9.17 Concentrated force assumed as a periodic odd function ofx .  



282 ADVANCED DYNAMICS 

With this, Eq. (D) becomes 

7r4E l 

L 4 

oo l'12TX W ~x~ n . T r x  

- -  ~ n 4 An sin - -  w2f. '~ --" An s i n -  
n=l L g J~'~'I= L 

2Fo 00 nzra nzrx 
~-~ sin sin - -  

L L L 
n = l  

Equating coefficients of sin(nrrx/L)  gives 

2FoL 3 nrra 
A,  = n47r4E I _ _  _~L4o92f sin L 

Therefore the forced response is obtained as 

(9.126) 

oo 

y(x,  t) = ~ A,  sin nrrx sinw1t (9.127) 
L 

n = l  

From the denominator of Eq. (9.126), we find that a resonant condition is 

O) j-  - ~  n 2 7r 2 . E/-~. 
V wL  4 

A few remarks must be made before we end the section. In this analysis, the 
mass of the beam is considered in the inertial force, but the weight of the beam 
is neglected in the load. This means that the initial deflection caused by weight is 
small compared to the dynamic deflection. Examples given are solved successfully. 
The beam involved is supported simply. For other end conditions the solutions may 
become complicated. To fully understand the subject, additional references will 
be needed. 

Vibration of a Circular Membrane 

Suppose that a piece of membrane is mounted on a drum. The tension in the 
membrane is shown in Fig. 9.18. Our first task is to find the equation of motion for 
the vibrating membrane. To simplify the considerations, assumptions are made as 
follows. 

X 

Fig. 9.18 Membrane tension. 
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1) Tension measured as force per unit length is normal to the boundary of  the 
element and is constant throughout the membrane. 

2) The total tension on the boundary is large compared to the weight of  the 
membrane. 

3) The membrane is so thin that it cannot resist any bending moment, i.e., there 
is no bending stress. 

4) The vertical deflection w is small compared to the diameter of  the membrane. 
5) The slopes of  the deflection surface are small compared to unity. 
6) The lateral displacements are negligible compared with the vertical displace- 

ments. 
Consider a differential element of  the membrane with area dxdy. To analyze the 

force acting on this element, let us enlarge the element as shown in Fig. 9.19. Here 
P is applied pressure. The sum of forces in the z direction then can be computed 
a s  

Z F z = - T d y t a n e t + T d y t a n f l - T d x t a n v + T d x t a n S + P d x d y  (A) 

Because slopes are small, the following relations have been used in the preceding 
equation: 

sin u --- tan or, sin fl - tan fl 

sin y ~ tan V, sin ~ --~ tan 

Because w is the vertical displacement of the membrane, in the xz plane we have 

Ow 
tan ~ - -  

Ox 

Ow 8 (~W~d x 
tanfl = ~ + ~'x  \ Ox J 

Similarly in the yz plane, we have 

Ow 
tan y ---- - -  Oy 

O__w_w O / 8w \ 
tanS= + - - / _ - - - / d y  

Oy ~y \'Oy / 

a) 

Td 

Z 

!: dx :I . Tdy 

I Pdxdy x 
Y 

Fig.  9 .19 

b) z 

dy I Tdx 

Td: 7 I ~ P d x d y  Y 
x 

Forces on a segment of  membrane.  
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Substituting these expressions into Eq. (A) gives 

Z F ~  = Tdxdy  \Ox2 + a y 2 / + P d x d y  (B) 

On the other hand, the mass of the element is 

m = p dx dy (C) 

and the acceleration is 

02//) 

az = at 2 (D) 

where p is the mass per unit area of the membrane. The equation of motion then 
can be written as 

02W (02W 02 ) 
p d x d y - - ~  = T \ Ox 2 + OY 2 ] dxdy + P d x d y  

o r  

02w 1 
---- a2V2w + - P ( x ,  y) (9.128) 

qot 2 p 

where 

V2 0 2 0 2 T = + - -  a 2 = - -  

Ox 2 Oy 2 p 

Equation (9.128) can be applied to cylindrical coordinates that require the expres- 
sion of V 2 a s  

02 1 O 1 02 
V 2 -  + +---- 

-- Or 2 r~rr  r 2 002 

For the study of free vibration, the pressure term is dropped, and Eq. (9.128) 
becomes 

02W 
= aZV2w (9.129) 

Ot 2 

For simplicity, we consider a special case, that is, the membrane is initially 
deflected into a radially symmetrical form and is released from rest. The equation 
of motion is reduced to 

ate= \ar  ] 
(9.130) 
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And the boundary conditions are 

w(R, t) = 0 

w(r, O) = f ( r )  (9.131) 

aw 
- - ( r ,  O) = 0 
at 

where r = R is the boundary of the membrane. Assume the solution as 

w(r, t) = R(r)T(t) (A) 

Substituting the expression into Eq. (9.130) gives 

a 2 
_ _  _ _  0 )  2 

+ r  R ]  T 

where R" = (d2R/dr2), R' = (dR~dr), T" = (d2T/dt2), and 092 is the arbitrary 
real constant. From which we get two ordinary differential equations as 

rR" + R' + rR = 0 (B) 

and 

T" + w2T = 0 (C) 

Equation (B) is known as Bessel's equation of order 0 with a parameter w/a. The 
solution of Bessel's equation is 

R ( r ) =  A J o ( ~ - ~ ) +  BYo(~ra) (D) 

Because Y0 approaches infinity as r --+ 0, B must be zero. The solution ofEq. (C) 
is 

T(t) = C coswt + D sinwt (E) 

Combining Eqs. (D) and (E), we find 

w(r,t) = Jo (C coswt + Dsinwt) 

Because the initial velocity is zero, we have 

D = O .  

Applying the first boundary condition gives 
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From this, the natural frequencies are determined. For example, the smallest root 
of Jo = 0 is 

og~R 
-- 2.405 

a 

Hence, in general, we can write 

for all the natural frequencies. The general solution becomes 

w(r, t) = Z CnJo cosognt 
n=l 

To determine C,, we apply the boundary condition Eq. (9.131) 

w(r, O) = f ( r )  = Z C. Jo 
n=l 

And with the use of the properties given in Appendix H, we find 

(9.132) 

fo Cn = R2[Jl(wnR/a)]2 r f (r )Jo  dr (9.133) 

Example 9.15 
A circular membrane is fixed on its edge and given an initial displacement as 

f ( r )  = 1 - r2/100 

It is released from rest. Assume that the diameter of the membrane is 20 units and 
the property of the membrane has a 2 = 10,000 units. Determine its subsequent 
motion. 

Solution. From Eq. (9.133) we can compute the coefficients as 

2 f 0 R [  r 2 1 ( - ~ )  Cn = R~[Jl(wnR/a)]2 r 1 - ~ Jo dr 

From the properties of Bessel functions given in Appendix F, we have 

o L X J o ( x ) d x  = L J I  (L) 

fo L = (L) - 2L2J2(L) X3 Jo(x)dx L3JI 
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Hence 

2 {(a__R._R)j,(CO,,__R__R] 
C,, = R2[jl(conR/a)] 2 \co,, /  \ a / 

1F(aR__33]l,(~'--~aR_)_2(a--R-R)ej2(co"----R]] } 
IOOL\ con /" \co,~/ \ a / J  

2 a _ - [J,(conR/a)]2 { [ (-~-~.R ) \-W---,~R a "JR2 1 

2 } + 

= 25[Jl(co,,R/a)]2 

We determine co,, from J0(co,~ R/a) = 0. Then with the use of the table of Bessel 
functions (Appendix H), we find 

C1 = 1.81152 

C2 = -0 .139890  

C3 = 0.0455503 

The solution then can be written as 

cot = 24.05 (s J) 

co2 = 55.20 (s - I )  

co3 = 86.54 (s - j )  

w(r,,) + c 2 J 0  cos co2, 

~-C3Jo(-~) c o s  c o 3 /  - I -  " • • (9.134) 

Sound Waves in Fluid 

Sound waves in air or water are longitudinal pressure waves propagating under 
an isentropic process. As the sound wave propagates, the change in pressure is 
small compared with the ambient pressure. Because of isentropic process, the 
change in density of the fluid is small compared with the original density. Because 
the viscous force plays no role in the sound wave, the equations involved in the 
phenomena are the continuity and the momentum equations only. These can be 
written as follows: 

Op 
- - + V . ( p V ) = 0  (9.135) 
Ot 

0--t- + V .  VV = - - V p  = - Vp = - a  2 (9.136) 
p p \ d p %  
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where a = ~/(dP/dp)s  is the propagating speed of the sound wave. Based on the 
facts observed, we can express 

P = P0 -]- Epl, V = EV 1 

where ~ << 1. From Eq. (9.135) we have to the E order 

(A) 

Opl 
+ p 0 V - V j  = 0  (B) 

Ot 

From Eq. (9.136) we obtain, also to the ~ order, 

OVI = - a  2 v p l  (C) 
Ot Po 

Differentiating Eq. (B) with respect to time t and substituting Eq. (C) into it gives 

02pl a2V2pl = 0 (9.137) 
at 2 

This is known as a wave equation. We have studied it in rectangular and cylindrical 
coordinates. Now let us study the wave equation in spherical coordinates such 
that 

v 2 = l  0 ( ~ r )  1 0 (sin0 0 ) 1 02 
r--g 0-7 r2 q- r2s in~  O0 0"0 + r2sin2-----~ O~ 2 (9.138) 

However, to simplify the mathematics, we study a special case that is spherically 
symmetric, so that Eq. (9.137) becomes 

O2pl 2 1 O (r2OPl'~ 
at 2 a r- 5 0-7\ -~-r / = 0 

This equation can be rearranged to 

(9.139) 

O2rp] = a 2 O2rpl (9.140) 
Ot 2 Or 2 

The solution of the preceding equation, similar to Eq. (9.117), can be written 
as 

rp = f ( r  - at) + F(r  + at) (9.141) 

As in the case of one-dimensional rectangular coordinates, the first term represents 
a wave advancing in the direction of r increasing, that is to say, a divergent wave, 
and the second term represents a converging wave. The latter does not possess 
much interest. To illustrate the physical meaning of the solution, let us consider 
the following example. 
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Example 9.16 
Suppose that fireworks explode in the air; the initial change in density is 

Ap = b as r < ro 

Ap = 0 as r > r0 

Determine the density change in the air during the propagating of the wave. 

S o l u t i o n .  This is a case of divergent wave. Hence, only the first term in Eq. 
(9.141) is to be considered. The change in density of air is simply 

A p  = b / r  as 0 < r - a t  < ro (9.142) 

Ap = 0 as r - -  a t  < 0 and r - a t  > ro (9.143) 

This means that the higher density occurs in the spherical shell with the origin of 
the sphere where the fireworks exploded and with the thickness of r0. This change 
in density is inversely proportional to the radius of the sphere. In other words, 
it will vanish as r approaches the infinite. The sphere is bounded by the radius 
of (r0 -I- a t ) .  Outside the sphere, there is no change in density. Also, the change 
vanishes as r < a t .  That is why the sound of the explosion can be heard only for 
a brief moment. 

9.5 Nonlinear Vibrations 

So far, we have studied many vibrating systems with linear characteristics. In 
discussing these systems, it was assumed that the force in a spring is proportional 
to the deformation. It was assumed also that, in the case of damping, the frictional 
force is a linear function of the velocity of motion. As a result of these assumptions, 
we had vibration systems represented by linear differential equations. However, 
there are practical problems in which these assumptions are no longer satisfactory 
to describe the actual motions. Such systems are called systems with nonlinear 
characteristics and are represented by nonlinear differential equations. In this 
section, we will deal with nonlinear vibration systems. 

We may recall that the difference between a linear and a nonlinear differential 
equation is quite simple. If a differential equation contains products of unknown 
variables or products of unknown variable with the derivatives of unknown vari- 
ables, the equation is nonlinear. Otherwise, the equation is linear. 

As we learned in Chapter 8 and previous sections of this chapter, there are 
many analytical methods for solving linear differential equations. Because the 
principle of superposition is applicable to a linear equation, its general solution is 
the combination of all possible solutions. 

For nonlinear differential equations, however, there are no definite methods 
for solving them analytically. Small perturbation methods may be considered as 
the systematic approach for solving them. One of the small perturbation methods, 
which is commonly used, has been introduced in Chapter 5 and will not be repeated 
here. On the other hand, because of the advancement of computer technology, 
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many nonlinear problems whose solutions are not possible many years ago can be 
solved now. The following example illustrates this point. 

Example 9.17 
While a shaft is rotating at a high speed, the centrifugal force produced by 

the unbalanced disk can pull the shaft to a bow shape. This motion is known as 
the whirling of a rotating shaft. The sketch of the system is shown in Fig. 9.20. 
To consider the major dynamic properties of the motion, make some necessary 
assumptions and determine the equations of motion for the shaft rotating with 
and without acceleration; also find the maximum deflections for the two different 
conditions. 

Solution. The following assumptions are made for this analysis. 
l) The disk is rigid and is always perpendicular to the shaft. 
2) The mass of the shaft is neglected. 
3) Inertial forces lie in the plane of symmetry perpendicular to the shaft. 
4) Damping is present and is assumed to be directly proportional to the preces- 

sion speed of the shaft. 
5) The supports are rigid, and the bearing flexibilities are neglected. 
6) A torsional deformation is present, but vibration due to torsion will not be 

considered. 
The geometry of the system is described as follows: The center of the mass of 

the disk is at point G at a distance e away from the center s of the shaft. The point 
o is the intersection of the straight line connecting two supports and the plane 
of symmetry. The center s is away from point o by a distance of r. The angle 0 
between line o s  and the reference line is the precession angle of the shaft, and 

I 

j ~ ~+2~6 1 
e t ~  

Fig. 9.20 Geometry of a whirling shaft. 
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is the precession speed that is considered to be different from the rotating speed 
~o of  the shaft. The formulations for the two cases are considered separately. 

S h a f t  ro ta t ing  a t  a c o n s t a n t  speed .  It is known that the acceleration of point 
G relative to a fixed coordinate system can be expressed as 

a c  = as + a c / s  (9.144) 

where as is the acceleration of point s relative to point o and a c / s  is the relative 
acceleration between point G and point s. As the acceleration components are 
expressed along radial and tangential directions, they are found to be 

a G  = -  [ ( r  - -  rO 2) - -  ew 2 cos(wt - O)]i 

+ [(r0 + 2f0)  - e c o  2 sin(wt - O ) ] j  (9.145) 

The equations of motion then can be written in the radial and tangential directions 
a s  

- k r  - c f  = m[F - rO - eco2 c o s ( w t  - 0)] 

- c r O  = m[rO + 2f0 - ew 2 sin(wt - 0)] 

which can be rewritten into a familiar form of 

F + c f / m  + ( k / m  - 0 2 ) r  = e w  2 cos(cot - 0) (9.146) 

rO + ( c r / m  + 2f)0 = e w  2 sin(wt - 0) (9.147) 

S h a f t  ro ta t ing  wi th  acce lera t ion .  While the shaft is rotating with an angular 
acceleration or, additional acceleration in the tangential direction must be taken 
into account in considering a c / s .  The acceleration of point G relative to a fixed 
system becomes 

aG = [r -- rO 2 -- e w  2 cos(q~ -- 0) -- eot sin(~ -- 0)] i 

+[r~J + 2f0 -- ew 2 sin(~b - 0) + eot cos(4~ - O ) ] j  

where 4~ is the rotating angular displacement of  the shaft. The equations of  motion 
for describing the whirling of the shaft become 

- k r  - c f  = m[F - rO 2 - e w  2 cos(qb - 0) - e~ sin(q~ - 0)] (9.148) 

- c r O  = m[rO + 2?0 - e o o  2 sin(q~ - 0) + e o t  c o s ( ~ b  - 0)] (9.149) 

Although the effect of  the angular acceleration ¢z to the motion of  whirling is to 
be explored, it is reasonable to simplify the considerations by setting w = o~t and 
d~ = o t t2 /2 .  By doing these, Eqs. (9.148) and (9.149) become 

- k r  - ci" = m[F - rO 2 - e(ott) 2 cos(ott2/2 - 0) - eoe sin(ott2/2 - 0)] (9.150) 

- c r O  = m[rO + 2fO - e(ott) 2 sin(ott2/2 - 0) + e¢z cos(ott2/2 - 0)] (9.151) 
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Maximum deflection as shaft rotates at a constant speed. Equations (9.146) 
and (9.147) are nonlinear equations of r ( t )  and O(t). The exact solution can only 
be obtained numerically. Before solving them it is proper to convert the variables 
into dimensionless forms. Let 

r *  = r / e  (9.152a) 

t* = w.t  (9.152b) 

and 

c = c~,~ = 2mwn~ (9.152c) 

where cc is the critical damping coefficient, w. = x / ~ / m ,  and ~" is the damping 
ratio. By introducing the preceding dimensionless variables, Eqs. (9.146) and 
(9.147) become 

k'* + 2~'?* + (1 - O*2)r * = (~o/con) 2 cos(wt*/wn - O) (9.153a) 

~/* + 2(~" + ?*/r*)O* = ( w / w n ) 2 / r  * sin(cot*/w. - O) (9.153b) 

These equations can be solved numerically with the use of  the Runge-Kutta 
method. However, for a special case, as the whirling speed 0 is equal to the 
rotating speed w of  the shaft, it is called the synchronous whirl. Thus we have 

O* = w/wn  (9.154) 

Under this condition, 

0* =/ :*  = ?* = 0, 0 = ( w l w . ) t *  + (9.155) 

Equations (9.151 a) and (9.151 b) reduce to 

[1 -- (O)/O)n)2]r * = (O)/O)n) 2 COS fl 

2~'(Co/wn)r* = (W/W.)  2 sin/~ 

(9.156) 

(9.157) 

where/3 is the phase angle between 0 and wt. Squaring Eqs. (9.156) and (9.157) 
and adding them together, we find 

r* = ( ° ) / ° ) n ) 2  (9.158) 
{[1 - (o)/O9n)2] 2 + (2~0)/(.0n)2} 1/2 

Here we easily can see the maximum deflection increases as w approaches Wn. The 
numerical solution has been obtained by Ying.* It is lengthy. Details are revealed 
in the reference. 

*Ying, S. J., "Transient Whirling of a Rotating Shaft with an Unbalanced Disk," Rotating Machinery 
Dynamics, ASME Pub. H0400B, Vol. 2, pp. 537-543, Sept. 1987. 
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Maximum deflection as shaft rotates with a constant acceleration. The equa- 
tions of  motion for describing the whirling of a shaft rotating with acceleration 
are given in Eqs. (9.150) and (9.151). By introducing the dimensionless quantities 
given in Eqs. (9.152a-9.152c), Eqs. (9.150) and (9.151) become 

- r *  - 2~'1:* = / :*  - (u*t*)2cos(u*t*2/2 - O) - u* s in(u ' t*2/2  - 0) (9.159) 

-2~'r*0*  = r*0* + 2i*0" - (u ' t* )  2 s i n ( u ' t * 2 / 2  - 0)  

-k-u* c o s ( u ' t ' z / 2  - 0) (9.160) 

where u* = u/col. Equations (9.159) and (9.160) are solved numerically by the 
Runge-Kutta  method as given in Appendix A. The initial conditions are chosen 
as follows: 

r*(O) = 0.001, 0(0) = O, i*(O) = O, 0 ' (0 )  = 1.0 

Because it is interesting to see the growth o f r  * as the shaft rotates, the value of r* (0) 
should be as small as possible. However, a low r* (0) value could cause instability 
in the numerical computations. The term r* (0) = 0.001 is a compromised quantity. 
The increment of  time At* used in the computation is 0.001, which satisfies the 
convergence criterion in all the cases calculated because further decrease in At* 
does not change the results significantly. On the other hand, the range of time 
in the calculation is determined as follows. It is reasonable to assume that the 
maximum deflection will reach the peak in the range 0 < ~o/o)n < 3. In all of the 
calculations, the number of maximum time steps is limited by w/con = 3. That is 

Utmax/O)n = 3 

o r  

t ~  = 31u* 

In this way t*ax is determined for each value of u* assigned. For example, as 
u* = 0.01,300, 000 steps are calculated for the determination of maximum di- 
mensionless deflection R~nax, and for u* = 0.50, 6000 steps are calculated. To find 
the effect of  acceleration on the motion of rotating shaft, the range of u* used 
for calculations is from 0.01 to 0.59 with an increment of 0.01. The results of  the 
maximum dimensionless deflection vs dimensionless acceleration are plotted by a 
computer and are given in Fig. 9.21. From the curves shown in the figure, it easily 
is seen that for low damping factors ¢ < 0.2 the values of  maximum deflection 
are higher at low acceleration. That means that while the shaft is rotating with low 
acceleration, the system has more time to stay in the neighborhood of resonance 
and R~a x is occurring at low value of u*. For systems with high damping factors 
~" > 0.2, the magnitude of whirling increases slightly with u*. This is caused by 
the fact that the inertial force is not enough to overcome the damping force at low 
values of  u*. 

Therefore, for slightly damped cases (( < 0.2) the shaft should be operated with 
its highest possible acceleration to reach its operational speed; on the contrary, for 
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highly damped systems (~ > 0.2) the shaft should be operated with the lowest  
possible acceleration to reach its operational speed. 

9.6 Stabi l i ty  of V ibrat ing S y s t e m s  

Stability analysis is important in the study of  vibrating systems. From the result 
o f  analysis, we  can predict whether the amplitude of  vibration will grow with 
time or not. For linear systems, we can determine the stability from the roots of  
characteristic equations. If the real parts of  the roots are negative, the amplitudes 
of  oscillations will decrease exponentially with the time; the system is stable. If 
the real parts are zero, then the harmonic motion will continue indefinitely, and 
the motion is still stable. However, for nonlinear systems, there is no characteristic 
equation so that we cannot predict the stability from the roots of  characteristic 
equation. We must take a different approach for the analysis. Furthermore, we 
know that there is no analytical method to find the exact response of  a nonlinear 
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system. The following is the introduction of this new stability analysis. First we 
need to learn some new terminologies, and then we can discuss new concepts. 

Phase Plane 

The differential equation describing a nonlinear system may have the general 
form of 

2 + f ( 2 ,  x , t )  = 0 (9.161) 

where the function f contains at least one term of the product of  x, 2, or x and 
2, such as x 2, 22, or x2. If  the function does not have the time t explicitly stated 
in the expression, then the system is known as an autonomous system that will be 
discussed in this section, and Eq. (9.159) becomes 

2 + f ( 2 ,  x) = 0 (9.162) 

In the study of stability, we define 

2 = y (9.163a) 

= - f ( x ,  y) (9.163b) 

Equation (9.163b) is actually the new form of Eq. (9.160). Consider x and y as 
the Cartesian coordinates. The x-y  plane is called the phase plane. 

Dividing Eq. (9.161b) by Eq. (9.161a), we obtain 

dy f (x, y) 
dx y 

(9.164) 

Integrating the equation gives 

y = g(x) 

which can be plotted in the phase plane and is called the trajectory. If  the trajectory 
is bounded by a circle with finite radius, then x and y are limited; the system is 
stable. I f  at some points, y = 0 and f (x ,  y) = 0, the slope is indeterminate. We 
define such a point as a singular point. Further discussion will be presented for 
the integration of Eq. (9.164) around the singular point to determine whether the 
system is stable or unstable. 

a s  

Example 9.18 
Consider a simple pendulum. The differential equation of motion can be written 

+ o) 2 sin 0 = 0 (9.165) 

where o92 = g/L, g is gravitational acceleration, and L is the length of the pendu- 
lum. Find the function for the trajectory. In the process of  integration, an arbitrary 
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constant will be present. Plot the trajectories in the phase plane for different 
arbitrary constants. Discuss whether the system is stable or unstable. 

Solution. Let 

then 

0 = x ,  O = y  

o)2 sin0 = o)2 sinx = f ( x ,  y) 

.y : - - ( 0  2 sin x 

dy f ( x ,  y) o)2 sin x 

dx y y 

ydy = -0) 2 sin xdx 

½y2 + w2(l _ cosx)  = E (9.166) 

where E is the arbitrary constant to be determined by the initial conditions. Note 
that E is proportional to the total energy of the system. 

Equation (9.166) is the equation for trajectories. Three different trajectories 
are plotted as shown in Fig. 9.22 for E = o) 2, 2o0 2, 3o9 2 with o) 2 = 1. We notice 
that for E < 2o02 we obtain closed trajectories, so that the motion repeats itself. 
This implies that the motion is stable. For E > 2o9 2, the trajectories are open 
and the motion is unstable with the pendulum going over the top. The trajectories 
corresponding to E = 2o0 2 separate the two types of motion, oscillatory and rotary, 
for which reason these trajectories are called separatrices. Note that atx = + ( 2 j  + 
1)Tr(j = 0, 1,2 . . . .  ) and y = 0 the points are singular points. A more general 
discussion will be given in the next subsection. 

Stability Around a Singular Point 
Equation (9.164) can be expressed in the general form of 

dy p(x, y) 

dx y 
(9.167) 

5 -  
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Fig. 9.22 Three trajectories. 
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The singular points of the equation are specified by 

p(x,  y) = y = 0 (9.168) 

Equation (9.167) is actually combined from the following two equations: 

dx 
- - = y  
dt 

dy 
- -  = p(x,  y) (9.169) 
dt 

Let us construct a new set of coordinates u, v parallel to x, y with the origin at the 
singular point Xs and Ys, i.e., 

X = Xs "@ It, 

Because Xs and Ys are definite constants 

dy 

y = y s + V  

dv 
dx du (9.170) 

Expanding p(x,  y) into the Taylor series about the singular point (Xs, Ys), we 
obtain for p(x,  y) 

p(x,  y) = p(xs, ys) + -~u s u +  "~v sV 

l ( 0 2 P ~  u 2 
+ ~ \ - ~ u 2 ] s  + . . . .  c u + e v  

Then Eq. (9.167) becomes 

dv cu + cv 

du v 

o r  

du 

dt 

dv 
- -  = c H  --~ e ~ )  
dt 

which can be rewritten in the matrix form as 

(9.171) 

(9.172) 

With the use of modal matrix discussed in Section 9.2, the preceding equation can 
be transformed into the equation for principal mode: 
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Then Eq. (9.170) becomes 

The solutions for u and v are 
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~ e~.l t 

I 7 = eX2 t 

11 : Ill ek'lt --}- 1t2 e)~2t 

1) -~- Vl e j ' l t  -1- V2 e)'zt 

It is evident, then, that the stability of the system around the singular point depends 
on the eigenvalues )vt and k2 determined from the characteristic equation 

-~.  1 Z) c (e - = 0 

e e 
~'1.2 = ~ 2F + C 

Thus, if (e /2)  2 + c < 0, the motion is oscillatory; if (e /2)  2 + c > 0, the motion 
is aperiodic; if e > 0, the system is unstable; and if e < 0, the system is stable. 

Example 9.19 
Let us consider once again the pendulum of Example 9.18 governed by the 

differential equation 

2 = y, ~ = _0)2 s inx  

Determine the stability around the singular points that have been found as 

x=:tzjzr j = 0 , 1 , 2  . . . .  

y = 0  

Solution. Around x = y = 0, 

k = y, ~ = - -0 )  2 s inx  

To use Eq. (9.167), we write 

p(x, y) = _0)2 s inx  

When it is expanded around the singular point x = y = 0, we have 

p(x, y) = -0)2u 
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That means 

t~ ~ 1), 1) ~ - - 0 ) 2 U  

The characteristic equation is simply 

55 --° 
)v 2 ~ - - 0 )  2 

~q,2 = + i0 )  

Because the roots are pure, imaginary complex conjugate, we conclude that the 
motion in the neighborhood of the origin is stable. 

Around the singular point x = 7r, y = 0, 

p(x ,  y) = _0)2 s inx  

When it is expanded around the singular point x = 7r, y = 0, we have 

p(x ,  y) = 0)2u 

That means 

'0)(:) 
The characteristic equation for eigenvalues is 

7) 
)vl,2 = 4-0) 

Because the roots are real but opposite in sign, the singular point is a saddle point. 
Clearly, the motion around x = Jr, y = 0 is unstable. 

Problems 
9,1. Two simple pendula of  length s and bob mass m swing in a common vertical 
plane and are attached to two different support points. The masses are connected 
by a spring of constant k as shown in Fig. 4.4. The equations of  motion are derived 
in Example  4.3 and are rewritten as follows: 

ms201 + mgsOl + ks2(Ol -- 02) = 0 

ms201 + mgs02 -- ks2(Ol - 02) = 0 
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*//////////////Z 

Fig. P9.2 

Find the natural frequencies and the principal-mode solution for small oscillations 
of the system. 

9.2. Determine the differential equations of motion for the double pendulum 
shown in Fig. P9.2. Find the natural frequencies and amplitude ratios for small 
oscillations of the system. 

9.3. A two-degree-of-freedom system as shown in Fig. P9.3 is excited by a 
harmonic force F1 = F0 sin O)ft. The physical constants for the system are ml = 8 
kg, m2 = 4 kg, kl = 8.0 kN/m, and k2 = 1.5 kN/m. Using the Laplace transform 
method, determine the solution for the forced vibration with F0 = 2N and (.Of : 2 
Hz. Assume that the initial displacements and velocities are zero. 

9.4. Determine the solution of the vibrating system given in Example 9.7 with 
the use of the method of principal coordinates. 

9.5. For a cantilevered beam with a uniform cross section, as shown in Fig. P9.5, 
find the transfer matrices from state 0 to 2. Determine the natural frequency of the 
system. 

k2 

2 

Fig. P9.3 
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9.6. A two-degree-of-freedom system consists of two equal springs and two 
equal masses as shown in Fig. P9.6. Using state vectors and transfer matrices, 
obtain the natural frequencies and mode shapes for the system. 

9.7. Solve the problem of the vibrating string for the following boundary con- 
ditions: y(0, t) = 0; y(L,  t) = 0; Oy/Ot(x, 0) = 0; and y(x,  O) = f ( x )  as shown 
in Fig. P9.7. 

9.8. A uniform string stretching from - ~  to ~ is originally displaced into the 
curve 

y : {si0x 0 < x < : r  
elsewhere 

Find the displacement of the string as a function o fx  and t. 

9.9. Derive the differential equation of motion for a longitudinal vibration along 
a uniform rod with length L. 

9.10. Consider a simply supported beam of length L. The initial displacement 
of the beam is 

Mo X) 
2 E I X ( L  - 

0 

1 

2 

3 

4 

Fig. P9.6 
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L/3 L 

Fig. P9.7 

X 

and it is released from rest. Obtain the transverse motion y(x, t) of the beam. 

9.11. For a freely vibrating square membrane of length L, supported along the 
boundary x = 0, x = L, y = 0, y = L, suppose that the membrane is deflected in 
the form 

w(x, y, 0) = f ( x ,  y) 

and is released from rest. Prove that the expression for the transverse vibration 
w(x, y, t) of the membrane is 

~--~ ~ m zr x n ~r y 
s i n  W = amn s i n  L L 

n/=l  n = l  

COS O)mn t 

where 

4foLfoL mZrXsinnZrYdxdy 
a m n  = L--- 2 f (x ,  y) sin L L 

9.12. The differential equation of motion of a damped pendulum can be written 
in the form 

O + 2~wO + 09 2 sinO = 0 

(a) Transform the equation into the equation for the phase plane and determine 
the singular points. 

(b) Choose a value of 09, and plot curves in the phase plane for two cases: 
= 0.1, and ~" = 2 .  
(c) Examine the motion in the neighborhood of  the singular points. 

9.13. Using the Runge-Kutta method, obtain the numerical solution O(t) for 

+ w 2 sin 0 = 0 

with 09 2 = 50 (rad/s2), 0(0) = Jr/2, and 0(0) = 0.1 (rad/s). Plot the numerical 
results for 0 < t < 2. 
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9.14. Model the vibration of an automobile as a solid body supported by four 
springs as shown in Fig. P9.14. Obtain the differential equations of  motion for the 
system under small oscillation. 

9.15. Suppose that one of the four wheels is not balanced on the automobile 
modeled in Problem 9.14. Obtain the differential equations of  motion for the 
system, and find the subsequent motion of  the vibrating car during driving. 

9.16. A circular membrane with radius of 10 cm is fixed on its edge. Suppose 
that the membrane is deflected initially in the form 

l O - r  
w(r, O) -- - -  

lO 

and is released from rest. Find the expression for the transverse vibration w(r, t) 
of the membrane. Assume a = 300 m/s.  



10 
Special Relativity Theory 

T HIS chapter is devoted completely to the Special Relativity Theory. The 
reason behind this is to motivate readers to think, because, through this 

theory, space coordinates and time are related. Newton's equation of motion is 
modified, and times are different in moving and stationary systems. Furthermore, 
an event that occurs in the past in one system can become a future event in another 
system. All those are theoretically possible. To make these into our daily lives, 
further research is needed. Therefore, study of this theory not only can broaden 
our minds, but also can lead us to the invention of some new devices that will turn 
the theory into practical applications. 

The development of this theory is based on famous experiments carried out 
by Michelson and Morley.* They found that the velocity of light always has the 
constant value despite the relative motions of source, observer, or medium. This 
result cannot be explained by the Galilean transformation that has been used 
throughout the previous chapters. 

The set of transformations derived by Hendrik Antoon Lorentz, a Dutch physi- 
cist, solves that problem. The transformation is known as the Lorentz transfor- 
mation and is the basis of the Special Relativity Theory. Albert Einstein in 1905 
systematically recognized the limitations of Galilean transformation. He chose to 
modify the concept of time from absolute scale to space dependence. He made 
only two assumptions: 

1) The laws of dynamics, including electromagnetic phenomena, must have the 
same form in systems moving with uniform velocity relative to each other. 

2) The speed of light c is a universal constant, independent of any relative 
motion of the souce and the observer. 

Using these assumptions, Einstein was able to formulate logically precise the- 
ories. The Special Relativity Theory of 1905 considers reference systems that are 
in uniform motion with respect to one another. The more general treatment of 
accelerated reference systems is the subject of the General Relativity Theory that 
was developed in 1915. 

In Section 10.1, we shall discuss the Lorentz transformation. The conditions 
and assumptions, which are made for this transformation, are discussed in detail. 
In Section 10.2, we shall study the Brehme diagram, which is a graphical repre- 
sentation of the Lorentz transformation. The construction and the interpretation of 
this diagram will be discussed in the section. Through the example of the Brehme 
diagram, we can see that a region for past events in a system can be a region 
for future events in another system. Lastly, some consequences of the Special 
Relativity Theory are presented in Section 10.3. We shall discuss how to change 
some equations of Newtonian mechanics into relativistic forms. 

*For the Michelson-Morley experiment, see Silberstein, L., The Theory of Relativity, Macmillan, 
London, 1924, p. 71. 

305 
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Fig. 10.1 
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Primed system moving with velocity v relative to the unprimed system. 

10.1 Lorentz Transformation 

Consider two reference systems as shown in Fig. 10.1. The primed system is 
moving with uniform velocity v along the x axis relative to the unprimed system. 
The Michelson-Morley experiments may be described as follows. A spark from 
a light source is emitted from the common origin of  the two systems when they 
are coincided. As the light wave propagates spherically into the space, it is found 
that the spherical wave is the same in both systems regardless where the spark is 
released in the moving system or the stationary system. It is also found that the 
spherical wave front is not affected by whether or not the medium was moving. 

This situation cannot be explained by the Galilean transformation that can be 
written as 

x=x'+vt y=y' z=z' t=t 

Under this transformation, the spherical wave in one system will be distorted in 
the other system because of the v t  term in the x direction. However, if the second 
assumption of  Einstein as stated above is observed, the equations for spherical 
surfaces in the both systems can be written as 

x 2 + y2 + z 2 = (ct)2 (10.1) 

X '2 d- y,2 d- Z '2 : (Cff) 2 (10.2) 

To derive the Lorentz transform, we define 

X 1 = X ,  X2 = y ,  X3 = Z ,  X 4 = i c t  

, , , y , ,  , , , 
X 1 : X , X 2 : X 3 : Z , X 4 = i o t '  

where i = V/-L-~. This is known as Minkowski space, which is the complex four- 
dimensional space time. To establish the relationship between the two systems, 
we assume 

4 

' Z (10.3) x a = aa f l x f l  

fl=l 

and four unit vectors are orthogonal to each other. Using matrix notation, Eq. 
(10.3) becomes 

X '  = A X  
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where /o ,001004) 
A =  0 1 

\ a 1 4  0 0 a441 

Using the orthogonality assumption, we have 

A A  r = I 

i.e., 

a21, + a24 = 1, a21 + a24 = 1, a,ta41 + a14a44 = 0 (10.4) 

Here we have three equations, but there are four unknowns to be determined. One 
additional equation is obtained from the relationship between the origin of the 
primed system and the corresponding coordinate in the unprimed system: 

il) 
x l  = ot = - - - ( i c t )  = - i f l x 4  

C 

where fl = v / c .  But for this origin, we also can write 

Xlt : 0 : a l l X l  + a14x4 = ( - - a l t i f l  + a l a ) x 4  

Hence we have 

(10.5) 

a14 : i f la l l  (10.6) 

Using the preceding equation together with the three equations in Eq. (10.4) 
from orthogonality, we find 

i.e., 

1 
all -- -- )/ (10.7a) 

7 1  - ~2 

Therefore the Lorentz matrix is 

1 
)/ - -  - -  

71 - ~  
a14 : ifly (10.7b) 

a44 = y (10.7c) 

a41 = - i f l y  (10.7d) 

A = o° 
- i ~ y  o o 

(10.8) 
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The transformation can then be written explicitly as 

i 
X 1 = Y ( X l  -'[- i f l x 4 )  

o r  

o r  

x '  = y ( x  - v t )  (10.9a) 

y '  = y (10.9b) 

z' = z (10.9c) 
/ 

x4 = y ( - i C ~ x l  + x4) 

(v) t '  ---- y t - ~-~x (10.9d) 

Not that as v << c,/~ ~ 0, and y = 1, the Lorentz transformation reduces to the 
Galilean transformation. 

Because the two systems are in relative motion, the unprimed system may be 
considered as moving with velocity - v  along x '  axis. The relations between the 
two systems can be written as 

x = y ( x '  + v t )  (10.10a) 

y = y '  (lO.lOb) 

z = z' (10.10c) 

t = y t '  + - ~ x  (lO.lOd) 

Applications of the Lorentz Transformation 

Length contraction of a rigid rod. Consider a rigid rod of ]ength g 

= X  2 - - X  l 

along the unprimed x axis. When this rod is carried in the moving system, we find 

e = x2  - x ,  = × ( x ~  + v t ' )  - ×(x'~ + v t ' )  = × ( x ~  - x ' l )  

o r  

' ' = £ '  ~/1 - / 3 2 £  (10.11) X 2 - -  X 1 -~- 

This means that if the rigid rod is measured in the moving system, the length 
becomes shorter because 

x / l  - t ~  2 < 1 

This fact is known as the Lorentz-Fi tzgerald contraction. 
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Moving clock. Consider a clock fixed at the origin of the moving system 

x '  = O, x = v t  

The conversion of time gives 

[( t 2 - -  t I = y t2 - ~-~x2 - tl - ~sxl 

__ 132 

= y ( l  - -  f l 2 ) ( t  2 - -  t l )  

= 4 1  --  f12(t2 - -  t l )  ( 1 0 . 1 2 )  

That means that the time in the moving system becomes shorter than the time in 
the stationary system. Just to see the dramatic effect of  the result, let us consider 
/~2 = 0.99. We find one year in the moving system; the corresponding time in the 
stationary system is 10 years. 

Verification of Lorentz Transformation with Light Pulse 
Released from Different Systems 

A light pulse released at the origin of  the unprimed system at the instant when 
the two origins are coincident. The wave front in the positive x direction is at 

X ~ C [  

Using Eq. (10.9a) and Eq. (10.10d), the corresponding position in the x '  system 
is determined as follows: 

x '  = y ( x  - or) = y ( c t  - v t )  = y ( c -  v ) t  

= y2 (c v ) t ' +  V-x' - -  _ _ _ X  ! 

C C 2 

Simplifying leads to 

x '  = ct '  

The wave front in the negative x direction is at 

x = - c t  

The corresponding position in the moving system is 

x '  = y ( x  - v t )  = y ( - c t  - v t )  

= - y ( c - + - v ) t = - y ( c - F v ) [ y ( t ' W - ~ 2 x ' ) ]  

(1o.13) 
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Rearranging gives 

x '  = - c t '  (10.14) 

Therefore, they are spherical surfaces in both systems. 
A light pulse is released at the origin of  the primed system moving with velocity 

v at the instant when the two origins are coincident. 
The wave front in the positive x '  direction is 

x '  = ct'  

The corresponding position of the wave front in the unprimed system is 

x = y ( x '  + vt ')  = y ( c t '  + vt ')  

Simplifying leads to 

x = c t  

The wave front in the negative x '  direction is 

X 1 . =  - - C t  I 

The corresponding wave front in the negative x direction is 

x = y ( x ' +  ct') = y ( - c t '  + vt ' )  = - y ( c -  v) t '  

Rearranging gives 

x = - c t  

Therefore, we find that the wave fronts are spherical surfaces in both systems. 

10.2 Brehme Diagram 
The Brehme diagram is a very useful tool for visualizing the Lorentz transfor- 

mation. Note that in four-dimensional space time, y and z are not changed, but x 
and t are transformed into x '  and t'. Therefore, the Brehme diagram is designed 
to show the relationship of  Lorentz transformation and the coordinates of  an event 
in the both systems, moving and stationary. 

First let us construct the Brehme diagram as follows: 
1) From the known value of  velocity v of  the moving system, calculate ot such 

that 

ot = sin_ l _v (10.15) 
C 
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X' × \ / 
of 

, ,..-..." , - ~ " ~ . ~ n  / light weve 

Fig. 10.2 Construction of the Brehme diagram. 
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2) Draw two straight axes for ct '  and ct ,  with ct axis rotated by the angle ot 
counterclockwise as shown in Fig. 10.2. 

3) Draw x axis perpendicular to ct '  axis. 
4) Draw x '  axis perpendicular to ct axis. Note that x ,  ct  axes are for the unprimed 

system and x ' ,  ct  ~ axes for primed system. 
5) Draw a line from the origin bisecting the angle between axes of  either primed 

or unprimed system. This line is called a world line of the light pulse. Any point 
P on this line, as shown in Fig. 10.2, represents the same spherical wave front in 
the two systems. 

To see the significance of  the Brehme diagram, let us take any point A as shown 
in Fig. 10.3. 

sin oe = / 3  

0 = 90 deg - c~ 

1 1 

v / l _ ~ 2  cosol 

= sec oe 

At point A 

x = O T  + P T  = O D  secol + P A t a n ~  

= x ' y  + c t ' y ~  = y ( x '  + c~t ' )  = y ( x '  + v t ' )  (10.16) 

X' × 

Fig. 10.3 Verification of the Brehme diagram. 
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This agrees with Eq. (10.10a). Also at point A 

ct = O S  = D T  + T A  = O D t a n a  + PAseco~  

= x'y/3 + c t ' y  = y ( c t '  + / 3 x ' )  

o r  

t = y[ t '  + (v /c2)x  '] (10.17) 

which agrees with Eq. (10.10d). Therefore, the Brehme diagram truly reproduces 
the features of the Lorentz transformation. 

E x a m p l e  10.1 

Suppose that one system is moving with a constant velocity of 2.598 × 108 m/s 
relative to another system. Choose the x and x '  axes along the direction of the 
velocity, l) Construct a Brehme diagram to relate the both systems. 2) Using the 
Brehme diagram constructed in step 1, indicate the regions in the diagram that 
represent the future in one system but the past in the other system. 3) Determine 
also the regions that represent the left of the reference position in one system but 
the right of the reference position in the other system. 

Solution. 1) Construction of a Brehme diagram 

v 2.598 
s i n ~ = / 3 =  - - - -  --0.866 

c 3.000 

= 60 deg 

The Brehme diagram is constructed as shown in Fig. 10.4. 
2) Take point P as a reference point. Draw a line P R  from P perpendicular 

to ct axis. Note that the region to the left of line P R represents events taking 

X' 

Past~, 

r " / l  

(Future 

',//J 
//) 

Fig. 10.4 Future and past overlapping in the shaded regions. 
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) .  

x' ~'/~/, (Right) x x . , ,  

( . 

Fig. 10.5 Right and left overlapping in the shaded regions. 

place in the past in the unprimed system; to the right of that line represents events 
that are to take place in the future. On the other hand, draw a line PS from P 
perpendicular to ct' axis. The region to the left of line PS represents events that 
have occurred in the past, and the region to the right of line PS represents events 
that are going to happen in the future in the primed system. The shaded regions 
represent the future in one system but the past in the other system as shown in 
Fig. 10.4. 

3) From P, draw a line PU, normal to the x axis as shown in Fig. 10.5. The 
region below line PU means that events happen at places with small values in x 
coordinate as denoted by "Left"; above line PU represents events taking place 
at larger values of x as indicated by "Right." On the other hand, the line P V is 
normal to x'  axis. The region below line P V represents events happen at places 
with smaller value in x', and the region above line P V represents that events take 
place at the larger value of x'. The shaded regions depict "Right" in one system 
and "Left" in the other system. 

Example 10.2 
Consider a case of twin brothers A and B. B takes a space trip traveling with 

relativistic velocity to another planet. After arriving on the planet, B stays briefly 
and then comes back. Assume that the time for acceleration in the beginning of 
the trip, brief stay on the planet, and for the deceleration at the end of return trip 
are small compared to the duration of whole trip. Determine which brother, A or 
B, is actually younger in age. 

Solution. Construct a Brehme diagram for the two systems as shown in Fig. 
10.6a for the trip of B to the planet. Consider x', ct' are the axes for the moving 
system and x and ct axes for the stationary system. Assume that A, B are always 
at the origins of space coordinates. The time spent by B is Atb and by A is Ata. 
From the diagram we find 

Atb = Atu cos c~ 
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a) Xb x o b) x'o x'b 

Fig. 10.6 Brehme diagrams for brother B. 

Construct another Brehme diagram for the two systems as shown in Fig. 10.6b 
for the return trip of  B. Again assume that A, B are at the origins of  space 
coordinates. Converting the time, we have 

Attb=y t2+--~X2 --y t lq-~Xl  =y(t2--tl)a-t-y-~(X2--Xl)a 
(1 ¢1 

1) 2 
= y(t2 - t l )a  - y~ ,2 ( t2  - q ) a  = At~ cos~ '  

The prime symbol is used only to indicate the quantities of  the return trip. In this 
way the expression includes the possibility that or' may be different from ~. The 
total time for the round trip of  B is 

Atb  + At~ = A ta  cosot + At~ cosot' 

Therefore, we conclude that B is younger. 

10.3 Immediate Consequences in Kinematics and Dynamics 

Addition of Velocities 

Suppose that point P in the moving system moves with velocity u along x '  axis. 
The velocity of  the moving system is v. The velocity of  P in the stationary system 
is no longer u + v under the Lorentz transformation because 

x ' = y ( x -  v t )  
, (o;) 

= y  t - -  

d x '  d x  - v d t  d x  / d t  - v 
U - -  - -  

d t '  d t  - v d x / c  2 1 - ( v / c 2 ) ( d x / d t )  

Solving for the velocity of P in the stationary system, we find 

dx u + v  
(10.18) 

dt  1 + u v / c  2 
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Note that if u and v are small compared with c, then the velocity of  P reduces 
to the addition of  u and v. We can apply this result to the superposition of  two 
Lorentz transformations. Consider three frames of  reference S, S*, and S**. S* 
has the velocity v relative to S, and S** has the velocity u relative to S*. The 
transformation equations relating S** and S are 

x** = y~(x - wt) 

y** = y 

Z** .~- Z 

where 

and 

t** = Yw t - 

(10.19a) 

(lO.19b) 

(10.19c) 

(lO.19d) 

o r  

1 
Yw - (10.190 

~ / 1  - ( w / c )  2 

Equations of Motion in Relativistic Form 

Time change.  Consider a particle at rest in the primed system. The velocity 
of  the particle in the unprimed system is v. The changes of time in the two systems 
are related by 

(dr)  2 - - ( d t )  2 1 - ~ - ~  = ( d t ) 2 ( 1 - / 3 2 )  

dr  = dtx/1 - / 3 2  (10.20) 

where d r  is the change of  time in the moving system and dt is the change of  time 
in the stationary system. 

Equation o f  motion. By defining the relativistic mass and momentum as 

m0 dxi 
m =_ - -  - ymo Pi =- m e - -  (10.21) 

x/1 - f12 dt 

and the four-component force as 

d2xi  
f /  = m 0 - -  (10.22) 

d r  2 

u + v  
w -- (10.19e) 

I + uv / c  2 
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we find that the Newtonian equation becomes 

d2xi d dxi d dxi d d 
.F/ = no  dr 2 -- ~rmo-~r  -- drmol,'--d-~ = },'-~moYvi = y - ~ m v i  

According to the meaning of the term, we obtain 

d 
- - m v i  = .Ti /y  = Fi (10.23) 
dt 

i.e., 

d m o v  i 
- F i dt , / / _  82 

where m0 is the rest mass, ~ / i s  the ith component of the Minkowski force, and Fi 
is the ith component of the coordinate force as observed in the unprimed system. 

Relativistic energy. By defining four vector components 

dx dy dz 
/zl ~ d r '  /z2 ~ d r '  /z3 ~- d r '  

dt 
#4 ~ ic'v-- = i cy  

or ,  

then we have 

£/Z2  = _c2(dt "~ 2 (dx )  2 (dY'~ 2 (dz'~ 2 
i:1 \ d r ]  + -~r + \ -~r J + \ d r ]  

= ( d / ~  2 1 c2 ) --c 2 
\ d r ]  ( -c2q- l )2 ) - -  [ - f i  2 ( v 2 -  ~--" (10.24) 

Note that/zi is the component of the proper velocity that is obtained by the distance 
traveled in the unprimed system divided by time interval from moving clock; vi 
is the component of the coordinate velocity that is the distance divided by the 
time interval from a fixed clock. On the other hand, taking the dot product of the 
Minkowski force with the proper velocity gives 

4 ~ d#i ~ 1 d /~1 
E ~//zi = m0 ~ --d-~-r # ' :  5m0h--~r .2  
i=1 = 

= lmod- -~( -c2)=O 

Y 4  = m 

- 1  3 
) - ]  ~ / ~ i  = - -  

/~4 i=l 
- 1  3 i y  

E y F i y v i  = - - ( F .  V) 
[Z4 i=1 C 
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or 

• d 

tY(F'C V) = .)~'4 ---- m0 ~-~t//.4 = mo'~r(icy) 

d mo c2 
(F. V) = 

dt x/1 - 82 

But the meaning of  F -  V is the rate change of  the kinetic energy as discussed in 
Section 2.3; therefore, we find 

mo c2 
K.E. -- (10.25) 

, / 1  - 

Note that Eqs. (10.23) and (10.25) are usually given in college physics books 
without explanation. 

Example 10.3 
Consider that a particle is moving on the x axis under a constant coordinate 

force F .  Assume it starts from rest at t = 0. Find the maximum limiting velocity 
of  the particle. 

Solution. Using Eq. (10.23), we have 

d (  mov ~ = F  
dt ~/1--V2/C2] 

Integrating leads to 

Solving for v, we find 

moo 
= Ft 

~/1--02/¢ 2 

cFt 
U= 

x/(Ft )  2 + (m0c) 2 

Therefore, the velocity of  the particle is always less than c. The limiting value is 
c as t approaches infinity. This is not true in Newtonian mechanics. 

Problems 
10.1. Show that the wave equation 

1 O 2 J  . _ 0 
V2f  C2 8 t"-'~ 

is invariant under a Lorentz transformation but not under a Galilean transformation. 
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10.2. Derive the relationship for the velocity of a particle along the x '  axis 
in a primed system to the velocity in the unprimed system under the Lorentz 
transformation. 

10.3. Derive the relationship for the acceleration of a particle along x '  axis in 
the primed system compared to that in the unprimed system under the Lorentz 
transformation. 

10.4. Do the following: 
(a) Determine the velocity of a moving system such that 7 days in the moving 

system is equivalent to 1 year in the stationary system. 
(b) Construct a Brehme diagram with scales on the axes for the systems deter- 

mined in part (a). 

10.5. Verify the Brehme diagram Fig. 10.6b for the return trip of B. 

10.6. Do the following: 
(a) Determine the velocity of a moving system so that an observer in the moving 

system can see an event that happened one day ago in the stationary system. 
(b) Construct a Brehme diagram and mark the position of the observer in the 

diagram for the systems described in part (a). 

10.7. Prove that if velocities u and v are less than speed of light c, the result of 
the addition of velocities through relativity theory can never be greater than c. 

10.8. Prove that the kinetic energy expressed by Eq. (10.25) will reduce to K.E. 
1 2 = ~mov + mo c2 if v << c. Discuss the significance of m0 c2. 

10.9. Consider a system moving along x axis with velocity v relative to the 
stationary system. A sphere in the moving system is described by 

Xl2 + y,2 + zt2 ~ a 2 

What will be the shape as observed in the stationary system? 

10.10. Two particles, with rest masses m l, m2, move along the x axis with velo- 
cities ul, u2, respectively. They collide and coalesce to form a single particle. Ass- 
uming the laws of conservation of relativistic mass and momentum, prove that the 
rest mass m3 and velocity u3 of the resulting single particle are given by 

( .1.2) 
m~ = m~ -t- m2 2 -F 2mlm2 YlY2 1 - c2 ] 

mlylUl + m2Y2u2 

m l Y l  -'l'- m 2  y2 

where 

1 

× 1  - ~/1 - ( u l / c )  2' ×2= ~/1 - ( u 2 / c )  2 



Appendix A: Runge-Kutta Method 

T HE Runge-Kut ta  computation scheme introduced here is accurate to the 
fourth-order-of-time increment. The equations to be integrated may be written 

a s  

dx 
- -  = f ( t ,  x ,  y )  ( A . l a )  
dt 

dy 
- -  = g ( t ,  x ,  y )  ( A . l b )  
dt 

where f ( t ,  x ,  y)  and g( t ,  x ,  y)  are known functions. The values of  x and y are 
known at t = ti. Hence at t = ti = Tl, 

Xl = xi ,  Yl = Yi 

Fl = f ( T l , x l ,  y l ) ,  Gl  = g ( T l , x l ,  y l )  

At t = ti + h / 2  = 7"2, where h = At ,  

x2 = xi + F l h / 2 ,  y2 : Yi q- G l h / 2  

/72 = f(T2,  x2, Y2), G2 = g(T2, x2, Y2) 

A t t  = ti + h / 2  = 7"3, 

x3 = xi + F2h/2 ,  Y3 : Yi "+- G 2 h / 2  

F3 = f (T3 ,  x3, Y3), G3 = g(T3, x3, Y3) 

A t  t = ti + h = T4, 

X4  = Xi  -'}- F3h, Y4 = Yi  -I- G3h 

F4 = f(T4,  X4, Y4), G4 = g(T4, X4, Y4) 

Then the values o f x  and y for next step t = ti + Ah  are 

xi+l = xi + (h /6 )[Fl  + 2F2 + 2F3 + F4] (A.2a) 

Yi+l - ~  Yi q- (h/6)[G1 + 2G2 + 2G3 + G4] (A.2b) 

Note that the formulas that have been given can be applied repeatedly until the 
expected time is reached. To save time of  computation, a large value of  h may 
be chosen, but the accuracy of the calculation may suffer. On the other hand, for 
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a very small value of h, the number of steps must increase in order to reach the 
final value of time. For each step of calculation, the computer will create some 
error caused by the limitation of the number of digits calculated in the computer. 
Therefore, a compromised value of h must be chosen for actual applications. The 
way to determine the value of h may be done as follows: choose a value for h, 
say h l, and complete the calculation for a set of x and y. Reduce the value of h 
to h i / 1 0 ,  for example, and repeat the calculation. Compare the new result with 
the old set. If the results are not significantly changed, then the value of h chosen 
initially is good enough for calculation. 

The preceding formulation can be used for solving a second-order differential 
equation. For example, 

= ( 1 / m ) [ F ( t )  - k x  - c21  (A.3) 

we can define 

2 = y (A.4a) 

then 

= ( 1 / m ) [ F ( t )  - k x  - c y ]  = g ( t , x ,  y )  (A.4b) 

Equations (A.4a) and (A.4b) are in the form of Eqs. (A. la) and (A. lb). Therefore, 
the method can be applied. In fact, the method can be extended to integrate many 
equations simultaneously. 



Appendix B: Stoke's Theorem 

B.1 Proof of Green's Lemma in XY Plane 

Green's lemma can be written in equational form as 

fc(edx + QdY) = f L (~x OP']dxdyoy } 

Consider first the integral 

II = f fR aQdxdyOx 

Let the curve PI P4P3 be represented by 

and PlP2P3by 

x=gl(y) 

x = g2(Y) 

as shown in Fig. B. 1. Then we have 

11 = OQ dxdy = {Q[g2(y), y] - Q[gl(y), y]}dy 
agl(Y) OX c 

f/ f: = Q[g2(y), y]dy + Q[g~(y), y]dy 

(B.1) 

P3 ~ =%6') 

P41~x= gl (Y) ~i P2 

I P1 I 
I I 
I I 
I I 
o b 

F i g .  B . 1  G r e e n ' s l e m m a .  
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Because the first part represents the integral for the curve P1 P2P3 and the second 
part for the curve P3P4PI, the result is 

Ii = fc Q(x' y)dy 

Similarly, denoting the curve P4PI P2 by y = f l  (x) and the curve P2P3P4 by 
y = fz(x), we have 

3P [ [ 3Pdy 
1 2 =  [ [ - - d x d y  = dx 

J JR 3y J JR 3y 

-~-y dydx = {P[x, J2(x)l - P[x, f l (x ) l}dx  

= - P[x, ])(x)ldx - P[x, f l  (x)]dx 

Because the first part represents the integral along P2 P3 P4 and the second part for 
the curve P4P1 P2, the combined result is 

]2 = -- fc P dx 

Therefore, 

11 - ] 2  = ~XX 

Green's  lemma is established. 

B.2 Stoke's Theorem 

First consider a two-dimensional surface. Let 

F =  Pi+ Qj 

R = xi+ yj 

dR = idx +jdy 

then 

OP)dxdy=fc(pdx+Qdy)oy 

P dx + Q d y = F . d R  

i 0 
OQ o P _ i~ 
Ox by oy 

Q 
i l  = k . V  x F  



Fig. B.2 

APPENDIX B: STOKE'S THEOREM 

C 

Stoke's theorem applies to a three-dimensional  case. 

323 

Therefore, Green's lemma becomes 

fcF.dR=ffak. V×FdA=ffsVXF.dS (B.2) 

where dS = kdA. 
Equation (B.2) can be generalized to three-dimensional surface bounded by 

curve C. We divide the surface into many infinitesimal areas as shown in Fig. B.2. 
Each area can be treated as a two-dimensional surface. The sum of all the area 
integrals is the integral for the three-dimensional surface, and the sum of all the 
line integrals along Ci is the line integral along C because the line integrals in the 
interior areas are cancelled by each other. Therefore Eq. (B.2) can be applied to a 
three-dimensional case. 
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Appendix D: Determinants and Matrices 

D.1 Definitions of Determinants and Matrices 
A determinant of  nth order is a set of  n 2 numbers or symbols,  which are called 

the elements, arranged between two vertical lines in the form of  a square array of  
n rows and n columns. When it is expanded, the final result of  a determinant is a 
single number or is essentially becoming a number at last. 

A matrix is a rectangular array of  numbers or symbols. Its size is specified by 
m x n where m is the number of  rows and n the number of  columns. In particular 
when n is 1, the matrix is called a column matrix and is equivalent to a vector 
in m dimensional space. Usually all the elements are arranged between two arcs. 
If  m = n, then the matrix is called a square matrix. The elements in the matrix 
are not related to each other, and matrices cannot be expanded as a determinant. 
Therefore, m x n matrix means a set of  m x n numbers arranged specifically 
according this form. 

D.2 Properties of Determinants 
1) Determinant of  A equals determinant of A transposed: 

[AI = IArl  (D.1) 

2) If  any two rows (or columns) are interchanged, the sign of  the determinant 
is changed. 

3) I f  each element of  a row (or column) is multiplied by a constant k, the value 
of  the determinant is multiplied by k: 

kall a12 = kall kal2 = k al l  a12 (D.2) 
ka21 a22 a21 a22 a21 a22 

4) The multiplication of determinants 4AI and IBI equals the determinant of  AB 
(product of  matrices): 

IAIIBI = IABI (D.3) 

5) If  two rows (columns) of  a determinant are identical or in proportion, the 
value of  the determinant is zero. 

6) A determinant of order of  three can be expanded directly into the sum of  six 
terms as 

lal bl c3 
c1 

a2 b2 c2 ~. alb2C3 -F a2b3Cl -F a3blC2 - alb3C2 - a2blC3 - a3b2Cl 

a3 b3 

(D.4) 

327 



328 ADVANCED DYNAMICS 

7) The order of  a determinant can be reduced by one if it is expanded as follows: 

a l l  a12 a13 a14 a22 a23 a24 
022 023 a24 

]A]= ~i11 032 033 034 =( - -1 )2011  032 a33 034 

a41 a42 a43 044 a42 043 a44 

021 a23 024 021 a22 

q - ( - - l ) 3 a l 2  a31 a33 a34 q-(--1)4a13 a31 a32 

a41 a43 a44 a41 a42 

a21 a22 a23 

q-(--1)5a14 a31 a32 a33 

a41 a42 043 

a24 

a34 (D.5) 

a44 

The  determinants  behind e lements  all are the determinants  o f  minors.  Note  that 
through the preceding  procedure  the order o f  the determinant  is reduced by one.  
W h e n  the order o f  determinant  reaches three, the determinant  can be expanded  
direct ly as g iven in Eq. (D.4). 

In general ,  

a l l  a12 • • • aln 

IAt = a21. . . . . . . . . . . .  a22 ' " " a2n = ~--~aij(-1)i+jlj=l minor o f  aijl 

lanl an2 ann I 

(D.6) 

D.3 Properties of Matrices 
1) Addition of matrices• 

all a12 - • - aln~  

A + B = / a21 a22 • • • a2n I q- 

/ ! 
\aml  am2 " • " amn/  

f all + bll a12 -Jr- b12 

_ | a21 + b21 a22 q- b22 
- -  [ • . . . . .  

\ a m l  -k- bml am2 q- bin2 

bll  b12 " "  b ln~  

:ii b::J 
bml bm2 " "  bmn,I 

• " • aln q- bin "~ 
| / 

' ' '  amn -'1- bmn] 

= (aij + hi j )  (D.7) 
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2) Multiplication of two matrices. 

C = A B =  

f a l l  a 1 2 - . ,  aln ~ {bi t  b12 " ' '  blp~ 

[a:l. a22 . . . . . . . . .  . . .  a2nj/ . [b:l. b:2. ::: b2.p / 

\aml  am2 "'" amn/  \bn l  bn2 "'" bnp] 

allbll  + a12b21 + ' " + a l n b n l  

= / a21b l l  + a22b21 + . . .  + a2nbnl 

\amlbl l  + amzb21 + "" • + amnbnl 

alibi2 + al2b22 + ' "  + alnbn2 " " " "~ 

) a 2 1 b 1 2 + a 2 2 b 2 2 + "  " + a 2 n b n 2 " ' "  

amlb12 + am2622 + " " + amnbn2 " " " 

(Cik) = (ailblk + ai2bxk + . "  + ai,,bn,~) (D.8) 

Note that in order to perform the multiplication of two matrices, if the order of A 
is m x n, the order of B must be n x p. The number n must be the same in A and 
B, i.e., the number of columns in A must be the same as the number of rows in B. 

3) Multiplication of a matrix by a constant k. 

k A  = (kaij)  (D.9) 

This means that all the elements must be multiplied by k. 
4) Inverse of a matrix. If matrix A is a square matrix, the inverse of A may be 

obtained through the following procedure. Consider 

a l l  al2 - • • aln~ 

A =  [ a21 a22 . . .  a2nl =(a i j  ) 

\anl an2 " • • ann/ 

The minor of an element aij is Mij that is the determinant of A except the ith row, 
j th column being omitted, and the cofactor is 

( -  1)i+J Mij 

The adjoint of A is the cofactor transposed, i.e., 

adj(A) = [ ( -  1)i+JMij] 7" 

The inverse of A is the adj(A) divided by IAI 

1 
A -l " (D.IO) = ~-~ adj (A) 

For example, let us construct the inverse of the following matrix 

i) D =  - 5 

8 - 
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We find 

/-9:6_30 
( ( - -1 ) i+JMi j )  = \ - - 2 7  - 1 8  

IDt = - 3 0 6  

Hence 

1 D - l _  
306 

r -9:6 
. . . .  30 - 

\ - 6 7  - 2 2  - 

Checking the result, we find D D  - l  = I .  



Appendix E: Method of Partial Fractions 

T O use the table of  Laplace transforms, it is often necessary to employ the 
method of  partial fractions. The method briefly can be outlined as follows: 

Suppose that the transformed function can be written as 

F ( s )  = N ( s ) / D ( s )  (E.1) 

where N ( s )  and D ( s )  are polynomials.  There are several ways to express F ( s )  
depending on the nature of  roots of  D ( s )  = 0. Note 

D ( s )  = s n + ClS n-l  + C2 Sn-2 + ' ' "  "J7 Cn 

= (S -- a l ) ( s  -- a 2 ) ' - .  (s -- an) (E.2) 

1) Unrepeated factor of  (s - ai) .  If  the roots of  D ( s )  are different, the trans- 
formed function can be written as 

Al  A2 An 
F ( s )  = ~ + + . . .  + - -  (E.3) 

s - al s - 02 s - an 

To determine the constants Ai ,  w e  multiply both sides of  the preceding equation 
by D ( s )  and set s to a i t o  find 

N ( s )  
Ai = s--,a,lim (s - ai ) '~  (s 

To simplify the expression, we rewrite the equation for Ai a s  

N ( s )  
Ai = l i m -  

s-.*a, DI(S ) 

where 

o r  

D ( s )  
D l ( s )  - 

S - -  a i  

D ( s )  = (s - a i )D l (S )  

Differentiating the equation gives 

D'  (s) = D1(s)  + (s - ai)Dtl (s) 

lim D'(s)  = Dl ( s )  
s--+al 
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Hence 
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N ( s )  
Ai  = lim - -  (E.4) 

s~a, D ' ( s )  

2) Repeated factor of (s - a)  m. For this case, the transformed function can be 
written as 

N ( s )  A m Am_ ! A1 
F ( s )  . . . .  + + . . .  + + w ( s )  

D ( s )  (s - a )  m (s - a )  m- I  s - a 

To determine the constants, we multiply the preceding equation by (s - a )  m and 
find 

(S -- a ) m F ( s )  = A m + A m _ l ( S  - a )  + . . .  + A I ( S  - a )  m- I  

+ w ( s ) ( s  - a )  m = Q ( s )  

Am = l im[(s -a)mF(s)] = Q ( a )  
S---~ a 

Hence 

Differenting Eq. (E.5) leads to 

Q ' ( s )  = A m - I  + terms containing factor (s - a)  

Hence 

Differentiating again, we find 

Am-I  : [Q'(s)]s=u 

[Q"(S)]s= a = 2! Am_ 2 

Am-~ = k! L ds k J,=. 

Hence 

(E.5) 

(E.6) 

3) Unrepeated complex factors (s - a)  (s - h). When the roots of  D ( s )  are 
complex numbers, a and conjugate of  a (h), the function can be written as 

N ( s )  A s  + B 
F ( s )  - - -  - + w ( s )  

D ( s )  (s - a ) ( s  - gt) 

Let 

a = ot + ifl, h = o t  - i / ~  

then 

A s + B  
F ( s )  = k- w ( s )  (E.7) 

(S - - ~ ) 2  d r _f12 
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To determine the expression for (As  -t- B), we multiply the preceding equation by 
(s - ~)2 +/~2, then we have 

As + B + w(s)[ (s  - 00 2 +/52] = [(s - or) 2 + fi2]F(s) = R(s )  

Let s approach a, then 

R(a)  = Sa + iT,, = a A  + B = (or + i~6)A + B 

That means 

So = o t A  + B, Ta = ~ A  

Hence 

As + B = A ( s - o ~ )  + o t A  + B 

T`, 
= 7 ( s  - oO + S`, (E.8) 

To determine 

Solution. 

Note that 

Therefore, 

Example E.1 

~_,{ s2+, } 
s 3 + 3s 2 + 2s 

~_,{ s2+, j__~_,{ s 2 + , }  
s 3 +--3-s 2 + 2s s(s  + l)(s + 2) 

{A A~ A~} = £ - 1  1 +  + 
s + l  

D'(s )  = 3 s  2 + 6S + 2 

N(0) 1 
A I - -  _ _ - -  

D'(0) 2 

N ( - 1 )  
A 2 - - - - - -  2 

D ' ( - 1 )  

N ( - 2 )  5 
A 3 - - -  

D ' ( - 2 )  2 

~1[, , 5 ~ ]  , ~e2, 
2s 2 + = - - 2e - t  + 

s + l  2 2 2 
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Example E.2 
To determine 

Z2-1{(1/(s q- 1)(s 2 q- 1)} 

Solution. 

Hence 

£_1{ 1 } = /2_1 [  A B s - b C ]  
(S + 1)(S 2 + 1) ~ + ~ - ~  ' 

N ( s )  = 1 

D ( s )  = (s + l)(s 2 + 1), D'(s )  = (s 2 + 1) + (s + 1)(2s) 

N( -1 )  1 
A =  

D ' ( -1 )  2 

1 
R ( s )  -- 

s + l  

R( i )  -- - -  
1 1 - i  

1 + i  2 
- - - i B + C  

1 1 B=-E, C=E 

 _l{A 1 --S+,} 
+ ~ 7 ~  e~sS- l~ + e ~ 7 7 )  

1 
= ~(e -t + sint - cost) 

2 



Appendix F: Tables of Fourier 
and Laplace Transforms 

T a b l e  E 1  F o u r i e r  t r a n s f o r m s  

Function Transformed function 

1. f ( t )  ~ ( u )  

2. f ( t  - r )  ~T'(u)e -i"r 

3. f ' ( t )  i u .F (u )  

4. f ( ' ) ( t )  ( i u ) ' . T ( u )  

5. f ( t ) = h  as - a < t < a  2h 
- -  sin ua 

= 0 elsewhere u 

6. 6(t) 1 

7. 3(t -- r)  e -i"" 

1 
8. H ( t )  7-- 

l U  

I 
9. H ( t  - -  "~) - - e  - i u r  

iu  

10. H ( t ) e  -~t, ot > 0  1 
ot + iu 

1 
11. H ( t  - v ) e  -~t, ot > 0 - - e  -(~+~u)r 

c~ + iu 

2cl 
12. e -cdtl , ot > 0 °~ 2 -~- u2 

- 1  
13. H ( t ) t  u-- 7 

a 
14. H ( t )  s ina t  a z -  u2 

iu  
15. H ( t ) c o s a t  a2 u 2 
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Table F.2 Laplace transforms 

Function Transformed function 

1. f ( t )  F(s) = / ~ [ f ( t ) ]  = f o  e-St f ( t ) d t  

2. a f ( t )  +bg( t )  aF(s)  + bG(s) 

3. f ' ( t )  s F ( s ) -  f(O) 

4. f " ( t )  s2F(s) - sf(O) - f '(O) 

~L, ,,_t d E - I f ( 0 )  
5. f ( ' ) ( t )  s ' F ( s ) -  L s 

k=l dt ~-t 

6. n times n times 1 - - F ( s )  
J o . . . f o f ( t )  d t . . . d t  s,  

d 'F ( s )  
7. t ' f ( t )  ( -  1 ) " -  

(Is, 

8. e"t f ( t )  F(s - a) 

9. {JO " ( t - a )  ast>aast < a  e-"SF(s) 

10. fo f ( t  - u)g(u)du F(s)G(s)  

11. 1 1 / s  

12. e -at 1 
s q - a  

1 1 
13. - - ( e  -I" - e -at ) 

a -  b (s + a)(s + b) 

1 s 
14. - - ( b e  -t~t - ae ,t) 

b -  a (s + a)(s + b) 
a 

15. s i na t  s2 + a 2  

s 
16. cosa t  sZ +a2 

a 
17. s inha t  s 2 _ a 2  

s 
18. cosha t  s2 _ a2 

2as 
19. t s i na t  (s 2 + a2)2 

S 2 - -  a 2 

20. t cosa t  (s 2 + a 2 )  2 

(Cont.) 
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Table F.2 Laplace transforms (continued) 

Funct ion  Transformed funct ion 

2a 3 
21. s i n a t - a t c o s a t  

22. t s i n h a t  

23. t c o s h a t  

24. a t c o s h a t  - s i n h a t  

25. e - O t s i n a t  

26. e - b t c o s a t  

27. s i n a t  c o s h a t  - cos at  sinh at  

28. s i n a t  s i n h a t  

29. s i n a t c o s h a t -  c o s a t  s i n h a t  

30. cos a t  cosh a t  

31. s i n h a t - s i n a t  

32. c o s h a t - - c o s a t  

(s2-l . -a2) 2 

2as 

(s 2 -- a2)2 

s 2 + a 2 

( s  z - a2)2 

2a 3 

( s  2 - a Z ) 2  

a 

(s + b) 2 + a 2 

s + b  

(s + b) 2 + a 2 

4a  3 

(S 4 + 4a  4) 

2a2 s 

(S 4 --~ 4 a  4) 

2as 2 

s 4 + 4a  4 

S 3 

S 4 Jr- 4a  4 

2a  3 

s 4 _ a 4 

2a2s 

S 4 - -  a 4 



Appendix G: Contour Integration and 
Inverse Laplace Transform 

G.1 Analytic Functions of a Complex Variable 
A function f of  the complex variable z is analytic at a point zo if its derivative 

f '(zo) exists not only at z0 but at every point z in some neighborhood of  zo. It is 
analytic in a domain of  the z plane if it is analytic at every point in that domain. 

An entire function is one that is analytic at every point of  the z plane throughout 
the entire plane. For example, every polynomial is an entire function: 

p ( z ) = a o + a l z + a 2 z  2 + . . . + a , z  n n = 0 , 1 , 2  . . . .  

If  a function is analytic at some point in every neighborhood of  a point z0 except 
at z0 itself, then z0 is called a singular point, or a singularity, of  the function. For 
example, 

1 
f ( z )  = - 

Z 

then 

1 
f ' ( z ) -  z2 (z¢0) 

The point z = 0 is a singular point. 

Properties of Analytic Functions 
1) If  two functions are analytic in a domain D, their sum and their product are 

both analytic in D. Their quotient is analytic in D provided that the function in 
the demoninator does not vanish at any point in D. 

2) An analytic function of another analytic function is analytic. 

Conditions of Analytic Functions (Cauchy-Riemann Equations) 
Suppose that a function f ( z )  can be written as 

f ( z )  = u(x, y) + iv(x, y) (G.1) 

The conditions for the function to be analytic at point z0 are that the following two 
equations must be satisfied at that point: 

Ou Ov Ou Ov 
-- and (G.2) 

Ox Oy Oy Ox 

These are known as Cauchy-Riemann equations. 

339 
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G.2 Line Integrals of Complex Functions 
I fC is a curve in the complex plane joining the points z0 and Zl, the line integral 

of a function f(z) = u(x, y) + iv(x, y) along C is defined by the equation 

fc f (Z)dZ = fc(U + iv)(dx + idy) 

= fc[(Udx - vdy) + i(vdx + udy)] (G.3) 

Without proof, we state some facts as follows: 
1) The line integral of an analytic function is independent of path. 
2) If a function f(z) is analytic at all points interior to and on a closed contour 

C, then 
[ f(z)dz = 0 (G.4) 
d C  

Now let us consider the following integration 

f (z)dz = -dz  
I I Z 

where C1 is the unit circle Izl = 1 with the center at the origin. Notice that 
f(z)  = 1/z is analytic everywhere in the complex plane except the origin. Evalu- 
ating this line integral, we find 

f0 f0 d z  = e - i ° ( i e i ° d O )  = idO = 2 z r i  

1 

(G.5) 

More generally, let us consider any other closed curve C that surrounds the 
origin. If we make a "crosscut" from C to C1 and in the region R, f ( z )  = 1/z is 
analytic everywhere, and we have 

- - q -  ------0 
Z I Z 

~cdZ ~ c d Z  f2 ° . . . .  idO = 2zri (G.6) 
Z l zr 

Z 

Y C 

Fig. G.1 Contour integral around a singular point at z = 0. 
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C ]@ 
X X" 

Fig. G.2 Contour integral around a singular point at z = c~. 

Therefore, any closed curve surrounding the origin will have the result of 
27ri. 

Cauchy's Integral Formula 
Let C be a closed contour, inside which and along C, f ( z )  is analytic, and let 

Ix be a point inside C. Furthermore let C, be a small circle of radius E, with center 
at the point Ix as shown in Fig. G.2. Then, clearly the function f ( z ) / ( z  - Ix) is 
analytic in R so that 

fc  f(Z) dz + fc, f (Z) d z = O  
Z--IX , Z--IX 

fc f (Z) dz =- f f (Z) dz = f, f(Z) dz 
Z--IX , Z--IX Z--IX 

Note that the directions of line integrals on c, and c' E are different. On the circle cE 

f0 2" = Ix + Ee i° dz = ieeWdO C~ f (z )  dz = i f(ix + Eei°)dO Z 

&, Z - -  Ol 

In the limit E -+ 0, 

f ( z )  dz = lim i f(ix + eei°)dO = 2~'if(ix) 
Z -- IX E-+O 

Therefore 

1 fc f(z) dz f ( i x ) = ~  z- ix 
This is known as Cauchy's integral formula. 

(G.7) 

Example G.1 
Evaluate fc z-r-YT-I ~z2+1 a~ if C is a circle of unit radius with the center at z = 1 and 

then at z = - 1. 

Solution. Consider the integral as 

, ~  Z 2 + 1 dz 
I1 Yc z z + l  z - 1  
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i.e., 

Hence 

Consider also 
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Z24-1 
A ( z )  - - -  

z 4 - 1  
and ot = 1 

Ii  = 27rif l(1) = 2yri 

1 2 = f  c z24-1 dz 
2 z -  1 z 4 - 1  

Hence 

Z 2 +  1 
J~(z) - 

z - - 1  
and O t ~ - - I  

12 = 2Jr i f2(-  1) = - 2 ~ i  

Poles and Residues 

If  z = a is an isolated singular point of  f ( z ) ,  but if for some integer m the 
product 

(z - a)m f ( z )  

is analytic at z = a,  then f ( z )  has a pole at z = a. I f m  is the smallest integer for 
which this is so, the pole is said to be of order m. 

Now suppose that the analytic function f ( z )  has a pole of  order m at the point 
z = a. Then (z - a ) m f ( z )  is analytic and hence can be expanded into the Taylor 
series as 

(z - a)m f (z) = Ao 4- Al(Z - a) 4 - . . .  -Jr Am-l(Z - a) m-1 

4- Am(z - a) m 4 - . . .  (G.8) 

or 

Ao A 1 Am-l 
f ( z ) =  (z_a)---------~ 4- (z -- a) m-I 4 - ' ' ' 4 -  z - - a  4- Am 4- Am+l(z--a)  4 - " "  

(G.9) 
Let Ca be any closed contour surrounding z = a that lies inside the circle of  
convergence ofEq.  (G.8) and which is such that f ( z )  is analytic inside and on Ca, 
except at z = a. If  we integrate Eq. (G.9) around this contour, we have 

f G f ( z ) d z = f G [ ( z  Ao --a)m + 
A1 Am-1 1 

(z -- a) m-I 4 - . . .  4- (z -- a'---'-S 4 - . . .  dz (G.10) 
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Note that 

f0 f0 (z - - a )ndz  = E eni° (iei° dO) = ei ei(n+l)°dO 
a 

= e i  [ c o s ( n + l ) O + i s i n ( n + l ) O ] d O = O  i f n T ~ - I  (G.11) 

and 

f c  1 dz = 2rr i 
az-a 

(G.12) 

Using the results given, we find 

f c  f ( z )dz  = 2rciAm_, 
a 

(G.13) 

We call the coefficient AM-1 the residue of f ( z )  at z = a and denote it by 
Res(a). Hence, with the use of  the expression for the coefficients of  the Taylor 
series, we have 

1 [ dm-| ] 
Res(a)  = Am-I - (m 1)-~ / dz--~]'~-I [(z - a ) m f ( z ) ]  z=a (G.14) 

In the case of  a simple pole (m = 1), from Eq. (G.14), we find 

Res(a) = [(z - a)f(z)]z=a = lim[(z - a ) f ( z ) ]  
Z---~  U 

(G.15) 

In the case, if f ( z )  is expressed as the ratio of  two functions 

N(z)  
f ( z )  = 

D(z) 

but it has a simple pole at z = a, then 

(z - a) ] 
Res(a) = lira N ( z )  

z~a D(z )  

N(a )  

D'(a)  
(G.16) 

Suppose now that C is the boundary of a finite region inside which f ( z )  
is single-valued and has only isolated singularities at a finite number of  point 
z = al,  a2,.  • • ,  an. We enclose these points by small circles cl,  c2 . . . . .  Cn. Then 
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Fig. G.3 

Y C 

X L 

Finite number of singularities enclosed in C. 

by introducing a crosscut from each circle to C, a simply connected region R is 
obtained inside which f(z) is analytic. Thus we have 

f ( z )dz  = f ( z )dz  = 27ri Res(aj) 
"= j= l  

This result is known as Cauchy's residue theorem. 

(G.17) 

G.3 Contour Integrals 
Before we apply the method of contour integrals, we must make statements 

about the following theorems. 

Theorem I 

If, on a circular arc CR with radiusR and center at the origin, zf(z) ~ 0 
uniformly as R ---> oo, then 

Theorem II 

f 
lim ] f ( z ) d z = 0  

R---~oo JCR 

Suppose that, on a circular arc CR with radius R and center at origin, f(z) ~ 0 
uniformly as R --+ c~. Then 

1) l im { eiUZf(z)dz = 0 as u > 0 
R.--~oo JCR 

where CR is in the first and/or second quadrants. 

2) lira f ei"Zf(z)dz=O asu  < 0  
R--+oo JCR 

where CR is in the third and/or fourth quadrants. 

3) lira f e~Zf(z)dz=O ass  > 0  
R-"~.Oo Jc R 

where CR is in the second and/or third quadrants. 

+ 
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~y 
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Fig. G.4 Finite number of singularities enclosed in the contour. 

I" 
4) lim I eSZf(z)dz=O s <0 

R ---> ~x~ J C R L /  
where CR is in the first and/or fourth quadrants. 

Now let us apply the residue theorem to evaluate some improper real integrals 
such as 

I = f ~  P(X)dx (G.18) 
oo q(x) 

where p and q are polynomials with no factors in common. We can replace the 
variable x with the complex variable z and choose the contour as shown in Fig. 
G.4. Hence we have 

f ~ P(Z) dz fc p(z) dz ~--~ Res(aj)  - ~  + = 2Jri 
R q(z) j 

Note that the first term in the preceding equation means integrating along y ---- 0; 
the second part is proved to be vanishing on CR as given in the example. Then we 
have 

n 

I = 2~ri Z Res(aj) 
j = |  

Evaluate 

Example G.2 

I =fo  °° dx 
x 2 + l  

Solution. Because the integrand is an even function of  x, we have 

I x -  
2 oo X2 -~- 1 
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Choose the contour as shown in Fig. G.4. The contour integral can be written as 

Because 

lim [ f ~  dx f c  dz ] = 2 r r i Z R e s ( a j )  
R--->cx~ X2"'~ 1 -1- R g i 7  1 j 

1 1 
f ( z )  - - -  

z 2 q- 1 (z q- i)(z - i) 

there is only one simple pole z -- i within the contour. 

On CR, we have 

1 z=i  1 Res(i) . . . .  
z + i  2i 

Iz 2 -t- II > Iz2l - 1 = R 2 - 1 

 ,imr  __dz _< lim fc z2-~ `dzl lim Z 2 -t- 1 R ~  R--+0 ,~ R R 

_ :rrR 
< lim f I d z l  lim R - - T - ~ -  0 

R~c~ JCR R 2 -  1 R - - + o O  - -  1 

Therefore 

dx 1 [ 2 z r i l  ] rr 
1 = 2  oo X2 q -  1 2 = 2 "  

Example G.3 
Evaluate 

I = lim foo 
eiUX 
- - -  du 

a~o j _ ~  u - ioe 

Also find the value of  I as k < 0. 

Solution. 

asL > 0  

Choose the contour as shown in Fig. G.5 for the case 3. > 0. 

I = l im 2 J r i ( e i " X ) . = i ~ ,  = 2rri 
ot --+0 

X 
I -  

Fig. G.5 One singularity enclosed in the contour. 
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I_ y x 

Fig. G.6 No pole enclosed in the contour. 

347 

Because of Theorem II. 1, the integral over CR = 0. 
For k < 0 ,  because of Theorem II.2, we choose the contour as shown in Fig. 

G.6. There is no pole in this contour. Therefore 

I = 0  as)~ < 0 

G.4 Inverse Laplace Transform 
The method of the contour integral also can be used to evaluate the inverse 

Laplace transformation. Recall Eq. (8.37) for the inverse Laplace transform 

1 fv+ioo 
f ( t )  = £ - l [F(s ) ]  = ~ J×-ioo e~tF(s)ds 

We illustrate the procedure for the method through the following example. 

Example  G.4 

Find f ( t )  from F(s)  = S/(S 2 4- k 2) through the evaluation of the complex 
inversion integral 

1 f y + i o o  S 
f ( t )  = - ~ i  o×_,~ s2 4- k 2 

- -  e S t  ds 

Solution. Choose the contour as shown in Fig. G.7. The contour integral can 
be written as 

I f  y+i°° S ~ est ds l f c  s k 2 est ds = ~--~ Res at s j = + i k 
2~ri ,,v-ioo s2 q- 4- ~ 2 s2 4- j 

Evaluating the residues, we have the following: At s = ik, 

seSt 1 ikeikt 
lira ( s - "  
s~ik tk) (s - ik)(s 4- ik) 2ik 

At s = - i k ,  

lim 
s--+ --i k 

| eikt 
2 

seSt 1 --ike-ikt 1 -ikt 
(s + ik) (s - ik)(s + ik) . . . . .  - 2 i k  2e 
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I 

c \~.j 
7 

k C 1 

Fig. G.7 Contour for inverse Laplace transform. 

It can be  proved  that the line integral over  C2 is zero. Therefore  

1 f×+i~ s k2eS, d s = ~(eitt +e_it') = c o s k t  f (t) = ~ & - ~  s2 + 



Appendix H: Bessel Functions 

H.1 Bessel Equation and Its Series Solutions 
The Bessel equation of  order n with a parameter k can be written as 

r2R" + rR' + (X2r 2 - n2)R = 0 

where ~. is a real number. With the change of  variable 

(H.1) 

x = X r  

Eq. (H.1) becomes 

2d2R dR 
x ~ + x ~ - + ( x  2 - n 2 ) R = 0  

If  n is not an integer, the solution of Eq. (H.2) is 

(H.2) 

R(x) = c I J n ( x )  "~ c 2 J - n ( X )  (H.3) 

where 

(__ 1)reX n+ 2m 

Jn(x) = 22m+nm!F(n + m + 1) 
n/=O 

(H.4) 

J,,(x) is known as the Bessel function of the first kind of  order n. Notice that 
the function is an infinite series. In the denominator there is a gamma function 
denoted by F(n -t- m -I- 1). Similarly we have 

oo 
J-n(X) = Z (-1)mx-n+2m 

m=0 22m-nm!F(-n + m + 1) 

When n is an integer, it can be proved that 

(H.5) 

,l_.(x) = ( - 1 ) ~ J . ( x )  

Hence, .In (x) and J-n (x) are not independent. The general solution of  Eq. (H.2) 
becomes 

R(x) = Cl J,(x) -I- c2Yn(x) (H.6) 

Yn (x) is the Bessel function of  the second kind of  order n. Because Yn (x) becomes 
infinite as x --+ 0, c2, is usually set to zero. The detail expression for Y,,(x) is 

349 
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0 . 5  

O -  
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I I I I i i 

. . . . .  J 1  
- -  J o  

/ \ 

O 

Fig. H.1 

X 

Bessel functions J0, Jl .  

omitted here. Interested readers can refer to the "Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables" by the National 
Bureau of Standards. The gamma function in Eq. (H.4) may be briefly described 
as 

When x = integer = n, 

~ 0  °G 

F ( x  + 1) = e-tt~dt (H.7) 

F(n  + 1) = n! (H.8) 

The graphs of Bessel  functions are shown in Figs. (H.I)  and (H.2). Numerical 
values of Bessel  functions of order of 0 and 1 are given in the tables, at the end of 
this appendix. 

0 .15  

0 -  

. - - 0 . 5  
O 

- - 1 .  

- - 1 . 5  

i i I I ] 

. . . . .  Y1 
Yo 

/ \ \  ~ \  ~ .  - \  

t \ \ \ \ 

I 

o ~ 1'o 1'5 2'0 2'5 
X 

Fig. H.2 Bessel functions YO, YI. 
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H.2 Properties of Bessel Functions 
The following formulas are collected here for the readers' convenience. Detailed 

proofs are omitted. 

d [ x  n+l Jx+l (x)] = x n+l J. (x) (H.9) 

d 
-~[x-"  Jn(x)] = - x - "  J.+l (x) (H.10) 

n 
J~(x)  .-~ Jn_L(x) - - J n ( x )  (H. 11) 

x 

n 
J~(x)  = - J n ( x )  - Jn+l (X) (H. 12) 

x 

f x n+l Jn(x)dx = x n+l J.+l (x) + c (H.13) 

f x - n  Jn + 1 (x)  dx = - x - n  Jn (x)  -Jr- c (H. 14) 

oo 
cos(x sin 4)) = Jo(x) + 2 Z J2k(X) cos 2k4) (H.15) 

k=l 

oo 
sin(x sin ~b) = 2 Z J2k-I (x) sin(2k - 1)4) (H.16) 

k=l 

fo x {0  Jn(x) neven COS n~ cos(x sin q~) d4) = (H.17) 
n odd 

fo '~ 10 neven (H.18) sinn~bsin(xsin~b)d~b = JrJn(x) n odd 

'f[ Jn(x) = -- [cosn~)cos(xsin~))+sinn~sin(xsind~)]ddp (H.19) 

In the preceding expressions, n is an integer. 

H.3 Fourier-Bessel Series 
A function can be expanded into a Fourier-Bessel series as 

f ( r )  = A1Jk()~lr) + A2Jk(L2r) + . . .  + AnJk(Lnr) + "'" + a s 0 < r < b  

(H.20) 
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The conditions for the function to be expressed by the preceding equation may be 
stated without proof as follows. The function f ( r )  must be piecewise continuous. 
The Bessel function Jk()~r) satisfies the condition 

dJk(~,r) 
AJk(~,b) - B dr b = 0 (H.21) 

where A, B are constants. Then 

An = f~ f (r)r J~(knr)dr (H.22) 

f~ rJ~(~.nr)dr 

where 

J2 (~.,,b) 
fo j 2  [ ~ [ 0 ~ n b ) 2 - k 2 + ( ~ - ~ )  2] B - C O  b r ( ) ~ n r ) d r  = { 2^. (H.23) 

Exampla H.1 
Expand f ( r )  = r 2 over the interval 0 < r < 3 in terms of the function Jo(~n r) 

where the ~n are determined by Jl (3~,) = 0. 

Solution. The roots of  Jl (3~.) = 0 are 

3~0 = 0, 3Zl = 3.832, 3~2 = 7.016 

3 ~  3 = 10.174, 3~ 4  = 13.324 . . . .  

o r  

~-0 = 0, M = 1.277, Zz = 2.339, L3 = 3.391, ~.4 = 4.441 

Looking into the boundary condition Eq. (H.21), we have 

because 

dJo(~,r) 
AJo(3~,) - B - -  -- 0 

dr 

dJo(x) 
- -  - -  J l  ( x )  = 0 

dx 

and J0(3~.) # 0. The constant A must be zero because of the boundary condition. 
The coefficients 

An - f3 r3 jo()~nr )dr 

- f3orJ~(X.r)d r 
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Using Eq. (H.23), we find 

rJ~(~.nr)dr = --~J~()~nb) 

To integrate the numerator in An, 

~0 3 1 f3~., I = r3j°()~nr)dr = ~ Jo z3J°(z)dz 

We use integration by parts, Eq. (H. 13), and find 

Hence 

An = (--18/)~2)J2(3~'n) 
(9/2)J2(3Xn) 

For n = 0, )~o = 0, and Jo(0) = 1, 

A o  ~ m 

18 
x~ Jz(3X.) 

4 Jz(3kn) 4 

k .  2 Jo2(3Xn) k2nJo(3kn) 

f3r3dr 9 

f~ rdr 2 

Therefore, the Fourier-Bessel series is 

r2 = 9 ~ .  4 
+ ~2 Jo(3~n) Jo(Xnr) 

n= l  

a s O < r < 3  
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Appendix I" Instructions for Computer Programs 

C OMPUTER programs used in the text are copied on the floppy disk as 
attached. The programs are written in FORTRAN-77. They can be compiled 

by the FORTRAN compiler of Watcom System, Inc. The following procedure is 
for running the programs: 

1) Run the computer on the directory where FORTRAN-77 compiler is located; 
say FORTRAN. 

2) Insert the floppy disk to disk drive (A or B). 
3) Copy the program to the FORTRAN directory. 
4) Type "watfor77 filename" 
Each program will generate a set of computed results for a plot. Much computer 

software such as C-plot, sigmaplot, and mathcad, etc., can be used for plotting. 
Separate software must be used to plot the graphs. To modify the program, edit 
the files after copying them into the directory. 

Type "wediff filename" 
After the modifications are done, save the changes: 

Type "autosave" 
The following is the list of programs available on the disk: 

1) MSSL.FOR (for Example 2.1) 
2) SPACEV.FOR (for Example 2.2) 
3) MSLTMSLT.FOR (for Example 3.1 with spherical ground) 
4) MSLTOMSL.FOR (for Example 3.1 with flat ground) 
5) ELCTPREFOR (for Fig. 5.6 spiral orbit of electrical propulsion) 
6) TOPS0.FOR (for Fig. 7.1 lc, nutation of top in Section 7.5) 
7) TOPS1.FOR (for Fig. 7.1 l b, nutation of top in Section 7.5) 
8) TOPS2.FOR (for Fig. 7.1 la, nutation of top in Section 7.5) 
9) RSPNS.FOR (for Example 8.14, response spectrum) 

10) STBLTYI.FOR (for case E = 1 in Example 9.18) 
11) STBLTY2.FOR (for case E = 2 in Example 9.18) 
12) STBLTY3.FOR (for case E = 3 in Example 9.18) 
13) BESSJ0.FOR (for Bessel function J0 in Appendix H) 
14) BESSJ1.FOR (for Bessel function Jl in Appendix H) 
15) BESSY0.FOR (for Bessel function Y0 in Appendix H) 
16) BESSY1.FOR (for Bessel function YI in Appendix H) 
17) BSFJY.FOR (for Table of Bessel Functions in Appendix H) 
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Appendix J: Further Reading 

Textbooks on Advanced Dynamics--Graduate Level 

Barlett, J., Classical and Modern Mechanics, Univ. of Alabama Press, Huntsville, AL, 
1975. 

D'Souza, A. E, and Garg, V. K., Advanced Dynamics, Prentice-Hall, Englewood Cliffs, 
NJ, t984. 

Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA, 1980. 
Greenwood, D. T., Principles of Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1988. 
Groesberg, S., Advanced Mechanics, Wiley, New York, 1971. 
Moorse, E. N., Theoretical Mechanics, Wiley, New York, 1983. 

Textbooks on Mechanics--Undergraduate Level 

Beer, F. P., and Johnston, E. R., Vector Mechanics for Engineers, 3rd ed., McGraw-Hill, 
New York, 1977. 

Hibbler, R. C., Engineering Mechanics, Macmillan, New York, 1986. 
Martin, G. H., Kinematics and Dynamws of Machines, 2nd ed., McGraw-Hill, New 

York, 1982. 
Meriam, J. L., and Kraige, L. G., Engineering Mechanics, Wiley, New York, 1987. 
Shames, I. H., Engineering Mechanics, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 

1980. 
Synge, J. L., and Griffith, B. A., Principles of Mechanics, 3rd ed., McGraw-Hill, New 

York, 1959. 

Textbooks on Mathematics Relevant to Mechanics 

Jeffreys, H., and Jeffreys, B. S., Methods of Mathematical Physics, 3rd ed., Cambridge 
Univ. Press, London, 1956. 

Hildebrand, E B., Advanced CalculusJor Applications, Prentice-Hall, Englewood Cliffs, 
NJ, 1976. 

Sokolnikoff, I. S., and Redheffer, R. M., Mathematics of Physics andModern Engineer- 
ing, 2nd ed., McGraw-Hill, New York, 1966. 

Other Books of Interest 

Chobotov, V. A., Orbital Mechanics, AIAA Education Series, AIAA, Washington, DC, 
1991. 

Hughes, P. C., Spacecraft Attitude Dynamics, Wiley, New York, 1986. 
Regan, E J., and Anandakrishnan, S. M., Dynamics of Atmospheric Re-entry, AIAA 

Education Series, AIAA, Washington, DC, 1993. 
Shabana, A. A., Theory of Vibration, Springer-Verlag, New York, 1991. 
Thomson, W. T., Theory of Vibration with Applications, 3rd ed., Prentice-Hall, Engle- 

wood Cliffs, NJ, 1988. 
Willems, P. Y. (ed.), Gyrodynamics, Euromech 38 Colloquium, Springer-Verlag, Berlin, 

1974. 
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Matrices, l l5 121,327-330 

Cramer's rule, 118 
inverse, 117, 329, 330 
line of nodes, 120 
linear transformation, 1 i5-12l  
orthogonal, 118 
properties, 328-330 
rotation, 119-121 
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Orthogonal matrix, 118 
Orthogonal transformation, 117 

Parabolic orbit, 112, 113 
Partial fraction, 331-334 
Particle in central force field, 92 103 

elliptical orbits, 98-100 
escape velocity, 96 
inverse square law, 93 



INDEX 369 

Particle in central force field (continued) 
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Planetary data, 325 
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stability around singular point, 296-299 

Statics, 5 
Stoke's theorem, 321 323 
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Rotating top 
nutation, 168 172 
precession, 168-172 

Rotation matrix, 119-121 
Rotation operators, 136-147 

combination of two rotations, 143-147 
definition, 137 
Euler angles, 141-143 
Euler's theorem, 145 
properties, 137-140 

Runge-Kutta method, 16, 18,319, 320 

Seismometer, 208-210 
Separation of variables method, 269, 

278, 285 
Single-degree-of-freedom gyro, 164 
Small perturbation method, 103-106 
Sound waves, 287-289 
Space vehicle, 103-112 

electrical propulsion system, 103 
Special relativity theory, 305-318 

addition of velocities, 314 
Albert Einstein's assumptions, 305 
Brehme diagram, 310-313 
equation of motion, 315, 316 
kinetic energy, 317 
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Tensors, 121-123 
Cartesian, 121 123 
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gravitational effect, 173 
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space vehicle, 17-19 
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orthogonal, 117 

Transforms 
Fourier, 195, 196, 225 227, 335 
Laplace, 196-203, 214-217, 219 221,336, 

337, 347 

U-joint connection, l 1, 12 
Units, l, 2 

Vector 
algebra, 2, 3 
differentiation, 3, 4 
operations, 4 
position, 13-15 

Velocity, 54, 96, 97, 156-160,222-224, 314 
Cartesian (rectangular) coordinates, 13 
cylindrical coordinates, 14 
spherical coordinates, 15 
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Vibration of automobile, 212, 213,239, 
240, 303 

Vibration systems with single degree of 
fieedom, 203 224 

critically damped motion, 204 
harmonic excitation, 205-207 
natural frequency, 204 
overdamped motion, 204 
packaging analysis, 218 221 
pseudo-acceleration spectrum, 224 
pseudo-response spectrum, 224 
response spectrum, 221,222 
Richter scale, 210 
seismometer, 208-210 
transient vibration, 214-221 
traveling vehicle, 212,213 
underdamped motion, 205 
unfavorable speed, 213 
velocity spectrum, 222-224 
vibration absorber, 211,212 

Vibration systems with multiple degrees of 
freedom, 233-303 

automobile vibration, 239, 240 
damped system, 242-244 
eigenvalues and eigenvectors, 246, 247 
forced harmonic excitation, 240-242 
mass-spring system, 234-237 
matrix formulation, 244-254 
modal matrix, 248 
natural frequencies, 234-236 
principal (normal) coordinates, 247 250 
principal modes, 238 
steady-state solution, 237 
torsional system, 237239 
viscously damped systems, 253. 254 

Vibrations of continuous systems, 266 289 
Vibrating beam, 274-282 

assumptions, 274 
boundary conditions, 277,278 
equation, 277 
simply supported beam, 278-282 

Vibrating membrane, 282-287 
assumptions, 283 
equation, 284 
radially symmetric membrane, 284-287 

Vibrating string, 267 274 
assumptions, 267 
equation, 268 
general solution, 273, 274 
solution with initial displacement, 268 273 

Viscous stress 
bulk viscosity, 136 
coefficient of viscosity, 136 
Newtonian fluid, 133 
pure strain rate dyadic, 135 
rotation dyadic, 135 

Virtual displacement, 7 
Virtual work, 7-9 

Wave equations 
one dimensional, 268 
three dimensional, 288 
two dimensional, 284 

Whirling shaft, 290 294 
assumptions, 29(1 
maxmmm dellections, 292 294 
rotating at a constant speed, 291 
rotating with acceleration. 291-294 

Work, 21 
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